WorldWideScience

Sample records for fibroblast activation physiological

  1. Physiological Actions of Fibroblast Growth Factor-23

    Directory of Open Access Journals (Sweden)

    Reinhold G. Erben

    2018-05-01

    Full Text Available Fibroblast growth factor-23 (FGF23 is a bone-derived hormone suppressing phosphate reabsorption and vitamin D hormone synthesis in the kidney. At physiological concentrations of the hormone, the endocrine actions of FGF23 in the kidney are αKlotho-dependent, because high-affinity binding of FGF23 to FGF receptors requires the presence of the co-receptor αKlotho on target cells. It is well established that excessive concentrations of intact FGF23 in the blood lead to phosphate wasting in patients with normal kidney function. Based on the importance of diseases associated with gain of FGF23 function such as phosphate-wasting diseases and chronic kidney disease, a large body of literature has focused on the pathophysiological consequences of FGF23 excess. Less emphasis has been put on the role of FGF23 in normal physiology. Nevertheless, during recent years, lessons we have learned from loss-of-function models have shown that besides the paramount physiological roles of FGF23 in the control of 1α-hydroxylase expression and of apical membrane expression of sodium-phosphate co-transporters in proximal renal tubules, FGF23 also is an important stimulator of calcium and sodium reabsorption in distal renal tubules. In addition, there is an emerging role of FGF23 as an auto-/paracrine regulator of alkaline phosphatase expression and mineralization in bone. In contrast to the renal actions of FGF23, the FGF23-mediated suppression of alkaline phosphatase in bone is αKlotho-independent. Moreover, FGF23 may be a physiological suppressor of differentiation of hematopoietic stem cells into the erythroid lineage in the bone microenvironment. At present, there is little evidence for a physiological role of FGF23 in organs other than kidney and bone. The purpose of this mini-review is to highlight the current knowledge about the complex physiological functions of FGF23.

  2. HDAC2 is required by the physiological concentration of glucocorticoid to inhibit inflammation in cardiac fibroblasts.

    Science.gov (United States)

    Zhang, Haining; He, Yanhua; Zhang, Guiping; Li, Xiaobin; Yan, Suikai; Hou, Ning; Xiao, Qing; Huang, Yue; Luo, Miaoshan; Zhang, Genshui; Yi, Quan; Chen, Minsheng; Luo, Jiandong

    2017-09-01

    We previously suggested that endogenous glucocorticoids (GCs) may inhibit myocardial inflammation induced by lipopolysaccharide (LPS) in vivo. However, the possible cellular and molecular mechanisms were poorly understood. In this study, we investigated the role of physiological concentration of GCs in inflammation induced by LPS in cardiac fibroblasts and explored the possible mechanisms. The results showed that hydrocortisone at the dose of 127 ng/mL (equivalent to endogenous basal level of GCs) inhibited LPS (100 ng/mL)-induced productions of TNF-α and IL-1β in cardiac fibroblasts. Xanthine oxidase/xanthine (XO/X) system impaired the anti-inflammatory action of GCs through downregulating HDAC2 activity and expression. Knockdown of HDAC2 restrained the anti-inflammatory effects of physiological level of hydrocortisone, and blunted the ability of XO/X system to downregulate the inhibitory action of physiological level of hydrocortisone on cytokines. These results suggested that HDAC2 was required by the physiological concentration of GC to inhibit inflammatory response. The dysfunction of HDAC2 induced by oxidative stress might be account for GC resistance and chronic inflammatory disorders during the cardiac diseases.

  3. Tumor-secreted LOXL2 activates fibroblasts through FAK signaling

    DEFF Research Database (Denmark)

    Barker, Holly E; Bird, Demelza; Lang, Georgina

    2013-01-01

    models. Here, we discovered that tumor-derived LOXL2 directly activated stromal fibroblasts in the tumor microenvironment. Genetic manipulation or antibody inhibition of LOXL2 in orthotopically grown mammary tumors reduced the expression of α-smooth muscle actin (α-SMA). Using a marker for reticular....... Importantly, in vitro assays revealed that tumor-derived LOXL2 and a recombinant LOXL2 protein induced fibroblast branching on collagen matrices, as well as increased fibroblast-mediated collagen contraction and invasion of fibroblasts through extracellular matrix. Moreover, LOXL2 induced the expression of α...

  4. The effect of tranilast on fibroblast activation protein α (FAP-α expression in normal and keloid fibroblasts in vitro

    Directory of Open Access Journals (Sweden)

    Paweł P. Antończak

    2017-07-01

    Full Text Available Introduction . Tranilast (N-(3’,4’-demethoxycinnamoyl-anthranilic acid is an anti-allergic drug. Its mechanism of action is based on the inhibition of antigen-induced release of chemical mediators from mast cells and basophils. It also reveals antifibroproliferative activities. These properties of tranilast are used in the treatment of hypertrophic scars and keloids. Keloids are characterized by incorrect extracellular matrix components turnover. Fibroblasts derived from keloids reveal overproduction of collagen type I and decreased degradation of extracellular matrix in comparison with normal fibroblasts. Fibroblast activation protein α (FAP-α may play an important role in remodeling of extracellular matrix and the invasive properties of keloids. Objective . In the present study, the effect of tranilast on expression of FAP-α gene and its protein was evaluated in normal human dermal fibroblasts and fibroblasts derived from keloids cultured in vitro . Materials and methods. In the first stage of the study, the influence of tranilast on cell viability was estimated. The second stage of the study included the quantitative evaluation of FAP-α mRNA expression in normal and keloid fibroblasts treated with tranilast. The third stage of the study comprised fibroblast activation protein α expression analysis in the examined cells treated with tranilast. Results and conclusions . The expression of FAP-α gene and fibroblast activation protein α is higher in keloid fibroblasts. Tranilast at concentrations of 3 μM and 30 μM up-regulated mRNA FAP-α expression in normal fibroblasts but did not influence keloid fibroblasts. The drug, at concentrations of 30 μM and 300 μM up-regulated fibroblast activation protein α expression in normal fibroblasts and did not influence keloid fibroblasts. Tranilast antiproliferative effect is not associated with FAP-α expression in keloid fibroblasts.

  5. Bacterial lipopolysaccharide promotes profibrotic activation of intestinal fibroblasts.

    LENUS (Irish Health Repository)

    Burke, J P

    2012-02-01

    BACKGROUND: Fibroblasts play a critical role in intestinal wound healing. Lipopolysaccharide (LPS) is a cell wall component of commensal gut bacteria. The effects of LPS on intestinal fibroblast activation were characterized. METHODS: Expression of the LPS receptor, toll-like receptor (TLR) 4, was assessed in cultured primary human intestinal fibroblasts using flow cytometry and confocal microscopy. Fibroblasts were treated with LPS and\\/or transforming growth factor (TGF) beta1. Nuclear factor kappaB (NFkappaB) pathway activation was assessed by inhibitory kappaBalpha (IkappaBalpha) degradation and NFkappaB promoter activity. Fibroblast contractility was measured using a fibroblast-populated collagen lattice. Smad-7, a negative regulator of TGF-beta1 signalling, and connective tissue growth factor (CTGF) expression were assessed using reverse transcriptase-polymerase chain reaction and western blot. The NFkappaB pathway was inhibited by IkappaBalpha transfection. RESULTS: TLR-4 was present on the surface of intestinal fibroblasts. LPS treatment of fibroblasts induced IkappaBalpha degradation, enhanced NFkappaB promoter activity and increased collagen contraction. Pretreatment with LPS (before TGF-beta1) significantly increased CTGF production relative to treatment with TGF-beta1 alone. LPS reduced whereas TGF-beta1 increased smad-7 expression. Transfection with an IkappaBalpha plasmid enhanced basal smad-7 expression. CONCLUSION: Intestinal fibroblasts express TLR-4 and respond to LPS by activating NFkappaB and inducing collagen contraction. LPS acts in concert with TGF-beta1 to induce CTGF. LPS reduces the expression of the TGF-beta1 inhibitor, smad-7.

  6. LIF Mediates Proinvasive Activation of Stromal Fibroblasts in Cancer

    Directory of Open Access Journals (Sweden)

    Jean Albrengues

    2014-06-01

    Full Text Available Signaling crosstalk between tumor cells and fibroblasts confers proinvasive properties to the tumor microenvironment. Here, we identify leukemia inhibitory factor (LIF as a tumor promoter that mediates proinvasive activation of stromal fibroblasts independent of alpha-smooth muscle actin (α-SMA expression. We demonstrate that a pulse of transforming growth factor β (TGF-β establishes stable proinvasive fibroblast activation by inducing LIF production in both fibroblasts and tumor cells. In fibroblasts, LIF mediates TGF-β-dependent actomyosin contractility and extracellular matrix remodeling, which results in collective carcinoma cell invasion in vitro and in vivo. Accordingly, carcinomas from multiple origins and melanomas display strong LIF upregulation, which correlates with dense collagen fiber organization, cancer cell collective invasion, and poor clinical outcome. Blockade of JAK activity by Ruxolitinib (JAK inhibitor counteracts fibroblast-dependent carcinoma cell invasion in vitro and in vivo. These findings establish LIF as a proinvasive fibroblast producer independent of α-SMA and may open novel therapeutic perspectives for patients with aggressive primary tumors.

  7. The physiological period length of the human circadian clock in vivo is directly proportional to period in human fibroblasts.

    Directory of Open Access Journals (Sweden)

    Lucia Pagani

    Full Text Available BACKGROUND: Diurnal behavior in humans is governed by the period length of a circadian clock in the suprachiasmatic nuclei of the brain hypothalamus. Nevertheless, the cell-intrinsic mechanism of this clock is present in most cells of the body. We have shown previously that for individuals of extreme chronotype ("larks" and "owls", clock properties measured in human fibroblasts correlated with extreme diurnal behavior. METHODOLOGY/PRINCIPAL FINDINGS: In this study, we have measured circadian period in human primary fibroblasts taken from normal individuals and, for the first time, compared it directly with physiological period measured in vivo in the same subjects. Human physiological period length was estimated via the secretion pattern of the hormone melatonin in two different groups of sighted subjects and one group of totally blind subjects, each using different methods. Fibroblast period length was measured via cyclical expression of a lentivirally delivered circadian reporter. Within each group, a positive linear correlation was observed between circadian period length in physiology and in fibroblast gene expression. Interestingly, although blind individuals showed on average the same fibroblast clock properties as sighted ones, their physiological periods were significantly longer. CONCLUSIONS/SIGNIFICANCE: We conclude that the period of human circadian behaviour is mostly driven by cellular clock properties in normal individuals and can be approximated by measurement in peripheral cells such as fibroblasts. Based upon differences among sighted and blind subjects, we also speculate that period can be modified by prolonged unusual conditions such as the total light deprivation of blindness.

  8. Inhibiting aerobic glycolysis suppresses renal interstitial fibroblast activation and renal fibrosis.

    Science.gov (United States)

    Ding, Hao; Jiang, Lei; Xu, Jing; Bai, Feng; Zhou, Yang; Yuan, Qi; Luo, Jing; Zen, Ke; Yang, Junwei

    2017-09-01

    Chronic kidney diseases generally lead to renal fibrosis. Despite great progress having been made in identifying molecular mediators of fibrosis, the mechanism that governs renal fibrosis remains unclear, and so far no effective therapeutic antifibrosis strategy is available. Here we demonstrated that a switch of metabolism from oxidative phosphorylation to aerobic glycolysis (Warburg effect) in renal fibroblasts was the primary feature of fibroblast activation during renal fibrosis and that suppressing renal fibroblast aerobic glycolysis could significantly reduce renal fibrosis. Both gene and protein assay showed that the expression of glycolysis enzymes was upregulated in mouse kidneys with unilateral ureter obstruction (UUO) surgery or in transforming growth factor-β1 (TGF-β1)-treated renal interstitial fibroblasts. Aerobic glycolysis flux, indicated by glucose uptake and lactate production, was increased in mouse kidney with UUO nephropathy or TGF-β1-treated renal interstitial fibroblasts and positively correlated with fibrosis process. In line with this, we found that increasing aerobic glycolysis can remarkably induce myofibroblast activation while aerobic glycolysis inhibitors shikonin and 2-deoxyglucose attenuate UUO-induced mouse renal fibrosis and TGF-β1-stimulated myofibroblast activation. Furthermore, mechanistic study indicated that shikonin inhibits renal aerobic glycolysis via reducing phosphorylation of pyruvate kinase type M2, a rate-limiting glycolytic enzyme associated with cell reliance on aerobic glycolysis. In conclusion, our findings demonstrate the critical role of aerobic glycolysis in renal fibrosis and support treatment with aerobic glycolysis inhibitors as a potential antifibrotic strategy. Copyright © 2017 the American Physiological Society.

  9. Cell proliferation in vitro modulates fibroblast collagenase activity

    International Nuclear Information System (INIS)

    Lindblad, W.J.; Flood, L.

    1986-01-01

    Collagenase enzyme activity is regulated by numerous control mechanisms which prevent excessive release and activation of this protease. A primary mechanism for regulating enzyme extracellular activity may be linked to cell division, therefore they have examined the release of collagenase by fibroblasts in vitro in response to cellular proliferation. Studies were performed using fibroblasts derived from adult rat dermis maintained in DMEM containing 10% newborn calf serum, 25 mM tricine buffer, and antibiotics. Cells between subculture 10 and 19 were used with enzyme activity determined with a 14 C-labelled soluble Type I collagen substrate with and without trypsin activation. Fibroblasts, trypsinized and plated at low density secreted 8.5 fold more enzyme than those cells at confluence (975 vs. 115 dpm/μg DNA). This diminution occurred gradually as the cells went from logrithmic growth towards confluence. Confluent fibroblast monolayers were scraped in a grid arrangement, stimulating the remaining cells to divide, without exposure to trypsin. Within 24-48 hr postscraping enzyme levels had increased 260-400%, accompanied by enhanced incorporation of 3 H-thymidine and 3 H-uridine into cell macromolecules. The burst of enzyme release began to subside 12 hr later. These results support a close relationship between fibroblast proliferation and collagenase secretion

  10. Chloride transport in human fibroblasts is activated by hypotonic shock

    Energy Technology Data Exchange (ETDEWEB)

    Rugolo, M.; Mastocola, T.; Flamigni, A.; Lenaz, G. (Universita' di Bologna (Italy))

    1989-05-15

    Incubation of human skin fibroblasts in hypotonic media induced the activation of {sup 36}Cl- efflux which was roughly proportional to the decrease in the osmolality of the media. The efflux of {sup 36}Cl- was insensitive to DIDS plus furosemide and inhibited by addition of a Cl- channel blocker such as 5-nitro-2-(3-phenyl propylamino) benzoic acid (NPPB). We propose that a conductive pathway for Cl- transport, almost silent in isotonic conditions, is activated by exposing human fibroblasts to hypotonic shock, this conclusion being supported by evidence that also {sup 36}Cl- influx was enhanced by hypotonic medium.

  11. RNA-Guided Activation of Pluripotency Genes in Human Fibroblasts

    DEFF Research Database (Denmark)

    Xiong, Kai; Zhou, Yan; Blichfeld, Kristian Aabo

    2017-01-01

    -associated protein 9 (dCas9)-VP64 (CRISPRa) alone, or a combination of dCas9-VP64 and MS2-P65-HSF1 [synergistic activation mediator (SAM) system] mediated activation of five pluripotency genes: KLF4 (K), LIN28 (L), MYC (M), OCT4 (O), and SOX2 (S) in human cells (HEK293T, HeLa, HepG2, and primary fibroblasts...... could be obtained from these SAM fibroblasts. In conclusion, our study showed that CRISPR/Cas9-based ATFs are potent to activate and maintain transcription of endogenous human pluripotent genes. However, future improvements of the system are still required to improve activation efficiency and cellular...

  12. Reduced superoxide dismutase activity in xeroderma pigmentosum fibroblasts

    International Nuclear Information System (INIS)

    Nishigori, C.; Miyachi, Y.; Imamura, S.; Takebe, H.

    1989-01-01

    This study was performed in order to assess the possible protective effect of superoxide dismutase (SOD) on ultraviolet (UV) damage in xeroderma pigmentosum (XP) fibroblasts. SOD activity in fibroblasts originating from seven xeroderma pigmentosum (XP) patients was significantly lower than that in normal cells (p less than 0.005). Average SOD activity in XP cells belonging to complementation group A was 3.68 +/- 0.54 (n = 7) and that in normal human cells was 5.79 +/- 1.59 (n = 6). Addition of SOD before and during UV irradiation (UVB and UVC) to the cells caused no change in the amount of unscheduled DNA synthesis and UV survival. A possible involvement of reduced SOD in XP and a possible protective effect by SOD on UV damage is discussed

  13. Metabolic and physiologic studies of nonimmune lymphoid cells cytotoxic for fibroblastic cells in vitro

    International Nuclear Information System (INIS)

    Mayhew, E.; Bennett, M.

    1974-01-01

    An in vitro reaction between mouse lymphoid cells and target fibroblastic cells in wells of microtest plates, which appears to simulate the in vivo rejection of hemopoietic allografts, has been analyzed for metabolic and physiologic requirements. Protein synthesis was required for only the first few hours of culture. Inhibition of RNA synthesis and alteration of cell surface charge with various agents were without obvious effects. Metabolic slowing at 4 0 C or deviation of the pH of the culture medium suppressed the reaction. Thymus cells, which are not cytotoxic in this system, significantly but not completely inhibited the cytotoxicity of lymph node cells. Antiserum directed against target cells specifically protected them from the cytotoxic lymphoid cells in the absence of complement. Precursors of cytotoxic lymphoid cells were radiosensitive, unlike the cytotoxic cells themselves. BALB/c anti-C57BL/6 spleen cell serum and 89 Sr both are able to prevent rejection of marrow allografts in vivo. Lymphoid cells incubated with this antiserum plus complement lost much of their cytotoxicity but were still effective at high ratios of aggressor to target cells. Lymphoid cells of mice treated with 89 Sr were effectively cytotoxic but lost practically all of their cytotoxicity after incubation with the antiserum plus complement. Thus, it appears that this reaction detects two different cytotoxic lymphoid cells, either of which can function in vitro. Both cell types may need to cooperate in vivo during marrow allograft rejections

  14. Receptor protein tyrosine phosphatase alpha activates Src-family kinases and controls integrin-mediated responses in fibroblasts

    DEFF Research Database (Denmark)

    Su, J; Muranjan, M; Sap, J

    1999-01-01

    of tyrosine kinases, the activity of which is tightly controlled by inhibitory phosphorylation of a carboxyterminal tyrosine residue (Tyr527 in chicken c-Src); this phosphorylation induces the kinases to form an inactive conformation. Whereas the identity of such inhibitory Tyr527 kinases has been well...... established, no corresponding phosphatases have been identified that, under physiological conditions, function as positive regulators of c-Src and Fyn in fibroblasts. RESULTS: Receptor protein tyrosine phosphatase alpha (RPTPalpha) was inactivated by homologous recombination. Fibroblasts derived from...... these RPTPalpha-/- mice had impaired tyrosine kinase activity of both c-Src and Fyn, and this was accompanied by a concomitant increase in c-Src Tyr527 phosphorylation. RPTPalpha-/- fibroblasts also showed a reduction in the rate of spreading on fibronectin substrates, a trait that is a phenocopy of the effect...

  15. Fibroblast adhesion and activation onto micro-machined titanium surfaces.

    Science.gov (United States)

    Guillem-Marti, J; Delgado, L; Godoy-Gallardo, M; Pegueroles, M; Herrero, M; Gil, F J

    2013-07-01

    Surface modifications performed at the neck of dental implants, in the manner of micro-grooved surfaces, can reduce fibrous tissue encapsulation and prevent bacterial colonization, thereby improving fibrointegration and the formation of a biological seal. However, the applied procedures are technically complex and/or time consuming methods. The aim of this study was to analyse the fibroblast behaviour on modified titanium surfaces obtained, applying a simple and low-cost method. An array of titanium surfaces was obtained using a commercial computerized numerical control lathe, modifying the feed rate and the cutting depth. To elucidate the potential ability of the generated surfaces to activate connective tissue cells, a thorough gene (by real time - qPCR) and protein (by western blot or zymography) expression and cellular response characterization (cell morphology, cell adhesion and cell activation by secreting extracellular matrix (ECM) components and their enzyme regulators) was performed. Micro-grooved surfaces have statistically significant differences in the groove's width (approximately 10, 50 and 100 μm) depending on the applied advancing fixed speed. Field emission scanning electron microscopy images showed that fibroblasts oriented along the generated grooves, but they were only entirely accommodated on the wider grooves (≥50 μm). Micro-grooved surfaces exhibited an earlier cell attachment and activation, as seen by collagen Iα1 and fibronectin deposition and activation of ECM remodelling enzymes, compared with the other surfaces. However, fibroblasts could remain in an activated state on narrower surfaces (fibrotic response. © 2012 John Wiley & Sons A/S.

  16. Circulating fibroblast activation protein activity and antigen levels correlate strongly when measured in liver disease and coronary heart disease

    NARCIS (Netherlands)

    S.U. de Willige; Keane, F.M. (Fiona M.); Bowen, D.G. (David G.); J.J.M.C. Malfliet (Joyce); Zhang, H.E. (H. Emma); Maneck, B. (Bharvi); G. McCaughan (Geoff); F.W.G. Leebeek (Frank); D.C. Rijken (Dingeman); Gorrell, M.D. (Mark D.)

    2017-01-01

    textabstractBackground and aim: Circulating fibroblast activation protein (cFAP) is a constitutively active enzyme expressed by activated fibroblasts that has both dipeptidyl peptidase and endopeptidase activities. We aimed to assess the correlation between cFAP activity and antigen levels and to

  17. Caspase 3 activity in isolated fetal rat lung fibroblasts and rat periodontal ligament fibroblasts: cigarette smoke-induced alterations

    Directory of Open Access Journals (Sweden)

    James Elliot Scott

    2016-03-01

    Full Text Available Background Cigarette smoking is the leading cause of preventable death in the world. It has been implicated in the pathogenesis of pulmonary, oral and systemic diseases. Smoking during pregnancy is clearly a risk factor for the developing fetus and may be a major cause of infant mortality. Moreover, the oral cavity is the first site of exposure to cigarette smoke and may be a possible source for the spread of toxins to other organs of the body. Fibroblasts in general are morphologically heterogeneous connective tissue cells with diverse functions. Apoptosis or programmed cell death is a crucial process during embryogenesis and for the maintenance of homeostasis throughout life. Deregulation of apoptosis has been implicated in abnormal lung development in the fetus and disease progression in adults. Caspases, are proteases which belong to the family of cysteine aspartic acid proteases and are the key components for the downstream amplification of intra-cellular apoptotic signals. Of the 14 caspases known, caspase-3 is the key executioner of apoptosis. Fetal rat lung fibroblasts but not PDL viability is reduced by exposure to CSE. In addition Caspase 3 activity is elevated after CSE exposure in fetal lung fibroblasts but not in PDLs. Expression of caspase 3 is induced in CSE exposed lung fibroblasts but not in PDLs. Caspase 3 was localized to the cytoplasm in both cell types.

  18. High inorganic phosphate causes DNMT1 phosphorylation and subsequent fibrotic fibroblast activation

    Energy Technology Data Exchange (ETDEWEB)

    Tan, Xiaoying [Department of Nephrology and Rheumatology, Göttingen University Medical Center, Georg August University, Göttingen (Germany); Department of Cardiology and Pneumology, Göttingen University Medical Center, Georg August University, Göttingen (Germany); Xu, Xingbo [Department of Cardiology and Pneumology, Göttingen University Medical Center, Georg August University, Göttingen (Germany); Zeisberg, Elisabeth M. [Department of Cardiology and Pneumology, Göttingen University Medical Center, Georg August University, Göttingen (Germany); German Center for Cardiovascular Research (DZHK), Göttingen (Germany); Zeisberg, Michael, E-mail: mzeisberg@med.uni-goettingen.de [Department of Nephrology and Rheumatology, Göttingen University Medical Center, Georg August University, Göttingen (Germany); German Center for Cardiovascular Research (DZHK), Göttingen (Germany)

    2016-04-08

    Phosphate is an essential constituent of critical cellular functions including energy metabolism, nucleic acid synthesis and phosphorylation-dependent cell signaling. Increased plasma phosphate levels are an independent risk factor for lowered life-expectancy as well as for heart and kidney failure. Nevertheless, direct cellular effects of elevated phosphate concentrations within the microenvironment are poorly understood and have been largely neglected in favor of phosphor-regulatory hormones. Because interstitial fibrosis is the common determinant of chronic progressive kidney disease, and because fibroblasts are major mediators of fibrogenesis, we here explored the effect of high extracellular phosphate levels on renal fibroblasts. We demonstrate that high inorganic phosphate directly induces fibrotic fibroblast activation associated with increased proliferative activity, increased expression of α-smooth muscle actin and increased synthesis of type I collagen. We further demonstrate that such fibroblast activation is dependent on phosphate influx, aberrant phosphorylation of DNA methyltransferase DNMT1 and aberrant CpG island promoter methylation. In summary, our studies demonstrate that elevated phosphate concentrations induce pro-fibrotic fibroblast activation independent of phospho-regulatory hormones. - Highlights: • We exposed human kidney fibroblasts to media containing 1 mM or 3 mM phosphate. • Increased phosphate influx causes phosphorylation of DNA methyltransferase Dnmt1. • Phosphorylated Dnmt1 causes promoter methylation and transcriptional silencing of RASAL1. • Depletion of RASAL1 causes increased intrinsic Ras-GTP activity and fibroblast activation. • Inorganic phosphate causes fibroblast activation independent of phospho-regulatory hormones.

  19. Factor Xa stimulates fibroblast procollagen production, proliferation, and calcium signaling via PAR1 activation

    International Nuclear Information System (INIS)

    Blanc-Brude, Olivier P.; Archer, Fabienne; Leoni, Patricia; Derian, Claudia; Bolsover, Steven; Laurent, Geoffrey J.; Chambers, Rachel C.

    2005-01-01

    Fibroblast proliferation and procollagen production are central features of tissue repair and fibrosis. In addition to its role in blood clotting, the coagulation cascade proteinase thrombin can contribute to tissue repair by stimulating fibroblasts via proteolytic activation of proteinase-activated receptor-1 (PAR 1 ). During hemostasis, the coagulation cascade proteinase factor X is converted into factor Xa. We have previously shown that factor Xa upregulates fibroblast proliferation via production of autocrine PDGF. In this study, we further examined the effects of factor Xa on fibroblast function and aimed to identify its signaling receptor. We showed that factor Xa stimulates procollagen promoter activity and protein production by human and mouse fibroblasts. This effect was independent of PDGF and thrombin production, but dependent on factor Xa proteolytic activity. We also showed that PAR 1 -deficient mouse fibroblasts did not upregulate procollagen production, mobilize cytosolic calcium, or proliferate in response to factor Xa. Desensitization techniques and PAR 1 -specific agonists and inhibitors were used to demonstrate that PAR 1 mediates factor Xa signaling in human fibroblasts. This is the first report that factor Xa stimulates extracellular matrix production. In contrast with endothelial cells and vascular smooth muscle cells, fibroblasts appear to be the only cell type in which the effects of factor Xa are mediated mainly via PAR 1 and not PAR 2 . These findings are critical for our understanding of tissue repair and fibrotic mechanisms, and for the design of novel approaches to inhibit the profibrotic effects of the coagulation cascade without compromising blood hemostasis

  20. Evodiamine attenuates TGF-β1-induced fibroblast activation and endothelial to mesenchymal transition.

    Science.gov (United States)

    Wu, Qing-Qing; Xiao, Yang; Jiang, Xiao-Han; Yuan, Yuan; Yang, Zheng; Chang, Wei; Bian, Zhou-Yan; Tang, Qi-Zhu

    2017-06-01

    The aim of this study is to investigate the effect of evodiamine on fibroblast activation in cardiac fibroblasts and endothelial to mesenchymal transition (EndMT) in human umbilical vein endothelial cells (HUVECs). Neonatal rat cardiac fibroblasts were stimulated with transforming growth factor beta 1 (TGF-β1) to induce fibroblast activation. After co-cultured with evodiamine (5, 10 μM), the proliferation and pro-fibrotic proteins expression of cardiac fibroblasts were evaluated. HUVECs were also stimulated with TGF-β1 to induce EndMT and treated with evodiamine (5, 10 μM) at the same time. The EndMT response in the HUVECs was evaluated as well as the capacity of the transitioned endothelial cells migrating to surrounding tissue. As a result, Evodiamine-blunted TGF-β1 induced activation of cardiac fibroblast into myofibroblast as assessed by the decreased expressions of α-SMA. Furthermore, evodiamine reduced the increased protein expression of fibrosis markers in neonatal and adult rat cardiac fibroblasts induced by TGF-β1. HUVECs stimulated with TGF-β1 exhibited lower expression levels of CD31, CD34, and higher levels of α-SMA, vimentin than the control cells. This phenotype was eliminated in the HUVECs treated with both 5 and 10 μM evodiamine. Evodiamine significantly reduced the increase in migration ability that occurred in response to TGF-β1 in HUVECs. In addition, the activation of Smad2, Smad3, ERK1/2, and Akt, and the nuclear translocation of Smad4 in both cardiac fibroblasts and HUVEC were blocked by evodiamine treatment. Thus, evodiamine could prevent cardiac fibroblasts from activation into myofibroblast and protect HUVEC against EndMT. These effects may be mediated by inhibition of the TGFβ pathway in both cardiac fibroblasts and HUVECs.

  1. Effect of eosinophils activated with Alternaria on the production of extracellular matrix from nasal fibroblasts.

    Science.gov (United States)

    Shin, Seung-Heon; Ye, Mi-Kyung; Choi, Sung-Yong; Kim, Yee-Hyuk

    2016-06-01

    Eosinophils and fibroblasts are known to play major roles in the pathogenesis of nasal polyps. Fungi are commonly found in nasal secretion and are associated with airway inflammation. To investigate whether activated eosinophils by airborne fungi can influence the production of extracellular matrix (ECM) from nasal fibroblasts. Inferior turbinate and nasal polyp fibroblasts were stimulated with Alternaria or Aspergillus, respectively, for 24 hours and ECM messenger RNA (mRNA) and protein expressions were measured. Eosinophils isolated from healthy volunteers were stimulated with Alternaria or Aspergillus for 4 hours then superoxide, eosinophil peroxidase, and transforming growth factor β1 were measured. Then activated eosinophils were cocultured with nasal fibroblasts for 24 hours, and ECM mRNA expressions were measured. Alternaria strongly enhanced ECM mRNA expression and protein production from nasal fibroblasts. Alternaria also induced the production of superoxide, eosinophil peroxidase, and transforming growth factor β1 from eosinophils, and activated eosinophils enhanced ECM mRNA expression when they were cocultured without the Transwell insert system. Eosinophils activated with Alternaria enhanced ECM mRNA expression from nasal polyp fibroblasts. Alternaria plays an important role in tissue fibrosis in the pathogenesis of nasal polyps by directly or indirectly influencing the production of ECM from nasal fibroblasts. Copyright © 2016 American College of Allergy, Asthma & Immunology. Published by Elsevier Inc. All rights reserved.

  2. Peptides derived from specific interaction sites of the fibroblast growth factor 2 - FGF receptor complexes induce receptor activation and signaling

    DEFF Research Database (Denmark)

    Manfè, Valentina; Kochoyan, Artur; Bock, Elisabeth

    2010-01-01

    J. Neurochem. (2010) 10.1111/j.1471-4159.2010.06718.x Abstract Basic fibroblast growth factor (FGF2, bFGF) is the most extensively studied member of the FGF family and is involved in neurogenesis, differentiation, neuroprotection, and synaptic plasticity in the CNS. FGF2 executes its pleiotropic...... biologic actions by binding, dimerizing, and activating FGF receptors (FGFRs). The present study reports the physiologic impact of various FGF2-FGFR1 contact sites employing three different synthetic peptides, termed canofins, designed based on structural analysis of the interactions between FGF2 and FGFR1...

  3. Physical Activity, Aging, and Physiological Function.

    Science.gov (United States)

    Harridge, Stephen D R; Lazarus, Norman R

    2017-03-01

    Human evolution suggests that the default position for health is to be physically active. Inactivity, by contrast, has serious negative effects on health across the lifespan. Therefore, only in physically active people can the inherent aging process proceed unaffected by disuse complications. In such individuals, although the relationship between age and physiological function remains complex, function is generally superior with health, well being, and the aging process optimized. ©2017 Int. Union Physiol. Sci./Am. Physiol. Soc.

  4. Tumor-produced, active Interleukin-1 β regulates gene expression in carcinoma-associated fibroblasts

    International Nuclear Information System (INIS)

    Dudas, Jozsef; Fullar, Alexandra; Bitsche, Mario; Schartinger, Volker; Kovalszky, Ilona; Sprinzl, Georg Mathias; Riechelmann, Herbert

    2011-01-01

    Recently we described a co-culture model of periodontal ligament (PDL) fibroblasts and SCC-25 lingual squamous carcinoma cells, which resulted in conversion of normal fibroblasts into carcinoma-associated fibroblasts (CAFs), and in epithelial-mesenchymal transition (EMT) of SCC-25 cells. We have found a constitutive high interleukin-1β (IL1-β) expression in SCC-25 cells in normal and in co-cultured conditions. In our hypothesis a constitutive IL1-β expression in SCC-25 regulates gene expression in fibroblasts during co-culture. Co-cultures were performed between PDL fibroblasts and SCC-25 cells with and without dexamethasone (DEX) treatment; IL1-β processing was investigated in SCC-25 cells, tumor cells and PDL fibroblasts were treated with IL1-β. IL1-β signaling was investigated by western blot and immunocytochemistry. IL1-β-regulated genes were analyzed by real-time qPCR. SCC-25 cells produced 16 kD active IL1-β, its receptor was upregulated in PDL fibroblasts during co-culture, which induced phosphorylation of interleukin-1 receptor-associated kinase-1 (IRAK-1), and nuclear translocalization of NFκBα. Several genes, including interferon regulatory factor 1 (IRF1) interleukin-6 (IL-6) and prostaglandin-endoperoxide synthase 2 (COX-2) were induced in CAFs during co-culture. The most enhanced induction was found for IL-6 and COX-2. Treatment of PDL fibroblasts with IL1-β reproduced a time- and dose-dependent upregulation of IL1-receptor, IL-6 and COX-2. A further proof was achieved by DEX inhibition for IL1-β-stimulated IL-6 and COX-2 gene expression. Constitutive expression of IL1-β in the tumor cells leads to IL1-β-stimulated gene expression changes in tumor-associated fibroblasts, which are involved in tumor progression. -- Graphical abstract: SCC-25 cells produce active, processed IL1-β. PDL fibroblasts possess receptor for IL1-β, and its expression is increased 4.56-times in the presence of SCC-25 tumor cells. IL1-β receptor expression in

  5. Tumor-produced, active Interleukin-1 {beta} regulates gene expression in carcinoma-associated fibroblasts

    Energy Technology Data Exchange (ETDEWEB)

    Dudas, Jozsef, E-mail: Jozsef.Dudas@i-med.ac.at [Department of Otorhinolaryngology, Medical University Innsbruck, Anichstrasse 35, A-6020 Innsbruck (Austria); Fullar, Alexandra, E-mail: fullarsz@gmail.com [Department of Otorhinolaryngology, Medical University Innsbruck, Anichstrasse 35, A-6020 Innsbruck (Austria); 1st Institute of Pathology and Experimental Cancer Research, Semmelweis University, Ulloei ut 26, H-1085 Budapest (Hungary); Bitsche, Mario, E-mail: Mario.Bitsche@i-med.ac.at [Department of Otorhinolaryngology, Medical University Innsbruck, Anichstrasse 35, A-6020 Innsbruck (Austria); Schartinger, Volker, E-mail: Volker.Schartinger@i-med.ac.at [Department of Otorhinolaryngology, Medical University Innsbruck, Anichstrasse 35, A-6020 Innsbruck (Austria); Kovalszky, Ilona, E-mail: koval@korb1.sote.hu [1st Institute of Pathology and Experimental Cancer Research, Semmelweis University, Ulloei ut 26, H-1085 Budapest (Hungary); Sprinzl, Georg Mathias, E-mail: Georg.Sprinzl@i-med.ac.at [Department of Otorhinolaryngology, Medical University Innsbruck, Anichstrasse 35, A-6020 Innsbruck (Austria); Riechelmann, Herbert, E-mail: Herbert.Riechelmann@i-med.ac.at [Department of Otorhinolaryngology, Medical University Innsbruck, Anichstrasse 35, A-6020 Innsbruck (Austria)

    2011-09-10

    Recently we described a co-culture model of periodontal ligament (PDL) fibroblasts and SCC-25 lingual squamous carcinoma cells, which resulted in conversion of normal fibroblasts into carcinoma-associated fibroblasts (CAFs), and in epithelial-mesenchymal transition (EMT) of SCC-25 cells. We have found a constitutive high interleukin-1{beta} (IL1-{beta}) expression in SCC-25 cells in normal and in co-cultured conditions. In our hypothesis a constitutive IL1-{beta} expression in SCC-25 regulates gene expression in fibroblasts during co-culture. Co-cultures were performed between PDL fibroblasts and SCC-25 cells with and without dexamethasone (DEX) treatment; IL1-{beta} processing was investigated in SCC-25 cells, tumor cells and PDL fibroblasts were treated with IL1-{beta}. IL1-{beta} signaling was investigated by western blot and immunocytochemistry. IL1-{beta}-regulated genes were analyzed by real-time qPCR. SCC-25 cells produced 16 kD active IL1-{beta}, its receptor was upregulated in PDL fibroblasts during co-culture, which induced phosphorylation of interleukin-1 receptor-associated kinase-1 (IRAK-1), and nuclear translocalization of NF{kappa}B{alpha}. Several genes, including interferon regulatory factor 1 (IRF1) interleukin-6 (IL-6) and prostaglandin-endoperoxide synthase 2 (COX-2) were induced in CAFs during co-culture. The most enhanced induction was found for IL-6 and COX-2. Treatment of PDL fibroblasts with IL1-{beta} reproduced a time- and dose-dependent upregulation of IL1-receptor, IL-6 and COX-2. A further proof was achieved by DEX inhibition for IL1-{beta}-stimulated IL-6 and COX-2 gene expression. Constitutive expression of IL1-{beta} in the tumor cells leads to IL1-{beta}-stimulated gene expression changes in tumor-associated fibroblasts, which are involved in tumor progression. -- Graphical abstract: SCC-25 cells produce active, processed IL1-{beta}. PDL fibroblasts possess receptor for IL1-{beta}, and its expression is increased 4.56-times in the

  6. Complementing xeroderma pigmentosum fibroblasts restore biological activity to UV-damaged DNA

    International Nuclear Information System (INIS)

    Day, R.S. III; Kraemer, K.H.; Robbins, J.H.

    1975-01-01

    UV survival curves of adenovirus 2 using fused complementing xeroderma pigmentosum fibroblast strains as virus hosts showed a component with an inactivation slope identical to that given by normal cells. This component was not observed when the fibroblasts were not fused or when fusions involved strains in the same complementing group. Extrapolation to zero dose indicated that three percent of the viral plaque-forming units had infected cells capable of normal repair; this suggested that three percent of the cells were complementing heterokaryons. Thus, heterokaryons formed from xeroderma pigmentosum fibroblasts belonging to different complementation groups are as capable of restoring biological activity to UV-damaged adenovirus 2 as are normal cells

  7. Nemosis, a novel way of fibroblast activation, in inflammation and cancer

    Energy Technology Data Exchange (ETDEWEB)

    Vaheri, Antti, E-mail: antti.vaheri@helsinki.fi [Haartman Institute, POB 21, FI-00014 University of Helsinki (Finland); Enzerink, Anna; Raesaenen, Kati; Salmenperae, Pertteli [Haartman Institute, POB 21, FI-00014 University of Helsinki (Finland)

    2009-06-10

    Malignant cells when grown in suspension, as a rule, proliferate and can form spheroids that have been used as a model of tumor nodules, micrometastases and avascular tumors. In contrast, normal adherent cells cannot be stimulated to grow as multicellular aggregates. Now, recent results show that normal fibroblasts if forced to cluster (spheroid formation) do not grow but undergo a new pathway of cell activation (nemosis) leading to a massive proinflammatory, proteolytic and growth factor response. The clustering and activation are initiated by fibronectin-integrin interaction. The activated fibroblasts are able to modulate the behavior of cancer cells and, furthermore malignant cells boost this activation even further. In this model, the activation of fibroblasts terminates in programmed necrosis-like cell death. Activation of the tumor stroma, especially of fibroblasts, is of critical importance for tumor progression, although mechanisms leading to their activation are still largely uncharacterized. In summary, our results suggest that this kind of fibroblast activation (nemosis) may be involved in pathological conditions such as inflammation and cancer.

  8. Nemosis, a novel way of fibroblast activation, in inflammation and cancer

    International Nuclear Information System (INIS)

    Vaheri, Antti; Enzerink, Anna; Raesaenen, Kati; Salmenperae, Pertteli

    2009-01-01

    Malignant cells when grown in suspension, as a rule, proliferate and can form spheroids that have been used as a model of tumor nodules, micrometastases and avascular tumors. In contrast, normal adherent cells cannot be stimulated to grow as multicellular aggregates. Now, recent results show that normal fibroblasts if forced to cluster (spheroid formation) do not grow but undergo a new pathway of cell activation (nemosis) leading to a massive proinflammatory, proteolytic and growth factor response. The clustering and activation are initiated by fibronectin-integrin interaction. The activated fibroblasts are able to modulate the behavior of cancer cells and, furthermore malignant cells boost this activation even further. In this model, the activation of fibroblasts terminates in programmed necrosis-like cell death. Activation of the tumor stroma, especially of fibroblasts, is of critical importance for tumor progression, although mechanisms leading to their activation are still largely uncharacterized. In summary, our results suggest that this kind of fibroblast activation (nemosis) may be involved in pathological conditions such as inflammation and cancer.

  9. Oleic, linoleic and linolenic acids increase ros production by fibroblasts via NADPH oxidase activation.

    Directory of Open Access Journals (Sweden)

    Elaine Hatanaka

    Full Text Available The effect of oleic, linoleic and γ-linolenic acids on ROS production by 3T3 Swiss and Rat 1 fibroblasts was investigated. Using lucigenin-amplified chemiluminescence, a dose-dependent increase in extracellular superoxide levels was observed during the treatment of fibroblasts with oleic, linoleic and γ-linolenic acids. ROS production was dependent on the addition of β-NADH or NADPH to the medium. Diphenyleneiodonium inhibited the effect of oleic, linoleic and γ-linolenic acids on fibroblast superoxide release by 79%, 92% and 82%, respectively. Increased levels of p47 (phox phosphorylation due to fatty acid treatment were detected by Western blotting analyses of fibroblast proteins. Increased p47 (phox mRNA expression was observed using real-time PCR. The rank order for the fatty acid stimulation of the fibroblast oxidative burst was as follows: γ-linolenic > linoleic > oleic. In conclusion, oleic, linoleic and γ-linolenic acids stimulated ROS production via activation of the NADPH oxidase enzyme complex in fibroblasts.

  10. Oleic, Linoleic and Linolenic Acids Increase ROS Production by Fibroblasts via NADPH Oxidase Activation

    Science.gov (United States)

    Hatanaka, Elaine; Dermargos, Alexandre; Hirata, Aparecida Emiko; Vinolo, Marco Aurélio Ramirez; Carpinelli, Angelo Rafael; Newsholme, Philip; Armelin, Hugo Aguirre; Curi, Rui

    2013-01-01

    The effect of oleic, linoleic and γ-linolenic acids on ROS production by 3T3 Swiss and Rat 1 fibroblasts was investigated. Using lucigenin-amplified chemiluminescence, a dose-dependent increase in extracellular superoxide levels was observed during the treatment of fibroblasts with oleic, linoleic and γ-linolenic acids. ROS production was dependent on the addition of β-NADH or NADPH to the medium. Diphenyleneiodonium inhibited the effect of oleic, linoleic and γ-linolenic acids on fibroblast superoxide release by 79%, 92% and 82%, respectively. Increased levels of p47phox phosphorylation due to fatty acid treatment were detected by Western blotting analyses of fibroblast proteins. Increased p47phox mRNA expression was observed using real-time PCR. The rank order for the fatty acid stimulation of the fibroblast oxidative burst was as follows: γ-linolenic > linoleic > oleic. In conclusion, oleic, linoleic and γ-linolenic acids stimulated ROS production via activation of the NADPH oxidase enzyme complex in fibroblasts. PMID:23579616

  11. Tubule-Derived Wnts Are Required for Fibroblast Activation and Kidney Fibrosis.

    Science.gov (United States)

    Zhou, Dong; Fu, Haiyan; Zhang, Lu; Zhang, Ke; Min, Yali; Xiao, Liangxiang; Lin, Lin; Bastacky, Sheldon I; Liu, Youhua

    2017-08-01

    Cell-cell communication via Wnt ligands is necessary in regulating embryonic development and has been implicated in CKD. Because Wnt ligands are ubiquitously expressed, the exact cellular source of the Wnts involved in CKD remains undefined. To address this issue, we generated two conditional knockout mouse lines in which Wntless (Wls), a dedicated cargo receptor that is obligatory for Wnt secretion, was selectively ablated in tubular epithelial cells or interstitial fibroblasts. Blockade of Wnt secretion by genetic deletion of Wls in renal tubules markedly inhibited myofibroblast activation and reduced renal fibrosis after unilateral ureteral obstruction. This effect associated with decreased activation of β -catenin and downstream gene expression and preserved tubular epithelial integrity. In contrast, fibroblast-specific deletion of Wls exhibited little effect on the severity of renal fibrosis after obstructive or ischemia-reperfusion injury. In vitro , incubation of normal rat kidney fibroblasts with tubule-derived Wnts promoted fibroblast proliferation and activation. Furthermore, compared with kidney specimens from patients without CKD, biopsy specimens from patients with CKD also displayed increased expression of multiple Wnt proteins, predominantly in renal tubular epithelium. These results illustrate that tubule-derived Wnts have an essential role in promoting fibroblast activation and kidney fibrosis via epithelial-mesenchymal communication. Copyright © 2017 by the American Society of Nephrology.

  12. p53/PUMA expression in human pulmonary fibroblasts mediates cell activation and migration in silicosis.

    Science.gov (United States)

    Wang, Wei; Liu, Haijun; Dai, Xiaoniu; Fang, Shencun; Wang, Xingang; Zhang, Yingming; Yao, Honghong; Zhang, Xilong; Chao, Jie

    2015-11-18

    Phagocytosis of SiO2 into the lung causes an inflammatory cascade that results in fibroblast proliferation and migration, followed by fibrosis. Clinical evidence has indicated that the activation of alveolar macrophages by SiO2 produces rapid and sustained inflammation characterized by the generation of monocyte chemotactic protein 1, which, in turn, induces fibrosis. However, the details of events downstream of monocyte chemotactic protein 1 activity in pulmonary fibroblasts remain unclear. Here, to elucidate the role of p53 in fibrosis induced by silica, both the upstream molecular mechanisms and the functional effects on cell proliferation and migration were investigated. Experiments using primary cultured adult human pulmonary fibroblasts led to the following results: 1) SiO2 treatment resulted in a rapid and sustained increase in p53 and PUMA protein levels; 2) the MAPK and PI3K pathways were involved in the SiO2-induced alteration of p53 and PUMA expression; and 3) RNA interference targeting p53 and PUMA prevented the SiO2-induced increases in fibroblast activation and migration. Our study elucidated a link between SiO2-induced p53/PUMA expression in fibroblasts and cell migration, thereby providing novel insight into the potential use of p53/PUMA in the development of novel therapeutic strategies for silicosis treatment.

  13. Helium generated cold plasma finely regulates activation of human fibroblast-like primary cells.

    Directory of Open Access Journals (Sweden)

    Paola Brun

    Full Text Available Non-thermal atmospheric pressure plasmas are being developed for a wide range of health care applications, including wound healing. However in order to exploit the potential of plasma for clinical applications, the understanding of the mechanisms involved in plasma-induced activation of fibroblasts, the cells active in the healing process, is mandatory. In this study, the role of helium generated plasma in the tissue repairing process was investigated in cultured human fibroblast-like primary cells, and specifically in hepatic stellate cells and intestinal subepithelial myofibroblasts. Five minutes after treatment, plasma induced formation of reactive oxygen species (ROS in cultured cells, as assessed by flow cytometric analysis of fluorescence-activated 2',7'-dichlorofluorescein diacetate probe. Plasma-induced intracellular ROS were characterized by lower concentrations and shorter half-lives with respect to hydrogen peroxide-induced ROS. Moreover ROS generated by plasma treatment increased the expression of peroxisome proliferator activated receptor (PPAR-γ, nuclear receptor that modulates the inflammatory responses. Plasma exposure promoted wound healing in an in vitro model and induced fibroblast migration and proliferation, as demonstrated, respectively, by trans-well assay and partitioning between daughter cells of carboxyfluorescein diacetate succinimidyl ester fluorescent dye. Plasma-induced fibroblast migration and proliferation were found to be ROS-dependent as cellular incubation with antioxidant agents (e.g. N-acetyl L-cysteine cancelled the biological effects. This study provides evidence that helium generated plasma promotes proliferation and migration in liver and intestinal fibroblast-like primary cells mainly by increasing intracellular ROS levels. Since plasma-evoked ROS are time-restricted and elicit the PPAR-γ anti-inflammatory molecular pathway, this strategy ensures precise regulation of human fibroblast activation and

  14. Cathepsin K in Lymphangioleiomyomatosis: LAM Cell-Fibroblast Interactions Enhance Protease Activity by Extracellular Acidification.

    Science.gov (United States)

    Dongre, Arundhati; Clements, Debbie; Fisher, Andrew J; Johnson, Simon R

    2017-08-01

    Lymphangioleiomyomatosis (LAM) is a rare disease in which LAM cells and fibroblasts form lung nodules and it is hypothesized that LAM nodule-derived proteases cause cyst formation and tissue damage. On protease gene expression profiling in whole lung tissue, cathepsin K gene expression was 40-fold overexpressed in LAM compared with control lung tissue (P ≤ 0.0001). Immunohistochemistry confirmed cathepsin K protein was expressed in LAM but not control lungs. Cathepsin K gene expression and protein and protease activity were detected in LAM-associated fibroblasts but not the LAM cell line 621-101. In lung nodules, cathepsin K immunoreactivity predominantly co-localized with LAM-associated fibroblasts. In vitro, fibroblast extracellular cathepsin K activity was minimal at pH 7.5 but significantly enhanced at pH 7 and 6. 621-101 cells reduced extracellular pH with acidification dependent on 621-101 mechanistic target of rapamycin activity and net hydrogen ion exporters, particularly sodium bicarbonate co-transporters and carbonic anhydrases, which were also expressed in LAM lung tissue. In LAM cell-fibroblast co-cultures, acidification paralleled cathepsin K activity, and both were reduced by sodium bicarbonate co-transporter (P ≤ 0.0001) and carbonic anhydrase inhibitors (P = 0.0021). Our findings suggest that cathepsin K activity is dependent on LAM cell-fibroblast interactions, and inhibitors of extracellular acidification may be potential therapies for LAM. Copyright © 2017 American Society for Investigative Pathology. Published by Elsevier Inc. All rights reserved.

  15. Scleroderma keratinocytes promote fibroblast activation independent of transforming growth factor beta.

    Science.gov (United States)

    McCoy, Sara S; Reed, Tamra J; Berthier, Celine C; Tsou, Pei-Suen; Liu, Jianhua; Gudjonsson, Johann E; Khanna, Dinesh; Kahlenberg, J Michelle

    2017-11-01

    SSc is a devastating disease that results in fibrosis of the skin and other organs. Fibroblasts are a key driver of the fibrotic process through deposition of extracellular matrix. The mechanisms by which fibroblasts are induced to become pro-fibrotic remain unclear. Thus, we examined the ability of SSc keratinocytes to promote fibroblast activation and the source of this effect. Keratinocytes were isolated from skin biopsies of 9 lcSSc, 10 dcSSc and 13 control patients. Conditioned media was saved from the cultures. Normal fresh primary fibroblasts were exposed to healthy control and SSc keratinocyte conditioned media in the presence or absence of neutralizing antibodies for TGF-β. Gene expression was assessed by microarrays and real-time PCR. Immunocytochemistry was performed for α-smooth muscle actin (α-SMA), collagen type 1 (COL1A1) and CCL5 expression. SSc keratinocyte conditioned media promoted fibroblast activation, characterized by increased α-SMA and COL1A1 mRNA and protein expression. This effect was independent of TGF-β. Microarray analysis identified upregulation of nuclear factor κB (NF-κB) and downregulation of peroxisome proliferator-activated receptor γ (PPAR-γ) pathways in both SSc subtypes. Scleroderma keratinocytes exhibited increased expression of NF-κB-regulated cytokines and chemokines and lesional skin staining confirmed upregulation of CCL5 in basal keratinocytes. Scleroderma keratinocytes promote the activation of fibroblasts in a TGF-β-independent manner and demonstrate an imbalance in NF-κB1 and PPAR-γ expression leading to increased cytokine and CCL5 production. Further study of keratinocyte mediators of fibrosis, including CCL5, may provide novel targets for skin fibrosis therapy. © The Author 2017. Published by Oxford University Press on behalf of the British Society for Rheumatology. All rights reserved. For Permissions, please email: journals.permissions@oup.com

  16. Fibroblast-matrix interplay: Nintedanib and pirfenidone modulate the effect of IPF fibroblast-conditioned matrix on normal fibroblast phenotype.

    Science.gov (United States)

    Epstein Shochet, Gali; Wollin, Lutz; Shitrit, David

    2018-03-12

    Idiopathic pulmonary fibrosis (IPF) is a progressive lung disease with poor prognosis. Activated fibroblasts are the key effector cells in fibrosis, producing excessive amounts of collagen and extracellular matrix (ECM) proteins. Whether the ECM conditioned by IPF fibroblasts determines the phenotype of naïve fibroblasts is difficult to explore. IPF-derived primary fibroblasts were cultured on Matrigel and then cleared using ammonium hydroxide, creating an IPF-conditioned matrix (CM). Normal fibroblast CM served as control. Normal fibroblasts were cultured on both types of CM, and cell count, cell distribution and markers of myofibroblast differentiation; transforming growth factor beta (TGFβ) signalling; and ECM expression were assessed. The effects of the anti-fibrotic drugs nintedanib and pirfenidone at physiologically relevant concentrations were also explored. Normal fibroblasts cultured on IPF-CM arranged in large aggregates as a result of increased proliferation and migration. Moreover, increased levels of pSmad3, pSTAT3 (phospho signal transducer and activator of transcription 3), alpha smooth muscle actin (αSMA) and Collagen1a were found, suggesting a differentiation towards a myofibroblast-like phenotype. SB505124 (10 μmol/L) partially reversed these alterations, suggesting a TGFβ contribution. Furthermore, nintedanib at 100 nmol/L and, to a lesser extent, pirfenidone at 100 μmol/L prevented the IPF-CM-induced fibroblast phenotype alterations, suggesting an attenuation of the ECM-fibroblast interplay. IPF fibroblasts alter the ECM, thus creating a CM that further propagates an IPF-like phenotype in normal fibroblasts. This assay demonstrated differences in drug activities for approved IPF drugs at clinically relevant concentrations. Thus, the matrix-fibroblast phenotype interplay might be a relevant assay to explore drug candidates for IPF treatment. © 2018 Asian Pacific Society of Respirology.

  17. Effects of titanium surface topography on morphology and in vitro activity of human gingival fibroblasts.

    Science.gov (United States)

    Ramaglia, L; Capece, G; Di Spigna, G; Bruno, M P; Buonocore, N; Postiglione, L

    2013-01-01

    The aim of the present study was to evaluate in vitro the biological behavior of human gingival fibroblasts cultured on two different titanium surfaces. Titanium test disks were prepared with a machined, relatively smooth (S) surface or a rough surface (O) obtained by a double acid etching procedure. Primary cultures of human gingival fibroblasts were plated on the experimental titanium disks and cultured up to 14 days. Titanium disk surfaces were analysed by scanning electron microscopy (SEM). Cell proliferation and a quantitative analysis by ELISA in situ of ECM components as CoI, FN and TN were performed. Results have shown different effects of titanium surface microtopography on cell expression and differentiation. At 96 hours of culture on experimental surfaces human gingival fibroblasts displayed a favourable cell attachment and proliferation on both surfaces although showing some differences. Both the relatively smooth and the etched surfaces interacted actively with in vitro cultures of human gingival fibroblasts, promoting cell proliferation and differentiation. Results suggested that the microtopography of a double acid-etched rough surface may induce a greater Co I and FN production, thus conditioning in vivo the biological behaviour of human gingival fibroblasts during the process of peri-implant soft tissue healing.

  18. Deregulated MAPK activity prevents adipocyte differentiation of fibroblasts lacking the retinoblastoma protein

    DEFF Research Database (Denmark)

    Hansen, Jacob B; Petersen, Rasmus K; Jørgensen, Claus

    2002-01-01

    A functional retinoblastoma protein (pRB) is required for adipose conversion of preadipocyte cell lines and primary mouse embryo fibroblasts (MEFs) in response to treatment with standard adipogenic inducers. Interestingly, lack of functional pRB in MEFs was recently linked to elevated Ras activity...

  19. Activation of mutated TRPA1 ion channel by resveratrol in human prostate cancer associated fibroblasts (CAF).

    Science.gov (United States)

    Vancauwenberghe, Eric; Noyer, Lucile; Derouiche, Sandra; Lemonnier, Loïc; Gosset, Pierre; Sadofsky, Laura R; Mariot, Pascal; Warnier, Marine; Bokhobza, Alexandre; Slomianny, Christian; Mauroy, Brigitte; Bonnal, Jean-Louis; Dewailly, Etienne; Delcourt, Philippe; Allart, Laurent; Desruelles, Emilie; Prevarskaya, Natalia; Roudbaraki, Morad

    2017-08-01

    Previous studies showed the effects of resveratrol (RES) on several cancer cells, including prostate cancer (PCa) cell apoptosis without taking into consideration the impact of the tumor microenvironment (TME). The TME is composed of cancer cells, endothelial cells, blood cells, and cancer-associated fibroblasts (CAF), the main source of growth factors. The latter cells might modify in the TME the impact of RES on tumor cells via secreted factors. Recent data clearly show the impact of CAF on cancer cells apoptosis resistance via secreted factors. However, the effects of RES on PCa CAF have not been studied so far. We have investigated here for the first time the effects of RES on the physiology of PCa CAF in the context of TME. Using a prostate cancer CAF cell line and primary cultures of CAF from prostate cancers, we show that RES activates the N-terminal mutated Transient Receptor Potential Ankyrin 1 (TRPA1) channel leading to an increase in intracellular calcium concentration and the expression and secretion of growth factors (HGF and VEGF) without inducing apoptosis in these cells. Interestingly, in the present work, we also show that when the prostate cancer cells were co-cultured with CAF, the RES-induced cancer cell apoptosis was reduced by 40%, an apoptosis reduction canceled in the presence of the TRPA1 channel inhibitors. The present work highlights CAF TRPA1 ion channels as a target for RES and the importance of the channel in the epithelial-stromal crosstalk in the TME leading to resistance to the RES-induced apoptosis. © 2017 Wiley Periodicals, Inc.

  20. Adiponectin attenuates lung fibroblasts activation and pulmonary fibrosis induced by paraquat.

    Directory of Open Access Journals (Sweden)

    Rong Yao

    dose-dependent manner, via suppression of lung fibroblast activation. Functional AdipoR1 are expressed by human WI-38 lung fibroblasts, suggesting potential future clinical applicability of APN against pulmonary fibrosis.

  1. Bioactive reagents used in mesotherapy for skin rejuvenation in vivo induce diverse physiological processes in human skin fibroblasts in vitro- a pilot study.

    Science.gov (United States)

    Jäger, Claudia; Brenner, Christiane; Habicht, Jüri; Wallich, Reinhard

    2012-01-01

    The promise of mesotherapy is maintenance and/or recovery of a youthful skin with a firm, bright and moisturized texture. Currently applied medications employ microinjections of hyaluronic acid, vitamins, minerals and amino acids into the superficial layer of the skin. However, the molecular and cellular processes underlying mesotherapy are still elusive. Here we analysed the effect of five distinct medication formulas on pivotal parameters involved in skin ageing, that is collagen expression, cell proliferation and morphological changes using normal human skin fibroblast cultures in vitro. Whereas in the presence of hyaluronic acid, NCTF135(®) and NCTF135HA(®) , cell proliferation was comparable to control cultures; however, with higher expression of collagen type-1, matrix metalloproteinase-1 and tissue inhibitor of matrix metalloproteinase-1, addition of Soluvit(®) N and Meso-BK led to apoptosis and/or necrosis of human fibroblasts. The data indicate that bioactive reagents currently applied for skin rejuvenation elicit strikingly divergent physiological processes in human skin fibroblast in vitro. © 2011 John Wiley & Sons A/S.

  2. Determining the pharmacological activity of Physalis peruviana fruit juice on rabbit eyes and fibroblast primary cultures.

    Science.gov (United States)

    Pardo, Juan Manuel; Fontanilla, Marta Raquel; Ospina, Luis Fernando; Espinosa, Lady

    2008-07-01

    The pharmacologic activity of compounds isolated from Physalis peruviana has been demonstrated. The use of this fruit juice for treating pterygium has been reported in Colombian traditional medicine. However, studies demonstrating the fruit juice's pharmacologic activity when used in this disease have not been published to date. In the present study the anti-inflammatory and cytostatic activities of P. peruviana fruit juice in a rabbit eye inflammatory model were investigated. A novel rabbit eye inflammation model was developed for studying the juice's anti-inflammatory activity (based on an adaptation of the Draize test). Cytostatic activity was evaluated by measuring and comparing growth rates of cultured fibroblasts exposed and not exposed to various fruit juice concentrations. P. peruviana fruit juice exhibited a mild anti-inflammatory activity compared with methylprednisolone, a known anti-inflammatory drug. An interesting dose-dependent cytostatic effect on cultured fibroblasts was also established. The data found suggest that the P. peruviana fruit juice anti-pterygium effect described in traditional medicine may be related to its inhibiting fibroblast growth. The present study contributes to the pharmacologic knowledge regarding a remedy commonly used in Colombian traditional medicine.

  3. Senescence-associated β-galactosidase activity in the in vitro ovarian stromal fibroblasts

    Directory of Open Access Journals (Sweden)

    Lilian Chuaire-Noack

    2011-04-01

    Full Text Available A growing biological research field is the cellular senescence, a mechanism that has been associated, under certain circumstances, withmalignant transformation. Given the high incidence of ovarian cancerand its main origin from the ovarian surface epithelium, as well asthe possibility that an epithelial-mesenchymal transition occurs, weevaluated both the in vitro growth of stromal fibroblasts from the ovarian cortex and their β-galactosidase activity at pH 6,enzyme whose expression is considered as a marker of replicativesenescence. Methods: 48 samples of ovarian cortical fibroblasts fromdonors without a history of cancer were serially cultured untilthe end of their replicative life. β-galactosidase activity at pH 6was quantified in each passage by the chemiluminiscent method. Ascontrol, we used ovarian epithelial cell cultures from the samedonors. The enzyme activity was also evaluated in fibroblastspreviously induced to senescence by exposure to hydrogen peroxide.Results: The analysis of the enzyme activity and the replicativecapacity taken together showed that the fibroblast cultures reachedthe senescent state at passages 4-5, as what happened with the control epithelial cells. Fibroblasts induced to senescence showed high variability in the values of enzymatic activity. Conclusions:The similarity between both types of cells in reaching the senescent state deserves to be taken into account in relation to theepithelialmesenchymal transition that has been proposed to explaintheir behavior in the genesis of cancer arising from ovarian surfaceepithelium. Low β-galactosidase activity values at pH 6 would suggestpossible inactivation of the response pathways to oxidative stress.

  4. Alkaline pH activates the transport activity of GLUT1 in L929 fibroblast cells.

    Science.gov (United States)

    Gunnink, Stephen M; Kerk, Samuel A; Kuiper, Benjamin D; Alabi, Ola D; Kuipers, David P; Praamsma, Riemer C; Wrobel, Kathryn E; Louters, Larry L

    2014-04-01

    The widely expressed mammalian glucose transporter, GLUT1, can be acutely activated in L929 fibroblast cells by a variety of conditions, including glucose deprivation, or treatment with various respiration inhibitors. Known thiol reactive compounds including phenylarsine oxide and nitroxyl are the fastest acting stimulators of glucose uptake, implicating cysteine biochemistry as critical to the acute activation of GLUT1. In this study, we report that in L929 cells glucose uptake increases 6-fold as the pH of the uptake solution is increased from 6 to 9 with the half-maximal activation at pH 7.5; consistent with the pKa of cysteine residues. This pH effect is essentially blocked by the pretreatment of the cells with either iodoacetamide or cinnamaldehyde, compounds that form covalent adducts with reduced cysteine residues. In addition, the activation by alkaline pH is not additive at pH 8 with known thiol reactive activators such as phenylarsine oxide or hydroxylamine. Kinetic analysis in L929 cells at pH 7 and 8 indicate that alkaline conditions both increases the Vmax and decreases the Km of transport. This is consistent with the observation that pH activation is additive to methylene blue, which activates uptake by increasing the Vmax, as well as to berberine, which activates uptake by decreasing the Km. This suggests that cysteine biochemistry is utilized in both methylene blue and berberine activation of glucose uptake. In contrast a pH increase from 7 to 8 in HCLE cells does not further activate glucose uptake. HCLE cells have a 25-fold higher basal glucose uptake rate than L929 cells and the lack of a pH effect suggests that the cysteine biochemistry has already occurred in HCLE cells. The data are consistent with pH having a complex mechanism of action, but one likely mediated by cysteine biochemistry. Copyright © 2013 Elsevier Masson SAS. All rights reserved.

  5. Adiponectin attenuates lung fibroblasts activation and pulmonary fibrosis induced by paraquat.

    Science.gov (United States)

    Yao, Rong; Cao, Yu; He, Ya-rong; Lau, Wayne Bond; Zeng, Zhi; Liang, Zong-an

    2015-01-01

    Pulmonary fibrosis is one of the most common complications of paraquat (PQ) poisoning, which demands for more effective therapies. Accumulating evidence suggests adiponectin (APN) may be a promising therapy against fibrotic diseases. In the current study, we determine whether the exogenous globular APN isoform protects against pulmonary fibrosis in PQ-treated mice and human lung fibroblasts, and dissect the responsible underlying mechanisms. BALB/C mice were divided into control group, PQ group, PQ + low-dose APN group, and PQ + high-dose APN group. Mice were sacrificed 3, 7, 14, and 21 days after PQ treatment. We compared pulmonary histopathological changes among different groups on the basis of fibrosis scores, TGF-β1, CTGF and α-SMA pulmonary content via Western blot and real-time quantitative fluorescence-PCR (RT-PCR). Blood levels of MMP-9 and TIMP-1 were determined by ELISA. Human lung fibroblasts WI-38 were divided into control group, PQ group, APN group, and APN receptor (AdipoR) 1 small-interfering RNA (siRNA) group. Fibroblasts were collected 24, 48, and 72 hours after PQ exposure for assay. Cell viability and apoptosis were determined via Kit-8 (CCK-8) and fluorescein Annexin V-FITC/PI double labeling. The protein and mRNA expression level of collagen type III, AdipoR1, and AdipoR2 were measured by Western blot and RT-PCR. APN treatment significantly decreased the lung fibrosis scores, protein and mRNA expression of pulmonary TGF-β1, CTGF and α-SMA content, and blood MMP-9 and TIMP-1 in a dose-dependent manner (ppulmonary fibrosis in a dose-dependent manner, via suppression of lung fibroblast activation. Functional AdipoR1 are expressed by human WI-38 lung fibroblasts, suggesting potential future clinical applicability of APN against pulmonary fibrosis.

  6. Physiological aspect walking and Nordic walking as adequate kinetic activities.

    OpenAIRE

    BENEŠ, Václav

    2010-01-01

    This bachelor thesis on the topic of The Physiological Aspect of Walking and Nordic Walking as an adequate physical activity focuses on chosen physiological changes of an organism during a five-month training cycle. In the theoretical part I describe the physiological changes of organism during a regularly repeated strain, and also the technique of walking, Nordic walking and health benefits of these activities are defined here. The research part of the thesis describes the measurement method...

  7. Fibroblast activation protein (FAP) as a novel metabolic target

    DEFF Research Database (Denmark)

    Sánchez-Garrido, Miguel Angel; Habegger, Kirk M; Clemmensen, Christoffer

    2016-01-01

    to block FAP enzymatic activity. RESULTS: TB administration to diet-induced obese (DIO) animals led to profound decreases in body weight, reduced food consumption and adiposity, increased energy expenditure, improved glucose tolerance and insulin sensitivity, and lowered cholesterol levels. Total...... (TB), we explored the impact of FAP inhibition on metabolic regulation in mice. METHODS: To address this question we evaluated the pharmacology of TB in various mouse models including those deficient in FGF21, GLP1 and GIP signaling. We also studied the ability of FAP to process FGF21 in vitro and TB...... and intact plasma FGF21 were observed to be elevated in TB-treated DIO mice but not lean animals where the metabolic impact of TB was significantly attenuated. Furthermore, and in stark contrast to naïve DIO mice, the administration of TB to obese FGF21 knockout animals demonstrated no appreciable effect...

  8. Cigarette smoke exposure inhibits extracellular MMP-2 (gelatinase A activity in human lung fibroblasts

    Directory of Open Access Journals (Sweden)

    Cappello Francesco

    2007-03-01

    Full Text Available Abstract Background Exposure to cigarette smoke is considered a major risk factor for the development of lung diseases, since its causative role has been assessed in the induction and maintenance of an inflamed state in the airways. Lung fibroblasts can contribute to these processes, due to their ability to produce proinflammatory chemotactic molecules and extracellular matrix remodelling proteinases. Among proteolytic enzymes, gelatinases A and B have been studied for their role in tissue breakdown and mobilisation of matrix-derived signalling molecules. Multiple reports linked gelatinase deregulation and overexpression to the development of inflammatory chronic lung diseases such as COPD. Methods In this study we aimed to determine variations in the gelatinolytic pattern of human lung fibroblasts (HFL-1 cell line exposed to cigarette smoke extract (CSE. Gelatinolytic activity levels were determined by using gelatin zymography for the in-gel detection of the enzymes (proenzyme and activated forms, and the subsequent semi-quantitative densitometric evaluation of lytic bands. Expression of gelatinases was evaluated also by RT-PCR, zymography of the cell lysates and by western blotting. Results CSE exposure at the doses used (1–10% did not exert any significant cytotoxic effects on fibroblasts. Zymographic analysis showed that CSE exposure resulted in a linear decrease of the activity of gelatinase A. Control experiments allowed excluding a direct inhibitory effect of CSE on gelatinases. Zymography of cell lysates confirmed the expression of MMP-2 in all conditions. Semi-quantitative evaluation of mRNA expression allowed assessing a reduced transcription of the enzyme, as well as an increase in the expression of TIMP-2. Statistical analyses showed that the decrease of MMP-2 activity in conditioned media reached the statistical significance (p = 0.0031 for 24 h and p = 0.0012 for 48 h, while correlation analysis showed that this result was

  9. Effects of activated fibroblasts on phenotype modulation, EGFR signalling and cell cycle regulation in OSCC cells

    Energy Technology Data Exchange (ETDEWEB)

    Berndt, Alexander, E-mail: alexander.berndt@med.uni-jena.de [Center for Molecular Biomedicine, Institute of Pathology, Jena University Hospital, 07740 Jena (Germany); Büttner, Robert, E-mail: Robert-Buettner@gmx.net [Institute of Biochemistry and Biophysics, Friedrich Schiller University Jena, 07740 Jena (Germany); Gühne, Stefanie, E-mail: stefanie_guehne@gmx.net [Center for Molecular Biomedicine, Institute of Pathology, Jena University Hospital, 07740 Jena (Germany); Gleinig, Anna, E-mail: annagleinig@yahoo.com [Center for Molecular Biomedicine, Institute of Pathology, Jena University Hospital, 07740 Jena (Germany); Richter, Petra, E-mail: P.Richter@med.uni-jena.de [Center for Molecular Biomedicine, Institute of Pathology, Jena University Hospital, 07740 Jena (Germany); Chen, Yuan, E-mail: Yuan.Chen@med.uni-jena.de [Center for Molecular Biomedicine, Institute of Pathology, Jena University Hospital, 07740 Jena (Germany); Franz, Marcus, E-mail: Marcus.Franz@med.uni-jena.de [Clinic of Internal Medicine I, Jena University Hospital, 07740 Jena (Germany); Liebmann, Claus, E-mail: Claus.Liebmann@uni-jena.de [Institute of Biochemistry and Biophysics, Friedrich Schiller University Jena, 07740 Jena (Germany)

    2014-04-01

    Crosstalk between carcinoma associated fibroblasts (CAFs) and oral squamous cell carcinoma (OSCC) cells is suggested to mediate phenotype transition of cancer cells as a prerequisite for tumour progression, to predict patients’ outcome, and to influence the efficacy of EGFR inhibitor therapies. Here we investigate the influence of activated fibroblasts as a model for CAFs on phenotype and EGFR signalling in OSCC cells in vitro. For this, immortalised hTERT-BJ1 fibroblasts were activated with TGFβ1 and PDGFAB to generate a myofibroblast or proliferative phenotype, respectively. Conditioned media (FCM{sub TGF}, FCM{sub PDGF}) were used to stimulate PE/CA-PJ15 OSCC cells. Results were compared to the effect of conditioned media of non-stimulated fibroblasts (FCM{sub B}). FCM{sub TGF} stimulation leads to an up-regulation of vimentin in the OSCC cells and an enhancement of invasive behaviour, indicating EMT-like effects. Similarly, FCM{sub TGF}≫FCM{sub PDGF} induced up-regulation of EGFR, but not of ErbB2/ErbB3. In addition, we detected an increase in basal activities of ERK, PI3K/Akt and Stat3 (FCM{sub TGF}>FCM{sub PDGF}) accompanied by protein interaction of vimentin with pERK. These effects are correlated with an increased proliferation. In summary, our results suggest that the activated myofibroblast phenotype provides soluble factors which are able to induce EMT-like phenomena and to increase EGFR signalling as well as cell proliferation in OSCC cells. Our results indicate a possible influence of activated myofibroblasts on EGFR-inhibitor therapy. Therefore, CAFs may serve as promising novel targets for combined therapy strategies. - Highlights: • A cell culture model for cancer associated fibroblasts is described. • The mutual interaction with OSCC cells leads to up-regulation of EGFR in tumour cells. • mCAF induces EGFR downstream signalling with increased proliferation in OSCC. • Erk activation is associated with protein interaction with vimentin

  10. Effects of activated fibroblasts on phenotype modulation, EGFR signalling and cell cycle regulation in OSCC cells

    International Nuclear Information System (INIS)

    Berndt, Alexander; Büttner, Robert; Gühne, Stefanie; Gleinig, Anna; Richter, Petra; Chen, Yuan; Franz, Marcus; Liebmann, Claus

    2014-01-01

    Crosstalk between carcinoma associated fibroblasts (CAFs) and oral squamous cell carcinoma (OSCC) cells is suggested to mediate phenotype transition of cancer cells as a prerequisite for tumour progression, to predict patients’ outcome, and to influence the efficacy of EGFR inhibitor therapies. Here we investigate the influence of activated fibroblasts as a model for CAFs on phenotype and EGFR signalling in OSCC cells in vitro. For this, immortalised hTERT-BJ1 fibroblasts were activated with TGFβ1 and PDGFAB to generate a myofibroblast or proliferative phenotype, respectively. Conditioned media (FCM TGF , FCM PDGF ) were used to stimulate PE/CA-PJ15 OSCC cells. Results were compared to the effect of conditioned media of non-stimulated fibroblasts (FCM B ). FCM TGF stimulation leads to an up-regulation of vimentin in the OSCC cells and an enhancement of invasive behaviour, indicating EMT-like effects. Similarly, FCM TGF ≫FCM PDGF induced up-regulation of EGFR, but not of ErbB2/ErbB3. In addition, we detected an increase in basal activities of ERK, PI3K/Akt and Stat3 (FCM TGF >FCM PDGF ) accompanied by protein interaction of vimentin with pERK. These effects are correlated with an increased proliferation. In summary, our results suggest that the activated myofibroblast phenotype provides soluble factors which are able to induce EMT-like phenomena and to increase EGFR signalling as well as cell proliferation in OSCC cells. Our results indicate a possible influence of activated myofibroblasts on EGFR-inhibitor therapy. Therefore, CAFs may serve as promising novel targets for combined therapy strategies. - Highlights: • A cell culture model for cancer associated fibroblasts is described. • The mutual interaction with OSCC cells leads to up-regulation of EGFR in tumour cells. • mCAF induces EGFR downstream signalling with increased proliferation in OSCC. • Erk activation is associated with protein interaction with vimentin as sign of EMT. • Results qualify

  11. S100A4 amplifies TGF-β-induced fibroblast activation in systemic sclerosis

    DEFF Research Database (Denmark)

    Tomcik, Michal; Palumbo-Zerr, Katrin; Zerr, Pawel

    2015-01-01

    (SSc). METHODS: The expression of S100A4 was analysed in human samples, murine models of SSc and in cultured fibroblasts by real-time PCR, immunohistochemistry and western blot. The functional role of S100A4 was evaluated using siRNA, overexpression, recombinant protein and S100A4 knockout (S100A4...... or stimulation with recombinant S100A4 induced an activated phenotype in resting normal fibroblasts. In contrast, knockdown of S100A4 reduced the pro-fibrotic effects of TGF-β and decreased the release of collagen. S100A4(-/-) mice were protected from bleomycin-induced skin fibrosis with reduced dermal...

  12. Activation of pluripotency genes in human fibroblast cells by a novel mRNA based approach.

    Directory of Open Access Journals (Sweden)

    Jordan R Plews

    2010-12-01

    Full Text Available Several methods have been used to induce somatic cells to re-enter the pluripotent state. Viral transduction of reprogramming genes yields higher efficiency but involves random insertions of viral sequences into the human genome. Although induced pluripotent stem (iPS cells can be obtained with the removable PiggyBac transposon system or an episomal system, both approaches still use DNA constructs so that resulting cell lines need to be thoroughly analyzed to confirm they are free of harmful genetic modification. Thus a method to change cell fate without using DNA will be very useful in regenerative medicine.In this study, we synthesized mRNAs encoding OCT4, SOX2, cMYC, KLF4 and SV40 large T (LT and electroporated them into human fibroblast cells. Upon transfection, fibroblasts expressed these factors at levels comparable to, or higher than those in human embryonic stem (ES cells. Ectopically expressed OCT4 localized to the cell nucleus within 4 hours after mRNA introduction. Transfecting fibroblasts with a mixture of mRNAs encoding all five factors significantly increased the expression of endogenous OCT4, NANOG, DNMT3β, REX1 and SALL4. When such transfected fibroblasts were also exposed to several small molecules (valproic acid, BIX01294 and 5'-aza-2'-deoxycytidine and cultured in human embryonic stem cell (ES medium they formed small aggregates positive for alkaline phosphatase activity and OCT4 protein within 30 days.Our results demonstrate that mRNA transfection can be a useful approach to precisely control the protein expression level and short-term expression of reprogramming factors is sufficient to activate pluripotency genes in differentiated cells.

  13. Ergosterol peroxide from Cordyceps cicadae ameliorates TGF-β1-induced activation of kidney fibroblasts.

    Science.gov (United States)

    Zhu, Rong; Zheng, Rong; Deng, Yueyi; Chen, Yiping; Zhang, Shuwei

    2014-02-15

    Chronic kidney disease is a growing public health problem with an urgent need for new pharmacological agents. Ergosterol peroxide (EP) is the major sterol produced by Cordyceps cicadae Shing (C. cicadae), a widely used traditional Chinese medicine. C. cicadae has been used to treat many kinds of diseases and has a potential benefit on renoprotection. This study aimed to investigate the anti-fibrotic effects of EP as well as the underlying mechanisms. A normal rat kidney fibroblast cell line (NRK-49F) was stimulated to undergo fibroblast activation by transforming growth factor-β1 (TGF-β1) and EP treatment was applied to explore its potential anti-fibrotic effects. Cell proliferation was investigated using MTT analysis. Fibrosis-associated protein expression was analyzed using immunohistochemistry and/or Western blotting. EP treatment attenuated TGF-β1-induced renal fibroblast proliferation, expression of cytoskeleton protein and CTGF, as well as ECM production. Additionally, EP blocked TGF-β1-stimulated phosphorylation of ERK1/2, p38 and JNK pathway. Moreover, the TGF-β1-induced expression of fibronectin was attenuated by either inhibition of MAPKs or by EP treatment. In conclusion, our findings demonstrate that EP is able to suppress TGF-β1-induced fibroblasts activation in NRK-49F. This new information provides a line of theoretical evidence supporting the use of C. cicadae in the intervention of kidney disease and suggests that EP has the potential to be developed as a therapeutic agent to prevent renal fibrosis. Copyright © 2013 Elsevier GmbH. All rights reserved.

  14. Dihydrotestosterone Potentiates EGF-Induced ERK Activation by Inducing SRC in Fetal Lung Fibroblasts

    Science.gov (United States)

    Smith, Susan M.; Murray, Sandy; Pham, Lucia D.; Minoo, Parviz; Nielsen, Heber C.

    2014-01-01

    Lung maturation is regulated by interactions between mesenchymal and epithelial cells, and is delayed by androgens. Fibroblast–Type II cell communications are dependent on extracellular signal-regulated kinases (ERK) 1/2 activation by the ErbB receptor ligands epidermal growth factor (EGF), transforming growth factor (TGF)-α, and neuregulin (Nrg). In other tissues, dihydrotestosterone (DHT) has been shown to activate SRC by a novel nontranscriptional mechanism, which phosphorylates EGF receptors to potentiate EGF-induced ERK1/2 activation. This study sought to determine if DHT potentiates EGFR signaling by a nontranscriptional mechanism. Embryonic day (E)17 fetal lung cells were isolated from dams treated with or without DHT since E12. Cells were exposed to 30 ng/ml DHT for periods of 30 minutes to 3 days before being stimulated with 100 ng/ml EGF, TGF-α, or Nrg for up to 30 minutes. Lysates were immunoblotted for ErbB and SRC pathway signaling intermediates. DHT increased ERK1/2 activation by EGF, TGF-α, and Nrg in fibroblasts and Type II cells. Characterization in fibroblasts showed that potentiation of the EGF pathway was significant after 60 minutes of DHT exposure and persisted in the presence of the translational inhibitor cycloheximide. SRC and EGF receptor phosphorylation was increased by DHT, as was EGF-induced SHC1 phosphorylation and subsequent association with GRB2. Finally, SRC silencing, SRC inhibition with PP2, and overexpression of a dominant-negative SRC each prevented DHT from increasing EGF-induced ERK1/2 phosphorylation. These results suggest that DHT activates SRC to potentiate the signaling pathway leading from the EGF receptor to ERK activation in primary fetal lung fibroblasts. PMID:24484548

  15. Improved methods for reprogramming human dermal fibroblasts using fluorescence activated cell sorting.

    Directory of Open Access Journals (Sweden)

    David J Kahler

    Full Text Available Current methods to derive induced pluripotent stem cell (iPSC lines from human dermal fibroblasts by viral infection rely on expensive and lengthy protocols. One major factor contributing to the time required to derive lines is the ability of researchers to identify fully reprogrammed unique candidate clones from a mixed cell population containing transformed or partially reprogrammed cells and fibroblasts at an early time point post infection. Failure to select high quality colonies early in the derivation process results in cell lines that require increased maintenance and unreliable experimental outcomes. Here, we describe an improved method for the derivation of iPSC lines using fluorescence activated cell sorting (FACS to isolate single cells expressing the cell surface marker signature CD13(NEGSSEA4(POSTra-1-60(POS on day 7-10 after infection. This technique prospectively isolates fully reprogrammed iPSCs, and depletes both parental and "contaminating" partially reprogrammed fibroblasts, thereby substantially reducing the time and reagents required to generate iPSC lines without the use of defined small molecule cocktails. FACS derived iPSC lines express common markers of pluripotency, and possess spontaneous differentiation potential in vitro and in vivo. To demonstrate the suitability of FACS for high-throughput iPSC generation, we derived 228 individual iPSC lines using either integrating (retroviral or non- integrating (Sendai virus reprogramming vectors and performed extensive characterization on a subset of those lines. The iPSC lines used in this study were derived from 76 unique samples from a variety of tissue sources, including fresh or frozen fibroblasts generated from biopsies harvested from healthy or disease patients.

  16. Gene expression profiling of mucolipidosis type IV fibroblasts reveals deregulation of genes with relevant functions in lysosome physiology.

    Science.gov (United States)

    Bozzato, Andrea; Barlati, Sergio; Borsani, Giuseppe

    2008-04-01

    Mucolipidosis type IV (MLIV, MIM 252650) is an autosomal recessive lysosomal storage disorder that causes mental and motor retardation as well as visual impairment. The lysosomal storage defect in MLIV is consistent with abnormalities of membrane traffic and organelle dynamics in the late endocytic pathway. MLIV is caused by mutations in the MCOLN1 gene, which codes for mucolipin-1 (MLN1), a member of the large family of transient receptor potential (TRP) cation channels. Although a number of studies have been performed on mucolipin-1, the pathological mechanisms underlying MLIV are not fully understood. To identify genes that characterize pathogenic changes in mucolipidosis type IV, we compared the expression profiles of three MLIV and three normal skin fibroblasts cell lines using oligonucleotide microarrays. Genes that were differentially expressed in patients' cells were identified. 231 genes were up-regulated, and 116 down-regulated. Real-Time RT-PCR performed on selected genes in six independent MLIV fibroblasts cell lines was generally consistent with the microarray findings. This study allowed to evidence the modulation at the transcriptional level of a discrete number of genes relevant in biological processes which are altered in the disease such as endosome/lysosome trafficking, lysosome biogenesis, organelle acidification and lipid metabolism.

  17. Active Learning Improves Student Performance in a Respiratory Physiology Lab

    Science.gov (United States)

    Wolf, Alex M.; Liachovitzky, Carlos; Abdullahi, Abass S.

    2015-01-01

    This study assessed the effectiveness of the introduction of active learning exercises into the anatomy and physiology curriculum in a community college setting. Specifically, the incorporation of a spirometry-based respiratory physiology lab resulted in improved student performance in two concepts (respiratory volumes and the hallmarks of…

  18. Clonogenic growth of human breast cancer cells co-cultured in direct contact with serum-activated fibroblasts

    International Nuclear Information System (INIS)

    Samoszuk, Michael; Tan, Jenny; Chorn, Guillaume

    2005-01-01

    Accumulating evidence suggests that fibroblasts play a pivotal role in promoting the growth of breast cancer cells. The objective of the present study was to characterize and validate an in vitro model of the interaction between small numbers of human breast cancer cells and human fibroblasts. We measured the clonogenic growth of small numbers of human breast cancer cells co-cultured in direct contact with serum-activated, normal human fibroblasts. Using DNA microarrays, we also characterized the gene expression profile of the serum-activated fibroblasts. In order to validate the in vivo relevance of our experiments, we then analyzed clinical samples of metastatic breast cancer for the presence of myofibroblasts expressing α-smooth muscle actin. Clonogenic growth of human breast cancer cells obtained directly from in situ and invasive tumors was dramatically and consistently enhanced when the tumor cells were co-cultured in direct contact with serum-activated fibroblasts. This effect was abolished when the cells were co-cultured in transwells separated by permeable inserts. The fibroblasts in our experimental model exhibited a gene expression signature characteristic of 'serum response' (i.e. myofibroblasts). Immunostaining of human samples of metastatic breast cancer tissue confirmed that myofibroblasts are in direct contact with breast cancer cells. Serum-activated fibroblasts promote the clonogenic growth of human breast cancer cells in vitro through a mechanism that involves direct physical contact between the cells. This model shares many important molecular and phenotypic similarities with the fibroblasts that are naturally found in breast cancers

  19. Production of glycosylated physiologically normal human α1-antitrypsin by mouse fibroblasts modified by insertion of a human α1-antitrypsin cDNA using a retroviral vector

    International Nuclear Information System (INIS)

    Garver, R.I. Jr.; Chytil, A.; Karlsson, S.

    1987-01-01

    α 2 -Antitrypsin (α 1 AT) deficiency is a hereditary disorder characterized by reduced serum levels of α 1 AT, resulting in destruction of the lower respiratory tract by neutrophil elastase. As an approach to augment α 1 AT levels in this disorder with physiologically normal human α 1 AT, the authors have integrated a full-length normal human α 1 AT cDNA into the genome of mouse fibroblasts. To accomplish this, the retroviral vector N2 was modified by inserting the simian virus 40 early promoter followed by the α 1 AT cDNA. Southern analysis demonstrated that the intact cDNA was present in the genome of selected clones of the transfected murine fibroblasts psi2 and infected NIH 3T3. The clones produced three mRNA transcripts containing human α 1 AT sequences, secreted an α 1 AT molecule recognized by an anti-human α 1 AT antibody, with the same molecular mass as normal human α 1 AT and that complexed with and inhibited human neutrophil elastase. The psi2 produced α 1 AT was glycosylated, and when infused intravenously into mice, it had a serum half-life similar to normal α 1 AT purified from human plasma and markedly longer than that of nonglycosylated human α 1 AT cDNA-directed yeast-produced α 1 AT. These studies demonstrate the feasibility of using a retroviral vector to insert the normal human α 1 AT cDNA into non-α 1 AT-producing cells, resulting in the synthesis and secretion of physiologically normal α 1 AT

  20. Increased p21ras activity in human fibroblasts transduced with survivin enhances cell proliferation

    International Nuclear Information System (INIS)

    Temme, Achim; Diestelkoetter-Bachert, Petra; Schmitz, Marc; Morgenroth, Agnieszka; Weigle, Bernd; Rieger, Michael A.; Kiessling, Andrea; Rieber, E. Peter

    2005-01-01

    Survivin is critically involved in mitosis and when overexpressed enhances the activity of the Aurora B kinase, a serine-threonine kinase belonging to the family of oncogenic Aurora/IpI1p-related kinases. Both proteins interact with Ras GTPase-activating protein suggesting an impact on the Ras pathway. This study aimed at defining the role of survivin in proliferation and potential transformation of cells. When survivin was overexpressed in normal human lung fibroblasts, the characteristic track lanes of fibroblasts were disturbed and the rate of cell proliferation was increased. An enhanced level of p21 ras mRNA and protein expression and concomitant rise in levels of activated p21 ras were observed. Despite increased proliferation cell survival remained dependent on serum and cells were not able to form colonies in soft agar assays. These data suggest that overexpression of survivin increases cell growth but, despite the increase in active p21 ras , is not sufficient to transform primary cells. Yet, in addition to its anti-apoptotic function it might contribute to the accelerated growth of tumour cells by increasing p21 ras activity

  1. Performance in physiology evaluation: possible improvement by active learning strategies.

    Science.gov (United States)

    Montrezor, Luís H

    2016-12-01

    The evaluation process is complex and extremely important in the teaching/learning process. Evaluations are constantly employed in the classroom to assist students in the learning process and to help teachers improve the teaching process. The use of active methodologies encourages students to participate in the learning process, encourages interaction with their peers, and stimulates thinking about physiological mechanisms. This study examined the performance of medical students on physiology over four semesters with and without active engagement methodologies. Four activities were used: a puzzle, a board game, a debate, and a video. The results show that engaging in activities with active methodologies before a physiology cognitive monitoring test significantly improved student performance compared with not performing the activities. We integrate the use of these methodologies with classic lectures, and this integration appears to improve the teaching/learning process in the discipline of physiology and improves the integration of physiology with cardiology and neurology. In addition, students enjoy the activities and perform better on their evaluations when they use them. Copyright © 2016 The American Physiological Society.

  2. Protective influence of hyaluronic acid on focal adhesion kinase activity in human skin fibroblasts exposed to ethanol.

    Science.gov (United States)

    Donejko, Magdalena; Rysiak, Edyta; Galicka, Elżbieta; Terlikowski, Robert; Głażewska, Edyta Katarzyna; Przylipiak, Andrzej

    2017-01-01

    The aim of this study was to evaluate the effect of ethanol and hyaluronic acid (HA) on cell survival and apoptosis in cultured human skin fibroblasts. Regarding the mechanism of ethanol action on human skin fibroblasts, we investigated cell viability and apoptosis, expression of focal adhesion kinase (FAK), and the influence of HA on those processes. Studies were conducted in confluent human skin fibroblast cultures that were treated with 25 mM, 50 mM, and 100 mM ethanol or with ethanol and 500 µg/mL HA. Cell viability was examined using methyl thiazolyl tetrazolium (MTT) assay and NC-300 Nucleo-Counter. Imaging of the cells using a fluorescence microscope Pathway 855 was performed to measure FAK expression. Depending on the dosage, ethanol decreased cell viability and activated the process of apoptosis in human skin fibroblasts. HA prevented the negative influence of ethanol on cell viability and prevented apoptosis. The analysis of fluorescence imaging using BD Pathway 855 High-Content Bioimager showed the inhibition of FAK migration to the cell nucleus, depending on the increasing concentration of ethanol. This study proves that downregulation of signaling pathway of FAK is involved in ethanol-induced apoptosis in human skin fibroblasts. The work also indicates a protective influence of HA on FAK activity in human skin fibroblasts exposed to ethanol.

  3. Glycosides from Stevia rebaudiana Bertoni Possess Insulin-Mimetic and Antioxidant Activities in Rat Cardiac Fibroblasts

    Directory of Open Access Journals (Sweden)

    Cecilia Prata

    2017-01-01

    Full Text Available Stevia rebaudiana Bertoni is a shrub having a high content of sweet diterpenoid glycosides in its leaves, mainly stevioside and rebaudioside A, which are used as noncaloric, natural sweeteners. The aim of this study was to deepen the knowledge about the insulin-mimetic effect exerted by four different mixtures of steviol glycosides, rich in stevioside and rebaudioside A, in neonatal rat cardiac fibroblasts. The potential antioxidant activity of these steviol glycosides was also assessed, as oxidative stress is associated with diabetes. Likewise the insulin effect, steviol glycosides caused an increase in glucose uptake into rat fibroblasts by activating the PI3K/Akt pathway, thus inducing Glut4 translocation to the plasma membrane. The presence of S961, an insulin antagonist, completely abolished these effects, allowing to hypothesize that steviol glycosides could act as ligands of the same receptor engaged by insulin. Moreover, steviol glycosides counteracted oxidative stress by increasing reduced glutathione intracellular levels and upregulating expression and activity of the two antioxidant enzymes superoxide dismutase and catalase. The present work unravels the insulin-mimetic effect and the antioxidant property exerted by steviol glycosides, suggesting their potential beneficial role in the cotreatment of diabetes and in health maintenance.

  4. Glycosides from Stevia rebaudiana Bertoni Possess Insulin-Mimetic and Antioxidant Activities in Rat Cardiac Fibroblasts

    Science.gov (United States)

    Prata, Cecilia; Zambonin, Laura; Rizzo, Benedetta; Vieceli Dalla Sega, Francesco

    2017-01-01

    Stevia rebaudiana Bertoni is a shrub having a high content of sweet diterpenoid glycosides in its leaves, mainly stevioside and rebaudioside A, which are used as noncaloric, natural sweeteners. The aim of this study was to deepen the knowledge about the insulin-mimetic effect exerted by four different mixtures of steviol glycosides, rich in stevioside and rebaudioside A, in neonatal rat cardiac fibroblasts. The potential antioxidant activity of these steviol glycosides was also assessed, as oxidative stress is associated with diabetes. Likewise the insulin effect, steviol glycosides caused an increase in glucose uptake into rat fibroblasts by activating the PI3K/Akt pathway, thus inducing Glut4 translocation to the plasma membrane. The presence of S961, an insulin antagonist, completely abolished these effects, allowing to hypothesize that steviol glycosides could act as ligands of the same receptor engaged by insulin. Moreover, steviol glycosides counteracted oxidative stress by increasing reduced glutathione intracellular levels and upregulating expression and activity of the two antioxidant enzymes superoxide dismutase and catalase. The present work unravels the insulin-mimetic effect and the antioxidant property exerted by steviol glycosides, suggesting their potential beneficial role in the cotreatment of diabetes and in health maintenance. PMID:28947927

  5. Cleaved CD147 shed from the surface of malignant melanoma cells activates MMP2 produced by fibroblasts.

    Science.gov (United States)

    Hatanaka, Miho; Higashi, Yuko; Fukushige, Tomoko; Baba, Naoko; Kawai, Kazuhiro; Hashiguchi, Teruto; Su, Juan; Zeng, Weiqi; Chen, Xiang; Kanekura, Takuro

    2014-12-01

    Cluster of differentiation 147 (CD147)/basigin on the malignant tumor cell surface is critical for tumor proliferation, invasiveness, metastasis, and angiogenesis. CD147 expressed on malignant melanoma cells can induce tumor cell invasion by stimulating the production of matrix metalloproteinases (MMPs) by surrounding fibroblasts. Membrane vesicles, microvesicles and exosomes have attracted attention, as vehicles of functional molecules and their association with CD147 has been reported. Cleaved CD147 fragments released from tumor cells were reported to interact with fibroblasts. We investigated the intercellular mechanisms by which CD147 stimulates fibroblasts to induce MMP2 activity. CD147 was knocked-down using short hairpin RNA (shRNA). The stimulatory effect of CD147 in cell culture supernatants, microvesicles, and exosomes on the enzymatic activity of MMP2 was examined by gelatin zymography. Supernatants from A375 control cells induced increased enzymatic activity of fibroblasts; such activity was significantly lower in CD147 knock-down cells. Cleaved CD147 plays a pivotal role in stimulating fibroblasts to induce MMP2 activity. Copyright© 2014 International Institute of Anticancer Research (Dr. John G. Delinassios), All rights reserved.

  6. Role of human pulmonary fibroblast-derived MCP-1 in cell activation and migration in experimental silicosis

    Energy Technology Data Exchange (ETDEWEB)

    Liu, Xueting [Department of Physiology, Medical School of Southeast University, Nanjing, Jiangsu 210009 (China); Fang, Shencun [Nine Department of Respiratory Medicine, Nanjing Chest Hospital, Nanjing, Jiangsu 210029 (China); Liu, Haijun [Neurobiology Laboratory, New Drug Screening Centre, China Pharmaceutical University, Nanjing, Jiangsu 210009 (China); Wang, Xingang; Dai, Xiaoniu; Yin, Qing; Yun, Tianwei [Department of Physiology, Medical School of Southeast University, Nanjing, Jiangsu 210009 (China); Wang, Wei; Zhang, Yingming [Nine Department of Respiratory Medicine, Nanjing Chest Hospital, Nanjing, Jiangsu 210029 (China); Liao, Hong [Neurobiology Laboratory, New Drug Screening Centre, China Pharmaceutical University, Nanjing, Jiangsu 210009 (China); Zhang, Wei [Department of Physiology, Medical School of Southeast University, Nanjing, Jiangsu 210009 (China); Yao, Honghong [Department of Pharmacology, Medical School of Southeast University, Nanjing, Jiangsu 210009 (China); Chao, Jie, E-mail: chaojie@seu.edu.cn [Department of Physiology, Medical School of Southeast University, Nanjing, Jiangsu 210009 (China)

    2015-10-15

    Background: Silicosis is a systemic disease caused by inhaling silicon dioxide (SiO{sub 2}). Phagocytosis of SiO{sub 2} in the lung initiates an inflammatory cascade that results in fibroblast proliferation and migration and subsequent fibrosis. Clinical evidence indicates that the activation of alveolar macrophages by SiO{sub 2} produces rapid and sustained inflammation that is characterized by the generation of monocyte chemotactic protein 1 (MCP-1), which induces fibrosis. Pulmonary fibroblast-derived MCP-1 may play a critical role in fibroblast proliferation and migration. Methods and results: Experiments using primary cultured adult human pulmonary fibroblasts (HPF-a) demonstrated the following results: 1) SiO{sub 2} treatment resulted in the rapid and sustained induction of MCP-1 as well as the elevation of the CC chemokine receptor type 2 (CCR2) protein levels; 2) pretreatment of HPF-a with RS-102895, a specific CCR2 inhibitor, abolished the SiO{sub 2}-induced increase in cell activation and migration in both 2D and 3D culture systems; and 3) RNA interference targeting CCR2 prevented the SiO{sub 2}-induced increase in cell migration. Conclusion: These data demonstrated that the up-regulation of pulmonary fibroblast-derived MCP-1 is involved in pulmonary fibroblast migration induced by SiO{sub 2}. CCR2 was also up-regulated in response to SiO{sub 2}, and this up-regulation facilitated the effect of MCP-1 on fibroblasts. Our study deciphered the link between fibroblast-derived MCP-1 and SiO{sub 2}-induced cell migration. This finding provides novel insight into the potential of MCP-1 in the development of novel therapeutic strategies for silicosis. - Highlights: • Role of pulmonary fibroblast-derived MCP-1 in experimental silicosis was studied. • SiO{sub 2} induced MCP-1 release from cultured human pulmonary fibroblast (HPF-a). • SiO{sub 2} directly activated HPF-a via the MCP-1/CCR2 pathway. • SiO{sub 2} increased HPF-a migration in both 2D and 3D

  7. Role of human pulmonary fibroblast-derived MCP-1 in cell activation and migration in experimental silicosis

    International Nuclear Information System (INIS)

    Liu, Xueting; Fang, Shencun; Liu, Haijun; Wang, Xingang; Dai, Xiaoniu; Yin, Qing; Yun, Tianwei; Wang, Wei; Zhang, Yingming; Liao, Hong; Zhang, Wei; Yao, Honghong; Chao, Jie

    2015-01-01

    Background: Silicosis is a systemic disease caused by inhaling silicon dioxide (SiO 2 ). Phagocytosis of SiO 2 in the lung initiates an inflammatory cascade that results in fibroblast proliferation and migration and subsequent fibrosis. Clinical evidence indicates that the activation of alveolar macrophages by SiO 2 produces rapid and sustained inflammation that is characterized by the generation of monocyte chemotactic protein 1 (MCP-1), which induces fibrosis. Pulmonary fibroblast-derived MCP-1 may play a critical role in fibroblast proliferation and migration. Methods and results: Experiments using primary cultured adult human pulmonary fibroblasts (HPF-a) demonstrated the following results: 1) SiO 2 treatment resulted in the rapid and sustained induction of MCP-1 as well as the elevation of the CC chemokine receptor type 2 (CCR2) protein levels; 2) pretreatment of HPF-a with RS-102895, a specific CCR2 inhibitor, abolished the SiO 2 -induced increase in cell activation and migration in both 2D and 3D culture systems; and 3) RNA interference targeting CCR2 prevented the SiO 2 -induced increase in cell migration. Conclusion: These data demonstrated that the up-regulation of pulmonary fibroblast-derived MCP-1 is involved in pulmonary fibroblast migration induced by SiO 2 . CCR2 was also up-regulated in response to SiO 2 , and this up-regulation facilitated the effect of MCP-1 on fibroblasts. Our study deciphered the link between fibroblast-derived MCP-1 and SiO 2 -induced cell migration. This finding provides novel insight into the potential of MCP-1 in the development of novel therapeutic strategies for silicosis. - Highlights: • Role of pulmonary fibroblast-derived MCP-1 in experimental silicosis was studied. • SiO 2 induced MCP-1 release from cultured human pulmonary fibroblast (HPF-a). • SiO 2 directly activated HPF-a via the MCP-1/CCR2 pathway. • SiO 2 increased HPF-a migration in both 2D and 3D model via the MCP-1/CCR2 pathway. • RNA-i of MCP-1/CCR2

  8. Fibroblast activation protein is dispensable in the anti-influenza immune response in mice.

    Directory of Open Access Journals (Sweden)

    Sioh-Yang Tan

    Full Text Available Fibroblast activation protein alpha (FAP is a unique dual peptidase of the S9B serine protease family, being capable of both dipeptidyl peptidase and endopeptidase activities. FAP is expressed at low level in healthy adult organs including the pancreas, cervix, uterus, submaxillary gland and the skin, and highly upregulated in embryogenesis, chronic inflammation and tissue remodelling. It is also expressed by cancer-associated stromal fibroblasts in more than 90% of epithelial tumours. FAP has enzymatic and non-enzymatic functions in the growth, immunosuppression, invasion and cell signalling of tumour cells. FAP deficient mice are fertile and viable with no gross abnormality, but little data exist on the role of FAP in the immune system. FAP is upregulated in association with microbial stimulation and chronic inflammation, but its function in infection remains unknown. We showed that major populations of immune cells including CD4+ and CD8+ T cells, B cells, dendritic cells and neutrophils are generated and maintained normally in FAP knockout mice. Upon intranasal challenge with influenza virus, FAP mRNA was increased in the lungs and lung-draining lymph nodes. Nonetheless, FAP deficient mice showed similar pathologic kinetics to wildtype controls, and were capable of supporting normal anti-influenza T and B cell responses. There was no evidence of compensatory upregulation of other DPP4 family members in influenza-infected FAP-deficient mice. FAP appears to be dispensable in anti-influenza adaptive immunity.

  9. Thy-1 attenuates TNF-alpha-activated gene expression in mouse embryonic fibroblasts via Src family kinase.

    Directory of Open Access Journals (Sweden)

    Bin Shan

    Full Text Available Heterogeneous surface expression of Thy-1 in fibroblasts modulates inflammation and may thereby modulate injury and repair. As a paradigm, patients with idiopathic pulmonary fibrosis, a disease with pathologic features of chronic inflammation, demonstrate an absence of Thy-1 immunoreactivity within areas of fibrotic activity (fibroblast foci in contrast to the predominant Thy-1 expressing fibroblasts in the normal lung. Likewise, Thy-1 deficient mice display more severe lung fibrosis in response to an inflammatory injury than wildtype littermates. We investigated the role of Thy-1 in the response of fibroblasts to the pro-inflammatory cytokine TNF-alpha. Our study demonstrates distinct profiles of TNF-alpha-activated gene expression in Thy-1 positive (Thy-1+ and negative (Thy-1- subsets of mouse embryonic fibroblasts (MEF. TNF-alpha induced a robust activation of MMP-9, ICAM-1, and the IL-8 promoter driven reporter in Thy-1- MEFs, in contrast to only a modest increase in Thy-1+ counterparts. Consistently, ectopic expression of Thy-1 in Thy-1- MEFs significantly attenuated TNF-alpha-activated gene expression. Mechanistically, TNF-alpha activated Src family kinase (SFK only in Thy-1- MEFs. Blockade of SFK activation abrogated TNF-alpha-activated gene expression in Thy-1- MEFs, whereas restoration of SFK activation rescued the TNF-alpha response in Thy-1+ MEFs. Our findings suggest that Thy-1 down-regulates TNF-alpha-activated gene expression via interfering with SFK- and NF-kappaB-mediated transactivation. The current study provides a novel mechanistic insight to the distinct roles of fibroblast Thy-1 subsets in inflammation.

  10. Expression and role of fibroblast activation protein-alpha in microinvasive breast carcinoma

    Directory of Open Access Journals (Sweden)

    Hua Xing

    2011-11-01

    Full Text Available Abstract Background Diagnosis of ductal carcinoma in situ (DCIS in breast cancer cases is challenging for pathologist due to a variety of in situ patterns and artefacts, which could be misinterpreted as stromal invasion. Microinvasion is detected by the presence of cytologically malignant cells outside the confines of the basement membrane and myoepithelium. When malignant cells invade the stroma, there is tissue remodeling induced by perturbed stromal-epithelial interactions. Carcinoma-associated fibroblasts (CAFs are main cells in the microenvironment of the remodeled tumor-host interface. They are characterized by the expression of the specific fibroblast activation protein-alpha (FAP-α, and differ from that of normal fibroblasts exhibiting an immunophenotype of CD34. We hypothesized that staining for FAP-α may be helpful in determining whether DCIS has microinvasion. Methods 349 excised breast specimens were immunostained for smooth muscle actin SMA, CD34, FAP-α, and Calponin. Study material was divided into 5 groups: group 1: normal mammary tissues of healthy women after plastic surgery; group 2: usual ductal hyperplasia (UDH; group 3: DCIS without microinvasion on H & E stain; group 4: DCIS with microinvasion on H & E stain (DCIS-MI, and group 5: invasive ductal carcinoma (IDC. A comparative evaluation of the four immunostains was conducted. Results Our results demonstrated that using FAP-α and Calponin adjunctively improved the sensitivity of pathological diagnosis of DCIS-MI by 11.29%, whereas the adjunctive use of FAP-α and Calponin improved the sensitivity of pathological diagnosis of DCIS by 13.6%. Conclusions This study provides the first evidence that immunostaining with FAP-α and Calponin can serve as a novel marker for pathologically diagnosing whether DCIS has microinvasion.

  11. MCPIP1 Regulates Alveolar Macrophage Apoptosis and Pulmonary Fibroblast Activation After in vitro Exposure to Silica.

    Science.gov (United States)

    Wang, Xingang; Zhang, Yuxia; Zhang, Wei; Liu, Haijun; Zhou, Zewei; Dai, Xiaoniu; Cheng, Yusi; Fang, Shencun; Zhang, Yingming; Yao, Honghong; Chao, Jie

    2016-05-01

    Silicosis is a fatal and fibrotic pulmonary disease caused by the inhalation of silica. After arriving at the alveoli, silica is ingested by alveolar macrophages (AMOs), in which monocyte chemotactic protein-induced protein 1 (MCPIP1) plays an essential role in controlling macrophage-mediated inflammatory responses. However, the mechanism of action of MCPIP1 in silicosis is poorly understood. Primary rat AMOs were isolated and treated with SiO2 (50 µg/cm(2)). MCPIP1 and AMO activation/apoptosis markers were detected by immunoblotting. MCPIP1 was down-regulated using siRNA in AMOs. The effects of AMOs on fibroblast activation and migration were evaluated using a gel contraction assay, a scratch assay, and a nested collagen matrix migration model. After exposure to SiO2, MCPIP1 was significantly increased in rat AMOs. Activation and apoptosis markers in AMOs were up-regulated after exposure to SiO2 Following siRNA-mediated silencing of MCPIP1 mRNA, the markers of AMO activation and apoptosis were significantly decreased. Rat pulmonary fibroblasts (PFBs) cultured in conditional medium from AMOs treated with MCPIP1 siRNA and SiO2 showed significantly less activation and migration compared with those cultured in conditional medium from AMOs treated with control siRNA and SiO2 CONCLUSION: Our data suggest a vital role for MCPIP1 in AMO apoptosis and PFB activation/migration induced by SiO2. © The Author 2016. Published by Oxford University Press on behalf of the Society of Toxicology. All rights reserved. For Permissions, please e-mail: journals.permissions@oup.com.

  12. Biochemical Basis of Sestrin Physiological Activities

    Energy Technology Data Exchange (ETDEWEB)

    Ho, Allison; Cho, Chun-Seok; Namkoong, Sim; Cho, Uhn-Soo; Lee, Jun Hee (Michigan)

    2016-05-10

    Excessive accumulation of reactive oxygen species (ROS) and chronic activation of mechanistic target of rapamycin (mTOR) complex 1 (mTORC1) are well-characterized promoters of aging and age-associated degenerative pathologies. Sestrins, a family of highly conserved stress-inducible proteins, are important negative regulators of both ROS and mTORC1 signaling pathways; however, the mechanistic basis of how Sestrins suppress these pathways remains elusive. In the past couple of years, breakthrough discoveries about Sestrin signaling and its molecular nature have markedly increased our biochemical understanding of Sestrin function. These discoveries have also uncovered new potential therapeutic strategies that may eventually enable us to attenuate aging and age-associated diseases.

  13. Enhanced Dupuytren's disease fibroblast populated collagen lattice contraction is independent of endogenous active TGF-β2

    Directory of Open Access Journals (Sweden)

    Howard Jeffrey

    2004-11-01

    Full Text Available Abstract Background Dupuytren's disease (DD is a debilitating fibro-proliferative disorder of the hand characterized by the appearance of fibrotic lesions (nodules and cords leading to flexion contractures of the fingers and loss of hand function. Although the molecular mechanism of DD is unknown, it has been suggested that transforming growth factor-β2 (TGF-β2 may play an important role in the underlying patho-physiology of the disease. The purpose of this study was to further explore this hypothesis by examining the effects of TGF-β2 on primary cell cultures derived from patient-matched disease and normal palmar fascia tissue using a three-dimensional collagen contraction assay. Methods Fibroblast-populated collagen lattice (FPCL contraction assays using primary cell cultures derived from diseased and control fascia of the same DD patients were studied in response to exogenous TGF-β2 and neutralizing anti-TGF-β2 antibodies. Results Contraction of the FPCLs occurred significantly faster and to a greater extent in disease cells compared to control cells. The addition of TGF-β2 enhanced the rate and degree of collagen contraction in a dose-dependent fashion for both control and diseased cells. Neutralizing anti-TGF-β2 antibodies abolished exogenous TGF-β2 stimulated collagen contraction, but did not inhibit the enhanced basal collagen contraction activity of disease FPCL cultures. Conclusions Although exogenous TGF-β2 stimulated both disease and control FPCL contraction, neutralizing anti-TGF-β2 antibodies did not affect the elevated basal collagen contraction activity of disease FPCLs, suggesting that the differences in the collagen contraction activity of control and disease FPCL cultures are not due to differences in the levels of endogenous TGF-β2 activity.

  14. Idebenone increases mitochondrial complex I activity in fibroblasts from LHON patients while producing contradictory effects on respiration

    DEFF Research Database (Denmark)

    Angebault, Claire; Gueguen, Naig; Desquiret-Dumas, Valerie

    2011-01-01

    to impairment in some cases and stimulation in others. Conclusion: These results indicate that idebenone is able to compensate the complex I deficiency in LHON patient cells with variable effects on respiration, indicating that the patients might not be equally likely to benefit from the treatment....... of idebenone in fibroblasts from LHON patients using enzymatic and polarographic measurements. Results: Complex I activity was 42% greater in treated fibroblasts compared to controls (p = 0.002). Despite this complex I activity improvement, the effects on mitochondrial respiration were contradictory, leading...

  15. Immobilization of bioactive fibroblast growth factor-2 into cubic proteinous microcrystals (Bombyx mori cypovirus polyhedra) that are insoluble in a physiological cellular environment.

    Science.gov (United States)

    Mori, Hajime; Shukunami, Chisa; Furuyama, Akiko; Notsu, Hiroyuki; Nishizaki, Yuriko; Hiraki, Yuji

    2007-06-08

    The supramolecular architecture of the extracellular matrix and the disposition of its specific accessory molecules give rise to variable heterotopic signaling cues for single cells. Here we have described the successful occlusion of human fibroblast growth factor-2 (FGF-2) into the cubic inclusion bodies (FGF-2 polyhedra) of the Bombyx mori cytoplasmic polyhedrosis virus (BmCPV). The polyhedra are proteinous cubic crystals of several microns in size that are insoluble in the extracellular milieu. Purified FGF-2 polyhedra were found to stimulate proliferation and phosphorylation of p44/p42 mitogen-activated protein kinase in cultured fibroblasts. Moreover, cellular responses were blocked by a synthetic inhibitor of the FGF signaling pathway, SU5402, suggesting that FGF-2 polyhedra indeed act through FGF receptors. Furthermore, FGF-2 polyhedra retained potent growth stimulatory properties even after desiccation. We have demonstrated that BmCPV polyhedra microcrystals that occlude extracellular signaling proteins are a novel and versatile tool that can be employed to analyze cellular behavior at the single cell level.

  16. Redox-active cerium oxide nanoparticles protect human dermal fibroblasts from PQ-induced damage

    Directory of Open Access Journals (Sweden)

    Claudia von Montfort

    2015-04-01

    Full Text Available Recently, it has been published that cerium (Ce oxide nanoparticles (CNP; nanoceria are able to downregulate tumor invasion in cancer cell lines. Redox-active CNP exhibit both selective pro-oxidative and antioxidative properties, the first being responsible for impairment of tumor growth and invasion. A non-toxic and even protective effect of CNP in human dermal fibroblasts (HDF has already been observed. However, the effect on important parameters such as cell death, proliferation and redox state of the cells needs further clarification. Here, we present that nanoceria prevent HDF from reactive oxygen species (ROS-induced cell death and stimulate proliferation due to the antioxidative property of these particles.

  17. Protease-activated receptor 1 and 2 contribute to angiotensin II-induced activation of adventitial fibroblasts from rat aorta

    Energy Technology Data Exchange (ETDEWEB)

    He, Rui-Qing; Tang, Xiao-Feng; Zhang, Bao-Li [State Key Laboratory of Medical Genetics, Shanghai Key Laboratory of Hypertension and Department of Hypertension, Ruijin Hospital, Shanghai Jiao Tong University School of Medicine (China); Shanghai Institute of Hypertension, Shanghai (China); Li, Xiao-Dong [State Key Laboratory of Medical Genetics, Shanghai Key Laboratory of Hypertension and Department of Hypertension, Ruijin Hospital, Shanghai Jiao Tong University School of Medicine (China); Laboratory of Vascular Biology, Institute of Health Sciences, Shanghai Institutes for Biological Sciences, Chinese Academy of Sciences, Shanghai (China); Shanghai Institute of Hypertension, Shanghai (China); Hong, Mo-Na [State Key Laboratory of Medical Genetics, Shanghai Key Laboratory of Hypertension and Department of Hypertension, Ruijin Hospital, Shanghai Jiao Tong University School of Medicine (China); Shanghai Institute of Hypertension, Shanghai (China); Chen, Qi-Zhi [Shanghai Institute of Hypertension, Shanghai (China); Han, Wei-Qing, E-mail: whan020@gmail.com [State Key Laboratory of Medical Genetics, Shanghai Key Laboratory of Hypertension and Department of Hypertension, Ruijin Hospital, Shanghai Jiao Tong University School of Medicine (China); Laboratory of Vascular Biology, Institute of Health Sciences, Shanghai Institutes for Biological Sciences, Chinese Academy of Sciences, Shanghai (China); Shanghai Institute of Hypertension, Shanghai (China); Gao, Ping-Jin, E-mail: gaopingjin@sibs.ac.cn [State Key Laboratory of Medical Genetics, Shanghai Key Laboratory of Hypertension and Department of Hypertension, Ruijin Hospital, Shanghai Jiao Tong University School of Medicine (China); Laboratory of Vascular Biology, Institute of Health Sciences, Shanghai Institutes for Biological Sciences, Chinese Academy of Sciences, Shanghai (China); Shanghai Institute of Hypertension, Shanghai (China)

    2016-04-29

    Adventitial fibroblasts (AFs) can be activated by angiotensin II (Ang II) and exert pro-fibrotic and pro-inflammatory effects in vascular remodeling. Protease-activated receptor (PAR) 1 and 2 play a significant role in fibrogenic and inflammatory diseases. The present study hypothesized that PAR1 and PAR2 are involved in Ang II-induced AF activation and contribute to adventitial remodeling. We found that direct activation of PAR1 and PAR2 with PAR1-AP and PAR2-AP led to AF activation, including proliferation and differentiation of AFs, extracellular matrix synthesis, as well as production of pro-fibrotic cytokine TGF-β and pro-inflammatory cytokines IL-6 and MCP-1. Furthermore, PAR1 and PAR2 mediated Ang II-induced AF activation, since both PAR1 and PAR2 antagonists inhibited Ang II-induced proliferation, migration, differentiation, extracellular matrix synthesis and production of pro-fibrotic and pro-inflammatory cytokines in AFs. Finally, mechanistic study showed that Ang II, via Ang II type I receptor (AT1R), upregulated both PAR1 and PAR2 expression, and transactivated PAR1 and PAR2, as denoted by internalization of both proteins. In conclusion, our results suggest that PAR1 and PAR2 play a critical role in Ang II-induced AF activation, and this may contribute to adventitia-related pathological changes. - Highlights: • Direct activation of PAR1 and PAR2 led to adventitial fibroblast (AF) activation. • PAR1 and PAR2 antagonists attenuated Ang II-induced AF activation. • Ang II induced the upregulation and transactivation of PAR1/PAR2 in AFs.

  18. Protease-activated receptor 1 and 2 contribute to angiotensin II-induced activation of adventitial fibroblasts from rat aorta

    International Nuclear Information System (INIS)

    He, Rui-Qing; Tang, Xiao-Feng; Zhang, Bao-Li; Li, Xiao-Dong; Hong, Mo-Na; Chen, Qi-Zhi; Han, Wei-Qing; Gao, Ping-Jin

    2016-01-01

    Adventitial fibroblasts (AFs) can be activated by angiotensin II (Ang II) and exert pro-fibrotic and pro-inflammatory effects in vascular remodeling. Protease-activated receptor (PAR) 1 and 2 play a significant role in fibrogenic and inflammatory diseases. The present study hypothesized that PAR1 and PAR2 are involved in Ang II-induced AF activation and contribute to adventitial remodeling. We found that direct activation of PAR1 and PAR2 with PAR1-AP and PAR2-AP led to AF activation, including proliferation and differentiation of AFs, extracellular matrix synthesis, as well as production of pro-fibrotic cytokine TGF-β and pro-inflammatory cytokines IL-6 and MCP-1. Furthermore, PAR1 and PAR2 mediated Ang II-induced AF activation, since both PAR1 and PAR2 antagonists inhibited Ang II-induced proliferation, migration, differentiation, extracellular matrix synthesis and production of pro-fibrotic and pro-inflammatory cytokines in AFs. Finally, mechanistic study showed that Ang II, via Ang II type I receptor (AT1R), upregulated both PAR1 and PAR2 expression, and transactivated PAR1 and PAR2, as denoted by internalization of both proteins. In conclusion, our results suggest that PAR1 and PAR2 play a critical role in Ang II-induced AF activation, and this may contribute to adventitia-related pathological changes. - Highlights: • Direct activation of PAR1 and PAR2 led to adventitial fibroblast (AF) activation. • PAR1 and PAR2 antagonists attenuated Ang II-induced AF activation. • Ang II induced the upregulation and transactivation of PAR1/PAR2 in AFs.

  19. The role of physiological active substances implant adaptation to stress

    International Nuclear Information System (INIS)

    Voronina, L.; Morachevskaya, E.

    2009-01-01

    It is known, that brassinosteroids are capable in small quantities (10 - 12-10 - 7M) to optimize physiology-biochemical processes in plants in stressful conditions. the aim of this study was to investigate the role of anti stress and protective properties of phyto hormone 24-epibrassinolide (24-epiBS). in view of its functional features and biological activity. (Author)

  20. Controversial constitutive TSHR activity: patients, physiology, and in vitro characterization.

    Science.gov (United States)

    Huth, S; Jaeschke, H; Schaarschmidt, J; Paschke, R

    2014-06-01

    G protein-coupled receptors constitute a large family of transmembrane receptors, which activate cellular responses by signal transmission and regulation of second messenger metabolism after ligand binding. For several of these receptors it is known that they also signal ligand-independently. The G protein-coupled thyroid stimulating hormone receptor (TSHR) is characterized by a high level of constitutive activity in the wild type state. However, little is known yet concerning the physiological relevance of the constitutive wild type TSHR activity. Certainly, knowledge of the physiological relevance of constitutive wild type receptor activity is necessary to better understand thyroid physiology and it is a prerequisite for the development of better therapies for nonautoimmune hyperthyroidism and thyroid cancer. Based on a literature search regarding all published TSHR mutations, this review covers several mutations which are clearly associated with a hyperthyroidism-phenotype, but interestingly show a lack of constitutive activity determined by in vitro characterization. Possible reasons for the observed discrepancies between clinical phenotypes and in vitro characterization results for constitutive TSHR activity are reviewed. All current in vitro characterization methods for constitutive TSHR mutations are "preliminary attempts" and may well be revised by more comprehensive and even better approaches. However, a standardized approach for the determination of constitutive activity can help to identify TSHR mutations for which the investigation of additional signaling mechanisms would be most interesting to find explanations for the current clinical phenotype/in vitro discrepancies and thereby also define suitable methods to explore the physiological relevance of constitutive wild type TSHR activity. © Georg Thieme Verlag KG Stuttgart · New York.

  1. PHYSIOLOGIC PATTERNS OF SLEEP ON EEG, MASKING OF EPILEPTIFORM ACTIVITY

    Directory of Open Access Journals (Sweden)

    L. Yu. Glukhova

    2013-01-01

    Full Text Available Physiologic patterns of sleep on EEG can sometimes be similar to epileptiform activity and even to the EEG pattern of epileptic seizures, but they have no connection to epilepsy and their incorrect interpretation may lead to overdiagnosis of epilepsy. These sleep patterns include vertex transients, K-complexes, hypnagogic hypersynchrony, 14 and 6 Hz positive bursts, wicket-potentials, etc. The main distinctive features of acute physiological phenomena of sleep unlike epileptiform activity are stereotyped, monomorphic morphology of waves, which frequently has rhythmic, arcuate pattern, often with change of lateralization, mainly dominated in the first stages of sleep (N1-N2, with their reduction in the deeper stages and transition to delta sleep (N3. The correct interpretation of physiological sharp-wave phenomena of sleep on EEG requires considerable training and experience of the physician. Our review includes a variety of physiological sleep patterns, which can mimic epileptiform activity on EEG, their criteria of diagnostic with demonstration of own illustrations of EEG.

  2. Macrophages activate iNOS signaling in adventitial fibroblasts and contribute to adventitia fibrosis.

    Science.gov (United States)

    Zhang, Guannan; Li, Xiaodong; Sheng, Chengyu; Chen, Xiaohui; Chen, Yu; Zhu, Dingliang; Gao, Pingjin

    2016-12-30

    A large amount of NO is generated through the inducible nitric oxide synthase (iNOS) pathway from the vascular adventitia in various vascular diseases. However, it is currently not fully understood how the iNOS signaling pathway is activated. In the present study, this question was addressed in the context of adventitial cellular interactions. A rat model of acute hypertension in the contralateral carotid arteries was established through transverse aortic constriction (TAC) surgery. In this model, activated macrophages were found surrounded by a large quantity of iNOS-expressing adventitial fibroblasts (AFs), suggesting a possible causal relationship between macrophages and iNOS activation of the neighboring AFs. In an in vitro model, a macrophage-like cell line RAW 264.7 was first activated by LPS treatment. The supernatant was then harvested and applied to treat primary rat AFs. iNOS in AFs was activated robustly by the supernatant treatment but not by LPS itself. Treating AFs with interleukin-1β (IL-1β) also activated iNOS signaling, suggesting that the IL-1β pathway might be a possible mediator. As a consequence of the iNOS activation, total protein nitration and S-nitrosylation significantly increased in those AFs. Additionally, increased deposition of type I and type III collagens was observed in both in vitro and in vivo models. The collagen deposition was partially restored by an iNOS inhibitor, 1400 W. These findings highlight the importance of iNOS signaling during vascular inflammation, and advance our understanding of its activation through a cellular interaction perspective. Copyright © 2016 Elsevier Inc. All rights reserved.

  3. How consumer physical activity monitors could transform human physiology research.

    Science.gov (United States)

    Wright, Stephen P; Hall Brown, Tyish S; Collier, Scott R; Sandberg, Kathryn

    2017-03-01

    A sedentary lifestyle and lack of physical activity are well-established risk factors for chronic disease and adverse health outcomes. Thus, there is enormous interest in measuring physical activity in biomedical research. Many consumer physical activity monitors, including Basis Health Tracker, BodyMedia Fit, DirectLife, Fitbit Flex, Fitbit One, Fitbit Zip, Garmin Vivofit, Jawbone UP, MisFit Shine, Nike FuelBand, Polar Loop, Withings Pulse O 2 , and others have accuracies similar to that of research-grade physical activity monitors for measuring steps. This review focuses on the unprecedented opportunities that consumer physical activity monitors offer for human physiology and pathophysiology research because of their ability to measure activity continuously under real-life conditions and because they are already widely used by consumers. We examine current and potential uses of consumer physical activity monitors as a measuring or monitoring device, or as an intervention in strategies to change behavior and predict health outcomes. The accuracy, reliability, reproducibility, and validity of consumer physical activity monitors are reviewed, as are limitations and challenges associated with using these devices in research. Other topics covered include how smartphone apps and platforms, such as the Apple ResearchKit, can be used in conjunction with consumer physical activity monitors for research. Lastly, the future of consumer physical activity monitors and related technology is considered: pattern recognition, integration of sleep monitors, and other biosensors in combination with new forms of information processing. Copyright © 2017 the American Physiological Society.

  4. Anti-inflammatory activity of fisetin in human gingival fibroblasts treated with lipopolysaccharide.

    Science.gov (United States)

    Gutiérrez-Venegas, Gloria; Contreras-Sánchez, Anabel; Ventura-Arroyo, Jairo Agustín

    2014-10-01

    Fisetin is an anti-inflammatory flavonoid; however, its anti-inflammatory mechanism is not yet understood. In this study, we evaluated the anti-inflammatory effect of fisetin and its association with mitogen-activated protein kinase (MAPK) and nuclear factor kappa-beta pathways in human gingival fibroblasts (HGFs) treated with lipopolysaccharide (LPS) obtained from Porphyromonas gingivalis. The cell signaling, cell viability, and cyclooxygenase-2 (COX-2) expression of HGFs treated with various concentrations (0, 1, 5, 10, and 15 μM) of fisetin were measured by cell viability assay (MTT), Western blotting, and reverse transcriptase polymerase chain reaction analysis on COX-2. We found that fisetin significantly reduced the synthesis and expression of prostaglandin E2 in HGFs treated with LPS. Activation of extracellular signal-regulated kinase, c-Jun N-terminal kinase, and p38 MAPK was suppressed consistently by fisetin in HGFs treated with LPS. The data indicate that fisetin inhibits MAPK activation and COX-2 expression without affecting cell viability. These findings may be valuable for understanding the mechanism of the effect of fisetin on periodontal disease.

  5. Inhibition of aromatase activity by methyl sulfonyl PCB metabolites in primary culture of human mammary fibroblasts

    Energy Technology Data Exchange (ETDEWEB)

    Berg, M. van den; Heneweer, M.; Geest, M. de; Sanderson, T. [Inst. for Risk Assessment Sciences and Utrecht Univ. (Netherlands); Jong, P. de [St. Antonius Hospital, Nieuwegein (Netherlands); Bergman, A. [Stockholm Univ., Stockholm (Sweden)

    2004-09-15

    Methyl sulfonyl PCB metabolites (MeSO2-PCBs) are persistent contaminants and are ubiquitously present in humans and the environment. Lipophilicity of MeSO2- PCB metabolites is similar to the parent compounds and they have been detected in human milk, adipose, liver and lung tissue. 4- MeSO2-PCB-149 is the most abundant PCB metabolite in human adipose tissue and milk at a level of 1.5 ng/g lipids. Human blood concentration of 4-MeSO2-PCB-149 is approximately 0.03 nM. 3- MeSO2-PCB-101 is the predominant PCB metabolite in muscle and blubber in wildlife, such as otter, mink and grey seal. In the environment, they have been linked to chronic and reproductive toxicity in exposed mink. Additionaly, some MeSO{sub 2}-PCBs have been shown to be glucocorticoid receptor (GR) antagonists. Since approximately 60% of all breast tumors are estrogen responsive, exposure to compounds that are able to alter estrogen synthesis through interference with the aromatase enzyme, can lead to changes in estrogen levels and possibly to accelerated or inhibit breast tumor growth. Therefore, it is important to identify exogenous compounds that can alter aromatase activity in addition to those compounds which have direct interaction with the estrogen receptor (ER). Aromatase (CYP19) comprises the ubiquitous flavoprotein, NADPH-cytochrome P450 reductase, and a unique cytochrome P450 that is exclusively expressed in estrogen producing cells. Previous studies have revealed that expression of the aromatase gene is regulated in a species- and tissue specific manner. In healthy breast tissue, the predominantly active aromatase promoter region I.4 is regulated by glucocorticoids and class I cytokines. Therefore, it is important to investigate possible aromatase inhibiting properties of MeSO{sub 2}-PCBs (as anti glucocorticoids?) in relevant human tissues. We used primary human mammary fibroblasts because of their role in breast cancer development. We compared the results in primary fibroblasts with

  6. Berberine suppresses tumorigenicity and growth of nasopharyngeal carcinoma cells by inhibiting STAT3 activation induced by tumor associated fibroblasts

    International Nuclear Information System (INIS)

    Tsang, Chi Man; Cheung, Yuk Chun; Lui, Vivian Wai-Yan; Yip, Yim Ling; Zhang, Guitao; Lin, Victor Weitao; Cheung, Kenneth Chat-Pan; Feng, Yibin; Tsao, Sai Wah

    2013-01-01

    Cortidis rhizoma (Huanglian) and its major therapeutic component, berberine, have drawn extensive attention in recent years for their anti-cancer properties. Growth inhibitory effects of berberine on multiple types of human cancer cells have been reported. Berberine inhibits invasion, induces cell cycle arrest and apoptosis in human cancer cells. The anti-inflammatory property of berberine, involving inhibition of Signal Transducer and Activator of Transcription 3 (STAT3) activation, has also been documented. In this study, we have examined the effects of berberine on tumorigenicity and growth of nasopharyngeal carcinoma (NPC) cells and their relationship to STAT3 signaling using both in vivo and in vitro models. Berberine effectively inhibited the tumorigenicity and growth of an EBV-positive NPC cell line (C666-1) in athymic nude mice. Inhibition of tumorigenic growth of NPC cells in vivo was correlated with effective inhibition of STAT3 activation in NPC cells inside the tumor xenografts grown in nude mice. In vitro, berberine inhibited both constitutive and IL-6-induced STAT3 activation in NPC cells. Inhibition of STAT3 activation by berberine induced growth inhibition and apoptotic response in NPC cells. Tumor-associated fibroblasts were found to secret IL-6 and the conditioned medium harvested from the fibroblasts also induced STAT3 activation in NPC cells. Furthermore, STAT3 activation by conditioned medium of tumor-associated fibroblasts could be blocked by berberine or antibodies against IL-6 and IL-6R. Our observation that berberine effectively inhibited activation of STAT3 induced by tumor-associated fibroblasts suggests a role of berberine in modulating the effects of tumor stroma on the growth of NPC cells. The effective inhibition of STAT3 activation in NPC cells by berberine supports its potential use in the treatment of NPC

  7. Proteomic Analysis Shows Constitutive Secretion of MIF and p53-associated Activity of COX-2−/− Lung Fibroblasts

    Directory of Open Access Journals (Sweden)

    Mandar Dave

    2017-12-01

    Full Text Available The differential expression of two closelyassociated cyclooxygenase isozymes, COX-1 and COX-2, exhibited functions beyond eicosanoid metabolism. We hypothesized that COX-1 or COX-2 knockout lung fibroblasts may display altered protein profiles which may allow us to further differentiate the functional roles of these isozymes at the molecular level. Proteomic analysis shows constitutive production of macrophage migration inhibitory factor (MIF in lung fibroblasts derived from COX-2−/− but not wild-type (WT or COX-1−/− mice. MIF was spontaneously released in high levels into the extracellular milieu of COX2−/− fibroblasts seemingly from the preformed intracellular stores, with no change in the basal gene expression of MIF. The secretion and regulation of MIF in COX-2−/− was “prostaglandin-independent.” GO analysis showed that concurrent with upregulation of MIF, there is a significant surge in expression of genes related to fibroblast growth, FK506 binding proteins, and isomerase activity in COX-2−/− cells. Furthermore, COX-2−/− fibroblasts also exhibit a significant increase in transcriptional activity of various regulators, antagonists, and co-modulators of p53, as well as in the expression of oncogenes and related transcripts. Integrative Oncogenomics Cancer Browser (IntroGen analysis shows downregulation of COX-2 and amplification of MIF and/or p53 activity during development of glioblastomas, ependymoma, and colon adenomas. These data indicate the functional role of the MIF-COX-p53 axis in inflammation and cancer at the genomic and proteomic levels in COX-2-ablated cells. This systematic analysis not only shows the proinflammatory state but also unveils a molecular signature of a pro-oncogenic state of COX-1 in COX-2 ablated cells.

  8. Pentagalloyl glucose increases elastin deposition, decreases reactive oxygen species and matrix metalloproteinase activity in pulmonary fibroblasts under inflammatory conditions.

    Science.gov (United States)

    Parasaram, Vaideesh; Nosoudi, Nasim; Chowdhury, Aniqa; Vyavahare, Naren

    2018-04-30

    Emphysema is characterized by degradation of lung alveoli that leads to poor airflow in lungs. Irreversible elastic fiber degradation by matrix metalloproteinases (MMPs) and reactive oxygen species (ROS) activity leads to loss of elasticity and drives the progression of this disease. We investigated if a polyphenol, pentagalloyl glucose (PGG) can increase elastin production in pulmonary fibroblasts. We also studied the effect of PGG treatment in reducing MMP activity and ROS levels in cells. We exposed rat pulmonary fibroblasts to two different types of inflammatory environments i.e., tumor necrosis factor-α (TNF-α) and cigarette smoke extract (CSE) to mimic the disease. Parameters like lysyl oxidase (LOX) and elastin gene expression, MMP-9 activity in the medium, lysyl oxidase (LOX) activity and ROS levels were studied to assess the effect of PGG on pulmonary fibroblasts. CSE inhibited lysyl oxidase (LOX) enzyme activity that resulted in a decreased elastin formation. Similarly, TNF-α treated cells showed less elastin in the cell layers. Both these agents caused increase in MMP activity and ROS levels in cells. However, when supplemented with PGG treatment along with these two inflammatory agents, we saw a significant increase in elastin deposition, reduction in both MMP activity and ROS levels. Thus PGG, which has anti-inflammatory, anti-oxidant properties coupled with its ability to aid in elastic fiber formation, can be a multifunctional drug to potentially arrest the progression of emphysema. Copyright © 2018 Elsevier Inc. All rights reserved.

  9. Synthesis and processing of sphingolipid activator protein-2 (SAP-2) in cultured human fibroblasts

    International Nuclear Information System (INIS)

    Fujibayashi, S.; Wenger, D.A.

    1986-01-01

    Sphingolipid activator proteins (SAP) are relatively small molecular weight proteins that stimulate the enzymatic hydrolysis of sphingolipids in the presence of specific lysosomal hydrolases. SAP-2 has previously been demonstrated to activate the hydrolysis of glucosylceramide, galactosylceramide, and, possibly, sphingomyelin. Using monospecific rabbit antibodies against human spleen SAP-2, the synthesis and processing of SAP-2 were studied in cultured human fibroblasts. When [ 35 S]methionine was presented in the medium to control human cells for 4 h, five major areas of radiolabeling were found. These had apparent molecular weights of 73,000, 68,000, 50,000, 12,000, and 9000. Further studies indicated that the major extracellular product in normal cells given NH4Cl along with the [ 35 S]methionine and in medium from cultures from patients with I cell disease had an apparent molecular weight of 73,000. The Mr = 68,000 and 73,000 species can be converted to a species with an apparent molecular weight of 50,000 by the action of endoglycosidase F. After labeling cells for 1 h followed by a 1-h chase, the Mr = 12,000 and 9000 species appear. Treatment of the immunoprecipitated mixture with endoglycosidase F resulted in conversion of these species to one band with an apparent molecular weight of 7600. These studies indicate that this relatively low molecular weight protein is rapidly synthesized from a relatively large molecular weight highly glycosylated precursor

  10. Telomere dynamics, end-to-end fusions and telomerase activation during the human fibroblast immortalization process.

    Science.gov (United States)

    Ducray, C; Pommier, J P; Martins, L; Boussin, F D; Sabatier, L

    1999-07-22

    Loss of telomeric repeats during cell proliferation could play a role in senescence. It has been generally assumed that activation of telomerase prevents further telomere shortening and is essential for cell immortalization. In this study, we performed a detailed cytogenetic and molecular characterization of four SV40 transformed human fibroblastic cell lines by regularly monitoring the size distribution of terminal restriction fragments, telomerase activity and the associated chromosomal instability throughout immortalization. The mean TRF lengths progressively decreased in pre-crisis cells during the lifespan of the cultures. At crisis, telomeres reached a critical size, different among the cell lines, contributing to the peak of dicentric chromosomes, which resulted mostly from telomeric associations. We observed a direct correlation between short telomere length at crisis and chromosomal instability. In two immortal cell lines, although telomerase was detected, mean telomere length still continued to decrease whereas the number of dicentric chromosomes associated was stabilized. Thus telomerase could protect specifically telomeres which have reached a critical size against end-to-end dicentrics, while long telomeres continue to decrease, although at a slower rate as before crisis. This suggests a balance between elongation by telomerase and telomere shortening, towards a stabilized 'optimal' length.

  11. Elite futsal refereeing: Activity profile and physiological demands

    DEFF Research Database (Denmark)

    Rebelo, António N.; Ascensão, António A.; Magalhães, José F.

    2011-01-01

    Rebelo, AN, Ascensão, AA, Magalhães, JF, Bischoff, R, Bendiksen, M, and Krustrup, P. Elite futsal refereeing: activity profile and physiological demands. J Strength Cond Res 24(X): 000-000, 2010-The purpose of this study was to determine the physiological demands and to establish the relationship...... between activity profile and endurance capacity of futsal referees. Eighteen elite futsal referees (33.0 ± 5.1 years, 173 ± 5 cm, and 73.2 ± 8.4 kg) were studied. Video filming (n = 18) and heart rate (HR) recordings were performed throughout games. Blood lactate (n = 14) was determined at rest and after....... Considering the data obtained in the present study, the use of match-specific intermittent fitness tests to evaluate futsal referees seems to be required....

  12. Evaluation of Fibroblast Activation Protein-Alpha (FAP) as a Diagnostic Marker and Therapeutic Target in Prostate Cancer

    Science.gov (United States)

    2009-12-01

    low molecular weight recombinant human gelatin: development of a substitute for animal- derived gelatin with superior features, Protein Expr. Purif...by the honey - bee , could be modified to a form that was no longer hydro- lyzed by the native activator protease DPP4 but, instead, was hydrolyzed by...TITLE: Evaluation of Fibroblast Activation Protein -Alpha (FAP) as a Diagnostic Marker and Therapeutic Target in Prostate Cancer PRINCIPAL

  13. Peroxiredoxin 5 Protects TGF-β Induced Fibrosis by Inhibiting Stat3 Activation in Rat Kidney Interstitial Fibroblast Cells.

    Directory of Open Access Journals (Sweden)

    Hoon-In Choi

    Full Text Available Renal fibrosis is a common final pathway of end-stage kidney disease which is induced by aberrant accumulation of myofibroblasts. This process is triggered by reactive oxygen species (ROS and proinflammatory cytokines generated by various source of injured kidney cells. Peroxiredoxin 5 (Prdx5 is a thiol-dependent peroxidase that reduces oxidative stress by catalyzing intramolecular disulfide bonds. Along with its antioxidant effects, expression level of Prdx5 also was involved in inflammatory regulation by immune stimuli. However, the physiological effects and the underlying mechanisms of Prdx5 in renal fibrosis have not been fully characterized. Sprague-Dawley rats were subjected to unilateral ureteral obstruction (UUO for 1 or 7 days. For the in vitro model, NRK49F cells, a rat kidney interstitial fibroblast cell lines, were treated with transforming growth factor β (TGF-β for 0, 1, 3, or 5 days. To access the involvement of its peroxidase activity in TGF-β induced renal fibrosis, wild type Prdx5 (WT and double mutant Prdx5 (DM, converted two active site cysteines at Cys 48 and Cys 152 residue to serine, were transiently expressed in NRK49F cells. The protein expression of Prdx5 was reduced in UUO kidneys. Upregulation of fibrotic markers, such as fibronectin and alpha-smooth muscle actin (α-SMA, declined at 5 days in time point of higher Prdx5 expression in TGF-β treated NRK49F cells. The overexpression of wild type Prdx5 by transient transfection in NRK49F cells attenuated the TGF-β induced upregulation of fibronectin and α-SMA. On the other hand, the transient transfection of double mutant Prdx5 did not prevent the activation of fibrotic markers. Overexpression of Prdx5 also suppressed the TGF-β induced upregulation of Stat3 phosphorylation, while phosphorylation of Smad 2/3 was unchanged. In conclusion, Prdx5 protects TGF-β induced fibrosis in NRK49F cells by modulating Stat3 activation in a peroxidase activity dependent manner.

  14. Physiological characterization of Enterococcus faecalis during azoreductase activity

    OpenAIRE

    Punj, Sumit; John, Gilbert H.

    2011-01-01

    Azo dyes are widely used in the food, pharmaceutical, paper, and textile industries. Some azo dyes are known to produce carcinogenic compounds upon reductive cleavage of the azo bond (N=N) by intestinal flora. There is not much information available on the effect of these dyes on the physiology of the gut microflora as well as their kinetics of reduction in different environments. The azoreductase activity of Enterococcus faecalis, an important opportunistic intestinal pathogen, was tested us...

  15. Physiological and psychological effects of gardening activity in older adults.

    Science.gov (United States)

    Hassan, Ahmad; Qibing, Chen; Tao, Jiang

    2018-04-06

    Gardening has long been one of most enjoyable pastimes among older adults. Whether gardening activities contribute to the well-being of older adults is a major question. Therefore, the aim of the present study was to clarify the psychophysiological relaxing effects of gardening activities on older adults living in modern institutional care. The study participants were 40 older women aged 79.5 ± 8.09 years (mean ± SD). A cross-over study design was used to investigate the physiological and psychological responses to environments with and without plants. Physiological evaluation was carried out using blood pressure and electroencephalography, and psychological evaluation was carried out using the State-Trait Anxiety Inventory and Semantic Differential method. Blood pressure was significantly lower, and changes in brainwaves were observed. Psychological responses showed that participants were more "comfortable and relaxed" after the plant task than after the control task. In addition, total anxiety levels were significantly lower after carrying out the plant task than after the control task. Our research suggests that gardening activities might enhance physiological and psychological relaxation in older adults. Geriatr Gerontol Int 2018; ••: ••-••. © 2018 Japan Geriatrics Society.

  16. Influence of repetitive mechanical loading on MMP2 activity in tendon fibroblasts.

    Science.gov (United States)

    Huisman, Elise; Lu, Alex; Jamil, Sarwat; Mousavizadeh, Rouhollah; McCormack, Robert; Roberts, Clive; Scott, Alex

    2016-11-01

    Matrix metalloproteinase2 has been implicated in tendon pathology caused by repetitive movements. However, its activity in the early stages of the tendon's response to overuse, and its presence in the circulation as a possible indicator of tendon degradation, remain unknown. Human tendon cells were repetitively stretched for 5 days, and the rabbit Achilles tendon complex underwent repetitive motion 3× per week for 2 weeks. Quantitative polymer chain reaction analysis was performed to detect matrix metalloproteinase2/14 and tissue inhibitor of matrix metalloproteinase2 messenger ribonucleic acid of cells and rabbit tissue, and matrix metalloproteinase2 protein levels were determined with an enzyme linked immunoassay. Matrix metalloproteinase2 activity was examined using zymography of the conditioned media, tendon and serum. Immunohistochemistry was used to localize matrix metalloproteinase2 in tendon tissue, and the density of fibrillar collagen in tendons was examined using second harmonic generation microscopy. Tendon cells stretched with high strain or high frequency demonstrated increased matrix metalloproteinase2 messenger ribonucleic acid and protein levels. Matrix metalloproteinase2 activity was increased in the rabbit Achilles tendon tissue at weeks 1 and 2; however, serum activity was only increased at week 1. After 2 weeks of exercise, the collagen density was lower in specific regions of the exercised rabbit Achilles tendon complex. Matrix metalloproteinase2 expression in exercised rabbit Achilles tendons was detected surrounding tendon fibroblasts. Repetitive mechanical stimulation of tendon cells results in a small increase in matrix metalloproteinase2 levels, but it appears unlikely that serum matrix metalloproteinase2 will be a useful indicator of tendon overuse injury. © 2016 Orthopaedic Research Society. Published by Wiley Periodicals, Inc. J Orthop Res 34:1991-2000, 2016. © 2016 Orthopaedic Research Society. Published by Wiley Periodicals, Inc.

  17. Quantitation of fibroblast activation protein (FAP-specific protease activity in mouse, baboon and human fluids and organs

    Directory of Open Access Journals (Sweden)

    Fiona M. Keane

    2014-01-01

    Full Text Available The protease fibroblast activation protein (FAP is a specific marker of activated mesenchymal cells in tumour stroma and fibrotic liver. A specific, reliable FAP enzyme assay has been lacking. FAP's unique and restricted cleavage of the post proline bond was exploited to generate a new specific substrate to quantify FAP enzyme activity. This sensitive assay detected no FAP activity in any tissue or fluid of FAP gene knockout mice, thus confirming assay specificity. Circulating FAP activity was ∼20- and 1.3-fold less in baboon than in mouse and human plasma, respectively. Serum and plasma contained comparable FAP activity. In mice, the highest levels of FAP activity were in uterus, pancreas, submaxillary gland and skin, whereas the lowest levels were in brain, prostate, leukocytes and testis. Baboon organs high in FAP activity included skin, epididymis, bladder, colon, adipose tissue, nerve and tongue. FAP activity was greatly elevated in tumours and associated lymph nodes and in fungal-infected skin of unhealthy baboons. FAP activity was 14- to 18-fold greater in cirrhotic than in non-diseased human liver, and circulating FAP activity was almost doubled in alcoholic cirrhosis. Parallel DPP4 measurements concorded with the literature, except for the novel finding of high DPP4 activity in bile. The new FAP enzyme assay is the first to be thoroughly characterised and shows that FAP activity is measurable in most organs and at high levels in some. This new assay is a robust tool for specific quantitation of FAP enzyme activity in both preclinical and clinical samples, particularly liver fibrosis.

  18. Volume-sensitive NADPH oxidase activity and taurine efflux in NIH3T3 mouse fibroblasts

    DEFF Research Database (Denmark)

    Friis, Martin Barfred; Vorum, Katrine Gribel; Lambert, Ian Henry

    2008-01-01

    Reactive oxygen species (ROS) are produced in NIH3T3 fibroblasts during hypotonic stress, and H(2)O(2) potentiates the concomitant release of the organic osmolyte taurine (Lambert IH. J Membr Biol 192: 19-32, 2003). The increase in ROS production [5-(and-6)-carboxy-2', 7'-dichlorodihydrofluorescein......+-mobilizing agonist ATP (10 microM) potentiates the release of taurine but has no effect on ROS production under hypotonic conditions. On the other hand, addition of the protein kinase C (PKC) activator phorbol 12-myristate 13-acetate (PMA, 100 nM) or the lipid messenger lysophosphatidic acid (LPA, 10 n......M) potentiates the swelling-induced taurine release as well as the ROS production. Overexpression of Rac1 or p47 phox or p47 phox knockdown [small interfering (si)RNA] had no effect on the swelling-induced ROS production or taurine release. NOX4 knockdown (siRNA) impairs the increase in the ROS production...

  19. Titanium dioxide nanoparticles activate the ATM-Chk2 DNA damage response in human dermal fibroblasts

    Science.gov (United States)

    Prasad, Raju Y.; Chastain, Paul D.; Nikolaishvili-Feinberg, Nana; Smeester, Lisa M.; Kaufmann, William K.; Fry, Rebecca C.

    2013-01-01

    The use of nanoparticles in consumer products increases their prevalence in the environment and the potential risk to human health. Although recent studies have shown in vivo and in vitro toxicity of titanium dioxide nanoparticles (nano-TiO2), a more detailed view of the underlying mechanisms of this response needs to be established. Here the effects of nano-TiO2 on the DNA damage response and DNA replication dynamics were investigated in human dermal fibroblasts. Specifically, the relationship between nano-TiO2 and the DNA damage response pathways regulated by ATM/Chk2 and ATR/Chk1 were examined. The results show increased phosphorylation of H2AX, ATM, and Chk2 after exposure. In addition, nano-TiO2 inhibited the overall rate of DNA synthesis and frequency of replicon initiation events in DNA combed fibers. Taken together, these results demonstrate that exposure to nano-TiO2 activates the ATM/Chk2 DNA damage response pathway. PMID:22770119

  20. Fibroblast growth factor receptors in breast cancer.

    Science.gov (United States)

    Wang, Shuwei; Ding, Zhongyang

    2017-05-01

    Fibroblast growth factor receptors are growth factor receptor tyrosine kinases, exerting their roles in embryogenesis, tissue homeostasis, and development of breast cancer. Recent genetic studies have identified some subtypes of fibroblast growth factor receptors as strong genetic loci associated with breast cancer. In this article, we review the recent epidemiological findings and experiment results of fibroblast growth factor receptors in breast cancer. First, we summarized the structure and physiological function of fibroblast growth factor receptors in humans. Then, we discussed the common genetic variations in fibroblast growth factor receptors that affect breast cancer risk. In addition, we also introduced the potential roles of each fibroblast growth factor receptors isoform in breast cancer. Finally, we explored the potential therapeutics targeting fibroblast growth factor receptors for breast cancer. Based on the biological mechanisms of fibroblast growth factor receptors leading to the pathogenesis in breast cancer, targeting fibroblast growth factor receptors may provide new opportunities for breast cancer therapeutic strategies.

  1. Increased Interest in Physiology and Science among Adolescents after Presentations and Activities Administered by Undergraduate Physiology Students

    Science.gov (United States)

    da Silva de Vargas, Liane; Rosa de Menezes, Jefferson; Billig Mello-Carpes, Pâmela

    2016-01-01

    In this article, the authors describe a set of activities performed in south Brazil that are aligned with the objectives of PhUn Week and promote the integration between universities and public schools and the dissemination of knowledge of physiology. To achieve this goal, the authors adopted a program in which undergraduate physiology students…

  2. How consumer physical activity monitors could transform human physiology research

    Science.gov (United States)

    Hall Brown, Tyish S.; Collier, Scott R.; Sandberg, Kathryn

    2017-01-01

    A sedentary lifestyle and lack of physical activity are well-established risk factors for chronic disease and adverse health outcomes. Thus, there is enormous interest in measuring physical activity in biomedical research. Many consumer physical activity monitors, including Basis Health Tracker, BodyMedia Fit, DirectLife, Fitbit Flex, Fitbit One, Fitbit Zip, Garmin Vivofit, Jawbone UP, MisFit Shine, Nike FuelBand, Polar Loop, Withings Pulse O2, and others have accuracies similar to that of research-grade physical activity monitors for measuring steps. This review focuses on the unprecedented opportunities that consumer physical activity monitors offer for human physiology and pathophysiology research because of their ability to measure activity continuously under real-life conditions and because they are already widely used by consumers. We examine current and potential uses of consumer physical activity monitors as a measuring or monitoring device, or as an intervention in strategies to change behavior and predict health outcomes. The accuracy, reliability, reproducibility, and validity of consumer physical activity monitors are reviewed, as are limitations and challenges associated with using these devices in research. Other topics covered include how smartphone apps and platforms, such as the Apple ResearchKit, can be used in conjunction with consumer physical activity monitors for research. Lastly, the future of consumer physical activity monitors and related technology is considered: pattern recognition, integration of sleep monitors, and other biosensors in combination with new forms of information processing. PMID:28052867

  3. Osteopontin is an endogenous modulator of the constitutively activated phenotype of pulmonary adventitial fibroblasts in hypoxic pulmonary hypertension

    Science.gov (United States)

    Anwar, Adil; Li, Min; Frid, Maria G.; Kumar, Binod; Gerasimovskaya, Evgenia V.; Riddle, Suzette R.; McKeon, B. Alexandre; Thukaram, Roopa; Meyrick, Barbara O.; Fini, Mehdi A.

    2012-01-01

    Increased cell proliferation and migration, of several cell types are key components of vascular remodeling observed in pulmonary hypertension (PH). Our previous data demonstrate that adventitial fibroblasts isolated from pulmonary arteries of chronically hypoxic hypertensive calves (termed PH-Fibs) exhibit a “constitutively activated” phenotype characterized by high proliferative and migratory potential. Osteopontin (OPN) has been shown to promote several cellular activities including growth and migration in cancer cells. We thus tested the hypothesis that elevated OPN expression confers the “activated” highly proproliferative and promigratory/invasive phenotype of PH-Fibs. Our results demonstrate that, both in vivo and ex vivo, PH-Fibs exhibited increased expression of OPN, as well as its cognate receptors, αVβ3 and CD44, compared with control fibroblasts (CO-Fibs). Augmented OPN expression in PH-Fibs corresponded to their high proliferative, migratory, and invasive properties and constitutive activation of ERK1/2 and AKT signaling. OPN silencing via small interfering RNA or sequestering OPN production by specific antibodies led to decreased proliferation, migration, invasion, and attenuated ERK1/2, AKT phosphorylation in PH-Fibs. Furthermore, increasing OPN levels in CO-Fibs via recombinant OPN resulted in significant increases in their proliferative, migratory, and invasive capabilities to the levels resembling those of PH-Fibs. Thus our data suggest OPN as an essential contributor to the activated (highly proliferative, migratory, and proinvasive) phenotype of pulmonary adventitial fibroblasts in hypoxic PH. PMID:22582113

  4. Cancer associated fibroblasts (CAFs) are activated in cutaneous basal cell carcinoma and in the peritumoural skin

    DEFF Research Database (Denmark)

    Omland, Silje Haukali; Wettergren, Erika Elgstrand; Mollerup, Sarah

    2017-01-01

    of chemokines involved in tumour progression and immunosuppression (CXCL12, CCL17). Fibroblasts from chronically sun-exposed skin near tumours show gene expression patterns resembling that of CAFs, indicating that stromal fibroblasts in cancer-free surgical BCC margins exhibit a tumour promoting phenotype.......BACKGROUND: Cutaneous basal cell carcinoma (BCC) is the commonest cancer worldwide. BCC is locally invasive and the surrounding stromal microenvironment is pivotal for tumourigenesis. Cancer associated fibroblasts (CAFs) in the microenvironment are essential for tumour growth in a variety...... of neoplasms but their role in BCC is poorly understood. METHODS: Material included facial BCC and control skin from the peritumoural area and from the buttocks. With next-generation sequencing (NGS) we compared mRNA expression between BCC and peritumoural skin. qRT-PCR, immunohistochemical...

  5. Cancer associated fibroblasts (CAFs) are activated in cutaneous basal cell carcinoma and in the peritumoural skin

    DEFF Research Database (Denmark)

    Omland, Silje Haukali; Wettergren, Erika Elgstrand; Mourier, Tobias

    2017-01-01

    of chemokines involved in tumour progression and immunosuppression (CXCL12, CCL17). Fibroblasts from chronically sun-exposed skin near tumours show gene expression patterns resembling that of CAFs, indicating that stromal fibroblasts in cancer-free surgical BCC margins exhibit a tumour promoting phenotype.......Background: Cutaneous basal cell carcinoma (BCC) is the commonest cancer worldwide. BCC is locally invasive and the surrounding stromal microenvironment is pivotal for tumourigenesis. Cancer associated fibroblasts (CAFs) in the microenvironment are essential for tumour growth in a variety...... of neoplasms but their role in BCC is poorly understood. Methods: Material included facial BCC and control skin from the peritumoural area and from the buttocks. With next-generation sequencing (NGS) we compared mRNA expression between BCC and peritumoural skin. qRT-PCR, immunohistochemical...

  6. Transformable Peptide Nanocarriers for Expeditious Drug Release and Effective Cancer Therapy via Cancer-Associated Fibroblast Activation.

    Science.gov (United States)

    Ji, Tianjiao; Zhao, Ying; Ding, Yanping; Wang, Jing; Zhao, Ruifang; Lang, Jiayan; Qin, Hao; Liu, Xiaoman; Shi, Jian; Tao, Ning; Qin, Zhihai; Nie, Guangjun; Zhao, Yuliang

    2016-01-18

    A novel cleavable amphiphilic peptide (CAP) was designed to be specifically responsive to fibroblast activation protein-α (FAP-α), a protease specifically expressed on the surface of cancer-associated fibroblasts. The CAP self-assembled into fiber-like nanostructures in solution, while the presence of hydrophobic chemotherapeutic drugs readily transformed the assemblies into drug-loaded spherical nanoparticles. The disassembly of these nanoparticles (CAP-NPs) upon FAP-α cleavage resulted in rapid and efficient release of the encapsulated drugs specifically at tumor sites. This Transformers-like drug delivery strategy could allow them to disrupt the stromal barrier and enhance local drug accumulation. Therapeutic results suggested that drug-loaded CAP-NPs hold promising tumor specificity and therapeutic efficacy for various solid tumor models, confirming its potential utility and versatility in antitumor therapy. © 2015 The Authors. Published by Wiley-VCH Verlag GmbH & Co. KGaA.

  7. Fibroblasts derived from human pluripotent stem cells activate angiogenic responses in vitro and in vivo.

    Directory of Open Access Journals (Sweden)

    Yulia Shamis

    Full Text Available Human embryonic and induced pluripotent stem cells (hESC/hiPSC are promising cell sources for the derivation of large numbers of specific cell types for tissue engineering and cell therapy applications. We have describe a directed differentiation protocol that generates fibroblasts from both hESC and hiPSC (EDK/iPDK that support the repair and regeneration of epithelial tissue in engineered, 3D skin equivalents. In the current study, we analyzed the secretory profiles of EDK and iPDK cells to investigate the production of factors that activate and promote angiogenesis. Analysis of in vitro secretion profiles from EDK and iPDK cells demonstrated the elevated secretion of pro-angiogenic soluble mediators, including VEGF, HGF, IL-8, PDGF-AA, and Ang-1, that stimulated endothelial cell sprouting in a 3D model of angiogenesis in vitro. Phenotypic analysis of EDK and iPDK cells during the course of differentiation from hESCs and iPSCs revealed that both cell types progressively acquired pericyte lineage markers NG2, PDGFRβ, CD105, and CD73 and demonstrated transient induction of pericyte progenitor markers CD31, CD34, and Flk1/VEGFR2. Furthermore, when co-cultured with endothelial cells in 3D fibrin-based constructs, EDK and iPDK cells promoted self-assembly of vascular networks and vascular basement membrane deposition. Finally, transplantation of EDK cells into mice with hindlimb ischemia significantly reduced tissue necrosis and improved blood perfusion, demonstrating the potential of these cells to stimulate angiogenic responses in vivo. These findings demonstrate that stable populations of pericyte-like angiogenic cells can be generated with high efficiency from hESC and hiPSC using a directed differentiation approach. This provides new cell sources and opportunities for vascular tissue engineering and for the development of novel strategies in regenerative medicine.

  8. Activation of endogenous opioid gene expression in human keratinocytes and fibroblasts by pulsed radiofrequency energy fields

    Directory of Open Access Journals (Sweden)

    Moffett J

    2012-09-01

    Full Text Available John Moffett,1 Linley M Fray,1 Nicole J Kubat21Life Science Department, 2Independent Consultant, Regenesis Biomedical Inc, Scottsdale, AZ, USABackground: Pulsed radiofrequency energy (PRFE fields are being used increasingly for the treatment of pain arising from dermal trauma. However, despite their increased use, little is known about the biological and molecular mechanism(s responsible for PRFE-mediated analgesia. In general, current therapeutics used for analgesia target either endogenous factors involved in inflammation, or act on endogenous opioid pathways.Methods and Results: Using cultured human dermal fibroblasts (HDF and human epidermal keratinocytes (HEK, we investigated the effect of PRFE treatment on factors, which are involved in modulating peripheral analgesia in vivo. We found that PRFE treatment did not inhibit cyclooxygenase enzyme activity, but instead had a positive effect on levels of endogenous opioid precursor mRNA (proenkephalin, pro-opiomelanocortin, prodynorphin and corresponding opioid peptide. In HEK cells, increases in opioid mRNA were dependent, at least in part, on endothelin-1. In HDF cells, additional pathways also appear to be involved. PRFE treatment was also followed by changes in endogenous expression of several cytokines, including increased levels of interleukin-10 mRNA and decreased levels of interleukin-1β mRNA in both cell types.Conclusion: These findings provide a new insight into the molecular mechanism underlying PRFE-mediated analgesia reported in the clinical setting.Keywords: peripheral analgesia, endogenous opioids, endothelin-1, endothelin receptor A, endothelin receptor B, pulsed radiofrequency energy field, cyclooxygenase

  9. Fibroblast Activation Protein (FAP) Accelerates Collagen Degradation and Clearance from Lungs in Mice*

    Science.gov (United States)

    Fan, Ming-Hui; Zhu, Qiang; Li, Hui-Hua; Ra, Hyun-Jeong; Majumdar, Sonali; Gulick, Dexter L.; Jerome, Jacob A.; Madsen, Daniel H.; Christofidou-Solomidou, Melpo; Speicher, David W.; Bachovchin, William W.; Feghali-Bostwick, Carol; Puré, Ellen

    2016-01-01

    Idiopathic pulmonary fibrosis is a disease characterized by progressive, unrelenting lung scarring, with death from respiratory failure within 2–4 years unless lung transplantation is performed. New effective therapies are clearly needed. Fibroblast activation protein (FAP) is a cell surface-associated serine protease up-regulated in the lungs of patients with idiopathic pulmonary fibrosis as well as in wound healing and cancer. We postulate that FAP is not only a marker of disease but influences the development of pulmonary fibrosis after lung injury. In two different models of pulmonary fibrosis, intratracheal bleomycin instillation and thoracic irradiation, we find increased mortality and increased lung fibrosis in FAP-deficient mice compared with wild-type mice. Lung extracellular matrix analysis reveals accumulation of intermediate-sized collagen fragments in FAP-deficient mouse lungs, consistent with in vitro studies showing that FAP mediates ordered proteolytic processing of matrix metalloproteinase (MMP)-derived collagen cleavage products. FAP-mediated collagen processing leads to increased collagen internalization without altering expression of the endocytic collagen receptor, Endo180. Pharmacologic FAP inhibition decreases collagen internalization as expected. Conversely, restoration of FAP expression in the lungs of FAP-deficient mice decreases lung hydroxyproline content after intratracheal bleomycin to levels comparable with that of wild-type controls. Our findings indicate that FAP participates directly, in concert with MMPs, in collagen catabolism and clearance and is an important factor in resolving scar after injury and restoring lung homeostasis. Our study identifies FAP as a novel endogenous regulator of fibrosis and is the first to show FAP's protective effects in the lung. PMID:26663085

  10. The Apoptotic Effects of the P300 Activator on Breast Cancer and Lung Fibroblast Cell Lines

    Directory of Open Access Journals (Sweden)

    Mohammad Reza Salahshoor

    2013-10-01

    Full Text Available Background: P300 is an enzyme that acetylates histones during stress. It alsoacetylates several non-histone proteins, including P53 which is the most important tumorsuppressor gene. P53 plays an important role in the apoptosis of tumor cells. Hereby,this study describes the potency of cholera toxin B subunit as a P300 activator to induceapoptosis in a breast cancer cell line (MCF-7 and a lung fibroblast cell line (MRC-5as a non-tumorigenic control sample. Methods: MCF-7 and MRC-5 were cultured in RPMI-1640 and treated with orwithout cholera toxin B subunit at the concentration of 85.43 μmol/L, based on the half-maximal inhibitory concentration index at different times (24, 48 and 72 h. Thepercentage of apoptotic cells was measured by flow cytometry. Real-time quantitativeRT-PCR was performed to estimate the mRNA expression of P300 in MCF-7 and MRC-5 with cholera toxin B subunit at different times. We used the ELISA and Bradford proteintechniques to detect levels of total and acetylated P53 protein generated in MCF-7 andMRC-5. Results: Our findings indicated that the cholera toxin B subunit effectively andsignificantly induced more apoptosis in MCF-7 compared to MRC-5. We showed thatexpression of P300 up-regulated by increasing the time of the cholera toxin B subunittreatment in MCF-7 but not in MRC-5. In addition, the acetylated and total P53protein levels increased more in MCF-7 cells than in MRC-5 cells.Conclusion: Cholera toxin B subunit induced significant cell death in MCF-7, butit could be well tolerated in MRC-5. Therefore, cholera toxin B subunit can besuggested as an anti-cancer agent.

  11. Mitotic defects lead to pervasive aneuploidy and accompany loss of RB1 activity in mouse LmnaDhe dermal fibroblasts.

    Directory of Open Access Journals (Sweden)

    C Herbert Pratt

    2011-03-01

    Full Text Available Lamin A (LMNA is a component of the nuclear lamina and is mutated in several human diseases, including Emery-Dreifuss muscular dystrophy (EDMD; OMIM ID# 181350 and the premature aging syndrome Hutchinson-Gilford progeria syndrome (HGPS; OMIM ID# 176670. Cells from progeria patients exhibit cell cycle defects in both interphase and mitosis. Mouse models with loss of LMNA function have reduced Retinoblastoma protein (RB1 activity, leading to aberrant cell cycle control in interphase, but how mitosis is affected by LMNA is not well understood.We examined the cell cycle and structural phenotypes of cells from mice with the Lmna allele, Disheveled hair and ears (Lmna(Dhe. We found that dermal fibroblasts from heterozygous Lmna(Dhe (Lmna(Dhe/+ mice exhibit many phenotypes of human laminopathy cells. These include severe perturbations to the nuclear shape and lamina, increased DNA damage, and slow growth rates due to mitotic delay. Interestingly, Lmna(Dhe/+ fibroblasts also had reduced levels of hypophosphorylated RB1 and the non-SMC condensin II-subunit D3 (NCAP-D3, a mitosis specific centromere condensin subunit that depends on RB1 activity. Mitotic check point control by mitotic arrest deficient-like 1 (MAD2L1 also was perturbed in Lmna(Dhe/+ cells. Lmna(Dhe/+ fibroblasts were consistently aneuploid and had higher levels of micronuclei and anaphase bridges than normal fibroblasts, consistent with chromosome segregation defects.These data indicate that RB1 may be a key regulator of cellular phenotype in laminopathy-related cells, and suggest that the effects of LMNA on RB1 include both interphase and mitotic cell cycle control.

  12. Mitotic Defects Lead to Pervasive Aneuploidy and Accompany Loss of RB1 Activity in Mouse LmnaDhe Dermal Fibroblasts

    Science.gov (United States)

    Pratt, C. Herbert; Curtain, Michelle; Donahue, Leah Rae; Shopland, Lindsay S.

    2011-01-01

    Background Lamin A (LMNA) is a component of the nuclear lamina and is mutated in several human diseases, including Emery-Dreifuss muscular dystrophy (EDMD; OMIM ID# 181350) and the premature aging syndrome Hutchinson-Gilford progeria syndrome (HGPS; OMIM ID# 176670). Cells from progeria patients exhibit cell cycle defects in both interphase and mitosis. Mouse models with loss of LMNA function have reduced Retinoblastoma protein (RB1) activity, leading to aberrant cell cycle control in interphase, but how mitosis is affected by LMNA is not well understood. Results We examined the cell cycle and structural phenotypes of cells from mice with the Lmna allele, Disheveled hair and ears (LmnaDhe). We found that dermal fibroblasts from heterozygous LmnaDhe (LmnaDhe/+) mice exhibit many phenotypes of human laminopathy cells. These include severe perturbations to the nuclear shape and lamina, increased DNA damage, and slow growth rates due to mitotic delay. Interestingly, LmnaDhe/+ fibroblasts also had reduced levels of hypophosphorylated RB1 and the non-SMC condensin II-subunit D3 (NCAP-D3), a mitosis specific centromere condensin subunit that depends on RB1 activity. Mitotic check point control by mitotic arrest deficient-like 1 (MAD2L1) also was perturbed in LmnaDhe /+ cells. LmnaDhe /+ fibroblasts were consistently aneuploid and had higher levels of micronuclei and anaphase bridges than normal fibroblasts, consistent with chromosome segregation defects. Conclusions These data indicate that RB1 may be a key regulator of cellular phenotype in laminopathy-related cells, and suggest that the effects of LMNA on RB1 include both interphase and mitotic cell cycle control. PMID:21464947

  13. Fibroblast activation protein (FAP is essential for the migration of bone marrow mesenchymal stem cells through RhoA activation.

    Directory of Open Access Journals (Sweden)

    Kuei-Min Chung

    Full Text Available BACKGROUND: The ability of human bone marrow mesenchymal stem cells (BM-MSCs to migrate and localize specifically to injured tissues is central in developing therapeutic strategies for tissue repair and regeneration. Fibroblast activation protein (FAP is a cell surface serine protease expressed at sites of tissue remodeling during embryonic development. It is also expressed in BM-MSCs, but not in normal tissues or cells. The function of FAP in BM-MSCs is not known. PRINCIPAL FINDINGS: We found that depletion of FAP proteins significantly inhibited the migration of BM-MSCs in a transwell chemotaxis assay. Such impaired migration ability of BM-MSCs could be rescued by re-expressing FAP in these cells. We then demonstrated that depletion of FAP activated intracellular RhoA GTPase. Consistently, inhibition of RhoA activity using a RhoA inhibitor rescued its migration ability. Inhibition of FAP activity with an FAP-specific inhibitor did not affect the activation of RhoA or the migration of BM-MSCs. Furthermore, the inflammatory cytokines interleukin-1beta (IL-1β and transforming growth factor-beta (TGF-β upregulated FAP expression, which coincided with better BM-MSC migration. CONCLUSIONS: Our results indicate FAP plays an important role in the migration of BM-MSCs through modulation of RhoA GTPase activity. The peptidase activity of FAP is not essential for such migration. Cytokines IL-1β and TGF-β upregulate the expression level of FAP and thus enhance BM-MSC migration.

  14. Physical Activity and Obesity: Biomechanical and Physiological Key Concepts

    Directory of Open Access Journals (Sweden)

    Julie Nantel

    2011-01-01

    Full Text Available Overweight (OW and obesity (OB are often associated with low levels of physical activity. Physical activity is recommended to reduce excess body weight, prevent body weight regain, and decrease the subsequent risks of developing metabolic and orthopedic conditions. However, the impact of OW and OB on motor function and daily living activities must be taken into account. OW and OB are associated with musculoskeletal structure changes, decreased mobility, modification of the gait pattern, and changes in the absolute and relative energy expenditures for a given activity. While changes in the gait pattern have been reported at the ankle, knee, and hip, modifications at the knee level might be the most challenging for articular integrity. This review of the literature combines concepts and aims to provide insights into the prescription of physical activity for this population. Topics covered include the repercussions of OW and OB on biomechanical and physiological responses associated with the musculoskeletal system and daily physical activity. Special attention is given to the effect of OW and OB in youth during postural (standing and various locomotor (walking, running, and cycling activities.

  15. Simulated microgravity activates MAPK pathways in fibroblasts cultured on microgrooved surface topography

    NARCIS (Netherlands)

    Loesberg, W.A.; Walboomers, X.F.; van Loon, J.J.W.A.; Jansen, J.A.

    2008-01-01

    This study evaluated in vitro the differences in morphological behaviour between fibroblast cultured on smooth and microgrooved substrata (groove depth: 0.5 mu m, width: I pm), which were subjected to simulated microgravity. The aim of the study was to clarify which of these parameters was more

  16. Simulated microgravity activates MAPK pathways in fibroblasts cultured on microgrooved surface topography.

    NARCIS (Netherlands)

    Loesberg, W.A.; Walboomers, X.F.; Loon, J.J.W.A. van; Jansen, J.A.

    2008-01-01

    This study evaluated in vitro the differences in morphological behaviour between fibroblast cultured on smooth and microgrooved substrata (groove depth: 0.5 mum, width: 1 mum), which were subjected to simulated microgravity. The aim of the study was to clarify which of these parameters was more

  17. Direct determination of phosphatase activity from physiological substrates in cells.

    Directory of Open Access Journals (Sweden)

    Zhongyuan Ren

    Full Text Available A direct and continuous approach to determine simultaneously protein and phosphate concentrations in cells and kinetics of phosphate release from physiological substrates by cells without any labeling has been developed. Among the enzymes having a phosphatase activity, tissue non-specific alkaline phosphatase (TNAP performs indispensable, multiple functions in humans. It is expressed in numerous tissues with high levels detected in bones, liver and neurons. It is absolutely required for bone mineralization and also necessary for neurotransmitter synthesis. We provided the proof of concept that infrared spectroscopy is a reliable assay to determine a phosphatase activity in the osteoblasts. For the first time, an overall specific phosphatase activity in cells was determined in a single step by measuring simultaneously protein and substrate concentrations. We found specific activities in osteoblast like cells amounting to 116 ± 13 nmol min(-1 mg(-1 for PPi, to 56 ± 11 nmol min(-1 mg(-1 for AMP, to 79 ± 23 nmol min(-1 mg(-1 for beta-glycerophosphate and to 73 ± 15 nmol min(-1 mg(-1 for 1-alpha-D glucose phosphate. The assay was also effective to monitor phosphatase activity in primary osteoblasts and in matrix vesicles. The use of levamisole--a TNAP inhibitor--served to demonstrate that a part of the phosphatase activity originated from this enzyme. An IC50 value of 1.16 ± 0.03 mM was obtained for the inhibition of phosphatase activity of levamisole in osteoblast like cells. The infrared assay could be extended to determine any type of phosphatase activity in other cells. It may serve as a metabolomic tool to monitor an overall phosphatase activity including acid phosphatases or other related enzymes.

  18. Wound healing morbidity in STS patients treated with preoperative radiotherapy in relation to in vitro skin fibroblast radiosensitivity, proliferative capacity and TGF-β activity

    International Nuclear Information System (INIS)

    Akudugu, John M.; Bell, Robert S.; Catton, Charles; Davis, Aileen M.; Griffin, Anthony M.; O'Sullivan, Brian; Waldron, John N.; Ferguson, Peter C.; Wunder, Jay S.; Hill, Richard P.

    2006-01-01

    Background and purpose: In a recent study, we demonstrated that the ability of dermal fibroblasts, obtained from soft tissue sarcoma (STS) patients, to undergo initial division in vitro following radiation exposure correlated with the development of wound healing morbidity in the patients following their treatment with preoperative radiotherapy. Transforming growth factor beta (TGF-β) is thought to play an important role in fibroblast proliferation and radiosensitivity both of which may impact on wound healing. Thus, in this study we examined the interrelationship between TGF-β activity, radiosensitivity and proliferation of cultured fibroblasts and the wound healing response of STS patients after preoperative radiotherapy to provide a validation cohort for our previous study and to investigate mechanisms. Patients and methods: Skin fibroblasts were established from skin biopsies of 46 STS patients. The treatment group consisted of 28 patients who received preoperative radiotherapy. Eighteen patients constituted a control group who were either irradiated postoperatively or did not receive radiation treatment. Fibroblast cultures were subjected to the colony forming and cytokinesis-blocked binucleation assays (low dose rate: ∼0.02 Gy/min) and TGF-β assays (high dose-rate: ∼1.06 Gy/min) following γ-irradiation. Fibroblast radiosensitivity and initial proliferative ability were represented by the surviving fraction at 2.4 Gy (SF 2.4 ) and binucleation index (BNI), respectively. Active and total TGF-β levels in fibroblast cultures were determined using a biological assay. Wound healing complication (WHC), defined as the requirement for further surgery or prolonged deep wound packing, was the clinical endpoint examined. Results: Of the 28 patients treated with preoperative radiotherapy, 8 (29%) had wound healing difficulties. Fibroblasts from patients who developed WHC showed a trend to retain a significantly higher initial proliferative ability after

  19. Innocence and resisting confession during interrogation: effects on physiologic activity.

    Science.gov (United States)

    Guyll, Max; Madon, Stephanie; Yang, Yueran; Lannin, Daniel G; Scherr, Kyle; Greathouse, Sarah

    2013-10-01

    Innocent suspects may not adequately protect themselves during interrogation because they fail to fully appreciate the danger of the situation. This experiment tested whether innocent suspects experience less stress during interrogation than guilty suspects, and whether refusing to confess expends physiologic resources. After experimentally manipulating innocence and guilt, 132 participants were accused and interrogated for misconduct, and then pressured to confess. Systolic and diastolic blood pressure (SBP, DBP), heart rate (HR), respiratory sinus arrhythmia (RSA), and preejection period (PEP) responses quantified stress reactions. As hypothesized, the innocent evidenced smaller stress responses to interrogation for SBP, DBP, HR, and RSA than did the guilty. Furthermore, innocents who refused to confess exhibited greater sympathetic nervous system activation, as evidenced by shorter PEPs, than did innocent or guilty confessors. These findings suggest that innocent suspects underestimate the threat of interrogation and that resisting pressures to confess can diminish suspects' physiologic resources and lead to false confessions. PsycINFO Database Record (c) 2013 APA, all rights reserved

  20. Pirfenidone inhibits the proliferation of fibroblasts from patients with active Crohn's disease.

    Science.gov (United States)

    Kadir, Sara-Irini; Wenzel Kragstrup, Tue; Dige, Anders; Kok Jensen, Simon; Dahlerup, Jens Frederik; Kelsen, Jens

    2016-11-01

    One-third of Crohn's disease (CD) patients develop intestinal strictures that require repeated surgical intervention. Current anti-inflammatory therapies have limited effect on stricture development, which necessitates the exploration of new pharmacological approaches. Pirfenidone (PFD), a novel anti-fibrotic agent, was recently approved in Europe for the treatment of idiopathic pulmonary fibrosis (IPF). We hypothesized that observations in IPF could be transferable to intestinal fibrosis and that PFD inhibits the proliferation and extracellular matrix (ECM) turnover of gut-derived fibroblasts from CD patients. Fibroblasts were isolated from biopsies of inflamed (n = 8) and non-inflamed (n = 5) colonic mucosa. Expression of CD90 and alpha-smooth muscle actin (αSMA) expression was determined by flow cytometry. The fibroblasts were cultured with PFD (0.5, 1.0 and 2.0 mg/ml). Proliferation was evaluated with CellTiter 96(®) AQueous One Solution Cell Proliferation Assay. Production of matrix metalloproteinase-3 (MMP-3), tissue inhibitor of metalloproteinases-1 (TIMP-1) and collagen were assessed using ELISA and calorimetric assays, respectively. The majority of the fibroblasts were αSMA-positive myofibroblasts. PFD inhibited fibroblast proliferation [0.94 (PFD 0.5 mg/ml); 0.76 (1.0 mg/ml); 0.58 (2.0 mg/ml)] and production of MMP-3 [0.85 (0.5 mg/ml); 0.74 (1.0 mg/ml); 0.63 (2.0 mg/ml)] dose-dependently (both p = 0.0001). The anti-proliferative effect of PFD was reversible (p = 0.0001), indicating that PFD does not act by an irreversible cytotoxic mechanism. PFD did not influence neither TIMP-1 nor collagen production. PFD inhibited the proliferation and the production of MMP-3 dose-dependently in gut-derived fibroblast from CD patients. Our observations support further studies on PFD in stricturing CD.

  1. Hydrogen-rich medium protects mouse embryonic fibroblasts from oxidative stress by activating LKB1-AMPK-FoxO1 signal pathway.

    Science.gov (United States)

    Lee, Jihyun; Yang, Goowon; Kim, Young-Joo; Tran, Quynh Hoa; Choe, Wonchae; Kang, Insug; Kim, Sung Soo; Ha, Joohun

    2017-09-23

    Persistent oxidative stress is recognized as a major cause of many pathological conditions as well as ageing. However, most clinical trials of dietary antioxidants have failed to produce successful outcomes in treating oxidative stress-induced diseases. Molecular hydrogen (H 2 ) has recently received considerable attention as a therapeutic agent owing to its novel antioxidant properties, a selective scavenger of hydroxyl and peroxynitrite radicals. Beyond this, numerous reports support that H 2 can modulate the activity of various cellular signal pathways. However, its effect on AMP-activated protein kinase (AMPK) signal pathway, a central regulator of energy hemostasis, has remained almost elusive. Here, we report that hydrogen-rich medium activated LKB1-AMPK signal pathway without ATP depletion, which in turn induced FoxO1-dependent transcription of manganese superoxide dismutase and catalase in mouse embryonic fibroblasts. Moreover, hydrogen-rich media effectively reduced the level of reactive oxygen species in cells treated with hydrogen peroxide and protected these cells from apoptosis in an AMPK-dependent manner. These results suggest that the LKB1-AMPK-FoxO1 signaling pathway is a critical mediator of the antioxidant properties of H 2 , further supporting the idea that H 2 acts as a signaling molecule to serve various physiological functions. Copyright © 2017 Elsevier Inc. All rights reserved.

  2. When pain and hunger collide; psychological influences on differences in brain activity during physiological and non-physiological gastric distension.

    Science.gov (United States)

    Coen, S J

    2011-06-01

    Functional neuroimaging has been used extensively in conjunction with gastric balloon distension in an attempt to unravel the relationship between the brain, regulation of hunger, satiety, and food intake tolerance. A number of researchers have also adopted a more physiological approach using intra-gastric administration of a liquid meal which has revealed different brain responses to gastric balloon distension. These differences are important as they question the utility and relevance of non-physiological models such as gastric balloon distension, especially when investigating mechanisms of feeding behavior such as satiety. However, an assessment of the relevance of physiological versus non-physiological gastric distension has been problematic due to differences in distension volumes between studies. In this issue of Neurogastroenterology and Motility, Geeraerts et al. compare brain activity during volume matched nutrient gastric distension and balloon distension in healthy volunteers. Gastric balloon distension activated the 'visceral pain neuromatrix'. This network of brain regions was deactivated during nutrient infusion, supporting the notion that brain activity during physiological versus non-physiological distension is indeed different. The authors suggest deactivation of the pain neuromatrix during nutrient infusion serves as a prerequisite for tolerance of normal meal volumes in health. © 2011 Blackwell Publishing Ltd.

  3. Nobiletin: a citrus flavonoid displaying potent physiological activity.

    Science.gov (United States)

    Noguchi, Shuji; Atsumi, Haruka; Iwao, Yasunori; Kan, Toshiyuki; Itai, Shigeru

    2016-02-01

    Nobiletin [systematic name: 2-(3,4-dimethoxyphenyl)-5,6,7,8-tetramethoxy-4H-chromen-4-one; C21H22O8] is a flavonoid found in citrus peels, and has been reported to show a wide range of physiological properties, including anti-inflammatory, anticancer and antidementia activities. We have solved the crystal structure of nobiletin, which revealed that the chromene and arene rings of its flavone moiety, as well as the two methoxy groups bound to its arene ring, were coplanar. In contrast, the C atoms of the four methoxy groups bound to the chromene ring are out of the plane, making the molecule conformationally chiral. A comparison of the crystal structures of nobiletin revealed that it could adopt a variety of different conformations through rotation of the covalent bond between the chromene and arene rings, and the orientations of methoxy groups bound to the chromene ring.

  4. c-fos/c-jun expression and AP-1 activation in skin fibroblasts from centenarians.

    Science.gov (United States)

    Grassilli, E; Bellesia, E; Salomoni, P; Croce, M A; Sikora, E; Radziszewska, E; Tesco, G; Vergelli, M; Latorraca, S; Barbieri, D; Fagiolo, U; Santacaterina, S; Amaducci, L; Tiozzo, R; Sorbi, S; Franceschi, C

    1996-09-13

    In vitro replicative senescence is characterized by an irreversible growth arrest due to the inability of the cell to induce some key regulators of cell cycle progression, such as c-fos and AP-1, in response to mitogenic stimuli. In vitro replicative senescence and in vivo aging have been assumed to be two related phenomena, likely controlled by overlapping or interacting genes. As a corollary, fibroblasts from centenarians, which have undergone a long process of senescence in vivo should have very limited proliferative capability. On the contrary, in a previous work we found that fibroblasts from centenarians exhibited the same capacity to respond to different mitogenic stimuli as fibroblasts from young donors. Here we provide evidences that the well preserved proliferative response is likely due to the fact that some pivotal regulators- c-fos, c-jun and AP-1-are still fully inducible, despite a long process of in vivo senescence. Our data therefore suggest that in vivo and in vitro aging are separate phenomena whose possible relationships, if any, have to be ascertained very carefully.

  5. TGF-β1 activates the canonical NF-κB signaling to promote cell survival and proliferation in dystrophic muscle fibroblasts in vitro

    Energy Technology Data Exchange (ETDEWEB)

    Ma, Zhen-Yu [Department of Neurology, The First Affiliated Hospital, Sun Yat-sen University, No. 58 Zhongshan 2nd Road, Guangzhou 510080, Guangdong Province (China); Department of Neurology, The Second Affiliated Hospital, Guangzhou Medical University, No.250 Changgang East Road, Guangzhou 510260, Guangdong Province (China); Zhong, Zhi-Gang; Qiu, Meng-Yao; Zhong, Yu-Hua [Department of Neurology, The First Affiliated Hospital, Sun Yat-sen University, No. 58 Zhongshan 2nd Road, Guangzhou 510080, Guangdong Province (China); Zhang, Wei-Xi, E-mail: weixizhang@qq.com [Department of Neurology, The First Affiliated Hospital, Sun Yat-sen University, No. 58 Zhongshan 2nd Road, Guangzhou 510080, Guangdong Province (China)

    2016-03-18

    Activated fibroblasts continue to proliferate at injury sites, leading to progressive muscular fibrosis in Duchenne muscular dystrophy (DMD). TGF-β1 is a dominant profibrotic mediator thought to play a critical role in muscle fibrosis; however, the implicated mechanisms are not fully understood. Here we showed that TGF-β1 increased the resistance to apoptosis and stimulated cell cycle progression in dystrophic muscle fibroblasts under serum deprivation conditions in vitro. TGF-β1 treatment activated the canonical NF-κB pathway; and we found that pharmacological inhibition of IKKβ with IMD-0354 and RelA gene knockdown with siRNA attenuated these effects of TGF-β1 on dystrophic muscle fibroblasts. Collectively, our data suggest that TGF-β1 prevents apoptosis and cell cycle arrest in dystrophic muscle fibroblasts through the canonical NF-κB signaling pathway. - Highlights: • TGF-β1 promotes survival and proliferation in dystrophic muscle fibroblasts. • TGF-β1 activated the canonical NF-κB pathway in dystrophic muscle fibroblasts. • Canonical NF-κB pathway mediates these effects of TGF-β1.

  6. TGF-β1 activates the canonical NF-κB signaling to promote cell survival and proliferation in dystrophic muscle fibroblasts in vitro

    International Nuclear Information System (INIS)

    Ma, Zhen-Yu; Zhong, Zhi-Gang; Qiu, Meng-Yao; Zhong, Yu-Hua; Zhang, Wei-Xi

    2016-01-01

    Activated fibroblasts continue to proliferate at injury sites, leading to progressive muscular fibrosis in Duchenne muscular dystrophy (DMD). TGF-β1 is a dominant profibrotic mediator thought to play a critical role in muscle fibrosis; however, the implicated mechanisms are not fully understood. Here we showed that TGF-β1 increased the resistance to apoptosis and stimulated cell cycle progression in dystrophic muscle fibroblasts under serum deprivation conditions in vitro. TGF-β1 treatment activated the canonical NF-κB pathway; and we found that pharmacological inhibition of IKKβ with IMD-0354 and RelA gene knockdown with siRNA attenuated these effects of TGF-β1 on dystrophic muscle fibroblasts. Collectively, our data suggest that TGF-β1 prevents apoptosis and cell cycle arrest in dystrophic muscle fibroblasts through the canonical NF-κB signaling pathway. - Highlights: • TGF-β1 promotes survival and proliferation in dystrophic muscle fibroblasts. • TGF-β1 activated the canonical NF-κB pathway in dystrophic muscle fibroblasts. • Canonical NF-κB pathway mediates these effects of TGF-β1.

  7. Tissue factor-dependent vascular endothelial growth factor production by human fibroblasts in response to activated factor VII.

    Science.gov (United States)

    Ollivier, V; Bentolila, S; Chabbat, J; Hakim, J; de Prost, D

    1998-04-15

    The transmembrane protein tissue factor (TF) is the cell surface receptor for coagulation factor VII (FVII) and activated factor VII (FVIIa). Recently, TF has been identified as a regulator of angiogenesis, tumor growth, and metastasis. This study was designed to link the binding of FVII(a) to its receptor, TF, with the subsequent triggering of angiogenesis through vascular endothelial growth factor (VEGF) production by human lung fibroblasts. We report that incubation of fibroblasts, which express constitutive surface TF, with FVII(a) induces VEGF synthesis. FVII(a)-induced VEGF secretion, assessed by a specific enzyme-linked immunosorbent assay, was time- and concentration-dependent. VEGF secretion was maximal after 24 hours of incubation of the cells with 100 nmol/L FVII(a) and represented a threefold induction of the basal VEGF level. Reverse transcriptase-polymerase chain reaction analysis of VEGF detected three mRNA species of 180, 312, and 384 bp corresponding, respectively, to VEGF121, VEGF165, and VEGF189. A 2.5- to 3.5-fold increase was observed for the 180- and 312-bp transcripts at 12 and 24 hours, respectively. FVII(a)-dependent VEGF production was inhibited by a pool of antibodies against TF, pointing to the involvement of this receptor. On specific active-site inhibition with dansyl-glutamyl-glycinyl-arginyl chloromethyl ketone, FVIIa lost 70% of its capacity to elicit VEGF production. Consistent with this, the native form (zymogen) of FVII only had a 1.8-fold stimulating effect. Protein tyrosine kinase and protein kinase C are involved in signal transduction leading to VEGF production, as shown by the inhibitory effects of genistein and GF 109203X. The results of this study indicate that TF is essential for VIIa-induced VEGF production by human fibroblasts and that its role is mainly linked to the proteolytic activity of the TF-VIIa complex.

  8. Curcumin Triggers p16-Dependent Senescence in Active Breast Cancer-Associated Fibroblasts and Suppresses Their Paracrine Procarcinogenic Effects

    Directory of Open Access Journals (Sweden)

    Siti-Fauziah Hendrayani

    2013-06-01

    Full Text Available Activated cancer-associated fibroblasts (CAFs or myofibroblasts not only facilitate tumor growth and spread but also affect tumor response to therapeutic agents. Therefore, it became clear that efficient therapeutic regimens should also take into account the presence of these supportive cells and inhibit their paracrine effects. To this end, we tested the effect of low concentrations of curcumin, a pharmacologically safe natural product, on patient-derived primary breast CAF cells. We have shown that curcumin treatment upregulates p16INK4A and other tumor suppressor proteins while inactivates the JAK2/STAT3 pathway. This reduced the level of alpha-smooth muscle actin (α-SMA and the migration/invasion abilities of these cells. Furthermore, curcumin suppressed the expression/secretion of stromal cell-derived factor-1 (SDF-1, interleukin-6 (IL-6, matrix metalloproteinase-2 (MMP-2, MMP-9, and transforming growth factor-β, which impeded their paracrine procarcinogenic potential. Intriguingly, these effects were sustained even after curcumin withdrawal and cell splitting. Therefore, using different markers of senescence [senescence-associated β-galactosidase (SA-β-gal activity, Ki-67 and Lamin B1 levels, and bromodeoxyuridine incorporation], we have shown that curcumin markedly suppresses Lamin B1 and triggers DNA damage-independent senescence in proliferating but not quiescent breast stromal fibroblasts. Importantly, this curcumin-related senescence was p16INK4A-dependent and occurred with no associated inflammatory secretory phenotype. These results indicate the possible inactivation of cancer-associated myofibroblasts and present the first indication that curcumin can trigger DNA damage-independent and safe senescence in stromal fibroblasts.

  9. Synthesis, characterization and physiological activity of some novel isoxazoles.

    Directory of Open Access Journals (Sweden)

    NITIN G. GHODILE

    2012-07-01

    Full Text Available Hushare VJ, Rajput PR, Malpani MO, Ghodile NG. 2012. Synthesis, characterization and physiological activity of some novel isoxazoles. Nusantara Bioscience 4: 81-85. A series of chlorosubstituted 4-aroylisoxazoles have been synthesized by refluxing chlorosubstituted-3-aroylflavones and 3-alkoylchromone with hydroxylamine hydrochloride in dioxane medium containing 0.5 mL piperidine. Chlorosubstituted-3-aroylflavones and chlorosubstituted-3-alkoylchromone were prepared by refluxing them separately with iodine crystal in ethanol. Initially chlorosubstituted-3-aroylflavanones and 3-alkoylchromanone were prepared by the interaction of different aromatic and aliphatic aldehydes with 1-(2’-hydroxy-3’,5’-dichlorophenyl-3-phenyl-1,3-propanedione. Constitutions of synthesized compounds were confirmed on the basis of elemental analysis, molecular weight determination, UV-Visible, I.R. and 1H-NMR spectral data. The titled compounds were evaluated for their growth promoting activity on some flowering plants viz. Papaver rhoeas, Calendula officinalise, Gladiola tristis, Gaillardia aristata, Dianthus chinensis, and Iberis sp. (candytuft. The results indicate that applicated plants had higher shoots and more number of leaves.

  10. Cancer associated fibroblasts (CAFs) are activated in cutaneous basal cell carcinoma and in the peritumoural skin.

    Science.gov (United States)

    Omland, Silje Haukali; Wettergren, Erika Elgstrand; Mollerup, Sarah; Asplund, Maria; Mourier, Tobias; Hansen, Anders Johannes; Gniadecki, Robert

    2017-10-07

    Cutaneous basal cell carcinoma (BCC) is the commonest cancer worldwide. BCC is locally invasive and the surrounding stromal microenvironment is pivotal for tumourigenesis. Cancer associated fibroblasts (CAFs) in the microenvironment are essential for tumour growth in a variety of neoplasms but their role in BCC is poorly understood. Material included facial BCC and control skin from the peritumoural area and from the buttocks. With next-generation sequencing (NGS) we compared mRNA expression between BCC and peritumoural skin. qRT-PCR, immunohistochemical and immunofluorescent staining were performed to validate the NGS results and to investigate CAF-related cyto-and chemokines. NGS revealed upregulation of 65 genes in BCC coding for extracellular matrix components pointing at CAF-related matrix remodeling. qRT-PCR showed increased mRNA expression of CAF markers FAP-α, PDGFR-β and prolyl-4-hydroxylase in BCC. Peritumoural skin (but not buttock skin) also exhibited high expression of PDGFR-β and prolyl-4-hydroxylase but not FAP-α. We found a similar pattern for the CAF-associated chemokines CCL17, CCL18, CCL22, CCL25, CXCL12 and IL6 with high expression in BCC and peritumoural skin but absence in buttock skin. Immunofluorescence revealed correlation between FAP-α and PDGFR-β and CXCL12 and CCL17. Matrix remodeling is the most prominent molecular feature of BCC. CAFs are present within BCC stroma and associated with increased expression of chemokines involved in tumour progression and immunosuppression (CXCL12, CCL17). Fibroblasts from chronically sun-exposed skin near tumours show gene expression patterns resembling that of CAFs, indicating that stromal fibroblasts in cancer-free surgical BCC margins exhibit a tumour promoting phenotype.

  11. Antioxidant Activity of Ixora parviflora in a Cell/Cell-Free System and in UV-Exposed Human Fibroblasts

    Directory of Open Access Journals (Sweden)

    Hsiu-Mei Chiang

    2011-07-01

    Full Text Available Polyphenols and flavonoids possess a variety of biological activities including antioxidant and anti-tumor activities. Ixora parviflora is a member of the flavonoid-rich Rubiaceae family of flowering plants and used as folk medicine in India. The aim of this study was to investigate the antioxidant activity of Ixora parviflora extract (IPE in a cell-free system and erythrocytes, and the ability of IPE to inhibit reactive oxygen species (ROS generation in human fibroblasts (Hs68 after ultraviolet (UV exposure. Various in vitro antioxidant assays were employed in this study. The extraction yield of IPE was 17.4 ± 3.9%, the total phenolic content of IPE was 26.2 μg gallic acid equivalent (GAE/mg leaves dry weight and the total flavonoids content was 54.2 ± 4.4 μg quercetin equvalent (QE/mg extract. The content of chlorogenic acid was 9.7 ± 1.2 mg/g extract. IPE at 1000 μg/mL exhibited a reducing capacity of 90.5 ± 0.6%, a 1,1-diphenyl-2-picrylhydrazy (DPPH radical scavenging activity of 96.0 ± 0.4%, a ferrous chelating activity of 72.2 ± 3.5%, a hydroxyl radical scavenging activity of 96.8 ± 1.4%, and a hydrogen peroxide scavenging activity of 99.5 ± 3.3%. IPE at 500 μg/mL also possessed inhibitory activity against 2,2'-azobis (2-methylpropionamidine dihydrochloride (AAPH-induced hemolysis of erythrocytes (89.4 ± 1.8% and resulted in a 52.9% reduction in ROS generation in UV-exposed fibroblasts. According to our findings, IPE is a potent antioxidant and a potential anti-photoaging agent.

  12. High-Mobility Group Box 1 Mediates Fibroblast Activity via RAGE-MAPK and NF-κB Signaling in Keloid Scar Formation

    Directory of Open Access Journals (Sweden)

    Jihee Kim

    2017-12-01

    Full Text Available Emerging studies have revealed the involvement of high-mobility group box 1 (HMGB1 in systemic fibrotic diseases, yet its role in the cutaneous scarring process has not yet been investigated. We hypothesized that HMGB1 may promote fibroblast activity to cause abnormal cutaneous scarring. In vitro wound healing assay with normal and keloid fibroblasts demonstrated that HMGB1 administration promoted the migration of both fibroblasts with increased speed and a greater traveling distance. Treatment of the HMGB1 inhibitor glycyrrhizic acid (GA showed an opposing effect on both activities. To analyze the downstream mechanism, the protein levels of extracellular signal-regulated kinase (ERK 1/2, protein kinase B (AKT, and nuclear factor kappa-light-chain-enhancer of activated B cells (NF-κB were measured by western blot analysis. HMGB1 increased the expression levels of ERK1/2, AKT, and NF-κB compared to the control, which was suppressed by GA. HMGB1 promoted both normal and keloid fibroblasts migration to a degree equivalent to that achieved with TGF-β. We concluded that HMGB1 activates fibroblasts via the receptor for advanced glycation end product (RAGE—mitogen-activated protein kinases (MAPK and NF-κB interaction signaling pathways. Further knowledge of the relationship of HMGB1 with skin fibrosis may lead to a promising clinical approach to manage abnormal scarring.

  13. High-Mobility Group Box 1 Mediates Fibroblast Activity via RAGE-MAPK and NF-κB Signaling in Keloid Scar Formation.

    Science.gov (United States)

    Kim, Jihee; Park, Jong-Chul; Lee, Mi Hee; Yang, Chae Eun; Lee, Ju Hee; Lee, Won Jai

    2017-12-28

    Emerging studies have revealed the involvement of high-mobility group box 1 (HMGB1) in systemic fibrotic diseases, yet its role in the cutaneous scarring process has not yet been investigated. We hypothesized that HMGB1 may promote fibroblast activity to cause abnormal cutaneous scarring. In vitro wound healing assay with normal and keloid fibroblasts demonstrated that HMGB1 administration promoted the migration of both fibroblasts with increased speed and a greater traveling distance. Treatment of the HMGB1 inhibitor glycyrrhizic acid (GA) showed an opposing effect on both activities. To analyze the downstream mechanism, the protein levels of extracellular signal-regulated kinase (ERK) 1/2, protein kinase B (AKT), and nuclear factor kappa-light-chain-enhancer of activated B cells (NF-κB) were measured by western blot analysis. HMGB1 increased the expression levels of ERK1/2, AKT, and NF-κB compared to the control, which was suppressed by GA. HMGB1 promoted both normal and keloid fibroblasts migration to a degree equivalent to that achieved with TGF-β. We concluded that HMGB1 activates fibroblasts via the receptor for advanced glycation end product (RAGE)-mitogen-activated protein kinases (MAPK) and NF-κB interaction signaling pathways. Further knowledge of the relationship of HMGB1 with skin fibrosis may lead to a promising clinical approach to manage abnormal scarring.

  14. Anti-biofilm activity of chitosan gels formulated with silver nanoparticles and their cytotoxic effect on human fibroblasts

    Energy Technology Data Exchange (ETDEWEB)

    Pérez-Díaz, M.; Alvarado-Gomez, E. [Facultad de Ciencias Quimicas, Universidad Autonoma de San Luis Potosi (Mexico); Magaña-Aquino, M. [Servicio de Epidemiologia del Hospital Central “Dr. Ignacio Morones Prieto”, San Luis Potosi (Mexico); Sánchez-Sánchez, R.; Velasquillo, C. [Laboratorio de Biotecnologia, Instituto Nacional de Rehabilitacion, Mexico, D.F. (Mexico); Gonzalez, C. [Facultad de Ciencias Quimicas, Universidad Autonoma de San Luis Potosi (Mexico); Ganem-Rondero, A. [Division de Estudios de Posgrado (Tecnologia Farmaceutica), Facultad de Estudios Superiores Cuautitlan, Universidad Nacional Autonoma de Mexico, Cuautitlan Izcalli, Estado de Mexico (Mexico); Martínez-Castañon, G.; Zavala-Alonso, N. [Doctorado en Ciencias Odontológicas Facultad de Estomatologia, UASLP (Mexico); Martinez-Gutierrez, F. [Facultad de Ciencias Quimicas, Universidad Autonoma de San Luis Potosi (Mexico)

    2016-03-01

    The development of multi-species biofilms in chronic wounds is a serious health problem that primarily generates strong resistance mechanisms to antimicrobial therapy. The use of silver nanoparticles (AgNPs) as a broad-spectrum antimicrobial agent has been studied previously. However, their cytotoxic effects limit its use within the medical area. The purpose of this study was to evaluate the anti-biofilm capacity of chitosan gel formulations loaded with AgNPs, using silver sulfadiazine (SSD) as a standard treatment, on strains of clinical isolates, as well as their cytotoxic effect on human primary fibroblasts. Multi-species biofilm of Staphylococcus aureus oxacillin resistant (MRSA) and Pseudomonas aeruginosa obtained from a patient with chronic wound infection were carried out using a standard Drip Flow Reactor (DFR) under conditions that mimic the flow of nutrients in the human skin. Anti-biofilm activity of chitosan gels and SSD showed a log-reduction of 6.0 for MRSA when chitosan gel with AgNPs at a concentration of 100 ppm was used, however it was necessary to increase the concentration of the chitosan gel with AgNPs to 1000 ppm to get a log-reduction of 3.3, while the SSD showed a total reduction of both bacteria in comparison with the negative control. The biocompatibility evaluation on primary fibroblasts showed better results when the chitosan gels with AgNPs were tested even in the high concentration, in contrast with SSD, which killed all the primary fibroblasts. In conclusion, chitosan gel formulations loaded with AgNPs effectively prevent the formation of biofilm and kill bacteria in established biofilm, which suggest that chitosan gels with AgNPs could be used for prevention and treatment of infections in chronic wounds. The statistic significance of the biocompatibility of chitosan gel formulations loaded with AgNPs represents an advance; however further research and development are necessary to translate this technology into therapeutic and

  15. Anti-biofilm activity of chitosan gels formulated with silver nanoparticles and their cytotoxic effect on human fibroblasts

    International Nuclear Information System (INIS)

    Pérez-Díaz, M.; Alvarado-Gomez, E.; Magaña-Aquino, M.; Sánchez-Sánchez, R.; Velasquillo, C.; Gonzalez, C.; Ganem-Rondero, A.; Martínez-Castañon, G.; Zavala-Alonso, N.; Martinez-Gutierrez, F.

    2016-01-01

    The development of multi-species biofilms in chronic wounds is a serious health problem that primarily generates strong resistance mechanisms to antimicrobial therapy. The use of silver nanoparticles (AgNPs) as a broad-spectrum antimicrobial agent has been studied previously. However, their cytotoxic effects limit its use within the medical area. The purpose of this study was to evaluate the anti-biofilm capacity of chitosan gel formulations loaded with AgNPs, using silver sulfadiazine (SSD) as a standard treatment, on strains of clinical isolates, as well as their cytotoxic effect on human primary fibroblasts. Multi-species biofilm of Staphylococcus aureus oxacillin resistant (MRSA) and Pseudomonas aeruginosa obtained from a patient with chronic wound infection were carried out using a standard Drip Flow Reactor (DFR) under conditions that mimic the flow of nutrients in the human skin. Anti-biofilm activity of chitosan gels and SSD showed a log-reduction of 6.0 for MRSA when chitosan gel with AgNPs at a concentration of 100 ppm was used, however it was necessary to increase the concentration of the chitosan gel with AgNPs to 1000 ppm to get a log-reduction of 3.3, while the SSD showed a total reduction of both bacteria in comparison with the negative control. The biocompatibility evaluation on primary fibroblasts showed better results when the chitosan gels with AgNPs were tested even in the high concentration, in contrast with SSD, which killed all the primary fibroblasts. In conclusion, chitosan gel formulations loaded with AgNPs effectively prevent the formation of biofilm and kill bacteria in established biofilm, which suggest that chitosan gels with AgNPs could be used for prevention and treatment of infections in chronic wounds. The statistic significance of the biocompatibility of chitosan gel formulations loaded with AgNPs represents an advance; however further research and development are necessary to translate this technology into therapeutic and

  16. Fibroblast responses and antibacterial activity of Cu and Zn co-doped TiO2 for percutaneous implants

    Science.gov (United States)

    Zhang, Lan; Guo, Jiaqi; Yan, Ting; Han, Yong

    2018-03-01

    In order to enhance skin integration and antibacterial activity of Ti percutaneous implants, microporous TiO2 coatings co-doped with different doses of Cu2+ and Zn2+ were directly fabricated on Ti via micro-arc oxidation (MAO). The structures of coatings were investigated; the behaviors of fibroblasts (L-929) as well as the response of Staphylococcus aureus (S. aureus) were evaluated. During the MAO process, a large number of micro-arc discharges forming on Ti performed as penetrating channels; O2-, Ca2+, Zn2+, Cu2+ and PO43- delivered via the channels, giving rise to the formation of doped TiO2. Surface characteristics including phase component, topography, surface roughness and wettability were almost the same for different coatings, whereas, the amount of Cu doped in TiO2 decreased with the increased Zn amount. Compared with Cu single-doped TiO2 (0.77 Wt% Cu), the co-doped with appropriate amounts of Cu and Zn, for example, 0.55 Wt% Cu and 2.53 Wt% Zn, further improved proliferation of L-929, facilitated fibroblasts to switch to fibrotic phenotype, and enhanced synthesis of collagen I as well as the extracellular collagen secretion; the antibacterial properties including contact-killing and release-killing were also enhanced. By analyzing the relationship of Cu/Zn amount in TiO2 and the behaviors of L-929 and S. aureus, it can be deduced that when the doped Zn is in a low dose (<1.79 Wt%), the behaviors of L-929 and S. aureus are sensitive to the reduced amount of Cu2+, whereas, Zn2+ plays a key role in accelerating fibroblast functions and reducing S. aureus when its dose obviously increases from 2.63 to 6.47 Wt%.

  17. In normal human fibroblasts variation in DSB repair capacity cannot be ascribed to radiation-induced changes in the localisation, expression or activity of major NHEJ proteins

    DEFF Research Database (Denmark)

    Kasten-Pisula, Ulla; Vronskaja, Svetlana; Overgaard, Jens

    2008-01-01

    in the activity of the DNA-PK complex induced upon irradiation. CONCLUSIONS: For normal human fibroblasts, the level or activity of NHEJ proteins measured prior to or after irradiation cannot be used to predict the DSB repair capacity or cellular radiosensitivity. Udgivelsesdato: 2008-Mar......BACKGROUND AND PURPOSE: The aim of the present study was to test whether for normal human fibroblasts the variation in double-strand break (DSB) repair capacity results from radiation-induced differences in localisation, expression or activity of major non-homologous end-joining (NHEJ) proteins....... MATERIALS AND METHODS: Experiments were performed with 11 normal human fibroblast strains AF01-11. NHEJ proteins were determined by Western blot and DNA-PK activity by pulldown-assay. RESULTS: The four NHEJ proteins tested (Ku70, Ku80, XRCC4 and DNA-PKcs) were found to be localised almost exclusively...

  18. Dermal fibroblasts from patients with Parkinson’s disease have normal GCase activity and autophagy compared to patients with PD and GBA mutations [version 2; referees: 2 approved

    Directory of Open Access Journals (Sweden)

    Lucy M Collins

    2018-02-01

    Full Text Available Background: Recently, the development of Parkinson’s disease (PD has been linked to a number of genetic risk factors, of which the most common is glucocerebrosidase (GBA mutations. Methods: We investigated PD and Gaucher Disease (GD patient derived skin fibroblasts using biochemistry assays. Results: PD patient derived skin fibroblasts have normal glucocerebrosidase (GCase activity, whilst patients with PD and GBA mutations have a selective deficit in GCase enzyme activity and impaired autophagic flux. Conclusions: This data suggests that only PD patients with a GBA mutation have altered GCase activity and autophagy, which may explain their more rapid clinical progression.

  19. Induction of fibroblast growth factor 21 does not require activation of the hepatic X-box binding protein 1 in mice

    Directory of Open Access Journals (Sweden)

    Shantel Olivares

    2017-12-01

    Full Text Available Objective: Fibroblast growth factor 21 (FGF21, a key regulator of the metabolic response to fasting, is highly induced by endoplasmic reticulum (ER stress. The X-box binding protein 1 (Xbp1 is one of several ER stress proteins that has been shown to directly activate the FGF21 promoter. We aimed to determine whether hepatic Xbp1 is required for induction of hepatic FGF21 in vivo. Methods: Mice bearing a hepatocyte-specific deletion of Xbp1 (Xbp1LKO were subjected to fasting, pharmacologic ER stress, or a ketogenic diet, all potent stimuli of Fgf21 expression. Results: Hepatocyte-specific Xbp1 knockout mice demonstrated normal induction of FGF21 in response to fasting or pharmacologic ER stress and enhanced induction of FGF21 in response to a ketogenic diet. Consistent with preserved induction of FGF21, Xbp1LKO mice exhibited normal induction of FGF21 target genes and normal ketogenesis in response to fasting or a ketogenic diet. Conclusion: Hepatic Xbp1 is not required for induction of FGF21 under physiologic or pathophysiologic conditions in vivo. Keywords: Unfolded protein response, Endoplasmic reticulum stress, Fasting, Fatty acid oxidation, Ketogenic diet

  20. Glycogen synthase kinase-3 inhibition attenuates fibroblast activation and development of fibrosis following renal ischemia-reperfusion in mice

    Directory of Open Access Journals (Sweden)

    Shailendra P. Singh

    2015-08-01

    Full Text Available Glycogen synthase kinase-3β (GSK3β is a serine/threonine protein kinase that plays an important role in renal tubular injury and regeneration in acute kidney injury. However, its role in the development of renal fibrosis, often a long-term consequence of acute kidney injury, is unknown. Using a mouse model of renal fibrosis induced by ischemia-reperfusion injury, we demonstrate increased GSK3β expression and activity in fibrotic kidneys, and its presence in myofibroblasts in addition to tubular epithelial cells. Pharmacological inhibition of GSK3 using TDZD-8 starting before or after ischemia-reperfusion significantly suppressed renal fibrosis by reducing the myofibroblast population, collagen-1 and fibronectin deposition, inflammatory cytokines, and macrophage infiltration. GSK3 inhibition in vivo reduced TGF-β1, SMAD3 activation and plasminogen activator inhibitor-1 levels. Consistently in vitro, TGF-β1 treatment increased GSK3β expression and GSK3 inhibition abolished TGF-β1-induced SMAD3 activation and α-smooth muscle actin (α-SMA expression in cultured renal fibroblasts. Importantly, overexpression of constitutively active GSK3β stimulated α-SMA expression even in the absence of TGF-β1 treatment. These results suggest that TGF-β regulates GSK3β, which in turn is important for TGF-β–SMAD3 signaling and fibroblast-to-myofibroblast differentiation. Overall, these studies demonstrate that GSK3 could promote renal fibrosis by activation of TGF-β signaling and the use of GSK3 inhibitors might represent a novel therapeutic approach for progressive renal fibrosis that develops as a consequence of acute kidney injury.

  1. Human skeletal muscle fibroblasts stimulate in vitro myogenesis and in vivo muscle regeneration.

    Science.gov (United States)

    Mackey, Abigail L; Magnan, Mélanie; Chazaud, Bénédicte; Kjaer, Michael

    2017-08-01

    Accumulation of skeletal muscle extracellular matrix is an unfavourable characteristic of many muscle diseases, muscle injury and sarcopenia. The extent of cross-talk between fibroblasts, as the source of matrix protein, and satellite cells in humans is unknown. We studied this in human muscle biopsies and cell-culture studies. We observed a strong stimulation of myogenesis by human fibroblasts in cell culture. In biopsies collected 30 days after a muscle injury protocol, fibroblast number increased to four times control levels, where fibroblasts were found to be preferentially located immediately surrounding regenerating muscle fibres. These novel findings indicate an important role for fibroblasts in supporting the regeneration of muscle fibres, potentially through direct stimulation of satellite cell differentiation and fusion, and contribute to understanding of cell-cell cross-talk during physiological and pathological muscle remodelling. Accumulation of skeletal muscle extracellular matrix is an unfavourable characteristic of many muscle diseases, muscle injury and sarcopenia. In addition to the indispensable role satellite cells play in muscle regeneration, there is emerging evidence in rodents for a regulatory influence on fibroblast activity. However, the influence of fibroblasts on satellite cells and muscle regeneration in humans is unknown. The purpose of this study was to investigate this in vitro and during in vivo regeneration in humans. Following a muscle injury protocol in young healthy men (n = 7), the number of fibroblasts (TCF7L2+), satellite cells (Pax7+), differentiating myogenic cells (myogenin+) and regenerating fibres (neonatal/embryonic myosin+) was determined from biopsy cross-sections. Fibroblasts and myogenic precursor cells (MPCs) were also isolated from human skeletal muscle (n = 4) and co-cultured using different cell ratios, with the two cell populations either in direct contact with each other or separated by a permeable

  2. Effect of gamma irradiation on the physiological activity of Korean soybean fermented foods, Chungkookjang and Doenjang

    International Nuclear Information System (INIS)

    Byun, M.-W.; Son, J.-H.; Yook, H.-S.; Jo, Cheorun; Kim, D.-H.

    2002-01-01

    Effects of gamma irradiation on the physiological activity of Korean soybean fermented foods were investigated. Chungkookjang, the whole cooked soybean product and Doenjang, soybean paste were purchased and irradiated at 5, 10 and 20 kGy of absorbed doses. The physiological activity was evaluated by angiotensin converting enzyme inhibition, xanthine oxidase inhibition, tyrosinase inhibition and radical scavenging ability and results indicated that at 10 kGy or below did not show any significant change on physiological activities by irradiation

  3. Hypoxia-Induced Collagen Synthesis of Human Lung Fibroblasts by Activating the Angiotensin System

    Directory of Open Access Journals (Sweden)

    Shan-Shan Liu

    2013-12-01

    Full Text Available The exact molecular mechanism that mediates hypoxia-induced pulmonary fibrosis needs to be further clarified. The aim of this study was to explore the effect and underlying mechanism of angiotensin II (Ang II on collagen synthesis in hypoxic human lung fibroblast (HLF cells. The HLF-1 cell line was used for in vitro studies. Angiotensinogen (AGT, angiotensin converting enzyme (ACE, angiotensin II type 1 receptor (AT1R and angiotensin II type 2 receptor (AT2R expression levels in human lung fibroblasts were analysed using real-time polymerase chain reaction (RT-PCR after hypoxic treatment. Additionally, the collagen type I (Col-I, AT1R and nuclear factor κappaB (NF-κB protein expression levels were detected using Western blot analysis, and NF-κB nuclear translocation was measured using immunofluorescence localization analysis. Ang II levels in HLF-1 cells were measured with an enzyme-linked immunosorbent assay (ELISA. We found that hypoxia increased Col-I mRNA and protein expression in HLF-1 cells, and this effect could be inhibited by an AT1R or AT2R inhibitor. The levels of NF-κB, RAS components and Ang II production in HLF-1 cells were significantly increased after the hypoxia exposure. Hypoxia or Ang II increased NF-κB-p50 protein expression in HLF-1 cells, and the special effect could be inhibited by telmisartan (TST, an AT1R inhibitor, and partially inhibited by PD123319, an AT2R inhibitor. Importantly, hypoxia-induced NF-κB nuclear translocation could be nearly completely inhibited by an AT1R or AT2R inhibitor. Furthermore pyrrolidine dithiocarbamate (PDTC, a NF-κB blocker, abolished the expression of hypoxia-induced AT1R and Col-I in HLF-1 cells. Our results indicate that Ang II-mediated NF-κB signalling via ATR is involved in hypoxia-induced collagen synthesis in human lung fibroblasts.

  4. The hallmarks of fibroblast ageing.

    Science.gov (United States)

    Tigges, Julia; Krutmann, Jean; Fritsche, Ellen; Haendeler, Judith; Schaal, Heiner; Fischer, Jens W; Kalfalah, Faiza; Reinke, Hans; Reifenberger, Guido; Stühler, Kai; Ventura, Natascia; Gundermann, Sabrina; Boukamp, Petra; Boege, Fritz

    2014-06-01

    Ageing is influenced by the intrinsic disposition delineating what is maximally possible and extrinsic factors determining how that frame is individually exploited. Intrinsic and extrinsic ageing processes act on the dermis, a post-mitotic skin compartment mainly consisting of extracellular matrix and fibroblasts. Dermal fibroblasts are long-lived cells constantly undergoing damage accumulation and (mal-)adaptation, thus constituting a powerful indicator system for human ageing. Here, we use the systematic of ubiquitous hallmarks of ageing (Lopez-Otin et al., 2013, Cell 153) to categorise the available knowledge regarding dermal fibroblast ageing. We discriminate processes inducible in culture from phenomena apparent in skin biopsies or primary cells from old donors, coming to the following conclusions: (i) Fibroblasts aged in culture exhibit most of the established, ubiquitous hallmarks of ageing. (ii) Not all of these hallmarks have been detected or investigated in fibroblasts aged in situ (in the skin). (iii) Dermal fibroblasts aged in vitro and in vivo exhibit additional features currently not considered ubiquitous hallmarks of ageing. (iv) The ageing process of dermal fibroblasts in their physiological tissue environment has only been partially elucidated, although these cells have been a preferred model of cell ageing in vitro for decades. Copyright © 2014 Elsevier Ireland Ltd. All rights reserved.

  5. Fibroblastic rheumatism

    Directory of Open Access Journals (Sweden)

    Jyoti Ranjan Parida

    2017-01-01

    Full Text Available Fibroblastic rheumatism (FR is a rare dermoarthopathy reported from different parts of the world since 1980. Although the exact cause is unknown, few reports implicate infection may be a triggering event. Patients usually present with multiple skin nodules and polyarthropathy with progressive skin contractures. Laboratory parameters including acute phase reactants are usually normal. The confirmatory diagnosis is based on histopathologic study of skin nodules, which demonstrate fibroblastic proliferation, thickened collagen fibers, dermal fibrosis, and decreased number of elastic fibers. Immunoreactivity for b-catenin, smooth muscle actin, and the monoclonal antibody HHF35 show myofibroblastic differentiation. Treatments with oral prednisolone and other disease-modifying drugs such as methotrexate, infliximab, and interferon have been tried with variable success. In general, skin lesions respond more aptly than joint symptoms indicating that skin fibroblast is more amenable to treatment than synovial fibroblasts. Awareness regarding this orphan disease among clinicians and pathologists will help in more reporting of such cases and finding out optimal treatment regimen.

  6. Neuroligin-1 induces neurite outgrowth through interaction with neurexin-1ß and activation of fibroblast growth factor receptor-1

    DEFF Research Database (Denmark)

    Gjørlund, Michelle D; Nielsen, Janne; Pankratova, Stanislava

    2012-01-01

    Neurexin-1 (NRXN1) and neuroligin-1 (NLGN1) are synaptic cell adhesion molecules that connect pre- and postsynaptic neurons at synapses and mediate signaling across the synapse, which modulates synaptic activity and determines the properties of neuronal networks. Defects in the genes encoding NLGN1...... have been linked to cognitive diseases such as autism. The roles of both NRXN1 and NLGN1 during synaptogenesis have been studied extensively, but little is known about the role of these molecules in neuritogenesis, which eventually results in neuronal circuitry formation. The present study investigated...... the neuritogenic effect of NLGN1 in cultures of hippocampal neurons. Our results show that NLGN1, both in soluble and membrane-bound forms, induces neurite outgrowth that depends on the interaction with NRXN1ß and on activation of fibroblast growth factor receptor-1. In addition, we demonstrate that a synthetic...

  7. Plasma rich in growth factors promotes dermal fibroblast proliferation, migration and biosynthetic activity.

    Science.gov (United States)

    Anitua, E; Pino, A; Orive, G

    2016-11-02

    The use of plasma rich in growth factors (PRGF) has gained importance in many medical fields due to its regenerative potential. The aim of this study is to evaluate the effects of PRGF on primary skin fibroblasts assessing cell proliferation, migration and secretion of growth factors. The age of the patients from who PRGF was prepared was also studied to determine whether it influenced the outcomes. Human dermal fibroblasts were isolated from three healthy volunteers. Using PRGF-Endoret technology, PRGF was prepared from two groups of different ages (18-35 years and 50+ years). The effects of increasing concentration of PRGF (5%, 10% and 20%) on cell proliferation and migration was evaluated. Biosynthetic behaviour of cells was also analysed measuring vascular endothelial growth factor (VEGF), transforming growth factor b1 (TGFb1) and pro-collagen type I secreted levels with or without PRGF treatment. Mean platelet enrichment reached 2.4X and 2X in 18-35 and 50+ groups respectively. A dose-dependent response was observed in proliferation assays achieving the highest levels with 20% PRGF. Migration was also promoted in cells but not in a dose-dependent manner. Cell proliferation and migration outcomes obtained with PRGF (from both groups) were significantly higher compared to non-stimulated groups (pPRGF, however, with the exception of VEGF, no statistical significances were observed between the different age groups. Results from this study concluded that PRGF is safe and effective in stimulating skin regeneration by enhancing proliferation, migration and expression of pivotal bioactive molecules involved in wound healing and haemostasis.

  8. Dietary Manipulations That Induce Ketosis Activate the HPA Axis in Male Rats and Mice: A Potential Role for Fibroblast Growth Factor-21.

    Science.gov (United States)

    Ryan, Karen K; Packard, Amy E B; Larson, Karlton R; Stout, Jayna; Fourman, Sarah M; Thompson, Abigail M K; Ludwick, Kristen; Habegger, Kirk M; Stemmer, Kerstin; Itoh, Nobuyuki; Perez-Tilve, Diego; Tschöp, Matthias H; Seeley, Randy J; Ulrich-Lai, Yvonne M

    2018-01-01

    In response to an acute threat to homeostasis or well-being, the hypothalamic-pituitary-adrenocortical (HPA) axis is engaged. A major outcome of this HPA axis activation is the mobilization of stored energy, to fuel an appropriate behavioral and/or physiological response to the perceived threat. Importantly, the extent of HPA axis activity is thought to be modulated by an individual's nutritional environment. In this study, we report that nutritional manipulations signaling a relative depletion of dietary carbohydrates, thereby inducing nutritional ketosis, acutely and chronically activate the HPA axis. Male rats and mice maintained on a low-carbohydrate high-fat ketogenic diet (KD) exhibited canonical markers of chronic stress, including increased basal and stress-evoked plasma corticosterone, increased adrenal sensitivity to adrenocorticotropin hormone, increased stress-evoked c-Fos immunolabeling in the paraventricular nucleus of the hypothalamus, and thymic atrophy, an indicator of chronic glucocorticoid exposure. Moreover, acutely feeding medium-chain triglycerides (MCTs) to rapidly induce ketosis among chow-fed male rats and mice also acutely increased HPA axis activity. Lastly, and consistent with a growing literature that characterizes the hepatokine fibroblast growth factor-21 (FGF21) as both a marker of the ketotic state and as a key metabolic stress hormone, the HPA response to both KD and MCTs was significantly blunted among mice lacking FGF21. We conclude that dietary manipulations that induce ketosis lead to increased HPA axis tone, and that the hepatokine FGF21 may play an important role to facilitate this effect. Copyright © 2018 Endocrine Society.

  9. Bone marrow-derived cultured mast cells and peritoneal mast cells as targets of a growth activity secreted by BALB/3T3 fibroblasts

    International Nuclear Information System (INIS)

    Jozaki, K.; Kuriu, A.; Hirota, S.; Onoue, H.; Ebi, Y.; Adachi, S.; Ma, J.Y.; Tarui, S.; Kitamura, Y.

    1991-01-01

    When fibroblast cell lines were cultured in contact with bone marrow-derived cultured mast cells (CMC), both NIH/3T3 and BALB/3T3 cell lines supported the proliferation of CMC. In contrast, when contact between fibroblasts and CMC was prohibited by Biopore membranes or soft agar, only BALB/3T3 fibroblasts supported CMC proliferation, suggesting that BALB/3T3 but not NIH/3T3 cells secreted a significant amount of a mast cell growth activity. Moreover, the BALB/3T3-derived growth activity induced the incorporation of [3H]thymidine by CMC and the clonal growth of peritoneal mast cells in methylcellulose. The mast cell growth activity appeared to be different from interleukin 3 (IL-3) and interleukin 4 (IL-4), because mRNAs for these interleukins were not detectable in BALB/3T3 fibroblasts. Although mast cells are genetically deficient in tissues of W/Wv mice, CMC did develop when bone marrow cells of W/Wv mice were cultured with pokeweed mitogen-stimulated spleen cell-conditioned medium. Because BALB/3T3 fibroblast-conditioned medium (BALB-FCM) did not induce the incorporation of [3H]thymidine by W/Wv CMC, the growth activity in BALB-FCM appeared to be a ligand for the receptor encoded by the W (c-kit) locus. Because CMC and peritoneal mast cells are obtained as homogeneous suspensions rather easily, these cells may be potentially useful as targets for the fibroblast-derived mast cell growth activity

  10. Synthetic ligands of the elastin receptor induce elastogenesis in human dermal fibroblasts via activation of their IGF-1 receptors.

    Science.gov (United States)

    Qa'aty, Nour; Vincent, Matthew; Wang, Yanting; Wang, Andrew; Mitts, Thomas F; Hinek, Aleksander

    2015-12-01

    We have previously reported that a mixture of peptides obtained after chemical or enzymatic degradation of bovine elastin, induced new elastogenesis in human skin. Now, we investigated the elastogenic potential of synthetic peptides mimicking the elastin-derived, VGVAPG sequence, IGVAPG sequence that we found in the rice bran, and a similar peptide, VGVTAG that we identified in the IGF-1-binding protein-1 (IGFBP-1). We now demonstrate that treatment with each of these xGVxxG peptides (recognizable by the anti-elastin antibody), up-regulated the levels of elastin-encoding mRNA, tropoelastin protein, and the deposition of new elastic fibers in cultures of human dermal fibroblasts and in cultured explants of human skin. Importantly, we found that such induction of new elastogenesis may involve two parallel signaling pathways triggered after activation of IGF-1 receptor. In the first one, the xGVxxG peptides interact with the cell surface elastin receptor, thereby causing the downstream activation of the c-Src kinase and a consequent cross-activation of the adjacent IGF-1R, even in the absence of its principal ligand. In the second pathway their hydrophobic association with the N-terminal domain (VGVTAG) of the serum-derived IGFBP-1 induces conformational changes of this IGF-1 chaperone allowing for the release of its cargo and a consequent ligand-specific phosphorylation of IGF-1R. We present a novel, clinically relevant mechanism in which products of partial degradation of dermal elastin may stimulate production of new elastic fibers by dermal fibroblasts. Our findings particularly encourage the use of biologically safe synthetic xGVxxG peptides for regeneration of the injured or aged human skin. Copyright © 2015 Elsevier Ireland Ltd. All rights reserved.

  11. TNFSF14 (LIGHT Exhibits Inflammatory Activities in Lung Fibroblasts Complementary to IL-13 and TGF-β

    Directory of Open Access Journals (Sweden)

    Ricardo da Silva Antunes

    2018-03-01

    Full Text Available The cytokine TNFSF14 [homologous to Lymphotoxin, exhibits Inducible expression and competes with HSV Glycoprotein D for binding to HVEM, a receptor expressed on T lymphocytes (LIGHT] has been shown in mouse models to be important for development of lung tissue remodeling that is characteristic of asthma, idiopathic pulmonary fibrosis (IPF, and systemic sclerosis (SSc. However, its cellular targets are not fully delineated. In the present report, we show that LTβR and HVEM, the receptors for LIGHT, are constitutively expressed in primary human lung fibroblasts (HLFs. We asked whether LIGHT could promote inflammatory and remodeling-relevant activity in HLFs and how this was similar to, or distinct from, IL-13 or TGF-β, two cytokines strongly implicated in the pathogenesis of asthma, IPF, and SSc. Accumulation of myofibroblasts expressing alpha smooth muscle actin is a feature of lung inflammatory diseases. LIGHT promoted cell cycle progression and proliferation of HLFs, but not alpha smooth muscle actin expression. In contrast, TGF-β upregulated alpha smooth muscle actin but did not drive their proliferation. LIGHT also increased the gene or protein expression of a number of proinflammatory mediators, including ICAM-1 and VCAM-1, IL-6 and GM-CSF, the chemokines CCL5 and 20, and CXCL5, 11, and 12, and lung remodeling-associated proteinases MMP-9 and ADAM8. These were dependent on LTβR but not HVEM. LIGHT displayed overlapping and synergistic activities with IL-13 for a number of the activities, but LIGHT additionally enhanced the gene expression of several molecules, including the innate cytokines IL-33 and TSLP, which were not upregulated by IL-13. Our results highlight the varied and pleiotropic effects of LIGHT in HLFs. LIGHT might then be a therapeutic target for modulation of inflammation and remodeling associated with asthma and other similar diseases of the lung that involve fibroblasts.

  12. Stromal Activation Associated with Development of Prostate Cancer in Prostate-Targeted Fibroblast Growth Factor 8b Transgenic Mice

    Directory of Open Access Journals (Sweden)

    Teresa D. Elo

    2010-11-01

    Full Text Available Expression of fibroblast growth factor 8 (FGF-8 is commonly increased in prostate cancer. Experimental studies have provided evidence that it plays a role in prostate tumorigenesis and tumor progression. To study how increased FGF-8 affects the prostate, we generated and analyzed transgenic (TG mice expressing FGF-8b under the probasin promoter that targets expression to prostate epithelium. Prostates of the TG mice showed an increased size and changes in stromal and epithelialmorphology progressing fromatypia and prostatic intraepithelial neoplasia (mouse PIN, mPIN lesions to tumors with highly variable phenotype bearing features of adenocarcinoma, carcinosarcoma, and sarcoma. The development of mPIN lesions was preceded by formation of activated stroma containing increased proportion of fibroblastic cells, rich vasculature, and inflammation. The association between advancing stromal and epithelial alterations was statistically significant. Microarray analysis and validation with quantitative polymerase chain reaction revealed that expression of osteopontin and connective tissue growth factor was markedly upregulated in TG mouse prostates compared with wild type prostates. Androgen receptor staining was decreased in transformed epithelium and in hypercellular stroma but strongly increased in the sarcoma-like lesions. In conclusion, our data demonstrate that disruption of FGF signaling pathways by increased epithelial production of FGF-8b leads to strongly activated and atypical stroma, which precedes development of mPIN lesions and prostate cancer with mixed features of adenocarcinoma and sarcoma in the prostates of TG mice. The results suggest that increased FGF-8 in human prostate may also contribute to prostate tumorigenesis by stromal activation.

  13. Sialylation regulates myofibroblast differentiation of human skin fibroblasts.

    Science.gov (United States)

    Sasaki, Norihiko; Itakura, Yoko; Toyoda, Masashi

    2017-04-18

    Fibroblasts are key players in maintaining skin homeostasis and in orchestrating physiological tissue repair and skin regeneration. Dysfunctions in fibroblasts that occur with aging and the senescent process lead to the delayed healing observed in elderly people. The molecular mechanisms leading to fibroblast dysfunction during aging and the senescent process have not yet been clarified. Previously, changes in patterns of glycosylation were observed in fibroblasts in aging and the senescent process, but the effect of these changes on the function of fibroblasts has not been well documented. Here, we investigated whether changes in glycosylation during the process to senescence may have functional effects on fibroblasts. The changes in cell surface glycans on skin fibroblasts during the process to senescence were examined in early-passage (EP) and late-passage (LP) skin fibroblasts by fluorescence-activated cell sorting analysis using lectins. The contributors to the changes in cell surface glycans were examined by real-time polymerase chain reaction or Western blot analysis. The effects of changes in glycosylation on proliferation, migration, induction of cellular senescence, and myofibroblast differentiation induced by transforming growth factor (TGF)-β1 stimulation were examined in EP fibroblasts. The changes in glycosylation were performed by GalNAc-α-O-benzyl or sialidase treatment. A decrease in sialylation of glycoproteins and an increase in sialidase NEU1 were observed in LP fibroblasts. The reduction of sialylation did not have any effect on proliferation, migration, or induction of cellular senescence. On the other hand, myofibroblast differentiation was inhibited by the reduction of sialylation, indicating that sialylation is important for myofibroblast differentiation. The localization of CD44 in lipid rafts, which is required for myofibroblast differentiation, was inhibited by the reduction of sialylation. Furthermore, reduced myofibroblast

  14. Synthesis and biological activity of M6-P and M6-P analogs on fibroblast and keratinocyte proliferation.

    Science.gov (United States)

    Clavel, Caroline; Barragan-Montero, Véronique; Garric, Xavier; Molès, Jean-Pierre; Montero, Jean-Louis

    2005-09-01

    A new synthetic route to obtain the carboxylate analog of mannose 6-phosphate (M6-P) is presented. The effects of the M6-P, the carboxylate and two other analogs (the phosphonate and the alpha,beta ethylenic carboxylate) on the proliferation of human keratinocytes and dermal fibroblasts as well as on the proliferation of a murine fibroblast cell line, 3T3-J2 are tested. We observed that M6-P is a potent inhibitor of proliferation of both fibroblasts and keratinocytes. Among its analogs, the phosphonate showed a similar effect on human dermal fibroblasts but not on keratinocytes.

  15. Differences between Solution and Membrane Forms of Chitosan on the In Vitro Activity of Fibroblasts

    Directory of Open Access Journals (Sweden)

    Bahar Uslu

    2015-03-01

    Full Text Available Background: Chitosan, a linear polysaccharide, has been recently used in biomedical applications. In vitro studies have demonstrated its effect on cellular growth and its stimulatory action on cellular layer formation. Aims: The present study aims to compare the proliferative effects of chitosan in two forms, membranous and solution forms, on Swiss 3T3 mouse embryonic fibroblasts. Study Design: In vitro study. Methods: Three experimental groups were formed: cells were cultured in a normal medium without chitosan (Control Group; cells were cultured either in a medium containing 2.0% chitosan in membranous form (Membrane Group or chitosan solution at a concentration of 2.0% (Solution Group.Two different methods were used in the experiments: cells cultured on the medium containing chitosan in solution or membranous forms (method 1; and chitosan solution or membranous forms were added into the medium containing previously cultured cells (method 2. Results: Scanning electron microscopic investigations of the experimental groups revealed cells with well-defined cellular projections, intact cellular membranes and tight intercellular junctions. They were especially prominent in the membrane group of method 1 and in the membrane and solution groups of method 2. Mouse monoclonal anti-collagen 1 primary antibody was used to indicate collagen synthesis. Prominent collagen synthesis was detected in the membrane groups on the 10th day of culture for both methods. Bromodeoxyuridine (BrdU and MTT assays were performed in order to assess cellular proliferation and viability, respectively. BrdU labelling tests indicated a higher proliferation index in the membrane group of method 1 on the 5th and 10th days. For the second method, the membranous form on the 10th day and solution form on the 5th day were the most effective groups in terms of cellular proliferation. MTT results reflected a high cellular viability in method 1 on the 5th day of treatment with the

  16. Fibronectin-synthesizing activity of free and membrane-bound polyribosomes from human embryonic fibroblasts and chick embryos

    International Nuclear Information System (INIS)

    Belkin, V.M.; Volodarskaya, S.M.

    1986-01-01

    The fibronectin-synthesizing activity of membrane-bound and free polyribosomes in a cell-free system was studied using immunochemical methods. It was found that fibronectin biosynthesis on membrane-bound polyribosomes from human embryonic fibroblasts accounts for 4.9% and those from 10-day-old chick embryos for 1.1% of the total amount of newly synthesized proteins, whereas on free polyribosomes it is 1.0 and 0.3%, respectively. Fibronectin monomers with a molecular weight of 220,000 were found only in the material of the cell-free system containing heavy fractions of membrane-bound polyribosomes newly synthesized in the presence of spermidine. Thus, it was shown that fibronectin is synthesized primarily on membrane-bound polyribosomes

  17. NOD2 and TLR2 ligands trigger the activation of basophils and eosinophils by interacting with dermal fibroblasts in atopic dermatitis-like skin inflammation

    Science.gov (United States)

    Jiao, Delong; Wong, Chun-Kwok; Qiu, Huai-Na; Dong, Jie; Cai, Zhe; Chu, Man; Hon, Kam-Lun; Tsang, Miranda Sin-Man; Lam, Christopher Wai-Kei

    2016-01-01

    The skin of patients with atopic dermatitis (AD) has a unique predisposition for colonization by Staphylococcus aureus (S. aureus), which contributes to the inflammation and grim prognosis of AD. Although the mechanism underlying the S. aureus-induced exacerbation of AD remains unclear, recent studies have found a pivotal role for pattern recognition receptors in regulating the inflammatory responses in S. aureus infection. In the present study, we used a typical mouse model of AD-like skin inflammation and found that S. aureus-associated nucleotide-binding oligomerization domain-containing protein 2 (NOD2) and toll-like receptor 2 (TLR2) ligands exacerbated AD-like symptoms, which were further deteriorated by the in vivo expansion of basophils and eosinophils. Subsequent histological analyses revealed that dermal fibroblasts were pervasive in the AD-like skin lesions. Co-culture of human dermal fibroblasts with basophils and eosinophils resulted in a vigorous cytokine/chemokine response to the NOD2/TLR2 ligands and the enhanced expression of intercellular adhesion molecule-1 on the dermal fibroblasts. Basophils and eosinophils were primarily responsible for the AD-related cytokine/chemokine expression in the co-cultures. Direct intercellular contact was necessary for the crosstalk between basophils and dermal fibroblasts, while soluble mediators were sufficient to mediate the eosinophil–fibroblast interactions. Moreover, the intracellular p38 mitogen-activated protein kinase, extracellular signal-regulated kinase, and nuclear factor-kappa B signaling pathways were essential for NOD2/TLR2 ligand-mediated activation of basophils, eosinophils, and dermal fibroblasts in AD-related inflammation. This study provides the evidence of NOD2/TLR2-mediated exacerbation of AD through activation of innate immune cells and therefore sheds light on a novel mechanistic pathway by which S. aureus contributes to the pathophysiology of AD. PMID:26388234

  18. The exercise and environmental physiology of extravehicular activity

    Science.gov (United States)

    Cowell, Stephenie A.; Stocks, Jodie M.; Evans, David G.; Simonson, Shawn R.; Greenleaf, John E.

    2002-01-01

    Extravehicular activity (EVA), i.e., exercise performed under unique environmental conditions, is indispensable for supporting daily living in weightlessness and for further space exploration. From 1965-1996 an average of 20 h x yr(-1) were spent performing EVA. International Space Station (ISS) assembly will require 135 h x yr(-1) of EVA, and 138 h x yr(-1) is planned for post-construction maintenance. The extravehicular mobility unit (EMU), used to protect astronauts during EVA, has a decreased pressure of 4.3 psi that could increase astronauts' risk of decompression sickness (DCS). Exercise in and repeated exposure to this hypobaria may increase the incidence of DCS, although weightlessness may attenuate this risk. Exercise thermoregulation within the EMU is poorly understood; the liquid cooling garment (LCG), worn next to the skin and designed to handle thermal stress, is manually controlled. Astronauts may become dehydrated (by up to 2.6% of body weight) during a 5-h EVA, further exacerbating the thermoregulatory challenge. The EVA is performed mainly with upper body muscles; but astronauts usually exercise at only 26-32% of their upper body maximal oxygen uptake (VO2max). For a given ground-based work task in air (as opposed to water), the submaximal VO2 is greater while VO2max and metabolic efficiency are lower during ground-based arm exercise as compared with leg exercise, and cardiovascular responses to exercise and training are also different for arms and legs. Preflight testing and training, whether conducted in air or water, must account for these differences if ground-based data are extrapolated for flight requirements. Astronauts experience deconditioning during microgravity resulting in a 10-20% loss in arm strength, a 20-30% loss in thigh strength, and decreased lower-body aerobic exercise capacity. Data from ground-based simulations of weightlessness such as bed rest induce a 6-8% decrease in upper-body strength, a 10-16% loss in thigh extensor

  19. Chemical Composition of Moringa oleifera Ethyl Acetate Fraction and Its Biological Activity in Diabetic Human Dermal Fibroblasts

    Science.gov (United States)

    Gothai, Sivapragasam; Muniandy, Katyakyini; Zarin, Mazni Abu; Sean, Tan Woan; Kumar, S. Suresh; Munusamy, Murugan A.; Fakurazi, Sharida; Arulselvan, Palanisamy

    2017-01-01

    Background: Moringa oleifera (MO), commonly known as the drumstick tree, is used in folklore medicine for the treatment of skin disease. Objective: The objective of this study is to evaluate the ethyl acetate (EtOAc) fraction of MO leaves for in vitro antibacterial, antioxidant, and wound healing activities and conduct gas chromatography-mass spectrometry (GC-MS) analysis. Materials and Methods: Antibacterial activity was evaluated against six Gram-positive bacteria and 10 Gram-negative bacteria by disc diffusion method. Free radical scavenging activity was assessed by 1, 1-diphenyl-2-picryl hydrazyl (DPPH) radical hydrogen peroxide scavenging and total phenolic content (TPC). Wound healing efficiency was studied using cell viability, proliferation, and scratch assays in diabetic human dermal fibroblast (HDF-D) cells. Results: The EtOAc fraction showed moderate activity against all bacterial strains tested, and the maximum inhibition zone was observed against Streptococcus pyogenes (30 mm in diameter). The fraction showed higher sensitivity to Gram-positive strains than Gram-negative strains. In the quantitative analysis of antioxidant content, the EtOAc fraction was found to have a TPC of 65.81 ± 0.01. The DPPH scavenging activity and the hydrogen peroxide assay were correlated with the TPC value, with IC50 values of 18.21 ± 0.06 and 59.22 ± 0.04, respectively. The wound healing experiment revealed a significant enhancement of cell proliferation and migration of HDF-D cells. GC-MS analysis confirmed the presence of 17 bioactive constituents that may be the principal factors in the significant antibacterial, antioxidant, and wound healing activity. Conclusion: The EtOAc fraction of MO leaves possesses remarkable wound healing properties, which can be attributed to the antibacterial and antioxidant activities of the fraction. SUMMARY Moringa oleifera (MO) leaf ethyl acetate (EtOAc) fraction possesses antibacterial activities toward Gram-positive bacteria such as

  20. Low-level laser therapy activates NF-kB via generation of reactive oxygen species in mouse embryonic fibroblasts.

    Directory of Open Access Journals (Sweden)

    Aaron C-H Chen

    Full Text Available Despite over forty years of investigation on low-level light therapy (LLLT, the fundamental mechanisms underlying photobiomodulation at a cellular level remain unclear.In this study, we isolated murine embryonic fibroblasts (MEF from transgenic NF-kB luciferase reporter mice and studied their response to 810 nm laser radiation. Significant activation of NF-kB was observed at fluences higher than 0.003 J/cm(2 and was confirmed by Western blot analysis. NF-kB was activated earlier (1 hour by LLLT compared to conventional lipopolysaccharide treatment. We also observed that LLLT induced intracellular reactive oxygen species (ROS production similar to mitochondrial inhibitors, such as antimycin A, rotenone and paraquat. Furthermore, we observed similar NF-kB activation with these mitochondrial inhibitors. These results, together with inhibition of laser induced NF-kB activation by antioxidants, suggests that ROS play an important role in the laser induced NF-kB signaling pathways. However, LLLT, unlike mitochondrial inhibitors, induced increased cellular ATP levels, which indicates that LLLT also upregulates mitochondrial respiration.We conclude that LLLT not only enhances mitochondrial respiration, but also activates the redox-sensitive NFkB signaling via generation of ROS. Expression of anti-apoptosis and pro-survival genes responsive to NFkB could explain many clinical effects of LLLT.

  1. The fibroblast growth factor receptor (FGFR) agonist FGF1 and the neural cell adhesion molecule-derived peptide FGL activate FGFR substrate 2alpha differently

    DEFF Research Database (Denmark)

    Chen, Yongshuo; Li, Shizhong; Berezin, Vladimir

    2010-01-01

    Activation of fibroblast growth factor (FGF) receptors (FGFRs) both by FGFs and by the neural cell adhesion molecule (NCAM) is crucial in the development and function of the nervous system. We found that FGFR substrate 2alpha (FRS2alpha), Src homologous and collagen A (ShcA), and phospholipase-Cg...

  2. Cell-contact-dependent activation of CD4+ T cells by adhesion molecules on synovial fibroblasts.

    Science.gov (United States)

    Mori, Masato; Hashimoto, Motomu; Matsuo, Takashi; Fujii, Takao; Furu, Moritoshi; Ito, Hiromu; Yoshitomi, Hiroyuki; Hirose, Jun; Ito, Yoshinaga; Akizuki, Shuji; Nakashima, Ran; Imura, Yoshitaka; Yukawa, Naoichiro; Yoshifuji, Hajime; Ohmura, Koichiro; Mimori, Tsuneyo

    2017-05-01

    To determine how cell-cell contact with synovial fibroblasts (SF) influence on the proliferation and cytokine production of CD4 +  T cells. Naïve CD4 +  T cells were cultured with SF from rheumatoid arthritis patients, stimulated by anti-CD3/28 antibody, and CD4 +  T cell proliferation and IFN-γ/IL-17 production were analyzed. To study the role of adhesion molecules, cell contact was blocked by transwell plate or anti-intracellular adhesion molecule-1 (ICAM-1)/vascular cell adhesion molecule-1(VCAM-1) antibody. To study the direct role of adhesion molecules for CD4 +  T cells, CD161 +  or CD161 - naïve CD4 +  T cells were stimulated on plastic plates coated by recombinant ICAM-1 or VCAM-1, and the source of IFN-γ/IL-17 were analyzed. SF enhanced naïve CD4 +  T cell proliferation and IFN-γ/IL-17 production in cell-contact and in part ICAM-1-/VCAM-1-dependent manner. Plate-coated ICAM-1 and VCAM-1 enhanced naïve CD4 +  T cell proliferation and IFN-γ production, while VCAM-1 efficiently promoting IL-17 production. CD161 +  naïve T cells upregulating LFA-1 and VLA-4 were the major source of IFN-γ/IL-17 upon interaction with ICAM-1/VCAM-1. CD4 +  T cells rapidly expand and secrete IFN-γ/IL-17 upon cell-contact with SF via adhesion molecules. Interfering with ICAM-1-/VCAM-1 may be beneficial for inhibiting RA synovitis.

  3. Comparison of the effect of activated or non-activated PRP in various concentrations on osteoblast and fibroblast cell line proliferation.

    Science.gov (United States)

    Vahabi, Surena; Yadegari, Zahra; Mohammad-Rahimi, Hossein

    2017-09-01

    Platelet-rich plasma (PRP) contains growth factors which positively affect cell proliferation, cell differentiation, chemotaxis and intracellular matrix synthesis. All these processes are involved in wound healing and tissue regeneration; thus, PRP as a source of growth factors can be used in periodontal regenerative therapies. The purpose of the present study was to assess the effect of various concentrations of activated and non-activated PRP on proliferation of osteoblasts and fibroblasts in vitro. PRP was obtained from three healthy volunteers. 75, 50, 25, and 10% concentrations of f PRP were prepared by dilution in Dulbecco's modified Eagle's medium. In activated PRP groups, PRP concentrations were activated by adding calcium gluconate. Human gingival fibroblast (HGF) cell line and MG-63 (osteosarcoma) human osteoblast-like cell line were used in the study. The MTT proliferation assay was used to assess the effect of different types of PRP concentrates on proliferation of HGF and MG-63 cells, in 24, 48 and 72 h. After 24, 48, and 72 h, the proliferation rate of both cell lines was higher in the positive control group, except in 72 h in HGF cell lines, that 10% non-activated PRP group and 10 and 25% activated PRP groups has higher proliferation rate than the positive control group, which it was not significant. Proliferation rate in cells with 10% activated PRP was highest among samples containing PRP. The current study failed to show the significant effect of activated or non-activated PRP on proliferation of HGFs or MG-63 osteoblast-like cells. However, our results showed that activated PRP had a greater effect than non-activated PRP.

  4. Urokinase-type plasminogen activator receptor (uPAR) ligation induces a raft-localized integrin signaling switch that mediates the hypermotile phenotype of fibrotic fibroblasts.

    Science.gov (United States)

    Grove, Lisa M; Southern, Brian D; Jin, Tong H; White, Kimberly E; Paruchuri, Sailaja; Harel, Efrat; Wei, Ying; Rahaman, Shaik O; Gladson, Candece L; Ding, Qiang; Craik, Charles S; Chapman, Harold A; Olman, Mitchell A

    2014-05-02

    The urokinase-type plasminogen activator receptor (uPAR) is a glycosylphosphatidylinositol-linked membrane protein with no cytosolic domain that localizes to lipid raft microdomains. Our laboratory and others have documented that lung fibroblasts from patients with idiopathic pulmonary fibrosis (IPF) exhibit a hypermotile phenotype. This study was undertaken to elucidate the molecular mechanism whereby uPAR ligation with its cognate ligand, urokinase, induces a motile phenotype in human lung fibroblasts. We found that uPAR ligation with the urokinase receptor binding domain (amino-terminal fragment) leads to enhanced migration of fibroblasts on fibronectin in a protease-independent, lipid raft-dependent manner. Ligation of uPAR with the amino-terminal fragment recruited α5β1 integrin and the acylated form of the Src family kinase, Fyn, to lipid rafts. The biological consequences of this translocation were an increase in fibroblast motility and a switch of the integrin-initiated signal pathway for migration away from the lipid raft-independent focal adhesion kinase pathway and toward a lipid raft-dependent caveolin-Fyn-Shc pathway. Furthermore, an integrin homologous peptide as well as an antibody that competes with β1 for uPAR binding have the ability to block this effect. In addition, its relative insensitivity to cholesterol depletion suggests that the interactions of α5β1 integrin and uPAR drive the translocation of α5β1 integrin-acylated Fyn signaling complexes into lipid rafts upon uPAR ligation through protein-protein interactions. This signal switch is a novel pathway leading to the hypermotile phenotype of IPF patient-derived fibroblasts, seen with uPAR ligation. This uPAR dependent, fibrotic matrix-selective, and profibrotic fibroblast phenotype may be amenable to targeted therapeutics designed to ameliorate IPF.

  5. Fibroblast growth factor-2 induces osteogenic differentiation through a Runx2 activation in vascular smooth muscle cells

    Energy Technology Data Exchange (ETDEWEB)

    Nakahara, Takehiro; Sato, Hiroko; Shimizu, Takehisa; Tanaka, Toru; Matsui, Hiroki; Kawai-Kowase, Keiko; Sato, Mahito; Iso, Tatsuya; Arai, Masashi [Department of Medicine and Biological Science, Gunma University Graduate School of Medicine, 3-39-15 Showa-machi, Maebashi, Gunma 371-8511 (Japan); Kurabayashi, Masahiko, E-mail: mkuraba@med.gunma-u.ac.jp [Department of Medicine and Biological Science, Gunma University Graduate School of Medicine, 3-39-15 Showa-machi, Maebashi, Gunma 371-8511 (Japan)

    2010-04-02

    Expression of bone-associated proteins and osteoblastic transcription factor Runx2 in arterial cells has been implicated in the development of vascular calcification. However, the signaling upstream of the Runx2-mediated activation of osteoblastic program in vascular smooth muscle cells (VSMC) is poorly understood. We examined the effects of fibroblast growth factor-2 (FGF-2), an important regulator of bone formation, on osteoblastic differentiation of VSMC. Stimulation of cultured rat aortic SMC (RASMC) with FGF-2 induced the expression of the osteoblastic markers osteopontin (OPN) and osteocalcin. Luciferase assays showed that FGF-2 induced osteocyte-specific element (OSE)-dependent transcription. Downregulation of Runx2 by siRNA repressed the basal and FGF-2-stimulated expression of the OPN gene in RASMC. FGF-2 produced hydrogen peroxide in RASMC, as evaluated by fluorescent probe. Induction of OPN expression by FGF-2 was inhibited not only by PD98059 (MEK1 inhibitor) and PP1 (c-Src inhibitor), but also by an antioxidant, N-acetyl cysteine. Nuclear extracts from FGF-2-treated RASMC exhibited increased DNA-binding of Runx2 to its target sequence. Immunohistochemistry of human coronary atherectomy specimens and calcified aortic tissues showed that expression of FGF receptor-1 and Runx2 was colocalized. In conclusion, these results suggest that FGF-2 plays a role in inducing osteoblastic differentiation of VSMC by activating Runx2 through mitogen-activated protein kinase (MAPK)-dependent- and oxidative stress-sensitive-signaling pathways.

  6. Fibroblast Growth Factor-9 Activates c-Kit Progenitor Cells and Enhances Angiogenesis in the Infarcted Diabetic Heart

    Directory of Open Access Journals (Sweden)

    Dinender Singla

    2016-01-01

    Full Text Available We hypothesized that fibroblast growth factor-9 (FGF-9 would enhance angiogenesis via activating c-kit positive stem cells in the infarcted nondiabetic and diabetic heart. In brief, animals were divided into three groups: Sham, MI, and MI+FGF-9. Two weeks following MI or sham surgery, our data suggest that treatment with FGF-9 significantly diminished vascular apoptosis compared to the MI group in both C57BL/6 and db/db mice (p<0.05. Additionally, the number of c-kit+ve/SM α-actin+ve cells and c-kit+ve/CD31+ve cells were greatly enhanced in the MI+FGF-9 groups relative to the MI suggesting FGF-9 enhances c-Kit cell activation and their differentiation into vascular smooth muscle cells and endothelial cells, respectively (p<0.05. Histology shows that the total number of vessels were quantified for all groups and our data suggest that the FGF-9 treated groups had significantly more vessels than their MI counterparts (p<0.05. Finally, echocardiographic data suggests a significant improvement in left ventricular output, as indicated by fractional shortening and ejection fraction in both nondiabetic and diabetic animals treated with FGF-9 (p<0.05. Overall, our data suggests FGF-9 has the potential to attenuate vascular cell apoptosis, activate c-Kit progenitor cells, and enhance angiogenesis and neovascularization in C57BL/6 and db/db mice leading to improved cardiac function.

  7. Comparison of the metabolic activation of environmental carcinogens in mouse embryonic stem cells and mouse embryonic fibroblasts

    Science.gov (United States)

    Krais, Annette M.; Mühlbauer, Karl-Rudolf; Kucab, Jill E.; Chinbuah, Helena; Cornelius, Michael G.; Wei, Quan-Xiang; Hollstein, Monica; Phillips, David H.; Arlt, Volker M.; Schmeiser, Heinz H.

    2015-01-01

    We compared mouse embryonic stem (ES) cells and fibroblasts (MEFs) for their ability to metabolically activate the environmental carcinogens benzo[a]pyrene (BaP), 3-nitrobenzanthrone (3-NBA) and aristolochic acid I (AAI), measuring DNA adduct formation by 32P-postlabelling and expression of xenobiotic-metabolism genes by quantitative real-time PCR. At 2 μM, BaP induced Cyp1a1 expression in MEFs to a much greater extent than in ES cells and formed 45 times more adducts. Nqo1 mRNA expression was increased by 3-NBA in both cell types but induction was higher in MEFs, as was adduct formation. For AAI, DNA binding was over 450 times higher in MEFs than in ES cells, although Nqo1 and Cyp1a1 transcriptional levels did not explain this difference. We found higher global methylation of DNA in ES cells than in MEFs, which suggests higher chromatin density and lower accessibility of the DNA to DNA damaging agents in ES cells. However, AAI treatment did not alter DNA methylation. Thus mouse ES cells and MEFs have the metabolic competence to activate a number of environmental carcinogens, but MEFs have lower global DNA methylation and higher metabolic capacity than mouse ES cells. PMID:25230394

  8. Matrix metalloproteinase-1 inhibitory activities of Morinda citrifolia seed extract and its constituents in UVA-irradiated human dermal fibroblasts.

    Science.gov (United States)

    Masuda, Megumi; Murata, Kazuya; Naruto, Shunsuke; Uwaya, Akemi; Isami, Fumiyuki; Matsuda, Hideaki

    2012-01-01

    The objective of this study was to examine whether a 50% ethanolic extract (MCS-ext) of the seeds of Morinda citrifolia (noni) and its constituents have matrix metalloproteinase-1 (MMP-1) inhibitory activity in UVA-irradiated normal human dermal fibroblasts (NHDFs). The MCS-ext (10 μg/mL) inhibited MMP-1 secretion from UVA-irradiated NHDFs, without cytotoxic effects, at 48 h after UV exposure. The ethyl acetate-soluble fraction of MCS-ext was the most potent inhibitor of MMP-1 secretion. Among the constituents of the fraction, a lignan, 3,3'-bisdemethylpinoresinol (1), inhibited the MMP-1 secretion at a concentration of 0.3 μM without cytotoxic effects. Furthermore, 1 (0.3 μM) reduced the level of intracellular MMP-1 expression. Other constituents, namely americanin A (2), quercetin (3) and ursolic acid (4), were inactive. To elucidate inhibition mechanisms of MMP-1 expression and secretion, the effect of 1 on mitogen-activated protein kinases (MAPKs) phosphorylation was examined. Western blot analysis revealed that 1 (0.3 μM) reduced the phosphorylations of p38 and c-Jun-N-terminal kinase (JNK). These results suggested that 1 suppresses intracellular MMP-1 expression, and consequent secretion from UVA-irradiated NHDFs, by down-regulation of MAPKs phosphorylation.

  9. Kaempferol inhibits the migration and invasion of rheumatoid arthritis fibroblast-like synoviocytes by blocking activation of the MAPK pathway.

    Science.gov (United States)

    Pan, Dongmei; Li, Nan; Liu, Yanyan; Xu, Qiang; Liu, Qingping; You, Yanting; Wei, Zhenquan; Jiang, Yubao; Liu, Minying; Guo, Tianfeng; Cai, Xudong; Liu, Xiaobao; Wang, Qiang; Liu, Mingling; Lei, Xujie; Zhang, Mingying; Zhao, Xiaoshan; Lin, Changsong

    2018-02-01

    In rheumatoid arthritis (RA), fibroblast-like synoviocytes (FLSs) play an essential role in cartilage destruction. Aggressive migration and invasion by FLSs significantly affect RA pathology. Kaempferol has been shown to inhibit cancer cell migration and invasion. However, the effects of kaempferol on RA FLSs have not been investigated. Our study aimed to determine the effects of kaempferol on RA both in vitro and in vivo. In vitro, cell migration and invasion were measured using scratch assays and the Boyden chamber method, respectively. The cytoskeletal reorganization of RA FLSs was evaluated by immunofluorescence staining. Matrix metalloproteinase (MMP) levels were measured by real-time PCR, and protein expression levels were measured by western blotting. In vivo, the effects of kaempferol were evaluated in mice with CIA. The results showed that kaempferol reduced migration, invasion and MMP expression in RA FLSs. In addition, we demonstrated that kaempferol inhibited reorganization of the actin cytoskeleton during cell migration. Moreover, kaempferol dramatically suppressed tumor necrosis factor (TNF)-α-induced MAPK activation without affecting the expression of TNF-α receptors. We also demonstrated that kaempferol attenuated the severity of arthritis in mice with CIA. Taken together, these results suggested that kaempferol inhibits the migration and invasion of FLSs in RA by blocking MAPK pathway activation without affecting the expression of TNF-α receptors. Copyright © 2017 Elsevier B.V. All rights reserved.

  10. Effect of cannabidiol on human gingival fibroblast extracellular matrix metabolism: MMP production and activity, and production of fibronectin and transforming growth factor β.

    Science.gov (United States)

    Rawal, S Y; Dabbous, M Kh; Tipton, D A

    2012-06-01

    Marijuana (Cannabis sativa) use may be associated with gingival enlargement, resembling that caused by phenytoin. Cannabidiol (CBD), a nonpsychotropic Cannabis derivative, is structurally similar to phenytoin. While there are many reports on effects of phenytoin on human gingival fibroblasts, there is no information on effects of Cannabis components on these cells. The objective of this study was to determine effects of CBD on human gingival fibroblast fibrogenic and matrix-degrading activities. Fibroblasts were incubated with CBD in serum-free medium for 1-6 d. The effect of CBD on cell viability was determined by measuring activity of a mitochondrial enzyme. The fibrogenic molecule transforming growth factor β and the extracellular matrix molecule fibronectin were measured by ELISA. Pro-MMP-1 and total MMP-2 were measured by ELISA. Activity of MMP-2 was determined via a colorimetric assay in which a detection enzyme is activated by active MMP-2. Data were analysed using ANOVA and Scheffe's F procedure for post hoc comparisons. Cannabidiol had little or no significant effect on cell viability. Low CBD concentrations increased transforming growth factor β production by as much as 40% (p Cannabidiol increased fibronectin production by as much as approximately 100% (p < 0.001). Lower CBD concentrations increased MMP production, but the highest concentrations decreased production of both MMPs (p < 0.05) and decreased MMP-2 activity (p < 0.02). The data suggest that the CBD may promote fibrotic gingival enlargement by increasing gingival fibroblast production of transforming growth factor β and fibronectin, while decreasing MMP production and activity. © 2011 John Wiley & Sons A/S.

  11. Hsc70 facilitates TGF-β-induced activation of Smad2/3 in fibroblastic NRK-49F cells

    Energy Technology Data Exchange (ETDEWEB)

    Ikezaki, Midori; Higashimoto, Natsuki; Matsumura, Ko; Ihara, Yoshito, E-mail: y-ihara@wakayama-med.ac.jp

    2016-08-26

    Heat-shock cognate protein 70 (Hsc70), a molecular chaperone constitutively expressed in the cell, is involved in the regulation of several cellular signaling pathways. In this study, we found that TGF-β-induced phosphorylation and nuclear translocation of Smad2/3 were suppressed in fibroblastic NRK-49F cells treated with small interfering RNA (siRNA) for Hsc70. In the cells underexpressing Hsc70, transcriptional induction of connective tissue growth factor (CTGF), a target gene of the TGF-β signaling, was also suppressed in the early phase of TGF-β stimulation. Upon stimulation with TGF-β, Hsc70 interacted with Smad2/3, suggesting functional interactions of Hsc70 and Smad2/3 for the activation of TGF-β-induced Smad signaling. Although the expression of heat-shock protein 70 (Hsp70) was upregulated in the cells treated with Hsc70 siRNA, TGF-β-induced Smad activation was not affected in the cells overexpressing Hsp70. Collectively, these results indicate that Hsc70, but not Hsp70, supportively regulates TGF-β-induced Smad signaling in NRK-49F cells. - Highlights: • Hsc70 siRNA treatment suppressed the expression of Hsc70 but induced the expression of Hsp70 in NRK-49F cells. • Hsc70 siRNA treatment suppressed the activation of Smad2/3 in the cells treated with TGF-β. • Hsc70 interacted with Smad2/3 on stimulation with TGF-β in the cells. • Hsp70 did not influence the TGF-β-induced activation of Smad2/3 in the cells overexpressing Hsp70.

  12. Blue light-irradiated human keloid fibroblasts: an in vitro study

    Science.gov (United States)

    Magni, Giada; Rossi, Francesca; Tatini, Francesca; Pini, Roberto; Coppi, Elisabetta; Cherchi, Federica; Fusco, Irene; Pugliese, Anna Maria; Pedata, Felicita; Fraccalvieri, Marco; Gasperini, Stefano; Pavone, Francesco S.; Tripodi, Cristina; Alfieri, Domenico; Targetti, Lorenzo

    2018-02-01

    Blue LED light irradiation is currently under investigation because of its effect in wound healing improvement. In this context, several mechanisms of action are likely to occur at the same time, consistently with the presence of different light absorbers within the skin. In our previous studies we observed the wound healing in superficial abrasions in an in vivo murine model. The results evidenced that both inflammatory infiltrate and myofibroblasts activity increase after irradiation. In this study we focused on evaluating the consequences of light absorption in fibroblasts from human cells culture: they play a key role in wound healing, both in physiological conditions and in pathological ones, such as keloid scarring. In particular we used keloids fibroblasts as a new target in order to investigate a possible metabolic or cellular mechanism correlation. Human keloid tissues were excised during standard surgery and immediately underwent primary cell culture extraction. Fibroblasts were allowed to grow in the appropriate conditions and then exposed to blue light. A metabolic colorimetric test (WST-8) was then performed. The tests evidenced an effect in mitochondrial activity, which could be modulated by the duration of the treatment. Electrophysiology pointed out a different behavior of irradiated fibroblasts. In conclusion, the Blue LED light affects the metabolic activity of fibroblasts and thus the cellular proliferation rate. No specific effect was found on keloid fibroblasts, thus indicating a very basic intracellular component, such as cytochromes, being the target of the treatment.

  13. Kaempferol inhibits fibroblast collagen synthesis, proliferation and activation in hypertrophic scar via targeting TGF-β receptor type I.

    Science.gov (United States)

    Li, Hongwei; Yang, Liu; Zhang, Yuebing; Gao, Zhigang

    2016-10-01

    Hypertrophic scar (HPS) formation is a debilitating condition that results in pain, esthetic symptom and loss of tissue function. So far, no satisfactory therapeutic approach has been available for HPS treatment. In this study, we discovered that a natural small molecule, kaempferol, could significantly inhibit HPS formation in a mechanical load-induced mouse model. Our results also demonstrated that kaempferol remarkably attenuated collagen synthesis, proliferation and activation of fibroblasts in vitro and in vivo. Western blot analysis further revealed that kaempferol significantly down-regulated Smad2 and Smad3 phosphorylation in a dose-dependent manner. At last, we found that such bioactivity of kaempferol which resulted from the inhibition of TGF-β1/Smads signaling was induced by the selective binding of kaempferol to TGF-β receptor type I (TGFβRI). These findings suggest that kaempferol could be developed into a promising agent for the treatment of HPS or other fibroproliferative disorders. Copyright © 2016 Elsevier Masson SAS. All rights reserved.

  14. Active learning in physiology practical work | Allers | South African ...

    African Journals Online (AJOL)

    A statistical analysis of the results indicates that when students are actively involved in the teaching-learning process, they enhance their ability to use cognitive skills such as interpretation, judgement and problem-solving skills. The results also underline the importance of an active approach towards practical work and ...

  15. Determination of the physiological root activity of fruit trees using the radioisotopes 131I

    International Nuclear Information System (INIS)

    Reckruehm, I.

    1979-01-01

    Using the radioisotope 131 I, the author made a study of the physiological root activity in a volume of soil and the activity of the individual root tips. The results show that the root activity is affected both by the size of the branch system of the crown and by the number of root tips in the given soil volume. The greater the number of branches supplied with iodine, the higher the activity of the root tips. The greater the number of root tips in a given soil volume, the lower the physiological activity of the individual root tips. (author)

  16. Peroxisome proliferator-activated receptor δ inhibits Porphyromonas gingivalis lipopolysaccharide-induced activation of matrix metalloproteinase-2 by downregulating NADPH oxidase 4 in human gingival fibroblasts.

    Science.gov (United States)

    Yoo, T; Ham, S A; Hwang, J S; Lee, W J; Paek, K S; Oh, J W; Kim, J H; Do, J T; Han, C W; Kim, J H; Seo, H G

    2016-10-01

    We investigated the roles of peroxisome proliferator-activated receptor δ (PPARδ) in Porphyromonas gingivalis-derived lipopolysaccharide (Pg-LPS)-induced activation of matrix metalloproteinase 2 (MMP-2). In human gingival fibroblasts (HGFs), activation of PPARδ by GW501516, a specific ligand of PPARδ, inhibited Pg-LPS-induced activation of MMP-2 and generation of reactive oxygen species (ROS), which was associated with reduced expression of NADPH oxidase 4 (Nox4). These effects were significantly smaller in the presence of small interfering RNA targeting PPARδ or the specific PPARδ inhibitor GSK0660, indicating that PPARδ is involved in these events. In addition, modulation of Nox4 expression by small interfering RNA influenced the effect of PPARδ on MMP-2 activity, suggesting a mechanism in which Nox4-derived ROS modulates MMP-2 activity. Furthermore, c-Jun N-terminal kinase and p38, but not extracellular signal-regulated kinase, mediated PPARδ-dependent inhibition of MMP-2 activity in HGFs treated with Pg-LPS. Concomitantly, PPARδ-mediated inhibition of MMP-2 activity was associated with the restoration of types I and III collagen to levels approaching those in HGFs not treated with Pg-LPS. These results indicate that PPARδ-mediated downregulation of Nox4 modulates cellular redox status, which in turn plays a critical role in extracellular matrix homeostasis through ROS-dependent regulation of MMP-2 activity. © 2015 John Wiley & Sons A/S. Published by John Wiley & Sons Ltd.

  17. AMP-Activated Protein Kinase Alleviates Extracellular Matrix Accumulation in High Glucose-Induced Renal Fibroblasts through mTOR Signaling Pathway

    Directory of Open Access Journals (Sweden)

    Xia Luo

    2015-01-01

    Full Text Available Background/Aims: Extracellular matrix accumulation contributes significantly to the pathogenesis of diabetic nephropathy. Although AMP-activated protein kinase (AMPK has been found to inhibit extracellular matrix synthesis by experiments in vivo and vitro, its role in alleviating the deposition of extracellular matrix in renal interstitial fibroblasts has not been well defined. Methods: Currently, we conducted this study to investigate the effects of AMPK on high glucose-induced extracellular matrix synthesis and involved intracellular signaling pathway by using western blot in the kidney fibroblast cell line (NRK-49f. Results: Collagen IV protein levels were significantly increased by high glucose in a time-dependent manner. This was associated with a decrease in Thr72 phosphorylation of AMPK and an increase in phosphorylation of mTOR on Ser2448. High glucose-induced extracellular matrix accumulation and mTOR activation were significantly inhibited by the co-treatment of rAAV-AMPKα1312 (encoding constitutively active AMPKα1 whereas activated by r-AAV-AMPKα1D157A (encoding dominant negative AMPKα1. In cultured renal fibroblasts, overexpression of AMPKα1D157A upregulated mTOR signaling and matrix synthesis, which were ameliorated by co-treatment with the inhibitor of mTOR, rapamycin. Conclusion: Collectively, these findings indicate that AMPK exerts renoprotective effects by inhibiting the accumulation of extracellular matrix through mTOR signaling pathway.

  18. Effects of budesonide and formoterol on eosinophil activation induced by human lung fibroblasts

    NARCIS (Netherlands)

    Spoelstra, FM; Kauffman, HF; Hovenga, H; Noordhoek, JA; de Monchy, JGR; Postma, DS

    2000-01-01

    Budesonide and formoterol are extensively used in current asthma therapy. Budesonide is known as potent antiinflammatory agent and formoterol also appears to have some antiinflammatory properties. We investigated inhibitory effects of these drugs on eosinophil activation in vitro as induced by

  19. Fibroblast growth factor receptor 3 interacts with and activates TGFβ-activated kinase 1 tyrosine phosphorylation and NFκB signaling in multiple myeloma and bladder cancer.

    Directory of Open Access Journals (Sweden)

    Lisa Salazar

    Full Text Available Cancer is a major public health problem worldwide. In the United States alone, 1 in 4 deaths is due to cancer and for 2013 a total of 1,660,290 new cancer cases and 580,350 cancer-related deaths are projected. Comprehensive profiling of multiple cancer genomes has revealed a highly complex genetic landscape in which a large number of altered genes, varying from tumor to tumor, impact core biological pathways and processes. This has implications for therapeutic targeting of signaling networks in the development of treatments for specific cancers. The NFκB transcription factor is constitutively active in a number of hematologic and solid tumors, and many signaling pathways implicated in cancer are likely connected to NFκB activation. A critical mediator of NFκB activity is TGFβ-activated kinase 1 (TAK1. Here, we identify TAK1 as a novel interacting protein and target of fibroblast growth factor receptor 3 (FGFR3 tyrosine kinase activity. We further demonstrate that activating mutations in FGFR3 associated with both multiple myeloma and bladder cancer can modulate expression of genes that regulate NFκB signaling, and promote both NFκB transcriptional activity and cell adhesion in a manner dependent on TAK1 expression in both cancer cell types. Our findings suggest TAK1 as a potential therapeutic target for FGFR3-associated cancers, and other malignancies in which TAK1 contributes to constitutive NFκB activation.

  20. Fibroblast Activation Protein-Alpha, a Serine Protease that Facilitates Metastasis by Modification of Diverse Microenvironments

    Science.gov (United States)

    2011-10-01

    diabetes and hematopoietic stem cell engraftment [21]. Sitagliptin is a DPPIV inhibitor already approved for type 2 diabetes because it has...activation protein (FAP) in hepatitis C virus infection. Adv Exp Med Biol 524:235–243 12. Levy MT, McCaughan GW, Abbott CA, Park JE, Cunningham AM...kb ( Abbott et al., 1994). Three different splice variants of FAP have been observed in mouse embryonic tissues, with all three predicted to encode

  1. Telomerase Activity in Chicken EmbryoFibroblast Cell Cultures Infected withMarek's Disease Virus

    Directory of Open Access Journals (Sweden)

    Gregory A. Tannock

    2010-07-01

    Full Text Available Background:Telomerase is a ribonucleoprotein, which adds telomeric repeats onto the 3’end of existing telomers at the end of chromosomes ineukaryotes. One hypothesis states that telomere length may function as a mitoticclock, therefore expression of telomerase activity in cancer cells may be a necessary and essential step for tumor development and progression.Methods:The detectability of telomerase activity in chicken embryofibroblast (CEF cells infected with different passages of Marek's disease virus(MDV was tested with the TRAPEZE® telomerase detection kit at passages14 (P14, P80/1 and P120 for the Woodland strain, and passage 9 (P9 for theMPF57 strain. Results:The results showed increased telomerase activity in MDV Woodlands strain at P14 and MPF57 strain at P9. Conclusion:Our results suggest that MDV-transformed cells at low passage are a suitable system for the study of telomerases in tumor developmentand for testing telomerase-inhibiting drugs.

  2. Basement membrane reconstruction in human skin equivalents is regulated by fibroblasts and/or exogenously activated keratinocytes.

    Science.gov (United States)

    El Ghalbzouri, Abdoelwaheb; Jonkman, Marcel F; Dijkman, Remco; Ponec, Maria

    2005-01-01

    This study was undertaken to examine the role fibroblasts play in the formation of the basement membrane (BM) in human skin equivalents. For this purpose, keratinocytes were seeded on top of fibroblast-free or fibroblast-populated collagen matrix or de-epidermized dermis and cultured in the absence of serum and exogenous growth factors. The expression of various BM components was analyzed on the protein and mRNA level. Irrespective of the presence or absence of fibroblasts, keratin 14, hemidesmosomal proteins plectin, BP230 and BP180, and integrins alpha1beta1, alpha2beta1, alpha3beta1, and alpha6beta4 were expressed but laminin 1 was absent. Only in the presence of fibroblasts or of various growth factors, laminin 5 and laminin 10/11, nidogen, uncein, type IV and type VII collagen were decorating the dermal/epidermal junction. These findings indicate that the attachment of basal keratinocytes to the dermal matrix is most likely mediated by integrins alpha1beta1 and alpha2beta1, and not by laminins that bind to integrin alpha6beta4 and that the epithelial-mesenchymal cross-talk plays an important role in synthesis and deposition of various BM components.

  3. Performance in Physiology Evaluation: Possible Improvement by Active Learning Strategies

    Science.gov (United States)

    Montrezor, Luís H.

    2016-01-01

    The evaluation process is complex and extremely important in the teaching/learning process. Evaluations are constantly employed in the classroom to assist students in the learning process and to help teachers improve the teaching process. The use of active methodologies encourages students to participate in the learning process, encourages…

  4. Fibroblast spheroids as a model to study sustained fibroblast quiescence and their crosstalk with tumor cells

    Energy Technology Data Exchange (ETDEWEB)

    Salmenperä, Pertteli, E-mail: pertteli.salmenpera@helsinki.fi [Department of Virology, Medicum, Faculty of Medicine, University of Helsinki, P.O. Box 21, FIN-00014 (Finland); Karhemo, Piia-Riitta [Research Programs Unit, Translational Cancer Biology, and Institute of Biomedicine, University of Helsinki, P.O. Box 63, FIN-00014 (Finland); Räsänen, Kati [Department of Virology, Medicum, Faculty of Medicine, University of Helsinki, P.O. Box 21, FIN-00014 (Finland); Laakkonen, Pirjo [Research Programs Unit, Translational Cancer Biology, and Institute of Biomedicine, University of Helsinki, P.O. Box 63, FIN-00014 (Finland); Vaheri, Antti [Department of Virology, Medicum, Faculty of Medicine, University of Helsinki, P.O. Box 21, FIN-00014 (Finland)

    2016-07-01

    Stromal fibroblasts have an important role in regulating tumor progression. Normal and quiescent fibroblasts have been shown to restrict and control cancer cell growth, while cancer-associated, i. e. activated fibroblasts have been shown to enhance proliferation and metastasis of cancer cells. In this study we describe generation of quiescent fibroblasts in multicellular spheroids and their effects on squamous cell carcinoma (SCC) growth in soft-agarose and xenograft models. Quiescent phenotype of fibroblasts was determined by global down-regulation of expression of genes related to cell cycle and increased expression of p27. Interestingly, microarray analysis showed that fibroblast quiescence was associated with similar secretory phenotype as seen in senescence and they expressed senescence-associated-β-galactosidase. Quiescent fibroblasts spheroids also restricted the growth of RT3 SCC cells both in soft-agarose and xenograft models unlike proliferating fibroblasts. Restricted tumor growth was associated with marginally increased tumor cell senescence and cellular differentiation, showed with senescence-associated-β-galactosidase and cytokeratin 7 staining. Our results show that the fibroblasts spheroids can be used as a model to study cellular quiescence and their effects on cancer cell progression. - Highlights: • Fibroblasts acquire a sustained quiescence when grown as multicellular spheroids. • This quiescence is associated with drastic change in gene expression. • Fibroblasts spheroids secrete various inflammation-linked cytokines and chemokines. • Fibroblasts spheroids reduced growth of RT3 SCC cells in xenograft model.

  5. Low intensity 635 nm diode laser irradiation inhibits fibroblast-myofibroblast transition reducing TRPC1 channel expression/activity: New perspectives for tissue fibrosis treatment.

    Science.gov (United States)

    Sassoli, Chiara; Chellini, Flaminia; Squecco, Roberta; Tani, Alessia; Idrizaj, Eglantina; Nosi, Daniele; Giannelli, Marco; Zecchi-Orlandini, Sandra

    2016-03-01

    Low-level laser therapy (LLLT) or photobiomodulation therapy is emerging as a promising new therapeutic option for fibrosis in different damaged and/or diseased organs. However, the anti-fibrotic potential of this treatment needs to be elucidated and the cellular and molecular targets of the laser clarified. Here, we investigated the effects of a low intensity 635 ± 5 nm diode laser irradiation on fibroblast-myofibroblast transition, a key event in the onset of fibrosis, and elucidated some of the underlying molecular mechanisms. NIH/3T3 fibroblasts were cultured in a low serum medium in the presence of transforming growth factor (TGF)-β1 and irradiated with a 635 ± 5 nm diode laser (continuous wave, 89 mW, 0.3 J/cm(2) ). Fibroblast-myofibroblast differentiation was assayed by morphological, biochemical, and electrophysiological approaches. Expression of matrix metalloproteinase (MMP)-2 and MMP-9 and of Tissue inhibitor of MMPs, namely TIMP-1 and TIMP-2, after laser exposure was also evaluated by confocal immunofluorescence analyses. Moreover, the effect of the diode laser on transient receptor potential canonical channel (TRPC) 1/stretch-activated channel (SAC) expression and activity and on TGF-β1/Smad3 signaling was investigated. Diode laser treatment inhibited TGF-β1-induced fibroblast-myofibroblast transition as judged by reduction of stress fibers formation, α-smooth muscle actin (sma) and type-1 collagen expression and by changes in electrophysiological properties such as resting membrane potential, cell capacitance and inwardly rectifying K(+) currents. In addition, the irradiation up-regulated the expression of MMP-2 and MMP-9 and downregulated that of TIMP-1 and TIMP-2 in TGF-β1-treated cells. This laser effect was shown to involve TRPC1/SAC channel functionality. Finally, diode laser stimulation and TRPC1 functionality negatively affected fibroblast-myofibroblast transition by interfering with TGF-β1 signaling, namely reducing the

  6. Use of [1,2-3 h] testosterone in 5 α- reductase enzymatic activity dosing in dermal fibroblast cultures from polycystic ovarian patients

    International Nuclear Information System (INIS)

    Matei, Lidia; Postolache, Cristian; Condac, Eduard

    2003-01-01

    Polycystic ovarian syndrome is an endocrine malady very frequent in women characterized by the presence of ovarian cysts, visible or not by ultrasonography, menstrual cycle deregulation and sometimes by high plasmatic concentrations of androgen hormones. Many cases of polycystic syndrome could not be easily diagnosed or had an erroneous diagnostic. Therefore, is useful to know the plasmatic androgen hormone profile. This profile could indicate the cause for observed clinical manifestations; this cause may be observed in ovarian, suprarenal glands or hypothalamo-hypophysis level. In vitro studies on dermal fibroblasts permit the detail determination of steroid hormones metabolism in target organs and offer important information regarding action mechanism. This study follows the identification of testosterone metabolites in fibroblasts and enzymatic activities of 5α-reductase using testosterone radioactively labeled with tritium. (authors)

  7. Radio-induced superficial fibrosis: investigation of the activation mechanisms of the myo-fibroblast and characterization of the cicatricial epidermis

    International Nuclear Information System (INIS)

    Sivan, Virginie

    2001-01-01

    Whereas radio-induced cutaneous fibrosis is one of the frequent after-effects of accidental and therapeutic irradiations, this research thesis addresses the mechanisms which govern the activation of the myo-fibroblast. After some results obtained on cells from a radio-induced fibrosis on swine cells, the author proposes a signalling alteration as a mechanism. In a model a reconstructed skin, the author shows that myo-fibroblasts are a direct target of Superoxide Dismutase (SOD), and respond to this anti-fibrosis agent by a phenotype reversion. She reports the molecular characterization of epidermis of fibro-necrosis human lesions induced by an accidental or therapeutic irradiation. This leads to a better understanding of the role of the myo-fibroblast during the development and regression of fibrosis. Besides, the author shows that an alteration of the epidermis adjacent to dermis is developing in parallel with the fibrosis process. This suggests an active contribution of keratinocytes during the development of this radio-induced after-effect [fr

  8. Hydrogen sulphide decreases IL-1β-induced activation of fibroblast-like synoviocytes from patients with osteoarthritis

    Science.gov (United States)

    Sieghart, Daniela; Liszt, Melissa; Wanivenhaus, Axel; Bröll, Hans; Kiener, Hans; Klösch, Burkhard; Steiner, Günter

    2015-01-01

    Balneotherapy employing sulphurous thermal water is still applied to patients suffering from diseases of musculoskeletal system like osteoarthritis (OA) but evidence for its clinical effectiveness is scarce. Since the gasotransmitter hydrogen sulphide (H2S) seems to affect cells involved in degenerative joint diseases, it was the objective of this study to investigate the effects of exogenous H2S on fibroblast-like synoviocytes (FLS), which are key players in OA pathogenesis being capable of producing pro-inflammatory cytokines and matrix degrading enzymes. To address this issue primary FLS derived from OA patients were stimulated with IL-1β and treated with the H2S donor NaHS. Cellular responses were analysed by ELISA, quantitative real-time PCR, phospho-MAPkinase array and Western blotting. Treatment-induced effects on cellular structure and synovial architecture were investigated in three-dimensional extracellular matrix micromasses. NaHS treatment reduced both spontaneous and IL-1β-induced secretion of IL-6, IL-8 and RANTES in different experimental settings. In addition, NaHS treatment reduced the expression of matrix metallo-proteinases MMP-2 and MMP-14. IL-1β induced the phosphorylation of several MAPkinases. NaHS treatment partially reduced IL-1β-induced activation of several MAPK whereas it increased phosphorylation of pro-survival factor Akt1/2. When cultured in spherical micromasses, FLS intentionally established a synovial lining layer-like structure; stimulation with IL-1β altered the architecture of micromasses leading to hyperplasia of the lining layer which was completely inhibited by concomitant exposure to NaHS. These data suggest that H2S partially antagonizes IL-1β stimulation via selective manipulation of the MAPkinase and the PI3K/Akt pathways which may encourage development of novel drugs for treatment of OA. PMID:25312962

  9. Influence of constant, alternating and cyclotron low-intensity electromagnetic fields on fibroblast proliferative activity in vitro.

    Science.gov (United States)

    Afinogenov, Gennadi; Afinogenova, Anna; Kalinin, Andrey

    2009-12-16

    Available data allow assuming the presence of stimulation of reparative processes under influence of low-intensity electromagnetic field, commensurable with a magnetic field of the Earth. Research of effects of low-intensity electromagnetic fields on fibroblast proliferative activity in human lungs in cell culture was performed.The influence of a constant electromagnetic field, an alternating electromagnetic field by frequency of 50 Hz and cyclotron electromagnetic field with identical intensity for all kinds of fields - 80 mcTl - on value of cellular mass and a correlation of live and dead cells in culture is investigated in three series of experiments. We used the universal electromagnetic radiator generating all three kinds of fields and supplied by a magnetometer which allows measuring the intensity of accurate within 0.1 mcTl including taking into account the Earth's magnetic field intensity.The peak value for stimulation cellular proliferation in the present experiences was two-hour influence by any of the specified kinds of electromagnetic fields. The irradiation by cyclotron electromagnetic field conducts positive dynamics in growth of live cells (up to 206+/-22%) and decreases the number of dead cells (down to 31+/-6%). Application of cyclotron magnetic fields promoted creation of optimum conditions for proliferation. As a result of researches we observed the reliable 30% increase of nitro-tetrazolium index (in nitro-tetrazolium blue test) after irradiation by cyclotron electromagnetic field in experience that testifies to strengthening of the cell breathing of living cells.In our opinion, it is necessary to pay attention not only to a pure gain of cells, but also to reduction of number dead cells that can be criterion of creation of optimum conditions for their specific development and valuable functioning.

  10. Proteasome activity or expression is not altered by activation of the heat shock transcription factor Hsf1 in cultured fibroblasts or myoblasts.

    Science.gov (United States)

    Taylor, David M; Kabashi, Edor; Agar, Jeffrey N; Minotti, Sandra; Durham, Heather D

    2005-01-01

    Heat shock proteins (Hsps) with chaperoning function work together with the ubiquitin-proteasome pathway to prevent the accumulation of misfolded, potentially toxic proteins, as well as to control catabolism of the bulk of cytoplasmic, cellular protein. There is evidence for the involvement of both systems in neurodegenerative disease, and a therapeutic target is the heat shock transcription factor, Hsf1, which mediates upregulation of Hsps in response to cellular stress. The mechanisms regulating expression of proteasomal proteins in mammalian cells are less well defined. To assess any direct effect of Hsf1 on expression of proteasomal subunits and activity in mammalian cells, a plasmid encoding a constitutively active form of Hsf1 (Hsf1act) was expressed in mouse embryonic fibroblasts lacking Hsf1 and in cultured human myoblasts. Plasmid encoding an inactivatible form of Hsf1 (Hsf1inact) served as control. In cultures transfected with plasmid hsf1act, robust expression of the major stress-inducible Hsp, Hsp70, occurred but not in cultures transfected with hsf1inact. No significant changes in the level of expression of representative proteasomal proteins (structural [20Salpha], a nonpeptidase beta subunit [20Sbeta3], or 2 regulatory subunits [19S subunit 6b, 11 Salpha]) or in chymotrypsin-, trypsin-, and caspaselike activities of the proteasome were measured. Thus, stress-induced or pharmacological activation of Hsf1 in mammalian cells would upregulate Hsps but not directly affect expression or activity of proteasomes.

  11. Activity of ethanolic extracts leaves of Machaerium floribundum against acne-inducing bacteria, and their cytoprotective and antioxidant effects on fibroblast

    Directory of Open Access Journals (Sweden)

    Lorena Díaz

    2011-08-01

    Full Text Available Propionibacterium acnes, Staphylococcus epidermidis and Staphylococcus aureus have been recognized as the bacteria that are involved in the inflammatory process of acne, while oxidants and antioxidants are involved in the repair of cutaneous tissue affected. In this study an evaluation was made of the antibacterial effect by the agar diffusion and broth dilution method, the cytoprotective and antioxidant effect on 3T3 dermic fibroblast cells, treated with hydrogen peroxide and the scavenging capacity of free radicals was determined by the 2, 2-diphenyl-l-picrylhydrazyl (DPPH method as well as the Reducing Power of the ethanolic extracts of the leaves of the Machaerium floribundum. Minimal bactericidal concentrations (MBC were obtained against Propionibacterium acnes and Staphylococcus aureus of 5 mg/mL and 2 mg/mL, respectively. A cytoprotective effect of 111% was observed over the cellular viability of the fibroblasts at 10 μg/mL and an antioxidant effect of 92% over the viability of the fibroblasts treated with hydrogen peroxide at 25 μg/mL. A stimulation of 24% growth of fibroblasts at 50 μg/mL was evidenced. On the other hand a 93% scavenging activity of the DPPH free radical was shown for 100 μg/mL with a CI50 of 34 μg/mL. The reducing power was evidenced to be dependent on the concentration. The results obtained indicated that the ethanolic extract of Machaerium floribundum shows a good antibacterial activity against bacteria that induce acne and a high potential for scavenging of free radicals at relatively low concentrations.

  12. [From gene to disease; achondroplasia and other skeletal dysplasias due to an activating mutation in the fibroblast growth factor

    NARCIS (Netherlands)

    Ravenswaaij-Arts, C.M.A. van; Losekoot, M.

    2001-01-01

    Achondroplasia, the most common and best known skeletal dysplasia, is inherited in an autosomal dominant fashion. Like a number of other skeletal dysplasias, among which hypochondroplasia and thanatophoric dysplasia, achondroplasia is caused by mutations in the fibroblast growth factor receptor 3

  13. Elevated nuclear sphingoid base-1-phosphates and decreased histone deacetylase activity after fumonisin B1 treatment in mouse embryonic fibroblasts

    Energy Technology Data Exchange (ETDEWEB)

    Gardner, Nicole M., E-mail: nicolegardner@creighton.edu [Department of Pharmacology, Creighton University School of Medicine, Omaha, NE 68178 (United States); Riley, Ronald T.; Showker, Jency L.; Voss, Kenneth A. [USDA-ARS, Toxicology and Mycotoxin Research Unit, Athens, GA 30605 (United States); Sachs, Andrew J.; Maddox, Joyce R.; Gelineau-van Waes, Janee B. [Department of Pharmacology, Creighton University School of Medicine, Omaha, NE 68178 (United States)

    2016-05-01

    Fumonisin B1 (FB1) is a mycotoxin produced by a common fungal contaminant of corn. Administration of FB1 to pregnant LM/Bc mice induces exencephaly in embryos, and ingestion of FB1-contaminated food during early pregnancy is associated with increased risk for neural tube defects (NTDs) in humans. FB1 inhibits ceramide synthase enzymes in sphingolipid biosynthesis, causing sphinganine (Sa) and bioactive sphinganine-1-phosphate (Sa1P) accumulation in blood, cells, and tissues. Sphingosine kinases (Sphk) phosphorylate Sa to form Sa1P. Upon activation, Sphk1 associates primarily with the plasma membrane, while Sphk2 is found predominantly in the nucleus. In cells over-expressing Sphk2, accumulation of Sa1P in the nuclear compartment inhibits histone deacetylase (HDAC) activity, causing increased acetylation of histone lysine residues. In this study, FB1 treatment in LM/Bc mouse embryonic fibroblasts (MEFs) resulted in significant accumulation of Sa1P in nuclear extracts relative to cytoplasmic extracts. Elevated nuclear Sa1P corresponded to decreased histone deacetylase (HDAC) activity and increased histone acetylation at H2BK12, H3K9, H3K18, and H3K23. Treatment of LM/Bc MEFs with a selective Sphk1 inhibitor, PF-543, or with ABC294640, a selective Sphk2 inhibitor, significantly reduced nuclear Sa1P accumulation after FB1, although Sa1P levels remained significantly increased relative to basal levels. Concurrent treatment with both PF-543 and ABC294640 prevented nuclear accumulation of Sa1P in response to FB1. Other HDAC inhibitors are known to cause NTDs, so these results suggest that FB1-induced disruption of sphingolipid metabolism leading to nuclear Sa1P accumulation, HDAC inhibition, and histone hyperacetylation is a potential mechanism for FB1-induced NTDs. - Highlights: • FB1 treatment results in accumulation of Sa1P primarily in the nucleus of MEFs. • FB1 treatment and elevated nuclear Sa1P are associated with HDAC inhibition. • Sphk2 inhibition alone

  14. Elevated nuclear sphingoid base-1-phosphates and decreased histone deacetylase activity after fumonisin B1 treatment in mouse embryonic fibroblasts

    International Nuclear Information System (INIS)

    Gardner, Nicole M.; Riley, Ronald T.; Showker, Jency L.; Voss, Kenneth A.; Sachs, Andrew J.; Maddox, Joyce R.; Gelineau-van Waes, Janee B.

    2016-01-01

    Fumonisin B1 (FB1) is a mycotoxin produced by a common fungal contaminant of corn. Administration of FB1 to pregnant LM/Bc mice induces exencephaly in embryos, and ingestion of FB1-contaminated food during early pregnancy is associated with increased risk for neural tube defects (NTDs) in humans. FB1 inhibits ceramide synthase enzymes in sphingolipid biosynthesis, causing sphinganine (Sa) and bioactive sphinganine-1-phosphate (Sa1P) accumulation in blood, cells, and tissues. Sphingosine kinases (Sphk) phosphorylate Sa to form Sa1P. Upon activation, Sphk1 associates primarily with the plasma membrane, while Sphk2 is found predominantly in the nucleus. In cells over-expressing Sphk2, accumulation of Sa1P in the nuclear compartment inhibits histone deacetylase (HDAC) activity, causing increased acetylation of histone lysine residues. In this study, FB1 treatment in LM/Bc mouse embryonic fibroblasts (MEFs) resulted in significant accumulation of Sa1P in nuclear extracts relative to cytoplasmic extracts. Elevated nuclear Sa1P corresponded to decreased histone deacetylase (HDAC) activity and increased histone acetylation at H2BK12, H3K9, H3K18, and H3K23. Treatment of LM/Bc MEFs with a selective Sphk1 inhibitor, PF-543, or with ABC294640, a selective Sphk2 inhibitor, significantly reduced nuclear Sa1P accumulation after FB1, although Sa1P levels remained significantly increased relative to basal levels. Concurrent treatment with both PF-543 and ABC294640 prevented nuclear accumulation of Sa1P in response to FB1. Other HDAC inhibitors are known to cause NTDs, so these results suggest that FB1-induced disruption of sphingolipid metabolism leading to nuclear Sa1P accumulation, HDAC inhibition, and histone hyperacetylation is a potential mechanism for FB1-induced NTDs. - Highlights: • FB1 treatment results in accumulation of Sa1P primarily in the nucleus of MEFs. • FB1 treatment and elevated nuclear Sa1P are associated with HDAC inhibition. • Sphk2 inhibition alone

  15. Sipi soup inhibits cancer‑associated fibroblast activation and the inflammatory process by downregulating long non‑coding RNA HIPK1‑AS.

    Science.gov (United States)

    Zhou, Bingxiu; Yu, Yuanyuan; Yu, Lixia; Que, Binfu; Qiu, Rui

    2018-06-06

    Sipi soup (SPS), the aqueous extract derived from the root bark of Sophora japonical L, Salix babylonica L., Morus alba L., as well as Amygdalus davidiana (Carr.) C. de Vos, is a traditional Chinese medicine frequently used to prevent and treat infection and inflammation. However, the role of SPS in cancer‑associated fibroblasts (CAFs) require further investigation. In the present study, the effects of SPS on fibroblast inactivation and the underlying mechanism were investigated. Reverse transcription‑quantitative polymerase chain reaction was used to analyze the mRNA expression levels of fibroblast activation protein (FAP), interleukin (IL)‑6, α‑smooth muscle actin (α‑SMA) and programmed cell death 4 (PDCD4). Flow cytometry was used to evaluate cell apoptosis. Immunofluorescence was used to determine the number of activated fibroblasts. The present study reported that SPS treatment did not affect the proliferative apoptotic potential of fibroblasts. Treatment with HeLa cell culture medium (CM) induced a significant increase in the expression levels of FAP, IL‑6 and α‑SMA, but reduced the expression of PDCD4. SPS reversed the effects of HeLa CM on the expression of these genes. Analysis with a long non‑coding (lnc)RNA array of numerous differentially expressed lncRNAs revealed that the expression levels of the lncRNA homeodomain‑interacting protein kinase 1 antisense RNA (HIPK1‑AS) were increased in cervicitis tissues and cervical squamous cell carcinoma tissues compared with in normal cervical tissues. HIPK1‑AS expression levels were upregulated in response to HeLa CM, but were decreased under SPS treatment. The downregulation of HIPK1‑AS expression via short hairpin RNA abolished the effects of HeLa CM on the expression of inflammation‑associated genes. The findings of the present study suggested that SPS may prevent the progression of cervical cancer by inhibiting the activation of CAF and the inflammatory process by reducing HIPK1

  16. Hypotonic stress promotes ATP release, reactive oxygen species production and cell proliferation via TRPV4 activation in rheumatoid arthritis rat synovial fibroblasts

    International Nuclear Information System (INIS)

    Hu, Fen; Hui, Zhenhai; Wei, Wei; Yang, Jianyu; Chen, Ziyuan; Guo, Bu; Xing, Fulin; Zhang, Xinzheng; Pan, Leiting; Xu, Jingjun

    2017-01-01

    Rheumatoid arthritis (RA) is a chronic and systemic autoimmune-disease with complex and unclear etiology. Hypotonicity of synovial fluid is a typical characteristic of RA, which may play pivotal roles in RA pathogenesis. In this work, we studied the responses of RA synovial fibroblasts to hypotonic stress in vitro and further explored the underlying mechanisms. Data showed that hyposmotic solutions significantly triggered increases in cytosolic calcium concentration ([Ca 2+ ] c ) of synoviocytes. Subsequently, it caused rapid release of ATP, as well as remarkable production of intracellular reactive oxygen species (ROS). Meanwhile, hypotonic stimulus promoted the proliferation of synovial fibroblasts. These effects were almost abolished by calcium-free buffer and significantly inhibited by gadolinium (III) chloride (a mechanosensitive Ca 2+ channel blocker) and ruthenium red (a transient receptor potential vanilloid 4 (TRPV4) blocker). 4α-phorbol 12,13-didecanoate, a specific agonist of TRPV4, also mimicked hypotonic shock-induced responses shown above. In contrast, voltage-gated channel inhibitors verapamil and nifedipine had little influences on these responses. Furthermore, RT-PCR and western blotting evidently detected TRPV4 expression at mRNA and protein level in isolated synoviocytes. Taken together, our results indicated that hypotonic stimulus resulted in ATP release, ROS production, and cell proliferation depending on Ca 2+ entry through activation of TRPV4 channel in synoviocytes. - Highlights: • Hypotonic stress evokes Ca 2+ entry in rheumatoid arthritis synovial fibroblasts. • Hypotonic stress induces rapid ATP release and ROS production in synoviocytes. • Hypotonic stimulation promotes the proliferation of synovial fibroblasts. • TRPV4 controls hypotonic-induced responses in synoviocytes.

  17. Physiological and behavioral factors related to physical activity in black women with type 2 diabetes mellitus.

    Science.gov (United States)

    Allen, Nancy A; Melkus, Gail D; Chyun, Deborah A

    2011-10-01

    To describe relationships among physical activity (PA), physiological factors, and psychological factors in Black women with type 2 diabetes mellitus (T2DM). A cross-sectional design was used (N = 109). Data were collected on PA(activity/inactivity, TV hours, bed confinement), physiology (blood pressure, lipids, hemoglobin A1c), psychology (anxiety,emotional distress, physical functioning, bodily pain, vitality), and health care provider (HCP) support. Walking was the preferred PA; TV viewing averaged 3.7 hours/day, and 24% reported confinement to bed >1 week in the last year. Inactive women had greater physiological and psychological problems than active women. Women watching TV >2 hours/day had more physiological problems than women watching TV Women reporting >1 week of confinement to bed in the last year had more physiological and psychological problems than those confined to bed women with T2DM should promote walking, address TV viewing time, incorporate HCP’s role of PA counseling/support,and address several psychological factors.

  18. An investigation into the relationship between age and physiological function in highly active older adults.

    Science.gov (United States)

    Pollock, Ross D; Carter, Scott; Velloso, Cristiana P; Duggal, Niharika A; Lord, Janet M; Lazarus, Norman R; Harridge, Stephen D R

    2015-02-01

    The relationship between age and physiological function remains poorly defined and there are no physiological markers that can be used to reliably predict the age of an individual. This could be due to a variety of confounding genetic and lifestyle factors, and in particular to ill-defined and low levels of physical activity. This study assessed the relationship between age and a diverse range of physiological functions in a cohort of highly active older individuals (cyclists) aged 55-79 years in whom the effects of lifestyle factors would be ameliorated. Significant associations between age and function were observed for many functions. V̇O2max was most closely associated with age, but even here the variance in age for any given level was high, precluding the clear identification of the age of any individual. The data suggest that the relationship between human ageing and physiological function is highly individualistic and modified by inactivity. Despite extensive research, the relationship between age and physiological function remains poorly characterised and there are currently no reliable markers of human ageing. This is probably due to a number of confounding factors, particularly in studies of a cross-sectional nature. These include inter-subject genetic variation, as well as inter-generational differences in nutrition, healthcare and insufficient levels of physical activity as well as other environmental factors. We have studied a cohort of highly and homogeneously active older male (n = 84) and female (n = 41) cyclists aged 55-79 years who it is proposed represent a model for the study of human ageing free from the majority of confounding factors, especially inactivity. The aim of the study was to identify physiological markers of ageing by assessing the relationship between function and age across a wide range of indices. Each participant underwent a detailed physiological profiling which included measures of cardiovascular, respiratory, neuromuscular

  19. Establishment, characterization and immortalization of a fibroblast cell line from the Chinese red belly toad Bombina maxima skin.

    Science.gov (United States)

    Xiang, Yang; Gao, Qian; Su, Weiting; Zeng, Lin; Wang, Jinhuan; Hu, Yi; Nie, Wenhui; Ma, Xutong; Zhang, Yong; Lee, Wenhui; Zhang, Yun

    2012-01-01

    The skin of the amphibian Bombina maxima is rich in biologically active proteins and peptides, most of which have mammalian analogues. The physiological functions of most of the mammalian analogues are still unknown. Thus, Bombina maxima skin may be a promising model to reveal the physiological role of these proteins and peptides because of their large capacity for secretion. To investigate the physiological role of these proteins and peptides in vitro, a fibroblast cell line was successfully established from Bombina maxima tadpole skin. The cell line grew to form a monolayer with cells of a uniform shape and abundant rough endoplasmic reticulum, which are typical characteristics of fibroblasts. Further identification at a molecular level revealed that they strongly expressed the fibroblast marker protein vimentin. The chromosome number of these cells is 2n = 28, and most of them were diploid. Growth property analysis showed that they grew well for 14 passages. However, cells showed decreased proliferative ability after passage 15. Thus, we tried to immortalize the cells through the overexpression of SV40 T antigen. After selecting by G418, cells stably expressed SV40 large T antigen and showed enhanced proliferative ability and increased telomerase activity. Signal transduction analysis revealed functional p42 mitogen-activated protein (MAP) kinase in immortalized Bombina maxima dermal fibroblasts. Primary fibroblast cells and the immortalized fibroblast cells from Bombina maxima cultured in the present study can be used to investigate the physiological role of Bombina maxima skin-secreted proteins and peptides. In addition, the methods for primary cell culturing and cell immortalization will be useful for culturing and immortalizing cells from other types of amphibians.

  20. Back to the future! Revisiting the physiological cost of negative work as a team-based activity for exercise physiology students.

    Science.gov (United States)

    Kilgas, Matthew A; Elmer, Steven J

    2017-03-01

    We implemented a team-based activity in our exercise physiology teaching laboratory that was inspired from Abbott et al.'s classic 1952 Journal of Physiology paper titled "The physiological cost of negative work." Abbott et al. connected two bicycles via one chain. One person cycled forward (muscle shortening contractions, positive work) while the other resisted the reverse moving pedals (muscle lengthening contractions, negative work), and the cost of work was compared. This study was the first to link human whole body energetics with isolated muscle force-velocity characteristics. The laboratory activity for our students ( n = 35) was designed to reenact Abbott et al.'s experiment, integrate previously learned techniques, and illustrate differences in physiological responses to muscle shortening and lengthening contractions. Students (11-12 students/laboratory section) were split into two teams (positive work vs. negative work). One student from each team volunteered to cycle against the other for ~10 min. The remaining students in each team were tasked with measuring: 1 ) O 2 consumption, 2 ) heart rate, 3 ) blood lactate, and 4 ) perceived exertion. Students discovered that O 2 consumption during negative work was about one-half that of positive work and all other physiological parameters were also substantially lower. Muscle lengthening contractions were discussed and applied to rehabilitation and sport training. The majority of students (>90%) agreed or strongly agreed that they stayed engaged during the activity and it improved their understanding of exercise physiology. All students recommended the activity be performed again. This activity was engaging, emphasized teamwork, yielded clear results, was well received, and preserved the history of classic physiological experiments. Copyright © 2017 the American Physiological Society.

  1. miR-199a-5p Is upregulated during fibrogenic response to tissue injury and mediates TGFbeta-induced lung fibroblast activation by targeting caveolin-1.

    Directory of Open Access Journals (Sweden)

    Christian Lacks Lino Cardenas

    Full Text Available As miRNAs are associated with normal cellular processes, deregulation of miRNAs is thought to play a causative role in many complex diseases. Nevertheless, the precise contribution of miRNAs in fibrotic lung diseases, especially the idiopathic form (IPF, remains poorly understood. Given the poor response rate of IPF patients to current therapy, new insights into the pathogenic mechanisms controlling lung fibroblasts activation, the key cell type driving the fibrogenic process, are essential to develop new therapeutic strategies for this devastating disease. To identify miRNAs with potential roles in lung fibrogenesis, we performed a genome-wide assessment of miRNA expression in lungs from two different mouse strains known for their distinct susceptibility to develop lung fibrosis after bleomycin exposure. This led to the identification of miR-199a-5p as the best miRNA candidate associated with bleomycin response. Importantly, miR-199a-5p pulmonary expression was also significantly increased in IPF patients (94 IPF versus 83 controls. In particular, levels of miR-199a-5p were selectively increased in myofibroblasts from injured mouse lungs and fibroblastic foci, a histologic feature associated with IPF. Therefore, miR-199a-5p profibrotic effects were further investigated in cultured lung fibroblasts: miR-199a-5p expression was induced upon TGFβ exposure, and ectopic expression of miR-199a-5p was sufficient to promote the pathogenic activation of pulmonary fibroblasts including proliferation, migration, invasion, and differentiation into myofibroblasts. In addition, we demonstrated that miR-199a-5p is a key effector of TGFβ signaling in lung fibroblasts by regulating CAV1, a critical mediator of pulmonary fibrosis. Remarkably, aberrant expression of miR-199a-5p was also found in unilateral ureteral obstruction mouse model of kidney fibrosis, as well as in both bile duct ligation and CCl4-induced mouse models of liver fibrosis, suggesting that

  2. Observing and understanding arterial and venous circulation differences in a physiology laboratory activity.

    Science.gov (United States)

    Altermann, Caroline; Gonçalves, Rithiele; Lara, Marcus Vinícius S; Neves, Ben-Hur S; Mello-Carpes, Pâmela B

    2015-12-01

    The purpose of the present article is to describe three simple practical experiments that aim to observe and discuss the anatomic and physiological functions and differences between arteries and veins as well as the alterations observed in skin blood flow in different situations. For this activity, students were divided in small groups. In each group, a volunteer is recruited for each experiment. The experiments only require a sphygmomanometer, rubber bands, and a clock and allow students to develop a hypothesis to explain the different responses to the interruption of arterial and venous blood flow. At the end, students prepare a short report, and the results are discussed. This activity allows students to perceive the presence of physiology in their daily lives and helps them to understand the concepts related to the cardiovascular system and hemodynamics. Copyright © 2015 The American Physiological Society.

  3. RAGE-dependent activation of gene expression of superoxide dismutase and vanins by AGE-rich extracts in mice cardiac tissue and murine cardiac fibroblasts.

    Science.gov (United States)

    Leuner, Beatrice; Ruhs, Stefanie; Brömme, Hans-Jürgen; Bierhaus, Angelika; Sel, Saadettin; Silber, Rolf-Edgar; Somoza, Veronika; Simm, Andreas; Nass, Norbert

    2012-10-01

    Advanced glycation end products (AGEs) are stable compounds formed from initial Maillard reaction products. They are considered as markers for ageing and often associated with age-related, degenerative diseases. Bread crust represents an established model for nutritional compounds rich in AGEs and is able to induce antioxidative defense genes such as superoxide dismutases and vanins in cardiac cells. The aim of this study was to investigate to what extend the receptor for AGEs (RAGE) contributes to this response. Signal transduction in response to bread crust extract was analysed in cardiac fibroblasts derived from C57/B6-NCrl (RAGE +/+) and the corresponding RAGE-knock out C57/B6-NCrl mouse strain (RAGE -/-). Activation of superoxide dismutases in animals was then analysed upon bread crust feeding in these two mice strains. Cardiac fibroblasts from RAGE -/- mice did not express RAGE, but the expression of AGER-1 and AGER-3 was up-regulated, whereas the expression of SR-B1 was down-regulated. RAGE -/- cells were less sensitive to BCE in terms of MAP-kinase phosphorylation and NF-κB reporter gene activation. Bread crust extract induced mRNA levels of MnSOD and Vnn-1 were also reduced in RAGE -/- cells, whereas Vnn-3 mRNA accumulation seemed to be RAGE receptor independent. In bread crust feeding experiments, RAGE -/- mice did not exhibit an activation of MnSOD-mRNA and -protein accumulation as observed for the RAGE +/+ animals. In conclusion, RAGE was clearly a major factor for the induction of antioxidant defense signals derived from bread crust in cardiac fibroblast and mice. Nevertheless higher doses of bread crust extract could overcome the RAGE dependency in cell cultures, indicating that additional mechanisms are involved in BCE-mediated activation of SOD and vanin expression.

  4. Outcomes of physiological and active third stage labour care amongst women in New Zealand.

    Science.gov (United States)

    Dixon, Lesley; Tracy, Sally K; Guilliland, Karen; Fletcher, Lynn; Hendry, Chris; Pairman, Sally

    2013-01-01

    during the third stage of labour there are two approaches for care provision - active management or physiological (expectant) care. The aim of this research was to describe, analyse and compare the midwifery care pathway and outcomes provided to a selected cohort of New Zealand women during the third stage of labour between the years 2004 and 2008. These women received continuity of care from a midwife Lead Maternity Carer and gave birth in a variety of birth settings (home, primary, secondary and tertiary maternity units). retrospective aggregated clinical information was extracted from the New Zealand College of Midwives research database. Factors such as type of third stage labour care provided; estimated blood loss; rate of treatment (separate to prophylaxis) with a uterotonic; and placental condition were compared amongst women who had a spontaneous onset of labour and no further assistance during the labour and birth. The results were adjusted for age, ethnicity, parity, place of birth, length of labour and weight of the baby. the rates of physiological third stage care (expectant) and active management within the cohort were similar (48.1% vs. 51.9%). Women who had active management had a higher risk of a blood loss of more than 500mL, the risk was 2.761 when a woman was actively managed (95% CI: 2.441-3.122) when compared to physiological management. Women giving birth at home and in a primary unit were more likely to have physiological management. A longer labour and higher parity increased the odds of having active management. Manual removal of the placenta was more likely with active management (0.7% active management - 0.2% physiological pwomen who were given a uterotonic drug as a treatment rather than prophylaxis a postpartum haemorrhage of more than 500mL was twice as likely in the actively managed group compared to the physiological managed group (6.9% vs. 3.7%, RR 0.54, CI: 0.5, 0.6). the use of physiological care during the third stage of labour

  5. Nerve cell-mimicking liposomes as biosensor for botulinum neurotoxin complete physiological activity

    Energy Technology Data Exchange (ETDEWEB)

    Weingart, Oliver G., E-mail: Oliver.Weingart@hest.ethz.ch; Loessner, Martin J.

    2016-12-15

    Botulinum neurotoxins (BoNT) are the most toxic substances known, and their neurotoxic properties and paralysing effects are exploited for medical treatment of a wide spectrum of disorders. To accurately quantify the potency of a pharmaceutical BoNT preparation, its physiological key activities (binding to membrane receptor, translocation, and proteolytic degradation of SNARE proteins) need to be determined. To date, this was only possible using animal models, or, to a limited extent, cell-based assays. We here report a novel in vitro system for BoNT/B analysis, based on nerve-cell mimicking liposomes presenting motoneuronal membrane receptors required for BoNT binding. Following triggered membrane translocation of the toxin's Light Chain, the endopeptidase activity can be quantitatively monitored employing a FRET-based reporter assay within the functionalized liposomes. We were able to detect BoNT/B physiological activity at picomolar concentrations in short time, opening the possibility for future replacement of animal experimentation in pharmaceutical BoNT testing. - Highlights: • A cell-free in vitro system was used to measure BoNT/B physiological function. • The system relies on nerve-cell mimicking liposomes as a novel detection system. • A FRET-based reporter assay is used as final readout of the test system. • BoNT/B physiological activity was detected at picogram quantities in short time. • The method opens the possibility to replace animal experimentation in BoNT testing.

  6. Nerve cell-mimicking liposomes as biosensor for botulinum neurotoxin complete physiological activity

    International Nuclear Information System (INIS)

    Weingart, Oliver G.; Loessner, Martin J.

    2016-01-01

    Botulinum neurotoxins (BoNT) are the most toxic substances known, and their neurotoxic properties and paralysing effects are exploited for medical treatment of a wide spectrum of disorders. To accurately quantify the potency of a pharmaceutical BoNT preparation, its physiological key activities (binding to membrane receptor, translocation, and proteolytic degradation of SNARE proteins) need to be determined. To date, this was only possible using animal models, or, to a limited extent, cell-based assays. We here report a novel in vitro system for BoNT/B analysis, based on nerve-cell mimicking liposomes presenting motoneuronal membrane receptors required for BoNT binding. Following triggered membrane translocation of the toxin's Light Chain, the endopeptidase activity can be quantitatively monitored employing a FRET-based reporter assay within the functionalized liposomes. We were able to detect BoNT/B physiological activity at picomolar concentrations in short time, opening the possibility for future replacement of animal experimentation in pharmaceutical BoNT testing. - Highlights: • A cell-free in vitro system was used to measure BoNT/B physiological function. • The system relies on nerve-cell mimicking liposomes as a novel detection system. • A FRET-based reporter assay is used as final readout of the test system. • BoNT/B physiological activity was detected at picogram quantities in short time. • The method opens the possibility to replace animal experimentation in BoNT testing.

  7. Aqueous extract of Arbutus unedo inhibits STAT1 activation in human breast cancer cell line MDA-MB-231 and human fibroblasts through SHP2 activation.

    Science.gov (United States)

    Mariotto, S; Ciampa, A R; de Prati, A Carcereri; Darra, E; Vincenzi, S; Sega, M; Cavalieri, E; Shoji, K; Suzuki, H

    2008-05-01

    Arbutus unedo L. has been for a long time employed in traditional and popular medicine as an astringent, diuretic, urinary anti-septic, and more recently, in the therapy of hypertension and diabetes. Signal transducer and activator of transcription 1 (STAT1) is a fascinating and complex protein with multiple yet contrasting transcriptional functions. Although activation of this nuclear factor is finely regulated in order to control the entire inflammatory process, its hyper-activation or time-spatially erroneous activation may lead to exacerbation of inflammation. The modulation of this nuclear factor, therefore, has recently been considered as a new strategy in the treatment of inflammatory diseases. In this study, we present data showing that the aqueous extract of Arbutus unedo's leaves exerts inhibitory action on interferon-gamma (IFN-gamma) elicited activation of STAT1, both in human breast cancer cell line MDA-MB-231 and in human fibroblasts. This down-regulation of STAT1 is shown to result from a reduced tyrosine phosphorylation of STAT1 protein. Evidence is also presented indicating that the inhibitory effect of this extract may be mediated through enhancement of tyrosine phosphorylation of SHP2 tyrosine phosphatase. The modulation of this nuclear factor turns out into the regulation of the expression of a number of genes involved in the inflammatory response such as inducible nitric oxide synthase (iNOS) and intercellular adhesion molecule-1 (ICAM-1). Taken together, our results suggest that the employment of the Arbutus unedo aqueous extract is promising, at least, as an auxiliary anti-inflammatory treatment of diseases in which STAT1 plays a critical role.

  8. Human skeletal muscle fibroblasts stimulate in vitro myogenesis and in vivo muscle regeneration

    DEFF Research Database (Denmark)

    Mackey, Abigail L; Magnan, Mélanie; Chazaud, Bénédicte

    2017-01-01

    immediately surrounding regenerating muscle fibres. These novel findings indicate an important role for fibroblasts in supporting the regeneration of muscle fibres, potentially through direct stimulation of satellite cell differentiation and fusion, and contribute to understanding of cell-cell cross......-talk during physiological and pathological muscle remodelling. ABSTRACT: Accumulation of skeletal muscle extracellular matrix is an unfavourable characteristic of many muscle diseases, muscle injury and sarcopenia. In addition to the indispensable role satellite cells play in muscle regeneration......, there is emerging evidence in rodents for a regulatory influence on fibroblast activity. However, the influence of fibroblasts on satellite cells and muscle regeneration in humans is unknown. The purpose of this study was to investigate this in vitro and during in vivo regeneration in humans. Following a muscle...

  9. Does rapid and physiological astrocyte-neuron signalling amplify epileptic activity?

    Science.gov (United States)

    Henneberger, Christian

    2017-03-15

    The hippocampus is a key brain region in the pathophysiology of mesial temporal lobe epilepsy. Long-term changes of its architecture and function on the network and cellular level are well documented in epilepsy. Astrocytes can control many aspects of neuronal function and their long-term alterations over weeks, months and years play an important role in epilepsy. However, a pathophysiological transformation of astrocytes does not seem to be required for astrocytes to contribute to epileptic activity. Some of the properties of physiological astrocyte-neuron communication could allow these cells to exacerbate or synchronize neuronal firing on shorter time scales of milliseconds to minutes. Therefore, these astrocyte-neuron interactions are increasingly recognized as potential contributors to epileptic activity. Fast and reciprocal communication between astrocytes and neurons is enabled by a diverse set of mechanisms that could both amplify and counteract epileptic activity. They may thus promote or cause development of epileptic activity or inhibit it. Mechanisms of astrocyte-neuron interactions that can quickly increase network excitability involve, for example, astrocyte Ca 2+ and Na + signalling, K + buffering, gap junction coupling and metabolism. However, rapid changes of astrocyte neurotransmitter uptake and morphology may also underlie or support development of network hyperexcitability. The temporal characteristics of these interactions, their ability to synchronize neuronal activity and their net effect on network activity will determine their contribution to the emergence or maintenance of epileptic activity. © 2016 The Authors. The Journal of Physiology © 2016 The Physiological Society.

  10. Hypoxia increases the behavioural activity of schooling herring: a response to physiological stress or respiratory distress?

    DEFF Research Database (Denmark)

    Herbert, Neill A.; Steffensen, John F.

    2006-01-01

    a deviation in physiological homeostasis is associated with any change in behavioural activity, we exposed C. harengus in a school to a progressive stepwise decline in water oxygen pressure  and measured fish swimming speed and valid indicators of primary and secondary stress (i.e. blood cortisol, lactate......Atlantic herring, Clupea harengus, increase their swimming speed during low O2 (hypoxia) and it has been hypothesised that the behavioural response is modulated by the degree of "respiratory distress" (i.e. a rise in anaerobic metabolism and severe physiological stress). To test directly whether...

  11. PDZ domain-binding motif of human T-cell leukemia virus type 1 Tax oncoprotein augments the transforming activity in a rat fibroblast cell line

    International Nuclear Information System (INIS)

    Hirata, Akira; Higuchi, Masaya; Niinuma, Akiko; Ohashi, Minako; Fukushi, Masaya; Oie, Masayasu; Akiyama, Tetsu; Tanaka, Yuetsu; Gejyo, Fumitake; Fujii, Masahiro

    2004-01-01

    While human T-cell leukemia virus type 1 (HTLV-1) is associated with the development of adult T-cell leukemia (ATL), HTLV-2 has not been reported to be associated with such malignant leukemias. HTLV-1 Tax1 oncoprotein transforms a rat fibroblast cell line (Rat-1) to form multiple large colonies in soft agar, and this activity is much greater than that of HTLV-2 Tax2. We have demonstrated here that the increased number of transformed colonies induced by Tax1 relative to Tax2 was mediated by a PDZ domain-binding motif (PBM) in Tax1, which is absent in Tax2. Tax1 PBM mediated the interaction of Tax1 with the discs large (Dlg) tumor suppressor containing PDZ domains, and the interaction correlated well with the transforming activities of Tax1 and the mutants. Through this interaction, Tax1 altered the subcellular localization of Dlg from the detergent-soluble to the detergent-insoluble fraction in a fibroblast cell line as well as in HTLV-1-infected T-cell lines. These results suggest that the interaction of Tax1 with PDZ domain protein(s) is critically involved in the transforming activity of Tax1, the activity of which may be a crucial factor in malignant transformation of HTLV-1-infected cells in vivo

  12. Substance Use, Dental Hygiene, and Physical Activity in Adult Patients with Single Ventricle Physiology

    DEFF Research Database (Denmark)

    Schrader, Anne-Marie Voss

    2013-01-01

    % are not flossing their teeth (32% in controls; OR = 1.32; P = 0.239); and 39% are not physically active (24% in controls; OR = 1.63; P = 0.069). CONCLUSIONS: While in general there was no significant differences in overall health behaviors between SVP patients and controls, SVP patients are less physically active......Substance Use, Dental Hygiene, and Physical Activity in Adult Patients with Single Ventricle Physiology. Overgaard D, Schrader AM, Lisby KH, King C, Christensen RF, Jensen HF, Moons P. Author information OBJECTIVES: The study aims to describe substance use, dental hygiene, and physical activity...... in adult survivors with single ventricle physiology (SVP) and to compare the behaviors with matched controls, while the patients are particularly at risk for general health problems. DESIGN: The present study is part of a larger research project on long-term outcomes in adult patients with SVP. A cross...

  13. Comparison of the effect of cortisol on aromatase activity and androgen metabolism in two human fibroblast cell lines derived from the same individual

    DEFF Research Database (Denmark)

    Svenstrup, B; Brünner, N; Dombernowsky, P

    1990-01-01

    The effect of preincubation with cortisol on estrogen and androgen metabolism was investigated in human fibroblast monolayers grown from biopsies of genital and non-genital skin of the same person. The activity in the cells of aromatase, 5 alpha-reductase, 17 beta-hydroxysteroid oxidoreductase.......5-1.0 x 10(-6) M in both cell lines. When preincubation with cortisol was omitted no estrogen synthesis was detected. The formation of androgen was not altered after preincubation with cortisol. Pronounced differences were found in estrogen and in androgen metabolism in the two cell lines suggesting...

  14. The role of non-rainfall water on physiological activation in desert biological soil crusts

    Science.gov (United States)

    Zheng, Jiaoli; Peng, Chengrong; Li, Hua; Li, Shuangshuang; Huang, Shun; Hu, Yao; Zhang, Jinli; Li, Dunhai

    2018-01-01

    Non-rainfall water (NRW, e.g. fog and dew), in addition to rainfall and snowfall, are considered important water inputs to drylands. At the same time, biological soil crusts (BSCs) are important components of drylands. However, little information is available regarding the effect of NRW inputs on BSC activation. In this study, the effects of NRW on physiological activation in three BSC successional stages, including the cyanobacteria crust stage (Crust-C), moss colonization stage (Crust-CM), and moss crust stage (Crust-M), were studied in situ. Results suggest NRW inputs hydrated and activated physiological activity (Fv/Fm, carbon exchange, and nitrogen fixation) in BSCs but led to a negative carbon balance and low rates of nitrogen fixation in BSCs. One effective NRW event could hydrate BSCs for 7 h. Following simulated rainfall, the physiological activities recovered within 3 h, and net carbon gain occurred until 3 h after hydration, whereas NRW-induced physiological recovery processes were slower and exhibited lower activities, leading to a negative carbon balance. There were significant positive correlations between NRW amounts and the recovered values of Fv/Fm in all the three BSC stages (p < .001). The thresholds for Fv/Fm activation decreased with BSC succession, and the annual effective NRW events increased with BSC succession, with values of 29.8, 89.2, and 110.7 in Crust-C, Crust-CM and Crust-M, respectively. The results suggest that moss crust and moss-cyanobacteria crust use NRW to prolong metabolic activity and reduce drought stress more efficiently than cyanobacteria crusts. Therefore, these results suggest that BSCs utilize NRW to sustain life while growth and biomass accumulation require precipitation (rainfall) events over a certain threshold.

  15. Fibroblasts and the extracellular matrix in right ventricular disease.

    Science.gov (United States)

    Frangogiannis, Nikolaos G

    2017-10-01

    Right ventricular failure predicts adverse outcome in patients with pulmonary hypertension (PH), and in subjects with left ventricular heart failure and is associated with interstitial fibrosis. This review manuscript discusses the cellular effectors and molecular mechanisms implicated in right ventricular fibrosis. The right ventricular interstitium contains vascular cells, fibroblasts, and immune cells, enmeshed in a collagen-based matrix. Right ventricular pressure overload in PH is associated with the expansion of the fibroblast population, myofibroblast activation, and secretion of extracellular matrix proteins. Mechanosensitive transduction of adrenergic signalling and stimulation of the renin-angiotensin-aldosterone cascade trigger the activation of right ventricular fibroblasts. Inflammatory cytokines and chemokines may contribute to expansion and activation of macrophages that may serve as a source of fibrogenic growth factors, such as transforming growth factor (TGF)-β. Endothelin-1, TGF-βs, and matricellular proteins co-operate to activate cardiac myofibroblasts, and promote synthesis of matrix proteins. In comparison with the left ventricle, the RV tolerates well volume overload and ischemia; whether the right ventricular interstitial cells and matrix are implicated in these favourable responses remains unknown. Expansion of fibroblasts and extracellular matrix protein deposition are prominent features of arrhythmogenic right ventricular cardiomyopathies and may be implicated in the pathogenesis of arrhythmic events. Prevailing conceptual paradigms on right ventricular remodelling are based on extrapolation of findings in models of left ventricular injury. Considering the unique embryologic, morphological, and physiologic properties of the RV and the clinical significance of right ventricular failure, there is a need further to dissect RV-specific mechanisms of fibrosis and interstitial remodelling. Published on behalf of the European Society of

  16. Improved throughput traction microscopy reveals pivotal role for matrix stiffness in fibroblast contractility and TGF-β responsiveness

    Science.gov (United States)

    Marinković, Aleksandar; Mih, Justin D.; Park, Jin-Ah; Liu, Fei

    2012-01-01

    Lung fibroblast functions such as matrix remodeling and activation of latent transforming growth factor-β1 (TGF-β1) are associated with expression of the myofibroblast phenotype and are directly linked to fibroblast capacity to generate force and deform the extracellular matrix. However, the study of fibroblast force-generating capacities through methods such as traction force microscopy is hindered by low throughput and time-consuming procedures. In this study, we improved at the detail level methods for higher-throughput traction measurements on polyacrylamide hydrogels using gel-surface-bound fluorescent beads to permit autofocusing and automated displacement mapping, and transduction of fibroblasts with a fluorescent label to streamline cell boundary identification. Together these advances substantially improve the throughput of traction microscopy and allow us to efficiently compute the forces exerted by lung fibroblasts on substrates spanning the stiffness range present in normal and fibrotic lung tissue. Our results reveal that lung fibroblasts dramatically alter the forces they transmit to the extracellular matrix as its stiffness changes, with very low forces generated on matrices as compliant as normal lung tissue. Moreover, exogenous TGF-β1 selectively accentuates tractions on stiff matrices, mimicking fibrotic lung, but not on physiological stiffness matrices, despite equivalent changes in Smad2/3 activation. Taken together, these results demonstrate a pivotal role for matrix mechanical properties in regulating baseline and TGF-β1-stimulated contraction of lung fibroblasts and suggest that stiff fibrotic lung tissue may promote myofibroblast activation through contractility-driven events, whereas normal lung tissue compliance may protect against such feedback amplification of fibroblast activation. PMID:22659883

  17. Dimerization of endogenous MT1-MMP is a regulatory step in the activation of the 72-kDa gelatinase MMP-2 on fibroblasts and fibrosarcoma cells

    DEFF Research Database (Denmark)

    Ingvarsen, Signe; Madsen, Daniel H.; Hillig, Thore

    2008-01-01

    The secreted gelatinase matrix metalloprotease-2 (MMP-2) and the membrane-anchored matrix metalloprotease MT1-MMP (MMP-14), are central players in pericellular proteolysis in extracellular matrix degradation. In addition to possessing a direct collagenolytic and gelatinolytic activity......, these enzymes take part in a cascade pathway in which MT1-MMP activates the MMP-2 proenzyme. This reaction occurs in an interplay with the matrix metalloprotease inhibitor, TIMP-2, and the proposed mechanism involves two molecules of MT1-MMP in complex with one TIMP-2 molecule. We provide positive evidence...... that proMMP-2 activation is governed by dimerization of MT1-MMP on the surface of fibroblasts and fibrosarcoma cells. Even in the absence of transfection and overexpression, dimerization of MT1-MMP markedly stimulated the formation of active MMP-2 products. The effect demonstrated here was brought about...

  18. AhR-dependent secretion of PDGF-BB by human classically activated macrophages exposed to DEP extracts stimulates lung fibroblast proliferation

    Energy Technology Data Exchange (ETDEWEB)

    Jaguin, Marie [UMR INSERM U1085, Institut de Recherche sur la Santé, l' Environnement et le Travail (IRSET), Université de Rennes 1, 2 Avenue du Pr Léon Bernard, 35043 Rennes Cedex (France); Fardel, Olivier [UMR INSERM U1085, Institut de Recherche sur la Santé, l' Environnement et le Travail (IRSET), Université de Rennes 1, 2 Avenue du Pr Léon Bernard, 35043 Rennes Cedex (France); Pôle Biologie, Centre Hospitalier Universitaire (CHU) Rennes, 2 rue Henri Le Guilloux, 35033 Rennes Cedex (France); Lecureur, Valérie, E-mail: valerie.lecureur@univ-rennes1.fr [UMR INSERM U1085, Institut de Recherche sur la Santé, l' Environnement et le Travail (IRSET), Université de Rennes 1, 2 Avenue du Pr Léon Bernard, 35043 Rennes Cedex (France)

    2015-06-15

    Lung diseases are aggravated by exposure to diesel exhaust particles (DEPs) found in air pollution. Macrophages are thought to play a crucial role in lung immune response to these pollutants, even if the mechanisms involved remain incompletely characterized. In the present study, we demonstrated that classically and alternative human macrophages (MΦ) exhibited increased secretion of PDGF-B in response to DEP extract (DEPe). This occurred via aryl hydrocarbon receptor (AhR)-activation because DEPe-induced PDGF-B overexpression was abrogated after AhR expression knock-down by RNA interference, in both M1 and M2 polarizing MΦ. In addition, TCDD and benzo(a)pyrene, two potent AhR ligands, also significantly increased mRNA expression of PDGF-B in M1 MΦ, whereas some weak ligands of AhR did not. We next evaluated the impact of conditioned media (CM) from MΦ culture exposed to DEPe or of recombinant PDGF-B onto lung fibroblast proliferation. The tyrosine kinase inhibitor, AG-1295, prevents phosphorylations of PDGF-Rβ, AKT and ERK1/2 and the proliferation of MRC-5 fibroblasts induced by recombinant PDGF-B and by CM from M1 polarizing MΦ, strongly suggesting that the PDGF-BB secreted by DEPe-exposed MΦ is sufficient to activate the PDGF-Rβ pathway of human lung fibroblasts. In conclusion, we demonstrated that human MΦ, whatever their polarization status, secrete PDGF-B in response to DEPe and that PDGF-B is a target gene of AhR. Therefore, induction of PDGF-B by DEP may participate in the deleterious effects towards human health triggered by such environmental urban contaminants. - Highlights: • PDGF-B expression and secretion are increased by DEPe exposure in human M1 and M2 MΦ. • DEPe-induced PDGF-B expression is aryl-hydrocarbon-dependent. • DEPe-exposed M1 MΦ secrete sufficient PDGF-B to increase lung fibroblast proliferation.

  19. Transformation and scattering activities of the receptor tyrosine kinase RON/Stk in rodent fibroblasts and lack of regulation by the jaagsiekte sheep retrovirus receptor, Hyal2

    International Nuclear Information System (INIS)

    Miller, A Dusty; Van Hoeven, Neal S; Liu, Shan-Lu

    2004-01-01

    The envelope (Env) protein of jaagsiekte sheep retrovirus (JSRV) can transform cells in culture and is likely to be the main factor responsible for lung cancer induction by JSRV in animals. A recent report indicates that the epithelial-cell transforming activity of JSRV Env depends on activation of the cell-surface receptor tyrosine kinase Mst1r (called RON for the human and Stk for the rodent orthologs). In the immortalized line of human epithelial cells used (BEAS-2B cells), the virus receptor Hyal2 was found to bind to and suppress the activity of RON. When Env was expressed it bound to Hyal2 causing its degradation, release of RON activity from Hyal2 suppression, and activation of pathways resulting in cell transformation. Due to difficulty with reproducibility of the transformation assay in BEAS-2B cells, we have used more tractable rodent fibroblast models to further study Hyal2 modulation of RON/Stk transforming activity and potential effects of Hyal2 on RON/Stk activation by its natural ligand, macrophage stimulating protein (MSP). We did not detect transformation of NIH 3T3 cells by plasmids expressing RON or Stk, but did detect transformation of 208F rat fibroblasts by these plasmids at a very low rate. We were able to isolate 208F cell clones that expressed RON or Stk and that showed changes in morphology indicative of transformation. The parental 208F cells did not respond to MSP but 208F cells expressing RON or Stk showed obvious increases in scattering/transformation in response to MSP. Human Hyal2 had no effect on the basal or MSP-induced phenotypes of RON-expressing 208F cells, and human, mouse or rat Hyal2 had no effect on the basal or MSP-induced phenotypes of Stk-expressing 208F cells. We have shown that RON or Stk expression in 208F rat fibroblasts results in a transformed phenotype that is enhanced by addition of the natural ligand for these proteins, MSP. Hyal2 does not directly modulate the basal or MSP-induced RON/Stk activity, although it

  20. Tiron Inhibits UVB-Induced AP-1 Binding Sites Transcriptional Activation on MMP-1 and MMP-3 Promoters by MAPK Signaling Pathway in Human Dermal Fibroblasts.

    Directory of Open Access Journals (Sweden)

    Jing Lu

    Full Text Available Recent research found that Tiron was an effective antioxidant that could act as the intracellular reactive oxygen species (ROS scavenger or alleviate the acute toxic metal overload in vivo. In this study, we investigated the inhibitory effect of Tiron on matrix metalloproteinase (MMP-1 and MMP-3 expression in human dermal fibroblast cells. Western blot and ELISA analysis revealed that Tiron inhibited ultraviolet B (UVB-induced protein expression of MMP-1 and MMP-3. Real-time quantitative PCR confirmed that Tiron could inhibit UVB-induced mRNA expression of MMP-1 and MMP-3. Furthermore, Tiron significantly blocked UVB-induced activation of the MAPK signaling pathway and activator protein (AP-1 in the downstream of this transduction pathway in fibroblasts. Through the AP-1 binding site mutation, it was found that Tiron could inhibit AP-1-induced upregulation of MMP-1 and MMP-3 expression through blocking AP-1 binding to the AP-1 binding sites in the MMP-1 and MMP-3 promoter region. In conclusion, Tiron may be a novel antioxidant for preventing and treating skin photoaging UV-induced.

  1. Signaling pathway activation drift during aging: Hutchinson-Gilford Progeria Syndrome fibroblasts are comparable to normal middle-age and old-age cells.

    Science.gov (United States)

    Aliper, Alexander M; Csoka, Antonei Benjamin; Buzdin, Anton; Jetka, Tomasz; Roumiantsev, Sergey; Moskalev, Alexy; Zhavoronkov, Alex

    2015-01-01

    For the past several decades, research in understanding the molecular basis of human aging has progressed significantly with the analysis of premature aging syndromes. Progerin, an altered form of lamin A, has been identified as the cause of premature aging in Hutchinson-Gilford Progeria Syndrome (HGPS), and may be a contributing causative factor in normal aging. However, the question of whether HGPS actually recapitulates the normal aging process at the cellular and organismal level, or simply mimics the aging phenotype is widely debated. In the present study we analyzed publicly available microarray datasets for fibroblasts undergoing cellular aging in culture, as well as fibroblasts derived from young, middle-age, and old-age individuals, and patients with HGPS. Using GeroScope pathway analysis and drug discovery platform we analyzed the activation states of 65 major cellular signaling pathways. Our analysis reveals that signaling pathway activation states in cells derived from chronologically young patients with HGPS strongly resemble cells taken from normal middle-aged and old individuals. This clearly indicates that HGPS may truly represent accelerated aging, rather than being just a simulacrum. Our data also points to potential pathways that could be targeted to develop drugs and drug combinations for both HGPS and normal aging.

  2. Skin Aging-Dependent Activation of the PI3K Signaling Pathway via Downregulation of PTEN Increases Intracellular ROS in Human Dermal Fibroblasts

    Directory of Open Access Journals (Sweden)

    Eun-Mi Noh

    2016-01-01

    Full Text Available Reactive oxygen species (ROS play a major role in both chronological aging and photoaging. ROS induce skin aging through their damaging effect on cellular constituents. However, the origins of ROS have not been fully elucidated. We investigated that ROS generation of replicative senescent fibroblasts is generated by the modulation of phosphatidylinositol 3,4,5-triphosphate (PIP3 metabolism. Reduction of the PTEN protein, which dephosphorylates PIP3, was responsible for maintaining a high level of PIP3 in replicative cells and consequently mediated the activation of the phosphatidylinositol-3-OH kinase (PI3K/Akt pathway. Increased ROS production was blocked by inhibition of PI3K or protein kinase C (PKC or by NADPH oxidase activating in replicative senescent cells. These data indicate that the signal pathway to ROS generation in replicative aged skin cells can be stimulated by reduced PTEN level. Our results provide new insights into skin aging-associated modification of the PI3K/NADPH oxidase signaling pathway and its relationship with a skin aging-dependent increase of ROS in human dermal fibroblasts.

  3. Cytotoxic and Immunomodulatory Potential Activity of Physalis peruviana Fruit Extracts on Cervical Cancer (HeLa) and Fibroblast (L929) Cells.

    Science.gov (United States)

    Mier-Giraldo, Helen; Díaz-Barrera, Luis Eduardo; Delgado-Murcia, Lucy Gabriela; Valero-Valdivieso, Manuel Fernando; Cáez-Ramírez, Gabriela

    2017-10-01

    It was purposed to evaluate the biological potential of ethanol and isopropanol crude extracts of ripe Physalis peruviana fruits. Cytotoxic and immunomodulatory effects of the expression of interleukin-6, interleukin-8, and monocyte chemoattractant protein-1 (MCP-1) were evaluated on human cervical cancer (HeLa) and murine fibroblast (L929) cells. The composition was evaluated by high-performance liquid chromatography diode-array detection and high-performance liquid chromatography ultraviolet/visible detection. The presence of ursolic acid and rosmarinic acid was found in both solvents. However, gallic acid, quercetin, and epicatechin were higher in isopropanol extracts ( P < .05). The results indicated a relationship among the total polyphenol content, antioxidant activity, and cytotoxic activity that was dependent on the solvent used. Isopropanol extracts presented a half-maximal inhibition concentration value (IC 50 ) of 60.48 ± 3.8 μg/mL for HeLa cells and 66.62 ± 2.67 μg/mL for L929 fibroblasts. The extracts reduced the release of interleukin-6, interleukin-8, and MCP-1 in a dose-dependent manner. Extracts showed anticancer and immunomodulatory potential for new complementary pharmaceutical products development.

  4. Characterizing the angiogenic activity of patients with single ventricle physiology and aortopulmonary collateral vessels.

    Science.gov (United States)

    Sandeep, Nefthi; Uchida, Yutaka; Ratnayaka, Kanishka; McCarter, Robert; Hanumanthaiah, Sridhar; Bangoura, Aminata; Zhao, Zhen; Oliver-Danna, Jacqueline; Leatherbury, Linda; Kanter, Joshua; Mukouyama, Yoh-Suke

    2016-04-01

    Patients with single ventricle congenital heart disease often form aortopulmonary collateral vessels via an unclear mechanism. To gain insights into the pathogenesis of aortopulmonary collateral vessels, we correlated angiogenic factor levels with in vitro activity and angiographic aortopulmonary collateral assessment and examined whether patients with single ventricle physiology have increased angiogenic factors that can stimulate endothelial cell sprouting in vitro. In patients with single ventricle physiology (n = 27) and biventricular acyanotic control patients (n = 21), hypoxia-inducible angiogenic factor levels were measured in femoral venous and arterial plasma at cardiac catheterization. To assess plasma angiogenic activity, we used a 3-dimensional in vitro cell sprouting assay that recapitulates angiogenic sprouting. Aortopulmonary collateral angiograms were graded using a 4-point scale. Compared with controls, patients with single ventricle physiology had increased vascular endothelial growth factor (artery: 58.7 ± 1.2 pg/mL vs 35.3 ± 1.1 pg/mL, P collateral severity. We are the first to correlate plasma angiogenic factor levels with angiography and in vitro angiogenic activity in patients with single ventricle disease with aortopulmonary collaterals. Patients with single ventricle disease have increased stromal-derived factor 1-alpha and soluble fms-like tyrosine kinase-1, and their roles in aortopulmonary collateral formation require further investigation. Plasma factors and angiogenic activity correlate poorly with aortopulmonary collateral severity in patients with single ventricles, suggesting complex mechanisms of angiogenesis. Published by Elsevier Inc.

  5. Unusual Glycosaminoglycans from a Deep Sea Hydrothermal Bacterium Improve Fibrillar Collagen Structuring and Fibroblast Activities in Engineered Connective Tissues

    Directory of Open Access Journals (Sweden)

    Jean Guezennec

    2013-04-01

    Full Text Available Biopolymers produced by marine organisms can offer useful tools for regenerative medicine. Particularly, HE800 exopolysaccharide (HE800 EPS secreted by a deep-sea hydrothermal bacterium displays an interesting glycosaminoglycan-like feature resembling hyaluronan. Previous studies demonstrated its effectiveness to enhance in vivo bone regeneration and to support osteoblastic cell metabolism in culture. Thus, in order to assess the usefulness of this high-molecular weight polymer in tissue engineering and tissue repair, in vitro reconstructed connective tissues containing HE800 EPS were performed. We showed that this polysaccharide promotes both collagen structuring and extracellular matrix settle by dermal fibroblasts. Furthermore, from the native HE800 EPS, a low-molecular weight sulfated derivative (HE800 DROS displaying chemical analogy with heparan-sulfate, was designed. Thus, it was demonstrated that HE800 DROS mimics some properties of heparan-sulfate, such as promotion of fibroblast proliferation and inhibition of matrix metalloproteinase (MMP secretion. Therefore, we suggest that the HE800EPS family can be considered as an innovative biotechnological source of glycosaminoglycan-like compounds useful to design biomaterials and drugs for tissue engineering and repair.

  6. Unusual Glycosaminoglycans from a Deep Sea Hydrothermal Bacterium Improve Fibrillar Collagen Structuring and Fibroblast Activities in Engineered Connective Tissues

    Science.gov (United States)

    Senni, Karim; Gueniche, Farida; Changotade, Sylvie; Septier, Dominique; Sinquin, Corinne; Ratiskol, Jacqueline; Lutomski, Didier; Godeau, Gaston; Guezennec, Jean; Colliec-Jouault, Sylvia

    2013-01-01

    Biopolymers produced by marine organisms can offer useful tools for regenerative medicine. Particularly, HE800 exopolysaccharide (HE800 EPS) secreted by a deep-sea hydrothermal bacterium displays an interesting glycosaminoglycan-like feature resembling hyaluronan. Previous studies demonstrated its effectiveness to enhance in vivo bone regeneration and to support osteoblastic cell metabolism in culture. Thus, in order to assess the usefulness of this high-molecular weight polymer in tissue engineering and tissue repair, in vitro reconstructed connective tissues containing HE800 EPS were performed. We showed that this polysaccharide promotes both collagen structuring and extracellular matrix settle by dermal fibroblasts. Furthermore, from the native HE800 EPS, a low-molecular weight sulfated derivative (HE800 DROS) displaying chemical analogy with heparan-sulfate, was designed. Thus, it was demonstrated that HE800 DROS mimics some properties of heparan-sulfate, such as promotion of fibroblast proliferation and inhibition of matrix metalloproteinase (MMP) secretion. Therefore, we suggest that the HE800EPS family can be considered as an innovative biotechnological source of glycosaminoglycan-like compounds useful to design biomaterials and drugs for tissue engineering and repair. PMID:23612369

  7. Inhibition of fibroblast growth by Notch1 signaling is mediated by induction of Wnt11-dependent WISP-1.

    Directory of Open Access Journals (Sweden)

    Zhao-Jun Liu

    Full Text Available Fibroblasts are an integral component of stroma and important source of growth factors and extracellular matrix (ECM. They play a prominent role in maintaining tissue homeostasis and in wound healing and tumor growth. Notch signaling regulates biological function in a variety of cells. To elucidate the physiological function of Notch signaling in fibroblasts, we ablated Notch1 in mouse (Notch1(Flox/Flox embryonic fibroblasts (MEFs. Notch1-deficient (Notch1(-/- MEFs displayed faster growth and motility rate compared to Notch1(Flox/Flox MEFs. Such phenotypic changes, however, were reversible by reconstitution of Notch1 activation via overexpression of the intracellular domain of Notch1 (NICD1 in Notch1-deficient MEFs. In contrast, constitutive activation of Notch1 signaling by introducing NICD1 into primary human dermal fibroblasts (FF2441, which caused pan-Notch activation, inhibited cell growth and motility, whereas cellular inhibition was relievable when the Notch activation was countered with dominant-negative mutant of Master-mind like 1 (DN-MAML-1. Functionally, "Notch-activated" stromal fibroblasts could inhibit tumor cell growth/invasion. Moreover, Notch activation induced expression of Wnt-induced secreted proteins-1 (WISP-1/CCN4 in FF2441 cells while deletion of Notch1 in MEFs resulted in an opposite effect. Notably, WISP-1 suppressed fibroblast proliferation, and was responsible for mediating Notch1's inhibitory effect since siRNA-mediated blockade of WISP-1 expression could relieve cell growth inhibition. Notch1-induced WISP-1 expression appeared to be Wnt11-dependent, but Wnt1-independent. Blockade of Wnt11 expression resulted in decreased WISP-1 expression and liberated Notch-induced cell growth inhibition. These findings indicated that inhibition of fibroblast proliferation by Notch pathway activation is mediated, at least in part, through regulating Wnt1-independent, but Wnt11-dependent WISP-1 expression.

  8. Affective and physiological responses to the suffering of others: Compassion and vagal activity

    OpenAIRE

    Stellar, JE; Cohen, A; Oveis, C; Keltner, D

    2015-01-01

    © 2015 American Psychological Association. Compassion is an affective response to another's suffering and a catalyst of prosocial behavior. In the present studies, we explore the peripheral physiological changes associated with the experience of compassion. Guided by long-standing theoretical claims, we propose that compassion is associated with activation in the parasympathetic autonomic nervous system through the vagus nerve. Across 4 studies, participants witnessed others suffer while we r...

  9. Physiological Response and Habituation of Endangered Species to Military Training Activities

    Science.gov (United States)

    2009-11-01

    expenditure were either based on non-continuous (doubly-labeled water , Nagy 1975) or non- physiological estimates (time-activity budgets, e.g... water method in estimating energy expenditure of animals in the wild (Bevan et al. 1995, Green at al. 2001), doubly labeled water provides average daily...vertebrates studied so far (Boersma 1987, Silverin et al. 1997, Wingfield et al. 1997, Wasser et al. 1997). The measurement of circulating levels of

  10. RLS adaptive filtering for physiological interference reduction in NIRS brain activity measurement: a Monte Carlo study

    International Nuclear Information System (INIS)

    Zhang, Y; Sun, J W; Rolfe, P

    2012-01-01

    The non-invasive measurement of cerebral functional haemodynamics using near-infrared spectroscopy (NIRS) instruments is often affected by physiological interference. The suppression of this interference is crucial for reliable recovery of brain activity measurements because it can significantly affect the signal quality. In this study, we present a recursive least-squares (RLS) algorithm for adaptive filtering to reduce the magnitude of the physiological interference component. To evaluate it, we implemented Monte Carlo simulations based on a five-layer slab model of a human adult head with a multidistance source–detector arrangement, of a short pair and a long pair, for NIRS measurement. We derived measurements by adopting different interoptode distances, which is relevant to the process of optimizing the NIRS probe configuration. Both RLS and least mean squares (LMS) algorithms were used to attempt the removal of physiological interference. The results suggest that the RLS algorithm is more capable of minimizing the effect of physiological interference due to its advantages of faster convergence and smaller mean squared error (MSE). The influence of superficial layer thickness on the performance of the RLS algorithm was also investigated. We found that the near-detector position is an important variable in minimizing the MSE and a short source–detector separation less than 9 mm is robust to superficial layer thickness variation. (paper)

  11. Fibroblasts in fibrosis: novel roles and mediators

    Directory of Open Access Journals (Sweden)

    Ryan Thomas Kendall

    2014-05-01

    Full Text Available Fibroblasts are the most common cell type of the connective tissues found throughout the body and the principal source of the extensive extracellular matrix (ECM characteristic of these tissues. They are also the central mediators of the pathological fibrotic accumulation of ECM and the cellular proliferation and differentiation that occurs in response to prolonged tissue injury and chronic inflammation. The transformation of the fibroblast cell lineage involves classical developmental signaling programs and includes a surprisingly diverse range of precursor cell types—most notably, myofibroblasts that are the apex of the fibrotic phenotype. Myofibroblasts display exaggerated ECM production; constitutively secrete and are hypersensitive to chemical signals such as cytokines, chemokines, and growth factors; and are endowed with a contractile apparatus allowing them to manipulate the ECM fibers physically to close open wounds. In addition to ECM production, fibroblasts have multiple concomitant biological roles, such as in wound healing, inflammation, and angiogenesis, which are each interwoven with the process of fibrosis. We now recognize many common fibroblast-related features across various physiological and pathological protracted processes. Indeed, a new appreciation has emerged for the role of noncancerous fibroblast interactions with tumors in cancer progression. Although the predominant current clinical treatments of fibrosis involve nonspecific immunosuppressive and anti-proliferative drugs, a variety of potential therapies under investigation specifically target fibroblast biology.

  12. The Growth Hormone Receptor: Mechanism of Receptor Activation, Cell Signaling, and Physiological Aspects

    Directory of Open Access Journals (Sweden)

    Farhad Dehkhoda

    2018-02-01

    Full Text Available The growth hormone receptor (GHR, although most well known for regulating growth, has many other important biological functions including regulating metabolism and controlling physiological processes related to the hepatobiliary, cardiovascular, renal, gastrointestinal, and reproductive systems. In addition, growth hormone signaling is an important regulator of aging and plays a significant role in cancer development. Growth hormone activates the Janus kinase (JAK–signal transducer and activator of transcription (STAT signaling pathway, and recent studies have provided a new understanding of the mechanism of JAK2 activation by growth hormone binding to its receptor. JAK2 activation is required for growth hormone-mediated activation of STAT1, STAT3, and STAT5, and the negative regulation of JAK–STAT signaling comprises an important step in the control of this signaling pathway. The GHR also activates the Src family kinase signaling pathway independent of JAK2. This review covers the molecular mechanisms of GHR activation and signal transduction as well as the physiological consequences of growth hormone signaling.

  13. Impact of matrix stiffness on fibroblast function

    Energy Technology Data Exchange (ETDEWEB)

    El-Mohri, Hichem; Wu, Yang; Mohanty, Swetaparna; Ghosh, Gargi, E-mail: gargi@umich.edu

    2017-05-01

    Chronic non-healing wounds, caused by impaired production of growth factors and reduced vascularization, represent a significant burden to patients, health care professionals, and health care system. While several wound dressing biomaterials have been developed, the impact of the mechanical properties of the dressings on the residing cells and consequently on the healing of the wounds is largely overlooked. The primary focus of this study is to explore whether manipulation of the substrate mechanics can regulate the function of fibroblasts, particularly in the context of their angiogenic activity. A photocrosslinkable hydrogel platform with orthogonal control over gel modulus and cell adhesive sites was developed to explore the quantitative relationship between ECM compliance and fibroblast function. Increase in matrix stiffness resulted in enhanced fibroblast proliferation and stress fiber formation. However, the angiogenic activity of fibroblasts was found to be optimum when the cells were seeded on compliant matrices. Thus, the observations suggest that the stiffness of the wound dressing material may play an important role in the progression of wound healing. - Highlights: • Proliferation and stress fiber formation of fibroblasts increase with increasing matrix mechanics. • Cell area correlates with the growth of fibroblasts. • Angiogenic activity of fibroblasts optimum when cells seeded on compliant gels.

  14. I. Lipid metabolism stimulated by altered intracellular calcium in cultured fibroblasts. II. Regulation of the activity of rat adipose tissue lipoprotein lipase

    International Nuclear Information System (INIS)

    Chang Wang, Huei-Hsiang Lisa.

    1988-01-01

    The cell killing process of 3T3 Swiss mouse fibroblasts stimulated by Ca 2+ plus A23187, a Ca 2+ ionophore has been studied. The aim of this research is to understand the biochemical mechanism of this process, i.e, to elucidate the step involved and to characterize the enzymes involved with each steps in the lipid metabolism stimulated in cultured fibroblasts undergoing a toxic death response. Parallel 3T3 cultures biosynthetically labeled with lipid precursors were examined under Ca 2+ -mediated killing conditions. Labeled lipids were extracted and analyzed by thin-layer chromatography and autoradiography. Evidence for activation of a phosphatidylinositol-specific phospholipase C has been obtained in injured 3T3 cells labeled with [ 3 H]glycerol and [ 3 H]inositol. To simplify the system for studying the lipoprotein lipase reaction, our laboratory prepared the chromophore containing a substrate: 1,2-dipalmitoyl-3-β-2-furylacryloyltriacylglycerol (DPFATG). By using this artificial lipid we could readily investigate the lipoprotein lipase reactions, since the absorbance change directly represents the hydrolysis of the chromophoric side chain of the substrate

  15. Comparative effect of Piper betle, Chlorella vulgaris and tocotrienol-rich fraction on antioxidant enzymes activity in cellular ageing of human diploid fibroblasts.

    Science.gov (United States)

    Makpol, Suzana; Yeoh, Thong Wei; Ruslam, Farah Adilah Che; Arifin, Khaizurin Tajul; Yusof, Yasmin Anum Mohd

    2013-08-16

    Human diploid fibroblasts (HDFs) undergo a limited number of cellular divisions in culture and progressively reach a state of irreversible growth arrest, a process termed cellular ageing. Even though beneficial effects of Piper betle, Chlorella vulgaris and tocotrienol-rich fraction (TRF) have been reported, ongoing studies in relation to ageing is of interest to determine possible protective effects that may reverse the effect of ageing. The aim of this study was to evaluate the effect of P. betle, C. vulgaris and TRF in preventing cellular ageing of HDFs by determining the activity of antioxidant enzymes viz.; catalase, superoxide dismutase (SOD) and glutathione peroxidase. Different passages of HDFs were treated with P. betle, C. vulgaris and TRF for 24 h prior to enzymes activity determination. Senescence-associated beta-galactosidase (SA β-gal) expression was assayed to validate cellular ageing. In cellular ageing of HDFs, catalase and glutathione peroxidase activities were reduced, but SOD activity was heightened during pre-senescence. P. betle exhibited the strongest antioxidant activity by reducing SA β-gal expression, catalase activities in all age groups, and SOD activity. TRF exhibited a strong antioxidant activity by reducing SA β-gal expression, and SOD activity in senescent HDFs. C. vulgaris extract managed to reduce SOD activity in senescent HDFs. P. betle, C. vulgaris, and TRF have the potential as anti-ageing entities which compensated the role of antioxidant enzymes in cellular ageing of HDFs.

  16. Comparative effect of Piper betle, Chlorella vulgaris and tocotrienol-rich fraction on antioxidant enzymes activity in cellular ageing of human diploid fibroblasts

    Science.gov (United States)

    2013-01-01

    Background Human diploid fibroblasts (HDFs) undergo a limited number of cellular divisions in culture and progressively reach a state of irreversible growth arrest, a process termed cellular ageing. Even though beneficial effects of Piper betle, Chlorella vulgaris and tocotrienol-rich fraction (TRF) have been reported, ongoing studies in relation to ageing is of interest to determine possible protective effects that may reverse the effect of ageing. The aim of this study was to evaluate the effect of P. betle, C. vulgaris and TRF in preventing cellular ageing of HDFs by determining the activity of antioxidant enzymes viz.; catalase, superoxide dismutase (SOD) and glutathione peroxidase. Methods Different passages of HDFs were treated with P. betle, C. vulgaris and TRF for 24 h prior to enzymes activity determination. Senescence-associated beta-galactosidase (SA β-gal) expression was assayed to validate cellular ageing. Results In cellular ageing of HDFs, catalase and glutathione peroxidase activities were reduced, but SOD activity was heightened during pre-senescence. P. betle exhibited the strongest antioxidant activity by reducing SA β-gal expression, catalase activities in all age groups, and SOD activity. TRF exhibited a strong antioxidant activity by reducing SA β-gal expression, and SOD activity in senescent HDFs. C. vulgaris extract managed to reduce SOD activity in senescent HDFs. Conclusion P. betle, C. vulgaris, and TRF have the potential as anti-ageing entities which compensated the role of antioxidant enzymes in cellular ageing of HDFs. PMID:23948056

  17. Study of physiology of visual cortex activated by rotating grating with functional MRI

    International Nuclear Information System (INIS)

    Liang Ping; Shao Qing; Zhang Zhiqiang; Lu Guangming

    2004-01-01

    Objective: To research the physiology of visual cortex activated by rotating grating with functional-MRI (fMRI), and to identify the components of the activation. Methods: Functional MRI was performed in 9 healthy volunteers by using GRE-EPI sequences on a 1.5 T MR scanner. In the block designing, rotating grating, static grating, and luminance were plotted as task states, while static grating, luminance, and darkness were set as control states. The stimuli tasks included six steps. Imaging processing and statistical analysis was carried out off-line using SPM99 in single-subject method. Results: Some respective areas of visual cortex were activated by the various stimuli information supplied by rotating grating. The strong activation in the middle of occipital lobe located at primary vision area was related to the stimuli of white luminance. Its average maximum points were at 13, -98, -2 and 11, -100, -41 The bilateral activations of Brodmann 19th area located at MT area were related to visual motion perception. Its average maximum points were at 46, -72, -2 and -44, -74, 0. The mild activation in the middle of occipital lobe was related to form perception. Its average maximum points were at -12, -98, -6 and -16, -96, -6. Conclusion: The plotting of control state is important in bock design. The effective visual information of rotating grating includes components of luminance, visual motion perception, and form perception. FMRI has potential as a tool for studying the basic physiology of visual cortex. (authors)

  18. An evaluation of the physiological activity of 9-amine-9-fluorenephosphonic acid derivatives

    Directory of Open Access Journals (Sweden)

    Henryk Skrabka

    2013-12-01

    Full Text Available The physiological activity of eleven 9-amine-9-fluorenephosphonic acid derivatives, synthesized at the Wrocław Polytechnic, was examined. The test plant was Spirodela oligorrhiza. The effect of these compounds on the increase of the dry matter of this plant was tested in eight-day experiments. The activity of the compounds was varied. The most toxic were nos. 2, 4, 9, 8, 5 and 6 which were lethal in low concentrations. Somewhat less toxic were nos. 7, 10 and 11; nos. 1 and 3 were the least toxic.

  19. Temporal activation of anti- and pro-apoptotic factors in human gingival fibroblasts infected with the periodontal pathogen, Porphyromonas gingivalis: potential role of bacterial proteases in host signalling

    Directory of Open Access Journals (Sweden)

    Takehara Tadamichi

    2006-03-01

    Full Text Available Abstract Background Porphyromonas gingivalis is the foremost oral pathogen of adult periodontitis in humans. However, the mechanisms of bacterial invasion and the resultant destruction of the gingival tissue remain largely undefined. Results We report host-P. gingivalis interactions in primary human gingival fibroblast (HGF cells. Quantitative immunostaining revealed the need for a high multiplicity of infection for optimal infection. Early in infection (2–12 h, P. gingivalis activated the proinflammatory transcription factor NF-kappa B, partly via the PI3 kinase/AKT pathway. This was accompanied by the induction of cellular anti-apoptotic genes, including Bfl-1, Boo, Bcl-XL, Bcl2, Mcl-1, Bcl-w and Survivin. Late in infection (24–36 h the anti-apoptotic genes largely shut down and the pro-apoptotic genes, including Nip3, Hrk, Bak, Bik, Bok, Bax, Bad, Bim and Moap-1, were activated. Apoptosis was characterized by nuclear DNA degradation and activation of caspases-3, -6, -7 and -9 via the intrinsic mitochondrial pathway. Use of inhibitors revealed an anti-apoptotic function of NF-kappa B and PI3 kinase in P. gingivalis-infected HGF cells. Use of a triple protease mutant P. gingivalis lacking three major gingipains (rgpA rgpB kgp suggested a role of some or all these proteases in myriad aspects of bacteria-gingival interaction. Conclusion The pathology of the gingival fibroblast in P. gingivalis infection is affected by a temporal shift from cellular survival response to apoptosis, regulated by a number of anti- and pro-apoptotic molecules. The gingipain group of proteases affects bacteria-host interactions and may directly promote apoptosis by intracellular proteolytic activation of caspase-3.

  20. Animal-Assisted Activity: Effects of a Complementary Intervention Program on Psychological and Physiological Variables.

    Science.gov (United States)

    Nepps, Peggy; Stewart, Charles N; Bruckno, Stephen R

    2014-07-01

    Animal-assisted activity is the use of trained animals for the therapeutic, motivational, or educational benefit of patients. Subjects of this study were 218 patients hospitalized on the mental health unit of a community hospital with an existing, complementary animal-assisted activity program. Half of the patients participated in a 1-hour session of animal-assisted activity. The other half, who served as a comparison group, participated in a 1-hour stress management program. It was hypothesized that an animal-assisted activity program would improve ratings of depression, anxiety, and pain and the associated physiological measures of stress and discomfort. Self-report ratings of depression, anxiety, and pain were collected before and after treatment sessions, and blood pressure, pulse, and salivary cortisol were measured. There were significant decreases in depression (P animal-assisted activity program, comparable to those in the more traditional stress management group. © The Author(s) 2014.

  1. Competitive active video games: Physiological and psychological responses in children and adolescents.

    Science.gov (United States)

    Lisón, Juan F; Cebolla, Ausias; Guixeres, Jaime; Álvarez-Pitti, Julio; Escobar, Patricia; Bruñó, Alejandro; Lurbe, Empar; Alcañiz, Mariano; Baños, Rosa

    2015-10-01

    Recent strategies to reduce sedentary behaviour in children include replacing sedentary screen time for active video games. Active video game studies have focused principally on the metabolic consumption of a single player, with physiological and psychological responses of opponent-based multiplayer games to be further evaluated. To determine whether adding a competitive component to playing active video games impacts physiological and psychological responses in players. Sixty-two healthy Caucasian children and adolescents, nine to 14 years years of age, completed three conditions (8 min each) in random order: treadmill walking, and single and opponent-based Kinect active video games. Affect, arousal, rate of perceived exertion, heart rate and percentage of heart rate reserve were measured for each participant and condition. Kinect conditions revealed significantly higher heart rate, percentage of heart rate reserve, rate of perceived exertion and arousal when compared with treadmill walking (Pvideo games improved children's psychological responses (affect and rate of perceived exertion) compared with single play, providing a solution that may contribute toward improved adherence to physical activity.

  2. Enzymatic Activity of Free-Prostate-Specific Antigen (f-PSA) Is Not Required for Some of its Physiological Activities

    Science.gov (United States)

    Chadha, Kailash C.; Nair, Bindukumar B.; Chakravarthi, Srikant; Zhou, Rita; Godoy, Alejandro; Mohler, James L.; Aalinkeel, Ravikumar; Schwartz, Stanley A.; Smith, Gary J.

    2015-01-01

    BACKGROUND Prostate specific antigen (PSA) is a well known biomarker for early diagnosis and management of prostate cancer. Furthermore, PSA has been documented to have anti-angiogenic and anti-tumorigenic activities in both in vitro and in vivo studies. However, little is known about the molecular mechanism(s) involved in regulation of these processes, in particular the role of the serine-protease enzymatic activity of PSA. METHODS Enzymatic activity of PSA isolated directly from seminal plasma was inhibited specifically (>95%) by incubation with zinc2+. Human umbilical vein endothelial cells (HUVEC) were utilized to compare/contrast the physiological effects of enzymatically active versus inactive PSA. RESULTS Equimolar concentrations of enzymatically active PSA and PSA enzymatically inactivated by incubation with Zn2+ had similar physiological effects on HUVEC, including inhibiting the gene expression of pro-angiogenic growth factors, like VEGF and bFGF, and up-regulation of expression of the anti-angiogenic growth factor IFN-γ; suppression of mRNA expression for markers of blood vessel development, like FAK, FLT, KDR, TWIST-1; P-38; inhibition of endothelial tube formation in the in vitro Matrigel Tube Formation Assay; and inhibition of endothelial cell invasion and migration properties. DISCUSSION Our data provides compelling evidence that the transcriptional regulatory and the anti-angiogenic activities of human PSA are independent of the innate enzymatic activity PMID:21446007

  3. Single Cell Chemical Cytometry of Akt Activity in Rheumatoid Arthritis and Normal Fibroblast-like Synoviocytes in Response to Tumor Necrosis Factor α.

    Science.gov (United States)

    Mainz, Emilie R; Serafin, D Stephen; Nguyen, Tuong T; Tarrant, Teresa K; Sims, Christopher E; Allbritton, Nancy L

    2016-08-02

    The etiology of rheumatoid arthritis (RA) is poorly understood, and 30% of patients are unresponsive to established treatments targeting tumor necrosis factor α (TNFα). Akt kinase is implicated in TNFα signaling and may act as a barometer of patient responses to biologic therapies. Fluorescent peptide sensors and chemical cytometry were employed to directly measure Akt activity as well as proteolytic activity in individual fibroblast-like synoviocytes (FLS) from RA and normal subjects. The specificity of the peptide reporter was evaluated and shown to be a valid measure of Akt activity in single cells. The effect of TNFα treatment on Akt activity was highly heterogeneous between normal and RA subjects, which was not observable in bulk analyses. In 2 RA subjects, a bimodal distribution of Akt activity was observed, primarily due to a subpopulation (21.7%: RA Subject 5; 23.8%: RA Subject 6) of cells in which >60% of the reporter was phosphorylated. These subjects also possessed statistically elevated proteolytic cleavage of the reporter relative to normal subjects, suggesting heterogeneity in Akt and protease activity that may play a role in the RA-affected joint. We expect that chemical cytometry studies pairing peptide reporters with capillary electrophoresis will provide valuable data regarding aberrant kinase activity from small samples of clinical interest.

  4. Effects of osmotic stress on the activity of MAPKs and PDGFR-beta-mediated signal transduction in NIH-3T3 fibroblasts

    DEFF Research Database (Denmark)

    Nielsen, M-B; Christensen, Søren Tvorup; Hoffmann, E K

    2008-01-01

    Signaling in cell proliferation, cell migration, and apoptosis is highly affected by osmotic stress and changes in cell volume, although the mechanisms underlying the significance of cell volume as a signal in cell growth and death are poorly understood. In this study, we used NIH-3T3 fibroblasts...... in a serum- and nutrient-free inorganic medium (300 mosM) to analyze the effects of osmotic stress on MAPK activity and PDGF receptor (PDGFR)-beta-mediated signal transduction. We found that hypoosmolarity (cell swelling at 211 mosM) induced the phosphorylation and nuclear translocation of ERK1/2, most...... likely via a pathway independent of PDGFR-beta and MEK1/2. Conversely, hyperosmolarity (cell shrinkage at 582 mosM) moved nuclear and phosphorylated ERK1/2 to the cytoplasm and induced the phosphorylation and nuclear translocation of p38 and phosphorylation of JNK1/2. In a series of parallel experiments...

  5. The influence of low dose irradiation on intracellular pH level, synthesizing activity and ATP level in cultured chinese fibroblasts

    International Nuclear Information System (INIS)

    Parkhomenko, I.M.; Perishvili, G.V.; Turovetskij, V.B.; Kudryashov, Yu.B.; Rubin, A.B.; Brovko, L.Yu.

    1993-01-01

    X-irradiation of Chinese fibroblasts with doses of 0.05-0.15 Gy was shown to cause intracellular pH (pH i ) changes: its diminishing during the first 40-60 min by 0.16-0.18 pH units, then the return to the control level 120 min after irradiation and, finally, the increase by 0.18-0.20 pH units. Simultaneously, the synthesizing activity of the cells changed in the same way. The ATP level changed in the opposite way: increased when pH fell and decreased when pH grew. It was shown that pH i changes were connected with the changes in Na + /H + -exchange system, and they seemed to be primary in the chain of the alterations observed

  6. Activation and inactivation of the volume-sensitive taurine leak pathway in NIH3T3 fibroblasts and Ehrlich Lettre ascites cells

    DEFF Research Database (Denmark)

    Lambert, Ian Henry

    2007-01-01

    Hypotonic exposure provokes the mobilization of arachidonic acid, production of ROS, and a transient increase in taurine release in Ehrlich Lettre cells. The taurine release is potentiated by H(2)O(2) and the tyrosine phosphatase inhibitor vanadate and reduced by the phospholipase A(2) (PLA(2......)) inhibitors bromoenol lactone (BEL) and manoalide, the 5-lipoxygenase (5-LO) inhibitor ETH-615139, the NADPH oxidase inhibitor diphenyl iodonium (DPI), and antioxidants. Thus, swelling-induced taurine efflux in Ehrlich Lettre cells involves Ca(2+)-independent (iPLA(2))/secretory PLA(2) (sPLA(2)) plus 5-LO...... activity and modulation by ROS. Vanadate and H(2)O(2) stimulate arachidonic acid mobilization and vanadate potentiates ROS production in Ehrlich Lettre cells and NIH3T3 fibroblasts under hypotonic conditions. However, vanadate-induced potentiation of the volume-sensitive taurine efflux is, in both cell...

  7. Extracellular collagenases and the endocytic receptor, urokinase plasminogen activator receptor-associated protein/Endo180, cooperate in fibroblast-mediated collagen degradation

    DEFF Research Database (Denmark)

    Madsen, Daniel H; Engelholm, Lars H; Ingvarsen, Signe

    2007-01-01

    in these events. A recently discovered turnover route with importance for tumor growth involves intracellular collagen degradation and is governed by the collagen receptor, urokinase plasminogen activator receptor-associated protein (uPARAP or Endo180). The interplay between this mechanism and extracellular...... collagenolysis is not known. In this report, we demonstrate the existence of a new, composite collagen breakdown pathway. Thus, fibroblast-mediated collagen degradation proceeds preferentially as a sequential mechanism in which extracellular collagenolysis is followed by uPARAP/Endo180-mediated endocytosis......The collagens of the extracellular matrix are the most abundant structural proteins in the mammalian body. In tissue remodeling and in the invasive growth of malignant tumors, collagens constitute an important barrier, and consequently, the turnover of collagen is a rate-limiting process...

  8. Alpha8 Integrin (Itga8 Signalling Attenuates Chronic Renal Interstitial Fibrosis by Reducing Fibroblast Activation, Not by Interfering with Regulation of Cell Turnover.

    Directory of Open Access Journals (Sweden)

    Ines Marek

    Full Text Available The α8 integrin (Itga8 chain contributes to the regulation of cell proliferation and apoptosis in renal glomerular cells. In unilateral ureteral obstruction Itga8 is de novo expressed in the tubulointerstitium and a deficiency of Itga8 results in more severe renal fibrosis after unilateral ureteral obstruction. We hypothesized that the increased tubulointerstitial damage after unilateral ureteral obstruction observed in mice deficient for Itga8 is associated with altered tubulointerstitial cell turnover and apoptotic mechanisms resulting from the lack of Itga8 in cells of the tubulointerstitium. Induction of unilateral ureteral obstruction was achieved by ligation of the right ureter in mice lacking Itga8. Unilateral ureteral obstruction increased proliferation and apoptosis rates of tubuloepithelial and interstitial cells, however, no differences were observed in the tubulointerstitium of mice lacking Itga8 and wild type controls regarding fibroblast or proliferating cell numbers as well as markers of endoplasmic reticulum stress and apoptosis after unilateral ureteral obstruction. In contrast, unilateral ureteral obstruction in mice lacking Itga8 led to more pronounced tubulointerstitial cell activation i.e. to the appearance of more phospho-SMAD2/3-positive cells and more α-smooth muscle actin-positive cells in the tubulointerstitium. Furthermore, a more severe macrophage and T-cell infiltration was observed in these animals compared to controls. Thus, Itga8 seems to attenuate tubulointerstitial fibrosis in unilateral ureteral obstruction not via regulation of cell turnover, but via regulation of TGF-β signalling, fibroblast activation and/or immune cell infiltration.

  9. Vasohibin 2 promotes human luminal breast cancer angiogenesis in a non-paracrine manner via transcriptional activation of fibroblast growth factor 2.

    Science.gov (United States)

    Tu, Min; Lu, Cheng; Lv, Nan; Wei, Jishu; Lu, Zipeng; Xi, Chunhua; Chen, Jianmin; Guo, Feng; Jiang, Kuirong; Li, Qiang; Wu, Junli; Song, Guoxin; Wang, Shui; Gao, Wentao; Miao, Yi

    2016-12-28

    Vasohibin 2 (VASH2) is an angiogenic factor and cancer-related protein that acts via paracrine mechanisms. Here, we investigated the angiogenic function and mechanism of action of VASH2 in 200 human breast cancer tissues by performing immunohistochemical staining, western blot, indirect sandwich enzyme-linked immunosorbent assay (ELISA), and a semi-quantitative sandwich-based antibody array. Breast cancer cells stably overexpressing VASH2 or with knocked-down VASH2 were established and used for in vivo and in vitro models. In human luminal tissue, but not in HER2-positive or basal-like breast cancer tissues, VASH2 was positively correlated with CD31-positive microvascular density, induced angiogenesis in xenograft tumors, and promoted human umbilical vein endothelial cell tube formation in vitro. VASH2 expression was absent in the concentrated conditioned medium collected from knocked-down VASH2 and VASH2-overexpressing luminal breast cancer cells. Further, VASH2 regulated the expression of fibroblast growth factor 2 (FGF2) in human luminal breast cancer cells, and the pro-angiogenic effect induced by VASH2 overexpression was blocked by FGF2 neutralization in vitro. Additionally, dual luciferase reporter assay and Chromatin immunoprecipitation analysis results showed that FGF2 promoter was transcriptionally activated by VASH2 via histone modifications. In conclusion, VASH2 expression is positively correlated with FGF2 expression and promotes angiogenesis in human luminal breast cancer by transcriptional activation of fibroblast growth factor 2 through non-paracrine mechanisms. Copyright © 2016 Elsevier Ireland Ltd. All rights reserved.

  10. Physiological response and activity profile in recreational small-sided football

    DEFF Research Database (Denmark)

    Randers, Morten Bredsgaard; Nielsen, Jens Jung; Bangsbo, Jens

    2014-01-01

    We examined the effect of the number of players on the activity profile and physiological response to small-sided recreational football games with fixed relative pitch size. Twelve untrained men (age: 33.0 ± 6.4 (± standard deviation) years, fat%: 22.4 ± 6.1%, VO2 max: 43.3 ± 5.2 mL/min/kg) compl......We examined the effect of the number of players on the activity profile and physiological response to small-sided recreational football games with fixed relative pitch size. Twelve untrained men (age: 33.0 ± 6.4 (± standard deviation) years, fat%: 22.4 ± 6.1%, VO2 max: 43.3 ± 5.2 m......L/min/kg) completed three football sessions of 4 times 12 min with 3v3, 5v5, or 7v7 in a randomized order. Pitch sizes were 80 m(2) per player. Activity profile (10 Hz global positioning system), heart rate (HR), and rating of perceived exertion (RPE) were measured, and blood samples were collected before and during...... accelerations (500 ± 139 vs 459 ± 143 and 396 ± 144) were higher (P football games, with similar physiological responses for 6-14 players when pitch size is adapted, providing further evidence...

  11. Affective and physiological responses to the suffering of others: compassion and vagal activity.

    Science.gov (United States)

    Stellar, Jennifer E; Cohen, Adam; Oveis, Christopher; Keltner, Dacher

    2015-04-01

    Compassion is an affective response to another's suffering and a catalyst of prosocial behavior. In the present studies, we explore the peripheral physiological changes associated with the experience of compassion. Guided by long-standing theoretical claims, we propose that compassion is associated with activation in the parasympathetic autonomic nervous system through the vagus nerve. Across 4 studies, participants witnessed others suffer while we recorded physiological measures, including heart rate, respiration, skin conductance, and a measure of vagal activity called respiratory sinus arrhythmia (RSA). Participants exhibited greater RSA during the compassion induction compared with a neutral control (Study 1), another positive emotion (Study 2), and a prosocial emotion lacking appraisals of another person's suffering (Study 3). Greater RSA during the experience of compassion compared with the neutral or control emotion was often accompanied by lower heart rate and respiration but no difference in skin conductance. In Study 4, increases in RSA during compassion positively predicted an established composite of compassion-related words, continuous self-reports of compassion, and nonverbal displays of compassion. Compassion, a core affective component of empathy and prosociality, is associated with heightened parasympathetic activity. (c) 2015 APA, all rights reserved).

  12. A practical cooling strategy for reducing the physiological strain associated with firefighting activity in the heat.

    Science.gov (United States)

    Barr, D; Gregson, W; Sutton, L; Reilly, T

    2009-04-01

    The aim of this study was to establish whether a practical cooling strategy reduces the physiological strain during simulated firefighting activity in the heat. On two separate occasions under high ambient temperatures (49.6 +/- 1.8 degrees C, relative humidity (RH) 13 +/- 2%), nine male firefighters wearing protective clothing completed two 20-min bouts of treadmill walking (5 km/h, 7.5% gradient) separated by a 15-min recovery period, during which firefighters were either cooled (cool) via application of an ice vest and hand and forearm water immersion ( approximately 19 degrees C) or remained seated without cooling (control). There was no significant difference between trials in any of the dependent variables during the first bout of exercise. Core body temperature (37.72 +/- 0.34 vs. 38.21 +/- 0.17 degrees C), heart rate (HR) (81 +/- 9 vs. 96 +/- 17 beats/min) and mean skin temperature (31.22 +/- 1.04 degrees C vs. 33.31 +/- 1 degrees C) were significantly lower following the recovery period in cool compared with control (p second bout of activity in cool compared to control. Mean skin temperature, HR and thermal sensation were significantly lower during bout 2 in cool compared with control (p < 0.05). It is concluded that this practical cooling strategy is effective at reducing the physiological strain associated with demanding firefighting activity under high ambient temperatures.

  13. Effect of ionizing radiation on the physiological activities of ethanol extract from hizikia fusiformis cooking drips

    International Nuclear Information System (INIS)

    Kim, Hyun-Joo; Choi, Jong-il; Kim, Duk-Jin; Kim, Jae-Hun; Soo Chun, Byeong; Hyun Ahn, Dong; Sun Yook, Hong; Byun, Myung-Woo; Kim, Mi-Jung; Shin, Myung-Gon; Lee, Ju-Woon

    2009-01-01

    Although the byproduct from Hizikia fusiformis industry had many nutrients, it is being wasted. In this study, the physiological activities of cooking drip extracts from H. fusiformis (CDHF) were determined to investigate the effect of a gamma and an electron beam irradiations. DPPH radical scavenging activity and tyrosinase and ACE inhibition effects of the gamma and electron beam irradiated CDHF extracts were increased with increasing irradiation dose. These were reasoned by the increase in the content of the total polyphenolic compound of CDHF by the gamma and electron beam irradiation. There were no differences for the radiation types. These results show that ionizing radiation could be used for enhancing the functional activity of CDHF which is a major by-product in Hizikia fusiformis processing, in various applications.

  14. Physiological basis and image processing in functional magnetic resonance imaging: Neuronal and motor activity in brain

    Directory of Open Access Journals (Sweden)

    Sharma Rakesh

    2004-05-01

    Full Text Available Abstract Functional magnetic resonance imaging (fMRI is recently developing as imaging modality used for mapping hemodynamics of neuronal and motor event related tissue blood oxygen level dependence (BOLD in terms of brain activation. Image processing is performed by segmentation and registration methods. Segmentation algorithms provide brain surface-based analysis, automated anatomical labeling of cortical fields in magnetic resonance data sets based on oxygen metabolic state. Registration algorithms provide geometric features using two or more imaging modalities to assure clinically useful neuronal and motor information of brain activation. This review article summarizes the physiological basis of fMRI signal, its origin, contrast enhancement, physical factors, anatomical labeling by segmentation, registration approaches with examples of visual and motor activity in brain. Latest developments are reviewed for clinical applications of fMRI along with other different neurophysiological and imaging modalities.

  15. Physiological and Pathological Transcriptional Activation of Endogenous Retroelements Assessed by RNA-Sequencing of B Lymphocytes

    Directory of Open Access Journals (Sweden)

    Jan Attig

    2017-12-01

    Full Text Available In addition to evolutionarily-accrued sequence mutation or deletion, endogenous retroelements (EREs in eukaryotic genomes are subject to epigenetic silencing, preventing or reducing their transcription, particularly in the germplasm. Nevertheless, transcriptional activation of EREs, including endogenous retroviruses (ERVs and long interspersed nuclear elements (LINEs, is observed in somatic cells, variably upon cellular differentiation and frequently upon cellular transformation. ERE transcription is modulated during physiological and pathological immune cell activation, as well as in immune cell cancers. However, our understanding of the potential consequences of such modulation remains incomplete, partly due to the relative scarcity of information regarding genome-wide ERE transcriptional patterns in immune cells. Here, we describe a methodology that allows probing RNA-sequencing (RNA-seq data for genome-wide expression of EREs in murine and human cells. Our analysis of B cells reveals that their transcriptional response during immune activation is dominated by induction of gene transcription, and that EREs respond to a much lesser extent. The transcriptional activity of the majority of EREs is either unaffected or reduced by B cell activation both in mice and humans, albeit LINEs appear considerably more responsive in the latter host. Nevertheless, a small number of highly distinct ERVs are strongly and consistently induced during B cell activation. Importantly, this pattern contrasts starkly with B cell transformation, which exhibits widespread induction of EREs, including ERVs that minimally overlap with those responsive to immune stimulation. The distinctive patterns of ERE induction suggest different underlying mechanisms and will help separate physiological from pathological expression.

  16. Assessing the Physiological Cost of Active Videogames (Xbox Kinect) Versus Sedentary Videogames in Young Healthy Males.

    Science.gov (United States)

    Barry, Gillian; Tough, Daniel; Sheerin, Phillip; Mattinson, Oliver; Dawe, Rachael; Board, Elisabeth

    2016-02-01

    The aims of this study were twofold: (1) to compare the physiological costs of active videogames (AVGs) and sedentary videogames (SVGs) and (2) to compare the exercise intensities attained during AVGs with the exercise intensity criteria for moderate and vigorous physical activity, as stated in current physical activity recommendations for improving public health. Nineteen young males participated in the study (age, 23 ± 3 years; height, 178 ± 6 cm; weight, 78 ± 15 kg). Participants completed a maximum oxygen uptake ([Formula: see text]) test and a gaming session, including AVGs ("Reflex Ridge," "River Rush," and "Boxing" for the Microsoft [Redmond, WA] Kinect™) and SVGs ("FIFA 14" [Electronic Arts, Burnaby, BC, Canada] and "Call of Duty" [Activision, Santa Monica, CA]). Heart rate (HR) and oxygen uptake [Formula: see text]) were recorded continuously during all videogames. Rating of perceived exertion (RPE) was taken every 3 minutes during AVGs and SVGs. Energy expenditure (EE), expressed as metabolic equivalents (METs), was calculated. One MET was defined as the volume of oxygen consumed at rest in a seated position and is equal to 3.5 mL of O2/kg of body mass/minute. The exercise intensity for each game was expressed as a percentage of [Formula: see text] and percentage of age-predicted maximum HR (HRmax). Exercise intensity (percentage HRmax, percentage [Formula: see text], and RPE) and EE (METs) were significantly higher during active gaming compared with sedentary gameplay (P < 0.01). AVGs elicited moderate levels of exercise intensity (64-72 percent HRmax) in line with current recommended physical activity guidelines. Our results indicate AVGs provoke physiological responses equivalent to a moderate-intensity physical activity.

  17. Effects of recipient oocyte age and interval from fusion to activation on development of buffalo (Bubalus bubalis) nuclear transfer embryos derived from fetal fibroblasts.

    Science.gov (United States)

    Lu, F; Jiang, J; Li, N; Zhang, S; Sun, H; Luo, C; Wei, Y; Shi, D

    2011-09-15

    The objective was to investigate the effect of recipient oocyte age and the interval from activation to fusion on developmental competence of buffalo nuclear transfer (NT) embryos. Buffalo oocytes matured in vitro for 22 h were enucleated by micromanipulation under the spindle view system, and a fetal fibroblast (pretreated with 0.1 μg/mL aphidicolin for 24 h, followed by culture for 48 h in 0.5% fetal bovine serum) was introduced into the enucleated oocyte, followed by electrofusion. Both oocytes and NT embryos were activated by exposure to 5 μM ionomycin for 5 min, followed by culture in 2 mM 6-dimethyl-aminopurine for 3 h. When oocytes matured in vitro for 28, 29, 30, 31, or 32 h were activated, more oocytes matured in vitro for 30 h developed into blastocysts in comparison with oocytes matured in vitro for 32 h (31.3 vs 19.9%, P fusion (P fusion. However, 3 of 16 recipients were pregnant following transfer of blastocysts developed from the NT embryos activated at 3 h after fusion, and two of these recipients maintained pregnancy to term. We concluded that the developmental potential of buffalo NT embryos was related to recipient oocyte age and the interval from fusion to activation. Copyright © 2011 Elsevier Inc. All rights reserved.

  18. PDGFR alpha signaling in the primary cilium regulates NHE1-dependent fibroblast migration via coordinated differential activity of MEK1/2-ERK1/2-p90(RSK) and AKT signaling pathways

    DEFF Research Database (Denmark)

    Clement, Ditte L.; Mally, Sabine; Stock, Christian

    2013-01-01

    In fibroblasts, platelet-derived growth factor receptor alpha (PDGFR alpha) is upregulated during growth arrest and compartmentalized to the primary cilium. PDGF-AA mediated activation of the dimerized ciliary receptor produces a phosphorylation cascade through the PI3K-AKT and MEK1/2-ERK1/2 path...

  19. Peroxisome proliferator-activated receptor-γ (PPAR-γ) agonist inhibits collagen synthesis in human hypertrophic scar fibroblasts by targeting Smad3 via miR-145

    Energy Technology Data Exchange (ETDEWEB)

    Zhu, Hua-Yu; Li, Chao; Zheng, Zhao; Zhou, Qin; Guan, Hao; Su, Lin-Lin; Han, Jun-Tao; Zhu, Xiong-Xiang; Wang, Shu-yue; Li, Jun, E-mail: lijunfmmu@163.com; Hu, Da-Hai, E-mail: hudahaifmmu@aliyun.com

    2015-03-27

    The transcription factor peroxisome proliferator-activated receptor-γ (PPAR-γ) functions to regulate cell differentiation and lipid metabolism. Recently, its agonist has been documented to regulate extracellular matrix production in human dermal fibroblasts. This study explored the underlying molecular mechanisms and gene interactions in hypertrophic scar fibroblasts (HSFBs) in vitro. HSFBs were cultured and treated with or without PPAR-γ agonist or antagonist for gene expression. Bioinformatical analysis predicted that miR-145 could target Smad3 expression. Luciferase assay was used to confirm such an interaction. The data showed that PPAR-γ agonist troglitazone suppressed expression of Smad3 and Col1 in HSFBs. PPAR-γ agonist induced miR-145 at the gene transcriptional level, which in turn inhibited Smad3 expression and Col1 level in HSFBs. Furthermore, ELISA data showed that Col1 level in HSFBs was controlled by a feedback regulation mechanism involved in PPAR-γ agonist and antagonist-regulated expression of miR-145 and Smad3 in HSFBs. These findings indicate that PPAR-γ-miR-145-Smad3 axis plays a role in regulation of collagen synthesis in HSFBs. - Highlights: • PPAR-γ agonist inhibits collagen synthesis in HSFBs. • Smad3 and type I collagen expression are decreased by PPAR-γ agonist. • miR-145 expression is increased by PPAR-γ agonist in HSFBs. • Increased miR-145 inhibits collagen synthesis by targeting Smad3. • miR-145 regulates collagen synthesis.

  20. Does rapid and physiological astrocyte–neuron signalling amplify epileptic activity?

    Science.gov (United States)

    2016-01-01

    Abstract The hippocampus is a key brain region in the pathophysiology of mesial temporal lobe epilepsy. Long‐term changes of its architecture and function on the network and cellular level are well documented in epilepsy. Astrocytes can control many aspects of neuronal function and their long‐term alterations over weeks, months and years play an important role in epilepsy. However, a pathophysiological transformation of astrocytes does not seem to be required for astrocytes to contribute to epileptic activity. Some of the properties of physiological astrocyte–neuron communication could allow these cells to exacerbate or synchronize neuronal firing on shorter time scales of milliseconds to minutes. Therefore, these astrocyte–neuron interactions are increasingly recognized as potential contributors to epileptic activity. Fast and reciprocal communication between astrocytes and neurons is enabled by a diverse set of mechanisms that could both amplify and counteract epileptic activity. They may thus promote or cause development of epileptic activity or inhibit it. Mechanisms of astrocyte–neuron interactions that can quickly increase network excitability involve, for example, astrocyte Ca2+ and Na+ signalling, K+ buffering, gap junction coupling and metabolism. However, rapid changes of astrocyte neurotransmitter uptake and morphology may also underlie or support development of network hyperexcitability. The temporal characteristics of these interactions, their ability to synchronize neuronal activity and their net effect on network activity will determine their contribution to the emergence or maintenance of epileptic activity. PMID:27106234

  1. A multi-sensor monitoring system of human physiology and daily activities.

    Science.gov (United States)

    Doherty, Sean T; Oh, Paul

    2012-04-01

    To present the design and pilot test results of a continuous multi-sensor monitoring system of real-world physiological conditions and daily life (activities, travel, exercise, and food consumption), culminating in a Web-based graphical decision-support interface. The system includes a set of wearable sensors wirelessly connected to a "smartphone" with a continuously running software application that compresses and transmits the data to a central server. Sensors include a Global Positioning System (GPS) receiver, electrocardiogram (ECG), three-axis accelerometer, and continuous blood glucose monitor. A food/medicine diary and prompted recall activity diary were also used. The pilot test involved 40 type 2 diabetic patients monitored over a 72-h period. All but three subjects were successfully monitored for the full study period. Smartphones proved to be an effective hub for managing multiple streams of data but required attention to data compression and battery consumption issues. ECG, accelerometer, and blood glucose devices performed adequately as long as subjects wore them. GPS tracking for a full day was feasible, although significant efforts are needed to impute missing data. Activity detection algorithms were successful in identifying activities and trip modes but could benefit by incorporating accelerometer data. The prompted recall diary was an effective tool for augmenting algorithm results, although subjects reported some difficulties with it. The food and medicine diary was completed fully, although end times and medicine dosages were occasionally missing. The unique combination of sensors holds promise for increasing accuracy and reducing burden associated with collecting individual-level activity and physiological data under real-world conditions, but significant data processing issues remain. Such data will provide new opportunities to explore the impacts of human geography and daily lifestyle on health at a fine spatial/temporal scale.

  2. Physiological Measures of Dopaminergic and Noradrenergic Activity During Attentional Set Shifting and Reversal

    Directory of Open Access Journals (Sweden)

    Péter Pajkossy

    2018-04-01

    Full Text Available Dopamine (DA and noradrenaline (NA are important neurotransmitters, which are suggested to play a vital role in modulating the neural circuitry involved in the executive control of cognition. One way to investigate the functions of these neurotransmitter systems is to assess physiological indices of DA and NA transmission. Here we examined how variations of spontaneous eye-blink rate and pupil size, as indirect measures of DA and NA activity, respectively, are related to performance in a hallmark aspect of executive control: attentional set shifting. We used the Intra/Extradimensional Set Shifting Task, where participants have to choose between different compound stimuli while the stimulus-reward contingencies change periodically. During such rule shifts, participants have to refresh their attentional set while they reassess which stimulus-features are relevant. We found that both eye-blink rate (EBR and pupil size increased after rule shifts, when explorative processes are required to establish stimulus–reward contingencies. Furthermore, baseline pupil size was related to performance during the most difficult, extradimensional set shifting stage, whereas baseline EBR was associated with task performance prior to this stage. Our results support a range of neurobiological models suggesting that the activity of DA and NA neurotransmitter systems determines individual differences in executive functions (EF, possibly by regulating neurotransmission in prefrontal circuits. We also suggest that assessing specific, easily accessible indirect physiological markers, such as pupil size and blink rate, contributes to the comprehension of the relationship between neurotransmitter systems and EF.

  3. Enhancement of catalase activity by repetitive low-grade H2O2 exposures protects fibroblasts from subsequent stress-induced apoptosis

    International Nuclear Information System (INIS)

    Sen, Prosenjit; Mukherjee, Sebanti; Bhaumik, Gayaram; Das, Pradeep; Ganguly, Sandipan; Choudhury, Nandini; Raha, Sanghamitra

    2003-01-01

    Exposure of Chinese hamster V79 fibroblasts to mild and repetitive H 2 O 2 doses in culture for 15 weeks produced no change in lipid peroxidation status, GSH/GSSG ratio and glutathione peroxidase activity of these cells (VST cells). In contrast, in VST cells catalase levels underwent a prominent increase which could be significantly inhibited and brought down to control levels after treatment with the catalase inhibitor 3-aminotriazole (3-AT). When control (VC) cells were exposed to UV radiation (UVC 5 J/m 2 ) or H 2 O 2 (7.5 mM, 15 min), intracellular reactive oxygen species (ROS) levels rose prominently with significant activation of caspase-3. Marked nuclear fragmentation and lower cell viability were also noted in these cells. In contrast, VST cells demonstrated a significantly lower ROS level, an absence of nuclear fragmentation and an unchanged caspase-3 activity after exposure to UVC or H 2 O 2 . Cell viability was also significantly better preserved in VST cells than VC cells after UV or H 2 O 2 exposures. Following 3-AT treatment of VST cells, UVC radiation or H 2 O 2 brought about significantly higher elevations in intracellular ROS, increases in caspase-3 activity, significantly lowered cell viability and marked nuclear fragmentation, indicating the involvement of high catalase levels in the cytoprotective effects of repetitive stress. Therefore, upregulation of the antioxidant defense after repetitive oxidative stress imparted a superior ability to cope with subsequent acute stress and escape apoptotic death and loss of viability

  4. Molecular insights into the differences in anti-inflammatory activities of green tea catechins on IL-1β signaling in rheumatoid arthritis synovial fibroblasts.

    Science.gov (United States)

    Fechtner, Sabrina; Singh, Anil; Chourasia, Mukesh; Ahmed, Salahuddin

    2017-08-15

    In this study, we found that catechins found in green tea (EGCG, EGC, and EC) differentially interfere with the IL-1β signaling pathway which regulates the expression of pro-inflammatory mediators (IL-6 and IL-8) and Cox-2 in primary human rheumatoid arthritis synovial fibroblasts (RASFs). EGCG and EGC inhibited IL-6, IL-8, and MMP-2 production and selectively inhibited Cox-2 expression. EC did not exhibit any inhibitory effects. When we looked at the expression of key signaling proteins in the IL-1β signaling pathway, we found all the tested catechins could inhibit TAK-1 activity. Therefore, the consumption of green tea offers an overall anti-inflammatory effect. Molecular docking analysis confirms that EGCG, EGC, and EC all occupy the active site of the TAK1 kinase domain. However, EGCG occupies the majority of the TAK1 active site. In addition to TAK1 inhibition, EGCG can also inhibit P38 and nuclear NF-κB expression whereas EC and EGC were not effective inhibitors. Our findings suggest one of the main health benefits associated with the consumption of green tea are due to the activity of EGCG and EGC which are both present at higher amounts. Although EGCG is the most effective catechin at inhibiting downstream inflammatory signaling, its effectiveness could be hindered by the presence of EC. Therefore, varying EC content in green tea may reduce the anti-inflammatory effects of other potential catechins in green tea. Copyright © 2017. Published by Elsevier Inc.

  5. Determination of the physiological 2:2 TLR5:flagellin activation stoichiometry revealed by the activity of a fusion receptor

    International Nuclear Information System (INIS)

    Ivičak-Kocjan, Karolina; Panter, Gabriela; Benčina, Mojca; Jerala, Roman

    2013-01-01

    Highlights: •The chimeric protein fusing flagellin to the TLR5 ectodomain is constitutively active. •Mutation P736H within the BB-loop of TLR5 TIR domain renders the receptor inactive. •The R90D mutation in flagellin inactivated autoactivation of the chimeric protein. •The 2:2 stoichiometry of the TLR5:flagellin complex is physiologically relevant. -- Abstract: Toll-like receptor 5 (TLR5) recognizes flagellin of most flagellated bacteria, enabling activation of the MyD88-dependent signaling pathway. The recently published crystal structure of a truncated zebrafish TLR5 ectodomain in complex with an inactive flagellin fragment indicated binding of two flagellin molecules to a TLR5 homodimer, however this complex did not dimerize in solution. In the present study, we aimed to determine the physiological stoichiometry of TLR5:flagellin activation by the use of a chimeric protein composed of an active flagellin fragment linked to the N-terminus of human TLR5 (SF-TLR5). This construct was constitutively active. Inactivation by the R90D mutation within flagellin demonstrated that autoactivation of the chimeric protein depended solely on the specific interaction between TLR5 and flagellin. Addition of wild-type hTLR5 substantially lowered autoactivation of SF-TLR5 in a concentration dependent manner, an effect which was reversible by the addition of exogenous Salmonella typhimurium flagellin, indicating the biological activity of a TLR5:flagellin complex with a 2:2 stoichiometry. These results, in addition to the combinations of inactive P736H mutation within the BB-loop of the TIR domain of TLR5 and SF-TLR5, further confirm the mechanism of TLR5 activation

  6. Determination of the physiological 2:2 TLR5:flagellin activation stoichiometry revealed by the activity of a fusion receptor

    Energy Technology Data Exchange (ETDEWEB)

    Ivičak-Kocjan, Karolina; Panter, Gabriela; Benčina, Mojca [Laboratory of Biotechnology, National Institute of Chemistry, 1000 Ljubljana (Slovenia); The Centre of Excellence EN-FIST, 1000 Ljubljana (Slovenia); Jerala, Roman, E-mail: roman.jerala@ki.si [Laboratory of Biotechnology, National Institute of Chemistry, 1000 Ljubljana (Slovenia); The Centre of Excellence EN-FIST, 1000 Ljubljana (Slovenia); The Faculty of Chemistry and Chemical Technology, University of Ljubljana, 1000 Ljubljana (Slovenia)

    2013-05-24

    Highlights: •The chimeric protein fusing flagellin to the TLR5 ectodomain is constitutively active. •Mutation P736H within the BB-loop of TLR5 TIR domain renders the receptor inactive. •The R90D mutation in flagellin inactivated autoactivation of the chimeric protein. •The 2:2 stoichiometry of the TLR5:flagellin complex is physiologically relevant. -- Abstract: Toll-like receptor 5 (TLR5) recognizes flagellin of most flagellated bacteria, enabling activation of the MyD88-dependent signaling pathway. The recently published crystal structure of a truncated zebrafish TLR5 ectodomain in complex with an inactive flagellin fragment indicated binding of two flagellin molecules to a TLR5 homodimer, however this complex did not dimerize in solution. In the present study, we aimed to determine the physiological stoichiometry of TLR5:flagellin activation by the use of a chimeric protein composed of an active flagellin fragment linked to the N-terminus of human TLR5 (SF-TLR5). This construct was constitutively active. Inactivation by the R90D mutation within flagellin demonstrated that autoactivation of the chimeric protein depended solely on the specific interaction between TLR5 and flagellin. Addition of wild-type hTLR5 substantially lowered autoactivation of SF-TLR5 in a concentration dependent manner, an effect which was reversible by the addition of exogenous Salmonella typhimurium flagellin, indicating the biological activity of a TLR5:flagellin complex with a 2:2 stoichiometry. These results, in addition to the combinations of inactive P736H mutation within the BB-loop of the TIR domain of TLR5 and SF-TLR5, further confirm the mechanism of TLR5 activation.

  7. Introduction of active learning method in learning physiology by MBBS students.

    Science.gov (United States)

    Gilkar, Suhail Ahmad; Lone, Shabiruddin; Lone, Riyaz Ahmad

    2016-01-01

    Active learning has received considerable attention over the past several years, often presented or perceived as a radical change from traditional instruction methods. Current research on learning indicates that using a variety of teaching strategies in the classroom increases student participation and learning. To introduce active learning methodology, i.e., "jigsaw technique" in undergraduate medical education and assess the student and faculty response to it. This study was carried out in the Department of Physiology in a Medical College of North India. A topic was chosen and taught using one of the active learning methods (ALMs), i.e., jigsaw technique. An instrument (questionnaire) was developed in English through an extensive review of literature and was properly validated. The students were asked to give their response on a five-point Likert scale. The feedback was kept anonymous. Faculty also provided their feedback in a separately provided feedback proforma. The data were collected, compiled, and analyzed. Of 150 students of MBBS-first year batch 2014, 142 participated in this study along with 14 faculty members of the Physiology Department. The majority of the students (>90%) did welcome the introduction of ALM and strongly recommended the use of such methods in teaching many more topics in future. 100% faculty members were of the opinion that many more topics shall be taken up using ALMs. This study establishes the fact that both the medical students and faculty want a change from the traditional way of passive, teacher-centric learning, to the more active teaching-learning techniques.

  8. Aberrant Receptor Internalization and Enhanced FRS2-dependent Signaling Contribute to the Transforming Activity of the Fibroblast Growth Factor Receptor 2 IIIb C3 Isoform*

    Science.gov (United States)

    Cha, Jiyoung Y.; Maddileti, Savitri; Mitin, Natalia; Harden, T. Kendall; Der, Channing J.

    2009-01-01

    Alternative splice variants of fibroblast growth factor receptor 2 (FGFR2) IIIb, designated C1, C2, and C3, possess progressive reduction in their cytoplasmic carboxyl termini (822, 788, and 769 residues, respectively), with preferential expression of the C2 and C3 isoforms in human cancers. We determined that the progressive deletion of carboxyl-terminal sequences correlated with increasing transforming potency. The highly transforming C3 variant lacks five tyrosine residues present in C1, and we determined that the loss of Tyr-770 alone enhanced FGFR2 IIIb C1 transforming activity. Because Tyr-770 may compose a putative YXXL sorting motif, we hypothesized that loss of Tyr-770 in the 770YXXL motif may cause disruption of FGFR2 IIIb C1 internalization and enhance transforming activity. Surprisingly, we found that mutation of Leu-773 but not Tyr-770 impaired receptor internalization and increased receptor stability and activation. Interestingly, concurrent mutations of Tyr-770 and Leu-773 caused 2-fold higher transforming activity than caused by the Y770F or L773A single mutations, suggesting loss of Tyr and Leu residues of the 770YXXL773 motif enhances FGFR2 IIIb transforming activity by distinct mechanisms. We also determined that loss of Tyr-770 caused persistent activation of FRS2 by enhancing FRS2 binding to FGFR2 IIIb. Furthermore, we found that FRS2 binding to FGFR2 IIIb is required for increased FRS2 tyrosine phosphorylation and enhanced transforming activity by Y770F mutation. Our data support a dual mechanism where deletion of the 770YXXL773 motif promotes FGFR2 IIIb C3 transforming activity by causing aberrant receptor recycling and stability and persistent FRS2-dependent signaling. PMID:19103595

  9. The constitutive activation of the CEF-4/9E3 chemokine gene depends on C/EBPbeta in v-src transformed chicken embryo fibroblasts

    DEFF Research Database (Denmark)

    Gagliardi, M; Maynard, S; Bojovic, B

    2001-01-01

    The CEF-4/9E3 chemokine gene is expressed constitutively in chicken embryo fibroblasts (CEF) transformed by the Rous sarcoma virus (RSV). This aberrant induction is controlled at the transcriptional and post-transcriptional levels. Transcriptional activation depends on multiple elements of the CEF....../EBPbeta binds to a second element located in proximity of the TRE. A mutation of this distal CAAT box impaired the activation of the CEF-4 promoter by pp60(v-src) indicating that this element is also part of the SRU. Using the RCASBP retroviral vector, we expressed a dominant negative mutant of C....../EBPbeta (designated Delta184-C/EBPbeta) in RSV-transformed CEF. Delta184-C/EBPbeta decreased the accumulation of the CEF-4 mRNA and activation of the CEF-4 promoter by pp60(v-src). The induction of the Cox-2 gene (CEF-147) was also reduced by Delta184-C/EBPbeta. The effect of the dominant negative mutant was observed...

  10. The effect of Walterinnesia aegyptia venom proteins on TCA cycle activity and mitochondrial NAD(+)-redox state in cultured human fibroblasts.

    Science.gov (United States)

    Ghneim, Hazem K; Al-Sheikh, Yazeed A; Aboul-Soud, Mourad A M

    2015-01-01

    Fibroblast cultures were used to study the effects of crude Walterinnesia aegyptia venom and its F1-F7 protein fractions on TCA cycle enzyme activities and mitochondrial NAD-redox state. Confluent cells were incubated with 10 μg of venom proteins for 4 hours at 37°C. The activities of all studied TCA enzymes and the non-TCA mitochondrial NADP(+)-dependent isocitrate dehydrogenase underwent significant reductions of similar magnitude (50-60% of control activity) upon incubation of cells with the crude venom and fractions F4, F5, and F7 and 60-70% for fractions F3 and F6. In addition, the crude and fractions F3-F7 venom proteins caused a drop in mitochondrial NAD(+) and NADP(+) levels equivalent to around 25% of control values. Whereas the crude and fractions F4, F5, and F7 venom proteins caused similar magnitude drops in NADH and NADPH (around 55% of control levels), fractions F3 and F6 caused a more drastic drop (60-70% of control levels) of both reduced coenzymes. Results indicate that the effects of venom proteins could be directed at the mitochondrial level and/or the rates of NAD(+) and NADP(+) biosynthesis.

  11. Wound Healing Activity of Extracts and Formulations of Aloe vera, Henna, Adiantum capillus-veneris, and Myrrh on Mouse Dermal Fibroblast Cells.

    Science.gov (United States)

    Negahdari, Samira; Galehdari, Hamid; Kesmati, Mahnaz; Rezaie, Anahita; Shariati, Gholamreza

    2017-01-01

    Among the most important factors in wound healing pathways are transforming growth factor beta1 and vascular endothelial growth factor. Fibroblasts are the main cell in all phases wound closure. In this study, the extracts of plant materials such as Adiantum capillus-veneris , Commiphora molmol , Aloe vera , and henna and one mixture of them were used to treatment of normal mouse skin fibroblasts. Cytotoxic effects of each extract and their mixture were assessed on mouse skin fibroblasts cells using 3-(4,5-dimethylthiazol-2-yl)-2,5-diphenyltetrazolium bromide assay. We performed migration assays to assess migration properties of mouse skin fibroblasts cells in response to the extracts. Changes in the gene expression of the Tgf β1 and Vegf-A genes were monitored by real-time polymerase chain reaction. A. capillus-veneris , C. molmol and henna extract improved the expression of Tgfβ1 gene. All used extracts upregulated the expression of Vegf-A gene and promoted the migration of mouse fibroblast cells in vitro . The present study demonstrated that the mentioned herbal extracts might be effective in wound healing, through the improvement in the migration of fibroblast cells and regulating the gene expression of Tgfβ1 and Vegf-A genes in fibroblast cells treated with extracts.

  12. N-cadherin is overexpressed in Crohn's stricture fibroblasts and promotes intestinal fibroblast migration.

    LENUS (Irish Health Repository)

    Burke, John P

    2012-02-01

    BACKGROUND: Intestinal fibroblasts mediate stricture formation in Crohn\\'s disease (CD). Transforming growth factor-beta (TGF-beta) is important in fibroblast activation, while cell attachment and migration is regulated by the adhesion molecule N-cadherin. The aim of this study was to investigate the expression and function of N-cadherin in intestinal fibroblasts in patients with fibrostenosing CD. METHODS: Intestinal fibroblasts were cultured from seromuscular biopsies from patients undergoing resection for terminal ileal fibrostenosing CD (n = 14) or controls patients (n = 8). N-cadherin expression was assessed using Western blot and quantitative reverse-transcription polymerase chain reaction (qRT-PCR). Fibroblasts were stimulated with TGF-beta and selective pathway inhibitors Y27632, PD98050, and LY294002 were used to examine the Rho\\/ROCK, ERK-1\\/2, and Akt signaling pathways, respectively. Cell migration was assessed using a scratch wound assay. N-cadherin was selectively overexpressed using a plasmid. RESULTS: Fibroblasts from fibrostenosing CD express increased constitutive N-cadherin mRNA and protein and exhibit enhanced basal cell migration relative to those from directly adjacent normal bowel. Control fibroblasts treated with TGF-beta induced N-cadherin in a dose-dependent manner which was inhibited by Rho\\/ROCK and Akt pathway modulation. Control fibroblasts exhibited enhanced cell migration in response to treatment with TGF-beta or transfection with an N-cadherin plasmid. CONCLUSIONS: Fibroblasts from strictures in CD express increased constitutive N-cadherin and exhibit enhanced basal cell migration. TGF-beta is a potent inducer of N-cadherin in intestinal fibroblasts resulting in enhanced cell migration. The TGF-beta-mediated induction of N-cadherin may potentiate Crohn\\'s stricture formation.

  13. Hedgehog signaling contributes to basic fibroblast growth factor-regulated fibroblast migration

    Energy Technology Data Exchange (ETDEWEB)

    Zhu, Zhong Xin [School of Pharmaceutical Sciences, Wenzhou Medical University, Wenzhou, Zhejiang (China); Sun, Cong Cong [School of Pharmaceutical Sciences, Wenzhou Medical University, Wenzhou, Zhejiang (China); Wenzhou People' s Hospital, Wenzhou, Zhejiang (China); Ting Zhu, Yu; Wang, Ying; Wang, Tao; Chi, Li Sha; Cai, Wan Hui [School of Pharmaceutical Sciences, Wenzhou Medical University, Wenzhou, Zhejiang (China); Zheng, Jia Yong [Wenzhou People' s Hospital, Wenzhou, Zhejiang (China); Zhou, Xuan [Ningbo First Hospital, Ningbo, Zhejiang (China); Cong, Wei Tao [School of Pharmaceutical Sciences, Wenzhou Medical University, Wenzhou, Zhejiang (China); Li, Xiao Kun, E-mail: proflxk@163.com [School of Pharmaceutical Sciences, Wenzhou Medical University, Wenzhou, Zhejiang (China); Jin, Li Tai, E-mail: jin_litai@126.com [School of Pharmaceutical Sciences, Wenzhou Medical University, Wenzhou, Zhejiang (China)

    2017-06-15

    Fibroblast migration is a central process in skin wound healing, which requires the coordination of several types of growth factors. bFGF, a well-known fibroblast growth factor (FGF), is able to accelerate fibroblast migration; however, the underlying mechanism of bFGF regulation fibroblast migration remains unclear. Through the RNA-seq analysis, we had identified that the hedgehog (Hh) canonical pathway genes including Smoothened (Smo) and Gli1, were regulated by bFGF. Further analysis revealed that activation of the Hh pathway via up-regulation of Smo promoted fibroblast migration, invasion, and skin wound healing, but which significantly reduced by GANT61, a selective antagonist of Gli1/Gli2. Western blot analyses and siRNA transfection assays demonstrated that Smo acted upstream of phosphoinositide 3-kinase (PI3K)-c-Jun N-terminal kinase (JNK)-β-catenin to promote cell migration. Moreover, RNA-seq and qRT-PCR analyses revealed that Hh pathway genes including Smo and Gli1 were under control of β-catenin, suggesting that β-catenin turn feedback activates Hh signaling. Taken together, our analyses identified a new bFGF-regulating mechanism by which Hh signaling regulates human fibroblast migration, and the data presented here opens a new avenue for the wound healing therapy. - Highlights: • bFGF regulates Hedgehog (Hh) signaling in fibroblasts. • The Smo and Gli two master regulators of Hh signaling positively regulate fibroblast migration. • Smo facilitates β-catenin nuclear translocation via activation PI3K/JNK/GSK3β. • β-catenin positively regulates fibroblast cell migration and the expression of Hh signaling genes including Smo and Gli.

  14. Hedgehog signaling contributes to basic fibroblast growth factor-regulated fibroblast migration

    International Nuclear Information System (INIS)

    Zhu, Zhong Xin; Sun, Cong Cong; Ting Zhu, Yu; Wang, Ying; Wang, Tao; Chi, Li Sha; Cai, Wan Hui; Zheng, Jia Yong; Zhou, Xuan; Cong, Wei Tao; Li, Xiao Kun; Jin, Li Tai

    2017-01-01

    Fibroblast migration is a central process in skin wound healing, which requires the coordination of several types of growth factors. bFGF, a well-known fibroblast growth factor (FGF), is able to accelerate fibroblast migration; however, the underlying mechanism of bFGF regulation fibroblast migration remains unclear. Through the RNA-seq analysis, we had identified that the hedgehog (Hh) canonical pathway genes including Smoothened (Smo) and Gli1, were regulated by bFGF. Further analysis revealed that activation of the Hh pathway via up-regulation of Smo promoted fibroblast migration, invasion, and skin wound healing, but which significantly reduced by GANT61, a selective antagonist of Gli1/Gli2. Western blot analyses and siRNA transfection assays demonstrated that Smo acted upstream of phosphoinositide 3-kinase (PI3K)-c-Jun N-terminal kinase (JNK)-β-catenin to promote cell migration. Moreover, RNA-seq and qRT-PCR analyses revealed that Hh pathway genes including Smo and Gli1 were under control of β-catenin, suggesting that β-catenin turn feedback activates Hh signaling. Taken together, our analyses identified a new bFGF-regulating mechanism by which Hh signaling regulates human fibroblast migration, and the data presented here opens a new avenue for the wound healing therapy. - Highlights: • bFGF regulates Hedgehog (Hh) signaling in fibroblasts. • The Smo and Gli two master regulators of Hh signaling positively regulate fibroblast migration. • Smo facilitates β-catenin nuclear translocation via activation PI3K/JNK/GSK3β. • β-catenin positively regulates fibroblast cell migration and the expression of Hh signaling genes including Smo and Gli.

  15. Supernatants from oral epithelial cells and gingival fibroblasts modulate human immunodeficiency virus type 1 promoter activation induced by periodontopathogens in monocytes/macrophages.

    Science.gov (United States)

    González, O A; Ebersole, J L; Huang, C B

    2010-04-01

    Bacterial and host cell products during coinfections of Human Immunodeficiency Virus type 1-positive (HIV-1(+)) patients regulate HIV-1 recrudescence in latently infected cells (e.g. T cells, monocytes/macrophages), impacting highly active antiretroviral therapy (HAART) failure and progression of acquired immunodeficiency syndrome. A high frequency of oral opportunistic infections (e.g. periodontitis) in HIV-1(+) patients has been demonstrated; however, their potential to impact HIV-1 exacerbation is unclear. We sought to determine the ability of supernatants derived from oral epithelial cells (OKF4) and human gingival fibroblasts (Gin-4) challenged with periodontal pathogens, to modulate the HIV-1 promoter activation in monocytes/macrophages. BF24 monocytes/macrophages transfected with the HIV-1 promoter driving the expression of chloramphenicol acetyltransferase (CAT) were stimulated with Porphyromonas gingivalis, Fusobacterium nucleatum, or Treponema denticola in the presence of supernatants from OKF4 or Gin4 cells either unstimulated or previously pulsed with bacteria. CAT levels were determined by enzyme-linked immunosorbent assay and cytokine production was evaluated by Luminex beadlyte assays. OKF4 and Gin4 supernatants enhanced HIV-1 promoter activation particularly related to F. nucleatum challenge. An additive effect was observed in HIV-1 promoter activation when monocytes/macrophages were simultaneously stimulated with gingival cell supernatants and bacterial extracts. OKF4 cells produced higher levels of granulocyte-macrophage colony-stimulating factor (GM-CSF) and interleukins -6 and -8 in response to F. nucleatum and P. gingivalis. Preincubation of OKF4 supernatants with anti-GM-CSF reduced the additive effect in periodontopathogen-induced HIV-1 promoter activation. These results suggest that soluble mediators produced by gingival resident cells in response to periodontopathogens could contribute to HIV-1 promoter activation in monocytes

  16. Photochemical oxidants injury in rice plants. III. Effect of ozone on physiological activities in rice plants

    Energy Technology Data Exchange (ETDEWEB)

    Nakamura, H; Saka, H

    1978-01-01

    Experiments were made to determine the effect of photochemical oxidants on physiological activities of rice plants. Rice plants were fumigated with ozone at concentrations of 0.12-0.20 ppm for 2-3 hr to investigate acute injury and at 0.05 and 0.09 ppm for daily exposure from 3.0 leaf stage to assess the effect of ozone on growth. It was observed that malondialdehyde produced by disruption of the components of the membrane increased in the leaves exposed to ozone. Ozone reduced the RuBP-carboxylase activity in both young and old leaves 12-24 hr after fumigation. In the young leaves the activity of this enzyme recovered to some extent after 48 hr, but it did not show any recovery in the old leaves. On the other hand, ozone remarkably increased the peroxidase activity and slightly increased acid phosphatase in all leaves. Abnormally high ethylene evolution and oxygen uptake were detected in leaves soon after ozone fumigation. In general, high molecular protein and chlorophyll contents in the detached leaves decreased with incubation in dark, particularly in the old ones. These phenomena were more accelerated by ozone fumigation. Kinetin and benzimidazole showed significant effects on chlorophyll retention in ozone-exposed leaves. Reduction of plant growth and photosynthetic rate was recognized even in low concentration of ozone in daily exposure at 0.05 and 0.09 ppm. From these results it was postulated that ozone may cause the senescence of leaves in rice plants.

  17. Animal physiology. Summer declines in activity and body temperature offer polar bears limited energy savings.

    Science.gov (United States)

    Whiteman, J P; Harlow, H J; Durner, G M; Anderson-Sprecher, R; Albeke, S E; Regehr, E V; Amstrup, S C; Ben-David, M

    2015-07-17

    Polar bears (Ursus maritimus) summer on the sea ice or, where it melts, on shore. Although the physiology of "ice" bears in summer is unknown, "shore" bears purportedly minimize energy losses by entering a hibernation-like state when deprived of food. Such a strategy could partially compensate for the loss of on-ice foraging opportunities caused by climate change. However, here we report gradual, moderate declines in activity and body temperature of both shore and ice bears in summer, resembling energy expenditures typical of fasting, nonhibernating mammals. Also, we found that to avoid unsustainable heat loss while swimming, bears employed unusual heterothermy of the body core. Thus, although well adapted to seasonal ice melt, polar bears appear susceptible to deleterious declines in body condition during the lengthening period of summer food deprivation. Copyright © 2015, American Association for the Advancement of Science.

  18. Extracellular enzymatic activities and physiological profiles of yeasts colonizing fruit trees.

    Science.gov (United States)

    Molnárová, Jana; Vadkertiová, Renáta; Stratilová, Eva

    2014-07-01

    Yeasts form a significant and diverse part of the phyllosphere microbiota. Some yeasts that inhabit plants have been found to exhibit extracellular enzymatic activities. The aim of the present study was to investigate the ability of yeasts isolated from leaves, fruits, and blossoms of fruit trees cultivated in Southwest Slovakia to produce extracellular enzymes, and to discover whether the yeasts originating from these plant organs differ from each other in their physiological properties. In total, 92 strains belonging to 29 different species were tested for: extracellular protease, β-glucosidase, lipase, and polygalacturonase activities; fermentation abilities; the assimilation of xylose, saccharose and alcohols (methanol, ethanol, glycerol); and for growth in a medium with 33% glucose. The black yeast Aureobasidium pullulans showed the largest spectrum of activities of all the species tested. Almost 70% of the strains tested demonstrated some enzymatic activity, and more than 90% utilized one of the carbon compounds tested. Intraspecies variations were found for the species of the genera Cryptococcus and Pseudozyma. Interspecies differences of strains exhibiting some enzymatic activities and utilizing alcohols were also noted. The largest proportion of the yeasts exhibited β-glucosidase activity and assimilated alcohols independently of their origin. The highest number of strains positive for all activities tested was found among the yeasts associated with leaves. Yeasts isolated from blossoms assimilated saccharose and D-xylose the most frequently of all the yeasts tested. The majority of the fruit-inhabiting yeasts grew in the medium with higher osmotic pressure. © 2014 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim.

  19. A benzoxazine derivative induces vascular endothelial cell apoptosis in the presence of fibroblast growth factor-2 by elevating NADPH oxidase activity and reactive oxygen species levels.

    Science.gov (United States)

    Zhao, Jing; He, Qiuxia; Cheng, Yizhe; Zhao, Baoxiang; Zhang, Yun; Zhang, Shangli; Miao, Junying

    2009-09-01

    Previously, we found that 6,8-dichloro-2,3-dihydro-3-hydroxymethyl-1,4-benzoxazine (DBO) promoted apoptosis of human umbilical vascular endothelial cells (HUVECs) deprived of growth factors. In this study, we aimed to investigate the effect of DBO and its mechanism of action on angiogenesis and apoptosis of HUVECs in the presence of fibroblast growth factor-2 (FGF-2), which promotes angiogenesis and inhibits apoptosis in vivo and in vitro. DBO significantly inhibited capillary-like tube formation by promoting apoptosis of HUVECs in the presence of FGF-2 in vitro. Furthermore, DBO elevated the levels of reactive oxygen species (ROS) and nitric oxide (NO) and increased the activity of NADPH oxidase and inducible nitric oxide synthase (iNOS) in promoting apoptosis under this condition. Moreover, when NADPH oxidase was inhibited by its specific inhibitor, dibenziodolium chloride (DPI), DBO could not elevate ROS and NO levels in HUVECs. The data suggest that DBO is a new modulator of apoptosis in vitro, and it might function by increasing the activity of NADPH oxidase and iNOS, subsequently elevating the levels of ROS and NO in HUVECs. The findings of this study provide a new small molecule for investigating the FGF-2/NADPH oxidase/iNOS signaling pathway in apoptosis.

  20. Physiological Activity of Spinal Cord in Children: An 18F-FDG PET-CT Study.

    Science.gov (United States)

    Taralli, Silvia; Leccisotti, Lucia; Mattoli, Maria Vittoria; Castaldi, Paola; de Waure, Chiara; Mancuso, Agostino; Rufini, Vittoria

    2015-06-01

    Retrospective study. To evaluate, in a pediatric population, F-Fluoro-deoxy-glucose (F-FDG) metabolic activity of normal spinal cord and to assess the correlation with demographic, clinical, and environmental variables. F-FDG uptake of normal spinal cord is variable in children. The knowledge of physiological metabolism of spinal cord is essential to distinguish normal from pathological findings by positron emission tomography-computed tomography (PET-CT). We retrospectively evaluated F-FDG positron emission tomography-computed tomography scans from a total of 167 pediatric patients (97 males; 3.9-18.9 yr) divided into 4 age groups (0-4.9 yr, 5-9.9 yr, 10-14.9 yr, and 15-18.9 yr), excluding those submitted to previous or recent therapeutic procedures influencing spinal cord metabolism or with central nervous system diseases. Spinal cord was divided into 3 levels (C1-C7; D1-D6; and D7-L1), and maximum standardized uptake value (SUVmax) of each cord level was measured. Correlations between SUVmax and spinal cord level, age, body weight, sex, type of disease, and season were statistically assessed. Median SUVmax was similar and significantly (P spinal cord levels. A positive and significant association between SUVmax and body weight, female sex, and Hodgkin lymphoma was found. No significant association with season was observed. By multivariate analysis, only weight and female sex remained significant. Knowledge of physiological F-FDG spinal cord activity in children is essential for a correct interpretation of positron emission tomography-computed tomography, especially in oncologic pediatric patients to avoid potential pitfalls. N/A.

  1. Review article: health benefits of some physiologically active ingredients and their suitability as yoghurt fortifiers.

    Science.gov (United States)

    Fayed, A E

    2015-05-01

    The article is concerned with health benefits of two main physiologically active ingredients namely, Isoflavones and γ-Aminobutyric acid, with emphasis on their fitness for fortification of yoghurt to be consumed as a functional food. Isoflavones (ISO) are part of the diphenol compounds, called "phytoestrogens," which are structurally and functionally similar to estradiol, the human estrogen, but much less potent. Because of this similarity, ISO were suggested to have preventive effects for many kinds of hormone-dependent diseases. In nature, ISO usually occur as glycosides and, once deconjugated by the intestinal microflora, the ISO can be absorbed into the blood. At present, it seems convincing their possible protective actions against various cancers, osteoporosis and menopausal symptoms and high levels of blood cholesterol as well as the epidemiological evidence. Γ-Aminobutyric acid (GABA), it is an amino acid that has long been reported to lower blood pressure by intravenous administration in experimental animals and in human subjects. GABA is present in many vegetables and fruits but not in dairy products. GABA was reported to lower blood pressure in people with mild hypertension. It was suggested that low-dose oral GABA has a hypotensive effect in spontaneously hypertensive. Yoghurt beyond its ability to be probiotic food via its culturing with the gut strains, it could further carry more healthy benefits when it was fortified with physiological active ingredients, especially GABA versus ISO preferring, whether, bacteriologically or biochemically, a fortification level of 50 mg ISO/kg or 200 mg GABA/kg.

  2. Reconstitution of active telomerase in primary human foreskin fibroblasts : effects on proliferative characteristics and response to ionizing radiation

    NARCIS (Netherlands)

    Kampinga, H.H.; Waarde-Verhagen, M.A.W.H. van; Assen-Bolt, A.J. van; Rodemann, H.P.; Prowse, K.R.; Linskens, M.H.K.

    2004-01-01

    Purpose: Telomere shortening has been proposed to trigger senescence, and since most primary cells do not express active telomerase, reactivation of telomerase activity was proposed as a safe and non-transforming way of immortalizing cells. However, to study radiation responses, it is as yet unclear

  3. The effects of feed restriction on physical activity, body weight, physiology, haematology and immunology in female mink

    DEFF Research Database (Denmark)

    Damgaard, Birthe Marie; Dalgaard, Tina Sørensen; Larsen, Torben

    2012-01-01

    The aim of the present study was to investigate if adult mink females characterised as having a high or low residual feed intake (RFI) differed in their response to feed restriction with regard to activity, body weight loss and physiological parameters. For RFI-High, the activity was higher prior...

  4. Fibroblasts and myofibroblasts in wound healing

    Directory of Open Access Journals (Sweden)

    Darby IA

    2014-11-01

    Full Text Available Ian A Darby,1 Betty Laverdet,2 Frédéric Bonté3, Alexis Desmoulière2 1School of Medical Sciences, RMIT University, Melbourne, VIC, Australia; 2Department of Physiology and EA 6309, FR 3503, Faculties of Medicine and Pharmacy, University of Limoges, Limoges, France; 3LVMH Recherche, Saint Jean de Braye, France Abstract: (Myofibroblasts are key players for maintaining skin homeostasis and for orchestrating physiological tissue repair. (Myofibroblasts are embedded in a sophisticated extracellular matrix (ECM that they secrete, and a complex and interactive dialogue exists between (myofibroblasts and their microenvironment. In addition to the secretion of the ECM, (myofibroblasts, by secreting matrix metalloproteinases and tissue inhibitors of metalloproteinases, are able to remodel this ECM. (Myofibroblasts and their microenvironment form an evolving network during tissue repair, with reciprocal actions leading to cell differentiation, proliferation, quiescence, or apoptosis, and actions on growth factor bioavailability by binding, sequestration, and activation. In addition, the (myofibroblast phenotype is regulated by mechanical stresses to which they are subjected and thus by mechanical signaling. In pathological situations (excessive scarring or fibrosis, or during aging, this dialogue between the (myofibroblasts and their microenvironment may be altered or disrupted, leading to repair defects or to injuries with damaged and/or cosmetic skin alterations such as wrinkle development. The intimate dialogue between the (myofibroblasts and their microenvironment therefore represents a fascinating domain that must be better understood in order not only to characterize new therapeutic targets and drugs able to prevent or treat pathological developments but also to interfere with skin alterations observed during normal aging or premature aging induced by a deleterious environment. Keywords: myofibroblast, fibroblast, α-smooth muscle actin

  5. Enhancement of catalase activity by repetitive low-grade H{sub 2}O{sub 2} exposures protects fibroblasts from subsequent stress-induced apoptosis

    Energy Technology Data Exchange (ETDEWEB)

    Sen, Prosenjit; Mukherjee, Sebanti; Bhaumik, Gayaram; Das, Pradeep; Ganguly, Sandipan; Choudhury, Nandini; Raha, Sanghamitra

    2003-08-28

    Exposure of Chinese hamster V79 fibroblasts to mild and repetitive H{sub 2}O{sub 2} doses in culture for 15 weeks produced no change in lipid peroxidation status, GSH/GSSG ratio and glutathione peroxidase activity of these cells (VST cells). In contrast, in VST cells catalase levels underwent a prominent increase which could be significantly inhibited and brought down to control levels after treatment with the catalase inhibitor 3-aminotriazole (3-AT). When control (VC) cells were exposed to UV radiation (UVC 5 J/m{sup 2}) or H{sub 2}O{sub 2} (7.5 mM, 15 min), intracellular reactive oxygen species (ROS) levels rose prominently with significant activation of caspase-3. Marked nuclear fragmentation and lower cell viability were also noted in these cells. In contrast, VST cells demonstrated a significantly lower ROS level, an absence of nuclear fragmentation and an unchanged caspase-3 activity after exposure to UVC or H{sub 2}O{sub 2}. Cell viability was also significantly better preserved in VST cells than VC cells after UV or H{sub 2}O{sub 2} exposures. Following 3-AT treatment of VST cells, UVC radiation or H{sub 2}O{sub 2} brought about significantly higher elevations in intracellular ROS, increases in caspase-3 activity, significantly lowered cell viability and marked nuclear fragmentation, indicating the involvement of high catalase levels in the cytoprotective effects of repetitive stress. Therefore, upregulation of the antioxidant defense after repetitive oxidative stress imparted a superior ability to cope with subsequent acute stress and escape apoptotic death and loss of viability.

  6. Biphasic effect of arsenite on cell proliferation and apoptosis is associated with the activation of JNK and ERK1/2 in human embryo lung fibroblast cells

    International Nuclear Information System (INIS)

    He Xiaoqing; Chen Rui; Yang Ping; Li Aiping; Zhou Jianwei; Liu Qizhan

    2007-01-01

    Biphasic dose-response relationship induced by environmental agents is often characterized with the effect of low-dose stimulation and high-dose inhibition. Some studies showed that arsenite may induce cell proliferation and apoptosis via biphasic dose-response relationship in human cells; however, mechanisms underlying this phenomenon are not well understood. In the present study, we aimed at investigating the relationship between biphasic effect of arsenite on cell proliferation and apoptosis and activation of JNK and ERK1/2 in human embryo lung fibroblast (HELF) cells. Our results demonstrated that cell proliferation may be stimulated at lower concentrations (0.1 and 0.5 μM) arsenite but inhibited at higher concentrations (5 and 10 μM). When cell apoptosis was used as the endpoint, the concentration-response curves were changed to U-shapes. During stimulation phospho-JNK levels were significantly increased at 3, 6, and 12 h after 0.1 or 0.5 μM arsenite exposure. Phospho-ERK1/2 levels were increased with different concentrations (0.1-10 μM) of arsenite at 6, 12, and 24 h. Blocking of JNK pathway with 20 μM SP600125 or ERK1/2 by 100 μM PD98059 significantly inhibited biphasic effect of arsenite in cells. Data in the present study suggest that activation of JNK and ERK1/2 may be involved in biphasic effect of arsenite when measuring cell proliferation and apoptosis in HELF cells. JNK activation seems to play a more critical role than ERK1/2 activation in the biphasic process

  7. Receptor-mediated inhibition of adenylate cyclase and stimulation of arachidonic acid release in 3T3 fibroblasts. Selective susceptibility to islet-activating protein, pertussis toxin

    International Nuclear Information System (INIS)

    Murayama, T.; Ui, M.

    1985-01-01

    Thrombin exhibited diverse effects on mouse 3T3 fibroblasts. It (a) decreased cAMP in the cell suspension, (b) inhibited adenylate cyclase in the Lubrol-permeabilized cell suspension in a GTP-dependent manner, increased releases of (c) arachidonic acid and (d) inositol from the cell monolayer prelabeled with these labeled compounds, (e) increased 45 Ca 2+ uptake into the cell monolayer, and (f) increased 86 Rb + uptake into the cell monolayer in a ouabain-sensitive manner. Most of the effects were reproduced by bradykinin, platelet-activating factor, and angiotensin II. The receptors for these agonists are thus likely to be linked to three separate effector systems: the adenylate cyclase inhibition, the phosphoinositide breakdown leading to Ca 2+ mobilization and phospholipase A2 activation, and the Na,K-ATPase activation. Among the effects of these agonists, (a), (b), (c), and (e) were abolished, but (d) and (f) were not, by prior treatment of the cells with islet-activating protein (IAP), pertussis toxin, which ADP-ribosylates the Mr = 41,000 protein, the alpha-subunit of the inhibitory guanine nucleotide regulatory protein (Ni), thereby abolishing receptor-mediated inhibition of adenylate cyclase. The effects (a), (c), (d), and (e) of thrombin, but not (b), were mimicked by A23187, a calcium ionophore. The effects of A23187, in contrast to those of receptor agonists, were not affected by the treatment of cells with IAP. Thus, the IAP substrate, the alpha-subunit of Ni, or the protein alike, may play an additional role in signal transduction arising from the Ca 2+ -mobilizing receptors, probably mediating process(es) distal to phosphoinositide breakdown and proximal to Ca 2+ gating

  8. Effect of storage media on the proliferation of periodontal ligament fibroblasts

    International Nuclear Information System (INIS)

    Lauer, H.C.; Mueller, J.G.; Gross, J.; Horster, M.F.

    1987-01-01

    The effect of storage media, which are routinely used in replantation, upon the proliferative capacity of periodontal ligament fibroblasts, was compared with the effect of a tissue culture medium. The periodontal tissue was obtained from mandibular central incisors of White New Zealand rabbits. The experiments were performed in fibroblasts derived during second subculture. The storage media were physiologic salt solution, Ringer's solution and Rivanol; the tissue culture medium was alpha-minimum essential medium without nucleosides. The incubation period was 1 hour. [ 3 H]-thymidine incorporation and cell counts were taken to indicate changes in the proliferative capacity of the fibroblasts. The tissue culture experiments showed that the proliferative ability of the periodontal ligament fibroblasts was dependent upon the composition of the storage medium. Physiologic salt solution, Ringer's solution and Rivanol were unable to maintain the metabolism of the fibroblasts. alpha-MEM medium, however, was capable of stimulating proliferation of the periodontal ligament fibroblasts

  9. Physiological Aging Influence on Brain Hemodynamic Activity during Task-Switching: A fNIRS Study.

    Science.gov (United States)

    Vasta, Roberta; Cutini, Simone; Cerasa, Antonio; Gramigna, Vera; Olivadese, Giuseppe; Arabia, Gennarina; Quattrone, Aldo

    2017-01-01

    Task-switching (TS) paradigm is a well-known validated tool useful for exploring the neural substrates of cognitive control, in particular the activity of the lateral and medial prefrontal cortex. This work is aimed at investigating how physiological aging influences hemodynamic response during the execution of a color-shape TS paradigm. A multi-channel near infrared spectroscopy (fNIRS) was used to measure hemodynamic activity in 27 young (30.00 ± 7.90 years) and 11 elderly participants (57.18 ± 9.29 years) healthy volunteers (55% male, age range: (19-69) years) during the execution of a TS paradigm. Two holders were placed symmetrically over the left/right hemispheres to record cortical activity [oxy-(HbO) and deoxy-hemoglobin (HbR) concentration] of the dorso-lateral prefrontal cortex (DLPFC), the dorsal premotor cortex (PMC), and the dorso-medial part of the superior frontal gyrus (sFG). TS paradigm requires participants to repeat the same task over a variable number of trials, and then to switch to a different task during the trial sequence. A two-sample t -test was carried out to detect differences in cortical responses between groups. Multiple linear regression analysis was used to evaluate the impact of age on the prefrontal neural activity. Elderly participants were significantly slower than young participants in both color- ( p aging. Multivariate regression analysis revealed that the HbO mean concentration of switching task in the PMC ( p = 0.01, β = -0.321) and of shape single-task in the sFG ( p = 0.003, β = 0.342) were the best predictors of age effects. Our findings demonstrated that TS might be a reliable instrument to gather a measure of cognitive resources in older people. Moreover, the fNIRS-related brain activity extracted from frontoparietal cortex might become a useful indicator of aging effects.

  10. Baroreflex and neurovascular responses to skeletal muscle mechanoreflex activation in humans: an exercise in integrative physiology.

    Science.gov (United States)

    Drew, Rachel C

    2017-12-01

    Cardiovascular adjustments to exercise resulting in increased blood pressure (BP) and heart rate (HR) occur in response to activation of several neural mechanisms: the exercise pressor reflex, central command, and the arterial baroreflex. Neural inputs from these feedback and feedforward mechanisms integrate in the cardiovascular control centers in the brain stem and modulate sympathetic and parasympathetic neural outflow, resulting in the increased BP and HR observed during exercise. Another specific consequence of the central neural integration of these inputs during exercise is increased sympathetic neural outflow directed to the kidneys, causing renal vasoconstriction, a key reflex mechanism involved in blood flow redistribution during increased skeletal muscle work. Studies in humans have shown that muscle mechanoreflex activation inhibits cardiac vagal outflow, decreasing the sensitivity of baroreflex control of HR. Metabolite sensitization of muscle mechanoreceptors can lead to reduced sensitivity of baroreflex control of HR, with thromboxane being one of the metabolites involved, via greater inhibition of cardiac vagal outflow without affecting baroreflex control of BP or baroreflex resetting. Muscle mechanoreflex activation appears to play a predominant role in causing renal vasoconstriction, both in isolation and in the presence of local metabolites. Limited investigations in older adults and patients with cardiovascular-related disease have provided some insight into how the influence of muscle mechanoreflex activation on baroreflex function and renal vasoconstriction is altered in these populations. However, future research is warranted to better elucidate the specific effect of muscle mechanoreflex activation on baroreflex and neurovascular responses with aging and cardiovascular-related disease. Copyright © 2017 the American Physiological Society.

  11. Control of fibroblast fibronectin expression and alternative splicing via the PI3K/Akt/mTOR pathway

    International Nuclear Information System (INIS)

    White, Eric S.; Sagana, Rommel L.; Booth, Adam J.; Yan, Mei; Cornett, Ashley M.; Bloomheart, Christopher A.; Tsui, Jessica L.; Wilke, Carol A.; Moore, Bethany B.; Ritzenthaler, Jeffrey D.; Roman, Jesse; Muro, Andres F.

    2010-01-01

    Fibronectin (FN), a ubiquitous glycoprotein that plays critical roles in physiologic and pathologic conditions, undergoes alternative splicing which distinguishes plasma FN (pFN) from cellular FN (cFN). Although both pFN and cFN can be incorporated into the extracellular matrix, a distinguishing feature of cFN is the inclusion of an alternatively spliced exon termed EDA (for extra type III domain A). The molecular steps involved in EDA splicing are well-characterized, but pathways influencing EDA splicing are less clear. We have previously found an obligate role for inhibition of the tumor suppressor phosphatase and tensin homologue on chromosome 10 (PTEN), the primary regulator of the PI3K/Akt pathway, in fibroblast activation. Here we show TGF-β, a potent inducer of both EDA splicing and fibroblast activation, inhibits PTEN expression and activity in mesenchymal cells, corresponding with enhanced PI3K/Akt signaling. In pten -/- fibroblasts, which resemble activated fibroblasts, inhibition of Akt attenuated FN production and decreased EDA alternative splicing. Moreover, inhibition of mammalian target of rapamycin (mTOR) in pten -/- cells also blocked FN production and EDA splicing. This effect was due to inhibition of Akt-mediated phosphorylation of the primary EDA splicing regulatory protein SF2/ASF. Importantly, FN silencing in pten -/- cells resulted in attenuated proliferation and migration. Thus, our results demonstrate that the PI3K/Akt/mTOR axis is instrumental in FN transcription and alternative splicing, which regulates cell behavior.

  12. Successful reconstruction of a physiological circuit with known connectivity from spiking activity alone.

    Directory of Open Access Journals (Sweden)

    Felipe Gerhard

    Full Text Available Identifying the structure and dynamics of synaptic interactions between neurons is the first step to understanding neural network dynamics. The presence of synaptic connections is traditionally inferred through the use of targeted stimulation and paired recordings or by post-hoc histology. More recently, causal network inference algorithms have been proposed to deduce connectivity directly from electrophysiological signals, such as extracellularly recorded spiking activity. Usually, these algorithms have not been validated on a neurophysiological data set for which the actual circuitry is known. Recent work has shown that traditional network inference algorithms based on linear models typically fail to identify the correct coupling of a small central pattern generating circuit in the stomatogastric ganglion of the crab Cancer borealis. In this work, we show that point process models of observed spike trains can guide inference of relative connectivity estimates that match the known physiological connectivity of the central pattern generator up to a choice of threshold. We elucidate the necessary steps to derive faithful connectivity estimates from a model that incorporates the spike train nature of the data. We then apply the model to measure changes in the effective connectivity pattern in response to two pharmacological interventions, which affect both intrinsic neural dynamics and synaptic transmission. Our results provide the first successful application of a network inference algorithm to a circuit for which the actual physiological synapses between neurons are known. The point process methodology presented here generalizes well to larger networks and can describe the statistics of neural populations. In general we show that advanced statistical models allow for the characterization of effective network structure, deciphering underlying network dynamics and estimating information-processing capabilities.

  13. Aspirin and salicylate bind to immunoglobulin heavy chain binding protein (BiP) and inhibit its ATPase activity in human fibroblasts.

    Science.gov (United States)

    Deng, W G; Ruan, K H; Du, M; Saunders, M A; Wu, K K

    2001-11-01

    Salicylic acid (SA), an endogenous signaling molecule of plants, possesses anti-inflammatory and anti-neoplastic actions in human. Its derivative, aspirin, is the most commonly used anti-inflammatory and analgesic drug. Aspirin and sodium salicylate (salicylates) have been reported to have multiple pharmacological actions. However, it is unclear whether they bind to a cellular protein. Here, we report for the first time the purification from human fibroblasts of a approximately 78 kDa salicylate binding protein with sequence identity to immunoglobulin heavy chain binding protein (BiP). The Kd values of SA binding to crude extract and to recombinant BiP were 45.2 and 54.6 microM, respectively. BiP is a chaperone protein containing a polypeptide binding site recognizing specific heptapeptide sequence and an ATP binding site. A heptapeptide with the specific sequence displaced SA binding in a concentration-dependent manner whereas a control heptapeptide did not. Salicylates inhibited ATPase activity stimulated by this specific heptapeptide but did not block ATP binding or induce BiP expression. These results indicate that salicylates bind specifically to the polypeptide binding site of BiP in human cells that may interfere with folding and transport of proteins important in inflammation.

  14. Physiological adaptations to fasting in an actively wintering canid, the Arctic blue fox (Alopex lagopus).

    Science.gov (United States)

    Mustonen, Anne-Mari; Pyykönen, Teija; Puukka, Matti; Asikainen, Juha; Hänninen, Sari; Mononen, Jaakko; Nieminen, Petteri

    2006-01-01

    This study investigated the physiological adaptations to fasting using the farmed blue fox (Alopex lagopus) as a model for the endangered wild arctic fox. Sixteen blue foxes were fed throughout the winter and 32 blue foxes were fasted for 22 d in Nov-Dec 2002. Half of the fasted blue foxes were food-deprived again for 22 d in Jan-Feb 2003. The farmed blue fox lost weight at a slower rate (0.97-1.02% body mass d(-1)) than observed previously in the arctic fox, possibly due to its higher initial body fat content. The animals experienced occasional fasting-induced hypoglycaemia, but their locomotor activity was not affected. The plasma triacylglycerol and glycerol concentrations were elevated during phase II of fasting indicating stimulated lipolysis, probably induced by the high growth hormone concentrations. The total cholesterol, HDL- and LDL-cholesterol, urea, uric acid and total protein levels and the urea:creatinine ratio decreased during fasting. Although the plasma levels of some essential amino acids increased, the blue foxes did not enter phase III of starvation characterized by stimulated proteolysis during either of the 22-d fasting procedures. Instead of excessive protein catabolism, it is liver dysfunction, indicated by the increased plasma bilirubin levels and alkaline phosphatase, alanine aminotransferase and aspartate aminotransferase activities, that may limit the duration of fasting in the species.

  15. Triple-aspect monism: physiological, mental unconscious and conscious aspects of brain activity.

    Science.gov (United States)

    Pereira, Alfredo

    2014-06-01

    Brain activity contains three fundamental aspects: (a) The physiological aspect, covering all kinds of processes that involve matter and/or energy; (b) the mental unconscious aspect, consisting of dynamical patterns (i.e., frequency, amplitude and phase-modulated waves) embodied in neural activity. These patterns are variously operated (transmitted, stored, combined, matched, amplified, erased, etc), forming cognitive and emotional unconscious processes and (c) the mental conscious aspect, consisting of feelings experienced in the first-person perspective and cognitive functions grounded in feelings, as memory formation, selection of the focus of attention, voluntary behavior, aesthetical appraisal and ethical judgment. Triple-aspect monism (TAM) is a philosophical theory that provides a model of the relation of the three aspects. Spatially distributed neuronal dendritic potentials generate amplitude-modulated waveforms transmitted to the extracellular medium and adjacent astrocytes, prompting the formation of large waves in the astrocyte network, which are claimed to both integrate distributed information and instantiate feelings. According to the valence of the feeling, the large wave feeds back on neuronal synapses, modulating (reinforcing or depressing) cognitive and behavioral functions.

  16. Application of the Copenhagen Soccer Test in high-level women players - locomotor activities, physiological response and sprint performance

    DEFF Research Database (Denmark)

    Bendiksen, Mads; Pettersen, Svein Arne; Ingebrigtsen, Jørgen

    2013-01-01

    We evaluated the physiological response, sprint performance and technical ability in various phases of the Copenhagen Soccer Test for Women (CSTw) and investigated whether the locomotor activities of the CSTw were comparable to competitive match-play (CM). Physiological measurements and physical....../technical assessments were performed during CSTw for eleven Norwegian high-level women soccer players. The activity pattern during CSTw and CM was monitored using the ZXY tracking system. No differences were observed between CSTw and CM with regards to total distance covered (10093±94 and 9674±191m), high intensity...

  17. Cytotoxicity of MEIC chemicals Nos. 11-30 in 3T3 mouse fibroblasts with and without microsomal activation

    DEFF Research Database (Denmark)

    Rasmussen, Eva

    1999-01-01

    acid, propranolol, thioridazine, lithium sulfate, copper sulfate and thallium sulfate, whereas the cytotoxicity of 1,1,1-trichloroethylene, phenol, nicotine, and paraquat was significantly increased by use of the microsomal activation mixture. These cytotoxicity data are in line with observations...

  18. Elevated transforming growth factor β and mitogen-activated protein kinase pathways mediate fibrotic traits of Dupuytren's disease fibroblasts

    NARCIS (Netherlands)

    Krause, Carola; Kloen, Peter; ten Dijke, Peter

    2011-01-01

    ABSTRACT: Dupuytren's disease is a fibroproliferative disorder of the palmar fascia. The treatment used to date has mostly been surgery, but there is a high recurrence rate. Transforming growth factor β (TGF-β) has been implicated as a key stimulator of myofibroblast activity and fascial contraction

  19. Psychosocial versus physiological stress – meta-analyses on deactivations and activations of the neural correlates of stress reactions

    Science.gov (United States)

    Kogler, Lydia; Mueller, Veronika I.; Chang, Amy; Eickhoff, Simon B.; Fox, Peter T.; Gur, Ruben C.; Derntl, Birgit

    2015-01-01

    Stress is present in everyday life in various forms and situations. Two stressors frequently investigated are physiological and psychosocial stress. Besides similar subjective and hormonal responses, it has been suggested that they also share common neural substrates. The current study used activation-likelihood-estimation meta-analysis to test this assumption by integrating results of previous neuroimaging studies on stress processing. Reported results are cluster-level FWE corrected. The inferior frontal gyrus (IFG) and the anterior insula (AI) were the only regions that demonstrated overlapping activation for both stressors. Analysis of physiological stress showed consistent activation of cognitive and affective components of pain processing such as the insula, striatum, or the middle cingulate cortex. Contrarily, analysis across psychosocial stress revealed consistent activation of the right superior temporal gyrus and deactivation of the striatum. Notably, parts of the striatum appeared to be functionally specified: the dorsal striatum was activated in physiological stress, whereas the ventral striatum was deactivated in psychosocial stress. Additional functional connectivity and decoding analyses further characterized this functional heterogeneity and revealed higher associations of the dorsal striatum with motor regions and of the ventral striatum with reward processing. Based on our meta-analytic approach, activation of the IFG and the AI seems to indicate a global neural stress reaction. While physiological stress activates a motoric fight-or-flight reaction, during psychosocial stress attention is shifted towards emotion regulation and goal-directed behavior, and reward processing is reduced. Our results show the significance of differentiating physiological and psychosocial stress in neural engagement. Furthermore, the assessment of deactivations in addition to activations in stress research is highly recommended. PMID:26123376

  20. An Active Learning Exercise to Facilitate Understanding of Nephron Function: Anatomy and Physiology of Renal Transporters

    Science.gov (United States)

    Dirks-Naylor, Amie J.

    2016-01-01

    Renal transport is a central mechanism underlying electrolyte homeostasis, acid base balance and other essential functions of the kidneys in human physiology. Thus, knowledge of the anatomy and physiology of the nephron is essential for the understanding of kidney function in health and disease. However, students find this content difficult to…

  1. Transformation and radiosensitivity of human diploid skin fibroblasts transfected with activated RAS oncogene and SV40 T-antigen

    Energy Technology Data Exchange (ETDEWEB)

    Su, L.-N.; Little, J.B. (Harvard School of Public Health, Boston, MA (United States))

    1992-08-01

    Three normal human diploid cell strains were transfected with an activated Ha-ras oncogene (EJ ras) or SV40 T-antigen. Multiple clones were examined for morphological alterations, growth requirements, ability to grow under anchorage independent conditions, immortality and tumorigenicity in nude mice. Clones expressing SV40 T-antigen alone or in combination with ras protein p21 were significantly radioresistant as compared with their parent cells or clones transfected with the neo gene only. This radioresistant phenotype persisted in post-crisis, immortalized cell lines. These data suggest that expression of the SV40 T-antigen but not activated Ha-ras plays an important role in the radiosensitivity of human diploid cells. The radioresistant phenotype in SV40 T transfected cells was not related to the enhanced level of genetic instability seen in pre-crisis and newly immortalized cells, nor to the process of immortalization itself. (author).

  2. Transformation and radiosensitivity of human diploid skin fibroblasts transfected with activated RAS oncogene and SV40 T-antigen

    International Nuclear Information System (INIS)

    Su, L.-N.; Little, J.B.

    1992-01-01

    Three normal human diploid cell strains were transfected with an activated Ha-ras oncogene (EJ ras) or SV40 T-antigen. Multiple clones were examined for morphological alterations, growth requirements, ability to grow under anchorage independent conditions, immortality and tumorigenicity in nude mice. Clones expressing SV40 T-antigen alone or in combination with ras protein p21 were significantly radioresistant as compared with their parent cells or clones transfected with the neo gene only. This radioresistant phenotype persisted in post-crisis, immortalized cell lines. These data suggest that expression of the SV40 T-antigen but not activated Ha-ras plays an important role in the radiosensitivity of human diploid cells. The radioresistant phenotype in SV40 T transfected cells was not related to the enhanced level of genetic instability seen in pre-crisis and newly immortalized cells, nor to the process of immortalization itself. (author)

  3. Casein kinase 2 regulates the active uptake of the organic osmolyte taurine in NIH3T3 mouse fibroblasts

    DEFF Research Database (Denmark)

    Jacobsen, Jack H; Clement, Christian A; Friis, Martin B

    2008-01-01

    Inhibition of the constitutively active casein kinase 2 (CK2) with 2-dimethyl-amino-4,5,6,7-tetrabromo-1H-benzimidasole stimulates the Na(+)-dependent taurine influx via the taurine transporter TauT in NIH3T3 cells. CK2 inhibition reduces the TauT mRNA level and increases the localization of TauT...

  4. Adiponectin promotes hyaluronan synthesis along with increases in hyaluronan synthase 2 transcripts through an AMP-activated protein kinase/peroxisome proliferator-activated receptor-α-dependent pathway in human dermal fibroblasts

    International Nuclear Information System (INIS)

    Yamane, Takumi; Kobayashi-Hattori, Kazuo; Oishi, Yuichi

    2011-01-01

    Highlights: ► Adiponectin promotes hyaluronan synthesis along with an increase in HAS2 transcripts. ► Adiponectin also increases the phosphorylation of AMPK. ► A pharmacological activator of AMPK increases mRNA levels of PPARα and HAS2. ► Adiponectin-induced HAS2 mRNA expression is blocked by a PPARα antagonist. ► Adiponectin promotes hyaluronan synthesis via an AMPK/PPARα-dependent pathway. -- Abstract: Although adipocytokines affect the functions of skin, little information is available on the effect of adiponectin on the skin. In this study, we investigated the effect of adiponectin on hyaluronan synthesis and its regulatory mechanisms in human dermal fibroblasts. Adiponectin promoted hyaluronan synthesis along with an increase in the mRNA levels of hyaluronan synthase 2 (HAS2), which plays a primary role in hyaluronan synthesis. Adiponectin also increased the phosphorylation of AMP-activated protein kinase (AMPK). A pharmacological activator of AMPK, 5-aminoimidazole-4-carboxamide-1β-ribofuranoside (AICAR), increased mRNA levels of peroxisome proliferator-activated receptor-α (PPARα), which enhances the expression of HAS2 mRNA. In addition, AICAR increased the mRNA levels of HAS2. Adiponectin-induced HAS2 mRNA expression was blocked by GW6471, a PPARα antagonist, in a concentration-dependent manner. These results show that adiponectin promotes hyaluronan synthesis along with increases in HAS2 transcripts through an AMPK/PPARα-dependent pathway in human dermal fibroblasts. Thus, our study suggests that adiponectin may be beneficial for retaining moisture in the skin, anti-inflammatory activity, and the treatment of a variety of cutaneous diseases.

  5. Myogenic conversion of bladder fibroblasts by construction and ...

    African Journals Online (AJOL)

    The cultured primary bladder fibroblasts were transfected by pEGFP-Myod1 with Lipofection 2000 reagent. The results showed that expression of Myod1 could cause myogenic differentiation of bladder fibroblasts. These findings support the possibility of an alternative approach to exploit the capacity of Myod1 to activate ...

  6. Physiological Aging Influence on Brain Hemodynamic Activity during Task-Switching: A fNIRS Study

    Directory of Open Access Journals (Sweden)

    Roberta Vasta

    2018-01-01

    Full Text Available Task-switching (TS paradigm is a well-known validated tool useful for exploring the neural substrates of cognitive control, in particular the activity of the lateral and medial prefrontal cortex. This work is aimed at investigating how physiological aging influences hemodynamic response during the execution of a color-shape TS paradigm. A multi-channel near infrared spectroscopy (fNIRS was used to measure hemodynamic activity in 27 young (30.00 ± 7.90 years and 11 elderly participants (57.18 ± 9.29 years healthy volunteers (55% male, age range: (19–69 years during the execution of a TS paradigm. Two holders were placed symmetrically over the left/right hemispheres to record cortical activity [oxy-(HbO and deoxy-hemoglobin (HbR concentration] of the dorso-lateral prefrontal cortex (DLPFC, the dorsal premotor cortex (PMC, and the dorso-medial part of the superior frontal gyrus (sFG. TS paradigm requires participants to repeat the same task over a variable number of trials, and then to switch to a different task during the trial sequence. A two-sample t-test was carried out to detect differences in cortical responses between groups. Multiple linear regression analysis was used to evaluate the impact of age on the prefrontal neural activity. Elderly participants were significantly slower than young participants in both color- (p < 0.01, t = −3.67 and shape-single tasks (p = 0.026, t = −2.54 as well as switching (p = 0.026, t = −2.41 and repetition trials (p = 0.012, t = −2.80. Differences in cortical activation between groups were revealed for HbO mean concentration of switching task in the PMC (p = 0.048, t = 2.94. In the whole group, significant increases of behavioral performance were detected in switching trials, which positively correlated with aging. Multivariate regression analysis revealed that the HbO mean concentration of switching task in the PMC (p = 0.01, β = −0.321 and of shape single-task in the sFG (p = 0.003, β = 0

  7. Peroxisome proliferator-activated receptor δ modulates MMP-2 secretion and elastin expression in human dermal fibroblasts exposed to ultraviolet B radiation.

    Science.gov (United States)

    Ham, Sun Ah; Yoo, Taesik; Hwang, Jung Seok; Kang, Eun Sil; Paek, Kyung Shin; Park, Chankyu; Kim, Jin-Hoi; Do, Jeong Tae; Seo, Han Geuk

    2014-10-01

    Changes in skin connective tissues mediated by ultraviolet (UV) radiation have been suggested to cause the skin wrinkling normally associated with premature aging of the skin. Recent investigations have shown that peroxisome proliferator-activated receptor (PPAR) δ plays multiple biological roles in skin homeostasis. We attempted to investigate whether PPARδ modulates elastin protein levels and secretion of matrix metalloproteinase (MMP)-2 in UVB-irradiated human dermal fibroblasts (HDFs) and mouse skin. These studies were undertaken in primary HDFs or HR-1 hairless mice using Western blot analyses, small interfering (si)RNA-mediated gene silencing, and Fluorescence microscopy. In HDFs, UVB irradiation induced increased secretion of MMP-2 and reduced levels of elastin. Activation of PPARδ by GW501516, a ligand specific for PPARδ, markedly attenuated UVB-induced MMP-2 secretion with a concomitant increase in the level of elastin. These effects were reduced by the presence of siRNAs against PPARδ or treatment with GSK0660, a specific inhibitor of PPARδ. Furthermore, GW501516 elicited a dose- and time-dependent increase in the expression of elastin. Modulation of MMP-2 secretion and elastin levels by GW501516 was associated with a reduction in reactive oxygen species (ROS) production in HDFs exposed to UVB. Finally, in HR-1 hairless mice, administration of GW501516 significantly reduced UVB-induced MMP-2 expression with a concomitant increase in elastin levels, and these effects were significantly reduced by the presence of GSK0660. Our results suggest that PPARδ-mediated modulation of MMP-2 secretion and elastin expression may contribute to the maintenance of skin integrity by inhibiting ROS generation. Copyright © 2014 Japanese Society for Investigative Dermatology. Published by Elsevier Ireland Ltd. All rights reserved.

  8. Fibroblast growth factor 23

    African Journals Online (AJOL)

    Dr Olaleye

    Systemic phosphate homeostasis is maintained through several hormonal mechanisms which involve fibroblast growth factor 23 (FGF-23), α-klotho, vitamin D and parathyroid hormone. FGF-23 is known to be the major regulator of phosphate balance (Mirams et al., 2004). FGF-23 is a phosphaturic hormone, which is.

  9. Transformation and radiosensitivity of human diploid skin fibroblasts transfected with activated ras oncogene and SV40 T-antigen.

    Science.gov (United States)

    Su, L N; Little, J B

    1992-08-01

    Three normal human diploid cell strains were transfected with an activated Ha-ras oncogene (EJ ras) or SV40 T-antigen. Multiple clones were examined for morphological alterations, growth requirements, ability to grow under anchorage independent conditions, immortality and tumorigenicity in nude mice. Clones expressing SV40 T-antigen alone or in combination with ras protein p21 were significantly radioresistant as compared with their parent cells or clones transfected with the neo gene only. This radioresistant phenotype persisted in post-crisis, immortalized cell lines. Cells transfected with EJ ras alone showed no morphological alterations nor significant changes in radiosensitivity. Cell clones expressing ras and/or SV40 T-antigen showed a reduced requirement for serum supplements, an increase in aneuploidy and chromosomal aberrations, and enhanced growth in soft agar as an early cellular response to SV40 T-antigen expression. The sequential order of transfection with SV40 T-antigen and ras influenced radio-sensitivity but not the induction of morphological changes. These data suggest that expression of the SV40 T-antigen but not activated Ha-ras plays an important role in the radiosensitivity of human diploid cells. The radioresistant phenotype in SV40 T transfected cells was not related to the enhanced level of genetic instability seen in pre-crisis and newly immortalized cells, nor to the process of immortalization itself.

  10. Membrane composition and physiological activity of plastids from an oenothera plastome mutator-induced chloroplast mutant.

    Science.gov (United States)

    Johnson, E M; Sears, B B

    1990-01-01

    Plastids were isolated from a plastome mutator-induced mutant (pm7) of Oenothera hookeri and were analyzed for various physiological and biochemical attributes. No photosynthetic electron transport activity was detected in the mutant plastids. This is consistent with previous ultrastructural analysis showing the absence of thylakoid membranes in the pm7 plastids and with the observation of aberrant processing and accumulation of chloroplast proteins in the mutant. In comparison to wild type, the mutant tissue lacks chlorophyll, and has significant differences in levels of four fatty acids. The analyses did not reveal any differences in carotenoid levels nor in the synthesis of several chloroplast lipids. The consequences of the altered composition of the chloroplast membrane are discussed in terms of their relation to the aberrant protein processing of the pm7 plastids. The pigment, fatty acid, and lipid measurements were also performed on two distinct nuclear genotypes (A/A and A/C) which differ in their compatibility with the plastid genome (type I) contained in these lines. In these cases, only chlorophyll concentrations differed significantly.

  11. Physiological selectivity and activity reduction of insecticides by rainfall to predatory wasps of Tuta absoluta.

    Science.gov (United States)

    Barros, Emerson C; Bacci, Leandro; Picanco, Marcelo C; Martins, Júlio C; Rosado, Jander F; Silva, Gerson A

    2015-01-01

    In this study, we carried out three bioassays with nine used insecticides in tomato crops to identify their efficiency against tomato leaf miner Tuta absoluta, the physiological selectivity and the activity reduction of insecticides by three rain regimes to predatory wasps Protonectarina sylveirae and Polybia scutellaris. We assessed the mortality caused by the recommended doses of abamectin, beta-cyfluthrin, cartap, chlorfenapyr, etofenprox, methamidophos, permethrin, phenthoate and spinosad to T. absoluta and wasps at the moment of application. In addition, we evaluated the wasp mortality due to the insecticides for 30 days on plants that did not receive rain and on plants that received 4 or 125 mm of rain. Spinosad, cartap, chlorfenapyr, phenthoate, abamectin and methamidophos caused mortality higher than 90% to T. absoluta, whereas the pyrethroids beta-cyfluthrin, etofenprox and permethrin caused mortality between 8.5% and 46.25%. At the moment of application, all the insecticides were highly toxic to the wasps, causing mortality higher than 80%. In the absence of rain, all the insecticides continued to cause high mortality to the wasps for 30 days after the application. The toxicity of spinosad and methamidophos on both wasp species; beta-cyfluthrin on P. sylveirae and chlorfenapyr and abamectin on P. scutellaris, decreased when the plants received 4 mm of rain. In contrast, the other insecticides only showed reduced toxicity on the wasps when the plants received 125 mm of rain.

  12. Possible role of ginsenoside Rb1 in skin wound healing via regulating senescent skin dermal fibroblast.

    Science.gov (United States)

    Hou, Jingang; Kim, Sunchang

    2018-05-05

    Cellular senescence suppresses cancer by inducing irreversible cell growth arrest. Nevertheless, senescent cells is proposed as causal link with aging and aging-related pathologies. The physiological beneficial functions of senescent cells are still of paucity. Here we show that senescent human dermal fibroblast accelerates keratinocytes scratch wound healing and stimulates differentiation of fibroblast. Using oxidative stress (100 μM H 2 O 2 exposure for 1 h) induction, we successfully triggered fibroblast senescence and developed senescence associated secretory phenotype (SASP). The induction of SASP was regulated by p38MAPK/MSK2/NF-κB pathway. Interestingly, inhibition of p38MAPK activation only partially suppressed SASP. However, SASP was significantly inhibited by SB747651A, a specific MSK inhibitor. Additionally, we demonstrate that SASP stimulates migration of keratinocytes and myofibroblast transition of fibroblast, through fold-increased secretion of growth factors, platelet-derived growth factor AA (PDGF-AA) and AB (PDGF-AB), transforming growth factor beta 1 (TGF-β1) and beta 2 (TGF-β2), vascular endothelial growth factor A (VEGF-A) and D (VEGF-D), vascular endothelial growth factor receptor 2 (VEGFR2) and 3 (VEGFR3). Importantly, we also confirmed ginsenoside Rb1 promoted SASP-mediated healing process via p38MAPK/MSK2/NF-κB pathway. The results pointed to senescent fibroblast as a potential mechanism of wound healing control in human skin. Further, it provided a candidate targeted for wound therapy. Copyright © 2018 Elsevier Inc. All rights reserved.

  13. Fibroblast Growth Factor signaling regulates the expansion of A6-expressing hepatocytes in association with AKT-dependent β-catenin activation

    Science.gov (United States)

    Utley, Sarah; James, David; Mavila, Nirmala; Nguyen, Marie V.; Vendryes, Christopher; Salisbury, S. Michael; Phan, Jennifer; Wang, Kasper S.

    2014-01-01

    Background & Aims Fibroblast Growth Factors (FGFs) promote the proliferation and survival of hepatic progenitor cells (HPCs) via AKT-dependent β-catenin activation. Moreover, the emergence of hepatocytes expressing the HPC marker A6 during 3,5-diethoxycarbonyl-1,4-dihydrocollidine (DDC)-induced liver injury is mediated partly by FGF and β-catenin signaling. Herein, we investigate the role of FGF signaling and AKT-mediated β-catenin activation in acute DDC liver injury. Methods Transgenic mice were fed DDC chow for 14 days concurrent with either Fgf10 over-expression or inhibition of FGF signaling via expression of soluble dominant-negative FGF Receptor (R)-2IIIb. Results After 14 days of DDC treatment, there was an increase in periportal cells expressing FGFR1, FGFR2, and AKT-activated phospho-Serine 552 (pSer552) β-CATENIN in association with up-regulation of genes encoding FGFR2IIIb ligands, Fgf7, Fgf10, and Fgf22. In response to Fgf10 over-expression, there was an increase in the number of pSer552-β-CATENIN(positive)+ive periportal cells as well as cells co-positive for A6 and hepatocyte marker, Hepatocyte Nuclear Factor-4α (HNF4α). A similar expansion of A6+ive cells was observed after Fgf10 over-expression with regular chow and after partial hepatectomy during ethanol toxicity. Inhibition of FGF signaling increased the periportal A6+iveHNF4α+ive cell population while reducing centrolobular A6+ive HNF4α+ive cells. AKT inhibition with Wortmannin attenuated FGF10-mediated A6+iveHNF4α+ive cell expansion. In vitro analyses using FGF10 treated HepG2 cells demonstrated AKT-mediated β-CATENIN activation but not enhanced cell migration. Conclusion During acute DDC treatment, FGF signaling promotes the expansion of A6-expressing liver cells partly via AKT-dependent activation of β-CATENIN expansion of A6+ive periportal cells and possibly by reprogramming of centrolobular hepatocytes. PMID:24365171

  14. Rac inhibition reverses the phenotype of fibrotic fibroblasts.

    Directory of Open Access Journals (Sweden)

    Shi-wen Xu

    Full Text Available BACKGROUND: Fibrosis, the excessive deposition of scar tissue by fibroblasts, is one of the largest groups of diseases for which there is no therapy. Fibroblasts from lesional areas of scleroderma patients possess elevated abilities to contract matrix and produce alpha-smooth muscle actin (alpha-SMA, type I collagen and CCN2 (connective tissue growth factor, CTGF. The basis for this phenomenon is poorly understood, and is a necessary prerequisite for developing novel, rational anti-fibrotic strategies. METHODS AND FINDINGS: Compared to healthy skin fibroblasts, dermal fibroblasts cultured from lesional areas of scleroderma (SSc patients possess elevated Rac activity. NSC23766, a Rac inhibitor, suppressed the persistent fibrotic phenotype of lesional SSc fibroblasts. NSC23766 caused a decrease in migration on and contraction of matrix, and alpha-SMA, type I collagen and CCN2 mRNA and protein expression. SSc fibroblasts possessed elevated Akt phosphorylation, which was also blocked by NSC23766. Overexpression of rac1 in normal fibroblasts induced matrix contraction and alpha-SMA, type I collagen and CCN2 mRNA and protein expression. Rac1 activity was blocked by PI3kinase/Akt inhibition. Basal fibroblast activity was not affected by NSC23766. CONCLUSION: Rac inhibition may be considered as a novel treatment for the fibrosis observed in SSc.

  15. Identification and quantification of bio-actives and metabolites in physiological matrices by automated HPLC-MS

    NARCIS (Netherlands)

    van Platerink, C.J.

    2010-01-01

    Identification and quantification of bio-actives and metabolites in physiological matrices by automated HPLC-MS > Food plays an important role in human health. Nowadays there is an increasing interest in the health effects of so-calles functional foods, e.g. effects on blood pressure, cholesterol

  16. Replacement of murine fibroblasts by human fibroblasts irradiated in obtaining feeder layer for the culture of human keratinocytes

    International Nuclear Information System (INIS)

    Yoshito, Daniele; Sufi, Bianca S.; Santin, Stefany P.; Mathor, Monica B.; Altran, Silvana C.; Isaac, Cesar

    2011-01-01

    Human autologous epithelia cultivated in vitro, have been used successfully in treating damage to skin integrity. The methodology allowed the cultivation of these epithelia was described by Rheinwald and Green in 1975, this methodology consisted in seeding keratinocytes onto a feeder layer composed of lineage 3T3 murine fibroblasts, the proliferation rate is controlled through the action of ionizing radiation. However, currently there is a growing concern about the possibility of transmitting prions and murine viruses to transplanted patients. Taking into account this concern, in this present work, we replaced the feeder layer originally composed of murine fibroblasts by human fibroblasts. To obtain this new feeder layer was necessary to standardize the enough irradiation dose to inhibit the replication of human fibroblasts and the verification of effectiveness of the development of keratinocytes culture on a feeder layer thus obtained. According to the obtained results we can verify that the human fibroblasts irradiated at various tested doses (60, 70, 100, 200, 250 and 300 Gy) had their mitotic activity inactivated by irradiation, allowing the use of any of these doses to confection of the feeder layer, since these fibroblasts irradiated still showed viable until fourteen days of cultivation. In the test of colony formation efficiency was observed that keratinocytes seeded on irradiated human fibroblasts were able to develop satisfactorily, preserving their clonogenic potential. Therefore it was possible the replacement of murine fibroblasts by human fibroblasts in confection of the feeder layer, in order to eliminate this xenobiotic component of the keratinocytes culture. (author)

  17. Replacement of murine fibroblasts by human fibroblasts irradiated in obtaining feeder layer for the culture of human keratinocytes

    Energy Technology Data Exchange (ETDEWEB)

    Yoshito, Daniele; Sufi, Bianca S.; Santin, Stefany P.; Mathor, Monica B. [Instituto de Pesquisas Energeticas e Nucleares (IPEN/CNEN-SP), Sao Paulo, SP (Brazil); Altran, Silvana C.; Isaac, Cesar [Universidade Sao Paulo (USP), Sao Paulo, SP (Brazil). Fac. de Medicina. Lab. de Microcirurgia Plastica; Esteves-Pedro, Natalia M. [Universidade Sao Paulo (USP), Sao Paulo, SP (Brazil). Fac. de Ciencias Farmaceuticas. Lab. de Controle Biologico; Herson, Marisa R. [DonorTissue Bank of Victoria (Australia)

    2011-07-01

    Human autologous epithelia cultivated in vitro, have been used successfully in treating damage to skin integrity. The methodology allowed the cultivation of these epithelia was described by Rheinwald and Green in 1975, this methodology consisted in seeding keratinocytes onto a feeder layer composed of lineage 3T3 murine fibroblasts, the proliferation rate is controlled through the action of ionizing radiation. However, currently there is a growing concern about the possibility of transmitting prions and murine viruses to transplanted patients. Taking into account this concern, in this present work, we replaced the feeder layer originally composed of murine fibroblasts by human fibroblasts. To obtain this new feeder layer was necessary to standardize the enough irradiation dose to inhibit the replication of human fibroblasts and the verification of effectiveness of the development of keratinocytes culture on a feeder layer thus obtained. According to the obtained results we can verify that the human fibroblasts irradiated at various tested doses (60, 70, 100, 200, 250 and 300 Gy) had their mitotic activity inactivated by irradiation, allowing the use of any of these doses to confection of the feeder layer, since these fibroblasts irradiated still showed viable until fourteen days of cultivation. In the test of colony formation efficiency was observed that keratinocytes seeded on irradiated human fibroblasts were able to develop satisfactorily, preserving their clonogenic potential. Therefore it was possible the replacement of murine fibroblasts by human fibroblasts in confection of the feeder layer, in order to eliminate this xenobiotic component of the keratinocytes culture. (author)

  18. Evaluation of a wearable physiological status monitor during simulated fire fighting activities.

    Science.gov (United States)

    Smith, Denise L; Haller, Jeannie M; Dolezal, Brett A; Cooper, Christopher B; Fehling, Patricia C

    2014-01-01

    A physiological status monitor (PSM) has been embedded in a fire-resistant shirt. The purpose of this research study was to examine the ability of the PSM-shirt to accurately detect heart rate (HR) and respiratory rate (RR) when worn under structural fire fighting personal protective equipment (PPE) during the performance of various activities relevant to fire fighting. Eleven healthy, college-aged men completed three activities (walking, searching/crawling, and ascending/descending stairs) that are routinely performed during fire fighting operations while wearing the PSM-shirt under structural fire fighting PPE. Heart rate and RR recorded by the PSM-shirt were compared to criterion values measured concurrently with an ECG and portable metabolic measurement system, respectively. For all activities combined (overall) and for each activity, small differences were found between the PSM-shirt and ECG (mean difference [95% CI]: overall: -0.4 beats/min [-0.8, -0.1]; treadmill: -0.4 beats/min [-0.7, -0.1]; search: -1.7 beats/min [-3.1, -.04]; stairs: 0.4 beats/min [0.04, 0.7]). Standard error of the estimate was 3.5 beats/min for all tasks combined and 1.9, 5.9, and 1.9 beats/min for the treadmill walk, search, and stair ascent/descent, respectively. Correlations between the PSM-shirt and criterion heart rates were high (r = 0.95 to r = 0.99). The mean difference between RR recorded by the PSM-shirt and criterion overall was 1.1 breaths/min (95% CI: -1.9 to -0.4). The standard error of the estimate for RR ranged from 4.2 breaths/min (treadmill) to 8.2 breaths/min (search), with an overall value of 6.2 breaths/min. These findings suggest that the PSM-shirt provides valid measures of HR and useful approximations of RR when worn during fire fighting duties.

  19. Toll-like receptor 9 mediated responses in cardiac fibroblasts.

    Directory of Open Access Journals (Sweden)

    Ingrid Kristine Ohm

    Full Text Available Altered cardiac Toll-like receptor 9 (TLR9 signaling is important in several experimental cardiovascular disorders. These studies have predominantly focused on cardiac myocytes or the heart as a whole. Cardiac fibroblasts have recently been attributed increasing significance in mediating inflammatory signaling. However, putative TLR9-signaling through cardiac fibroblasts remains non-investigated. Thus, our aim was to explore TLR9-signaling in cardiac fibroblasts and investigate the consequence of such receptor activity on classical cardiac fibroblast cellular functions. Cultivated murine cardiac fibroblasts were stimulated with different TLR9 agonists (CpG A, B and C and assayed for the secretion of inflammatory cytokines (tumor necrosis factor α [TNFα], CXCL2 and interferon α/β. Expression of functional cardiac fibroblast TLR9 was proven as stimulation with CpG B and -C caused significant CXCL2 and TNFα-release. These responses were TLR9-specific as complete inhibition of receptor-stimulated responses was achieved by co-treatment with a TLR9-antagonist (ODN 2088 or chloroquine diphosphate. TLR9-stimulated responses were also found more potent in cardiac fibroblasts when compared with classical innate immune cells. Stimulation of cardiac fibroblasts TLR9 was also found to attenuate migration and proliferation, but did not influence myofibroblast differentiation in vitro. Finally, results from in vivo TLR9-stimulation with subsequent fractionation of specific cardiac cell-types (cardiac myocytes, CD45+ cells, CD31+ cells and cardiac fibroblast-enriched cell-fractions corroborated our in vitro data and provided evidence of differentiated cell-specific cardiac responses. Thus, we conclude that cardiac fibroblast may constitute a significant TLR9 responder cell within the myocardium and, further, that such receptor activity may impact important cardiac fibroblast cellular functions.

  20. Increased OXPHOS activity precedes rise in glycolytic rate in H-RasV12/E1A transformed fibroblasts that develop a Warburg phenotype

    Directory of Open Access Journals (Sweden)

    Pluk Helma

    2009-07-01

    Full Text Available Abstract Background The Warburg phenotype in cancer cells has been long recognized, but there is still limited insight in the consecutive metabolic alterations that characterize its establishment. We obtained better understanding of the coupling between metabolism and malignant transformation by studying mouse embryonic fibroblast-derived cells with loss-of-senescence or H-RasV12/E1A-transformed phenotypes at different stages of oncogenic progression. Results Spontaneous immortalization or induction of senescence-bypass had only marginal effects on metabolic profiles and viability. In contrast, H-RasV12/E1A transformation initially caused a steep increase in oxygen consumption and superoxide production, accompanied by massive cell death. During prolonged culture in vitro, cell growth rate increased gradually, along with tumor forming potential in in vitro anchorage-independent growth assays and in vivo tumor formation assays in immuno-deficient mice. Notably, glucose-to-lactic acid flux increased with passage number, while cellular oxygen consumption decreased. This conversion in metabolic properties was associated with a change in mitochondrial NAD+/NADH redox, indicative of decreased mitochondrial tricarboxic acid cycle and OXPHOS activity. Conclusion The high rate of oxidative metabolism in newly transformed cells is in marked contrast with the high glycolytic rate in cells in the later tumor stage. In our experimental system, with cells growing under ambient oxygen conditions in nutrient-rich media, the shift towards this Warburg phenotype occurred as a step-wise adaptation process associated with augmented tumorigenic capacity and improved survival characteristics of the transformed cells. We hypothesize that early-transformed cells, which potentially serve as founders for new tumor masses may escape therapies aimed at metabolic inhibition of tumors with a fully developed Warburg phenotype.

  1. Polypeptide structure of a human dermal fibroblast-activating factor (FAF) derived from the U937 cultured line of human monocyte-like cells

    International Nuclear Information System (INIS)

    Cooke, M.P.; Allar, W.J.; Goetzl, E.J.; Dohlman, J.G.

    1986-01-01

    Six liter batches of 1 x 10 6 U937 cells/ml of serum-free RPMI medium were incubated with 100 ng/ml of phorbol myristate acetate for 48 hr at 37 0 C in 5% CO 2 in air to generate FAFs, as quantified by the stimulation of uptake of [ 3 H]thymidine by quiescent human dermal fibroblasts. Filtration of the supernatants on Sephadex G-75 resolved two FAFs of approximately 40,000 and 10-13,000 daltons. The latter principle was purified to homogeneity by sequential Sephadex G-50 filtration, revealing an apparent m.w. of 7-8000, Mono-Q FPLC anion-exchange chromatography with a linear gradient from 20 mM Tris-HCl (pH 8.3) to 0.5 M NaCl-20 mM Tris-HCl in 30 min, and two cycles of high-performance liquid chromatography (HPLC) on a 300 A pore 10 μm C4 column at 1 ml/min with 0.05% trifluoroacetic acid (TFA) in water to 30:70 (v:v) and then to 60:40 (v:v) acetonitrile: 0.05% TFA linearly in 15 min and 30 min, respectively, The FAF activity eluted from HPLC in a sharp peak of O.D. 215 nm at 45% acetonitrile. Analyses of amino acid composition of the highly purified 7-8000 dalton FAF-U937 revealed 37% hydrophobic, 14% basic, and 21% acidic or amide residues, as well as one tryrosine and one methionine. This U937 cell-derived FAF appears to be a unique acidic polypeptide growth factor

  2. Changes in Plasma Copeptin Levels during Hemodialysis : Are the Physiological Stimuli Active in Hemodialysis Patients?

    NARCIS (Netherlands)

    Ettema, Esmee M.; Kuipers, Johanna; Assa, Solmaz; Bakker, Stephan J. L.; Groen, Henk; Westerhuis, Ralf; Gaillard, Carlo A. J. M.; Gansevoort, Ron T.; Franssen, Casper F. M.

    2015-01-01

    Objectives Plasma levels of copeptin, a surrogate marker for the vasoconstrictor hormone arginine vasopressin (AVP), are increased in hemodialysis patients. Presently, it is unknown what drives copeptin levels in hemodialysis patients. We investigated whether the established physiological stimuli

  3. The fibroblast surface markers FAP, anti-fibroblast, and FSP are expressed by cells of epithelial origin and may be altered during epithelial-to-mesenchymal transition.

    Science.gov (United States)

    Kahounová, Zuzana; Kurfürstová, Daniela; Bouchal, Jan; Kharaishvili, Gvantsa; Navrátil, Jiří; Remšík, Ján; Šimečková, Šárka; Študent, Vladimír; Kozubík, Alois; Souček, Karel

    2017-04-06

    The identification of fibroblasts and cancer-associated fibroblasts from human cancer tissue using surface markers is difficult, especially because the markers used currently are usually not expressed solely by fibroblasts, and the identification of fibroblast-specific surface molecules is still under investigation. It was aimed to compare three commercially available antibodies in the detection of different surface epitopes of fibroblasts (anti-fibroblast, fibroblast activation protein α, and fibroblast surface protein). The specificity of their expression, employing fibroblast cell lines and tumor-derived fibroblasts from breast and prostate tissues was investigated. Both the established fibroblast cell line HFF-1 and ex vivo primary fibroblasts isolated from breast and prostate cancer tissues expressed the tested surface markers to different degrees. Surprisingly, those markers were expressed also by permanent cell lines of epithelial origin, both benign and cancer-derived (breast-cell lines MCF 10A, HMLE and prostate-cell lines BPH-1, DU 145, and PC-3). The expression of fibroblast activation protein α increased on the surface of previously described models of epithelial cells undergoing epithelial-to-mesenchymal transition in response to treatment with TGF-β1. To prove the co-expression of the fibroblast markers on cells of epithelial origin, we used freshly dissociated human prostate and breast cancer tissues. The results confirmed the co-expression of anti-fibroblast and fibroblast surface protein on CD31/CD45-negative/EpCAM-positive epithelial cells. In summary, our data support the findings that the tested fibroblast markers are not fibroblast specific and may be expressed also by cells of epithelial origin (e.g., cells undergoing EMT). Therefore, the expression of these markers should be interpreted with caution, and the combination of several epitopes for both positive (anti-fibroblast or fibroblast activation protein α) and negative (Ep

  4. CP-25 attenuates the inflammatory response of fibroblast-like synoviocytes co-cultured with BAFF-activated CD4(+) T cells.

    Science.gov (United States)

    Jia, Xiaoyi; Wei, Fang; Sun, Xiaojing; Chang, Yan; Xu, Shu; Yang, Xuezhi; Wang, Chun; Wei, Wei

    2016-08-02

    Total glucosides of paeony (TGP) is the first anti-inflammatory immune regulatory drug approved for the treatment of rheumatoid arthritis in China. A novel compound, paeoniflorin-6'-O-benzene sulfonate (code CP-25), comes from the structural modification of paeoniflorin (Pae), which is the effective active ingredient of TGP. The aim of the present study is to investigate the effect of CP-25 on adjuvant arthritis (AA) fibroblast-like synoviocytes (FLS) co-cultured with BAFF-activated CD4(+) T cells and the expression of BAFF-R in CD4(+) T cells. The mRNA expression of BAFF and its receptors was assessed by qPCR. The expression of BAFF receptors in CD4(+) T cells was analyzed by flow cytometry. The effect of CP-25 on AA rats was evaluated by their joint histopathology. The cell culture growth of thymocytes and FLS was detected by cell counting kit (CCK-8). The concentrations of IL-1β, TNF-α, and IL-6 were measured by Enzyme-linked immunosorbent assay (ELISA). The mRNA expression levels of BAFF and BAFF-R were enhanced in the mesenteric lymph nodes of AA rats, TACI expression was reduced, and BCMA had no change. The expression of BAFF-R in CD4(+) T cells was also enhanced. CP-25 alleviated the joint histopathology and decreased the expression of BAFF-R in CD4(+) T cells from AA rats in vivo. In vitro, CP-25 inhibited the abnormal cell culture growth of BAFF-stimulated thymocytes and FLS. In the co-culture system, IL-1β, IL-6 and TNF-α production was enhanced by FLS co-cultured with BAFF-activated CD4(+) T cells. Moreover, BAFF-stimulated CD4(+) T cells promoted the cell culture growth of FLS. The addition of CP-25 decreased the expression of BAFF-R in CD4(+) T cells and inhibited the cell culture growth and cytokine secretion ability of FLS co-cultured with BAFF-activated CD4(+) T cells. The present study indicates that CP-25 may repress the cell culture growth and cytokine secretion ability of FLS, and its inhibitory effects might be associated with its ability

  5. A student-centered approach for developing active learning: the construction of physical models as a teaching tool in medical physiology.

    Science.gov (United States)

    Rezende-Filho, Flávio Moura; da Fonseca, Lucas José Sá; Nunes-Souza, Valéria; Guedes, Glaucevane da Silva; Rabelo, Luiza Antas

    2014-09-15

    Teaching physiology, a complex and constantly evolving subject, is not a simple task. A considerable body of knowledge about cognitive processes and teaching and learning methods has accumulated over the years, helping teachers to determine the most efficient way to teach, and highlighting student's active participation as a means to improve learning outcomes. In this context, this paper describes and qualitatively analyzes an experience of a student-centered teaching-learning methodology based on the construction of physiological-physical models, focusing on their possible application in the practice of teaching physiology. After having Physiology classes and revising the literature, students, divided in small groups, built physiological-physical models predominantly using low-cost materials, for studying different topics in Physiology. Groups were followed by monitors and guided by teachers during the whole process, finally presenting the results in a Symposium on Integrative Physiology. Along the proposed activities, students were capable of efficiently creating physiological-physical models (118 in total) highly representative of different physiological processes. The implementation of the proposal indicated that students successfully achieved active learning and meaningful learning in Physiology while addressing multiple learning styles. The proposed method has proved to be an attractive, accessible and relatively simple approach to facilitate the physiology teaching-learning process, while facing difficulties imposed by recent requirements, especially those relating to the use of experimental animals and professional training guidelines. Finally, students' active participation in the production of knowledge may result in a holistic education, and possibly, better professional practices.

  6. Environmental physiology: effects of energy-related pollutants on daily cycles of energy metabolism, motor activity, and thermoregulation

    International Nuclear Information System (INIS)

    Sacher, G.A.; Rosenberg, R.S.; Duffy, P.H.; Obermeyer, W.; Russell, J.J.

    1979-01-01

    This section contains a summary of research on the effects of energy-related pollutants on daily cycles of energy metabolism, motor activity, and thermoregulation. So far, mice have been exposed to fast neutron-gamma radiation or to the chemical effluents of an atmospheric pressure experimental fluidized-bed combustor. The physiological parameters measured included: O 2 consumption; CO 2 production; motor activity; and deep body temperatures

  7. NF449 is a novel inhibitor of fibroblast growth factor receptor 3 (FGFR3) signaling active in chondrocytes and multiple myeloma cells

    Czech Academy of Sciences Publication Activity Database

    Krejčí, Pavel; Murakami, S.; Procházková, J.; Trantírek, L.; Chlebová, K.; Ouyang, Z.; Aklian, A.; Smutný, J.; Bryja, Vítězslav; Kozubík, Alois; Wilcox, W.R.

    2010-01-01

    Roč. 285, č. 27 (2010), s. 20644-20653 ISSN 0021-9258 Grant - others:GA ČR(CZ) GA301/09/0587 Institutional research plan: CEZ:AV0Z50040507; CEZ:AV0Z50040702 Keywords : NF449 * fibroblast growth factor receptor * antagonist Subject RIV: BO - Biophysics Impact factor: 5.328, year: 2010

  8. Epidermal growth factor receptor-induced activato protein 1 activity controls density-dependent growht inhibition in normal rat kidney fibroblasts.

    NARCIS (Netherlands)

    Hornberg, J.J.; Dekker, H.; Peters, P.H.J.; Langerak, P.; Westerhoff, H.V.; Lankelma, J.; Zoelen, E.J.J.

    2006-01-01

    Density-dependent growth inhibition secures tissue homeostasis. Dysfunction of the mechanisms, which regulate this type of growth control is a major cause of neoplasia. In confluent normal rat kidney (NRK) fibroblasts, epidermal growth factor (EGF) receptor levels decline, ultimately rendering these

  9. Constitutive Reprogramming of Fibroblast Mitochondrial Metabolism in Pulmonary Hypertension

    Czech Academy of Sciences Publication Activity Database

    Plecitá-Hlavatá, Lydie; Tauber, Jan; Li, M.; Zhang, H.; Flockton, A. R.; Pullamsetti, S. S.; Chelladurai, P.; D'Alessandro, A.; El Kasmi, K. C.; Ježek, Petr; Stenmark, K. R.

    2016-01-01

    Roč. 55, č. 1 (2016), s. 47-57 ISSN 1044-1549 R&D Projects: GA MŠk(CZ) LH11055; GA MŠk(CZ) LH15071 Institutional support: RVO:67985823 Keywords : mitochondria * complex I * oxidative metabolism * pulmonary hypertension * adventitial fibroblasts Subject RIV: ED - Physiology Impact factor: 4.100, year: 2016

  10. Anabolic steroids alter the physiological activity of aggression circuits in the lateral anterior hypothalamus.

    Science.gov (United States)

    Morrison, T R; Sikes, R W; Melloni, R H

    2016-02-19

    Syrian hamsters exposed to anabolic/androgenic steroids (AAS) during adolescence consistently show increased aggressive behavior across studies. Although the behavioral and anatomical profiles of AAS-induced alterations have been well characterized, there is a lack of data describing physiological changes that accompany these alterations. For instance, behavioral pharmacology and neuroanatomical studies show that AAS-induced changes in the vasopressin (AVP) neural system within the latero-anterior hypothalamus (LAH) interact with the serotonin (5HT) and dopamine (DA) systems to modulate aggression. To characterize the electrophysiological profile of the AAS aggression circuit, we recorded LAH neurons in adolescent male hamsters in vivo and microiontophoretically applied agonists and antagonists of aggressive behavior. The interspike interval (ISI) of neurons from AAS-treated animals correlated positively with aggressive behaviors, and adolescent AAS exposure altered parameters of activity in regular firing neurons while also changing the proportion of neuron types (i.e., bursting, regular, irregular). AAS-treated animals had more responsive neurons that were excited by AVP application, while cells from control animals showed the opposite effect and were predominantly inhibited by AVP. Both DA D2 antagonists and 5HT increased the firing frequency of AVP-responsive cells from AAS animals and dual application of AVP and D2 antagonists doubled the excitatory effect of AVP or D2 antagonist administration alone. These data suggest that multiple DA circuits in the LAH modulate AAS-induced aggressive responding. More broadly, these data show that multiple neurochemical interactions at the neurophysiological level are altered by adolescent AAS exposure. Copyright © 2015 IBRO. Published by Elsevier Ltd. All rights reserved.

  11. Radiolytically degraded sodium alginate enhances plant growth, physiological activities and alkaloids production in Catharanthus roseus L.

    Directory of Open Access Journals (Sweden)

    M. Naeem

    2015-10-01

    Full Text Available Catharanthus roseus (L. G. Don (Family Apocynaceae is a medicinal plant that produces indole alkaloids used in cancer chemotherapy. The anticancerous alkaloids, viz. vinblastine and vincristine, are mainly present in the leaves of C. roseus. High demand and low yield of these alkaloids in the plant has led to explore the alternative means for their production. Gamma irradiated sodium alginate (ISA has proved as a plant growth promoting substance for various medicinal and agricultural crops. A pot culture experiment was carried out to explore the effect of ISA on plant growth, physiological activities and production of anticancer alkaloids (vinblastine and vincristine in C. roseus at 120 and 150 days after planting (DAP. Foliar application of ISA (0, 20, 40, 60, 80 and 100 mg L−1 significantly improved the performance of C. roseus. 80 mg L−1 of ISA enhanced the leaf-yield by 25.3 and 30.2% and the herbage-yield by 29.4 and 34.4% at 120 and 150 DAP, respectively, as compared to the control. The spray treatment of ISA at 80 mg L−1 improved the yield of vinblastine by 66.7 and 71.4% and of vincristine by 67.6 and 75.6% at 120 and 150 DAP, respectively, in comparison to the control. As compared to control, the application of ISA at 80 mg L−1 resulted in the maximum swell in the content and yield of vindoline, increasing them by 18.9 and 20.8% and by 81.8 and 87.2% at 120 and 150 DAP, respectively.

  12. Structure, stereochemistry and synthesis of a variety of physiologically active plant phenols

    Energy Technology Data Exchange (ETDEWEB)

    Van Heerden, F R

    1980-01-01

    The medicinal use of various Leguminosae species by the local population led to a phytochemical study of the bark of Dalbergia nitidula, Dalbergia melanoxylon and wood of Acacia fasciculifera. Rotenoid glycoside and three new carbon bonded isoflavone glycosides were isolated from the bark of D. nitidula. The rotenoid glycoside was characterized by means of acid and enzymatic hydrolysis and its absolute configuration was determined with reference to CD comparisons. A kinetic study was done to determine the relative toxidities of the rotenoid glycoside and its aglicone. The identity and the coupling positions of the sugars was confirmed by a C-NMR investigation of the rotenoid and isoflavane glycosides. The structure of heminitidulan, a complex isoflavane from D. nitidula, was confirmed by complete synthesis. Trans- and cis-clovamide, amides made up of L-DOPA and trans- and cis-caffeic acid respectively, and four new analogous deoxyclovamides are present in the bark of D. melanoxylon. For the first time optically pure trans clovamide was obtained by direct synthesis. C-NMR and CD confirmed differentiation between trans- and cisclovamide. The therapeutic value of L-DOPA for Parkinson's Disease implies possible physiological activity for the clovamide. As well as a number of known flavonoids and peltoginoids, a tetracyclic flavonoid (peltoginoid), fasciculiferin, was found in the wood of A. fasciculifera. Although peltoginoids with a D-ring in a fully reduced or oxidised state are known, this is the first natural peltoginoid with the D-ring in an intermediate oxidation state. Fasciculiferol, till now an unknown metabolyte from A. fasciculifera, is a new member of a rare group of natural products that are generally cytotoxic. The relatively drastic reaction conditions necessary for carbocation formation from peltoginol in comparison to the analogous flavon-3, 4-diols, is attributed to steric factors which arise from the rigid conformation of the B-ring of peltoginol.

  13. The structure, stereochemistry and synthesis of a variety of physiologically active plant phenols

    International Nuclear Information System (INIS)

    Van Heerden, F.R.

    1980-03-01

    The medicinal use of various Leguminosae species by the local population led to a phytochemical study of the bark of Dalbergia nitidula, Dalbergia melanoxylon and wood of Acacia fasciculifera. Rotenoid glycoside and three new carbon bonded isoflavone glycosides were isolated from the bark of D. nitidula. The rotenoid glycoside was characterized by means of acid and enzymatic hydrolysis and its absolute configuration was determined with reference to CD comparisons. A kinetic study was done to determine the relative toxidities of the rotenoid glycoside and its aglicone. The identity and the coupling positions of the sugars was confirmed by a C-NMR investigation of the rotenoid and isoflavane glycosides. The structure of heminitidulan, a complex isoflavane from D. nitidula, was confirmed by complete synthesis. Trans- and cis-clovamide, amides made up of L-DOPA and trans- and cis-caffeic acid respectively, and four new analogous deoxyclovamides are present in the bark of D. melanoxylon. For the first time optically pure trans clovamide was obtained by direct synthesis. C-NMR and CD confirmed differentiation between trans- and cisclovamide. The therapeutic value of L-DOPA for Parkinson's Disease implies possible physiological activity for the clovamide. As well as a number of known flavonoids and peltoginoids, a tetracyclic flavonoid (peltoginoid), fasciculiferin, was found in the wood of A. fasciculifera. Although peltoginoids with a D-ring in a fully reduced or oxidised state are known, this is the first natural peltoginoid with the D-ring in an intermediate oxidation state. Fasciculiferol, till now an unknown metabolyte from A. fasciculifera, is a new member of a rare group of natural products that are generally cytotoxic. The relatively drastic reaction conditions necessary for carbocation formation from peltoginol in comparison to the analogous flavon-3, 4-diols, is attributed to steric factors which arise from the rigid conformation of the B-ring of peltoginol

  14. Bone regeneration with active angiogenesis by basic fibroblast growth factor gene transfected mesenchymal stem cells seeded on porous beta-TCP ceramic scaffolds.

    Science.gov (United States)

    Guo, Xiaodong; Zheng, Qixin; Kulbatski, Iris; Yuan, Quan; Yang, Shuhua; Shao, Zengwu; Wang, Hong; Xiao, Baojun; Pan, Zhengqi; Tang, Shuo

    2006-09-01

    Large segmental bone defect repair remains a clinical and scientific challenge with increasing interest focused on combining gene transfer with tissue engineering techniques. Basic fibroblast growth factor (bFGF) is one of the most prominent osteogenic growth factors that has the potential to accelerate bone healing by promoting the proliferation and differentiation of mesenchymal stem cells (MSCs) and the regeneration of capillary vasculature. However, the short biological half-lives of growth factors may impose severe restraints on their clinical usefulness. Gene-based delivery systems provide a better way of achieving a sustained high concentration of growth factors locally in the defect and delivering a more biologically active product than that achieved by exogenous application of recombinant proteins. The objective of this experimental study was to investigate whether the bFGF gene modified MSCs could enhance the repair of large segmental bone defects. The pcDNA3-bFGF gene transfected MSCs were seeded on biodegradable porous beta tricalcium phosphate (beta-TCP) ceramics and allografted into the 15 mm critical-sized segmental bone defects in the radius of 18 New Zealand White rabbits. The pcDNA3 vector gene transfected MSCs were taken as the control. The follow-up times were 2, 4, 6, 8, 10 and 12 weeks. Scanning electron microscopic, roentgenographic, histologic and immunohistological studies were used to assess angiogenesis and bone regeneration. In vitro, the proliferation and differentiation of bFGF gene transfected MSCs were more active than that of the control groups. In vivo, significantly more new bone formation accompanied by abundant active capillary regeneration was observed in pores of the ceramics loaded with bFGF gene transfected MSCs, compared with control groups. Transfer of gene encoding bFGF to MSCs increases their osteogenic properties by enhancing capillary regeneration, thus providing a rich blood supply for new bone formation. This new b

  15. Bone regeneration with active angiogenesis by basic fibroblast growth factor gene transfected mesenchymal stem cells seeded on porous {beta}-TCP ceramic scaffolds

    Energy Technology Data Exchange (ETDEWEB)

    Guo Xiaodong [Department of Orthopaedics, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, 1277 Jiefang Avenue, Wuhan 430022 (China); Zheng Qixin [Department of Orthopaedics, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, 1277 Jiefang Avenue, Wuhan 430022 (China); Kulbatski, Iris [Division of Cellular and Molecular Biology, Toronto Western Research Institute, University of Toronto, Toronto, Ontario M5T 2S8 (Canada); Yuan Quan [Department of Orthopaedics, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, 1277 Jiefang Avenue, Wuhan 430022 (China); Yang Shuhua [Department of Orthopaedics, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, 1277 Jiefang Avenue, Wuhan 430022 (China); Shao Zengwu [Department of Orthopaedics, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, 1277 Jiefang Avenue, Wuhan 430022 (China); Wang Hong [Department of Orthopaedics, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, 1277 Jiefang Avenue, Wuhan 430022 (China); Xiao Baojun [Department of Orthopaedics, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, 1277 Jiefang Avenue, Wuhan 430022 (China); Pan Zhengqi [Department of Orthopaedics, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, 1277 Jiefang Avenue, Wuhan 430022 (China); Tang Shuo [Department of Orthopaedics, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, 1277 Jiefang Avenue, Wuhan 430022 (China)

    2006-09-15

    Large segmental bone defect repair remains a clinical and scientific challenge with increasing interest focused on combining gene transfer with tissue engineering techniques. Basic fibroblast growth factor (bFGF) is one of the most prominent osteogenic growth factors that has the potential to accelerate bone healing by promoting the proliferation and differentiation of mesenchymal stem cells (MSCs) and the regeneration of capillary vasculature. However, the short biological half-lives of growth factors may impose severe restraints on their clinical usefulness. Gene-based delivery systems provide a better way of achieving a sustained high concentration of growth factors locally in the defect and delivering a more biologically active product than that achieved by exogenous application of recombinant proteins. The objective of this experimental study was to investigate whether the bFGF gene modified MSCs could enhance the repair of large segmental bone defects. The pcDNA3-bFGF gene transfected MSCs were seeded on biodegradable porous {beta} tricalcium phosphate ({beta}-TCP) ceramics and allografted into the 15 mm critical-sized segmental bone defects in the radius of 18 New Zealand White rabbits. The pcDNA3 vector gene transfected MSCs were taken as the control. The follow-up times were 2, 4, 6, 8, 10 and 12 weeks. Scanning electron microscopic, roentgenographic, histologic and immunohistological studies were used to assess angiogenesis and bone regeneration. In vitro, the proliferation and differentiation of bFGF gene transfected MSCs were more active than that of the control groups. In vivo, significantly more new bone formation accompanied by abundant active capillary regeneration was observed in pores of the ceramics loaded with bFGF gene transfected MSCs, compared with control groups. Transfer of gene encoding bFGF to MSCs increases their osteogenic properties by enhancing capillary regeneration, thus providing a rich blood supply for new bone formation. This new

  16. Bone regeneration with active angiogenesis by basic fibroblast growth factor gene transfected mesenchymal stem cells seeded on porous β-TCP ceramic scaffolds

    International Nuclear Information System (INIS)

    Guo Xiaodong; Zheng Qixin; Kulbatski, Iris; Yuan Quan; Yang Shuhua; Shao Zengwu; Wang Hong; Xiao Baojun; Pan Zhengqi; Tang Shuo

    2006-01-01

    Large segmental bone defect repair remains a clinical and scientific challenge with increasing interest focused on combining gene transfer with tissue engineering techniques. Basic fibroblast growth factor (bFGF) is one of the most prominent osteogenic growth factors that has the potential to accelerate bone healing by promoting the proliferation and differentiation of mesenchymal stem cells (MSCs) and the regeneration of capillary vasculature. However, the short biological half-lives of growth factors may impose severe restraints on their clinical usefulness. Gene-based delivery systems provide a better way of achieving a sustained high concentration of growth factors locally in the defect and delivering a more biologically active product than that achieved by exogenous application of recombinant proteins. The objective of this experimental study was to investigate whether the bFGF gene modified MSCs could enhance the repair of large segmental bone defects. The pcDNA3-bFGF gene transfected MSCs were seeded on biodegradable porous β tricalcium phosphate (β-TCP) ceramics and allografted into the 15 mm critical-sized segmental bone defects in the radius of 18 New Zealand White rabbits. The pcDNA3 vector gene transfected MSCs were taken as the control. The follow-up times were 2, 4, 6, 8, 10 and 12 weeks. Scanning electron microscopic, roentgenographic, histologic and immunohistological studies were used to assess angiogenesis and bone regeneration. In vitro, the proliferation and differentiation of bFGF gene transfected MSCs were more active than that of the control groups. In vivo, significantly more new bone formation accompanied by abundant active capillary regeneration was observed in pores of the ceramics loaded with bFGF gene transfected MSCs, compared with control groups. Transfer of gene encoding bFGF to MSCs increases their osteogenic properties by enhancing capillary regeneration, thus providing a rich blood supply for new bone formation. This new b

  17. Effects of activity-rest schedules on physiological strain and spinal load in hospital-based porters.

    Science.gov (United States)

    Beynon, C; Burke, J; Doran, D; Nevill, A

    2000-10-01

    Workers in physically demanding occupations require rest breaks to recover from physiological stress and biomechanical loading. Physiological stress can increase the risk of developing musculoskeletal disorders and repeated loading of the spine may increase the potential for incurring back pain. The aim of the study was to assess the impact of an altered activity-rest schedule on physiological and spinal loading in hospital-based porters. An existing 4-h activity-rest schedule was obtained from observations on eight male porters. This schedule formed the normal trial, which included two 5- and one 15-min breaks. An alternative 4-h schedule was proposed (experimental condition) that had two breaks each of 12.5 min. It was hypothesized that the experimental trial is more effective in promoting recovery from physiological strain and spinal shrinkage than the normal trial, due to the 5-min breaks being insufficient to allow physiological variables to return to resting levels or the intervertebral discs to reabsorb fluid. Ten males performed both test conditions and oxygen uptake VO2, heart rate, minute ventilation VE, perceived exertion and spinal shrinkage were recorded. There were no significant differences in any of the measured variables between the two trials (p > 0.05). Median heart rates were 78 (range 71-93) and 82 (71-90) beats.min(-1) for the normal trial and the experimental trial respectively, indicating that the activity was of low intensity. The light intensity was corroborated by the oxygen uptakes (0.75, range 0.65-0.94 1.min(-1)). Spinal shrinkage occurred to the same extent in the two trials (2.12 +/- 3.16 mm and 2.88 +/- 2.92 mm in the normal trial and the experimental trial respectively). Varying the length and positioning of the rest breaks did not significantly affect the physiological responses or magnitude of spinal shrinkage between the two trials. More physically demanding work than the porters' schedule should induce greater physiological

  18. Keratinocyte growth factor mRNA expression in periodontal ligament fibroblasts

    DEFF Research Database (Denmark)

    Dabelsteen, S; Wandall, H H; Grøn, B

    1997-01-01

    Keratinocyte growth factor (KGF) is a fibroblast growth factor which mediates epithelial growth and differentiation. KGF is expressed in subepithelial fibroblasts, but generally not in fibroblasts of deep connective tissue, such as fascia and ligaments. Here we demonstrate that KGF mRNA is expres......Keratinocyte growth factor (KGF) is a fibroblast growth factor which mediates epithelial growth and differentiation. KGF is expressed in subepithelial fibroblasts, but generally not in fibroblasts of deep connective tissue, such as fascia and ligaments. Here we demonstrate that KGF m......RNA is expressed in periodontal ligament fibroblasts, and that the expression is increased upon serum stimulation. Fibroblasts from human periodontal ligament, from buccal mucosa, from gingiva, and from skin were established from explants. Alkaline phosphatase activity was used as an indicator of the periodontal...

  19. Novel therapeutic strategies targeting fibroblasts and fibrosis in heart disease

    Science.gov (United States)

    Gourdie, Robert G.; Dimmeler, Stefanie; Kohl, Peter

    2016-01-01

    Our understanding of cardiac fibroblast functions has moved beyond their roles in heart structure and extracellular matrix generation, and now includes contributions to paracrine, mechanical and electrical signalling during ontogenesis and normal cardiac activity. Fibroblasts have central roles in pathogenic remodelling during myocardial ischaemia, hypertension and heart failure. As key contributors to scar formation, they are crucial for tissue repair after interventions including surgery and ablation. Novel experimental approaches targeting cardiac fibroblasts are promising potential therapies for heart disease. Indeed, several existing drugs act, at least partially, through effects on cardiac connective tissue. This Review outlines the origins and roles of fibroblasts in cardiac development, homeostasis and disease; illustrates the involvement of fibroblasts in current and emerging clinical interventions; and identifies future targets for research and development. PMID:27339799

  20. Influences of sex and activity level on physiological changes in individual adult sockeye salmon during rapid senescence.

    Science.gov (United States)

    Hruska, Kimberly A; Hinch, Scott G; Healey, Michael C; Patterson, David A; Larsson, Stefan; Farrell, Anthony P

    2010-01-01

    A noninvasive biopsy protocol was used to sample plasma and gill tissue in individual sockeye salmon (Oncorhynchus nerka) during the critical life stage associated with spawning-arrival at a spawning channel through senescence to death several days later. Our main objective was to characterize the physiological changes associated with rapid senescence in terms of the physiological stress/cortisol hypersecretion model and the energy exhaustion model. Salmon lived an average of 5 d in the spawning channel, during which time there were three major physiological trends that were independent of sexual status: a large increase in plasma indicators of stress and exercise (i.e., lactate and cortisol), a decrease in the major plasma ions (i.e., Cl(-) and Na(+)) and osmolality, and a decrease in gross somatic energy reserves. Contrary to a generalized stress response, plasma glucose decreased in approximately 2/3 of the fish after arrival, as opposed to increasing. Furthermore, plasma cortisol levels at spawning-ground arrival were not correlated with the degree of ionoregulatory changes during rapid senescence. One mechanism of mortality in some fish may involve the exhaustion of energy reserves, resulting in the inability to mobilize plasma glucose. Sex had a significant modulating effect on the degree of physiological change. Females exhibited a greater magnitude of change for gross somatic energy, osmolality, and plasma concentrations of Cl(-), Na(+), cortisol, testosterone, 11-ketotestosterone, 17,20beta-progesterone, and estradiol. The activity level of an individual on the spawning grounds appeared to influence the degree of some physiological changes during senescence. For example, males that received a greater frequency of attacks exhibited larger net decreases in plasma 11-ketotestosterone while on the spawning grounds. These results suggest that rapid senescence on spawning grounds is influenced by multiple physiological processes and perhaps behavior. This study

  1. Nuclear targeting of IGF-1 receptor in orbital fibroblasts from Graves' disease: apparent role of ADAM17.

    Directory of Open Access Journals (Sweden)

    Neil Hoa

    Full Text Available Insulin-like growth factor-1 receptor (IGF-1R comprises two subunits, including a ligand binding domain on extra- cellular IGF-1Rα and a tyrosine phosphorylation site located on IGF-1Rβ. IGF-1R is over-expressed by orbital fibroblasts in the autoimmune syndrome, Graves' disease (GD. When activated by IGF-1 or GD-derived IgG (GD-IgG, these fibroblasts produce RANTES and IL-16, while those from healthy donors do not. We now report that IGF-1 and GD-IgG provoke IGF-1R accumulation in the cell nucleus of GD fibroblasts where it co-localizes with chromatin. Nuclear IGF-1R is detected with anti-IGF-1Rα-specific mAb and migrates to approximately 110 kDa, consistent with its identity as an IGF-1R fragment. Nuclear IGF-1R migrating as a 200 kDa protein and consistent with an intact receptor was undetectable when probed with either anti-IGF-1Rα or anti-IGF-1Rβ mAbs. Nuclear redistribution of IGF-1R is absent in control orbital fibroblasts. In GD fibroblasts, it can be abolished by an IGF-1R-blocking mAb, 1H7 and by physiological concentrations of glucocorticoids. When cell-surface IGF-1R is cross-linked with (125I IGF-1, (125I-IGF-1/IGF-1R complexes accumulate in the nuclei of GD fibroblasts. This requires active ADAM17, a membrane associated metalloproteinase, and the phosphorylation of IGF-1R. In contrast, virally encoded IGF-1Rα/GFP fusion protein localizes equivalently in nuclei in both control and GD fibroblasts. This result suggests that generation of IGF-1R fragments may limit the accumulation of nuclear IGF-1R. We thus identify a heretofore-unrecognized behavior of IGF-1R that appears limited to GD-derived fibroblasts. Nuclear IGF-1R may play a role in disease pathogenesis.

  2. Alzheimer skin fibroblasts show increased susceptibility to free radicals.

    Science.gov (United States)

    Tesco, G; Latorraca, S; Piersanti, P; Piacentini, S; Amaducci, L; Sorbi, S

    1992-11-01

    We have studied the response to toxic oxygen metabolites of fibroblasts derived from skin biopsies of 5 patients with familial (FAD) and 4 with sporadic (AD) Alzheimer's disease compared with those derived from 4 normal controls. Fibroblasts were damaged by the generation of oxygen metabolites during the enzymatic oxidation of acetaldehyde by 50 munits of xanthine-oxidase (Xo). To quantify cell damage we measured lactate dehydrogenase (LDH) activity in the culture medium and cell viability in fibroblast cultures. We found a significant increase in LDH activity in the FAD vs. controls and also in the AD vs. controls.

  3. Matrix metalloproteinase inhibition reduces contraction by dupuytren fibroblasts.

    Science.gov (United States)

    Townley, William A; Cambrey, Alison D; Khaw, Peng T; Grobbelaar, Adriaan O

    2008-11-01

    Dupuytren's disease is a common fibroproliferative condition of the hand characterized by fibrotic lesions (nodules and cords), leading to disability through progressive digital contracture. Although the etiology of the disease is poorly understood, recent evidence suggests that abnormal matrix metalloproteinase (MMP) activity may play a role in cell-mediated collagen contraction and tissue scarring. The aim of this study was to investigate the efficacy of ilomastat, a broad-spectrum MMP inhibitor, in an in vitro model of Dupuytren fibroblast-mediated contraction. Nodule-derived and cord-derived fibroblasts were isolated from Dupuytren patients; carpal ligament-derived fibroblasts acted as control. Stress-release fibroblast-populated collagen lattices (FPCLs) were used as a model of contraction. FPCLs were allowed to develop mechanical stress (48 hours) during treatment with ilomastat (0-100 micromol/L), released, and allowed to contract over a 48-hour period. Contraction was estimated by measuring lattice area compared with untreated cells or treatment with a control peptide. MMP-1, MMP-2, and MT1-MMP levels were assessed by zymography, Western blotting, and enzyme-linked immunosorbent assay. Nodule-derived fibroblasts contracted lattices (69% +/- 2) to a greater extent than did cord-derived (55% +/- 3) or carpal ligament-derived (55% +/- 1) fibroblasts. Exposure to ilomastat led to significant inhibition of lattice contraction by all fibroblasts, although a reduction in lattice contraction by nodule-derived fibroblasts was most prominent (84% +/- 8). In addition, treatment with ilomastat led to a concomitant suppression of MMP-1 and MMP-2 activity, whereas MT1-MMP activity was found to be upregulated. Our results demonstrate that inhibition of MMP activity results in a reduction in extracellular matrix contraction by Dupuytren fibroblasts and suggest that MMP activity may be a critical target in preventing recurrent contracture caused by this disease.

  4. Comprehensive physiology and toxicology of ecdysogens – The metabolically activated porphyrin-ecdysteroid complexes in insects

    Czech Academy of Sciences Publication Activity Database

    Sláma, Karel; Zhylitskaya, H.

    181-182, March 31 (2016), s. 55-67 ISSN 1532-0456 Institutional support: RVO:60077344 Keywords : ecdysone * 20-hydroxyecdysone (E20) * ecdysteroids (Ecds) Subject RIV: ED - Physiology Impact factor: 2.416, year: 2016 http://www.sciencedirect.com/science/article/pii/S1532045616300011

  5. LXA4 actions direct fibroblast function and wound closure

    International Nuclear Information System (INIS)

    Herrera, Bruno S.; Kantarci, Alpdogan; Zarrough, Ahmed; Hasturk, Hatice; Leung, Kai P.; Van Dyke, Thomas E.

    2015-01-01

    Timely resolution of inflammation is crucial for normal wound healing. Resolution of inflammation is an active biological process regulated by specialized lipid mediators including the lipoxins and resolvins. Failure of resolution activity has a major negative impact on wound healing in chronic inflammatory diseases that is manifest as excess fibrosis and scarring. Lipoxins, including Lipoxin A 4 (LXA 4 ), have known anti-fibrotic and anti-scarring properties. The goal of this study was to elucidate the impact of LXA 4 on fibroblast function. Mouse fibroblasts (3T3 Mus musculus Swiss) were cultured for 72 h in the presence of TGF-β1, to induce fibroblast activation. The impact of exogenous TGF-β1 (1 ng/mL) on LXA 4 receptor expression (ALX/FPR2) was determined by flow cytometry. Fibroblast proliferation was measured by bromodeoxyuridine (BrdU) labeling and migration in a “scratch” assay wound model. Expression of α-smooth muscle actin (α-SMA), and collagen types I and III were measured by Western blot. We observed that TGF-β1 up-regulates LXA 4 receptor expression, enhances fibroblast proliferation, migration and scratch wound closure. α-SMA levels and Collagen type I and III deposition were also enhanced. LXA 4 slowed fibroblast migration and scratch wound closure at early time points (24 h), but wound closure was equal to TGF-β1 alone at 48 and 72 h. LXA 4 tended to slow fibroblast proliferation at both concentrations, but had no impact on α-SMA or collagen production by TGF-β1 stimulated fibroblasts. The generalizability of the actions of resolution molecules was examined in experiments repeated with resolvin D2 (RvD2) as the agonist. The activity of RvD2 mimicked the actions of LXA 4 in all assays, through an as yet unidentified receptor. The results suggest that mediators of resolution of inflammation enhance wound healing and limit fibrosis in part by modulating fibroblast function. - Highlights: • TGF-β1 up-regulates LXA 4 receptor (ALX

  6. Extracellular acidification synergizes with PDGF to stimulate migration of mouse embryo fibroblasts through activation of p38MAPK with a PTX-sensitive manner

    International Nuclear Information System (INIS)

    An, Caiyan; Sato, Koichi; Wu, Taoya; Bao, Muqiri; Bao, Liang; Tobo, Masayuki; Damirin, Alatangaole

    2015-01-01

    The elucidation of the functional mechanisms of extracellular acidification stimulating intracellular signaling pathway is of great importance for developing new targets of treatment for solid tumors, and inflammatory disorders characterized by extracellular acidification. In the present study, we focus on the regulation of extracellular acidification on intracellular signaling pathways in mouse embryo fibroblasts (MEFs). We found extracellular acidification was at least partly involved in stimulating p38MAPK pathway through PTX-sensitive behavior to enhance cell migration in the presence or absence of platelet-derived growth factor (PDGF). Statistical analysis showed that the actions of extracellular acidic pH and PDGF on inducing enhancement of cell migration were not an additive effect. However, we also found extracellular acidic pH did inhibit the viability and proliferation of MEFs, suggesting that extracellular acidification stimulates cell migration probably through proton-sensing mechanisms within MEFs. Using OGR1-, GPR4-, and TDAG8-gene knock out technology, and real-time qPCR, we found known proton-sensing G protein-coupled receptors (GPCRs), transient receptor potential vanilloid subtype 1 (TRPV1), and acid-sensing ion channels (ASICs) were unlikely to be involved in the regulation of acidification on cell migration. In conclusion, our present study validates that extracellular acidification stimulates chemotactic migration of MEFs through activation of p38MAPK with a PTX-sensitive mechanism either by itself, or synergistically with PDGF, which was not regulated by the known proton-sensing GPCRs, TRPV1, or ASICs. Our results suggested that others proton-sensing GPCRs or ion channels might exist in MEFs, which mediates cell migration induced by extracellular acidification in the presence or absence of PDGF. - Highlights: • Acidic pH and PDGF synergize to stimulate MEFs migration via Gi/p38MAPK pathway. • Extracellular acidification inhibits the

  7. Extracellular acidification synergizes with PDGF to stimulate migration of mouse embryo fibroblasts through activation of p38MAPK with a PTX-sensitive manner

    Energy Technology Data Exchange (ETDEWEB)

    An, Caiyan [Department of Biochemistry and Molecular Biology, College of Life Sciences, Inner Mongolia University, Hohhot, Inner Mongolia (China); Laboratory of Signal Transduction, Institute for Molecular and Cellular Regulation, Gunma University, Maebashi (Japan); Clinical Medicine Research Center of the Affiliated Hospital, Inner Mongolia Medical University, Hohhot, Inner Mongolia (China); Sato, Koichi [Laboratory of Signal Transduction, Institute for Molecular and Cellular Regulation, Gunma University, Maebashi (Japan); Wu, Taoya; Bao, Muqiri; Bao, Liang [Department of Biochemistry and Molecular Biology, College of Life Sciences, Inner Mongolia University, Hohhot, Inner Mongolia (China); Tobo, Masayuki [Laboratory of Signal Transduction, Institute for Molecular and Cellular Regulation, Gunma University, Maebashi (Japan); Damirin, Alatangaole, E-mail: bigaole@imu.edu.cn [Department of Biochemistry and Molecular Biology, College of Life Sciences, Inner Mongolia University, Hohhot, Inner Mongolia (China)

    2015-05-01

    The elucidation of the functional mechanisms of extracellular acidification stimulating intracellular signaling pathway is of great importance for developing new targets of treatment for solid tumors, and inflammatory disorders characterized by extracellular acidification. In the present study, we focus on the regulation of extracellular acidification on intracellular signaling pathways in mouse embryo fibroblasts (MEFs). We found extracellular acidification was at least partly involved in stimulating p38MAPK pathway through PTX-sensitive behavior to enhance cell migration in the presence or absence of platelet-derived growth factor (PDGF). Statistical analysis showed that the actions of extracellular acidic pH and PDGF on inducing enhancement of cell migration were not an additive effect. However, we also found extracellular acidic pH did inhibit the viability and proliferation of MEFs, suggesting that extracellular acidification stimulates cell migration probably through proton-sensing mechanisms within MEFs. Using OGR1-, GPR4-, and TDAG8-gene knock out technology, and real-time qPCR, we found known proton-sensing G protein-coupled receptors (GPCRs), transient receptor potential vanilloid subtype 1 (TRPV1), and acid-sensing ion channels (ASICs) were unlikely to be involved in the regulation of acidification on cell migration. In conclusion, our present study validates that extracellular acidification stimulates chemotactic migration of MEFs through activation of p38MAPK with a PTX-sensitive mechanism either by itself, or synergistically with PDGF, which was not regulated by the known proton-sensing GPCRs, TRPV1, or ASICs. Our results suggested that others proton-sensing GPCRs or ion channels might exist in MEFs, which mediates cell migration induced by extracellular acidification in the presence or absence of PDGF. - Highlights: • Acidic pH and PDGF synergize to stimulate MEFs migration via Gi/p38MAPK pathway. • Extracellular acidification inhibits the

  8. Regulation of physicochemical properties, osteogenesis activity, and fibroblast growth factor-2 release ability of β-tricalcium phosphate for bone cement by calcium silicate

    International Nuclear Information System (INIS)

    Su, Ching-Chuan; Kao, Chia-Tze; Hung, Chi-Jr; Chen, Yi-Jyun; Huang, Tsui-Hsien; Shie, Ming-You

    2014-01-01

    β-Tricalcium phosphate (β-TCP) is an osteoconductive material. For this research we have combined it with a low degradation calcium silicate (CS) to enhance its bioactive and osteostimulative properties. To check its effectiveness, a series of β-TCP/CS composites with different ratios were prepared to make new bioactive and biodegradable biocomposites for bone repair. Formation of bone-like apatite, the diametral tensile strength, and weight loss of composites were considered before and after immersion in simulated body fluid (SBF). In addition, we also examined the effects of fibroblast growth factor-2 (FGF-2) released from β-TCP/CS composites and in vitro human dental pulp cell (hDPC) and studied its behavior. The results showed that the apatite deposition ability of the β-TCP/CS composites was enhanced as the CS content was increased. For composites with more than 50% CS contents, the samples were completely covered by a dense bone-like apatite layer. At the end of the immersion point, weight losses of 19%, 24%, 33%, 42%, and 51% were observed for the composites containing 0%, 30%, 50%, 70% and 100% β-TCP cements, respectively. In vitro cell experiments show that the CS-rich composites promote human dental pulp cell (hDPC) proliferation and differentiation. However, when the CS quantity in the composite is less than 70%, the amount of cells and osteogenesis protein of hDPCs was stimulated by FGF-2 released from β-TCP/CS composites. The combination of FGF-2 in degradation of β-TCP and osteogenesis of CS gives a strong reason to believe that these calcium-based composite cements may prove to be promising bone repair materials. - Highlights: • CS improved physicochemical properties and osteogenic activity of β-TCP. • The higher the CS in the cement, the shorter the setting time and the higher the DTS. • The cell behavior was stimulated by FGF-2 released from composite containing 50% CS. • β-TCP/CS composite with FGF-2 has optimal properties for

  9. Influence of physiologically active complex isolated from human amnion on lipid peroxide oxidation state and antioxidant activity of blood in rats after irradiation in different doses

    International Nuclear Information System (INIS)

    Borshchevs'ka, M.Yi.; Popov, V.V.; Abramova, L.P.; Kuz'myinova, Yi.A.

    1995-01-01

    The authors have studied the influence of physiologically active complex isolated from human amnion on the state of lipid peroxide oxidation according to diene conjugate and malonic dialdehyde amount and antioxidant enzyme activity (catalase and glutationperoxidase) in the blood of the rats exposed to single total irradiation in different doses (4 and 6 Gy) was studied. Definite changes of peroxide process intensity and reduction of the enzymes activity were shown to be observed in the blood of experimental animals even at long terms after the radiation exposure. Under the background of radiation exposure, administration of physiologically active complex isolated from human amnion produced protective effect on antioxidant enzyme activity which promoted normalization of peroxidation processes within the post-radiation period

  10. Aberrant Receptor Internalization and Enhanced FRS2-dependent Signaling Contribute to the Transforming Activity of the Fibroblast Growth Factor Receptor 2 IIIb C3 Isoform*

    OpenAIRE

    Cha, Jiyoung Y.; Maddileti, Savitri; Mitin, Natalia; Harden, T. Kendall; Der, Channing J.

    2009-01-01

    Alternative splice variants of fibroblast growth factor receptor 2 (FGFR2) IIIb, designated C1, C2, and C3, possess progressive reduction in their cytoplasmic carboxyl termini (822, 788, and 769 residues, respectively), with preferential expression of the C2 and C3 isoforms in human cancers. We determined that the progressive deletion of carboxyl-terminal sequences correlated with increasing transforming potency. The highly transforming C3 variant lacks five tyrosine r...

  11. Application of the Copenhagen Soccer Test in high-level women players - locomotor activities, physiological response and sprint performance.

    Science.gov (United States)

    Bendiksen, Mads; Pettersen, Svein Arne; Ingebrigtsen, Jørgen; Randers, Morten B; Brito, João; Mohr, Magni; Bangsbo, Jens; Krustrup, Peter

    2013-12-01

    We evaluated the physiological response, sprint performance and technical ability in various phases of the Copenhagen Soccer Test for Women (CSTw) and investigated whether the locomotor activities of the CSTw were comparable to competitive match-play (CM). Physiological measurements and physical/technical assessments were performed during CSTw for eleven Norwegian high-level women soccer players. The activity pattern during CSTw and CM was monitored using the ZXY tracking system. No differences were observed between CSTw and CM with regards to total distance covered (10093±94 and 9674±191m), high intensity running (1278±67 and 1193±115m) or sprinting (422±55 and 372±46m) (p>.05). During CSTw, average HR was 85±2%HRmax with 35±2% playing time >90%HRmax. Blood lactate increased (ptest. Blood glucose was 5.4±0.3mM at rest and remained unaltered during CSTw. Sprint performance (2×20m) decreased (plocomotor activities during CSTw were comparable to that of high-level competitive match-play. The physiological demands of the CSTw were high, with no changes in heart rate, blood lactate or technical performance during the test, but a lowered sprint performance towards the end of the test. Copyright © 2013 Elsevier B.V. All rights reserved.

  12. Brain Activation in Response to Personalized Behavioral and Physiological Feedback From Self-Monitoring Technology: Pilot Study.

    Science.gov (United States)

    Whelan, Maxine E; Morgan, Paul S; Sherar, Lauren B; Kingsnorth, Andrew P; Magistro, Daniele; Esliger, Dale W

    2017-11-08

    The recent surge in commercially available wearable technology has allowed real-time self-monitoring of behavior (eg, physical activity) and physiology (eg, glucose levels). However, there is limited neuroimaging work (ie, functional magnetic resonance imaging [fMRI]) to identify how people's brains respond to receiving this personalized health feedback and how this impacts subsequent behavior. Identify regions of the brain activated and examine associations between activation and behavior. This was a pilot study to assess physical activity, sedentary time, and glucose levels over 14 days in 33 adults (aged 30 to 60 years). Extracted accelerometry, inclinometry, and interstitial glucose data informed the construction of personalized feedback messages (eg, average number of steps per day). These messages were subsequently presented visually to participants during fMRI. Participant physical activity levels and sedentary time were assessed again for 8 days following exposure to this personalized feedback. Independent tests identified significant activations within the prefrontal cortex in response to glucose feedback compared with behavioral feedback (Pbrain activation when compared with behavior. Participants reduced time spent sedentary at follow-up. Research on deploying behavioral and physiological feedback warrants further investigation. ©Maxine E Whelan, Paul S Morgan, Lauren B Sherar, Andrew P Kingsnorth, Daniele Magistro, Dale W Esliger. Originally published in the Journal of Medical Internet Research (http://www.jmir.org), 08.11.2017.

  13. [Can medical students' motivation for a course of basic physiology education integrating into lectures some active learning methods be improved?

    Science.gov (United States)

    Bentata, Yassamine; Delfosse, Catherine

    2017-01-01

    Students' motivation is a critical component of learning and students' perception of activity value is one of the three major components of their motivation. How can we make students perceive the usefulness and the interest of their university courses while increasing their motivation? The aim of our study was to determine students' perception of basic physiology education value and to assess the impact of lecture integration into some active learning methods on the motivation of the students of the first cycle of Medicine in a junior faculty. We conducted a prospective study, involving the students in their second year of medical studies. At first, we assessed students' motivation for university courses through a first questionnaire, after we integrated two educational activities: the case study and the realization of a conceptual map for the lectures of the physiology module and then we evaluated, through a second questionnaire, the impact of these two activities on students' motivation. Out of 249 students in their second year of medical studies 131 and 109 students have completed and returned the 1st and 2nd questionnaire respectively. Overall students' motivation for their university courses was very favorable, even if the motivation for physiology course (70.8%) was slightly lower than for all the courses (80%). Our students enjoyed the two proposed activities and only 13% (for the case study) and 16.8% (for the map) were not satisfied. 40.9% of students completed a conceptual map whose quality judged on the identification of concepts and of the links between concepts was globally satisfactory for a first experience. Students' motivation is influenced by multiple internal and external factors and is a big problem in the university environment. In this context, a rigorous planning of diversified and active educational activities is one of the main gateways for teacher to encourage motivation.

  14. EMMPRIN is secreted by human uterine epithelial cells in microvesicles and stimulates metalloproteinase production by human uterine fibroblast cells.

    Science.gov (United States)

    Braundmeier, A G; Dayger, C A; Mehrotra, P; Belton, R J; Nowak, R A

    2012-12-01

    Endometrial remodeling is a physiological process involved in the gynecological disease, endometriosis. Tissue remodeling is directed by uterine fibroblast production of matrix metalloproteinases (MMPs). Several MMPs are regulated directly by the protein extracellular matrix metalloproteinase inducer (EMMPRIN) and also by proinflammatory cytokines such as interleukin (IL)1-α/β. We hypothesized that human uterine epithelial cells (HESs) secrete intact EMMPRIN to stimulate MMPs. Microvesicles from HES cell-conditioned medium (CM) expressed intact EMMPRIN protein. Treatment of HES cells with estradiol or phorbyl 12-myristate-13-acetate increased the release of EMMPRIN-containing microvesicles. The HES CM stimulated MMP-1, -2, and -3 messenger RNA levels in human uterine fibroblasts (HUFs) and EMMPRIN immunodepletion from HES-cell concentrated CM reduced MMP stimulation (P EMMPRIN, in response to ovarian hormones, proinflammatory cytokines as well as activation of protein kinase C.

  15. Doubling potential of fibroblasts from different species after ionising radiation

    International Nuclear Information System (INIS)

    Macieira-Coelho, A.; Diatloff, C.; Malaise, E.

    1976-01-01

    It is stated that whereas chicken fibroblasts invariably die after a certain number of doublings in vitro, and this fact is never altered by chemical or physical agents, mouse fibroblasts invariably acquire spontaneously an infinite growth potential. In the human species fibroblasts never acquire spontaneously the capacity to divide for ever, although they can become permanent cell lines after treatment with certain viruses. This behaviour of fibroblasts in vitro has been attributed to different nutritional requirements. Experiments are described with human and mouse fibroblasts in which it was found that the response to ionising radiation matches the relative tendencies of the fibroblasts to yield permanent cell lines. Irradiation was commenced during the phase of active proliferation. Human fibroblast cultures irradiated with 100 R stopped dividing earlier than the controls, whereas cultures irradiated with 200, 300 and 500 R had the same lifespan as the control cultures. Cultures irradiated with 400 R showed the longest survival. With mouse fibroblasts the growth curves of the irradiated cells were of the same type as in the controls, but recovery occurred earlier. The results indicated that ionising radiation accelerates a natural phenomenon; in cells with a limited growth potential (chicken) it shortens the lifespan, whereas in cells that can acquire an unlimited growth potential (mouse) it accelerates acquisition of this potential; human fibroblasts showed an intermediate response, since ionising radiation neither established the cultures as with mouse cells nor reduced the number of cells produced as with chicken fibroblasts. Possible explanations for the different behaviour of the species are offered. (U.K.)

  16. Effects of euthanasia on brain physiological activities monitored in real-time.

    Science.gov (United States)

    Mayevsky, Avraham; Barbiro-Michaely, Efrat; Ligeti, Laszlo; MacLaughlin, Alan C

    2002-10-01

    Animal experimentation is terminated by the euthanasia procedure in order to avoid pain and minimize suffering. Very little is known about the real time physiological changes taking place in the brain of animals during the euthanasia. Since there is no way to evaluate the suffering of animals under euthanasia, it is assumed that objective physiological changes taking place could serve as a good way to compare various types of euthanasia procedures. In the present study we compared the effect of euthanasia induced by i. v. injection of concentrated KCL to that of Taxan T-61 (a standard mixture used by veterinarians). The responses of the cat brain were evaluated by monitoring the hemodynamic (CBF), metabolic (NADH redox state), electrical (EcoG) and extracellular ion levels, as an indicator to the ionic homeostasis.

  17. Complement-coagulation cross-talk: a potential mediator of the physiological activation of complement by low pH

    Directory of Open Access Journals (Sweden)

    Hany Ibrahim Kenawy

    2015-05-01

    Full Text Available The complement system is a major constituent of the innate immune system. It not only bridges innate and adaptive arms of the immune system but also links the immune system with the coagulation system. Current understanding of the role of complement has extended far beyond fighting of infections, and now encompasses maintenance of homeostasis, tissue regeneration and pathophysiology of multiple diseases. It has been known for many years that complement activation is strongly pH sensitive, but only relatively recently has the physiological significance of this been appreciated. Most complement assays are carried out at the physiological pH 7.4. However, pH in some extracellular compartments, for example renal tubular fluid in parts of the tubule, and extracellular fluid at inflammation loci, is sufficiently acidic to activate complement. The exact molecular mechanism of this activation is still unclear, but possible cross talk between the contact system and complement may exist at low pH with subsequent complement activation. The current article reviews the published data on the effect of pH on the contact system and complement activity, the nature of the pH sensor molecules, and the clinical implications of these effects. Of particular interest is chronic kidney disease (CKD accompanied by metabolic acidosis, in which therapeutic alkalinisation of urine has been shown significantly to reduce tubular complement activation products, an effect which may have important implications for slowing progression of CKD.

  18. Silicon Mitigates Salinity Stress by Regulating the Physiology, Antioxidant Enzyme Activities, and Protein Expression in Capsicum annuum 'Bugwang'.

    Science.gov (United States)

    Manivannan, Abinaya; Soundararajan, Prabhakaran; Muneer, Sowbiya; Ko, Chung Ho; Jeong, Byoung Ryong

    2016-01-01

    Silicon- (Si-) induced salinity stress resistance was demonstrated at physiological and proteomic levels in Capsicum annuum for the first time. Seedlings of C. annuum were hydroponically treated with NaCl (50 mM) with or without Si (1.8 mM) for 15 days. The results illustrated that saline conditions significantly reduced plant growth and biomass and photosynthetic parameters and increased the electrolyte leakage potential, lipid peroxidation, and hydrogen peroxide level. However, supplementation of Si allowed the plants to recover from salinity stress by improving their physiology and photosynthesis. During salinity stress, Si prevented oxidative damage by increasing the activities of antioxidant enzymes. Furthermore, Si supplementation recovered the nutrient imbalance that had occurred during salinity stress. Additionally, proteomic analysis by two-dimensional gel electrophoresis (2DE) followed by matrix-assisted laser desorption/ionization time-of-flight mass spectrometry (MALDI-TOF-MS) revealed that Si treatment upregulated the accumulation of proteins involved in several metabolic processes, particularly those associated with nucleotide binding and transferase activity. Moreover, Si modulated the expression of vital proteins involved in ubiquitin-mediated nucleosome pathway and carbohydrate metabolism. Overall, the results illustrate that Si application induced resistance against salinity stress in C. annuum by regulating the physiology, antioxidant metabolism, and protein expression.

  19. Silicon Mitigates Salinity Stress by Regulating the Physiology, Antioxidant Enzyme Activities, and Protein Expression in Capsicum annuum ‘Bugwang'

    Science.gov (United States)

    Manivannan, Abinaya; Soundararajan, Prabhakaran; Muneer, Sowbiya; Ko, Chung Ho

    2016-01-01

    Silicon- (Si-) induced salinity stress resistance was demonstrated at physiological and proteomic levels in Capsicum annuum for the first time. Seedlings of C. annuum were hydroponically treated with NaCl (50 mM) with or without Si (1.8 mM) for 15 days. The results illustrated that saline conditions significantly reduced plant growth and biomass and photosynthetic parameters and increased the electrolyte leakage potential, lipid peroxidation, and hydrogen peroxide level. However, supplementation of Si allowed the plants to recover from salinity stress by improving their physiology and photosynthesis. During salinity stress, Si prevented oxidative damage by increasing the activities of antioxidant enzymes. Furthermore, Si supplementation recovered the nutrient imbalance that had occurred during salinity stress. Additionally, proteomic analysis by two-dimensional gel electrophoresis (2DE) followed by matrix-assisted laser desorption/ionization time-of-flight mass spectrometry (MALDI-TOF-MS) revealed that Si treatment upregulated the accumulation of proteins involved in several metabolic processes, particularly those associated with nucleotide binding and transferase activity. Moreover, Si modulated the expression of vital proteins involved in ubiquitin-mediated nucleosome pathway and carbohydrate metabolism. Overall, the results illustrate that Si application induced resistance against salinity stress in C. annuum by regulating the physiology, antioxidant metabolism, and protein expression. PMID:27088085

  20. Congestive heart failure effects on atrial fibroblast phenotype: differences between freshly-isolated and cultured cells.

    Directory of Open Access Journals (Sweden)

    Kristin Dawson

    Full Text Available Fibroblasts are important in the atrial fibrillation (AF substrate resulting from congestive heart failure (CHF. We previously noted changes in in vivo indices of fibroblast function in a CHF dog model, but could not detect changes in isolated cells. This study assessed CHF-induced changes in the phenotype of fibroblasts freshly isolated from control versus CHF dogs, and examined effects of cell culture on these differences.Left-atrial fibroblasts were isolated from control and CHF dogs (ventricular tachypacing 240 bpm × 2 weeks. Freshly-isolated fibroblasts were compared to fibroblasts in primary culture. Extracellular-matrix (ECM gene-expression was assessed by qPCR, protein by Western blot, fibroblast morphology with immunocytochemistry, and K(+-current with patch-clamp. Freshly-isolated CHF fibroblasts had increased expression-levels of collagen-1 (10-fold, collagen-3 (5-fold, and fibronectin-1 (3-fold vs. control, along with increased cell diameter (13.4 ± 0.4 µm vs control 8.4 ± 0.3 µm and cell spreading (shape factor 0.81 ± 0.02 vs. control 0.87 ± 0.02, consistent with an activated phenotype. Freshly-isolated control fibroblasts displayed robust tetraethylammonium (TEA-sensitive K(+-currents that were strongly downregulated in CHF. The TEA-sensitive K(+-current differences between control and CHF fibroblasts were attenuated after 2-day culture and eliminated after 7 days. Similarly, cell-culture eliminated the ECM protein-expression and shape differences between control and CHF fibroblasts.Freshly-isolated CHF and control atrial fibroblasts display distinct ECM-gene and morphological differences consistent with in vivo pathology. Culture for as little as 48 hours activates fibroblasts and obscures the effects of CHF. These results demonstrate potentially-important atrial-fibroblast phenotype changes in CHF and emphasize the need for caution in relating properties of cultured fibroblasts to in vivo systems.

  1. Nasal Physiology

    Science.gov (United States)

    ... Caregivers Contact ARS HOME ANATOMY Nasal Anatomy Sinus Anatomy Nasal Physiology Nasal Endoscopy Skull Base Anatomy Virtual Anatomy Disclosure ... Patient Education About this Website Font Size + - Home > ANATOMY > Nasal Physiology Nasal Anatomy Sinus Anatomy Nasal Physiology Nasal Endoscopy ...

  2. The Conservative Physiology of the Immune System. A Non-Metaphoric Approach to Immunological Activity

    Directory of Open Access Journals (Sweden)

    Nelson M. Vaz

    2006-01-01

    Full Text Available Historically, immunology emerged as a biomedical science, concerned with host defense and production of anti-infectious vaccines. In the late 50s, selective theories were proposed and from then on, immunology has been based in a close association with the neo-Darwinian principles, such as random generation of variants (lymphocyte clones, selection by extrinsic factors (antigens—and, more generally, on genetic determinism and functionalism. This association has had major consequences: (1 immunological jargon is full of “cognitive” metaphors, founded in the idea of “foreignness”; (2 the immune system is described with a random clonal origin, coupled to selection by random encounters; and (3 physiological events are virtually absent from immunological descriptions. In the present manuscript, we apply systemic notions to bring forth an explanation including systemic mechanisms able to generate immunological phenomena. We replace “randomness plus selection” and the notion of foreignness by a history of structural changes which are determined by the coherences of the system internal architecture at any given moment. The importance of this systemic way of seeing is that it explicitly attends to the organization that defines the immune system, within which it is possible to describe the conservative physiology of the immune system. Understanding immune physiology in a systemic way of seeing also suggests mechanisms underlying the origin of immunopathogeny and therefore suggests new insights to therapeutic approaches. However, if seriously acknowledged, this systemic/historic approach to immunology goes along with a global conceptual change which modifies virtually everything in the domain of biology, as suggested by Maturana.

  3. Capillary response to skeletal muscle contraction: evidence that redundancy between vasodilators is physiologically relevant during active hyperaemia.

    Science.gov (United States)

    Lamb, Iain R; Novielli, Nicole M; Murrant, Coral L

    2018-04-15

    The current theory behind matching blood flow to metabolic demand of skeletal muscle suggests redundant interactions between metabolic vasodilators. Capillaries play an important role in blood flow control given their ability to respond to muscle contraction by causing conducted vasodilatation in upstream arterioles that control their perfusion. We sought to determine whether redundancies occur between vasodilators at the level of the capillary by stimulating the capillaries with muscle contraction and vasodilators relevant to muscle contraction. We identified redundancies between potassium and both adenosine and nitric oxide, between nitric oxide and potassium, and between adenosine and both potassium and nitric oxide. During muscle contraction, we demonstrate redundancies between potassium and nitric oxide as well as between potassium and adenosine. Our data show that redundancy is physiologically relevant and involved in the coordination of the vasodilator response during muscle contraction at the level of the capillaries. We sought to determine if redundancy between vasodilators is physiologically relevant during active hyperaemia. As inhibitory interactions between vasodilators are indicative of redundancy, we tested whether vasodilators implicated in mediating active hyperaemia (potassium (K + ), adenosine (ADO) and nitric oxide (NO)) inhibit one another's vasodilatory effects through direct application of pharmacological agents and during muscle contraction. Using the hamster cremaster muscle and intravital microscopy, we locally stimulated capillaries with one vasodilator in the absence and the presence of a second vasodilator (10 -7 m S-nitroso-N-acetylpenicillamine (SNAP), 10 -7 m ADO, 10 mm KCl) applied sequentially and simultaneously, and observed the response in the associated upstream 4A arteriole controlling the perfusion of the stimulated capillary. We found that KCl significantly attenuated SNAP- and ADO-induced vasodilatations by ∼49.7% and

  4. Use of Case-Based or Hands-On Laboratory Exercises with Physiology Lectures Improves Knowledge Retention, but Veterinary Medicine Students Prefer Case-Based Activities

    Science.gov (United States)

    McFee, Renee M.; Cupp, Andrea S.; Wood, Jennifer R.

    2018-01-01

    Didactic lectures are prevalent in physiology courses within veterinary medicine programs, but more active learning methods have also been utilized. Our goal was to identify the most appropriate learning method to augment the lecture component of our physiology course. We hypothesized that case-based learning would be well received by students and…

  5. Simple and robust determination of the activity signature of key carbohydrate metabolism enzymes for physiological phenotyping in model and crop plants

    Czech Academy of Sciences Publication Activity Database

    Jammer, A.; Gapserl, A.; Luschin-Ebengreuth, N.; Heyneke, E.; Chu, H.; Cantero-Navarro, E.; Grosskinsky, D. K.; Albacete, A.; Stabentheiner, E.; Franzaring, J.; Fangmeier, A.; van der Graaff, E.; Roitsch, Thomas

    2015-01-01

    Roč. 66, č. 18 (2015), s. 5531-5542 ISSN 0022-0957 Institutional support: RVO:67179843 Keywords : Carbohydrate metabolism * dialysis * enzyme activities * kinetic assay * physiological phenotyping * physiological state * protein extraction * signatures Subject RIV: EH - Ecology, Behaviour Impact factor: 5.677, year: 2015

  6. Managing brain extracellular K+ during neuronal activity: The physiological role of the Na+/K+-ATPase subunit isoforms

    Directory of Open Access Journals (Sweden)

    Brian Roland eLarsen

    2016-04-01

    Full Text Available AbstractDuring neuronal activity in the brain, extracellular K+ rises and is subsequently removed to prevent a widespread depolarization. One of the key players in regulating extracellular K+ is the Na+/K+-ATPase, although the relative involvement and physiological impact of the different subunit isoform compositions of the Na+/K+-ATPase remain unresolved. The various cell types in the brain serve a certain temporal contribution in the face of network activity; astrocytes respond directly to the immediate release of K+ from neurons, whereas the neurons themselves become the primary K+ absorbers as activity ends. The kinetic characteristics of the catalytic α subunit isoforms of the Na+/K+-ATPase are, partly, determined by the accessory β subunit with which they combine. The isoform combinations expressed by astrocytes and neurons, respectively, appear to be in line with the kinetic characteristics required to fulfill their distinct physiological roles in clearance of K+ from the extracellular space in the face of neuronal activity.Understanding the nature, impact and effects of the various Na+/K+-ATPase isoform combinations in K+ management in the central nervous system might reveal insights into pathological conditions such as epilepsy, migraine, and spreading depolarization following cerebral ischemia. In addition, particular neurological diseases occur as a result of mutations in the α2- (familial hemiplegic migraine type 2 and α3 isoforms (rapid-onset dystonia parkinsonism/alternating hemiplegia of childhood. This review addresses aspects of the Na+/K+-ATPase in the regulation of extracellular K+ in the central nervous system as well as the related pathophysiology. Understanding the physiological setting in non-pathological tissue would provide a better understanding of the pathological events occurring during disease.

  7. Physiological and Perceived Effects of Forearm or Head Cooling During Simulated Firefighting Activity and Rehabilitation

    Science.gov (United States)

    Yeargin, Susan; McKenzie, Amy L.; Eberman, Lindsey E.; Kingsley, J. Derek; Dziedzicki, David J.; Yoder, Patrick

    2016-01-01

    Context: Cooling devices aim to protect firefighters by attenuating a rise in body temperature. Devices for head cooling (HC) while firefighting and forearm cooling (FC) during rehabilitation (RHB) intervals are commonly marketed, but research regarding their efficacy is limited. Objective: To investigate the physiological and perceived effects of HC and FC during firefighting drills and RHB. Design: Randomized controlled clinical trial. Setting: Firefighter training center. Patients or Other Participants: Twenty-seven male career firefighters (age = 39 ± 7 years; height = 169 ± 7 cm; weight = 95.4 ± 16.8 kg). Intervention(s): Firefighters were randomly assigned to 1 condition: HC (n = 9), in which participants completed drills wearing a cold gel pack inside their helmet; FC (n = 8), in which participants sat on a collapsible chair with water-immersion arm troughs during RHB; or control (n = 10), in which participants used no cooling devices. Firefighters completed four 15-minute drills (D1−D4) wearing full bunker gear and breathing apparatus. Participants had a 15-min RHB after D2 (RHB1) and D4 (RHB2). Main Outcome Measure(s): Change (Δ) in gastrointestinal temperature (TGI), heart rate (HR), physiological strain index, and perceived thermal sensation. Results: The TGI increased similarly in the HC and control groups, respectively (D1: 0.57°C ± 0.41°C, 0.73°C ± 0.30°C; D2: 0.92°C ± 0.28°C, 0.85°C ± 0.27°C; D3: −0.37°C ± 0.34°C, −0.01°C ± 0.72°C; D4: 0.25°C ± 0.42°C, 0.57°C ± 0.26°C; P > .05). The ΔHR, Δ physiological strain index, and Δ thermal sensation were similar between the HC and control groups during drills (P > .05). The FC group demonstrated a decreased TGI compared with the control group after RHB1 (−1.61°C ± 0.35°C versus −0.23°C ± 0.34°C; P .05). Conclusions: The HC did not attenuate rises in physiological or perceptual variables during firefighting drills. The FC effectively reduced TGI and the

  8. Matrix Stiffness Corresponding to Strictured Bowel Induces a Fibrogenic Response in Human Colonic Fibroblasts

    Science.gov (United States)

    Johnson, Laura A.; Rodansky, Eva S.; Sauder, Kay L.; Horowitz, Jeffrey C.; Mih, Justin D.; Tschumperlin, Daniel J.; Higgins, Peter D.

    2013-01-01

    Background Crohn’s disease is characterized by repeated cycles of inflammation and mucosal healing which ultimately progress to intestinal fibrosis. This inexorable progression towards fibrosis suggests that fibrosis becomes inflammation-independent and auto-propagative. We hypothesized that matrix stiffness regulates this auto-propagation of intestinal fibrosis. Methods The stiffness of fresh ex vivo samples from normal human small intestine, Crohn’s disease strictures, and the unaffected margin were measured with a microelastometer. Normal human colonic fibroblasts were cultured on physiologically normal or pathologically stiff matrices corresponding to the physiological stiffness of normal or fibrotic bowel. Cellular response was assayed for changes in cell morphology, α-smooth muscle actin (αSMA) staining, and gene expression. Results Microelastometer measurements revealed a significant increase in colonic tissue stiffness between normal human colon and Crohn’s strictures as well as between the stricture and adjacent tissue margin. In Ccd-18co cells grown on stiff matrices corresponding to Crohn’s strictures, cellular proliferation increased. Pathologic stiffness induced a marked change in cell morphology and increased αSMA protein expression. Growth on a stiff matrix induced fibrogenic gene expression, decreased matrix metalloproteinase and pro-inflammatory gene expression, and was associated with nuclear localization of the transcriptional cofactor MRTF-A. Conclusions Matrix stiffness, representative of the pathological stiffness of Crohn’s strictures, activates human colonic fibroblasts to a fibrogenic phenotype. Matrix stiffness affects multiple pathways suggesting the mechanical properties of the cellular environment are critical to fibroblast function and may contribute to autopropagation of intestinal fibrosis in the absence of inflammation, thereby contributing to the intractable intestinal fibrosis characteristic of Crohn’s disease. PMID

  9. Cultured human foreskin fibroblasts produce a factor that stimulates their growth with properties similar to basic fibroblast growth factor

    International Nuclear Information System (INIS)

    Story, M.T.

    1989-01-01

    To determine if fibroblasts could be a source of fibroblast growth factor (FGF) in tissue, cells were initiated in culture from newborn human foreskin. Fibroblast cell lysates promoted radiolabeled thymidine uptake by cultured quiescent fibroblasts. Seventy-nine percent of the growth-promoting activity of lysates was recovered from heparin-Sepharose. The heparin-binding growth factor reacted on immunoblots with antiserum to human placenta-derived basic FGF and competed with iodinated basic FGF for binding to antiserum to (1-24)bFGF synthetic peptide. To confirm that fibroblasts were the source of the growth factor, cell lysates were prepared from cells incubated with radiolabeled methionine. Heparin affinity purified material was immunoprecipitated with basic FGF antiserum and electrophoresed. Radiolabeled material was detected on gel autoradiographs in the same molecular weight region as authentic iodinated basic FGF. The findings are consistant with the notion that cultured fibroblasts express basic FGF. As these cells also respond to the mitogen, it is possible that the regulation of their growth is under autocrine control. Fibroblasts may be an important source of the growth factor in tissue

  10. Ets2 in tumor fibroblasts promotes angiogenesis in breast cancer.

    Directory of Open Access Journals (Sweden)

    Julie A Wallace

    Full Text Available Tumor fibroblasts are active partners in tumor progression, but the genes and pathways that mediate this collaboration are ill-defined. Previous work demonstrates that Ets2 function in stromal cells significantly contributes to breast tumor progression. Conditional mouse models were used to study the function of Ets2 in both mammary stromal fibroblasts and epithelial cells. Conditional inactivation of Ets2 in stromal fibroblasts in PyMT and ErbB2 driven tumors significantly reduced tumor growth, however deletion of Ets2 in epithelial cells in the PyMT model had no significant effect. Analysis of gene expression in fibroblasts revealed a tumor- and Ets2-dependent gene signature that was enriched in genes important for ECM remodeling, cell migration, and angiogenesis in both PyMT and ErbB2 driven-tumors. Consistent with these results, PyMT and ErbB2 tumors lacking Ets2 in fibroblasts had fewer functional blood vessels, and Ets2 in fibroblasts elicited changes in gene expression in tumor endothelial cells consistent with this phenotype. An in vivo angiogenesis assay revealed the ability of Ets2 in fibroblasts to promote blood vessel formation in the absence of tumor cells. Importantly, the Ets2-dependent gene expression signatures from both mouse models were able to distinguish human breast tumor stroma from normal stroma, and correlated with patient outcomes in two whole tumor breast cancer data sets. The data reveals a key function for Ets2 in tumor fibroblasts in signaling to endothelial cells to promote tumor angiogenesis. The results highlight the collaborative networks that orchestrate communication between stromal cells and tumor cells, and suggest that targeting tumor fibroblasts may be an effective strategy for developing novel anti-angiogenic therapies.

  11. Physiological Sleep Propensity Might Be Unaffected by Significant Variations in Self-Reported Well-Being, Activity, and Mood

    Directory of Open Access Journals (Sweden)

    Arcady A. Putilov

    2015-01-01

    Full Text Available Background and Objective. Depressive state is often associated with such physical symptoms as general weakness, fatigue, tiredness, slowness, reduced activity, low energy, and sleepiness. The involvement of the sleep-wake regulating mechanisms has been proposed as one of the plausible explanations of this association. Both physical depressive symptoms and increased physiological sleep propensity can result from disordered and insufficient sleep. In order to avoid the influence of disordered and insufficient sleep, daytime and nighttime sleepiness were tested in winter depression characterized by normal night sleep duration and architecture. Materials and Methods. A total sample consisted of 6 healthy controls and 9 patients suffered from depression in the previous winter season. Sleep latency was determined across 5 daytime and 4 nighttime 20-min attempts to nap in summer as well as in winter before and after a week of 2-hour evening treatment with bright light. Results and Conclusions. Patients self-reported abnormally lowered well-being, activity, and mood only in winter before the treatment. Physiological sleep propensity was neither abnormal nor linked to significant changes in well-being, activity, and mood following the treatment and change in season. It seems unlikely that the mechanisms regulating the sleep-wake cycle contributed to the development of the physical depressive symptoms.

  12. Positive impact of bio-stimulators on growth and physiological activity of willow in climate change conditions

    Science.gov (United States)

    Piotrowski, Krzysztof; Romanowska-Duda, Zdzisława

    2018-04-01

    The aim of this research was to evaluate the physiological activity and growth of willow (Salix viminalis L.) plants cultivated under the conditions of adverse temperature and soil moisture content, and to assess the effect of the foliar application of Biojodis (1.0%) and Asahi SL (0.03%) bio-stimulators, or a mixture of Microcistis aeruginosa MKR 0105 and Anabaena PCC 7120 cyanobacteria under such changing growth conditions. The obtained results showed different reactions to the applied constant or periodically changed temperature and soil moisture content. The plants which grew at periodically changed adverse temperature (from -5 to 40oC) or in scantily (20% m.c.) or excessively (60% m.c.) watered soils, grew slowly, in comparison with those growing at 20oC and in optimally moistened soil (30% m.c.). Foliar application of Biojodis and Asahi SL cyanobacteria increased the growth of willow at optimal and adverse temperature or in scantily and excessively moistened soil. The changes in plant growth were associated with the changes in electrolyte leakage, activity of acid or alkaline phosphatases, RNase, index of chlorophyll content in leaves and gas exchange. The above indicates that the foliar application of the studied cyanobacteria and bio-stimulators partly alleviates the harmful impact of adverse temperature and water stress on growth and physiological activity of willow plants

  13. Diacylglycerol kinase theta and zeta isoforms : regulation of activity, protein binding partners and physiological functions

    NARCIS (Netherlands)

    Los, Alrik Pieter

    2007-01-01

    Diacylglycerol kinases (DGKs) phosphorylate the second messenger diacylglycerol (DAG) yielding phosphatidic acid (PA). In this thesis, we investigated which structural domains of DGKtheta are required for DGK activity. Furthermore, we showed that DGKzeta binds to and is activated by the

  14. Age-related disruption of autophagy in dermal fibroblasts modulates extracellular matrix components

    Energy Technology Data Exchange (ETDEWEB)

    Tashiro, Kanae [Skin Research Department, POLA Chemical Industries, Inc., Yokohama (Japan); Division of Pharmaceutical Cell Biology, Graduate School of Pharmaceutical Sciences, Kyushu University, Fukuoka (Japan); Shishido, Mayumi [Skin Research Department, POLA Chemical Industries, Inc., Yokohama (Japan); Fujimoto, Keiko [Division of Pharmaceutical Cell Biology, Graduate School of Pharmaceutical Sciences, Kyushu University, Fukuoka (Japan); Organelle Homeostasis Research Center, Kyushu University, Fukuoka (Japan); Hirota, Yuko [Division of Pharmaceutical Cell Biology, Graduate School of Pharmaceutical Sciences, Kyushu University, Fukuoka (Japan); Yo, Kazuyuki; Gomi, Takamasa [Skin Research Department, POLA Chemical Industries, Inc., Yokohama (Japan); Tanaka, Yoshitaka, E-mail: tanakay@bioc.phar.kyushu-u.ac.jp [Division of Pharmaceutical Cell Biology, Graduate School of Pharmaceutical Sciences, Kyushu University, Fukuoka (Japan); Organelle Homeostasis Research Center, Kyushu University, Fukuoka (Japan)

    2014-01-03

    Highlights: •Autophagosomes accumulate in aged dermal fibroblasts. •Autophagic degradation is impaired in aged dermal fibroblasts. •Autophagy disruption affects extracellular matrix components in dermal fibroblasts. -- Abstract: Autophagy is an intracellular degradative system that is believed to be involved in the aging process. The contribution of autophagy to age-related changes in the human skin is unclear. In this study, we examined the relationship between autophagy and skin aging. Transmission electron microscopy and immunofluorescence microscopy analyses of skin tissue and cultured dermal fibroblasts derived from women of different ages revealed an increase in the number of nascent double-membrane autophagosomes with age. Western blot analysis showed that the amount of LC3-II, a form associated with autophagic vacuolar membranes, was significantly increased in aged dermal fibroblasts compared with that in young dermal fibroblasts. Aged dermal fibroblasts were minimally affected by inhibition of autophagic activity. Although lipofuscin autofluorescence was elevated in aged dermal fibroblasts, the expression of Beclin-1 and Atg5—genes essential for autophagosome formation—was similar between young and aged dermal fibroblasts, suggesting that the increase of autophagosomes in aged dermal fibroblasts was due to impaired autophagic flux rather than an increase in autophagosome formation. Treatment of young dermal fibroblasts with lysosomal protease inhibitors, which mimic the condition of aged dermal fibroblasts with reduced autophagic activity, altered the fibroblast content of type I procollagen, hyaluronan and elastin, and caused a breakdown of collagen fibrils. Collectively, these findings suggest that the autophagy pathway is impaired in aged dermal fibroblasts, which leads to deterioration of dermal integrity and skin fragility.

  15. Age-related disruption of autophagy in dermal fibroblasts modulates extracellular matrix components

    International Nuclear Information System (INIS)

    Tashiro, Kanae; Shishido, Mayumi; Fujimoto, Keiko; Hirota, Yuko; Yo, Kazuyuki; Gomi, Takamasa; Tanaka, Yoshitaka

    2014-01-01

    Highlights: •Autophagosomes accumulate in aged dermal fibroblasts. •Autophagic degradation is impaired in aged dermal fibroblasts. •Autophagy disruption affects extracellular matrix components in dermal fibroblasts. -- Abstract: Autophagy is an intracellular degradative system that is believed to be involved in the aging process. The contribution of autophagy to age-related changes in the human skin is unclear. In this study, we examined the relationship between autophagy and skin aging. Transmission electron microscopy and immunofluorescence microscopy analyses of skin tissue and cultured dermal fibroblasts derived from women of different ages revealed an increase in the number of nascent double-membrane autophagosomes with age. Western blot analysis showed that the amount of LC3-II, a form associated with autophagic vacuolar membranes, was significantly increased in aged dermal fibroblasts compared with that in young dermal fibroblasts. Aged dermal fibroblasts were minimally affected by inhibition of autophagic activity. Although lipofuscin autofluorescence was elevated in aged dermal fibroblasts, the expression of Beclin-1 and Atg5—genes essential for autophagosome formation—was similar between young and aged dermal fibroblasts, suggesting that the increase of autophagosomes in aged dermal fibroblasts was due to impaired autophagic flux rather than an increase in autophagosome formation. Treatment of young dermal fibroblasts with lysosomal protease inhibitors, which mimic the condition of aged dermal fibroblasts with reduced autophagic activity, altered the fibroblast content of type I procollagen, hyaluronan and elastin, and caused a breakdown of collagen fibrils. Collectively, these findings suggest that the autophagy pathway is impaired in aged dermal fibroblasts, which leads to deterioration of dermal integrity and skin fragility

  16. The Physiologic and Behavioral Implications of Playing Active and Sedentary Video Games in a Seated and Standing Position.

    Science.gov (United States)

    Sanders, Gabriel J; Rebold, Michael; Peacock, Corey A; Williamson, Meagan L; Santo, Antonio S; Barkley, Jacob E

    Previous studies have assessed physiologic response while playing video games per manufacturer instructions with participants standing during active video game play and seated during sedentary game play. It is not known whether an assigned seated or standing position affects positional preference and oxygen consumption (VO2) while gaming. The purpose of the study was to assess VO2 and preference of playing active and sedentary video games in a seated and standing position. VO2 was assessed in 25 participants during four, 20-minute conditions; resting, PlayStation 2 Madden NFL Football 2011, Nintendo Wii-Sports Boxing and Nintendo Wii Madden NFL Football 2011. Each condition was divided into two positional conditions (10 minutes seated, 10 minutes standing) and each participant indicated their positional preference after each 20-minute condition. Standing VO2 (4.4 ± 0.2 ml • kg-1 • min-1 PS2, 4.6 ± 0.1 ml • kg-1 • min-1 Wii Madden, 6.8 ± 0.3 ml • kg-1 • min-1Wii Boxing) was significantly (p ≤ 0.001) greater than seated VO2 (4.0 ± 0.1 ml • kg-1 • min-1 PS2, 4.2 ± 0.1 ml • kg-1 • min-1 Wii Madden, 6.1 ± 0.3 ml • kg-1 • min-1Wii Boxing) for each gaming condition. Participants preferred (p ≤ 0.001) to sit for all gaming conditions except Wii Boxing. Playing video games while standing increases VO2 to a greater extent than playing the same games in a seated position. Standing was only preferred for the most physiologically challenging game, Wii Boxing. Gaming position should be considered when assessing the physiologic and behavioral outcomes of playing video games.

  17. Characterization of mutagen-activated cellular oncogenes that confer anchorage independence to human fibroblasts and tumorigenicity to NIH 3T3 cells: Sequence analysis of an enzymatically amplified mutant HRAS allele

    International Nuclear Information System (INIS)

    Stevens, C.W.; Manoharan, T.H.; Fahl, W.E.

    1988-01-01

    Treatment of diploid human fibroblasts with an alkylating mutagen has been shown to induce stable, anchorage-independent cell populations at frequencies consistent with an activating mutation. After treatment of human foreskin fibroblasts with the mutagen benzo[α]pyrene (±)anti-7,8-dihydrodiol 9,10-epoxide and selection in soft agar, 17 anchorage-independent clones were isolated and expanded, and their cellular DNA was used to cotransfect NIH 3T3 cells along with pSV2neo. DNA from 11 of the 17 clones induced multiple NIH 3T3 cell tumors in recipient nude mice. Southern blot analyses showed the presence of human Alu repetitive sequences in all of the NIH 3T3 tumor cell DNAs. Intact, human HRAS sequences were observed in 2 of the 11 tumor groups, whereas no hybridization was detected when human KRAS or NRAS probes were used. Slow-migrating ras p21 proteins, consistent with codon 12 mutations, were observed in the same two NIH 3T3 tumor cell groups that contained the human HRAS bands. Genomic DNA from one of these two human anchorage-independent cell populations (clone 21A) was used to enzymatically amplify a portion of exon 1 of the HRAS gene. The results demonstrate that exposure of normal human cells to a common environmental mutagen yields HRAS GC → TA codon 12 transversions that have been commonly observed in human tumors

  18. Changes in Plasma Copeptin Levels during Hemodialysis: Are the Physiological Stimuli Active in Hemodialysis Patients?

    Directory of Open Access Journals (Sweden)

    Esmée M Ettema

    Full Text Available Plasma levels of copeptin, a surrogate marker for the vasoconstrictor hormone arginine vasopressin (AVP, are increased in hemodialysis patients. Presently, it is unknown what drives copeptin levels in hemodialysis patients. We investigated whether the established physiological stimuli for copeptin release, i.e. plasma osmolality, blood volume and mean arterial pressure (MAP, are operational in hemodialysis patients.One hundred and eight prevalent, stable hemodialysis patients on a thrice-weekly dialysis schedule were studied during hemodialysis with constant ultrafiltration rate and dialysate conductivity in this observational study. Plasma levels of copeptin, sodium, MAP, and blood volume were measured before, during and after hemodialysis. Multivariate analysis was used to determine the association between copeptin (dependent variable and the physiological stimuli plasma sodium, MAP, excess weight as well as NT-pro-BNP immediately prior to dialysis and between copeptin and changes of plasma sodium, MAP and blood volume with correction for age, sex and diabetes during dialysis treatment.Patients were 63 ± 15.6 years old and 65% were male. Median dialysis vintage was 1.6 years (IQR 0.7-4.0. Twenty-three percent of the patients had diabetes and 82% had hypertension. Median predialysis copeptin levels were 141.5 pmol/L (IQR 91.0-244.8 pmol/L. Neither predialysis plasma sodium levels, nor NT-proBNP levels, nor MAP were associated with predialysis copeptin levels. During hemodialysis, copeptin levels rose significantly (p<0.01 to 163.0 pmol/L (96.0-296.0 pmol/L. Decreases in blood volume and MAP were associated with increases in copeptin levels during dialysis, whereas there was no significant association between the change in plasma sodium levels and the change in copeptin levels.Plasma copeptin levels are elevated predialysis and increase further during hemodialysis. Volume stimuli, i.e. decreases in MAP and blood volume, rather than osmotic

  19. Lung Fibroblasts, Aging, and Idiopathic Pulmonary Fibrosis.

    Science.gov (United States)

    Pardo, Annie; Selman, Moisés

    2016-12-01

    Idiopathic pulmonary fibrosis (IPF) is an aging-associated, progressive, and irreversible lung disease of unknown etiology, elusive pathogenesis, and very limited therapeutic options. The hallmarks of IPF are aberrant activation of alveolar epithelial cells and accumulation of fibroblasts and myofibroblasts along with excessive production of extracellular matrix. The linkage of aging with this disorder is uncertain, but a number of changes associated with aging, including telomere attrition, cell senescence, and mitochondrial dysfunction, have been revealed in IPF lungs. Also, aging seems to confer a profibrotic phenotype upon fibroblasts and to increase the severity of the fibrogenic response in non-IPF fibrotic lung disorders. Better knowledge of the pathophysiological mechanisms linking aging to IPF will advance understanding of its pathogenesis and may provide new therapeutic windows to treatment of this devastating disease.

  20. Effects of low dose gamma-ray radiation on the seed germination and physiological activity of vegetable crops

    Energy Technology Data Exchange (ETDEWEB)

    Kim, J. S.; Baek, M. H.; Lee, Y. G. [KAERI, Taejon (Korea, Republic of); Jung, K. H. [Kyunghee Univ., Yongin (Korea, Republic of)

    2000-10-01

    To determine the effect of low dose gamma-ray radiation on the germination rate and physiology of germinative seeds of Chinese cabbage(Brassica campestris L. cv. Hanyoreum) and radish(Raphanus sativus L. cv. Chungsukoungzoung). The germination rate of irradiation group was higher than that of the control. Especially it was highest at the early stage of induction. The germination rate of Chinese cabbage increased at 4 Gy-, 10 Gy- and 50 Gy irradiation group and that of radish increased at 2 Gy-, 6 Gy- and 10 Gy irradiation group. The seedling height of Chinese cabbage and radish increased positively in low dose irradiation group. The seedling height of Chinese cabbage was noticeably higher at 4 Gy and 10 Gy irradiation group and that of radish at 6 Gy irradiation group. The protein contents of seeds irradiated with low dose gamma-ray radiation was increased compared to that of the control especially at the early stage of induction. The enzyme activity of seeds irradiated with low dose of gamma-ray radiation was increased at 4 Gy and 10 Gy irradiation group. These results suggest that the germination and physiological activity of old seeds could be stimulated promisingly by the low dose gamma-ray radiation.

  1. Ultra-fast magnetic resonance encephalography of physiological brain activity - Glymphatic pulsation mechanisms?

    Science.gov (United States)

    Kiviniemi, Vesa; Wang, Xindi; Korhonen, Vesa; Keinänen, Tuija; Tuovinen, Timo; Autio, Joonas; LeVan, Pierre; Keilholz, Shella; Zang, Yu-Feng; Hennig, Jürgen; Nedergaard, Maiken

    2016-06-01

    The theory on the glymphatic convection mechanism of cerebrospinal fluid holds that cardiac pulsations in part pump cerebrospinal fluid from the peri-arterial spaces through the extracellular tissue into the peri-venous spaces facilitated by aquaporin water channels. Since cardiac pulses cannot be the sole mechanism of glymphatic propulsion, we searched for additional cerebrospinal fluid pulsations in the human brain with ultra-fast magnetic resonance encephalography. We detected three types of physiological mechanisms affecting cerebral cerebrospinal fluid pulsations: cardiac, respiratory, and very low frequency pulsations. The cardiac pulsations induce a negative magnetic resonance encephalography signal change in peri-arterial regions that extends centrifugally and covers the brain in ≈1 Hz cycles. The respiratory ≈0.3 Hz pulsations are centripetal periodical pulses that occur dominantly in peri-venous areas. The third type of pulsation was very low frequency (VLF 0.001-0.023 Hz) and low frequency (LF 0.023-0.73 Hz) waves that both propagate with unique spatiotemporal patterns. Our findings using critically sampled magnetic resonance encephalography open a new view into cerebral fluid dynamics. Since glymphatic system failure may precede protein accumulations in diseases such as Alzheimer's dementia, this methodological advance offers a novel approach to image brain fluid dynamics that potentially can enable early detection and intervention in neurodegenerative diseases. © The Author(s) 2015.

  2. Impaired activity of CCA-adding enzyme TRNT1 impacts OXPHOS complexes and cellular respiration in SIFD patient-derived fibroblasts.

    Science.gov (United States)

    Liwak-Muir, Urszula; Mamady, Hapsatou; Naas, Turaya; Wylie, Quinlan; McBride, Skye; Lines, Matthew; Michaud, Jean; Baird, Stephen D; Chakraborty, Pranesh K; Holcik, Martin

    2016-06-18

    SIFD (Sideroblastic anemia with B-cell immunodeficiency, periodic fevers, and developmental delay) is a novel form of congenital sideroblastic anemia associated with B-cell immunodeficiency, periodic fevers, and developmental delay caused by mutations in the CCA-adding enzyme TRNT1, but the precise molecular pathophysiology is not known. We show that the disease causing mutations in patient-derived fibroblasts do not affect subcellular localization of TRNT1 and show no gross morphological differences when compared to control cells. Analysis of cellular respiration and oxidative phosphorylation (OXPHOS) complexes demonstrates that both basal and maximal respiration rates are decreased in patient cells, which may be attributed to an observed decrease in the abundance of select proteins of the OXPHOS complexes. Our data provides further insight into cellular pathophysiology of SIFD.

  3. [Isolation, purification and primary culture of adult mouse cardiac fibroblasts].

    Science.gov (United States)

    Li, Rujun; Gong, Kaizheng; Zhang, Zhengang

    2017-01-01

    Objective To establish a method for primary culture of adult mouse cardiac fibroblasts. Methods Myocardial tissues from adult mice were digested with 1 g/L trypsin and 0.8 g/L collagenase IV by oscillating water bath for a short time repeatedly. Cardiac fibroblasts and myocardial cells were isolated with differential adhesion method. Immunofluorescence staining was used to assess the purity of cardiac fibroblasts. The cell morphology was observed under an inverted phase contrast microscope. The proliferation of cardiac fibroblasts was analyzed by growth curve and CCK-8 assay. The Smad2/3 phosphorylation induced by TGF-β1 was detected by Western blotting. Results After 90 minutes of differential adhesion, adherent fibroblasts formed spherical cell mass and after 3 days, cells were spindle-shaped and proliferated rapidly. Cells were confluent after 5 days and the growth curve presented nearly "S" shape. The positive expression rate of vimentin was 95%. CCK-8 assay showed that the optimal cell proliferating activity was found from day 3 to day 5. The level of phosphorylated Smad2/3 obviously increased at the second passage induced by TGF-β1. Conclusion This method is economical and stable to isolate cardiac fibroblasts with high activity and high purity from adult mice.

  4. Activation of kynurenine pathway in ex vivo fibroblasts from patients with bipolar disorder or schizophrenia: cytokine challenge increases production of 3-hydroxykynurenine.

    Science.gov (United States)

    Johansson, Anne-Sofie; Owe-Larsson, Björn; Asp, Linnéa; Kocki, Tomasz; Adler, Mats; Hetta, Jerker; Gardner, Renee; Lundkvist, Gabriella B S; Urbanska, Ewa M; Karlsson, Håkan

    2013-11-01

    Accumulating data suggest a causative link between immune stimulation, disturbed metabolism of tryptophan, and pathogenesis of bipolar disorder and schizophrenia. The goal of this study was to examine the production of kynurenic acid (KYNA), 3-hydroxykynurenine (3-HK) and the expression of kynurenine pathway enzymes involved in their synthesis and metabolism in cultured skin fibroblasts obtained from patients with bipolar disorder, schizophrenia or from healthy control individuals. The assessment was performed under basal conditions or following treatment with interferon (IFN)-γ, tumor necrosis factor (TNF)-α, interleukin (IL)-1β, IL-6, or their combinations, in cells exposed to exogenous kynurenine. In both groups of patients, the baseline production of KYNA and 3-HK was increased, as compared to control subjects. Case-treatment analyses revealed significant interactions between bipolar case status and IL-1β, IL-6, IFN-γ + TNF-α, or IFN-γ + IL-1β, as well as between schizophrenia case status and IL-1β, IFN-γ + TNF-α, or IFN-γ + IL-1β, in terms of higher 3-HK. Noteworthy, no case-treatment interactions in terms of KYNA production were found. Observed changes did not appear to correlate with the expression of genes encoding kynurenine aminotransferases (KATs), kynureninase (KYNU) or kynurenine-3-monooxygenase (KMO). The single nucleotide polymorphisms (SNPs), rs1053230 and rs2275163, in KMO influenced KYNA levels yet did not explain the case-treatment discrepancies. In conclusion, our present findings indicate the utility of skin-derived fibroblasts for kynurenines research and support the concept of kynurenine pathway alterations in bipolar disorder and schizophrenia. The increase in ratio between neurotoxic 3-HK and neuroinhibitory/neuroprotective KYNA following exposure to cytokines may account for altered neurogenesis and structural abnormalities characteristic for both diseases. Copyright © 2013 Elsevier Ltd. All rights reserved.

  5. Urban pollution of sediments: Impact on the physiology and burrowing activity of tubificid worms and consequences on biogeochemical processes

    Energy Technology Data Exchange (ETDEWEB)

    Pigneret, M., E-mail: mathilde.pigneret@univ-lyon1.fr [LEHNA, UMR CNRS 5023, Ecologie des Hydrosystèmes Naturels et Anthropisés, Université de Lyon, Université Lyon 1, ENTPE, 6 rue Raphael Dubois, 69622 Villeurbanne (France); Mermillod-Blondin, F.; Volatier, L.; Romestaing, C. [LEHNA, UMR CNRS 5023, Ecologie des Hydrosystèmes Naturels et Anthropisés, Université de Lyon, Université Lyon 1, ENTPE, 6 rue Raphael Dubois, 69622 Villeurbanne (France); Maire, E.; Adrien, J. [MATEIS, UMR CNRS 5510, INSA de Lyon, 25 avenue Jean Capelle, 69621 Villeurbanne (France); Guillard, L.; Roussel, D.; Hervant, F. [LEHNA, UMR CNRS 5023, Ecologie des Hydrosystèmes Naturels et Anthropisés, Université de Lyon, Université Lyon 1, ENTPE, 6 rue Raphael Dubois, 69622 Villeurbanne (France)

    2016-10-15

    In urban areas, infiltration basins are designed to manage stormwater runoff from impervious surfaces and allow the settling of associated pollutants. The sedimentary layer deposited at the surface of these structures is highly organic and multicontaminated (mainly heavy metals and hydrocarbons). Only few aquatic species are able to maintain permanent populations in such an extreme environment, including the oligochaete Limnodrilus hoffmeisteri. Nevertheless, the impact of urban pollutants on these organisms and the resulting influence on infiltration basin functioning remain poorly studied. Thus, the aim of this study was to determine how polluted sediments could impact the survival, the physiology and the bioturbation activity of L. hoffmeisteri and thereby modify biogeochemical processes occurring at the water-sediment interface. To this end, we conducted laboratory incubations of worms, in polluted sediments from infiltration basins or slightly polluted sediments from a stream. Analyses were performed to evaluate physiological state and burrowing activity (X-ray micro-tomography) of worms and their influences on biogeochemical processes (nutrient fluxes, CO{sub 2} and CH{sub 4} degassing rates) during 30-day long experiments. Our results showed that worms exhibited physiological responses to cope with high pollution levels, including a strong ability to withstand the oxidative stress linked to contamination with heavy metals. We also showed that the presence of urban pollutants significantly increased the burrowing activity of L. hoffmeisteri, demonstrating the sensitivity and the relevance of such a behavioural response as biomarker of sediment toxicity. In addition, we showed that X-ray micro-tomography was an adequate technique for accurate and non-invasive three-dimensional investigations of biogenic structures formed by bioturbators. The presence of worms induced stimulations of nutrient fluxes and organic matter recycling (between + 100% and 200% of CO

  6. Physiological and Pedagogical Culture as a Basic for Effective Teaching Activity

    Directory of Open Access Journals (Sweden)

    Pirmagambet Z. Ishanov

    2014-07-01

    Full Text Available The article deals with new approaches to organization of pedagogical education of a teacher in institutions of higher learning. Here we consider cult urological, personal, multiobjective (dialogic and individual-creative approaches. In this case, pedagogical activity is considered as a form of active correlation to the world, transformation experience of culture into pedagogue’s professional wealth. So, one of the factors determining the university teacher’s effectiveness is his psycho-pedagogical culture.

  7. Activation of TRPM7 channels by small molecules under physiological conditions.

    Science.gov (United States)

    Hofmann, T; Schäfer, S; Linseisen, M; Sytik, L; Gudermann, T; Chubanov, V

    2014-12-01

    Transient receptor potential cation channel, subfamily M, member 7 (TRPM7) is a cation channel covalently linked to a protein kinase domain. TRPM7 is ubiquitously expressed and regulates key cellular processes such as Mg(2+) homeostasis, motility, and proliferation. TRPM7 is involved in anoxic neuronal death, cardiac fibrosis, and tumor growth. The goal of this work was to identify small molecule activators of the TRPM7 channel and investigate their mechanism of action. We used an aequorin bioluminescence-based assay to screen for activators of the TRPM7 channel. Valid candidates were further characterized using patch clamp electrophysiology. We identified 20 drug-like compounds with various structural backbones that can activate the TRPM7 channel. Among them, the δ opioid antagonist naltriben was studied in greater detail. Naltriben's action was selective among the TRP channels tested. Naltriben activates TRPM7 currents without prior depletion of intracellular Mg(2+) even under conditions of low PIP2. Moreover, naltriben interfered with the effect of the TRPM7 inhibitor NS8593. Finally, our experiments with TRPM7 variants carrying mutations in the pore, TRP, and kinase domains indicate that the site of TRPM7 activation by this small-molecule ligand is most likely located in or near the TRP domain. In conclusion, we identified the first organic small-molecule activators of TRPM7 channels, thus providing new experimental tools to study TRPM7 function in native cellular environments.

  8. Monoamine oxidase inhibitory activity in tobacco particulate matter: Are harman and norharman the only physiologically relevant inhibitors?

    Science.gov (United States)

    Truman, Penelope; Grounds, Peter; Brennan, Katharine A

    2017-03-01

    Monoamine oxidase inhibition is significant in smokers, but it is still unclear how the inhibition that is seen in the brains and bodies of smokers is brought about. Our aim was to test the contribution of the harman and norharman in tobacco smoke to MAO-A inhibition from tobacco smoke preparations, as part of a re-examination of harman and norharman as the cause of the inhibition of MAO-A inhibition in the brain. Tobacco smoke particulate matter and cigarette smoke particulate matter were prepared and the amounts of harman and norharman measured. The results were compared with the total monoamine oxidase-A inhibitory activity. At a nicotine concentration of 0.6μM (a "physiological" concentration in blood) the total monoamine oxidase-A inhibitory activity measured in these samples was sufficient to inhibit the enzyme by approximately 10%. Of this inhibitory activity, only a small proportion of the total was found to be due to harman and norharman. These results show that harman and norharman provide only a moderate contribution to the total monoamine oxidase-A inhibitory activity of tobacco smoke, perhaps under 10%. This suggests that other inhibitors (either known or unknown) may be more significant contributors to total inhibitory activity than has yet been established, and deserve closer examination. Copyright © 2017 Elsevier B.V. All rights reserved.

  9. Study on the physiological activities of gamma-irradiated seafood cooking drips

    Energy Technology Data Exchange (ETDEWEB)

    Jo, Eu Ri; Kim, Yeon Joo; Choi, Jong Il; Sung, Nak Yun; Jung, Pil Moon; Kim, Jae Hun; Song, Beom Seok; Yoon, Yo Han; Lee, Ju Woon [Korea Atomic Energy Research Institute, Jeongeup (Korea, Republic of); Lee, Ju Yeoun [Chonbuk National University, Jeonju (Korea, Republic of)

    2010-03-15

    Cooking drips which were obtained as by-product after seafood processing in the food industries, still contain lost of proteins, carbohydrates, and other functional materials. This study was conducted to investigate the effect of gamma irradiation on the biological activities of seafood cooking drips. When the cooking drips of Hizikia fusiformis, Enteroctopus dofleini and Thunnus thynnus were irradiated, the antioxidant activities, whitening effect, and angiotensin I converting enzyme inhibition activity of the ethanol extract from seafood cooking drips were all increased by gamma irradiation. This was because of the increased extraction efficiency of available compounds by irradiation. These results suggested that the seafood cooking drips, wasted as by-products, can be used as functional compounds with gamma irradiation treatment.

  10. Study on the physiological activities of gamma-irradiated seafood cooking drips

    International Nuclear Information System (INIS)

    Jo, Eu Ri; Kim, Yeon Joo; Choi, Jong Il; Sung, Nak Yun; Jung, Pil Moon; Kim, Jae Hun; Song, Beom Seok; Yoon, Yo Han; Lee, Ju Woon; Lee, Ju Yeoun

    2010-01-01

    Cooking drips which were obtained as by-product after seafood processing in the food industries, still contain lost of proteins, carbohydrates, and other functional materials. This study was conducted to investigate the effect of gamma irradiation on the biological activities of seafood cooking drips. When the cooking drips of Hizikia fusiformis, Enteroctopus dofleini and Thunnus thynnus were irradiated, the antioxidant activities, whitening effect, and angiotensin I converting enzyme inhibition activity of the ethanol extract from seafood cooking drips were all increased by gamma irradiation. This was because of the increased extraction efficiency of available compounds by irradiation. These results suggested that the seafood cooking drips, wasted as by-products, can be used as functional compounds with gamma irradiation treatment

  11. Physiological community ecology: variation in metabolic activity of ecologically important rocky intertidal invertebrates along environmental gradients.

    Science.gov (United States)

    Dahlhoff, Elizabeth P; Stillman, Jonathon H; Menge, Bruce A

    2002-08-01

    Rocky intertidal invertebrates live in heterogeneous habitats characterized by steep gradients in wave activity, tidal flux, temperature, food quality and food availability. These environmental factors impact metabolic activity via changes in energy input and stress-induced alteration of energetic demands. For keystone species, small environmentally induced shifts in metabolic activity may lead to disproportionately large impacts on community structure via changes in growth or survival of these key species. Here we use biochemical indicators to assess how natural differences in wave exposure, temperature and food availability may affect metabolic activity of mussels, barnacles, whelks and sea stars living at rocky intertidal sites with different physical and oceanographic characteristics. We show that oxygen consumption rate is correlated with the activity of key metabolic enzymes (e.g., citrate synthase and malate dehydrogenase) for some intertidal species, and concentrations of these enzymes in certain tissues are lower for starved individuals than for those that are well fed. We also show that the ratio of RNA to DNA (an index of protein synthetic capacity) is highly variable in nature and correlates with short-term changes in food availability. We also observed striking patterns in enzyme activity and RNA/DNA in nature, which are related to differences in rocky intertidal community structure. Differences among species and habitats are most pronounced in summer and are linked to high nearshore productivity at sites favored by suspension feeders and to exposure to stressful low-tide air temperatures in areas of low wave splash. These studies illustrate the great promise of using biochemical indicators to test ecological models, which predict changes in community structure along environmental gradients. Our results also suggest that biochemical indices must be carefully validated with laboratory studies, so that the indicator selected is likely to respond to the

  12. Rice Physiology

    Science.gov (United States)

    P.A. Counce; Davidi R. Gealy; Shi-Jean Susana Sung

    2002-01-01

    Physiology occurs tn physical space through chemical reactions constrained by anatomy and morphology, yet guided by genetics. Physiology has been called the logic of life. Genes encode structural and fimcdonal proteins. These proteins are subsequently processed to produce enzymes that direct and govern the biomechanical processes involved in the physiology of the...

  13. Abscisic acid ameliorates the systemic sclerosis fibroblast phenotype in vitro

    Energy Technology Data Exchange (ETDEWEB)

    Bruzzone, Santina, E-mail: santina.bruzzone@unige.it [Department of Experimental Medicine, Section of Biochemistry, University of Genova, Viale Benedetto XV 1, 16132 Genova (Italy); Centre of Excellence for Biomedical Research, University of Genova, Viale Benedetto XV 9, 16132 Genova (Italy); Advanced Biotechnology Center, Largo Rosanna Benzi 10, 16132 Genova (Italy); Battaglia, Florinda [Centre of Excellence for Biomedical Research, University of Genova, Viale Benedetto XV 9, 16132 Genova (Italy); Mannino, Elena [Department of Experimental Medicine, Section of Biochemistry, University of Genova, Viale Benedetto XV 1, 16132 Genova (Italy); Parodi, Alessia [Centre of Excellence for Biomedical Research, University of Genova, Viale Benedetto XV 9, 16132 Genova (Italy); Fruscione, Floriana [Department of Experimental Medicine, Section of Biochemistry, University of Genova, Viale Benedetto XV 1, 16132 Genova (Italy); Advanced Biotechnology Center, Largo Rosanna Benzi 10, 16132 Genova (Italy); Basile, Giovanna [Department of Experimental Medicine, Section of Biochemistry, University of Genova, Viale Benedetto XV 1, 16132 Genova (Italy); Salis, Annalisa; Sturla, Laura [Department of Experimental Medicine, Section of Biochemistry, University of Genova, Viale Benedetto XV 1, 16132 Genova (Italy); Centre of Excellence for Biomedical Research, University of Genova, Viale Benedetto XV 9, 16132 Genova (Italy); Negrini, Simone; Kalli, Francesca; Stringara, Silvia [Centre of Excellence for Biomedical Research, University of Genova, Viale Benedetto XV 9, 16132 Genova (Italy); Filaci, Gilberto [Centre of Excellence for Biomedical Research, University of Genova, Viale Benedetto XV 9, 16132 Genova (Italy); Department of Internal Medicine, Viale Benedetto XV 6, 16132 Genova (Italy); and others

    2012-05-25

    Highlights: Black-Right-Pointing-Pointer ABA is an endogenous hormone in humans, regulating different cell responses. Black-Right-Pointing-Pointer ABA reverts some of the functions altered in SSc fibroblasts to a normal phenotype. Black-Right-Pointing-Pointer UV-B irradiation increases ABA content in SSc cultures. Black-Right-Pointing-Pointer SSc fibroblasts could benefit from exposure to ABA and/or to UV-B. -- Abstract: The phytohormone abscisic acid (ABA) has been recently identified as an endogenous hormone in humans, regulating different cell functions, including inflammatory processes, insulin release and glucose uptake. Systemic sclerosis (SSc) is a chronic inflammatory disease resulting in fibrosis of skin and internal organs. In this study, we investigated the effect of exogenous ABA on fibroblasts obtained from healthy subjects and from SSc patients. Migration of control fibroblasts induced by ABA was comparable to that induced by transforming growth factor-{beta} (TGF-{beta}). Conversely, migration toward ABA, but not toward TGF-{beta}, was impaired in SSc fibroblasts. In addition, ABA increased cell proliferation in fibroblasts from SSc patients, but not from healthy subjects. Most importantly, presence of ABA significantly decreased collagen deposition by SSc fibroblasts, at the same time increasing matrix metalloproteinase-1 activity and decreasing the expression level of tissue inhibitor of metalloproteinase (TIMP-1). Thus, exogenously added ABA appeared to revert some of the functions altered in SSc fibroblasts to a normal phenotype. Interestingly, ABA levels in plasma from SSc patients were found to be significantly lower than in healthy subjects. UV-B irradiation induced an almost 3-fold increase in ABA content in SSc cultures. Altogether, these results suggest that the fibrotic skin lesions in SSc patients could benefit from exposure to high(er) ABA levels.

  14. Abscisic acid ameliorates the systemic sclerosis fibroblast phenotype in vitro

    International Nuclear Information System (INIS)

    Bruzzone, Santina; Battaglia, Florinda; Mannino, Elena; Parodi, Alessia; Fruscione, Floriana; Basile, Giovanna; Salis, Annalisa; Sturla, Laura; Negrini, Simone; Kalli, Francesca; Stringara, Silvia; Filaci, Gilberto

    2012-01-01

    Highlights: ► ABA is an endogenous hormone in humans, regulating different cell responses. ► ABA reverts some of the functions altered in SSc fibroblasts to a normal phenotype. ► UV-B irradiation increases ABA content in SSc cultures. ► SSc fibroblasts could benefit from exposure to ABA and/or to UV-B. -- Abstract: The phytohormone abscisic acid (ABA) has been recently identified as an endogenous hormone in humans, regulating different cell functions, including inflammatory processes, insulin release and glucose uptake. Systemic sclerosis (SSc) is a chronic inflammatory disease resulting in fibrosis of skin and internal organs. In this study, we investigated the effect of exogenous ABA on fibroblasts obtained from healthy subjects and from SSc patients. Migration of control fibroblasts induced by ABA was comparable to that induced by transforming growth factor-β (TGF-β). Conversely, migration toward ABA, but not toward TGF-β, was impaired in SSc fibroblasts. In addition, ABA increased cell proliferation in fibroblasts from SSc patients, but not from healthy subjects. Most importantly, presence of ABA significantly decreased collagen deposition by SSc fibroblasts, at the same time increasing matrix metalloproteinase-1 activity and decreasing the expression level of tissue inhibitor of metalloproteinase (TIMP-1). Thus, exogenously added ABA appeared to revert some of the functions altered in SSc fibroblasts to a normal phenotype. Interestingly, ABA levels in plasma from SSc patients were found to be significantly lower than in healthy subjects. UV-B irradiation induced an almost 3-fold increase in ABA content in SSc cultures. Altogether, these results suggest that the fibrotic skin lesions in SSc patients could benefit from exposure to high(er) ABA levels.

  15. Physiological and bodily changes associated with endurance athletic activities and challenges during peri-operative period

    Directory of Open Access Journals (Sweden)

    Umesh K Dash

    2016-01-01

    Full Text Available Endurance athletic activities, which requires top level cardio respiratory system fitness are recently becoming popular in the various parts of the country. Armed Forces are forefront in participation of those sporting activities, like marathon running, prolonged swimming or cycling. It has been found to have various long term beneficial effect in body function as a result of prolonged endurance activities, but it has also found that there are various bodily changes which may affect in anaesthetising the individual during emergency and elective surgeries. Literature review of various journals related to endurance sporting activities has described those bodily changes and effects of anaesthesia and pain on those changes. Based upon the available literature a guideline has been formulated for perioperative management of those patients. Most of those available literatures are from countries other than our country. The time has come for venturing in for carrying out further studies in our scenario, especially in Armed Forces in this new horizon of anaesthesia and critical care

  16. Physiology, regulation and multifunctional activity of the gut wall: a rationale for multicompartmental modelling

    NARCIS (Netherlands)

    Bannink, A.; Dijkstra, J.; Koopmans, S.J.; Mroz, Z.

    2006-01-01

    A rationale is given for a modelling approach to identify the mechanisms involved in the functioning and metabolic activity of tissues in the wall of the gastrointestinal tract. Maintenance and productive functions are discussed and related to the distinct compartments of the gastrointestinal tract

  17. Behavioral inhibition system (BIS), Behavioral activation system (BAS) and schizophrenia : Relationship with psychopathology and physiology

    NARCIS (Netherlands)

    Scholten, Marion R. M.; van Honk, Jack; Aleman, Andre; Kahn, Rene S.

    2006-01-01

    Objective: The Behavioral Inhibition System (BIS) and the Behavioral Activation System (BAS) have been conceptualized as two neural motivational systems that regulate sensitivity to punishment (BIS) and reward (BAS). Imbalance in BIS and BAS levels has been reported to be related to various forms of

  18. Physiological response of Pseudomonas putida S12 subjected to reduced water activity.

    NARCIS (Netherlands)

    Kets, E.P.W.; Bont, de J.A.M.; Heipieper, H.J.

    1996-01-01

    The effect of osmotic stress, given as decreased water activity (aw), on growth and the accumulation of potassium and the compatible solute betaine by Pseudomonas putida S12 was investigated. Reduced aw was imposed by addition of sodium chloride, sucrose, glycerol or polyethylene glycol to the

  19. Inhibiting the Physiological Stress Effects of a Sustained Attention Task on Shoulder Muscle Activity

    Directory of Open Access Journals (Sweden)

    Fiona Wixted

    2018-01-01

    Full Text Available Objective: The objective of this study was to investigate if a breathing technique could counteract the effects of hyperventilation due to a sustained attention task on shoulder muscle activity. Background: The trend towards higher levels of automation in industry is increasing. Consequently, manufacturing operators often monitor automated process for long periods of their work shift. Prolonged monitoring work requires sustained attention, which is a cognitive process that humans are typically poor at and find stressful. As sustained attention becomes an increasing requirement of manufacturing operators’ job content, the resulting stress experienced could contribute to the onset of many health problems, including work related musculoskeletal disorders (WRMSDs. Methods: The SART attention test was completed by a group of participants before and after a breathing intervention exercise. The effects of the abdominal breathing intervention on breathing rate, upper trapezius muscle activity and end-tidal CO2 were evaluated. Results: The breathing intervention reduced the moderation effect of end-tidal CO2 on upper trapezius muscle activity. Conclusions: Abdominal breathing could be a useful technique in reducing the effects of sustained attention work on muscular activity. Application: This research can be applied to highly-automated manufacturing industries, where prolonged monitoring of work is widespread and could, in its role as a stressor, be a potential contributor to WRMSDs.

  20. Inhibiting the Physiological Stress Effects of a Sustained Attention Task on Shoulder Muscle Activity.

    Science.gov (United States)

    Wixted, Fiona; O'Riordan, Cliona; O'Sullivan, Leonard

    2018-01-11

    The objective of this study was to investigate if a breathing technique could counteract the effects of hyperventilation due to a sustained attention task on shoulder muscle activity. The trend towards higher levels of automation in industry is increasing. Consequently, manufacturing operators often monitor automated process for long periods of their work shift. Prolonged monitoring work requires sustained attention, which is a cognitive process that humans are typically poor at and find stressful. As sustained attention becomes an increasing requirement of manufacturing operators' job content, the resulting stress experienced could contribute to the onset of many health problems, including work related musculoskeletal disorders (WRMSDs). The SART attention test was completed by a group of participants before and after a breathing intervention exercise. The effects of the abdominal breathing intervention on breathing rate, upper trapezius muscle activity and end-tidal CO₂ were evaluated. The breathing intervention reduced the moderation effect of end-tidal CO₂ on upper trapezius muscle activity. Abdominal breathing could be a useful technique in reducing the effects of sustained attention work on muscular activity. This research can be applied to highly-automated manufacturing industries, where prolonged monitoring of work is widespread and could, in its role as a stressor, be a potential contributor to WRMSDs.

  1. Physiological and fermentation properties of Bacillus coagulans and a mutant lacking fermentative lactate dehydrogenase activity.

    Science.gov (United States)

    Su, Yue; Rhee, Mun Su; Ingram, Lonnie O; Shanmugam, K T

    2011-03-01

    Bacillus coagulans, a sporogenic lactic acid bacterium, grows optimally at 50-55 °C and produces lactic acid as the primary fermentation product from both hexoses and pentoses. The amount of fungal cellulases required for simultaneous saccharification and fermentation (SSF) at 55 °C was previously reported to be three to four times lower than for SSF at the optimum growth temperature for Saccharomyces cerevisiae of 35 °C. An ethanologenic B. coagulans is expected to lower the cellulase loading and production cost of cellulosic ethanol due to SSF at 55 °C. As a first step towards developing B. coagulans as an ethanologenic microbial biocatalyst, activity of the primary fermentation enzyme L-lactate dehydrogenase was removed by mutation (strain Suy27). Strain Suy27 produced ethanol as the main fermentation product from glucose during growth at pH 7.0 (0.33 g ethanol per g glucose fermented). Pyruvate dehydrogenase (PDH) and alcohol dehydrogenase (ADH) acting in series contributed to about 55% of the ethanol produced by this mutant while pyruvate formate lyase and ADH were responsible for the remainder. Due to the absence of PDH activity in B. coagulans during fermentative growth at pH 5.0, the l-ldh mutant failed to grow anaerobically at pH 5.0. Strain Suy27-13, a derivative of the l-ldh mutant strain Suy27, that produced PDH activity during anaerobic growth at pH 5.0 grew at this pH and also produced ethanol as the fermentation product (0.39 g per g glucose). These results show that construction of an ethanologenic B. coagulans requires optimal expression of PDH activity in addition to the removal of the LDH activity to support growth and ethanol production.

  2. [Acetyl-11-keto-beta-boswellic acid and arsenic trioxide regulate the productions and activities of matrix metalloproteinases in human skin fibroblasts and human leukemia cell line THP-1].

    Science.gov (United States)

    Liang, Ya-hui; Li, Ping; Zhao, Jing-xia; Liu, Xin; Huang, Qi-fu

    2010-11-01

    In order to reveal the treatment mechanism of Chinese medicine with the effect of activating blood and resolving putridity, we selected acetyl-11-keto-beta-boswellic acid (AKBA) and arsenic trioxide (ATO), the main monomeric components of frankincense and arsenolite which are two most commonly used Chinese medicine with effect of activating blood and resolving putridity. We combined AKBA and ATO as a compound, and explored its regulatory role in productions and activities of matrix metalloproteinase (MMP)-1, MMP-2 and MMP-9 in human skin fibroblasts (HSFbs) and human acute monocytic leukemia cell line THP-1 in inflammatory state. In order to simulate the inflammatory micro-environment of chronic wounds, we established 3 cell models: HSFb model activated by tumor necrosis factor-alpha (TNF-α), THP-1 cell model activated by phorbol-12-myristate-13-acetate (PMA) and HSFb-THP-1 cell coculture system. AKBA and ATO were cocultured with these cell models. Enzyme-linked immunosorbent assay (ELISA), gelatin zymography assay and reverse transcription-polymerase chain reaction (RT-PCR) were used to test the secretions, activities and mRNA expressions of MMP-1, MMP-2 and MMP-9. In the study of the regulatory mechanism of AKBA and ATO on MMPs, AKBA and ATO were cocultured with the cell models. ELISA was used to test the secretions of TNF-α and interleukin-1beta (IL-β) and Western blot was used to test the phosphorylation levels of extracellular signal-regulated kinases 1 and 2 (ERK1/2) and p38 mitogen-activated proteinkinase (p38MAPK). Compound of AKBA and ATO inhibited MMP-1, MMP-2 and MMP-9 mRNA expressions, secretions and activities respectively in HSFbs and THP-1 cells in inflammatory state (PTHP-1 cells and cell coculture system (PTHP-1 cells (P<0.05, P<0.01). The combined use of AKBA and ATO which in line with the rule of activating blood and resolving putridity inhibits fibroblasts and inflammatory cells in producing MMPs in inflammatory state through inhibiting the

  3. Peroxisome proliferator-activated receptor gamma signaling in human sperm physiology.

    Science.gov (United States)

    Liu, Li-Li; Xian, Hua; Cao, Jing-Chen; Zhang, Chong; Zhang, Yong-Hui; Chen, Miao-Miao; Qian, Yi; Jiang, Ming

    2015-01-01

    Peroxisome proliferator-activated receptor gamma (PPARγ) is a member of the PPARs, which are transcription factors of the steroid receptor superfamily. PPARγ acts as an important molecule for regulating energy homeostasis, modulates the hypothalamic-pituitary-gonadal (HPG) axis, and is reciprocally regulated by HPG. In the human, PPARγ protein is highly expressed in ejaculated spermatozoa, implying a possible role of PPARγ signaling in regulating sperm energy dissipation. PPARγ protein is also expressed in Sertoli cells and germ cells (spermatocytes). Its activation can be induced during capacitation and the acrosome reaction. This mini-review will focus on how PPARγ signaling may affect fertility and sperm quality and the potential reversibility of these adverse effects.

  4. Physiological Response and Habituation of Endangered Species to Military Training Activities: SERDP 2006 Annual Report

    Science.gov (United States)

    2008-05-01

    DISCLAIMER: The contents of this report are not to be used for advertising , publication, or promotional purposes. Citation of trade names does not...flushing from nests by parental birds in response to a perceived threat may enhance pa- rental survival at the cost of reduced nestling survival...that frequent human activities near nests could adversely affect nestling survival and, therefore, reproductive success. ERDC/CERL SR-08-8 3

  5. Preparation and physiological activities of carboxymethylated derivative purified from corn bran

    Science.gov (United States)

    Zhu, Linghui; Fang, Miaoli; Ma, Jianjun; Mo, Qing

    2017-06-01

    Two water-soluble polysaccharides extracted from corn bran were chemically modified to obtain their carboxymethylated derivatives (C-CBP1, C-CBP2). Theresults of degree of substitution and FT-IR analysis showed the carboxymethylation of polysaccharides were successful. The average molecular weight (Mw) of C-CBP1 and C-CBP2 were 368 and 263kDa, respectively. The degree of substitution (DS) of C-CBP1 and C-CBP2 were determined to be 0.44 and 0.46. The results showed that derivatives were effective in antioxidant and bile acidbinding activityin a dose dependent way. And C-CBP2 had the higher activity for hydroxyl radical, superoxide anion scavenging activities and bile acid capacity, as lower molecular weight plays a critical role in antioxidant activities and bile acid capacity. The results suggest that the carboxymethylated derivatives are potential natural antioxidant and blood fat reduce agent that can be used as drugs or functional food ingredients.

  6. Multikinase activity of fibroblast growth factor receptor (FGFR) inhibitors SU5402, PD173074, AZD1480, AZD4547 and BGJ398 compromises the use of small chemicals targeting FGFR catalytic activity for therapy of short-stature syndromes

    Czech Academy of Sciences Publication Activity Database

    Gudernová, I.; Veselá, Iva; Balek, L.; Buchtová, Marcela; Dosedělová, Hana; Kunová, M.; Pivnička, J.; Jelínková, I.; Roubalová, L.; Kozubík, Alois; Krejčí, P.

    2016-01-01

    Roč. 25, č. 1 (2016), s. 9-23 ISSN 0964-6906 R&D Projects: GA ČR(CZ) GA14-31540S Institutional support: RVO:67985904 ; RVO:68081707 Keywords : fibroblast growth factor receptor * tyrosine kinase domain * ERK MAP kinase Subject RIV: EA - Cell Biology Impact factor: 5.340, year: 2016

  7. Human cytomegalovirus replicates in gamma-irradiated fibroblasts

    International Nuclear Information System (INIS)

    Shanley, J.D.

    1986-01-01

    Because of the unique interdependence of human cytomegalovirus (HCMV) and the physiological state of the host cell, we evaluated the ability of human foreskin fibroblasts (HFF), exposed to gamma radiation, to support HCMV growth. Irradiation of HFF with 2,500 rADS prevented cellular proliferation and suppressed cellular DNA, but not RNA or protein synthesis. Treatment of HFF cells with 2,500 rADS 6 or 48 hours prior to infection did not alter the time course or virus yield during HCMV replication. Virus plaquing efficiency in irradiated cells was comparable to that of nonirradiated cells. As judged by thymidine incorporation and BUdR inhibition of virus replication, HCMV infection induced both thymidine kinase activity and host cell DNA synthesis in irradiated cells. In addition, virus could be recovered from HFF exposed to radiation 0-2 days after infection with HCMV. These studies indicate that the damage to cells by gamma irradiation does not alter the capacity of host cells to support HCMV replication

  8. Proteomic profile of mouse fibroblasts exposed to pure magnesium extract.

    Science.gov (United States)

    Zhen, Zhen; Luthringer, Bérengère; Yang, Li; Xi, Tingfei; Zheng, Yufeng; Feyerabend, Frank; Willumeit, Regine; Lai, Chen; Ge, Zigang

    2016-12-01

    Magnesium and its alloys gain wide attention as degradable biomaterials. In order to reveal the molecular mechanism of the influence of biodegradable magnesium on cells, proteomics analysis was performed in this work. After mouse fibroblasts (L929) were cultured with or without Mg degradation products (Mg-extract) for 8, 24, and 48h, changes in protein expression profiles were obtained using isobaric tags for relative and absolute quantitation (iTRAQ) coupled two dimensional liquid chromatography-tandem mass spectrometry (2D LC MS/MS). A total of 867 proteins were identified (relying on at least two peptides). Compared to the control group, 205, 282, and 217 regulated proteins were identified at 8, 24, and 48h, respectively. 65 common proteins were up or down- regulated within all the three time points, which were involved in various physiological and metabolic activities. Consistent with viability, proliferation, and cell cycle analysis, stimulated energy metabolism as well as protein synthesis pathways were discussed, indicating a possible effect of Mg-extract on L929 proliferation. Furthermore, endocytosis and focal adhesion processes were also discussed. This proteomics study uncovers early cellular mechanisms triggered by Mg degradation products and highlights the cytocompatibility of biodegradable metallic materials for biomedical applications such as stents or orthopaedic implants. Copyright © 2016. Published by Elsevier B.V.

  9. Interactive Effect of Salicylic Acid on Some Physiological Features and Antioxidant Enzymes Activity in Ginger (Zingiber officinale Roscoe

    Directory of Open Access Journals (Sweden)

    Hawa Z. E. Jaafar

    2013-05-01

    Full Text Available The effect of foliar salicylic acid (SA applications (10−3 and 10−5 M on activities of nitrate reductase, guaiacol peroxidase (POD, superoxide dismutases (SOD, catalase (CAT and proline enzymes and physiological parameters was evaluated in two ginger varieties (Halia Bentong and Halia Bara under greenhouse conditions. In both varieties, tested treatments generally enhanced photosynthetic rate and total dry weight. Photosynthetic rate increases were generally accompanied by increased or unchanged stomatal conductance levels, although intercellular CO2 concentrations of treated plants were typically lower than in controls. Lower SA concentrations were generally more effective in enhancing photosynthetic rate and plant growth. Exogenous application of SA increased antioxidant enzyme activities and proline content; the greatest responses were obtained in plants sprayed with 10–5 M SA, with significant increases observed in CAT (20.1%, POD (45.2%, SOD (44.1% and proline (43.1% activities. Increased CAT activity in leaves is naturally expected to increase photosynthetic efficiency and thus net photosynthesis by maintaining a constant CO2 supply. Our results support the idea that low SA concentrations (10–5 M may induce nitrite reductase synthesis by mobilizing intracellular NO3− and can provide protection to nitrite reductase degradation in vivo in the absence of NO3–. Observed positive correlations among proline, SOD, CAT and POD activities in the studied varieties suggest that increased SOD activity was accompanied by increases in CAT and POD activities because of the high demands of H2O2 quenching.

  10. PKCδ inhibition normalizes the wound-healing capacity of diabetic human fibroblasts.

    Science.gov (United States)

    Khamaisi, Mogher; Katagiri, Sayaka; Keenan, Hillary; Park, Kyoungmin; Maeda, Yasutaka; Li, Qian; Qi, Weier; Thomou, Thomas; Eschuk, Danielle; Tellechea, Ana; Veves, Aris; Huang, Chenyu; Orgill, Dennis Paul; Wagers, Amy; King, George L

    2016-03-01

    Abnormal fibroblast function underlies poor wound healing in patients with diabetes; however, the mechanisms that impair wound healing are poorly defined. Here, we evaluated fibroblasts from individuals who had type 1 diabetes (T1D) for 50 years or more (Medalists, n = 26) and from age-matched controls (n = 7). Compared with those from controls, Medalist fibroblasts demonstrated a reduced migration response to insulin, lower VEGF expression, and less phosphorylated AKT (p-AKT), but not p-ERK, activation. Medalist fibroblasts were also functionally less effective at wound closure in nude mice. Activation of the δ isoform of protein kinase C (PKCδ) was increased in postmortem fibroblasts from Medalists, fibroblasts from living T1D subjects, biopsies of active wounds of living T1D subjects, and granulation tissues from mice with streptozotocin-induced diabetes. Diabetes-induced PKCD mRNA expression was related to a 2-fold increase in the mRNA half-life. Pharmacologic inhibition and siRNA-mediated knockdown of PKCδ or expression of a dominant-negative isoform restored insulin signaling of p-AKT and VEGF expression in vitro and improved wound healing in vivo. Additionally, increasing PKCδ expression in control fibroblasts produced the same abnormalities as those seen in Medalist fibroblasts. Our results indicate that persistent PKCδ elevation in fibroblasts from diabetic patients inhibits insulin signaling and function to impair wound healing and suggest PKCδ inhibition as a potential therapy to improve wound healing in diabetic patients.

  11. Extracellular matrix metalloproteinase inducer (EMMPRIN) expression correlates positively with active angiogenesis and negatively with basic fibroblast growth factor expression in epithelial ovarian cancer.

    Science.gov (United States)

    Szubert, Sebastian; Szpurek, Dariusz; Moszynski, Rafal; Nowicki, Michal; Frankowski, Andrzej; Sajdak, Stefan; Michalak, Slawomir

    2014-03-01

    The primary aim of this paper was to evaluate the expression of extracellular matrix metalloproteinase inducer (EMMPRIN) and its relationship with proangiogenic factors and microvessel density (MVD) in ovarian cancer. The study group included 58 epithelial ovarian cancers (EOCs), 35 benign ovarian tumors, and 21 normal ovaries. The expression of EMMPRIN, vascular endothelial growth factor (VEGF), and basic fibroblast growth factor (bFGF) was assessed by ELISA of tissue homogenates. Antibodies against CD105, CD31, and CD34 were used to immunohistochemically assess MVD. We have found significantly higher EMMPRIN expression in EOC than in benign ovarian tumors and normal ovaries. Similarly, the VEGF expression was higher in EOC than in benign ovarian tumors and normal ovaries. By contrast, bFGF expression was lower in EOC than in benign ovarian tumors and ovary samples. EMMPRIN expression in EOC was directly correlated with VEGF expression and CD105-MVD, but inversely correlated with bFGF expression. Grade 2/3 ovarian cancers had increased expression of EMMPRIN and VEGF, increased CD105-MVD, and lowered expression of bFGF compared to grade 1 ovarian cancers. Moreover, EMMPRIN expression was higher in advanced (FIGO III and IV) ovarian cancer. The upregulation of EMMPRIN and VEGF expression is correlated with increased CD105-MVD and silenced bFGF, which suggests early and/or reactivated angiogenesis in ovarian cancer. Aggressive EOC is characterized by the following: high expression of EMMPRIN and VEGF, high CD105-MVD, and low expression of bFGF.

  12. Molecular simulation of receptors of physiologically active compounds for purposes of medical chemistry

    Science.gov (United States)

    Baskin, Igor I.; Palyulin, Vladimir A.; Zefirov, Nikolai S.

    2009-06-01

    The general strategy of the molecular simulation of biological receptors and their interaction with ligands is considered. The procedures for construction of 3D protein models, molecular docking, evaluation of model quality, determination of the free energy of protein binding with ligands are discussed. The methods of molecular design of new medicaments based on molecular models of biological targets: virtual screening and de novo design, are presented. Examples of the above-listed approaches for the simulation of a number of pharmacologically significant receptors, analysis of receptor-ligand interactions and design of new biologically active organic compounds are given.

  13. Molecular simulation of receptors of physiologically active compounds for purposes of medical chemistry

    International Nuclear Information System (INIS)

    Baskin, Igor I; Palyulin, Vladimir A; Zefirov, Nikolai S

    2009-01-01

    The general strategy of the molecular simulation of biological receptors and their interaction with ligands is considered. The procedures for construction of 3D protein models, molecular docking, evaluation of model quality, determination of the free energy of protein binding with ligands are discussed. The methods of molecular design of new medicaments based on molecular models of biological targets: virtual screening and de novo design, are presented. Examples of the above-listed approaches for the simulation of a number of pharmacologically significant receptors, analysis of receptor-ligand interactions and design of new biologically active organic compounds are given.

  14. Molecular simulation of receptors of physiologically active compounds for purposes of medical chemistry

    Energy Technology Data Exchange (ETDEWEB)

    Baskin, Igor I; Palyulin, Vladimir A; Zefirov, Nikolai S [Department of Chemistry, M.V. Lomonosov Moscow State University, Moscow (Russian Federation)

    2009-06-30

    The general strategy of the molecular simulation of biological receptors and their interaction with ligands is considered. The procedures for construction of 3D protein models, molecular docking, evaluation of model quality, determination of the free energy of protein binding with ligands are discussed. The methods of molecular design of new medicaments based on molecular models of biological targets: virtual screening and de novo design, are presented. Examples of the above-listed approaches for the simulation of a number of pharmacologically significant receptors, analysis of receptor-ligand interactions and design of new biologically active organic compounds are given.

  15. Soil microbial activity, mycelial lengths and physiological groups of bacteria in a heavy metal polluted area

    Energy Technology Data Exchange (ETDEWEB)

    Nordgren, A; Kauri, T; Baeaeth, E; Soederstroem, B

    1986-01-01

    The biological effects of heavy metal contamination of coniferous forest soils were studied in the A/sub 01//A/sub 02/ layer around a primary smelter in Northern Sweden. Soil concentrations of 17 elements were determined. Smelter-emitted heavy metals were 5 to 75 times higher in the plot closest to the smelter compared with background levels. Despite emission of sulfur no decrease in pH was found. Bacteria producing acid from maltose, cellobiose, arabinose or xylose and bacteria hydrolyzing starch, pectin, xyland or cellulose decreased 8- to 11-fold due to the soil contamination. Chitin hydrolyzers were 5 times less abundant at the most polluted site compared with background levels. Soil respiration rate and urease activity decreased by about a factor of 4, but phosphatase activity and mycelial lengths were unaffected by the soil contamination. Soil bacteria showed a sigmoidal response to the log of metal concentration in the soil and were affected at a lower pollution level than the other biological variables in the study. A multivariate analysis (partial least squares) showed that soil metal contamination and soil pH were the two environmental factors influencing the soil microorganisms.

  16. Physiological relation between respiration activity and heterologous expression of selected benzoylformate decarboxylase variants in Escherichia coli

    Directory of Open Access Journals (Sweden)

    Pohl Martina

    2010-10-01

    Full Text Available Abstract Background The benzoylformate decarboxylase (BFD from Pseudomonas putida is a biotechnologically interesting biocatalyst. It catalyses the formation of chiral 2-hydroxy ketones, which are important building blocks for stereoselective syntheses. To optimise the enzyme function often the amino acid composition is modified to improve the performance of the enzyme. So far it was assumed that a relatively small modification of the amino acid composition of a protein does not significantly influence the level of expression or media requirements. To determine, which effects these modifications might have on cultivation and product formation, six different BFD-variants with one or two altered amino acids and the wild type BFD were expressed in Escherichia coli SG13009 pKK233-2. The oxygen transfer rate (OTR as parameter for growth and metabolic activity of the different E. coli clones was monitored on-line in LB, TB and modified PanG mineral medium with the Respiratory Activity MOnitoring System (RAMOS. Results Although the E. coli clones were genetically nearly identical, the kinetics of their metabolic activity surprisingly differed in the standard media applied. Three different types of OTR curves could be distinguished. Whereas the first type (clones expressing Leu476Pro-Ser181Thr or Leu476Pro had typical OTR curves, the second type (clones expressing the wild type BFD, Ser181Thr or His281Ala showed an early drop of OTR in LB and TB medium and a drastically reduced maximum OTR in modified PanG mineral medium. The third type (clone expressing Leu476Gln behaved variable. Depending on the cultivation conditions, its OTR curve was similar to the first or the second type. It was shown, that the kinetics of the metabolic activity of the first type depended on the concentration of thiamine, which is a cofactor of BFD, in the medium. It was demonstrated that the cofactor binding strength of the different BFD-variants correlated with the differences

  17. Matrix metalloproteinase content and activity in low-platelet, low-leukocyte and high-platelet, high-leukocyte platelet rich plasma (PRP) and the biologic response to PRP by human ligament fibroblasts.

    Science.gov (United States)

    Pifer, Matthew A; Maerz, Tristan; Baker, Kevin C; Anderson, Kyle

    2014-05-01

    Recent work has shown the presence of catabolic cytokines in platelet-rich plasma (PRP), but little is known about endogenous catabolic proteases such as matrix metalloproteinases (MMPs). Hypothesis/ To quantify MMP content in 2 commercially available PRP preparation systems: Arthrex Double Syringe System autologous conditioned plasma (ACP) and Biomet GPS (GPS). The hypothesis was that MMPs are actively secreted from PRP immediately after preparation. Controlled laboratory study. PRP was prepared using either ACP (low platelet, low leukocyte) or GPS (high platelet, high leukocyte). MMP-2, MMP-3, and MMP-9 concentrations were measured using multiplex enzyme-linked immunosorbent assays for up to 6 days in 2 donors, and MMP activity was measured in 3 donors using kinetic activity kits able to detect the enzymatic cleavage of a fluorogenic peptide. Human ligament fibroblasts were cultured and exposed to both ACP and GPS from 1 donor each. MMP-2, -3, and -9 concentrations were assayed in culture media at 24 and 48 hours after exposure. GPS exhibited higher total MMP-2, -3, and -9 concentrations for up to 144 hours of release, while ACP had higher platelet-normalized MMP-2 and MMP-3 concentrations. GPS had significantly higher total and endogenous MMP-2 activity (P = .004 and .014, respectively), MMP-3 activity (P = .020 and .015, respectively), and MMP-9 activity (P = .004 and .002, respectively) compared with ACP. Once normalized to platelet count, differences in MMP activity were not significant between ACP and GPS. Compared with controls, cells stimulated with interleukin-1 beta (IL-1β) and treated with ACP showed significantly higher fold changes of MMP-2 (P = .001) and MMP-3 (P = .003) concentrations at 24 hours than did cells treated with GPS. Total MMP-9 content was higher in the media of GPS-treated, IL-1β-stimulated cells compared with ACP-treated cells (P = .001). At 48 hours, IL-1β-stimulated cells treated with GPS exhibited higher fold changes of MMP-2

  18. Neuropeptide substance P stimulates the formation of osteoclasts via synovial fibroblastic cells

    International Nuclear Information System (INIS)

    Matayoshi, Takaaki; Goto, Tetsuya; Fukuhara, Eiji; Takano, Hiroshi; Kobayashi, Shigeru; Takahashi, Tetsu

    2005-01-01

    The present study was designed to evaluate the effects of neuropeptide substance P (Sp) on the formation of osteoclasts via synovial fibroblastic cells. Synovial fibroblastic cells derived from rat knee joint expressed the Sp receptor, neurokinin-1 receptor (NK 1 -R). The addition of Sp stimulated the proliferation of synovial fibroblastic cells and this effect was inhibited by Sp or NK 1 -R antagonists. Increased expression of the receptor activator of nuclear factor κB ligand (Rankle) in synovial fibroblastic cells after the addition of Sp was demonstrated by reverse transcriptase-polymerase chain reaction and immunofluorescence staining. Osteoprotegerin expression in synovial fibroblastic cells was decreased after incubation with SP. In co-cultures of synovial fibroblastic cells and rat peripheral blood monocytes, SP stimulated osteoclastogenesis. These results suggest that SP in the joint cavity may cause both hypertrophy of the synovium and induction of increased osteoclast formation through the increased expression of RANKL in the synovium

  19. Activity Profiles and Physiological Responses of Representative Tag Football Players in Relation to Playing Position and Physical Fitness

    Science.gov (United States)

    2015-01-01

    This study determined the physical fitness, match-activity profiles and physiological responses of representative tag football players and examined the relationship between physical fitness and the match-activity profile. Microtechnology devices and heart rate (HR) chest straps were used to determine the match-activity profiles of sixteen tag football players for five matches during the 2014 Australian National Championships. The relationships between lower body muscular power, straight line running speed and Yo-Yo intermittent recovery test level 2 (Yo-Yo IR2) and the match-activity profile were examined using Pearson’s correlation coefficients. Outside players had greater lower body muscular power (ES = 0.98) and straight line running speed (ES = 1.03–1.18) than inside players, and also covered greater very high-speed running (VHSR) distance/min (ES = 0.67) and reached higher peak running speeds (ES = 0.95) during matches. Inside and outside players performed a similar number of repeated high-intensity effort (RHIE) bouts and reported similar mean and maximum efforts per RHIE bout. However, there were differences between playing positions for mean and maximal RHIE effort durations (ES = 0.69–1.15) and mean RHIE bout recovery (ES = 0.56). Inside and outside players also reported small to moderate differences (ES = 0.43–0.80) for times spent in each HR zone. There were a number of moderate to very large correlations between physical fitness measures and match-activity profile variables. This study found lower body muscular power, straight line running speed and Yo-Yo IR2 to be related to the match-activities of representative tag football players, although differences between inside and outside players suggest that athlete testing and training practices should be modified for different playing positions. PMID:26642320

  20. FEATURES OF PHYSIOLOGICAL AND PHOTOSYNTHETIC ACTIVITY OF MAIZE PLANTS AT USING NON-TRADITIONAL ORGANIC FERTILIZERS

    Directory of Open Access Journals (Sweden)

    A. Kojuhov

    2012-07-01

    Full Text Available The use of fertilizers in cultivation of crops is an objective necessity. However, their use has a negative impact on environment and especially on the soil polluting it with heavy metals. Organic fertilizers can significantly improve physical and chemical soil properties and increase its fertility. In connection with deficiency of manure particular interest represents using of waste as non-conventional fertilizers, in particular waste of alcohol production. Using of high-dose alcohol stillage stronger growth processes and number of leaves, which leads to an increase of maize photosynthetic activity and productivity. Maximum formation of green mass was observed in variant with a dose of making alcohol stillage 40 m3/ha during vegetation.

  1. Physiological consequences of transient outward K(+) current activation during heart failure in the canine left ventricle

    DEFF Research Database (Denmark)

    Cordeiro, Jonathan M; Callø, Kirstine; Moise, N Sydney

    2012-01-01

    .7±1.4pA/pF after 5weeks, +50mV). Current decay as well as recovery of I(to) from inactivation progressively slowed with the development of heart failure. Reduction of I(to) density was paralleled by a reduction in phase 1 magnitude, epicardial action potential notch and J wave amplitude recorded from......Background: Remodeling of ion channel expression is well established in heart failure (HF). We determined the extent to which I(to) is reduced in tachypacing-induced HF and assessed the ability of an I(to) activator (NS5806) to recover this current. Method and results: Whole-cell patch clamp...

  2. Mini Review: Basic Physiology and Factors Influencing Exogenous Enzymes Activity in the Porcine Gastrointestinal Tract

    DEFF Research Database (Denmark)

    Strube, Mikael Lenz; Meyer, Anne S.; Boye, Mette

    2013-01-01

    activity during intestinal transit are few, it is known that the enzymes, being protein molecules, can be negatively affected by the gastrointestinal proteolytic enzymes and the low pH in the stomach ventricle. In this review, the pH-values, endogenous proteases and other factors native to the digestive......The addition of exogenous enzymes to pig feed is used to enhance general nutrient availability and thus increase daily weight gain per feed unit. The enzymes used are mainly beta-glucanase (EC 3.2.1.4) and xylanase (EC 3.2.1.8) and phytase (EC 3.1.3.8). Although in vivo data assessing feed enzyme...... tract of the adult pig and the piglet are discussed in relation to the stability of exogenous feed enzymes. Development of more consistent assessment methods which acknowledge such factors is warranted both in vitro and in vivo for proper evaluation and prediction of the efficiency of exogenous enzymes...

  3. Protective Effects of Chlorella-Derived Peptide Against UVC-Induced Cytotoxicity through Inhibition of Caspase-3 Activity and Reduction of the Expression of Phosphorylated FADD and Cleaved PARP-1 in Skin Fibroblasts

    Directory of Open Access Journals (Sweden)

    Jong Yuh Cherng

    2012-08-01

    Full Text Available UVC irradiation induces oxidative stress and leads to cell death through an apoptotic pathway. This apoptosis is caused by activation of caspase-3 and formation of poly(ADP-ribose polymerase-1 (PARP-1. In this study, the underlying mechanisms of Chlorella derived peptide (CDP activity against UVC-induced cytotoxicity were investigated. Human skin fibroblasts were treated with CDP, vitamin C, or vitamin E after UVC irradiation for a total energy of 15 J/cm2. After the UVC exposure, cell proliferation and caspase-3 activity were measured at 12, 24, 48, and 72 h later. Expression of phosphorylated FADD and cleaved PARP-1 were measured 16 h later. DNA damage (expressed as pyrimidine (6-4 pyrimidone photoproducts DNA concentration and fragmentation assay were performed 24 h after the UVC exposure. Results showed that UVC irradiation induced cytotoxicity in all groups except those treated with CDP. The caspase-3 activity in CDP-treated cells was inhibited from 12 h onward. Expression of phosphorylated FADD and cleaved PARP-1 were also reduced in CDP-treated cells. Moreover, UVC-induced DNA damage and fragmentation were also prevented by the CDP treatment. This study shows that treatment of CDP provides protective effects against UVC-induced cytotoxicity through the inhibition of caspase-3 activity and the reduction of phosphorylated FADD and cleaved PARP-1 expression.

  4. Effect of low dose {gamma} radiation on the dormancy breaking and physiological activity of 'Dejima' seed potato

    Energy Technology Data Exchange (ETDEWEB)

    Kim, J. S.; Kim, D. H.; Baek, M. H.; Lee, Y. K. [KAERI, Taejon (Korea, Republic of); Lee, Y. B. [Chungnam National Univ., Taejon (Korea, Republic of)

    2001-05-01

    To observe the stimulating effects of low dose {gamma}-radiation on the dormancy breaking and physiological activity, potato (Solanum tuberosum L. cv. Dejima) were irradiated at the dose of 0.5 {approx} 30 Gy. Low dose {gamma}-radiation had promoting effects on the srouting rate the optimum dose of 1 Gy and 2 Gy and on the sprout length at the optimum dose of 2 Gy and 4 Gy. In case of number of sprouts, there were increased in all of the low dose irradiation groups and period storages, which showed very significant promoting effects at 4,8,16 Gy of 15 DAP. The field growth of 45 DAP were increased at all of the low dose irradiation group, which particularly were very significant promoting effect at 4 Gy irradiation group. Irradiation didn't have significant effects on the antioxidant enzyme activity of potato plantlet, but the peroxidase activity of 45 DAP plantlet increased at 4 Gy irradiation group.

  5. A pilot randomized control trial investigating the effect of mindfulness practice on pain tolerance, psychological well-being, and physiological activity

    DEFF Research Database (Denmark)

    Kingston, Jessica; Chadwick, Paul; Meron, Daniel

    2007-01-01

    Objective: To investigate the effect of mindfulness training on pain tolerance, psychological well-being, physiological activity, and the acquisition of mindfulness skills. Methods: Forty-two asymptomatic University students participated in a randomized, single-blind, active control pilot study. ...

  6. Arachidonic acid metabolism in fibroblasts derived from canine myocardium

    International Nuclear Information System (INIS)

    Weber, D.R.; Prescott, S.M.

    1986-01-01

    Canine fibroblasts from normal or healing infarcted myocardium were grown in culture. The cells were morphologically indistinguishable, but the doubling time of cells from healing myocardium was 39.6 +/- 3.5 hr whereas that of normals was 24 +/- 3.7 (n=5, p 3 H]arachidonate (AA) into phospholipids. Calcium ionophore A23187 (10 μM) caused release and metabolism of [ 3 H] AA. A23187 or AA (10μM) induced production of 6-keto PGF1α, PGE2, and a hydroxy metabolite of AA. RIA of 6-keto PGF1α showed that subconfluent cells from healing myocardium produced 1202 +/- 354 pg/mg protein whereas that of normals was 551 +/- 222 (n=7, p 3 H]AA released but did not metabolize [ 3 H]AA. In coincubations, fibroblasts incorporated myocyte-derived AA. Subsequent stimulation of the fibroblasts with A23187 induced the synthesis of 6-keto PGF1α, PGE2 and a hydroxy metabolite. The fibroblast content of healing myocardium was 35-1000 times that of normal tissue (n=7). Thus even a moderate change in AA metabolism, amplified by the AA released from deteriorating myocytes, may be a significant physiologic or pathologic event

  7. Current evidence on physiological activity and expected health effects of kombucha fermented beverage.

    Science.gov (United States)

    Vīna, Ilmāra; Semjonovs, Pāvels; Linde, Raimonds; Deniņa, Ilze

    2014-02-01

    Consumption of kombucha fermented tea (KT) has always been associated with different health benefits. Many personal experiences and testimonials of KT drinkers are available throughout the world on the ability of KT to protect against a vast number of metabolic and infectious diseases, but very little scientific evidence is available that validates the beneficial effects of KT. The aim of this review is to give an overview of the recent studies in search of experimental confirmation of the numerous KT health-promoting aspects cited previously. Analysis of the literature data is carried out in correspondence to the recent concepts of health protection's requirements. Attention is given to the active compounds in KT, responsible for the particular effect, and to the mechanisms of their actions. It is shown that KT can efficiently act in health prophylaxis and recovery due to four main properties: detoxification, antioxidation, energizing potencies, and promotion of depressed immunity. The recent experimental studies on the consumption of KT suggest that it is suitable for prevention against broad-spectrum metabolic and infective disorders. This makes KT attractive as a fermented functional beverage for health prophylaxis.

  8. Physiological epidermal growth factor concentrations activate high affinity receptors to elicit calcium oscillations.

    Directory of Open Access Journals (Sweden)

    Béatrice Marquèze-Pouey

    Full Text Available Signaling mediated by the epidermal growth factor (EGF is crucial in tissue development, homeostasis and tumorigenesis. EGF is mitogenic at picomolar concentrations and is known to bind its receptor on high affinity binding sites depending of the oligomerization state of the receptor (monomer or dimer. In spite of these observations, the cellular response induced by EGF has been mainly characterized for nanomolar concentrations of the growth factor, and a clear definition of the cellular response to circulating (picomolar concentrations is still lacking. We investigated Ca2+ signaling, an early event in EGF responses, in response to picomolar doses in COS-7 cells where the monomer/dimer equilibrium is unaltered by the synthesis of exogenous EGFR. Using the fluo5F Ca2+ indicator, we found that picomolar concentrations of EGF induced in 50% of the cells a robust oscillatory Ca2+ signal quantitatively similar to the Ca2+ signal induced by nanomolar concentrations. However, responses to nanomolar and picomolar concentrations differed in their underlying mechanisms as the picomolar EGF response involved essentially plasma membrane Ca2+ channels that are not activated by internal Ca2+ store depletion, while the nanomolar EGF response involved internal Ca2+ release. Moreover, while the picomolar EGF response was modulated by charybdotoxin-sensitive K+ channels, the nanomolar response was insensitive to the blockade of these ion channels.

  9. Physiological epidermal growth factor concentrations activate high affinity receptors to elicit calcium oscillations.

    Science.gov (United States)

    Marquèze-Pouey, Béatrice; Mailfert, Sébastien; Rouger, Vincent; Goaillard, Jean-Marc; Marguet, Didier

    2014-01-01

    Signaling mediated by the epidermal growth factor (EGF) is crucial in tissue development, homeostasis and tumorigenesis. EGF is mitogenic at picomolar concentrations and is known to bind its receptor on high affinity binding sites depending of the oligomerization state of the receptor (monomer or dimer). In spite of these observations, the cellular response induced by EGF has been mainly characterized for nanomolar concentrations of the growth factor, and a clear definition of the cellular response to circulating (picomolar) concentrations is still lacking. We investigated Ca2+ signaling, an early event in EGF responses, in response to picomolar doses in COS-7 cells where the monomer/dimer equilibrium is unaltered by the synthesis of exogenous EGFR. Using the fluo5F Ca2+ indicator, we found that picomolar concentrations of EGF induced in 50% of the cells a robust oscillatory Ca2+ signal quantitatively similar to the Ca2+ signal induced by nanomolar concentrations. However, responses to nanomolar and picomolar concentrations differed in their underlying mechanisms as the picomolar EGF response involved essentially plasma membrane Ca2+ channels that are not activated by internal Ca2+ store depletion, while the nanomolar EGF response involved internal Ca2+ release. Moreover, while the picomolar EGF response was modulated by charybdotoxin-sensitive K+ channels, the nanomolar response was insensitive to the blockade of these ion channels.

  10. Extracorporal Shock Waves Activate Migration, Proliferation and Inflammatory Pathways in Fibroblasts and Keratinocytes, and Improve Wound Healing in an Open-Label, Single-Arm Study in Patients with Therapy-Refractory Chronic Leg Ulcers.

    Science.gov (United States)

    Aschermann, Ilknur; Noor, Seema; Venturelli, Sascha; Sinnberg, Tobias; Mnich, Christian D; Busch, Christian

    2017-01-01

    Chronic leg ulcers (CLUs) are globally a major cause of morbidity and mortality with increasing prevalence. Their treatment is highly challenging, and many conservative, surgical or advanced therapies have been suggested, but with little overall efficacy. Since the 1980s extracorporal shock wave therapy (ESWT) has gained interest as treatment for specific indications. Here, we report that patients with CLU showed wound healing after ESWT and investigated the underlying molecular mechanisms. We performed cell proliferation and migration assays, FACS- and Western blot analyses, RT-PCR, and Affymetrix gene expression analyses on human keratinocytes and fibroblasts, and a tube formation assay on human microvascular endothelial cells to assess the impact of shock waves in vitro. In vivo, chronic therapy-refractory leg ulcers were treated with ESWT, and wound healing was assessed. Upon ESWT, we observed morphological changes and increased cell migration of keratinocytes. Cell-cycle regulatory genes were upregulated, and proliferation induced in fibroblasts. This was accompanied by secretion of pro-inflammatory cytokines from keratinocytes, which are known to drive wound healing, and a pro-angiogenic activity of endothelial cells. These observations were transferred "from bench to bedside", and 60 consecutive patients with 75 CLUs with different pathophysiologies (e.g. venous, mixed arterial-venous, arterial) were treated with ESWT. In this setting, 41% of ESWT-treated CLUs showed complete healing, 16% significant improvement, 35% improvement, and 8% of the ulcers did not respond to ESWT. The induction of healing was independent of patient age, duration or size of the ulcer, and the underlying pathophysiology. The efficacy of ESWT needs to be confirmed in controlled trials to implement ESWT as an adjunct to standard therapy or as a stand-alone treatment. Our results suggest that EWST may advance the treatment of chronic, therapy-refractory ulcers. © 2017 The Author

  11. Extracorporal Shock Waves Activate Migration, Proliferation and Inflammatory Pathways in Fibroblasts and Keratinocytes, and Improve Wound Healing in an Open-Label, Single-Arm Study in Patients with Therapy-Refractory Chronic Leg Ulcers

    Directory of Open Access Journals (Sweden)

    Ilknur Aschermann

    2017-02-01

    Full Text Available Background/Aims: Chronic leg ulcers (CLUs are globally a major cause of morbidity and mortality with increasing prevalence. Their treatment is highly challenging, and many conservative, surgical or advanced therapies have been suggested, but with little overall efficacy. Since the 1980s extracorporal shock wave therapy (ESWT has gained interest as treatment for specific indications. Here, we report that patients with CLU showed wound healing after ESWT and investigated the underlying molecular mechanisms. Methods: We performed cell proliferation and migration assays, FACS- and Western blot analyses, RT-PCR, and Affymetrix gene expression analyses on human keratinocytes and fibroblasts, and a tube formation assay on human microvascular endothelial cells to assess the impact of shock waves in vitro. In vivo, chronic therapy-refractory leg ulcers were treated with ESWT, and wound healing was assessed. Results: Upon ESWT, we observed morphological changes and increased cell migration of keratinocytes. Cell-cycle regulatory genes were upregulated, and proliferation induced in fibroblasts. This was accompanied by secretion of pro-inflammatory cytokines from keratinocytes, which are known to drive wound healing, and a pro-angiogenic activity of endothelial cells. These observations were transferred “from bench to bedside”, and 60 consecutive patients with 75 CLUs with different pathophysiologies (e.g. venous, mixed arterial-venous, arterial were treated with ESWT. In this setting, 41% of ESWT-treated CLUs showed complete healing, 16% significant improvement, 35% improvement, and 8% of the ulcers did not respond to ESWT. The induction of healing was independent of patient age, duration or size of the ulcer, and the underlying pathophysiology. Conclusions: The efficacy of ESWT needs to be confirmed in controlled trials to implement ESWT as an adjunct to standard therapy or as a stand-alone treatment. Our results suggest that EWST may advance the

  12. Membrane associated ion transport enzymes in normal and transformed fibroblasts and epithelial cells

    International Nuclear Information System (INIS)

    Borek, C.

    1982-01-01

    In an effort to evaluate membrane changes associated with neoplastic transformation of fibroblasts and epithelial cells by radiation and chemicals, alterations in membrane-associated (Na + + K + )-ATPase and 5'-nucleotidase activities were investigated. Cell cultures consisted of normal and radiation transformed hamster embryo fibroblasts (HE) and mouse C3H 10T 1/2 fibroblasts, normal and chemically transformed adult rat liver epithelial cells (ARL), as well as hepatocarcinoma cells induced by the liver transformants. Transformed fibroblasts demonstrated a 1-2 fold increase in (Na + + K + )-ATPase activity over the normal, while the transformed liver epithelial cells and carcinoma cells showed a 60% and 40% decrease in activity compared to the normal values, respectively. The 5'-nucleotidase activity was 2 to 3 times higher in the transformed fibroblasts

  13. Controlled delivery of fibroblast growth factor-1 and neuregulin-1 from biodegradable microparticles promotes cardiac repair in a rat myocardial infarction model through activation of endogenous regeneration.

    Science.gov (United States)

    Formiga, Fabio R; Pelacho, Beatriz; Garbayo, Elisa; Imbuluzqueta, Izaskun; Díaz-Herráez, Paula; Abizanda, Gloria; Gavira, Juan J; Simón-Yarza, Teresa; Albiasu, Edurne; Tamayo, Esther; Prósper, Felipe; Blanco-Prieto, Maria J

    2014-01-10

    Acidic fibroblast growth factor (FGF1) and neuregulin-1 (NRG1) are growth factors involved in cardiac development and regeneration. Microparticles (MPs) mediate cytokine sustained release, and can be utilized to overcome issues related to the limited therapeutic protein stability during systemic administration. We sought to examine whether the administration of microparticles (MPs) containing FGF1 and NRG1 could promote cardiac regeneration in a myocardial infarction (MI) rat model. We investigated the possible underlying mechanisms contributing to the beneficial effects of this therapy, especially those linked to endogenous regeneration. FGF1- and NRG1-loaded MPs were prepared using a multiple emulsion solvent evaporation technique. Seventy-three female Sprague-Dawley rats underwent permanent left anterior descending coronary artery occlusion, and MPs were intramyocardially injected in the peri-infarcted zone four days later. Cardiac function, heart tissue remodeling, revascularization, apoptosis, cardiomyocyte proliferation, and stem cell homing were evaluated one week and three months after treatment. MPs were shown to efficiently encapsulate FGF1 and NRG1, releasing the bioactive proteins in a sustained manner. Three months after treatment, a statistically significant improvement in cardiac function was detected in rats treated with growth factor-loaded MPs (FGF1, NRG1, or FGF1/NRG1). The therapy led to inhibition of cardiac remodeling with smaller infarct size, a lower fibrosis degree and induction of tissue revascularization. Cardiomyocyte proliferation and progenitor cell recruitment were detected. Our data support the therapeutic benefit of NRG1 and FGF1 when combined with protein delivery systems for cardiac regeneration. This approach could be scaled up for use in pre-clinical and clinical studies. © 2013.

  14. The effect of space microgravity on the physiological activity of mammalian resident cardiac stem cells

    Science.gov (United States)

    Belostotskaya, Galina; Zakharov, Eugeny

    Prolonged exposure to weightlessness during space flights is known to cause depression of heart function in mammals. The decrease in heart weight and its remodeling under the influence of prolonged weightlessness (or space microgravity) is assumed to be due to both morphological changes of working cardiomyocytes and their progressive loss, as well as to possible depletion of resident cardiac stem cells (CSCs) population, or their inability to self-renewal and regeneration of muscle tissue under conditions of weightlessness. We have previously shown that the presence of different maturity clones formed by resident CSCs not only in culture but also in the mammalian myocardium can be used as an indicator of the regenerative activity of myocardial cells [Belostotskaya, et al., 2013: 2014]. In this study, we were interested to investigate whether the 30-day near-Earth space flight on the spacecraft BION-M1 affects the regenerative potential of resident CSCs. Immediately after landing of the spacecraft, we had examined the presence of resident c-kit+, Sca-1+ and Isl1+ CSCs and their development in suspension of freshly isolated myocardial cells of C57BL mice in comparison to controls. Cardiac cell suspension was obtained by enzymatic digestion of the heart [Belostotskaya and Golovanova, 2014]. Immunocytochemically stained preparations of fixed cells were analyzed with confocal microscope Leica TCS SP5 (Germany) in the Resource Center of St-Petersburg State University. CSCs were labeled with appropriate antibodies. CSCs differentiation into mature cardiomyocytes was verified using antibodies to Sarcomeric α-Actinin and Cardiac Troponin T. Antibodies to Connexin43 were used to detect cell-cell contacts. All antibodies were conjugated with Alexa fluorochromes (488, 532, 546, 568, 594 and/or 647 nm), according to Zenon-technology (Invitrogen). It has been shown that, under identical conditions of cell isolation, more complete digestion of heart muscle was observed in

  15. Regulation of Hepatic Stellate Cells and Fibrogenesis by Fibroblast Growth Factors

    Directory of Open Access Journals (Sweden)

    Justin D. Schumacher

    2016-01-01

    Full Text Available Fibroblast growth factors (FGFs are a family of growth factors critically involved in developmental, physiological, and pathological processes, including embryogenesis, angiogenesis, wound healing, and endocrine functions. In the liver, several FGFs are produced basally by hepatocytes and hepatic stellate cells (HSCs. Upon insult to the liver, expression of FGFs in HSCs is greatly upregulated, stimulating hepatocyte regeneration and growth. Various FGF isoforms have also been shown to directly induce HSC proliferation and activation thereby enabling autocrine and paracrine regulation of HSC function. Regulation of HSCs by the endocrine FGFs, namely, FGF15/19 and FGF21, has also recently been identified. With the ability to modulate HSC proliferation and transdifferentiation, targeting FGF signaling pathways constitutes a promising new therapeutic strategy to treat hepatic fibrosis.

  16. Microprobe analysis of human fibroblasts

    International Nuclear Information System (INIS)

    Allan, G.L.; Zhu, J.; Legge, G.J.F.

    1985-01-01

    The Melbourne Proton Microprobe has been used to study the copper content in human skin fibroblast cells derived from patients with the genetic disease Menkes Syndrome. Both normal and diseased cells have been studied to investigate any elemental differences occurring between the two cell types. This paper details the preparatory techniques necessary for individual cell analysis and presents the elemental information with a new three dimensional contour mapping technique. These maps are used to highlight elemental differences between normal and mutant fibroblasts. The work also confirms the expected copper excess found in the Menkes cell and indicates that the microprobe can be used for rapid identification of a Menkes carrier

  17. Coupling of cytoskeleton functions for fibroblast locomotion

    DEFF Research Database (Denmark)

    Couchman, J R; Lenn, M; Rees, D A

    1985-01-01

    caused visible protrusions in projected positions at the leading edge. We conclude that fibroblast locomotion may be driven coordinately by a common set of motility mechanisms and that this coordination may be lost as a result of physical or pharmacological disturbance. Taking our evidence with results...... from other Laboratories, we propose the following cytoskeleton functions. (i) Protrusive activity, probably based on solation--gelation cycles of the actin based cytoskeleton and membrane recycling which provides cellular and membrane components for streaming through the cell body to the leading edge...

  18. Does improved decision-making ability reduce the physiological demands of game-based activities in field sport athletes?

    Science.gov (United States)

    Gabbett, Tim J; Carius, Josh; Mulvey, Mike

    2008-11-01

    This study investigated the effects of video-based perceptual training on pattern recognition and pattern prediction ability in elite field sport athletes and determined whether enhanced perceptual skills influenced the physiological demands of game-based activities. Sixteen elite women soccer players (mean +/- SD age, 18.3 +/- 2.8 years) were allocated to either a video-based perceptual training group (N = 8) or a control group (N = 8). The video-based perceptual training group watched video footage of international women's soccer matches. Twelve training sessions, each 15 minutes in duration, were conducted during a 4-week period. Players performed assessments of speed (5-, 10-, and 20-m sprint), repeated-sprint ability (6 x 20-m sprints, with active recovery on a 15-second cycle), estimated maximal aerobic power (V O2 max, multistage fitness test), and a game-specific video-based perceptual test of pattern recognition and pattern prediction before and after the 4 weeks of video-based perceptual training. The on-field assessments included time-motion analysis completed on all players during a standardized 45-minute small-sided training game, and assessments of passing, shooting, and dribbling decision-making ability. No significant changes were detected in speed, repeated-sprint ability, or estimated V O2 max d