WorldWideScience

Sample records for fibrillar collagen matrices

  1. Penta-fibrillar assembly: A Building block collagen based materials

    Indian Academy of Sciences (India)

    There is a smartness in the way the penta-fibrils behave in collagen based biomaterials. It is one of the intriguing nano material with a size of about 4 nano meter diagonal size. There are several intermolecular forces that participate in the penta fibrillar assembly, which derive importance in smart behavior of collagen.

  2. Von Willebrand protein binds to extracellular matrices independently of collagen.

    OpenAIRE

    Wagner, D D; Urban-Pickering, M; Marder, V J

    1984-01-01

    Von Willebrand protein is present in the extracellular matrix of endothelial cells where it codistributes with fibronectin and types IV and V collagen. Bacterial collagenase digestion of endothelial cells removed fibrillar collagen, but the pattern of fibronectin and of von Willebrand protein remained undisturbed. Exogenous von Willebrand protein bound to matrices of different cells, whether rich or poor in collagen. von Willebrand protein also decorated the matrix of cells grown in the prese...

  3. PHAGOCYTOSIS AND REMODELING OF COLLAGEN MATRICES

    OpenAIRE

    Abraham, Leah C.; Dice, J Fred.; Lee, Kyongbum; Kaplan, David L.

    2007-01-01

    The biodegradation of collagen and the deposition of new collagen-based extracellular matrices are of central importance in tissue remodeling and function. Similarly, for collagen-based biomaterials used in tissue engineering, the degradation of collagen scaffolds with accompanying cellular infiltration and generation of new extracellular matrix is critical for integration of in vitro grown tissues in vivo. In earlier studies we observed significant impact of collagen structure on primary lun...

  4. Glycosaminoglycans and fibrillar collagen in Priapulida: a histo- and cytochemical study.

    Science.gov (United States)

    Welsch, U; Erlinger, R; Storch, V

    1992-12-01

    The distribution of glycosaminoglycans and fibrillar collagen was studied in various tissues of priapulids, which represent an ancient group of marine metazoa. Sulphated glycosaminoglycans, as demonstrated at the electron microscopical level by Cupromeronic blue, were predominantly found in the cuticle, in basement membranes and also in the narrow connective tissue space below epidermis and anterior intestine. On the basis of their morphology the Cupromeronic blue precipitates could be divided into several groups. Fibrillar collagen occurred in the connective tissue under the epidermis and the epithelium of the anterior intestine. The spatial interrelationship between fibrillar collagen and glycosaminoglycans lacked with some exceptions, the high regularity found in connective tissues of other invertebrates and of vertebrates. This might be related to the special skeletal system of priapulids, consisting mainly of a strong extracellular cuticle and the turgor of the fluid-filled body cavity. In such a system the usual supportive structures seem to be of less functional significance.

  5. Intracellular Calreticulin Regulates Multiple Steps in Fibrillar Collagen Expression, Trafficking, and Processing into the Extracellular Matrix*

    OpenAIRE

    Van Duyn Graham, Lauren; Sweetwyne, Mariya T.; Pallero, Manuel A.; Murphy-Ullrich, Joanne E.

    2009-01-01

    Calreticulin (CRT), a chaperone and Ca2+ regulator, enhances wound healing, and its expression correlates with fibrosis in animal models, suggesting that CRT regulates production of the extracellular matrix. However, direct regulation of collagen matrix by CRT has not been previously demonstrated. We investigated the role of CRT in the regulation of fibrillar collagen expression, secretion, processing, and deposition in the extracellular matrix by fibroblasts. Mouse embryonic fibroblasts defi...

  6. New Altered Non-Fibrillar Collagens in Human Dilated Cardiomyopathy: Role in the Remodeling Process.

    Directory of Open Access Journals (Sweden)

    Carolina Gil-Cayuela

    Full Text Available In dilated cardiomyopathy (DCM, cardiac failure is accompanied by profound alterations of extracellular matrix associated with the progression of cardiac dilation and left ventricular (LV dysfunction. Recently, we reported alterations of non-fibrillar collagen expression in ischemic cardiomyopathy linked to fibrosis and cardiac remodeling. We suspect that expression changes in genes coding for non-fibrillar collagens may have a potential role in DCM development.This study sought to analyze changes in the expression profile of non-fibrillar collagen genes in patients with DCM and to examine relationships between cardiac remodeling parameters and the expression levels of these genes.Twenty-three human left ventricle tissue samples were obtained from DCM patients (n = 13 undergoing heart transplantation and control donors (n = 10 for RNA sequencing analysis. We found increased mRNA levels of six non-fibrillar collagen genes, such as COL4A5, COL9A1, COL21A1, and COL23A1 (P < 0.05 for all, not previously described in DCM. Protein levels of COL8A1 and COL16A1 (P < 0.05 for both, were correspondingly increased. We also identified TGF-β1 significantly upregulated and related to both COL8A1 and COL16A1. Interestingly, we found a significant relationship between LV mass index and the gene expression level of COL8A1 (r = 0.653, P < 0.05.In our research, we identified new non-fibrillar collagens with altered expression in DCM, being COL8A1 overexpression directly related to LV mass index, suggesting that they may be involved in the progression of cardiac dilation and remodeling.

  7. Collagen-lactoferrin fibrillar coatings enhance osteoblast proliferation and differentiation

    Czech Academy of Sciences Publication Activity Database

    Vandrovcová, Marta; Douglas, T.E.L.; Heinemann, S.; Scharnweber, D.; Dubruel, P.; Bačáková, Lucie

    2015-01-01

    Roč. 103, č. 2 (2015), s. 525-533 ISSN 1549-3296 R&D Projects: GA ČR(CZ) GBP108/12/G108 Institutional support: RVO:67985823 Keywords : lactoferin * collagen * bone cells Subject RIV: EI - Biotechnology ; Bionics Impact factor: 3.263, year: 2015

  8. Lysyl oxidases regulate fibrillar collagen remodelling in idiopathic pulmonary fibrosis

    NARCIS (Netherlands)

    Tjin, Gavin; White, Eric S; Faiz, Alen; Sicard, Delphine; Tschumperlin, Daniel J; Mahar, Annabelle; Kable, Eleanor P W; Burgess, Janette K

    2017-01-01

    Idiopathic pulmonary fibrosis (IPF) is a progressive scarring disease of the lung with feweffective therapeutic options. Structural remodelling of the extracellular matrix [i.e. collagen cross-linkingmediated by the lysyl oxidase (LO) family of enzymes (LOX, LOXL1-4)] might contribute to disease

  9. Characterization of fibrillar collagens and extracellular matrix of glandular benign prostatic hyperplasia nodules.

    Directory of Open Access Journals (Sweden)

    Tyler M Bauman

    Full Text Available Recent studies have associated lower urinary tract symptoms (LUTS in men with prostatic fibrosis, but a definitive link between collagen deposition and LUTS has yet to be demonstrated. The objective of this study was to evaluate ECM and collagen content within normal glandular prostate tissue and glandular BPH, and to evaluate the association of clinical parameters of LUTS with collagen content.Fibrillar collagen and ECM content was assessed in normal prostate (48 patients and glandular BPH nodules (24 patients using Masson's trichrome stain and Picrosirius red stain. Second harmonic generation (SHG imaging was used to evaluate collagen content. Additional BPH tissues (n = 47 were stained with Picrosirius red and the association between clinical parameters of BPH/LUTS and collagen content was assessed.ECM was similar in normal prostate and BPH (p = 0.44. Total collagen content between normal prostate and glandular BPH was similar (p = 0.27, but a significant increase in thicker collagen bundles was observed in BPH (p = 0.045. Using SHG imaging, collagen content in BPH (mean intensity = 62.52; SEM = 2.74 was significantly higher than in normal prostate (51.77±3.49; p = 0.02. Total collagen content was not associated with treatment with finasteride (p = 0.47 or α-blockers (p = 0.52, pre-TURP AUA symptom index (p = 0.90, prostate-specific antigen (p = 0.86, post-void residual (PVR; p = 0.32, prostate size (p = 0.21, or post-TURP PVR (p = 0.51. Collagen content was not associated with patient age in patients with BPH, however as men aged normal prostatic tissue had a decreased proportion of thick collagen bundles.The proportion of larger bundles of collagen, but not total collagen, is increased in BPH nodules, suggesting that these large fibers may play a role in BPH/LUTS. Total collagen content is independent of clinical parameters of BPH and LUTS. If fibrosis and overall ECM deposition are

  10. Effect of nordihydroguaiaretic acid cross-linking on fibrillar collagen: in vitro evaluation of fibroblast adhesion strength and migration

    Directory of Open Access Journals (Sweden)

    Ana Y. Rioja

    2017-04-01

    Full Text Available Fixation is required to reinforce reconstituted collagen for orthopedic bioprostheses such as tendon or ligament replacements. Previous studies have demonstrated that collagen fibers cross-linked by the biocompatible dicatechol nordihydroguaiaretic acid (NDGA have mechanical strength comparable to native tendons. This work focuses on investigating fibroblast behavior on fibrillar and NDGA cross-linked type I collagen to determine if NDGA modulates cell adhesion, morphology, and migration. A spinning disk device that applies a range of hydrodynamic forces under uniform chemical conditions was employed to sensitively quantify cell adhesion strength, and a radial barrier removal assay was used to measure cell migration on films suitable for these quantitative in vitro assays. The compaction of collagen films, mediated by the drying and cross-linking fabrication process, suggests a less open organization compared to native fibrillar collagen that likely allowed the collagen to form more inter-chain bonds and chemical links with NDGA polymers. Fibroblasts strongly adhered to and migrated on native and NDGA cross-linked fibrillar collagen; however, NDGA modestly reduced cell spreading, adhesion strength and migration rate. Thus, it is hypothesized that NDGA cross-linking masked some adhesion receptor binding sites either physically, chemically, or both, thereby modulating adhesion and migration. This alteration in the cell-material interface is considered a minimal trade-off for the superior mechanical and compatibility properties of NDGA cross-linked collagen compared to other fixation approaches.

  11. Collagen metabolism and basement membrane formation in cultures of mouse mammary epithelial cells: Induction of assembly on fibrillar type I collagen substrata

    International Nuclear Information System (INIS)

    David, G.; van der Schueren, B.; van den Berghe, H.; Nusgens, B.; Van Cauwenberge, D.; Lapiere, C.

    1987-01-01

    Collagen metabolism was compared in cultures of mouse mammary epithelial cells maintained on plastic or fibrillar type I collagen gel substrata. The accumulation of dialysable and non-dialysable [ 3 H]hydroxyproline and the identification of the collagens produced suggest no difference between substrata in the allover rates of collagen synthesis and degradation. The proportion of the [ 3 H]collagen which accumulates in the monolayers of cultures on collagen, however, markedly exceeds that of cultures on plastic. Cultures on collagen deposit a sheet-like layer of extracellular matrix materials on the surface of the collagen fibers. Transformed cells on collagen produce and accumulate more [ 3 H]collage, yet are less effective in basement membrane formation than normal cells, indicting that the accumulation of collagen alone and the effect of interstitial collagen thereupon do not suffice. Thus, exogenous fibrillar collagen appears to enhance, but is not sufficient for proper assembly of collagenous basement membrane components near the basal epithelial cell surface

  12. Fibroblast Cluster Formation on 3D Collagen Matrices Requires Cell Contraction-Dependent Fibronectin Matrix Organization

    Science.gov (United States)

    da Rocha-Azevedo, Bruno; Ho, Chin-Han; Grinnell, Frederick

    2012-01-01

    Fibroblasts incubated on 3D collagen matrices in serum or lysophosphatidic acid (LPA)-containing medium self-organize into clusters through a mechanism that requires cell contraction. However, in platelet-derived growth factor (PDGF)-containing medium, cells migrate as individuals and do not form clusters even though they constantly encounter each other. Here, we present evidence that a required function of cell contraction in clustering is formation of fibronectin fibrillar matrix. We found that in serum or LPA but not in PDGF or basal medium, cells organized FN (both serum and cellular) into a fibrillar, detergent-insoluble matrix. Cell clusters developed concomitant with FN matrix formation. FN fibrils accumulated beneath cells and along the borders of cell clusters in regions of cell-matrix tension. Blocking Rho kinase or myosin II activity prevented FN matrix assembly and cell clustering. Using siRNA silencing and function-blocking antibodies and peptides, we found that cell clustering and FN matrix assembly required α5β1 integrins and fibronectin. Cells were still able to exert contractile force and compact the collagen matrix under the latter conditions, which showed that contraction was not sufficient for cell clustering to occur. Our findings provide new insights into how procontractile (serum/LPA) and promigratory (PDGF) growth factor environments can differentially regulate FN matrix assembly by fibroblasts interacting with collagen matrices and thereby influence mesenchymal cell morphogenetic behavior under physiologic circumstances such as wound repair, morphogenesis and malignancy. PMID:23117111

  13. Fibroblast cluster formation on 3D collagen matrices requires cell contraction dependent fibronectin matrix organization.

    Science.gov (United States)

    da Rocha-Azevedo, Bruno; Ho, Chin-Han; Grinnell, Frederick

    2013-02-15

    Fibroblasts incubated on 3D collagen matrices in serum or lysophosphatidic acid (LPA)-containing medium self-organize into clusters through a mechanism that requires cell contraction. However, in platelet-derived growth factor (PDGF)-containing medium, cells migrate as individuals and do not form clusters even though they constantly encounter each other. Here, we present evidence that a required function of cell contraction in clustering is formation of fibronectin (FN) fibrillar matrix. We found that in serum or LPA but not in PDGF or basal medium, cells organized FN (both serum and cellular) into a fibrillar, detergent-insoluble matrix. Cell clusters developed concomitant with FN matrix formation. FN fibrils accumulated beneath cells and along the borders of cell clusters in regions of cell-matrix tension. Blocking Rho kinase or myosin II activity prevented FN matrix assembly and cell clustering. Using siRNA silencing and function-blocking antibodies and peptides, we found that cell clustering and FN matrix assembly required α5β1 integrins and fibronectin. Cells were still able to exert contractile force and compact the collagen matrix under the latter conditions, which showed that contraction was not sufficient for cell clustering to occur. Our findings provide new insights into how procontractile (serum/LPA) and promigratory (PDGF) growth factor environments can differentially regulate FN matrix assembly by fibroblasts interacting with collagen matrices and thereby influence mesenchymal cell morphogenetic behavior under physiologic circumstances such as wound repair, morphogenesis and malignancy. Copyright © 2012 Elsevier Inc. All rights reserved.

  14. 3D collagen fibrillar microstructure guides pancreatic cancer cell phenotype and serves as a critical design parameter for phenotypic models of EMT.

    Directory of Open Access Journals (Sweden)

    T J Puls

    Full Text Available Pancreatic cancer, one of the deadliest cancers, is characterized by high rates of metastasis and intense desmoplasia, both of which are associated with changes in fibrillar type I collagen composition and microstructure. Epithelial to mesenchymal transition (EMT, a critical step of metastasis, also involves a change in extracellular matrix (ECM context as cells detach from basement membrane (BM and engage interstitial matrix (IM. The objective of this work was to develop and apply an in-vitro three-dimensional (3D tumor-ECM model to define how ECM composition and biophysical properties modulate pancreatic cancer EMT. Three established pancreatic ductal adenocarcinoma (PDAC lines were embedded within 3D matrices prepared with type I collagen Oligomer (IM at various fibril densities to control matrix stiffness or Oligomer and Matrigel combined at various ratios while maintaining constant matrix stiffness. Evaluation of cell morphology and protein expression at both the cellular- and population-levels revealed a spectrum of matrix-driven EMT phenotypes that were dependent on ECM composition and architecture as well as initial PDAC phenotype. In general, exposure to fibrillar IM was sufficient to drive EMT, with cells displaying spindle-shaped morphology and mesenchymal markers, and non-fibrillar BM promoted more epithelial behavior. When cultured within low density Oligomer, only a subpopulation of epithelial BxPC-3 cells displayed EMT while mesenchymal MiaPaCa-2 cells displayed more uniform spindle-shaped morphologies and mesenchymal marker expression. Interestingly, as IM fibril density increased, associated changes in spatial constraints and matrix stiffness resulted in all PDAC lines growing as tight clusters; however mesenchymal marker expression was maintained. Collectively, the comparison of these results to other in-vitro tumor models highlights the role of IM fibril microstructure in guiding EMT heterogeneity and showcases the potential

  15. Preparation and characterization of porous crosslinked collagenous matrices containing bioavailable chondroitin sulphate

    NARCIS (Netherlands)

    Pieper, J.S.; Oosterhof, A.; Dijkstra, Pieter J.; Veerkamp, J.H.; van Kuppevelt, T.H.

    1999-01-01

    Porous collagen matrices with defined physical, chemical and biological characteristics are interesting materials for tissue engineering. Attachment of glycosaminoglycans (GAGs) may add to these characteristics and valorize collagen. In this study, porous type I collagen matrices were crosslinked

  16. Decreased expression of microRNA-29 family in leiomyoma contributes to increased major fibrillar collagen production.

    Science.gov (United States)

    Marsh, Erica E; Steinberg, Marissa L; Parker, J Brandon; Wu, Ju; Chakravarti, Debabrata; Bulun, Serdar E

    2016-09-01

    To determine the expression and function of the microRNA-29 family (miRNA-29a, miRNA-29b, miRNA-29c) in human leiomyoma and myometrium. Basic science experimental design. Academic medical center. Women undergoing surgery for symptomatic uterine fibroids. Overexpression and knockdown of miRNA-29a, miRNA-29b, and miRNA-29c in primary leiomyoma and myometrial cells. [1] Expression of the miRNA-29 family members in vivo in leiomyoma versus myometrium; [2] Major fibrillar collagen (I, II, III) expression in leiomyoma and myometrial cells with manipulation of miRNA-29 species. Members of the miRNA-29 family (29a, 29b, 29c) are all down-regulated in leiomyoma versus myometrium in vivo. The expression of the miRNA-29 family can be successfully modulated in primary leiomyoma and myometrial cells. Overexpression of the miRNA-29 family in leiomyoma cells results in down-regulation of the major fibrillar collagens. Down-regulation of the miRNA-29 species in myometrium results in an increase in collagen type III deposition. The miRNA-29 family is consistently down-regulated in leiomyoma compared to matched myometrial tissue. This down-regulation contributes to the increased collagen seen in leiomyomas versus myometrium. When miRNA-29 members are overexpressed in leiomyoma cells, protein levels of all of the major fibrillar collagens decrease. The miRNA-29 members are potential therapeutic targets in this highly prevalent condition. Copyright © 2016 American Society for Reproductive Medicine. Published by Elsevier Inc. All rights reserved.

  17. Fibrillar structure and elasticity of hydrating collagen: a quantitative multiscale approach.

    Science.gov (United States)

    Morin, Claire; Hellmich, Christian; Henits, Peter

    2013-01-21

    It is well known that hydration of collagenous tissues leads to their swelling, as well as to softening of their elastic behavior. However, it is much less clear which microstructural and micromechanical "rules" are involved in this process. Here, we develop a theoretical approach cast in analytical mathematical formulations, which is experimentally validated by a wealth of independent tests on collagenous tissues, such as X-ray diffraction, vacuum drying, mass measurements, and Brillouin light scattering. The overall emerging picture is the following: air-drying leaves water only in the gap zones between the triple-helical collagen molecules; upon re-hydration, the extrafibrillar space is established at volumes directly proportional to the hydration-induced swelling of the (micro) fibrils, until the maximum equatorial distance between the long collagen molecules is reached. Thereafter, the volume of the fibrils stays constant, and only the extrafibrillar volume continues to grow. At all these hydration stages, the elastic behavior is governed by the same, hydration-invariant mechanical interaction pattern of only two, interpenetrating mechanical phases: transversely isotropic molecular collagen and isotropic water (or empty pores in the vacuum-dried case). Copyright © 2012 Elsevier Ltd. All rights reserved.

  18. Fibrillar collagen I matrix remodelling in idiopathic pulmonary fibrosis: Are lysyl oxidases responsible?

    NARCIS (Netherlands)

    Tjin, G.; Jegathees, T.; Mahar, A.; Kable, E.P.W.; Burgess, J.K.

    2015-01-01

    Rationale: The development of fibrosis in Idiopathic Pulmonary Fibrosis (IPF) is a key feature and challenge in the treatment of the disease. The mechanisms of collagen I (COL1) reorganisation in the development of fibrosis, which may alter the stiffness of the tissue, are not well understood.

  19. Investigation of Rho Signaling Pathways in 3-D Collagen Matrices with Multidimensional Microscopy and Visualization Techniques

    National Research Council Canada - National Science Library

    Trier, Steven

    2008-01-01

    .... Recent progress in the development of 3D culture models has provided a more physiologically relevant growth environment, in which breast cancer cells imbedded within floating collagen matrices...

  20. Investigation of Rho Signaling Pathways in 3D Collagen Matrices via Multidimensional Microscopy and Visualization Techniques

    National Research Council Canada - National Science Library

    Trier, Steven

    2007-01-01

    .... Recent progress in the development of 3D culture models has provided a more physiologically relevant growth environment, in which breast cancer cells imbedded within floating collagen matrices...

  1. One-step derivation of mesenchymal stem cell (MSC-like cells from human pluripotent stem cells on a fibrillar collagen coating.

    Directory of Open Access Journals (Sweden)

    Yongxing Liu

    Full Text Available Controlled differentiation of human embryonic stem cells (hESCs and induced pluripotent stem cells (iPSCs into cells that resemble adult mesenchymal stem cells (MSCs is an attractive approach to obtain a readily available source of progenitor cells for tissue engineering. The present study reports a new method to rapidly derive MSC-like cells from hESCs and hiPSCs, in one step, based on culturing the cells on thin, fibrillar, type I collagen coatings that mimic the structure of physiological collagen. Human H9 ESCs and HDFa-YK26 iPSCs were singly dissociated in the presence of ROCK inhibitor Y-27632, plated onto fibrillar collagen coated plates and cultured in alpha minimum essential medium (alpha-MEM supplemented with 10% fetal bovine serum, 50 uM magnesium L-ascorbic acid phosphate and 100 nM dexamethasone. While fewer cells attached on the collagen surface initially than standard tissue culture plastic, after culturing for 10 days, resilient colonies of homogenous spindle-shaped cells were obtained. Flow cytometric analysis showed that a high percentage of the derived cells expressed typical MSC surface markers including CD73, CD90, CD105, CD146 and CD166 and were negative as expected for hematopoietic markers CD34 and CD45. The MSC-like cells derived from pluripotent cells were successfully differentiated in vitro into three different lineages: osteogenic, chondrogenic, and adipogenic. Both H9 hES and YK26 iPS cells displayed similar morphological changes during the derivation process and yielded MSC-like cells with similar properties. In conclusion, this study demonstrates that bioimimetic, fibrillar, type I collagen coatings applied to cell culture plates can be used to guide a rapid, efficient derivation of MSC-like cells from both human ES and iPS cells.

  2. Dense tissue-like collagen matrices formed in cell-free conditions.

    Science.gov (United States)

    Mosser, Gervaise; Anglo, Anny; Helary, Christophe; Bouligand, Yves; Giraud-Guille, Marie-Madeleine

    2006-01-01

    A new protocol was developed to produce dense organized collagen matrices hierarchically ordered on a large scale. It consists of a two stage process: (1) the organization of a collagen solution and (2) the stabilization of the organizations by a sol-gel transition that leads to the formation of collagen fibrils. This new protocol relies on the continuous injection of an acid-soluble collagen solution into glass microchambers. It leads to extended concentration gradients of collagen, ranging from 5 to 1000 mg/ml. The self-organization of collagen solutions into a wide array of spatial organizations was investigated. The final matrices obtained by this procedure varied in concentration, structure and density. Changes in the liquid state of the samples were followed by polarized light microscopy, and the final stabilized gel states obtained after fibrillogenesis were analyzed by both light and electron microscopy. Typical organizations extended homogeneously by up to three centimetres in one direction and several hundreds of micrometers in other directions. Fibrillogenesis of collagen solutions of high and low concentrations led to fibrils spatially arranged as has been described in bone and derm, respectively. Moreover, a relationship was revealed between the collagen concentration and the aggregation of and rotational angles between lateral fibrils. These results constitute a strong base from which to further develop highly enriched collagen matrices that could lead to substitutes that mimic connective tissues. The matrices thus obtained may also be good candidates for the study of the three-dimensional migration of cells.

  3. Fibrillar, fibril-associated and basement membrane collagens of the arterial wall: architecture, elasticity and remodeling under stress.

    Science.gov (United States)

    Osidak, M S; Osidak, E O; Akhmanova, M A; Domogatsky, S P; Domogatskaya, A S

    2015-01-01

    The ability of a human artery to pass through 150 million liters of blood sustaining 2 billion pulsations of blood pressure with minor deterioration depends on unique construction of the arterial wall. Viscoelastic properties of this construction enable to re-seal the occuring damages apparently without direct immediate participance of the constituent cells. Collagen structures are considered to be the elements that determine the mechanoelastic properties of the wall in parallel with elastin responsible for elasticity and resilience. Collagen scaffold architecture is the function-dependent dynamic arrangement of a dozen different collagen types composing three distinct interacting forms inside the extracellular matrix of the wall. Tightly packed molecules of collagen types I, III, V provide high tensile strength along collagen fibrils but toughness of the collagen scaffold as a whole depends on molecular bonds between distinct fibrils. Apart of other macromolecules in the extracellular matrix (ECM), collagen-specific interlinks involve microfilaments of collagen type VI, meshwork-organized collagen type VIII, and FACIT collagen type XIV. Basement membrane collagen types IV, XV, XVIII and cell-associated collagen XIII enable transmission of mechanical signals between cells and whole artery matrix. Collagen scaffold undergoes continuous remodeling by decomposition promoted with MMPs and reconstitution from newly produced collagen molecules. Pulsatile stress-strain load modulates both collagen synthesis and MMP-dependent collagen degradation. In this way the ECM structure becomes adoptive to mechanical challenges. The mechanoelastic properties of the arterial wall are changed in atherosclerosis concomitantly with collagen turnover both type-specific and dependent on the structure. Improving the feedback could be another approach to restore sufficient blood circulation.

  4. Toward single cell traction microscopy within 3D collagen matrices

    International Nuclear Information System (INIS)

    Hall, Matthew S.; Long, Rong; Feng, Xinzeng; Huang, YuLing; Hui, Chung-Yuen; Wu, Mingming

    2013-01-01

    Mechanical interaction between the cell and its extracellular matrix (ECM) regulates cellular behaviors, including proliferation, differentiation, adhesion, and migration. Cells require the three-dimensional (3D) architectural support of the ECM to perform physiologically realistic functions. However, current understanding of cell–ECM and cell–cell mechanical interactions is largely derived from 2D cell traction force microscopy, in which cells are cultured on a flat substrate. 3D cell traction microscopy is emerging for mapping traction fields of single animal cells embedded in either synthetic or natively derived fibrous gels. We discuss here the development of 3D cell traction microscopy, its current limitations, and perspectives on the future of this technology. Emphasis is placed on strategies for applying 3D cell traction microscopy to individual tumor cell migration within collagen gels. - Highlights: • Review of the current state of the art in 3D cell traction force microscopy. • Bulk and micro-characterization of remodelable fibrous collagen gels. • Strategies for performing 3D cell traction microscopy within collagen gels

  5. Toward single cell traction microscopy within 3D collagen matrices

    Energy Technology Data Exchange (ETDEWEB)

    Hall, Matthew S. [Department of Biological and Environmental Engineering, Cornell University, Ithaca, NY 14853 (United States); Long, Rong [Department of Mechanical Engineering, University of Alberta, Edmonton, AB, Canada T6G 2G8 (Canada); Feng, Xinzeng [Department of Mechanical and Aerospace Engineering, Cornell University, Ithaca, NY 14853 (United States); Huang, YuLing [Department of Biological and Environmental Engineering, Cornell University, Ithaca, NY 14853 (United States); Hui, Chung-Yuen [Department of Mechanical and Aerospace Engineering, Cornell University, Ithaca, NY 14853 (United States); Wu, Mingming, E-mail: mw272@cornell.edu [Department of Biological and Environmental Engineering, Cornell University, Ithaca, NY 14853 (United States)

    2013-10-01

    Mechanical interaction between the cell and its extracellular matrix (ECM) regulates cellular behaviors, including proliferation, differentiation, adhesion, and migration. Cells require the three-dimensional (3D) architectural support of the ECM to perform physiologically realistic functions. However, current understanding of cell–ECM and cell–cell mechanical interactions is largely derived from 2D cell traction force microscopy, in which cells are cultured on a flat substrate. 3D cell traction microscopy is emerging for mapping traction fields of single animal cells embedded in either synthetic or natively derived fibrous gels. We discuss here the development of 3D cell traction microscopy, its current limitations, and perspectives on the future of this technology. Emphasis is placed on strategies for applying 3D cell traction microscopy to individual tumor cell migration within collagen gels. - Highlights: • Review of the current state of the art in 3D cell traction force microscopy. • Bulk and micro-characterization of remodelable fibrous collagen gels. • Strategies for performing 3D cell traction microscopy within collagen gels.

  6. The collagen type I segment long spacing (SLS) and fibrillar forms: Formation by ATP and sulphonated diazo dyes.

    Science.gov (United States)

    Harris, J Robin; Lewis, Richard J

    2016-07-01

    The collagen type I segment long spacing (SLS) crystallite is a well-ordered rod-like molecular aggregate, ∼300nm in length, which is produced in vitro under mildly acidic conditions (pH 2.5-3.5) in the presence of 1mM ATP. The formation of the SLS crystallite amplifies the inherent linear structural features of individual collagen heterotrimers, due to the punctate linear distribution and summation of the bulkier amino acid side chains along the length of individual collagen heterotrimers. This can be correlated structurally with the 67nm D-banded collagen fibril that is found in vivo, and formed in vitro. Although first described many years ago, the range of conditions required for ATP-induced SLS crystallite formation from acid-soluble collagen have not been explored extensively. Consequently, we have addressed biochemical parameters such as the ATP concentration, pH, speed of formation and stability so as to provide a more complete structural understanding of the SLS crystallite. Treatment of collagen type I with 1mM ATP at neutral and higher pH (6.0-9.0) also induced the formation of D-banded fibrils. Contrary to previous studies, we have shown that the polysulphonated diazo dyes Direct red (Sirius red) and Evans blue, but not Congo red and Methyl blue, can also induce the formation of SLS-like aggregates of collagen, but under markedly different ionic conditions to those employed in the presence of ATP. Specifically, pre-formed D-banded collagen fibrils, prepared in a higher than the usual physiological NaCl concentration (e.g. 500mM NaCl, 20mM Tris-HCl pH7.4 or x3 PBS), readily form SLS aggregates when treated with 0.1mM Direct red and Evans blue, but this did not occur at lower NaCl concentrations. These new data are discussed in relation to the anion (Cl(-)) and polyanion (phosphate and sulphonate) binding by the collagen heterotrimer and their likely role in collagen fibrillogenesis and SLS formation. Copyright © 2016 Elsevier Ltd. All rights reserved.

  7. Fabrication and evaluation of biomimetic scaffolds by using collagen-alginate fibrillar gels for potential tissue engineering applications

    International Nuclear Information System (INIS)

    Sang Lin; Luo Dongmei; Xu Songmei; Wang Xiaoliang; Li Xudong

    2011-01-01

    Pore architecture and its stable functionality under cell culturing of three dimensional (3D) scaffolds are of great importance for tissue engineering purposes. In this study, alginate was incorporated with collagen to fabricate collagen-alginate composite scaffolds with different collagen/alginate ratios by lyophilizing the respective composite gels formed via collagen fibrillogenesis in vitro and then chemically crosslinking. The effects of alginate amount and crosslinking treatment on pore architecture, swelling behavior, enzymatic degradation and tensile property of composite scaffolds were systematically investigated. The relevant results indicated that the present strategy was simple but efficient to fabricate highly interconnected strong biomimetic 3D scaffolds with nanofibrous surface. NIH3T3 cells were used as a model cell to evaluate the cytocompatibility, attachment to the nanofibrous surface and porous architectural stability in terms of cell proliferation and infiltration within the crosslinked scaffolds. Compared with the mechanically weakest crosslinked collagen sponges, the cell-cultured composite scaffolds presented a good porous architecture, thus permitting cell proliferation on the top surface as well as infiltration into the inner part of 3D composite scaffolds. These composite scaffolds with pore size ranging from 150 to 300 μm, over 90% porosity, tuned biodegradability and water-uptake capability are promising for tissue engineering applications.

  8. Insights on the evolution of prolyl 3-hydroxylation sites from comparative analysis of chicken and Xenopus fibrillar collagens.

    Science.gov (United States)

    Hudson, David M; Weis, Maryann; Eyre, David R

    2011-05-03

    Recessive mutations that prevent 3-hydroxyproline formation in type I collagen have been shown to cause forms of osteogenesis imperfecta. In mammals, all A-clade collagen chains with a GPP sequence at the A1 site (P986), except α1(III), have 3Hyp at residue P986. Available avian, amphibian and reptilian type III collagen sequences from the genomic database (Ensembl) all differ in sequence motif from mammals at the A1 site. This suggests a potential evolutionary distinction in prolyl 3-hydroxylation between mammals and earlier vertebrates. Using peptide mass spectrometry, we confirmed that this 3Hyp site is fully occupied in α1(III) from an amphibian, Xenopus laevis, as it is in chicken. A thorough characterization of all predicted 3Hyp sites in collagen types I, II, III and V from chicken and xenopus revealed further differences in the pattern of occupancy of the A3 site (P707). In mammals only α2(I) and α2(V) chains had any 3Hyp at the A3 site, whereas in chicken all α-chains except α1(III) had A3 at least partially 3-hydroxylated. The A3 site was also partially 3-hydroxylated in xenopus α1(I). Minor differences in covalent cross-linking between chicken, xenopus and mammal type I and III collagens were also found as a potential index of evolving functional differences. The function of 3Hyp is still unknown but observed differences in site occupancy during vertebrate evolution are likely to give important clues.

  9. Insights on the evolution of prolyl 3-hydroxylation sites from comparative analysis of chicken and Xenopus fibrillar collagens.

    Directory of Open Access Journals (Sweden)

    David M Hudson

    2011-05-01

    Full Text Available Recessive mutations that prevent 3-hydroxyproline formation in type I collagen have been shown to cause forms of osteogenesis imperfecta. In mammals, all A-clade collagen chains with a GPP sequence at the A1 site (P986, except α1(III, have 3Hyp at residue P986. Available avian, amphibian and reptilian type III collagen sequences from the genomic database (Ensembl all differ in sequence motif from mammals at the A1 site. This suggests a potential evolutionary distinction in prolyl 3-hydroxylation between mammals and earlier vertebrates. Using peptide mass spectrometry, we confirmed that this 3Hyp site is fully occupied in α1(III from an amphibian, Xenopus laevis, as it is in chicken. A thorough characterization of all predicted 3Hyp sites in collagen types I, II, III and V from chicken and xenopus revealed further differences in the pattern of occupancy of the A3 site (P707. In mammals only α2(I and α2(V chains had any 3Hyp at the A3 site, whereas in chicken all α-chains except α1(III had A3 at least partially 3-hydroxylated. The A3 site was also partially 3-hydroxylated in xenopus α1(I. Minor differences in covalent cross-linking between chicken, xenopus and mammal type I and III collagens were also found as a potential index of evolving functional differences. The function of 3Hyp is still unknown but observed differences in site occupancy during vertebrate evolution are likely to give important clues.

  10. Nonlinear optical microscopy reveals invading endothelial cells anisotropically alter three-dimensional collagen matrices

    International Nuclear Information System (INIS)

    Lee, P.-F.; Yeh, Alvin T.; Bayless, Kayla J.

    2009-01-01

    The interactions between endothelial cells (ECs) and the extracellular matrix (ECM) are fundamental in mediating various steps of angiogenesis, including cell adhesion, migration and sprout formation. Here, we used a noninvasive and non-destructive nonlinear optical microscopy (NLOM) technique to optically image endothelial sprouting morphogenesis in three-dimensional (3D) collagen matrices. We simultaneously captured signals from collagen fibers and endothelial cells using second harmonic generation (SHG) and two-photon excited fluorescence (TPF), respectively. Dynamic 3D imaging revealed EC interactions with collagen fibers along with quantifiable alterations in collagen matrix density elicited by EC movement through and morphogenesis within the matrix. Specifically, we observed increased collagen density in the area between bifurcation points of sprouting structures and anisotropic increases in collagen density around the perimeter of lumenal structures, but not advancing sprout tips. Proteinase inhibition studies revealed membrane-associated matrix metalloproteinase were utilized for sprout advancement and lumen expansion. Rho-associated kinase (p160ROCK) inhibition demonstrated that the generation of cell tension increased collagen matrix alterations. This study followed sprouting ECs within a 3D matrix and revealed that the advancing structures recognize and significantly alter their extracellular environment at the periphery of lumens as they progress

  11. Rare mutations and potentially damaging missense variants in genes encoding fibrillar collagens and proteins involved in their production are candidates for risk for preterm premature rupture of membranes.

    Science.gov (United States)

    Modi, Bhavi P; Teves, Maria E; Pearson, Laurel N; Parikh, Hardik I; Chaemsaithong, Piya; Sheth, Nihar U; York, Timothy P; Romero, Roberto; Strauss, Jerome F

    2017-01-01

    Preterm premature rupture of membranes (PPROM) is the leading identifiable cause of preterm birth with ~ 40% of preterm births being associated with PPROM and occurs in 1% - 2% of all pregnancies. We hypothesized that multiple rare variants in fetal genes involved in extracellular matrix synthesis would associate with PPROM, based on the assumption that impaired elaboration of matrix proteins would reduce fetal membrane tensile strength, predisposing to unscheduled rupture. We performed whole exome sequencing (WES) on neonatal DNA derived from pregnancies complicated by PPROM (49 cases) and healthy term deliveries (20 controls) to identify candidate mutations/variants. Genotyping for selected variants from the WES study was carried out on an additional 188 PPROM cases and 175 controls. All mothers were self-reported African Americans, and a panel of ancestry informative markers was used to control for genetic ancestry in all genetic association tests. In support of the primary hypothesis, a statistically significant genetic burden (all samples combined, SKAT-O p-value = 0.0225) of damaging/potentially damaging rare variants was identified in the genes of interest-fibrillar collagen genes, which contribute to fetal membrane strength and integrity. These findings suggest that the fetal contribution to PPROM is polygenic, and driven by an increased burden of rare variants that may also contribute to the disparities in rates of preterm birth among African Americans.

  12. Decorin-transforming growth factor- interaction regulates matrix organization and mechanical characteristics of three-dimensional collagen matrices.

    Science.gov (United States)

    Ferdous, Zannatul; Wei, Victoria Mariko; Iozzo, Renato; Höök, Magnus; Grande-Allen, Kathryn Jane

    2007-12-07

    The small leucine-rich proteoglycan decorin has been demonstrated to be a key regulator of collagen fibrillogenesis; decorin deficiencies lead to irregularly shaped collagen fibrils and weakened material behavior in postnatal murine connective tissues. In an in vitro investigation of the contributions of decorin to tissue organization and material behavior, model tissues were engineered by seeding embryonic fibroblasts, harvested from 12.5-13.5 days gestational aged decorin null (Dcn(-/-)) or wild-type mice, within type I collagen gels. The resulting three-dimensional collagen matrices were cultured for 4 weeks under static tension. The collagen matrices seeded with Dcn(-/-) cells exhibited greater contraction, cell density, ultimate tensile strength, and elastic modulus than those seeded with wild-type cells. Ultrastructurally, the matrices seeded with Dcn(-/-) cells contained a greater density of collagen. The decorin-null tissues contained more biglycan than control tissues, suggesting that this related proteoglycan compensated for the absence of decorin. The effect of transforming growth factor-beta (TGF-beta), which is normally sequestered by decorin, was also investigated in this study. The addition of TGF-beta1 to the matrices seeded with wild-type cells improved their contraction and mechanical strength, whereas blocking TGF-beta1 in the Dcn(-/-) cell-seeded matrices significantly reduced the collagen gel contraction. These results indicate that the inhibitory interaction between decorin and TGF-beta1 significantly influenced the matrix organization and material behavior of these in vitro model tissues.

  13. Unusual Glycosaminoglycans from a Deep Sea Hydrothermal Bacterium Improve Fibrillar Collagen Structuring and Fibroblast Activities in Engineered Connective Tissues

    Directory of Open Access Journals (Sweden)

    Jean Guezennec

    2013-04-01

    Full Text Available Biopolymers produced by marine organisms can offer useful tools for regenerative medicine. Particularly, HE800 exopolysaccharide (HE800 EPS secreted by a deep-sea hydrothermal bacterium displays an interesting glycosaminoglycan-like feature resembling hyaluronan. Previous studies demonstrated its effectiveness to enhance in vivo bone regeneration and to support osteoblastic cell metabolism in culture. Thus, in order to assess the usefulness of this high-molecular weight polymer in tissue engineering and tissue repair, in vitro reconstructed connective tissues containing HE800 EPS were performed. We showed that this polysaccharide promotes both collagen structuring and extracellular matrix settle by dermal fibroblasts. Furthermore, from the native HE800 EPS, a low-molecular weight sulfated derivative (HE800 DROS displaying chemical analogy with heparan-sulfate, was designed. Thus, it was demonstrated that HE800 DROS mimics some properties of heparan-sulfate, such as promotion of fibroblast proliferation and inhibition of matrix metalloproteinase (MMP secretion. Therefore, we suggest that the HE800EPS family can be considered as an innovative biotechnological source of glycosaminoglycan-like compounds useful to design biomaterials and drugs for tissue engineering and repair.

  14. Unusual Glycosaminoglycans from a Deep Sea Hydrothermal Bacterium Improve Fibrillar Collagen Structuring and Fibroblast Activities in Engineered Connective Tissues

    Science.gov (United States)

    Senni, Karim; Gueniche, Farida; Changotade, Sylvie; Septier, Dominique; Sinquin, Corinne; Ratiskol, Jacqueline; Lutomski, Didier; Godeau, Gaston; Guezennec, Jean; Colliec-Jouault, Sylvia

    2013-01-01

    Biopolymers produced by marine organisms can offer useful tools for regenerative medicine. Particularly, HE800 exopolysaccharide (HE800 EPS) secreted by a deep-sea hydrothermal bacterium displays an interesting glycosaminoglycan-like feature resembling hyaluronan. Previous studies demonstrated its effectiveness to enhance in vivo bone regeneration and to support osteoblastic cell metabolism in culture. Thus, in order to assess the usefulness of this high-molecular weight polymer in tissue engineering and tissue repair, in vitro reconstructed connective tissues containing HE800 EPS were performed. We showed that this polysaccharide promotes both collagen structuring and extracellular matrix settle by dermal fibroblasts. Furthermore, from the native HE800 EPS, a low-molecular weight sulfated derivative (HE800 DROS) displaying chemical analogy with heparan-sulfate, was designed. Thus, it was demonstrated that HE800 DROS mimics some properties of heparan-sulfate, such as promotion of fibroblast proliferation and inhibition of matrix metalloproteinase (MMP) secretion. Therefore, we suggest that the HE800EPS family can be considered as an innovative biotechnological source of glycosaminoglycan-like compounds useful to design biomaterials and drugs for tissue engineering and repair. PMID:23612369

  15. In vivo biocompatibility of carbodiimide-crosslinked collagen matrices : Effects of crosslink density, heparin immobilization, and bFGF loading

    NARCIS (Netherlands)

    van Wachem, PB; Plantinga, JA; Wissink, MJB; Poot, AA; Engbers, GHM; Beugeling, T; van Aken, WG; Feijen, J; van Luyn, MJA

    2001-01-01

    Collagen matrices, crosslinked using N-(3-dimethylaminopropyl)-N'-ethylcarbodiimide (E) and N-hydroxvsuccinimide (N), were previously developed as a substrate for endothelial cell seeding of small-diameter vascular grafts. In the present study, the biocompatibility of various EN-crosslinked collagen

  16. Effects of dynamic matrix remodelling on en masse migration of fibroblasts on collagen matrices.

    Science.gov (United States)

    Ozcelikkale, Altug; Dutton, J Craig; Grinnell, Frederick; Han, Bumsoo

    2017-10-01

    Fibroblast migration plays a key role during various physiological and pathological processes. Although migration of individual fibroblasts has been well studied, migration in vivo often involves simultaneous locomotion of fibroblasts sited in close proximity, so-called ' en masse migration', during which intensive cell-cell interactions occur. This study aims to understand the effects of matrix mechanical environments on the cell-matrix and cell-cell interactions during en masse migration of fibroblasts on collagen matrices. Specifically, we hypothesized that a group of migrating cells can significantly deform the matrix, whose mechanical microenvironment dramatically changes compared with the undeformed state, and the alteration of the matrix microenvironment reciprocally affects cell migration. This hypothesis was tested by time-resolved measurements of cell and extracellular matrix movement during en masse migration on collagen hydrogels with varying concentrations. The results illustrated that a group of cells generates significant spatio-temporal deformation of the matrix before and during the migration. Cells on soft collagen hydrogels migrate along tortuous paths, but, as the matrix stiffness increases, cell migration patterns become aligned with each other and show coordinated migration paths. As cells migrate, the matrix is locally compressed, resulting in a locally stiffened and dense matrix across the collagen concentration range studied. © 2017 The Author(s).

  17. Effect of modifications in mineralized collagen fibril and extra-fibrillar matrix material properties on submicroscale mechanical behavior of cortical bone.

    Science.gov (United States)

    Wang, Yaohui; Ural, Ani

    2018-06-01

    A key length scale of interest in assessing the fracture resistance of bone is the submicroscale which is composed of mineralized collagen fibrils (MCF) and extra-fibrillar matrix (EFM). Although the processes through which the submicroscale constituents of bone contribute to the fracture resistance in bone have been identified, the extent of the modifications in submicroscale mechanical response due to the changes in individual properties of MCFs and EFM has not been determined. As a result, this study aims to quantify the influence of individual MCF and EFM material property modifications on the mechanical behavior (elastic modulus, ultimate strength, and resistance to failure) of bone at the submicroscale using a novel finite element modeling approach that incorporate 3D networks of MCFs with three different orientations as well as explicit representation of EFM. The models were evaluated under tensile loading in transverse (representing MCF separation) and longitudinal (representing MCF rupture) directions. The results showed that the apparent elastic modulus at the submicroscale under both loading directions for all orientations was only affected by the change in the elastic modulus of MCFs. MCF separation and rupture strengths were mainly dependent on the ultimate strength of EFM and MCFs, respectively, with minimal influence of other material properties. The extent of damage during MCF separation increased with increasing ultimate strength of EFM and decreased with increasing fracture energy of EFM with minimal contribution from elastic modulus of MCFs. For MCF rupture, there was an almost one-to-one linear relationship between the percent change in fracture energy of MCFs and the percent change in the apparent submicroscale fracture energy. The ultimate strength and elastic modulus of MCFs had moderate to limited influence on the MCF rupture fracture energy. The results of this study quantified the extent of changes that may be seen in the energy

  18. Biomimetic mineralization of recombinant collagen type I derived protein to obtain hybrid matrices for bone regeneration.

    Science.gov (United States)

    Ramírez-Rodríguez, Gloria Belén; Delgado-López, José Manuel; Iafisco, Michele; Montesi, Monica; Sandri, Monica; Sprio, Simone; Tampieri, Anna

    2016-11-01

    Understanding the mineralization mechanism of synthetic protein has recently aroused great interest especially in the development of advanced materials for bone regeneration. Herein, we propose the synthesis of composite materials through the mineralization of a recombinant collagen type I derived protein (RCP) enriched with RGD sequences in the presence of magnesium ions (Mg) to closer mimic bone composition. The role of both RCP and Mg ions in controlling the precipitation of the mineral phase is in depth evaluated. TEM and X-ray powder diffraction reveal the crystallization of nanocrystalline apatite (Ap) in all the evaluated conditions. However, Raman spectra point out also the precipitation of amorphous calcium phosphate (ACP). This amorphous phase is more evident when RCP and Mg are at work, indicating the synergistic role of both in stabilizing the amorphous precursor. In addition, hybrid matrices are prepared to tentatively address their effectiveness as scaffolds for bone tissue engineering. SEM and AFM imaging show an homogeneous mineral distribution on the RCP matrix mineralized in presence of Mg, which provides a surface roughness similar to that found in bone. Preliminary in vitro tests with pre-osteoblast cell line show good cell-material interaction on the matrices prepared in the presence of Mg. To the best of our knowledge this work represents the first attempt to mineralize recombinant collagen type I derived protein proving the simultaneous effect of the organic phase (RCP) and Mg on ACP stabilization. This study opens the possibility to engineer, through biomineralization process, advanced hybrid matrices for bone regeneration. Copyright © 2016 Elsevier Inc. All rights reserved.

  19. Glucose oxidase incorporated collagen matrices for dermal wound repair in diabetic rat models: a biochemical study.

    Science.gov (United States)

    Arul, V; Masilamoni, J G; Jesudason, E P; Jaji, P J; Inayathullah, M; Dicky John, D G; Vignesh, S; Jayakumar, R

    2012-05-01

    Impaired wound healing in diabetes is a well-documented phenomenon. Emerging data favor the involvement of free radicals in the pathogenesis of diabetic wound healing. We investigated the beneficial role of the sustained release of reactive oxygen species (ROS) in diabetic dermal wound healing. In order to achieve the sustained delivery of ROS in the wound bed, we have incorporated glucose oxidase in the collagen matrix (GOIC), which is applied to the healing diabetic wound. Our in vitro proteolysis studies on incorporated GOIC show increased stability against the proteases in the collagen matrix. In this study, GOIC film and collagen film (CF) are used as dressing material on the wound of streptozotocin-induced diabetic rats. A significant increase in ROS (p < 0.05) was observed in the fibroblast of GOIC group during the inflammation period compared to the CF and control groups. This elevated level up regulated the antioxidant status in the granulation tissue and improved cellular proliferation in the GOIC group. Interestingly, our biochemical parameters nitric oxide, hydroxyproline, uronic acid, protein, and DNA content in the healing wound showed that there is an increase in proliferation of cells in GOIC when compared to the control and CF groups. In addition, evidence from wound contraction and histology reveals faster healing in the GOIC group. Our observations document that GOIC matrices could be effectively used for diabetic wound healing therapy.

  20. Investigation of non-thermal plasma effects on lung cancer cells within 3D collagen matrices

    Science.gov (United States)

    Karki, Surya B.; Thapa Gupta, Tripti; Yildirim-Ayan, Eda; Eisenmann, Kathryn M.; Ayan, Halim

    2017-08-01

    Recent breakthroughs in plasma medicine have identified a potential application for the non-thermal plasma in cancer therapy. Most studies on the effects of non-thermal plasma on cancer cells have used traditional two-dimensional (2D) monolayer cell culture. However, very few studies are conducted employing non-thermal plasma in animal models. Two dimensional models do not fully mimic the three-dimensional (3D) tumor microenvironment and animal models are expensive and time-consuming. Therefore, we used 3D collagen matrices that closely resemble the native geometry of cancer tissues and provide more physiologically relevant results than 2D models, while providing a more cost effective and efficient precursor to animal studies. We previously demonstrated a role for non-thermal plasma application in promoting apoptotic cell death and reducing the viability of A549 lung adenocarcinoma epithelial cells cultured upon 2D matrices. In this study, we wished to determine the efficacy of non-thermal plasma application in driving apoptotic cell death of A549 lung cancer cells encapsulated within a 3D collagen matrix. The percentage of apoptosis increased as treatment time increased and was time dependent. In addition, the anti-viability effect of plasma was demonstrated. Twenty-four hours post-plasma treatment, 38% and 99% of cell death occurred with shortest (15 s) and longest treatment time (120 s) respectively at the plasma-treated region. We found that plasma has a greater effect on the viability of A549 lung cancer cells on the superficial surface of 3D matrices and has diminishing effects as it penetrates the 3D matrix. We also identified the nitrogen and oxygen species generated by plasma and characterized their penetration in vertical and lateral directions within the 3D matrix from the center of the plasma-treated region. Therefore, the utility of non-thermal dielectric barrier discharge plasma in driving apoptosis and reducing the viability of lung cancer cells

  1. Investigation of non-thermal plasma effects on lung cancer cells within 3D collagen matrices

    International Nuclear Information System (INIS)

    Karki, Surya B; Gupta, Tripti Thapa; Yildirim-Ayan, Eda; Ayan, Halim; Eisenmann, Kathryn M

    2017-01-01

    Recent breakthroughs in plasma medicine have identified a potential application for the non-thermal plasma in cancer therapy. Most studies on the effects of non-thermal plasma on cancer cells have used traditional two-dimensional (2D) monolayer cell culture. However, very few studies are conducted employing non-thermal plasma in animal models. Two dimensional models do not fully mimic the three-dimensional (3D) tumor microenvironment and animal models are expensive and time-consuming. Therefore, we used 3D collagen matrices that closely resemble the native geometry of cancer tissues and provide more physiologically relevant results than 2D models, while providing a more cost effective and efficient precursor to animal studies. We previously demonstrated a role for non-thermal plasma application in promoting apoptotic cell death and reducing the viability of A549 lung adenocarcinoma epithelial cells cultured upon 2D matrices. In this study, we wished to determine the efficacy of non-thermal plasma application in driving apoptotic cell death of A549 lung cancer cells encapsulated within a 3D collagen matrix. The percentage of apoptosis increased as treatment time increased and was time dependent. In addition, the anti-viability effect of plasma was demonstrated. Twenty-four hours post-plasma treatment, 38% and 99% of cell death occurred with shortest (15 s) and longest treatment time (120 s) respectively at the plasma-treated region. We found that plasma has a greater effect on the viability of A549 lung cancer cells on the superficial surface of 3D matrices and has diminishing effects as it penetrates the 3D matrix. We also identified the nitrogen and oxygen species generated by plasma and characterized their penetration in vertical and lateral directions within the 3D matrix from the center of the plasma-treated region. Therefore, the utility of non-thermal dielectric barrier discharge plasma in driving apoptosis and reducing the viability of lung cancer cells

  2. Matrix density alters zyxin phosphorylation, which limits peripheral process formation and extension in endothelial cells invading 3D collagen matrices.

    Science.gov (United States)

    Abbey, Colette A; Bayless, Kayla J

    2014-09-01

    This study was designed to determine the optimal conditions required for known pro-angiogenic stimuli to elicit successful endothelial sprouting responses. We used an established, quantifiable model of endothelial cell (EC) sprout initiation where ECs were tested for invasion in low (1 mg/mL) and high density (5 mg/mL) 3D collagen matrices. Sphingosine 1-phosphate (S1P) alone, or S1P combined with stromal derived factor-1α (SDF) and phorbol ester (TPA), elicited robust sprouting responses. The ability of these factors to stimulate sprouting was more effective in higher density collagen matrices. S1P stimulation resulted in a significant increase in invasion distance, and with the exception of treatment groups containing phorbol ester, invasion distance was longer in 1mg/mL compared to 5mg/mL collagen matrices. Closer examination of cell morphology revealed that increasing matrix density and supplementing with SDF and TPA enhanced the formation of multicellular structures more closely resembling capillaries. TPA enhanced the frequency and size of lumen formation and correlated with a robust increase in phosphorylation of p42/p44 Erk kinase, while S1P and SDF did not. Also, a higher number of significantly longer extended processes formed in 5mg/mL compared to 1mg/mL collagen matrices. Because collagen matrices at higher density have been reported to be stiffer, we tested for changes in the mechanosensitive protein, zyxin. Interestingly, zyxin phosphorylation levels inversely correlated with matrix density, while levels of total zyxin did not change significantly. Immunofluorescence and localization studies revealed that total zyxin was distributed evenly throughout invading structures, while phosphorylated zyxin was slightly more intense in extended peripheral processes. Silencing zyxin expression increased extended process length and number of processes, while increasing zyxin levels decreased extended process length. Altogether these data indicate that ECs

  3. Mechanical properties of metastatic breast cancer cells invading into collagen I matrices

    Science.gov (United States)

    Ros, Robert

    2014-03-01

    Mechanical interactions between cells and the extracellular matrix (ECM) are critical to the metastasis of cancer cells. To investigate the mechanical interplay between the cells and ECM during invasion, we created thin bovine collagen I hydrogels ranging from 0.1-5 kPa in Young's modulus that were seeded with highly metastatic MDA-MB-231 breast cancer cells. Significant population fractions invaded the matrices either partially or fully within 24 h. We then combined confocal fluorescence microscopy and indentation with an atomic force microscope to determine the Young's moduli of individual embedded cells and the pericellular matrix using novel analysis methods for heterogeneous samples. In partially embedded cells, we observe a statistically significant correlation between the degree of invasion and the Young's modulus, which was up to an order of magnitude greater than that of the same cells measured in 2D. ROCK inhibition returned the cells' Young's moduli to values similar to 2D and diminished but did not abrogate invasion. This provides evidence that Rho/ROCK-dependent acto-myosin contractility is employed for matrix reorganization during initial invasion, and suggests the observed cell stiffening is due to an attendant increase in actin stress fibers. This work was supported by the National Cancer Institute under the grant U54 CA143862.

  4. Cell-mediated fibre recruitment drives extracellular matrix mechanosensing in engineered fibrillar microenvironments

    Science.gov (United States)

    Baker, Brendon M.; Trappmann, Britta; Wang, William Y.; Sakar, Mahmut S.; Kim, Iris L.; Shenoy, Vivek B.; Burdick, Jason A.; Chen, Christopher S.

    2015-12-01

    To investigate how cells sense stiffness in settings structurally similar to native extracellular matrices, we designed a synthetic fibrous material with tunable mechanics and user-defined architecture. In contrast to flat hydrogel surfaces, these fibrous materials recapitulated cell-matrix interactions observed with collagen matrices including stellate cell morphologies, cell-mediated realignment of fibres, and bulk contraction of the material. Increasing the stiffness of flat hydrogel surfaces induced mesenchymal stem cell spreading and proliferation; however, increasing fibre stiffness instead suppressed spreading and proliferation for certain network architectures. Lower fibre stiffness permitted active cellular forces to recruit nearby fibres, dynamically increasing ligand density at the cell surface and promoting the formation of focal adhesions and related signalling. These studies demonstrate a departure from the well-described relationship between material stiffness and spreading established with hydrogel surfaces, and introduce fibre recruitment as a previously undescribed mechanism by which cells probe and respond to mechanics in fibrillar matrices.

  5. A pilot study for distinguishing chromophobe renal cell carcinoma and oncocytoma using second harmonic generation imaging and convolutional neural network analysis of collagen fibrillar structure

    Science.gov (United States)

    Judd, Nicolas; Smith, Jason; Jain, Manu; Mukherjee, Sushmita; Icaza, Michael; Gallagher, Ryan; Szeligowski, Richard; Wu, Binlin

    2018-02-01

    A clear distinction between oncocytoma and chromophobe renal cell carcinoma (chRCC) is critically important for clinical management of patients. But it may often be difficult to distinguish the two entities based on hematoxylin and eosin (H and E) stained sections alone. In this study, second harmonic generation (SHG) signals which are very specific to collagen were used to image collagen fibril structure. We conduct a pilot study to develop a new diagnostic method based on the analysis of collagen associated with kidney tumors using convolutional neural networks (CNNs). CNNs comprise a type of machine learning process well-suited for drawing information out of images. This study examines a CNN model's ability to differentiate between oncocytoma (benign), and chRCC (malignant) kidney tumor images acquired with second harmonic generation (SHG), which is very specific for collagen matrix. To the best of our knowledge, this is the first study that attempts to distinguish the two entities based on their collagen structure. The model developed from this study demonstrated an overall classification accuracy of 68.7% with a specificity of 66.3% and sensitivity of 74.6%. While these results reflect an ability to classify the kidney tumors better than chance, further studies will be carried out to (a) better realize the tumor classification potential of this method with a larger sample size and (b) combining SHG with two-photon excited intrinsic fluorescence signal to achieve better classification.

  6. Human platelet lysate improves human cord blood derived ECFC survival and vasculogenesis in three dimensional (3D) collagen matrices.

    Science.gov (United States)

    Kim, Hyojin; Prasain, Nutan; Vemula, Sasidhar; Ferkowicz, Michael J; Yoshimoto, Momoko; Voytik-Harbin, Sherry L; Yoder, Mervin C

    2015-09-01

    Human cord blood (CB) is enriched in circulating endothelial colony forming cells (ECFCs) that display high proliferative potential and in vivo vessel forming ability. Since diminished ECFC survival is known to dampen the vasculogenic response in vivo, we tested how long implanted ECFC survive and generate vessels in three-dimensional (3D) type I collagen matrices in vitro and in vivo. We hypothesized that human platelet lysate (HPL) would promote cell survival and enhance vasculogenesis in the 3D collagen matrices. We report that the percentage of ECFC co-cultured with HPL that were alive was significantly enhanced on days 1 and 3 post-matrix formation, compared to ECFC alone containing matrices. Also, co-culture of ECFC with HPL displayed significantly more vasculogenic activity compared to ECFC alone and expressed significantly more pro-survival molecules (pAkt, p-Bad and Bcl-xL) in the 3D collagen matrices in vitro. Treatment with Akt1 inhibitor (A-674563), Akt2 inhibitor (CCT128930) and Bcl-xL inhibitor (ABT-263/Navitoclax) significantly decreased the cell survival and vasculogenesis of ECFC co-cultured with or without HPL and implicated activation of the Akt1 pathway as the critical mediator of the HPL effect on ECFC in vitro. A significantly greater average vessel number and total vascular area of human CD31(+) vessels were present in implants containing ECFC and HPL, compared to the ECFC alone implants in vivo. We conclude that implantation of ECFC with HPL in vivo promotes vasculogenesis and augments blood vessel formation via diminishing apoptosis of the implanted ECFC. Copyright © 2015 Elsevier Inc. All rights reserved.

  7. The Secret Life of Collagen: Temporal Changes in Nanoscale Fibrillar Pre-Strain and Molecular Organization during Physiological Loading of Cartilage.

    Science.gov (United States)

    Inamdar, Sheetal R; Knight, David P; Terrill, Nicholas J; Karunaratne, Angelo; Cacho-Nerin, Fernando; Knight, Martin M; Gupta, Himadri S

    2017-10-24

    Articular cartilage is a natural biomaterial whose structure at the micro- and nanoscale is critical for healthy joint function and where degeneration is associated with widespread disorders such as osteoarthritis. At the nanoscale, cartilage mechanical functionality is dependent on the collagen fibrils and hydrated proteoglycans that form the extracellular matrix. The dynamic response of these ultrastructural building blocks at the nanoscale, however, remains unclear. Here we measure time-resolved changes in collagen fibril strain, using small-angle X-ray diffraction during compression of bovine and human cartilage explants. We demonstrate the existence of a collagen fibril tensile pre-strain, estimated from the D-period at approximately 1-2%, due to osmotic swelling pressure from the proteoglycan. We reveal a rapid reduction and recovery of this pre-strain which occurs during stress relaxation, approximately 60 s after the onset of peak load. Furthermore, we show that this reduction in pre-strain is linked to disordering in the intrafibrillar molecular packing, alongside changes in the axial overlapping of tropocollagen molecules within the fibril. Tissue degradation in the form of selective proteoglycan removal disrupts both the collagen fibril pre-strain and the transient response during stress relaxation. This study bridges a fundamental gap in the knowledge describing time-dependent changes in collagen pre-strain and molecular organization that occur during physiological loading of articular cartilage. The ultrastructural details of this transient response are likely to transform our understanding of the role of collagen fibril nanomechanics in the biomechanics of cartilage and other hydrated soft tissues.

  8. [Collagen nephritis].

    Science.gov (United States)

    Lago, N R; Bulos, M J; Monserrat, A J

    1997-01-01

    Fibrillar collagen in the glomeruli is considered specific of the nail-patella syndrome. A new nephropathy with diffuse intraglomerular deposition of type III collagen without nail and skeletal abnormalities has been described. We report the case of a 26-year-old woman who presented persistent proteinuria, hematuria, deafness without nail and skeletal abnormalities. The renal biopsy showed focal and segmental glomerulosclerosis by light microscopy. The electron microscopy revealed the presence of massive fibrillar collagen within the mesangial matriz and the basement membrane. This is the first patient reported in our country. We emphasize the usefulness of electron microscopy in the study of glomerular diseases.

  9. Measurement of the quadratic hyperpolarizability of the collagen triple helix and application to second harmonic imaging of natural and biomimetic collagenous tissues

    Science.gov (United States)

    Deniset-Besseau, A.; Strupler, M.; Duboisset, J.; De Sa Peixoto, P.; Benichou, E.; Fligny, C.; Tharaux, P.-L.; Mosser, G.; Brevet, P.-F.; Schanne-Klein, M.-C.

    2009-09-01

    Collagen is a major protein of the extracellular matrix that is characterized by triple helical domains. It plays a central role in the formation of fibrillar and microfibrillar networks, basement membranes, as well as other structures of the connective tissue. Remarkably, fibrillar collagen exhibits efficient Second Harmonic Generation (SHG) so that SHG microscopy proved to be a sensitive tool to probe the three-dimensional architecture of fibrillar collagen and to assess the progression of fibrotic pathologies. We obtained sensitive and reproducible measurements of the fibrosis extent, but we needed quantitative data at the molecular level to further process SHG images. We therefore performed Hyper- Rayleigh Scattering (HRS) experiments and measured a second order hyperpolarisability of 1.25 10-27 esu for rat-tail type I collagen. This value is surprisingly large considering that collagen presents no strong harmonophore in its aminoacid sequence. In order to get insight into the physical origin of this nonlinear process, we performed HRS measurements after denaturation of the collagen triple helix and for a collagen-like short model peptide [(Pro-Pro- Gly)10]3. It showed that the collagen large nonlinear response originates in the tight alignment of a large number of weakly efficient harmonophores, presumably the peptide bonds, resulting in a coherent amplification of the nonlinear signal along the triple helix. To illustrate this mechanism, we successfully recorded SHG images in collagenous biomimetic matrices.

  10. Assembly of Collagen Matrices as a Phase Transition Revealed by Structural and Rheologic Studies

    OpenAIRE

    Forgacs, Gabor; Newman, Stuart A.; Hinner, Bernhard; Maier, Christian W.; Sackmann, Erich

    2003-01-01

    We have studied the structural and viscoelastic properties of assembling networks of the extracellular matrix protein type-I collagen by means of phase contrast microscopy and rotating disk rheometry. The initial stage of the assembly is a nucleation process of collagen monomers associating to randomly distributed branched clusters with extensions of several microns. Eventually a sol-gel transition takes place, which is due to the interconnection of these clusters. We analyzed this transition...

  11. Entrapment of cultured pancreas islets in three-dimensional collagen matrices.

    Science.gov (United States)

    Chao, S H; Peshwa, M V; Sutherland, D E; Hu, W S

    1992-01-01

    In vitro culture of islets of Langerhans decreases their immunogenicity, presumably by eliminating passenger leukocytes and other Ia+ presenting cells within the islets. Islets cultivated in petri dishes either at 37 degrees C or at 25 degrees C gradually disintegrate during culture in a time-dependent manner which is related to the free-floating condition of the islets. Also, a fraction of the islets disperse as single cells and beta-cell aggregates or adhere to the bottom of the culture dishes. Thus, the retrieval rate of transplantable islets is dampened due to their disintegration and spontaneous dispersion in conventional petri dish cultures. Entrapment of freshly harvested islets of Langerhans in a three-dimensional collagen matrix was studied as an alternative method for islet cultivation. The contraction of collagen fibrils during in vitro culture counteracts the dispersion of islets and helps in maintaining their integrity while in culture. It was observed that the entrapped islets maintain satisfactory morphology, viability, and capability of glucose-dependent insulin secretion for over 2 wk. The oxygen consumption rate and glucose metabolism of these islets was not deranged when entrapped in collagen. Also, the retrieval of islets is easier and more efficient than that observed in conventional culture systems. Our results indicate that culture of islets in three-dimensional collagen gels can potentially develop into an ideal system applicable to clinical transplantation of cultured islets or beta-cell aggregates.

  12. Assembly of collagen matrices as a phase transition revealed by structural and rheologic studies.

    Science.gov (United States)

    Forgacs, Gabor; Newman, Stuart A; Hinner, Bernhard; Maier, Christian W; Sackmann, Erich

    2003-02-01

    We have studied the structural and viscoelastic properties of assembling networks of the extracellular matrix protein type-I collagen by means of phase contrast microscopy and rotating disk rheometry. The initial stage of the assembly is a nucleation process of collagen monomers associating to randomly distributed branched clusters with extensions of several microns. Eventually a sol-gel transition takes place, which is due to the interconnection of these clusters. We analyzed this transition in terms of percolation theory. The viscoelastic parameters (storage modulus G' and loss modulus G") were measured as a function of time for five different frequencies ranging from omega = 0.2 rad/s to 6.9 rad/s. We found that at the gel point both G' and G" obey a scaling law, with the critical exponent Delta = 0.7 and a critical loss angle being independent of frequency as predicted by percolation theory. Gelation of collagen thus represents a second order phase transition.

  13. Systemic administration of IGF-I enhances healing in collagenous extracellular matrices: evaluation of loaded and unloaded ligaments

    Science.gov (United States)

    Provenzano, Paolo P; Alejandro-Osorio, Adriana L; Grorud, Kelley W; Martinez, Daniel A; Vailas, Arthur C; Grindeland, Richard E; Vanderby, Ray

    2007-01-01

    support two of our hypotheses that systemic administration of IGF-I or GH+IGF-I improve healing in collagenous tissue. Systemic administration of IGF-I improves healing in collagenous extracellular matrices from loaded and unloaded tissues. Growth hormone alone did not result in any significant improvement contrary to our hypothesis, while GH + IGF-I produced remarkable improvement in hindlimb unloaded animals. PMID:17386107

  14. Systemic administration of IGF-I enhances healing in collagenous extracellular matrices: evaluation of loaded and unloaded ligaments

    Directory of Open Access Journals (Sweden)

    Martinez Daniel A

    2007-03-01

    -I. Conclusion These results support two of our hypotheses that systemic administration of IGF-I or GH+IGF-I improve healing in collagenous tissue. Systemic administration of IGF-I improves healing in collagenous extracellular matrices from loaded and unloaded tissues. Growth hormone alone did not result in any significant improvement contrary to our hypothesis, while GH + IGF-I produced remarkable improvement in hindlimb unloaded animals.

  15. Correlating confocal microscopy and atomic force indentation reveals metastatic cancer cells stiffen during invasion into collagen I matrices

    Science.gov (United States)

    Staunton, Jack R.; Doss, Bryant L.; Lindsay, Stuart; Ros, Robert

    2016-01-01

    Mechanical interactions between cells and their microenvironment dictate cell phenotype and behavior, calling for cell mechanics measurements in three-dimensional (3D) extracellular matrices (ECM). Here we describe a novel technique for quantitative mechanical characterization of soft, heterogeneous samples in 3D. The technique is based on the integration of atomic force microscopy (AFM) based deep indentation, confocal fluorescence microscopy, finite element (FE) simulations and analytical modeling. With this method, the force response of a cell embedded in 3D ECM can be decoupled from that of its surroundings, enabling quantitative determination of the elastic properties of both the cell and the matrix. We applied the technique to the quantification of the elastic properties of metastatic breast adenocarcinoma cells invading into collagen hydrogels. We found that actively invading and fully embedded cells are significantly stiffer than cells remaining on top of the collagen, a clear example of phenotypical change in response to the 3D environment. Treatment with Rho-associated protein kinase (ROCK) inhibitor significantly reduces this stiffening, indicating that actomyosin contractility plays a major role in the initial steps of metastatic invasion.

  16. Noninvasive Quantitative Imaging of Collagen Microstructure in Three-Dimensional Hydrogels Using High-Frequency Ultrasound.

    Science.gov (United States)

    Mercado, Karla P; Helguera, María; Hocking, Denise C; Dalecki, Diane

    2015-07-01

    Collagen I is widely used as a natural component of biomaterials for both tissue engineering and regenerative medicine applications. The physical and biological properties of fibrillar collagens are strongly tied to variations in collagen fiber microstructure. The goal of this study was to develop the use of high-frequency quantitative ultrasound to assess collagen microstructure within three-dimensional (3D) hydrogels noninvasively and nondestructively. The integrated backscatter coefficient (IBC) was employed as a quantitative ultrasound parameter to detect, image, and quantify spatial variations in collagen fiber density and diameter. Collagen fiber microstructure was varied by fabricating hydrogels with different collagen concentrations or polymerization temperatures. IBC values were computed from measurements of the backscattered radio-frequency ultrasound signals collected using a single-element transducer (38-MHz center frequency, 13-47 MHz bandwidth). The IBC increased linearly with increasing collagen concentration and decreasing polymerization temperature. Parametric 3D images of the IBC were generated to visualize and quantify regional variations in collagen microstructure throughout the volume of hydrogels fabricated in standard tissue culture plates. IBC parametric images of corresponding cell-embedded collagen gels showed cell accumulation within regions having elevated collagen IBC values. The capability of this ultrasound technique to noninvasively detect and quantify spatial differences in collagen microstructure offers a valuable tool to monitor the structural properties of collagen scaffolds during fabrication, to detect functional differences in collagen microstructure, and to guide fundamental research on the interactions of cells and collagen matrices.

  17. Molecular nanomechanics of nascent bone: fibrillar toughening by mineralization

    Science.gov (United States)

    Buehler, Markus J.

    2007-07-01

    Mineralized collagen fibrils are highly conserved nanostructural building blocks of bone. By a combination of molecular dynamics simulation and theoretical analysis it is shown that the characteristic nanostructure of mineralized collagen fibrils is vital for its high strength and its ability to sustain large deformation, as is relevant to the physiological role of bone, creating a strong and tough material. An analysis of the molecular mechanisms of protein and mineral phases under large deformation of mineralized collagen fibrils reveals a fibrillar toughening mechanism that leads to a manifold increase of energy dissipation compared to fibrils without mineral phase. This fibrillar toughening mechanism increases the resistance to fracture by forming large local yield regions around crack-like defects, a mechanism that protects the integrity of the entire structure by allowing for localized failure. As a consequence, mineralized collagen fibrils are able to tolerate microcracks of the order of several hundred micrometres in size without causing any macroscopic failure of the tissue, which may be essential to enable bone remodelling. The analysis proves that adding nanoscopic small platelets to collagen fibrils increases their Young's modulus and yield strength as well as their fracture strength. We find that mineralized collagen fibrils have a Young's modulus of 6.23 GPa (versus 4.59 GPa for the collagen fibril), yield at a tensile strain of 6.7% (versus 5% for the collagen fibril) and feature a fracture stress of 0.6 GPa (versus 0.3 GPa for the collagen fibril).

  18. Molecular nanomechanics of nascent bone: fibrillar toughening by mineralization

    International Nuclear Information System (INIS)

    Buehler, Markus J

    2007-01-01

    Mineralized collagen fibrils are highly conserved nanostructural building blocks of bone. By a combination of molecular dynamics simulation and theoretical analysis it is shown that the characteristic nanostructure of mineralized collagen fibrils is vital for its high strength and its ability to sustain large deformation, as is relevant to the physiological role of bone, creating a strong and tough material. An analysis of the molecular mechanisms of protein and mineral phases under large deformation of mineralized collagen fibrils reveals a fibrillar toughening mechanism that leads to a manifold increase of energy dissipation compared to fibrils without mineral phase. This fibrillar toughening mechanism increases the resistance to fracture by forming large local yield regions around crack-like defects, a mechanism that protects the integrity of the entire structure by allowing for localized failure. As a consequence, mineralized collagen fibrils are able to tolerate microcracks of the order of several hundred micrometres in size without causing any macroscopic failure of the tissue, which may be essential to enable bone remodelling. The analysis proves that adding nanoscopic small platelets to collagen fibrils increases their Young's modulus and yield strength as well as their fracture strength. We find that mineralized collagen fibrils have a Young's modulus of 6.23 GPa (versus 4.59 GPa for the collagen fibril), yield at a tensile strain of 6.7% (versus 5% for the collagen fibril) and feature a fracture stress of 0.6 GPa (versus 0.3 GPa for the collagen fibril)

  19. Assembly of collagen into microribbons: effects of pH and electrolytes.

    Science.gov (United States)

    Jiang, Fengzhi; Hörber, Heinrich; Howard, Jonathon; Müller, Daniel J

    2004-12-01

    Collagen represents the major structural protein of the extracellular matrix. Elucidating the mechanism of its assembly is important for understanding many cell biological and medical processes as well as for tissue engineering and biotechnological approaches. In this work, conditions for the self-assembly of collagen type I molecules on a supporting surface were characterized. By applying hydrodynamic flow, collagen assembled into ultrathin ( approximately 3 nm) highly anisotropic ribbon-like structures coating the entire support. We call these novel collagen structures microribbons. High-resolution atomic force microscopy topographs show that subunits of these microribbons are built by fibrillar structures. The smallest units of these fibrillar structures have cross-sections of approximately 3 x 5nm, consistent with current models of collagen microfibril formation. By varying the pH and electrolyte of the buffer solution during the self-assembly process, the microfibril density and contacts formed within this network could be controlled. Under certain electrolyte compositions the microribbons and microfibers display the characteristic D-periodicity of approximately 65 nm observed for much thicker collagen fibrils. In addition to providing insight into the mechanism of collagen assembly, the ultraflat collagen matrices may also offer novel ways to bio-functionalize surfaces.

  20. Rheology of Heterotypic Collagen Networks

    NARCIS (Netherlands)

    Piechocka, I.K.; van Oosten, A.S.G.; Breuls, R.G.M.; Koenderink, G.H.

    2011-01-01

    Collagen fibrils are the main structural element of connective tissues. In many tissues, these fibrils contain two fibrillar collagens (types I and V) in a ratio that changes during tissue development, regeneration, and various diseases. Here we investigate the influence of collagen composition on

  1. Tumor cell invasion of collagen matrices requires coordinate lipid agonist-induced G-protein and membrane-type matrix metalloproteinase-1-dependent signaling

    Directory of Open Access Journals (Sweden)

    Anthis Nicholas J

    2006-12-01

    Full Text Available Abstract Background Lysophosphatidic acid (LPA and sphingosine 1-phosphate (S1P are bioactive lipid signaling molecules implicated in tumor dissemination. Membrane-type matrix metalloproteinase 1 (MT1-MMP is a membrane-tethered collagenase thought to be involved in tumor invasion via extracellular matrix degradation. In this study, we investigated the molecular requirements for LPA- and S1P-regulated tumor cell migration in two dimensions (2D and invasion of three-dimensional (3D collagen matrices and, in particular, evaluated the role of MT1-MMP in this process. Results LPA stimulated while S1P inhibited migration of most tumor lines in Boyden chamber assays. Conversely, HT1080 fibrosarcoma cells migrated in response to both lipids. HT1080 cells also markedly invaded 3D collagen matrices (~700 μm over 48 hours in response to either lipid. siRNA targeting of LPA1 and Rac1, or S1P1, Rac1, and Cdc42 specifically inhibited LPA- or S1P-induced HT1080 invasion, respectively. Analysis of LPA-induced HT1080 motility on 2D substrates vs. 3D matrices revealed that synthetic MMP inhibitors markedly reduced the distance (~125 μm vs. ~45 μm and velocity of invasion (~0.09 μm/min vs. ~0.03 μm/min only when cells navigated 3D matrices signifying a role for MMPs exclusively in invasion. Additionally, tissue inhibitors of metalloproteinases (TIMPs-2, -3, and -4, but not TIMP-1, blocked lipid agonist-induced invasion indicating a role for membrane-type (MT-MMPs. Furthermore, MT1-MMP expression in several tumor lines directly correlated with LPA-induced invasion. HEK293s, which neither express MT1-MMP nor invade in the presence of LPA, were transfected with MT1-MMP cDNA, and subsequently invaded in response to LPA. When HT1080 cells were seeded on top of or within collagen matrices, siRNA targeting of MT1-MMP, but not other MMPs, inhibited lipid agonist-induced invasion establishing a requisite role for MT1-MMP in this process. Conclusion LPA is a

  2. Sericin Enhances the Bioperformance of Collagen-Based Matrices Preseeded with Human-Adipose Derived Stem Cells (hADSCs

    Directory of Open Access Journals (Sweden)

    Marieta Costache

    2013-01-01

    Full Text Available Current clinical strategies for adipose tissue engineering (ATE, including autologous fat implants or the use of synthetic surrogates, not only are failing in the long term, but also can’t face the latest requirements regarding the aesthetic restoration of the resulted imperfections. In this context, modern strategies in current ATE applications are based on the implantation of 3D cell-scaffold bioconstructs, designed for prospective achievement of in situ functional de novo tissue. Thus, in this paper, we reported for the first time the evaluation of a spongious 60% collagen and 40% sericin scaffold preseeded with human adipose-derived stem cells (hADSCs in terms of biocompatibility and adipogenic potential in vitro. We showed that the addition of the sticky protein sericin in the composition of a classical collagen sponge enhanced the adhesion and also the proliferation rate of the seeded cells, thus improving the biocompatibility of the novel scaffold. In addition, sericin stimulated PPARγ2 overexpression, triggering a subsequent upregulated expression profile of FAS, aP2 and perilipin adipogenic markers. These features, together with the already known sericin stimulatory potential on cellular collagen production, promote collagen-sericin biomatrix as a good candidate for soft tissue reconstruction and wound healing applications.

  3. Collagens - structure, function and biosynthesis.

    OpenAIRE

    Gelse, K; Poschl, E; Aigner, T

    2003-01-01

    The extracellular matrix represents a complex alloy of variable members of diverse protein families defining structural integrity and various physiological functions. The most abundant family is the collagens with more than 20 different collagen types identified so far. Collagens are centrally involved in the formation of fibrillar and microfibrillar networks of the extracellular matrix, basement membranes as well as other structures of the extracellular matrix. This review focuses on the dis...

  4. Fibrillar Adhesive for Climbing Robots

    Science.gov (United States)

    Pamess, Aaron; White, Victor E.

    2013-01-01

    A climbing robot needs to use its adhesive patches over and over again as it scales a slope. Replacing the adhesive at each step is generally impractical. If the adhesive or attachment mechanism cannot be used repeatedly, then the robot must carry an extra load of this adhesive to apply a fresh layer with each move. Common failure modes include tearing, contamination by dirt, plastic deformation of fibers, and damage from loading/ unloading. A gecko-like fibrillar adhesive has been developed that has been shown useful for climbing robots, and may later prove useful for grasping, anchoring, and medical applications. The material consists of a hierarchical fibrillar structure that currently contains two levels, but may be extended to three or four levels in continuing work. The contacting level has tens of thousands of microscopic fibers made from a rubberlike material that bend over and create intimate contact with a surface to achieve maximum van der Waals forces. By maximizing the real area of contact that these fibers make and minimizing the bending energy necessary to achieve that contact, the net amount of adhesion has been improved dramatically.

  5. Extracellular matrix collagen alters cell proliferation and cell cycle progression of human uterine leiomyoma smooth muscle cells.

    Science.gov (United States)

    Koohestani, Faezeh; Braundmeier, Andrea G; Mahdian, Arash; Seo, Jane; Bi, JiaJia; Nowak, Romana A

    2013-01-01

    Uterine leiomyomas (ULs) are benign tumors occurring in the majority of reproductive aged women. Despite the high prevalence of these tumors, little is known about their etiology. A hallmark of ULs is the excessive deposition of extracellular matrix (ECM), primarily collagens. Collagens are known to modulate cell behavior and function singularly or through interactions with integrins and growth factor-mediated mitogenic pathways. To better understand the pathogenesis of ULs and the role of ECM collagens in their growth, we investigated the interaction of leiomyoma smooth muscle cells (LSMCs) with two different forms of collagen, non-polymerized collagen (monomeric) and polymerized collagen (fibrillar), in the absence or presence of platelet-derived growth factor (PDGF), an abundant growth factor in ULs. Primary cultures of human LSMCS from symptomatic patients were grown on these two different collagen matrices and their morphology, cytoskeletal organization, cellular proliferation, and signaling pathways were evaluated. Our results showed that LSMCs had distinct morphologies on the different collagen matrices and their basal as well as PDGF-stimulated proliferation varied on these matrices. These differences in proliferation were accompanied by changes in cell cycle progression and p21, an inhibitory cell cycle protein. In addition we found alterations in the phosphorylation of focal adhesion kinase, cytoskeletal reorganization, and activation of the mitogen activated protein kinase (MAPK) signaling pathway. In conclusion, our results demonstrate a direct effect of ECM on the proliferation of LSMCs through interplay between the collagen matrix and the PDGF-stimulated MAPK pathway. In addition, these findings will pave the way for identifying novel therapeutic approaches for ULs that target ECM proteins and their signaling pathways in ULs.

  6. Immunohistochemical evaluation of fibrillar components of the extracellular matrix of transversalis fascia and anterior abdominal rectus sheath in men with inguinal hernia

    Directory of Open Access Journals (Sweden)

    Rogério De Oliveira Gonçalves

    Full Text Available OBJECTIVE: to evaluate the role of fibrillar extracellular matrix components in the pathogenesis of inguinal hernias. METHODS: samples of the transverse fascia and of the anterior sheath of the rectus abdominis muscle were collected from 40 men aged between 20 and 60 years with type II and IIIA Nyhus inguinal hernia and from 10 fresh male cadavers (controls without hernia in the same age range. The staining technique was immunohistochemistry for collagen I, collagen III and elastic fibers; quantification of fibrillar components was performed with an image analysis processing software. RESULTS: no statistically significant differences were found in the amount of elastic fibers, collagen I and collagen III, and the ratio of collagen I / III among patients with inguinal hernia when compared with subjects without hernia. CONCLUSION: the amount of fibrillar extracellular matrix components did not change in patients with and without inguinal hernia.

  7. Collagens--structure, function, and biosynthesis.

    Science.gov (United States)

    Gelse, K; Pöschl, E; Aigner, T

    2003-11-28

    The extracellular matrix represents a complex alloy of variable members of diverse protein families defining structural integrity and various physiological functions. The most abundant family is the collagens with more than 20 different collagen types identified so far. Collagens are centrally involved in the formation of fibrillar and microfibrillar networks of the extracellular matrix, basement membranes as well as other structures of the extracellular matrix. This review focuses on the distribution and function of various collagen types in different tissues. It introduces their basic structural subunits and points out major steps in the biosynthesis and supramolecular processing of fibrillar collagens as prototypical members of this protein family. A final outlook indicates the importance of different collagen types not only for the understanding of collagen-related diseases, but also as a basis for the therapeutical use of members of this protein family discussed in other chapters of this issue.

  8. Collagen degradation in the abdominal aneurysm: A conspiracy of matrix metalloproteinase and cysteine collagenases

    NARCIS (Netherlands)

    Abdul-Hussien, H.; Soekhoe, R.G.V.; Weber, E.; Thüsen, J.H. von der; Kleemann, R.; Mulder, A.; Hajo Van Bockel, J.; Hanemaaijer, R.; Lindeman, J.H.N.

    2007-01-01

    Growth and rupture of abdominal aortic aneurysms (AAAs) result from increased collagen turnover. Collagen turnover critically depends on specific collagenases that cleave the triple helical region of fibrillar collagen. As yet, the collagenases responsible for collagen degradation in AAAs have not

  9. Nonlinear optical response of the collagen triple helix and second harmonic microscopy of collagen liquid crystals

    Science.gov (United States)

    Deniset-Besseau, A.; De Sa Peixoto, P.; Duboisset, J.; Loison, C.; Hache, F.; Benichou, E.; Brevet, P.-F.; Mosser, G.; Schanne-Klein, M.-C.

    2010-02-01

    Collagen is characterized by triple helical domains and plays a central role in the formation of fibrillar and microfibrillar networks, basement membranes, as well as other structures of the connective tissue. Remarkably, fibrillar collagen exhibits efficient Second Harmonic Generation (SHG) and SHG microscopy proved to be a sensitive tool to score fibrotic pathologies. However, the nonlinear optical response of fibrillar collagen is not fully characterized yet and quantitative data are required to further process SHG images. We therefore performed Hyper-Rayleigh Scattering (HRS) experiments and measured a second order hyperpolarisability of 1.25 10-27 esu for rat-tail type I collagen. This value is surprisingly large considering that collagen presents no strong harmonophore in its amino-acid sequence. In order to get insight into the physical origin of this nonlinear process, we performed HRS measurements after denaturation of the collagen triple helix and for a collagen-like short model peptide [(Pro-Pro-Gly)10]3. It showed that the collagen large nonlinear response originates in the tight alignment of a large number of weakly efficient harmonophores, presumably the peptide bonds, resulting in a coherent amplification of the nonlinear signal along the triple helix. To illustrate this mechanism, we successfully recorded SHG images in collagen liquid solutions by achieving liquid crystalline ordering of the collagen triple helices.

  10. uPARAP/Endo180 is essential for cellular uptake of collagen and promotes fibroblast collagen adhesion

    DEFF Research Database (Denmark)

    Engelholm, Lars H; List, Karin; Netzel-Arnett, Sarah

    2003-01-01

    The uptake and lysosomal degradation of collagen by fibroblasts constitute a major pathway in the turnover of connective tissue. However, the molecular mechanisms governing this pathway are poorly understood. Here, we show that the urokinase plasminogen activator receptor-associated protein (u......, these cells had diminished initial adhesion to a range of different collagens, as well as impaired migration on fibrillar collagen. These studies identify a central function of uPARAP/Endo180 in cellular collagen interactions....

  11. An extracellular-matrix-specific GEF-GAP interaction regulates Rho GTPase crosstalk for 3D collagen migration.

    Science.gov (United States)

    Kutys, Matthew L; Yamada, Kenneth M

    2014-09-01

    Rho-family GTPases govern distinct types of cell migration on different extracellular matrix proteins in tissue culture or three-dimensional (3D) matrices. We searched for mechanisms selectively regulating 3D cell migration in different matrix environments and discovered a form of Cdc42-RhoA crosstalk governing cell migration through a specific pair of GTPase activator and inhibitor molecules. We first identified βPix, a guanine nucleotide exchange factor (GEF), as a specific regulator of migration in 3D collagen using an affinity-precipitation-based GEF screen. Knockdown of βPix specifically blocks cell migration in fibrillar collagen microenvironments, leading to hyperactive cellular protrusion accompanied by increased collagen matrix contraction. Live FRET imaging and RNAi knockdown linked this βPix knockdown phenotype to loss of polarized Cdc42 but not Rac1 activity, accompanied by enhanced, de-localized RhoA activity. Mechanistically, collagen phospho-regulates βPix, leading to its association with srGAP1, a GTPase-activating protein (GAP), needed to suppress RhoA activity. Our results reveal a matrix-specific pathway controlling migration involving a GEF-GAP interaction of βPix with srGAP1 that is critical for maintaining suppressive crosstalk between Cdc42 and RhoA during 3D collagen migration.

  12. Collagen I self-assembly: revealing the developing structures that generate turbidity.

    Science.gov (United States)

    Zhu, Jieling; Kaufman, Laura J

    2014-04-15

    Type I collagen gels are routinely used in biophysical studies and bioengineering applications. The structural and mechanical properties of these fibrillar matrices depend on the conditions under which collagen fibrillogenesis proceeds, and developing a fuller understanding of this process will enhance control over gel properties. Turbidity measurements have long been the method of choice for monitoring developing gels, whereas imaging methods are regularly used to visualize fully developed gels. In this study, turbidity and confocal reflectance microscopy (CRM) were simultaneously employed to track collagen fibrillogenesis and reconcile the information reported by the two techniques, with confocal fluorescence microscopy (CFM) used to supplement information about early events in fibrillogenesis. Time-lapse images of 0.5 mg/ml, 1.0 mg/ml, and 2.0 mg/ml acid-solubilized collagen I gels forming at 27°C, 32°C, and 37°C were collected. It was found that in situ turbidity measured in a scanning transmittance configuration was interchangeable with traditional turbidity measurements using a spectrophotometer. CRM and CFM were employed to reveal the structures responsible for the turbidity that develops during collagen self-assembly. Information from CRM and transmittance images was collapsed into straightforward single variables; total intensity in CRM images tracked turbidity development closely for all collagen gels investigated, and the two techniques were similarly sensitive to fibril number and dimension. Complementary CRM, CFM, and in situ turbidity measurements revealed that fibril and network formation occurred before substantial turbidity was present, and the majority of increasing turbidity during collagen self-assembly was due to increasing fibril thickness. Copyright © 2014 Biophysical Society. Published by Elsevier Inc. All rights reserved.

  13. Fibrillar dimer formation of islet amyloid polypeptides

    Energy Technology Data Exchange (ETDEWEB)

    Chiu, Chi-cheng [Univ. of Chicago, IL (United States); Argonne National Lab. (ANL), Argonne, IL (United States); de Pablo, Juan J. [Univ. of Chicago, IL (United States); Argonne National Lab. (ANL), Argonne, IL (United States)

    2015-05-08

    Amyloid deposits of human islet amyloid polypeptide (hIAPP), a 37-residue hormone co-produced with insulin, have been implicated in the development of type 2 diabetes. Residues 20 – 29 of hIAPP have been proposed to constitute the amyloidogenic core for the aggregation process, yet the segment is mostly unstructured in the mature fibril, according to solid-state NMR data. Here we use molecular simulations combined with bias-exchange metadynamics to characterize the conformational free energies of hIAPP fibrillar dimer and its derivative, pramlintide. We show that residues 20 – 29 are involved in an intermediate that exhibits transient β-sheets, consistent with recent experimental and simulation results. By comparing the aggregation of hIAPP and pramlintide, we illustrate the effects of proline residues on inhibition of the dimerization of IAPP. The mechanistic insights presented here could be useful for development of therapeutic inhibitors of hIAPP amyloid formation.

  14. Double thermal transitions of type I collagen in acidic solution.

    Science.gov (United States)

    Liu, Yan; Liu, Lingrong; Chen, Mingmao; Zhang, Qiqing

    2013-01-01

    Contributed equally to this work. To further understand the origin of the double thermal transitions of collagen in acidic solution induced by heating, the denaturation of acidic soluble collagen was investigated by micro-differential scanning calorimeter (micro-DSC), circular dichroism (CD), dynamic laser light scattering (DLLS), transmission electron microscopy (TEM), and two-dimensional (2D) synchronous fluorescence spectrum. Micro-DSC experiments revealed that the collagen exhibited double thermal transitions, which were located within 31-37 °C (minor thermal transition, T(s) ∼ 33 °C) and 37-55 °C (major thermal transition, T(m) ∼ 40 °C), respectively. The CD spectra suggested that the thermal denaturation of collagen resulted in transition from polyproline II type structure to unordered structure. The DLLS results showed that there were mainly two kinds of collagen fibrillar aggregates with different sizes in acidic solution and the larger fibrillar aggregates (T(p2) = 40 °C) had better heat resistance than the smaller one (T(p1) = 33 °C). TEM revealed that the depolymerization of collagen fibrils occurred and the periodic cross-striations of collagen gradually disappeared with increasing temperature. The 2D fluorescence correlation spectra were also applied to investigate the thermal responses of tyrosine and phenylalanine residues at the molecular level. Finally, we could draw the conclusion that (1) the minor thermal transition was mainly due to the defibrillation of the smaller collagen fibrillar aggregates and the unfolding of a little part of triple helices; (2) the major thermal transition primarily arose from the defibrillation of the larger collagen fibrillar aggregates and the complete denaturation of the majority part of triple helices.

  15. Compressed collagen constructs with optimized mechanical properties and cell interactions for tissue engineering applications

    DEFF Research Database (Denmark)

    Ajalloueian, Fatemeh; Nikogeorgos, Nikolaos; Ajalloueian, Ali

    2018-01-01

    In this study, we are introducing a simple, fast and reliable add-in to the technique of plastic compression (PC) to obtain collagen sheets with decreased fibrillar densities, representing improved cell-interactions and mechanical properties. Collagen hydrogels with different initial concentratio...

  16. Lysyl oxidases in idiopathic pulmonary fibrosis: A key participant in collagen I matrix remodelling

    NARCIS (Netherlands)

    Tjin, Gavin; Mahar, Annabelle; Kable, Eleanor; Burgess, Janette

    2015-01-01

    Introduction: The fibrotic element in Idiopathic Pulmonary Fibrosis (IPF) is a key feature and is associated with Usual Interstitial Pneumonia (UIP) pattern. Fibrillar collagen I (COL1) has second harmonic generation (SHG) properties, with signals both in the forward (F) (organized collagen) &

  17. Collagen-based cell migration models in vitro and in vivo.

    NARCIS (Netherlands)

    Wolf, K.A.; Alexander, S.; Schacht, V.; Coussens, L.M.; Andrian, U.H. von; Rheenen, J. van; Deryugina, E.; Friedl, P.H.A.

    2009-01-01

    Fibrillar collagen is the most abundant extracellular matrix (ECM) constituent which maintains the structure of most interstitial tissues and organs, including skin, gut, and breast. Density and spatial alignments of the three-dimensional (3D) collagen architecture define mechanical tissue

  18. Molecular crowding of collagen: a pathway to produce highly-organized collagenous structures.

    Science.gov (United States)

    Saeidi, Nima; Karmelek, Kathryn P; Paten, Jeffrey A; Zareian, Ramin; DiMasi, Elaine; Ruberti, Jeffrey W

    2012-10-01

    Collagen in vertebrate animals is often arranged in alternating lamellae or in bundles of aligned fibrils which are designed to withstand in vivo mechanical loads. The formation of these organized structures is thought to result from a complex, large-area integration of individual cell motion and locally-controlled synthesis of fibrillar arrays via cell-surface fibripositors (direct matrix printing). The difficulty of reproducing such a process in vitro has prevented tissue engineers from constructing clinically useful load-bearing connective tissue directly from collagen. However, we and others have taken the view that long-range organizational information is potentially encoded into the structure of the collagen molecule itself, allowing the control of fibril organization to extend far from cell (or bounding) surfaces. We here demonstrate a simple, fast, cell-free method capable of producing highly-organized, anistropic collagen fibrillar lamellae de novo which persist over relatively long-distances (tens to hundreds of microns). Our approach to nanoscale organizational control takes advantage of the intrinsic physiochemical properties of collagen molecules by inducing collagen association through molecular crowding and geometric confinement. To mimic biological tissues which comprise planar, aligned collagen lamellae (e.g. cornea, lamellar bone or annulus fibrosus), type I collagen was confined to a thin, planar geometry, concentrated through molecular crowding and polymerized. The resulting fibrillar lamellae show a striking resemblance to native load-bearing lamellae in that the fibrils are small, generally aligned in the plane of the confining space and change direction en masse throughout the thickness of the construct. The process of organizational control is consistent with embryonic development where the bounded planar cell sheets produced by fibroblasts suggest a similar confinement/concentration strategy. Such a simple approach to nanoscale

  19. Fibrillar dimer formation of islet amyloid polypeptides

    Directory of Open Access Journals (Sweden)

    Chi-cheng Chiu

    2015-09-01

    Full Text Available Amyloid deposits of human islet amyloid polypeptide (hIAPP, a 37-residue hormone co-produced with insulin, have been implicated in the development of type 2 diabetes. Residues 20 – 29 of hIAPP have been proposed to constitute the amyloidogenic core for the aggregation process, yet the segment is mostly unstructured in the mature fibril, according to solid-state NMR data. Here we use molecular simulations combined with bias-exchange metadynamics to characterize the conformational free energies of hIAPP fibrillar dimer and its derivative, pramlintide. We show that residues 20 – 29 are involved in an intermediate that exhibits transient β-sheets, consistent with recent experimental and simulation results. By comparing the aggregation of hIAPP and pramlintide, we illustrate the effects of proline residues on inhibition of the dimerization of IAPP. The mechanistic insights presented here could be useful for development of therapeutic inhibitors of hIAPP amyloid formation.

  20. Imaging collagen type I fibrillogenesis with high spatiotemporal resolution

    International Nuclear Information System (INIS)

    Stamov, Dimitar R; Stock, Erik; Franz, Clemens M; Jähnke, Torsten; Haschke, Heiko

    2015-01-01

    Fibrillar collagens, such as collagen type I, belong to the most abundant extracellular matrix proteins and they have received much attention over the last five decades due to their large interactome, complex hierarchical structure and high mechanical stability. Nevertheless, the collagen self-assembly process is still incompletely understood. Determining the real-time kinetics of collagen type I formation is therefore pivotal for better understanding of collagen type I structure and function, but visualising the dynamic self-assembly process of collagen I on the molecular scale requires imaging techniques offering high spatiotemporal resolution. Fast and high-speed scanning atomic force microscopes (AFM) provide the means to study such processes on the timescale of seconds under near-physiological conditions. In this study we have applied fast AFM tip scanning to study the assembly kinetics of fibrillar collagen type I nanomatrices with a temporal resolution reaching eight seconds for a frame size of 500 nm. By modifying the buffer composition and pH value, the kinetics of collagen fibrillogenesis can be adjusted for optimal analysis by fast AFM scanning. We furthermore show that amplitude-modulation imaging can be successfully applied to extract additional structural information from collagen samples even at high scan rates. Fast AFM scanning with controlled amplitude modulation therefore provides a versatile platform for studying dynamic collagen self-assembly processes at high resolution. - Highlights: • Continuous non-invasive time-lapse investigation of collagen I fibrillogenesis in situ. • Imaging of collagen I self-assembly with high spatiotemporal resolution. • Application of setpoint modulation to study the hierarchical structure of collagen I. • Observing real-time formation of the D-banding pattern in collagen I

  1. Imaging collagen type I fibrillogenesis with high spatiotemporal resolution

    Energy Technology Data Exchange (ETDEWEB)

    Stamov, Dimitar R, E-mail: stamov@jpk.com [JPK Instruments AG, Bouchéstrasse 12, 12435 Berlin (Germany); Stock, Erik [JPK Instruments AG, Bouchéstrasse 12, 12435 Berlin (Germany); Franz, Clemens M [DFG-Center for Functional Nanostructures (CFN), Karlsruhe Institute of Technology (KIT), Wolfgang-Gaede-Strasse 1a, 76131 Karlsruhe (Germany); Jähnke, Torsten; Haschke, Heiko [JPK Instruments AG, Bouchéstrasse 12, 12435 Berlin (Germany)

    2015-02-15

    Fibrillar collagens, such as collagen type I, belong to the most abundant extracellular matrix proteins and they have received much attention over the last five decades due to their large interactome, complex hierarchical structure and high mechanical stability. Nevertheless, the collagen self-assembly process is still incompletely understood. Determining the real-time kinetics of collagen type I formation is therefore pivotal for better understanding of collagen type I structure and function, but visualising the dynamic self-assembly process of collagen I on the molecular scale requires imaging techniques offering high spatiotemporal resolution. Fast and high-speed scanning atomic force microscopes (AFM) provide the means to study such processes on the timescale of seconds under near-physiological conditions. In this study we have applied fast AFM tip scanning to study the assembly kinetics of fibrillar collagen type I nanomatrices with a temporal resolution reaching eight seconds for a frame size of 500 nm. By modifying the buffer composition and pH value, the kinetics of collagen fibrillogenesis can be adjusted for optimal analysis by fast AFM scanning. We furthermore show that amplitude-modulation imaging can be successfully applied to extract additional structural information from collagen samples even at high scan rates. Fast AFM scanning with controlled amplitude modulation therefore provides a versatile platform for studying dynamic collagen self-assembly processes at high resolution. - Highlights: • Continuous non-invasive time-lapse investigation of collagen I fibrillogenesis in situ. • Imaging of collagen I self-assembly with high spatiotemporal resolution. • Application of setpoint modulation to study the hierarchical structure of collagen I. • Observing real-time formation of the D-banding pattern in collagen I.

  2. Chemical functionalization and stabilization of type I collagen with organic tanning agents

    International Nuclear Information System (INIS)

    Albu, Madalina Georgiana; Deselnicu, Viorica; Ioannidis, Ioannis; Deselnicu, Dana; Chelaru, Ciprian

    2015-01-01

    We investigated the interactions between selected organic tanning agents and type I fibrillar collagen as a model fibrillar substrate to enable the fast direct evaluation and validation of interpretations of tanning activity. Type I fibrillar collagen (1%) as gel was used as substrate of tanning and tannic acid, resorcinol- and melamine-formaldehyde and their combination at three concentrations as crosslinking agents (tannins). To evaluate the stability of collagen during tanning, the crosslinked gels at 2.8, 4.5 and 9.0 pHs were freeze-dried as discs which were characterized by FTIR, shrinkage temperature, enzymatic degradation and optical microscopy, and the results were validated by statistical analyses. The best stability was given by combinations between resorcinol- and melamine-formaldehyde at isoelectric pH

  3. Chemical functionalization and stabilization of type I collagen with organic tanning agents

    Energy Technology Data Exchange (ETDEWEB)

    Albu, Madalina Georgiana; Deselnicu, Viorica; Ioannidis, Ioannis; Deselnicu, Dana; Chelaru, Ciprian [Leather and Footwear Research Institute, Bucharest (Romania)

    2015-02-15

    We investigated the interactions between selected organic tanning agents and type I fibrillar collagen as a model fibrillar substrate to enable the fast direct evaluation and validation of interpretations of tanning activity. Type I fibrillar collagen (1%) as gel was used as substrate of tanning and tannic acid, resorcinol- and melamine-formaldehyde and their combination at three concentrations as crosslinking agents (tannins). To evaluate the stability of collagen during tanning, the crosslinked gels at 2.8, 4.5 and 9.0 pHs were freeze-dried as discs which were characterized by FTIR, shrinkage temperature, enzymatic degradation and optical microscopy, and the results were validated by statistical analyses. The best stability was given by combinations between resorcinol- and melamine-formaldehyde at isoelectric pH.

  4. Fibril growth kinetics link buffer conditions and topology of 3D collagen I networks.

    Science.gov (United States)

    Kalbitzer, Liv; Pompe, Tilo

    2018-02-01

    Three-dimensional fibrillar networks reconstituted from collagen I are widely used as biomimetic scaffolds for in vitro and in vivo cell studies. Various physicochemical parameters of buffer conditions for in vitro fibril formation are well known, including pH-value, ion concentrations and temperature. However, there is a lack of a detailed understanding of reconstituting well-defined 3D network topologies, which is required to mimic specific properties of the native extracellular matrix. We screened a wide range of relevant physicochemical buffer conditions and characterized the topology of the reconstituted 3D networks in terms of mean pore size and fibril diameter. A congruent analysis of fibril formation kinetics by turbidimetry revealed the adjustment of the lateral growth phase of fibrils by buffer conditions to be key in the determination of pore size and fibril diameter of the networks. Although the kinetics of nucleation and linear growth phase were affected by buffer conditions as well, network topology was independent of those two growth phases. Overall, the results of our study provide necessary insights into how to engineer 3D collagen matrices with an independent control over topology parameters, in order to mimic in vivo tissues in in vitro experiments and tissue engineering applications. The study reports a comprehensive analysis of physicochemical conditions of buffer solutions to reconstitute defined 3D collagen I matrices. By a combined analysis of network topology, i.e., pore size and fibril diameter, and the kinetics of fibril formation we can reveal the dependence of 3D network topology on buffer conditions, such as pH-value, phosphate concentration and sodium chloride content. With those results we are now able to provide engineering strategies to independently tune the topology parameters of widely used 3D collagen scaffolds based on the buffer conditions. By that, we enable the straightforward mimicking of extracellular matrices of in vivo

  5. Physiological type I collagen organization induces the formation of a novel class of linear invadosomes

    Science.gov (United States)

    Juin, Amélie; Billottet, Clotilde; Moreau, Violaine; Destaing, Olivier; Albiges-Rizo, Corinne; Rosenbaum, Jean; Génot, Elisabeth; Saltel, Frédéric

    2012-01-01

    Invadosomes are F-actin structures capable of degrading the matrix through the activation of matrix metalloproteases. As fibrillar type I collagen promotes pro-matrix metalloproteinase 2 activation by membrane type 1 matrix metalloproteinase, we aimed at investigating the functional relationships between collagen I organization and invadosome induction. We found that fibrillar collagen I induced linear F-actin structures, distributed along the fibrils, on endothelial cells, macrophages, fibroblasts, and tumor cells. These structures share features with conventional invadosomes, as they express cortactin and N-WASP and accumulate the scaffold protein Tks5, which proved essential for their formation. On the basis of their ability to degrade extracellular matrix elements and their original architecture, we named these structures “linear invadosomes.” Interestingly, podosomes or invadopodia were replaced by linear invadosomes upon contact of the cells with fibrillar collagen I. However, linear invadosomes clearly differ from classical invadosomes, as they do not contain paxillin, vinculin, and β1/β3 integrins. Using knockout mouse embryonic fibroblasts and RGD peptide, we demonstrate that linear invadosome formation and activity are independent of β1 and β3 integrins. Finally, linear invadosomes also formed in a three-dimensional collagen matrix. This study demonstrates that fibrillar collagen I is the physiological inducer of a novel class of invadosomes. PMID:22114353

  6. Improved Adhesion and Compliancy of Hierarchical Fibrillar Adhesives.

    Science.gov (United States)

    Li, Yasong; Gates, Byron D; Menon, Carlo

    2015-08-05

    The gecko relies on van der Waals forces to cling onto surfaces with a variety of topography and composition. The hierarchical fibrillar structures on their climbing feet, ranging from mesoscale to nanoscale, are hypothesized to be key elements for the animal to conquer both smooth and rough surfaces. An epoxy-based artificial hierarchical fibrillar adhesive was prepared to study the influence of the hierarchical structures on the properties of a dry adhesive. The presented experiments highlight the advantages of a hierarchical structure despite a reduction of overall density and aspect ratio of nanofibrils. In contrast to an adhesive containing only nanometer-size fibrils, the hierarchical fibrillar adhesives exhibited a higher adhesion force and better compliancy when tested on an identical substrate.

  7. Molecular Gels Materials with Self-Assembled Fibrillar Networks

    CERN Document Server

    Weiss, Richard G

    2006-01-01

    Molecular gels and fibrillar networks – a comprehensive guide to experiment and theory Molecular Gels: Materials with Self-Assembled Fibrillar Networks provides a comprehensive treatise on gelators, especially low molecular-mass gelators (LMOGs), and the properties of their gels. The structures and modes of formation of the self-assembled fibrillar networks (SAFINs) that immobilize the liquid components of the gels are discussed experimentally and theoretically. The spectroscopic, rheological, and structural features of the different classes of LMOGs are also presented. Many examples of the application of the principal analytical techniques for investigation of molecular gels (including SANS, SAXS, WAXS, UV-vis absorption, fluorescence and CD spectroscopies, scanning electron, transmission electron and optical microscopies, and molecular modeling) are presented didactically and in-depth, as are several of the theories of the stages of aggregation of individual LMOG molecules leading to SAFINs. Several actua...

  8. Reversible adhesion switching of porous fibrillar adhesive pads by humidity.

    Science.gov (United States)

    Xue, Longjian; Kovalev, Alexander; Dening, Kirstin; Eichler-Volf, Anna; Eickmeier, Henning; Haase, Markus; Enke, Dirk; Steinhart, Martin; Gorb, Stanislav N

    2013-01-01

    We report reversible adhesion switching on porous fibrillar polystyrene-block-poly(2-vinyl pyridine) (PS-b-P2VP) adhesive pads by humidity changes. Adhesion at a relative humidity of 90% was more than nine times higher than at a relative humidity of 2%. On nonporous fibrillar adhesive pads of the same material, adhesion increased only by a factor of ~3.3. The switching performance remained unchanged in at least 10 successive high/low humidity cycles. Main origin of enhanced adhesion at high humidity is the humidity-induced decrease in the elastic modulus of the polar component P2VP rather than capillary force. The presence of spongelike continuous internal pore systems with walls consisting of P2VP significantly leveraged this effect. Fibrillar adhesive pads on which adhesion is switchable by humidity changes may be used for preconcentration of airborne particulates, pollutants, and germs combined with triggered surface cleaning.

  9. The decorin sequence SYIRIADTNIT binds collagen type I

    DEFF Research Database (Denmark)

    Kalamajski, Sebastian; Aspberg, Anders; Oldberg, Ake

    2007-01-01

    Decorin belongs to the small leucine-rich repeat proteoglycan family, interacts with fibrillar collagens, and regulates the assembly, structure, and biomechanical properties of connective tissues. The decorin-collagen type I-binding region is located in leucine-rich repeats 5-6. Site......-directed mutagenesis of this 54-residue-long collagen-binding sequence identifies Arg-207 and Asp-210 in leucine-rich repeat 6 as crucial for the binding to collagen. The synthetic peptide SYIRIADTNIT, which includes Arg-207 and Asp-210, inhibits the binding of full-length recombinant decorin to collagen in vitro....... These collagen-binding amino acids are exposed on the exterior of the beta-sheet-loop structure of the leucine-rich repeat. This resembles the location of interacting residues in other leucine-rich repeat proteins....

  10. Second harmonic generation microscopy differentiates collagen type I and type III in COPD

    Science.gov (United States)

    Suzuki, Masaru; Kayra, Damian; Elliott, W. Mark; Hogg, James C.; Abraham, Thomas

    2012-03-01

    The structural remodeling of extracellular matrix proteins in peripheral lung region is an important feature in chronic obstructive pulmonary disease (COPD). Multiphoton microscopy is capable of inducing specific second harmonic generation (SHG) signal from non-centrosymmetric structural proteins such as fibrillar collagens. In this study, SHG microscopy was used to examine structural remodeling of the fibrillar collagens in human lungs undergoing emphysematous destruction (n=2). The SHG signals originating from these diseased lung thin sections from base to apex (n=16) were captured simultaneously in both forward and backward directions. We found that the SHG images detected in the forward direction showed well-developed and well-structured thick collagen fibers while the SHG images detected in the backward direction showed striking different morphological features which included the diffused pattern of forward detected structures plus other forms of collagen structures. Comparison of these images with the wellestablished immunohistochemical staining indicated that the structures detected in the forward direction are primarily the thick collagen type I fibers and the structures identified in the backward direction are diffusive structures of forward detected collagen type I plus collagen type III. In conclusion, we here demonstrate the feasibility of SHG microscopy in differentiating fibrillar collagen subtypes and understanding their remodeling in diseased lung tissues.

  11. Soft grippers using micro-fibrillar adhesives for transfer printing.

    Science.gov (United States)

    Song, Sukho; Sitti, Metin

    2014-07-23

    The adhesive characteristics of fibrillar adhesives on a soft deformable membrane are reported. A soft gripper with an inflatable membrane covered by elastomer mushroom-shaped microfibers have a superior conformation to non-planar 3D part geometries, enabling the transfer printing of various parts serially or in parallel. © 2014 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim.

  12. Formal matrices

    CERN Document Server

    Krylov, Piotr

    2017-01-01

    This monograph is a comprehensive account of formal matrices, examining homological properties of modules over formal matrix rings and summarising the interplay between Morita contexts and K theory. While various special types of formal matrix rings have been studied for a long time from several points of view and appear in various textbooks, for instance to examine equivalences of module categories and to illustrate rings with one-sided non-symmetric properties, this particular class of rings has, so far, not been treated systematically. Exploring formal matrix rings of order 2 and introducing the notion of the determinant of a formal matrix over a commutative ring, this monograph further covers the Grothendieck and Whitehead groups of rings. Graduate students and researchers interested in ring theory, module theory and operator algebras will find this book particularly valuable. Containing numerous examples, Formal Matrices is a largely self-contained and accessible introduction to the topic, assuming a sol...

  13. Collagenous sprue

    DEFF Research Database (Denmark)

    Soendergaard, Christoffer; Riis, Lene Buhl; Nielsen, Ole Haagen

    2014-01-01

    Collagenous sprue is a rare clinicopathological condition of the small bowel. It is characterised by abnormal subepithelial collagen deposition and is typically associated with malabsorption, diarrhoea and weight loss. The clinical features of collagenous sprue often resemble those of coeliac...... disease and together with frequent histological findings like mucosal thinning and intraepithelial lymphocytosis the diagnosis may be hard to reach without awareness of this condition. While coeliac disease is treated using gluten restriction, collagenous sprue is, however, not improved...... by this intervention. In cases of diet-refractory 'coeliac disease' it is therefore essential to consider collagenous sprue to initiate treatment at an early stage to prevent the fibrotic progression. Here, we report a case of a 78-year-old man with collagenous sprue and present the clinical and histological...

  14. Collagen cross-linking: insights on the evolution of metazoan extracellular matrix.

    Science.gov (United States)

    Rodriguez-Pascual, Fernando; Slatter, David Anthony

    2016-11-23

    Collagens constitute a large family of extracellular matrix (ECM) proteins that play a fundamental role in supporting the structure of various tissues in multicellular animals. The mechanical strength of fibrillar collagens is highly dependent on the formation of covalent cross-links between individual fibrils, a process initiated by the enzymatic action of members of the lysyl oxidase (LOX) family. Fibrillar collagens are present in a wide variety of animals, therefore often being associated with metazoan evolution, where the emergence of an ancestral collagen chain has been proposed to lead to the formation of different clades. While LOX-generated collagen cross-linking metabolites have been detected in different metazoan families, there is limited information about when and how collagen acquired this particular modification. By analyzing telopeptide and helical sequences, we identified highly conserved, potential cross-linking sites throughout the metazoan tree of life. Based on this analysis, we propose that they have importantly contributed to the formation and further expansion of fibrillar collagens.

  15. Collagen matrix as a tool in studying fibroblastic cell behavior.

    Science.gov (United States)

    Kanta, Jiří

    2015-01-01

    Type I collagen is a fibrillar protein, a member of a large family of collagen proteins. It is present in most body tissues, usually in combination with other collagens and other components of extracellular matrix. Its synthesis is increased in various pathological situations, in healing wounds, in fibrotic tissues and in many tumors. After extraction from collagen-rich tissues it is widely used in studies of cell behavior, especially those of fibroblasts and myofibroblasts. Cells cultured in a classical way, on planar plastic dishes, lack the third dimension that is characteristic of body tissues. Collagen I forms gel at neutral pH and may become a basis of a 3D matrix that better mimics conditions in tissue than plastic dishes.

  16. Averaging operations on matrices

    Indian Academy of Sciences (India)

    2014-07-03

    Jul 3, 2014 ... Role of Positive Definite Matrices. • Diffusion Tensor Imaging: 3 × 3 pd matrices model water flow at each voxel of brain scan. • Elasticity: 6 × 6 pd matrices model stress tensors. • Machine Learning: n × n pd matrices occur as kernel matrices. Tanvi Jain. Averaging operations on matrices ...

  17. Fibrillar films obtained from sodium soap fibers and polyelectrolyte multilayers.

    Science.gov (United States)

    Zawko, Scott A; Schmidt, Christine E

    2011-08-01

    An objective of tissue engineering is to create synthetic polymer scaffolds with a fibrillar microstructure similar to the extracellular matrix. Here, we present a novel method for creating polymer fibers using the layer-by-layer method and sacrificial templates composed of sodium soap fibers. Soap fibers were prepared from neutralized fatty acids using a sodium chloride crystal dissolution method. Polyelectrolyte multilayers (PEMs) of polystyrene sulfonate and polyallylamine hydrochloride were deposited onto the soap fibers, crosslinked with glutaraldehyde, and then the soap fibers were leached with warm water and ethanol. The morphology of the resulting PEM structures was a dense network of fibers surrounded by a nonfibrillar matrix. Microscopy revealed that the PEM fibers were solid structures, presumably composed of polyelectrolytes complexed with residual fatty acids. These fibrillar PEM films were found to support the attachment of human dermal fibroblasts. Copyright © 2011 Wiley Periodicals, Inc.

  18. Prdm5 Regulates Collagen Gene Transcription by Association with RNA Polymerase II in Developing Bone

    DEFF Research Database (Denmark)

    Galli, Giorgio Giacomo; Honnens de Lichtenberg, Kristian; Carrara, Matteo

    2012-01-01

    and fibrillogenesis by binding inside the Col1a1 gene body and maintaining RNA polymerase II occupancy. In vivo, Prdm5 loss results in delayed ossification involving a pronounced impairment in the assembly of fibrillar collagens. Collectively, our results define a novel role for Prdm5 in sustaining...

  19. A novel functional role of collagen glycosylation

    DEFF Research Database (Denmark)

    Jürgensen, Henrik J; Madsen, Daniel H; Ingvarsen, Signe

    2011-01-01

    Collagens make up the most abundant component of interstitial extracellular matrices and basement membranes. Collagen remodeling is a crucial process in many normal physiological events and in several pathological conditions. Some collagen subtypes contain specific carbohydrate side chains......, the function of which is poorly known. The endocytic collagen receptor urokinase plasminogen activator receptor-associated protein (uPARAP)/Endo180 plays an important role in matrix remodeling through its ability to internalize collagen for lysosomal degradation. uPARAP/Endo180 is a member of the mannose...... receptor protein family. These proteins all include a fibronectin type II domain and a series of C-type lectin-like domains, of which only a minor part possess carbohydrate recognition activity. At least two of the family members, uPARAP/Endo180 and the mannose receptor, interact with collagens...

  20. Effects of endogenous cysteine proteinases on structures of collagen fibres from dermis of sea cucumber (Stichopus japonicus).

    Science.gov (United States)

    Liu, Yu-Xin; Zhou, Da-Yong; Ma, Dong-Dong; Liu, Zi-Qiang; Liu, Yan-Fei; Song, Liang; Dong, Xiu-Ping; Li, Dong-Mei; Zhu, Bei-Wei; Konno, Kunihiko; Shahidi, Fereidoon

    2017-10-01

    Autolysis of sea cucumber, caused by endogenous enzymes, leads to postharvest quality deterioration of sea cucumber. However, the effects of endogenous proteinases on structures of collagen fibres, the major biologically relevant substrates in the body wall of sea cucumber, are less clear. Collagen fibres were prepared from the dermis of sea cucumber (Stichopus japonicus), and the structural consequences of degradation of the collagen fibres caused by endogenous cysteine proteinases (ECP) from Stichopus japonicus were examined. Scanning electron microscopic images showed that ECP caused partial disaggregation of collagen fibres into collagen fibrils by disrupting interfibrillar proteoglycan bridges. Differential scanning calorimetry and Fourier transform infrared analysis revealed increased structural disorder of fibrillar collagen caused by ECP. SDS-PAGE and chemical analysis indicated that ECP can liberate glycosaminoglycan, hydroxyproline and collagen fragments from collagen fibres. Thus ECP can cause disintegration of collagen fibres by degrading interfibrillar proteoglycan bridges. Copyright © 2017 Elsevier Ltd. All rights reserved.

  1. Decorin core protein (decoron) shape complements collagen fibril surface structure and mediates its binding.

    Science.gov (United States)

    Orgel, Joseph P R O; Eid, Aya; Antipova, Olga; Bella, Jordi; Scott, John E

    2009-09-15

    Decorin is the archetypal small leucine rich repeat proteoglycan of the vertebrate extracellular matrix (ECM). With its glycosaminoglycuronan chain, it is responsible for stabilizing inter-fibrillar organization. Type I collagen is the predominant member of the fibrillar collagen family, fulfilling both organizational and structural roles in animal ECMs. In this study, interactions between decoron (the decorin core protein) and binding sites in the d and e(1) bands of the type I collagen fibril were investigated through molecular modeling of their respective X-ray diffraction structures. Previously, it was proposed that a model-based, highly curved concave decoron interacts with a single collagen molecule, which would form extensive van der Waals contacts and give rise to strong non-specific binding. However, the large well-ordered aggregate that is the collagen fibril places significant restraints on modes of ligand binding and necessitates multi-collagen molecular contacts. We present here a relatively high-resolution model of the decoron-fibril collagen complex. We find that the respective crystal structures complement each other well, although it is the monomeric form of decoron that shows the most appropriate shape complementarity with the fibril surface and favorable calculated energies of interaction. One molecule of decoron interacts with four to six collagen molecules, and the binding specificity relies on a large number of hydrogen bonds and electrostatic interactions, primarily with the collagen motifs KXGDRGE and AKGDRGE (d and e(1) bands). This work helps us to understand collagen-decorin interactions and the molecular architecture of the fibrillar ECM in health and disease.

  2. Decorin core protein (decoron shape complements collagen fibril surface structure and mediates its binding.

    Directory of Open Access Journals (Sweden)

    Joseph P R O Orgel

    2009-09-01

    Full Text Available Decorin is the archetypal small leucine rich repeat proteoglycan of the vertebrate extracellular matrix (ECM. With its glycosaminoglycuronan chain, it is responsible for stabilizing inter-fibrillar organization. Type I collagen is the predominant member of the fibrillar collagen family, fulfilling both organizational and structural roles in animal ECMs. In this study, interactions between decoron (the decorin core protein and binding sites in the d and e(1 bands of the type I collagen fibril were investigated through molecular modeling of their respective X-ray diffraction structures. Previously, it was proposed that a model-based, highly curved concave decoron interacts with a single collagen molecule, which would form extensive van der Waals contacts and give rise to strong non-specific binding. However, the large well-ordered aggregate that is the collagen fibril places significant restraints on modes of ligand binding and necessitates multi-collagen molecular contacts. We present here a relatively high-resolution model of the decoron-fibril collagen complex. We find that the respective crystal structures complement each other well, although it is the monomeric form of decoron that shows the most appropriate shape complementarity with the fibril surface and favorable calculated energies of interaction. One molecule of decoron interacts with four to six collagen molecules, and the binding specificity relies on a large number of hydrogen bonds and electrostatic interactions, primarily with the collagen motifs KXGDRGE and AKGDRGE (d and e(1 bands. This work helps us to understand collagen-decorin interactions and the molecular architecture of the fibrillar ECM in health and disease.

  3. Marine-derived collagen biomaterials from echinoderm connective tissues

    KAUST Repository

    Ferrario, Cinzia; Leggio, Livio; Leone, Roberta; Di Benedetto, Cristiano; Guidetti, Luca; Coccè , Valentina; Ascagni, Miriam; Bonasoro, Francesco; La Porta, Caterina A.M.; Candia Carnevali, M. Daniela; Sugni, Michela

    2016-01-01

    The use of marine collagens is a hot topic in the field of tissue engineering. Echinoderms possess unique connective tissues (Mutable Collagenous Tissues, MCTs) which can represent an innovative source of collagen to develop collagen barrier-membranes for Guided Tissue Regeneration (GTR). In the present work we used MCTs from different echinoderm models (sea urchin, starfish and sea cucumber) to produce echinoderm-derived collagen membranes (EDCMs). Commercial membranes for GTR or soluble/reassembled (fibrillar) bovine collagen substrates were used as controls. The three EDCMs were similar among each other in terms of structure and mechanical performances and were much thinner and mechanically more resistant than the commercial membranes. Number of fibroblasts seeded on sea-urchin membranes were comparable to the bovine collagen substrates. Cell morphology on all EDCMs was similar to that of structurally comparable (reassembled) bovine collagen substrates. Overall, echinoderms, and sea urchins particularly, are alternative collagen sources to produce efficient GTR membranes. Sea urchins display a further advantage in terms of eco-sustainability by recycling tissues from food wastes.

  4. Marine-derived collagen biomaterials from echinoderm connective tissues

    KAUST Repository

    Ferrario, Cinzia

    2016-03-31

    The use of marine collagens is a hot topic in the field of tissue engineering. Echinoderms possess unique connective tissues (Mutable Collagenous Tissues, MCTs) which can represent an innovative source of collagen to develop collagen barrier-membranes for Guided Tissue Regeneration (GTR). In the present work we used MCTs from different echinoderm models (sea urchin, starfish and sea cucumber) to produce echinoderm-derived collagen membranes (EDCMs). Commercial membranes for GTR or soluble/reassembled (fibrillar) bovine collagen substrates were used as controls. The three EDCMs were similar among each other in terms of structure and mechanical performances and were much thinner and mechanically more resistant than the commercial membranes. Number of fibroblasts seeded on sea-urchin membranes were comparable to the bovine collagen substrates. Cell morphology on all EDCMs was similar to that of structurally comparable (reassembled) bovine collagen substrates. Overall, echinoderms, and sea urchins particularly, are alternative collagen sources to produce efficient GTR membranes. Sea urchins display a further advantage in terms of eco-sustainability by recycling tissues from food wastes.

  5. Fabrication of homobifunctional crosslinker stabilized collagen for biomedical application

    International Nuclear Information System (INIS)

    Lakra, Rachita; Kiran, Manikantan Syamala; Sai, Korrapati Purna

    2015-01-01

    Collagen biopolymer has found widespread application in the field of tissue engineering owing to its excellent tissue compatibility and negligible immunogenicity. Mechanical strength and enzymatic degradation of the collagen necessitates the physical and chemical strength enhancement. One such attempt deals with the understanding of crosslinking behaviour of EGS (ethylene glycol-bis (succinic acid N-hydroxysuccinimide ester)) with collagen to improve the physico-chemical properties. The incorporation of a crosslinker during fibril formation enhanced the thermal and mechanical stability of collagen. EGS crosslinked collagen films exhibited higher denaturation temperature (T d ) and the residue left after thermogravimetric analysis was about 16  ±  5.2%. Mechanical properties determined by uniaxial tensile tests showed a threefold increase in tensile strength and Young’s modulus at higher concentration (100 μM). Water uptake capacity reduced up to a moderate extent upon crosslinking which is essential for the transport of nutrients to the cells. Cell viability was found to be 100% upon treatment with 100 μM EGS whereas only 30% viability could be observed with glutaraldehyde. Rheological studies of crosslinked collagen showed an increase in shear stress and shear viscosity at 37 °C. Crosslinking with EGS resulted in the formation of a uniform fibrillar network. Trinitrobenzene sulfonate (TNBS) assay confirmed that EGS crosslinked collagen by forming a covalent interaction with ε-amino acids of collagen. The homobifunctional crosslinker used in this study enhanced the effectiveness of collagen as a biomaterial for biomedical application. (paper)

  6. Fibrillar organization in tendons: A pattern revealed by percolation characteristics of the respective geometric network

    Directory of Open Access Journals (Sweden)

    Daniel Andres Dos Santos

    2014-06-01

    Full Text Available Since the tendon is composed by collagen fibrils of various sizes connected between them through molecular cross-links, it sounds logical to model it via a heterogeneous network of fibrils. Using cross sectional images, that network is operatively inferred from the respective Gabriel graph of the fibril mass centers. We focus on network percolation characteristics under an ordered activation of fibrils (progressive recruitment going from the smallest to the largest fibril. Analyses of percolation were carried out on a repository of images of digital flexor tendons obtained from samples of lizards and frogs. Observed percolation thresholds were compared against values derived from hypothetical scenarios of random activation of nodes. Strikingly, we found a significant delay for the occurrence of percolation in actual data. We interpret this finding as the consequence of some non-random packing of fibrillar units into a size-constrained geometric pattern. We erect an ideal geometric model of balanced interspersion of polymorphic units that accounts for the delayed percolating instance. We also address the circumstance of being percolation curves mirrored by the empirical curves of stress-strain obtained from the same studied tendons. By virtue of this isomorphism, we hypothesize that the inflection points of both curves are different quantitative manifestations of a common transitional process during mechanical load transference.

  7. On the role of type IX collagen in the extracellular matrix of cartilage: type IX collagen is localized to intersections of collagen fibrils

    OpenAIRE

    1986-01-01

    The tissue distribution of type II and type IX collagen in 17-d-old chicken embryo was studied by immunofluorescence using polyclonal antibodies against type II collagen and a peptic fragment of type IX collagen (HMW), respectively. Both proteins were found only in cartilage where they were co-distributed. They occurred uniformly throughout the extracellular matrix, i.e., without distinction between pericellular, territorial, and interterritorial matrices. Tissues that undergo endochondral bo...

  8. Inverse m-matrices and ultrametric matrices

    CERN Document Server

    Dellacherie, Claude; San Martin, Jaime

    2014-01-01

    The study of M-matrices, their inverses and discrete potential theory is now a well-established part of linear algebra and the theory of Markov chains. The main focus of this monograph is the so-called inverse M-matrix problem, which asks for a characterization of nonnegative matrices whose inverses are M-matrices. We present an answer in terms of discrete potential theory based on the Choquet-Deny Theorem. A distinguished subclass of inverse M-matrices is ultrametric matrices, which are important in applications such as taxonomy. Ultrametricity is revealed to be a relevant concept in linear algebra and discrete potential theory because of its relation with trees in graph theory and mean expected value matrices in probability theory. Remarkable properties of Hadamard functions and products for the class of inverse M-matrices are developed and probabilistic insights are provided throughout the monograph.

  9. Fabrication and Characterization of Gecko-inspired Fibrillar Adhesive

    Science.gov (United States)

    Kim, Yongkwan

    Over the last decade, geckos' remarkable ability to stick to and climb surfaces found in nature has motivated a wide range of scientific interest in engineering gecko-mimetic surface for various adhesive and high friction applications. The high adhesion and friction of its pads have been attributed to a complex array of hairy structures, which maximize surface area for van der Waals interaction between the toes and the counter-surface. While advances in micro- and nanolithography technique have allowed fabrication of increasingly sophisticated gecko mimetic surfaces, it remains a challenge to produce an adhesive as robust as that of the natural gecko pads. In order to rationally design gecko adhesives, understanding the contact behavior of fibrillar interface is critical. The first chapter of the dissertation introduces gecko adhesion and its potential applications, followed by a brief survey of gecko-inspired adhesives. Challenges that limit the performance of the current adhesives are presented. In particular, it is pointed out that almost all testing of gecko adhesives have been on clean, smooth glass, which is ideal for adhesion due to high surface energy and low roughness. Surfaces in application are more difficult to stick to, so the understanding of failure modes in low energy and rough surfaces is important. The second chapter presents a fabrication method for thermoplastic gecko adhesive to be used for a detailed study of fibrillar interfaces. Low-density polyethylene nanofibers are replicated from a silicon nanowire array fabricated by colloidal lithography and metal-catalyzed chemical etching. This process yields a highly ordered array of nanofibers over a large area with control over fiber diameter, length, and number density. The high yield and consistency of the process make it ideal for a systematic study on factors that affect adhesion and friction of gecko adhesives. The following three chapters examine parameters that affect macroscale friction of

  10. Immunological detection of the type V collagen propeptide fragment, PVCP-1230, in connective tissue remodeling associated with liver fibrosis

    DEFF Research Database (Denmark)

    Vassiliadis, Efstathios; Veidal, Sanne Skovgård; Simonsen, Henrik

    2011-01-01

    AIM: Liver fibrosis involves excessive remodeling and deposition of fibrillar extracellular matrix (ECM) components, which leads to malfunction of the organ, causing significant morbidity and mortality. The aim of this study was to assess whether levels of a type V collagen fragment, the propepti...

  11. Age-related liquefaction of the human vitreous body : LM and TEM evaluation of the role of proteoglycans and collagen

    NARCIS (Netherlands)

    Los, Leonoor I.; van der Worp, Roelofje J; van Luyn, Marja J. A.; Hooymans, Johanna M. M.

    PURPOSE. To evaluate morphologic aspects of age-related liquefaction of the human vitreous body by fight and electron microscopy to provide a basis from which future studies directed at the pathogenesis of this phenomenon can be undertaken. The study focuses on changes in fibrillar Collagen and

  12. Uniform spatial distribution of collagen fibril radii within tendon implies local activation of pC-collagen at individual fibrils

    Science.gov (United States)

    Rutenberg, Andrew D.; Brown, Aidan I.; Kreplak, Laurent

    2016-08-01

    Collagen fibril cross-sectional radii show no systematic variation between the interior and the periphery of fibril bundles, indicating an effectively constant rate of collagen incorporation into fibrils throughout the bundle. Such spatially homogeneous incorporation constrains the extracellular diffusion of collagen precursors from sources at the bundle boundary to sinks at the growing fibrils. With a coarse-grained diffusion equation we determine stringent bounds, using parameters extracted from published experimental measurements of tendon development. From the lack of new fibril formation after birth, we further require that the concentration of diffusing precursors stays below the critical concentration for fibril nucleation. We find that the combination of the diffusive bound, which requires larger concentrations to ensure homogeneous fibril radii, and lack of nucleation, which requires lower concentrations, is only marginally consistent with fully processed collagen using conservative bounds. More realistic bounds may leave no consistent concentrations. Therefore, we propose that unprocessed pC-collagen diffuses from the bundle periphery followed by local C-proteinase activity and subsequent collagen incorporation at each fibril. We suggest that C-proteinase is localized within bundles, at fibril surfaces, during radial fibrillar growth. The much greater critical concentration of pC-collagen, as compared to fully processed collagen, then provides broad consistency between homogeneous fibril radii and the lack of fibril nucleation during fibril growth.

  13. Polymorphism of fibrillar structures depending on the size of assembled Aβ17-42 peptides

    Science.gov (United States)

    Cheon, Mookyung; Kang, Mooseok; Chang, Iksoo

    2016-01-01

    The size of assembled Aβ17-42 peptides can determine polymorphism during oligomerization and fibrillization, but the mechanism of this effect is unknown. Starting from separate random monomers, various fibrillar oligomers with distinct structural characteristics were identified using discontinuous molecular dynamics simulations based on a coarse-grained protein model. From the structures observed in the simulations, two characteristic oligomer sizes emerged, trimer and paranuclei, which generated distinct structural patterns during fibrillization. A majority of the simulations for trimers and tetramers formed non-fibrillar oligomers, which primarily progress to off-pathway oligomers. Pentamers and hexamers were significantly converted into U-shape fibrillar structures, meaning that these oligomers, called paranuclei, might be potent on-pathway intermediates in fibril formation. Fibrillar oligomers larger than hexamers generated substantial polymorphism in which hybrid structures were readily formed and homogeneous fibrillar structures appeared infrequently. PMID:27901087

  14. Disintegration of collagen fibrils by Glucono-δ-lactone: An implied lead for disintegration of fibrosis.

    Science.gov (United States)

    Jayamani, Jayaraman; Ravikanth Reddy, R; Madhan, Balaraman; Shanmugam, Ganesh

    2018-02-01

    Excess accumulation of collagen (fibrosis) undergoes self-aggregation, which leads to fibrillar collagen, on the extracellular matrix is the hallmark of a number of diseases such as keloids, hypertrophic scars, and systemic scleroderma. Direct inhibition or disintegration of collagen fibrils by small molecules offer a therapeutic approach to prevent or treat the diseases related to fibrosis. Herein, the anti-fibrotic property of Glucono-δ-lactone (GdL), known as acidifier, on the fibrillation and its disintegration of collagen was investigated. As collagen fibrillation is pH dependent, the pH modulation property of GdL is attractive to inhibit self-association of collagen. Optical density and microscopic data indicate that GdL elicits concentration-dependent fibril inhibition and also disintegrates pre-formed collagen fibrils. The simultaneous pH analysis showed that the modulation(lowering) of pH by GdL is the primary cause for its anti-fibrotic activity. The intact triple helical structure of collagen upon treatment of GdL suggests that collagen fibril disintegration can be achieved without affecting the native structure of collagen which is essential for any anti-fibrotic agents. Saturation transfer difference (STD) NMR result reveals that GdL is in proximity to collagen. The present results thus suggest that GdL provides a lead to design novel anti-fibrotic agents for the pathologies related to collagen deposition. Copyright © 2017 Elsevier B.V. All rights reserved.

  15. The echinoderm collagen fibril: a hero in the connective tissue research of the 1990s.

    Science.gov (United States)

    Szulgit, Greg

    2007-07-01

    Collagen fibrils are some of the most-abundant and important extracellular structures in our bodies, yet we are unsure of their shape and size. This is largely due to an inherent difficulty in isolating them from their surrounding tissues. Echinoderms have collagenous tissues that are similar to ours in many ways, yet they can be manipulated to easily relinquish their collagen fibrils, providing an excellent opportunity to study native fibrillar structure. In the early 1990s, they were found to defy the commonly accepted fibrillar model of the time in that they were much shorter, they were shaped like double-ended spindles, and their centers exhibited a reversal in molecular polarity. Realization of these features helped to reform the questions that were being asked about vertebrate fibrils, shifting the focus toward shape and size. Since then, researchers working with both groups (echinoderms and vertebrates) have worked together to find the structure of native fibrils. This information will be fundamental in understanding what holds collagenous tissues together at the fibrillar level, and could have important implications for people with Ehlers-Danlos syndrome. (c) 2007 Wiley Periodicals, Inc.

  16. Extra-fibrillar matrix mechanics of annulus fibrosus in tension and compression.

    Science.gov (United States)

    Cortes, Daniel H; Elliott, Dawn M

    2012-07-01

    The annulus fibrosus (AF) of the disk is a highly nonlinear and anisotropic material that undergoes a complex combination of loads in multiple orientations. The tensile mechanical behavior of AF in the lamellar plane is dominated by collagen fibers and has been accurately modeled using exponential functions. On the other hand, AF mechanics perpendicular to the lamella, in the radial direction, depend on the properties of the ground matrix with little to no fiber contribution. The ground matrix is mainly composed of proteoglycans (PG), which are negatively charged macromolecules that maintain the tissue hydration via osmotic pressure. The mechanical response of the ground matrix can be divided in the contribution of osmotic pressure and an elastic solid part known as extra-fibrillar matrix (EFM). Mechanical properties of the ground matrix have been measured using tensile and confined compression tests. However, EFM mechanics have not been measured directly. The objective of this study was to measure AF nonlinear mechanics of the EFM in tension and compression. To accomplish this, a combination of osmotic swelling and confined compression in disk radial direction, perpendicular to the lamella, was used. For this type of analysis, it was necessary to define a stress-free reference configuration. Thus, a brief analysis on residual stress in the disk and a procedure to estimate the reference configuration are presented. The proposed method was able to predict similar swelling deformations when using different loading protocols and models for the EFM, demonstrating its robustness. The stress-stretch curve of the EFM was linear in the range 0.9 disk and can be applied to differentiate between functional degeneration effects such as PG loss and stiffening due to cross-linking.

  17. Introduction into Hierarchical Matrices

    KAUST Repository

    Litvinenko, Alexander

    2013-12-05

    Hierarchical matrices allow us to reduce computational storage and cost from cubic to almost linear. This technique can be applied for solving PDEs, integral equations, matrix equations and approximation of large covariance and precision matrices.

  18. Introduction into Hierarchical Matrices

    KAUST Repository

    Litvinenko, Alexander

    2013-01-01

    Hierarchical matrices allow us to reduce computational storage and cost from cubic to almost linear. This technique can be applied for solving PDEs, integral equations, matrix equations and approximation of large covariance and precision matrices.

  19. Evolutionary origins of C-terminal (GPPn 3-hydroxyproline formation in vertebrate tendon collagen.

    Directory of Open Access Journals (Sweden)

    David M Hudson

    Full Text Available Approximately half the proline residues in fibrillar collagen are hydroxylated. The predominant form is 4-hydroxyproline, which helps fold and stabilize the triple helix. A minor form, 3-hydroxyproline, still has no clear function. Using peptide mass spectrometry, we recently revealed several previously unknown molecular sites of 3-hydroxyproline in fibrillar collagen chains. In fibril-forming A-clade collagen chains, four new partially occupied 3-hydroxyproline sites were found (A2, A3, A4 and (GPPn in addition to the fully occupied A1 site at Pro986. The C-terminal (GPPn motif has five consecutive GPP triplets in α1(I, four in α2(I and three in α1(II, all subject to 3-hydroxylation. The evolutionary origins of this substrate sequence were investigated by surveying the pattern of its 3-hydroxyproline occupancy from early chordates through amphibians, birds and mammals. Different tissue sources of type I collagen (tendon, bone and skin and type II collagen (cartilage and notochord were examined by mass spectrometry. The (GPPn domain was found to be a major substrate for 3-hydroxylation only in vertebrate fibrillar collagens. In higher vertebrates (mouse, bovine and human, up to five 3-hydroxyproline residues per (GPPn motif were found in α1(I and four in α2(I, with an average of two residues per chain. In vertebrate type I collagen the modification exhibited clear tissue specificity, with 3-hydroxyproline prominent only in tendon. The occupancy also showed developmental changes in Achilles tendon, with increasing 3-hydroxyproline levels with age. The biological significance is unclear but the level of 3-hydroxylation at the (GPPn site appears to have increased as tendons evolved and shows both tendon type and developmental variations within a species.

  20. Porcine skin as a source of biodegradable matrices: alkaline treatment and glutaraldehyde crosslinking

    Directory of Open Access Journals (Sweden)

    Fabiana T. Rodrigues

    2010-06-01

    Full Text Available In this work, the modifications promoted by alkaline hydrolysis and glutaraldehyde (GA crosslinking on type I collagen found in porcine skin have been studied. Collagen matrices were obtained from the alkaline hydrolysis of porcine skin, with subsequent GA crosslinking in different concentrations and reaction times. The elastin content determination showed that independent of the treatment, elastin was present in the matrices. Results obtained from in vitro trypsin degradation indicated that with the increase of GA concentration and reaction time, the degradation rate decreased. From thermogravimetry and differential scanning calorimetry analysis it can be observed that the collagen in the matrices becomes more resistant to thermal degradation as a consequence of the increasing crosslink degree. Scanning electron microscopy analysis indicated that after the GA crosslinking, collagen fibers become more organized and well-defined. Therefore, the preparations of porcine skin matrices with different degradation rates, which can be used in soft tissue reconstruction, are viable.

  1. First steps towards tissue engineering of small-diameter blood vessels: preparation of flat scaffolds of collagen and elastin by means of freeze drying

    NARCIS (Netherlands)

    Buttafoco, L.; Engbers-Buijtenhuijs, P.; Poot, Andreas A.; Dijkstra, Pieter J.; Daamen, W.F.; van Kuppevelt, T.H.; Vermes, I.; Feijen, Jan

    2006-01-01

    Porous scaffolds composed of collagen or collagen and elastin were prepared by freeze drying at temperatures between -18 and -196°C. All scaffolds had a porosity of 90-98% and a homogeneous distribution of pores. Freeze drying at -18°C afforded collagen and collagen/elastin matrices with average

  2. Microablation of collagen-based substrates for soft tissue engineering

    International Nuclear Information System (INIS)

    Kumar, Vivek A; Caves, Jeffrey M; Naik, Nisarga; Haller, Carolyn A; Chaikof, Elliot L; Martinez, Adam W

    2014-01-01

    Noting the abundance and importance of collagen as a biomaterial, we have developed a facile method for the production of a dense fibrillar extracellular matrix mimicking collagen–elastin hybrids with tunable mechanical properties. Through the use of excimer-laser technology, we have optimized conditions for the ablation of collagen lamellae without denaturation of protein, maintenance of fibrillar ultrastructure and preservation of native D-periodicity. Strengths of collagen–elastin hybrids ranged from 0.6 to 13 MPa, elongation at break from 9 to 70% and stiffness from 2.9 to 94 MPa, allowing for the design of a wide variety of tissue specific scaffolds. Further, large (centimeter scale) lamellae can be fabricated and embedded with recombinant elastin to generate collagen–elastin hybrids. Exposed collagen in hybrids act as cell adhesive sites for rat mesenchymal stem cells that conform to ablate waveforms. The ability to modulate these features allows for the generation of a class of biopolymers that can architecturally and physiologically replicate native tissue. (communication)

  3. Interfibrillar stiffening of echinoderm mutable collagenous tissue demonstrated at the nanoscale.

    Science.gov (United States)

    Mo, Jingyi; Prévost, Sylvain F; Blowes, Liisa M; Egertová, Michaela; Terrill, Nicholas J; Wang, Wen; Elphick, Maurice R; Gupta, Himadri S

    2016-10-18

    The mutable collagenous tissue (MCT) of echinoderms (e.g., sea cucumbers and starfish) is a remarkable example of a biological material that has the unique attribute, among collagenous tissues, of being able to rapidly change its stiffness and extensibility under neural control. However, the mechanisms of MCT have not been characterized at the nanoscale. Using synchrotron small-angle X-ray diffraction to probe time-dependent changes in fibrillar structure during in situ tensile testing of sea cucumber dermis, we investigate the ultrastructural mechanics of MCT by measuring fibril strain at different chemically induced mechanical states. By measuring a variable interfibrillar stiffness (E IF ), the mechanism of mutability at the nanoscale can be demonstrated directly. A model of stiffness modulation via enhanced fibrillar recruitment is developed to explain the biophysical mechanisms of MCT. Understanding the mechanisms of MCT quantitatively may have applications in development of new types of mechanically tunable biomaterials.

  4. Effect of electrostatic Interactions on the Percolation Concentration of Fibrillar ß-Lactoglobuline Gels

    NARCIS (Netherlands)

    Veerman, C.; Ruis, H.G.M.; Sagis, L.M.C.; Linden, van der E.

    2002-01-01

    The effect of electrostatic interactions on the critical percolation concentration (cp) of fibrillar -lactoglobulin gels at pH 2 was investigated using rheological measurements, transmission electron microscopy (TEM), and performing conversion experiments. A decreasing cp with increasing ionic

  5. FTIR spectro-imaging of collagen scaffold formation during glioma tumor development.

    Science.gov (United States)

    Noreen, Razia; Chien, Chia-Chi; Chen, Hsiang-Hsin; Bobroff, Vladimir; Moenner, Michel; Javerzat, Sophie; Hwu, Yeukuang; Petibois, Cyril

    2013-11-01

    Evidence has recently emerged that solid and diffuse tumors produce a specific extracellular matrix (ECM) for division and diffusion, also developing a specific interface with microvasculature. This ECM is mainly composed of collagens and their scaffolding appears to drive tumor growth. Although collagens are not easily analyzable by UV-fluorescence means, FTIR imaging has appeared as a valuable tool to characterize collagen contents in tissues, specially the brain, where ECM is normally devoid of collagen proteins. Here, we used FTIR imaging to characterize collagen content changes in growing glioma tumors. We could determine that C6-derived solid tumors presented high content of triple helix after 8-11 days of growth (typical of collagen fibrils formation; 8/8 tumor samples; 91 % of total variance), and further turned to larger α-helix (days 12-15; 9/10 of tumors; 94 % of variance) and β-turns (day 18-21; 7/8 tumors; 97 % of variance) contents, which suggest the incorporation of non-fibrillar collagen types in ECM, a sign of more and more organized collagen scaffold along tumor progression. The growth of tumors was also associated to the level of collagen produced (P < 0.05). This study thus confirms that collagen scaffolding is a major event accompanying the angiogenic shift and faster tumor growth in solid glioma phenotypes.

  6. Collagen-like proteins in pathogenic E. coli strains.

    Directory of Open Access Journals (Sweden)

    Neelanjana Ghosh

    Full Text Available The genome sequences of enterohaemorrhagic E. coli O157:H7 strains show multiple open-reading frames with collagen-like sequences that are absent from the common laboratory strain K-12. These putative collagens are included in prophages embedded in O157:H7 genomes. These prophages carry numerous genes related to strain virulence and have been shown to be inducible and capable of disseminating virulence factors by horizontal gene transfer. We have cloned two collagen-like proteins from E. coli O157:H7 into a laboratory strain and analysed the structure and conformation of the recombinant proteins and several of their constituting domains by a variety of spectroscopic, biophysical, and electron microscopy techniques. We show that these molecules exhibit many of the characteristics of vertebrate collagens, including trimer formation and the presence of a collagen triple helical domain. They also contain a C-terminal trimerization domain, and a trimeric α-helical coiled-coil domain with an unusual amino acid sequence almost completely lacking leucine, valine or isoleucine residues. Intriguingly, these molecules show high thermal stability, with the collagen domain being more stable than those of vertebrate fibrillar collagens, which are much longer and post-translationally modified. Under the electron microscope, collagen-like proteins from E. coli O157:H7 show a dumbbell shape, with two globular domains joined by a hinged stalk. This morphology is consistent with their likely role as trimeric phage side-tail proteins that participate in the attachment of phage particles to E. coli target cells, either directly or through assembly with other phage tail proteins. Thus, collagen-like proteins in enterohaemorrhagic E. coli genomes may have a direct role in the dissemination of virulence-related genes through infection of harmless strains by induced bacteriophages.

  7. Collagen: A review on its sources and potential cosmetic applications.

    Science.gov (United States)

    Avila Rodríguez, María Isabela; Rodríguez Barroso, Laura G; Sánchez, Mirna Lorena

    2018-02-01

    Collagen is a fibrillar protein that conforms the conjunctive and connective tissues in the human body, essentially skin, joints, and bones. This molecule is one of the most abundant in many of the living organisms due to its connective role in biological structures. Due to its abundance, strength and its directly proportional relation with skin aging, collagen has gained great interest in the cosmetic industry. It has been established that the collagen fibers are damaged with the pass of time, losing thickness and strength which has been strongly related with skin aging phenomena [Colágeno para todo. 60 y más. 2016. http://www.revista60ymas.es/InterPresent1/groups/revistas/documents/binario/ses330informe.pdf.]. As a solution, the cosmetic industry incorporated collagen as an ingredient of different treatments to enhance the user youth and well-being, and some common presentations are creams, nutritional supplement for bone and cartilage regeneration, vascular and cardiac reconstruction, skin replacement, and augmentation of soft skin among others [J App Pharm Sci. 2015;5:123-127]. Nowadays, the biomolecule can be obtained by extraction from natural sources such as plants and animals or by recombinant protein production systems including yeast, bacteria, mammalian cells, insects or plants, or artificial fibrils that mimic collagen characteristics like the artificial polymer commercially named as KOD. Because of its increased use, its market size is valued over USD 6.63 billion by 2025 [Collagen Market By Source (Bovine, Porcine, Poultry, Marine), Product (Gelatin, Hydrolyzed Collagen), Application (Food & Beverages, Healthcare, Cosmetics), By Region, And Segment Forecasts, 2014 - 2025. Grand View Research. http://www.grandviewresearch.com/industry-analysis/collagen-market. Published 2017.]. Nevertheless, there has been little effort on identifying which collagen types are the most suitable for cosmetic purposes, for which the present review will try to enlighten

  8. Matrices and linear transformations

    CERN Document Server

    Cullen, Charles G

    1990-01-01

    ""Comprehensive . . . an excellent introduction to the subject."" - Electronic Engineer's Design Magazine.This introductory textbook, aimed at sophomore- and junior-level undergraduates in mathematics, engineering, and the physical sciences, offers a smooth, in-depth treatment of linear algebra and matrix theory. The major objects of study are matrices over an arbitrary field. Contents include Matrices and Linear Systems; Vector Spaces; Determinants; Linear Transformations; Similarity: Part I and Part II; Polynomials and Polynomial Matrices; Matrix Analysis; and Numerical Methods. The first

  9. Always cleave up your mess: targeting collagen degradation to treat tissue fibrosis

    Science.gov (United States)

    McKleroy, William; Lee, Ting-Hein

    2013-01-01

    Pulmonary fibrosis is a vexing clinical problem with no proven therapeutic options. In the normal lung there is continuous collagen synthesis and collagen degradation, and these two processes are precisely balanced to maintain normal tissue architecture. With lung injury there is an increase in the rate of both collagen production and collagen degradation. The increase in collagen degradation is critical in preventing the formation of permanent scar tissue each time the lung is exposed to injury. In pulmonary fibrosis, collagen degradation does not keep pace with collagen production, resulting in extracellular accumulation of fibrillar collagen. Collagen degradation occurs through both extracellular and intracellular pathways. The extracellular pathway involves cleavage of collagen fibrils by proteolytic enzyme including the metalloproteinases. The less-well-described intracellular pathway involves binding and uptake of collagen fragments by fibroblasts and macrophages for lysosomal degradation. The relationship between these two pathways and their relevance to the development of fibrosis is complex. Fibrosis in the lung, liver, and skin has been associated with an impaired degradative environment. Much of the current scientific effort in fibrosis is focused on understanding the pathways that regulate increased collagen production. However, recent reports suggest an important role for collagen turnover and degradation in regulating the severity of tissue fibrosis. The objective of this review is to evaluate the roles of the extracellular and intracellular collagen degradation pathways in the development of fibrosis and to examine whether pulmonary fibrosis can be viewed as a disease of impaired matrix degradation rather than a disease of increased matrix production. PMID:23564511

  10. Nanostructural Organization of Naturally Occurring Composites—Part I: Silica-Collagen-Based Biocomposites

    Directory of Open Access Journals (Sweden)

    Hermann Ehrlich

    2008-01-01

    Full Text Available Glass sponges, as examples of natural biocomposites, inspire investigations aiming at both a better understanding of biomineralization mechanisms and novel developments in the synthesis of nanostructured biomimetic materials. Different representatives of marine glass sponges of the class Hexactinellida (Porifera are remarkable because of their highly flexible basal anchoring spicules. Therefore, investigations of the biochemical compositions and the micro- and nanostructure of the spicules as examples of naturally structured biomaterials are of fundamental scientific relevance. Here we present a detailed study of the structural and biochemical properties of the basal spicules of the marine glass sponge Monorhaphis chuni. The results show unambiguously that in this glass sponge a fibrillar protein of collagenous nature is the template for the silica mineralization in all silica-containing structural layers of the spicule. The structural similarity and homology of collagens derived from M. chuni spicules to other sponge and vertebrate collagens have been confirmed by us using FTIR, amino acid analysis and mass spectrometric sequencing techniques. We suggest that nanomorphology of silica formed on proteinous structures could be determined as an example of biodirected epitaxial nanodistribution of amorphous silica phase on oriented fibrillar collagen templates. Finally, the present work includes a discussion relating to silica-collagen-based hybrid materials for practical applications as biomaterials.

  11. Quantification of collagen distributions in rat hyaline and fibro cartilages based on second harmonic generation imaging

    Science.gov (United States)

    Zhu, Xiaoqin; Liao, Chenxi; Wang, Zhenyu; Zhuo, Shuangmu; Liu, Wenge; Chen, Jianxin

    2016-10-01

    Hyaline cartilage is a semitransparent tissue composed of proteoglycan and thicker type II collagen fibers, while fibro cartilage large bundles of type I collagen besides other territorial matrix and chondrocytes. It is reported that the meniscus (fibro cartilage) has a greater capacity to regenerate and close a wound compared to articular cartilage (hyaline cartilage). And fibro cartilage often replaces the type II collagen-rich hyaline following trauma, leading to scar tissue that is composed of rigid type I collagen. The visualization and quantification of the collagen fibrillar meshwork is important for understanding the role of fibril reorganization during the healing process and how different types of cartilage contribute to wound closure. In this study, second harmonic generation (SHG) microscope was applied to image the articular and meniscus cartilage, and textural analysis were developed to quantify the collagen distribution. High-resolution images were achieved based on the SHG signal from collagen within fresh specimens, and detailed observations of tissue morphology and microstructural distribution were obtained without shrinkage or distortion. Textural analysis of SHG images was performed to confirm that collagen in fibrocartilage showed significantly coarser compared to collagen in hyaline cartilage (p < 0.01). Our results show that each type of cartilage has different structural features, which may significantly contribute to pathology when damaged. Our findings demonstrate that SHG microscopy holds potential as a clinically relevant diagnostic tool for imaging degenerative tissues or assessing wound repair following cartilage injury.

  12. Human elastin polypeptides improve the biomechanical properties of three-dimensional matrices through the regulation of elastogenesis.

    Science.gov (United States)

    Boccafoschi, Francesca; Ramella, Martina; Sibillano, Teresa; De Caro, Liberato; Giannini, Cinzia; Comparelli, Roberto; Bandiera, Antonella; Cannas, Mario

    2015-03-01

    The replacement of diseased tissues with biological substitutes with suitable biomechanical properties is one of the most important goal in tissue engineering. Collagen represents a satisfactory choice for scaffolds. Unfortunately, the lack of elasticity represents a restriction to a wide use of collagen for several applications. In this work, we studied the effect of human elastin-like polypeptide (HELP) as hybrid collagen-elastin matrices. In particular, we studied the biomechanical properties of collagen/HELP scaffolds considering several components involved in ECM remodeling (elastin, collagen, fibrillin, lectin-like receptor, metalloproteinases) and cell phenotype (myogenin, myosin heavy chain) with particular awareness for vascular tissue engineering applications. Elastin and collagen content resulted upregulated in collagen-HELP matrices, even showing an improved structural remodeling through the involvement of proteins to a ECM remodeling activity. Moreover, the hybrid matrices enhanced the contractile activity of C2C12 cells concurring to improve the mechanical properties of the scaffold. Finally, small-angle X-ray scattering analyses were performed to enable a very detailed analysis of the matrices at the nanoscale, comparing the scaffolds with native blood vessels. In conclusion, our work shows the use of recombinant HELP, as a very promising complement able to significantly improve the biomechanical properties of three-dimensional collagen matrices in terms of tensile stress and elastic modulus. © 2014 Wiley Periodicals, Inc.

  13. Differential actions of the endocytic collagen receptor uPARAP/Endo180 and the collagenase MMP-2 in bone homeostasis

    DEFF Research Database (Denmark)

    Madsen, Daniel H; Jürgensen, Henrik J; Ingvarsen, Signe

    2013-01-01

    A well-coordinated remodeling of uncalcified collagen matrices is a pre-requisite for bone development and homeostasis. Collagen turnover proceeds through different pathways, either involving extracellular reactions exclusively, or being dependent on endocytic processes. Extracellular collagen...... degradation requires the action of secreted or membrane attached collagenolytic proteases, whereas the alternative collagen degradation pathway proceeds intracellularly after receptor-mediated uptake and delivery to the lysosomes. In this study we have examined the functional interplay between...

  14. A urokinase receptor-associated protein with specific collagen binding properties

    DEFF Research Database (Denmark)

    Behrendt, N; Jensen, O N; Engelholm, L H

    2000-01-01

    membrane-bound lectin with hitherto unknown function. The human cDNA was cloned and sequenced. The protein, designated uPARAP, is a member of the macrophage mannose receptor protein family and contains a putative collagen-binding (fibronectin type II) domain in addition to 8 C-type carbohydrate recognition...... domains. It proved capable of binding strongly to a single type of collagen, collagen V. This collagen binding reaction at the exact site of plasminogen activation on the cell may lead to adhesive functions as well as a contribution to cellular degradation of collagen matrices....

  15. Collagen Structural Hierarchy and Susceptibility to Degradation by Ultraviolet Radiation.

    Science.gov (United States)

    Rabotyagova, Olena S; Cebe, Peggy; Kaplan, David L

    2008-12-01

    Collagen type I is the most abundant extracellular matrix protein in the human body, providing the basis for tissue structure and directing cellular functions. Collagen has complex structural hierarchy, organized at different length scales, including the characteristic triple helical feature. In the present study, the relationship between collagen structure (native vs. denatured) and sensitivity to UV radiation was assessed, with a focus on changes in primary structure, changes in conformation, microstructure and material properties. A brief review of free radical reactions involved in collagen degradation is also provided as a mechanistic basis for the changes observed in the study. Structural and functional changes in the collagens were related to the initial conformation (native vs. denatured) and the energy of irradiation. These changes were tracked using SDS-PAGE to assess molecular weight, Fourier transform infrared (FTIR) spectroscopy to study changes in the secondary structure, and atomic force microscopy (AFM) to characterize changes in mechanical properties. The results correlate differences in sensitivity to irradiation with initial collagen structural state: collagen in native conformation vs. heat-treated (denatured) collagen. Changes in collagen were found at all levels of the hierarchical structural organization. In general, the native collagen triple helix is most sensitive to UV-254nm radiation. The triple helix delays single chain degradation. The loss of the triple helix in collagen is accompanied by hydrogen abstraction through free radical mechanisms. The results received suggest that the effects of electromagnetic radiation on biologically relevant extracellular matrices (collagen in the present study) are important to assess in the context of the state of collagen structure. The results have implications in tissue remodeling, wound repair and disease progression.

  16. Realm of Matrices

    Indian Academy of Sciences (India)

    IAS Admin

    harmonic analysis and complex analysis, in ... gebra describes not only the study of linear transforma- tions and .... special case of the Jordan canonical form of matrices. ..... Richard Bronson, Schaum's Outline Series Theory And Problems Of.

  17. Variation in the helical structure of native collagen.

    Directory of Open Access Journals (Sweden)

    Joseph P R O Orgel

    Full Text Available The structure of collagen has been a matter of curiosity, investigation, and debate for the better part of a century. There has been a particularly productive period recently, during which much progress has been made in better describing all aspects of collagen structure. However, there remain some questions regarding its helical symmetry and its persistence within the triple-helix. Previous considerations of this symmetry have sometimes confused the picture by not fully recognizing that collagen structure is a highly complex and large hierarchical entity, and this affects and is effected by the super-coiled molecules that make it. Nevertheless, the symmetry question is not trite, but of some significance as it relates to extracellular matrix organization and cellular integration. The correlation between helical structure in the context of the molecular packing arrangement determines which parts of the amino acid sequence of the collagen fibril are buried or accessible to the extracellular matrix or the cell. In this study, we concentrate primarily on the triple-helical structure of fibrillar collagens I and II, the two most predominant types. By comparing X-ray diffraction data collected from type I and type II containing tissues, we point to evidence for a range of triple-helical symmetries being extant in the molecules native environment. The possible significance of helical instability, local helix dissociation and molecular packing of the triple-helices is discussed in the context of collagen's supramolecular organization, all of which must affect the symmetry of the collagen triple-helix.

  18. Proximal collagenous gastroenteritides:

    DEFF Research Database (Denmark)

    Nielsen, Ole Haagen; Riis, Lene Buhl; Danese, Silvio

    2014-01-01

    AIM: While collagenous colitis represents the most common form of the collagenous gastroenteritides, the collagenous entities affecting the proximal part of the gastrointestinal tract are much less recognized and possibly overlooked. The aim was to summarize the latest information through a syste...

  19. Enhancing amine terminals in an amine-deprived collagen matrix.

    LENUS (Irish Health Repository)

    Tiong, William H C

    2008-10-21

    Collagen, though widely used as a core biomaterial in many clinical applications, is often limited by its rapid degradability which prevents full exploitation of its potential in vivo. Polyamidoamine (PAMAM) dendrimer, a highly branched macromolecule, possesses versatile multiterminal amine surface groups that enable them to be tethered to collagen molecules and enhance their potential. In this study, we hypothesized that incorporation of PAMAM dendrimer in a collagen matrix through cross-linking will result in a durable, cross-linked collagen biomaterial with free -NH 2 groups available for further multi-biomolecular tethering. The aim of this study was to assess the physicochemical properties of a G1 PAMAM cross-linked collagen matrix and its cellular sustainability in vitro. Different amounts of G1 PAMAM dendrimer (5 or 10 mg) were integrated into bovine-derived collagen matrices through a cross-linking process, mediated by 5 or 25 mM 1-ethyl-3-(3-dimethylaminopropyl) carbodiimide (EDC) in 5 mM N-hydroxysuccinimide (NHS) and 50 mM 2-morpholinoethane sulfonic acid buffer at pH 5.5. The physicochemical properties of resultant matrices were investigated with scanning electron microscopy (SEM), collagenase degradation assay, differential scanning calorimetry (DSC), Fourier transform infrared (FTIR) spectra, and ninhydrin assay. Cellular sustainability of the matrices was assessed with Alamar Blue assay and SEM. There was no significant difference in cellular behavior between the treated and nontreated groups. However, the benefit of incorporating PAMAM in the cross-linking reaction was limited when higher concentrations of either agent were used. These results confirm the hypothesis that PAMAM dendrimer can be incorporated in the collagen cross-linking process in order to modulate the properties of the resulting cross-linked collagen biomaterial with free -NH 2 groups available for multi-biomolecular tethering.

  20. Tensile properties in collagen-rich tissues of Quarter Horses with hereditary equine regional dermal asthenia (HERDA).

    Science.gov (United States)

    Bowser, J E; Elder, S H; Pasquali, M; Grady, J G; Rashmir-Raven, A M; Wills, R; Swiderski, C E

    2014-03-01

    Hereditary equine regional dermal asthenia (HERDA) is an autosomal recessive disorder of Quarter Horses characterised by skin fragility. Horses with HERDA have a missense mutation in peptidyl-prolyl cis-trans isomerase B (PPIB), which encodes cyclophilin B and alters folding and post translational modifications of fibrillar collagen. The study aimed to test the hypothesis that tendons, ligaments and great vessels, which, like skin, are rich in fibrillar collagen, will also have abnormal biomechanical properties in horses with HERDA. Ex vivo biomechanical study comparing horses with and without a diagnosis of HERDA. Forelimb suspensory ligament, superficial and deep digital flexor tendons; withers, forelimb and abdominal skin; the main pulmonary artery and the aortic arch were harvested from 6 horses with HERDA and 6 control horses without the HERDA allele. Tissues were distracted to failure. Tensile strength (TS), elastic modulus (EM) and energy to failure (ETF) were compared. Horses with HERDA had significantly lower TS and EM in tendinoligamentous tissues and great vessels, respectively. The TS, EM and ETF were significantly lower in skin from horses with HERDA. Differences in TS and ETF were more extreme at the withers than at the forelimb or abdomen. Tendinoligamentous tissue, great vessels and skin are significantly weaker in horses with HERDA than in horses lacking the PPIB mutation, substantiating that diverse tissues with high fibrillar collagen content are abnormal in HERDA and that the HERDA phenotype is not limited to the integument. © 2013 EVJ Ltd.

  1. Quantitative analysis of three-dimensional fibrillar collagen microstructure within the normal, aged and glaucomatous human optic nerve head.

    Science.gov (United States)

    Jones, H J; Girard, M J; White, N; Fautsch, M P; Morgan, J E; Ethier, C R; Albon, J

    2015-05-06

    The aim of this study was to quantify connective tissue fibre orientation and alignment in young, old and glaucomatous human optic nerve heads (ONH) to understand ONH microstructure and predisposition to glaucomatous optic neuropathy. Transverse (seven healthy, three glaucomatous) and longitudinal (14 healthy) human ONH cryosections were imaged by both second harmonic generation microscopy and small angle light scattering (SALS) in order to quantify preferred fibre orientation (PFO) and degree of fibre alignment (DOFA). DOFA was highest within the peripapillary sclera (ppsclera), with relatively low values in the lamina cribrosa (LC). Elderly ppsclera DOFA was higher than that in young ppsclera (p < 0.00007), and generally higher than in glaucoma ppsclera. In all LCs, a majority of fibres had preferential orientation horizontally across the nasal-temporal axis. In all glaucomatous LCs, PFO was significantly different from controls in a minimum of seven out of 12 LC regions (p < 0.05). Additionally, higher fibre alignment was observed in the glaucomatous inferior-temporal LC (p < 0.017). The differences between young and elderly ONH fibre alignment within regions suggest that age-related microstructural changes occur within the structure. The additional differences in fibre alignment observed within the glaucomatous LC may reflect an inherent susceptibility to glaucomatous optic neuropathy, or may be a consequence of ONH remodelling and/or collapse.

  2. Stress relaxing hyaluronic acid-collagen hydrogels promote cell spreading, fiber remodeling, and focal adhesion formation in 3D cell culture.

    Science.gov (United States)

    Lou, Junzhe; Stowers, Ryan; Nam, Sungmin; Xia, Yan; Chaudhuri, Ovijit

    2018-02-01

    The physical and architectural cues of the extracellular matrix (ECM) play a critical role in regulating important cellular functions such as spreading, migration, proliferation, and differentiation. Natural ECM is a complex viscoelastic scaffold composed of various distinct components that are often organized into a fibrillar microstructure. Hydrogels are frequently used as synthetic ECMs for 3D cell culture, but are typically elastic, due to covalent crosslinking, and non-fibrillar. Recent work has revealed the importance of stress relaxation in viscoelastic hydrogels in regulating biological processes such as spreading and differentiation, but these studies all utilize synthetic ECM hydrogels that are non-fibrillar. Key mechanotransduction events, such as focal adhesion formation, have only been observed in fibrillar networks in 3D culture to date. Here we present an interpenetrating network (IPN) hydrogel system based on HA crosslinked with dynamic covalent bonds and collagen I that captures the viscoelasticity and fibrillarity of ECM in tissues. The IPN hydrogels exhibit two distinct processes in stress relaxation, one from collagen and the other from HA crosslinking dynamics. Stress relaxation in the IPN hydrogels can be tuned by modulating HA crosslinker affinity, molecular weight of the HA, or HA concentration. Faster relaxation in the IPN hydrogels promotes cell spreading, fiber remodeling, and focal adhesion (FA) formation - behaviors often inhibited in other hydrogel-based materials in 3D culture. This study presents a new, broadly adaptable materials platform for mimicking key ECM features of viscoelasticity and fibrillarity in hydrogels for 3D cell culture and sheds light on how these mechanical and structural cues regulate cell behavior. Copyright © 2017 Elsevier Ltd. All rights reserved.

  3. Chemiluminescence in cryogenic matrices

    Science.gov (United States)

    Lotnik, S. V.; Kazakov, Valeri P.

    1989-04-01

    The literature data on chemiluminescence (CL) in cryogenic matrices have been classified and correlated for the first time. The role of studies on phosphorescence and CL at low temperatures in the development of cryochemistry is shown. The features of low-temperature CL in matrices of nitrogen and inert gases (fine structure of spectra, matrix effects) and the data on the mobility and reactivity of atoms and radicals at very low temperatures are examined. The trends in the development of studies on CL in cryogenic matrices, such as the search for systems involving polyatomic molecules and extending the forms of CL reactions, are followed. The reactions of active nitrogen with hydrocarbons that are accompanied by light emission and CL in the oxidation of carbenes at T >= 77 K are examined. The bibliography includes 112 references.

  4. Matrices in Engineering Problems

    CERN Document Server

    Tobias, Marvin

    2011-01-01

    This book is intended as an undergraduate text introducing matrix methods as they relate to engineering problems. It begins with the fundamentals of mathematics of matrices and determinants. Matrix inversion is discussed, with an introduction of the well known reduction methods. Equation sets are viewed as vector transformations, and the conditions of their solvability are explored. Orthogonal matrices are introduced with examples showing application to many problems requiring three dimensional thinking. The angular velocity matrix is shown to emerge from the differentiation of the 3-D orthogo

  5. A Novel HA/β-TCP-Collagen Composite Enhanced New Bone Formation for Dental Extraction Socket Preservation in Beagle Dogs

    Directory of Open Access Journals (Sweden)

    Ko-Ning Ho

    2016-03-01

    Full Text Available Past studies in humans have demonstrated horizontal and vertical bone loss after six months following tooth extraction. Many biomaterials have been developed to preserve bone volume after tooth extraction. Type I collagen serves as an excellent delivery system for growth factors and promotes angiogenesis. Calcium phosphate ceramics have also been investigated because their mineral chemistry resembles human bone. The aim of this study was to compare the performance of a novel bioresorbable purified fibrillar collagen and hydroxyapatite/β-tricalcium phosphate (HA/β-TCP ceramic composite versus collagen alone and a bovine xenograft-collagen composite in beagles. Collagen plugs, bovine graft-collagen composite and HA/β-TCP-collagen composite were implanted into the left and right first, second and third mandibular premolars, and the fourth molar was left empty for natural healing. In total, 20 male beagle dogs were used, and quantitative and histological analyses of the extraction ridge was done. The smallest width reduction was 19.09% ± 8.81% with the HA/β-TCP-collagen composite at Week 8, accompanied by new bone formation at Weeks 4 and 8. The HA/β-TCP-collagen composite performed well, as a new osteoconductive and biomimetic composite biomaterial, for socket bone preservation after tooth extraction.

  6. Endocytic collagen degradation

    DEFF Research Database (Denmark)

    Madsen, Daniel H.; Jürgensen, Henrik J.; Ingvarsen, Signe Ziir

    2012-01-01

    it crucially important to understand both the collagen synthesis and turnover mechanisms in this condition. Here we show that the endocytic collagen receptor, uPARAP/Endo180, is a major determinant in governing the balance between collagen deposition and degradation. Cirrhotic human livers displayed a marked...... up-regulation of uPARAP/Endo180 in activated fibroblasts and hepatic stellate cells located close to the collagen deposits. In a hepatic stellate cell line, uPARAP/Endo180 was shown to be active in, and required for, the uptake and intracellular degradation of collagen. To evaluate the functional...... groups of mice clearly revealed a fibrosis protective role of uPARAP/Endo180. This effect appeared to directly reflect the activity of the collagen receptor, since no compensatory events were noted when comparing the mRNA expression profiles of the two groups of mice in an array system focused on matrix-degrading...

  7. Infinite matrices and sequence spaces

    CERN Document Server

    Cooke, Richard G

    2014-01-01

    This clear and correct summation of basic results from a specialized field focuses on the behavior of infinite matrices in general, rather than on properties of special matrices. Three introductory chapters guide students to the manipulation of infinite matrices, covering definitions and preliminary ideas, reciprocals of infinite matrices, and linear equations involving infinite matrices.From the fourth chapter onward, the author treats the application of infinite matrices to the summability of divergent sequences and series from various points of view. Topics include consistency, mutual consi

  8. Capture Matrices Handbook

    Science.gov (United States)

    2014-04-01

    materials, the affinity ligand would need identification , as well as chemistries that graft the affinity ligand onto the surface of magnetic...ACTIVE CAPTURE MATRICES FOR THE DETECTION/ IDENTIFICATION OF PHARMACEUTICALS...6 As shown in Figure 2.3-1a, the spectra exhibit similar baselines and the spectral peaks lineup . Under these circumstances, the spectral

  9. Role of Decorin Core Protein in Collagen Organisation in Congenital Stromal Corneal Dystrophy (CSCD.

    Directory of Open Access Journals (Sweden)

    Christina S Kamma-Lorger

    Full Text Available The role of Decorin in organising the extracellular matrix was examined in normal human corneas and in corneas from patients with Congenital Stromal Corneal Dystrophy (CSCD. In CSCD, corneal clouding occurs due to a truncating mutation (c.967delT in the decorin (DCN gene. Normal human Decorin protein and the truncated one were reconstructed in silico using homology modelling techniques to explore structural changes in the diseased protein. Corneal CSCD specimens were also examined using 3-D electron tomography and Small Angle X-ray diffraction (SAXS, to image the collagen-proteoglycan arrangement and to quantify fibrillar diameters, respectively. Homology modelling showed that truncated Decorin had a different spatial geometry to the normal one, with the truncation removing a major part of the site that interacts with collagen, compromising its ability to bind effectively. Electron tomography showed regions of abnormal stroma, where collagen fibrils came together to form thicker fibrillar structures, showing that Decorin plays a key role in the maintenance of the order in the normal corneal extracellular matrix. Average diameter of individual fibrils throughout the thickness of the cornea however remained normal.

  10. Strategies for Directing the Structure and Function of 3D Collagen Biomaterials across Length Scales

    Science.gov (United States)

    Walters, Brandan D.; Stegemann, Jan P.

    2013-01-01

    Collagen type I is a widely used natural biomaterial that has found utility in a variety of biological and medical applications. Its well characterized structure and role as an extracellular matrix protein make it a highly relevant material for controlling cell function and mimicking tissue properties. Collagen type I is abundant in a number of tissues, and can be isolated as a purified protein. This review focuses on hydrogel biomaterials made by reconstituting collagen type I from a solubilized form, with an emphasis on in vitro studies in which collagen structure can be controlled. The hierarchical structure of collagen from the nanoscale to the macroscale is described, with an emphasis on how structure is related to function across scales. Methods of reconstituting collagen into hydrogel materials are presented, including molding of macroscopic constructs, creation of microscale modules, and electrospinning of nanoscale fibers. The modification of collagen biomaterials to achieve desired structures and functions is also addressed, with particular emphasis on mechanical control of collagen structure, creation of collagen composite materials, and crosslinking of collagenous matrices. Biomaterials scientists have made remarkable progress in rationally designing collagen-based biomaterials and in applying them to both the study of biology and for therapeutic benefit. This broad review illustrates recent examples of techniques used to control collagen structure, and to thereby direct its biological and mechanical functions. PMID:24012608

  11. Introduction to matrices and vectors

    CERN Document Server

    Schwartz, Jacob T

    2001-01-01

    In this concise undergraduate text, the first three chapters present the basics of matrices - in later chapters the author shows how to use vectors and matrices to solve systems of linear equations. 1961 edition.

  12. Mechanics of load-drag-unload contact cleaning of gecko-inspired fibrillar adhesives.

    Science.gov (United States)

    Abusomwan, Uyiosa A; Sitti, Metin

    2014-10-14

    Contact self-cleaning of gecko-inspired synthetic adhesives with mushroom-shaped tips has been demonstrated recently using load-drag-unload cleaning procedures similar to that of the natural animal. However, the underlying mechanics of contact cleaning has yet to be fully understood. In this work, we present a detailed experiment of contact self-cleaning that shows that rolling is the dominant mechanism of cleaning for spherical microparticle contaminants, during the load-drag-unload procedure. We also study the effect of dragging rate and normal load on the particle rolling friction. A model of spherical particle rolling on an elastomer fibrillar adhesive interface is developed and agrees well with the experimental results. This study takes us closer to determining design parameters for achieving self-cleaning fibrillar adhesives.

  13. Dynamics of fibrillar precursors of shishes as a function of stress

    Energy Technology Data Exchange (ETDEWEB)

    Balzano, Luigi; Cavallo, Dario; Van Erp, Tim B; Ma Zhe; Housmans, Jan-Willem; Fernandez-Ballester, Lucia; Peters, Gerrit W M, E-mail: G.W.M.Peters@tue.n

    2010-11-15

    Shishes are fibrillar crystallites that can be created by deforming a polymer melt. The formation of shishes takes place when flow is strong enough to stretch molecules. In the early stages, bundles of stretched molecules with pre-crystalline order form metastable precursors whose stability depends on their size and, hence, on the stress level. We find that for a specific isotactic polypropylene, close to the nominal melting point, a stress larger than 0.10 MPa leads to stable fibrillar precursors that are partially crystalline immediately after flow. On the other hand, below 0.10 MPa, the aspect ratio of precursors tends to unity and the lack of crystallinity makes these structures prone to dissolution.

  14. Automated determination of fibrillar structures by simultaneous model building and fiber diffraction refinement.

    Science.gov (United States)

    Potrzebowski, Wojciech; André, Ingemar

    2015-07-01

    For highly oriented fibrillar molecules, three-dimensional structures can often be determined from X-ray fiber diffraction data. However, because of limited information content, structure determination and validation can be challenging. We demonstrate that automated structure determination of protein fibers can be achieved by guiding the building of macromolecular models with fiber diffraction data. We illustrate the power of our approach by determining the structures of six bacteriophage viruses de novo using fiber diffraction data alone and together with solid-state NMR data. Furthermore, we demonstrate the feasibility of molecular replacement from monomeric and fibrillar templates by solving the structure of a plant virus using homology modeling and protein-protein docking. The generated models explain the experimental data to the same degree as deposited reference structures but with improved structural quality. We also developed a cross-validation method for model selection. The results highlight the power of fiber diffraction data as structural constraints.

  15. Hierarchical Formation of Fibrillar and Lamellar Self-Assemblies from Guanosine-Based Motifs

    Directory of Open Access Journals (Sweden)

    Paolo Neviani

    2010-01-01

    Full Text Available Here we investigate the supramolecular polymerizations of two lipophilic guanosine derivatives in chloroform by light scattering technique and TEM experiments. The obtained data reveal the presence of several levels of organization due to the hierarchical self-assembly of the guanosine units in ribbons that in turn aggregate in fibrillar or lamellar soft structures. The elucidation of these structures furnishes an explanation to the physical behaviour of guanosine units which display organogelator properties.

  16. Binding, internalization and fate of Huntingtin Exon1 fibrillar assemblies in mitotic and nonmitotic neuroblastoma cells.

    Science.gov (United States)

    Ruiz-Arlandis, G; Pieri, L; Bousset, L; Melki, R

    2016-02-01

    The aggregation of Huntingtin (HTT) protein and of its moiety encoded by its Exon1 (HTTExon1) into fibrillar structures inside neurons is the molecular hallmark of Huntington's disease. Prion-like transmission of these aggregates between cells has been demonstrated. The cell-to-cell transmission mechanisms of these protein aggregates and the susceptibility of different kinds of neuronal cells to these toxic assemblies still need assessment. Here, we documented the binding to and internalization by differentiated and undifferentiated neuroblastoma cells of exogenous fibrillar HTTExon1 and polyglutamine (polyQ) polypeptides containing the same number of glutamines. We assessed the contribution of endocytosis to fibrillar HTTExon1 uptake, their intracellular localization and fate. We observed that undifferentiated neuroblastoma cells were more susceptible to fibrillar HTTExon1 and polyQ than their differentiated counterparts. Furthermore, we demonstrated that exogenous HTTExon1 aggregates are mainly taken up by endocytosis and directed to lysosomal compartments in both mitotic and quiescent cells. These data suggest that the rates of endocytic processes that differ in mitotic and quiescent cells strongly impact the uptake of exogenous HTTExon1 and polyQ fibrils. This may be either the consequence of distinct metabolisms or distributions of specific protein partners for amyloid-like assemblies at the surface of highly dividing versus quiescent cells. Our results highlight the importance of endocytic processes in the internalization of exogenous HTTExon1 fibrils and suggest that a proportion of those assemblies reach the cytosol where they can amplify by recruiting the endogenous protein after escaping, by yet an unknown process, from the endo-lysosomal compartments. © 2015 British Neuropathological Society.

  17. Collagenous microstructure of the glenoid labrum and biceps anchor.

    Science.gov (United States)

    Hill, A M; Hoerning, E J; Brook, K; Smith, C D; Moss, J; Ryder, T; Wallace, A L; Bull, A M J

    2008-06-01

    The glenoid labrum is a significant passive stabilizer of the shoulder joint. However, its microstructural form remains largely unappreciated, particularly in the context of its variety of functions. The focus of labral microscopy has often been histology and, as such, there is very little appreciation of collagen composition and arrangement of the labrum, and hence the micromechanics of the structure. On transmission electron microscopy, significant differences in diameter, area and perimeter were noted in the two gross histological groups of collagen fibril visualized; this suggests a heterogeneous collagenous composition with potentially distinct mechanical function. Scanning electron microscopy demonstrated three distinct zones of interest: a superficial mesh, a dense circumferential braided core potentially able to accommodate hoop stresses, and a loosely packed peri-core zone. Confocal microscopy revealed an articular surface fine fibrillar mesh potentially able to reduce surface friction, bundles of circumferential encapsulated fibres in the bulk of the tissue, and bone anchoring fibres at the osseous interface. Varying microstructure throughout the depth of the labrum suggests a role in accommodating different types of loading. An understanding of the labral microstructure can lead to development of hypotheses based upon an appreciation of this component of material property. This may aid an educated approach to surgical timing and repair.

  18. Graphs and matrices

    CERN Document Server

    Bapat, Ravindra B

    2014-01-01

    This new edition illustrates the power of linear algebra in the study of graphs. The emphasis on matrix techniques is greater than in other texts on algebraic graph theory. Important matrices associated with graphs (for example, incidence, adjacency and Laplacian matrices) are treated in detail. Presenting a useful overview of selected topics in algebraic graph theory, early chapters of the text focus on regular graphs, algebraic connectivity, the distance matrix of a tree, and its generalized version for arbitrary graphs, known as the resistance matrix. Coverage of later topics include Laplacian eigenvalues of threshold graphs, the positive definite completion problem and matrix games based on a graph. Such an extensive coverage of the subject area provides a welcome prompt for further exploration. The inclusion of exercises enables practical learning throughout the book. In the new edition, a new chapter is added on the line graph of a tree, while some results in Chapter 6 on Perron-Frobenius theory are reo...

  19. Inelastic behaviour of collagen networks in cell–matrix interactions and mechanosensation

    Science.gov (United States)

    Mohammadi, Hamid; Arora, Pamma D.; Simmons, Craig A.; Janmey, Paul A.; McCulloch, Christopher A.

    2015-01-01

    The mechanical properties of extracellular matrix proteins strongly influence cell-induced tension in the matrix, which in turn influences cell function. Despite progress on the impact of elastic behaviour of matrix proteins on cell–matrix interactions, little is known about the influence of inelastic behaviour, especially at the large and slow deformations that characterize cell-induced matrix remodelling. We found that collagen matrices exhibit deformation rate-dependent behaviour, which leads to a transition from pronounced elastic behaviour at fast deformations to substantially inelastic behaviour at slow deformations (1 μm min−1, similar to cell-mediated deformation). With slow deformations, the inelastic behaviour of floating gels was sensitive to collagen concentration, whereas attached gels exhibited similar inelastic behaviour independent of collagen concentration. The presence of an underlying rigid support had a similar effect on cell–matrix interactions: cell-induced deformation and remodelling were similar on 1 or 3 mg ml−1 attached collagen gels while deformations were two- to fourfold smaller in floating gels of high compared with low collagen concentration. In cross-linked collagen matrices, which did not exhibit inelastic behaviour, cells did not respond to the presence of the underlying rigid foundation. These data indicate that at the slow rates of collagen compaction generated by fibroblasts, the inelastic responses of collagen gels, which are influenced by collagen concentration and the presence of an underlying rigid foundation, are important determinants of cell–matrix interactions and mechanosensation. PMID:25392399

  20. Hierarchical quark mass matrices

    International Nuclear Information System (INIS)

    Rasin, A.

    1998-02-01

    I define a set of conditions that the most general hierarchical Yukawa mass matrices have to satisfy so that the leading rotations in the diagonalization matrix are a pair of (2,3) and (1,2) rotations. In addition to Fritzsch structures, examples of such hierarchical structures include also matrices with (1,3) elements of the same order or even much larger than the (1,2) elements. Such matrices can be obtained in the framework of a flavor theory. To leading order, the values of the angle in the (2,3) plane (s 23 ) and the angle in the (1,2) plane (s 12 ) do not depend on the order in which they are taken when diagonalizing. We find that any of the Cabbibo-Kobayashi-Maskawa matrix parametrizations that consist of at least one (1,2) and one (2,3) rotation may be suitable. In the particular case when the s 13 diagonalization angles are sufficiently small compared to the product s 12 s 23 , two special CKM parametrizations emerge: the R 12 R 23 R 12 parametrization follows with s 23 taken before the s 12 rotation, and vice versa for the R 23 R 12 R 23 parametrization. (author)

  1. Changes in Structural-Mechanical Properties and Degradability of Collagen during Aging-associated Modifications*

    Science.gov (United States)

    Panwar, Preety; Lamour, Guillaume; Mackenzie, Neil C. W.; Yang, Heejae; Ko, Frank; Li, Hongbin; Brömme, Dieter

    2015-01-01

    During aging, changes occur in the collagen network that contribute to various pathological phenotypes in the skeletal, vascular, and pulmonary systems. The aim of this study was to investigate the consequences of age-related modifications on the mechanical stability and in vitro proteolytic degradation of type I collagen. Analyzing mouse tail and bovine bone collagen, we found that collagen at both fibril and fiber levels varies in rigidity and Young's modulus due to different physiological changes, which correlate with changes in cathepsin K (CatK)-mediated degradation. A decreased susceptibility to CatK-mediated hydrolysis of fibrillar collagen was observed following mineralization and advanced glycation end product-associated modification. However, aging of bone increased CatK-mediated osteoclastic resorption by ∼27%, and negligible resorption was observed when osteoclasts were cultured on mineral-deficient bone. We observed significant differences in the excavations generated by osteoclasts and C-terminal telopeptide release during bone resorption under distinct conditions. Our data indicate that modification of collagen compromises its biomechanical integrity and affects CatK-mediated degradation both in bone and tissue, thus contributing to our understanding of extracellular matrix aging. PMID:26224630

  2. Technical advances in the sectioning of dental tissue and of on-section cross-linked collagen detection in mineralized teeth.

    Science.gov (United States)

    Singhrao, Sim K; Sloan, Alastair J; Smith, Emma L; Archer, Charles W

    2010-08-01

    Immunohistochemical detection of cross-linked fibrillar collagens in mineralized tissues is much desired for exploring the mechanisms of biomineralization in health and disease. Mineralized teeth are impossible to section when embedded in conventional media, thus limiting on-section characterization of matrix proteins by immunohistochemistry. We hypothesized that by using an especially formulated acrylic resin suitable for mineralized dental tissues, not only sectioning of teeth would be possible, but also our recently developed immunofluorescence labeling technique would be amenable to fully calcified tissues for characterization of dentinal fibrillar collagens, which remains elusive. The hypothesis was tested on fixed rodent teeth embedded in Technovit 9100 New. It was possible to cut thin (1 mum) sections of mineralized teeth, and immunofluorescence characterization of cross-linked type I fibrillar collagen was selected due to its abundance in dentine. Decalcified samples of teeth embedded in paraffin wax were also used to compare immunolabeling from either method using the same immunoreagents in equivalent concentrations. In the decalcified tissue sections, type I collagen labeling in the dentine along the tubules was "patchy" and the signal in the predentine was very weak. However, enhanced signal in mineralized samples with type I collagen was detected not only in the predentine but also at the limit between intertubular dentine, within the elements of the enamel organ and subgingival stroma. This report offers advances in sectioning mineralized dental tissues and allows the application of immunofluorescence not only for on-section protein detection but importantly for detecting cross-linked fibrous collagens in both soft and mineralized tissue sections.

  3. Laminin peptide YIGSR induces collagen synthesis in Hs27 human dermal fibroblasts

    Energy Technology Data Exchange (ETDEWEB)

    Yoon, Jong Hyuk; Kim, Jaeyoon; Lee, Hyeongjoo [NovaCell Technology Inc., Pohang, Kyungbuk 790-784 (Korea, Republic of); Kim, So Young [Department of Dermatology, Chung-Ang University College of Medicine, Seoul 156-756 (Korea, Republic of); Department of Convergence Medicine and Pharmaceutical Biosciences, Graduate School, Chung-Ang University, Seoul 156-756 (Korea, Republic of); Jang, Hwan-Hee [Functional Food and Nutrition Division, Department of Agrofood Resources, Rural Development Administration, Suwon 441-853 (Korea, Republic of); Ryu, Sung Ho [Division of Integrative Biosciences and Biotechnology, Pohang University of Science and Technology (POSTECH), Pohang, Kyungbuk 790-784 (Korea, Republic of); Kim, Beom Joon [Department of Dermatology, Chung-Ang University College of Medicine, Seoul 156-756 (Korea, Republic of); Department of Convergence Medicine and Pharmaceutical Biosciences, Graduate School, Chung-Ang University, Seoul 156-756 (Korea, Republic of); Lee, Taehoon G., E-mail: taehoon@novacelltech.com [NovaCell Technology Inc., Pohang, Kyungbuk 790-784 (Korea, Republic of)

    2012-11-23

    Highlights: Black-Right-Pointing-Pointer We identify a function of the YIGSR peptide to enhance collagen synthesis in Hs27. Black-Right-Pointing-Pointer YIGSR peptide enhanced collagen type 1 synthesis both of gene and protein levels. Black-Right-Pointing-Pointer There were no changes in cell proliferation and MMP-1 level in YIGSR treatment. Black-Right-Pointing-Pointer The YIGSR effect on collagen synthesis mediated activation of FAK, pyk2 and ERK. Black-Right-Pointing-Pointer The YIGSR-induced FAK and ERK activation was modulated by FAK and MEK inhibitors. -- Abstract: The dermal ECM is synthesized from fibroblasts and is primarily compromised of fibrillar collagen and elastic fibers, which support the mechanical strength and resiliency of skin, respectively. Laminin, a major glycoprotein located in the basement membrane, promotes cell adhesion, cell growth, differentiation, and migration. The laminin tyrosine-isoleucine-glycine-serine-arginine (YIGSR) peptide, corresponding to the 929-933 sequence of the {beta}1 chain, is known to be a functional motif with effects on the inhibition of tumor metastasis, the regulation of sensory axonal response and the inhibition of angiogenesis through high affinity to the 67 kDa laminin receptor. In this study, we identified a novel function of the YIGSR peptide to enhance collagen synthesis in human dermal fibroblasts. To elucidate this novel function regarding collagen synthesis, we treated human dermal fibroblasts with YIGSR peptide in both a time- and dose-dependent manner. According to subsequent experiments, we found that the YIGSR peptide strongly enhanced collagen type 1 synthesis without changing cell proliferation or cellular MMP-1 level. This YIGSR peptide-mediated collagen type 1 synthesis was modulated by FAK inhibitor and MEK inhibitor. This study clearly reveals that YIGSR peptide plays a novel function on the collagen type 1 synthesis of dermal fibroblasts and also suggests that YIGSR is a strong candidate

  4. Laminin peptide YIGSR induces collagen synthesis in Hs27 human dermal fibroblasts

    International Nuclear Information System (INIS)

    Yoon, Jong Hyuk; Kim, Jaeyoon; Lee, Hyeongjoo; Kim, So Young; Jang, Hwan-Hee; Ryu, Sung Ho; Kim, Beom Joon; Lee, Taehoon G.

    2012-01-01

    Highlights: ► We identify a function of the YIGSR peptide to enhance collagen synthesis in Hs27. ► YIGSR peptide enhanced collagen type 1 synthesis both of gene and protein levels. ► There were no changes in cell proliferation and MMP-1 level in YIGSR treatment. ► The YIGSR effect on collagen synthesis mediated activation of FAK, pyk2 and ERK. ► The YIGSR-induced FAK and ERK activation was modulated by FAK and MEK inhibitors. -- Abstract: The dermal ECM is synthesized from fibroblasts and is primarily compromised of fibrillar collagen and elastic fibers, which support the mechanical strength and resiliency of skin, respectively. Laminin, a major glycoprotein located in the basement membrane, promotes cell adhesion, cell growth, differentiation, and migration. The laminin tyrosine-isoleucine-glycine-serine-arginine (YIGSR) peptide, corresponding to the 929–933 sequence of the β1 chain, is known to be a functional motif with effects on the inhibition of tumor metastasis, the regulation of sensory axonal response and the inhibition of angiogenesis through high affinity to the 67 kDa laminin receptor. In this study, we identified a novel function of the YIGSR peptide to enhance collagen synthesis in human dermal fibroblasts. To elucidate this novel function regarding collagen synthesis, we treated human dermal fibroblasts with YIGSR peptide in both a time- and dose-dependent manner. According to subsequent experiments, we found that the YIGSR peptide strongly enhanced collagen type 1 synthesis without changing cell proliferation or cellular MMP-1 level. This YIGSR peptide-mediated collagen type 1 synthesis was modulated by FAK inhibitor and MEK inhibitor. This study clearly reveals that YIGSR peptide plays a novel function on the collagen type 1 synthesis of dermal fibroblasts and also suggests that YIGSR is a strong candidate peptide for the treatment of skin aging and wrinkles.

  5. A microscopic evaluation of collagen-bilirubin interactions: in vitro surface phenomenon.

    Science.gov (United States)

    Usharani, N; Jayakumar, G C; Rao, J R; Chandrasekaran, B; Nair, B U

    2014-02-01

    This study is carried out to understand the morphology variations of collagen I matrices influenced by bilirubin. The characteristics of bilirubin interaction with collagen ascertained using various techniques like XRD, CLSM, fluorescence, SEM and AFM. These techniques are used to understand the distribution, expression and colocalization patterns of collagen-bilirubin complexes. The present investigation mimic the in vivo mechanisms created during the disorder condition like jaundice. Fluorescence technique elucidates the crucial role played by bilirubin deposition and interaction during collagen organization. Influence of bilirubin during collagen fibrillogenesis and banding patterns are clearly visualize using SEM. As a result, collagen-bilirubin complex provides different reconstructed patterns because of the influence of bilirubin concentration. Selectivity, specificity and spatial organization of collagen-bilirubin are determined through AFM imaging. Consequently, it is observed that the morphology and quantity of the bilirubin binding to collagen varied by the concentrations and the adsorption rate in protein solutions. Microscopic studies of collagen-bilirubin interaction confirms that bilirubin influence the fibrillogenesis and alter the rate of collagen organization depending on the bilirubin concentration. This knowledge helps to develop a novel drug to inhibit the interface point of interaction between collagen and bilirubin. © 2013 The Authors Journal of Microscopy © 2013 Royal Microscopical Society.

  6. Lectures on matrices

    CERN Document Server

    M Wedderburn, J H

    1934-01-01

    It is the organization and presentation of the material, however, which make the peculiar appeal of the book. This is no mere compendium of results-the subject has been completely reworked and the proofs recast with the skill and elegance which come only from years of devotion. -Bulletin of the American Mathematical Society The very clear and simple presentation gives the reader easy access to the more difficult parts of the theory. -Jahrbuch über die Fortschritte der Mathematik In 1937, the theory of matrices was seventy-five years old. However, many results had only recently evolved from sp

  7. Matrices and linear algebra

    CERN Document Server

    Schneider, Hans

    1989-01-01

    Linear algebra is one of the central disciplines in mathematics. A student of pure mathematics must know linear algebra if he is to continue with modern algebra or functional analysis. Much of the mathematics now taught to engineers and physicists requires it.This well-known and highly regarded text makes the subject accessible to undergraduates with little mathematical experience. Written mainly for students in physics, engineering, economics, and other fields outside mathematics, the book gives the theory of matrices and applications to systems of linear equations, as well as many related t

  8. Intermittency and random matrices

    Science.gov (United States)

    Sokoloff, Dmitry; Illarionov, E. A.

    2015-08-01

    A spectacular phenomenon of intermittency, i.e. a progressive growth of higher statistical moments of a physical field excited by an instability in a random medium, attracted the attention of Zeldovich in the last years of his life. At that time, the mathematical aspects underlying the physical description of this phenomenon were still under development and relations between various findings in the field remained obscure. Contemporary results from the theory of the product of independent random matrices (the Furstenberg theory) allowed the elaboration of the phenomenon of intermittency in a systematic way. We consider applications of the Furstenberg theory to some problems in cosmology and dynamo theory.

  9. Dimension from covariance matrices.

    Science.gov (United States)

    Carroll, T L; Byers, J M

    2017-02-01

    We describe a method to estimate embedding dimension from a time series. This method includes an estimate of the probability that the dimension estimate is valid. Such validity estimates are not common in algorithms for calculating the properties of dynamical systems. The algorithm described here compares the eigenvalues of covariance matrices created from an embedded signal to the eigenvalues for a covariance matrix of a Gaussian random process with the same dimension and number of points. A statistical test gives the probability that the eigenvalues for the embedded signal did not come from the Gaussian random process.

  10. Collagen Quantification in Tissue Specimens.

    Science.gov (United States)

    Coentro, João Quintas; Capella-Monsonís, Héctor; Graceffa, Valeria; Wu, Zhuning; Mullen, Anne Maria; Raghunath, Michael; Zeugolis, Dimitrios I

    2017-01-01

    Collagen is the major extracellular protein in mammals. Accurate quantification of collagen is essential in the biomaterials (e.g., reproducible collagen scaffold fabrication), drug discovery (e.g., assessment of collagen in pathophysiologies, such as fibrosis), and tissue engineering (e.g., quantification of cell-synthesized collagen) fields. Although measuring hydroxyproline content is the most widely used method to quantify collagen in biological specimens, the process is very laborious. To this end, the Sircol™ Collagen Assay is widely used due to its inherent simplicity and convenience. However, this method leads to overestimation of collagen content due to the interaction of Sirius red with basic amino acids of non-collagenous proteins. Herein, we describe the addition of an ultrafiltration purification step in the process to accurately determine collagen content in tissues.

  11. Triple helix-forming oligonucleotide corresponding to the polypyrimidine sequence in the rat alpha 1(I) collagen promoter specifically inhibits factor binding and transcription.

    Science.gov (United States)

    Kovacs, A; Kandala, J C; Weber, K T; Guntaka, R V

    1996-01-19

    Type I and III fibrillar collagens are the major structural proteins of the extracellular matrix found in various organs including the myocardium. Abnormal and progressive accumulation of fibrillar type I collagen in the interstitial spaces compromises organ function and therefore, the study of transcriptional regulation of this gene and specific targeting of its expression is of major interest. Transient transfection of adult cardiac fibroblasts indicate that the polypurine-polypyrimidine sequence of alpha 1(I) collagen promoter between nucleotides - 200 and -140 represents an overall positive regulatory element. DNase I footprinting and electrophoretic mobility shift assays suggest that multiple factors bind to different elements of this promoter region. We further demonstrate that the unique polypyrimidine sequence between -172 and -138 of the promoter represents a suitable target for a single-stranded polypurine oligonucleotide (TFO) to form a triple helix DNA structure. Modified electrophoretic mobility shift assays show that this TFO specifically inhibits the protein-DNA interaction within the target region. In vitro transcription assays and transient transfection experiments demonstrate that the transcriptional activity of the promoter is inhibited by this oligonucleotide. We propose that TFOs represent a therapeutic potential to specifically influence the expression of alpha 1(I) collagen gene in various disease states where abnormal type I collagen accumulation is known to occur.

  12. Evaluation of human collagen biomaterials in the healing of colonic anastomoses in dogs.

    Science.gov (United States)

    Mutter, D; Aprahamian, M; Tiollier, J; Sonzini, P; Marescaux, J

    1997-04-01

    To investigate the ability of human collagen biomaterials to secure colonic anastomoses in dogs and to evaluate the biocompatibility of anastomotic protection patches (APP). Experimental open study. Experimental research centre, France. 21 mongrel dogs randomised into three groups of 7 each. Standard transverse colonic end-to-end anastomoses were secured with two-layer oxidised collagen I + III sponge covered with thin crosslinked collagen IV film (APP 1) glued around the suture (n = 7); two-layer oxidised collagen I + III sponge covered with thin non-crosslinked collagen I + III film patch (APP 2) (n = 7); or sealed by fibrin sealant (n = 7), which acted as a controls. Gross examination, radiological control (barium enemas), and microscopic examination on day 35 postoperatively. Gross clinical and radiological examinations on day 35 showed normal wound healing in all but one dog in which the anastomoses had occluded by day 16. There was significantly less stricturing with the APP 2 patch (p < 0.05 compared with the controls). Microscopic examination showed complete absorption of the APP 2 patches as well as quicker mucosal and extracellular matrix repair than controls. The APP 1 patch gave the best healing of the muscular layer but did not reduce anastomosis stricturing, and was not totally absorbed. Collagen supporting devices do not alter healing of the large bowel. Encircling patches do not increase the number of adhesions or the rate of anastomotic stricturing and a thin fibrillar collagen I + III dense layer may even improve it. The speed of absorption of the patch depends on the type of dense collagen film. These results argue for a prospective clinical evaluation in humans.

  13. Complex Wedge-Shaped Matrices: A Generalization of Jacobi Matrices

    Czech Academy of Sciences Publication Activity Database

    Hnětynková, Iveta; Plešinger, M.

    2015-01-01

    Roč. 487, 15 December (2015), s. 203-219 ISSN 0024-3795 R&D Projects: GA ČR GA13-06684S Keywords : eigenvalues * eigenvector * wedge-shaped matrices * generalized Jacobi matrices * band (or block) Krylov subspace methods Subject RIV: BA - General Mathematics Impact factor: 0.965, year: 2015

  14. Generalisations of Fisher Matrices

    Directory of Open Access Journals (Sweden)

    Alan Heavens

    2016-06-01

    Full Text Available Fisher matrices play an important role in experimental design and in data analysis. Their primary role is to make predictions for the inference of model parameters—both their errors and covariances. In this short review, I outline a number of extensions to the simple Fisher matrix formalism, covering a number of recent developments in the field. These are: (a situations where the data (in the form of ( x , y pairs have errors in both x and y; (b modifications to parameter inference in the presence of systematic errors, or through fixing the values of some model parameters; (c Derivative Approximation for LIkelihoods (DALI - higher-order expansions of the likelihood surface, going beyond the Gaussian shape approximation; (d extensions of the Fisher-like formalism, to treat model selection problems with Bayesian evidence.

  15. Random volumes from matrices

    Energy Technology Data Exchange (ETDEWEB)

    Fukuma, Masafumi; Sugishita, Sotaro; Umeda, Naoya [Department of Physics, Kyoto University,Kitashirakawa Oiwake-cho, Kyoto 606-8502 (Japan)

    2015-07-17

    We propose a class of models which generate three-dimensional random volumes, where each configuration consists of triangles glued together along multiple hinges. The models have matrices as the dynamical variables and are characterized by semisimple associative algebras A. Although most of the diagrams represent configurations which are not manifolds, we show that the set of possible diagrams can be drastically reduced such that only (and all of the) three-dimensional manifolds with tetrahedral decompositions appear, by introducing a color structure and taking an appropriate large N limit. We examine the analytic properties when A is a matrix ring or a group ring, and show that the models with matrix ring have a novel strong-weak duality which interchanges the roles of triangles and hinges. We also give a brief comment on the relationship of our models with the colored tensor models.

  16. FISH SKIN ISOLATED COLLAGEN CRYOGELS FOR TISSUE ENGINEERING APPLICATIONS: PURIFICATION, SYNTHESIS AND CHARACTERIZATION

    Directory of Open Access Journals (Sweden)

    Nimet Bölgen

    2016-09-01

    Full Text Available Tissue engineering aims regenerating damaged tissues by using porous scaffolds, cells and bioactive agents. The scaffolds are produced from a variety of natural and synthetic polymers. Collagen is a natural polymer widely used for scaffold production in the late years because of its being the most important component of the connective tissue and biocompatibility. Cryogelation is a relatively simple technique compared to other scaffold production methods, which enables to produce interconnected porous matrices from the frozen reaction mixtures of polymers or monomeric precursors. Considering these, collagen was isolated in this study from fish skin which is a non-commercial waste material, and scaffolds were produced from this collagen by cryogelation method. By SEM analysis, porous structure of collagen, and by UV-Vis analysis protein structure was proven, and by Zeta potential iso-electrical point of the protein was determined, and,  Amit A, Amit B, Amit I, Amit II and Amit III characteristical peaks were demonstrated by FTIR analysis. The collagen isolation yield was, 14.53% for acid soluble collagen and 2.42% for pepcin soluble collagen. Scaffolds were produced by crosslinking isolated acid soluble collagen with glutaraldehyde at cryogenic conditions. With FTIR analysis, C=N bond belonging to gluteraldehyde reaction with collagen was found to be at 1655 cm-1. It was demonstrated by SEM analysis that collagen and glutaraldeyhde concentration had significant effects on the pore morphology, diameter and wall thickness of the cryogels, which in turned changed the swelling ratio and degradation profiles of the matrices. In this study, synthesis and characterization results of a fish skin isolated collagen cryogel scaffold that may be potentially used in the regeneration of damaged tissues are presented.

  17. VanderLaan Circulant Type Matrices

    Directory of Open Access Journals (Sweden)

    Hongyan Pan

    2015-01-01

    Full Text Available Circulant matrices have become a satisfactory tools in control methods for modern complex systems. In the paper, VanderLaan circulant type matrices are presented, which include VanderLaan circulant, left circulant, and g-circulant matrices. The nonsingularity of these special matrices is discussed by the surprising properties of VanderLaan numbers. The exact determinants of VanderLaan circulant type matrices are given by structuring transformation matrices, determinants of well-known tridiagonal matrices, and tridiagonal-like matrices. The explicit inverse matrices of these special matrices are obtained by structuring transformation matrices, inverses of known tridiagonal matrices, and quasi-tridiagonal matrices. Three kinds of norms and lower bound for the spread of VanderLaan circulant and left circulant matrix are given separately. And we gain the spectral norm of VanderLaan g-circulant matrix.

  18. Fibrillar Structure and Charge Determine the Interaction of Polyglutamine Protein Aggregates with the Cell Surface*

    Science.gov (United States)

    Trevino, R. Sean; Lauckner, Jane E.; Sourigues, Yannick; Pearce, Margaret M.; Bousset, Luc; Melki, Ronald; Kopito, Ron R.

    2012-01-01

    The pathogenesis of most neurodegenerative diseases, including transmissible diseases like prion encephalopathy, inherited disorders like Huntington disease, and sporadic diseases like Alzheimer and Parkinson diseases, is intimately linked to the formation of fibrillar protein aggregates. It is becoming increasingly appreciated that prion-like intercellular transmission of protein aggregates can contribute to the stereotypical spread of disease pathology within the brain, but the mechanisms underlying the binding and uptake of protein aggregates by mammalian cells are largely uninvestigated. We have investigated the properties of polyglutamine (polyQ) aggregates that endow them with the ability to bind to mammalian cells in culture and the properties of the cell surface that facilitate such uptake. Binding and internalization of polyQ aggregates are common features of mammalian cells and depend upon both trypsin-sensitive and trypsin-resistant saturable sites on the cell surface, suggesting the involvement of cell surface proteins in this process. polyQ aggregate binding depends upon the presence of a fibrillar amyloid-like structure and does not depend upon electrostatic interaction of fibrils with the cell surface. Sequences in the huntingtin protein that flank the amyloid-forming polyQ tract also influence the extent to which aggregates are able to bind to cell surfaces. PMID:22753412

  19. Nanomechanical properties of distinct fibrillar polymorphs of the protein α-synuclein

    Science.gov (United States)

    Makky, Ali; Bousset, Luc; Polesel-Maris, Jérôme; Melki, Ronald

    2016-11-01

    Alpha-synuclein (α-Syn) is a small presynaptic protein of 140 amino acids. Its pathologic intracellular aggregation within the central nervous system yields protein fibrillar inclusions named Lewy bodies that are the hallmarks of Parkinson’s disease (PD). In solution, pure α-Syn adopts an intrinsically disordered structure and assembles into fibrils that exhibit considerable morphological heterogeneity depending on their assembly conditions. We recently established tightly controlled experimental conditions allowing the assembly of α-Syn into highly homogeneous and pure polymorphs. The latter exhibited differences in their shape, their structure but also in their functional properties. We have conducted an AFM study at high resolution and performed a statistical analysis of fibrillar α-Syn shape and thermal fluctuations to calculate the persistence length to further assess the nanomechanical properties of α-Syn polymorphs. Herein, we demonstrated quantitatively that distinct polymorphs made of the same protein (wild-type α-Syn) show significant differences in their morphology (height, width and periodicity) and physical properties (persistence length, bending rigidity and axial Young’s modulus).

  20. Diagonalization of the mass matrices

    International Nuclear Information System (INIS)

    Rhee, S.S.

    1984-01-01

    It is possible to make 20 types of 3x3 mass matrices which are hermitian. We have obtained unitary matrices which could diagonalize each mass matrix. Since the three elements of mass matrix can be expressed in terms of the three eigenvalues, msub(i), we can also express the unitary matrix in terms of msub(i). (Author)

  1. Enhancing Understanding of Transformation Matrices

    Science.gov (United States)

    Dick, Jonathan; Childrey, Maria

    2012-01-01

    With the Common Core State Standards' emphasis on transformations, teachers need a variety of approaches to increase student understanding. Teaching matrix transformations by focusing on row vectors gives students tools to create matrices to perform transformations. This empowerment opens many doors: Students are able to create the matrices for…

  2. Hierarchical matrices algorithms and analysis

    CERN Document Server

    Hackbusch, Wolfgang

    2015-01-01

    This self-contained monograph presents matrix algorithms and their analysis. The new technique enables not only the solution of linear systems but also the approximation of matrix functions, e.g., the matrix exponential. Other applications include the solution of matrix equations, e.g., the Lyapunov or Riccati equation. The required mathematical background can be found in the appendix. The numerical treatment of fully populated large-scale matrices is usually rather costly. However, the technique of hierarchical matrices makes it possible to store matrices and to perform matrix operations approximately with almost linear cost and a controllable degree of approximation error. For important classes of matrices, the computational cost increases only logarithmically with the approximation error. The operations provided include the matrix inversion and LU decomposition. Since large-scale linear algebra problems are standard in scientific computing, the subject of hierarchical matrices is of interest to scientists ...

  3. Intrinsic character of Stokes matrices

    Science.gov (United States)

    Gagnon, Jean-François; Rousseau, Christiane

    2017-02-01

    Two germs of linear analytic differential systems x k + 1Y‧ = A (x) Y with a non-resonant irregular singularity are analytically equivalent if and only if they have the same eigenvalues and equivalent collections of Stokes matrices. The Stokes matrices are the transition matrices between sectors on which the system is analytically equivalent to its formal normal form. Each sector contains exactly one separating ray for each pair of eigenvalues. A rotation in S allows supposing that R+ lies in the intersection of two sectors. Reordering of the coordinates of Y allows ordering the real parts of the eigenvalues, thus yielding triangular Stokes matrices. However, the choice of the rotation in x is not canonical. In this paper we establish how the collection of Stokes matrices depends on this rotation, and hence on a chosen order of the projection of the eigenvalues on a line through the origin.

  4. Collagen metabolism in obesity

    DEFF Research Database (Denmark)

    Rasmussen, M H; Jensen, L T; Andersen, T

    1995-01-01

    OBJECTIVE: To investigate the impact of obesity, fat distribution and weight loss on collagen turnover using serum concentrations of the carboxyterminal propeptide of type I procollagen (S-PICP) and the aminoterminal propeptide of type III pro-collagen (S-PIIINP) as markers for collagen turnover...... (r = 0.37; P = 0.004), height (r = 0.27; P = 0.04), waist circumference (r = 0.35; P = 0.007), as well as with WHR (r = 0.33; P = 0.01) and was inversely correlated to age (r = -0.40; P = 0.002). Compared with randomly selected controls from a large pool of healthy volunteers, the obese patients had...... restriction (P obesity and associated with body fat distribution, suggesting...

  5. Collagen Homeostasis and Metabolism

    DEFF Research Database (Denmark)

    Magnusson, S Peter; Heinemeier, Katja M; Kjaer, Michael

    2016-01-01

    The musculoskeletal system and its collagen rich tissue is important for ensuring architecture of skeletal muscle, energy storage in tendon and ligaments, joint surface protection, and for ensuring the transfer of muscular forces into resulting limb movement. Structure of tendon is stable...... inactivity or immobilization of the human body will conversely result in a dramatic loss in tendon stiffness and collagen synthesis. This illustrates the importance of regular mechanical load in order to preserve the stabilizing role of the connective tissue for the overall function of the musculoskeletal...

  6. 3D full-field quantification of cell-induced large deformations in fibrillar biomaterials by combining non-rigid image registration with label-free second harmonic generation.

    Science.gov (United States)

    Jorge-Peñas, Alvaro; Bové, Hannelore; Sanen, Kathleen; Vaeyens, Marie-Mo; Steuwe, Christian; Roeffaers, Maarten; Ameloot, Marcel; Van Oosterwyck, Hans

    2017-08-01

    To advance our current understanding of cell-matrix mechanics and its importance for biomaterials development, advanced three-dimensional (3D) measurement techniques are necessary. Cell-induced deformations of the surrounding matrix are commonly derived from the displacement of embedded fiducial markers, as part of traction force microscopy (TFM) procedures. However, these fluorescent markers may alter the mechanical properties of the matrix or can be taken up by the embedded cells, and therefore influence cellular behavior and fate. In addition, the currently developed methods for calculating cell-induced deformations are generally limited to relatively small deformations, with displacement magnitudes and strains typically of the order of a few microns and less than 10% respectively. Yet, large, complex deformation fields can be expected from cells exerting tractions in fibrillar biomaterials, like collagen. To circumvent these hurdles, we present a technique for the 3D full-field quantification of large cell-generated deformations in collagen, without the need of fiducial markers. We applied non-rigid, Free Form Deformation (FFD)-based image registration to compute full-field displacements induced by MRC-5 human lung fibroblasts in a collagen type I hydrogel by solely relying on second harmonic generation (SHG) from the collagen fibrils. By executing comparative experiments, we show that comparable displacement fields can be derived from both fibrils and fluorescent beads. SHG-based fibril imaging can circumvent all described disadvantages of using fiducial markers. This approach allows measuring 3D full-field deformations under large displacement (of the order of 10 μm) and strain regimes (up to 40%). As such, it holds great promise for the study of large cell-induced deformations as an inherent component of cell-biomaterial interactions and cell-mediated biomaterial remodeling. Copyright © 2017 Elsevier Ltd. All rights reserved.

  7. [The genetics of collagen diseases].

    Science.gov (United States)

    Kaplan, J; Maroteaux, P; Frezal, J

    1986-01-01

    Heritable disorders of collagen include Ehler-Danlos syndromes (11 types are actually known), Larsen syndrome and osteogenesis imperfecta. Their clinical, genetic and biochemical features are reviewed. Marfan syndrome is closely related to heritable disorders of collagen.

  8. Monomeric, porous type II collagen scaffolds promote chondrogenic differentiation of human bone marrow mesenchymal stem cells in vitro

    Science.gov (United States)

    Tamaddon, M.; Burrows, M.; Ferreira, S. A.; Dazzi, F.; Apperley, J. F.; Bradshaw, A.; Brand, D. D.; Czernuszka, J.; Gentleman, E.

    2017-03-01

    Osteoarthritis (OA) is a common cause of pain and disability and is often associated with the degeneration of articular cartilage. Lesions to the articular surface, which are thought to progress to OA, have the potential to be repaired using tissue engineering strategies; however, it remains challenging to instruct cell differentiation within a scaffold to produce tissue with appropriate structural, chemical and mechanical properties. We aimed to address this by driving progenitor cells to adopt a chondrogenic phenotype through the tailoring of scaffold composition and physical properties. Monomeric type-I and type-II collagen scaffolds, which avoid potential immunogenicity associated with fibrillar collagens, were fabricated with and without chondroitin sulfate (CS) and their ability to stimulate the chondrogenic differentiation of human bone marrow-derived mesenchymal stem cells was assessed. Immunohistochemical analyses showed that cells produced abundant collagen type-II on type-II scaffolds and collagen type-I on type-I scaffolds. Gene expression analyses indicated that the addition of CS - which was released from scaffolds quickly - significantly upregulated expression of type II collagen, compared to type-I and pure type-II scaffolds. We conclude that collagen type-II and CS can be used to promote a more chondrogenic phenotype in the absence of growth factors, potentially providing an eventual therapy to prevent OA.

  9. Ultrastructural and biochemical characterization of mechanically adaptable collagenous structures in the edible sea urchin Paracentrotus lividus.

    Science.gov (United States)

    Barbaglio, Alice; Tricarico, Serena; Ribeiro, Ana R; Di Benedetto, Cristiano; Barbato, Marta; Dessì, Desirèe; Fugnanesi, Valeria; Magni, Stefano; Mosca, Fabio; Sugni, Michela; Bonasoro, Francesco; Barbosa, Mario A; Wilkie, Iain C; Candia Carnevali, M Daniela

    2015-06-01

    The viscoelastic properties of vertebrate connective tissues rarely undergo significant changes within physiological timescales, the only major exception being the reversible destiffening of the mammalian uterine cervix at the end of pregnancy. In contrast to this, the connective tissues of echinoderms (sea urchins, starfish, sea cucumbers, etc.) can switch reversibly between stiff and compliant conditions in timescales of around a second to minutes. Elucidation of the molecular mechanism underlying such mutability has implications for the zoological, ecological and evolutionary field. Important information could also arise for veterinary and biomedical sciences, particularly regarding the pathological plasticization or stiffening of connective tissue structures. In the present investigation we analyzed aspects of the ultrastructure and biochemistry in two representative models, the compass depressor ligament and the peristomial membrane of the edible sea urchin Paracentrotus lividus, compared in three different mechanical states. The results provide further evidence that the mechanical adaptability of echinoderm connective tissues does not necessarily imply changes in the collagen fibrils themselves. The higher glycosaminoglycan (GAG) content registered in the peristomial membrane with respect to the compass depressor ligament suggests a diverse role of these molecules in the two mutable collagenous tissues. The possible involvement of GAG in the mutability phenomenon will need further clarification. During the shift from a compliant to a standard condition, significant changes in GAG content were detected only in the compass depressor ligament. Similarities in terms of ultrastructure (collagen fibrillar assembling) and biochemistry (two alpha chains) were found between the two models and mammalian collagen. Nevertheless, differences in collagen immunoreactivity, alpha chain migration on SDS-PAGE and BLAST alignment highlighted the uniqueness of sea urchin

  10. Deficiency of CRTAP in non-lethal recessive osteogenesis imperfecta reduces collagen deposition into matrix.

    Science.gov (United States)

    Valli, M; Barnes, A M; Gallanti, A; Cabral, W A; Viglio, S; Weis, M A; Makareeva, E; Eyre, D; Leikin, S; Antoniazzi, F; Marini, J C; Mottes, M

    2012-11-01

    Deficiency of any component of the ER-resident collagen prolyl 3-hydroxylation complex causes recessive osteogenesis imperfecta (OI). The complex modifies the α1(I)Pro986 residue and contains cartilage-associated protein (CRTAP), prolyl 3-hydroxylase 1 (P3H1) and cyclophilin B (CyPB). Fibroblasts normally secrete about 10% of CRTAP. Most CRTAP mutations cause a null allele and lethal type VII OI. We identified a 7-year-old Egyptian boy with non-lethal type VII OI and investigated the effects of his null CRTAP mutation on collagen biochemistry, the prolyl 3-hydroxylation complex, and collagen in extracellular matrix. The proband is homozygous for an insertion/deletion in CRTAP (c.118_133del16insTACCC). His dermal fibroblasts synthesize fully overmodified type I collagen, and 3-hydroxylate only 5% of α1(I)Pro986. CRTAP transcripts are 10% of control. CRTAP protein is absent from proband cells, with residual P3H1 and normal CyPB levels. Dermal collagen fibril diameters are significantly increased. By immunofluorescence of long-term cultures, we identified a severe deficiency (10-15% of control) of collagen deposited in extracellular matrix, with disorganization of the minimal fibrillar network. Quantitative pulse-chase experiments corroborate deficiency of matrix deposition, rather than increased matrix turnover. We conclude that defects of extracellular matrix, as well as intracellular defects in collagen modification, contribute to the pathology of type VII OI. © 2011 John Wiley & Sons A/S.

  11. Age-related modifications of type I collagen impair DDR1-induced apoptosis in non-invasive breast carcinoma cells.

    Science.gov (United States)

    Charles, Saby; Hassan, Rammal; Kevin, Magnien; Emilie, Buache; Sylvie, Brassart-Pasco; Laurence, Van-Gulick; Pierre, Jeannesson; Erik, Maquoi; Hamid, Morjani

    2018-05-07

    Type I collagen and DDR1 axis has been described to decrease cell proliferation and to initiate apoptosis in non-invasive breast carcinoma in three-dimensional cell culture matrices. Moreover, MT1-MMP down-regulates these effects. Here, we address the effect of type I collagen aging and MT1-MMP expression on cell proliferation suppression and induced-apoptosis in non-invasive MCF-7 and ZR-75-1 breast carcinoma. We provide evidence for a decrease in cell growth and an increase in apoptosis in the presence of adult collagen when compared to old collagen. This effect involves a differential activation of DDR1, as evidenced by a higher DDR1 phosphorylation level in adult collagen. In adult collagen, inhibition of DDR1 expression and kinase function induced an increase in cell growth to a level similar to that observed in old collagen. The impact of aging on the sensitivity of collagen to MT1-MMP has been reported recently. We used the MT1-MMP expression strategy to verify whether, by degrading adult type I collagen, it could lead to the same phenotype observed in old collagen 3D matrix. MT1-MMP overexpression abrogated the proliferation suppression and induced-apoptosis effects only in the presence of adult collagen. This suggests that differential collagen degradation by MT1-MMP induced a structural disorganization of adult collagen and inhibits DDR1 activation. This could in turn impair DDR1-induced cell growth suppression and apoptosis. Taken together, our data suggest that modifications of collagen structural organization, due to aging, contribute to the loss of the growth suppression and induced apoptosis effect of collagen in luminal breast carcinoma. MT1-MMP-dependent degradation and aging of collagen have no additive effects on these processes.

  12. Special matrices of mathematical physics stochastic, circulant and Bell matrices

    CERN Document Server

    Aldrovandi, R

    2001-01-01

    This book expounds three special kinds of matrices that are of physical interest, centering on physical examples. Stochastic matrices describe dynamical systems of many different types, involving (or not) phenomena like transience, dissipation, ergodicity, nonequilibrium, and hypersensitivity to initial conditions. The main characteristic is growth by agglomeration, as in glass formation. Circulants are the building blocks of elementary Fourier analysis and provide a natural gateway to quantum mechanics and noncommutative geometry. Bell polynomials offer closed expressions for many formulas co

  13. Mycobacterial laminin-binding histone-like protein mediates collagen-dependent cytoadherence

    Directory of Open Access Journals (Sweden)

    André Alves Dias

    2012-12-01

    Full Text Available When grown in the presence of exogenous collagen I, Mycobacterium bovis BCG was shown to form clumps. Scanning electron microscopy examination of these clumps revealed the presence of collagen fibres cross-linking the bacilli. Since collagen is a major constituent of the eukaryotic extracellular matrices, we assayed BCG cytoadherence in the presence of exogenous collagen I. Collagen increased the interaction of the bacilli with A549 type II pneumocytes or U937 macrophages, suggesting that BCG is able to recruit collagen to facilitate its attachment to host cells. Using an affinity chromatography approach, we have isolated a BCG collagen-binding protein corresponding to the previously described mycobacterial laminin-binding histone-like protein (LBP/Hlp, a highly conserved protein associated with the mycobacterial cell wall. Moreover, Mycobacterium leprae LBP/Hlp, a well-characterized adhesin, was also able to bind collagen I. Finally, using recombinant fragments of M. leprae LBP/Hlp, we mapped the collagen-binding activity within the C-terminal domain of the adhesin. Since this protein was already shown to be involved in the recognition of laminin and heparan sulphate-containing proteoglycans, the present observations reinforce the adhesive activities of LBP/Hlp, which can be therefore considered as a multifaceted mycobacterial adhesin, playing an important role in both leprosy and tuberculosis pathogenesis.

  14. Application of MALDI-TOF mass spectrometry for study on fibrillar and oligomeric aggregates of alpha-synuclein

    NARCIS (Netherlands)

    Severinovskaya, O. V.; Kovalska, V B; Losytskyy, M Yu; Cherepanov, V. V.; Subramaniam, V.; Yarmoluk, S M

    2014-01-01

    Aim. To study the α-synuclein (ASN) aggregates of different structural origin, namely amyloid fibrils and spherical oligomers, in comparison with a native protein. Methods. MALDI TOF mass spectrometry and atomic force microscopy (AFM). Results. The mass spectra of native and fibrillar ASN have

  15. Effect of rate on adhesion and static friction of a film-terminated fibrillar interface.

    Science.gov (United States)

    Vajpayee, Shilpi; Long, Rong; Shen, Lulin; Jagota, Anand; Hui, Chung-Yuen

    2009-03-03

    A film-terminated fibrillar interface has been shown to result in significant enhancement of adhesion and static friction compared to a flat control. This enhancement increases with interfibril spacing. In this, the first of a two-part study, by studying the effect of rate on adhesion and static friction, we show that both adhesion and static friction enhancement are due to a crack-trapping mechanism. For adhesion, as measured by an indentation experiment, an analytical model is used to relate the applied indenter displacement rate and measured forces to contact line velocity and energy release rate, respectively. The two mechanisms for adhesion enhancement--varying rate and crack-trapping--are found to be coupled multiplicatively.

  16. Mechanism of sliding friction on a film-terminated fibrillar interface.

    Science.gov (United States)

    Shen, Lulin; Jagota, Anand; Hui, Chung-Yuen

    2009-03-03

    We study the mechanism of sliding friction on a film-terminated fibrillar interface. It has been shown that static friction increases significantly with increasing spacing between fibrils, and with increasing rate of loading. However, surprisingly, the sliding friction remains substantially unaffected both by geometry and by the rate of loading. The presence of the thin terminal film is a controlling factor in determining the sliding friction. Experimentally, and by a simple model in which the indenter is held up by the tension in the thin film, we show how the indenter maintains a nearly constant contact area that is independent of the fibril spacing, resulting in constant sliding friction. By this mechanism, using the film-terminated structure, one can enhance the static friction without affecting the sliding behavior.

  17. Fibrillar polyaniline/diatomite composite synthesized by one-step in situ polymerization method

    International Nuclear Information System (INIS)

    Li Xingwei; Li Xiaoxuan; Wang Gengchao

    2005-01-01

    A fibrillar polyaniline/diatomite composite was prepared by one-step in situ polymerization of aniline in the dispersed system of diatomite, and was characterized via Fourier-transform infrared spectra (FT-IR), UV-vis-NIR spectra, wide-angle X-ray diffraction (WXRD), thermogravimetric analysis (TGA) and transmission electron microscopy (TEM), as well as conductivity. Morphology of the composite is uniform nanofibers, which the diameters of nanofibers are about 50-80 nm. The conductivity of polyaniline/diatomite composite contained 28% polyaniline is 0.29 S cm -1 at 25 deg. C, and temperature of thermal degradation has reached 493 deg. C in air. The composite has potential commercial applications as fillers for electromagnetic shielding materials and conductive coatings

  18. The invariant theory of matrices

    CERN Document Server

    Concini, Corrado De

    2017-01-01

    This book gives a unified, complete, and self-contained exposition of the main algebraic theorems of invariant theory for matrices in a characteristic free approach. More precisely, it contains the description of polynomial functions in several variables on the set of m\\times m matrices with coefficients in an infinite field or even the ring of integers, invariant under simultaneous conjugation. Following Hermann Weyl's classical approach, the ring of invariants is described by formulating and proving the first fundamental theorem that describes a set of generators in the ring of invariants, and the second fundamental theorem that describes relations between these generators. The authors study both the case of matrices over a field of characteristic 0 and the case of matrices over a field of positive characteristic. While the case of characteristic 0 can be treated following a classical approach, the case of positive characteristic (developed by Donkin and Zubkov) is much harder. A presentation of this case...

  19. Collagen Matrix Density Drives the Metabolic Shift in Breast Cancer Cells

    Directory of Open Access Journals (Sweden)

    Brett A. Morris

    2016-11-01

    Full Text Available Increased breast density attributed to collagen I deposition is associated with a 4–6 fold increased risk of developing breast cancer. Here, we assessed cellular metabolic reprogramming of mammary carcinoma cells in response to increased collagen matrix density using an in vitro 3D model. Our initial observations demonstrated changes in functional metabolism in both normal mammary epithelial cells and mammary carcinoma cells in response to changes in matrix density. Further, mammary carcinoma cells grown in high density collagen matrices displayed decreased oxygen consumption and glucose metabolism via the tricarboxylic acid (TCA cycle compared to cells cultured in low density matrices. Despite decreased glucose entry into the TCA cycle, levels of glucose uptake, cell viability, and ROS were not different between high and low density matrices. Interestingly, under high density conditions the contribution of glutamine as a fuel source to drive the TCA cycle was significantly enhanced. These alterations in functional metabolism mirrored significant changes in the expression of metabolic genes involved in glycolysis, oxidative phosphorylation, and the serine synthesis pathway. This study highlights the broad importance of the collagen microenvironment to cellular expression profiles, and shows that changes in density of the collagen microenvironment can modulate metabolic shifts of cancer cells.

  20. Conformational targeting of fibrillar polyglutamine proteins in live cells escalates aggregation and cytotoxicity.

    Directory of Open Access Journals (Sweden)

    Erik Kvam

    2009-05-01

    Full Text Available Misfolding- and aggregation-prone proteins underlying Parkinson's, Huntington's and Machado-Joseph diseases, namely alpha-synuclein, huntingtin, and ataxin-3 respectively, adopt numerous intracellular conformations during pathogenesis, including globular intermediates and insoluble amyloid-like fibrils. Such conformational diversity has complicated research into amyloid-associated intracellular dysfunction and neurodegeneration. To this end, recombinant single-chain Fv antibodies (scFvs are compelling molecular tools that can be selected against specific protein conformations, and expressed inside cells as intrabodies, for investigative and therapeutic purposes.Using atomic force microscopy (AFM and live-cell fluorescence microscopy, we report that a human scFv selected against the fibrillar form of alpha-synuclein targets isomorphic conformations of misfolded polyglutamine proteins. When expressed in the cytoplasm of striatal cells, this conformation-specific intrabody co-localizes with intracellular aggregates of misfolded ataxin-3 and a pathological fragment of huntingtin, and enhances the aggregation propensity of both disease-linked polyglutamine proteins. Using this intrabody as a tool for modulating the kinetics of amyloidogenesis, we show that escalating aggregate formation of a pathologic huntingtin fragment is not cytoprotective in striatal cells, but rather heightens oxidative stress and cell death as detected by flow cytometry. Instead, cellular protection is achieved by suppressing aggregation using a previously described intrabody that binds to the amyloidogenic N-terminus of huntingtin. Analogous cytotoxic results are observed following conformational targeting of normal or polyglutamine-expanded human ataxin-3, which partially aggregate through non-polyglutamine domains.These findings validate that the rate of aggregation modulates polyglutamine-mediated intracellular dysfunction, and caution that molecules designed to

  1. Quantum matrices in two dimensions

    International Nuclear Information System (INIS)

    Ewen, H.; Ogievetsky, O.; Wess, J.

    1991-01-01

    Quantum matrices in two-dimensions, admitting left and right quantum spaces, are classified: they fall into two families, the 2-parametric family GL p,q (2) and a 1-parametric family GL α J (2). Phenomena previously found for GL p,q (2) hold in this general situation: (a) powers of quantum matrices are again quantum and (b) entries of the logarithm of a two-dimensional quantum matrix form a Lie algebra. (orig.)

  2. Calcific Aortic Valve Disease Is Associated with Layer-Specific Alterations in Collagen Architecture.

    Directory of Open Access Journals (Sweden)

    Heather N Hutson

    Full Text Available Disorganization of the valve extracellular matrix (ECM is a hallmark of calcific aortic valve disease (CAVD. However, while microarchitectural features of the ECM can strongly influence the biological and mechanical behavior of tissues, little is known about the ECM microarchitecture in CAVD. In this work, we apply advanced imaging techniques to quantify spatially heterogeneous changes in collagen microarchitecture in CAVD. Human aortic valves were obtained from individuals between 50 and 75 years old with no evidence of valvular disease (healthy and individuals who underwent valve replacement surgery due to severe stenosis (diseased. Second Harmonic Generation microscopy and subsequent image quantification revealed layer-specific changes in fiber characteristics in healthy and diseased valves. Specifically, the majority of collagen fiber changes in CAVD were found to occur in the spongiosa, where collagen fiber number increased by over 2-fold, and fiber width and density also significantly increased. Relatively few fibrillar changes occurred in the fibrosa in CAVD, where fibers became significantly shorter, but did not otherwise change in terms of number, width, density, or alignment. Immunohistochemical staining for lysyl oxidase showed localized increased expression in the diseased fibrosa. These findings reveal a more complex picture of valvular collagen enrichment and arrangement in CAVD than has previously been described using traditional analysis methods. Changes in fiber architecture may play a role in regulating the pathobiological events and mechanical properties of valves during CAVD. Additionally, characterization of the ECM microarchitecture can inform the design of fibrous scaffolds for heart valve tissue engineering.

  3. Tenascin-X, Collagen, Elastin and the Ehlers-Danlos Syndrome

    Energy Technology Data Exchange (ETDEWEB)

    Bristow, James; Carey, William; Schalkwijk, Joost

    2005-08-31

    Tenascin-X is an extracellular matrix protein initially identified because of its overlap with the human CYP21B gene. Because studies of gene and protein function of other tenascins had been poorly predictive of essential functions in vivo, we used a genetic approach that critically relied on an understanding of the genomic locus to uncover an association between inactivating tenascin-X mutations and novel recessive and dominant forms of Ehlers-Danlos syndrome. Tenascin-X provides the first example of a gene outside of the fibrillar collagens and their processing enzymes that causes Ehlers-Danlos syndrome. Tenascin-X null mice recapitulate the skin findings of the human disease, confirming a causative role for this gene in Ehlers-Danlos syndrome. Further evaluation of these mice showed that tenascin-X is an important regulator of collagen deposition in vivo, suggesting a novel mechanism of disease in this form of Ehlers-Danlos syndrome. Further studies suggest that tenascin-X may do this through both direct and indirect interactions with the collagen fibril. Recent studies show that TNX effects on matrix extend beyond the collagen to the elastogenic pathway and matrix remodeling enzymes. Tenascin-X serves as a compelling example of how human experiments of nature can guide us to an understanding of genes whose function may not be evident from their sequence or in vitro studies of their encoded proteins.

  4. Full-Length Fibronectin Drives Fibroblast Accumulation at the Surface of Collagen Microtissues during Cell-Induced Tissue Morphogenesis.

    Directory of Open Access Journals (Sweden)

    Jasper Foolen

    Full Text Available Generating and maintaining gradients of cell density and extracellular matrix (ECM components is a prerequisite for the development of functionality of healthy tissue. Therefore, gaining insights into the drivers of spatial organization of cells and the role of ECM during tissue morphogenesis is vital. In a 3D model system of tissue morphogenesis, a fibronectin-FRET sensor recently revealed the existence of two separate fibronectin populations with different conformations in microtissues, i.e. 'compact and adsorbed to collagen' versus 'extended and fibrillar' fibronectin that does not colocalize with the collagen scaffold. Here we asked how the presence of fibronectin might drive this cell-induced tissue morphogenesis, more specifically the formation of gradients in cell density and ECM composition. Microtissues were engineered in a high-throughput model system containing rectangular microarrays of 12 posts, which constrained fibroblast-populated collagen gels, remodeled by the contractile cells into trampoline-shaped microtissues. Fibronectin's contribution during the tissue maturation process was assessed using fibronectin-knockout mouse embryonic fibroblasts (Fn-/- MEFs and floxed equivalents (Fnf/f MEFs, in fibronectin-depleted growth medium with and without exogenously added plasma fibronectin (full-length, or various fragments. In the absence of full-length fibronectin, Fn-/- MEFs remained homogenously distributed throughout the cell-contracted collagen gels. In contrast, in the presence of full-length fibronectin, both cell types produced shell-like tissues with a predominantly cell-free compacted collagen core and a peripheral surface layer rich in cells. Single cell assays then revealed that Fn-/- MEFs applied lower total strain energy on nanopillar arrays coated with either fibronectin or vitronectin when compared to Fnf/f MEFs, but that the presence of exogenously added plasma fibronectin rescued their contractility. While collagen

  5. Fabrication and In Vitro Characterization of Electrochemically Compacted Collagen/Sulfated Xylorhamnoglycuronan Matrix for Wound Healing Applications

    Directory of Open Access Journals (Sweden)

    Lingzhi Kang

    2018-04-01

    Full Text Available Skin autografts are in great demand due to injuries and disease, but there are challenges using live tissue sources, and synthetic tissue is still in its infancy. In this study, an electrocompaction method was applied to fabricate the densely packed and highly ordered collagen/sulfated xylorhamnoglycuronan (SXRGlu scaffold which closely mimicked the major structure and components in natural skin tissue. The fabricated electrocompacted collagen/SXRGlu matrices (ECLCU were characterized in terms of micromorphology, mechanical property, water uptake ability and degradability. The viability, proliferation and morphology of human dermal fibroblasts (HDFs cells on the fabricated matrices were also evaluated. The results indicated that the electrocompaction process could promote HDFs proliferation and SXRGlu could improve the water uptake ability and matrices’ stability against collagenase degradation, and support fibroblast spreading on the ECLCU matrices. Therefore, all these results suggest that the electrocompacted collagen/SXRGlu scaffold is a potential candidate as a dermal substitute with enhanced biostability and biocompatibility.

  6. Collagen turnover after tibial fractures

    DEFF Research Database (Denmark)

    Joerring, S; Krogsgaard, M; Wilbek, H

    1994-01-01

    Collagen turnover after tibial fractures was examined in 16 patients with fracture of the tibial diaphysis and in 8 patients with fracture in the tibial condyle area by measuring sequential changes in serological markers of turnover of types I and III collagen for up to 26 weeks after fracture....... The markers were the carboxy-terminal extension peptide of type I procollagen (PICP), the amino-terminal extension peptide of type III procollagen (PIIINP), and the pyridinoline cross-linked carboxy-terminal telopeptide of type I collagen (ICTP). The latter is a new serum marker of degradation of type I...... collagen. A group comparison showed characteristic sequential changes in the turnover of types I and III collagen in fractures of the tibial diaphysis and tibial condyles. The turnover of type III collagen reached a maximum after 2 weeks in both groups. The synthesis of type I collagen reached a maximum...

  7. Manin matrices and Talalaev's formula

    International Nuclear Information System (INIS)

    Chervov, A; Falqui, G

    2008-01-01

    In this paper we study properties of Lax and transfer matrices associated with quantum integrable systems. Our point of view stems from the fact that their elements satisfy special commutation properties, considered by Yu I Manin some 20 years ago at the beginning of quantum group theory. These are the commutation properties of matrix elements of linear homomorphisms between polynomial rings; more explicitly these read: (1) elements of the same column commute; (2) commutators of the cross terms are equal: [M ij , M kl ] [M kj , M il ] (e.g. [M 11 , M 22 ] = [M 21 , M 12 ]). The main aim of this paper is twofold: on the one hand we observe and prove that such matrices (which we call Manin matrices in short) behave almost as well as matrices with commutative elements. Namely, the theorems of linear algebra (e.g., a natural definition of the determinant, the Cayley-Hamilton theorem, the Newton identities and so on and so forth) have a straightforward counterpart in the case of Manin matrices. On the other hand, we remark that such matrices are somewhat ubiquitous in the theory of quantum integrability. For instance, Manin matrices (and their q-analogs) include matrices satisfying the Yang-Baxter relation 'RTT=TTR' and the so-called Cartier-Foata matrices. Also, they enter Talalaev's remarkable formulae: det(∂ z -L gaudin (z)), det(1-e -∂z T Yangian (z)) for the 'quantum spectral curve', and appear in the separation of variables problem and Capelli identities. We show that theorems of linear algebra, after being established for such matrices, have various applications to quantum integrable systems and Lie algebras, e.g. in the construction of new generators in Z(U crit (gl-hat n )) (and, in general, in the construction of quantum conservation laws), in the Knizhnik-Zamolodchikov equation, and in the problem of Wick ordering. We propose, in the appendix, a construction of quantum separated variables for the XXX-Heisenberg system

  8. Dextran derivatives modulate collagen matrix organization in dermal equivalent.

    Science.gov (United States)

    Frank, Laetitia; Lebreton-Decoster, Corinne; Godeau, Gaston; Coulomb, Bernard; Jozefonvicz, Jacqueline

    2006-01-01

    Dextran derivatives can protect heparin binding growth factor implied in wound healing, such as transforming growth factor-beta1 (TGF-beta1) and fibroblast growth factor-2 (FGF-2). The first aim of this study was to investigate the effect of these compounds on human dermal fibroblasts in culture with or without TGF-beta1. Several dextran derivatives obtained by substitution of methylcarboxylate (MC), benzylamide (B) and sulphate (Su) groups were used to determine the effects of each compound on fibroblast growth in vitro. The data indicate that sulphate groups are essential to act on the fibroblast proliferation. The dextran derivative LS21 DMCBSu has been chosen to investigate its effect on dermal wound healing process. Fibroblasts cultured in collagenous matrices named dermal equivalent were treated with the bioactive polymer alone or associated to TGF-beta1 or FGF-2. Cross-sections of dermal equivalent observed by histology or immunohistochemistry, demonstrated that the bioactive polymer accelerates the collagen matrices organization and stimulates the human type-III collagen expression. This bioactive polymer induces apoptosis of myofibroblast, property which may be beneficial in treatment of hypertrophic scar. Culture media analyzed by zymography and Western blot showed that this polymer significantly increases the secretion of zymogen and active form of matrix metalloproteinase-2 (MMP-2), involved in granulation tissue formation. These data suggest that this bioactive polymer has properties which may be beneficial in the treatment of wound healing.

  9. On reflectionless equi-transmitting matrices

    Directory of Open Access Journals (Sweden)

    Pavel Kurasov

    2014-01-01

    Full Text Available Reflectionless equi-transmitting unitary matrices are studied in connection to matching conditions in quantum graphs. All possible such matrices of size 6 are described explicitly. It is shown that such matrices form 30 six-parameter families intersected along 12 five-parameter families closely connected to conference matrices.

  10. Chondrogenic differentiation of mesenchymal stem cells in a leakproof collagen sponge

    International Nuclear Information System (INIS)

    Chen Guoping; Akahane, Daisuke; Kawazoe, Naoki; Yamamoto, Katsuyuki; Tateishi, Tetsuya

    2008-01-01

    A three-dimensional culture of mesenchymal stem cells (MSCs) in a porous scaffold has been developed as a promising strategy for cartilage tissue engineering. The chondrogenic differentiation of MSCs derived from human bone marrow was studied by culturing the cells in a novel scaffold constructed of leakproof collagen sponge. All the surfaces of the collagen sponge except the top were wrapped with a membrane that has pores smaller than the cells to protect against cell leakage during cell seeding. The cells adhered to the collagen, distributed evenly, and proliferated to fill the spaces in the sponge. Cell seeding efficiency was greater than 95%. The MSCs cultured in the collagen sponge in the presence of TGF-β3 and BMP6 expressed a high level of genes encoding type II and type X collagen, sox9, and aggrecan. Histological examination by HE staining indicated that the differentiated cells showed a round morphology. The extracellular matrices were positively stained by safranin O and toluidine blue. Immunostaining with anti-type II collagen and anti-cartilage proteoglycan showed that type II collagen and cartilage proteoglycan were detected around the cells. These results suggest the chondrogenic differentiation of MSCs when cultured in the collagen sponge in the presence of TGF-β3 and BMP6

  11. Spectra of sparse random matrices

    International Nuclear Information System (INIS)

    Kuehn, Reimer

    2008-01-01

    We compute the spectral density for ensembles of sparse symmetric random matrices using replica. Our formulation of the replica-symmetric ansatz shares the symmetries of that suggested in a seminal paper by Rodgers and Bray (symmetry with respect to permutation of replica and rotation symmetry in the space of replica), but uses a different representation in terms of superpositions of Gaussians. It gives rise to a pair of integral equations which can be solved by a stochastic population-dynamics algorithm. Remarkably our representation allows us to identify pure-point contributions to the spectral density related to the existence of normalizable eigenstates. Our approach is not restricted to matrices defined on graphs with Poissonian degree distribution. Matrices defined on regular random graphs or on scale-free graphs, are easily handled. We also look at matrices with row constraints such as discrete graph Laplacians. Our approach naturally allows us to unfold the total density of states into contributions coming from vertices of different local coordinations and an example of such an unfolding is presented. Our results are well corroborated by numerical diagonalization studies of large finite random matrices

  12. Collagen like peptide bioconjugates for targeted drug delivery applications

    Science.gov (United States)

    Luo, Tianzhi

    the coil/globule conformational transition of the PDEGMEMA building block above its LCST with stabilization of the nanostructures by the hydrophilic CLP. To the best of our knowledge, this is the first report on such assembled nanostructures from collagen-like peptide containing copolymers. Due to the strong propensity for CLPs to bind to natural collagen via strand invasion processes, these nanosized vesicles may be used as drug carriers for targeted delivery. In addition to synthetic polymers, the collagen like peptide is then conjugated with a thermoresponsive elastin-like peptide (ELP). The resulting ELP-CLP diblock conjugates show a remarkable reduction in the inverse transition temperature of the ELP domain, attributed to the anchoring effect of the CLP triple helix. The lower transition temperature of the conjugate enables facile formation of well-defined vesicles at physiological temperature and the unexpected resolubilization of the vesicles at elevated temperatures upon unfolding of the CLP domain. Given the ability of CLPs to modify collagens, this work provides not only a simple and versatile avenue for controlling the inverse transition behavior of elastin-like peptides, but also suggest future opportunities for these thermoresponsive nanostructures in biologically relevant environments. In the last section, the potential of using the ELP-CLP nanoparticles as drug delivery vehicles for targeting collagen containing matrices is evaluated. A sustained release of clinically relevant amount of encapsulated modelled drug is achieved within three weeks, followed by a thermally controlled burst release. As expected, the ELP-CLP nanoparticles show strong retention on collagen substrate, via specific binding through collagen triple helix hybridization. Additionally, cell viability and proliferation studies using fibroblasts and chondrocytes suggest the nanoparticles are non-cytotoxic. Additionally, almost no TNF-alpha expression from macrophages is observed

  13. Novel synthesis strategy for composite hydrogel of collagen/hydroxyapatite-microsphere originating from conversion of CaCO3 templates.

    Science.gov (United States)

    Wei, Qingrong; Lu, Jian; Wang, Qiaoying; Fan, Hongsong; Zhang, Xingdong

    2015-03-20

    Inspired by coralline-derived hydroxyapatite, we designed a methodological route to synthesize carbonated-hydroxyapatite microspheres from the conversion of CaCO3 spherulite templates within a collagen matrix under mild conditions and thus constructed the composite hydrogel of collagen/hydroxyapatite-microspheres. Fourier transform infrared spectroscopy (FTIR) and x-ray diffraction (XRD) were employed to confirm the successful generation of the carbonated hydroxyapatite phase originating from CaCO3, and the ratios of calcium to phosphate were tracked over time. Variations in the weight portion of the components in the hybrid gels before and after the phase transformation of the CaCO3 templates were identified via thermogravimetric analysis (TGA). Scanning electron microscopy (SEM) shows these composite hydrogels have a unique multiscale microstructure consisting of a collagen nanofibril network and hydroxyapatite microspheres. The relationship between the hydroxyapatite nanocrystals and the collagen fibrils was revealed by transmission electron microscopy (TEM) in detail, and the selected area electron diffraction (SAED) pattern further confirmed the results of the XRD analyses which show the typical low crystallinity of the generated hydroxyapatite. This smart synthesis strategy achieved the simultaneous construction of microscale hydroxyapatite particles and collagen fibrillar hydrogel, and appears to provide a novel route to explore an advanced functional hydrogel materials with promising potentials for applications in bone tissue engineering and reconstruction medicine.

  14. Collagen macromolecular drug delivery systems

    International Nuclear Information System (INIS)

    Gilbert, D.L.

    1988-01-01

    The objective of this study was to examine collagen for use as a macromolecular drug delivery system by determining the mechanism of release through a matrix. Collagen membranes varying in porosity, crosslinking density, structure and crosslinker were fabricated. Collagen characterized by infrared spectroscopy and solution viscosity was determined to be pure and native. The collagen membranes were determined to possess native vs. non-native quaternary structure and porous vs. dense aggregate membranes by electron microscopy. Collagen monolithic devices containing a model macromolecule (inulin) were fabricated. In vitro release rates were found to be linear with respect to t 1/2 and were affected by crosslinking density, crosslinker and structure. The biodegradation of the collagen matrix was also examined. In vivo biocompatibility, degradation and 14 C-inulin release rates were evaluated subcutaneously in rats

  15. Free probability and random matrices

    CERN Document Server

    Mingo, James A

    2017-01-01

    This volume opens the world of free probability to a wide variety of readers. From its roots in the theory of operator algebras, free probability has intertwined with non-crossing partitions, random matrices, applications in wireless communications, representation theory of large groups, quantum groups, the invariant subspace problem, large deviations, subfactors, and beyond. This book puts a special emphasis on the relation of free probability to random matrices, but also touches upon the operator algebraic, combinatorial, and analytic aspects of the theory. The book serves as a combination textbook/research monograph, with self-contained chapters, exercises scattered throughout the text, and coverage of important ongoing progress of the theory. It will appeal to graduate students and all mathematicians interested in random matrices and free probability from the point of view of operator algebras, combinatorics, analytic functions, or applications in engineering and statistical physics.

  16. Chequered surfaces and complex matrices

    International Nuclear Information System (INIS)

    Morris, T.R.; Southampton Univ.

    1991-01-01

    We investigate a large-N matrix model involving general complex matrices. It can be reinterpreted as a model of two hermitian matrices with specific couplings, and as a model of positive definite hermitian matrices. Large-N perturbation theory generates dynamical triangulations in which the triangles can be chequered (i.e. coloured so that neighbours are opposite colours). On a sphere there is a simple relation between such triangulations and those generated by the single hermitian matrix model. For the torus (and a quartic potential) we solve the counting problem for the number of triangulations that cannot be quechered. The critical physics of chequered triangulations is the same as that of the hermitian matrix model. We show this explicitly by solving non-perturbatively pure two-dimensional ''chequered'' gravity. The interpretative framework given here applies to a number of other generalisations of the hermitian matrix model. (orig.)

  17. Immunohistochemical study of extracellular matrices and elastic fibers in a human sternoclavicular joint.

    Science.gov (United States)

    Shimada, K; Takeshige, N; Moriyama, H; Miyauchi, Y; Shimada, S; Fujimaki, E

    1997-12-01

    In this study, we clarified the distribution of elastic and oxytalan fibers in a human sternoclavicular joint (SCJ) using a color image system and in extracellular matrices using immunoperoxidase staining. Fine elastic fibers (EFs) were scattered in the fibrous layer of the sternoclavicular disk. This articular disk was composed of a collagenous bundle on the sternum side of the articular disk in the SCJ and cellular components including connective tissue on the clavicular side of the articular disk. The thickness of the disk gradually increased from the inferior to superior portion. Collagen fibers type I, III and V and other extracellular matrices (ECMs) were detected in the hypertrophic zone in the clavicular and sternum side of the SCJ and in the connective tissue of the articulatio condylar. On the cervical surface of the articular disk, cellular activity was higher than on the sternum surface.

  18. Loop diagrams without γ matrices

    International Nuclear Information System (INIS)

    McKeon, D.G.C.; Rebhan, A.

    1993-01-01

    By using a quantum-mechanical path integral to compute matrix elements of the form left-angle x|exp(-iHt)|y right-angle, radiative corrections in quantum-field theory can be evaluated without encountering loop-momentum integrals. In this paper we demonstrate how Dirac γ matrices that occur in the proper-time ''Hamiltonian'' H lead to the introduction of a quantum-mechanical path integral corresponding to a superparticle analogous to one proposed recently by Fradkin and Gitman. Direct evaluation of this path integral circumvents many of the usual algebraic manipulations of γ matrices in the computation of quantum-field-theoretical Green's functions involving fermions

  19. Immanant Conversion on Symmetric Matrices

    Directory of Open Access Journals (Sweden)

    Purificação Coelho M.

    2014-01-01

    Full Text Available Letr Σn(C denote the space of all n χ n symmetric matrices over the complex field C. The main objective of this paper is to prove that the maps Φ : Σn(C -> Σn (C satisfying for any fixed irre- ducible characters X, X' -SC the condition dx(A +aB = dχ·(Φ(Α + αΦ(Β for all matrices A,В ε Σ„(С and all scalars a ε C are automatically linear and bijective. As a corollary of the above result we characterize all such maps Φ acting on ΣИ(С.

  20. Nanorod mediated collagen scaffolds as extra cellular matrix mimics

    International Nuclear Information System (INIS)

    Vedhanayagam, Mohan; Nair, Balachandran Unni; Sreeram, Kalarical Janardhanan; Mohan, Ranganathan

    2015-01-01

    Creating collagen scaffolds that mimic extracellular matrices without using toxic exogenous materials remains a big challenge. A new strategy to create scaffolds through end-to-end crosslinking through functionalized nanorods leading to well-designed architecture is presented here. Self-assembled scaffolds with a denaturation temperature of 110 °C, porosity of 70%, pore size of 0.32 μm and Young’s modulus of 231 MPa were developed largely driven by imine bonding between 3-mercapto-1-propanal (MPA) functionalized ZnO nanorods and collagen. The mechanical properties obtained were much higher than that of native collagen, collagen—MPA, collagen—3-mercapto-1-propanol (3MPOH) or collagen- 3-MPOH-ZnO, clearly bringing out the relevance of nanorod mediated assembly of fibrous networks. This new strategy has led to scaffolds with mechanical properties much higher than earlier reports and can provide support for cell growth and facilitation of cell attachment. (paper)

  1. Hierarchical macroscopic fibrillar adhesives: in situ study of buckling and adhesion mechanisms on wavy substrates.

    Science.gov (United States)

    Bauer, Christina T; Kroner, Elmar; Fleck, Norman A; Arzt, Eduard

    2015-10-23

    Nature uses hierarchical fibrillar structures to mediate temporary adhesion to arbitrary substrates. Such structures provide high compliance such that the flat fibril tips can be better positioned with respect to asperities of a wavy rough substrate. We investigated the buckling and adhesion of hierarchically structured adhesives in contact with flat smooth, flat rough and wavy rough substrates. A macroscopic model for the structural adhesive was fabricated by molding polydimethylsiloxane into pillars of diameter in the range of 0.3-4.8 mm, with up to three different hierarchy levels. Both flat-ended and mushroom-shaped hierarchical samples buckled at preloads one quarter that of the single level structures. We explain this behavior by a change in the buckling mode; buckling leads to a loss of contact and diminishes adhesion. Our results indicate that hierarchical structures can have a strong influence on the degree of adhesion on both flat and wavy substrates. Strategies are discussed that achieve highly compliant substrates which adhere to rough substrates.

  2. Contact compliance effects in the frictional response of bioinspired fibrillar adhesives

    Science.gov (United States)

    Piccardo, Marco; Chateauminois, Antoine; Fretigny, Christian; Pugno, Nicola M.; Sitti, Metin

    2013-01-01

    The shear failure and friction mechanisms of bioinspired adhesives consisting of elastomer arrays of microfibres terminated by mushroom-shaped tips are investigated in contact with a rigid lens. In order to reveal the interplay between the vertical and lateral loading directions, experiments are carried out using a custom friction set-up in which normal stiffness can be made either high or low when compared with the stiffness of the contact between the fibrillar adhesive and the lens. Using in situ contact imaging, the shear failure of the adhesive is found to involve two successive mechanisms: (i) cavitation and peeling at the contact interface between the mushroom-shaped fibre tip endings and the lens; and (ii) side re-adhesion of the fibre's stem to the lens. The extent of these mechanisms and their implications regarding static friction forces is found to depend on the crosstalk between the normal and lateral loading directions that can result in contact instabilities associated with fibre buckling. In addition, the effects of the viscoelastic behaviour of the polyurethane material on the rate dependence of the shear response of the adhesive are accounted for. PMID:23554349

  3. Some Structural Observations of Self-Assembling, Fibrillar Gels Composed of Two-Directional Bolaform Arborols

    Energy Technology Data Exchange (ETDEWEB)

    Sun, J.

    2005-01-12

    Arborols are dumbbell shaped molecules (bolaform amphiphiles) in which a hydrophobic spacer separates two hydrophilic end groups. They are a valuable model for naturally occurring fibers, such as actin or amyloid. Applications to materials science can be envisioned. On cooling from warm aqueous or methanolic solutions, arborols spontaneously assemble into long fibers. When the solutions are above a certain concentration that depends on the hydrophilic/hydrophobic balance, this leads to thermally reversible gels stabilized by a mechanism that is poorly understood. With the help of wide angle X-ray scattering, details of the arborol fiber and gel structure were obtained on wet gels. The characteristic dimensions of the fibers vary in a sensible fashion with the molecular specifics. Solvent character appears to affect the average domain length of arborols stacked into fibers. Fluorescently labeled arborols were prepared. The label does not prevent incorporation into the fibrillar structure, rendering fibril bundles visible in wet gels. Bundles are visible in concentrated gels, but not in less concentrated sols. These results are consistent with observations of dried arborols using atomic force microscopy and with previously published freeze-fracture electron microscopy and small angle X-ray scattering experiments on dried gels.

  4. On families of anticommuting matrices

    Czech Academy of Sciences Publication Activity Database

    Hrubeš, Pavel

    2016-01-01

    Roč. 493, March 15 (2016), s. 494-507 ISSN 0024-3795 EU Projects: European Commission(XE) 339691 - FEALORA Institutional support: RVO:67985840 Keywords : anticommuting matrices * sum-of-squares formulas Subject RIV: BA - General Mathematics Impact factor: 0.973, year: 2016 http://www.sciencedirect.com/science/article/pii/S0024379515007296

  5. On families of anticommuting matrices

    Czech Academy of Sciences Publication Activity Database

    Hrubeš, Pavel

    2016-01-01

    Roč. 493, March 15 (2016), s. 494-507 ISSN 0024-3795 EU Projects: European Commission(XE) 339691 - FEALORA Institutional support: RVO:67985840 Keywords : anticommuting matrices * sum -of-squares formulas Subject RIV: BA - General Mathematics Impact factor: 0.973, year: 2016 http://www.sciencedirect.com/science/article/pii/S0024379515007296

  6. Polyphosphazene functionalized polyester fiber matrices for tendon tissue engineering: in vitro evaluation with human mesenchymal stem cells

    International Nuclear Information System (INIS)

    Peach, M Sean; James, Roshan; Toti, Udaya S; Deng, Meng; Laurencin, Cato T; Kumbar, Sangamesh G; Morozowich, Nicole L; Allcock, Harry R

    2012-01-01

    Poly[(ethyl alanato) 1 (p-methyl phenoxy) 1 ] phosphazene (PNEA-mPh) was used to modify the surface of electrospun poly(ε-caprolactone) (PCL) nanofiber matrices having an average fiber diameter of 3000 ± 1700 nm for the purpose of tendon tissue engineering and augmentation. This study reports the effect of polyphosphazene surface functionalization on human mesenchymal stem cell (hMSC) adhesion, cell-construct infiltration, proliferation and tendon differentiation, as well as long term cellular construct mechanical properties. PCL fiber matrices functionalized with PNEA-mPh acquired a rougher surface morphology and led to enhanced cell adhesion as well as superior cell-construct infiltration when compared to smooth PCL fiber matrices. Long-term in vitro hMSC cultures on both fiber matrices were able to produce clinically relevant moduli. Both fibrous constructs expressed scleraxis, an early tendon differentiation marker, and a bimodal peak in expression of the late tendon differentiation marker tenomodulin, a pattern that was not observed in PCL thin film controls. Functionalized matrices achieved a more prominent tenogenic differentiation, possessing greater tenomodulin expression and superior phenotypic maturity according to the ratio of collagen I to collagen III expression. These findings indicate that PNEA-mPh functionalization is an efficient method for improving cell interactions with electrospun PCL matrices for the purpose of tendon repair. (paper)

  7. Collagen-IV supported embryoid bodies formation and differentiation from buffalo (Bubalus bubalis) embryonic stem cells

    International Nuclear Information System (INIS)

    Taru Sharma, G.; Dubey, Pawan K.; Verma, Om Prakash; Pratheesh, M.D.; Nath, Amar; Sai Kumar, G.

    2012-01-01

    Graphical abstract: EBs formation, characterization and expression of germinal layers marker genes of in vivo developed teratoma using four different types of extracellular matrices. Highlights: ► Collagen-IV matrix is found cytocompatible for EBs formation and differentiation. ► Established 3D microenvironment for ES cells development and differentiation into three germ layers. ► Collagen-IV may be useful as promising candidate for ES cells based therapeutic applications. -- Abstract: Embryoid bodies (EBs) are used as in vitro model to study early extraembryonic tissue formation and differentiation. In this study, a novel method using three dimensional extracellular matrices for in vitro generation of EBs from buffalo embryonic stem (ES) cells and its differentiation potential by teratoma formation was successfully established. In vitro derived inner cell masses (ICMs) of hatched buffalo blastocyst were cultured on buffalo fetal fibroblast feeder layer for primary cell colony formation. For generation of EBs, pluripotent ES cells were seeded onto four different types of extracellular matrices viz; collagen-IV, laminin, fibronectin and matrigel using undifferentiating ES cell culture medium. After 5 days of culture, ESCs gradually grew into aggregates and formed simple EBs having circular structures. Twenty-six days later, they formed cystic EBs over collagen matrix with higher EBs formation and greater proliferation rate as compared to other extracellular matrices. Studies involving histological observations, fluorescence microscopy and RT-PCR analysis of the in vivo developed teratoma revealed that presence of all the three germ layer derivatives viz. ectoderm (NCAM), mesoderm (Flk-1) and endoderm (AFP). In conclusion, the method described here demonstrates a simple and cost-effective way of generating EBs from buffalo ES cells. Collagen-IV matrix was found cytocompatible as it supported buffalo EBs formation, their subsequent differentiation could prove to

  8. Collagen-IV supported embryoid bodies formation and differentiation from buffalo (Bubalus bubalis) embryonic stem cells

    Energy Technology Data Exchange (ETDEWEB)

    Taru Sharma, G., E-mail: gts553@gmail.com [Reproductive Physiology Laboratory, Division of Physiology and Climatology, Indian Veterinary Research Institute, Izatnagar-243 122, Bareilly, U.P. (India); Dubey, Pawan K.; Verma, Om Prakash; Pratheesh, M.D.; Nath, Amar; Sai Kumar, G. [Reproductive Physiology Laboratory, Division of Physiology and Climatology, Indian Veterinary Research Institute, Izatnagar-243 122, Bareilly, U.P. (India)

    2012-08-03

    Graphical abstract: EBs formation, characterization and expression of germinal layers marker genes of in vivo developed teratoma using four different types of extracellular matrices. Highlights: Black-Right-Pointing-Pointer Collagen-IV matrix is found cytocompatible for EBs formation and differentiation. Black-Right-Pointing-Pointer Established 3D microenvironment for ES cells development and differentiation into three germ layers. Black-Right-Pointing-Pointer Collagen-IV may be useful as promising candidate for ES cells based therapeutic applications. -- Abstract: Embryoid bodies (EBs) are used as in vitro model to study early extraembryonic tissue formation and differentiation. In this study, a novel method using three dimensional extracellular matrices for in vitro generation of EBs from buffalo embryonic stem (ES) cells and its differentiation potential by teratoma formation was successfully established. In vitro derived inner cell masses (ICMs) of hatched buffalo blastocyst were cultured on buffalo fetal fibroblast feeder layer for primary cell colony formation. For generation of EBs, pluripotent ES cells were seeded onto four different types of extracellular matrices viz; collagen-IV, laminin, fibronectin and matrigel using undifferentiating ES cell culture medium. After 5 days of culture, ESCs gradually grew into aggregates and formed simple EBs having circular structures. Twenty-six days later, they formed cystic EBs over collagen matrix with higher EBs formation and greater proliferation rate as compared to other extracellular matrices. Studies involving histological observations, fluorescence microscopy and RT-PCR analysis of the in vivo developed teratoma revealed that presence of all the three germ layer derivatives viz. ectoderm (NCAM), mesoderm (Flk-1) and endoderm (AFP). In conclusion, the method described here demonstrates a simple and cost-effective way of generating EBs from buffalo ES cells. Collagen-IV matrix was found cytocompatible as it

  9. Collagen Conduit Versus Microsurgical Neurorrhaphy

    DEFF Research Database (Denmark)

    Boeckstyns, Michel; Sørensen, Allan Ibsen; Viñeta, Joaquin Fores

    2013-01-01

    To compare repair of acute lacerations of mixed sensory-motor nerves in humans using a collagen tube versus conventional repair.......To compare repair of acute lacerations of mixed sensory-motor nerves in humans using a collagen tube versus conventional repair....

  10. Three dimensional microstructural network of elastin, collagen, and cells in Achilles tendons.

    Science.gov (United States)

    Pang, Xin; Wu, Jian-Ping; Allison, Garry T; Xu, Jiake; Rubenson, Jonas; Zheng, Ming-Hao; Lloyd, David G; Gardiner, Bruce; Wang, Allan; Kirk, Thomas Brett

    2017-06-01

    Similar to most biological tissues, the biomechanical, and functional characteristics of the Achilles tendon are closely related to its composition and microstructure. It is commonly reported that type I collagen is the predominant component of tendons and is mainly responsible for the tissue's function. Although elastin has been found in varying proportions in other connective tissues, previous studies report that tendons contain very small quantities of elastin. However, the morphology and the microstructural relationship among the elastic fibres, collagen, and cells in tendon tissue have not been well examined. We hypothesize the elastic fibres, as another fibrillar component in the extracellular matrix, have a unique role in mechanical function and microstructural arrangement in Achilles tendons. It has been shown that elastic fibres present a close connection with the tenocytes. The close relationship of the three components has been revealed as a distinct, integrated and complex microstructural network. Notably, a "spiral" structure within fibril bundles in Achilles tendons was observed in some samples in specialized regions. This study substantiates the hierarchical system of the spatial microstructure of tendon, including the mapping of collagen, elastin and tenocytes, with 3-dimensional confocal images. © 2017 Orthopaedic Research Society. Published by Wiley Periodicals, Inc. J Orthop Res 35:1203-1214, 2017. © 2017 Orthopaedic Research Society. Published by Wiley Periodicals, Inc.

  11. Aging and the cardiac collagen matrix: Novel mediators of fibrotic remodelling.

    Science.gov (United States)

    Horn, Margaux A; Trafford, Andrew W

    2016-04-01

    Cardiovascular disease is a leading cause of death worldwide and there is a pressing need for new therapeutic strategies to treat such conditions. The risk of developing cardiovascular disease increases dramatically with age, yet the majority of experimental research is executed using young animals. The cardiac extracellular matrix (ECM), consisting predominantly of fibrillar collagen, preserves myocardial integrity, provides a means of force transmission and supports myocyte geometry. Disruptions to the finely balanced control of collagen synthesis, post-synthetic deposition, post-translational modification and degradation may have detrimental effects on myocardial functionality. It is now well established that the aged heart is characterized by fibrotic remodelling, but the mechanisms responsible for this are incompletely understood. Furthermore, studies using aged animal models suggest that interstitial remodelling with disease may be age-dependent. Thus with the identification of new therapeutic strategies targeting fibrotic remodelling, it may be necessary to consider age-dependent mechanisms. In this review, we discuss remodelling of the cardiac collagen matrix as a function of age, whilst highlighting potential novel mediators of age-dependent fibrotic pathways. Copyright © 2015 The Authors. Published by Elsevier Ltd.. All rights reserved.

  12. The modified Gauss diagonalization of polynomial matrices

    International Nuclear Information System (INIS)

    Saeed, K.

    1982-10-01

    The Gauss algorithm for diagonalization of constant matrices is modified for application to polynomial matrices. Due to this modification the diagonal elements become pure polynomials rather than rational functions. (author)

  13. Double stochastic matrices in quantum mechanics

    International Nuclear Information System (INIS)

    Louck, J.D.

    1997-01-01

    The general set of doubly stochastic matrices of order n corresponding to ordinary nonrelativistic quantum mechanical transition probability matrices is given. Lande's discussion of the nonquantal origin of such matrices is noted. Several concrete examples are presented for elementary and composite angular momentum systems with the focus on the unitary symmetry associated with such systems in the spirit of the recent work of Bohr and Ulfbeck. Birkhoff's theorem on doubly stochastic matrices of order n is reformulated in a geometrical language suitable for application to the subset of quantum mechanical doubly stochastic matrices. Specifically, it is shown that the set of points on the unit sphere in cartesian n'-space is subjective with the set of doubly stochastic matrices of order n. The question is raised, but not answered, as to what is the subset of points of this unit sphere that correspond to the quantum mechanical transition probability matrices, and what is the symmetry group of this subset of matrices

  14. Virial expansion for almost diagonal random matrices

    Science.gov (United States)

    Yevtushenko, Oleg; Kravtsov, Vladimir E.

    2003-08-01

    Energy level statistics of Hermitian random matrices hat H with Gaussian independent random entries Higeqj is studied for a generic ensemble of almost diagonal random matrices with langle|Hii|2rangle ~ 1 and langle|Hi\

  15. Bi-allelic Alterations in AEBP1 Lead to Defective Collagen Assembly and Connective Tissue Structure Resulting in a Variant of Ehlers-Danlos Syndrome

    KAUST Repository

    Blackburn, Patrick R.; Xu, Zhi; Tumelty, Kathleen E.; Zhao, Rose W.; Monis, William J.; Harris, Kimberly G.; Gass, Jennifer M.; Cousin, Margot A.; Boczek, Nicole J.; Mitkov, Mario V.; Cappel, Mark A.; Francomano, Clair A.; Parisi, Joseph E.; Klee, Eric W.; Faqeih, Eissa; Alkuraya, Fowzan S.; Layne, Matthew D.; McDonnell, Nazli B.; Atwal, Paldeep S.

    2018-01-01

    AEBP1 encodes the aortic carboxypeptidase-like protein (ACLP) that associates with collagens in the extracellular matrix (ECM) and has several roles in development, tissue repair, and fibrosis. ACLP is expressed in bone, the vasculature, and dermal tissues and is involved in fibroblast proliferation and mesenchymal stem cell differentiation into collagen-producing cells. Aebp1 mice have abnormal, delayed wound repair correlating with defects in fibroblast proliferation. In this study, we describe four individuals from three unrelated families that presented with a unique constellation of clinical findings including joint laxity, redundant and hyperextensible skin, poor wound healing with abnormal scarring, osteoporosis, and other features reminiscent of Ehlers-Danlos syndrome (EDS). Analysis of skin biopsies revealed decreased dermal collagen with abnormal collagen fibrils that were ragged in appearance. Exome sequencing revealed compound heterozygous variants in AEBP1 (c.1470delC [p.Asn490_Met495delins(40)] and c.1743C>A [p.Cys581]) in the first individual, a homozygous variant (c.1320_1326del [p.Arg440Serfs3]) in the second individual, and a homozygous splice site variant (c.1630+1G>A) in two siblings from the third family. We show that ACLP enhances collagen polymerization and binds to several fibrillar collagens via its discoidin domain. These studies support the conclusion that biallelic pathogenic variants in AEBP1 are the cause of this autosomal-recessive EDS subtype.

  16. Bi-allelic Alterations in AEBP1 Lead to Defective Collagen Assembly and Connective Tissue Structure Resulting in a Variant of Ehlers-Danlos Syndrome

    KAUST Repository

    Blackburn, Patrick R.

    2018-03-29

    AEBP1 encodes the aortic carboxypeptidase-like protein (ACLP) that associates with collagens in the extracellular matrix (ECM) and has several roles in development, tissue repair, and fibrosis. ACLP is expressed in bone, the vasculature, and dermal tissues and is involved in fibroblast proliferation and mesenchymal stem cell differentiation into collagen-producing cells. Aebp1 mice have abnormal, delayed wound repair correlating with defects in fibroblast proliferation. In this study, we describe four individuals from three unrelated families that presented with a unique constellation of clinical findings including joint laxity, redundant and hyperextensible skin, poor wound healing with abnormal scarring, osteoporosis, and other features reminiscent of Ehlers-Danlos syndrome (EDS). Analysis of skin biopsies revealed decreased dermal collagen with abnormal collagen fibrils that were ragged in appearance. Exome sequencing revealed compound heterozygous variants in AEBP1 (c.1470delC [p.Asn490_Met495delins(40)] and c.1743C>A [p.Cys581]) in the first individual, a homozygous variant (c.1320_1326del [p.Arg440Serfs3]) in the second individual, and a homozygous splice site variant (c.1630+1G>A) in two siblings from the third family. We show that ACLP enhances collagen polymerization and binds to several fibrillar collagens via its discoidin domain. These studies support the conclusion that biallelic pathogenic variants in AEBP1 are the cause of this autosomal-recessive EDS subtype.

  17. Neuroprotective effects of collagen matrix in rats after traumatic brain injury.

    Science.gov (United States)

    Shin, Samuel S; Grandhi, Ramesh; Henchir, Jeremy; Yan, Hong Q; Badylak, Stephen F; Dixon, C Edward

    2015-01-01

    In previous studies, collagen based matrices have been implanted into the site of lesion in different models of brain injury. We hypothesized that semisynthetic collagen matrix can have neuroprotective function in the setting of traumatic brain injury. Rats were subjected to sham injury or controlled cortical impact. They either received extracellular matrix graft (DuraGen) over the injury site or did not receive any graft and underwent beam balance/beam walking test at post injury days 1-5 and Morris water maze at post injury days 14-18. Animals were sacrificed at day 18 for tissue analysis. Collagen matrix implantation in injured rats did not affect motor function (beam balance test: p = 0.627, beam walking test: p = 0.921). However, injured group with collagen matrix had significantly better spatial memory acquisition (p < 0.05). There was a significant reduction in lesion volume, as well as neuronal loss in CA1 (p < 0.001) and CA3 (p < 0.05) regions of the hippocampus in injured group with collagen matrix (p < 0.05). Collagen matrix reduces contusional lesion volume, neuronal loss, and cognitive deficit after traumatic brain injury. Further studies are needed to demonstrate the mechanisms of neuroprotection by collagen matrix.

  18. Neurotensin-loaded collagen dressings reduce inflammation and improve wound healing in diabetic mice.

    Science.gov (United States)

    Moura, Liane I F; Dias, Ana M A; Suesca, Edward; Casadiegos, Sergio; Leal, Ermelindo C; Fontanilla, Marta R; Carvalho, Lina; de Sousa, Hermínio C; Carvalho, Eugénia

    2014-01-01

    Impaired wound healing is an important clinical problem in diabetes mellitus and results in failure to completely heal diabetic foot ulcers (DFUs), which may lead to lower extremity amputations. In the present study, collagen based dressings were prepared to be applied as support for the delivery of neurotensin (NT), a neuropeptide that acts as an inflammatory modulator in wound healing. The performance of NT alone and NT-loaded collagen matrices to treat wounds in streptozotocin (STZ) diabetic induced mice was evaluated. Results showed that the prepared dressings were not-cytotoxic up to 72h after contact with macrophages (Raw 264.7) and human keratinocyte (HaCaT) cell lines. Moreover, those cells were shown to adhere to the collagen matrices without noticeable change in their morphology. NT-loaded collagen dressings induced faster healing (17% wound area reduction) in the early phases of wound healing in diabetic wounded mice. In addition, they also significantly reduced inflammatory cytokine expression namely, TNF-α (phealing, metalloproteinase 9 (MMP-9) is reduced in diabetic skin (pdiabetic wound enhancing the healing process. Nevertheless, a more prominent scar is observed in diabetic wounds treated with collagen when compared to the treatment with NT alone. © 2013.

  19. Glyoxal Crosslinking of Cell-Seeded Chitosan/Collagen Hydrogels for Bone Regeneration

    Science.gov (United States)

    Wang, Limin; Stegemann, Jan P.

    2011-01-01

    Chitosan and collagen are natural biomaterials that have been used extensively in tissue engineering, both separately and as composite materials. Most methods to fabricate chitosan/collagen composites use freeze drying and chemical crosslinking to create stable porous scaffolds, which subsequently can be seeded with cells. In this study, we directly embedded human bone marrow stem cells (hBMSC) in chitosan/collagen materials by initiating gelation using β-glycerophosphate at physiological temperature and pH. We further examined the use of glyoxal, a dialdehyde with relatively low toxicity, to crosslink these materials and characterized the resulting changes in matrix and cell properties. The cytocompatibility of glyoxal and the crosslinked gels were investigated in terms of hBMSC metabolic activity, viability, proliferation, and osteogenic differentiation. These studies revealed that glyoxal was cytocompatible at concentrations below about 1 mM for periods of exposure up to 15 h, though the degree of cell spreading and proliferation were dependent on matrix composition. Glyoxal-crosslinked matrices were stiffer and compacted less than uncrosslinked controls. It was further demonstrated that hBMSC can attach and proliferate in 3D matrices composed of 50/50 chitosan/collagen, and that these materials supported osteogenic differentiation in response to stimulation. Such glyoxal-crosslinked chitosan/collagen composite materials may find utility as cell delivery vehicles for enhancing the repair of bone defects. PMID:21345389

  20. Phenomenological mass matrices with a democratic warp

    International Nuclear Information System (INIS)

    Kleppe, A.

    2018-01-01

    Taking into account all available data on the mass sector, we obtain unitary rotation matrices that diagonalize the quark matrices by using a specific parametrization of the Cabibbo-Kobayashi-Maskawa mixing matrix. In this way, we find mass matrices for the up- and down-quark sectors of a specific, symmetric form, with traces of a democratic texture.

  1. Disentangling the multifactorial contributions of fibronectin, collagen and cyclic strain on MMP expression and extracellular matrix remodeling by fibroblasts

    NARCIS (Netherlands)

    Zhang, Y.; Lin, Z.; Foolen, J.; Schoen, I.; Santoro, A.; Zenobi-Wong, M.; Vogel, Viola

    2014-01-01

    Early wound healing is associated with fibroblasts assembling a provisional fibronectin-rich extracellular matrix (ECM), which is subsequently remodeled and interlaced by type I collagen. This exposes fibroblasts to time-variant sets of matrices during different stages of wound healing. Our goal was

  2. Collagen turnover in normal and degenerate human intervertebral discs as determined by the racemization of aspartic acid

    NARCIS (Netherlands)

    Sivan, S.-S.; Wachtel, E.; Tsitron, E.; Sakkee, N.; Ham, F. van der; Groot, J.de; Roberts, S.; Maroudas, A.

    2008-01-01

    Knowledge of rates of protein turnover is important for a quantitative understanding of tissue synthesis and catabolism. In this work, we have used the racemization of aspartic acid as a marker for the turnover of collagen obtained from healthy and pathological human intervertebral disc matrices. We

  3. Tau nitration occurs at tyrosine 29 in the fibrillar lesions of Alzheimer's disease and other tauopathies.

    Science.gov (United States)

    Reynolds, Matthew R; Reyes, Juan F; Fu, Yifan; Bigio, Eileen H; Guillozet-Bongaarts, Angela L; Berry, Robert W; Binder, Lester I

    2006-10-18

    The neurodegenerative tauopathies are a clinically diverse group of diseases typified by the pathological self-assembly of the microtubule-associated tau protein. Although tau nitration is believed to influence the pathogenesis of these diseases, the precise residues modified, and the resulting effects on tau function, remain enigmatic. Previously, we demonstrated that nitration at residue Tyr29 markedly inhibits the ability of tau to self-associate and stabilize the microtubule lattice (Reynolds et al., 2005b, 2006). Here, we report the first monoclonal antibody to detect nitration in a protein-specific and site-selective manner. This reagent, termed Tau-nY29, recognizes tau only when nitrated at residue Tyr29. It does not cross-react with wild-type tau, tau mutants singly nitrated at Tyr18, Tyr197, and Tyr394, or other proteins known to be nitrated in neurodegenerative diseases. By Western blot analysis, Tau-nY29 detects soluble tau and paired helical filament tau from severely affected Alzheimer's brain but fails to recognize tau from normal aged brain. This observation suggests that nitration at Tyr29 is a disease-related event that may alter the intrinsic ability of tau to self-polymerize. In Alzheimer's brain, Tau-nY29 labels the fibrillar triad of tau lesions, including neurofibrillary tangles, neuritic plaques, and, to a lesser extent, neuropil threads. Intriguingly, although Tau-nY29 stains both the neuronal and glial tau pathology of Pick disease, it detects only the neuronal pathology in corticobasal degeneration and progressive supranuclear palsy without labeling the predominant glial pathology. Collectively, our findings provide the first direct evidence that site-specific tau nitration is linked to the progression of the neurodegenerative tauopathies.

  4. S-matrices and integrability

    International Nuclear Information System (INIS)

    Bombardelli, Diego

    2016-01-01

    In these notes we review the S-matrix theory in (1+1)-dimensional integrable models, focusing mainly on the relativistic case. Once the main definitions and physical properties are introduced, we discuss the factorization of scattering processes due to integrability. We then focus on the analytic properties of the two-particle scattering amplitude and illustrate the derivation of the S-matrices for all the possible bound states using the so-called bootstrap principle. General algebraic structures underlying the S-matrix theory and its relation with the form factors axioms are briefly mentioned. Finally, we discuss the S-matrices of sine-Gordon and SU (2), SU (3) chiral Gross–Neveu models. (topical review)

  5. Synthesised standards in natural matrices

    International Nuclear Information System (INIS)

    Olsen, D.G.

    1980-01-01

    The problem of securing the most reliable standards for the accurate analysis of radionuclides is discussed in the paper and in the comment on the paper. It is contended in the paper that the best standards can be created by quantitative addition of accurately known spiking solutions into carefully selected natural matrices. On the other hand it is argued that many natural materials can be successfully standardized for numerous trace constituents. Both points of view are supported with examples. (U.K.)

  6. A collagen-binding EGFR antibody fragment targeting tumors with a collagen-rich extracellular matrix

    OpenAIRE

    Hui Liang; Xiaoran Li; Bin Wang; Bing Chen; Yannan Zhao; Jie Sun; Yan Zhuang; Jiajia Shi; He Shen; Zhijun Zhang; Jianwu Dai

    2016-01-01

    Many tumors over-express collagen, which constitutes the physical scaffold of tumor microenvironment. Collagen has been considered to be a target for cancer therapy. The collagen-binding domain (CBD) is a short peptide, which could bind to collagen and achieve the sustained release of CBD-fused proteins in collagen scaffold. Here, a collagen-binding EGFR antibody fragment was designed and expressed for targeting the collagen-rich extracellular matrix in tumors. The antibody fragment (Fab) of ...

  7. Thermoresponsive self-assembly of nanostructures from a collagen-like peptide-containing diblock copolymer.

    Science.gov (United States)

    Luo, Tianzhi; He, Lirong; Theato, Patrick; Kiick, Kristi L

    2015-01-01

    Temperature-triggered formation of nanostructures with distinct biological activity offers opportunities in selective modification of matrices and in drug delivery. Toward these ends, diblock polymers comprising poly(diethylene glycol methyl ether methacrylate) (PDEGMEMA) conjugated to a triple helix-forming collagen-like peptide were produced. Triggered by the collapse of the thermoresponsive domain above its LCST, the conjugate undergoes a reversible transition in aqueous solution to form well-defined nanovesicles with diameters of approximately 100 nm, with a transition temperature of 37 °C. The incorporation of CLP domains in these nanostructures may offer opportunities for the selective targeting of collagen-containing matrices. © 2015 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim.

  8. Thermoresponsive Self-Assembly of Nanostructures from a Collagen-Like Peptide-Containing Diblock Copolymera

    OpenAIRE

    Luo, Tianzhi; He, Lirong; Theato, Patrick; Kiick, Kristi L.

    2014-01-01

    Temperature-triggered formation of nanostructures with distinct biological activity offers opportunities in selective modification of matrices and in drug delivery. Toward these ends, diblock polymers comprising poly(diethylene glycol methyl ether methacrylate) (PDEGMEMA) conjugated to a triple helix-forming collagen-like peptide (CLP) is produced. The ability of the CLP domain to maintain its triple helix conformation after conjugation with the polymer is confirmed via circular dichroism (CD...

  9. Highly concentrated collagen solutions leading to transparent scaffolds of controlled three-dimensional organizations for corneal epithelial cell colonization.

    Science.gov (United States)

    Tidu, Aurélien; Ghoubay-Benallaoua, Djida; Teulon, Claire; Asnacios, Sophie; Grieve, Kate; Portier, François; Schanne-Klein, Marie-Claire; Borderie, Vincent; Mosser, Gervaise

    2018-05-29

    This study aimed at controlling both the organization and the transparency of dense collagen scaffolds making use of the lyotropic mesogen properties of collagen. Cholesteric or plywood-like liquid crystal phases were achieved using mixtures of acetic and hydrochloric acids as solvents. The critical pH at which the switch between the two phases occurred was around pH = 3. The use of the two acids led to fibrillated collagen I scaffolds, whose visual aspect ranged from opaque to transparent. Rheological investigations showed that viscoelastic properties of the plywood-like solutions were optimized for molding due to faster recovery. They also confirmed the correlation between the elastic modulus and the diameter of collagen fibrils obtained after fibrillogenesis under ammonia vapor. Human corneal epithelial cells, grown from donor limbal explants, were cultured both on transparent plywood-like matrices and on human amniotic membranes for 14 days. The development of corneal epithelium and the preservation of epithelial stem cells were checked by optical microscopy, colony formation assay, immuno-fluorescence and quantitative polymerase chain reaction. A higher level of amplification of limbal stem cells was obtained with collagen matrices compared with amniotic membranes, showing the high biocompatibility of our scaffolds. We therefore suggest that collagen solutions presenting both plywood-like organization and transparency might be of interest for biomedical applications in ophthalmology.

  10. Sparse Matrices in Frame Theory

    DEFF Research Database (Denmark)

    Lemvig, Jakob; Krahmer, Felix; Kutyniok, Gitta

    2014-01-01

    Frame theory is closely intertwined with signal processing through a canon of methodologies for the analysis of signals using (redundant) linear measurements. The canonical dual frame associated with a frame provides a means for reconstruction by a least squares approach, but other dual frames...... yield alternative reconstruction procedures. The novel paradigm of sparsity has recently entered the area of frame theory in various ways. Of those different sparsity perspectives, we will focus on the situations where frames and (not necessarily canonical) dual frames can be written as sparse matrices...

  11. The Inverse of Banded Matrices

    Science.gov (United States)

    2013-01-01

    indexed entries all zeros. In this paper, generalizing a method of Mallik (1999) [5], we give the LU factorization and the inverse of the matrix Br,n (if it...r ≤ i ≤ r, 1 ≤ j ≤ r, with the remaining un-indexed entries all zeros. In this paper generalizing a method of Mallik (1999) [5...matrices and applications to piecewise cubic approximation, J. Comput. Appl. Math. 8 (4) (1982) 285–288. [5] R.K. Mallik , The inverse of a lower

  12. Fusion algebra and fusing matrices

    International Nuclear Information System (INIS)

    Gao Yihong; Li Miao; Yu Ming.

    1989-09-01

    We show that the Wilson line operators in topological field theories form a fusion algebra. In general, the fusion algebra is a relation among the fusing (F) matrices. In the case of the SU(2) WZW model, some special F matrix elements are found in this way, and the remaining F matrix elements are then determined up to a sign. In addition, the S(j) modular transformation of the one point blocks on the torus is worked out. Our results are found to agree with those obtained from the quantum group method. (author). 24 refs

  13. Transfer matrices for multilayer structures

    International Nuclear Information System (INIS)

    Baquero, R.

    1988-08-01

    We consider four of the transfer matrices defined to deal with multilayer structures. We deduce algorithms to calculate them numerically, in a simple and neat way. We illustrate their application to semi-infinite systems using SGFM formulae. These algorithms are of fast convergence and allow a calculation of bulk-, surface- and inner-layers band structure in good agreement with much more sophisticated calculations. Supermatrices, interfaces and multilayer structures can be calculated in this way with a small computational effort. (author). 10 refs

  14. Orthogonal polynomials and random matrices

    CERN Document Server

    Deift, Percy

    2000-01-01

    This volume expands on a set of lectures held at the Courant Institute on Riemann-Hilbert problems, orthogonal polynomials, and random matrix theory. The goal of the course was to prove universality for a variety of statistical quantities arising in the theory of random matrix models. The central question was the following: Why do very general ensembles of random n {\\times} n matrices exhibit universal behavior as n {\\rightarrow} {\\infty}? The main ingredient in the proof is the steepest descent method for oscillatory Riemann-Hilbert problems.

  15. Modulation of hematopoietic progenitor cell fate in vitro by varying collagen oligomer matrix stiffness in the presence or absence of osteoblasts.

    Science.gov (United States)

    Chitteti, Brahmananda Reddy; Kacena, Melissa A; Voytik-Harbin, Sherry L; Srour, Edward F

    2015-10-01

    To recreate the in vivo hematopoietic cell microenvironment or niche and to study the impact of extracellular matrix (ECM) biophysical properties on hematopoietic progenitor cell (HPC) proliferation and function, mouse bone-marrow derived HPC (Lin-Sca1+cKit+/(LSK) were cultured within three-dimensional (3D) type I collagen oligomer matrices. To generate a more physiologic milieu, 3D cultures were established in both the presence and absence of calvariae-derived osteoblasts (OB). Collagen oligomers were polymerized at varying concentration to give rise to matrices of different fibril densities and therefore matrix stiffness (shear storage modulus, 50-800 Pa). Decreased proliferation and increased clonogenicity of LSK cells was associated with increase of matrix stiffness regardless of whether OB were present or absent from the 3D culture system. Also, regardless of whether OB were or were not added to the 3D co-culture system, LSK within 800 Pa collagen oligomer matrices maintained the highest percentage of Lin-Sca1+ cells as well as higher percentage of cells in quiescent state (G0/G1) compared to 50 Pa or 200Pa matrices. Collectively, these data illustrate that biophysical features of collagen oligomer matrices, specifically fibril density-induced modulation of matrix stiffness, provide important guidance cues in terms of LSK expansion and differentiation and therefore maintenance of progenitor cell function. Copyright © 2015. Published by Elsevier B.V.

  16. Extrafibrillar collagen demineralization-based chelate-and-rinse technique bridges the gap between wet and dry dentin bonding.

    Science.gov (United States)

    Mai, Sui; Wei, Chin-Chuan; Gu, Li-Sha; Tian, Fu-Cong; Arola, Dwayne D; Chen, Ji-Hua; Jiao, Yang; Pashley, David H; Niu, Li-Na; Tay, Franklin R

    2017-07-15

    -exclusion characteristics of fibrillar collagen; molecules larger than 40kDa are prevented from accessing the intrafibrillar water compartments of the collagen fibrils. Using this chelate-and-rinse extrafibrillar calcium chelation concept, collagen fibrils with retained intrafibrillar minerals will not collapse upon air-drying. This enables adhesive infiltration into the mineral-depleted extrafibrillar spaces without relying on wet-bonding. By bridging the gap between wet and dry dentine bonding, the chelate-and-rinse concept introduces additional insight to the field by preventing exposure of endogenous proteases via preservation of the intrafibrillar minerals within a collagen matrix. If successfully validated, this should help prevent degradation of resin-dentine bonds by collagenolytic enzymes. Published by Elsevier Ltd.

  17. Ultrastructural changes in nucleoli and fibrillar centers under the effect of local ultraviolet microbeam irradiation of interphase culture cells

    International Nuclear Information System (INIS)

    Zatsepina, O.V.; Voronkova, L.N.; Sakharov, V.N.; Chentsov, Y.S.

    1989-01-01

    As shown previously, ultraviolet (uv) microbeam irradiation of one of the two mature nucleoli within an interphase cell nucleus causes significant diminution and inactivation of the irradiated nucleolus and compensatory growth and activation of the nonirradiated one. In the present work we describe the results of an ultrastructural study of this phenomenon. The changes in the nucleoli were examined by means of complete series of ultrathin sections obtained from seven irradiated pig kidney cells. The compensatory hypertrophy of the nonirradiated nucleoli is shown to be accompanied by a nearly twofold increase in the number of fibrillar centers (FCs) and by a decrease in their linear dimensions compared with the control cells of the same ploidy. In the degraded nucleoli the number of FCs decreases, but their dimensions increase. Ultraviolet microbeam irradiation causes dramatic diminution of the dense fibrillar component within the irradiated nucleoli as well. The nucleolar capacity for compensatory hypertrophy indicates that in addition to active ribosomal genes, mature nucleoli also contain silent genes capable of being activated under extreme conditions to sustain the required level of rRNA synthesis. It is assumed that activation of latent ribosomal genes is accompanied by FC fragmentation without a considerable increase in their total volume per cell

  18. Hypercyclic Abelian Semigroups of Matrices on Cn

    International Nuclear Information System (INIS)

    Ayadi, Adlene; Marzougui, Habib

    2010-07-01

    We give a complete characterization of existence of dense orbit for any abelian semigroup of matrices on C n . For finitely generated semigroups, this characterization is explicit and is used to determine the minimal number of matrices in normal form over C which forms a hypercyclic abelian semigroup on C n . In particular, we show that no abelian semigroup generated by n matrices on C n can be hypercyclic. (author)

  19. Enhanced stabilization of collagen by furfural.

    Science.gov (United States)

    Lakra, Rachita; Kiran, Manikantan Syamala; Usha, Ramamoorthy; Mohan, Ranganathan; Sundaresan, Raja; Korrapati, Purna Sai

    2014-04-01

    Furfural (2-furancarboxaldehyde), a product derived from plant pentosans, has been investigated for its interaction with collagen. Introduction of furfural during fibril formation enhanced the thermal and mechanical stability of collagen. Collagen films treated with furfural exhibited higher denaturation temperature (Td) (pFurfural and furfural treated collagen films did not have any cytotoxic effect. Rheological characterization showed an increase in shear stress and shear viscosity with increasing shear rate for treated collagen. Circular dichroism (CD) studies indicated that the furfural did not have any impact on triple helical structure of collagen. Scanning electron microscopy (SEM) of furfural treated collagen exhibited small sized porous structure in comparison with untreated collagen. Thus this study provides an alternate ecologically safe crosslinking agent for improving the stability of collagen for biomedical and industrial applications. Copyright © 2014 Elsevier B.V. All rights reserved.

  20. Lambda-matrices and vibrating systems

    CERN Document Server

    Lancaster, Peter; Stark, M; Kahane, J P

    1966-01-01

    Lambda-Matrices and Vibrating Systems presents aspects and solutions to problems concerned with linear vibrating systems with a finite degrees of freedom and the theory of matrices. The book discusses some parts of the theory of matrices that will account for the solutions of the problems. The text starts with an outline of matrix theory, and some theorems are proved. The Jordan canonical form is also applied to understand the structure of square matrices. Classical theorems are discussed further by applying the Jordan canonical form, the Rayleigh quotient, and simple matrix pencils with late

  1. Structure to function: Spider silk and human collagen

    Science.gov (United States)

    Rabotyagova, Olena S.

    , morphological features and assembly. Aside from fundamental perspectives, we anticipate that these results will provide a blueprint for the design of precise materials for a range of potential applications such as controlled release devices, functional coatings, components of tissue regeneration materials and environmentally friendly polymers in future studies. In the second part of this work, human collagen type I was studied as another representative of the family of fibrous proteins. Collagen type I is the most abundant extracellular matrix protein in the human body, providing the basis for tissue structure and directing cellular functions. Collagen has a complex structural hierarchy, organized at different length scales, including the characteristic triple helical feature. In the present study we assessed the relationship between collagen structure (native vs. denatured) and sensitivity to UV radiation with a focus on changes in the primary structure, conformation, microstructure and material properties. Free radical reactions are involved in collagen degradation and a mechanism for UV-induced collagen degradation related to structure was proposed. The results from this study demonstrated the role of collagen supramolecular organization (triple helix) in the context of the effects of electromagnetic radiation on extracellular matrices. Owing to the fact that both silks and collagens are proteins that have found widespread interest for biomaterial related needs, we anticipate that the current studies will serve as a foundation for future biomaterial designs with controlled properties. Furthermore, fundamental insight into self-assembly and environmentally-2mediated degradation, will build a foundation for fundamental understanding of the remodeling and functions of these types of fibrous proteins in vivo and in vitro. This type of insight is essential for many areas of scientific inquiry, from drug delivery, to scaffolds for tissue engineering, and to the stability of

  2. Fracture mechanics of collagen fibrils

    DEFF Research Database (Denmark)

    Svensson, Rene B; Mulder, Hindrik; Kovanen, Vuokko

    2013-01-01

    Tendons are important load-bearing structures, which are frequently injured in both sports and work. Type I collagen fibrils are the primary components of tendons and carry most of the mechanical loads experienced by the tissue, however, knowledge of how load is transmitted between and within...... fibrils is limited. The presence of covalent enzymatic cross-links between collagen molecules is an important factor that has been shown to influence mechanical behavior of the tendons. To improve our understanding of how molecular bonds translate into tendon mechanics, we used an atomic force microscopy...... technique to measure the mechanical behavior of individual collagen fibrils loaded to failure. Fibrils from human patellar tendons, rat-tail tendons (RTTs), NaBH₄ reduced RTTs, and tail tendons of Zucker diabetic fat rats were tested. We found a characteristic three-phase stress-strain behavior in the human...

  3. Pathological rate matrices: from primates to pathogens

    Directory of Open Access Journals (Sweden)

    Knight Rob

    2008-12-01

    Full Text Available Abstract Background Continuous-time Markov models allow flexible, parametrically succinct descriptions of sequence divergence. Non-reversible forms of these models are more biologically realistic but are challenging to develop. The instantaneous rate matrices defined for these models are typically transformed into substitution probability matrices using a matrix exponentiation algorithm that employs eigendecomposition, but this algorithm has characteristic vulnerabilities that lead to significant errors when a rate matrix possesses certain 'pathological' properties. Here we tested whether pathological rate matrices exist in nature, and consider the suitability of different algorithms to their computation. Results We used concatenated protein coding gene alignments from microbial genomes, primate genomes and independent intron alignments from primate genomes. The Taylor series expansion and eigendecomposition matrix exponentiation algorithms were compared to the less widely employed, but more robust, Padé with scaling and squaring algorithm for nucleotide, dinucleotide, codon and trinucleotide rate matrices. Pathological dinucleotide and trinucleotide matrices were evident in the microbial data set, affecting the eigendecomposition and Taylor algorithms respectively. Even using a conservative estimate of matrix error (occurrence of an invalid probability, both Taylor and eigendecomposition algorithms exhibited substantial error rates: ~100% of all exonic trinucleotide matrices were pathological to the Taylor algorithm while ~10% of codon positions 1 and 2 dinucleotide matrices and intronic trinucleotide matrices, and ~30% of codon matrices were pathological to eigendecomposition. The majority of Taylor algorithm errors derived from occurrence of multiple unobserved states. A small number of negative probabilities were detected from the Pad�� algorithm on trinucleotide matrices that were attributable to machine precision. Although the Pad

  4. Quantum Hilbert matrices and orthogonal polynomials

    DEFF Research Database (Denmark)

    Andersen, Jørgen Ellegaard; Berg, Christian

    2009-01-01

    Using the notion of quantum integers associated with a complex number q≠0 , we define the quantum Hilbert matrix and various extensions. They are Hankel matrices corresponding to certain little q -Jacobi polynomials when |q|<1 , and for the special value they are closely related to Hankel matrice...

  5. The construction of factorized S-matrices

    International Nuclear Information System (INIS)

    Chudnovsky, D.V.

    1981-01-01

    We study the relationships between factorized S-matrices given as representations of the Zamolodchikov algebra and exactly solvable models constructed using the Baxter method. Several new examples of symmetric and non-symmetric factorized S-matrices are proposed. (orig.)

  6. Skew-adjacency matrices of graphs

    NARCIS (Netherlands)

    Cavers, M.; Cioaba, S.M.; Fallat, S.; Gregory, D.A.; Haemers, W.H.; Kirkland, S.J.; McDonald, J.J.; Tsatsomeros, M.

    2012-01-01

    The spectra of the skew-adjacency matrices of a graph are considered as a possible way to distinguish adjacency cospectral graphs. This leads to the following topics: graphs whose skew-adjacency matrices are all cospectral; relations between the matchings polynomial of a graph and the characteristic

  7. On Investigating GMRES Convergence using Unitary Matrices

    Czech Academy of Sciences Publication Activity Database

    Duintjer Tebbens, Jurjen; Meurant, G.; Sadok, H.; Strakoš, Z.

    2014-01-01

    Roč. 450, 1 June (2014), s. 83-107 ISSN 0024-3795 Grant - others:GA AV ČR(CZ) M100301201; GA MŠk(CZ) LL1202 Institutional support: RVO:67985807 Keywords : GMRES convergence * unitary matrices * unitary spectra * normal matrices * Krylov residual subspace * Schur parameters Subject RIV: BA - General Mathematics Impact factor: 0.939, year: 2014

  8. Exact Inverse Matrices of Fermat and Mersenne Circulant Matrix

    Directory of Open Access Journals (Sweden)

    Yanpeng Zheng

    2015-01-01

    Full Text Available The well known circulant matrices are applied to solve networked systems. In this paper, circulant and left circulant matrices with the Fermat and Mersenne numbers are considered. The nonsingularity of these special matrices is discussed. Meanwhile, the exact determinants and inverse matrices of these special matrices are presented.

  9. Collagen crosslinks in chondromalacia of the patella.

    Science.gov (United States)

    Väätäinen, U; Kiviranta, I; Jaroma, H; Arokosi, J; Tammi, M; Kovanen, V

    1998-02-01

    The aim of the study was to determine collagen concentration and collagen crosslinks in cartilage samples from chondromalacia of the patella. To study the extracellular matrix alterations associated to chondromalacia, we determined the concentration of collagen (hydroxyproline) and its hydroxylysylpyridinoline and lysylpyridinoline crosslinks from chondromalacia foci of the patellae in 12 patients and 7 controls from apparently normal cadavers. The structure of the collagen network in 8 samples of grades II-IV chondromalacia was examined under polarized light microscopy. The full-thickness cartilage samples taken with a surgical knife from chondromalacia lesions did not show changes in collagen, hydroxylysylpyridinoline and lysylpyridinoline concentration as compared with the controls. Polarized light microscopy showed decreased birefringence in the superficial cartilage of chondromalacia lesions, indicating disorganization or disappearance of collagen fibers in this zone. It is concluded that the collagen network shows gradual disorganization with the severity of chondromalacia lesion of the patella without changes in the concentration or crosslinks of collagen.

  10. The progressive crosslinking of collagen matrices with glutaraldehyde in the manufacture of biological cardiac valves

    OpenAIRE

    Goissis, Gilberto; Figueiró, Sônia D.; Braile, Domingo M.; Araujo, Renato B. de; Ramirez, Vladimir D. A.

    1998-01-01

    Este trabalho descreve um novo processo para a reticulação de matrizes de colágeno com glutaraldeído para a preparação de materiais para a confecção de válvulas cardíacas biológicas, e consiste no tratamento do pericárdio bovino com concentrações progressivamente crescentes com este reagente no intervalo de concentração entre 0,005 e 0,5% em tampão fosfato, pH 7,4. O perfil da reação com glutaraldeído, quando comparado com o procedimento convencional, foi mais homogêneo e os materiais obtidos...

  11. The influence of specific binding of collagen-silk chimeras to silk biomaterials on hMSC behavior.

    Science.gov (United States)

    An, Bo; DesRochers, Teresa M; Qin, Guokui; Xia, Xiaoxia; Thiagarajan, Geetha; Brodsky, Barbara; Kaplan, David L

    2013-01-01

    Collagen-like proteins in the bacteria Streptococcus pyogenes adopt a triple-helix structure with a thermal stability similar to that of animal collagens, can be expressed in high yield in Escherichia coli and can be easily modified through molecular biology techniques. However, potential applications for such recombinant collagens are limited by their lack of higher order structure to achieve the physical properties needed for most biomaterials. To overcome this problem, the S. pyogenes collagen domain was fused to a repetitive Bombyx mori silk consensus sequence, as a strategy to direct specific non-covalent binding onto solid silk materials whose superior stability, mechanical and material properties have been previously established. This approach resulted in the successful binding of these new collagen-silk chimeric proteins to silk films and porous scaffolds, and the binding affinity could be controlled by varying the number of repeats in the silk sequence. To explore the potential of collagen-silk chimera for regulating biological activity, integrin (Int) and fibronectin (Fn) binding sequences from mammalian collagens were introduced into the bacterial collagen domain. The attachment of bioactive collagen-silk chimeras to solid silk biomaterials promoted hMSC spreading and proliferation substantially in comparison to the controls. The ability to combine the biomaterial features of silk with the biological activities of collagen allowed more rapid cell interactions with silk-based biomaterials, improved regulation of stem cell growth and differentiation, as well as the formation of artificial extracellular matrices useful for tissue engineering applications. Copyright © 2012 Elsevier Ltd. All rights reserved.

  12. Prediction of equibiaxial loading stress in collagen-based extracellular matrix using a three-dimensional unit cell model.

    Science.gov (United States)

    Susilo, Monica E; Bell, Brett J; Roeder, Blayne A; Voytik-Harbin, Sherry L; Kokini, Klod; Nauman, Eric A

    2013-03-01

    Mechanical signals are important factors in determining cell fate. Therefore, insights as to how mechanical signals are transferred between the cell and its surrounding three-dimensional collagen fibril network will provide a basis for designing the optimum extracellular matrix (ECM) microenvironment for tissue regeneration. Previously we described a cellular solid model to predict fibril microstructure-mechanical relationships of reconstituted collagen matrices due to unidirectional loads (Acta Biomater 2010;6:1471-86). The model consisted of representative volume elements made up of an interconnected network of flexible struts. The present study extends this work by adapting the model to account for microstructural anisotropy of the collagen fibrils and a biaxial loading environment. The model was calibrated based on uniaxial tensile data and used to predict the equibiaxial tensile stress-stretch relationship. Modifications to the model significantly improved its predictive capacity for equibiaxial loading data. With a comparable fibril length (model 5.9-8μm, measured 7.5μm) and appropriate fibril anisotropy the anisotropic model provides a better representation of the collagen fibril microstructure. Such models are important tools for tissue engineering because they facilitate prediction of microstructure-mechanical relationships for collagen matrices over a wide range of microstructures and provide a framework for predicting cell-ECM interactions. Copyright © 2012 Acta Materialia Inc. Published by Elsevier Ltd. All rights reserved.

  13. Building blocks of Collagen based biomaterial devices

    Indian Academy of Sciences (India)

    First page Back Continue Last page Overview Graphics. Building blocks of Collagen based biomaterial devices. Collagen as a protein. Collagen in tissues and organs. Stabilizing and cross linking agents. Immunogenicity. Hosts (drugs). Controlled release mechanisms of hosts. Biodegradability, workability into devices ...

  14. Hydroxyapatite/collagen bone-like nanocomposite.

    Science.gov (United States)

    Kikuchi, Masanori

    2013-01-01

    Our group has succeeded to synthesize material with bone-like nanostructure and bone-like inorganic and organic composition via self-organization mechanism between them using simultaneous titration method under controlled pH and temperature. The hydroxyapatite/collagen (HAp/Col) bone-like nanocomposite completely incorporated into bone remodeling process to be substituted by new bone. Cells cultured on the HAp/Col revealed very interesting reactions. Osteoblast-like MG63 cells showed upregulation of alkaline phosphatase >3 times greater than MG63 cells cultured on tissue culture polystyrene (TCPS). MG63 cells 3-dimensionally cultured in a "HAp/Col sponge," a porous HAp/Col having sponge-like viscoelasticity, accumulated calcium phosphate nodules on extracellular matrices they secreted. Bone marrow cells co-cultured with osteoblasts on HAp/Col differentiated to osteoclasts without differentiation supplements. This phenomenon is not found in cells cultured on hydroxyapatite ceramics and TCPS, and rarely in cells cultured on dentin. These results suggest that HAp/Col is a good candidate for tissue engineering of bone as well as bone filler. In a clinical test as a bone filler, the HAp/Col sponge was significantly better than porous β-tricalcium phosphate. The HAp/Col sponge has been approved by the Japanese government and will be used as greatly needed bone filler in patients. In addition to the above, HAp/Col coating on titanium revealed higher osteo-conductivity than HAp-coated titanium and bare titanium and improved direct bonding between titanium and newly formed bone. The HAp/Col coating may be used for metal devices requiring osseointegration.

  15. Non-uniform self-assembly: On the anisotropic architecture of α-synuclein supra-fibrillar aggregates.

    Science.gov (United States)

    Semerdzhiev, Slav A; Shvadchak, Volodymyr V; Subramaniam, Vinod; Claessens, Mireille M A E

    2017-08-09

    Although the function of biopolymer hydrogels in nature depends on structural anisotropy at mesoscopic length scales, the self-assembly of such anisotropic structures in vitro is challenging. Here we show that fibrils of the protein α-synuclein spontaneously self-assemble into structurally anisotropic hydrogel particles. While the fibrils in the interior of these supra-fibrillar aggregates (SFAs) are randomly oriented, the fibrils in the periphery prefer to cross neighboring fibrils at high angles. This difference in organization coincides with a significant difference in polarity of the environment in the central and peripheral parts of the SFA. We rationalize the structural anisotropy of SFAs in the light of the observation that αS fibrils bind a substantial amount of counterions. We propose that, with the progress of protein polymerization into fibrils, this binding of counterions changes the ionic environment which triggers a change in fibril organization resulting in anisotropy in the architecture of hydrogel particles.

  16. Mesenchymal Stem Cells Sense Three Dimensional Type I Collagen through Discoidin Domain Receptor 1.

    Science.gov (United States)

    Lund, A W; Stegemann, J P; Plopper, G E

    2009-01-01

    The extracellular matrix provides structural and organizational cues for tissue development and defines and maintains cellular phenotype during cell fate determination. Multipotent mesenchymal stem cells use this matrix to tightly regulate the balance between their differentiation potential and self-renewal in the native niche. When understood, the mechanisms that govern cell-matrix crosstalk during differentiation will allow for efficient engineering of natural and synthetic matrices to specifically direct and maintain stem cell phenotype. This work identifies the discoidin domain receptor 1 (DDR1), a collagen activated receptor tyrosine kinase, as a potential link through which stem cells sense and respond to the 3D organization of their extracellular matrix microenvironment. DDR1 is dependent upon both the structure and proteolytic state of its collagen ligand and is specifically expressed and localized in three dimensional type I collagen culture. Inhibition of DDR1 expression results in decreased osteogenic potential, increased cell spreading, stress fiber formation and ERK1/2 phosphorylation. Additionally, loss of DDR1 activity alters the cell-mediated organization of the naïve type I collagen matrix. Taken together, these results demonstrate a role for DDR1 in the stem cell response to and interaction with three dimensional type I collagen. Dynamic changes in cell shape in 3D culture and the tuning of the local ECM microstructure, directs crosstalk between DDR1 and two dimensional mechanisms of osteogenesis that can alter their traditional roles.

  17. Community Detection for Correlation Matrices

    Directory of Open Access Journals (Sweden)

    Mel MacMahon

    2015-04-01

    Full Text Available A challenging problem in the study of complex systems is that of resolving, without prior information, the emergent, mesoscopic organization determined by groups of units whose dynamical activity is more strongly correlated internally than with the rest of the system. The existing techniques to filter correlations are not explicitly oriented towards identifying such modules and can suffer from an unavoidable information loss. A promising alternative is that of employing community detection techniques developed in network theory. Unfortunately, this approach has focused predominantly on replacing network data with correlation matrices, a procedure that we show to be intrinsically biased because of its inconsistency with the null hypotheses underlying the existing algorithms. Here, we introduce, via a consistent redefinition of null models based on random matrix theory, the appropriate correlation-based counterparts of the most popular community detection techniques. Our methods can filter out both unit-specific noise and system-wide dependencies, and the resulting communities are internally correlated and mutually anticorrelated. We also implement multiresolution and multifrequency approaches revealing hierarchically nested subcommunities with “hard” cores and “soft” peripheries. We apply our techniques to several financial time series and identify mesoscopic groups of stocks which are irreducible to a standard, sectorial taxonomy; detect “soft stocks” that alternate between communities; and discuss implications for portfolio optimization and risk management.

  18. Community Detection for Correlation Matrices

    Science.gov (United States)

    MacMahon, Mel; Garlaschelli, Diego

    2015-04-01

    A challenging problem in the study of complex systems is that of resolving, without prior information, the emergent, mesoscopic organization determined by groups of units whose dynamical activity is more strongly correlated internally than with the rest of the system. The existing techniques to filter correlations are not explicitly oriented towards identifying such modules and can suffer from an unavoidable information loss. A promising alternative is that of employing community detection techniques developed in network theory. Unfortunately, this approach has focused predominantly on replacing network data with correlation matrices, a procedure that we show to be intrinsically biased because of its inconsistency with the null hypotheses underlying the existing algorithms. Here, we introduce, via a consistent redefinition of null models based on random matrix theory, the appropriate correlation-based counterparts of the most popular community detection techniques. Our methods can filter out both unit-specific noise and system-wide dependencies, and the resulting communities are internally correlated and mutually anticorrelated. We also implement multiresolution and multifrequency approaches revealing hierarchically nested subcommunities with "hard" cores and "soft" peripheries. We apply our techniques to several financial time series and identify mesoscopic groups of stocks which are irreducible to a standard, sectorial taxonomy; detect "soft stocks" that alternate between communities; and discuss implications for portfolio optimization and risk management.

  19. Location of rRNA transcription to the nucleolar components: disappearance of the fibrillar centers in nucleoli of regenerating rat hepatocytes.

    Science.gov (United States)

    Montanaro, Lorenzo; Govoni, Marzia; Orrico, Catia; Treré, Davide; Derenzini, Massimo

    2011-01-01

    The precise location of rDNA transcription to the components of mammalian cell nucleolus is still debated. This was due to the fact that all the molecules necessary for rRNA synthesis are located in two of the three components, the fibrillar centers (FCs) and the dense fibrillar component (DFC), which together with the granular component (GC) are considered to be constantly present in mammalian cell nucleoli. In the present study we demonstrated that in nucleoli of many regenerating rat hepatocytes at 15 h after partial hepatectomy the FCs were no longer present, only the DFC and the GC being detected. At this time of regeneration the rRNA transcriptional activity was three fold that of resting hepatocytes, while the synthesis of DNA was not yet significantly increased, indicating that these nucleolar changes were due to the rRNA synthesis up-regulation. The DFC appeared to be organized in numerous, small, roundish tufts of fibrils. The silver staining procedure for AgNOR proteins, which are associated with the ribosomal genes, selectively and homogeneously stained these fibrillar tufts. Immuno-gold visualization of the Upstream Binding Factor (UBF), which is associated with the promoter region and the transcribed portion of the rRNA 45S gene, demonstrated that UBF was selectively located in the fibrillar tufts. We concluded that in proliferating rat hepatocytes the increased synthesis of rRNA induced an activation of the rRNA transcription machinery located in the fibrillar centers which, by becoming associated with the ribonucleoprotein transcripts, assumed the morphological pattern of the DFC.

  20. L-arginine mediated renaturation enhances yield of human, α6 Type IV collagen non-collagenous domain from bacterial inclusion bodies.

    Science.gov (United States)

    Gunda, Venugopal; Boosani, Chandra Shekhar; Verma, Raj Kumar; Guda, Chittibabu; Sudhakar, Yakkanti Akul

    2012-10-01

    The anti-angiogenic, carboxy terminal non-collagenous domain (NC1) derived from human Collagen type IV alpha 6 chain, [α6(IV)NC1] or hexastatin, was earlier obtained using different recombinant methods of expression in bacterial systems. However, the effect of L-arginine mediated renaturation in enhancing the relative yields of this protein from bacterial inclusion bodies has not been evaluated. In the present study, direct stirring and on-column renaturation methods using L-arginine and different size exclusion chromatography matrices were applied for enhancing the solubility in purifying the recombinant α6(IV)NC1 from bacterial inclusion bodies. This methodology enabled purification of higher quantities of soluble protein from inclusion bodies, which inhibited endothelial cell proliferation, migration and tube formation. Thus, the scope for L-arginine mediated renaturation in obtaining higher yields of soluble, biologically active NC1 domain from bacterial inclusion bodies was evaluated.

  1. The Antitriangular Factorization of Saddle Point Matrices

    KAUST Repository

    Pestana, J.

    2014-01-01

    Mastronardi and Van Dooren [SIAM J. Matrix Anal. Appl., 34 (2013), pp. 173-196] recently introduced the block antitriangular ("Batman") decomposition for symmetric indefinite matrices. Here we show the simplification of this factorization for saddle point matrices and demonstrate how it represents the common nullspace method. We show that rank-1 updates to the saddle point matrix can be easily incorporated into the factorization and give bounds on the eigenvalues of matrices important in saddle point theory. We show the relation of this factorization to constraint preconditioning and how it transforms but preserves the structure of block diagonal and block triangular preconditioners. © 2014 Society for Industrial and Applied Mathematics.

  2. Polynomial sequences generated by infinite Hessenberg matrices

    Directory of Open Access Journals (Sweden)

    Verde-Star Luis

    2017-01-01

    Full Text Available We show that an infinite lower Hessenberg matrix generates polynomial sequences that correspond to the rows of infinite lower triangular invertible matrices. Orthogonal polynomial sequences are obtained when the Hessenberg matrix is tridiagonal. We study properties of the polynomial sequences and their corresponding matrices which are related to recurrence relations, companion matrices, matrix similarity, construction algorithms, and generating functions. When the Hessenberg matrix is also Toeplitz the polynomial sequences turn out to be of interpolatory type and we obtain additional results. For example, we show that every nonderogative finite square matrix is similar to a unique Toeplitz-Hessenberg matrix.

  3. Collagen cross linking: Current perspectives

    Directory of Open Access Journals (Sweden)

    Srinivas K Rao

    2013-01-01

    Full Text Available Keratoconus is a common ectatic disorder occurring in more than 1 in 1,000 individuals. The condition typically starts in adolescence and early adulthood. It is a disease with an uncertain cause and its progression is unpredictable, but in extreme cases, vision deteriorates and can require corneal transplant surgery. Corneal collagen cross-linking (CCL with riboflavin (C3R is a recent treatment option that can enhance the rigidity of the cornea and prevent disease progression. Since its inception, the procedure has evolved with newer instrumentation, surgical techniques, and is also now performed for expanded indications other than keratoconus. With increasing experience, newer guidelines regarding optimization of patient selection, the spectrum of complications and their management, and combination procedures are being described. This article in conjunction with the others in this issue, will try and explore the uses of collagen cross-linking (CXL in its current form.

  4. Synchronous correlation matrices and Connes’ embedding conjecture

    Energy Technology Data Exchange (ETDEWEB)

    Dykema, Kenneth J., E-mail: kdykema@math.tamu.edu [Department of Mathematics, Texas A& M University, College Station, Texas 77843-3368 (United States); Paulsen, Vern, E-mail: vern@math.uh.edu [Department of Mathematics, University of Houston, Houston, Texas 77204 (United States)

    2016-01-15

    In the work of Paulsen et al. [J. Funct. Anal. (in press); preprint arXiv:1407.6918], the concept of synchronous quantum correlation matrices was introduced and these were shown to correspond to traces on certain C*-algebras. In particular, synchronous correlation matrices arose in their study of various versions of quantum chromatic numbers of graphs and other quantum versions of graph theoretic parameters. In this paper, we develop these ideas further, focusing on the relations between synchronous correlation matrices and microstates. We prove that Connes’ embedding conjecture is equivalent to the equality of two families of synchronous quantum correlation matrices. We prove that if Connes’ embedding conjecture has a positive answer, then the tracial rank and projective rank are equal for every graph. We then apply these results to more general non-local games.

  5. Discrete canonical transforms that are Hadamard matrices

    International Nuclear Information System (INIS)

    Healy, John J; Wolf, Kurt Bernardo

    2011-01-01

    The group Sp(2,R) of symplectic linear canonical transformations has an integral kernel which has quadratic and linear phases, and which is realized by the geometric paraxial optical model. The discrete counterpart of this model is a finite Hamiltonian system that acts on N-point signals through N x N matrices whose elements also have a constant absolute value, although they do not form a representation of that group. Those matrices that are also unitary are Hadamard matrices. We investigate the manifolds of these N x N matrices under the Sp(2,R) equivalence imposed by the model, and find them to be on two-sided cosets. By means of an algorithm we determine representatives that lead to collections of mutually unbiased bases.

  6. ESTIMATION OF FUNCTIONALS OF SPARSE COVARIANCE MATRICES.

    Science.gov (United States)

    Fan, Jianqing; Rigollet, Philippe; Wang, Weichen

    High-dimensional statistical tests often ignore correlations to gain simplicity and stability leading to null distributions that depend on functionals of correlation matrices such as their Frobenius norm and other ℓ r norms. Motivated by the computation of critical values of such tests, we investigate the difficulty of estimation the functionals of sparse correlation matrices. Specifically, we show that simple plug-in procedures based on thresholded estimators of correlation matrices are sparsity-adaptive and minimax optimal over a large class of correlation matrices. Akin to previous results on functional estimation, the minimax rates exhibit an elbow phenomenon. Our results are further illustrated in simulated data as well as an empirical study of data arising in financial econometrics.

  7. The Antitriangular Factorization of Saddle Point Matrices

    KAUST Repository

    Pestana, J.; Wathen, A. J.

    2014-01-01

    Mastronardi and Van Dooren [SIAM J. Matrix Anal. Appl., 34 (2013), pp. 173-196] recently introduced the block antitriangular ("Batman") decomposition for symmetric indefinite matrices. Here we show the simplification of this factorization for saddle

  8. Flux Jacobian Matrices For Equilibrium Real Gases

    Science.gov (United States)

    Vinokur, Marcel

    1990-01-01

    Improved formulation includes generalized Roe average and extension to three dimensions. Flux Jacobian matrices derived for use in numerical solutions of conservation-law differential equations of inviscid flows of ideal gases extended to real gases. Real-gas formulation of these matrices retains simplifying assumptions of thermodynamic and chemical equilibrium, but adds effects of vibrational excitation, dissociation, and ionization of gas molecules via general equation of state.

  9. Supercritical fluid extraction behaviour of polymer matrices

    International Nuclear Information System (INIS)

    Sujatha, K.; Kumar, R.; Sivaraman, N.; Srinivasan, T.G.; Vasudeva Rao, P.R.

    2007-01-01

    Organic compounds present in polymeric matrices such as neoprene, surgical gloves and PVC were co-extracted during the removal of uranium using supercritical fluid extraction (SFE) technique. Hence SFE studies of these matrices were carried out to establish the extracted species using HPLC, IR and mass spectrometry techniques. The initial study indicated that uranium present in the extract could be purified from the co-extracted organic species. (author)

  10. Bi-allelic Alterations in AEBP1 Lead to Defective Collagen Assembly and Connective Tissue Structure Resulting in a Variant of Ehlers-Danlos Syndrome.

    Science.gov (United States)

    Blackburn, Patrick R; Xu, Zhi; Tumelty, Kathleen E; Zhao, Rose W; Monis, William J; Harris, Kimberly G; Gass, Jennifer M; Cousin, Margot A; Boczek, Nicole J; Mitkov, Mario V; Cappel, Mark A; Francomano, Clair A; Parisi, Joseph E; Klee, Eric W; Faqeih, Eissa; Alkuraya, Fowzan S; Layne, Matthew D; McDonnell, Nazli B; Atwal, Paldeep S

    2018-04-05

    AEBP1 encodes the aortic carboxypeptidase-like protein (ACLP) that associates with collagens in the extracellular matrix (ECM) and has several roles in development, tissue repair, and fibrosis. ACLP is expressed in bone, the vasculature, and dermal tissues and is involved in fibroblast proliferation and mesenchymal stem cell differentiation into collagen-producing cells. Aebp1 -/- mice have abnormal, delayed wound repair correlating with defects in fibroblast proliferation. In this study, we describe four individuals from three unrelated families that presented with a unique constellation of clinical findings including joint laxity, redundant and hyperextensible skin, poor wound healing with abnormal scarring, osteoporosis, and other features reminiscent of Ehlers-Danlos syndrome (EDS). Analysis of skin biopsies revealed decreased dermal collagen with abnormal collagen fibrils that were ragged in appearance. Exome sequencing revealed compound heterozygous variants in AEBP1 (c.1470delC [p.Asn490_Met495delins(40)] and c.1743C>A [p.Cys581 ∗ ]) in the first individual, a homozygous variant (c.1320_1326del [p.Arg440Serfs ∗ 3]) in the second individual, and a homozygous splice site variant (c.1630+1G>A) in two siblings from the third family. We show that ACLP enhances collagen polymerization and binds to several fibrillar collagens via its discoidin domain. These studies support the conclusion that bi-allelic pathogenic variants in AEBP1 are the cause of this autosomal-recessive EDS subtype. Copyright © 2018 American Society of Human Genetics. Published by Elsevier Inc. All rights reserved.

  11. Helicase-like transcription factor (Hltf regulates G2/M transition, Wt1/Gata4/Hif-1a cardiac transcription networks, and collagen biogenesis.

    Directory of Open Access Journals (Sweden)

    Rebecca A Helmer

    Full Text Available HLTF/Hltf regulates transcription, remodels chromatin, and coordinates DNA damage repair. Hltf is expressed in mouse brain and heart during embryonic and postnatal development. Silencing Hltf is semilethal. Seventy-four percent of congenic C57BL/6J Hltf knockout mice died, 75% within 12-24 hours of birth. Previous studies in neonatal (6-8 hour postpartum brain revealed silencing Hltf disrupted cell cycle progression, and attenuated DNA damage repair. An RNA-Seq snapshot of neonatal heart transcriptome showed 1,536 of 20,000 total transcripts were altered (p < 0.05 - 10 up- and 1,526 downregulated. Pathway enrichment analysis with MetaCore™ showed Hltf's regulation of the G2/M transition (p=9.726E(-15 of the cell cycle in heart is nearly identical to its role in brain. In addition, Brca1 and 12 members of the Brca1 associated genome surveillance complex are also downregulated. Activation of caspase 3 coincides with transcriptional repression of Bcl-2. Hltf loss caused downregulation of Wt1/Gata4/Hif-1a signaling cascades as well as Myh7b/miR499 transcription. Hltf-specific binding to promoters and/or regulatory regions of these genes was authenticated by ChIP-PCR. Hif-1a targets for prolyl (P4ha1, P4ha2 and lysyl (Plod2 collagen hydroxylation, PPIase enzymes (Ppid, Ppif, Ppil3 for collagen trimerization, and lysyl oxidase (Loxl2 for collagen-elastin crosslinking were downregulated. However, transcription of genes for collagens, fibronectin, Mmps and their inhibitors (Timps was unaffected. The collective downregulation of genes whose protein products control collagen biogenesis caused disorganization of the interstitial and perivascular myocardial collagen fibrillar network as viewed with picrosirius red-staining, and authenticated with spectral imaging. Wavy collagen bundles in control hearts contrasted with collagen fibers that were thin, short and disorganized in Hltf null hearts. Collagen bundles in Hltf null hearts were tangled and

  12. Protein matrices for wound dressings =

    Science.gov (United States)

    Vasconcelos, Andreia Joana Costa

    Fibrous proteins such as silk fibroin (SF), keratin (K) and elastin (EL) are able to mimic the extracellular matrix (ECM) that allows their recognition under physiological conditions. The impressive mechanical properties, the environmental stability, in combination with their biocompatibility and control of morphology, provide an important basis to use these proteins in biomedical applications like protein-based wound dressings. Along time the concept of wound dressings has changed from the traditional dressings such as honey or natural fibres, used just to protect the wound from external factors, to the interactive dressings of the present. Wounds can be classified in acute that heal in the expected time frame, and chronic, which fail to heal because the orderly sequence of events is disrupted at one or more stages of the healing process. Moreover, chronic wound exudates contain high levels of tissue destructive proteolytic enzymes such as human neutrophil elastase (HNE) that need to be controlled for a proper healing. The aim of this work is to exploit the self-assemble properties of silk fibroin, keratin and elastin for the development of new protein materials to be used as wound dressings: i) evaluation of the blending effect on the physical and chemical properties of the materials; ii) development of materials with different morphologies; iii) assessment of the cytocompatibility of the protein matrices; iv) ultimately, study the ability of the developed protein matrices as wound dressings through the use of human chronic wound exudate; v) use of innovative short peptide sequences that allow to target the control of high levels of HNE found on chronic wounds. Chapter III reports the preparation of silk fibroin/keratin (SF/K) blend films by solvent casting evaporation. Two solvent systems, aqueous and acidic, were used for the preparation of films from fibroin and keratin extracted from the respective silk and wool fibres. The effect of solvent system used was

  13. Modified silk fibroin scaffolds with collagen/decellularized pulp for bone tissue engineering in cleft palate: Morphological structures and biofunctionalities

    International Nuclear Information System (INIS)

    Sangkert, Supaporn; Meesane, Jirut; Kamonmattayakul, Suttatip; Chai, Wen Lin

    2016-01-01

    scaffolds. Finally, it can be deduced that modified silk fibroin scaffolds with collagen/decellularized pulp had the performance for bone tissue engineering and a promise for cleft palate treatment. - Highlights: • Collagen/decellularized pulp organized themselves into fibrillar network structure on silk fibroin scaffolds. • Modified scaffolds with collagen/decellularized pulp had effective biofunctionalities. • Modified scaffolds with collagen/decellularized pulp promised to use for cleft palate.

  14. Mac-2 binding protein is a cell-adhesive protein of the extracellular matrix which self-assembles into ring-like structures and binds beta1 integrins, collagens and fibronectin

    DEFF Research Database (Denmark)

    Sasaki, T; Brakebusch, C; Engel, J

    1998-01-01

    Human Mac-2 binding protein (M2BP) was prepared in recombinant form from the culture medium of 293 kidney cells and consisted of a 92 kDa subunit. The protein was obtained in a native state as indicated by CD spectroscopy, demonstrating alpha-helical and beta-type structure, and by protease resis...... in the extracellular matrix of several mouse tissues....... in solid-phase assays to collagens IV, V and VI, fibronectin and nidogen, but not to fibrillar collagens I and III or other basement membrane proteins. The protein also mediated adhesion of cell lines at comparable strength with laminin. Adhesion to M2BP was inhibited by antibodies to integrin beta1...

  15. MERSENNE AND HADAMARD MATRICES CALCULATION BY SCARPIS METHOD

    Directory of Open Access Journals (Sweden)

    N. A. Balonin

    2014-05-01

    Full Text Available Purpose. The paper deals with the problem of basic generalizations of Hadamard matrices associated with maximum determinant matrices or not optimal by determinant matrices with orthogonal columns (weighing matrices, Mersenne and Euler matrices, ets.; calculation methods for the quasi-orthogonal local maximum determinant Mersenne matrices are not studied enough sufficiently. The goal of this paper is to develop the theory of Mersenne and Hadamard matrices on the base of generalized Scarpis method research. Methods. Extreme solutions are found in general by minimization of maximum for absolute values of the elements of studied matrices followed by their subsequent classification according to the quantity of levels and their values depending on orders. Less universal but more effective methods are based on structural invariants of quasi-orthogonal matrices (Silvester, Paley, Scarpis methods, ets.. Results. Generalizations of Hadamard and Belevitch matrices as a family of quasi-orthogonal matrices of odd orders are observed; they include, in particular, two-level Mersenne matrices. Definitions of section and layer on the set of generalized matrices are proposed. Calculation algorithms for matrices of adjacent layers and sections by matrices of lower orders are described. Approximation examples of the Belevitch matrix structures up to 22-nd critical order by Mersenne matrix of the third order are given. New formulation of the modified Scarpis method to approximate Hadamard matrices of high orders by lower order Mersenne matrices is proposed. Williamson method is described by example of one modular level matrices approximation by matrices with a small number of levels. Practical relevance. The efficiency of developing direction for the band-pass filters creation is justified. Algorithms for Mersenne matrices design by Scarpis method are used in developing software of the research program complex. Mersenne filters are based on the suboptimal by

  16. Collagen fibrillogenesis: fibronectin, integrins, and minor collagens as organizers and nucleators.

    Science.gov (United States)

    Kadler, Karl E; Hill, Adele; Canty-Laird, Elizabeth G

    2008-10-01

    Collagens are triple helical proteins that occur in the extracellular matrix (ECM) and at the cell-ECM interface. There are more than 30 collagens and collagen-related proteins but the most abundant are collagens I and II that exist as D-periodic (where D = 67 nm) fibrils. The fibrils are of broad biomedical importance and have central roles in embryogenesis, arthritis, tissue repair, fibrosis, tumor invasion, and cardiovascular disease. Collagens I and II spontaneously form fibrils in vitro, which shows that collagen fibrillogenesis is a selfassembly process. However, the situation in vivo is not that simple; collagen I-containing fibrils do not form in the absence of fibronectin, fibronectin-binding and collagen-binding integrins, and collagen V. Likewise, the thin collagen II-containing fibrils in cartilage do not form in the absence of collagen XI. Thus, in vivo, cellular mechanisms are in place to control what is otherwise a protein self-assembly process. This review puts forward a working hypothesis for how fibronectin and integrins (the organizers) determine the site of fibril assembly, and collagens V and XI (the nucleators) initiate collagen fibrillogenesis.

  17. A Brief Historical Introduction to Matrices and Their Applications

    Science.gov (United States)

    Debnath, L.

    2014-01-01

    This paper deals with the ancient origin of matrices, and the system of linear equations. Included are algebraic properties of matrices, determinants, linear transformations, and Cramer's Rule for solving the system of algebraic equations. Special attention is given to some special matrices, including matrices in graph theory and electrical…

  18. Complete Histological Resolution of Collagenous Sprue

    Directory of Open Access Journals (Sweden)

    Hugh J Freeman

    2004-01-01

    Full Text Available A 65-year-old woman developed a watery diarrhea syndrome with collagenous colitis. Later, weight loss and hypoalbuminemia were documented. This prompted small bowel biopsies that showed pathological changes of collagenous sprue. An apparent treatment response to a gluten-free diet and prednisone resulted in reduced diarrhea, weight gain and normalization of serum albumin. Later repeated biopsies from multiple small and large bowel sites over a period of over three years, however, showed reversion to normal small intestinal mucosa but persistent collagenous colitis. These results indicate that collagenous inflammatory disease may be a far more extensive process in the gastrointestinal tract than is currently appreciated. Moreover, collagenous colitis may be a clinical signal that occult small intestinal disease is present. Finally, collagenous sprue may, in some instances, be a completely reversible small intestinal disorder.

  19. Fibromodulin deficiency reduces collagen structural network but not glycosaminoglycan content in a syngeneic model of colon carcinoma.

    Science.gov (United States)

    Olsson, P Olof; Kalamajski, Sebastian; Maccarana, Marco; Oldberg, Åke; Rubin, Kristofer

    2017-01-01

    Tumor barrier function in carcinoma represents a major challenge to treatment and is therefore an attractive target for increasing drug delivery. Variables related to tumor barrier include aberrant blood vessels, high interstitial fluid pressure, and the composition and structure of the extracellular matrix. One of the proteins associated with dense extracellular matrices is fibromodulin, a collagen fibrillogenesis modulator expressed in tumor stroma but scarce in normal loose connective tissues. Here, we investigated the effects of fibromodulin on stroma ECM in a syngeneic murine colon carcinoma model. We show that fibromodulin deficiency decreased collagen fibril thickness but glycosaminoglycan content and composition were unchanged. Furthermore, vascular density, pericyte coverage and macrophage amount were unaffected. Fibromodulin can therefore be a unique effector of dense collagen matrix assembly in tumor stroma and, without affecting other major matrix components or the cellular composition, can function as a main agent in tumor barrier function.

  20. Effect of radiation on rat skin collagen

    International Nuclear Information System (INIS)

    Nogami, Akira

    1980-01-01

    I. Albino male rats were exposed for 16 weeks to ultraviolet light (UVL) which has principle emission at 305 nm. There were no significant changes between control and UVL-exposed skins in the total hydroxyproline content. However, a little increase of citrate-soluble collagen, a little decrease of insoluble collagen and a decrease of aldehyde content in soluble collagen were observed with UVL exposure. Total acid glycosaminoglycan in skin increased 30% or more from control. These results show that the effect of UVL on rat skin in vivo was merely inflammation phenomenon and that the 'aging' process of skin was not caused in our experimental conditions. II. The effects of radiation on the solubility of rat skin collagen were examined under various conditions. 1) When intact rats were exposed to a single dose of radiation from 43 kVp X-ray source, the solubility in skin collagen did not change at 4,000 R dosage, while in irradiation of 40,000 R a decreased solubility in collagen was observed. When rats were given 400 R a week for 12 weeks, there was no changes in the solubility of collagen during experimental period. 2) In vitro exposure to skins, an irradiation of 40,000 R from 43 kVp X-ray source caused a decrease in the solubility of collagen. While an irradiation of 40,000 R of dosage from 200 kVp X-ray source resulted in the increase in soluble collagen and the decrease in insoluble collagen. 3) When intact rats were given a single dose of 40,000 R from 60 Co- gamma -ray, insoluble collagen decreased in both young and adult rats. Similar changes in collagen solubility were observed in vitro gamma -irradiation. (author)

  1. Alginate-Collagen Fibril Composite Hydrogel

    Directory of Open Access Journals (Sweden)

    Mahmoud Baniasadi

    2015-02-01

    Full Text Available We report on the synthesis and the mechanical characterization of an alginate-collagen fibril composite hydrogel. Native type I collagen fibrils were used to synthesize the fibrous composite hydrogel. We characterized the mechanical properties of the fabricated fibrous hydrogel using tensile testing; rheometry and atomic force microscope (AFM-based nanoindentation experiments. The results show that addition of type I collagen fibrils improves the rheological and indentation properties of the hydrogel.

  2. Skin equivalent tissue-engineered construct: co-cultured fibroblasts/ keratinocytes on 3D matrices of sericin hope cocoons.

    Directory of Open Access Journals (Sweden)

    Sunita Nayak

    Full Text Available The development of effective and alternative tissue-engineered skin replacements to autografts, allografts and xenografts has became a clinical requirement due to the problems related to source of donor tissue and the perceived risk of disease transmission. In the present study 3D tissue engineered construct of sericin is developed using co-culture of keratinocytes on the upper surface of the fabricated matrices and with fibroblasts on lower surface. Sericin is obtained from "Sericin Hope" silkworm of Bombyx mori mutant and is extracted from cocoons by autoclave. Porous sericin matrices are prepared by freeze dried method using genipin as crosslinker. The matrices are characterized biochemically and biophysically. The cell proliferation and viability of co-cultured fibroblasts and keratinocytes on matrices for at least 28 days are observed by live/dead assay, Alamar blue assay, and by dual fluorescent staining. The growth of the fibroblasts and keratinocytes in co-culture is correlated with the expression level of TGF-β, b-FGF and IL-8 in the cultured supernatants by enzyme-linked immunosorbent assay. The histological analysis further demonstrates a multi-layered stratified epidermal layer of uninhibited keratinocytes in co-cultured constructs. Presence of involucrin, collagen IV and the fibroblast surface protein in immuno-histochemical stained sections of co-cultured matrices indicates the significance of paracrine signaling between keratinocytes and fibroblasts in the expression of extracellular matrix protein for dermal repair. No significant amount of pro inflammatory cytokines (TNF-α, IL-1β and nitric oxide production are evidenced when macrophages grown on the sericin matrices. The results all together depict the potentiality of sericin 3D matrices as skin equivalent tissue engineered construct in wound repair.

  3. Routes towards Novel Collagen-Like Biomaterials

    Directory of Open Access Journals (Sweden)

    Adrian V. Golser

    2018-04-01

    Full Text Available Collagen plays a major role in providing mechanical support within the extracellular matrix and thus has long been used for various biomedical purposes. Exemplary, it is able to replace damaged tissues without causing adverse reactions in the receiving patient. Today’s collagen grafts mostly are made of decellularized and otherwise processed animal tissue and therefore carry the risk of unwanted side effects and limited mechanical strength, which makes them unsuitable for some applications e.g., within tissue engineering. In order to improve collagen-based biomaterials, recent advances have been made to process soluble collagen through nature-inspired silk-like spinning processes and to overcome the difficulties in providing adequate amounts of source material by manufacturing collagen-like proteins through biotechnological methods and peptide synthesis. Since these methods also open up possibilities to incorporate additional functional domains into the collagen, we discuss one of the best-performing collagen-like type of proteins, which already have additional functional domains in the natural blueprint, the marine mussel byssus collagens, providing inspiration for novel biomaterials based on collagen-silk hybrid proteins.

  4. Bayesian Nonparametric Clustering for Positive Definite Matrices.

    Science.gov (United States)

    Cherian, Anoop; Morellas, Vassilios; Papanikolopoulos, Nikolaos

    2016-05-01

    Symmetric Positive Definite (SPD) matrices emerge as data descriptors in several applications of computer vision such as object tracking, texture recognition, and diffusion tensor imaging. Clustering these data matrices forms an integral part of these applications, for which soft-clustering algorithms (K-Means, expectation maximization, etc.) are generally used. As is well-known, these algorithms need the number of clusters to be specified, which is difficult when the dataset scales. To address this issue, we resort to the classical nonparametric Bayesian framework by modeling the data as a mixture model using the Dirichlet process (DP) prior. Since these matrices do not conform to the Euclidean geometry, rather belongs to a curved Riemannian manifold,existing DP models cannot be directly applied. Thus, in this paper, we propose a novel DP mixture model framework for SPD matrices. Using the log-determinant divergence as the underlying dissimilarity measure to compare these matrices, and further using the connection between this measure and the Wishart distribution, we derive a novel DPM model based on the Wishart-Inverse-Wishart conjugate pair. We apply this model to several applications in computer vision. Our experiments demonstrate that our model is scalable to the dataset size and at the same time achieves superior accuracy compared to several state-of-the-art parametric and nonparametric clustering algorithms.

  5. Isolation and Identification of Proteins Secreted by Cells Cultured within Synthetic Hydrogel-Based Matrices.

    Science.gov (United States)

    Sawicki, Lisa A; Choe, Leila H; Wiley, Katherine L; Lee, Kelvin H; Kloxin, April M

    2018-03-12

    Cells interact with and remodel their microenvironment, degrading large extracellular matrix (ECM) proteins (e.g., fibronectin, collagens) and secreting new ECM proteins and small soluble factors (e.g., growth factors, cytokines). Synthetic mimics of the ECM have been developed as controlled cell culture platforms for use in both fundamental and applied studies. However, how cells broadly remodel these initially well-defined matrices remains poorly understood and difficult to probe. In this work, we have established methods for widely examining both large and small proteins that are secreted by cells within synthetic matrices. Specifically, human mesenchymal stem cells (hMSCs), a model primary cell type, were cultured within well-defined poly(ethylene glycol) (PEG)-peptide hydrogels, and these cell-matrix constructs were decellularized and degraded for subsequent isolation and analysis of deposited proteins. Shotgun proteomics using liquid chromatography and mass spectrometry identified a variety of proteins, including the large ECM proteins fibronectin and collagen VI. Immunostaining and confocal imaging confirmed these results and provided visualization of protein organization within the synthetic matrices. Additionally, culture medium was collected from the encapsulated hMSCs, and a Luminex assay was performed to identify secreted soluble factors, including vascular endothelial growth factor (VEGF), endothelial growth factor (EGF), basic fibroblast growth factor (FGF-2), interleukin 8 (IL-8), and tumor necrosis factor alpha (TNF-α). Together, these methods provide a unique approach for studying dynamic reciprocity between cells and synthetic microenvironments and have the potential to provide new biological insights into cell responses during three-dimensional (3D) controlled cell culture.

  6. Quercetin protects human brain microvascular endothelial cells from fibrillar β-amyloid1–40-induced toxicity

    Directory of Open Access Journals (Sweden)

    Yongjie Li

    2015-01-01

    Full Text Available Amyloid beta-peptides (Aβ are known to undergo active transport across the blood-brain barrier, and cerebral amyloid angiopathy has been shown to be a prominent feature in the majority of Alzheimer׳s disease. Quercetin is a natural flavonoid molecule and has been demonstrated to have potent neuroprotective effects, but its protective effect on endothelial cells under Aβ-damaged condition is unclear. In the present study, the protective effects of quercetin on brain microvascular endothelial cells injured by fibrillar Aβ1–40 (fAβ1–40 were observed. The results show that fAβ1–40-induced cytotoxicity in human brain microvascular endothelial cells (hBMECs can be relieved by quercetin treatment. Quercetin increases cell viability, reduces the release of lactate dehydrogenase, and relieves nuclear condensation. Quercetin also alleviates intracellular reactive oxygen species generation and increases superoxide dismutase activity. Moreover, it strengthens the barrier integrity through the preservation of the transendothelial electrical resistance value, the relief of aggravated permeability, and the increase of characteristic enzyme levels after being exposed to fAβ1–40. In conclusion, quercetin protects hBMECs from fAβ1–40-induced toxicity.

  7. Mechanisms of Plastic Deformation in Collagen Networks Induced by Cellular Forces.

    Science.gov (United States)

    Ban, Ehsan; Franklin, J Matthew; Nam, Sungmin; Smith, Lucas R; Wang, Hailong; Wells, Rebecca G; Chaudhuri, Ovijit; Liphardt, Jan T; Shenoy, Vivek B

    2018-01-23

    Contractile cells can reorganize fibrous extracellular matrices and form dense tracts of fibers between neighboring cells. These tracts guide the development of tubular tissue structures and provide paths for the invasion of cancer cells. Here, we studied the mechanisms of the mechanical plasticity of collagen tracts formed by contractile premalignant acinar cells and fibroblasts. Using fluorescence microscopy and second harmonic generation, we quantified the collagen densification, fiber alignment, and strains that remain within the tracts after cellular forces are abolished. We explained these observations using a theoretical fiber network model that accounts for the stretch-dependent formation of weak cross-links between nearby fibers. We tested the predictions of our model using shear rheology experiments. Both our model and rheological experiments demonstrated that increasing collagen concentration leads to substantial increases in plasticity. We also considered the effect of permanent elongation of fibers on network plasticity and derived a phase diagram that classifies the dominant mechanisms of plasticity based on the rate and magnitude of deformation and the mechanical properties of individual fibers. Plasticity is caused by the formation of new cross-links if moderate strains are applied at small rates or due to permanent fiber elongation if large strains are applied over short periods. Finally, we developed a coarse-grained model for plastic deformation of collagen networks that can be employed to simulate multicellular interactions in processes such as morphogenesis, cancer invasion, and fibrosis. Copyright © 2017 Biophysical Society. Published by Elsevier Inc. All rights reserved.

  8. Ultrasonic delineation of aortic microstructure: The relative contribution of elastin and collagen to aortic elasticity

    Science.gov (United States)

    Marsh, Jon N.; Takiuchi, Shin; Lin, Shiow Jiuan; Lanza, Gregory M.; Wickline, Samuel A.

    2004-05-01

    Aortic elasticity is an important factor in hemodynamic health, and compromised aortic compliance affects not only arterial dynamics but also myocardial function. A variety of pathologic processes (e.g., diabetes, Marfan's syndrome, hypertension) can affect aortic elasticity by altering the microstructure and composition of the elastin and collagen fiber networks within the tunica media. Ultrasound tissue characterization techniques can be used to obtain direct measurements of the stiffness coefficients of aorta by measurement of the speed of sound in specific directions. In this study we sought to define the contributions of elastin and collagen to the mechanical properties of aortic media by measuring the magnitude and directional dependence of the speed of sound before and after selective isolation of either the collagen or elastin fiber matrix. Formalin-fixed porcine aortas were sectioned for insonification in the circumferential, longitudinal, or radial direction and examined using high-frequency (50 MHz) ultrasound microscopy. Isolation of the collagen or elastin fiber matrices was accomplished through treatment with NaOH or formic acid, respectively. The results suggest that elastin is the primary contributor to aortic medial stiffness in the unloaded state, and that there is relatively little anisotropy in the speed of sound or stiffness in the aortic wall.

  9. The 26S Proteasome Degrades the Soluble but Not the Fibrillar Form of the Yeast Prion Ure2p In Vitro.

    Directory of Open Access Journals (Sweden)

    Kai Wang

    Full Text Available Yeast prions are self-perpetuating protein aggregates that cause heritable and transmissible phenotypic traits. Among these, [PSI+] and [URE3] stand out as the most studied yeast prions, and result from the self-assembly of the translation terminator Sup35p and the nitrogen catabolism regulator Ure2p, respectively, into insoluble fibrillar aggregates. Protein quality control systems are well known to govern the formation, propagation and transmission of these prions. However, little is known about the implication of the cellular proteolytic machineries in their turnover. We previously showed that the 26S proteasome degrades both the soluble and fibrillar forms of Sup35p and affects [PSI+] propagation. Here, we show that soluble native Ure2p is degraded by the proteasome in an ubiquitin-independent manner. Proteasomal degradation of Ure2p yields amyloidogenic N-terminal peptides and a C-terminal resistant fragment. In contrast to Sup35p, fibrillar Ure2p resists proteasomal degradation. Thus, structural variability within prions may dictate their ability to be degraded by the cellular proteolytic systems.

  10. The 26S Proteasome Degrades the Soluble but Not the Fibrillar Form of the Yeast Prion Ure2p In Vitro

    Science.gov (United States)

    Wang, Kai; Redeker, Virginie; Madiona, Karine; Melki, Ronald; Kabani, Mehdi

    2015-01-01

    Yeast prions are self-perpetuating protein aggregates that cause heritable and transmissible phenotypic traits. Among these, [PSI +] and [URE3] stand out as the most studied yeast prions, and result from the self-assembly of the translation terminator Sup35p and the nitrogen catabolism regulator Ure2p, respectively, into insoluble fibrillar aggregates. Protein quality control systems are well known to govern the formation, propagation and transmission of these prions. However, little is known about the implication of the cellular proteolytic machineries in their turnover. We previously showed that the 26S proteasome degrades both the soluble and fibrillar forms of Sup35p and affects [PSI +] propagation. Here, we show that soluble native Ure2p is degraded by the proteasome in an ubiquitin-independent manner. Proteasomal degradation of Ure2p yields amyloidogenic N-terminal peptides and a C-terminal resistant fragment. In contrast to Sup35p, fibrillar Ure2p resists proteasomal degradation. Thus, structural variability within prions may dictate their ability to be degraded by the cellular proteolytic systems. PMID:26115123

  11. High resolution imaging of collagen organisation and synthesis using a versatile collagen specific probe

    NARCIS (Netherlands)

    Boerboom, R.A.; Krahn - Nash, K.; Megens, R.T.A.; Zandvoort, van M.; Merkx, M.; Bouten, C.V.C.

    2007-01-01

    Collagen is the protein primarily responsible for the load-bearing properties of tissues and collagen architecture is one of the main determinants of the mechanical properties of tissues. Visualisation of changes in collagen three-dimensional structure is essential in order to improve our

  12. Random matrices and random difference equations

    International Nuclear Information System (INIS)

    Uppuluri, V.R.R.

    1975-01-01

    Mathematical models leading to products of random matrices and random difference equations are discussed. A one-compartment model with random behavior is introduced, and it is shown how the average concentration in the discrete time model converges to the exponential function. This is of relevance to understanding how radioactivity gets trapped in bone structure in blood--bone systems. The ideas are then generalized to two-compartment models and mammillary systems, where products of random matrices appear in a natural way. The appearance of products of random matrices in applications in demography and control theory is considered. Then random sequences motivated from the following problems are studied: constant pulsing and random decay models, random pulsing and constant decay models, and random pulsing and random decay models

  13. Quantum Entanglement and Reduced Density Matrices

    Science.gov (United States)

    Purwanto, Agus; Sukamto, Heru; Yuwana, Lila

    2018-05-01

    We investigate entanglement and separability criteria of multipartite (n-partite) state by examining ranks of its reduced density matrices. Firstly, we construct the general formula to determine the criterion. A rank of origin density matrix always equals one, meanwhile ranks of reduced matrices have various ranks. Next, separability and entanglement criterion of multipartite is determined by calculating ranks of reduced density matrices. In this article we diversify multipartite state criteria into completely entangled state, completely separable state, and compound state, i.e. sub-entangled state and sub-entangledseparable state. Furthermore, we also shorten the calculation proposed by the previous research to determine separability of multipartite state and expand the methods to be able to differ multipartite state based on criteria above.

  14. Forecasting Covariance Matrices: A Mixed Frequency Approach

    DEFF Research Database (Denmark)

    Halbleib, Roxana; Voev, Valeri

    This paper proposes a new method for forecasting covariance matrices of financial returns. The model mixes volatility forecasts from a dynamic model of daily realized volatilities estimated with high-frequency data with correlation forecasts based on daily data. This new approach allows for flexi......This paper proposes a new method for forecasting covariance matrices of financial returns. The model mixes volatility forecasts from a dynamic model of daily realized volatilities estimated with high-frequency data with correlation forecasts based on daily data. This new approach allows...... for flexible dependence patterns for volatilities and correlations, and can be applied to covariance matrices of large dimensions. The separate modeling of volatility and correlation forecasts considerably reduces the estimation and measurement error implied by the joint estimation and modeling of covariance...

  15. Advanced incomplete factorization algorithms for Stiltijes matrices

    Energy Technology Data Exchange (ETDEWEB)

    Il`in, V.P. [Siberian Division RAS, Novosibirsk (Russian Federation)

    1996-12-31

    The modern numerical methods for solving the linear algebraic systems Au = f with high order sparse matrices A, which arise in grid approximations of multidimensional boundary value problems, are based mainly on accelerated iterative processes with easily invertible preconditioning matrices presented in the form of approximate (incomplete) factorization of the original matrix A. We consider some recent algorithmic approaches, theoretical foundations, experimental data and open questions for incomplete factorization of Stiltijes matrices which are {open_quotes}the best{close_quotes} ones in the sense that they have the most advanced results. Special attention is given to solving the elliptic differential equations with strongly variable coefficients, singular perturbated diffusion-convection and parabolic equations.

  16. Laser welding and collagen crosslinks

    Energy Technology Data Exchange (ETDEWEB)

    Reiser, K.M.; Last, J.A. [California Univ., Davis, CA (United States). Dept. of Medicine; Small, W. IV; Maitland, D.J.; Heredia, N.J.; Da Silva, L.B.; Matthews, D.L. [Lawrence Livermore National Lab., CA (United States)

    1997-02-20

    Strength and stability of laser-welded tissue may be influenced, in part, by effects of laser exposure on collagen crosslinking. We therefore studied effects of diode laser exposure (805 nm, 1-8 watts, 30 seconds) + indocyanine green dye (ICG) on calf tail tendon collagen crosslinks. Effect of ICG dye alone on crosslink content prior to laser exposure was investigated; unexpectedly, we found that ICG-treated tissue had significantly increased DHLNL and OHP, but not HLNL. Laser exposure after ICG application reduced elevated DHLNL and OHP crosslink content down to their native levels. The monohydroxylated crosslink HLNL was inversely correlated with laser output (p<0.01 by linear regression analysis). DHLNL content was highly correlated with content of its maturational product, OHP, suggesting that precursor-product relations are maintained. We conclude that: (1)ICG alone induces DHLNL and OHP crosslink formation; (2)subsequent laser exposure reduces the ICG-induced crosslinks down to native levels; (3)excessive diode laser exposure destroys normally occurring HLNL crosslinks.

  17. Modern collagen wound dressings: function and purpose.

    Science.gov (United States)

    Fleck, Cynthia Ann; Simman, Richard

    2010-09-01

    Collagen, which is produced by fibroblasts, is the most abundant protein in the human body. A natural structural protein, collagen is involved in all 3 phases of the wound-healing cascade. It stimulates cellular migration and contributes to new tissue development. Because of their chemotactic properties on wound fibroblasts, collagen dressings encourage the deposition and organization of newly formed collagen, creating an environment that fosters healing. Collagen-based biomaterials stimulate and recruit specific cells, such as macrophages and fibroblasts, along the healing cascade to enhance and influence wound healing. These biomaterials can provide moisture or absorption, depending on the delivery system. Collagen dressings are easy to apply and remove and are conformable. Collagen dressings are usually formulated with bovine, avian, or porcine collagen. Oxidized regenerated cellulose, a plant-based material, has been combined with collagen to produce a dressing capable of binding to and protecting growth factors by binding and inactivating matrix metalloproteinases in the wound environment. The increased understanding of the biochemical processes involved in chronic wound healing allows the design of wound care products aimed at correcting imbalances in the wound microenvironment. Traditional advanced wound care products tend to address the wound's macroenvironment, including moist wound environment control, fluid management, and controlled transpiration of wound fluids. The newer class of biomaterials and wound-healing agents, such as collagen and growth factors, targets specific defects in the chronic wound environment. In vitro laboratory data point to the possibility that these agents benefit the wound healing process at a biochemical level. Considerable evidence has indicated that collagen-based dressings may be capable of stimulating healing by manipulating wound biochemistry.

  18. Wishart and anti-Wishart random matrices

    International Nuclear Information System (INIS)

    Janik, Romuald A; Nowak, Maciej A

    2003-01-01

    We provide a compact exact representation for the distribution of the matrix elements of the Wishart-type random matrices A † A, for any finite number of rows and columns of A, without any large N approximations. In particular, we treat the case when the Wishart-type random matrix contains redundant, non-random information, which is a new result. This representation is of interest for a procedure for reconstructing the redundant information hidden in Wishart matrices, with potential applications to numerous models based on biological, social and artificial intelligence networks

  19. Topological expansion of the chain of matrices

    International Nuclear Information System (INIS)

    Eynard, B.; Ferrer, A. Prats

    2009-01-01

    We solve the loop equations to all orders in 1/N 2 , for the Chain of Matrices matrix model (with possibly an external field coupled to the last matrix of the chain). We show that the topological expansion of the free energy, is, like for the 1 and 2-matrix model, given by the symplectic invariants of [19]. As a consequence, we find the double scaling limit explicitly, and we discuss modular properties, large N asymptotics. We also briefly discuss the limit of an infinite chain of matrices (matrix quantum mechanics).

  20. Partitioning sparse rectangular matrices for parallel processing

    Energy Technology Data Exchange (ETDEWEB)

    Kolda, T.G.

    1998-05-01

    The authors are interested in partitioning sparse rectangular matrices for parallel processing. The partitioning problem has been well-studied in the square symmetric case, but the rectangular problem has received very little attention. They will formalize the rectangular matrix partitioning problem and discuss several methods for solving it. They will extend the spectral partitioning method for symmetric matrices to the rectangular case and compare this method to three new methods -- the alternating partitioning method and two hybrid methods. The hybrid methods will be shown to be best.

  1. Recombinant gelatin and collagen from methylotrophic yeasts

    NARCIS (Netherlands)

    Bruin, de E.C.

    2002-01-01

    Based on its structural role and compatibility within the human body, collagen is a commonly used biomaterial in medical applications, such as cosmetic surgery, wound treatment and tissue engineering. Gelatin is in essence denatured and partly degraded collagen and is,

  2. Biomimetic soluble collagen purified from bones.

    Science.gov (United States)

    Ferreira, Ana Marina; Gentile, Piergiorgio; Sartori, Susanna; Pagliano, Cristina; Cabrele, Chiara; Chiono, Valeria; Ciardelli, Gianluca

    2012-11-01

    Type I collagen has been extensively exploited as a biomaterial for biomedical applications and drug delivery; however, small molecular alterations occurring during the isolation procedure and its interaction with residual bone extracellular matrix molecules or proteins might affect the overall material biocompatibility and performance. The aim of the current work is to study the potential alterations in collagen properties and organization associated with the absence of proteoglycans, which mimic pathological conditions associated with age-related diseases. A new approach for evaluating the effect of proteoglycans on the properties of isolated type I collagen from the bone matrix is described. Additional treatment with guanidine hydrochloride was introduced to remove residual proteoglycans from the collagen matrix. The properties of the isolated collagen with/without guanidine hydrochloride treatment were investigated and compared with a commercial rabbit collagen as control. We demonstrate that the absence of proteoglycans in the isolated type I collagen affects its thermal properties, the extraction into its native structure, and its ability to hydrate and self-assemble into fibers. The fine control and tuning of all these features, linked to the absence of non-collagenous proteins as proteoglycans, offer the possibility of designing new strategies and biomaterials with advanced biomimetic properties aimed at regenerating bone tissue in the case of fragility and/or defects. Copyright © 2012 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim.

  3. Chondroitin Sulfate Perlecan Enhances Collagen Fibril Formation

    DEFF Research Database (Denmark)

    Kvist, A. J.; Johnson, A. E.; Mörgelin, M.

    2006-01-01

    in collagen type II fibril assembly by perlecan-null chondrocytes. Cartilage perlecan is a heparin sulfate or a mixed heparan sulfate/chondroitin sulfate proteoglycan. The latter form binds collagen and accelerates fibril formation in vitro, with more defined fibril morphology and increased fibril diameters...... produced in the presence of perlecan. Interestingly, the enhancement of collagen fibril formation is independent on the core protein and is mimicked by chondroitin sulfate E but neither by chondroitin sulfate D nor dextran sulfate. Furthermore, perlecan chondroitin sulfate contains the 4,6-disulfated...... disaccharides typical for chondroitin sulfate E. Indeed, purified glycosaminoglycans from perlecan-enriched fractions of cartilage extracts contain elevated levels of 4,6-disulfated chondroitin sulfate disaccharides and enhance collagen fibril formation. The effect on collagen assembly is proportional...

  4. Hierarchical matrix approximation of large covariance matrices

    KAUST Repository

    Litvinenko, Alexander; Genton, Marc G.; Sun, Ying

    2015-01-01

    We approximate large non-structured Matérn covariance matrices of size n×n in the H-matrix format with a log-linear computational cost and storage O(kn log n), where rank k ≪ n is a small integer. Applications are: spatial statistics, machine learning and image analysis, kriging and optimal design.

  5. Theoretical origin of quark mass matrices

    International Nuclear Information System (INIS)

    Mohapatra, R.N.

    1987-01-01

    This paper presents the theoretical origin of specific quark mass matrices in the grand unified theories. The author discusses the first natural derivation of the Stech-type mass matrix in unified gauge theories. A solution to the strong CP-problem is provided

  6. Malware Analysis Using Visualized Image Matrices

    Directory of Open Access Journals (Sweden)

    KyoungSoo Han

    2014-01-01

    Full Text Available This paper proposes a novel malware visual analysis method that contains not only a visualization method to convert binary files into images, but also a similarity calculation method between these images. The proposed method generates RGB-colored pixels on image matrices using the opcode sequences extracted from malware samples and calculates the similarities for the image matrices. Particularly, our proposed methods are available for packed malware samples by applying them to the execution traces extracted through dynamic analysis. When the images are generated, we can reduce the overheads by extracting the opcode sequences only from the blocks that include the instructions related to staple behaviors such as functions and application programming interface (API calls. In addition, we propose a technique that generates a representative image for each malware family in order to reduce the number of comparisons for the classification of unknown samples and the colored pixel information in the image matrices is used to calculate the similarities between the images. Our experimental results show that the image matrices of malware can effectively be used to classify malware families both statically and dynamically with accuracy of 0.9896 and 0.9732, respectively.

  7. Moment matrices, border bases and radical computation

    NARCIS (Netherlands)

    B. Mourrain; J.B. Lasserre; M. Laurent (Monique); P. Rostalski; P. Trebuchet (Philippe)

    2013-01-01

    htmlabstractIn this paper, we describe new methods to compute the radical (resp. real radical) of an ideal, assuming it complex (resp. real) variety is nte. The aim is to combine approaches for solving a system of polynomial equations with dual methods which involve moment matrices and

  8. Moment matrices, border bases and radical computation

    NARCIS (Netherlands)

    Lasserre, J.B.; Laurent, M.; Mourrain, B.; Rostalski, P.; Trébuchet, P.

    2013-01-01

    In this paper, we describe new methods to compute the radical (resp. real radical) of an ideal, assuming its complex (resp. real) variety is finite. The aim is to combine approaches for solving a system of polynomial equations with dual methods which involve moment matrices and semi-definite

  9. Moment matrices, border bases and radical computation

    NARCIS (Netherlands)

    B. Mourrain; J.B. Lasserre; M. Laurent (Monique); P. Rostalski; P. Trebuchet (Philippe)

    2011-01-01

    htmlabstractIn this paper, we describe new methods to compute the radical (resp. real radical) of an ideal, assuming it complex (resp. real) variety is nte. The aim is to combine approaches for solving a system of polynomial equations with dual methods which involve moment matrices and

  10. Malware analysis using visualized image matrices.

    Science.gov (United States)

    Han, KyoungSoo; Kang, BooJoong; Im, Eul Gyu

    2014-01-01

    This paper proposes a novel malware visual analysis method that contains not only a visualization method to convert binary files into images, but also a similarity calculation method between these images. The proposed method generates RGB-colored pixels on image matrices using the opcode sequences extracted from malware samples and calculates the similarities for the image matrices. Particularly, our proposed methods are available for packed malware samples by applying them to the execution traces extracted through dynamic analysis. When the images are generated, we can reduce the overheads by extracting the opcode sequences only from the blocks that include the instructions related to staple behaviors such as functions and application programming interface (API) calls. In addition, we propose a technique that generates a representative image for each malware family in order to reduce the number of comparisons for the classification of unknown samples and the colored pixel information in the image matrices is used to calculate the similarities between the images. Our experimental results show that the image matrices of malware can effectively be used to classify malware families both statically and dynamically with accuracy of 0.9896 and 0.9732, respectively.

  11. Generation speed in Raven's Progressive Matrices Test

    NARCIS (Netherlands)

    Verguts, T.; Boeck, P. De; Maris, E.G.G.

    1999-01-01

    In this paper, we investigate the role of response fluency on a well-known intelligence test, Raven's (1962) Advanced Progressive Matrices (APM) test. Critical in solving this test is finding rules that govern the items. Response fluency is conceptualized as generation speed or the speed at which a

  12. Inversion of General Cyclic Heptadiagonal Matrices

    Directory of Open Access Journals (Sweden)

    A. A. Karawia

    2013-01-01

    Full Text Available We describe a reliable symbolic computational algorithm for inverting general cyclic heptadiagonal matrices by using parallel computing along with recursion. The computational cost of it is operations. The algorithm is implementable to the Computer Algebra System (CAS such as MAPLE, MATLAB, and MATHEMATICA. Two examples are presented for the sake of illustration.

  13. Hierarchical matrix approximation of large covariance matrices

    KAUST Repository

    Litvinenko, Alexander

    2015-11-30

    We approximate large non-structured Matérn covariance matrices of size n×n in the H-matrix format with a log-linear computational cost and storage O(kn log n), where rank k ≪ n is a small integer. Applications are: spatial statistics, machine learning and image analysis, kriging and optimal design.

  14. Axonal transport and secretion of fibrillar forms of α-synuclein, Aβ42 peptide and HTTExon 1.

    Science.gov (United States)

    Brahic, Michel; Bousset, Luc; Bieri, Gregor; Melki, Ronald; Gitler, Aaron D

    2016-04-01

    Accruing evidence suggests that prion-like behavior of fibrillar forms of α-synuclein, β-amyloid peptide and mutant huntingtin are responsible for the spread of the lesions that characterize Parkinson disease, Alzheimer disease and Huntington disease, respectively. It is unknown whether these distinct protein assemblies are transported within and between neurons by similar or distinct mechanisms. It is also unclear if neuronal death or injury is required for neuron-to-neuron transfer. To address these questions, we used mouse primary cortical neurons grown in microfluidic devices to measure the amounts of α-synuclein, Aβ42 and HTTExon1 fibrils transported by axons in both directions (anterograde and retrograde), as well as to examine the mechanism of their release from axons after anterograde transport. We observed that the three fibrils were transported in both anterograde and retrograde directions but with strikingly different efficiencies. The amount of Aβ42 fibrils transported was ten times higher than that of the other two fibrils. HTTExon1 was efficiently transported in the retrograde direction but only marginally in the anterograde direction. Finally, using neurons from two distinct mutant mouse strains whose axons are highly resistant to neurodegeneration (Wld(S) and Sarm1(-/-)), we found that the three different fibrils were secreted by axons after anterograde transport, in the absence of axonal lysis, indicating that trans-neuronal spread can occur in intact healthy neurons. In summary, fibrils of α-synuclein, Aβ42 and HTTExon1 are all transported in axons but in directions and amounts that are specific of each fibril. After anterograde transport, the three fibrils were secreted in the medium in the absence of axon lysis. Continuous secretion could play an important role in the spread of pathology between neurons but may be amenable to pharmacological intervention.

  15. On the strain-induced fibrillar microstructure of polyethylene: Influence of chemical structure, initial morphology and draw temperature

    Directory of Open Access Journals (Sweden)

    B. Xiong

    2016-04-01

    Full Text Available The influence of crystalline microstructure and molecular topology on the strain-induced fibrillar transformation of semi-crystalline polyethylenes having various chemical structures including co-unit content and molecular weight and crystallized under various thermal treatments was studied by in situ SAXS at different draw temperatures. The long period of the nascent microfibrils, Lpf, proved to be strongly dependent on the draw temperature but non-sensitive to the initial crystallization conditions. Lpf was smaller than the initial long period. Both findings have been ascribed to the straininduced melting-recrystallization process as generally claimed in the literature. The microfibrils diameter, Df, was shown to depend on the draw temperature and initial microstructure in a different way as Lpf. The evolution of Df was shown to correlate with the interfacial layer thickness that mainly depends on the chemical structure of the chains. It was concluded that, in contrast to Lpf, the microfibril diameter should not be directly sensitive to the strain-induced melting-recrystallization. The proposed scenario is that after the generation of the protofibrils by fragmentation of the crystalline lamellae at yielding, the diameter of the microfibril during the course of their stabilization should be governed by the chain-unfolding and subsequent aggregation of the unfolded chains onto the lateral surface of the microfibrils. The morphogenesis of the microfibrils should therefore essentially depend on the chemical structure of the polymer that governs its crystallization ability, its chain topology and subsequently its fragmentation process at yielding. This scenario is summed up in a sketch.

  16. In vivo Quantification of the Structural Changes of Collagens in a Melanoma Microenvironment with Second and Third Harmonic Generation Microscopy

    Science.gov (United States)

    Wu, Pei-Chun; Hsieh, Tsung-Yuan; Tsai, Zen-Uong; Liu, Tzu-Ming

    2015-03-01

    Using in vivo second harmonic generation (SHG) and third harmonic generation (THG) microscopies, we tracked the course of collagen remodeling over time in the same melanoma microenvironment within an individual mouse. The corresponding structural and morphological changes were quantitatively analyzed without labeling using an orientation index (OI), the gray level co-occurrence matrix (GLCM) method, and the intensity ratio of THG to SHG (RTHG/SHG). In the early stage of melanoma development, we found that collagen fibers adjacent to a melanoma have increased OI values and SHG intensities. In the late stages, these collagen networks have more directionality and less homogeneity. The corresponding GLCM traces showed oscillation features and the sum of squared fluctuation VarGLCM increased with the tumor sizes. In addition, the THG intensities of the extracellular matrices increased, indicating an enhanced optical inhomogeneity. Multiplying OI, VarGLCM, and RTHG/SHG together, the combinational collagen remodeling (CR) index at 4 weeks post melanoma implantation showed a 400-times higher value than normal ones. These results validate that our quantitative indices of SHG and THG microscopies are sensitive enough to diagnose the collagen remodeling in vivo. We believe these indices have the potential to help the diagnosis of skin cancers in clinical practice.

  17. The Mineral–Collagen Interface in Bone

    Science.gov (United States)

    2015-01-01

    The interface between collagen and the mineral reinforcement phase, carbonated hydroxyapatite (cAp), is essential for bone’s remarkable functionality as a biological composite material. The very small dimensions of the cAp phase and the disparate natures of the reinforcement and matrix are essential to the material’s performance but also complicate study of this interface. This article summarizes what is known about the cAp-collagen interface in bone and begins with descriptions of the matrix and reinforcement roles in composites, of the phases bounding the interface, of growth of cAp growing within the collagen matrix, and of the effect of intra- and extrafibrilar mineral on determinations of interfacial properties. Different observed interfacial interactions with cAp (collagen, water, non-collagenous proteins) are reviewed; experimental results on interface interactions during loading are reported as are their influence on macroscopic mechanical properties; conclusions of numerical modeling of interfacial interactions are also presented. The data suggest interfacial interlocking (bending of collagen molecules around cAp nanoplatelets) and water-mediated bonding between collagen and cAp are essential to load transfer. The review concludes with descriptions of areas where new research is needed to improve understanding of how the interface functions. PMID:25824581

  18. Age Increases Monocyte Adhesion on Collagen

    Science.gov (United States)

    Khalaji, Samira; Zondler, Lisa; Kleinjan, Fenneke; Nolte, Ulla; Mulaw, Medhanie A.; Danzer, Karin M.; Weishaupt, Jochen H.; Gottschalk, Kay-E.

    2017-05-01

    Adhesion of monocytes to micro-injuries on arterial walls is an important early step in the occurrence and development of degenerative atherosclerotic lesions. At these injuries, collagen is exposed to the blood stream. We are interested whether age influences monocyte adhesion to collagen under flow, and hence influences the susceptibility to arteriosclerotic lesions. Therefore, we studied adhesion and rolling of human peripheral blood monocytes from old and young individuals on collagen type I coated surface under shear flow. We find that firm adhesion of monocytes to collagen type I is elevated in old individuals. Pre-stimulation by lipopolysaccharide increases the firm adhesion of monocytes homogeneously in older individuals, but heterogeneously in young individuals. Blocking integrin αx showed that adhesion of monocytes to collagen type I is specific to the main collagen binding integrin αxβ2. Surprisingly, we find no significant age-dependent difference in gene expression of integrin αx or integrin β2. However, if all integrins are activated from the outside, no differences exist between the age groups. Altered integrin activation therefore causes the increased adhesion. Our results show that the basal increase in integrin activation in monocytes from old individuals increases monocyte adhesion to collagen and therefore the risk for arteriosclerotic plaques.

  19. Cosmetic Potential of Marine Fish Skin Collagen

    Directory of Open Access Journals (Sweden)

    Ana L. Alves

    2017-10-01

    Full Text Available Many cosmetic formulations have collagen as a major component because of its significant benefits as a natural humectant and moisturizer. This industry is constantly looking for innovative, sustainable, and truly efficacious products, so marine collagen based formulations are arising as promising alternatives. A solid description and characterization of this protein is fundamental to guarantee the highest quality of each batch. In the present study, we present an extensive characterization of marine-derived collagen extracted from salmon and codfish skins, targeting its inclusion as component in cosmetic formulations. Chemical and physical characterizations were performed using several techniques such as sodium dodecyl sulphate-polyacrylamide gel electrophoresis (SDS-PAGE, Fourier Transformation Infrared (FTIR spectroscopy rheology, circular dichroism, X-ray diffraction, humidity uptake, and a biological assessment of the extracts regarding their irritant potential. The results showed an isolation of type I collagen with high purity but with some structural and chemical differences between sources. Collagen demonstrated a good capacity to retain water, thus being suitable for dermal applications as a moisturizer. A topical exposure of collagen in a human reconstructed dermis, as well as the analysis of molecular markers for irritation and inflammation, exhibited no irritant potential. Thus, the isolation of collagen from fish skins for inclusion in dermocosmetic applications may constitute a sustainable and low-cost platform for the biotechnological valorization of fish by-products.

  20. Occlusal loading and cross-linking effects on dentin collagen degradation in physiological conditions.

    Science.gov (United States)

    Turco, Gianluca; Frassetto, Andrea; Fontanive, Luca; Mazzoni, Annalisa; Cadenaro, Milena; Di Lenarda, Roberto; Tay, Franklin R; Pashley, David H; Breschi, Lorenzo

    2016-02-01

    This study evaluated the ability of 1-ethyl-3-(3-dimethylaminopropyl)-carbodiimide hydrochloride (EDC) to improve the stability of demineralized dentin collagen matrices when subjected to mechanical cycling by means of Chewing Simulation (CS). Demineralized dentin disks were randomly assigned to four groups (N=4): (1) immersion in artificial saliva at 37°C for 30 days; (2) pre-treatment with 0.5 M EDC for 60 s, then stored as in Group 1; (3) CS challenge (50 N occlusal load, 30 s occlusal time plus 30 s with no load, for 30 days); (4) pre-treatment with 0.5 M EDC as in Group 2 and CS challenge as in Group 3. Collagen degradation was evaluated by sampling storage media for ICTP and CTX telopeptides. EDC treated specimens showed no significant telopeptides release, irrespective of the aging method. Cyclic stressing of EDC-untreated specimens caused significantly higher ICTP release at day 1, compared to static storage, while by days 3 and 4, the ICTP release in the cyclic group fell significantly below the static group, and then remained undetectable from 5 to 30 days. CTX release in the cyclic groups, on EDC-untreated control specimens was always lower than in the static group in days 1-4, and then fell to undetectable for 30 days. This study showed that chewing stresses applied to control untreated demineralized dentin increased degradation of collagen in terms of CTX release, while collagen crosslinking agents may prevent dentin collagen degradation, irrespective of simulated occlusal function. Copyright © 2015 Academy of Dental Materials. Published by Elsevier Ltd. All rights reserved.

  1. Association of collagen architecture with glioblastoma patient survival.

    Science.gov (United States)

    Pointer, Kelli B; Clark, Paul A; Schroeder, Alexandra B; Salamat, M Shahriar; Eliceiri, Kevin W; Kuo, John S

    2017-06-01

    OBJECTIVE Glioblastoma (GBM) is the most malignant primary brain tumor. Collagen is present in low amounts in normal brain, but in GBMs, collagen gene expression is reportedly upregulated. However, to the authors' knowledge, direct visualization of collagen architecture has not been reported. The authors sought to perform the first direct visualization of GBM collagen architecture, identify clinically relevant collagen signatures, and link them to differential patient survival. METHODS Second-harmonic generation microscopy was used to detect collagen in a GBM patient tissue microarray. Focal and invasive GBM mouse xenografts were stained with Picrosirius red. Quantitation of collagen fibers was performed using custom software. Multivariate survival analysis was done to determine if collagen is a survival marker for patients. RESULTS In focal xenografts, collagen was observed at tumor brain boundaries. For invasive xenografts, collagen was intercalated with tumor cells. Quantitative analysis showed significant differences in collagen fibers for focal and invasive xenografts. The authors also found that GBM patients with more organized collagen had a longer median survival than those with less organized collagen. CONCLUSIONS Collagen architecture can be directly visualized and is different in focal versus invasive GBMs. The authors also demonstrate that collagen signature is associated with patient survival. These findings suggest that there are collagen differences in focal versus invasive GBMs and that collagen is a survival marker for GBM.

  2. Characterization of Genipin-Modified Dentin Collagen

    Directory of Open Access Journals (Sweden)

    Hiroko Nagaoka

    2014-01-01

    Full Text Available Application of biomodification techniques to dentin can improve its biochemical and biomechanical properties. Several collagen cross-linking agents have been reported to strengthen the mechanical properties of dentin. However, the characteristics of collagen that has undergone agent-induced biomodification are not well understood. The objective of this study was to analyze the effects of a natural cross-linking agent, genipin (GE, on dentin discoloration, collagen stability, and changes in amino acid composition and lysyl oxidase mediated natural collagen cross-links. Dentin collagen obtained from extracted bovine teeth was treated with three different concentrations of GE (0.01%, 0.1%, and 0.5% for several treatment times (0–24 h. Changes in biochemical properties of NaB3H4-reduced collagen were characterized by amino acid and cross-link analyses. The treatment of dentin collagen with GE resulted in a concentration- and time-dependent pigmentation and stability against bacterial collagenase. The lysyl oxidase-mediated trivalent mature cross-link, pyridinoline, showed no difference among all groups while the major divalent immature cross-link, dehydro-dihydroxylysinonorleucine/its ketoamine in collagen treated with 0.5% GE for 24 h, significantly decreased compared to control (P< 0.05. The newly formed GE-induced cross-links most likely involve lysine and hydroxylysine residues of collagen in a concentration-dependent manner. Some of these cross-links appear to be reducible and stabilized with NaB3H4.

  3. Fibrous mini-collagens in hydra nematocysts.

    Science.gov (United States)

    Holstein, T W; Benoit, M; Herder, G V; David, C N; Wanner, G; Gaub, H E

    1994-07-15

    Nematocysts (cnidocysts) are exocytotic organelles found in all cnidarians. Here, atomic force microscopy and field emission scanning electron microscopy reveal the structure of the nematocyst capsule wall. The outer wall consists of globular proteins of unknown function. The inner wall consists of bundles of collagen-like fibrils having a spacing of 50 to 100 nanometers and cross-striations at intervals of 32 nanometers. The fibrils consist of polymers of "mini-collagens," which are abundant in the nematocysts of Hydra. The distinct pattern of mini-collagen fibers in the inner wall can provide the tensile strength necessary to withstand the high osmotic pressure (15 megapascals) in the capsules.

  4. On Skew Circulant Type Matrices Involving Any Continuous Fibonacci Numbers

    Directory of Open Access Journals (Sweden)

    Zhaolin Jiang

    2014-01-01

    inverse matrices of them by constructing the transformation matrices. Furthermore, the maximum column sum matrix norm, the spectral norm, the Euclidean (or Frobenius norm, and the maximum row sum matrix norm and bounds for the spread of these matrices are given, respectively.

  5. Fungible Correlation Matrices: A Method for Generating Nonsingular, Singular, and Improper Correlation Matrices for Monte Carlo Research.

    Science.gov (United States)

    Waller, Niels G

    2016-01-01

    For a fixed set of standardized regression coefficients and a fixed coefficient of determination (R-squared), an infinite number of predictor correlation matrices will satisfy the implied quadratic form. I call such matrices fungible correlation matrices. In this article, I describe an algorithm for generating positive definite (PD), positive semidefinite (PSD), or indefinite (ID) fungible correlation matrices that have a random or fixed smallest eigenvalue. The underlying equations of this algorithm are reviewed from both algebraic and geometric perspectives. Two simulation studies illustrate that fungible correlation matrices can be profitably used in Monte Carlo research. The first study uses PD fungible correlation matrices to compare penalized regression algorithms. The second study uses ID fungible correlation matrices to compare matrix-smoothing algorithms. R code for generating fungible correlation matrices is presented in the supplemental materials.

  6. Evolutionary Games with Randomly Changing Payoff Matrices

    Science.gov (United States)

    Yakushkina, Tatiana; Saakian, David B.; Bratus, Alexander; Hu, Chin-Kun

    2015-06-01

    Evolutionary games are used in various fields stretching from economics to biology. In most of these games a constant payoff matrix is assumed, although some works also consider dynamic payoff matrices. In this article we assume a possibility of switching the system between two regimes with different sets of payoff matrices. Potentially such a model can qualitatively describe the development of bacterial or cancer cells with a mutator gene present. A finite population evolutionary game is studied. The model describes the simplest version of annealed disorder in the payoff matrix and is exactly solvable at the large population limit. We analyze the dynamics of the model, and derive the equations for both the maximum and the variance of the distribution using the Hamilton-Jacobi equation formalism.

  7. An algorithmic characterization of P-matricity

    OpenAIRE

    Ben Gharbia , Ibtihel; Gilbert , Jean Charles

    2013-01-01

    International audience; It is shown that a matrix M is a P-matrix if and only if, whatever is the vector q, the Newton-min algorithm does not cycle between two points when it is used to solve the linear complementarity problem 0 ≤ x ⊥ (Mx+q) ≥ 0.; Nous montrons dans cet article qu'une matrice M est une P-matrice si, et seulement si, quel que soit le vecteur q, l'algorithme de Newton-min ne fait pas de cycle de deux points lorsqu'il est utilisé pour résoudre le problème de compl\\émentarité lin...

  8. Introduction to random matrices theory and practice

    CERN Document Server

    Livan, Giacomo; Vivo, Pierpaolo

    2018-01-01

    Modern developments of Random Matrix Theory as well as pedagogical approaches to the standard core of the discipline are surprisingly hard to find in a well-organized, readable and user-friendly fashion. This slim and agile book, written in a pedagogical and hands-on style, without sacrificing formal rigor fills this gap. It brings Ph.D. students in Physics, as well as more senior practitioners, through the standard tools and results on random matrices, with an eye on most recent developments that are not usually covered in introductory texts. The focus is mainly on random matrices with real spectrum. The main guiding threads throughout the book are the Gaussian Ensembles. In particular, Wigner’s semicircle law is derived multiple times to illustrate several techniques  (e.g., Coulomb gas approach, replica theory). Most chapters are accompanied by Matlab codes (stored in an online repository) to guide readers through the numerical check of most analytical results.

  9. Teaching Fourier optics through ray matrices

    International Nuclear Information System (INIS)

    Moreno, I; Sanchez-Lopez, M M; Ferreira, C; Davis, J A; Mateos, F

    2005-01-01

    In this work we examine the use of ray-transfer matrices for teaching and for deriving some topics in a Fourier optics course, exploiting the mathematical simplicity of ray matrices compared to diffraction integrals. A simple analysis of the physical meaning of the elements of the ray matrix provides a fast derivation of the conditions to obtain the optical Fourier transform. We extend this derivation to fractional Fourier transform optical systems, and derive the order of the transform from the ray matrix. Some examples are provided to stress this point of view, both with classical and with graded index lenses. This formulation cannot replace the complete explanation of Fourier optics provided by the wave theory, but it is a complementary tool useful to simplify many aspects of Fourier optics and to relate them to geometrical optics

  10. The recurrence sequences via Sylvester matrices

    Science.gov (United States)

    Karaduman, Erdal; Deveci, Ömür

    2017-07-01

    In this work, we define the Pell-Jacobsthal-Slyvester sequence and the Jacobsthal-Pell-Slyvester sequence by using the Slyvester matrices which are obtained from the characteristic polynomials of the Pell and Jacobsthal sequences and then, we study the sequences defined modulo m. Also, we obtain the cyclic groups and the semigroups from the generating matrices of these sequences when read modulo m and then, we derive the relationships among the orders of the cyclic groups and the periods of the sequences. Furthermore, we redefine Pell-Jacobsthal-Slyvester sequence and the Jacobsthal-Pell-Slyvester sequence by means of the elements of the groups and then, we examine them in the finite groups.

  11. Joint Matrices Decompositions and Blind Source Separation

    Czech Academy of Sciences Publication Activity Database

    Chabriel, G.; Kleinsteuber, M.; Moreau, E.; Shen, H.; Tichavský, Petr; Yeredor, A.

    2014-01-01

    Roč. 31, č. 3 (2014), s. 34-43 ISSN 1053-5888 R&D Projects: GA ČR GA102/09/1278 Institutional support: RVO:67985556 Keywords : joint matrices decomposition * tensor decomposition * blind source separation Subject RIV: BB - Applied Statistics, Operational Research Impact factor: 5.852, year: 2014 http://library.utia.cas.cz/separaty/2014/SI/tichavsky-0427607.pdf

  12. Tensor Permutation Matrices in Finite Dimensions

    OpenAIRE

    Christian, Rakotonirina

    2005-01-01

    We have generalised the properties with the tensor product, of one 4x4 matrix which is a permutation matrix, and we call a tensor commutation matrix. Tensor commutation matrices can be constructed with or without calculus. A formula allows us to construct a tensor permutation matrix, which is a generalisation of tensor commutation matrix, has been established. The expression of an element of a tensor commutation matrix has been generalised in the case of any element of a tensor permutation ma...

  13. Fast Approximate Joint Diagonalization Incorporating Weight Matrices

    Czech Academy of Sciences Publication Activity Database

    Tichavský, Petr; Yeredor, A.

    2009-01-01

    Roč. 57, č. 3 (2009), s. 878-891 ISSN 1053-587X R&D Projects: GA MŠk 1M0572 Institutional research plan: CEZ:AV0Z10750506 Keywords : autoregressive processes * blind source separation * nonstationary random processes Subject RIV: BB - Applied Statistics, Operational Research Impact factor: 2.212, year: 2009 http://library.utia.cas.cz/separaty/2009/SI/tichavsky-fast approximate joint diagonalization incorporating weight matrices.pdf

  14. Photoluminescence of nanocrystals embedded in oxide matrices

    International Nuclear Information System (INIS)

    Estrada, C.; Gonzalez, J.A.; Kunold, A.; Reyes-Esqueda, J.A.; Pereyra, P.

    2006-12-01

    We used the theory of finite periodic systems to explain the photoluminescence spectra dependence on the average diameter of nanocrystals embedded in oxide matrices. Because of the broad matrix band gap, the photoluminescence response is basically determined by isolated nanocrystals and sequences of a few of them. With this model we were able to reproduce the shape and displacement of the experimentally observed photoluminescence spectra. (author)

  15. Equiangular tight frames and unistochastic matrices

    Czech Academy of Sciences Publication Activity Database

    Goyeneche, D.; Turek, Ondřej

    2017-01-01

    Roč. 50, č. 24 (2017), č. článku 245304. ISSN 1751-8113 R&D Projects: GA ČR GA17-01706S Institutional support: RVO:61389005 Keywords : equiangular tight frames * unistochastic matrices * SIC POVM Subject RIV: BE - Theoretical Physics OBOR OECD: Atomic, molecular and chemical physics (physics of atoms and molecules including collision, interaction with radiation, magnetic resonances, Mössbauer effect) Impact factor: 1.857, year: 2016

  16. Simplifications of rational matrices by using UML

    OpenAIRE

    Tasić, Milan B.; Stanimirović, Ivan P.

    2013-01-01

    The simplification process on rational matrices consists of simplifying each entry represented by a rational function. We follow the classic approach of dividing the numerator and denominator polynomials by their common GCD polynomial, and provide the activity diagram in UML for this process. A rational matrix representation as the quotient of a polynomial matrix and a polynomial is also discussed here and illustrated via activity diagrams. Also, a class diagram giving the links between the c...

  17. Hierarchical matrix approximation of large covariance matrices

    KAUST Repository

    Litvinenko, Alexander

    2015-01-07

    We approximate large non-structured covariance matrices in the H-matrix format with a log-linear computational cost and storage O(n log n). We compute inverse, Cholesky decomposition and determinant in H-format. As an example we consider the class of Matern covariance functions, which are very popular in spatial statistics, geostatistics, machine learning and image analysis. Applications are: kriging and optimal design

  18. Hierarchical matrix approximation of large covariance matrices

    KAUST Repository

    Litvinenko, Alexander

    2015-01-05

    We approximate large non-structured covariance matrices in the H-matrix format with a log-linear computational cost and storage O(nlogn). We compute inverse, Cholesky decomposition and determinant in H-format. As an example we consider the class of Matern covariance functions, which are very popular in spatial statistics, geostatistics, machine learning and image analysis. Applications are: kriging and op- timal design.

  19. Preconditioners for regularized saddle point matrices

    Czech Academy of Sciences Publication Activity Database

    Axelsson, Owe

    2011-01-01

    Roč. 19, č. 2 (2011), s. 91-112 ISSN 1570-2820 Institutional research plan: CEZ:AV0Z30860518 Keywords : saddle point matrices * preconditioning * regularization * eigenvalue clustering Subject RIV: BA - General Mathematics Impact factor: 0.533, year: 2011 http://www.degruyter.com/view/j/jnma.2011.19.issue-2/jnum.2011.005/jnum.2011.005. xml

  20. Hierarchical matrix approximation of large covariance matrices

    KAUST Repository

    Litvinenko, Alexander; Genton, Marc G.; Sun, Ying; Tempone, Raul

    2015-01-01

    We approximate large non-structured covariance matrices in the H-matrix format with a log-linear computational cost and storage O(n log n). We compute inverse, Cholesky decomposition and determinant in H-format. As an example we consider the class of Matern covariance functions, which are very popular in spatial statistics, geostatistics, machine learning and image analysis. Applications are: kriging and optimal design

  1. Hierarchical matrix approximation of large covariance matrices

    KAUST Repository

    Litvinenko, Alexander; Genton, Marc G.; Sun, Ying; Tempone, Raul

    2015-01-01

    We approximate large non-structured covariance matrices in the H-matrix format with a log-linear computational cost and storage O(nlogn). We compute inverse, Cholesky decomposition and determinant in H-format. As an example we consider the class of Matern covariance functions, which are very popular in spatial statistics, geostatistics, machine learning and image analysis. Applications are: kriging and op- timal design.

  2. Simultaneous Changes of Spatial Memory and Spine Density after Intrahippocampal Administration of Fibrillar Aβ 1–42 to the Rat Brain

    OpenAIRE

    Borbély, Emőke; Horváth, János; Furdan, Szabina; Bozsó, Zsolt; Penke, Botond; Fülöp, Lívia

    2014-01-01

    Several animal models of Alzheimer's disease have been used in laboratory experiments. Intrahippocampal injection of fibrillar amyloid-beta (fAβ) peptide represents one of the most frequently used models, mimicking Aβ deposits in the brain. In our experiment synthetic fAβ 1–42 peptide was administered to rat hippocampus. The effect of the Aβ peptide on spatial memory and dendritic spine density was studied. The fAβ 1–42-treated rats showed decreased spatial learning ability measured in Morris...

  3. Fibril specific, conformation dependent antibodies recognize a generic epitope common to amyloid fibrils and fibrillar oligomers that is absent in prefibrillar oligomers

    Directory of Open Access Journals (Sweden)

    Rasool Suhail

    2007-09-01

    Full Text Available Abstract Background Amyloid-related degenerative diseases are associated with the accumulation of misfolded proteins as amyloid fibrils in tissue. In Alzheimer disease (AD, amyloid accumulates in several distinct types of insoluble plaque deposits, intracellular Aβ and as soluble oligomers and the relationships between these deposits and their pathological significance remains unclear. Conformation dependent antibodies have been reported that specifically recognize distinct assembly states of amyloids, including prefibrillar oligomers and fibrils. Results We immunized rabbits with a morphologically homogeneous population of Aβ42 fibrils. The resulting immune serum (OC specifically recognizes fibrils, but not random coil monomer or prefibrillar oligomers, indicating fibrils display a distinct conformation dependent epitope that is absent in prefibrillar oligomers. The fibril epitope is also displayed by fibrils of other types of amyloids, indicating that the epitope is a generic feature of the polypeptide backbone. The fibril specific antibody also recognizes 100,000 × G soluble fibrillar oligomers ranging in size from dimer to greater than 250 kDa on western blots. The fibrillar oligomers recognized by OC are immunologically distinct from prefibrillar oligomers recognized by A11, even though their sizes overlap broadly, indicating that size is not a reliable indicator of oligomer conformation. The immune response to prefibrillar oligomers and fibrils is not sequence specific and antisera of the same specificity are produced in response to immunization with islet amyloid polypeptide prefibrillar oligomer mimics and fibrils. The fibril specific antibodies stain all types of amyloid deposits in human AD brain. Diffuse amyloid deposits stain intensely with anti-fibril antibody although they are thioflavin S negative, suggesting that they are indeed fibrillar in conformation. OC also stains islet amyloid deposits in transgenic mouse models of type

  4. A New Kind of Biomaterials-Bullfrog Skin Collagen

    Institute of Scientific and Technical Information of China (English)

    He LI; Bai Ling LIU; Hua Lin CHEN; Li Zhen GAO

    2003-01-01

    Pepsin-soluble collagen was prepared from bullfrog skin and partially characterized. This study revealed interesting differences, such as molecular weight, amino acid composition, denaturation temperature (Td), in the frog skin collagen when compared to the known vertebrate collagens. This study gives hints that bullfrog skin can be a potential, safe alternative source of collagen from cattle for use in various fields.

  5. Protease-activatable collagen targeting based on protein cyclization

    NARCIS (Netherlands)

    Breurken, M.; Lempens, E.H.M.; Merkx, M.

    2010-01-01

    Threading collagen through a protein needle: The collagen-binding protein CNA35 operates by wrapping itself around the collagen triple helix. By connecting the N and C termini through an MMP recognition sequence, a dual-specific MMP-sensitive collagen-targeting ligand is obtained that can be used

  6. Collagen based Biomaterials from CLRI: An Inspiration from the ...

    Indian Academy of Sciences (India)

    Collagen-based Smart Biomaterials · Smart materials: As smart people see them · Some Biomaterials based on Collagen in Human Health care · Questions of Value to this presentation ... Collagen based biomaterials · COLLAGEN IN VISION CARE · Slide 57 · Bandage lens: A smart device · Work at CLRI: In summary.

  7. Chitosan: collagen sponges. In vitro mineralization

    International Nuclear Information System (INIS)

    Martins, Virginia da C.A.; Silva, Gustavo M.; Plepis, Ana Maria G.

    2011-01-01

    The regeneration of bone tissue is a problem that affects many people and scaffolds for bone tissue growth has been widely studied. The aim of this study was the in vitro mineralization of chitosan, chitosan:native collagen and chitosan:anionic collagen sponges. The sponges were obtained by lyophilization and mineralization was made by soaking the sponges in alternating solutions containing Ca 2+ and PO 4 3- . The mineralization was confirmed by infrared spectroscopy, energy dispersive X-ray and X-ray diffraction observing the formation of phosphate salts, possibly a carbonated hydroxyapatite since Ca/P=1.80. The degree of mineralization was obtained by thermogravimetry calculating the amount of residue at 750 deg C. The chitosan:anionic collagen sponge showed the highest degree of mineralization probably due to the fact that anionic collagen provides additional sites for interaction with the inorganic phase. (author)

  8. The minor collagens in articular cartilage

    DEFF Research Database (Denmark)

    Luo, Yunyun; Sinkeviciute, Dovile; He, Yi

    2017-01-01

    Articular cartilage is a connective tissue consisting of a specialized extracellular matrix (ECM) that dominates the bulk of its wet and dry weight. Type II collagen and aggrecan are the main ECM proteins in cartilage. However, little attention has been paid to less abundant molecular components......, especially minor collagens, including type IV, VI, IX, X, XI, XII, XIII, and XIV, etc. Although accounting for only a small fraction of the mature matrix, these minor collagens not only play essential structural roles in the mechanical properties, organization, and shape of articular cartilage, but also...... fulfil specific biological functions. Genetic studies of these minor collagens have revealed that they are associated with multiple connective tissue diseases, especially degenerative joint disease. The progressive destruction of cartilage involves the degradation of matrix constituents including...

  9. Glycine functionalized alumina nanoparticles stabilize collagen in ...

    Indian Academy of Sciences (India)

    Al2O3 nanoparticles thereby suggesting ... 1. Introduction. Collagen is a naturally occurring skin protein in animal tis- ... easily adsorb on the surface of the nanoparticles and amino .... [19,23], agglomeration is prevented by the electrostatic.

  10. Role of collagens and perlecan in microvascular stability: exploring the mechanism of capillary vessel damage by snake venom metalloproteinases.

    Directory of Open Access Journals (Sweden)

    Teresa Escalante

    Full Text Available Hemorrhage is a clinically important manifestation of viperid snakebite envenomings, and is induced by snake venom metalloproteinases (SVMPs. Hemorrhagic and non-hemorrhagic SVMPs hydrolyze some basement membrane (BM and associated extracellular matrix (ECM proteins. Nevertheless, only hemorrhagic SVMPs are able to disrupt microvessels; the mechanisms behind this functional difference remain largely unknown. We compared the proteolytic activity of the hemorrhagic P-I SVMP BaP1, from the venom of Bothrops asper, and the non-hemorrhagic P-I SVMP leucurolysin-a (leuc-a, from the venom of Bothrops leucurus, on several substrates in vitro and in vivo, focusing on BM proteins. When incubated with Matrigel, a soluble extract of BM, both enzymes hydrolyzed laminin, nidogen and perlecan, albeit BaP1 did it at a faster rate. Type IV collagen was readily digested by BaP1 while leuc-a only induced a slight hydrolysis. Degradation of BM proteins in vivo was studied in mouse gastrocnemius muscle. Western blot analysis of muscle tissue homogenates showed a similar degradation of laminin chains by both enzymes, whereas nidogen was cleaved to a higher extent by BaP1, and perlecan and type IV collagen were readily digested by BaP1 but not by leuc-a. Immunohistochemistry of muscle tissue samples showed a decrease in the immunostaining of type IV collagen after injection of BaP1, but not by leuc-a. Proteomic analysis by LC/MS/MS of exudates collected from injected muscle revealed higher amounts of perlecan, and types VI and XV collagens, in exudates from BaP1-injected tissue. The differences in the hemorrhagic activity of these SVMPs could be explained by their variable ability to degrade key BM and associated ECM substrates in vivo, particularly perlecan and several non-fibrillar collagens, which play a mechanical stabilizing role in microvessel structure. These results underscore the key role played by these ECM components in the mechanical stability of

  11. Suspension Matrices for Improved Schwann-Cell Survival after Implantation into the Injured Rat Spinal Cord

    Science.gov (United States)

    Patel, Vivek; Joseph, Gravil; Patel, Amit; Patel, Samik; Bustin, Devin; Mawson, David; Tuesta, Luis M.; Puentes, Rocio; Ghosh, Mousumi

    2010-01-01

    Abstract Trauma to the spinal cord produces endogenously irreversible tissue and functional loss, requiring the application of therapeutic approaches to achieve meaningful restoration. Cellular strategies, in particular Schwann-cell implantation, have shown promise in overcoming many of the obstacles facing successful repair of the injured spinal cord. Here, we show that the implantation of Schwann cells as cell suspensions with in-situ gelling laminin:collagen matrices after spinal-cord contusion significantly enhances long-term cell survival but not proliferation, as well as improves graft vascularization and the degree of axonal in-growth over the standard implantation vehicle, minimal media. The use of a matrix to suspend cells prior to implantation should be an important consideration for achieving improved survival and effectiveness of cellular therapies for future clinical application. PMID:20144012

  12. Properties of Chitosan-Laminated Collagen Film

    Directory of Open Access Journals (Sweden)

    Vera Lazić

    2012-01-01

    Full Text Available The objective of this study is to determine physical, mechanical and barrier properties of chitosan-laminated collagen film. Commercial collagen film, which is used for making collagen casings for dry fermented sausage production, was laminated with chitosan film layer in order to improve the collagen film barrier properties. Different volumes of oregano essential oil per 100 mL of filmogenic solution were added to chitosan film layer: 0, 0.2, 0.4, 0.6 and 0.8 mL to optimize water vapour barrier properties. Chitosan layer with 0.6 or 0.8 % of oregano essential oil lowered the water vapour transmission rate to (1.85±0.10·10–6 and (1.78±0.03·10–6 g/(m2·s·Pa respectively, compared to collagen film ((2.51±0.05·10–6 g/(m2·s·Pa. However, chitosan-laminated collagen film did not show improved mechanical properties compared to the collagen one. Tensile strength decreased from (54.0±3.8 MPa of the uncoated collagen film to (36.3±4.0 MPa when the film was laminated with 0.8 % oregano essential oil chitosan layer. Elongation at break values of laminated films did not differ from those of collagen film ((18.4±2.7 %. Oxygen barrier properties were considerably improved by lamination. Oxygen permeability of collagen film was (1806.8±628.0·10–14 cm3/(m·s·Pa and values of laminated films were below 35·10–14 cm3/(m·s·Pa. Regarding film appearance and colour, lamination with chitosan reduced lightness (L and yellowness (+b of collagen film, while film redness (+a increased. These changes were not visible to the naked eye.

  13. Collagen Accumulation in Osteosarcoma Cells lacking GLT25D1 Collagen Galactosyltransferase.

    Science.gov (United States)

    Baumann, Stephan; Hennet, Thierry

    2016-08-26

    Collagen is post-translationally modified by prolyl and lysyl hydroxylation and subsequently by glycosylation of hydroxylysine. Despite the widespread occurrence of the glycan structure Glc(α1-2)Gal linked to hydroxylysine in animals, the functional significance of collagen glycosylation remains elusive. To address the role of glycosylation in collagen expression, folding, and secretion, we used the CRISPR/Cas9 system to inactivate the collagen galactosyltransferase GLT25D1 and GLT25D2 genes in osteosarcoma cells. Loss of GLT25D1 led to increased expression and intracellular accumulation of collagen type I, whereas loss of GLT25D2 had no effect on collagen secretion. Inactivation of the GLT25D1 gene resulted in a compensatory induction of GLT25D2 expression. Loss of GLT25D1 decreased collagen glycosylation by up to 60% but did not alter collagen folding and thermal stability. Whereas cells harboring individually inactivated GLT25D1 and GLT25D2 genes could be recovered and maintained in culture, cell clones with simultaneously inactive GLT25D1 and GLT25D2 genes could be not grown and studied, suggesting that a complete loss of collagen glycosylation impairs osteosarcoma cell proliferation and viability. © 2016 by The American Society for Biochemistry and Molecular Biology, Inc.

  14. Collagen XII myopathy with rectus femoris atrophy and collagen XII retention in fibroblasts

    DEFF Research Database (Denmark)

    Witting, Nanna; Krag, Thomas; Werlauff, Ulla

    2018-01-01

    INTRODUCTION: Mutation in the collagen XII gene (COL12A1) was recently reported to induce Bethlem myopathy. We describe a family affected by collagen XII-related myopathy in 3 generations. METHODS: Systematic interview, clinical examination, skin biopsies, and MRI of muscle were used. RESULTS...... affection and abnormal collagen XII retention in fibroblasts. MRI disclosed a selective wasting of the rectus femoris muscle. DISCUSSION: COL12A1 mutations should be considered in patients with a mild Bethlem phenotype who present with selective wasting of the rectus femoris, absence of the outside......-in phenomenon on MRI, and abnormal collagen XII retention in fibroblasts. Muscle Nerve, 2018....

  15. Imaging Prostate Cancer Microenvironment by Collagen Hybridization

    Science.gov (United States)

    2015-10-01

    diagnosis, staging, and treatment of numerous connective tissue disorders and diseases. Standard antibody staining methods that rely on epitopes of a...CMP can be used to detect mechanical damage to collagen in tendon which could be used for diagnostic and therapeutics of musculoskeletal injury which...13. SUPPLEMENTARY NOTES 14. ABSTRACT The major goal of the proposed work is to develop new PCa imaging methods based on the collagen mimetic peptide

  16. Oriented collagen fibers direct tumor cell intravasation

    KAUST Repository

    Han, Weijing

    2016-09-24

    In this work, we constructed a Collagen I-Matrigel composite extracellular matrix (ECM). The composite ECM was used to determine the influence of the local collagen fiber orientation on the collective intravasation ability of tumor cells. We found that the local fiber alignment enhanced cell-ECM interactions. Specifically, metastatic MDA-MB-231 breast cancer cells followed the local fiber alignment direction during the intravasation into rigid Matrigel (∼10 mg/mL protein concentration).

  17. An immunofluorescence assay for extracellular matrix components highlights the role of epithelial cells in producing a stable, fibrillar extracellular matrix

    Directory of Open Access Journals (Sweden)

    Omar S. Qureshi

    2017-10-01

    Full Text Available Activated fibroblasts are considered major drivers of fibrotic disease progression through the production of excessive extracellular matrix (ECM in response to signals from damaged epithelial and inflammatory cells. Nevertheless, epithelial cells are capable of expressing components of the ECM, cross-linking enzymes that increase its stability and are sensitive to factors involved in the early stages of fibrosis. We therefore wanted to test the hypothesis that epithelial cells can deposit ECM in response to stimulation in a comparable manner to fibroblasts. We performed immunofluorescence analysis of components of stable, mature extracellular matrix produced by primary human renal proximal tubular epithelial cells and renal fibroblasts in response to cytokine stimulation. Whilst fibroblasts produced a higher basal level of extracellular matrix components, epithelial cells were able to deposit significant levels of fibronectin, collagen I, III and IV in response to cytokine stimulation. In response to hypoxia, epithelial cells showed an increase in collagen IV deposition but not in response to the acute stress stimuli aristolochic acid or hydrogen peroxide. When epithelial cells were in co-culture with fibroblasts we observed significant increases in the level of matrix deposition which could be reduced by transforming growth factor beta (TGF-β blockade. Our results highlight the role of epithelial cells acting as efficient producers of stable extracellular matrix which could contribute to renal tubule thickening in fibrosis.

  18. Lecithin, gelatin and hydrolyzed collagen orally disintegrating films: functional properties.

    Science.gov (United States)

    Borges, J G; Silva, A G; Cervi-Bitencourt, C M; Vanin, F M; Carvalho, R A

    2016-05-01

    Orally disintegrating films (ODFs) can transport natural active compounds such as ethanol extract of propolis (EEP). This paper aimed to investigate the effect of lecithin on different gelatin and hydrolyzed collagen (HC) polymeric matrices with addition of EEP. ODFs were prepared by casting technique and were characterized (color parameters, water content, mechanical properties, microstructure, disintegration time (DT), infrared spectroscopy (FTIR), contact angle (CA), swelling degree and total phenolic content). The mechanical properties were influenced by HC. The microstructure demonstrated increased porosity and roughness in films with EEP, and the addition of lecithin resulted in an increase in the number of pores. Lecithin-gelatin and lecithin-EEP-gelatin interactions were observed by FTIR. The addition of HC and EEP reduced the DT and CA, and HC and lecithin reduced the swelling capacity. However, the swelling capacity was not affected by presence of EEP. The addition of lecithin to gelatin and HC ODFs may improve the incorporation and the oral transport of active compounds such as EEP. Copyright © 2016 Elsevier B.V. All rights reserved.

  19. Group inverses of M-matrices and their applications

    CERN Document Server

    Kirkland, Stephen J

    2013-01-01

    Group inverses for singular M-matrices are useful tools not only in matrix analysis, but also in the analysis of stochastic processes, graph theory, electrical networks, and demographic models. Group Inverses of M-Matrices and Their Applications highlights the importance and utility of the group inverses of M-matrices in several application areas. After introducing sample problems associated with Leslie matrices and stochastic matrices, the authors develop the basic algebraic and spectral properties of the group inverse of a general matrix. They then derive formulas for derivatives of matrix f

  20. Collagen Fibrils: Nature's Highly Tunable Nonlinear Springs.

    Science.gov (United States)

    Andriotis, Orestis G; Desissaire, Sylvia; Thurner, Philipp J

    2018-03-21

    Tissue hydration is well known to influence tissue mechanics and can be tuned via osmotic pressure. Collagen fibrils are nature's nanoscale building blocks to achieve biomechanical function in a broad range of biological tissues and across many species. Intrafibrillar covalent cross-links have long been thought to play a pivotal role in collagen fibril elasticity, but predominantly at large, far from physiological, strains. Performing nanotensile experiments of collagen fibrils at varying hydration levels by adjusting osmotic pressure in situ during atomic force microscopy experiments, we show the power the intrafibrillar noncovalent interactions have for defining collagen fibril tensile elasticity at low fibril strains. Nanomechanical tensile tests reveal that osmotic pressure increases collagen fibril stiffness up to 24-fold in transverse (nanoindentation) and up to 6-fold in the longitudinal direction (tension), compared to physiological saline in a reversible fashion. We attribute the stiffening to the density and strength of weak intermolecular forces tuned by hydration and hence collagen packing density. This reversible mechanism may be employed by cells to alter their mechanical microenvironment in a reversible manner. The mechanism could also be translated to tissue engineering approaches for customizing scaffold mechanics in spatially resolved fashion, and it may help explain local mechanical changes during development of diseases and inflammation.

  1. Deterministic matrices matching the compressed sensing phase transitions of Gaussian random matrices

    Science.gov (United States)

    Monajemi, Hatef; Jafarpour, Sina; Gavish, Matan; Donoho, David L.; Ambikasaran, Sivaram; Bacallado, Sergio; Bharadia, Dinesh; Chen, Yuxin; Choi, Young; Chowdhury, Mainak; Chowdhury, Soham; Damle, Anil; Fithian, Will; Goetz, Georges; Grosenick, Logan; Gross, Sam; Hills, Gage; Hornstein, Michael; Lakkam, Milinda; Lee, Jason; Li, Jian; Liu, Linxi; Sing-Long, Carlos; Marx, Mike; Mittal, Akshay; Monajemi, Hatef; No, Albert; Omrani, Reza; Pekelis, Leonid; Qin, Junjie; Raines, Kevin; Ryu, Ernest; Saxe, Andrew; Shi, Dai; Siilats, Keith; Strauss, David; Tang, Gary; Wang, Chaojun; Zhou, Zoey; Zhu, Zhen

    2013-01-01

    In compressed sensing, one takes samples of an N-dimensional vector using an matrix A, obtaining undersampled measurements . For random matrices with independent standard Gaussian entries, it is known that, when is k-sparse, there is a precisely determined phase transition: for a certain region in the (,)-phase diagram, convex optimization typically finds the sparsest solution, whereas outside that region, it typically fails. It has been shown empirically that the same property—with the same phase transition location—holds for a wide range of non-Gaussian random matrix ensembles. We report extensive experiments showing that the Gaussian phase transition also describes numerous deterministic matrices, including Spikes and Sines, Spikes and Noiselets, Paley Frames, Delsarte-Goethals Frames, Chirp Sensing Matrices, and Grassmannian Frames. Namely, for each of these deterministic matrices in turn, for a typical k-sparse object, we observe that convex optimization is successful over a region of the phase diagram that coincides with the region known for Gaussian random matrices. Our experiments considered coefficients constrained to for four different sets , and the results establish our finding for each of the four associated phase transitions. PMID:23277588

  2. Collagen as potential cell scaffolds for tissue engineering.

    Science.gov (United States)

    Annuar, N; Spier, R E

    2004-05-01

    Selections of collagen available commercially were tested for their biocompatibility as scaffold to promote cell growth in vitro via simple collagen fast test and cultivation of mammalian cells on the selected type of collagen. It was found that collagen type C9791 promotes the highest degree of aggregation as well as cells growth. This preliminary study also indicated potential use of collagen as scaffold in engineered tissue.

  3. Collagen type XI alpha1 may be involved in the structural plasticity of the vertebral column in Atlantic salmon (Salmo salar L.).

    Science.gov (United States)

    Wargelius, A; Fjelldal, P G; Nordgarden, U; Grini, A; Krossøy, C; Grotmol, S; Totland, G K; Hansen, T

    2010-04-01

    Atlantic salmon (Salmo salar L.) vertebral bone displays plasticity in structure, osteoid secretion and mineralization in response to photoperiod. Other properties of the vertebral bone, such as mineral content and mechanical strength, are also associated with common malformations in farmed Atlantic salmon. The biological mechanisms that underlie these changes in bone physiology are unknown, and in order to elucidate which factors might be involved in this process, microarray assays were performed on vertebral bone of Atlantic salmon reared under natural or continuous light. Eight genes were upregulated in response to continuous light treatment, whereas only one of them was upregulated in a duplicate experiment. The transcriptionally regulated gene was predicted to code for collagen type XI alpha1, a protein known to be involved in controlling the diameter of fibrillar collagens in mammals. Furthermore, the gene was highly expressed in the vertebrae, where spatial expression was found in trabecular and compact bone osteoblasts and in the chordoblasts of the notochordal sheath. When we measured the expression level of the gene in the tissue compartments of the vertebrae, the collagen turned out to be 150 and 25 times more highly expressed in the notochord and compact bone respectively, relative to the expression in the trabecular bone. Gene expression was induced in response to continuous light, and reduced in compressed vertebrae. The downregulation in compressed vertebrae was due to reduced expression in the compact bone, while expression in the trabecular bone and the notochord was unaffected. These data support the hypothesis that this gene codes for a presumptive collagen type XI alpha1, which may be involved in the regulatory pathway leading to structural adaptation of the vertebral architecture.

  4. Data in support of the identification of neuronal and astrocyte proteins interacting with extracellularly applied oligomeric and fibrillar α-synuclein assemblies by mass spectrometry.

    Science.gov (United States)

    Shrivastava, Amulya Nidhi; Redeker, Virginie; Fritz, Nicolas; Pieri, Laura; Almeida, Leandro G; Spolidoro, Maria; Liebmann, Thomas; Bousset, Luc; Renner, Marianne; Léna, Clément; Aperia, Anita; Melki, Ronald; Triller, Antoine

    2016-06-01

    α-Synuclein (α-syn) is the principal component of Lewy bodies, the pathophysiological hallmark of individuals affected by Parkinson disease (PD). This neuropathologic form of α-syn contributes to PD progression and propagation of α-syn assemblies between neurons. The data we present here support the proteomic analysis used to identify neuronal proteins that specifically interact with extracellularly applied oligomeric or fibrillar α-syn assemblies (conditions 1 and 2, respectively) (doi: 10.15252/embj.201591397[1]). α-syn assemblies and their cellular partner proteins were pulled down from neuronal cell lysed shortly after exposure to exogenous α-syn assemblies and the associated proteins were identified by mass spectrometry using a shotgun proteomic-based approach. We also performed experiments on pure cultures of astrocytes to identify astrocyte-specific proteins interacting with oligomeric or fibrillar α-syn (conditions 3 and 4, respectively). For each condition, proteins interacting selectively with α-syn assemblies were identified by comparison to proteins pulled-down from untreated cells used as controls. The mass spectrometry data, the database search and the peak lists have been deposited to the ProteomeXchange Consortium database via the PRIDE partner repository with the dataset identifiers PRIDE: PXD002256 to PRIDE: PXD002263 and doi: 10.6019/PXD002256 to 10.6019/PXD002263.

  5. Collagen-binding peptidoglycans inhibit MMP mediated collagen degradation and reduce dermal scarring.

    Directory of Open Access Journals (Sweden)

    Kate Stuart

    Full Text Available Scarring of the skin is a large unmet clinical problem that is of high patient concern and impact. Wound healing is complex and involves numerous pathways that are highly orchestrated, leaving the skin sealed, but with abnormal organization and composition of tissue components, namely collagen and proteoglycans, that are then remodeled over time. To improve healing and reduce or eliminate scarring, more rapid restoration of healthy tissue composition and organization offers a unique approach for development of new therapeutics. A synthetic collagen-binding peptidoglycan has been developed that inhibits matrix metalloproteinase-1 and 13 (MMP-1 and MMP-13 mediated collagen degradation. We investigated the synthetic peptidoglycan in a rat incisional model in which a single dose was delivered in a hyaluronic acid (HA vehicle at the time of surgery prior to wound closure. The peptidoglycan treatment resulted in a significant reduction in scar tissue at 21 days as measured by histology and visual analysis. Improved collagen architecture of the treated wounds was demonstrated by increased tensile strength and transmission electron microscopy (TEM analysis of collagen fibril diameters compared to untreated and HA controls. The peptidoglycan's mechanism of action includes masking existing collagen and inhibiting MMP-mediated collagen degradation while modulating collagen organization. The peptidoglycan can be synthesized at low cost with unique design control, and together with demonstrated preclinical efficacy in reducing scarring, warrants further investigation for dermal wound healing.

  6. A collagen-binding EGFR antibody fragment targeting tumors with a collagen-rich extracellular matrix.

    Science.gov (United States)

    Liang, Hui; Li, Xiaoran; Wang, Bin; Chen, Bing; Zhao, Yannan; Sun, Jie; Zhuang, Yan; Shi, Jiajia; Shen, He; Zhang, Zhijun; Dai, Jianwu

    2016-02-17

    Many tumors over-express collagen, which constitutes the physical scaffold of tumor microenvironment. Collagen has been considered to be a target for cancer therapy. The collagen-binding domain (CBD) is a short peptide, which could bind to collagen and achieve the sustained release of CBD-fused proteins in collagen scaffold. Here, a collagen-binding EGFR antibody fragment was designed and expressed for targeting the collagen-rich extracellular matrix in tumors. The antibody fragment (Fab) of cetuximab was fused with CBD (CBD-Fab) and expressed in Pichia pastoris. CBD-Fab maintained antigen binding and anti-tumor activity of cetuximab and obtained a collagen-binding ability in vitro. The results also showed CBD-Fab was mainly enriched in tumors and had longer retention time in tumors in A431 s.c. xenografts. Furthermore, CBD-Fab showed a similar therapeutic efficacy as cetuximab in A431 xenografts. Although CBD-Fab hasn't showed better therapeutic effects than cetuximab, its smaller molecular and special target may be applicable as antibody-drug conjugates (ADC) or immunotoxins.

  7. Adherence, proliferation and collagen turnover by human fibroblasts seeded into different types of collagen sponges

    NARCIS (Netherlands)

    Middelkoop, E.; de Vries, H. J.; Ruuls, L.; Everts, V.; Wildevuur, C. H.; Westerhof, W.

    1995-01-01

    We describe an in vitro model that we have used to evaluate dermal substitutes and to obtain data on cell proliferation, the rate of degradation of the dermal equivalent, contractibility and de novo synthesis of collagen. We tested three classes of collagenous materials: (1) reconstituted

  8. Fluorescently labaled collagen binding proteins allow specific visualization of collagen in tissues and live cell culture

    NARCIS (Netherlands)

    Krahn, K.B.N.; Bouten, C.V.C.; Tuijl, van S.; Zandvoort, van M.; Merkx, M.

    2006-01-01

    Visualization of the formation and orientation of collagen fibers in tissue engineering experiments is crucial for understanding the factors that determine the mechanical properties of tissues. In this study, collagen-specific fluorescent probes were developed using a new approach that takes

  9. ADHERENCE, PROLIFERATION AND COLLAGEN TURNOVER BY HUMAN FIBROBLASTS SEEDED INTO DIFFERENT TYPES OF COLLAGEN SPONGES

    NARCIS (Netherlands)

    MIDDELKOOP, E; DEVRIES, HJC; RUULS, L; EVERTS, [No Value; WILDEVUUR, CHR; WESTERHOF, W

    We describe an in vitro model that we have used to evaluate dermal substitutes and to obtain data on cell proliferation, the rate of degradation of the dermal equivalent, contractibility and de novo synthesis of collagen. We tested three classes of collagenous materials: (1) reconstituted

  10. Brain propagation of transduced α-synuclein involves non-fibrillar protein species and is enhanced in α-synuclein null mice.

    Science.gov (United States)

    Helwig, Michael; Klinkenberg, Michael; Rusconi, Raffaella; Musgrove, Ruth E; Majbour, Nour K; El-Agnaf, Omar M A; Ulusoy, Ayse; Di Monte, Donato A

    2016-03-01

    Aggregation and neuron-to-neuron transmission are attributes of α-synuclein relevant to its pathogenetic role in human synucleinopathies such as Parkinson's disease. Intraparenchymal injections of fibrillar α-synuclein trigger widespread propagation of amyloidogenic protein species via mechanisms that require expression of endogenous α-synuclein and, possibly, its structural corruption by misfolded conformers acting as pathological seeds. Here we describe another paradigm of long-distance brain diffusion of α-synuclein that involves inter-neuronal transfer of monomeric and/or oligomeric species and is independent of recruitment of the endogenous protein. Targeted expression of human α-synuclein was induced in the mouse medulla oblongata through an injection of viral vectors into the vagus nerve. Enhanced levels of intra-neuronal α-synuclein were sufficient to initiate its caudo-rostral diffusion that likely involved at least one synaptic transfer and progressively reached specific brain regions such as the locus coeruleus, dorsal raphae and amygdala in the pons, midbrain and forebrain. Transfer of human α-synuclein was compared in two separate lines of α-synuclein-deficient mice versus their respective wild-type controls and, interestingly, lack of endogenous α-synuclein expression did not counteract diffusion but actually resulted in a more pronounced and advanced propagation of exogenous α-synuclein. Self-interaction of adjacent molecules of human α-synuclein was detected in both wild-type and mutant mice. In the former, interaction of human α-synuclein with mouse α-synuclein was also observed and might have contributed to differences in protein transmission. In wild-type and α-synuclein-deficient mice, accumulation of human α-synuclein within recipient axons in the pons, midbrain and forebrain caused morphological evidence of neuritic pathology. Tissue sections from the medulla oblongata and pons were stained with different antibodies recognizing

  11. Determination of coefficient matrices for ARMA model

    International Nuclear Information System (INIS)

    Tran Dinh Tri.

    1990-10-01

    A new recursive algorithm for determining coefficient matrices of ARMA model from measured data is presented. The Yule-Walker equations for the case of ARMA model are derived from the ARMA innovation equation. The recursive algorithm is based on choosing appropriate form of the operator functions and suitable representation of the (n+1)-th order operator functions according to ones with the lower order. Two cases, when the order of the AR part is equal to one of the MA part, and the optimal case, were considered. (author) 5 refs

  12. Algebraic Graph Theory Morphisms, Monoids and Matrices

    CERN Document Server

    Knauer, Ulrich

    2011-01-01

    This is a highly self-contained book about algebraic graph theory which iswritten with a view to keep the lively and unconventional atmosphere of a spoken text to communicate the enthusiasm the author feels about this subject. The focus is on homomorphisms and endomorphisms, matrices and eigenvalues. Graph models are extremely useful for almost all applications and applicators as they play an important role as structuring tools. They allow to model net structures -like roads, computers, telephones -instances of abstract data structures -likelists, stacks, trees -and functional or object orient

  13. Coherence and extensions of stochastic matrices

    Directory of Open Access Journals (Sweden)

    Angelo Gilio

    1995-11-01

    Full Text Available In this paper a review of some general results on coherence of conditional probability assessments is given. Then, a necessary and sufficient condition on coherence of two finite families of discrete conditianal probability distributions, represented by two stochastic matrices P and Q, is obtained. Moreover, the possible extensions of the assessment (P,Q to the marginal distributions are examined and explicit formulas for them are given in some special case. Finally, a general algorithm to check coherence of (P,Q and to derive its extensions is proposed.

  14. 2D gravity and random matrices

    International Nuclear Information System (INIS)

    Zinn-Justin, J.

    1990-01-01

    Recent progress in 2D gravity coupled to d ≤ 1 matter, based on a representation of discrete gravity in terms of random matrices, is reported. The matrix problem can be solved in many cases by the introduction of suitable orthogonal polynomials. Alternatively in the continuum limit the orthogonal polynomial method can be shown to be equivalent to the construction of representation of the canonical commutation relations in terms of differential operators. In the case of pure gravity or discrete Ising-like matter the sum over topologies is reduced to the solution of non-linear differential equations. The d = 1 problem can be solved by semiclassical methods

  15. Microglial phagocytosis induced by fibrillar β-amyloid is attenuated by oligomeric β-amyloid: implications for Alzheimer's disease

    Directory of Open Access Journals (Sweden)

    Lin Nan

    2011-06-01

    Full Text Available Abstract Background Reactive microglia are associated with β-amyloid (Aβ deposit and clearance in Alzhiemer's Disease (AD. Paradoxically, entocranial resident microglia fail to trigger an effective phagocytic response to clear Aβ deposits although they mainly exist in an "activated" state. Oligomeric Aβ (oAβ, a recent target in the pathogenesis of AD, can induce more potent neurotoxicity when compared with fibrillar Aβ (fAβ. However, the role of the different Aβ forms in microglial phagocytosis, induction of inflammation and oxidation, and subsequent regulation of phagocytic receptor system, remain unclear. Results We demonstrated that Aβ(1-42 fibrils, not Aβ(1-42 oligomers, increased the microglial phagocytosis. Intriguingly, the pretreatment of microglia with oAβ(1-42 not only attenuated fAβ(1-42-triggered classical phagocytic response to fluorescent microspheres but also significantly inhibited phagocytosis of fluorescent labeled fAβ(1-42. Compared with the fAβ(1-42 treatment, the oAβ(1-42 treatment resulted in a rapid and transient increase in interleukin 1β (IL-1β level and produced higher levels of tumor necrosis factor-α (TNF-α, nitric oxide (NO, prostaglandin E2 (PGE2 and intracellular superoxide anion (SOA. The further results demonstrated that microglial phagocytosis was negatively correlated with inflammatory mediators in this process and that the capacity of phagocytosis in fAβ(1-42-induced microglia was decreased by IL-1β, lippolysaccharide (LPS and tert-butyl hydroperoxide (t-BHP. The decreased phagocytosis could be relieved by pyrrolidone dithiocarbamate (PDTC, a nuclear factor-κB (NF-κB inhibitor, and N-acetyl-L-cysteine (NAC, a free radical scavenger. These results suggest that the oAβ-impaired phagocytosis is mediated through inflammation and oxidative stress-mediated mechanism in microglial cells. Furthermore, oAβ(1-42 stimulation reduced the mRNA expression of CD36, integrin β1 (Itgb1, and Ig

  16. Frequency filtering decompositions for unsymmetric matrices and matrices with strongly varying coefficients

    Energy Technology Data Exchange (ETDEWEB)

    Wagner, C.

    1996-12-31

    In 1992, Wittum introduced the frequency filtering decompositions (FFD), which yield a fast method for the iterative solution of large systems of linear equations. Based on this method, the tangential frequency filtering decompositions (TFFD) have been developed. The TFFD allow the robust and efficient treatment of matrices with strongly varying coefficients. The existence and the convergence of the TFFD can be shown for symmetric and positive definite matrices. For a large class of matrices, it is possible to prove that the convergence rate of the TFFD and of the FFD is independent of the number of unknowns. For both methods, schemes for the construction of frequency filtering decompositions for unsymmetric matrices have been developed. Since, in contrast to Wittums`s FFD, the TFFD needs only one test vector, an adaptive test vector can be used. The TFFD with respect to the adaptive test vector can be combined with other iterative methods, e.g. multi-grid methods, in order to improve the robustness of these methods. The frequency filtering decompositions have been successfully applied to the problem of the decontamination of a heterogeneous porous medium by flushing.

  17. Critical statistics for non-Hermitian matrices

    International Nuclear Information System (INIS)

    Garcia-Garcia, A.M.; Verbaarschot, J.J.M.; Nishigaki, S.M.

    2002-01-01

    We introduce a generalized ensemble of non-Hermitian matrices interpolating between the Gaussian Unitary Ensemble, the Ginibre ensemble, and the Poisson ensemble. The joint eigenvalue distribution of this model is obtained by means of an extension of the Itzykson-Zuber formula to general complex matrices. Its correlation functions are studied both in the case of weak non-Hermiticity and in the case of strong non-Hermiticity. In the weak non-Hermiticity limit we show that the spectral correlations in the bulk of the spectrum display critical statistics: the asymptotic linear behavior of the number variance is already approached for energy differences of the order of the eigenvalue spacing. To lowest order, its slope does not depend on the degree of non-Hermiticity. Close the edge, the spectral correlations are similar to the Hermitian case. In the strong non-Hermiticity limit the crossover behavior from the Ginibre ensemble to the Poisson ensemble first appears close to the surface of the spectrum. Our model may be relevant for the description of the spectral correlations of an open disordered system close to an Anderson transition

  18. Tensor Dictionary Learning for Positive Definite Matrices.

    Science.gov (United States)

    Sivalingam, Ravishankar; Boley, Daniel; Morellas, Vassilios; Papanikolopoulos, Nikolaos

    2015-11-01

    Sparse models have proven to be extremely successful in image processing and computer vision. However, a majority of the effort has been focused on sparse representation of vectors and low-rank models for general matrices. The success of sparse modeling, along with popularity of region covariances, has inspired the development of sparse coding approaches for these positive definite descriptors. While in earlier work, the dictionary was formed from all, or a random subset of, the training signals, it is clearly advantageous to learn a concise dictionary from the entire training set. In this paper, we propose a novel approach for dictionary learning over positive definite matrices. The dictionary is learned by alternating minimization between sparse coding and dictionary update stages, and different atom update methods are described. A discriminative version of the dictionary learning approach is also proposed, which simultaneously learns dictionaries for different classes in classification or clustering. Experimental results demonstrate the advantage of learning dictionaries from data both from reconstruction and classification viewpoints. Finally, a software library is presented comprising C++ binaries for all the positive definite sparse coding and dictionary learning approaches presented here.

  19. Virial expansion for almost diagonal random matrices

    International Nuclear Information System (INIS)

    Yevtushenko, Oleg; Kravtsov, Vladimir E

    2003-01-01

    Energy level statistics of Hermitian random matrices H-circumflex with Gaussian independent random entries H i≥j is studied for a generic ensemble of almost diagonal random matrices with (vertical bar H ii vertical bar 2 ) ∼ 1 and (vertical bar H i≠j vertical bar 2 ) bF(vertical bar i - j vertical bar) parallel 1. We perform a regular expansion of the spectral form-factor K(τ) = 1 + bK 1 (τ) + b 2 K 2 (τ) + c in powers of b parallel 1 with the coefficients K m (τ) that take into account interaction of (m + 1) energy levels. To calculate K m (τ), we develop a diagrammatic technique which is based on the Trotter formula and on the combinatorial problem of graph edges colouring with (m + 1) colours. Expressions for K 1 (τ) and K 2 (τ) in terms of infinite series are found for a generic function F(vertical bar i - j vertical bar ) in the Gaussian orthogonal ensemble (GOE), the Gaussian unitary ensemble (GUE) and in the crossover between them (the almost unitary Gaussian ensemble). The Rosenzweig-Porter and power-law banded matrix ensembles are considered as examples

  20. Generalized Eigenvalues for pairs on heritian matrices

    Science.gov (United States)

    Rublein, George

    1988-01-01

    A study was made of certain special cases of a generalized eigenvalue problem. Let A and B be nxn matrics. One may construct a certain polynomial, P(A,B, lambda) which specializes to the characteristic polynomial of B when A equals I. In particular, when B is hermitian, that characteristic polynomial, P(I,B, lambda) has real roots, and one can ask: are the roots of P(A,B, lambda) real when B is hermitian. We consider the case where A is positive definite and show that when N equals 3, the roots are indeed real. The basic tools needed in the proof are Shur's theorem on majorization for eigenvalues of hermitian matrices and the interlacing theorem for the eigenvalues of a positive definite hermitian matrix and one of its principal (n-1)x(n-1) minors. The method of proof first reduces the general problem to one where the diagonal of B has a certain structure: either diag (B) = diag (1,1,1) or diag (1,1,-1), or else the 2 x 2 principal minors of B are all 1. According as B has one of these three structures, we use an appropriate method to replace A by a positive diagonal matrix. Since it can be easily verified that P(D,B, lambda) has real roots, the result follows. For other configurations of B, a scaling and a continuity argument are used to prove the result in general.

  1. Changes in guinea-pig dermal collagen during development

    International Nuclear Information System (INIS)

    Shuttleworth, C.A.; Forrest, L.

    1975-01-01

    Guinea-pig dermis was digested with pepsin and the solubilized collagen molecules separated by differential salt precipitation at pH 7.5. Differences in subunit composition and amino acid analysis were noted between type I and type III collagen. Incorporation of radioactive proline into the developing foetus enabled isolation of labelled type I and type III collagens. Comparison of the specific activity of the isolated collagen molecules showed that type III collagen had a high specific activity in the early stages of foetal development, which decreased dramatically during foetal development. The specific activity of pepsin-solubilized type I collagen remained fairly constant during foetal development. (orig.) [de

  2. Biophysical behavior of Scomberoides commersonianus skin collagen.

    Science.gov (United States)

    Kolli, Nagamalleswari; Joseph, K Thomas; Ramasami, T

    2002-06-01

    Some biophysical characteristics of the skin collagen from Scomberoides commersonianus were measured and compared to those of rat tail tendon. Stress-strain data indicate that the strain at break as well as the tensile strength of the fish skin without scales increased significantly. The maximum tension in case of rat skin is at least a factor of two higher than that observed in fish skin. The much lower hydrothermal isometric tension measurements observed in fish skin are attributable to a lesser number of heat stable crosslinks. Stress relaxation measurements in the fish skin indicate that more than one relaxation process may be involved in the stabilization of collagenous matrix. The observed differences in the biophysical behavior of fish skin may well arise from combination of changes in extent of hydroxylation of proline in collagen synthesis, hydrogen bond network and fibril orientation as compared to rat tail tendon.

  3. Collagenous gastritis in the pediatric age

    Directory of Open Access Journals (Sweden)

    Antonio Rosell-Camps

    2015-05-01

    Full Text Available Collagenous gastritis (CG is an uncommon condition known in the pediatric age. It is characterized by the presence of subepithelial collagen bands (> 10 μm associated with lymphoplasmacytic infiltration of the stomach's lamina propria. Symptoms manifested by patients with CG may be common with many other disorders. It typically manifests with epigastralgia, vomiting, and iron deficiency during pre-adolescence. This condition's pathophysiology remains unclear. In contrast to adults, where association with collagenous colitis and other autoimmune conditions is more common, pediatric involvement is usually confined to the stomach. Drugs of choice include proton pump inhibitors and corticoids. A case is reported of a 12-year-old girl with abdominal pain and ferritin deficiency who was diagnosed with CG based on gastric biopsy and experienced a favorable outcome.

  4. Expression characterization and functional implication of the collagen-modifying Leprecan proteins in mouse gonadal tissue and mature sperm

    Directory of Open Access Journals (Sweden)

    Sarah M. Zimmerman

    2018-02-01

    Full Text Available The Leprecan protein family which includes the prolyl 3-hydroxylase enzymes (P3H1, P3H2, and P3H3, the closely related cartilage-associated protein (CRTAP, and SC65 (Synaptonemal complex 65, aka P3H4, LEPREL4, is involved in the post-translational modification of fibrillar collagens. Mutations in CRTAP, P3H1 and P3H2 cause human genetic diseases. We recently showed that SC65 forms a stable complex in the endoplasmic reticulum with P3H3 and lysyl hydroxylase 1 and that loss of this complex leads to defective collagen lysyl hydroxylation and causes low bone mass and skin fragility. Interestingly, SC65 was initially described as a synaptonemal complex-associated protein, suggesting a potential additional role in germline cells. In the present study, we describe the expression of SC65, CRTAP and other Leprecan proteins in postnatal mouse reproductive organs. We detect SC65 expression in peritubular cells of testis up to 4 weeks of age but not in cells within seminiferous tubules, while its expression is maintained in ovarian follicles until adulthood. Similar to bone and skin, SC65 and P3H3 are also tightly co-expressed in testis and ovary. Moreover, we show that CRTAP, a protein normally involved in collagen prolyl 3-hydroxylation, is highly expressed in follicles and stroma of the ovary and in testes interstitial cells at 4 weeks of age, germline cells and mature sperm. Importantly, CrtapKO mice have a mild but significant increase in morphologically abnormal mature sperm (17% increase compared to WT. These data suggest a role for the Leprecans in the post-translational modification of collagens expressed in the stroma of the reproductive organs. While we could not confirm that SC65 is part of the synaptonemal complex, the expression of CRTAP in the seminiferous tubules and in mature sperm suggest a role in the testis germ cell lineage and sperm morphogenesis.

  5. Meet and Join Matrices in the Poset of Exponential Divisors

    Indian Academy of Sciences (India)

    ... exponential divisor ( G C E D ) and the least common exponential multiple ( L C E M ) do not always exist. In this paper we embed this poset in a lattice. As an application we study the G C E D and L C E M matrices, analogues of G C D and L C M matrices, which are both special cases of meet and join matrices on lattices.

  6. The 'golden' matrices and a new kind of cryptography

    International Nuclear Information System (INIS)

    Stakhov, A.P.

    2007-01-01

    We consider a new class of square matrices called the 'golden' matrices. They are a generalization of the classical Fibonacci Q-matrix for continuous domain. The 'golden' matrices can be used for creation of a new kind of cryptography called the 'golden' cryptography. The method is very fast and simple for technical realization and can be used for cryptographic protection of digital signals (telecommunication and measurement systems)

  7. Generalized Perron--Frobenius Theorem for Nonsquare Matrices

    OpenAIRE

    Avin, Chen; Borokhovich, Michael; Haddad, Yoram; Kantor, Erez; Lotker, Zvi; Parter, Merav; Peleg, David

    2013-01-01

    The celebrated Perron--Frobenius (PF) theorem is stated for irreducible nonnegative square matrices, and provides a simple characterization of their eigenvectors and eigenvalues. The importance of this theorem stems from the fact that eigenvalue problems on such matrices arise in many fields of science and engineering, including dynamical systems theory, economics, statistics and optimization. However, many real-life scenarios give rise to nonsquare matrices. A natural question is whether the...

  8. Distinct characteristics of mandibular bone collagen relative to long bone collagen: relevance to clinical dentistry.

    Science.gov (United States)

    Matsuura, Takashi; Tokutomi, Kentaro; Sasaki, Michiko; Katafuchi, Michitsuna; Mizumachi, Emiri; Sato, Hironobu

    2014-01-01

    Bone undergoes constant remodeling throughout life. The cellular and biochemical mechanisms of bone remodeling vary in a region-specific manner. There are a number of notable differences between the mandible and long bones, including developmental origin, osteogenic potential of mesenchymal stem cells, and the rate of bone turnover. Collagen, the most abundant matrix protein in bone, is responsible for determining the relative strength of particular bones. Posttranslational modifications of collagen, such as intermolecular crosslinking and lysine hydroxylation, are the most essential determinants of bone strength, although the amount of collagen is also important. In comparison to long bones, the mandible has greater collagen content, a lower amount of mature crosslinks, and a lower extent of lysine hydroxylation. The great abundance of immature crosslinks in mandibular collagen suggests that there is a lower rate of cross-link maturation. This means that mandibular collagen is relatively immature and thus more readily undergoes degradation and turnover. The greater rate of remodeling in mandibular collagen likely renders more flexibility to the bone and leaves it more suited to constant exercise. As reviewed here, it is important in clinical dentistry to understand the distinctive features of the bones of the jaw.

  9. Distinct Characteristics of Mandibular Bone Collagen Relative to Long Bone Collagen: Relevance to Clinical Dentistry

    Directory of Open Access Journals (Sweden)

    Takashi Matsuura

    2014-01-01

    Full Text Available Bone undergoes constant remodeling throughout life. The cellular and biochemical mechanisms of bone remodeling vary in a region-specific manner. There are a number of notable differences between the mandible and long bones, including developmental origin, osteogenic potential of mesenchymal stem cells, and the rate of bone turnover. Collagen, the most abundant matrix protein in bone, is responsible for determining the relative strength of particular bones. Posttranslational modifications of collagen, such as intermolecular crosslinking and lysine hydroxylation, are the most essential determinants of bone strength, although the amount of collagen is also important. In comparison to long bones, the mandible has greater collagen content, a lower amount of mature crosslinks, and a lower extent of lysine hydroxylation. The great abundance of immature crosslinks in mandibular collagen suggests that there is a lower rate of cross-link maturation. This means that mandibular collagen is relatively immature and thus more readily undergoes degradation and turnover. The greater rate of remodeling in mandibular collagen likely renders more flexibility to the bone and leaves it more suited to constant exercise. As reviewed here, it is important in clinical dentistry to understand the distinctive features of the bones of the jaw.

  10. Intrinsic Density Matrices of the Nuclear Shell Model

    International Nuclear Information System (INIS)

    Deveikis, A.; Kamuntavichius, G.

    1996-01-01

    A new method for calculation of shell model intrinsic density matrices, defined as two-particle density matrices integrated over the centre-of-mass position vector of two last particles and complemented with isospin variables, has been developed. The intrinsic density matrices obtained are completely antisymmetric, translation-invariant, and do not employ a group-theoretical classification of antisymmetric states. They are used for exact realistic density matrix expansion within the framework of the reduced Hamiltonian method. The procedures based on precise arithmetic for calculation of the intrinsic density matrices that involve no numerical diagonalization or orthogonalization have been developed and implemented in the computer code. (author). 11 refs., 2 tabs

  11. Immune responses to implanted human collagen graft in rats

    International Nuclear Information System (INIS)

    Quteish, D.; Dolby, A.E.

    1991-01-01

    Immunity to collagen implants may be mediated by cellular and humoral immune responses. To examine the possibility of such immunological reactivity and crossreactivity to collagen, 39 Sprague-Dawley rats (female, 10 weeks old, approximately 250 g wt) were implanted subcutaneously at thigh sites with crosslinked, freeze-dried human placental type I collagen grafts (4x4x2 mm) which had been irradiated (520 Gray) or left untreated. Blood was obtained by intracardiac sampling prior to implantation or from normal rats, and at various times afterwards when the animals were sacrificed. The sera from these animals were examined for circulating antibodies to human, bovine and rat tail (type I) collagens by enzyme-linked immunosorbent assay (ELISA). Also, the lymphoblastogenic responses of spleen lymphocytes from the irradiated collagen-implanted animals were assessed in culture by measuring thymidine uptake with autologous and normal rat sera in the presence of human bovine type I collagens. Implantation of the irradiated and non-irradiated collagen graft in rats led to a significant increase in the level of circulating antibodies to human collagen. Also antibody to bovine and rat tail collagens was detectable in the animals implanted with irradiated collagen grafts but at a lower level than the human collagen. There was a raised lymphoblastogenic response to both human and bovine collagens. The antibody level and lymphoblastogenesis to the tested collagens gradually decreased towards the end of the post-implantation period. (author)

  12. Effect of freeze-thaw cycles on load transfer between the biomineral and collagen phases in bovine dentin

    Energy Technology Data Exchange (ETDEWEB)

    Deymier-Black, A.C., E-mail: AlixDeymier2010@u.northwestern.edu [Department of Materials Science and Engineering, Northwestern University, Evanston, IL 60208 (United States); Almer, J.D., E-mail: almer@aps.anl.gov [Advanced Photon Source, Argonne National Laboratory, Argonne, IL 60439 (United States); Haeffner, D.R., E-mail: haeffner@aps.anl.gov [Advanced Photon Source, Argonne National Laboratory, Argonne, IL 60439 (United States); Dunand, D.C., E-mail: dunand@northwestern.edu [Department of Materials Science and Engineering, Northwestern University, Evanston, IL 60208 (United States)

    2011-10-10

    Stabilization of biological materials by freezing is widespread in the fields of medicine and biomaterials research and yet, in the case of hard biomaterials such as dentin, there is not a good understanding of how such treatments might affect the mechanical properties. The freezing and thawing may have a number of different effects on dentin including formation of cracks in the microstructure and denaturation of the collagen. Using high-energy synchrotron X-ray diffraction, the apparent moduli of bovine dentin samples were measured before and after various numbers of freeze-thaw cycles. It was determined that repeated freezing and thawing has no measurable effect on the hydroxyapatite or fibrillar apparent moduli up to 10 cycles. This confirms that the use of low temperature storage for stabilization of dentin is reasonable in cases where stiffness is a property of importance. Highlights: {yields} Studied the effect of freezing on the load transfer of HAP and fibrils in dentin. {yields} X-ray scattering measured HAP and fibril apparent moduli vs. freezing cycles. {yields} Apparent moduli did not vary significantly between 0 and 10 freeze thaw cycles. {yields} Residual strains imply no widespread cracking due to volumetric expansion of water. {yields} Dentin can be freeze-thawed with no significant effects on elastic properties.

  13. Noisy covariance matrices and portfolio optimization II

    Science.gov (United States)

    Pafka, Szilárd; Kondor, Imre

    2003-03-01

    Recent studies inspired by results from random matrix theory (Galluccio et al.: Physica A 259 (1998) 449; Laloux et al.: Phys. Rev. Lett. 83 (1999) 1467; Risk 12 (3) (1999) 69; Plerou et al.: Phys. Rev. Lett. 83 (1999) 1471) found that covariance matrices determined from empirical financial time series appear to contain such a high amount of noise that their structure can essentially be regarded as random. This seems, however, to be in contradiction with the fundamental role played by covariance matrices in finance, which constitute the pillars of modern investment theory and have also gained industry-wide applications in risk management. Our paper is an attempt to resolve this embarrassing paradox. The key observation is that the effect of noise strongly depends on the ratio r= n/ T, where n is the size of the portfolio and T the length of the available time series. On the basis of numerical experiments and analytic results for some toy portfolio models we show that for relatively large values of r (e.g. 0.6) noise does, indeed, have the pronounced effect suggested by Galluccio et al. (1998), Laloux et al. (1999) and Plerou et al. (1999) and illustrated later by Laloux et al. (Int. J. Theor. Appl. Finance 3 (2000) 391), Plerou et al. (Phys. Rev. E, e-print cond-mat/0108023) and Rosenow et al. (Europhys. Lett., e-print cond-mat/0111537) in a portfolio optimization context, while for smaller r (around 0.2 or below), the error due to noise drops to acceptable levels. Since the length of available time series is for obvious reasons limited in any practical application, any bound imposed on the noise-induced error translates into a bound on the size of the portfolio. In a related set of experiments we find that the effect of noise depends also on whether the problem arises in asset allocation or in a risk measurement context: if covariance matrices are used simply for measuring the risk of portfolios with a fixed composition rather than as inputs to optimization, the

  14. Study of collagen metabolism after β radiation injury

    International Nuclear Information System (INIS)

    Zhou Yinghui; Xulan; Wu Shiliang; Zhang Xueguang; Chen Liesong

    2000-01-01

    Objective: To investigate the change of collagen metabolism and it's regulation after β radiation. Method: The animal model of β radiation injury was established by the β radiation produced by the linear accelerator; and irradiated NIH 3T3 cells were studied. In the experiment the contents of total collagen, collagen type I and type III were measured. The activity of MMPs-1 was tested. The contents of TGF-β 1 , IL-6 were also detected. Results: After exposure to β radiation, little change was found in the content of total collagen, but the content of collagen I decreased and the content of collagen III, MMPs-1 activity increased; the expression of TGF-β 1 , IL-6 increased. Conclusion: The changes in the metabolism of collagen play an important role in the irradiated injury of the skin; TGF-β 1 and IL-6 may be essential in the regulation of the collagen metabolism

  15. Sub micrometric fibrillar structures of codoped poly aniline obtained by co-oxidation using the NaCl O/ammonium peroxydisulfate system: synthesis and characterization

    Energy Technology Data Exchange (ETDEWEB)

    Osorio F, J. E.; Gomez Y, C.; Hernandez P, M. A.; Corea T, M. L., E-mail: josorio@ipn.mx [IPN, Escuela Superior de Ingenieria Quimica e Industrias Extractivas, U. P. Adolfo Lopez Mateos, Av. Instituto Politecnico Nacional s/n, Col. San Pedro Zacatenco, 07738 Mexico D. F. (Mexico)

    2013-07-01

    A mixture of ammonium peroxydisulfate and sodium hypochlorite (NaCl O) (co-oxi dating system) were used to obtain poly aniline (PANi) doped with HCl and camphorsulfonic acid (CsA) (co-doping). The effect of HCl/CsA ratio added during polymerization structure, morphology and electrical conductivity of the conducting polymer was investigated. When NaCl O is used, the polymerization rate is substantially increased and the morphology changes from micrometric granular to nano metric fibrillar. CsA was used as complementary dopant but also to improve the solubility of PANi in common solvents. However, results suggest that quinone-like heterocycles containing carbonyl radicals as well as phenazine-type aromatic rings might be impeding an efficient doping in detriment of the conductivity. For the characterization X-Ray diffraction analysis, UV visible spectroscopy and scanning electron microscopy were used. (Author)

  16. Sub micrometric fibrillar structures of codoped poly aniline obtained by co-oxidation using the NaCl O/ammonium peroxydisulfate system: synthesis and characterization

    International Nuclear Information System (INIS)

    Osorio F, J. E.; Gomez Y, C.; Hernandez P, M. A.; Corea T, M. L.

    2013-01-01

    A mixture of ammonium peroxydisulfate and sodium hypochlorite (NaCl O) (co-oxi dating system) were used to obtain poly aniline (PANi) doped with HCl and camphorsulfonic acid (CsA) (co-doping). The effect of HCl/CsA ratio added during polymerization structure, morphology and electrical conductivity of the conducting polymer was investigated. When NaCl O is used, the polymerization rate is substantially increased and the morphology changes from micrometric granular to nano metric fibrillar. CsA was used as complementary dopant but also to improve the solubility of PANi in common solvents. However, results suggest that quinone-like heterocycles containing carbonyl radicals as well as phenazine-type aromatic rings might be impeding an efficient doping in detriment of the conductivity. For the characterization X-Ray diffraction analysis, UV visible spectroscopy and scanning electron microscopy were used. (Author)

  17. Equiangular tight frames and unistochastic matrices

    International Nuclear Information System (INIS)

    Goyeneche, Dardo; Turek, Ondřej

    2017-01-01

    We demonstrate that a complex equiangular tight frame composed of N vectors in dimension d , denoted ETF ( d , N ), exists if and only if a certain bistochastic matrix, univocally determined by N and d , belongs to a special class of unistochastic matrices. This connection allows us to find new complex ETFs in infinitely many dimensions and to derive a method to introduce non-trivial free parameters in ETFs. We present an explicit six-parametric family of complex ETF(6,16), which defines a family of symmetric POVMs. Minimal and maximal possible average entanglement of the vectors within this qubit–qutrit family are described. Furthermore, we propose an efficient numerical procedure to compute the unitary matrix underlying a unistochastic matrix, which we apply to find all existing classes of complex ETFs containing up to 20 vectors. (paper)

  18. Colonization of bone matrices by cellular components

    Science.gov (United States)

    Shchelkunova, E. I.; Voropaeva, A. A.; Korel, A. V.; Mayer, D. A.; Podorognaya, V. T.; Kirilova, I. A.

    2017-09-01

    Practical surgery, traumatology, orthopedics, and oncology require bioengineered constructs suitable for replacement of large-area bone defects. Only rigid/elastic matrix containing recipient's bone cells capable of mitosis, differentiation, and synthesizing extracellular matrix that supports cell viability can comply with these requirements. Therefore, the development of the techniques to produce structural and functional substitutes, whose three-dimensional structure corresponds to the recipient's damaged tissues, is the main objective of tissue engineering. This is achieved by developing tissue-engineering constructs represented by cells placed on the matrices. Low effectiveness of carrier matrix colonization with cells and their uneven distribution is one of the major problems in cell culture on various matrixes. In vitro studies of the interactions between cells and material, as well as the development of new techniques for scaffold colonization by cellular components are required to solve this problem.

  19. Computing with linear equations and matrices

    International Nuclear Information System (INIS)

    Churchhouse, R.F.

    1983-01-01

    Systems of linear equations and matrices arise in many disciplines. The equations may accurately represent conditions satisfied by a system or, more likely, provide an approximation to a more complex system of non-linear or differential equations. The system may involve a few or many thousand unknowns and each individual equation may involve few or many of them. Over the past 50 years a vast literature on methods for solving systems of linear equations and the associated problems of finding the inverse or eigenvalues of a matrix has been produced. These lectures cover those methods which have been found to be most useful for dealing with such types of problem. References are given where appropriate and attention is drawn to the possibility of improved methods for use on vector and parallel processors. (orig.)

  20. Matrices over runtime systems at exascale

    KAUST Repository

    Agullo, Emmanuel

    2012-11-01

    The goal of Matrices Over Runtime Systems at Exascale (MORSE) project is to design dense and sparse linear algebra methods that achieve the fastest possible time to an accurate solution on large-scale multicore systems with GPU accelerators, using all the processing power that future high end systems can make available. In this poster, we propose a framework for describing linear algebra algorithms at a high level of abstraction and delegating the actual execution to a runtime system in order to design software whose performance is portable accross architectures. We illustrate our methodology on three classes of problems: dense linear algebra, sparse direct methods and fast multipole methods. The resulting codes have been incorporated into Magma, Pastix and ScalFMM solvers, respectively. © 2012 IEEE.

  1. Sparse random matrices: The eigenvalue spectrum revisited

    International Nuclear Information System (INIS)

    Semerjian, Guilhem; Cugliandolo, Leticia F.

    2003-08-01

    We revisit the derivation of the density of states of sparse random matrices. We derive a recursion relation that allows one to compute the spectrum of the matrix of incidence for finite trees that determines completely the low concentration limit. Using the iterative scheme introduced by Biroli and Monasson [J. Phys. A 32, L255 (1999)] we find an approximate expression for the density of states expected to hold exactly in the opposite limit of large but finite concentration. The combination of the two methods yields a very simple geometric interpretation of the tails of the spectrum. We test the analytic results with numerical simulations and we suggest an indirect numerical method to explore the tails of the spectrum. (author)

  2. From Pauli Matrices to Quantum Ito Formula

    International Nuclear Information System (INIS)

    Pautrat, Yan

    2005-01-01

    This paper answers important questions raised by the recent description, by Attal, of a robust and explicit method to approximate basic objects of quantum stochastic calculus on bosonic Fock space by analogues on the state space of quantum spin chains. The existence of that method justifies a detailed investigation of discrete-time quantum stochastic calculus. Here we fully define and study that theory and obtain in particular a discrete-time quantum Ito formula, which one can see as summarizing the commutation relations of Pauli matrices.An apparent flaw in that approximation method is the difference in the quantum Ito formulas, discrete and continuous, which suggests that the discrete quantum stochastic calculus differs fundamentally from the continuous one and is therefore not a suitable object to approximate subtle phenomena. We show that flaw is only apparent by proving that the continuous-time quantum Ito formula is actually a consequence of its discrete-time counterpart

  3. Dirac matrices for Chern-Simons gravity

    Energy Technology Data Exchange (ETDEWEB)

    Izaurieta, Fernando; Ramirez, Ricardo; Rodriguez, Eduardo [Departamento de Matematica y Fisica Aplicadas, Universidad Catolica de la Santisima Concepcion, Alonso de Ribera 2850, 4090541 Concepcion (Chile)

    2012-10-06

    A genuine gauge theory for the Poincare, de Sitter or anti-de Sitter algebras can be constructed in (2n- 1)-dimensional spacetime by means of the Chern-Simons form, yielding a gravitational theory that differs from General Relativity but shares many of its properties, such as second order field equations for the metric. The particular form of the Lagrangian is determined by a rank n, symmetric tensor invariant under the relevant algebra. In practice, the calculation of this invariant tensor can be reduced to the computation of the trace of the symmetrized product of n Dirac Gamma matrices {Gamma}{sub ab} in 2n-dimensional spacetime. While straightforward in principle, this calculation can become extremely cumbersome in practice. For large enough n, existing computer algebra packages take an inordinate long time to produce the answer or plainly fail having used up all available memory. In this talk we show that the general formula for the trace of the symmetrized product of 2n Gamma matrices {Gamma}{sub ab} can be written as a certain sum over the integer partitions s of n, with every term being multiplied by a numerical cofficient {alpha}{sub s}. We then give a general algorithm that computes the {alpha}-coefficients as the solution of a linear system of equations generated by evaluating the general formula for different sets of tensors B{sup ab} with random numerical entries. A recurrence relation between different coefficients is shown to hold and is used in a second, 'minimal' algorithm to greatly speed up the computations. Runtime of the minimal algorithm stays below 1 min on a typical desktop computer for up to n = 25, which easily covers all foreseeable applications of the trace formula.

  4. Viscous hydrophilic injection matrices for serial crystallography

    Directory of Open Access Journals (Sweden)

    Gabriela Kovácsová

    2017-07-01

    Full Text Available Serial (femtosecond crystallography at synchrotron and X-ray free-electron laser (XFEL sources distributes the absorbed radiation dose over all crystals used for data collection and therefore allows measurement of radiation damage prone systems, including the use of microcrystals for room-temperature measurements. Serial crystallography relies on fast and efficient exchange of crystals upon X-ray exposure, which can be achieved using a variety of methods, including various injection techniques. The latter vary significantly in their flow rates – gas dynamic virtual nozzle based injectors provide very thin fast-flowing jets, whereas high-viscosity extrusion injectors produce much thicker streams with flow rates two to three orders of magnitude lower. High-viscosity extrusion results in much lower sample consumption, as its sample delivery speed is commensurate both with typical XFEL repetition rates and with data acquisition rates at synchrotron sources. An obvious viscous injection medium is lipidic cubic phase (LCP as it is used for in meso membrane protein crystallization. However, LCP has limited compatibility with many crystallization conditions. While a few other viscous media have been described in the literature, there is an ongoing need to identify additional injection media for crystal embedding. Critical attributes are reliable injection properties and a broad chemical compatibility to accommodate samples as heterogeneous and sensitive as protein crystals. Here, the use of two novel hydrogels as viscous injection matrices is described, namely sodium carboxymethyl cellulose and the thermo-reversible block polymer Pluronic F-127. Both are compatible with various crystallization conditions and yield acceptable X-ray background. The stability and velocity of the extruded stream were also analysed and the dependence of the stream velocity on the flow rate was measured. In contrast with previously characterized injection media, both new

  5. Data in support of the identification of neuronal and astrocyte proteins interacting with extracellularly applied oligomeric and fibrillar α-synuclein assemblies by mass spectrometry

    Directory of Open Access Journals (Sweden)

    Amulya Nidhi Shrivastava

    2016-06-01

    Full Text Available α-Synuclein (α-syn is the principal component of Lewy bodies, the pathophysiological hallmark of individuals affected by Parkinson disease (PD. This neuropathologic form of α-syn contributes to PD progression and propagation of α-syn assemblies between neurons. The data we present here support the proteomic analysis used to identify neuronal proteins that specifically interact with extracellularly applied oligomeric or fibrillar α-syn assemblies (conditions 1 and 2, respectively (doi: 10.15252/embj.201591397 [1]. α-syn assemblies and their cellular partner proteins were pulled down from neuronal cell lysed shortly after exposure to exogenous α-syn assemblies and the associated proteins were identified by mass spectrometry using a shotgun proteomic-based approach. We also performed experiments on pure cultures of astrocytes to identify astrocyte-specific proteins interacting with oligomeric or fibrillar α-syn (conditions 3 and 4, respectively. For each condition, proteins interacting selectively with α-syn assemblies were identified by comparison to proteins pulled-down from untreated cells used as controls. The mass spectrometry data, the database search and the peak lists have been deposited to the ProteomeXchange Consortium database via the PRIDE partner repository with the dataset identifiers PRIDE: http://www.ebi.ac.uk/pride/archive/projects/PXD002256 to PRIDE: http://www.ebi.ac.uk/pride/archive/projects/PXD002263 and doi: 10.6019/http://www.ebi.ac.uk/pride/archive/projects/PXD002256 to 10.6019/http://www.ebi.ac.uk/pride/archive/projects/PXD002263.

  6. Immunosuppression by fractionated total lymphoid irradiation in collagen arthritis

    International Nuclear Information System (INIS)

    McCune, W.J.; Buckley, J.A.; Belli, J.A.; Trentham, D.E.

    1982-01-01

    Treatments with fractionated total lymphoid irradiation (TLI) and cyclophosphamide were evaluated for rats injected with type II collagen. Preadministration of TLI and repeated injections of cyclophosphamide suppressed the severity of arthritis and lowered antibody titers to collagen significantly. TLI initiated at the onset of collagen arthritis decreased humoral and cellular responses to collagen but did not affect the severity of arthritis. These data demonstrate that both TLi and cyclophosphamide are immunosuppressive in an experimentally inducible autoimmune disease

  7. Measurement of skeletal muscle collagen breakdown by microdialysis

    DEFF Research Database (Denmark)

    Miller, B F; Ellis, D; Robinson, M M

    2011-01-01

    Exercise increases the synthesis of collagen in the extracellular matrix of skeletal muscle. Breakdown of skeletal muscle collagen has not yet been determined because of technical limitations. The purpose of the present study was to use local sampling to determine skeletal muscle collagen breakdown...... collagen breakdown 17–21 h post-exercise, and our measurement of OHP using GC–MS was in agreement with traditional assays....

  8. Collagen gene interactions and endurance running performance

    African Journals Online (AJOL)

    to complete any of the individual components (3.8 km swim, 180 km bike or 42.2 km run) of the 226 km event. The major ... may affect normal collagen fibrillogenesis and alter the mechanical properties of ... using a XP Thermal Cycler (Block model XP-G, BIOER Technology Co.,. Japan). ..... New insights into the function of.

  9. The collagenic architecture of human dura mater.

    Science.gov (United States)

    Protasoni, Marina; Sangiorgi, Simone; Cividini, Andrea; Culuvaris, Gloria Tiffany; Tomei, Giustino; Dell'Orbo, Carlo; Raspanti, Mario; Balbi, Sergio; Reguzzoni, Marcella

    2011-06-01

    Human dura mater is the most external meningeal sheet surrounding the CNS. It provides an efficient protection to intracranial structures and represents the most important site for CSF turnover. Its intrinsic architecture is made up of fibrous tissue including collagenic and elastic fibers that guarantee the maintenance of its biophysical features. The recent technical advances in the repair of dural defects have allowed for the creation of many synthetic and biological grafts. However, no detailed studies on the 3D microscopic disposition of collagenic fibers in dura mater are available. The authors report on the collagenic 3D architecture of normal dura mater highlighting the orientation, disposition in 3 dimensions, and shape of the collagen fibers with respect to the observed layer. Thirty-two dura mater specimens were collected during cranial decompressive surgical procedures, fixed in 2.5% Karnovsky solution, and digested in 1 N NaOH solution. After a routine procedure, the specimens were observed using a scanning electron microscope. The authors distinguished the following 5 layers in the fibrous dura mater of varying thicknesses, orientation, and structures: bone surface, external median, vascular, internal median, and arachnoid layers. The description of the ultrastructural 3D organization of the different layers of dura mater will give us more information for the creation of synthetic grafts that are as similar as possible to normal dura mater. This description will be also related to the study of the neoplastic invasion.

  10. Edaravone suppresses degradation of type II collagen.

    Science.gov (United States)

    Huang, Chen; Liao, Guangjun; Han, Jian; Zhang, Guofeng; Zou, Benguo

    2016-05-13

    Osteoarthritis (OA) is a degenerative joint disease affecting millions of people. The degradation and loss of type II collagen induced by proinflammatory cytokines secreted by chondrocytes, such as factor-α (TNF-α) is an important pathological mechanism to the progression of OA. Edaravone is a potent free radical scavenger, which has been clinically used to treat the neuronal damage following acute ischemic stroke. However, whether Edaravone has a protective effect in articular cartilage hasn't been reported before. In this study, we investigated the chondrocyte protective effects of Edaravone on TNF-α induced degradation of type Ⅱ collagen. And our results indicated that TNF-α treatment resulted in degradation of type Ⅱ collagen, which can be ameliorated by treatment with Edaravone in a dose dependent manner. Notably, it was found that the inhibitory effects of Edaravone on TNF-α-induced reduction of type Ⅱ collagen were mediated by MMP-3 and MMP-13. Mechanistically, we found that Edaravone alleviated TNF-α induced activation of STAT1 and expression of IRF-1. These findings suggest a potential protective effect of Edaravone in OA. Copyright © 2016. Published by Elsevier Inc.

  11. Multiscale structure and mechanics of collagen

    NARCIS (Netherlands)

    Amuasi, H.E.

    2012-01-01

    While we are 70% water, in a very real sense collagen is the stuff we are made of. It is the most abundant protein in multicellular organisms, such as ourselves, making up roughly 25% of our total protein content. If you have ever wondered how the human body holds together all its different parts in

  12. Peroxidase enzymes regulate collagen extracellular matrix biosynthesis.

    Science.gov (United States)

    DeNichilo, Mark O; Panagopoulos, Vasilios; Rayner, Timothy E; Borowicz, Romana A; Greenwood, John E; Evdokiou, Andreas

    2015-05-01

    Myeloperoxidase and eosinophil peroxidase are heme-containing enzymes often physically associated with fibrotic tissue and cancer in various organs, without any direct involvement in promoting fibroblast recruitment and extracellular matrix (ECM) biosynthesis at these sites. We report herein novel findings that show peroxidase enzymes possess a well-conserved profibrogenic capacity to stimulate the migration of fibroblastic cells and promote their ability to secrete collagenous proteins to generate a functional ECM both in vitro and in vivo. Mechanistic studies conducted using cultured fibroblasts show that these cells are capable of rapidly binding and internalizing both myeloperoxidase and eosinophil peroxidase. Peroxidase enzymes stimulate collagen biosynthesis at a post-translational level in a prolyl 4-hydroxylase-dependent manner that does not require ascorbic acid. This response was blocked by the irreversible myeloperoxidase inhibitor 4-amino-benzoic acid hydrazide, indicating peroxidase catalytic activity is essential for collagen biosynthesis. These results suggest that peroxidase enzymes, such as myeloperoxidase and eosinophil peroxidase, may play a fundamental role in regulating the recruitment of fibroblast and the biosynthesis of collagen ECM at sites of normal tissue repair and fibrosis, with enormous implications for many disease states where infiltrating inflammatory cells deposit peroxidases. Copyright © 2015 American Society for Investigative Pathology. Published by Elsevier Inc. All rights reserved.

  13. Reduced collagen accumulation after major surgery

    DEFF Research Database (Denmark)

    Jorgensen, L N; Kallehave, F; Karlsmark, T

    1996-01-01

    .01)). This decline was significantly higher in the six patients who had a postoperative infection (median 3.02 (range -0.06 to 6.14) versus 0.36 (range -1.56 to 12.60) micrograms/cm, P = 0.02). This study shows that major surgery is associated with impairment of subcutaneous collagen accumulation in a test wound...

  14. Immunoadsorption for collagen and rheumatic diseases.

    Science.gov (United States)

    Yamaji, Ken

    2017-10-01

    The field of therapeutics has seen remarkable progress in the recent years, which has made mainstream drug treatment possible for collagen and rheumatic diseases. However, treatment of intractable cases where drug effectiveness is poor is a challenge. Furthermore, organ damage, concurrent illnesses or allergic reactions make adequate drug therapy impossible. For such cases, therapeutic apheresis is very significant, and it is important how this should be valued related to drug therapies. Therapeutic apheresis for collagen and rheumatic diseases involves the removal of factors that cause and exacerbate the disease; the aim of immunoadsorption, in particular, is to improve the clinical condition of patients with autoimmune disease by selectively removing pathogenic immune complexes and autoantibodies from their plasma. Immunoadsorption, in particular, unlike plasma exchange and DFPP, utilizes a high-affinity column that selectively removes autoantibodies and immune complexes, leaving other plasma components intact. There is no need to replenish fresh frozen plasma or blood products such as albumin and gamma globulin preparations. Immunoadsorption is thus superior in terms of safety, as the risk of infection or allergic reaction relating to these preparations can be avoided. We anticipate future investigations of application of synchronized therapy using drugs and therapeutic apheresis, most notably immunoadsorption, in combination to treat intractable clinical conditions such as collagen and rheumatic diseases. In this paper, our discussion includes the indications for immunoadsorption such as collagen and rheumatic diseases, the relevant conditions and types, as well as the latest understanding related to methods and clinical efficacy. Copyright © 2017 Elsevier Ltd. All rights reserved.

  15. Controlled self assembly of collagen nanoparticle

    Science.gov (United States)

    Papi, Massimiliano; Palmieri, Valentina; Maulucci, Giuseppe; Arcovito, Giuseppe; Greco, Emanuela; Quintiliani, Gianluca; Fraziano, Maurizio; De Spirito, Marco

    2011-11-01

    In recent years carrier-mediated drug delivery has emerged as a powerful methodology for the treatment of various pathologies. The therapeutic index of traditional and novel drugs is enhanced via the increase of specificity due to targeting of drugs to a particular tissue, cell or intracellular compartment, the control over release kinetics, the protection of the active agent, or a combination of the above. Collagen is an important biomaterial in medical applications and ideal as protein-based drug delivery platform due to its special characteristics, such as biocompatibility, low toxicity, biodegradability, and weak antigenicity. While some many attempts have been made, further work is needed to produce fully biocompatible collagen hydrogels of desired size and able to release drugs on a specific target. In this article we propose a novel method to obtain spherical particles made of polymerized collagen surrounded by DMPC liposomes. The liposomes allow to control both the particles dimension and the gelling environment during the collagen polymerization. Furthermore, an optical based method to visualize and quantify each step of the proposed protocol is detailed and discussed.

  16. Collagen-induced arthritis in mice

    NARCIS (Netherlands)

    Bevaart, Lisette; Vervoordeldonk, Margriet J.; Tak, Paul P.

    2010-01-01

    Collagen-induced arthritis (CIA) in mice is an animal model for rheumatoid arthritis (RA) and can be induced in DBA/1 and C57BL/6 mice using different protocols. The CIA model can be used to unravel mechanisms involved in the development of arthritis and is frequently used to study the effect of new

  17. The degree of collagen crosslinks in medical collagen membranes determined by water absorption

    International Nuclear Information System (INIS)

    Braczko, M.; Tederko, A.; Grzybowski, J.

    1994-01-01

    Collagen membranes were crosslinked by using three agents: glutaraldehyde, hexametylenediisocyanate, and UV irradiation. The increasing concentrations of above chemical agents or longer time of UV exposition resulted in the higher cross-links degree and in the decrease of collagen membranes swelling (measured as water absorption), their elasticity and mechanical resistance. According to American standards, the degree of collagen biomaterial cross-links is determined by measuring of the digestion time by pepsin. However, that method is very time-consuming. In our study, we have that a simple, linear regression between logarithm of digestion time by pepsin exists and it was identical for all three cross-linking agents used. We have concluded that determination of water absorption can be an alternative, simple and fast method for examination of collagen membrane cross-links degree. (author). 16 refs, 7 figs, 1 tab

  18. Corneal collagen crosslinking for keratoconus. A review

    Directory of Open Access Journals (Sweden)

    M. M. Bikbov

    2014-10-01

    Full Text Available Photochemical crosslinking is widely applied in ophthalmology. Its biochemical effect is due to the release of singlet oxygen that promotes anaerobic photochemical reaction. Keratoconus is one of the most common corneal ectasia affecting 1 in 250 to 250 000 persons. Currently, the rate of iatrogenic ectasia following eximer laser refractive surgery increases due to biomechanical weakening of the cornea. Morphologically and biochemically, ectasia is characterized by corneal layers thinning, contact between the stroma and epithelium resulting from Bowman’s membrane rupture, chromatin fragmentation in keratocyte nuclei, phagocytosis, abnormal staining and arrangement of collagen fibers, enzyme system disorders, and keratocyte apoptosis. In corneal ectasia, altered enzymatic processes result in the synthesis of abnormal collagen. Collagen packing is determined by the activity of various extracellular matrix enzymes which bind amines and aldehydes of collagen fiber amino acids. In the late stage, morphological changes of Descemet’s membrane (i.e., rupture and detachment develop. Abnormal hexagonal-shaped keratocytes and their apoptosis are the signs of endothelial dystrophy. The lack of analogs in domestic ophthalmology encouraged the scientists of Ufa Eye Research Institute to develop a device for corneal collagen crosslinking. The parameters of ultraviolet (i.e., wavelength, exposure time, power to achieve the desired effect were identified. The specifics of some photosensitizers in the course of the procedure were studied. UFalink, a device for UV irradiation of cornea, and photosensitizer Dextralink were developed and adopted. Due to the high risk of endothelial damage, this treatment is contraindicated in severe keratoconus (CCT less than 400 microns. Major effects of corneal collagen crosslinking are the following: Young’s modulus (modulus of elasticity increase by 328.9 % (on average, temperature tolerance increase by 5

  19. Collagen derived serum markers in carcinoma of the prostate

    DEFF Research Database (Denmark)

    Rudnicki, M; Jensen, L T; Iversen, P

    1995-01-01

    Three new collagen markers deriving from the collagenous matrix, e.g. carboxyterminal propeptide of type I procollagen (PICP), carboxy-terminal pyridinoline cross-linked telopeptide of type I collagen (ICTP), and aminoterminal propeptide of type III procollagen (PIIINP) were used for the diagnose...

  20. Collagen targeting using multivalent protein-functionalized dendrimers

    NARCIS (Netherlands)

    Breurken, M.; Lempens, E.H.M.; Temming, R.P.; Helms, B.A.; Meijer, E.W.; Merkx, M.

    2011-01-01

    Collagen is an attractive marker for tissue remodeling in a variety of common disease processes. Here we report the preparation of protein dendrimers as multivalent collagen targeting ligands by native chemical ligation of the collagen binding protein CNA35 to cysteine-functionalized dendritic

  1. Vaginal Fibroblastic Cells from Women with Pelvic Organ Prolapse Produce Matrices with Increased Stiffness and Collagen Content

    NARCIS (Netherlands)

    Ruiz-Zapata, A.M.Kerkhof, M.H.; Ghazanfari, S.; Zandieh-Doulabi, B.; Stoop, R.; Smit, T.H.; Helder, M.N.

    2016-01-01

    Pelvic organ prolapse (POP) is characterised by the weakening of the pelvic floor support tissues, and often by subsequent prolapse of the bladder outside the body, i.e. cystocele. The bladder is kept in place by the anterior vaginal wall which consists of a dense extracellular matrix rich in

  2. Deterministic matrices matching the compressed sensing phase transitions of Gaussian random matrices

    OpenAIRE

    Monajemi, Hatef; Jafarpour, Sina; Gavish, Matan; Donoho, David L.; Ambikasaran, Sivaram; Bacallado, Sergio; Bharadia, Dinesh; Chen, Yuxin; Choi, Young; Chowdhury, Mainak; Chowdhury, Soham; Damle, Anil; Fithian, Will; Goetz, Georges; Grosenick, Logan

    2012-01-01

    In compressed sensing, one takes samples of an N-dimensional vector using an matrix A, obtaining undersampled measurements . For random matrices with independent standard Gaussian entries, it is known that, when is k-sparse, there is a precisely determined phase transition: for a certain region in the (,)-phase diagram, convex optimization typically finds the sparsest solution, whereas outside that region, it typically fails. It has been shown empirically that the same property—with the ...

  3. Collagen organization regulates stretch-initiated pain-related neuronal signals in vitro: Implications for structure-function relationships in innervated ligaments.

    Science.gov (United States)

    Zhang, Sijia; Singh, Sagar; Winkelstein, Beth A

    2018-02-01

    Injury to the spinal facet capsule, an innervated ligament with heterogeneous collagen organization, produces pain. Although mechanical facet joint trauma activates embedded afferents, it is unclear if, and how, the varied extracellular microstructure of its ligament affects sensory transduction for pain from mechanical inputs. To investigate the effects of macroscopic deformations on afferents in collagen matrices with different organizations, an in vitro neuron-collagen construct (NCC) model was used. NCCs with either randomly organized or parallel aligned collagen fibers were used to mimic the varied microstructure in the facet capsular ligament. Embryonic rat dorsal root ganglia (DRG) were encapsulated in the NCCs; axonal outgrowth was uniform and in all directions in random NCCs, but parallel in aligned NCCs. NCCs underwent uniaxial stretch (0.25 ± 0.06 strain) corresponding to sub-failure facet capsule strains that induce pain. Macroscopic NCC mechanics were measured and axonal expression of phosphorylated extracellular signal-regulated kinase (pERK) and the neurotransmitter substance P (SP) was assayed at 1 day to assess neuronal activation and nociception. Stretch significantly upregulated pERK expression in both random and aligned gels (p organization. These findings suggest that collagen organization differentially modulates pain-related neuronal signaling and support structural heterogeneity of ligament tissue as mediating sensory function. © 2017 Orthopaedic Research Society. Published by Wiley Periodicals, Inc. J Orthop Res 36:770-777, 2018. © 2017 Orthopaedic Research Society. Published by Wiley Periodicals, Inc.

  4. FGF-2 potently induces both proliferation and DSP expression in collagen type I gel cultures of adult incisor immature pulp cells

    International Nuclear Information System (INIS)

    Nakao, Kazuhisa; Itoh, Makoto; Tomita, Yusuke; Tomooka, Yasuhiro; Tsuji, Takashi

    2004-01-01

    We investigated the effects of both cytokines and extracellular matrices on the proliferation and differentiation of immature adult rat incisor dental pulp cells. These immature cells, which have a high-proliferative potency in vitro and do not express mRNAs for dentin non-collagenous proteins such as dentin sialoprotein (DSP), bone sialoprotein (BSP), and osteocalcin, exist in the root regions of adult rat incisors. Fibroblast growth factor-2 (FGF-2) stimulated the proliferation of these immature cells and the subsequent production of mineralized calcium was induced by β-glycerophosphate treatment. Additionally, FGF-2 dramatically induced the expression of DSP and BSP mRNAs, but only in collagen type I gel cultures, whereas neither plate-coated collagen type I nor fibronectin, laminin or collagen type IV cultures could produce this effect and generate sufficient physiological levels of these transcripts. Although bone morphogenetic protein-4 could not induce the proliferation of immature dental pulp cells nor upregulate DSP mRNA expression, it had a synergistic effect upon DSP transcript levels in conjunction with FGF-2. These results suggest that both the presence of FGF-2 and the three-dimensional formation of immature dental pulp cells in collagen type I gel cultures are essential for both DSP expression and odontoblast differentiation. These observations provide valuable information concerning the study of the commitment and differentiation of odontoblast lineages, and also provide a basis for the rational design of cytokine and extracellular matrix based compounds for regenerative therapies in new dental treatments

  5. Binary Positive Semidefinite Matrices and Associated Integer Polytopes

    DEFF Research Database (Denmark)

    Letchford, Adam N.; Sørensen, Michael Malmros

    2012-01-01

    We consider the positive semidefinite (psd) matrices with binary entries, along with the corresponding integer polytopes. We begin by establishing some basic properties of these matrices and polytopes. Then, we show that several families of integer polytopes in the literature-the cut, boolean qua...

  6. CONVERGENCE OF POWERS OF CONTROLLABLE INTUITIONISTIC FUZZY MATRICES

    OpenAIRE

    Riyaz Ahmad Padder; P. Murugadas

    2016-01-01

    Convergences of powers of controllable intuitionistic fuzzy matrices have been stud¬ied. It is shown that they oscillate with period equal to 2, in general. Some equalities and sequences of inequalities about powers of controllable intuitionistic fuzzy matrices have been obtained.

  7. Propositional matrices as alternative representation of truth values ...

    African Journals Online (AJOL)

    The paper considered the subject of representation of truth values in symbolic logic. An alternative representation was given based on the rows and columns properties of matrices, with the operations involving the logical connectives subjected to the laws of algebra of propositions. Matrices of various propositions detailing ...

  8. The Modern Origin of Matrices and Their Applications

    Science.gov (United States)

    Debnath, L.

    2014-01-01

    This paper deals with the modern development of matrices, linear transformations, quadratic forms and their applications to geometry and mechanics, eigenvalues, eigenvectors and characteristic equations with applications. Included are the representations of real and complex numbers, and quaternions by matrices, and isomorphism in order to show…

  9. Abel-grassmann's groupoids of modulo matrices

    International Nuclear Information System (INIS)

    Javaid, Q.; Awan, M.D.; Naqvi, S.H.A.

    2016-01-01

    The binary operation of usual addition is associative in all matrices over R. However, a binary operation of addition in matrices over Z/sub n/ of a nonassociative structures of AG-groupoids and AG-groups are defined and investigated here. It is shown that both these structures exist for every integer n >≥ 3. Various properties of these structures are explored like: (i) Every AG-groupoid of matrices over Z/sub n/ is transitively commutative AG-groupoid and is a cancellative AG-groupoid if n is prime. (ii) Every AG-groupoid of matrices over Z/sub n/ of Type-II is a T/sup 3/-AG-groupoid. (iii) An AG-groupoid of matrices over Z/sub n/ ; G /sub nAG/(t,u), is an AG-band, if t+u=1(mod n). (author)

  10. Study of collagen metabolism and regulation after β radiation injury

    International Nuclear Information System (INIS)

    Zhou Yinghui; Xu Lan; Wu Shiliang; Qiu Hao; Jiang Zhi; Tu Youbin; Zhang Xueguang

    2001-01-01

    The animal model of β radiation injury was established by the β radiation produced by the linear accelerator; and irradiated NIH 3T3 cells were studied. In the experiment the contents of total collagen, collagen type I and type III were measured. The activity of MMPs-1 were tested. The contents of TGF-β 1 , IL-6 were also detected. The results showed that after exposure to β radiation, little change was found in the content of total collagen, but the content of collagen I decreased and the content of collagen III, MMPs-1 activity increased; the expression of TGF-β 1 , IL-6 increased. The results suggest that changes in the metabolism of collagen play an important role in the irradiated injury of the skin; TGF-β 1 , IL-6 may be essential in the regulation of the collagen metabolism

  11. Type V Collagen is Persistently Altered after Inguinal Hernia Repair

    DEFF Research Database (Denmark)

    Lorentzen, L; Henriksen, N A; Juhl, P

    2018-01-01

    BACKGROUND AND AIMS: Hernia formation is associated with alterations of collagen metabolism. Collagen synthesis and degradation cause a systemic release of products, which are measurable in serum. Recently, we reported changes in type V and IV collagen metabolisms in patients with inguinal...... elective cholecystectomy served as controls (n = 10). Whole venous blood was collected 35-55 months after operation. Biomarkers for type V collagen synthesis (Pro-C5) and degradation (C5M) and those for type IV collagen synthesis (P4NP) and degradation (C4M2) were measured by a solid-phase competitive...... assay. RESULTS: The turnover of type V collagen (Pro-C5/C5M) was slightly higher postoperatively when compared to preoperatively in the inguinal hernia group (P = 0.034). In addition, the results revealed a postoperatively lower type V collagen turnover level in the inguinal hernia group compared...

  12. Demineralized dentin matrix composite collagen material for bone tissue regeneration.

    Science.gov (United States)

    Li, Jianan; Yang, Juan; Zhong, Xiaozhong; He, Fengrong; Wu, Xiongwen; Shen, Guanxin

    2013-01-01

    Demineralized dentin matrix (DDM) had been successfully used in clinics as bone repair biomaterial for many years. However, particle morphology of DDM limited it further applications. In this study, DDM and collagen were prepared to DDM composite collagen material. The surface morphology of the material was studied by scanning electron microscope (SEM). MC3T3-E1 cells responses in vitro and tissue responses in vivo by implantation of DDM composite collagen material in bone defect of rabbits were also investigated. SEM analysis showed that DDM composite collagen material evenly distributed and formed a porous scaffold. Cell culture and animal models results indicated that DDM composite collagen material was biocompatible and could support cell proliferation and differentiation. Histological evaluation showed that DDM composite collagen material exhibited good biocompatibility, biodegradability and osteoconductivity with host bone in vivo. The results suggested that DDM composite collagen material might have a significant clinical advantage and potential to be applied in bone and orthopedic surgery.

  13. Study of collagen metabolism and regulation after {beta} radiation injury

    Energy Technology Data Exchange (ETDEWEB)

    Yinghui, Zhou; Lan, Xu; Shiliang, Wu; Hao, Qiu; Zhi, Jiang; Youbin, Tu; Xueguang, Zhang [Suzhou Medical College (China)

    2001-04-01

    The animal model of {beta} radiation injury was established by the {beta} radiation produced by the linear accelerator; and irradiated NIH 3T3 cells were studied. In the experiment the contents of total collagen, collagen type I and type III were measured. The activity of MMPs-1 were tested. The contents of TGF-{beta}{sub 1}, IL-6 were also detected. The results showed that after exposure to {beta} radiation, little change was found in the content of total collagen, but the content of collagen I decreased and the content of collagen III, MMPs-1 activity increased; the expression of TGF-{beta}{sub 1}, IL-6 increased. The results suggest that changes in the metabolism of collagen play an important role in the irradiated injury of the skin; TGF-{beta}{sub 1}, IL-6 may be essential in the regulation of the collagen metabolism.

  14. LARP6 Meets Collagen mRNA: Specific Regulation of Type I Collagen Expression

    Directory of Open Access Journals (Sweden)

    Yujie Zhang

    2016-03-01

    Full Text Available Type I collagen is the most abundant structural protein in all vertebrates, but its constitutive rate of synthesis is low due to long half-life of the protein (60–70 days. However, several hundred fold increased production of type I collagen is often seen in reparative or reactive fibrosis. The mechanism which is responsible for this dramatic upregulation is complex, including multiple levels of regulation. However, posttranscriptional regulation evidently plays a predominant role. Posttranscriptional regulation comprises processing, transport, stabilization and translation of mRNAs and is executed by RNA binding proteins. There are about 800 RNA binding proteins, but only one, La ribonucleoprotein domain family member 6 (LARP6, is specifically involved in type I collagen regulation. In the 5′untranslated region (5’UTR of mRNAs encoding for type I and type III collagens there is an evolutionally conserved stem-loop (SL structure; this structure is not found in any other mRNA, including any other collagen mRNA. LARP6 binds to the 5′SL in sequence specific manner to regulate stability of collagen mRNAs and their translatability. Here, we will review current understanding of how is LARP6 involved in posttranscriptional regulation of collagen mRNAs. We will also discuss how other proteins recruited by LARP6, including nonmuscle myosin, vimentin, serine threonine kinase receptor associated protein (STRAP, 25 kD FK506 binding protein (FKBP25 and RNA helicase A (RHA, contribute to this process.

  15. Substituted amylose matrices for oral drug delivery

    International Nuclear Information System (INIS)

    Moghadam, S H; Wang, H W; El-Leithy, E Saddar; Chebli, C; Cartilier, L

    2007-01-01

    High amylose corn starch was used to obtain substituted amylose (SA) polymers by chemically modifying hydroxyl groups by an etherification process using 1,2-epoxypropanol. Tablets for drug-controlled release were prepared by direct compression and their release properties assessed by an in vitro dissolution test (USP XXIII no 2). The polymer swelling was characterized by measuring gravimetrically the water uptake ability of polymer tablets. SA hydrophilic matrix tablets present sequentially a burst effect, typical of hydrophilic matrices, and a near constant release, typical of reservoir systems. After the burst effect, surface pores disappear progressively by molecular association of amylose chains; this allows the creation of a polymer layer acting as a diffusion barrier and explains the peculiar behaviour of SA polymers. Several formulation parameters such as compression force, drug loading, tablet weight and insoluble diluent concentration were investigated. On the other hand, tablet thickness, scanning electron microscope analysis and mercury intrusion porosimetry showed that the high crushing strength values observed for SA tablets were due to an unusual melting process occurring during tabletting although the tablet external layer went only through densification, deformation and partial melting. In contrast, HPMC tablets did not show any traces of a melting process

  16. LIBS analysis of artificial calcified tissues matrices.

    Science.gov (United States)

    Kasem, M A; Gonzalez, J J; Russo, R E; Harith, M A

    2013-04-15

    In most laser-based analytical methods, the reproducibility of quantitative measurements strongly depends on maintaining uniform and stable experimental conditions. For LIBS analysis this means that for accurate estimation of elemental concentration, using the calibration curves obtained from reference samples, the plasma parameters have to be kept as constant as possible. In addition, calcified tissues such as bone are normally less "tough" in their texture than many samples, especially metals. Thus, the ablation process could change the sample morphological features rapidly, and result in poor reproducibility statistics. In the present work, three artificial reference sample sets have been fabricated. These samples represent three different calcium based matrices, CaCO3 matrix, bone ash matrix and Ca hydroxyapatite matrix. A comparative study of UV (266 nm) and IR (1064 nm) LIBS for these three sets of samples has been performed under similar experimental conditions for the two systems (laser energy, spot size, repetition rate, irradiance, etc.) to examine the wavelength effect. The analytical results demonstrated that UV-LIBS has improved reproducibility, precision, stable plasma conditions, better linear fitting, and the reduction of matrix effects. Bone ash could be used as a suitable standard reference material for calcified tissue calibration using LIBS with a 266 nm excitation wavelength. Copyright © 2013 Elsevier B.V. All rights reserved.

  17. Neutrino mass matrices with vanishing determinant

    International Nuclear Information System (INIS)

    Chauhan, Bhag C.; Pulido, Joao; Picariello, Marco

    2006-01-01

    We investigate the prospects for neutrinoless double beta decay, texture zeros. and equalities between neutrino mass matrix elements in scenarios with vanishing determinant mass matrices for vanishing and finite θ 13 mixing angles in normal and inverse mass hierarchies. For normal hierarchy and both zero and finite θ 13 it is found that neutrinoless double beta decay cannot be observed by any of the present or next generation experiments, while for inverse hierarchy it is, on the contrary, accessible to experiments. Regarding texture zeros and equalities between mass matrix elements, we find that in both normal and inverse hierarchies with θ 13 =0 no texture zeros nor any such equalities can exist apart from the obvious ones. For θ 13 ≠0 some texture zeros become possible. In normal hierarchy two texture zeros occur if 8.1x10 -2 ≤sinθ 13 ≤9.1x10 -2 while in inverse hierarchy three are possible, one with sinθ 13 ≥7x10 -3 and two others with sinθ 13 ≥0.18. All equalities between mass matrix elements are impossible with θ 13 ≠0

  18. Calculating scattering matrices by wave function matching

    International Nuclear Information System (INIS)

    Zwierzycki, M.; Khomyakov, P.A.; Starikov, A.A.; Talanana, M.; Xu, P.X.; Karpan, V.M.; Marushchenko, I.; Brocks, G.; Kelly, P.J.; Xia, K.; Turek, I.; Bauer, G.E.W.

    2008-01-01

    The conductance of nanoscale structures can be conveniently related to their scattering properties expressed in terms of transmission and reflection coefficients. Wave function matching (WFM) is a transparent technique for calculating transmission and reflection matrices for any Hamiltonian that can be represented in tight-binding form. A first-principles Kohn-Sham Hamiltonian represented on a localized orbital basis or on a real space grid has such a form. WFM is based upon direct matching of the scattering-region wave function to the Bloch modes of ideal leads used to probe the scattering region. The purpose of this paper is to give a pedagogical introduction to WFM and present some illustrative examples of its use in practice. We briefly discuss WFM for calculating the conductance of atomic wires, using a real space grid implementation. A tight-binding muffin-tin orbital implementation very suitable for studying spin-dependent transport in layered magnetic materials is illustrated by looking at spin-dependent transmission through ideal and disordered interfaces. (copyright 2008 WILEY-VCH Verlag GmbH and Co. KGaA, Weinheim) (orig.)

  19. Probing the Topology of Density Matrices

    Directory of Open Access Journals (Sweden)

    Charles-Edouard Bardyn

    2018-02-01

    Full Text Available The mixedness of a quantum state is usually seen as an adversary to topological quantization of observables. For example, exact quantization of the charge transported in a so-called Thouless adiabatic pump is lifted at any finite temperature in symmetry-protected topological insulators. Here, we show that certain directly observable many-body correlators preserve the integrity of topological invariants for mixed Gaussian quantum states in one dimension. Our approach relies on the expectation value of the many-body momentum-translation operator and leads to a physical observable—the “ensemble geometric phase” (EGP—which represents a bona fide geometric phase for mixed quantum states, in the thermodynamic limit. In cyclic protocols, the EGP provides a topologically quantized observable that detects encircled spectral singularities (“purity-gap” closing points of density matrices. While we identify the many-body nature of the EGP as a key ingredient, we propose a conceptually simple, interferometric setup to directly measure the latter in experiments with mesoscopic ensembles of ultracold atoms.

  20. Visualizing complex (hydrological) systems with correlation matrices

    Science.gov (United States)

    Haas, J. C.

    2016-12-01

    When trying to understand or visualize the connections of different aspects of a complex system, this often requires deeper understanding to start with, or - in the case of geo data - complicated GIS software. To our knowledge, correlation matrices have rarely been used in hydrology (e.g. Stoll et al., 2011; van Loon and Laaha, 2015), yet they do provide an interesting option for data visualization and analysis. We present a simple, python based way - using a river catchment as an example - to visualize correlations and similarities in an easy and colorful way. We apply existing and easy to use python packages from various disciplines not necessarily linked to the Earth sciences and can thus quickly show how different aquifers work or react, and identify outliers, enabling this system to also be used for quality control of large datasets. Going beyond earlier work, we add a temporal and spatial element, enabling us to visualize how a system reacts to local phenomena such as for example a river, or changes over time, by visualizing the passing of time in an animated movie. References: van Loon, A.F., Laaha, G.: Hydrological drought severity explained by climate and catchment characteristics, Journal of Hydrology 526, 3-14, 2015, Drought processes, modeling, and mitigation Stoll, S., Hendricks Franssen, H. J., Barthel, R., Kinzelbach, W.: What can we learn from long-term groundwater data to improve climate change impact studies?, Hydrology and Earth System Sciences 15(12), 3861-3875, 2011

  1. Decellularized matrices for cardiovascular tissue engineering.

    Science.gov (United States)

    Moroni, Francesco; Mirabella, Teodelinda

    2014-01-01

    Cardiovascular disease (CVD) is one of the leading causes of death in the Western world. The replacement of damaged vessels and valves has been practiced since the 1950's. Synthetic grafts, usually made of bio-inert materials, are long-lasting and mechanically relevant, but fail when it comes to "biointegration". Decellularized matrices, instead, can be considered biological grafts capable of stimulating in vivo migration and proliferation of endothelial cells (ECs), recruitment and differentiation of mural cells, finally, culminating in the formation of a biointegrated tissue. Decellularization protocols employ osmotic shock, ionic and non-ionic detergents, proteolitic digestions and DNase/RNase treatments; most of them effectively eliminate the cellular component, but show limitations in preserving the native structure of the extracellular matrix (ECM). In this review, we examine the current state of the art relative to decellularization techniques and biological performance of decellularized heart, valves and big vessels. Furthermore, we focus on the relevance of ECM components, native and resulting from decellularization, in mediating in vivo host response and determining repair and regeneration, as opposed to graft corruption.

  2. On some Toeplitz matrices and their inversions

    Directory of Open Access Journals (Sweden)

    S. Dutta

    2014-10-01

    Full Text Available In this article, using the difference operator B(a[m], we introduce a lower triangular Toeplitz matrix T which includes several difference matrices such as Δ(1,Δ(m,B(r,s,B(r,s,t, and B(r̃,s̃,t̃,ũ in different special cases. For any x ∈ w and m∈N0={0,1,2,…}, the difference operator B(a[m] is defined by (B(a[m]xk=ak(0xk+ak-1(1xk-1+ak-2(2xk-2+⋯+ak-m(mxk-m,(k∈N0 where a[m] = {a(0, a(1, …, a(m} and a(i = (ak(i for 0 ⩽ i ⩽ m are convergent sequences of real numbers. We use the convention that any term with negative subscript is equal to zero. The main results of this article relate to the determination and applications of the inverse of the Toeplitz matrix T.

  3. Carbohydrate particles as protein carriers and scaffolds: physico-chemical characterization and collagen stability

    International Nuclear Information System (INIS)

    Peres, Ivone; Rocha, Sandra; Loureiro, Joana A.; Carmo Pereira, Maria do; Ivanova, Galya; Coelho, Manuel

    2012-01-01

    The preservation of protein properties after entrapping into polymeric matrices and the effects of drying the emulsions still remains uncertain and controversial. Carbohydrate particles were designed and prepared by homogenization of gum arabic and maltodextrin mixture, with collagen hydrolysate (CH) followed by spray-drying. The encapsulation of CH in the carbohydrate matrix was achieved with an efficiency of 85 ± 2 %. The morphology and the size of the particles, before (40–400 nm) and after spray-drying (<20 μm), were characterized by scanning electron microscopy and dynamic light scattering. Measurements of the nuclear relaxation times and application of diffusion ordered spectroscopy, obtained through pulsed field gradient NMR experiments, have been performed to determine the structure of the CH–polysaccharide conjugates and to clarify the mechanism of CH immobilization in the polysaccharide matrix. In vitro release profiles in ultrapure water and in cellular medium reveal that the diffusion rate of CH from the polymeric matrix to the dialysis solution decreases in average 30–50 % over time, compared to free CH molecules. In cellular medium at 37 °C, the complete release of CH from the particles is achieved only after 24 h, demonstrating a significant decrease in the CH mass transfer process when compared with free CH. The findings of this study outline the ability of gum arabic/maltodextrin matrices to entrap and preserve CH original properties after the spray-drying process and support the potential of the polymeric scaffold for protein delivery and tissue engineering.

  4. Carbohydrate particles as protein carriers and scaffolds: physico-chemical characterization and collagen stability

    Energy Technology Data Exchange (ETDEWEB)

    Peres, Ivone; Rocha, Sandra; Loureiro, Joana A.; Carmo Pereira, Maria do [University of Porto, LEPAE, Chemical Engineering Department, Faculty of Engineering (Portugal); Ivanova, Galya [Universidade do Porto, REQUIMTE, Departamento de Quimica, Faculdade de Ciencias (Portugal); Coelho, Manuel, E-mail: mcoelho@fe.up.pt [University of Porto, LEPAE, Chemical Engineering Department, Faculty of Engineering (Portugal)

    2012-09-15

    The preservation of protein properties after entrapping into polymeric matrices and the effects of drying the emulsions still remains uncertain and controversial. Carbohydrate particles were designed and prepared by homogenization of gum arabic and maltodextrin mixture, with collagen hydrolysate (CH) followed by spray-drying. The encapsulation of CH in the carbohydrate matrix was achieved with an efficiency of 85 {+-} 2 %. The morphology and the size of the particles, before (40-400 nm) and after spray-drying (<20 {mu}m), were characterized by scanning electron microscopy and dynamic light scattering. Measurements of the nuclear relaxation times and application of diffusion ordered spectroscopy, obtained through pulsed field gradient NMR experiments, have been performed to determine the structure of the CH-polysaccharide conjugates and to clarify the mechanism of CH immobilization in the polysaccharide matrix. In vitro release profiles in ultrapure water and in cellular medium reveal that the diffusion rate of CH from the polymeric matrix to the dialysis solution decreases in average 30-50 % over time, compared to free CH molecules. In cellular medium at 37 Degree-Sign C, the complete release of CH from the particles is achieved only after 24 h, demonstrating a significant decrease in the CH mass transfer process when compared with free CH. The findings of this study outline the ability of gum arabic/maltodextrin matrices to entrap and preserve CH original properties after the spray-drying process and support the potential of the polymeric scaffold for protein delivery and tissue engineering.

  5. Collagen markers in peritoneal dialysis patients

    DEFF Research Database (Denmark)

    Graff, J; Joffe, P; Fugleberg, S

    1995-01-01

    Possible relationships between the dialysate-to-plasma creatinine equilibration ratio (D/Pcreatinine 4 hour), duration of peritoneal dialysis treatment, number of peritonitis episodes, and mass appearance rates of three connective tissue markers [carboxyterminal propeptide of type I procollagen...... (PICP), aminoterminal propeptide of type III procollagen (PIIINP), and carboxyterminal telopeptide of type I collagen (ICTP)] were studied in 19 nondiabetic peritoneal dialysis patients. The absence of correlation between the mass appearance rates of the markers and the duration of dialysis treatment...... as well as the number of peritonitis episodes supports the concept that peritoneal dialysis does not cause persistent changes in the deposition and degradation rates of collagen. A correlation between the D/Pcreatinine 4 hr and the PICP mass appearance rates was found. Since it is unlikely...

  6. Imaging Prostate Cancer Microenvironment by Collagen Hybridization

    Science.gov (United States)

    2016-12-01

    of collagen II remodeling in Rheumatoid arthritis and other cartilage-related diseases or wound repair. We did observe trends in the CMP...proteins in vitro and in vivo has been prepared and submitted to Molecular Pharmaceutics . What do you plan to do during the next reporting period to...or care of human subjects, vertebrate animals, biohazards, and/or select agents Nothing to report. PRODUCTS Journal publications: Lucas L

  7. Collagen Fiber Orientation in Primate Long Bones.

    Science.gov (United States)

    Warshaw, Johanna; Bromage, Timothy G; Terranova, Carl J; Enlow, Donald H

    2017-07-01

    Studies of variation in orientation of collagen fibers within bone have lead to the proposition that these are preferentially aligned to accommodate different kinds of load, with tension best resisted by fibers aligned longitudinally relative to the load, and compression best resisted by transversely aligned fibers. However, previous studies have often neglected to consider the effect of developmental processes, including constraints on collagen fiber orientation (CFO), particularly in primary bone. Here we use circularly polarized light microscopy to examine patterns of CFO in cross-sections from the midshaft femur, humerus, tibia, radius, and ulna in a range of living primate taxa with varied body sizes, phylogenetic relationships and positional behaviors. We find that a preponderance of longitudinally oriented collagen is characteristic of both periosteal primary and intracortically remodeled bone. Where variation does occur among groups, it is not simply understood via interpretations of mechanical loads, although prioritized adaptations to tension and/or shear are considered. While there is some suggestion that CFO may correlate with body size, this relationship is neither consistent nor easily explicable through consideration of size-related changes in mechanical adaptation. The results of our study indicate that there is no clear relationship between CFO and phylogenetic status. One of the principle factors accounting for the range of variation that does exist is primary tissue type, where slower depositing bone is more likely to comprise a larger proportion of oblique to transverse collagen fibers. Anat Rec, 300:1189-1207, 2017. © 2017 Wiley Periodicals, Inc. © 2017 Wiley Periodicals, Inc.

  8. Calcaneal Tendon Collagen Fiber Morphometry and Aging

    Czech Academy of Sciences Publication Activity Database

    Hadraba, Daniel; Janáček, Jiří; Filová, Eva; Lopot, F.; Paesen, R.; Fanta, O.; Jarman, A.; Nečas, A.; Ameloot, M.; Jelen, K.

    2017-01-01

    Roč. 23, č. 5 (2017), s. 1040-1047 ISSN 1431-9276 R&D Projects: GA ČR(CZ) GA16-14758S; GA MŠk(CZ) LO1309; GA MŠk(CZ) LM2015062 Institutional support: RVO:67985823 ; RVO:68378041 Keywords : collagen * aging * crimp * fiber orientation * tendon Subject RIV: EB - Genetics ; Molecular Biology; BO - Biophysics (UEM-P) OBOR OECD: Developmental biology; Biophysics (UEM-P) Impact factor: 1.891, year: 2016

  9. Chemical Stabilisation of Collagen as a Biomimetic

    Directory of Open Access Journals (Sweden)

    R. Gordon Paul

    2003-01-01

    Full Text Available Collagen is the most abundant protein in animals and because of its high mechanical strength and good resistance to degradation has been utilized in a wide range of products in industry whilst its low antigenicity has resulted in its widespread use in medicine. Collagen products can be purified from fibres, molecules reconstituted as fibres or from specific recombinant polypeptides with preferred properties. A common feature of all these biomaterials is the need for stable chemical cross-linking to control the mechanical properties and the residence time in the body, and to some extent the immunogenicity of the device. This can be achieved by a number of different cross-linking agents that react with specific amino acid residues on the collagen molecule imparting individual biochemical, thermal and mechanical characteristics to the biomaterial. In this review we have summarised the major techniques for testing these characteristics and the mechanisms involved in the variety of cross-linking reactions to achieve particular properties..

  10. Information geometry of density matrices and state estimation

    International Nuclear Information System (INIS)

    Brody, Dorje C

    2011-01-01

    Given a pure state vector |x) and a density matrix ρ-hat, the function p(x|ρ-hat)= defines a probability density on the space of pure states parameterised by density matrices. The associated Fisher-Rao information measure is used to define a unitary invariant Riemannian metric on the space of density matrices. An alternative derivation of the metric, based on square-root density matrices and trace norms, is provided. This is applied to the problem of quantum-state estimation. In the simplest case of unitary parameter estimation, new higher-order corrections to the uncertainty relations, applicable to general mixed states, are derived. (fast track communication)

  11. Chain of matrices, loop equations and topological recursion

    CERN Document Server

    Orantin, Nicolas

    2009-01-01

    Random matrices are used in fields as different as the study of multi-orthogonal polynomials or the enumeration of discrete surfaces. Both of them are based on the study of a matrix integral. However, this term can be confusing since the definition of a matrix integral in these two applications is not the same. These two definitions, perturbative and non-perturbative, are discussed in this chapter as well as their relation. The so-called loop equations satisfied by integrals over random matrices coupled in chain is discussed as well as their recursive solution in the perturbative case when the matrices are Hermitean.

  12. In vivo evaluation of hybrid patches composed of PLA based copolymers and collagen/chondroitin sulfate for ligament tissue regeneration.

    Science.gov (United States)

    Pinese, Coline; Gagnieu, Christian; Nottelet, Benjamin; Rondot-Couzin, Capucine; Hunger, Sylvie; Coudane, Jean; Garric, Xavier

    2017-10-01

    Biomaterials for soft tissues regeneration should exhibit sufficient mechanical strength, demonstrating a mechanical behavior similar to natural tissues and should also promote tissues ingrowth. This study was aimed at developing new hybrid patches for ligament tissue regeneration by synergistic incorporation of a knitted structure of degradable polymer fibers to provide mechanical strength and of a biomimetic matrix to help injured tissues regeneration. PLA- Pluronic ® (PLA-P) and PLA-Tetronic ® (PLA-T) new copolymers were shaped as knitted patches and were associated with collagen I (Coll) and collagen I/chondroitine-sulfate (Coll CS) 3-dimensional matrices. In vitro study using ligamentocytes showed the beneficial effects of CS on ligamentocytes proliferation. Hybrid patches were then subcutaneously implanted in rats for 4 and 12 weeks. Despite degradation, patches retained strength to answer the mechanical physiological needs. Tissue integration capacity was assessed with histological studies. We showed that copolymers, associated with collagen and chondroitin sulfate sponge, exhibited very good tissue integration and allowed neotissue synthesis after 12 weeks in vivo. To conclude, PLA-P/CollCS and PLA-T/CollCS hybrid patches in terms of structure and composition give good hopes for tendon and ligament regeneration. © 2016 Wiley Periodicals, Inc. J Biomed Mater Res Part B: Appl Biomater, 105B: 1778-1788, 2017. © 2016 Wiley Periodicals, Inc.

  13. In vivo determination of arterial collagen synthesis in atherosclerotic rabbits

    International Nuclear Information System (INIS)

    Opsahl, W.P.; DeLuca, D.J.; Ehrhart, L.A.

    1986-01-01

    Collagen and non-collagen protein synthesis rates were determined in vivo in tissues from rabbits fed a control or atherogenic diet supplemented with 2% peanut oil and 0.25% cholesterol for 4 months. Rabbits received a bolus intravenous injection of L-[ 3 H]-proline (1.0 mCi/kg) and unlabeled L-proline (7 mmoles/kg) in 0.9% NaCl. Plasma proline specific activity decreased only 20% over 5 hr and was similar to the specific activity of free proline in tissues. Thoracic aortas from atherosclerotic rabbits exhibited raised plaques covering at least 75% of the surface. Thoracic intima plus a portion of the media (TIM) was separated from the remaining media plus adventitia (TMA). Dry delipidated weight, total collagen content, and collagen as a percent of dry weight were increased significantly in the TIM of atherosclerotic rabbits. Collagen synthesis rates and collagen synthesis as a percent of total protein synthesis were likewise increased both in the TIM and in the abdominal aortas. No differences from controls either in collagen content or collagen synthesis rates were observed in the TMA, lung or skin. These results demonstrate for the first time in vivo that formation of atherosclerotic plaques is associated with increased rates of collagen synthesis. Furthermore, as previously observed with incubations in vitro, collagen synthesis was elevated to a greater extent than noncollagen protein synthesis in atherosclerotic aortas from rabbits fed cholesterol plus peanut oil

  14. The CCAAT/enhancer binding protein (C/EBP δ is differently regulated by fibrillar and oligomeric forms of the Alzheimer amyloid-β peptide

    Directory of Open Access Journals (Sweden)

    Nilsson Lars NG

    2011-04-01

    Full Text Available Abstract Background The transcription factors CCAAT/enhancer binding proteins (C/EBP α, β and δ have been shown to be expressed in brain and to be involved in regulation of inflammatory genes in concert with nuclear factor κB (NF-κB. In general, C/EBPα is down-regulated, whereas both C/EBPβ and δ are up-regulated in response to inflammatory stimuli. In Alzheimer's disease (AD one of the hallmarks is chronic neuroinflammation mediated by astrocytes and microglial cells, most likely induced by the formation of amyloid-β (Aβ deposits. The inflammatory response in AD has been ascribed both beneficial and detrimental roles. It is therefore important to delineate the inflammatory mediators and signaling pathways affected by Aβ deposits with the aim of defining new therapeutic targets. Methods Here we have investigated the effects of Aβ on expression of C/EBP family members with a focus on C/EBPδ in rat primary astro-microglial cultures and in a transgenic mouse model with high levels of fibrillar Aβ deposits (tg-ArcSwe by western blot analysis. Effects on DNA binding activity were analyzed by electrophoretic mobility shift assay. Cross-talk between C/EBPδ and NF-κB was investigated by analyzing binding to a κB site using a biotin streptavidin-agarose pull-down assay. Results We show that exposure to fibril-enriched, but not oligomer-enriched, preparations of Aβ inhibit up-regulation of C/EBPδ expression in interleukin-1β-activated glial cultures. Furthermore, we observed that, in aged transgenic mice, C/EBPα was significantly down-regulated and C/EBPβ was significantly up-regulated. C/EBPδ, on the other hand, was selectively down-regulated in the forebrain, a part of the brain showing high levels of fibrillar Aβ deposits. In contrast, no difference in expression levels of C/EBPδ between wild type and transgenic mice was detected in the relatively spared hindbrain. Finally, we show that interleukin-1β-induced C/EBPδ DNA

  15. Modular Extracellular Matrices: Solutions for the Puzzle

    Science.gov (United States)

    Serban, Monica A.; Prestwich, Glenn D.

    2008-01-01

    The common technique of growing cells in two-dimensions (2-D) is gradually being replaced by culturing cells on matrices with more appropriate composition and stiffness, or by encapsulation of cells in three-dimensions (3-D). The universal acceptance of the new 3-D paradigm has been constrained by the absence of a commercially available, biocompatible material that offers ease of use, experimental flexibility, and a seamless transition from in vitro to in vivo applications. The challenge – the puzzle that needs a solution – is to replicate the complexity of the native extracellular matrix (ECM) environment with the minimum number of components necessary to allow cells to rebuild and replicate a given tissue. For use in drug discovery, toxicology, cell banking, and ultimately in reparative medicine, the ideal matrix would therefore need to be highly reproducible, manufacturable, approvable, and affordable. Herein we describe the development of a set of modular components that can be assembled into biomimetic materials that meet these requirements. These semi-synthetic ECMs, or sECMs, are based on hyaluronan derivatives that form covalently crosslinked, biodegradable hydrogels suitable for 3-D culture of primary and stem cells in vitro, and for tissue formation in vivo. The sECMs can be engineered to provide appropriate biological cues needed to recapitulate the complexity of a given ECM environment. Specific applications for different sECM compositions include stem cell expansion with control of differentiation, scar-free wound healing, growth factor delivery, cell delivery for osteochondral defect and liver repair, and development of vascularized tumor xenografts for personalized chemotherapy. PMID:18442709

  16. Comparison of eigensolvers for symmetric band matrices.

    Science.gov (United States)

    Moldaschl, Michael; Gansterer, Wilfried N

    2014-09-15

    We compare different algorithms for computing eigenvalues and eigenvectors of a symmetric band matrix across a wide range of synthetic test problems. Of particular interest is a comparison of state-of-the-art tridiagonalization-based methods as implemented in Lapack or Plasma on the one hand, and the block divide-and-conquer (BD&C) algorithm as well as the block twisted factorization (BTF) method on the other hand. The BD&C algorithm does not require tridiagonalization of the original band matrix at all, and the current version of the BTF method tridiagonalizes the original band matrix only for computing the eigenvalues. Avoiding the tridiagonalization process sidesteps the cost of backtransformation of the eigenvectors. Beyond that, we discovered another disadvantage of the backtransformation process for band matrices: In several scenarios, a lot of gradual underflow is observed in the (optional) accumulation of the transformation matrix and in the (obligatory) backtransformation step. According to the IEEE 754 standard for floating-point arithmetic, this implies many operations with subnormal (denormalized) numbers, which causes severe slowdowns compared to the other algorithms without backtransformation of the eigenvectors. We illustrate that in these cases the performance of existing methods from Lapack and Plasma reaches a competitive level only if subnormal numbers are disabled (and thus the IEEE standard is violated). Overall, our performance studies illustrate that if the problem size is large enough relative to the bandwidth, BD&C tends to achieve the highest performance of all methods if the spectrum to be computed is clustered. For test problems with well separated eigenvalues, the BTF method tends to become the fastest algorithm with growing problem size.

  17. MATXTST, Basic Operations for Covariance Matrices

    International Nuclear Information System (INIS)

    Geraldo, Luiz P.; Smith, Donald

    1989-01-01

    1 - Description of program or function: MATXTST and MATXTST1 perform the following operations for a covariance matrix: - test for singularity; - test for positive definiteness; - compute the inverse if the matrix is non-singular; - compute the determinant; - determine the number of positive, negative, and zero eigenvalues; - examine all possible 3 X 3 cross correlations within a sub-matrix corresponding to a leading principal minor which is non-positive definite. While the two programs utilize the same input, the calculational procedures employed are somewhat different and their functions are complementary. The available input options include: i) the full covariance matrix, ii) the basic variables plus the relative covariance matrix, or iii) uncertainties in the basic variables plus the correlation matrix. 2 - Method of solution: MATXTST employs LINPACK subroutines SPOFA and SPODI to test for positive definiteness and to perform further optional calculations. Subroutine SPOFA factors a symmetric matrix M using the Cholesky algorithm to determine the elements of a matrix R which satisfies the relation M=R'R, where R' is the transposed matrix of R. Each leading principal minor of M is tested until the first one is found which is not positive definite. MATXTST1 uses LINPACK subroutines SSICO, SSIFA, and SSIDI to estimate whether the matrix is near to singularity or not (SSICO), and to perform the matrix diagonalization process (SSIFA). The algorithm used in SSIFA is generalization of the Method of Lagrange Reduction. SSIDI is used to compute the determinant and inertia of the matrix. 3 - Restrictions on the complexity of the problem: Matrices of sizes up to 50 X 50 elements can be treated by present versions of the programs

  18. Hyaluronan in aged collagen matrix increases prostate epithelial cell proliferation

    Science.gov (United States)

    Damodarasamy, Mamatha; Vernon, Robert B.; Chan, Christina K.; Plymate, Stephen R.; Wight, Thomas N.

    2015-01-01

    The extracellular matrix (ECM) of the prostate, which is comprised primarily of collagen, becomes increasingly disorganized with age, a property that may influence the development of hyperplasia and cancer. Collageous ECM extracted from the tails of aged mice exhibits many characteristics of collagen in aged tissues, including the prostate. When polymerized into a 3-dimensional (3D) gel, these collagen extracts can serve as models for the study of specific cell-ECM interactions. In the present study, we examined the behaviors of human prostatic epithelial cell lines representing normal prostate epithelial cells (PEC), benign prostatic hyperplasia (BPH-1), and adenocarcinoma (LNCaP) cultured in contact with 3D gels made from collagen extracts of young and aged mice. We found that proliferation of PEC, BPH-1, and LNCaP cells were all increased by culture on aged collagen gels relative to young collagen gels. In examining age-associated differences in the composition of the collagen extracts, we found that aged and young collagen had a similar amount of several collagen-associated ECM components, but aged collagen had a much greater content of the glycosaminoglycan hyaluronan (HA) than young collagen. The addition of HA (of similar size and concentration to that found in aged collagen extracts) to cells placed in young collagen elicited significantly increased proliferation in BPH-1 cells, but not in PEC or LNCaP cells, relative to controls not exposed to HA. Of note, histochemical analyses of human prostatic tissues showed significantly higher expression of HA in BPH and prostate cancer stroma relative to stroma of normal prostate. Collectively, these results suggest that changes in ECM involving increased levels of HA contribute to the growth of prostatic epithelium with aging. PMID:25124870

  19. Binding of collagens to an enterotoxigenic strain of Escherichia coli

    International Nuclear Information System (INIS)

    Visai, L.; Speziale, P.; Bozzini, S.

    1990-01-01

    An enterotoxigenic strain of Escherichia coli, B34289c, has been shown to bind the N-terminal region of fibronectin with high affinity. We now report that this strain also binds collagen. The binding of 125I-labeled type II collagen to bacteria was time dependent and reversible. Bacteria expressed a limited number of collagen receptors (2.2 x 10(4) per cell) and bound collagen with a Kd of 20 nM. All collagen types tested (I to V) as well as all tested cyanogen bromide-generated peptides [alpha 1(I)CB2, alpha 1(I)CB3, alpha 1(I)CB7, alpha 1(I)CB8, and alpha 2(I)CB4] were recognized by bacterial receptors, as demonstrated by the ability of these proteins to inhibit the binding of 125I-labeled collagen to bacteria. Of several unlabeled proteins tested in competition experiments, fibronectin and its N-terminal region strongly inhibited binding of the radiolabeled collagen to E. coli cells. Conversely, collagen competed with an 125I-labeled 28-kilodalton fibronectin fragment for bacterial binding. Collagen bound to bacteria could be displaced by excess amounts of either unlabeled fibronectin or its N-terminal fragment. Similarly, collagen could displace 125I-labeled N-terminal peptide of fibronectin bound to the bacterial cell surface. Bacteria grown at 41 degrees C or in the presence of glucose did not express collagen or fibronectin receptors. These results indicate the presence of specific binding sites for collagen on the surface of E. coli cells and furthermore that the collagen and fibronectin binding sites are located in close proximity, possibly on the same structure

  20. Collagenous colitis: histopathology and clinical course.

    Science.gov (United States)

    Goff, J S; Barnett, J L; Pelke, T; Appelman, H D

    1997-01-01

    Collagenous colitis is a chronic diarrheal disease characterized by a normal or near-normal mucosa endoscopically and microscopic inflammation in the lamina propria, surface epithelial injury and a thick subepithelial collagen layer. The symptoms of collagenous colitis vary in duration and intensity, and long periods of remission have been described, but long-term follow-up data are limited. Our goal was to determine the natural clinical history of collagenous colitis and to determine whether there was a relationship between histopathologic changes and course of disease. Cases were identified at the University of Michigan Hospitals using surgical pathology records before 1992. All charts, including medical records from other hospitals, were reviewed, and a telephone interview was conducted with each locatable patient (pt). Biopsy specimens were reviewed by two pathologists for degree of collagen layer thickness, epithelial damage, and inflammation. There were 31 patients (26 F, 5 M) with a mean age of 66 yr (range 33-83) and a mean duration of symptoms of 5.4 yr at the time of diagnosis. Of the 31 patients, 18 (56%) had some form of arthritis, and 22 (71%) were using NSAIDS regularly at the time of diagnosis. Follow-up interviews were conducted at least 2 yr after diagnosis (mean 3.5 yr, range 2-5 yr) with 27 of 31 patients (3 could not be located, 1 died). Two definable groups of patients were identified: (1) those with either spontaneous or treatment-related symptom resolution (63%), and (2) those with ongoing or intermittent symptoms requiring at least intermittent therapy (37%). There was no significant difference between the two groups with regard to sex, age, associated diseases, and use of medications. Patients with symptom resolution (mean duration 3.1 yr) had been treated with antidiarrheals (6), sulfasalazine (3), discontinuation of NSAIDS (3), reversal of jejunoilial bypass (1), or nothing (4). Those with ongoing symptoms experienced a wide range of

  1. Estrogen response of MCF-7 cells grown on diverse substrates and in suspension culture: promotion of morphological heterogeneity, modulation of progestin receptor induction; cell-substrate interactions on collagen gels.

    Science.gov (United States)

    Pourreau-Schneider, N; Berthois, Y; Mittre, H; Charpin, C; Jacquemier, J; Martin, P M

    1984-12-01

    In this study we observed the incidence of hormone sensitivity in the response of MCF-7 cells to estrogen stimulation when the cells were cultured in different contact environments (hydrophilic plastic, bovine corneal extracellular matrix, type I collagen and in suspension culture). The major purpose was to describe the influence of cell to cell and cell to substrate contacts on the morphological response to estrogen treatment. However, other parameters including growth and induction of progestin receptor were also explored, keeping in mind that the MCF-7 cell line, although representative of normal mammary epithelium in that it contains a similar hormone receptivity, was selected in vitro from a metastatic population in a pleural effusion. Although substrate conditions did not modify growth enhancement by estrogens, progestin receptor levels were significantly higher in three-dimensional spheroid cultures in which cell to cell contacts were optimal due to elimination of basal contact. A careful morphological survey of large surfaces lead to an objective opinion of the overall effect of the hormone treatment on the non-cloned cell line in which a marked heterogeneity in the response of individual cells was observed. In terms of morphofunctional differentiation, the edification of acini with dense microvillus coating was best in suspension culture. When sections were made perpendicular to the plane of cultures on collagen gel rafts two other phenomena were noted: decrease in intercellular junctions, resulting in reduced cell to cell cohesion, and accumulation biodegradation products in the collagen lattice. This suggested a hormone-mediated interaction between the metastatic cells and the fibrillar substrate, collagen I, one of the major constituents of tissue stroma. This estrogen response might be related to the metastatic phenotype and must be distinct from their hormone sensitivity in terms of growth and differentiation since hormone receptivity is generally

  2. ISOCT study of collagen crosslinking of collagen in cancer models (Conference Presentation)

    Science.gov (United States)

    Spicer, Graham; Young, Scott T.; Yi, Ji; Shea, Lonnie D.; Backman, Vadim

    2016-03-01

    The role of extracellular matrix modification and signaling in cancer progression is an increasingly recognized avenue for the progression of the disease. Previous study of field effect carcinogenesis with Inverse Spectroscopic Optical Coherence Tomography (ISOCT) has revealed pronounced changes in the nanoscale-sensitive mass fractal dimension D measured from field effect tissue when compared to healthy tissue. However, the origin of this difference in tissue ultrastructure in field effect carcinogenesis has remained poorly understood. Here, we present findings supporting the idea that enzymatic crosslinking of the extracellular matrix is an effect that presents at the earliest stages of carcinogenesis. We use a model of collagen gel with crosslinking induced by lysyl oxidase (LOXL4) to recapitulate the difference in D previously reported from healthy and cancerous tissue biopsies. Furthermore, STORM imaging of this collagen gel model verifies the morphologic effects of enzymatic crosslinking at length scales as small as 40 nm, close to the previously reported lower length scale sensitivity threshold of 35 nm for ISOCT. Analysis of the autocorrelation function from STORM images of collagen gels and subsequent fitting to the Whittle-Matérn correlation function shows a similar effect of LOXL4 on D from collagen measured with ISOCT and STORM. We extend this to mass spectrometric study of tissue to directly measure concentrations of collagen crosslink residues. The validation of ISOCT as a viable tool for non-invasive rapid quantification of collagen ultrastructure lends it to study other physiological phenomena involving ECM restructuring such as atherosclerotic plaque screening or cervical ripening during pregnancy.

  3. Joint Estimation of Multiple Precision Matrices with Common Structures.

    Science.gov (United States)

    Lee, Wonyul; Liu, Yufeng

    Estimation of inverse covariance matrices, known as precision matrices, is important in various areas of statistical analysis. In this article, we consider estimation of multiple precision matrices sharing some common structures. In this setting, estimating each precision matrix separately can be suboptimal as it ignores potential common structures. This article proposes a new approach to parameterize each precision matrix as a sum of common and unique components and estimate multiple precision matrices in a constrained l 1 minimization framework. We establish both estimation and selection consistency of the proposed estimator in the high dimensional setting. The proposed estimator achieves a faster convergence rate for the common structure in certain cases. Our numerical examples demonstrate that our new estimator can perform better than several existing methods in terms of the entropy loss and Frobenius loss. An application to a glioblastoma cancer data set reveals some interesting gene networks across multiple cancer subtypes.

  4. Systems of Differential Equations with Skew-Symmetric, Orthogonal Matrices

    Science.gov (United States)

    Glaister, P.

    2008-01-01

    The solution of a system of linear, inhomogeneous differential equations is discussed. The particular class considered is where the coefficient matrix is skew-symmetric and orthogonal, and where the forcing terms are sinusoidal. More general matrices are also considered.

  5. Finiteness properties of congruence classes of infinite matrices

    NARCIS (Netherlands)

    Eggermont, R.H.

    2014-01-01

    We look at spaces of infinite-by-infinite matrices, and consider closed subsets that are stable under simultaneous row and column operations. We prove that up to symmetry, any of these closed subsets is defined by finitely many equations.

  6. Flexible Bayesian Dynamic Modeling of Covariance and Correlation Matrices

    KAUST Repository

    Lan, Shiwei; Holbrook, Andrew; Fortin, Norbert J.; Ombao, Hernando; Shahbaba, Babak

    2017-01-01

    Modeling covariance (and correlation) matrices is a challenging problem due to the large dimensionality and positive-definiteness constraint. In this paper, we propose a novel Bayesian framework based on decomposing the covariance matrix

  7. Asporin competes with decorin for collagen binding, binds calcium and promotes osteoblast collagen mineralization

    DEFF Research Database (Denmark)

    Kalamajski, Sebastian; Aspberg, Anders; Lindblom, Karin

    2009-01-01

    , but not by biglycan. We demonstrate that the polyaspartate domain binds calcium and regulates hydroxyapatite formation in vitro. In the presence of asporin, the number of collagen nodules, and mRNA of osteoblastic markers Osterix and Runx2, were increased. Moreover, decorin or the collagen-binding asporin fragment...... biomineralization activity. We also show that asporin can be expressed in Escherichia coli (Rosetta-gami) with correctly positioned cysteine bridges, and a similar system can possibly be used for the expression of other SLRPs (small LRR proteoglycans/proteins)....

  8. Procrustes Problems for General, Triangular, and Symmetric Toeplitz Matrices

    Directory of Open Access Journals (Sweden)

    Juan Yang

    2013-01-01

    Full Text Available The Toeplitz Procrustes problems are the least squares problems for the matrix equation AX=B over some Toeplitz matrix sets. In this paper the necessary and sufficient conditions are obtained about the existence and uniqueness for the solutions of the Toeplitz Procrustes problems when the unknown matrices are constrained to the general, the triangular, and the symmetric Toeplitz matrices, respectively. The algorithms are designed and the numerical examples show that these algorithms are feasible.

  9. An introduction to the theory of canonical matrices

    CERN Document Server

    Turnbull, H W

    2004-01-01

    Thorough and self-contained, this penetrating study of the theory of canonical matrices presents a detailed consideration of all the theory's principal features. Topics include elementary transformations and bilinear and quadratic forms; canonical reduction of equivalent matrices; subgroups of the group of equivalent transformations; and rational and classical canonical forms. The final chapters explore several methods of canonical reduction, including those of unitary and orthogonal transformations. 1952 edition. Index. Appendix. Historical notes. Bibliographies. 275 problems.

  10. Dynamical correlations for circular ensembles of random matrices

    International Nuclear Information System (INIS)

    Nagao, Taro; Forrester, Peter

    2003-01-01

    Circular Brownian motion models of random matrices were introduced by Dyson and describe the parametric eigenparameter correlations of unitary random matrices. For symmetric unitary, self-dual quaternion unitary and an analogue of antisymmetric Hermitian matrix initial conditions, Brownian dynamics toward the unitary symmetry is analyzed. The dynamical correlation functions of arbitrary number of Brownian particles at arbitrary number of times are shown to be written in the forms of quaternion determinants, similarly as in the case of Hermitian random matrix models

  11. Complementary Set Matrices Satisfying a Column Correlation Constraint

    OpenAIRE

    Wu, Di; Spasojevic, Predrag

    2006-01-01

    Motivated by the problem of reducing the peak to average power ratio (PAPR) of transmitted signals, we consider a design of complementary set matrices whose column sequences satisfy a correlation constraint. The design algorithm recursively builds a collection of $2^{t+1}$ mutually orthogonal (MO) complementary set matrices starting from a companion pair of sequences. We relate correlation properties of column sequences to that of the companion pair and illustrate how to select an appropriate...

  12. Open vessel microwave digestion of food matrices (T6)

    International Nuclear Information System (INIS)

    Rhodes, L.; LeBlanc, G.

    2002-01-01

    Full text: Advancements in the field of open vessel microwave digestion continue to provide solutions for industries requiring acid digestion of large sample sizes. Those interesting in digesting food matrices are particularly interested in working with large amounts of sample and then diluting small final volumes. This paper will show the advantages of instantaneous regent addition and post-digestion evaporation when performing an open vessel digestion and evaporation methods for various food matrices will be presented along with analyte recovery data. (author)

  13. Quantum Algorithms for Weighing Matrices and Quadratic Residues

    OpenAIRE

    van Dam, Wim

    2000-01-01

    In this article we investigate how we can employ the structure of combinatorial objects like Hadamard matrices and weighing matrices to device new quantum algorithms. We show how the properties of a weighing matrix can be used to construct a problem for which the quantum query complexity is ignificantly lower than the classical one. It is pointed out that this scheme captures both Bernstein & Vazirani's inner-product protocol, as well as Grover's search algorithm. In the second part of the ar...

  14. Asymptotic Distribution of Eigenvalues of Weakly Dilute Wishart Matrices

    Energy Technology Data Exchange (ETDEWEB)

    Khorunzhy, A. [Institute for Low Temperature Physics (Ukraine)], E-mail: khorunjy@ilt.kharkov.ua; Rodgers, G. J. [Brunel University, Uxbridge, Department of Mathematics and Statistics (United Kingdom)], E-mail: g.j.rodgers@brunel.ac.uk

    2000-03-15

    We study the eigenvalue distribution of large random matrices that are randomly diluted. We consider two random matrix ensembles that in the pure (nondilute) case have a limiting eigenvalue distribution with a singular component at the origin. These include the Wishart random matrix ensemble and Gaussian random matrices with correlated entries. Our results show that the singularity in the eigenvalue distribution is rather unstable under dilution and that even weak dilution destroys it.

  15. Type XII and XIV collagens mediate interactions between banded collagen fibers in vitro and may modulate extracellular matrix deformability.

    Science.gov (United States)

    Nishiyama, T; McDonough, A M; Bruns, R R; Burgeson, R E

    1994-11-11

    Type XII and XIV collagens are very large molecules containing three extended globular domains derived from the amino terminus of each alpha chain and an interrupted triple helix. Both collagens are genetically and immunologically unique and have distinct distributions in many tissues. These collagens localize near the surface of banded collagen fibrils. The function of the molecules is unknown. We have prepared a mixture of native type XII and XIV collagens that is free of contaminating proteins by electrophoretic criteria. In addition, we have purified the collagenase-resistant globular domains of type XII or XIV collagens (XII-NC-3 or XIV-NC-3). In this study, we have investigated the effect of intact type XII and XIV and XII-NC-3 or XIV-NC-3 on the interactions between fibroblasts and type I collagen fibrils. We find that both type XII and XIV collagens promote collagen gel contraction mediated by fibroblasts, even in the absence of serum. The activity is present in the NC-3 domains. The effect is dose-dependent and is inhibited by denaturation. The effect of type XII NC-3 is inhibited by the addition of anti-XII antiserum. To elucidate the mechanism underlying this phenomenon, we examined the effect of XII-NC-3 or XIV-NC-3 on deformability of collagen gels by centrifugal force. XII-NC-3 or XIV-NC-3 markedly promotes gel compression after centrifugation. The effect is also inhibited by denaturation, and the activity of type XII-NC3 is inhibited by the addition of anti-XII antiserum. The results indicate that the effect of XII-NC-3 or XIV-NC-3 on collagen gel contraction by fibroblasts is not due to activation of cellular events but rather results from the increase in mobility of hydrated collagen fibrils within the gel. These studies suggest that collagen types XII and XIV may modulate the biomechanical properties of tissues.

  16. Inference for High-dimensional Differential Correlation Matrices.

    Science.gov (United States)

    Cai, T Tony; Zhang, Anru

    2016-01-01

    Motivated by differential co-expression analysis in genomics, we consider in this paper estimation and testing of high-dimensional differential correlation matrices. An adaptive thresholding procedure is introduced and theoretical guarantees are given. Minimax rate of convergence is established and the proposed estimator is shown to be adaptively rate-optimal over collections of paired correlation matrices with approximately sparse differences. Simulation results show that the procedure significantly outperforms two other natural methods that are based on separate estimation of the individual correlation matrices. The procedure is also illustrated through an analysis of a breast cancer dataset, which provides evidence at the gene co-expression level that several genes, of which a subset has been previously verified, are associated with the breast cancer. Hypothesis testing on the differential correlation matrices is also considered. A test, which is particularly well suited for testing against sparse alternatives, is introduced. In addition, other related problems, including estimation of a single sparse correlation matrix, estimation of the differential covariance matrices, and estimation of the differential cross-correlation matrices, are also discussed.

  17. Mineralized Collagen: Rationale, Current Status, and Clinical Applications

    Directory of Open Access Journals (Sweden)

    Zhi-Ye Qiu

    2015-07-01

    Full Text Available This paper presents a review of the rationale for the in vitro mineralization process, preparation methods, and clinical applications of mineralized collagen. The rationale for natural mineralized collagen and the related mineralization process has been investigated for decades. Based on the understanding of natural mineralized collagen and its formation process, many attempts have been made to prepare biomimetic materials that resemble natural mineralized collagen in both composition and structure. To date, a number of bone substitute materials have been developed based on the principles of mineralized collagen, and some of them have been commercialized and approved by regulatory agencies. The clinical outcomes of mineralized collagen are of significance to advance the evaluation and improvement of related medical device products. Some representative clinical cases have been reported, and there are more clinical applications and long-term follow-ups that currently being performed by many research groups.

  18. The non-phagocytic route of collagen uptake

    DEFF Research Database (Denmark)

    Madsen, Daniel H; Ingvarsen, Signe; Jürgensen, Henrik J

    2011-01-01

    The degradation of collagens, the most abundant proteins of the extracellular matrix, is involved in numerous physiological and pathological conditions including cancer invasion. An important turnover pathway involves cellular internalization and degradation of large, soluble collagen fragments......, generated by initial cleavage of the insoluble collagen fibers. We have previously observed that in primary mouse fibroblasts, this endocytosis of collagen fragments is dependent on the receptor urokinase plasminogen activator receptor-associated protein (uPARAP)/Endo180. Others have identified additional...... mechanisms of collagen uptake, with different associated receptors, in other cell types. These receptors include β1-integrins, being responsible for collagen phagocytosis, and the mannose receptor. We have now utilized a newly developed monoclonal antibody against uPARAP/Endo180, which down...

  19. Collagen synthesis in human musculoskeletal tissues and skin

    DEFF Research Database (Denmark)

    Babraj, J A; Cuthbertson, D J R; Smith, K

    2005-01-01

    We have developed a direct method for the measurement of human musculoskeletal collagen synthesis on the basis of the incorporation of stable isotope-labeled proline or leucine into protein and have used it to measure the rate of synthesis of collagen in tendon, ligament, muscle, and skin....... In postabsorptive, healthy young men (28 +/- 6 yr) synthetic rates for tendon, ligament, muscle, and skin collagen were 0.046 +/- 0.005, 0.040 +/- 0.006, 0.016 +/- 0.002, and 0.037 +/- 0.003%/h, respectively (means +/- SD). In postabsorptive, healthy elderly men (70 +/- 6 yr) the rate of skeletal muscle collagen...... synthesis is greater than in the young (0.023 +/- 0.002%/h, P collagen are similar to those of mixed skeletal muscle protein in the postabsorptive state, whereas the rate for muscle collagen synthesis is much lower in both young and elderly men...

  20. Collagen tissue treated with chitosan solution in H2O/CO2 mixtures: Influence of clathrates hydrates on the structure and mechanical properties.

    Science.gov (United States)

    Chaschin, Ivan S; Bakuleva, Natalia P; Grigoriev, Timofei E; Krasheninnikov, Sergey V; Nikitin, Lev N

    2017-03-01

    A mixture of water/carbon dioxide is a "green" perspective solvent from the viewpoint of biomedical applications. Clathrate hydrates are formed this solvent under certain conditions and a very interesting question is the impact of clathrates hydrates on the structure and properties of bovine pericardium, which is used in biomedicine, in particular as a main part of biological heart valve prostheses. The aim of the present work is to investigate the influence of clathrates on the structure and mechanical properties of the collagen tissue treated with chitosan in H 2 O/CO 2 mixtures under pressure 3.0-3.5MPa and temperatures 2-4°C. It was first found that the clathrate hydrates in this media due to the strong fluctuations "bomb" collagen tissue of bovine pericardium, which is manifested in the appearance of numerous small gaps (pores) with mean size of 225±25nm and large pores with size of 1-3μ on the surface and within collagen matrices. High porosity leads to averaging characteristics of the organization structure in tissues with different orientation of the collagen fibers. As a result, the mechanical properties of the collagen tissue with a different orientation of the collagen fibrils become similar, which is quite different from their original properties. The structural changes caused by the influence of the environment clathrate hydrates led to a significant decrease of the tensile strength (30-47% in total, p<0.05) and initial elastic moduli (74-83%, p<0.05). However, the final elastic moduli and the maximum tensile virtually unchanged compared to the control. Nevertheless, it was found that the direct deposition of chitosan from the H 2 O/CO 2 mixtures with clathrate improve the mechanical-strength properties of the porous matrices. We believe that these improved mechanical properties are achieved due to particularly deep and uniform impregnation of the collagen matrix with chitosan from its pressurized solutions in H 2 O/CO 2 mixtures. Copyright © 2016