WorldWideScience

Sample records for fibre-optic raman spectroscopy

  1. Application of Raman spectroscopy to forensic fibre cases.

    Science.gov (United States)

    Lepot, L; De Wael, K; Gason, F; Gilbert, B

    2008-09-01

    Five forensic fibre cases in which Raman spectroscopy proved to be a good complementary method for microspectrophotometry (MSP) are described. Absorption spectra in the visible range are indeed sometimes characteristic ofa certain dye but this one can be subsequently identified unambiguously by Raman spectroscopy using a spectral library. In other cases the comparison of Raman spectra of reference fibres and suspect fibres led to an improvement of the discrimination power. The Raman measurements have been performed directly on mounted fibres and the spectra showed only little interference from the mounting resin and glass. Raman spectroscopy is therefore a powerful method that can be applied in routine fibre analysis following optical microscopy and MSP measurements.

  2. Corrosion product characterisation by fibre optic raman spectroscopy

    International Nuclear Information System (INIS)

    Guzonas, D.A.; Rochefort, P.A.; Turner, C.W.

    1998-01-01

    Fibre optic Raman spectroscopy has been used to characterise secondary-side deposits removed from CANDU steam generators. The deposits examined were in the form of powders, millimetre-sized flakes, and deposits on the surfaces of pulled steam generator tubes. The compositions of the deposits obtained using Raman spectroscopy are similar to the compositions obtained using other ex-situ analytical techniques. A semi-quantitative estimate of amounts of the major components can be obtained from the spectra. It was noted that the signal-to-noise ratio of the Raman spectra decreased as the amount of magnetite in the deposit increased, as a result of absorption of the laser light by the magnetite. The conversion of magnetite to hematite by the laser beam was observed when high laser powers were used. The Raman spectra of larger flake samples clearly illustrate the inhomogeneous nature of the deposits. (author)

  3. Towards optical fibre based Raman spectroscopy for the detection of surgical site infection

    Science.gov (United States)

    Thompson, Alex J.; Koziej, Lukasz; Williams, Huw D.; Elson, Daniel S.; Yang, Guang-Zhong

    2016-03-01

    Surgical site infections (SSIs) are common post-surgical complications that remain significant clinical problems, as they are associated with substantial mortality and morbidity. As such, there is significant interest in the development of minimally invasive techniques that permit early detection of SSIs. To this end, we are applying a compact, clinically deployable Raman spectrometer coupled to an optical fibre probe to the study of bacteria, with the long term goal of using Raman spectroscopy to detect infection in vivo. Our system comprises a 785 nm laser diode for excitation and a commercial (Ocean Optics, Inc.) Raman spectrometer for detection. Here we discuss the design, optimisation and validation of this system, and describe our first experiences interrogating bacterial cells (Escherichia coli) in vitro.

  4. All-in-fibre Rayleigh-rejection filter for raman spectroscopy

    DEFF Research Database (Denmark)

    Brunetti, Anna Chiara; Scolari, L.; Lund-Hansen, T.

    2012-01-01

    An in-line Rayleigh-rejection filter for Raman spectroscopy is demonstrated. The device is based on a solid-core photonic crystal fibre infiltrated with a high-index liquid. At room temperature, the filter exhibits a full width at half maximum bandwidth of 143 nm and an insertion loss of 0.3 d......B. A shift of 32 nm of the central wavelength is demonstrated by increasing the temperature from 22 to 70°C. FEM simulations of the spectra at different temperatures showed good agreement with experimental results. The device was successfully employed to perform Raman spectroscopy of a sample of cyclohexane...

  5. Raman Spectroscopy with simple optic components

    International Nuclear Information System (INIS)

    Mendoza, Mario; Cunya, Eduardo; Olivera, Paula

    2014-01-01

    Raman Spectroscopy is .a high resolution photonics technique that provides chemical and structural information of almost any material, organic or inorganic compound. In this report we describe the implementation of a system based on the principle of Raman scattering, developed to analyze solid samples. The spectrometer integrates an optical bench coupled to an optical fiber and a green laser source of 532 nm. The spectrometer was tested obtaining the Naphthalene and the Yellow 74 Pigment Raman patterns. (authors).

  6. Raman Spectroscopy of Optically Trapped Single Biological Micro-Particles

    Science.gov (United States)

    Redding, Brandon; Schwab, Mark J.; Pan, Yong-le

    2015-01-01

    The combination of optical trapping with Raman spectroscopy provides a powerful method for the study, characterization, and identification of biological micro-particles. In essence, optical trapping helps to overcome the limitation imposed by the relative inefficiency of the Raman scattering process. This allows Raman spectroscopy to be applied to individual biological particles in air and in liquid, providing the potential for particle identification with high specificity, longitudinal studies of changes in particle composition, and characterization of the heterogeneity of individual particles in a population. In this review, we introduce the techniques used to integrate Raman spectroscopy with optical trapping in order to study individual biological particles in liquid and air. We then provide an overview of some of the most promising applications of this technique, highlighting the unique types of measurements enabled by the combination of Raman spectroscopy with optical trapping. Finally, we present a brief discussion of future research directions in the field. PMID:26247952

  7. Raman spectroscopy for medical diagnostics--From in-vitro biofluid assays to in-vivo cancer detection.

    Science.gov (United States)

    Kong, Kenny; Kendall, Catherine; Stone, Nicholas; Notingher, Ioan

    2015-07-15

    Raman spectroscopy is an optical technique based on inelastic scattering of light by vibrating molecules and can provide chemical fingerprints of cells, tissues or biofluids. The high chemical specificity, minimal or lack of sample preparation and the ability to use advanced optical technologies in the visible or near-infrared spectral range (lasers, microscopes, fibre-optics) have recently led to an increase in medical diagnostic applications of Raman spectroscopy. The key hypothesis underpinning this field is that molecular changes in cells, tissues or biofluids, that are either the cause or the effect of diseases, can be detected and quantified by Raman spectroscopy. Furthermore, multivariate calibration and classification models based on Raman spectra can be developed on large "training" datasets and used subsequently on samples from new patients to obtain quantitative and objective diagnosis. Historically, spontaneous Raman spectroscopy has been known as a low signal technique requiring relatively long acquisition times. Nevertheless, new strategies have been developed recently to overcome these issues: non-linear optical effects and metallic nanoparticles can be used to enhance the Raman signals, optimised fibre-optic Raman probes can be used for real-time in-vivo single-point measurements, while multimodal integration with other optical techniques can guide the Raman measurements to increase the acquisition speed and spatial accuracy of diagnosis. These recent efforts have advanced Raman spectroscopy to the point where the diagnostic accuracy and speed are compatible with clinical use. This paper reviews the main Raman spectroscopy techniques used in medical diagnostics and provides an overview of various applications. Copyright © 2015 The Authors. Published by Elsevier B.V. All rights reserved.

  8. Raman spectroscopy and the forensic analysis of black/grey and blue cotton fibres Part 1: investigation of the effects of varying laser wavelength.

    Science.gov (United States)

    Thomas, J; Buzzini, P; Massonnet, G; Reedy, B; Roux, C

    2005-09-10

    Raman spectroscopy was investigated to determine the optimal conditions, mainly laser wavelength/s, for the analysis of the commonly encountered black/grey and blue cotton fibres dyed with reactive dyes. In this first part, a single blue cotton fibre, its three dye components, and an undyed cotton fibre were analysed with five different laser wavelengths from two different Raman microprobe spectrometers. The quality of the spectra, fibre degradation and speed of acquisition were used to determine that, under the conditions used, the 785 and 830 nm lasers gave superior results. The 632.8 nm laser wavelengths provided good results with little acquisition time and no spectral degradation. Results indicate that, at least, the major dye component could be identified using Raman spectroscopy.

  9. Near-infrared Raman spectroscopy using a diode laser and CCD detector for tissue diagnostics

    International Nuclear Information System (INIS)

    Gustafsson, U.

    1993-09-01

    This paper surveys the possibility to observe high-quality NIR Raman spectra of both fluorescent and non-fluorescent samples with the use of a diode laser, a fibre optic sample, a single spectrometer and a charge-coupled device (CCD) detector. A shifted excitation difference technique was implemented for removing the broad-band fluorescence emission from Raman spectra of the highly fluorescent samples. Raman spectra of 1.4-dioxane, toluene, rhodamine 6G, and HITCI in the 640 to 1840 cm -1 spectral region and 1.4-dioxane and toluene in the 400 to 3400 cm -1 spectral region have been recorded. The results open the field of sensitive tissue characterisation and the possibility of optical biopsy in vivo by using NIR Raman spectroscopy with fibre optic sampling, a single spectrometer, and a CCD detector

  10. Raman Spectroscopy with simple optic components; Espectrometria Raman con componentes opticos simples

    Energy Technology Data Exchange (ETDEWEB)

    Mendoza, Mario; Cunya, Eduardo; Olivera, Paula [Direccion de Investigacion y Desarrollo, Instituto Peruano de Energia Nuclear, Lima (Peru)

    2014-07-01

    Raman Spectroscopy is .a high resolution photonics technique that provides chemical and structural information of almost any material, organic or inorganic compound. In this report we describe the implementation of a system based on the principle of Raman scattering, developed to analyze solid samples. The spectrometer integrates an optical bench coupled to an optical fiber and a green laser source of 532 nm. The spectrometer was tested obtaining the Naphthalene and the Yellow 74 Pigment Raman patterns. (authors).

  11. Hybrid RSOA and fibre raman amplified long reach feeder link for WiMAX-on-fibre

    DEFF Research Database (Denmark)

    Amaya Fernández, Ferney Orlando; Martinez, Javier; Yu, Xianbin

    2009-01-01

    A distributed fibre Raman amplified long reach optical access feeder link using a reflective semiconductor optical amplifier in the remote base station is experimentally demonstrated for supporting WiMAXover- fibre transmission. The measured values for the error vector magnitude for quadrature...

  12. Dual-modal cancer detection based on optical pH sensing and Raman spectroscopy.

    Science.gov (United States)

    Kim, Soogeun; Lee, Seung Ho; Min, Sun Young; Byun, Kyung Min; Lee, Soo Yeol

    2017-10-01

    A dual-modal approach using Raman spectroscopy and optical pH sensing was investigated to discriminate between normal and cancerous tissues. Raman spectroscopy has demonstrated the potential for in vivo cancer detection. However, Raman spectroscopy has suffered from strong fluorescence background of biological samples and subtle spectral differences between normal and disease tissues. To overcome those issues, pH sensing is adopted to Raman spectroscopy as a dual-modal approach. Based on the fact that the pH level in cancerous tissues is lower than that in normal tissues due to insufficient vasculature formation, the dual-modal approach combining the chemical information of Raman spectrum and the metabolic information of pH level can improve the specificity of cancer diagnosis. From human breast tissue samples, Raman spectra and pH levels are measured using fiber-optic-based Raman and pH probes, respectively. The pH sensing is based on the dependence of pH level on optical transmission spectrum. Multivariate statistical analysis is performed to evaluate the classification capability of the dual-modal method. The analytical results show that the dual-modal method based on Raman spectroscopy and optical pH sensing can improve the performance of cancer classification. (2017) COPYRIGHT Society of Photo-Optical Instrumentation Engineers (SPIE).

  13. An investigation into the use of micro-Raman spectroscopy for the analysis of car paints and single textile fibres

    Science.gov (United States)

    Zięba-Palus, Janina; Wąs-Gubała, Jolanta

    2011-05-01

    Micro-Raman spectroscopy was applied to identification and differentiation between criminalistic traces such as micropaint chips and single fibres. The aim was to determine the degree of discrimination between fibres coloured by defined chemical dye classes and to differentiate between paint samples on the basis of pigment/dye content. Samples of coloured cotton fibres and samples of green car paints were examined. It was found that the majority of the obtained Raman spectra provided information about the main dyes present in the sample. However, in some cases fluorescence of the samples made dye identification impossible. Spectral libraries for examined paint samples and single fibres were created in order to facilitate quick recognition of similar forensic traces using this analytical method.

  14. Dual-modal cancer detection based on optical pH sensing and Raman spectroscopy

    Science.gov (United States)

    Kim, Soogeun; Lee, Seung Ho; Min, Sun Young; Byun, Kyung Min; Lee, Soo Yeol

    2017-10-01

    A dual-modal approach using Raman spectroscopy and optical pH sensing was investigated to discriminate between normal and cancerous tissues. Raman spectroscopy has demonstrated the potential for in vivo cancer detection. However, Raman spectroscopy has suffered from strong fluorescence background of biological samples and subtle spectral differences between normal and disease tissues. To overcome those issues, pH sensing is adopted to Raman spectroscopy as a dual-modal approach. Based on the fact that the pH level in cancerous tissues is lower than that in normal tissues due to insufficient vasculature formation, the dual-modal approach combining the chemical information of Raman spectrum and the metabolic information of pH level can improve the specificity of cancer diagnosis. From human breast tissue samples, Raman spectra and pH levels are measured using fiber-optic-based Raman and pH probes, respectively. The pH sensing is based on the dependence of pH level on optical transmission spectrum. Multivariate statistical analysis is performed to evaluate the classification capability of the dual-modal method. The analytical results show that the dual-modal method based on Raman spectroscopy and optical pH sensing can improve the performance of cancer classification.

  15. Optical rogue waves and soliton turbulence in nonlinear fibre optics

    DEFF Research Database (Denmark)

    Genty, G.; Dudley, J. M.; de Sterke, C. M.

    2009-01-01

    We examine optical rogue wave generation in nonlinear fibre propagation in terms of soliton turbulence. We show that higher-order dispersion is sufficient to generate localized rogue soliton structures, and Raman scattering effects are not required.......We examine optical rogue wave generation in nonlinear fibre propagation in terms of soliton turbulence. We show that higher-order dispersion is sufficient to generate localized rogue soliton structures, and Raman scattering effects are not required....

  16. Fiber-optic Raman spectroscopy for in vivo diagnosis of gastric dysplasia.

    Science.gov (United States)

    Wang, Jianfeng; Lin, Kan; Zheng, Wei; Ho, Khek Yu; Teh, Ming; Yeoh, Khay Guan; Huang, Zhiwei

    2016-06-23

    This study aims to assess the clinical utility of a rapid fiber-optic Raman spectroscopy technique developed for enhancing in vivo diagnosis of gastric precancer during endoscopic examination. We have developed a real-time fiber-optic Raman spectroscopy system capable of simultaneously acquiring both fingerprint (FP) (i.e., 800-1800 cm(-1)) and high-wavenumber (HW) (i.e., 2800-3600 cm(-1)) Raman spectra from gastric tissue in vivo at endoscopy. A total of 5792 high-quality in vivo FP/HW Raman spectra (normal (n = 5160); dysplasia (n = 155), and adenocarcinoma (n = 477)) were acquired in real-time from 441 tissue sites (normal (n = 396); dysplasia (n = 11), and adenocarcinoma (n = 34)) of 191 gastric patients (normal (n = 172); dysplasia (n = 6), and adenocarcinoma (n = 13)) undergoing routine endoscopic examinations. Partial least squares discriminant analysis (PLS-DA) together with leave-one-patient-out cross validation (LOPCV) were implemented to develop robust spectral diagnostic models. The FP/HW Raman spectra differ significantly between normal, dysplasia and adenocarcinoma of the stomach, which can be attributed to changes in proteins, lipids, nucleic acids, and the bound water content. PLS-DA and LOPCV show that the fiber-optic FP/HW Raman spectroscopy provides diagnostic sensitivities of 96.0%, 81.8% and 88.2%, and specificities of 86.7%, 95.3% and 95.6%, respectively, for the classification of normal, dysplastic and cancerous gastric tissue, superior to either the FP or HW Raman techniques alone. Further dichotomous PLS-DA analysis yields a sensitivity of 90.9% (10/11) and specificity of 95.9% (380/396) for the detection of gastric dysplasia using FP/HW Raman spectroscopy, substantiating its clinical advantages over white light reflectance endoscopy (sensitivity: 90.9% (10/11), and specificity: 51.0% (202/396)). This work demonstrates that the fiber-optic FP/HW Raman spectroscopy technique has great promise for enhancing in vivo diagnosis of gastric

  17. Optical trapping and Raman spectroscopy of single nanostructures using standing-wave Raman tweezers

    Science.gov (United States)

    Wu, Mu-ying; He, Lin; Chen, Gui-hua; Yang, Guang; Li, Yong-qing

    2017-08-01

    Optical tweezers integrated with Raman spectroscopy allows analyzing a single trapped micro-particle, but is generally less effective for individual nano-sized objects in the 10-100 nm range. The main challenge is the weak gradient force on nanoparticles that is insufficient to overcome the destabilizing effect of scattering force and Brownian motion. Here, we present standing-wave Raman tweezers for stable trapping and sensitive characterization of single isolated nanostructures with a low laser power by combining a standing-wave optical trap (SWOT) with confocal Raman spectroscopy. This scheme has stronger intensity gradients and balanced scattering forces, and thus is more stable and sensitive in measuring nanoparticles in liquid with 4-8 fold increase in the Raman signals. It can be used to analyze many nanoparticles that cannot be measured with single-beam Raman tweezers, including individual single-walled carbon nanotubes (SWCNT), graphene flakes, biological particles, polystyrene beads (100 nm), SERS-active metal nanoparticles, and high-refractive semiconductor nanoparticles with a low laser power of a few milliwatts. This would enable sorting and characterization of specific SWCNTs and other nanoparticles based on their increased Raman fingerprints.

  18. Raman spectroscopy of optical properties in CdS thin films

    Directory of Open Access Journals (Sweden)

    Trajić J.

    2015-01-01

    Full Text Available Properties of CdS thin films were investigated applying atomic force microscopy (AFM and Raman spectroscopy. CdS thin films were prepared by using thermal evaporation technique under base pressure 2 x 10-5 torr. The quality of these films was investigated by AFM spectroscopy. We apply Raman scattering to investigate optical properties of CdS thin films, and reveal existence of surface optical phonon (SOP mode at 297 cm-1. Effective permittivity of mixture were modeled by Maxwell - Garnet approximation. [Projekat Ministarstva nauke Republike Srbije, br. 45003

  19. Non-destructive analysis of museum objects by fibre-optic Raman spectroscopy.

    Science.gov (United States)

    Vandenabeele, Peter; Tate, Jim; Moens, Luc

    2007-02-01

    Raman spectroscopy is a versatile technique that has frequently been applied for the investigation of art objects. By using mobile Raman instrumentation it is possible to investigate the artworks without the need for sampling. This work evaluates the use of a dedicated mobile spectrometer for the investigation of a range of museum objects in museums in Scotland, including antique Egyptian sarcophagi, a panel painting, painted surfaces on paper and textile, and the painted lid and soundboard of an early keyboard instrument. The investigations of these artefacts illustrate some analytical challenges that arise when analysing museum objects, including fluorescing varnish layers, ambient sunlight, large dimensions of artefacts and the need to handle fragile objects with care. Analysis of the musical instrument (the Mar virginals) was undertaken in the exhibition gallery, while on display, which meant that interaction with the public and health and safety issues had to be taken into account. Experimental set-up for the non-destructive Raman spectroscopic investigation of a textile banner in the National Museums of Scotland.

  20. Sky subtraction at the Poisson limit with fibre-optic multiobject spectroscopy

    Science.gov (United States)

    Sharp, R.; Parkinson, H.

    2010-11-01

    We report on the limitations of sky-subtraction accuracy for long-duration fibre-optic multiobject spectroscopy of faint astronomical sources during long-duration exposures. We show that while standard sky subtraction techniques yield accuracies consistent with the Poisson noise limit for exposures of 1h duration, there are large-scale systematic defects that inhibit the sensitivity gains expected on the summation of longer duration exposures. For the AAOmega system at the Anglo-Australian Telescope, we identify a limiting systematic sky-subtraction accuracy, which is reached after integration times of 4-10h. We show that these systematic defects can be avoided through the use of the fibre nod-and-shuffle (N+S) observing mode, but with a potential cost in observing efficiency. Finally, we demonstrate that these disadvantages can be overcome through the application of a Principal Components Analysis (PCA) sky-subtraction routine. Such an approach minimize systematic residuals across long-duration exposures, allowing deep integrations. We apply the PCA approach to over 200h of on-sky observations and conclude that for the AAOmega system, the residual error in long-duration observations falls at a rate proportional to τ-0.32 in contrast to the τ-0.5 rate expected from theoretical considerations. With this modest rate of decline, the PCA approach represents a more efficient mode of observation than the N+S technique for observations in the sky limited regime with durations of 10-100h (even before accounting for the additional signal-to-noise ratio and targeting efficiency losses often associated with the N+S technique). This conclusion has important implications for the observing strategies of the next generation of fibre-optics redshift surveys with existing facilities as well as design implications for fibre-optic systems destined for new facilities. It argues against the use of the inherently inefficient N+S technique for faint object fibre-optic survey

  1. Novel Chiroptical Analysis of Hemoglobin by Surface Enhanced Resonance Raman Optical Activity Spectroscopy

    DEFF Research Database (Denmark)

    Brazhe, Nadezda; Brazhe, Alexey; Sosnovtseva, Olga

    2010-01-01

    The metalloprotein hemoglobin (Hb) was studied using surface enhanced resonance Raman spectroscopy (SERRS) and surface enhanced resonance Raman optical activity (SERROA). The SERROA results are analyzed and compared with the SERRS, and the later to the resonance Raman (RRS) performed on Hb...

  2. Multivariate reference technique for quantitative analysis of fiber-optic tissue Raman spectroscopy.

    Science.gov (United States)

    Bergholt, Mads Sylvest; Duraipandian, Shiyamala; Zheng, Wei; Huang, Zhiwei

    2013-12-03

    We report a novel method making use of multivariate reference signals of fused silica and sapphire Raman signals generated from a ball-lens fiber-optic Raman probe for quantitative analysis of in vivo tissue Raman measurements in real time. Partial least-squares (PLS) regression modeling is applied to extract the characteristic internal reference Raman signals (e.g., shoulder of the prominent fused silica boson peak (~130 cm(-1)); distinct sapphire ball-lens peaks (380, 417, 646, and 751 cm(-1))) from the ball-lens fiber-optic Raman probe for quantitative analysis of fiber-optic Raman spectroscopy. To evaluate the analytical value of this novel multivariate reference technique, a rapid Raman spectroscopy system coupled with a ball-lens fiber-optic Raman probe is used for in vivo oral tissue Raman measurements (n = 25 subjects) under 785 nm laser excitation powers ranging from 5 to 65 mW. An accurate linear relationship (R(2) = 0.981) with a root-mean-square error of cross validation (RMSECV) of 2.5 mW can be obtained for predicting the laser excitation power changes based on a leave-one-subject-out cross-validation, which is superior to the normal univariate reference method (RMSE = 6.2 mW). A root-mean-square error of prediction (RMSEP) of 2.4 mW (R(2) = 0.985) can also be achieved for laser power prediction in real time when we applied the multivariate method independently on the five new subjects (n = 166 spectra). We further apply the multivariate reference technique for quantitative analysis of gelatin tissue phantoms that gives rise to an RMSEP of ~2.0% (R(2) = 0.998) independent of laser excitation power variations. This work demonstrates that multivariate reference technique can be advantageously used to monitor and correct the variations of laser excitation power and fiber coupling efficiency in situ for standardizing the tissue Raman intensity to realize quantitative analysis of tissue Raman measurements in vivo, which is particularly appealing in

  3. Optical trapping and Raman spectroscopy of solid particles.

    Science.gov (United States)

    Rkiouak, L; Tang, M J; Camp, J C J; McGregor, J; Watson, I M; Cox, R A; Kalberer, M; Ward, A D; Pope, F D

    2014-06-21

    The heterogeneous interactions of gas molecules on solid particles are crucial in many areas of science, engineering and technology. Such interactions play a critical role in atmospheric chemistry and in heterogeneous catalysis, a key technology in the energy and chemical industries. Investigating heterogeneous interactions upon single levitated particles can provide significant insight into these important processes. Various methodologies exist for levitating micron sized particles including: optical, electrical and acoustic techniques. Prior to this study, the optical levitation of solid micron scale particles has proved difficult to achieve over timescales relevant to the above applications. In this work, a new vertically configured counter propagating dual beam optical trap was optimized to levitate a range of solid particles in air. Silica (SiO2), α-alumina (Al2O3), titania (TiO2) and polystyrene were stably trapped with a high trapping efficiency (Q = 0.42). The longest stable trapping experiment was conducted continuously for 24 hours, and there are no obvious constraints on trapping time beyond this period. Therefore, the methodology described in this paper should be of major benefit to various research communities. The strength of the new technique is demonstrated by the simultaneous levitation and spectroscopic interrogation of silica particles by Raman spectroscopy. In particular, the adsorption of water upon silica was investigated under controlled relative humidity environments. Furthermore, the collision and coagulation behaviour of silica particles with microdroplets of sulphuric acid was followed using both optical imaging and Raman spectroscopy.

  4. Optical characterization of semiconductors infrared, Raman, and photoluminescence spectroscopy

    CERN Document Server

    Perkowitz, Sidney

    1993-01-01

    This is the first book to explain, illustrate, and compare the most widely used methods in optics: photoluminescence, infrared spectroscopy, and Raman scattering. Written with non-experts in mind, the book develops the background needed to understand the why and how of each technique, but does not require special knowledge of semiconductors or optics. Each method is illustrated with numerous case studies. Practical information drawn from the authors experience is given to help establish optical facilities, including commercial sources for equipment, and experimental details. For industrial sci

  5. A novel non-imaging optics based Raman spectroscopy device for transdermal blood analyte measurement

    Directory of Open Access Journals (Sweden)

    Chae-Ryon Kong

    2011-09-01

    Full Text Available Due to its high chemical specificity, Raman spectroscopy has been considered to be a promising technique for non-invasive disease diagnosis. However, during Raman excitation, less than one out of a million photons undergo spontaneous Raman scattering and such weakness in Raman scattered light often require highly efficient collection of Raman scattered light for the analysis of biological tissues. We present a novel non-imaging optics based portable Raman spectroscopy instrument designed for enhanced light collection. While the instrument was demonstrated on transdermal blood glucose measurement, it can also be used for detection of other clinically relevant blood analytes such as creatinine, urea and cholesterol, as well as other tissue diagnosis applications. For enhanced light collection, a non-imaging optical element called compound hyperbolic concentrator (CHC converts the wide angular range of scattered photons (numerical aperture (NA of 1.0 from the tissue into a limited range of angles accommodated by the acceptance angles of the collection system (e.g., an optical fiber with NA of 0.22. A CHC enables collimation of scattered light directions to within extremely narrow range of angles while also maintaining practical physical dimensions. Such a design allows for the development of a very efficient and compact spectroscopy system for analyzing highly scattering biological tissues. Using the CHC-based portable Raman instrument in a clinical research setting, we demonstrate successful transdermal blood glucose predictions in human subjects undergoing oral glucose tolerance tests.

  6. Raman Plus X: Biomedical Applications of Multimodal Raman Spectroscopy.

    Science.gov (United States)

    Das, Nandan K; Dai, Yichuan; Liu, Peng; Hu, Chuanzhen; Tong, Lieshu; Chen, Xiaoya; Smith, Zachary J

    2017-07-07

    Raman spectroscopy is a label-free method of obtaining detailed chemical information about samples. Its compatibility with living tissue makes it an attractive choice for biomedical analysis, yet its translation from a research tool to a clinical tool has been slow, hampered by fundamental Raman scattering issues such as long integration times and limited penetration depth. In this review we detail the how combining Raman spectroscopy with other techniques yields multimodal instruments that can help to surmount the translational barriers faced by Raman alone. We review Raman combined with several optical and non-optical methods, including fluorescence, elastic scattering, OCT, phase imaging, and mass spectrometry. In each section we highlight the power of each combination along with a brief history and presentation of representative results. Finally, we conclude with a perspective detailing both benefits and challenges for multimodal Raman measurements, and give thoughts on future directions in the field.

  7. Raman spectroscopy of individual monocytes reveals that single-beam optical trapping of mononuclear cells occurs by their nucleus

    International Nuclear Information System (INIS)

    Fore, Samantha; Chan, James; Taylor, Douglas; Huser, Thomas

    2011-01-01

    We show that laser tweezers Raman spectroscopy of eukaryotic cells with a significantly larger diameter than the tight focus of a single-beam laser trap leads to optical trapping of the cell by its optically densest part, i.e. typically the cell's nucleus. Raman spectra of individual optically trapped monocytes are compared with location-specific Raman spectra of monocytes adhered to a substrate. When the cell's nucleus is stained with a fluorescent live cell stain, the Raman spectrum of the DNA-specific stain is observed only in the nucleus of individual monocytes. Optically trapped monocytes display the same behavior. We also show that the Raman spectra of individual monocytes exhibit the characteristic Raman signature of cells that have not yet fully differentiated and that individual primary monocytes can be distinguished from transformed monocytes based on their Raman spectra. This work provides further evidence that laser tweezers Raman spectroscopy of individual cells provides meaningful biochemical information in an entirely non-destructive fashion that permits discerning differences between cell types and cellular activity

  8. Cavity-enhanced Raman spectroscopy with optical feedback cw diode lasers for gas phase analysis and spectroscopy.

    Science.gov (United States)

    Salter, Robert; Chu, Johnny; Hippler, Michael

    2012-10-21

    A variant of cavity-enhanced Raman spectroscopy (CERS) is introduced, in which diode laser radiation at 635 nm is coupled into an external linear optical cavity composed of two highly reflective mirrors. Using optical feedback stabilisation, build-up of circulating laser power by 3 orders of magnitude occurs. Strong Raman signals are collected in forward scattering geometry. Gas phase CERS spectra of H(2), air, CH(4) and benzene are recorded to demonstrate the potential for analytical applications and fundamental molecular studies. Noise equivalent limits of detection in the ppm by volume range (1 bar sample) can be achieved with excellent linearity with a 10 mW excitation laser, with sensitivity increasing with laser power and integration time. The apparatus can be operated with battery powered components and can thus be very compact and portable. Possible applications include safety monitoring of hydrogen gas levels, isotope tracer studies (e.g., (14)N/(15)N ratios), observing isotopomers of hydrogen (e.g., radioactive tritium), and simultaneous multi-component gas analysis. CERS has the potential to become a standard method for sensitive gas phase Raman spectroscopy.

  9. Multi-modal approach using Raman spectroscopy and optical coherence tomography for the discrimination of colonic adenocarcinoma from normal colon

    Science.gov (United States)

    Ashok, Praveen C.; Praveen, Bavishna B.; Bellini, Nicola; Riches, Andrew; Dholakia, Kishan; Herrington, C. Simon

    2013-01-01

    We report a multimodal optical approach using both Raman spectroscopy and optical coherence tomography (OCT) in tandem to discriminate between colonic adenocarcinoma and normal colon. Although both of these non-invasive techniques are capable of discriminating between normal and tumour tissues, they are unable individually to provide both the high specificity and high sensitivity required for disease diagnosis. We combine the chemical information derived from Raman spectroscopy with the texture parameters extracted from OCT images. The sensitivity obtained using Raman spectroscopy and OCT individually was 89% and 78% respectively and the specificity was 77% and 74% respectively. Combining the information derived using the two techniques increased both sensitivity and specificity to 94% demonstrating that combining complementary optical information enhances diagnostic accuracy. These data demonstrate that multimodal optical analysis has the potential to achieve accurate non-invasive cancer diagnosis. PMID:24156073

  10. In situ TEM Raman spectroscopy and laser-based materials modification

    Energy Technology Data Exchange (ETDEWEB)

    Allen, F.I., E-mail: fiallen@lbl.gov [Department of Materials Science and Engineering, University of California, Berkeley, CA 94720 (United States); National Center for Electron Microscopy, Molecular Foundry, Lawrence Berkeley National Laboratory, Berkeley, CA 94720 (United States); Kim, E. [Department of Mechanical Engineering, University of California, Berkeley, CA 94720 (United States); Andresen, N.C. [Engineering Division, Lawrence Berkeley National Laboratory, Berkeley, CA 94720 (United States); Grigoropoulos, C.P. [Department of Mechanical Engineering, University of California, Berkeley, CA 94720 (United States); Minor, A.M., E-mail: aminor@lbl.gov [Department of Materials Science and Engineering, University of California, Berkeley, CA 94720 (United States); National Center for Electron Microscopy, Molecular Foundry, Lawrence Berkeley National Laboratory, Berkeley, CA 94720 (United States)

    2017-07-15

    We present a modular assembly that enables both in situ Raman spectroscopy and laser-based materials processing to be performed in a transmission electron microscope. The system comprises a lensed Raman probe mounted inside the microscope column in the specimen plane and a custom specimen holder with a vacuum feedthrough for a tapered optical fiber. The Raman probe incorporates both excitation and collection optics, and localized laser processing is performed using pulsed laser light delivered to the specimen via the tapered optical fiber. Precise positioning of the fiber is achieved using a nanomanipulation stage in combination with simultaneous electron-beam imaging of the tip-to-sample distance. Materials modification is monitored in real time by transmission electron microscopy. First results obtained using the assembly are presented for in situ pulsed laser ablation of MoS{sub 2} combined with Raman spectroscopy, complimented by electron-beam diffraction and electron energy-loss spectroscopy. - Highlights: • Raman spectroscopy and laser-based materials processing in a TEM are demonstrated. • A lensed Raman probe is mounted in the sample chamber for close approach. • Localized laser processing is achieved using a tapered optical fiber. • Raman spectroscopy and pulsed laser ablation of MoS{sub 2} are performed in situ.

  11. In situ TEM Raman spectroscopy and laser-based materials modification

    International Nuclear Information System (INIS)

    Allen, F.I.; Kim, E.; Andresen, N.C.; Grigoropoulos, C.P.; Minor, A.M.

    2017-01-01

    We present a modular assembly that enables both in situ Raman spectroscopy and laser-based materials processing to be performed in a transmission electron microscope. The system comprises a lensed Raman probe mounted inside the microscope column in the specimen plane and a custom specimen holder with a vacuum feedthrough for a tapered optical fiber. The Raman probe incorporates both excitation and collection optics, and localized laser processing is performed using pulsed laser light delivered to the specimen via the tapered optical fiber. Precise positioning of the fiber is achieved using a nanomanipulation stage in combination with simultaneous electron-beam imaging of the tip-to-sample distance. Materials modification is monitored in real time by transmission electron microscopy. First results obtained using the assembly are presented for in situ pulsed laser ablation of MoS_2 combined with Raman spectroscopy, complimented by electron-beam diffraction and electron energy-loss spectroscopy. - Highlights: • Raman spectroscopy and laser-based materials processing in a TEM are demonstrated. • A lensed Raman probe is mounted in the sample chamber for close approach. • Localized laser processing is achieved using a tapered optical fiber. • Raman spectroscopy and pulsed laser ablation of MoS_2 are performed in situ.

  12. FT Raman microscopy of untreated natural plant fibres

    Science.gov (United States)

    Edwards, H. G. M.; Farwell, D. W.; Webster, D.

    1997-11-01

    The application of FT-Raman microscopy to the non-destructive analysis of natural plant fibres is demonstrated with samples of flax, jute, ramie, cotton, kapok, sisal and coconut fibre. Vibrational assignments are proposed and characteristic features of each material are presented. Samples were not pre-treated chemically before analysis and were used directly from their respective storage collection; the adaptation of the Raman microscopic technique to the identification of specimens of natural fibres in archaeological burial sites is explored for its forensic potential.

  13. Demonstration of Raman-based, dispersion-managed VCSEL technology for fibre-to-the-hut application

    Science.gov (United States)

    Rotich Kipnoo, E. K.; Kiboi Boiyo, D.; Isoe, G. M.; Chabata, T. V.; Gamatham, R. R. G.; Leitch, A. W. R.; Gibbon, T. B.

    2017-03-01

    For the first time, we experimentally investigate the use of vertical cavity surface emitting lasers (VCSELs) in the fibre-to-the-home (FTTH) flavour for Africa, known as fibre-to-the-hut. Fibre-to-the-hut is a VCSEL based passive optical network technology designed and optimized for African continent. VCSELs have attracted attention in optical communication due to its vast advantages; low power consumption, relatively cheap costs among others. A 4.25 Gb/s uncooled VCSEL is used in a dispersion managed, Raman assisted network achieving beyond 100 km of error free transmission suited for FTTHut scenario. Energy-efficient high performance VCSEL is modulated using a 27-1 PRBS pattern and the signal transmitted on a G.655 fibre utilizing the minimum attenuation window.

  14. Advanced materials and techniques for fibre-optic sensing

    Science.gov (United States)

    Henderson, Philip J.

    2014-06-01

    Fibre-optic monitoring systems came of age in about 1999 upon the emergence of the world's first significant commercialising company - a spin-out from the UK's collaborative MAST project. By using embedded fibre-optic technology, the MAST project successfully measured transient strain within high-performance composite yacht masts. Since then, applications have extended from smart composites into civil engineering, energy, military, aerospace, medicine and other sectors. Fibre-optic sensors come in various forms, and may be subject to embedment, retrofitting, and remote interrogation. The unique challenges presented by each implementation require careful scrutiny before widespread adoption can take place. Accordingly, various aspects of design and reliability are discussed spanning a range of representative technologies that include resonant microsilicon structures, MEMS, Bragg gratings, advanced forms of spectroscopy, and modern trends in nanotechnology. Keywords: Fibre-optic sensors, fibre Bragg gratings, MEMS, MOEMS, nanotechnology, plasmon.

  15. Interference-free optical detection for Raman spectroscopy

    Science.gov (United States)

    Fischer, David G (Inventor); Kojima, Jun (Inventor); Nguyen, Quang-Viet (Inventor)

    2012-01-01

    An architecture for spontaneous Raman scattering (SRS) that utilizes a frame-transfer charge-coupled device (CCD) sensor operating in a subframe burst gating mode to realize time-resolved combustion diagnostics is disclosed. The technique permits all-electronic optical gating with microsecond shutter speeds (<5 .mu.s), without compromising optical throughput or image fidelity. When used in conjunction with a pair of orthogonally-polarized excitation lasers, the technique measures time-resolved vibrational Raman scattering that is minimally contaminated by problematic optical background noise.

  16. Process monitoring of fibre reinforced composites using optical fibre sensors

    Energy Technology Data Exchange (ETDEWEB)

    Fernando, G.F.; Degamber, B.

    2006-04-15

    The deployment of optical fibre based sensor systems for process monitoring of advanced fibre reinforced organic matrix composites is reviewed. The focus is on thermosetting resins and the various optical and spectroscopy-based techniques that can be used to monitor the processing of these materials. Following brief consideration of the manufacturing methods commonly used in the production of thermoset based composites, a discussion is presented on sensor systems that can be used to facilitate real-time chemical process monitoring. Although the focus is on thermosets, the techniques described can be adapted for chemical monitoring of organic species in general. (author)

  17. Combined fluorescence-Raman spectroscopy measurements with an optical fiber probe for the diagnosis of melanocytic lesions

    Science.gov (United States)

    Cosci, Alessandro; Cicchi, Riccardo; Rossari, Susanna; De Giorgi, Vincenzo; Massi, Daniela; Pavone, Francesco S.

    2012-02-01

    We have designed and developed an optical fiber-probe for spectroscopic measurements on human tissues. The experimental setup combines fluorescence spectroscopy and Raman spectroscopy in a multidimensional approach. Concerning fluorescence spectroscopy, the excitation is provided by two laser diodes, one emitting in the UV (378 nm) and the other emitting in the visible (445 nm). These two lasers are used to selectively excite fluorescence from NADH and FAD, which are among the brightest endogenous fluorophores in human tissues. For Raman and NIR spectroscopy, the excitation is provided by a third laser diode with 785 nm excitation wavelength. Laser light is delivered to the tissue through the central optical fiber of a fiber bundle. The surrounding 48 fibers of the bundle are used for collecting fluorescence and Raman and for delivering light to the spectrograph. Fluorescence and Raman spectra are acquired on a cooled CCD camera. The instrument has been tested on fresh human skin biopsies clinically diagnosed as malignant melanoma, melanocytic nevus, or healthy skin, finding an optimal correlation with the subsequent histological exam. In some cases our examination was not in agreement with the clinical observation, but it was with the histological exam, demonstrating that the system can potentially contribute to improve clinical diagnostic capabilities and hence reduce the number of unnecessary biopsies.

  18. Application of Raman spectroscopy for cancer diagnosis

    International Nuclear Information System (INIS)

    Krishnakumar, N.

    2011-01-01

    Cancer is the second leading causes of death next to heart diseases, Half of all cancer cases occur in developing countries. The conventional histopathology is usually the most trustable gold standard for pre-cancer and cancer diagnosis. However, the applicability of this method is more or less restricted because of the requirement of removing human tissues and the difficulty of real time diagnosis. Recently, there has been increased interest in 'optical biopsy' system using tissue spectroscopy to establish the pathological changes. Among optical based methods, Raman spectroscopy is a unique vibrational spectroscopic technique capable of probing biomolecular structures and conformation of tissues, and has excelled in the early detection of pre-cancer and cancer in the number of organs with high diagnostic specificity. Raman spectroscopy offers certain distinct advantages over than other optical diagnostic techniques such as high spatial resolution, use of less harmful NIR radiation, less or no sample preparation, no influence of water bands which facilitates in vivo/in situ measurements. This makes Raman spectroscopy also very useful for biomedical applications. Several research groups have demonstrated the efficacy of this technique in biomedical applications. The background and principle of these techniques will be discussed with some examples and discussions on how Raman spectroscopy can act as a promising technique for rapid in vivo diagnosis and detection of various cancers at the molecular level. (author)

  19. Raman spectroscopy of saliva as a perspective method for periodontitis diagnostics Raman spectroscopy of saliva

    Science.gov (United States)

    Gonchukov, S.; Sukhinina, A.; Bakhmutov, D.; Minaeva, S.

    2012-01-01

    In view of its potential for biological tissues analyses at a molecular level, Raman spectroscopy in optical range has been the object of biomedical research for the last years. The main aim of this work is the development of Raman spectroscopy for organic content identifying and determination of biomarkers of saliva at a molecular level for periodontitis diagnostics. Four spectral regions were determined: 1155 and 1525 cm-1, 1033 and 1611 cm-1, which can be used as biomarkers of this widespread disease.

  20. Advanced materials and techniques for fibre-optic sensing

    International Nuclear Information System (INIS)

    Henderson, Philip J

    2014-01-01

    Fibre-optic monitoring systems came of age in about 1999 upon the emergence of the world's first significant commercialising company – a spin-out from the UK's collaborative MAST project. By using embedded fibre-optic technology, the MAST project successfully measured transient strain within high-performance composite yacht masts. Since then, applications have extended from smart composites into civil engineering, energy, military, aerospace, medicine and other sectors. Fibre-optic sensors come in various forms, and may be subject to embedment, retrofitting, and remote interrogation. The unique challenges presented by each implementation require careful scrutiny before widespread adoption can take place. Accordingly, various aspects of design and reliability are discussed spanning a range of representative technologies that include resonant microsilicon structures, MEMS, Bragg gratings, advanced forms of spectroscopy, and modern trends in nanotechnology. Keywords: Fibre-optic sensors, fibre Bragg gratings, MEMS, MOEMS, nanotechnology, plasmon

  1. The hallmarks of breast cancer by Raman spectroscopy

    Science.gov (United States)

    Abramczyk, H.; Surmacki, J.; Brożek-Płuska, B.; Morawiec, Z.; Tazbir, M.

    2009-04-01

    This paper presents new biological results on ex vivo breast tissue based on Raman spectroscopy and demonstrates its power as diagnostic tool with the key advantage in breast cancer research. The results presented here demonstrate the ability of Raman spectroscopy to accurately characterize cancer tissue and distinguish between normal, malignant and benign types. The goal of the paper is to develop the diagnostic ability of Raman spectroscopy in order to find an optical marker of cancer in the breast tissue. Applications of Raman spectroscopy in breast cancer research are in the early stages of development in the world. To the best of our knowledge, this paper is one of the most statistically reliable reports (1100 spectra, 99 patients) on Raman spectroscopy-based diagnosis of breast cancers among the world women population.

  2. Simultaneous fingerprint and high-wavenumber fiber-optic Raman spectroscopy improves in vivo diagnosis of esophageal squamous cell carcinoma at endoscopy

    Science.gov (United States)

    Wang, Jianfeng; Lin, Kan; Zheng, Wei; Yu Ho, Khek; Teh, Ming; Guan Yeoh, Khay; Huang, Zhiwei

    2015-08-01

    This work aims to evaluate clinical value of a fiber-optic Raman spectroscopy technique developed for in vivo diagnosis of esophageal squamous cell carcinoma (ESCC) during clinical endoscopy. We have developed a rapid fiber-optic Raman endoscopic system capable of simultaneously acquiring both fingerprint (FP)(800-1800 cm-1) and high-wavenumber (HW)(2800-3600 cm-1) Raman spectra from esophageal tissue in vivo. A total of 1172 in vivo FP/HW Raman spectra were acquired from 48 esophageal patients undergoing endoscopic examination. The total Raman dataset was split into two parts: 80% for training; while 20% for testing. Partial least squares-discriminant analysis (PLS-DA) and leave-one patient-out, cross validation (LOPCV) were implemented on training dataset to develop diagnostic algorithms for tissue classification. PLS-DA-LOPCV shows that simultaneous FP/HW Raman spectroscopy on training dataset provides a diagnostic sensitivity of 97.0% and specificity of 97.4% for ESCC classification. Further, the diagnostic algorithm applied to the independent testing dataset based on simultaneous FP/HW Raman technique gives a predictive diagnostic sensitivity of 92.7% and specificity of 93.6% for ESCC identification, which is superior to either FP or HW Raman technique alone. This work demonstrates that the simultaneous FP/HW fiber-optic Raman spectroscopy technique improves real-time in vivo diagnosis of esophageal neoplasia at endoscopy.

  3. Fourier-Transform Raman Spectroscopy of Polymers Caractérisation de polymères par spectroscopie Raman à transformée de Fourier

    Directory of Open Access Journals (Sweden)

    Siesler H. W.

    2006-11-01

    Full Text Available The recent extension of the Fourier-Transform (FT technique to the Raman effect has launched Raman spectroscopy into a new era of polymer chemical and physical applications. Thus, the increase in signal-to-noise ratio and the improvement in time resolution have largely enhanced the potential of FT-Raman spectroscopy for analytical applications, the characterization of time-dependent phenomena and the on-line combination with other techniques. Primarily the suppression of fluorescence by shifting the excitation line to the near-infrared (NIR region has contributed to the fast acceptance as an industrial routine tool. Furthermore, the application of fiber optics has opened up the areas of process-control and remote sensing. Les applications de la spectroscopie Raman dans le domaine des polymères sont entrées dans une ère nouvelle, grâce aux récents développements de la technique à transformée de Fourier avec excitation dans le proche infrarouge. L'augmentation du rapport signal sur bruit et l'amélioration de la résolution temporelle ont fortement renforcé les potentialités de la technique en ce qui concerne les applications analytiques, la caractérisation de phénomènes qui dépendent du temps et le couplage en ligne avec d'autres techniques. La suppression du phénomène de fluorescence par déplacement de la longueur d'onde de l'excitatrice dans le proche infrarouge a contribué à l'intégration rapide de l'outil en site industriel. L'emploi de fibres optiques a permis l'accroissement des applications dans le domaine du contrôle des procédés et d'analyser à distance.

  4. Raman spectra of lithium compounds

    Science.gov (United States)

    Gorelik, V. S.; Bi, Dongxue; Voinov, Y. P.; Vodchits, A. I.; Gorshunov, B. P.; Yurasov, N. I.; Yurasova, I. I.

    2017-11-01

    The paper is devoted to the results of investigating the spontaneous Raman scattering spectra in the lithium compounds crystals in a wide spectral range by the fibre-optic spectroscopy method. We also present the stimulated Raman scattering spectra in the lithium hydroxide and lithium deuteride crystals obtained with the use of powerful laser source. The symmetry properties of the lithium hydroxide, lithium hydroxide monohydrate and lithium deuteride crystals optical modes were analyzed by means of the irreducible representations of the point symmetry groups. We have established the selection rules in the Raman and infrared absorption spectra of LiOH, LiOH·H2O and LiD crystals.

  5. Online quantitative monitoring of live cell engineered cartilage growth using diffuse fiber-optic Raman spectroscopy.

    Science.gov (United States)

    Bergholt, Mads S; Albro, Michael B; Stevens, Molly M

    2017-09-01

    Tissue engineering (TE) has the potential to improve the outcome for patients with osteoarthritis (OA). The successful clinical translation of this technique as part of a therapy requires the ability to measure extracellular matrix (ECM) production of engineered tissues in vitro, in order to ensure quality control and improve the likelihood of tissue survival upon implantation. Conventional techniques for assessing the ECM content of engineered cartilage, such as biochemical assays and histological staining are inherently destructive. Raman spectroscopy, on the other hand, represents a non-invasive technique for in situ biochemical characterization. Here, we outline current roadblocks in translational Raman spectroscopy in TE and introduce a comprehensive workflow designed to non-destructively monitor and quantify ECM biomolecules in large (>3 mm), live cell TE constructs online. Diffuse near-infrared fiber-optic Raman spectra were measured from live cell cartilaginous TE constructs over a 56-day culturing period. We developed a multivariate curve resolution model that enabled quantitative biochemical analysis of the TE constructs. Raman spectroscopy was able to non-invasively quantify the ECM components and showed an excellent correlation with biochemical assays for measurement of collagen (R 2  = 0.84) and glycosaminoglycans (GAGs) (R 2  = 0.86). We further demonstrated the robustness of this technique for online prospective analysis of live cell TE constructs. The fiber-optic Raman spectroscopy strategy developed in this work offers the ability to non-destructively monitor construct growth online and can be adapted to a broad range of TE applications in regenerative medicine toward controlled clinical translation. Copyright © 2017 The Authors. Published by Elsevier Ltd.. All rights reserved.

  6. Blood analysis by Raman spectroscopy.

    Science.gov (United States)

    Enejder, Annika M K; Koo, Tae-Woong; Oh, Jeankun; Hunter, Martin; Sasic, Slobodan; Feld, Michael S; Horowitz, Gary L

    2002-11-15

    Concentrations of multiple analytes were simultaneously measured in whole blood with clinical accuracy, without sample processing, using near-infrared Raman spectroscopy. Spectra were acquired with an instrument employing nonimaging optics, designed using Monte Carlo simulations of the influence of light-scattering-absorbing blood cells on the excitation and emission of Raman light in turbid medium. Raman spectra were collected from whole blood drawn from 31 individuals. Quantitative predictions of glucose, urea, total protein, albumin, triglycerides, hematocrit, and hemoglobin were made by means of partial least-squares (PLS) analysis with clinically relevant precision (r(2) values >0.93). The similarity of the features of the PLS calibration spectra to those of the respective analyte spectra illustrates that the predictions are based on molecular information carried by the Raman light. This demonstrates the feasibility of using Raman spectroscopy for quantitative measurements of biomolecular contents in highly light-scattering and absorbing media.

  7. Optical diagnosis of dengue virus infection in human blood serum using Raman spectroscopy

    International Nuclear Information System (INIS)

    Saleem, M; Bilal, M; Anwar, S; Rehman, A; Ahmed, M

    2013-01-01

    We present the optical diagnosis of dengue virus infection in human blood serum using Raman spectroscopy. Raman spectra were acquired from 18 blood serum samples using a laser at 532 nm as the excitation source. A multivariate regression model based on partial least-squares regression is developed that uses Raman spectra to predict dengue infection with leave-one-sample-out cross validation. The prediction of dengue infection by our model yields correlation coefficient r 2 values of 0.9998 between the predicted and reference clinical results. The model was tested for six unknown human blood sera and found to be 100% accurate in accordance with the clinical results. (letter)

  8. Raman Probe Based on Optically-Poled Double-Core Fiber

    DEFF Research Database (Denmark)

    Brunetti, Anna Chiara; Margulis, Walter; Rottwitt, Karsten

    2012-01-01

    A Raman probe based on an optically-poled double-core fiber. In-fiber SHG allows for Raman spectroscopy of DMSO at 532nm when illuminating the fiber with 1064nm light. The fiber structure provides independent excitation and collection paths.......A Raman probe based on an optically-poled double-core fiber. In-fiber SHG allows for Raman spectroscopy of DMSO at 532nm when illuminating the fiber with 1064nm light. The fiber structure provides independent excitation and collection paths....

  9. OPTICAL FIBRES AND FIBREOPTIC SENSORS: Polarisation reflectometry of anisotropic optical fibres

    Science.gov (United States)

    Konstantinov, Yurii A.; Kryukov, Igor'I.; Pervadchuk, Vladimir P.; Toroshin, Andrei Yu

    2009-11-01

    Anisotropic, polarisation-maintaining fibres have been studied using a reflectometer and integrated optic polariser. Linearly polarised pulses were launched into the fibre under test at different angles between their plane of polarisation and the main optical axis of the fibre. A special procedure for the correlation analysis of these reflectograms is developed to enhance the reliability of the information about the longitudinal optical uniformity ofanisotropic fibres.

  10. High-resolution inverse Raman and resonant-wave-mixing spectroscopy

    Energy Technology Data Exchange (ETDEWEB)

    Rahn, L.A. [Sandia National Laboratories, Livermore, CA (United States)

    1993-12-01

    These research activities consist of high-resolution inverse Raman spectroscopy (IRS) and resonant wave-mixing spectroscopy to support the development of nonlinear-optical techniques for temperature and concentration measurements in combustion research. Objectives of this work include development of spectral models of important molecular species needed to perform coherent anti-Stokes Raman spectroscopy (CARS) measurements and the investigation of new nonlinear-optical processes as potential diagnostic techniques. Some of the techniques being investigated include frequency-degenerate and nearly frequency-degenerate resonant four-wave-mixing (DFWM and NDFWM), and resonant multi-wave mixing (RMWM).

  11. Polarized Raman spectroscopy of bone tissue: watch the scattering

    Science.gov (United States)

    Raghavan, Mekhala; Sahar, Nadder D.; Wilson, Robert H.; Mycek, Mary-Ann; Pleshko, Nancy; Kohn, David H.; Morris, Michael D.

    2010-02-01

    Polarized Raman spectroscopy is widely used in the study of molecular composition and orientation in synthetic and natural polymer systems. Here, we describe the use of Raman spectroscopy to extract quantitative orientation information from bone tissue. Bone tissue poses special challenges to the use of polarized Raman spectroscopy for measurement of orientation distribution functions because the tissue is turbid and birefringent. Multiple scattering in turbid media depolarizes light and is potentially a source of error. Using a Raman microprobe, we show that repeating the measurements with a series of objectives of differing numerical apertures can be used to assess the contributions of sample turbidity and depth of field to the calculated orientation distribution functions. With this test, an optic can be chosen to minimize the systematic errors introduced by multiple scattering events. With adequate knowledge of the optical properties of these bone tissues, we can determine if elastic light scattering affects the polarized Raman measurements.

  12. Raman spectroscopy peer review report

    International Nuclear Information System (INIS)

    Winkelman, W.D.; Eberlein, S.J.

    1994-09-01

    The Hanford Site in eastern Washington includes 177 underground storage tanks (UST), which contain waste materials produced during the production of nuclear fuels. The materials in the tanks must be characterized to support the retrieval, processing, and final disposition of the waste. Characterization is currently performed by removing waste samples for analyses in a hot cell or laboratory. A review of the Hanford Raman Spectroscopy Program was held in Richland on March 23 and 24, 1994. A team of principal investigators and researchers made presentations that covered both technical and programmatic aspects of the Hanford Site Raman work. After these presentations and discussions, the review panel met in a closed session to formalize a list of findings. The reviewers agreed that Raman spectroscopy is an excellent method to attack the tank waste characterization and screening problems that were presented. They agreed that there was a good chance that the method would be successful as presently envisioned. The reviewers provided the following primary recommendations: evaluation a laser with wavelength in the near infrared; provide optical filters at or near the sampling end of the fiber-optic probe; develop and implement a strategy for frequent calibration of the system; do not try to further increase Raman resolution at the expense of wavelength range; clearly identify and differentiate between requirements for providing a short-term operational system and requirements for optimizing a system for long-term field use; and determine the best optical configuration, which may include reduced fiber-optic diameter and/or short focal length and low F-number spectrographs

  13. New Applications of Portable Raman Spectroscopy in Agri-Bio-Photonics

    Science.gov (United States)

    Voronine, Dmitri; Scully, Rob; Sanders, Virgil

    2014-03-01

    Modern optical techniques based on Raman spectroscopy are being used to monitor and analyze the health of cattle, crops and their natural environment. These optical tools are now available to perform fast, noninvasive analysis of live animals and plants in situ. We will report new applications of a portable handheld Raman spectroscopy to identification and taxonomy of plants. In addition, detection of organic food residues will be demonstrated. Advantages and limitations of current portable instruments will be discussed with suggestions for improved performance by applying enhanced Raman spectroscopic schemes.

  14. FIBER OPTICS: Fibre optics: Forty years later

    Science.gov (United States)

    Dianov, Evgenii M.

    2010-01-01

    This paper presents a brief overview of the state of the art in fibre optics and its main applications: optical fibre communications, fibre lasers and fibre sensors for various physical property measurements. The future of fibre optics and the status of this important area of the modern technology in Russia are discussed.

  15. New generation of optical fibres

    Energy Technology Data Exchange (ETDEWEB)

    Dianov, E M; Semjonov, S L; Bufetov, I A [Fiber Optics Research Center, Russian Academy of Sciences, Moscow (Russian Federation)

    2016-01-31

    The growing need for information in contemporary society is the motivating force behind the development of fibre optics in general and optical fibre communications in particular. Intensive research effort has been concentrated on designing new types of optical fibres and extending their application field. This paper reviews results of research on new types of optical fibres: bismuthdoped active fibres, multicore fibres and hollow-core fibres, which can be used as key components of systems that ensure further increase in optical information transfer rate. (invited paper)

  16. Ultrafast stimulated Raman spectroscopy in the near-infrared region

    International Nuclear Information System (INIS)

    Takaya, Tomohisa

    2016-01-01

    A number of electronic transitions in the near-infrared wavelength region are associated with migration or delocalization of electrons in large molecules or molecular systems. Time-resolved near-infrared Raman spectroscopy will be a powerful tool for investigating the structural dynamic of samples with delocalized electrons. However, the sensitivity of near-infrared spontaneous Raman spectrometers is significantly low due to an extremely small probability of Raman scattering and a low sensitivity of near-infrared detectors. Nonlinear Raman spectroscopy is one of the techniques that can overcome the sensitivity problems and enable us to obtain time-resolved Raman spectra in resonance with near-IR transitions. In this article, the author introduces recent progress of ultrafast time-resolved near-infrared stimulated Raman spectroscopy. Optical setup, spectral and temporal resolution, and applications of the spectrometer are described. (author)

  17. Detection of premature browning in ground beef with an integrated optical-fibre based sensor using reflection spectroscopy and fibre Bragg grating technology

    International Nuclear Information System (INIS)

    O'Farrell, M; Sheridan, C; Lewis, E

    2007-01-01

    This paper reports on an optical fibre based sensor system to detect the occurrence of premature browning in ground beef. Premature browning (PMB) occurs when, at a temperature below the pasteurisation temperature of 71 deg. C, there are no traces of pink meat left in the patty. PMB is more frequent if poorer quality beef or beef that has been stored under imperfect conditions. The experimental work pertaining to this paper involved cooking fresh meat and meat that has been stored in a freezer for, 1 week, 1 month and 3 months and recording the reflected spectra and temperature at the core of the product, during the cooking process, in order to develop a classifier based on the spectral response and using a Self-Organising Map (SOM) to classify the patties into one of four categories, based on their colour. Further tests were also carried out on developing an all-optical fibre sensor for measuring both the temperature and colour in a single integrated probe. The integrated probe contains two different sensor concepts, one to monitor temperature, based on Fibre Bragg Grating (FBG) technology and a second for meat quality, based on reflection spectroscopy in the visible wavelength range

  18. A novel liquid-filled microstructured polymer optical fiber as bio-sensing platform for Raman spectroscopy

    Science.gov (United States)

    Azkune, Mikel; Arrospide, Eneko; Berganza, Amaia; Bikandi, Iñaki; Aldabaldetreku, Gotzon; Durana, Gaizka; Zubia, Joseba

    2018-02-01

    One approach to overcome the poor efficiency of the Raman scattering as a sensing platform is to use microstructured optical fibers. In this type of fibers with a longitudinal holey structure, light interacts with the target sample, which is confined in the core, giving rise to a light intensity increase of the obtained Raman spectra due to the large interaction distances and the guidance of the scattered light. In this work, we present an ad-hoc fabricated liquid-core microstructured polymer optical fiber (LC-mPOF) as a bio-sensing platform for Raman Spectroscopy. Arising from an initial simulation stage, we create the desired preform using the drilling technique and afterwards the LC-mPOF is drawn in our fiber drawing tower. The guiding mechanism of the light through the solution has a major importance, being a key factor to obtain appreciable enhancements in Raman scattering. In this case, in order to optimize the Raman scattering signal of dissolved glucose (target molecule), we have filled the core with an aqueous solution of the target molecule, enabling in this way the modified total internal reflection mechanism. Experimental Raman measurements are performed and results are discussed.

  19. Combining optical trapping in a microfluidic channel with simultaneous micro-Raman spectroscopy and motion detection

    Science.gov (United States)

    Lawton, Penelope F.; Saunter, Christopher D.; Girkin, John M.

    2014-03-01

    Since their invention by Ashkin optical tweezers have demonstrated their ability and versatility as a non-invasive tool for micromanipulation. One of the most useful additions to the basic optical tweezers system is micro-Raman spectroscopy, which permits highly sensitive analysis of single cells or particles. We report on the development of a dual laser system combining two spatial light modulators to holographically manipulate multiple traps (at 1064nm) whilst undertaking Raman spectroscopy using a 532nm laser. We can thus simultaneously trap multiple particles and record their Raman spectra, without perturbing the trapping system. The dual beam system is built around micro-fluidic channels where crystallisation of calcium carbonate occurs on polymethylmethacrylate (PMMA) beads. The setup is designed to simulate at a microscopic level the reactions that occur on items in a dishwasher, where permanent filming of calcium carbonate on drinking glasses is a problem. Our system allows us to monitor crystal growth on trapped particles in which the Raman spectrum and changes in movement of the bead are recorded. Due to the expected low level of crystallisation on the bead surfaces this allows us to obtain results quickly and with high sensitivity. The long term goal is to study the development of filming on samples in-situ with the microfl.uidic system acting as a model dishwasher.

  20. Plasmonic optical antenna design for performing tip-enhanced Raman spectroscopy and microscopy

    International Nuclear Information System (INIS)

    Kharintsev, S S; Fishman, A I; Salakhov, M Kh; Hoffmann, G G

    2013-01-01

    This paper highlights optical plasmonic antennas designed with dc-pulsed low-voltage electrochemical etching of a gold wire for implementing tip-enhanced Raman scattering (TERS) measurements. We demonstrate a versatile electrochemical system that allows one to engineer TERS-active metallic gold tips with diverse shapes and sizes in a highly reproducible fashion. The underlying etching mechanism at a voltage-driven meniscus around a gold wire immersed into an electrolyte is discussed in detail. We show that the developed method is suitable to produce not only the simplest geometries such as cones and spheroids, but more complex designs. Attempts have been made to design plasmonic tapered antennas with quasi-uniformly spaced nano-sized bumps on the mesoscopic zone for the extra surface plasmon-light coupling. The capability of the patterned antenna to enhance and localize optical fields is demonstrated with near-field Raman microscopy and spectroscopy of single-walled carbon nanotubes bundles. (paper)

  1. Real-time in vivo diagnosis of laryngeal carcinoma with rapid fiber-optic Raman spectroscopy

    Science.gov (United States)

    Lin, Kan; Zheng, Wei; Lim, Chwee Ming; Huang, Zhiwei

    2016-01-01

    We assess the clinical utility of a unique simultaneous fingerprint (FP) (i.e., 800-1800 cm−1) and high-wavenumber (HW) (i.e., 2800-3600 cm−1) fiber-optic Raman spectroscopy for in vivo diagnosis of laryngeal cancer at endoscopy. A total of 2124 high-quality in vivo FP/HW Raman spectra (normal = 1321; cancer = 581) were acquired from 101 tissue sites (normal = 71; cancer = 30) of 60 patients (normal = 44; cancer = 16) undergoing routine endoscopic examination. FP/HW Raman spectra differ significantly between normal and cancerous laryngeal tissue that could be attributed to changes of proteins, lipids, nucleic acids, and the bound water content in the larynx. Partial least squares-discriminant analysis and leave-one tissue site-out, cross-validation were employed on the in vivo FP/HW tissue Raman spectra acquired, yielding a diagnostic accuracy of 91.1% (sensitivity: 93.3% (28/30); specificity: 90.1% (64/71)) for laryngeal cancer identification, which is superior to using either FP (accuracy: 86.1%; sensitivity: 86.7% (26/30); specificity: 85.9% (61/71)) or HW (accuracy: 84.2%; sensitivity: 76.7% (23/30); specificity: 87.3% (62/71)) Raman technique alone. Further receiver operating characteristic analysis reconfirms the best performance of the simultaneous FP/HW Raman technique for laryngeal cancer diagnosis. We demonstrate for the first time that the simultaneous FP/HW Raman spectroscopy technique can be used for improving real-time in vivo diagnosis of laryngeal carcinoma during endoscopic examination. PMID:27699131

  2. Near-infrared-excited confocal Raman spectroscopy advances in vivo diagnosis of cervical precancer.

    Science.gov (United States)

    Duraipandian, Shiyamala; Zheng, Wei; Ng, Joseph; Low, Jeffrey J H; Ilancheran, Arunachalam; Huang, Zhiwei

    2013-06-01

    Raman spectroscopy is a unique optical technique that can probe the changes of vibrational modes of biomolecules associated with tissue premalignant transformation. This study evaluates the clinical utility of confocal Raman spectroscopy over near-infrared (NIR) autofluorescence (AF) spectroscopy and composite NIR AF/Raman spectroscopy for improving early diagnosis of cervical precancer in vivo at colposcopy. A rapid NIR Raman system coupled with a ball-lens fiber-optic confocal Raman probe was utilized for in vivo NIR AF/Raman spectral measurements of the cervix. A total of 1240 in vivo Raman spectra [normal (n=993), dysplasia (n=247)] were acquired from 84 cervical patients. Principal components analysis (PCA) and linear discriminant analysis (LDA) together with a leave-one-patient-out, cross-validation method were used to extract the diagnostic information associated with distinctive spectroscopic modalities. The diagnostic ability of confocal Raman spectroscopy was evaluated using the PCA-LDA model developed from the significant principal components (PCs) [i.e., PC4, 0.0023%; PC5, 0.00095%; PC8, 0.00022%, (p<0.05)], representing the primary tissue Raman features (e.g., 854, 937, 1095, 1253, 1311, 1445, and 1654 cm(-1)). Confocal Raman spectroscopy coupled with PCA-LDA modeling yielded the diagnostic accuracy of 84.1% (a sensitivity of 81.0% and a specificity of 87.1%) for in vivo discrimination of dysplastic cervix. The receiver operating characteristic curves further confirmed that the best classification was achieved using confocal Raman spectroscopy compared to the composite NIR AF/Raman spectroscopy or NIR AF spectroscopy alone. This study illustrates that confocal Raman spectroscopy has great potential to improve early diagnosis of cervical precancer in vivo during clinical colposcopy.

  3. Fun with Optical Fibres

    Science.gov (United States)

    Alti, Kamlesh

    2017-01-01

    Optical fibres play a very crucial role in today's technologies. Academic courses in optical fibres start at the undergraduate level. Nevertheless, student's curiosity towards optical fibres starts from the school level. In this paper, some fun experiments have been designed for both school and college students, which have some concrete…

  4. Extracting Optical Fiber Background from Surface-Enhanced Raman Spectroscopy Spectra Based on Bi-Objective Optimization Modeling.

    Science.gov (United States)

    Huang, Jie; Shi, Tielin; Tang, Zirong; Zhu, Wei; Liao, Guanglan; Li, Xiaoping; Gong, Bo; Zhou, Tengyuan

    2017-08-01

    We propose a bi-objective optimization model for extracting optical fiber background from the measured surface-enhanced Raman spectroscopy (SERS) spectrum of the target sample in the application of fiber optic SERS. The model is built using curve fitting to resolve the SERS spectrum into several individual bands, and simultaneously matching some resolved bands with the measured background spectrum. The Pearson correlation coefficient is selected as the similarity index and its maximum value is pursued during the spectral matching process. An algorithm is proposed, programmed, and demonstrated successfully in extracting optical fiber background or fluorescence background from the measured SERS spectra of rhodamine 6G (R6G) and crystal violet (CV). The proposed model not only can be applied to remove optical fiber background or fluorescence background for SERS spectra, but also can be transferred to conventional Raman spectra recorded using fiber optic instrumentation.

  5. Combining fibre optic Raman spectroscopy and tactile resonance measurement for tissue characterization

    International Nuclear Information System (INIS)

    Candefjord, Stefan; Nyberg, Morgan; Ramser, Kerstin; Lindahl, Olof A; Jalkanen, Ville

    2010-01-01

    Tissue characterization is fundamental for identification of pathological conditions. Raman spectroscopy (RS) and tactile resonance measurement (TRM) are two promising techniques that measure biochemical content and stiffness, respectively. They have potential to complement the golden standard-–histological analysis. By combining RS and TRM, complementary information about tissue content can be obtained and specific drawbacks can be avoided. The aim of this study was to develop a multivariate approach to compare RS and TRM information. The approach was evaluated on measurements at the same points on porcine abdominal tissue. The measurement points were divided into five groups by multivariate analysis of the RS data. A regression analysis was performed and receiver operating characteristic (ROC) curves were used to compare the RS and TRM data. TRM identified one group efficiently (area under ROC curve 0.99). The RS data showed that the proportion of saturated fat was high in this group. The regression analysis showed that stiffness was mainly determined by the amount of fat and its composition. We concluded that RS provided additional, important information for tissue identification that was not provided by TRM alone. The results are promising for development of a method combining RS and TRM for intraoperative tissue characterization

  6. Introductory Raman spectroscopy

    CERN Document Server

    Ferraro, John R

    2012-01-01

    Praise for Introductory Raman Spectroscopy Highlights basic theory, which is treated in an introductory fashion Presents state-of-the-art instrumentation Discusses new applications of Raman spectroscopy in industry and research.

  7. On the nature of fibres grown from nanodiamond colloids

    Energy Technology Data Exchange (ETDEWEB)

    Batsanov, Stepan S., E-mail: batsanov@mail.ru [National Research Institute of Physical-Technical Measurements, Moscow Region (Russian Federation); Guriev, Dmitry L.; Gavrilkin, Sergey M. [National Research Institute of Physical-Technical Measurements, Moscow Region (Russian Federation); Hamilton, Katherine A.; Lindsey, Keith [School of Biological and Biomedical Sciences, Durham University, Durham (United Kingdom); Mendis, Budhika G. [Physics Department, Durham University, Durham (United Kingdom); Riggs, Helen J.; Batsanov, Andrei S. [Chemistry Department, Durham University, Durham (United Kingdom)

    2016-04-15

    Contrary to earlier assumptions, the fibres spontaneously forming in aqueous colloids of detonation-produced nanodiamond (ND), do not consist purely of ND particles but are agglomerates of the latter with water and/or soft matter of biological (probably fungal) origin, as shown by elemental analysis, IR and Raman spectroscopy, X-ray diffraction, optical refractometry, optical and electron (TEM and ESEM)microscopy, as well as biological staining tests. - Graphical abstract: Fibres spontaneously formed in water colloids of nanodiamond, consist of diamond nanoparticles dispersed in bioorganic matter. - Highlights: • Entangled fibres slowly grow in dilute (∼0.1%) colloids of nanodiamond in water. • Refractive index (∼1.56), electron microscopy and CHN analysis indicate nanodiamond dispersed in organic matter. • Explanation: nanodiamond grains help the growth of fungi which assemble them.

  8. On the nature of fibres grown from nanodiamond colloids

    International Nuclear Information System (INIS)

    Batsanov, Stepan S.; Guriev, Dmitry L.; Gavrilkin, Sergey M.; Hamilton, Katherine A.; Lindsey, Keith; Mendis, Budhika G.; Riggs, Helen J.; Batsanov, Andrei S.

    2016-01-01

    Contrary to earlier assumptions, the fibres spontaneously forming in aqueous colloids of detonation-produced nanodiamond (ND), do not consist purely of ND particles but are agglomerates of the latter with water and/or soft matter of biological (probably fungal) origin, as shown by elemental analysis, IR and Raman spectroscopy, X-ray diffraction, optical refractometry, optical and electron (TEM and ESEM)microscopy, as well as biological staining tests. - Graphical abstract: Fibres spontaneously formed in water colloids of nanodiamond, consist of diamond nanoparticles dispersed in bioorganic matter. - Highlights: • Entangled fibres slowly grow in dilute (∼0.1%) colloids of nanodiamond in water. • Refractive index (∼1.56), electron microscopy and CHN analysis indicate nanodiamond dispersed in organic matter. • Explanation: nanodiamond grains help the growth of fungi which assemble them.

  9. Cavity-Enhanced Raman Spectroscopy of Natural Gas with Optical Feedback cw-Diode Lasers.

    Science.gov (United States)

    Hippler, Michael

    2015-08-04

    We report on improvements made on our previously introduced technique of cavity-enhanced Raman spectroscopy (CERS) with optical feedback cw-diode lasers in the gas phase, including a new mode-matching procedure which keeps the laser in resonance with the optical cavity without inducing long-term frequency shifts of the laser, and using a new CCD camera with improved noise performance. With 10 mW of 636.2 nm diode laser excitation and 30 s integration time, cavity enhancement achieves noise-equivalent detection limits below 1 mbar at 1 bar total pressure, depending on Raman cross sections. Detection limits can be easily improved using higher power diodes. We further demonstrate a relevant analytical application of CERS, the multicomponent analysis of natural gas samples. Several spectroscopic features have been identified and characterized. CERS with low power diode lasers is suitable for online monitoring of natural gas mixtures with sensitivity and spectroscopic selectivity, including monitoring H2, H2S, N2, CO2, and alkanes.

  10. Validating in vivo Raman spectroscopy of bone in human subjects

    Science.gov (United States)

    Esmonde-White, Francis W. L.; Morris, Michael D.

    2013-03-01

    Raman spectroscopy can non-destructively measure properties of bone related to mineral density, mineral composition, and collagen composition. Bone properties can be measured through the skin in animal and human subjects, but correlations between the transcutaneous and exposed bone measurements have only been reported for human cadavers. In this study, we examine human subjects to collect measurements transcutaneously, on surgically exposed bone, and on recovered bone fragments. This data will be used to demonstrate in vivo feasibility and to compare transcutaneous and exposed Raman spectroscopy of bone. A commercially available Raman spectrograph and optical probe operating at 785 nm excitation are used for the in vivo measurements. Requirements for applying Raman spectroscopy during a surgery are also discussed.

  11. 10 Gb/s bidirectional single fibre long reach PON link with distributed Raman amplification

    DEFF Research Database (Denmark)

    Tafur Monroy, Idelfonso; Kjær, Rasmus; Jeppesen, Palle

    2006-01-01

    We report operation of a single fibre bidirectional 80 km long reach PON link with symmetric up- and-downstream data rate of 10 Gb/s supported by distributed Raman fibre amplification only.......We report operation of a single fibre bidirectional 80 km long reach PON link with symmetric up- and-downstream data rate of 10 Gb/s supported by distributed Raman fibre amplification only....

  12. Lamb-Dicke spectroscopy of atoms in a hollow-core photonic crystal fibre

    Science.gov (United States)

    Okaba, Shoichi; Takano, Tetsushi; Benabid, Fetah; Bradley, Tom; Vincetti, Luca; Maizelis, Zakhar; Yampol'skii, Valery; Nori, Franco; Katori, Hidetoshi

    2014-01-01

    Unlike photons, which are conveniently handled by mirrors and optical fibres without loss of coherence, atoms lose their coherence via atom–atom and atom–wall interactions. This decoherence of atoms deteriorates the performance of atomic clocks and magnetometers, and also hinders their miniaturization. Here we report a novel platform for precision spectroscopy. Ultracold strontium atoms inside a kagome-lattice hollow-core photonic crystal fibre are transversely confined by an optical lattice to prevent atoms from interacting with the fibre wall. By confining at most one atom in each lattice site, to avoid atom–atom interactions and Doppler effect, a 7.8-kHz-wide spectrum is observed for the 1S0−3P1(m=0) transition. Atoms singly trapped in a magic lattice in hollow-core photonic crystal fibres improve the optical depth while preserving atomic coherence time. PMID:24934478

  13. Raman spectroscopy

    Science.gov (United States)

    Raman spectroscopy has gained increased use and importance in recent years for accurate and precise detection of physical and chemical properties of food materials, due to the greater specificity and sensitivity of Raman techniques over other analytical techniques. This book chapter presents Raman s...

  14. Pure chiral optical fibres.

    Science.gov (United States)

    Poladian, L; Straton, M; Docherty, A; Argyros, A

    2011-01-17

    We investigate the properties of optical fibres made from chiral materials, in which a contrast in optical activity forms the waveguide, rather than a contrast in the refractive index; we refer to such structures as pure chiral fibres. We present a mathematical formulation for solving the modes of circularly symmetric examples of such fibres and examine the guidance and polarisation properties of pure chiral step-index, Bragg and photonic crystal fibre designs. Their behaviour is shown to differ for left- and right-hand circular polarisation, allowing circular polarisations to be isolated and/or guided by different mechanisms, as well as differing from equivalent non-chiral fibres. The strength of optical activity required in each case is quantified.

  15. Rapid identification of staphylococci by Raman spectroscopy

    Czech Academy of Sciences Publication Activity Database

    Rebrošová, K.; Šiler, Martin; Samek, Ota; Růžička, F.; Bernatová, Silvie; Holá, V.; Ježek, Jan; Zemánek, Pavel; Sokolová, J.; Petráš, P.

    2017-01-01

    Roč. 7, NOV (2017), s. 1-8, č. článku 14846. ISSN 2045-2322 R&D Projects: GA ČR(CZ) GA15-20645S; GA MŠk(CZ) LO1212; GA MŠk ED0017/01/01 Institutional support: RVO:68081731 Keywords : coagulase-negative staphylococci * Raman spectroscopy * rapid identification Subject RIV: BH - Optics, Masers, Lasers OBOR OECD: Optics (including laser optics and quantum optics) Impact factor: 4.259, year: 2016

  16. Resonance Raman Spectroscopy of Free Radicals Produced by Ionizing Radiation

    DEFF Research Database (Denmark)

    Wilbrandt, Robert Walter

    1984-01-01

    Applications of time-resolved resonance Raman spectroscopy to the study of short-lived free radicals produced by ionizing radiation are briefly reviewed. Potential advantages and limitations of this technique are discussed in the light of given examples. The reduction of p-nitrobenzylchloride and......Applications of time-resolved resonance Raman spectroscopy to the study of short-lived free radicals produced by ionizing radiation are briefly reviewed. Potential advantages and limitations of this technique are discussed in the light of given examples. The reduction of p......-nitrobenzylchloride and subsequent formation of the p-nitrobenzyl radical and the reaction of p-nitrotoluene with O– are studied by resonance Raman and optical absorption spectroscopy....

  17. Micro-raman and tip-enhanced raman spectroscopy of carbon allotropes

    NARCIS (Netherlands)

    Hoffmann, G.G.; With, de G.; Loos, J.

    2008-01-01

    Raman spectroscopic data are obtained on various carbon allotropes like diamond, amorphous carbon, graphite, graphene and single wall carbon nanotubes by micro-Raman spectroscopy, tip-enhanced Raman spectroscopy and tip-enhanced Raman spectroscopy imaging, and the potentials of these techniques for

  18. Single-mode optical fibres

    CERN Document Server

    Cancellieri, G

    1991-01-01

    This book describes signal propagation in single-mode optical fibres for telecommunication applications. Such description is based on the analysis of field propagation, considering waveguide properties and also some of the particular characteristics of the material fibre. The book covers such recent advances as, coherent transmissions; optical amplification; MIR fibres; polarization maintaining; polarization diversity and photon counting.

  19. A critical assessment of visual identification of marine microplastic using Raman spectroscopy for analysis improvement

    DEFF Research Database (Denmark)

    Lenz, Robin; Enders, Kristina; Stedmon, Colin

    2015-01-01

    (n = 1279) were spectroscopically confirmed being plastic. The percentage varied with type, colour and size of the MP. Fibres had a higher success rate (75%) than particles (64%).We tested Raman micro-spectroscopy applicability for MP identification with respect to varying chemical composition...... (additives), degradation state and organic matter coating. Partially UV-degraded postconsumer plastics provided identifiable Raman spectra for polymers most common among marine MP, i.e. polyethylene and polypropylene...

  20. Focused ion beam milling of carbon fibres

    International Nuclear Information System (INIS)

    Huson, Mickey G.; Church, Jeffrey S.; Hillbrick, Linda K.; Woodhead, Andrea L.; Sridhar, Manoj; Van De Meene, Allison M.L.

    2015-01-01

    A focused ion beam has been used to mill both individual carbon fibres as well as fibres in an epoxy composite, with a view to preparing flat surfaces for nano-indentation. The milled surfaces have been assessed for damage using scanning probe microscopy nano-indentation and Raman micro-probe analysis, revealing that FIB milling damages the carbon fibre surface and covers surrounding areas with debris of disordered carbon. The debris is detected as far as 100 μm from the milling site. The energy of milling as well as the orientation of the beam was varied and shown to have an effect when assessed by Raman spectroscopy. - Highlights: • Focused ion beam (FIB) milling was used to mill flat surfaces on carbon fibres. • Raman spectroscopy showed amorphous carbon was generated during FIB milling. • The amorphous debris is detected as far as 100 μm from the milling site. • This surface degradation was confirmed by nano-indentation experiments.

  1. Raman Spectroscopy and Microscopy of Individual Cells andCellular Components

    Energy Technology Data Exchange (ETDEWEB)

    Chan, J; Fore, S; Wachsmann-Hogiu, S; Huser, T

    2008-05-15

    Raman spectroscopy provides the unique opportunity to non-destructively analyze chemical concentrations on the submicron length scale in individual cells without the need for optical labels. This enables the rapid assessment of cellular biochemistry inside living cells, and it allows for their continuous analysis to determine cellular response to external events. Here, we review recent developments in the analysis of single cells, subcellular compartments, and chemical imaging based on Raman spectroscopic techniques. Spontaneous Raman spectroscopy provides for the full spectral assessment of cellular biochemistry, while coherent Raman techniques, such as coherent anti-Stokes Raman scattering is primarily used as an imaging tool comparable to confocal fluorescence microscopy. These techniques are complemented by surface-enhanced Raman spectroscopy, which provides higher sensitivity and local specificity, and also extends the techniques to chemical indicators, i.e. pH sensing. We review the strengths and weaknesses of each technique, demonstrate some of their applications and discuss their potential for future research in cell biology and biomedicine.

  2. Optical fibre laser velocimetry: a review

    International Nuclear Information System (INIS)

    Charrett, Thomas O H; James, Stephen W; Tatam, Ralph P

    2012-01-01

    The applications of optical fibre technology to laser velocimetry are diverse and often critical to their successful implementation, particularly in harsh environments. Applications range from the use of optical fibres for beam delivery and scattered light collection, aiding the miniaturization of instrument probes, to the use of imaging fibre bundles for imaging the flow field in planar velocimetry systems. Optical fibre techniques have also been used in signal processing, for example fibre frequency shifters, and optical fibre devices such as amplifiers and lasers have been exploited. This paper will review the use of optical fibres in point-wise laser velocimetry techniques such as laser Doppler velocimetry and laser transit anemometry, as well as in planar measurement techniques such as particle imaging velocimetry and planar Doppler velocimetry. (topical review)

  3. POLARISATION PRESERVING OPTICAL FIBRE

    DEFF Research Database (Denmark)

    2000-01-01

    . This cladding structure provides polarisation preserving properties to the optical fibre. Optical fibres using this technology may have claddings with elements placed non-periodically as well as in a two-dimensional periodic lattice - such as cladding providing Photonic Band Gap (PBG) effects....

  4. Surface-Enhanced Raman Spectroscopy

    Indian Academy of Sciences (India)

    Home; Journals; Resonance – Journal of Science Education; Volume 15; Issue 2. Surface-Enhanced Raman Spectroscopy - Recent Advancement of Raman Spectroscopy. Ujjal Kumar Sur. General Article Volume 15 Issue 2 February 2010 pp 154-164 ...

  5. Raman Spectroscopy for Homeland Security Applications

    Directory of Open Access Journals (Sweden)

    Gregory Mogilevsky

    2012-01-01

    Full Text Available Raman spectroscopy is an analytical technique with vast applications in the homeland security and defense arenas. The Raman effect is defined by the inelastic interaction of the incident laser with the analyte molecule’s vibrational modes, which can be exploited to detect and identify chemicals in various environments and for the detection of hazards in the field, at checkpoints, or in a forensic laboratory with no contact with the substance. A major source of error that overwhelms the Raman signal is fluorescence caused by the background and the sample matrix. Novel methods are being developed to enhance the Raman signal’s sensitivity and to reduce the effects of fluorescence by altering how the hazard material interacts with its environment and the incident laser. Basic Raman techniques applicable to homeland security applications include conventional (off-resonance Raman spectroscopy, surface-enhanced Raman spectroscopy (SERS, resonance Raman spectroscopy, and spatially or temporally offset Raman spectroscopy (SORS and TORS. Additional emerging Raman techniques, including remote Raman detection, Raman imaging, and Heterodyne imaging, are being developed to further enhance the Raman signal, mitigate fluorescence effects, and monitor hazards at a distance for use in homeland security and defense applications.

  6. Fibre optic microarrays.

    Science.gov (United States)

    Walt, David R

    2010-01-01

    This tutorial review describes how fibre optic microarrays can be used to create a variety of sensing and measurement systems. This review covers the basics of optical fibres and arrays, the different microarray architectures, and describes a multitude of applications. Such arrays enable multiplexed sensing for a variety of analytes including nucleic acids, vapours, and biomolecules. Polymer-coated fibre arrays can be used for measuring microscopic chemical phenomena, such as corrosion and localized release of biochemicals from cells. In addition, these microarrays can serve as a substrate for fundamental studies of single molecules and single cells. The review covers topics of interest to chemists, biologists, materials scientists, and engineers.

  7. Resonance Raman Optical Activity and Surface Enhanced Resonance Raman Optical Activity analysis of Cytochrome C

    DEFF Research Database (Denmark)

    Johannessen, Christian; Abdali, Salim; White, Peter C.

    2007-01-01

    High quality Resonance Raman (RR) and resonance Raman Optical Activity (ROA) spectra of cytochrome c were obtained in order to perform full assignment of spectral features of the resonance ROA spectrum. The resonance ROA spectrum of cytochrome c revealed a distinct spectral signature pattern due...... to resonance enhanced skeletal porphyrin vibrations, more pronounced than any contribution from the protein back-bone. Combining the intrinsic resonance enhancement of cytochrome c with surface plasmon enhancement by colloidal silver particles, the Surface Enhanced Resonance Raman Scattering (SERRS) and Chiral...... Enhanced Raman Spectroscopy (ChERS) spectra of the protein were successfully obtained at very low concentration (as low as 1 µM). The assignment of spectral features was based on the information obtained from the RR and resonance ROA spectra. Excellent agreement between RR and SERRS spectra is reported...

  8. Double optical fibre-probe device for the diagnosis of melanocytic lesions

    Science.gov (United States)

    Cicchi, Riccardo; Cosci, Alessandro; Rossari, Susanna; De Giorgi, Vincenzo; Kapsokalyvas, Dimitrios; Massi, Daniela; Pavone, Francesco S.

    2012-06-01

    We have designed and developed an optical fiber-probe for spectroscopic measurements on human tissues. The experimental setup combines fluorescence spectroscopy and Raman spectroscopy in a multidimensional approach. Concerning fluorescence spectroscopy, the excitation is provided by two laser diodes, one emitting in the UV (378 nm) and the other emitting in the visible (445 nm). These two lasers are used to selectively excite fluorescence from NADH and FAD, which are among the brightest endogenous fluorophores in human tissues. For Raman and NIR spectroscopy, the excitation is provided by a third laser diode with 785 nm excitation wavelength. Laser light is delivered to the tissue through the central optical fiber of a fiber bundle. The surrounding 48 fibers of the bundle are used for collecting fluorescence and Raman and for delivering light to the spectrograph. Fluorescence and Raman spectra are acquired on a cooled CCD camera. The instrument has been tested on fresh human skin biopsies clinically diagnosed as malignant melanoma, melanocytic nevus, or healthy skin, finding an optimal correlation with the subsequent histological exam. In some cases our examination was not in agreement with the clinical observation, but it was with the histological exam, demonstrating that the system can potentially contribute to improve clinical diagnostic capabilities and hence reduce the number of unnecessary biopsies.

  9. A combined tactile and Raman probe for tissue characterization—design considerations

    International Nuclear Information System (INIS)

    Nyberg, Morgan; Candefjord, Stefan; Ramser, Kerstin; Lindahl, Olof A; Jalkanen, Ville

    2012-01-01

    Histopathology is the golden standard for cancer diagnosis and involves the characterization of tissue components. It is labour intensive and time consuming. We have earlier proposed a combined fibre-optic near-infrared Raman spectroscopy (NIR-RS) and tactile resonance method (TRM) probe for detecting positive surgical margins as a complement to interoperative histopathology. The aims of this study were to investigate the effects of attaching an RS probe inside a cylindrical TRM sensor and to investigate how laser-induced heating of the fibre-optic NIR-RS affected the temperature of the RS probe tip and an encasing TRM sensor. In addition, the possibility to perform fibre-optic NIR-RS in a well-lit environment was investigated. A small amount of rubber latex was preferable for attaching the thin RS probe inside the TRM sensor. The temperature rise of the TRM sensor due to a fibre-optic NIR-RS at 270 mW during 20 s was less than 2 °C. Fibre-optic NIR-RS was feasible in a dimmed bright environment using a small light shield and automatic subtraction of a pre-recorded contaminant spectrum. The results are promising for a combined probe for tissue characterization. (paper)

  10. Light depolarization induced by metallic tips in apertureless near-field optical microscopy and tip-enhanced Raman spectroscopy

    Energy Technology Data Exchange (ETDEWEB)

    Gucciardi, P G [CNR-Istituto per i Processi Chimico-Fisici, sezione Messina, Salita Sperone, Contrada Papardo, I-98158 Faro Superiore, Messina (Italy); Lopes, M; Deturche, R; Julien, C; Barchiesi, D; Chapelle, M Lamy de la [Institut Charles Delaunay-CNRS FRE 2848, Laboratoire de Nanotechnologie et d' Instrumentation Optique, Universite de Technologie de Troyes, 12 rue Marie Curie, BP2060, 10010 Troyes (France)

    2008-05-28

    We have investigated the depolarization effects of light scattered by sharp tips used for apertureless near-field optical microscopy. Dielectric and metal coated tips have been investigated and depolarization factors between 5 and 30% have been measured, changing as a function of the incident light polarization and of the tip shape. The experimental results are in good agreement with theoretical calculations performed by the finite element method, giving a near-field depolarization factor close to 10%. The effect of depolarization has been investigated in polarized tip-enhanced Raman spectroscopy (TERS) experiments; the depolarization gives rise to forbidden Raman modes in Si crystals.

  11. Fibre optic networks for safeguards applications

    International Nuclear Information System (INIS)

    Smith, B.G.R.; Chare, P.; Barrier, A.

    1991-01-01

    The Euratom Safeguards Directorate has recently installed a fibre optic network in a new large scale nuclear facility in the European Communities. The selection, installation and commissioning of the fibre optic network is discussed from the viewpoint of network topology, physical testing, trouble shooting and authentication. The future use of fibre optic networks for safeguards applications is discussed

  12. Fibre optic cable in the nuclear industry

    International Nuclear Information System (INIS)

    Roberts, Berwyn

    1987-01-01

    The uses of optical fibre cables to transmit light signals include medical applications and telecommunications. In the nuclear industry the applications include process control and monitoring, conventional datacoms, security fencing and sensors. Time division multiplexing is described and currently available fibre optic multipexers are listed and explained. Single and multimode fibres are mentioned. Fibre optics are also used in cryogenics, to monitor the integrity of the storage vessels for cryogenic liquids. The uses of fibre optics at Hartlepool, Heysham I and Torness are mentioned in particular. (UK)

  13. Raman Spectroscopy of Ocular Tissue

    Science.gov (United States)

    Ermakov, Igor V.; Sharifzadeh, Mohsen; Gellermann, Warner

    The optically transparent nature of the human eye has motivated numerous Raman studies aimed at the non-invasive optical probing of ocular tissue components critical to healthy vision. Investigations include the qualitative and quantitative detection of tissue-specific molecular constituents, compositional changes occurring with development of ocular pathology, and the detection and tracking of ocular drugs and nutritional supplements. Motivated by a better understanding of the molecular mechanisms leading to cataract formation in the aging human lens, a great deal of work has centered on the Raman detection of proteins and water content in the lens. Several protein groups and the hydroxyl response are readily detectable. Changes of protein compositions can be studied in excised noncataractous tissue versus aged tissue preparations as well as in tissue samples with artificially induced cataracts. Most of these studies are carried out in vitro using suitable animal models and conventional Raman techniques. Tissue water content plays an important role in optimum light transmission of the outermost transparent ocular structure, the cornea. Using confocal Raman spectroscopy techniques, it has been possible to non-invasively measure the water to protein ratio as a measure of hydration status and to track drug-induced changes of the hydration levels in the rabbit cornea at various depths. The aqueous humor, normally supplying nutrients to cornea and lens, has an advantageous anterior location for Raman studies. Increasing efforts are pursued to non-invasively detect the presence of glucose and therapeutic concentrations of antibiotic drugs in this medium. In retinal tissue, Raman spectroscopy proves to be an important tool for research into the causes of macular degeneration, the leading cause of irreversible vision disorders and blindness in the elderly. It has been possible to detect the spectral features of advanced glycation and advanced lipooxydation end products in

  14. Fibre-optic temperature sensor

    International Nuclear Information System (INIS)

    Zhao Jie; Liu Zhenyuan.

    1993-04-01

    This experiment is a kind of nonfunction fibre-optic temperature sensor. It utilizes high-sensitive bimetallic strip for element of measuring temperature. The changing of bimetallic strip alterates intensity of light through fibre-optic. This equipment is simple in structure, subtle in design, extensive in application, and so on. (author). 4 refs, 6 figs, 1 tab

  15. Flexible Microsphere-Embedded Film for Microsphere-Enhanced Raman Spectroscopy.

    Science.gov (United States)

    Xing, Cheng; Yan, Yinzhou; Feng, Chao; Xu, Jiayu; Dong, Peng; Guan, Wei; Zeng, Yong; Zhao, Yan; Jiang, Yijian

    2017-09-27

    Dielectric microspheres with extraordinary microscale optical properties, such as photonic nanojets, optical whispering-gallery modes (WGMs), and directional antennas, have drawn interest in many research fields. Microsphere-enhanced Raman spectroscopy (MERS) is an alternative approach for enhanced Raman detection by dielectric microstructures. Unfortunately, fabrication of microsphere monolayer arrays is the major challenge of MERS for practical applications on various specimen surfaces. Here we report a microsphere-embedded film (MF) by immersing a highly refractive microsphere monolayer array in the poly(dimethylsiloxane) (PDMS) film as a flexible MERS sensing platform for one- to three-dimensional (1D to 3D) specimen surfaces. The directional antennas and wave-guided whispering-gallery modes (WG-WGMs) contribute to the majority of Raman enhancement by the MFs. Moreover, the MF can be coupled with surface-enhanced Raman spectroscopy (SERS) to provide an extra >10-fold enhancement. The limit of detection is therefore improved for sensing of crystal violet (CV) and Sudan I molecules in aqueous solutions at concentrations down to 10 -7 M. A hybrid dual-layer microsphere enhancer, constructed by depositing a MF onto a microsphere monolayer array, is also demonstrated, wherein the WG-WGMs become dominant and boost the enhancement ratio >50-fold. The present work opens up new opportunities for design of cost-effective and flexible MERS sensing platforms as individual or associated techniques toward practical applications in ultrasensitive Raman detection.

  16. Utilizing Raman Spectroscopy and Surface-Enhanced Raman Spectroscopy to investigate healthy and cancerous colon samples

    International Nuclear Information System (INIS)

    Barzegar, A.; Rezaei, H.; Malekfar, R.

    2012-01-01

    In this study, spontaneous Raman scattering and surface-enhanced Raman scattering, Surface-Enhanced Raman Spectroscopy spectra have been investigated. The samples which were kept in the formalin solution selected from the human's healthy and cancerous colon tissues. The Surface-Enhanced Raman Spectroscopy spectra were collected by adding colloidal solution contained silver nanoparticles to the top of the samples. The recorded spectra were compared for the spontaneous Raman spectra of healthy and cancerous colon samples. The spontaneous and surface enhanced Raman scattering data were also collected and compared for both healthy and damaged samples.

  17. Ultrafast surface-enhanced Raman spectroscopy.

    Science.gov (United States)

    Keller, Emily L; Brandt, Nathaniel C; Cassabaum, Alyssa A; Frontiera, Renee R

    2015-08-07

    Ultrafast surface-enhanced Raman spectroscopy (SERS) with pico- and femtosecond time resolution has the ability to elucidate the mechanisms by which plasmons mediate chemical reactions. Here we review three important technological advances in these new methodologies, and discuss their prospects for applications in areas including plasmon-induced chemistry and sensing at very low limits of detection. Surface enhancement, arising from plasmonic materials, has been successfully incorporated with stimulated Raman techniques such as femtosecond stimulated Raman spectroscopy (FSRS) and coherent anti-Stokes Raman spectroscopy (CARS). These techniques are capable of time-resolved measurement on the femtosecond and picosecond time scale and can be used to follow the dynamics of molecules reacting near plasmonic surfaces. We discuss the potential application of ultrafast SERS techniques to probe plasmon-mediated processes, such as H2 dissociation and solar steam production. Additionally, we discuss the possibilities for high sensitivity SERS sensing using these stimulated Raman spectroscopies.

  18. Candida parapsilosis Biofilm Identification by Raman Spectroscopy

    Czech Academy of Sciences Publication Activity Database

    Samek, Ota; Mlynariková, K.; Bernatová, Silvie; Ježek, Jan; Krzyžánek, Vladislav; Šiler, Martin; Zemánek, Pavel; Růžička, F.; Holá, Miroslava; Mahelová, M.

    2014-01-01

    Roč. 15, č. 12 (2014), s. 23924-23935 E-ISSN 1422-0067 R&D Projects: GA MŠk(CZ) LO1212; GA MŠk ED0017/01/01; GA ČR GAP205/11/1687 Institutional support: RVO:68081731 Keywords : Raman spectroscopy * Candida parapsilosis * biofilm Subject RIV: BH - Optics, Masers, Lasers Impact factor: 2.862, year: 2014

  19. Quantitative analysis of sugar composition in honey using 532-nm excitation Raman and Raman optical activity spectra

    Czech Academy of Sciences Publication Activity Database

    Šugar, Jan; Bouř, Petr

    2016-01-01

    Roč. 47, č. 11 (2016), s. 1298-1303 ISSN 0377-0486 R&D Projects: GA ČR GA15-09072S Institutional support: RVO:61388963 Keywords : honey * sugar mixtures * spectral decompositions * Raman spectroscopy * Raman optical activity Subject RIV: CF - Physical ; Theoretical Chemistry Impact factor: 2.969, year: 2016

  20. Summary report of FY 1995 Raman spectroscopy technology development

    International Nuclear Information System (INIS)

    Douglas, J.G.

    1995-11-01

    US DOE is sponsoring development of remote, fiber-optic Raman spectroscopy for rapid chemical characterization of Hanford high-level radioactive tank waste. Deployment targets for this technology are analytical hot cells and, via the Light-Duty Utility Arm and cone penetrometer, the waste tanks themselves. Perceived benefits of fiber-optic Raman spectroscopy are (1) rapid generation of tank-waste safety-related data, (2) reduced personnel exposure to highly radioactive waste, (3) reduced tank-waste sampling and analysis costs, and (4) reduced radioactive analytical waste. This document presents the results from the investigation of two dispersive, transmission-grating Raman systems and four fiber-optic Raman probe designs with non-radioactive tank waste simulants. One Raman system used a 532-nm, 400 mW, solid-state laser; the other used a 785-nm, 500 mW, solid-state diode laser. We found (1) the transmission-grating systems had better wavelength stability than previously tried Czerny-Turner-Based systems and (2) the 785-nm system's specie detection limits in the spectral fingerprint regiion were at least as good as those for the 532-nm system. Based on these results, and the fact that some tank wastes luminesce with 514.5nm excitation, we selected the 785-nm system for hot-cell use. Of the four probes tested, three had a ''six-around-on'' fiber probe design; the fourth probe was a one-fiber-in-one-fiber-out, diffuse-relectance design. Comparison of the four probes' signal-to-noise rations, rations, transmission/collection efficiencies, and probe-silica Raman backgrounds showed that the best probe for use with Hanford-Site tank waste should (1) be filtered as close to the probe tip as possible to reduce the probe-silica Raman background and (2) have multiple collection fibers. The responses of all the probes tested showed a strong dependence on probe-sample distance, and the presence of a probe window appeared to increase the probe's silica Raman background

  1. Raman probes based on optically-poled double-clad fiber and coupler

    DEFF Research Database (Denmark)

    Brunetti, Anna Chiara; Margulis, Walter; Rottwitt, Karsten

    2012-01-01

    of a sample of dimethyl sulfoxide (DMSO), when illuminating the waveguide with 1064nm laser light. The Raman signal is collected in the inner cladding, from which it is retrieved with either a bulk dichroic mirror or a double-clad fiber coupler. The coupler allows for a substantial reduction of the fiber......Two fiber Raman probes are presented, one based on an optically-poled double-clad fiber and the second based on an optically-poled double-clad fiber coupler respectively. Optical poling of the core of the fiber allows for the generation of enough 532nm light to perform Raman spectroscopy...

  2. Raman spectroscopy in high temperature chemistry

    International Nuclear Information System (INIS)

    Drake, M.C.; Rosenblatt, G.M.

    1979-01-01

    Raman spectroscopy (largely because of advances in laser and detector technology) is assuming a rapidly expanding role in many areas of research. This paper reviews the contribution of Raman spectroscopy in high temperature chemistry including molecular spectroscopy on static systems and gas diagnostic measurements on reactive systems. An important aspect of high temperature chemistry has been the identification and study of the new, and often unusual, gaseous molecules which form at high temperatures. Particularly important is the investigation of vibrational-rotational energy levels and electronic states which determine thermodynamic properties and describe chemical bonding. Some advantages and disadvantages of high temperature Raman spectrosocpy for molecular studies on static systems are compared: (1) Raman vs infrared; (2) gas-phase vs condensed in matries; and (3) atmospheric pressure Raman vs low pressure techniques, including mass spectroscopy, matrix isolation, and molecular beams. Raman studies on molecular properties of gases, melts, and surfaces are presented with emphasis on work not covered in previous reviews of high temperature and matrix isolation Raman spectroscopy

  3. Raman spectroscopy in high temperature chemistry

    International Nuclear Information System (INIS)

    Drake, M.C.; Rosenblatt, G.M.

    1979-01-01

    Raman spectroscopy (largely because of advances in laser and detector technology) is assuming a rapidly expanding role in many areas of research. This paper reviews the contribution of Raman spectroscopy in high temperature chemistry including molecular spectroscopy on static systems and gas diagnostic measurements on reactive systems. An important aspect of high temperature chemistry has been the identification and study of the new, and often unusual, gaseous molecules which form at high temperatures. Particularly important is the investigation of vibrational-rotational energy levels and electronic states which determine thermodynamic properties and describe chemical bonding. Some advantages and disadvantages of high temperature Raman spectrosocpy for molecular studies on static systems are compared: (1) Raman vs infrared; (2) gas-phase vs condensed in matrices; and (3) atmospheric pressure Raman vs low pressure techniques, including mass spectroscopy, matrix isolation, and molecular beams. Raman studies on molecular properties of gases, melts, and surfaces are presented with emphasis on work not covered in previous reviews of high temperature and matrix isolation Raman spectroscopy

  4. Scanning angle Raman spectroscopy: Investigation of Raman scatter enhancement techniques for chemical analysis

    Energy Technology Data Exchange (ETDEWEB)

    Meyer, Matthew W. [Iowa State Univ., Ames, IA (United States)

    2013-01-01

    This thesis outlines advancements in Raman scatter enhancement techniques by applying evanescent fields, standing-waves (waveguides) and surface enhancements to increase the generated mean square electric field, which is directly related to the intensity of Raman scattering. These techniques are accomplished by employing scanning angle Raman spectroscopy and surface enhanced Raman spectroscopy. A 1064 nm multichannel Raman spectrometer is discussed for chemical analysis of lignin. Extending dispersive multichannel Raman spectroscopy to 1064 nm reduces the fluorescence interference that can mask the weaker Raman scattering. Overall, these techniques help address the major obstacles in Raman spectroscopy for chemical analysis, which include the inherently weak Raman cross section and susceptibility to fluorescence interference.

  5. Cool application for Optical Fibres

    CERN Multimedia

    2001-01-01

    In a new first for CERN, optical fibres have been put on test to measure very low temperatures. If these tests prove successful, this new technology could lead to important cost-saving changes in the way the temperatures of superconducting magnets are measured. There was excitement in the air last March when the team led by Walter Scandale and Luc Thévenaz tested very low temperature measurement using optical fibres. This spring in CERN's Cryogenics lab an idea was put to the test as a new kind of low-temperature thermometry using optical fibres was tested down to 2 Kelvin (around 300 degrees below room temperature), and the first results are looking good. Optical fibres are well known for their ability to carry large amounts of data around the world, but it is less well known that they can be used for measuring temperatures. The intuition that they might be able to measure very low temperatures - such as those of the LHC magnets - came to the attention of CERN's Walter Scandale at the Optical Fi...

  6. Quantitative polarized Raman spectroscopy in highly turbid bone tissue.

    Science.gov (United States)

    Raghavan, Mekhala; Sahar, Nadder D; Wilson, Robert H; Mycek, Mary-Ann; Pleshko, Nancy; Kohn, David H; Morris, Michael D

    2010-01-01

    Polarized Raman spectroscopy allows measurement of molecular orientation and composition and is widely used in the study of polymer systems. Here, we extend the technique to the extraction of quantitative orientation information from bone tissue, which is optically thick and highly turbid. We discuss multiple scattering effects in tissue and show that repeated measurements using a series of objectives of differing numerical apertures can be employed to assess the contributions of sample turbidity and depth of field on polarized Raman measurements. A high numerical aperture objective minimizes the systematic errors introduced by multiple scattering. We test and validate the use of polarized Raman spectroscopy using wild-type and genetically modified (oim/oim model of osteogenesis imperfecta) murine bones. Mineral orientation distribution functions show that mineral crystallites are not as well aligned (pbones (28+/-3 deg) compared to wild-type bones (22+/-3 deg), in agreement with small-angle X-ray scattering results. In wild-type mice, backbone carbonyl orientation is 76+/-2 deg and in oim/oim mice, it is 72+/-4 deg (p>0.05). We provide evidence that simultaneous quantitative measurements of mineral and collagen orientations on intact bone specimens are possible using polarized Raman spectroscopy.

  7. Diffusion measurements by Raman spectroscopy

    DEFF Research Database (Denmark)

    Hansen, Susanne Brunsgaard; Shapiro, Alexander; Berg, Rolf W.

    Poster "Diffusion measurements by Raman spectroscopy", See poster at http://www.kemi.dtu.dk/~ajo/rolf/petroday2004.ppt......Poster "Diffusion measurements by Raman spectroscopy", See poster at http://www.kemi.dtu.dk/~ajo/rolf/petroday2004.ppt...

  8. Raman tweezers spectroscopy of live, single red and white blood cells.

    Directory of Open Access Journals (Sweden)

    Aseefhali Bankapur

    Full Text Available An optical trap has been combined with a Raman spectrometer to make high-resolution measurements of Raman spectra of optically-immobilized, single, live red (RBC and white blood cells (WBC under physiological conditions. Tightly-focused, near infrared wavelength light (1064 nm is utilized for trapping of single cells and 785 nm light is used for Raman excitation at low levels of incident power (few mW. Raman spectra of RBC recorded using this high-sensitivity, dual-wavelength apparatus has enabled identification of several additional lines; the hitherto-unreported lines originate purely from hemoglobin molecules. Raman spectra of single granulocytes and lymphocytes are interpreted on the basis of standard protein and nucleic acid vibrational spectroscopy data. The richness of the measured spectrum illustrates that Raman studies of live cells in suspension are more informative than conventional micro-Raman studies where the cells are chemically bound to a glass cover slip.

  9. Role of Raman spectroscopy and surface enhanced Raman spectroscopy in colorectal cancer

    Science.gov (United States)

    Jenkins, Cerys A; Lewis, Paul D; Dunstan, Peter R; Harris, Dean A

    2016-01-01

    Colorectal cancer (CRC) is the fourth most common cancer in the United Kingdom and is the second largest cause of cancer related death in the United Kingdom after lung cancer. Currently in the United Kingdom there is not a diagnostic test that has sufficient differentiation between patients with cancer and those without cancer so the current referral system relies on symptomatic presentation in a primary care setting. Raman spectroscopy and surface enhanced Raman spectroscopy (SERS) are forms of vibrational spectroscopy that offer a non-destructive method to gain molecular information about biological samples. The techniques offer a wide range of applications from in vivo or in vitro diagnostics using endoscopic probes, to the use of micro-spectrometers for analysis of biofluids. The techniques have the potential to detect molecular changes prior to any morphological changes occurring in the tissue and therefore could offer many possibilities to aid the detection of CRC. The purpose of this review is to look at the current state of diagnostic technology in the United Kingdom. The development of Raman spectroscopy and SERS in clinical applications relation for CRC will then be discussed. Finally, future areas of research of Raman/SERS as a clinical tool for the diagnosis of CRC are also discussed. PMID:27190582

  10. Optical properties behavior of three optical filters and a mirror used in the internal optical head of a Raman laser spectrometer after exposed to proton radiation

    Science.gov (United States)

    Guembe, V.; Alvarado, C. G.; Fernández-Rodriguez, M.; Gallego, P.; Belenguer, T.; Díaz, E.

    2017-11-01

    The Raman Laser Spectrometer is one of the ExoMars Pasteur Rover's payload instruments that is devoted to the analytical analysis of the geochemistry content and elemental composition of the observed minerals provided by the Rover through Raman spectroscopy technique. One subsystem of the RLS instrument is the Internal Optical Head unit (IOH), which is responsible for focusing the light coming from the laser onto the mineral under analysis and for collecting the Raman signal emitted by the excited mineral. The IOH is composed by 4 commercial elements for Raman spectroscopy application; 2 optical filters provided by Iridian Spectral Technologies Company and 1 optical filter and 1 mirror provided by Semrock Company. They have been exposed to proton radiation in order to analyze their optical behaviour due to this hostile space condition. The proton irradiation test was performed following the protocol of LINES lab (INTA). The optical properties have been studied through transmittance, reflectance and optical density measurements, the final results and its influence on optical performances are presented.

  11. Optical fibres in the radiation environment of CERN

    Science.gov (United States)

    Guillermain, E.

    2017-11-01

    CERN, the European Organization for Nuclear Research (in Geneva, Switzerland), is home to a complex scientific instrument: the 27-kilometre Large Hadron Collider (LHC) collides beams of high-energy particles at close to the speed of light. Optical fibres are widely used at CERN, both in surface areas (e.g. for inter-building IT networks) and in the accelerator complex underground (e.g. for cryogenics, vacuum, safety systems). Optical fibres in the accelerator are exposed to mixed radiation fields (mainly composed of protons, pions, neutrons and other hadrons, gamma rays and electrons), with dose rates depending on the particular installation zone, and with radiation levels often significantly higher than those encountered in space. In the LHC and its injector chain radiation levels range from relatively low annual doses of a few Gy up to hundreds of kGy. Optical fibres suffer from Radiation Induced Attenuation (RIA, expressed in dB per unit length) that affect light transmission and which depends on the irradiation conditions (e.g. dose rate, total dose, temperature). In the CERN accelerator complex, the failure of an optical link can affect the proper functionality of control or monitoring systems and induce the interruption of the accelerator operation. The qualification of optical fibres for installation in critical radiation areas is therefore crucial. Thus, all optical fibre types installed in radiation areas at CERN are subject to laboratory irradiation tests, in order to evaluate their RIA at different total dose and dose rates. This allows the selection of the appropriate optical fibre type (conventional or radiation resistant) compliant with the requirements of each installation. Irradiation tests are performed in collaboration with Fraunhofer INT (irradiation facilities and expert team in Euskirchen, Germany). Conventional off-the-shelf optical fibres can be installed for optical links exposed to low radiation levels (i.e. annual dose typically below few

  12. Bladder cancer diagnosis during cystoscopy using Raman spectroscopy

    Science.gov (United States)

    Grimbergen, M. C. M.; van Swol, C. F. P.; Draga, R. O. P.; van Diest, P.; Verdaasdonk, R. M.; Stone, N.; Bosch, J. H. L. R.

    2009-02-01

    Raman spectroscopy is an optical technique that can be used to obtain specific molecular information of biological tissues. It has been used successfully to differentiate normal and pre-malignant tissue in many organs. The goal of this study is to determine the possibility to distinguish normal tissue from bladder cancer using this system. The endoscopic Raman system consists of a 6 Fr endoscopic probe connected to a 785nm diode laser and a spectral recording system. A total of 107 tissue samples were obtained from 54 patients with known bladder cancer during transurethral tumor resection. Immediately after surgical removal the samples were placed under the Raman probe and spectra were collected and stored for further analysis. The collected spectra were analyzed using multivariate statistical methods. In total 2949 Raman spectra were recorded ex vivo from cold cup biopsy samples with 2 seconds integration time. A multivariate algorithm allowed differentiation of normal and malignant tissue with a sensitivity and specificity of 78,5% and 78,9% respectively. The results show the possibility of discerning normal from malignant bladder tissue by means of Raman spectroscopy using a small fiber based system. Despite the low number of samples the results indicate that it might be possible to use this technique to grade identified bladder wall lesions during endoscopy.

  13. Practical in-situ determination of ortho-para hydrogen ratios via fiber-optic based Raman spectroscopy

    Energy Technology Data Exchange (ETDEWEB)

    Sutherland, Liese-Marie; Knudson, James N.; Mocko, Michal; Renneke, Richard M.

    2016-02-21

    An experiment was designed and developed to prototype a fiber-optic-based laser system, which measures the ratio of ortho-hydrogen to para-hydrogen in an operating neutron moderator system at the Los Alamos Neutron Science Center (LANSCE) spallation neutron source. Preliminary measurements resulted in an ortho to para ratio of 3.06:1, which is within acceptable agreement with the previously published ratio. The successful demonstration of Raman Spectroscopy for this measurement is expected to lead to a practical method that can be applied for similar in-situ measurements at operating neutron spallation sources.

  14. Transmission of 20 channels over 238 km of non-zero dispersion shifted fibre using distributed time-division multiplexing-pumped Raman amplification

    Czech Academy of Sciences Publication Activity Database

    Karásek, Miroslav; Radil, J.; Vojtěch, J.

    2010-01-01

    Roč. 4, č. 2 (2010), s. 78-84 ISSN 1751-8768 R&D Projects: GA AV ČR 1ET300670503 Institutional research plan: CEZ:AV0Z20670512 Keywords : optical fibre amplifiers * Raman amplification * wavelength – division - multiplexing Subject RIV: JA - Electronics ; Optoelectronics , Electrical Engineering Impact factor: 1.105, year: 2010

  15. Raman Spectroscopy and its Application in Nanostructures

    CERN Document Server

    Zhang, Shu-Lin

    2012-01-01

    Raman Spectroscopy and its Application in Nanostructures is an original and timely contribution to a very active area of physics and materials science research. This book presents the theoretical and experimental phenomena of Raman spectroscopy, with specialized discussions on the physical fundamentals, new developments and main features in low-dimensional systems of Raman spectroscopy. In recent years physicists, materials scientists and chemists have devoted increasing attention to low-dimensional systems and as Raman spectroscopy can be used to study and analyse such materials as carbon nan

  16. Emerging technology: applications of Raman spectroscopy for prostate cancer.

    Science.gov (United States)

    Kast, Rachel E; Tucker, Stephanie C; Killian, Kevin; Trexler, Micaela; Honn, Kenneth V; Auner, Gregory W

    2014-09-01

    There is a need in prostate cancer diagnostics and research for a label-free imaging methodology that is nondestructive, rapid, objective, and uninfluenced by water. Raman spectroscopy provides a molecular signature, which can be scaled from micron-level regions of interest in cells to macroscopic areas of tissue. It can be used for applications ranging from in vivo or in vitro diagnostics to basic science laboratory testing. This work describes the fundamentals of Raman spectroscopy and complementary techniques including surface enhanced Raman scattering, resonance Raman spectroscopy, coherent anti-Stokes Raman spectroscopy, confocal Raman spectroscopy, stimulated Raman scattering, and spatially offset Raman spectroscopy. Clinical applications of Raman spectroscopy to prostate cancer will be discussed, including screening, biopsy, margin assessment, and monitoring of treatment efficacy. Laboratory applications including cell identification, culture monitoring, therapeutics development, and live imaging of cellular processes are discussed. Potential future avenues of research are described, with emphasis on multiplexing Raman spectroscopy with other modalities.

  17. Cell Imaging by Spontaneous and Amplified Raman Spectroscopies

    Directory of Open Access Journals (Sweden)

    Giulia Rusciano

    2017-01-01

    Full Text Available Raman spectroscopy (RS is a powerful, noninvasive optical technique able to detect vibrational modes of chemical bonds. The high chemical specificity due to its fingerprinting character and the minimal requests for sample preparation have rendered it nowadays very popular in the analysis of biosystems for diagnostic purposes. In this paper, we first discuss the main advantages of spontaneous RS by describing the study of a single protozoan (Acanthamoeba, which plays an important role in a severe ophthalmological disease (Acanthamoeba keratitis. Later on, we point out that the weak signals that originated from Raman scattering do not allow probing optically thin samples, such as cellular membrane. Experimental approaches able to overcome this drawback are based on the use of metallic nanostructures, which lead to a huge amplification of the Raman yields thanks to the excitation of localized surface plasmon resonances. Surface-enhanced Raman scattering (SERS and tip-enhanced Raman scattering (TERS are examples of such innovative techniques, in which metallic nanostructures are assembled on a flat surface or on the tip of a scanning probe microscope, respectively. Herein, we provide a couple of examples (red blood cells and bacterial spores aimed at studying cell membranes with these techniques.

  18. Applications of Raman spectroscopy in life science

    Science.gov (United States)

    Martin, Airton A.; T. Soto, Cláudio A.; Ali, Syed M.; Neto, Lázaro P. M.; Canevari, Renata A.; Pereira, Liliane; Fávero, Priscila P.

    2015-06-01

    Raman spectroscopy has been applied to the analysis of biological samples for the last 12 years providing detection of changes occurring at the molecular level during the pathological transformation of the tissue. The potential use of this technology in cancer diagnosis has shown encouraging results for the in vivo, real-time and minimally invasive diagnosis. Confocal Raman technics has also been successfully applied in the analysis of skin aging process providing new insights in this field. In this paper it is presented the latest biomedical applications of Raman spectroscopy in our laboratory. It is shown that Raman spectroscopy (RS) has been used for biochemical and molecular characterization of thyroid tissue by micro-Raman spectroscopy and gene expression analysis. This study aimed to improve the discrimination between different thyroid pathologies by Raman analysis. A total of 35 thyroid tissues samples including normal tissue (n=10), goiter (n=10), papillary (n=10) and follicular carcinomas (n=5) were analyzed. The confocal Raman spectroscopy allowed a maximum discrimination of 91.1% between normal and tumor tissues, 84.8% between benign and malignant pathologies and 84.6% among carcinomas analyzed. It will be also report the application of in vivo confocal Raman spectroscopy as an important sensor for detecting advanced glycation products (AGEs) on human skin.

  19. Differentiation between Staphylococcus aureus and Staphylococcus epidermidis strains using Raman spectroscopy

    Czech Academy of Sciences Publication Activity Database

    Rebrošová, K.; Šiler, Martin; Samek, Ota; Růžička, F.; Bernatová, Silvie; Ježek, Jan; Zemánek, Pavel; Holá, V.

    2017-01-01

    Roč. 12, č. 10 (2017), s. 881-890 ISSN 1746-0913 R&D Projects: GA ČR(CZ) GA15-20645S; GA MŠk(CZ) LO1212; GA MŠk ED0017/01/01 Institutional support: RVO:68081731 Keywords : Raman spectroscopy * rapid diagnostics * Staphylococcus epidermidis * Staphyococcus aureus Subject RIV: BH - Optics, Masers, Lasers OBOR OECD: Optics (including laser optics and quantum optics) Impact factor: 3.374, year: 2016

  20. Test report for remote vs. contact Raman spectroscopy

    International Nuclear Information System (INIS)

    Kyle, K.R.

    1994-05-01

    This report details the evaluation of two methods of spatially characterizing the chemical composition of tank core samples using Raman spectroscopy. One method involves a spatially-scanned fiber optic probe. The fiber optic probe must be in contact with a sample to interrogate its chemical composition. The second method utilizes a line-of-sight technique involving a remote imaging spectrometer that can perform characterization over an entire surface. Measurements using the imaging technique are done remotely, requiring no contact with the sample surface. The scope of this document studies the effects of laser power, distance from each type of probe to the sample surface, and interferences unique to the two methods. This report also documents the results of comparative studies of sensitivity to ferrocyanide, a key contaminant of concern in the underground storage tanks at DOE's Hanford site. The effect of other factors on signal intensity such as moisture content is explored. The results from the two methods are compared, and a recommendation for a Raman hot cell core scanning system is presented based on the test results. This work is part of a joint effort involving several DOE laboratories for the design and development of Raman spectroscopy systems for tank waste characterization at Westinghouse Hanford Company under the auspices of the U.S. Department of Energy's Underground Storage Tank Integrated Demonstration

  1. Characterizing physical properties and heterogeneous chemistry of single particles in air using optical trapping-Raman spectroscopy

    Science.gov (United States)

    Gong, Z.; Wang, C.; Pan, Y. L.; Videen, G.

    2017-12-01

    Heterogeneous reactions of solid particles in a gaseous environment are of increasing interest; however, most of the heterogeneous chemistry studies of airborne solids were conducted on particle ensembles. A close examination on the heterogeneous chemistry between single particles and gaseous-environment species is the key to elucidate the fundamental mechanisms of hydroscopic growth, cloud nuclei condensation, secondary aerosol formation, etc., and reduce the uncertainty of models in radiative forcing, climate change, and atmospheric chemistry. We demonstrate an optical trapping-Raman spectroscopy (OT-RS) system to study the heterogeneous chemistry of the solid particles in air at single-particle level. Compared to other single-particle techniques, optical trapping offers a non-invasive, flexible, and stable method to isolate single solid particle from substrates. Benefited from two counter-propagating hollow beams, the optical trapping configuration is adaptive to trap a variety of particles with different materials from inorganic substitution (carbon nanotubes, silica, etc.) to organic, dye-doped polymers and bioaerosols (spores, pollen, etc.), with different optical properties from transparent to strongly absorbing, with different sizes from sub-micrometers to tens of microns, or with distinct morphologies from loosely packed nanotubes to microspheres and irregular pollen grains. The particles in the optical trap may stay unchanged, surface degraded, or optically fragmented according to different laser intensity, and their physical and chemical properties are characterized by the Raman spectra and imaging system simultaneously. The Raman spectra is able to distinguish the chemical compositions of different particles, while the synchronized imaging system can resolve their physical properties (sizes, shapes, morphologies, etc.). The temporal behavior of the trapped particles also can be monitored by the OT-RS system at an indefinite time with a resolution from

  2. Recent advances in poled optical fibres

    DEFF Research Database (Denmark)

    Pruneri, V.; Margulis, W.; Myrén, N.

    2005-01-01

    A second-order nonlinearity can be induced in optical fibres through poling. We describe accomplishments of the EU project GLAMOROUS in making low-cost high performance electrooptic and nonlinear optical fibre- and waveguide-based components. In particular a comparison with more traditional...

  3. Optical Fibre Pressure Sensors in Medical Applications

    Directory of Open Access Journals (Sweden)

    Sven Poeggel

    2015-07-01

    Full Text Available This article is focused on reviewing the current state-of-the-art of optical fibre pressure sensors for medical applications. Optical fibres have inherent advantages due to their small size, immunity to electromagnetic interferences and their suitability for remote monitoring and multiplexing. The small dimensions of optical fibre-based pressure sensors, together with being lightweight and flexible, mean that they are minimally invasive for many medical applications and, thus, particularly suited to in vivo measurement. This means that the sensor can be placed directly inside a patient, e.g., for urodynamic and cardiovascular assessment. This paper presents an overview of the recent developments in optical fibre-based pressure measurements with particular reference to these application areas.

  4. Optical Fibre Pressure Sensors in Medical Applications.

    Science.gov (United States)

    Poeggel, Sven; Tosi, Daniele; Duraibabu, DineshBabu; Leen, Gabriel; McGrath, Deirdre; Lewis, Elfed

    2015-07-15

    This article is focused on reviewing the current state-of-the-art of optical fibre pressure sensors for medical applications. Optical fibres have inherent advantages due to their small size, immunity to electromagnetic interferences and their suitability for remote monitoring and multiplexing. The small dimensions of optical fibre-based pressure sensors, together with being lightweight and flexible, mean that they are minimally invasive for many medical applications and, thus, particularly suited to in vivo measurement. This means that the sensor can be placed directly inside a patient, e.g., for urodynamic and cardiovascular assessment. This paper presents an overview of the recent developments in optical fibre-based pressure measurements with particular reference to these application areas.

  5. Optical Fibre Pressure Sensors in Medical Applications

    Science.gov (United States)

    Poeggel, Sven; Tosi, Daniele; Duraibabu, DineshBabu; Leen, Gabriel; McGrath, Deirdre; Lewis, Elfed

    2015-01-01

    This article is focused on reviewing the current state-of-the-art of optical fibre pressure sensors for medical applications. Optical fibres have inherent advantages due to their small size, immunity to electromagnetic interferences and their suitability for remote monitoring and multiplexing. The small dimensions of optical fibre-based pressure sensors, together with being lightweight and flexible, mean that they are minimally invasive for many medical applications and, thus, particularly suited to in vivo measurement. This means that the sensor can be placed directly inside a patient, e.g., for urodynamic and cardiovascular assessment. This paper presents an overview of the recent developments in optical fibre-based pressure measurements with particular reference to these application areas. PMID:26184228

  6. Laser stimulating ST36 with optical fiber induce blood component changes in mice: a Raman spectroscopy study.

    Science.gov (United States)

    Zhang, Heng; Chen, Zhenyi; Wu, Jiping; Chen, Na; Xu, Wenjie; Li, Taihao; Liu, Shupeng

    2018-02-15

    ST36 is a commonly-used acupoint in traditional Chinese medicine (TCM) for treatment of inflammations, pains and gastrointestinal disturbs. For decades, the low power laser acupuncture has been widely applied as an alternative therapy to traditional metal needle acupuncture and achieved relatively fine therapeutic effect for ST36-related symptoms with reduction of uncomfortableness and infection risks. However its disadvantages of low penetrativity and lack of manipulation skills limit its potential performance. An optical fiber laser acupuncture introduced by the previous study combines traditional needling acupuncture and the laser stimulation together, making a stronger therapeutic effect and showing a potential value in clinical application. To evaluate its acupunctural effect on blood, mice are taken as experimental model and Raman spectroscopic technique is used to analysis the changes of blood components after stimulating on ST36. The results show that both the traditional needling acupuncture and optical fiber acupuncture could lead to some spectral changes of blood in mice. This study explores the optical fiber acupuncture's effect on blood in mice using Raman spectroscopy technique for mechanism of acupuncture therapy. © 2018 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim.

  7. Development of SERS active fibre sensors

    International Nuclear Information System (INIS)

    Polwart, Ewan

    2002-01-01

    Surface-enhanced Raman scattering (SERS) is sensitive and selective and when coupled with fibre-optics could potentially produce an effective chemical sensing system. This thesis concerns the development of a single-fibre-based sensor, with an integral SERS-active substrate. A number of different methods for the manufacture of SERS-active surfaces on glass substrates were investigated and compared. The immobilisation of metal nanoparticles on glass functionalised with (3-aminopropyl)trimethoxysilane emerged as a suitable approach for the production of sensors. Substrates prepared by this approach were characterised using UV-visible spectroscopy, electron microscopy and Raman mapping. It was found that exposure of substrates to laser radiation led to a decrease in the signal recorded from adsorbed analytes. This speed of the decrease was shown to depend on the analyte, and the exciting wavelength and power. SERS-active fibre sensors were produced by immobilisation of silver nanoparticles at the distal end of a (3-aminopropyl)trimethoxysilane-derivatised optical fibre. These sensors were used to obtain spectra with good signal to noise ratios from 4-(benzotriazol-5-ylazo)-3,5-dimethoxyphenylamine and crystal violet. Sensing of dyes in effluent was also investigated. The development of sensors for the measurement of pH, by treating the SERS-active fibre tip with pH sensitive dyes is also described. Spectral changes were observed with these sensors as a response to the pH. Partial least squares regression was used to produce linear calibration models for the pH range 5-11 from which it was possible to predict the pH with an accuracy of ∼0.2 pH units. Some of the limitations of these sensors were explored. The feasibility of using these sensors for measurement of oxygen and thiols, was investigated. The measurement of oxygen using methylene blue as a transducer was demonstrated. Two transduction methodologies--reactions with iron porphyrins and pyrrole-2,5-diones

  8. Detecting Temporal and Spatial Effects of Epithelial Cancers with Raman Spectroscopy

    Directory of Open Access Journals (Sweden)

    Matthew D. Keller

    2008-01-01

    Full Text Available Epithelial cancers, including those of the skin and cervix, are the most common type of cancers in humans. Many recent studies have attempted to use Raman spectroscopy to diagnose these cancers. In this paper, Raman spectral markers related to the temporal and spatial effects of cervical and skin cancers are examined through four separate but related studies. Results from a clinical cervix study show that previous disease has a significant effect on the Raman signatures of the cervix, which allow for near 100% classification for discriminating previous disease versus a true normal. A Raman microspectroscopy study showed that Raman can detect changes due to adjacent regions of dysplasia or HPV that cannot be detected histologically, while a clinical skin study showed that Raman spectra may be detecting malignancy associated changes in tissues surrounding nonmelanoma skin cancers. Finally, results of an organotypic raft culture study provided support for both the skin and the in vitro cervix results. These studies add to the growing body of evidence that optical spectroscopy, in this case Raman spectral markers, can be used to detect subtle temporal and spatial effects in tissue near cancerous sites that go otherwise undetected by conventional histology.

  9. Prospects for in vivo Raman spectroscopy

    International Nuclear Information System (INIS)

    Hanlon, E.B.; Manoharan, R.; Koo, T.-W.; Shafer, K.E.; Motz, J.T.; Fitzmaurice, M.; Kramer, J.R.; Itzkan, I.; Dasari, R.R.; Feld, M.S.

    2000-01-01

    Raman spectroscopy is a potentially important clinical tool for real-time diagnosis of disease and in situ evaluation of living tissue. The purpose of this article is to review the biological and physical basis of Raman spectroscopy of tissue, to assess the current status of the field and to explore future directions. The principles of Raman spectroscopy and the molecular level information it provides are explained. An overview of the evolution of Raman spectroscopic techniques in biology and medicine, from early investigations using visible laser excitation to present-day technology based on near-infrared laser excitation and charge-coupled device array detection, is presented. State-of-the-art Raman spectrometer systems for research laboratory and clinical settings are described. Modern methods of multivariate spectral analysis for extracting diagnostic, chemical and morphological information are reviewed. Several in-depth applications are presented to illustrate the methods of collecting, processing and analysing data, as well as the range of medical applications under study. Finally, the issues to be addressed in implementing Raman spectroscopy in various clinical applications, as well as some long-term directions for future study, are discussed. (author)

  10. Fluorescence suppression using wavelength modulated Raman spectroscopy in fiber-probe-based tissue analysis.

    Science.gov (United States)

    Praveen, Bavishna B; Ashok, Praveen C; Mazilu, Michael; Riches, Andrew; Herrington, Simon; Dholakia, Kishan

    2012-07-01

    In the field of biomedical optics, Raman spectroscopy is a powerful tool for probing the chemical composition of biological samples. In particular, fiber Raman probes play a crucial role for in vivo and ex vivo tissue analysis. However, the high-fluorescence background typically contributed by the auto fluorescence from both a tissue sample and the fiber-probe interferes strongly with the relatively weak Raman signal. Here we demonstrate the implementation of wavelength-modulated Raman spectroscopy (WMRS) to suppress the fluorescence background while analyzing tissues using fiber Raman probes. We have observed a significant signal-to-noise ratio enhancement in the Raman bands of bone tissue, which have a relatively high fluorescence background. Implementation of WMRS in fiber-probe-based bone tissue study yielded usable Raman spectra in a relatively short acquisition time (∼30  s), notably without any special sample preparation stage. Finally, we have validated its capability to suppress fluorescence on other tissue samples such as adipose tissue derived from four different species.

  11. Fifth-order Raman spectroscopy of liquid benzene : Experiment and theory

    NARCIS (Netherlands)

    Milne, C. J.; Li, Y. L.; Jansen, T. L. C.; Huang, L.; Miller, R. J. D.

    2006-01-01

    The heterodyned fifth-order Raman response of liquid benzene has been measured and characterized by exploiting the passive-phase stabilization of diffractive optics. This result builds on our previous work with liquid carbon disulfide and extends the spectroscopy to a new liquid for the first time.

  12. Plasmonic nanostructures for surface-enhanced Raman spectroscopy

    Science.gov (United States)

    Jiang, Ruiqian

    In the last three decades, a large number of different plasmonic nanostructures have attracted much attention due to their unique optical properties. Those plasmonic nanostructures include nanoparticles, nanoholes and metal nanovoids. They have been widely utilized in optical devices and sensors. When the plasmonic nanostructures interact with the electromagnetic wave and their surface plasmon frequency match with the light frequency, the electrons in plasmonic nanostructures will resonate with the same oscillation as incident light. In this case, the plasmonic nanostructures can absorb light and enhance the light scattering. Therefore, the plasmonic nanostructures can be used as substrate for surface-enhanced Raman spectroscopy to enhance the Raman signal. Using plasmonic nanostructures can significantly enhance Raman scattering of molecules with very low concentrations. In this thesis, two different plasmonic nanostructures Ag dendrites and Au/Ag core-shell nanoparticles are investigated. Simple methods were used to produce these two plasmonic nanostructures. Then, their applications in surface enhanced Raman scattering have been explored. Ag dendrites were produced by galvanic replacement reaction, which was conducted using Ag nitrate aqueous solution and copper metal. Metal copper layer was deposited at the bottom side of anodic aluminum oxide (AAO) membrane. Silver wires formed inside AAO channels connected Ag nitrate on the top of AAO membrane and copper layer at the bottom side of AAO. Silver dendrites were formed on the top side of AAO. The second plasmonic nanostructure is Au/Ag core-shell nanoparticles. They were fabricated by electroless plating (galvanic replacement) reaction in a silver plating solution. First, electrochemically evolved hydrogen bubbles were used as template through electroless deposition to produce hollow Au nanoparticles. Then, the Au nanoparticles were coated with Cu shells in a Cu plating solution. In the following step, a Ag

  13. Real time near-infrared Raman spectroscopy for the diagnosis of nasopharyngeal cancer.

    Science.gov (United States)

    Ming, Lim Chwee; Gangodu, Nagaraja Rao; Loh, Thomas; Zheng, Wei; Wang, Jianfeng; Lin, Kan; Zhiwei, Huang

    2017-07-25

    Near-infrared (NIR) Raman spectroscopy has been investigated as a tool to differentiate nasopharyngeal cancer (NPC) from normal nasopharyngeal tissue in an ex-vivo setting. Recently, we have miniaturized the fiber-optic Raman probe to investigate its utility in real time in-vivo surveillance of NPC patients. A posterior probability model using partial linear square (PLS) mathematical technique was constructed to verify the sensitivity and specificity of Raman spectroscopy in diagnosing NPC from post-irradiated and normal tissue using a diagnostic algorithm from three significant latent variables. NIR-Raman signals of 135 sites were measured from 79 patients with either newly diagnosed NPC (N = 12), post irradiated nasopharynx (N = 37) and normal nasopharynx (N = 30). The mean Raman spectra peaks identified differences at several Raman peaks at 853 cm-1, 940 cm-1, 1078 cm-1, 1335 cm-1, 1554 cm-1, 2885 cm-1 and 2940 cm-1 in the three different nasopharyngeal conditions. The sensitivity and specificity of distinguishing Raman signatures among normal nasopharynx versus NPC and post-irradiated nasopharynx versus NPC were 91% and 95%; and 77% and 96% respectively. Real time near-infrared Raman spectroscopy has a high specificity in distinguishing malignant from normal nasopharyngeal tissue in vivo, and may be investigated as a novel non-invasive surveillance tool in patients with nasopharyngeal cancer.

  14. Femtosecond time-resolved optical and Raman spectroscopy of photoinduced spin crossover: temporal resolution of low-to-high spin optical switching.

    Science.gov (United States)

    Smeigh, Amanda L; Creelman, Mark; Mathies, Richard A; McCusker, James K

    2008-10-29

    A combination of femtosecond electronic absorption and stimulated Raman spectroscopies has been employed to determine the kinetics associated with low-spin to high-spin conversion following charge-transfer excitation of a FeII spin-crossover system in solution. A time constant of tau = 190 +/- 50 fs for the formation of the 5T2 ligand-field state was assigned based on the establishment of two isosbestic points in the ultraviolet in conjunction with changes in ligand stretching frequencies and Raman scattering amplitudes; additional dynamics observed in both the electronic and vibrational spectra further indicate that vibrational relaxation in the high-spin state occurs with a time constant of ca. 10 ps. The results set an important precedent for extremely rapid, formally forbidden (DeltaS = 2) nonradiative relaxation as well as defining the time scale for intramolecular optical switching between two electronic states possessing vastly different spectroscopic, geometric, and magnetic properties.

  15. Raman spectroscopy as an advanced structural nanoprobe for conjugated molecular semiconductors

    International Nuclear Information System (INIS)

    Wood, Sebastian; Hollis, Joseph Razzell; Kim, Ji-Seon

    2017-01-01

    Raman spectroscopy has emerged as a powerful and important characterisation tool for probing molecular semiconducting materials. The useful optoelectronic properties of these materials arise from the delocalised π -electron density in the conjugated core of the molecule, which also results in large Raman scattering cross-sections and a strong coupling between its electronic states and vibrational modes. For this reason, Raman spectroscopy offers a unique insight into the properties of molecular semiconductors, including: chemical structure, molecular conformation, molecular orientation, and fundamental photo- and electro-chemical processes—all of which are critically important to the performance of a wide range of optical and electronic organic semiconductor devices. Experimentally, Raman spectroscopy is non-intrusive, non-destructive, and requires no special sample preparation, and so is suitable for a wide range of in situ measurements, which are particularly relevant to issues of thermal and photochemical stability. Here we review the development of the family of Raman spectroscopic techniques, which have been applied to the study of conjugated molecular semiconductors. We consider the suitability of each technique for particular circumstances, and the unique insights it can offer, with a particular focus on the significance of these measurements for the continuing development of stable, high performance organic electronic devices. (topical review)

  16. Femtosecond Broadband Stimulated Raman Spectroscopy

    International Nuclear Information System (INIS)

    Lee, Soo-Y; Yoon, Sagwoon; Mathies, Richard A

    2006-01-01

    Femtosecond broadband stimulated Raman spectroscopy (FSRS) is a new technique where a narrow bandwidth picosecond Raman pump pulse and a red-shifted broadband femtosecond Stokes probe pulse (with or without time delay between the pulses) act on a sample to produce a high resolution Raman gain spectrum with high efficiency and speed, free from fluorescence background interference. It can reveal vibrational structural information and dynamics of stationary or transient states. Here, the quantum picture for femtosecond broadband stimulated Raman spectroscopy (FSRS) is used to develop the semiclassical coupled wave theory of the phenomenon and to derive an expression for the measurable Raman gain in FSRS. The semiclassical theory is applied to study the dependence of lineshapes in FSRS on the pump-probe time delay and to deduce vibrational dephasing times in cyclohexane in the ground state

  17. Raman spectroscopy in graphene

    International Nuclear Information System (INIS)

    Malard, L.M.; Pimenta, M.A.; Dresselhaus, G.; Dresselhaus, M.S.

    2009-01-01

    Recent Raman scattering studies in different types of graphene samples are reviewed here. We first discuss the first-order and the double resonance Raman scattering mechanisms in graphene, which give rise to the most prominent Raman features. The determination of the number of layers in few-layer graphene is discussed, giving special emphasis to the possibility of using Raman spectroscopy to distinguish a monolayer from few-layer graphene stacked in the Bernal (AB) configuration. Different types of graphene samples produced both by exfoliation and using epitaxial methods are described and their Raman spectra are compared with those of 3D crystalline graphite and turbostratic graphite, in which the layers are stacked with rotational disorder. We show that Resonance Raman studies, where the energy of the excitation laser line can be tuned continuously, can be used to probe electrons and phonons near the Dirac point of graphene and, in particular allowing a determination to be made of the tight-binding parameters for bilayer graphene. The special process of electron-phonon interaction that renormalizes the phonon energy giving rise to the Kohn anomaly is discussed, and is illustrated by gated experiments where the position of the Fermi level can be changed experimentally. Finally, we discuss the ability of distinguishing armchair and zig-zag edges by Raman spectroscopy and studies in graphene nanoribbons in which the Raman signal is enhanced due to resonance with singularities in the density of electronic states.

  18. Tip-enhanced near-field Raman spectroscopy with a scanning tunneling microscope and side-illumination optics.

    Science.gov (United States)

    Yi, K J; He, X N; Zhou, Y S; Xiong, W; Lu, Y F

    2008-07-01

    Conventional Raman spectroscopy (RS) suffers from low spatial resolution and low detection sensitivity due to the optical diffraction limit and small interaction cross sections. It has been reported that a highly localized and significantly enhanced electromagnetic field could be generated in the proximity of a metallic tip illuminated by a laser beam. In this study, a tip-enhanced RS system was developed to both improve the resolution and enhance the detection sensitivity using the tip-enhanced near-field effects. This instrument, by combining RS with a scanning tunneling microscope and side-illumination optics, demonstrated significant enhancement on both optical sensitivity and spatial resolution using either silver (Ag)-coated tungsten (W) tips or gold (Au) tips. The sensitivity improvement was verified by observing the enhancement effects on silicon (Si) substrates. Lateral resolution was verified to be below 100 nm by mapping Ag nanostructures. By deploying the depolarization technique, an apparent enhancement of 175% on Si substrates was achieved. Furthermore, the developed instrument features fast and reliable optical alignment, versatile sample adaptability, and effective suppression of far-field signals.

  19. Remote Raman microimaging using an AOTF and a spatially coherent microfiber optical probe

    International Nuclear Information System (INIS)

    Trey Skinner, H.; Cooney, T.F.; Sharma, S.K.; Angel, S.M.

    1996-01-01

    A fiber-optic Raman microimaging probe is described that is suitable for acquiring high-spatial-resolution Raman images in sampling situations with no clear line of sight. A high-power near-infrared diode laser combined with an acousto-optic tunable filter and a spatially coherent optical fiber bundle allow fluorescence-free Raman images of remotely located samples to be acquired at distances up to several meters. The feasibility of this technique is demonstrated with Raman images of (1) a pellet containing a mixture of a highly scattering sample, bis-methylstyrylbenzene (BMSB), KCl, and graphite, and (2) a partially graphitized diamond. These images clearly show phase boundaries over an area of approximately 0.1 mm 2 with ∼4-μm resolution. copyright 1996 Society for Applied Spectroscopy

  20. Optical diagnostic of breast cancer using Raman, polarimetric and fluorescence spectroscopy

    Science.gov (United States)

    Anwar, Shahzad; Firdous, Shamaraz; Rehman, Aziz-ul; Nawaz, Muhammed

    2015-04-01

    We presented the optical diagnostic of normal and cancerous human breast tissues using Raman, polarimetric and fluorescence spectroscopic techniques. Breast cancer is the second leading cause of cancer death among women worldwide. Optical diagnostics of cancer offered early intervention and the greatest chance of cure. Spectroscopic data were collected from freshly excised surgical specimens of normal tissues with Raman bands at 800, 1171 and 1530 cm-1 arising mainly by lipids, nucleic acids, proteins, carbohydrates and amino acids. For breast cancer, Raman bands are observed at 1070, 1211, 1495, 1583 and 1650 cm-1. Results demonstrate that the spectra of normal tissue are dominated by lipids and amino acids. Polarization decomposition of the Mueller matrix and confocal microscopic fluorescence provides detailed description of cancerous tissue and distinguishes between the normal and malignant one. Based on these findings, we successfully differentiate normal and malignant breast tissues at an early stage of disease. There is a need to develop a new tool for noninvasive, real-time diagnosis of tissue abnormalities and a test procedure for detecting breast cancer at an early stage.

  1. Raman spectroscopy in pharmaceutical product design

    DEFF Research Database (Denmark)

    Paudel, Amrit; Raijada, Dhara; Rantanen, Jukka

    2015-01-01

    Almost 100 years after the discovery of the Raman scattering phenomenon, related analytical techniques have emerged as important tools in biomedical sciences. Raman spectroscopy and microscopy are frontier, non-invasive analytical techniques amenable for diverse biomedical areas, ranging from...... molecular-based drug discovery, design of innovative drug delivery systems and quality control of finished products. This review presents concise accounts of various conventional and emerging Raman instrumentations including associated hyphenated tools of pharmaceutical interest. Moreover, relevant...... application cases of Raman spectroscopy in early and late phase pharmaceutical development, process analysis and micro-structural analysis of drug delivery systems are introduced. Finally, potential areas of future advancement and application of Raman spectroscopic techniques are discussed....

  2. In-vivo spinal nerve sensing in MISS using Raman spectroscopy

    Science.gov (United States)

    Chen, Hao; Xu, Weiliang; Broderick, Neil

    2016-04-01

    In modern Minimally Invasive Spine Surgery (MISS), lack of visualization and haptic feedback information are the main obstacles. The spinal cord is a part of the central nervous system (CNS). It is a continuation of the brain stem, carries motor and sensory messages between CNS and the rest of body, and mediates numerous spinal reflexes. Spinal cord and spinal nerves are of great importance but vulnerable, once injured it may result in severe consequences to patients, e.g. paralysis. Raman Spectroscopy has been proved to be an effective and powerful tool in biological and biomedical applications as it works in a rapid, non-invasive and label-free way. It can provide molecular vibrational features of tissue samples and reflect content and proportion of protein, nucleic acids lipids etc. Due to the distinct chemical compositions spinal nerves have, we proposed that spinal nerves can be identified from other types of tissues by using Raman spectroscopy. Ex vivo experiments were first done on samples taken from swine backbones. Comparative spectral data of swine spinal cord, spinal nerves and adjacent tissues (i.e. membrane layer of the spinal cord, muscle, bone and fatty tissue) are obtained by a Raman micro-spectroscopic system and the peak assignment is done. Then the average spectra of all categories of samples are averaged and normalized to the same scale to see the difference against each other. The results verified the feasibility of spinal cord and spinal nerves identification by using Raman spectroscopy. Besides, a fiber-optic Raman sensing system including a miniature Raman sensor for future study is also introduced. This Raman sensor can be embedded into surgical tools for MISS.

  3. Dynamic population gratings in rare-earth-doped optical fibres

    Energy Technology Data Exchange (ETDEWEB)

    Stepanov, Serguei [Optics Department, CICESE, km.107 carr. Tijuana-Ensenada, Ensenada, 22860, BC (Mexico)], E-mail: steps@cicese.mx

    2008-11-21

    Dynamic Bragg gratings can be recorded in rare-earth (e.g. Er, Yb) doped optical fibres by two counter-propagating mutually coherent laser waves via local saturation of the fibre optical absorption or gain (in optically pumped fibres). Typical recording cw light power needed for efficient grating formation is of sub-mW-mW scale which results in characteristic recording/erasure times of 10-0.1 ms. This review paper discusses fundamental aspects of the population grating formation, their basic properties, relating wave-mixing processes and also considers different applications of these dynamic gratings in single-frequency fibre lasers, tunable filters, optical fibre sensors and adaptive interferometry.

  4. Dynamic population gratings in rare-earth-doped optical fibres

    International Nuclear Information System (INIS)

    Stepanov, Serguei

    2008-01-01

    Dynamic Bragg gratings can be recorded in rare-earth (e.g. Er, Yb) doped optical fibres by two counter-propagating mutually coherent laser waves via local saturation of the fibre optical absorption or gain (in optically pumped fibres). Typical recording cw light power needed for efficient grating formation is of sub-mW-mW scale which results in characteristic recording/erasure times of 10-0.1 ms. This review paper discusses fundamental aspects of the population grating formation, their basic properties, relating wave-mixing processes and also considers different applications of these dynamic gratings in single-frequency fibre lasers, tunable filters, optical fibre sensors and adaptive interferometry.

  5. Optical Fibre Bundle

    CERN Multimedia

    These are sample fibre optic cables which are used for networking. Optical fibers are widely used in fiber-optic communications, where they permit transmission over longer distances and at higher bandwidths (data rates) than wire cables. Fibers are used instead of metal wires because signals travel along them with less loss and are also immune to electromagnetic interference. This is useful for somewhere like CERN where magnets with their highly powerful magnetic fields could pose a problem.

  6. Fibre optic communication key devices

    CERN Document Server

    Grote, Norbert

    2017-01-01

    The book gives an in-depth description of key devices of current and next generation fibre optic communication networks. Devices treated include semiconductor lasers, optical amplifiers, modulators, wavelength filters and other passives, detectors, all-optical switches, but relevant properties of optical fibres and network aspects are included as well. The presentations include the physical principles underlying the various devices, technologies used for their realization, typical performance characteristics and limitations, but development trends towards more advanced components are also illustrated. This new edition of a successful book was expanded and updated extensively. The new edition covers among others lasers for optical communication, optical switches, hybrid integration, monolithic integration and silicon photonics. The main focus is on Indium phosphide-based structures but silicon photonics is included as well. The book covers relevant principles, state-of-the-art implementations, status of curren...

  7. Microfluidic device for continuous single cells analysis via Raman spectroscopy enhanced by integrated plasmonic nanodimers

    KAUST Repository

    Perozziello, Gerardo

    2015-12-11

    In this work a Raman flow cytometer is presented. It consists of a microfluidic device that takes advantages of the basic principles of Raman spectroscopy and flow cytometry. The microfluidic device integrates calibrated microfluidic channels- where the cells can flow one-by-one -, allowing single cell Raman analysis. The microfluidic channel integrates plasmonic nanodimers in a fluidic trapping region. In this way it is possible to perform Enhanced Raman Spectroscopy on single cell. These allow a label-free analysis, providing information about the biochemical content of membrane and cytoplasm of the each cell. Experiments are performed on red blood cells (RBCs), peripheral blood lymphocytes (PBLs) and myelogenous leukemia tumor cells (K562). © 2015 Optical Society of America.

  8. Non-invasive blood glucose monitoring with Raman spectroscopy: prospects for device miniaturization

    International Nuclear Information System (INIS)

    Wróbel, M.S.

    2016-01-01

    The number of patients with diabetes has reached over 350 million, and still continues to increase. The need for regular blood glucose monitoring sparks the interest in the development of modern detection technologies. One of those methods, which allows for noninvasive measurements, is Raman spectroscopy. The ability of infrared light to penetrate deep into tissues allows for obtaining measurements through the skin without its perforation. This paper presents the limitations and possibilities of non-invasive blood glucose monitoring with Raman spectroscopy. Especially focusing on the possibilities for device miniaturization. Such device incorporates a Raman spectrometer, a fiber-optical probe, and a computing device (microcontroller, smartphone, etc.) which calculates the glucose concentration using specialized algorithms. Simplification of device design, as well as turbidity correction technique and a new proposed method of synchronized detection are described

  9. High-temperature polyimide coating for optical fibres

    Energy Technology Data Exchange (ETDEWEB)

    Semjonov, S L; Dianov, E M [Fiber Optics Research Center, Russian Academy of Sciences, Moscow (Russian Federation); Sapozhnikov, D A; Erin, D Yu; Zabegaeva, O N; Kushtavkina, I A; Vygodskii, Ya S [A.N. Nesmeyanov Institute of Organoelement Compounds, Russian Academy of Sciences, Moscow (Russian Federation); Nishchev, K N [N.P. Ogarev Mordovia State University, Saransk (Russian Federation)

    2015-04-30

    We present our first results on the fabrication of new, high-performance polyimide coatings. The key components of the coatings are polyimides containing various cardo and/or fluoroalkylene groups, which allows the coatings to retain their high-temperature stability and facilitates the storage of the starting polymer and the optical fibre coating process owing to the good solubility of such copolymers in many organic solvents. Annealing for 30 s, 1 h and 24 h at temperatures of 430, 350 and 300 °C, respectively, reduces the strength of optical fibres having such coating by no more than 10%. (optical fibres)

  10. OPTICAL FIBRES AND FIBREOPTIC SENSORS: Fibreoptic distributed temperature sensor with spectral filtration by directional fibre couplers

    Science.gov (United States)

    Kuznetsov, A. G.; Babin, Sergei A.; Shelemba, Ivan S.

    2009-11-01

    We demonstrate a Raman-based all-fibre temperature sensor utilising a pulsed erbium fibre laser. The sensor is made of a standard single-mode telecom fibre, SMF-28, and includes a number of directional couplers as band-pass filters. The temperature profile along a 7-km fibreoptic line is measured with an accuracy of 2oC and a spatial resolution of 10 m. In data processing, we take into account the difference in attenuation between the spectral components of the backscatter signal.

  11. Fibre Optic Communication Key Devices

    CERN Document Server

    Grote, Norbert

    2012-01-01

    The book gives an in-depth description of the key devices of current and next generation fibre optic communication networks. In particular, the book covers devices such as semiconductor lasers, optical amplifiers, modulators, wavelength filters, and detectors but the relevant properties of optical fibres as well. The presentations include the physical principles underlying the various devices, the technologies used for the realization of the different devices, typical performance characteristics and limitations, and development trends towards more advanced components are also illustrated. Thus the scope of the book spans relevant principles, state-of-the-art implementations, the status of current research and expected future components.

  12. Propagation of an optical discharge through optical fibres upon interference of modes

    International Nuclear Information System (INIS)

    Bufetov, I A; Frolov, A A; Shubin, A V; Likhachev, M E; Lavrishchev, S V; Dianov, E M

    2008-01-01

    The propagation of an optical discharge (OD) through optical fibres upon interference of LP 01 and LP 02 modes is studied. Under these conditions after the OD propagation through the fibre, the formation of an axially-symmetric group sequence of voids with a spatial period equal to that of mode interference (200-500 μm depending on the parameters of the fibre) is observed. The groups of voids are formed near the sections of the fibre with a minimal diameter of the intensity distribution of laser radiation. Large spaces between voids in the fibre have allowed us to measure accurately the difference Δn of refractive indices of the fibre core and cladding and distribution of dopants in different cross sections of the fibre after the OD propagation. A substantial increase in Δn (up to ten times) is observed. Approximately half this increase is caused by compression and densification of the fibre material after the propagation of the optical discharge. (interaction of laser radiation with matter. laser plasma)

  13. Combined experimental and theoretical study on the Raman and Raman optical activity signatures of pentamethylundecane diastereoisomers.

    Science.gov (United States)

    Drooghaag, Xavier; Marchand-Brynaert, Jacqueline; Champagne, Benoît; Liégeois, Vincent

    2010-09-16

    The synthesis and the separation of the four stereoisomers of 2,4,6,8,10-pentamethylundecane (PMU) are described together with their characterization by Raman spectroscopy. In parallel, theoretical calculations of the Raman and vibrational Raman optical activity (VROA) spectra are reported and analyzed in relation with the recorded spectra. A very good agreement is found between the experimental and theoretical spectra. The Raman spectra are also shown to be less affected by the change of configuration than the VROA spectra. Nevertheless, by studying the overlap between the theoretical Raman spectra, we show clear relationships between the spectral fingerprints and the structures displaying a mixture of the TGTGTGTG conformation of the (4R,6s,8S)-PMU (isotactic compound) with the TTTTTTTT conformation of the (4R,6r,8S)-PMU (syndiotactic compound). Then, the fingerprints of the VROA spectra of the five conformers of the (4R,8R)-PMU have been related to the fingerprints of the regular (TG)(N) isotactic compound as a function of the torsion angles. Since the (TT)(N) syndiotactic compound has no VROA signatures, the VROA spectroscopy is very sensitive to the helical structures, as demonstrated here.

  14. Thermal transport of carbon nanotubes and graphene under optical and electrical heating measured by Raman spectroscopy

    Science.gov (United States)

    Hsu, I.-Kai

    This thesis presents systematic studies of thermal transport in individual single walled carbon nanotubes (SWCNTs) and graphene by optical and electrical approaches using Raman spectroscopy. In the work presented from Chapter 2 to Chapter 6, individual suspended CNTs are preferentially measured in order to explore their intrinsic thermal properties. Moreover, the Raman thermometry is developed to detect the temperature of the carbon nanotube (CNT). A parabolic temperature profile is observed in the suspended region of the CNT while a heating laser scans across it, providing a direct evidence of diffusive thermal transport in an individual suspended CNT. Based on the curvature of the temperature profile, we can solve for the ratio of thermal contact resistance to the thermal resistance of the CNT, which spans the range from 0.02 to 17. The influence of thermal contact resistance on the thermal transport in an individual suspended CNT is also studied. The Raman thermometry is carried out in the center of a CNT, while its contact length is successively shortened by an atomic force microscope (AFM) tip cutting technique. By investigating the dependence of the CNT temperature on its thermal contact length, the temperature of a CNT is found to increase dramatically as the contact length is made shorter. This work reveals the importance of manipulating the CNT thermal contact length when adopting CNT as a thermal management material. In using a focused laser to induce heating in a suspended CNT, one open question that remains unanswered is how many of the incident photons are absorbed by the CNT of interest. To address this question, micro-fabricated platinum thermometers, together with micro-Raman spectroscopy are used to quantify the optical absorption of an individual CNT. The absorbed power in the CNT is equal to the power detected by two thermometers at the end of the CNT. Our result shows that the optical absorption lies in the range between 0.03 to 0.44%. In

  15. Characterization of oil-producing microalgae using Raman spectroscopy

    Czech Academy of Sciences Publication Activity Database

    Samek, Ota; Zemánek, Pavel; Jonáš, Alexandr; Telle, H.H.

    2011-01-01

    Roč. 8, č. 10 (2011), s. 701-709 ISSN 1612-2011 R&D Projects: GA MŠk OC08034; GA MŠk ED0017/01/01; GA ČR GAP205/11/1687 Grant - others:EC(XE) PERG 06-GA-2009-256526 Institutional research plan: CEZ:AV0Z20650511 Keywords : Raman spectroscopy * algae * lipids * biofuel * iodine value * microorganisms Subject RIV: BH - Optics, Masers, Lasers Impact factor: 9.970, year: 2011

  16. Zeonex Microstructured Polymer Optical Fibre Bragg Grating Sensor

    DEFF Research Database (Denmark)

    Woyessa, Getinet; Fasano, Andrea; Markos, Christos

    2016-01-01

    We fabricated an endlessly single mode and humidity insensitive Zeonex microstructured polymer optical fibre (mPOF) for fibre Bragg grating (FBG) temperature and strain sensors. We inscribed and characterise FBGs in Zeonex mPOF for the first time.......We fabricated an endlessly single mode and humidity insensitive Zeonex microstructured polymer optical fibre (mPOF) for fibre Bragg grating (FBG) temperature and strain sensors. We inscribed and characterise FBGs in Zeonex mPOF for the first time....

  17. Characterization of Crystal Chirality in Amino Acids Using Low-Frequency Raman Spectroscopy.

    Science.gov (United States)

    Aviv, Hagit; Nemtsov, Irena; Mastai, Yitzhak; Tischler, Yaakov R

    2017-10-19

    We present a new method for differentiating racemic crystals from enantiopure crystals. Recently, developments in optical filters have enabled the facile use of Raman spectroscopy to detect low-frequency vibrational (LFV) modes. Here, for the first time, we use Raman spectroscopy to characterize the LFV modes for crystalline organic materials composed of chiral molecules. The LF-Raman spectra of racemic and enantiopure crystals exhibit a significant variation, which we attribute to different hydrogen-bond networks in the chiral crystal structures. Across a representative set of amino acids, we observed that when comparing racemic versus enantiopure crystals, the available LFV modes and their relative scattering intensity are strong functions of side chain polarity. Thus, LF-Raman can be used as a method that is complementary to the currently used methods for characterizing crystal chirality due to simpler, faster, and more sensitive measurements, along with the small sample size required, which is limited by the laser-beam diameter in the focus.

  18. In vivo Raman spectroscopy for biochemical monitoring of the human cervix throughout pregnancy.

    Science.gov (United States)

    O'Brien, Christine M; Vargis, Elizabeth; Rudin, Amy; Slaughter, James C; Thomas, Giju; Newton, J Michael; Reese, Jeff; Bennett, Kelly A; Mahadevan-Jansen, Anita

    2018-05-01

    The cervix must undergo significant biochemical remodeling to allow for successful parturition. This process is not fully understood, especially in instances of spontaneous preterm birth. In vivo Raman spectroscopy is an optical technique that can be used to investigate the biochemical composition of tissue longitudinally and noninvasively in human beings, and has been utilized to measure physiology and disease states in a variety of medical applications. The purpose of this study is to measure in vivo Raman spectra of the cervix throughout pregnancy in women, and to identify biochemical markers that change with the preparation for delivery and postpartum repair. In all, 68 healthy pregnant women were recruited. Raman spectra were measured from the cervix of each patient monthly in the first and second trimesters, weekly in the third trimester, and at the 6-week postpartum visit. Raman spectra were measured using an in vivo Raman system with an optical fiber probe to excite the tissue with 785 nm light. A spectral model was developed to highlight spectral regions that undergo the most changes throughout pregnancy, which were subsequently used for identifying Raman peaks for further analysis. These peaks were analyzed longitudinally to determine if they underwent significant changes over the course of pregnancy (P Raman peaks indicative of extracellular matrix proteins (1248 and 1254 cm -1 ) significantly decreased (P Raman spectroscopy was successfully used to biochemically monitor cervical remodeling in pregnant women during prenatal visits. This foundational study has demonstrated sensitivity to known biochemical dynamics that occur during cervical remodeling, and identified patient variables that have significant effects on Raman spectra throughout pregnancy. Raman spectroscopy has the potential to improve our understanding of cervical maturation, and be used as a noninvasive preterm birth risk assessment tool to reduce the incidence, morbidity, and mortality

  19. Applications of Raman spectroscopy to gemology.

    Science.gov (United States)

    Bersani, Danilo; Lottici, Pier Paolo

    2010-08-01

    Being nondestructive and requiring short measurement times, a low amount of material, and no sample preparation, Raman spectroscopy is used for routine investigation in the study of gemstone inclusions and treatments and for the characterization of mounted gems. In this work, a review of the use of laboratory Raman and micro-Raman spectrometers and of portable Raman systems in the gemology field is given, focusing on gem identification and on the evaluation of the composition, provenance, and genesis of gems. Many examples are shown of the use of Raman spectroscopy as a tool for the identification of imitations, synthetic gems, and enhancement treatments in natural gemstones. Some recent developments are described, with particular attention being given to the semiprecious stone jade and to two important organic materials used in jewelry, i.e., pearls and corals.

  20. Influence of Culture Media on Microbial Fingerprints Using Raman Spectroscopy

    Czech Academy of Sciences Publication Activity Database

    Mlynariková, K.; Samek, Ota; Bernatová, Silvie; Růžička, F.; Ježek, Jan; Hároniková, A.; Šiler, Martin; Zemánek, Pavel; Holá, V.

    2015-01-01

    Roč. 15, č. 11 (2015), s. 29635-29647 ISSN 1424-8220 R&D Projects: GA MŠk ED0017/01/01; GA ČR(CZ) GA15-20645S; GA MŠk(CZ) LO1212 Institutional support: RVO:68081731 Keywords : Raman spectroscopy * bacteria * yeasts * culture media Subject RIV: BH - Optics, Masers, Lasers Impact factor: 2.033, year: 2015

  1. Mechanical reliability assessment of optical fibres in Radiation environments

    International Nuclear Information System (INIS)

    Van Uffelen, M.

    2006-01-01

    After more than two decades of intensive research and even some pioneering applications in space, optical fibres are now finding their way in various radiation environments, including both fission and future fusion nuclear-power plants, and high-energy physics experiments. For example, next to distributed monitoring applications of large nuclear infrastructures, fibre-optics can also be used for data communications during maintenance operations in the reactor vessel of the future ITER (International Thermonuclear Experimental Reactor), or for plasma diagnostics applications during operation of the reactor. These maintenance and diagnostics tasks require the optical fibres to withstand extremely high doses of radiation, up to MGy dose levels and temperatures above 150 degrees Celsius. The reliability assessment of fibre-optic systems for their qualification in nuclear environments often requires to meet stringent radiation tolerance levels. The majority of (usually accelerated) radiation assessments have so far focused on optical properties, such as wavelength-dependent radiation induced attenuation and radio-luminescence. The relation of these radiation effects with the fabrication methods and other environmental parameters has been the subject of years of research. Only a few results are available on the long-term evolution of mechanical properties of irradiated optical fibres. As a first step towards understanding the long-term reliability of fibre-optic composite cables in hostile radiation environments, we therefore performed dynamic fatigue tests with different commercial-grade optical fibres, both multi-mode and single-mode types

  2. Feasibility study of Raman spectroscopy for investigating the mouse retina in vivo

    Science.gov (United States)

    Manna, Suman K.; de Oliveira, Marcos A. S.; Zhang, Pengfei; Maleppat, Ratheesh K.; Chang, Che-Wei; Pugh, Edward N.; Chan, James W.; Zawadzki, Robert J.

    2018-02-01

    The use of Raman spectroscopy in biochemistry has been very successful, particularly because of its ability to identify elementary chemical species. However, application of this spectroscopic technique for in vivo assessment is often limited by autofluorescence, which make detection of Raman signatures difficult. The mouse eye has been used as an optical testbed for investigation of a variety of disease models and therapeutic pathways. Implementation of in vivo Raman spectroscopy in mice retina would be valuable but needs to be examined in context of the intrinsic auto-fluorescence artifact and potential light damage if high probing beam powers were used. To evaluate feasibility, a Raman system was built on a custom SLO/OCT platform allowing mouse positioning and morphological data acquisition along with the Raman signal from a desired retinal eccentricity. The performance of the Raman system was first assessed with a model eye consisting of polystyrene in the image plane (retina), using excitation wavelengths of 488 nm, 561 nm, and 785 nm to determine whether auto-fluorescence would be reduced at longer wavelengths. To improve the SNR, the combined system is featured with the optical compatibility for these three excitations such that their corresponding spectra from a typical region of interest can be acquired consecutively during single imaging run. Our results include emission spectra acquired over 10 s with excitation energy less than 160 J.s-1.m-2 for all wavelengths and corresponding retinal morphology for different mouse strains including WT, BALB/c and ABCA4-/-.

  3. A microring multimode laser using hollow polymer optical fibre

    Indian Academy of Sciences (India)

    Dye-doped optical fibre; fibre laser; microcavity; whispering gallery mode. ... Cylindrical microcavities with diameters 155, 340 and 615 m were fabricated from a dye-doped hollow polymer optical fibre preform. ... International School of Photonics, Cochin University of Science and Technology, Kochi 682 022, India ...

  4. OPTICAL FIBRES AND FIBREOPTIC SENSORS: Spun microstructured optical fibresfor Faraday effect current sensors

    Science.gov (United States)

    Chamorovsky, Yury K.; Starostin, Nikolay I.; Morshnev, Sergey K.; Gubin, Vladimir P.; Ryabko, Maksim V.; Sazonov, Aleksandr I.; Vorob'ev, Igor'L.

    2009-11-01

    We report a simple design of spun holey fibres and the first experimental study of the magneto-optical response of spun microstructured fibres with high built-in birefringence. Such fibres enable the Faraday-effect-induced phase shift to effectively accumulate in a magnetic field even at very small coiling diameters. For example, the magneto-optical sensitivity of a 5-mm-diameter fibre coil consisting of 100 turns is ~70% that of an ideal fibre, in good agreement with theoretical predictions.

  5. Infrared and Raman spectroscopy: principles and spectral interpretation

    National Research Council Canada - National Science Library

    Larkin, Peter

    2011-01-01

    "Infrared and Raman Spectroscopy: Principles and Spectral Interpretation explains the background, core principles and tests the readers understanding of the important techniques of Infrared and Raman Spectroscopy...

  6. Infrared Supercontinuum Generation in Optical Fibres

    DEFF Research Database (Denmark)

    Dupont, Sune Vestergaard Lund

    During my PhD studies I have worked with intense lasers and optical fibres. In our conceptual universe the colour of light (wavelength) does not depend on the material in which it propagates. At high intensities however, nonlinear effects change the behaviour of light and rise of new wavelength...... with laser-like intensity is obtained, which otherwise is impossible without the use of more complicated equipment. Until recently, supercontinuum covering the mid-infrared was not possible due to absorption in the silica glass optical fibres are made of. In our project infrared transparent materials...... such as ZBLAN and chalcogenide have been investigated. Using ZBLAN it has been possible to generated a supercontinuum stretching beyond 4200 nm. Supercontinuum generation requires knowledge about the physical properties of the optical fibre in which the pulse-broadening takes place. Consequently thorough...

  7. Chemical analysis of acoustically levitated drops by Raman spectroscopy.

    Science.gov (United States)

    Tuckermann, Rudolf; Puskar, Ljiljana; Zavabeti, Mahta; Sekine, Ryo; McNaughton, Don

    2009-07-01

    An experimental apparatus combining Raman spectroscopy with acoustic levitation, Raman acoustic levitation spectroscopy (RALS), is investigated in the field of physical and chemical analytics. Whereas acoustic levitation enables the contactless handling of microsized samples, Raman spectroscopy offers the advantage of a noninvasive method without complex sample preparation. After carrying out some systematic tests to probe the sensitivity of the technique to drop size, shape, and position, RALS has been successfully applied in monitoring sample dilution and preconcentration, evaporation, crystallization, an acid-base reaction, and analytes in a surface-enhanced Raman spectroscopy colloidal suspension.

  8. Optimally shaped narrowband picosecond pulses for femtosecond stimulated Raman spectroscopy.

    Science.gov (United States)

    Hoffman, David P; Valley, David; Ellis, Scott R; Creelman, Mark; Mathies, Richard A

    2013-09-09

    A comparison between a Fabry-Pérot etalon filter and a conventional grating filter for producing the picosecond (ps) Raman pump pulses for femtosecond stimulated Raman spectroscopy (FSRS) is presented. It is shown that for pulses of equal energy the etalon filter produces Raman signals twice as large as that of the grating filter while suppressing the electronically resonant background signal. The time asymmetric profile of the etalon-generated pulse is shown to be responsible for both of these observations. A theoretical discussion is presented which quantitatively supports this hypothesis. It is concluded that etalons are the ideal method for the generation of narrowband ps pulses for FSRS because of the optical simplicity, efficiency, improved FSRS intensity and reduced backgrounds.

  9. Fibre Bragg Grating and Long Period Grating Sensors in Polymer Optical Fibres

    DEFF Research Database (Denmark)

    Bundalo, Ivan-Lazar

    mechanisms in polymer fibres using a CO2 laser. One is etching and the other one is perturbation of the microstructured region. After inscription of LPGs, the concept of a biocompatible distributed medical endoscope is presented, where an all-plastic LPG based device is produced. A transducer pod is made...... of applications and pushing the limits. The first part of the work focuses on the fabrication of FBGs in polymer optical fibres. FBGs are a periodic perturbation of the refractive index of the optical fibre core which act as a wavelength specific reflector. The fibres used are made of Polymethyl methacrylate....... In this system a high power CO2 laser is used for the inscription. An LPG is also a periodic perturbation of the guided core mode in fibre, but unlike FBG which reflects the core mode, the LPG couples the core mode to a cladding mode outside the core. We have shown that the LPG grating can be formed through two...

  10. Quantitative Evaluation of Acetaminophen in Oral Solutions by Dispersive Raman Spectroscopy for Quality Control

    OpenAIRE

    Borio, Viviane G.; Vinha, RubensJr.; Nicolau, Renata A.; de Oliveira, Hueder Paulo M.; de Lima, Carlos J.; Silveira, LandulfoJr.

    2012-01-01

    This work used dispersive Raman spectroscopy to evaluate acetaminophen in commercially available formulations as an analytical methodology for quality control in the pharmaceutical industry. Raman spectra were collected using a near-infrared dispersive Raman spectrometer (830 nm, 50 mW, 20 s exposure time) coupled to a fiber optic probe. Solutions of acetaminophen diluted in excipient (70 to 120% of the commercial concentration of 200 mg/mL) were used to develop a calibration model based on p...

  11. Determining the Authenticity of Gemstones Using Raman Spectroscopy

    Science.gov (United States)

    Aponick, Aaron; Marchozzi, Emedio; Johnston, Cynthia R.; Wigal, Carl T.

    1998-04-01

    The benefits of laser spectroscopy in the undergraduate curriculum have been the focus of several recent articles in this journal. Raman spectroscopy has been of particular interest since the similarities of Raman to conventional infrared spectroscopy make the interpretation of spectral data well within undergraduate comprehension. In addition, the accessibility to this technology is now within the reach of most undergraduate institutions. This paper reports the development of an experiment using Raman spectroscopy which determines the authenticity of both diamonds and pearls. The resulting spectra provide an introduction to vibrational spectroscopy and can be used in a variety of laboratory courses ranging from introductory chemistry to instrumental analysis.

  12. Synchrotron radiation resonance Raman spectroscopy (SR3S)

    International Nuclear Information System (INIS)

    Hester, R.E.

    1979-01-01

    The use of normal Raman spectroscopy and resonance Raman spectroscopy to study the structure of molecular species and the nature of their chemical bonds is discussed. The availability of a fully tunable radiation source (the Synchrotron Radiation Source) extending into the ultraviolet raises the possibility of using synchrotron radiation resonance Raman spectroscopy as a sensitive and specific analytical probe. The pulsed nature of the SRS beam may be exploited for time-resolved resonance Raman spectroscopy and its high degree of polarization could be very helpful in the interpretation of spectra. The possibilities are considered under the headings: intensity requirements and comparison with other sources; some applications (e.g. structure of proteins; study of iron-porphyrin unit; study of chlorophylls). (U.K.)

  13. Development of Femtosecond Stimulated Raman Spectroscopy: Stimulated Raman Gain via Elimination of Cross Phase Modulation

    International Nuclear Information System (INIS)

    Jin, Seung Min; Lee, Young Jong; Yu, Jong Wan; Kim, Seong Keun

    2004-01-01

    We have developed a new femtosecond probe technique by using stimulated Raman spectroscopy. The cross phase modulation in femtosecond time scale associated with off-resonant interaction was shown to be eliminated by integrating the transient gain/loss signal over the time delay between the Raman pump pulse and the continuum pulse. The stimulated Raman gain of neat cyclohexane was obtained to demonstrate the feasibility of the technique. Spectral and temporal widths of stimulated Raman spectra were controlled by using a narrow band pass filter. Femtosecond stimulated Raman spectroscopy was proposed as a highly useful probe in time-resolved vibrational spectroscopy

  14. Optical diagnostic of hepatitis B (HBV) and C (HCV) from human blood serum using Raman spectroscopy

    International Nuclear Information System (INIS)

    Anwar, Shahzad; Firdous, Shamaraz

    2015-01-01

    Hepatitis is the second most common disease worldwide with half of the cases arising in the developing world. The mortality associated with hepatitis B and C can be reduced if the disease is detected at the early stages of development. The aim of this study was to investigate the potential of Raman spectroscopy as a diagnostic tool to detect biochemical changes accompanying hepatitis progression. Raman spectra were acquired from 20 individuals with six hepatitis B infected patients, six hepatitis C infected patients and eight healthy patients in order to gain an insight into the determination of biochemical changes for early diagnostic. The human blood serum was examined at a 532 nm excitation laser source. Raman characteristic peaks were observed in normal sera at 1006, 1157 and 1513 cm −1 , while in the case of hepatitis B and C these peaks were found to be blue shifted with decreased intensity. New Raman peaks appeared in HBV and HCV infected sera at 1194, 1302, 844, 905, 1065 and 1303 cm −1 respectively. A Mat lab subroutine and frequency domain filter program is developed and applied to signal processing of Raman scattering data. The algorithms have been successfully applied to remove the signal noise found in experimental scattering signals. The results show that Raman spectroscopy displays a high sensitivity to biochemical changes in blood sera during disease progression resulting in exceptional prediction accuracy when discriminating between normal and malignant. Raman spectroscopy shows enormous clinical potential as a rapid non-invasive diagnostic tool for hepatitis and other infectious diseases. (letter)

  15. Optical diagnostic of hepatitis B (HBV) and C (HCV) from human blood serum using Raman spectroscopy

    Science.gov (United States)

    Anwar, Shahzad; Firdous, Shamaraz

    2015-06-01

    Hepatitis is the second most common disease worldwide with half of the cases arising in the developing world. The mortality associated with hepatitis B and C can be reduced if the disease is detected at the early stages of development. The aim of this study was to investigate the potential of Raman spectroscopy as a diagnostic tool to detect biochemical changes accompanying hepatitis progression. Raman spectra were acquired from 20 individuals with six hepatitis B infected patients, six hepatitis C infected patients and eight healthy patients in order to gain an insight into the determination of biochemical changes for early diagnostic. The human blood serum was examined at a 532 nm excitation laser source. Raman characteristic peaks were observed in normal sera at 1006, 1157 and 1513 cm-1, while in the case of hepatitis B and C these peaks were found to be blue shifted with decreased intensity. New Raman peaks appeared in HBV and HCV infected sera at 1194, 1302, 844, 905, 1065 and 1303 cm-1 respectively. A Mat lab subroutine and frequency domain filter program is developed and applied to signal processing of Raman scattering data. The algorithms have been successfully applied to remove the signal noise found in experimental scattering signals. The results show that Raman spectroscopy displays a high sensitivity to biochemical changes in blood sera during disease progression resulting in exceptional prediction accuracy when discriminating between normal and malignant. Raman spectroscopy shows enormous clinical potential as a rapid non-invasive diagnostic tool for hepatitis and other infectious diseases.

  16. A fibre optic oxygen sensor for monitoring of human breathing

    Science.gov (United States)

    Chen, Rongsheng; Farmery, Andrew D.; Chen, Rui; Hahn, Clive E. W.

    2011-11-01

    A reliable and cost effective fibre optic oxygen sensor for monitoring of human breathing has been developed using a normal 200μm silica core/silica cladding optical fibre and a polymer sensing matrix. The fibre optic oxygen sensor is based on the fluorescence quenching of a fluorophore by oxygen. The sensing matrix, containing immobilized Pt(II) complexes, was coated at the end of the silica core/silica cladding optical fibre. The sensitivity and time response of the sensor were evaluated using the method of luminescence lifetime measurement. The polymer substrate influence on the time response of the sensor was improved by using a fibre taper design, and the response time of the optimized sensor was less than 200ms. This silica fibre based optic oxygen sensor is suitable for monitoring of patient breathing in intensive care unit in terms of safety and low cost.

  17. Design of dual-mode optical fibres for the FTTH applications

    Science.gov (United States)

    Chen, Ming-Yang; Li, Yu-Rong; Zhang, Yin; Zhu, Yuan-Feng; Zhang, Yong-Kang; Zhou, Jun

    2011-01-01

    We present in this article a proposal and design for dual-mode optical fibres for fibre-to-the-home applications. High-order modes in the fibre can be effectively suppressed by the connection of the fibre with standard single-mode optical fibres at the two ends of the fibre. The alignment tolerance at the splicing process is presented. In particular, a low bending loss operation with low splice loss is demonstrated using the proposed technique.

  18. Design of dual-mode optical fibres for the FTTH applications

    International Nuclear Information System (INIS)

    Chen, Ming-Yang; Li, Yu-Rong; Zhang, Yin; Zhu, Yuan-Feng; Zhang, Yong-Kang; Zhou, Jun

    2011-01-01

    We present in this article a proposal and design for dual-mode optical fibres for fibre-to-the-home applications. High-order modes in the fibre can be effectively suppressed by the connection of the fibre with standard single-mode optical fibres at the two ends of the fibre. The alignment tolerance at the splicing process is presented. In particular, a low bending loss operation with low splice loss is demonstrated using the proposed technique

  19. Raman spectroscopy of bio fluids: an exploratory study for oral cancer detection

    Science.gov (United States)

    Brindha, Elumalai; Rajasekaran, Ramu; Aruna, Prakasarao; Koteeswaran, Dornadula; Ganesan, Singaravelu

    2016-03-01

    ion for various disease diagnosis including cancers. Oral cancer is one of the most common cancers in India and it accounts for one third of the global oral cancer burden. Raman spectroscopy of tissues has gained much attention in the diagnostic oncology, as it provides unique spectral signature corresponding to metabolic alterations under different pathological conditions and micro-environment. Based on these, several studies have been reported on the use of Raman spectroscopy in the discrimination of diseased conditions from their normal counterpart at cellular and tissue level but only limited studies were available on bio-fluids. Recently, optical characterization of bio-fluids has also geared up for biomarker identification in the disease diagnosis. In this context, an attempt was made to study the metabolic variations in the blood, urine and saliva of oral cancer patients and normal subjects using Raman spectroscopy. Principal Component based Linear Discriminant Analysis (PC-LDA) followed by Leave-One-Out Cross-Validation (LOOCV) was employed to find the statistical significance of the present technique in discriminating the malignant conditions from normal subjects.

  20. Extreme Spectroscopy: In situ nuclear materials behavior from optical data

    Energy Technology Data Exchange (ETDEWEB)

    Guimbretiere, G.; Canizares, A.; Raimboux, N.; Omnee, R.; Duval, F.; Ammar, M.R.; Simon, P. [CNRS - UPR3079 CEMHTI, Universite d' Orleans, 45071Orleans cedex 2 (France); Desgranges, L.; Mohun, R. [CEA, DEN, DEC, F-13108 Saint-Paul-Lez-Durance (France); Jegou, C.; Magnin, M. [CEA/DTCD/SECM/LMPA, Marcoule 30207 Bagnols Sur Ceze (France); Clavier, N.; Dacheux, N. [ICSM-UMR5257 CEA/CNRS/UM2/ENSCM, Marcoule, BP17171, 30207 Bagnols sur Ceze (France)

    2015-07-01

    In the nuclear industry, materials are regularly exposed to high temperature or/and irradiation and a better knowledge and understanding of their behavior under such extreme conditions is a key-point for improvements and further developments. Nowadays, Raman spectroscopy begins to be well known as a promising technique in the post mortem and remote characterization of nuclear materials exposed to extreme conditions. On this topic, at ANIMMA 2013 conference, we have presented some results about its implementation in the study of model or real nuclear fuel. However, the strength of Raman spectroscopy as in situ characterization tool is mainly its ability to be implemented remotely through optical fibers. Aware of this, implementation of other optical techniques can be considered in order to gain information not only on the structural dynamics of materials but also on the electronic charge carrier populations. In this paper, we propose to present our last advances in Raman characterization of nuclear materials and enlarge to the in situ use of complementary optical spectroscopies. Emphasis will be made on the information that can be gained to the behavior of the model fuel depleted UO{sub 2} under extreme conditions of high temperature and ionic irradiation: - In Situ Raman identification of the radiolysis alteration products of UO{sub 2} in contact with water under ionic irradiation. - In Situ Raman recording of the damaged dynamic of UO{sub 2} under inert atmosphere. - In Situ Raman and photo-luminescence study of virgin and damaged UO2 at high temperature. - In Situ study of electronic charge carriers' behavior in U{sub x}Th{sub 1-x}O{sub 2} solid solutions by mean of Iono- and Thermo- luminescence under and post- ionic irradiation. (authors)

  1. Detection of biologically active diterpenoic acids by Raman Spectroscopy

    DEFF Research Database (Denmark)

    Talian, Ivan; Orinak, Andrej; Efremov, Evtim V.

    2010-01-01

    Three poorly detectable, biologically active diterpenoic acids, kaurenoic, abietic, and gibberellic acid, were studied by using different modes of Raman spectroscopy. Because of their structural similarities, in the absence of strongly polarizable groups, conventional Raman spectroscopy is not su......Three poorly detectable, biologically active diterpenoic acids, kaurenoic, abietic, and gibberellic acid, were studied by using different modes of Raman spectroscopy. Because of their structural similarities, in the absence of strongly polarizable groups, conventional Raman spectroscopy...... few enhanced Raman lines. SERS spectra with 514-nm excitation with Ag colloids were also relatively weak. The best SERS spectrawere obtained with 785-nm excitation on a novel nanostructured substrate, 'black silicon' coated with a 400-nm gold layer. The spectra showed clear differences...

  2. France's State of the Art Distributed Optical Fibre Sensors Qualified for the Monitoring of the French Underground Repository for High Level and Intermediate Level Long Lived Radioactive Wastes.

    Science.gov (United States)

    Delepine-Lesoille, Sylvie; Girard, Sylvain; Landolt, Marcel; Bertrand, Johan; Planes, Isabelle; Boukenter, Aziz; Marin, Emmanuel; Humbert, Georges; Leparmentier, Stéphanie; Auguste, Jean-Louis; Ouerdane, Youcef

    2017-06-13

    This paper presents the state of the art distributed sensing systems, based on optical fibres, developed and qualified for the French Cigéo project, the underground repository for high level and intermediate level long-lived radioactive wastes. Four main parameters, namely strain, temperature, radiation and hydrogen concentration are currently investigated by optical fibre sensors, as well as the tolerances of selected technologies to the unique constraints of the Cigéo's severe environment. Using fluorine-doped silica optical fibre surrounded by a carbon layer and polyimide coating, it is possible to exploit its Raman, Brillouin and Rayleigh scattering signatures to achieve the distributed sensing of the temperature and the strain inside the repository cells of radioactive wastes. Regarding the dose measurement, promising solutions are proposed based on Radiation Induced Attenuation (RIA) responses of sensitive fibres such as the P-doped ones. While for hydrogen measurements, the potential of specialty optical fibres with Pd particles embedded in their silica matrix is currently studied for this gas monitoring through its impact on the fibre Brillouin signature evolution.

  3. Fibre-optic laser-assisted infrared tumour diagnostics (FLAIR)

    Science.gov (United States)

    Bindig, U.; Müller, G.

    2005-08-01

    Laser based fibre-optic surgery procedures are commonly used in minimal invasive surgery. Despite the development of precise and efficient laser systems there are also innovative attempts in the field of bio-medical diagnostics. As a direct result of the tissue's optical properties most applications are focused on the visible wavelength range of the spectrum. The extension of the spectrum up to the mid-infrared (IR) region will offer a broad range of possibilities for novel strategies with a view to non-invasive diagnostics in medicine. We describe a method to detect differences between diseased and normal tissues, which involve Fourier transform IR microspectroscopy and fibre-optics methods. Regions of interest on 10 µm thin tissue sections were mapped using an IR microscope in transmission mode. After IR-mapping, the samples were analysed using standard pathological techniques. Quadratic discriminant and correlation analyses were applied to the IR maps obtained allowing differentiation between cancerous and normal tissue. The use of optical fibres, transparent in the mid-IR, allowed measurements to be made in the attenuated total reflectance (ATR)-mode at a remote location. The IR sensor is in contact with the sample that shows characteristic absorption lines. The total transmission of the fibre and the sample will decrease at these lines. This method can be used to determine the absorption of a sample in a non-destructive manner. In this paper we report on our efforts to develop an IR fibre-optic sensor for tissue identification as well as to differentiate between malignant and healthy tissue in vivo. We also describe the technical design of the laboratory set-up and the results of developments made. Silver halide fibres and a special sensor tip were used for the ATR measurements on tissue specimens. The results indicate that fibre-optic IR spectrometry will be a useful tool for bio-diagnostics.

  4. Fibre-optic laser-assisted infrared tumour diagnostics (FLAIR)

    International Nuclear Information System (INIS)

    Bindig, U; Mueller, G

    2005-01-01

    Laser based fibre-optic surgery procedures are commonly used in minimal invasive surgery. Despite the development of precise and efficient laser systems there are also innovative attempts in the field of bio-medical diagnostics. As a direct result of the tissue's optical properties most applications are focused on the visible wavelength range of the spectrum. The extension of the spectrum up to the mid-infrared (IR) region will offer a broad range of possibilities for novel strategies with a view to non-invasive diagnostics in medicine. We describe a method to detect differences between diseased and normal tissues, which involve Fourier transform IR microspectroscopy and fibre-optics methods. Regions of interest on 10 μm thin tissue sections were mapped using an IR microscope in transmission mode. After IR-mapping, the samples were analysed using standard pathological techniques. Quadratic discriminant and correlation analyses were applied to the IR maps obtained allowing differentiation between cancerous and normal tissue. The use of optical fibres, transparent in the mid-IR, allowed measurements to be made in the attenuated total reflectance (ATR)-mode at a remote location. The IR sensor is in contact with the sample that shows characteristic absorption lines. The total transmission of the fibre and the sample will decrease at these lines. This method can be used to determine the absorption of a sample in a non-destructive manner. In this paper we report on our efforts to develop an IR fibre-optic sensor for tissue identification as well as to differentiate between malignant and healthy tissue in vivo. We also describe the technical design of the laboratory set-up and the results of developments made. Silver halide fibres and a special sensor tip were used for the ATR measurements on tissue specimens. The results indicate that fibre-optic IR spectrometry will be a useful tool for bio-diagnostics

  5. Optical biosensors.

    Science.gov (United States)

    Damborský, Pavel; Švitel, Juraj; Katrlík, Jaroslav

    2016-06-30

    Optical biosensors represent the most common type of biosensor. Here we provide a brief classification, a description of underlying principles of operation and their bioanalytical applications. The main focus is placed on the most widely used optical biosensors which are surface plasmon resonance (SPR)-based biosensors including SPR imaging and localized SPR. In addition, other optical biosensor systems are described, such as evanescent wave fluorescence and bioluminescent optical fibre biosensors, as well as interferometric, ellipsometric and reflectometric interference spectroscopy and surface-enhanced Raman scattering biosensors. The optical biosensors discussed here allow the sensitive and selective detection of a wide range of analytes including viruses, toxins, drugs, antibodies, tumour biomarkers and tumour cells. © 2016 The Author(s). Published by Portland Press Limited on behalf of the Biochemical Society.

  6. Optical fibres for fusion plasma diagnostics systems

    International Nuclear Information System (INIS)

    Brichard, B.

    2005-01-01

    The condition to achieve and maintain the ignition of a thermonuclear fusion plasma ignition calls for the construction of a large scale fusion reactor, namely ITER. This reactor is designed to deliver an average fusion power of 500 MW. The burning of fusion plasma at such high power level will release a tremendous amount of energy in the form of particle fluxes and ionising radiation. This energy release, primarily absorbed by the plasma facing components, can significantly degrade the performances of the plasma diagnostic equipment surrounding the machine. To ensure a correct operation of the Tokamak we need to develop highly radiation-resistance devices. In plasma diagnostic systems, optical fibre is viewed as a convenient tool to transport light from the plasma edge to the diagnostic area. Radiation affects the optical performances of the fibre mainly by the occurrence of radiation-induced absorption and luminescence. Both effects degrade the light signal used for plasma diagnostic. SCK-CEN is currently assessing radiation-resistant glasses for optical fibres and is developing the associated qualification procedure. The main objectives of this study were to increase the lifetime of optical components in high radiation background and to develop a radiation resistance optical fibre capable to operate in the radiation background of ITER

  7. EXPERIMENTAL STUDY ON LIGHT TRANSMITTING CONCRETE BY USING OPTICAL FIBRE

    OpenAIRE

    S. Suganya; S. Minu Gopika

    2017-01-01

    Light transmitting concrete is one of the fibre reinforced concrete which is mainly used for aesthetic application by incorporating the optical fibres in concrete. Optical fibres help to transmit the light through the fibres and the end-light type of fibre is used to increase the aesthetic appearance of the concrete which is like a transparent concrete. Fibres are arranged in different layers, to increase the load carrying capacity and also the pattern can be created to make the concrete deco...

  8. Simultaneous measurement of temperature, stress, and electric field in GaN HEMTs with micro-Raman spectroscopy.

    Science.gov (United States)

    Bagnall, Kevin R; Moore, Elizabeth A; Badescu, Stefan C; Zhang, Lenan; Wang, Evelyn N

    2017-11-01

    As semiconductor devices based on silicon reach their intrinsic material limits, compound semiconductors, such as gallium nitride (GaN), are gaining increasing interest for high performance, solid-state transistor applications. Unfortunately, higher voltage, current, and/or power levels in GaN high electron mobility transistors (HEMTs) often result in elevated device temperatures, degraded performance, and shorter lifetimes. Although micro-Raman spectroscopy has become one of the most popular techniques for measuring localized temperature rise in GaN HEMTs for reliability assessment, decoupling the effects of temperature, mechanical stress, and electric field on the optical phonon frequencies measured by micro-Raman spectroscopy is challenging. In this work, we demonstrate the simultaneous measurement of temperature rise, inverse piezoelectric stress, thermoelastic stress, and vertical electric field via micro-Raman spectroscopy from the shifts of the E 2 (high), A 1 longitudinal optical (LO), and E 2 (low) optical phonon frequencies in wurtzite GaN. We also validate experimentally that the pinched OFF state as the unpowered reference accurately measures the temperature rise by removing the effect of the vertical electric field on the Raman spectrum and that the vertical electric field is approximately the same whether the channel is open or closed. Our experimental results are in good quantitative agreement with a 3D electro-thermo-mechanical model of the HEMT we tested and indicate that the GaN buffer acts as a semi-insulating, p-type material due to the presence of deep acceptors in the lower half of the bandgap. This implementation of micro-Raman spectroscopy offers an exciting opportunity to simultaneously probe thermal, mechanical, and electrical phenomena in semiconductor devices under bias, providing unique insight into the complex physics that describes device behavior and reliability. Although GaN HEMTs have been specifically used in this study to

  9. Simultaneous measurement of temperature, stress, and electric field in GaN HEMTs with micro-Raman spectroscopy

    Science.gov (United States)

    Bagnall, Kevin R.; Moore, Elizabeth A.; Badescu, Stefan C.; Zhang, Lenan; Wang, Evelyn N.

    2017-11-01

    As semiconductor devices based on silicon reach their intrinsic material limits, compound semiconductors, such as gallium nitride (GaN), are gaining increasing interest for high performance, solid-state transistor applications. Unfortunately, higher voltage, current, and/or power levels in GaN high electron mobility transistors (HEMTs) often result in elevated device temperatures, degraded performance, and shorter lifetimes. Although micro-Raman spectroscopy has become one of the most popular techniques for measuring localized temperature rise in GaN HEMTs for reliability assessment, decoupling the effects of temperature, mechanical stress, and electric field on the optical phonon frequencies measured by micro-Raman spectroscopy is challenging. In this work, we demonstrate the simultaneous measurement of temperature rise, inverse piezoelectric stress, thermoelastic stress, and vertical electric field via micro-Raman spectroscopy from the shifts of the E2 (high), A1 longitudinal optical (LO), and E2 (low) optical phonon frequencies in wurtzite GaN. We also validate experimentally that the pinched OFF state as the unpowered reference accurately measures the temperature rise by removing the effect of the vertical electric field on the Raman spectrum and that the vertical electric field is approximately the same whether the channel is open or closed. Our experimental results are in good quantitative agreement with a 3D electro-thermo-mechanical model of the HEMT we tested and indicate that the GaN buffer acts as a semi-insulating, p-type material due to the presence of deep acceptors in the lower half of the bandgap. This implementation of micro-Raman spectroscopy offers an exciting opportunity to simultaneously probe thermal, mechanical, and electrical phenomena in semiconductor devices under bias, providing unique insight into the complex physics that describes device behavior and reliability. Although GaN HEMTs have been specifically used in this study to

  10. Optical Fibres in the Modeling of Translucent Concrete Blocks

    OpenAIRE

    M.N.V.Padma Bhushan, D.Johnson, Md. Afzal Basheer Pasha And Ms. K. Prasanthi

    2013-01-01

    Translucent concrete is a concrete based material with light-transmissive properties, obtained due to embedded light optical elements like Optical fibers in it. Light is conducted through the stone from one end to the other. This results into a certain light pattern on the other surface, depending on the fibre structure. Optical fibres transmit light so effectively that there is virtually no loss of light conducted through the fibres. Our paper deals with the modelling of such translucent or ...

  11. Scanning Angle Raman spectroscopy in polymer thin film characterization

    Energy Technology Data Exchange (ETDEWEB)

    Nguyen, Vy H.T. [Iowa State Univ., Ames, IA (United States)

    2015-12-19

    The focus of this thesis is the application of Raman spectroscopy for the characterization of thin polymer films. Chapter 1 provides background information and motivation, including the fundamentals of Raman spectroscopy for chemical analysis, scanning angle Raman scattering and scanning angle Raman scattering for applications in thin polymer film characterization. Chapter 2 represents a published manuscript that focuses on the application of scanning angle Raman spectroscopy for the analysis of submicron thin films with a description of methodology for measuring the film thickness and location of an interface between two polymer layers. Chapter 3 provides an outlook and future directions for the work outlined in this thesis. Appendix A, contains a published manuscript that outlines the use of Raman spectroscopy to aid in the synthesis of heterogeneous catalytic systems. Appendix B and C contain published manuscripts that set a foundation for the work presented in Chapter 2.

  12. Simplified method for beatlength measurement in optical fibre

    International Nuclear Information System (INIS)

    Chu, R.; Town, G.

    2000-01-01

    Full text: A simplified technique for measuring beatlength in birefringent optical fibres using magnetic modulation was analysed, and tested experimentally. By avoiding the use of unnecessary optical components and splicing to the fibre under test, the beatlength was measured accurately with good signal-to-noise ratio

  13. From Femtosecond Dynamics to Breast Cancer Diagnosis by Raman Spectroscopy

    International Nuclear Information System (INIS)

    Abramczyk, H.; Placek, I.; Brozek-Pluska, B.; Kurczewski, K.; Morawiec, Z.; Tazbir, M.

    2007-01-01

    This paper presents new results based on Raman spectroscopy and demonstrates its utilisation as a diagnostic and development tool with the key advantage in breast cancer research. Applications of Raman spectroscopy in cancer research are in the early stages of development. However, research presented here as well as performed in a few other laboratories demonstrate the ability of Raman spectroscopy to accurately characterize cancer tissue and distinguish between normal, malignant and benign types. The main goals of bio-Raman spectroscopy at this stage are threefold. Firstly, the aim is to develop the diagnostic ability of Raman spectroscopy so it can be implemented in a clinical environment, producing accurate and rapid diagnoses. Secondly, the aim is to optimize the technique as a diagnostic tool for the non-invasive real time medical applications. Thirdly, the aim is to formulate some hypothesis based on Raman spectroscopy on the molecular mechanism which drives the transformation of normal human cells into highly malignant derivatives. To the best of our knowledge, this is the most statistically reliable report on Raman spectroscopy-based diagnosis of breast cancers among the world women population

  14. Control of the wavelength dependent thermo-optic coefficients in structured fibres

    DEFF Research Database (Denmark)

    Sørensen, Henrik Rokkjær; Canning, J.; Lægsgaard, Jesper

    2006-01-01

    By controlling the fibre geometry, the fraction of optical field within the holes and the inserted material of a photonic crystal fibre, we demonstrate that it is possible to engineer any arbitrary wavelength-dependent thermo-optic coefficient. The possibility of making a fibre with a zero temper...... temperature dependent thermo-optic coefficient, ideal for packaging of structured fibre gratings, is proposed and explored....

  15. Cavity-Enhanced Raman Spectroscopy for Food Chain Management

    Directory of Open Access Journals (Sweden)

    Vincenz Sandfort

    2018-02-01

    Full Text Available Comprehensive food chain management requires the monitoring of many parameters including temperature, humidity, and multiple gases. The latter is highly challenging because no low-cost technology for the simultaneous chemical analysis of multiple gaseous components currently exists. This contribution proposes the use of cavity enhanced Raman spectroscopy to enable online monitoring of all relevant components using a single laser source. A laboratory scale setup is presented and characterized in detail. Power enhancement of the pump light is achieved in an optical resonator with a Finesse exceeding 2500. A simulation for the light scattering behavior shows the influence of polarization on the spatial distribution of the Raman scattered light. The setup is also used to measure three relevant showcase gases to demonstrate the feasibility of the approach, including carbon dioxide, oxygen and ethene.

  16. Communication: atomic force detection of single-molecule nonlinear optical vibrational spectroscopy.

    Science.gov (United States)

    Saurabh, Prasoon; Mukamel, Shaul

    2014-04-28

    Atomic Force Microscopy (AFM) allows for a highly sensitive detection of spectroscopic signals. This has been first demonstrated for NMR of a single molecule and recently extended to stimulated Raman in the optical regime. We theoretically investigate the use of optical forces to detect time and frequency domain nonlinear optical signals. We show that, with proper phase matching, the AFM-detected signals closely resemble coherent heterodyne-detected signals. Applications are made to AFM-detected and heterodyne-detected vibrational resonances in Coherent Anti-Stokes Raman Spectroscopy (χ((3))) and sum or difference frequency generation (χ((2))).

  17. Polymer Optical Fibre Sensors for Endoscopic Opto-Acoustic Imaging

    DEFF Research Database (Denmark)

    Broadway, Christian; Gallego, Daniel; Woyessa, Getinet

    2015-01-01

    in existing publications. A great advantage can be obtained for endoscopy due to a small size and array potential to provide discrete imaging speed improvements. Optical fibre exhibits numerous advantages over conventional piezo-electric transducers, such as immunity from electromagnetic interference...... is the physical size of the device, allowing compatibility with current technology, while governing flexibility of the distal end of the endoscope based on the needs of the sensor. Polymer optical fibre (POF) presents a novel approach for endoscopic applications and has been positively discussed and compared...... and a higher resolution at small sizes. Furthermore, micro structured polymer optical fibres offer over 12 times the sensitivity of silica fibre. We present a polymer fibre Bragg grating ultrasound detector with a core diameter of 125 microns. We discuss the ultrasonic signals received and draw conclusions...

  18. Optical spectroscopy techniques can accurately distinguish benign and malignant renal tumours.

    Science.gov (United States)

    Couapel, Jean-Philippe; Senhadji, Lotfi; Rioux-Leclercq, Nathalie; Verhoest, Grégory; Lavastre, Olivier; de Crevoisier, Renaud; Bensalah, Karim

    2013-05-01

    WHAT'S KNOWN ON THE SUBJECT? AND WHAT DOES THE STUDY ADD?: There is little known about optical spectroscopy techniques ability to evaluate renal tumours. This study shows for the first time the ability of Raman and optical reflectance spectroscopy to distinguish benign and malignant renal tumours in an ex vivo environment. We plan to develop this optical assistance in the operating room in the near future. To evaluate the ability of Raman spectroscopy (RS) and optical reflectance spectroscopy (ORS) to distinguish benign and malignant renal tumours at surgery. Between March and October 2011, RS and ORS spectra were prospectively acquired on surgical renal specimens removed for suspicion of renal cell carcinoma (RCC). Optical measurements were done immediately after surgery. Optical signals were normalised to ensure comparison between spectra. Initial and final portions of each spectrum were removed to avoid artefacts. A support vector machine (SVM) was built and tested using a leave-one-out cross-validation. Classification scores, including accuracy, sensitivity and specificity were calculated on the entire population and in patients with tumours of 700 optical spectra were obtained and submitted to SVM classification. The SVM could recognise benign and malignant renal tumours with an accuracy of 96% (RS) and 88% (ORS) in the whole population and with an accuracy of 93% (RS) and 95% (ORS) in the present subset of small renal tumours (Benign and malignant renal tumours can be accurately discriminated by a combination of RS and ORS. In vivo experiments are needed to further assess the value of optical spectroscopy techniques. © 2012 BJU International.

  19. France’s State of the Art Distributed Optical Fibre Sensors Qualified for the Monitoring of the French Underground Repository for High Level and Intermediate Level Long Lived Radioactive Wastes

    Directory of Open Access Journals (Sweden)

    Sylvie Delepine-Lesoille

    2017-06-01

    Full Text Available This paper presents the state of the art distributed sensing systems, based on optical fibres, developed and qualified for the French Cigéo project, the underground repository for high level and intermediate level long-lived radioactive wastes. Four main parameters, namely strain, temperature, radiation and hydrogen concentration are currently investigated by optical fibre sensors, as well as the tolerances of selected technologies to the unique constraints of the Cigéo’s severe environment. Using fluorine-doped silica optical fibre surrounded by a carbon layer and polyimide coating, it is possible to exploit its Raman, Brillouin and Rayleigh scattering signatures to achieve the distributed sensing of the temperature and the strain inside the repository cells of radioactive wastes. Regarding the dose measurement, promising solutions are proposed based on Radiation Induced Attenuation (RIA responses of sensitive fibres such as the P-doped ones. While for hydrogen measurements, the potential of specialty optical fibres with Pd particles embedded in their silica matrix is currently studied for this gas monitoring through its impact on the fibre Brillouin signature evolution.

  20. France’s State of the Art Distributed Optical Fibre Sensors Qualified for the Monitoring of the French Underground Repository for High Level and Intermediate Level Long Lived Radioactive Wastes

    Science.gov (United States)

    Delepine-Lesoille, Sylvie; Girard, Sylvain; Landolt, Marcel; Bertrand, Johan; Planes, Isabelle; Boukenter, Aziz; Marin, Emmanuel; Humbert, Georges; Leparmentier, Stéphanie; Auguste, Jean-Louis; Ouerdane, Youcef

    2017-01-01

    This paper presents the state of the art distributed sensing systems, based on optical fibres, developed and qualified for the French Cigéo project, the underground repository for high level and intermediate level long-lived radioactive wastes. Four main parameters, namely strain, temperature, radiation and hydrogen concentration are currently investigated by optical fibre sensors, as well as the tolerances of selected technologies to the unique constraints of the Cigéo’s severe environment. Using fluorine-doped silica optical fibre surrounded by a carbon layer and polyimide coating, it is possible to exploit its Raman, Brillouin and Rayleigh scattering signatures to achieve the distributed sensing of the temperature and the strain inside the repository cells of radioactive wastes. Regarding the dose measurement, promising solutions are proposed based on Radiation Induced Attenuation (RIA) responses of sensitive fibres such as the P-doped ones. While for hydrogen measurements, the potential of specialty optical fibres with Pd particles embedded in their silica matrix is currently studied for this gas monitoring through its impact on the fibre Brillouin signature evolution. PMID:28608831

  1. Non-invasive optical detection of HBV based on serum surface-enhanced Raman spectroscopy

    Science.gov (United States)

    Zheng, Zuci; Wang, Qiwen; Weng, Cuncheng; Lin, Xueliang; Lin, Yao; Feng, Shangyuan

    2016-10-01

    An optical method of surface-enhanced Raman spectroscopy (SERS) was developed for non-invasive detection of hepatitis B surface virus (HBV). Hepatitis B virus surface antigen (HBsAg) is an established serological marker that is routinely used for the diagnosis of acute or chronic hepatitis B virus(HBV) infection. Utilizing SERS to analyze blood serum for detecting HBV has not been reported in previous literature. SERS measurements were performed on two groups of serum samples: one group for 50 HBV patients and the other group for 50 healthy volunteers. Blood serum samples are collected from healthy control subjects and patients diagnosed with HBV. Furthermore, principal components analysis (PCA) combined with linear discriminant analysis (LDA) were employed to differentiate HBV patients from healthy volunteer and achieved sensitivity of 80.0% and specificity of 74.0%. This exploratory work demonstrates that SERS serum analysis combined with PCA-LDA has tremendous potential for the non-invasive detection of HBV.

  2. Light distribution analysis of optical fibre probe-based near-field optical tweezers using FDTD

    Energy Technology Data Exchange (ETDEWEB)

    Liu, B H; Yang, L J; Wang, Y [School of Mechanical and Electrical Engineering, Harbin Institute of Technology, Heilongjiang, Harbin, 150001 (China)], E-mail: richelaw@163.com

    2009-09-01

    Optical fibre probe-based near-field optical tweezers overcomes the diffraction limit of conventional optical tweezers, utilizing strong mechanical forces and torque associated with highly enhanced electric fields to trap and manipulate nano-scale particles. Near-field evanescent wave generated at optical fibre probe decays rapidly with the distance that results a significant reduced trapping volume, thus it is necessary to analyze the near-field distribution of optical fibre probe. The finite difference time domain (FDTD) method is applied to characterize the near-field distribution of optical fibre probe. In terms of the distribution patterns, depolarization and polarization, the near-field distributions in longitudinal sections and cross-sections of tapered metal-coated optical fibre probe are calculated. The calculation results reveal that the incident polarized wave becomes depolarized after exiting from the nano-scale aperture of probe. The near-field distribution of the probe is unsymmetrical, and the near-field distribution in the cross-section vertical to the incident polarized wave is different from that in the cross-section parallel to the incident polarized wave. Moreover, the polarization of incident wave has a great impact on the light intensity distribution.

  3. Insertion of optic fibre for CMS

    CERN Multimedia

    Maximilien Brice

    2003-01-01

    The MicroJET system uses high pressure to carefully put the optical fibres into their protective tubes. These fibres are vital for rapid data transfer, but are also very delicate and, if damanged, may not work at the required efficiency. Similiar methods are used to install cables for the telecommunications industry.

  4. Noninvasive Monitoring of Blood Glucose with Raman Spectroscopy.

    Science.gov (United States)

    Pandey, Rishikesh; Paidi, Santosh Kumar; Valdez, Tulio A; Zhang, Chi; Spegazzini, Nicolas; Dasari, Ramachandra Rao; Barman, Ishan

    2017-02-21

    The successful development of a noninvasive blood glucose sensor that can operate reliably over sustained periods of time has been a much sought after but elusive goal in diabetes management. Since diabetes has no well-established cure, control of elevated glucose levels is critical for avoiding severe secondary health complications in multiple organs including the retina, kidney and vasculature. While fingerstick testing continues to be the mainstay of blood glucose detection, advances in electrochemical sensing-based minimally invasive approaches have opened the door for alternate methods that would considerably improve the quality of life for people with diabetes. In the quest for better sensing approaches, optical technologies have surfaced as attractive candidates as researchers have sought to exploit the endogenous contrast of glucose, notably its absorption, scattering, and polarization properties. Vibrational spectroscopy, especially spontaneous Raman scattering, has exhibited substantial promise due to its exquisite molecular specificity and minimal interference of water in the spectral profiles acquired from the blood-tissue matrix. Yet, it has hitherto been challenging to leverage the Raman scattering signatures of glucose for prediction in all but the most basic studies and under the least demanding conditions. In this Account, we discuss the newly developed array of methodologies that address the key challenges in measuring blood glucose accurately using Raman spectroscopy and unlock new prospects for translation to sustained noninvasive measurements in people with diabetes. Owing to the weak intensity of spontaneous Raman scattering, recent research has focused on enhancement of signals from the blood constituents by designing novel excitation-collection geometries and tissue modulation methods while our attempts have led to the incorporation of nonimaging optical elements. Additionally, invoking mass transfer modeling into chemometric algorithms has

  5. Optical measuring system with an interrogator and a polymer-based single-mode fibre optic sensor system

    DEFF Research Database (Denmark)

    2017-01-01

    The present invention relates to an optical measuring system comprising a polymer-based single-mode fibre-optic sensor system (102), an optical interrogator (101), and an optical arrangement (103) interconnecting the optical interrogator (101) and the polymer-based single-mode fibre-optic sensor...... system (102). The invention further relates to an optical interrogator adapted to be connected to a polymer-based single-mode fibre-optic sensor system via an optical arrangement. The interrogator comprises a broadband light source arrangement (104) and a spectrum analysing arrangement which receives...

  6. Formation and characterization of varied size germanium nanocrystals by electron microscopy, Raman spectroscopy, and photoluminescence

    DEFF Research Database (Denmark)

    Ou, Haiyan; Ou, Yiyu; Liu, Chuan

    2011-01-01

    Germanium nanocrystals are being extensively examined. Their unique optical properties (brought about by the quantum confinement effect) could potentially be applied in wide areas of nonlinear optics, light emission and solid state memory etc. In this paper, Ge nanocrystals embedded in a SiO2...... matrix were formed by complementary metal-oxide-semiconductor compatible technology, e.g. plasma enhanced chemical vapour deposition and annealing. Different sizes of the Ge nanocrystals were prepared and analyzed by transmission electron microscopy with respect to their size, distribution...... and crystallization. The samples of different size Ge nanocrystals embedded in the SiO2 matrix were characterized by Raman spectroscopy and photoluminescence. Interplayed size and strain effect of Ge nanocystals was demonstrated by Raman spectroscopy after excluding the thermal effect with proper excitation laser...

  7. Feasibility of Raman spectroscopy in vitro after 5-ALA-based fluorescence diagnosis in the bladder

    Science.gov (United States)

    Grimbergen, M. C. M.; van Swol, C. F. P.; van Moorselaar, R. J. A.; Mahadevan-Jansen, A.,; Stone, N.

    2006-02-01

    Photodynamic diagnosis (PDD) has become popular in bladder cancer detection. Several studies have however shown an increased false positive biopsies rate under PDD guidance compared to conventional cystoscopy. Raman spectroscopy is an optical technique that utilizes molecular specific, inelastic scattering of light photons to interrogate biological tissues, which can successfully differentiate epithelial neoplasia from normal tissue and inflammations in vitro. This investigation was performed to show the feasibility of NIR Raman spectroscopy in vitro on biopsies obtained under guidance of 5-ALA induced PPIX fluorescence imaging. Raman spectra of a PPIX solution was measured to obtain a characteristic signature for the photosensitzer without contributions from tissue constituents. Biopsies were obtained from patients with known bladder cancer instilled with 50ml, 5mg 5-ALA two hours prior to trans-urethral resection of tumor (TURT). Additional biopsies were obtained at a fluorescent and non-fluorescent area, snap-frozen in liquid nitrogen and stored at -80 °C. Each biopsy was thawed before measurements (10sec integration time) with a confocal Raman system (Renishaw Gloucestershire, UK). The 830 nm excitation (300mW) source is focused on the tissue by a 20X ultra-long-working-distance objective. Differences in fluorescence background between the two groups were removed by means of a special developed fluorescence subtraction algorithm. Raman spectra from ALA biopsies showed different fluorescence background which can be effectively removed by a fluorescence subtraction algorithm. This investigation shows that the interaction of the ALA induced PPIX with Raman spectroscopy in bladder samples. Combination of these techniques in-vivo may lead to a viable method of optical biopsies in bladder cancer detection.

  8. Higher order modes of coupled optical fibres

    International Nuclear Information System (INIS)

    Alexeyev, C N; Yavorsky, M A; Boklag, N A

    2010-01-01

    The structure of hybrid higher order modes of two coupled weakly guiding identical optical fibres is studied. On the basis of perturbation theory with degeneracy for the vector wave equation expressions for modes with azimuthal angular number l ≥ 1 are obtained that allow for the spin–orbit interaction. The spectra of polarization corrections to the scalar propagation constants are calculated in a wide range of distances between the fibres. The limiting cases of widely and closely spaced fibres are studied. The obtained results can be used for studying the tunnelling of optical vortices in directional couplers and in matters concerned with information security

  9. Corrosion induced strain monitoring through fibre optic sensors

    International Nuclear Information System (INIS)

    Grattan, S K T; Basheer, P A M; Taylor, S E; Zhao, W; Sun, T; Grattan, K T V

    2007-01-01

    The use of strain sensors is commonplace within civil engineering. Fibre optic strain sensors offer a number of advantages over the current electrical resistance type gauges. In this paper the use of fibre optic strain sensors and electrical resistance gauges to monitor the production of corrosion by-products has been investigated and reported

  10. Raman spectroscopy as a process analytical technology for pharmaceutical manufacturing and bioprocessing.

    Science.gov (United States)

    Esmonde-White, Karen A; Cuellar, Maryann; Uerpmann, Carsten; Lenain, Bruno; Lewis, Ian R

    2017-01-01

    Adoption of Quality by Design (QbD) principles, regulatory support of QbD, process analytical technology (PAT), and continuous manufacturing are major factors effecting new approaches to pharmaceutical manufacturing and bioprocessing. In this review, we highlight new technology developments, data analysis models, and applications of Raman spectroscopy, which have expanded the scope of Raman spectroscopy as a process analytical technology. Emerging technologies such as transmission and enhanced reflection Raman, and new approaches to using available technologies, expand the scope of Raman spectroscopy in pharmaceutical manufacturing, and now Raman spectroscopy is successfully integrated into real-time release testing, continuous manufacturing, and statistical process control. Since the last major review of Raman as a pharmaceutical PAT in 2010, many new Raman applications in bioprocessing have emerged. Exciting reports of in situ Raman spectroscopy in bioprocesses complement a growing scientific field of biological and biomedical Raman spectroscopy. Raman spectroscopy has made a positive impact as a process analytical and control tool for pharmaceutical manufacturing and bioprocessing, with demonstrated scientific and financial benefits throughout a product's lifecycle.

  11. Long reach and enhanced power budget DWDM radio-over-fibre link supported by Raman amplification and coherent detection

    DEFF Research Database (Denmark)

    Caballero Jambrina, Antonio; Guerrero Gonzalez, Neil; Fernandez, Amaya

    2009-01-01

    We report on a scalable and enhanced power budget radio-over-fibre system for hybrid-wireless access networks operating at 12.5 GHz DWDM spacing for 5 GHz RF carriers over a 60 km fibre link with Raman amplification....

  12. Exhibition: Fibre optics, the future is at hand

    CERN Multimedia

    Anaïs Schaeffer

    2012-01-01

    Until 20 June, the Pont de la Machine in Geneva will host an exhibition on fibre optics, sponsored by SIG. CERN, a major user of this technology, was invited to take part with a presentation of some of its scintillating fibre detectors.   The CERN module, designed for the SIG's fibre optics exhibition. Visitors can discover a cosmic ray detector (on the right) and its oscilloscope (on the left), as well as one of the ALFA detector modules (at the back). The Services industriels genevois (SIG), who are in the process of deploying an optical fibre network in Geneva, have decided to showcase this technology with an exhibition entitled “Fibre optique – Le futur à portée de main.” The exhibition, which will be open to the public from 26 April to 20 June, is being held at the Espace ExpoSIG, at the Pont de la Machine in the centre of Geneva. “CERN’s Physics Department was approached by SIG at the start of this year to ...

  13. Fiber Optic Coupled Raman Based Detection of Hazardous Liquids Concealed in Commercial Products

    Directory of Open Access Journals (Sweden)

    Michael L. Ramírez-Cedeño

    2012-01-01

    Full Text Available Raman spectroscopy has been widely proposed as a technique to nondestructively and noninvasively interrogate the contents of glass and plastic bottles. In this work, Raman spectroscopy is used in a concealed threat scenario where hazardous liquids have been intentionally mixed with common consumer products to mask its appearance or spectra. The hazardous liquids under consideration included the chemical warfare agent (CWA simulant triethyl phosphate (TEP, hydrogen peroxide, and acetone as representative of toxic industrial compounds (TICs. Fiber optic coupled Raman spectroscopy (FOCRS and partial least squares (PLS algorithm analysis were used to quantify hydrogen peroxide in whiskey, acetone in perfume, and TEP in colored beverages. Spectral data was used to evaluate if the hazardous liquids can be successfully concealed in consumer products. Results demonstrated that FOC-RS systems were able to discriminate between nonhazardous consumer products and mixtures with hazardous materials at concentrations lower than 5%.

  14. Periodontitis diagnostics using resonance Raman spectroscopy on saliva

    Science.gov (United States)

    Gonchukov, S.; Sukhinina, A.; Bakhmutov, D.; Biryukova, T.; Tsvetkov, M.; Bagratashvily, V.

    2013-07-01

    In view of its wealth of molecular information, Raman spectroscopy has been the subject of active biomedical research. The aim of this work is Raman spectroscopy (RS) application for the determination of molecular biomarkers in saliva with the objective of early periodontitis detection. As was shown in our previous study, carotenoids contained in saliva can be molecular fingerprint information for the periodontitis level. It is shown here that the carotenoid RS lines at wavenumbers of 1156 and 1524 cm-1 can be easily detected and serve as reliable biomarkers of periodontitis using resonance Raman spectroscopy of dry saliva.

  15. Periodontitis diagnostics using resonance Raman spectroscopy on saliva

    International Nuclear Information System (INIS)

    Gonchukov, S; Sukhinina, A; Bakhmutov, D; Biryukova, T; Tsvetkov, M; Bagratashvily, V

    2013-01-01

    In view of its wealth of molecular information, Raman spectroscopy has been the subject of active biomedical research. The aim of this work is Raman spectroscopy (RS) application for the determination of molecular biomarkers in saliva with the objective of early periodontitis detection. As was shown in our previous study, carotenoids contained in saliva can be molecular fingerprint information for the periodontitis level. It is shown here that the carotenoid RS lines at wavenumbers of 1156 and 1524 cm −1 can be easily detected and serve as reliable biomarkers of periodontitis using resonance Raman spectroscopy of dry saliva. (letter)

  16. Ballistic and snake photon imaging for locating optical endomicroscopy fibres

    Science.gov (United States)

    Tanner, M. G.; Choudhary, T. R.; Craven, T. H.; Mills, B.; Bradley, M.; Henderson, R. K.; Dhaliwal, K.; Thomson, R. R.

    2017-01-01

    We demonstrate determination of the location of the distal-end of a fibre-optic device deep in tissue through the imaging of ballistic and snake photons using a time resolved single-photon detector array. The fibre was imaged with centimetre resolution, within clinically relevant settings and models. This technique can overcome the limitations imposed by tissue scattering in optically determining the in vivo location of fibre-optic medical instruments. PMID:28966848

  17. Optical fibre angle sensor used in MEMS

    International Nuclear Information System (INIS)

    Golebiowski, J; Milcarz, Sz; Rybak, M

    2014-01-01

    There is a need for displacement and angle measurements in many movable MEMS structures. The use of fibre optical sensors helps to measure micrometre displacements and small rotation angles. Advantages of this type of transducers are their simple design, high precision of processing, low costs and ability of a non-contact measurement. The study shows an analysis of a fibre-optic intensity sensor used for MEMS movable structure rotation angle measurement. An intensity of the light in the photodetector is basically dependent on a distance between a reflecting surface and a head surface of the fibre transmitting arm, and the deflection angle. Experimental tests were made for PMMA 980/1000 plastic fibres, Θ NA =33°. The study shows both analytical and practical results. It proves that calculated and experimental characteristics for the analysed transducers are similar.

  18. Investigating Nanoscale Electrochemistry with Surface- and Tip-Enhanced Raman Spectroscopy.

    Science.gov (United States)

    Zaleski, Stephanie; Wilson, Andrew J; Mattei, Michael; Chen, Xu; Goubert, Guillaume; Cardinal, M Fernanda; Willets, Katherine A; Van Duyne, Richard P

    2016-09-20

    The chemical sensitivity of surface-enhanced Raman spectroscopy (SERS) methodologies allows for the investigation of heterogeneous chemical reactions with high sensitivity. Specifically, SERS methodologies are well-suited to study electron transfer (ET) reactions, which lie at the heart of numerous fundamental processes: electrocatalysis, solar energy conversion, energy storage in batteries, and biological events such as photosynthesis. Heterogeneous ET reactions are commonly monitored by electrochemical methods such as cyclic voltammetry, observing billions of electrochemical events per second. Since the first proof of detecting single molecules by redox cycling, there has been growing interest in examining electrochemistry at the nanoscale and single-molecule levels. Doing so unravels details that would otherwise be obscured by an ensemble experiment. The use of optical spectroscopies, such as SERS, to elucidate nanoscale electrochemical behavior is an attractive alternative to traditional approaches such as scanning electrochemical microscopy (SECM). While techniques such as single-molecule fluorescence or electrogenerated chemiluminescence have been used to optically monitor electrochemical events, SERS methodologies, in particular, have shown great promise for exploring electrochemistry at the nanoscale. SERS is ideally suited to study nanoscale electrochemistry because the Raman-enhancing metallic, nanoscale substrate duly serves as the working electrode material. Moreover, SERS has the ability to directly probe single molecules without redox cycling and can achieve nanoscale spatial resolution in combination with super-resolution or scanning probe microscopies. This Account summarizes the latest progress from the Van Duyne and Willets groups toward understanding nanoelectrochemistry using Raman spectroscopic methodologies. The first half of this Account highlights three techniques that have been recently used to probe few- or single-molecule electrochemical

  19. Raman Spectroscopy of Microbial Pigments

    Science.gov (United States)

    Edwards, Howell G. M.; Oren, Aharon

    2014-01-01

    Raman spectroscopy is a rapid nondestructive technique providing spectroscopic and structural information on both organic and inorganic molecular compounds. Extensive applications for the method in the characterization of pigments have been found. Due to the high sensitivity of Raman spectroscopy for the detection of chlorophylls, carotenoids, scytonemin, and a range of other pigments found in the microbial world, it is an excellent technique to monitor the presence of such pigments, both in pure cultures and in environmental samples. Miniaturized portable handheld instruments are available; these instruments can be used to detect pigments in microbiological samples of different types and origins under field conditions. PMID:24682303

  20. Modulated Raman Spectroscopy for Enhanced Cancer Diagnosis at the Cellular Level

    Science.gov (United States)

    De Luca, Anna Chiara; Dholakia, Kishan; Mazilu, Michael

    2015-01-01

    Raman spectroscopy is emerging as a promising and novel biophotonics tool for non-invasive, real-time diagnosis of tissue and cell abnormalities. However, the presence of a strong fluorescence background is a key issue that can detract from the use of Raman spectroscopy in routine clinical care. The review summarizes the state-of-the-art methods to remove the fluorescence background and explores recent achievements to address this issue obtained with modulated Raman spectroscopy. This innovative approach can be used to extract the Raman spectral component from the fluorescence background and improve the quality of the Raman signal. We describe the potential of modulated Raman spectroscopy as a rapid, inexpensive and accurate clinical tool to detect the presence of bladder cancer cells. Finally, in a broader context, we show how this approach can greatly enhance the sensitivity of integrated Raman spectroscopy and microfluidic systems, opening new prospects for portable higher throughput Raman cell sorting. PMID:26110401

  1. Frame-Transfer Gating Raman Spectroscopy for Time-Resolved Multiscalar Combustion Diagnostics

    Science.gov (United States)

    Nguyen, Quang-Viet; Fischer, David G.; Kojima, Jun

    2011-01-01

    Accurate experimental measurement of spatially and temporally resolved variations in chemical composition (species concentrations) and temperature in turbulent flames is vital for characterizing the complex phenomena occurring in most practical combustion systems. These diagnostic measurements are called multiscalar because they are capable of acquiring multiple scalar quantities simultaneously. Multiscalar diagnostics also play a critical role in the area of computational code validation. In order to improve the design of combustion devices, computational codes for modeling turbulent combustion are often used to speed up and optimize the development process. The experimental validation of these codes is a critical step in accepting their predictions for engine performance in the absence of cost-prohibitive testing. One of the most critical aspects of setting up a time-resolved stimulated Raman scattering (SRS) diagnostic system is the temporal optical gating scheme. A short optical gate is necessary in order for weak SRS signals to be detected with a good signal- to-noise ratio (SNR) in the presence of strong background optical emissions. This time-synchronized optical gating is a classical problem even to other spectroscopic techniques such as laser-induced fluorescence (LIF) or laser-induced breakdown spectroscopy (LIBS). Traditionally, experimenters have had basically two options for gating: (1) an electronic means of gating using an image intensifier before the charge-coupled-device (CCD), or (2) a mechanical optical shutter (a rotary chopper/mechanical shutter combination). A new diagnostic technology has been developed at the NASA Glenn Research Center that utilizes a frame-transfer CCD sensor, in conjunction with a pulsed laser and multiplex optical fiber collection, to realize time-resolved Raman spectroscopy of turbulent flames that is free from optical background noise (interference). The technology permits not only shorter temporal optical gating (down

  2. Optical fibre luminescence sensor for real-time LDR brachytherapy dosimetry

    Science.gov (United States)

    Woulfe, P.; O'Keeffe, S.; Sullivan, F. J.

    2018-02-01

    An optical fibre sensor for monitoring low dose radiation is presented. The sensor is based on a scintillation material embedded within the optical fibre core, which emits visible light when exposed to low level ionising radiation. The incident level of ionising radiation can be determined by analysing the optical emission. An optical fibre sensor is developed, based on radioluminescence whereby radiation sensitive scintillation material, terbium doped gadolinium oxysulphide (Gd2O2S:Tb), is embedded in a cavity of 700μm of a 1mm plastic optical fibre. The sensor is designed for in-vivo monitoring of the radiation dose during radio-active seed implantation for low dose rate (LDR) brachytherapy, in prostate cancer treatment, providing radiation oncologists with real-time information of the radiation dose to the target area and/or nearby organs at risk (OARs). The radiation from the brachytherapy seeds causes emission of visible light from the scintillation material through the process of radioluminescence, which penetrates the fibre, propagating along the optical fibre for remote detection using a multi-pixel photon counter. The sensor demonstrates a high sensitivity to 0.397mCi of Iodine125, the radioactive source most commonly used in brachytherapy for treating prostate cancer.

  3. Simple Room Temperature Method for Polymer Optical Fibre Cleaving

    DEFF Research Database (Denmark)

    Saez-Rodriguez, David; Nielsen, Kristian; Bang, Ole

    2015-01-01

    In this paper, we report on a new method to cleave polymer optical fibre. The most common way to cut a polymer optical fibre is chopping it with a razor blade; however, in this approach both the fibre and the blade must be preheated in order to turn the material ductile, and thus, prevent crazing...... of similar quality to those produced by more complex and expensive heated systems....

  4. Raman spectroscopy in nanomedicine: current status and future perspective.

    Science.gov (United States)

    Keating, Mark E; Byrne, Hugh J

    2013-08-01

    Raman spectroscopy is a branch of vibration spectroscopy that is capable of probing the chemical composition of materials. Recent advances in Raman microscopy have significantly added to the range of applications, which now extend from medical diagnostics to exploring the interfaces between biological organisms and nanomaterials. In this review, Raman is introduced in a general context, highlighting some of the areas in which the technique has been successful in the past, as well as some of the potential benefits it offers over other analytical modalities. The subset of Raman techniques that specifically probe the nanoscale, namely surface- and tip-enhanced Raman spectroscopy, will be described and specific applications relevant to nanomedical applications will be reviewed. Progress in the use of traditional label-free Raman for investigation of nanoscale interactions will be described, and recent developments in coherent anti-Stokes Raman scattering will be explored, particularly its applications to biomedical and nanomedical fields.

  5. The Clinical Application of Raman Spectroscopy for Breast Cancer Detection

    Directory of Open Access Journals (Sweden)

    Pin Gao

    2017-01-01

    Full Text Available Raman spectroscopy has been widely used as an important clinical tool for real-time in vivo cancer diagnosis. Raman information can be obtained from whole organisms and tissues, at the cellular level and at the biomolecular level. The aim of this paper is to review the newest developments of Raman spectroscopy in the field of breast cancer diagnosis and treatment. Raman spectroscopy can distinguish malignant tissues from noncancerous/normal tissues and can assess tumor margins or sentinel lymph nodes during an operation. At the cellular level, Raman spectra can be used to monitor the intracellular processes occurring in blood circulation. At the biomolecular level, surface-enhanced Raman spectroscopy techniques may help detect the biomarker on the tumor surface as well as evaluate the efficacy of anticancer drugs. Furthermore, Raman images reveal an inhomogeneous distribution of different compounds, especially proteins, lipids, microcalcifications, and their metabolic products, in cancerous breast tissues. Information about these compounds may further our understanding of the mechanisms of breast cancer.

  6. Research of Raman spectroscopy to detect subsurface ingredient under non-transparent medium

    International Nuclear Information System (INIS)

    Zhang Xiaohua; Zhang Ji; Zhang Haifeng; Lu Jianxin; Sun Shuying; Wang Leijian; Xu Yongsheng; Wang Xiaojie; Tang Xiuzhang

    2014-01-01

    The measurement and contrast of NaNO 3 powder concealed in opaque/semi-transparent plastic bottles were carried out through conventional Raman spectroscopy configuration and spatially offset Raman spectroscopy configuration individually. The action mechanism why the spatially offset Raman spectroscopy can effectively detect the medium concealed in the non-transparent bottle was analyzed. The detection depth of conventional Raman spectroscopy is small and the ingredient of the subsurface under non-transparent medium can not be detected, and the spatially offset Raman spectroscopy broke through the neck of the conventional Raman spectroscopy detection. The measurement and identification of the substance concealed in the non-transparent medium (opaque/semi-transparent plastic bottle) were realized. (authors)

  7. Noninvasive Raman spectroscopy of rat tibiae: approach to in vivo assessment of bone quality

    Science.gov (United States)

    Okagbare, Paul I.; Begun, Dana; Tecklenburg, Mary; Awonusi, Ayorinde; Goldstein, Steven A.

    2012-01-01

    Abstract. We report on in vivo noninvasive Raman spectroscopy of rat tibiae using robust fiber-optic Raman probes and holders designed for transcutaneous Raman measurements in small animals. The configuration allows placement of multiple fibers around a rat leg, maintaining contact with the skin. Bone Raman data are presented for three regions of the rat tibia diaphysis with different thicknesses of overlying soft tissue. The ability to perform in vivo noninvasive Raman measurement and evaluation of subtle changes in bone composition is demonstrated with rat leg phantoms in which the tibia has carbonated hydroxylapatite, with different carbonate contents. Our data provide proof of the principle that small changes in bone composition can be monitored through soft tissue at anatomical sites of interest in biomedical studies. PMID:23085899

  8. Study of optical phonon modes of CdS nanoparticles using Raman

    Indian Academy of Sciences (India)

    In this paper we report the study of optical phonon modes of nanoparticles of CdS using Raman spectroscopy. Nanoparticle sample for the present study was synthesized through chemical precipitation technique. The CdS nanoparticles were then subjected to heat treatment at low temperature (150°C) for extended time ...

  9. Combined Raman/LIBS spectrometer elegant breadboard: built and tested - and flight model spectrometer unit

    Science.gov (United States)

    Ahlers, B.; Hutchinson, I.; Ingley, R.

    2017-11-01

    A spectrometer for combined Raman and Laser Induced Breakdown Spectroscopy (LIBS) is amongst the different instruments that have been pre-selected for the Pasteur payload of the ExoMars rover. It is regarded as a fundamental, next-generation instrument for organic, mineralogical and elemental characterisation of Martian soil, rock samples and organic molecules. Raman spectroscopy and LIBS will be integrated into a single instrument sharing many hardware commonalities [1]. The combined Raman / LIBS instrument has been recommended as the highest priority mineralogy instrument to be included in the rover's analytical laboratory for the following tasks: Analyse surface and sub-surface soil and rocks on Mars, identify organics in the search for life and determine soil origin & toxicity. The synergy of the system is evident: the Raman spectrometer is dedicated to molecular analysis of organics and minerals; the LIBS provides information on the sample's elemental composition. An international team, under ESA contract and with the leadership of TNO Science and Industry, has built and tested an Elegant Bread Board (EBB) of the combined Raman / LIBS instrument. The EBB comprises a specifically designed, extremely compact, spectrometer with high resolution over a large wavelength range, suitable for both Raman spectroscopy and LIBS measurements. The EBB also includes lasers, illumination and imaging optics as well as fibre optics for light transfer. A summary of the functional and environmental requirements together with a description of the optical design and its expected performance are described in [2]. The EBB was developed and constructed to verify the instruments' end-to-end functional performance with natural samples. The combined Raman / LIBS EBB realisation and test results of natural samples will be presented. For the Flight Model (FM) instrument, currently in the design phase, the Netherlands will be responsible for the design, development and verification of the

  10. Laser-Raman spectroscopy of living cells

    International Nuclear Information System (INIS)

    Webb, S.J.

    1980-01-01

    Investigations into the laser-Raman shift spectra of bacterial and mammalian cells have revealed that many Raman lines observed at 4-6 K, do not appear in the spectra of cells held at 300 K. At 300 K, Raman activity, at set frequencies, is observed only when the cells are metabolically active; however, the actual live cell spectrum, between 0 and 3400 cm -1 , has been found to alter in a specific way with time as the cells' progress through their life cycles. Lines above 300 cm -1 , from in vivo Raman active states, appear to shift to higher wave numbers whereas those below 300 cm -1 seem to shift to lower ones. The transient nature of many shift lines observed and the intensity of them when present in the spectrum indicates that, in, vivo, a metabolically induced condensation of closely related states occurs at a set time in the life of a living cell. In addition, the calculated ratio between the intensities of Stokes and anti-Stokes lines observed suggests that the metabolically induced 'collective' Raman active states are produced, in vivo, by non thermal means. It appears, therefore, that the energetics of the well established cell 'time clock' may be studied by laser-Raman spectroscopy; moreover, Raman spectroscopy may yield a new type of information regarding the physics of such biological phenomena as nutrition, virus infection and oncogenesis. (orig.)

  11. Waveguidance by the photonic bandgap effect in optical fibres

    DEFF Research Database (Denmark)

    Broeng, Jes; Søndergaard, Thomas; Barkou, Stig Eigil

    1999-01-01

    Photonic crystals form a new class of intriguing building blocks to be utilized in future optoelectronics and electromagnetics. One of the most exciting possiblilties offered by phtonic crystals is the realization of new types of electromagnetic waveguides. In the optical domain, the most mature...... technology for such photonic bandgap (PBG) waveguides is in optical fibre configurations. These new fibres can be classified in a fundamentally different way to all optical waveguides and possess radically different guiding properties due to PBG guidance, as opposed to guidance by total internal refelction....... In this paper we summarize and review our theoretical work demonstrating the underlying physical principles of PBG guiding optical fibres and discuss some of their unique waveguiding properties....

  12. Raman and Photoluminescence Spectroscopy in Mineral Identification

    Science.gov (United States)

    Kuehn, J. W.

    2014-06-01

    Raman spectroscopy is particularly useful for rapid identification of minerals and gemstones. Raman spectrometers also allow PL studies for authentication of samples and geological provenance, diamond type screening and detection of HPHT treatments.

  13. Characterization of bundled and individual triple-walled carbon nanotubes by resonant Raman spectroscopy.

    Science.gov (United States)

    Hirschmann, Thomas Ch; Araujo, Paulo T; Muramatsu, Hiroyuki; Zhang, Xu; Nielsch, Kornelius; Kim, Yoong Ahm; Dresselhaus, Mildred S

    2013-03-26

    The optical characterization of bundled and individual triple-walled carbon nanotubes was studied for the first time in detail by using resonant Raman spectroscopy. In our approach, the outer tube of a triple-walled carbon nanotube system protects the two inner tubes (or equivalently the inner double-walled carbon nanotube) from external environment interactions making them a partially isolated system. Following the spectral changes and line-widths of the radial breathing modes and G-band by performing laser energy dependent Raman spectroscopy, it is possible to extract important information as regards to the electronic and vibrational properties, tube diameters, wall-to-wall distances, radial breathing mode, and G-band resonance evolutions as well as high-curvature intertube interactions in isolated double- and triple-walled carbon nanotube systems.

  14. Tissue classification and diagnostics using a fiber probe for combined Raman and fluorescence spectroscopy

    Science.gov (United States)

    Cicchi, Riccardo; Anand, Suresh; Crisci, Alfonso; Giordano, Flavio; Rossari, Susanna; De Giorgi, Vincenzo; Maio, Vincenza; Massi, Daniela; Nesi, Gabriella; Buccoliero, Anna Maria; Guerrini, Renzo; Pimpinelli, Nicola; Pavone, Francesco S.

    2015-07-01

    Two different optical fiber probes for combined Raman and fluorescence spectroscopic measurements were designed, developed and used for tissue diagnostics. Two visible laser diodes were used for fluorescence spectroscopy, whereas a laser diode emitting in the NIR was used for Raman spectroscopy. The two probes were based on fiber bundles with a central multimode optical fiber, used for delivering light to the tissue, and 24 surrounding optical fibers for signal collection. Both fluorescence and Raman spectra were acquired using the same detection unit, based on a cooled CCD camera, connected to a spectrograph. The two probes were successfully employed for diagnostic purposes on various tissues in a good agreement with common routine histology. This study included skin, brain and bladder tissues and in particular the classification of: malignant melanoma against melanocytic lesions and healthy skin; urothelial carcinoma against healthy bladder mucosa; brain tumor against dysplastic brain tissue. The diagnostic capabilities were determined using a cross-validation method with a leave-one-out approach, finding very high sensitivity and specificity for all the examined tissues. The obtained results demonstrated that the multimodal approach is crucial for improving diagnostic capabilities. The system presented here can improve diagnostic capabilities on a broad range of tissues and has the potential of being used for endoscopic inspections in the near future.

  15. Revealing New Structural Insights from Surfactant Micelles through DLS, Microrheology and Raman Spectroscopy

    Directory of Open Access Journals (Sweden)

    Samiul Amin

    2015-06-01

    Full Text Available The correlation between molecular changes and microstructural evolution of rheological properties has been demonstrated for the first time in a mixed anionic/zwitterionic surfactant-based wormlike micellar system. Utilizing a novel combination of DLS-microrheology and Raman Spectroscopy, the effect of electrostatic screening on these properties of anionic (SLES and zwitterionic (CapB surfactant mixtures was studied by modulating the NaCl concentration. As Raman Spectroscopy delivers information about the molecular structure and DLS-microrheology characterizes viscoelastic properties, the combination of data delivered allows for a deeper understanding of the molecular changes underlying the viscoelastic ones. The high frequency viscoelastic response obtained through DLS-microrheology has shown the persistence of the Maxwell fluid response for low viscosity solutions at high NaCl concentrations. The intensity of the Raman band at 170 cm−1 exhibits very strong correlation with the viscosity variation. As this Raman band is assigned to hydrogen bonding, its variation with NaCl concentration additionally indicates differences in water structuring due to potential microstructural differences at low and high NaCl concentrations. The microstructural differences at low and high NaCl concentrations are further corroborated by persistence of a slow mode at the higher NaCl concentrations as seen through DLS measurements. The study illustrates the utility of the combined DLS, DLS-optical microrheology and Raman Spectroscopy in providing new molecular structural insights into the self-assembly process in complex fluids.

  16. Monitoring the oxidation of nuclear fuel cladding using Raman spectroscopy

    International Nuclear Information System (INIS)

    Mi, Hongyi; Mikael, Solomon; Allen, Todd; Sridharan, Kumar; Butt, Darryl; Blanchard, James P.; Ma, Zhenqiang

    2014-01-01

    In order to observe Zircaloy-4 (Zr-4) cladding oxidation within a spent fuel canister, cladding oxidized in air at 500 °C was investigated by micro-Raman spectroscopy to measure the oxide layer thickness. Systematic Raman scans were performed to study the relationship between typical Raman spectra and various oxide layer thicknesses. The thicknesses of the oxide layers developed for various exposure times were measured by cross-sectional Scanning Electron Microscopy (SEM). The results of this work reveal that each oxide layer thickness has a corresponding typical Raman spectrum. Detailed analysis suggests that the Raman scattering peaks around wave numbers of 180 cm −1 and 630 cm −1 are the best choices for accurately determining the oxide layer thickness. After Gaussian–Lorentzian deconvolution, these two peaks can be quantitatively represented by four peaks. The intensities of the deconvoluted peaks increase consistently as the oxide layer becomes thicker and sufficiently strong signals are produced, allowing one to distinguish the bare and oxidized cladding samples, as well as samples with different oxide layer thicknesses. Hence, a process that converts sample oxide layer thickness to optical signals can be achieved

  17. Difference Raman spectroscopy of DNA molecules

    International Nuclear Information System (INIS)

    Anokhin, Andrey S; Yuzyuk, Yury I; Gorelik, Vladimir S; Dovbeshko, Galina I; Pyatyshev, Alexander Yu

    2015-01-01

    In this paper the micro-Raman spectra of calf DNA for different points of DNA sample have been recorded. The Raman spectra were made with help of difference Raman spectroscopy technique. Raman spectra were recorded with high spatial resolution from different points of the wet and dry samples in different spectral range (100÷4000cm −1 ) using two lasers: argon (514.5 nm) and helium -neon (632.8 nm). The significant differences in the Raman spectra for dry and wet DNA and for different points of DNA molecules were observed. The obtained data on difference Raman scattering spectra of DNA molecules may be used for identification of DNA types and for analysis of genetic information associated with the molecular structure of this molecule

  18. Advanced feed-through systems for in-well optical fibre sensing

    International Nuclear Information System (INIS)

    Shiach, G; Nolan, A; McAvoy, S; McStay, D; Prel, C; Smith, M

    2007-01-01

    A new optical fibre feed-through for use in subsea in-well optical fibre sensing systems is reported. The new feed-through is compatible for use with standard subsea Christmas Tree penetrators and allows multiple re-mating of the feed-through over the lifetime of the device. The system has been extensively tested under in-well conditions and found to conform to the performance requirements. The new feed-through is planned to be used in one of the first subsea optical fibre in-well sensing systems

  19. Investigation of Ferroelectric Domain Walls by Raman Spectroscopy

    Science.gov (United States)

    Stone, Gregory A.

    Ferroelectric materials are characterized by an intrinsic spontaneous electric dipole moment that can be manipulated by the application of an electric field. Regions inside the crystal, known as domains, can have the spontaneous dipole moments oriented in a different direction than the surrounding crystal. Due to favorable piezoelectric, pyroelectric, electro-optic, and nonlinear optical properties, ferroelectric materials are attractive for commercial applications. Many devices, such as nonlinear frequency converters, require precisely engineered domain patterns. The properties of domains and their boundaries, known as domain walls, are vital to the performance and limitations of these devices. As a result, ferroelectric domains and the domain walls have been the focus of many scientific studies. Despite all this work, questions remain regarding their properties. This work is aimed at developing a better understanding of the properties of the domain wall using confocal Raman spectroscopy. Raman spectra taken from domain walls in Lithium Niobate and Lithium Tantalate reveal two distinct changes in the Raman spectra: (1) Shifts in frequency of the bulk Raman modes, which persists over a range of 0.2-0.5 mu m from the domain wall. The absence of this effect in defect free stoichiometric Lithium Tantalate indicates that the shifts are related to defects inside the crystal. (2) The presence of Raman modes corresponding to phonons propagating orthogonal to the laser beam axis, which are not collected in the bulk crystal. The phonons also preferential propagate normal to the domain wall. These modes are detected up to 0.35 mum from the domain wall. The observation and separation of these effects was made possible by the optimized spatial resolution (0.23 mum) of a home-built scanning confocal microscope and the fact that degeneracy of the transverse and longitudinal phonon polarization is lifted by polar phonons in Lithium Niobate and Lithium Tantalate. Raman

  20. Quantitative Raman Spectroscopy Analysis of Polyhydroxyalkanoates Produced by Cupriavidus necator H16

    Czech Academy of Sciences Publication Activity Database

    Samek, Ota; Obruča, S.; Šiler, Martin; Sedláček, P.; Benešová, P.; Kučera, D.; Márová, I.; Ježek, Jan; Bernatová, Silvie; Zemánek, Pavel

    2016-01-01

    Roč. 16, č. 11 (2016), 1808:1-7 ISSN 1424-8220 R&D Projects: GA ČR(CZ) GA15-20645S; GA MŠk(CZ) LO1212; GA MŠk ED0017/01/01 Institutional support: RVO:68081731 Keywords : Raman spectroscopy * Cupriavidus necator H16 * polyhydroxyalkanoates Subject RIV: BH - Optics, Masers, Lasers Impact factor: 2.677, year: 2016

  1. Optical fibre interferometer measurements on the H-1 heliac

    International Nuclear Information System (INIS)

    Everett, V.A.; Howard, J.N.

    1999-01-01

    Diagnostic techniques developed for discharge and plasma study, including electric and magnetic probes, optical and mass spectrometry, laser scattering, optical and microwave interferometry, Schlieren analysis, and laser Doppler anemometry (Huddlestone and Leonard, 1965) have limitations either with their range of application, their spatial resolution, or their disturbance of the discharge environment. Optical fibre sensors possess several attributes that make them attractive for probing electrical discharges and plasmas, including their insulating-nature, their small dimensions, and their immunity to high voltage and electromagnetic radiation. As insulators, optical fibres create none of the electrical disturbance or breakdown problems often associated with metal probes, and their small dimensions mean that distortion of discharge structure is minimised. With many discharges occurring in environments which are electromagnetically noisy and which involve high voltages and large inductive fields, signal transfer and processing through optical fibres provides significant benefits

  2. Fibre optics compatibility with radiative environment inside PWR containment

    International Nuclear Information System (INIS)

    Breuze, G.; Jucker, P.; Serre, J.

    1993-01-01

    Fibre optic links operating with multiplexed sensors data are potentially attractive for nuclear power plant applications. It hence became essential to test for radiation vulnerability not only transmission support -fibres- but also fibre-end electro-optical components which could be exposed to hostile environment, perhaps in worse conditions than fibres. Present paper gives results of multimode silica-based fibre behaviour during long-term steady-state low dose-rate gamma ray exposure - one year under 0.1 to 0.2 Gy/h. Studies concerned radiation-induced loss (ΔL) measurement of eight different commercially available fibres and bit error-rate (BER) recording of four 1 100 m length data links operating with a 100 m part exposed to gamma-rays. Main result is the good behaviour of pure silica-core fibres, especially a step-index polymer-clad fibre transmitting 850 nm light but also a graded-index fluorine-clad fibre for 1 300 nm window. Mean ΔL values are respectively 3 dB/km and 4.5 dB/km at the exposure end. Complementary result is no influence of gamma-ray exposure upon data link initial 10 -9 BER. (authors). 9 figs., 7 tabs., 26 refs

  3. Sensitivity of Raman spectroscopy to normal patient variability

    Science.gov (United States)

    Vargis, Elizabeth; Byrd, Teresa; Logan, Quinisha; Khabele, Dineo; Mahadevan-Jansen, Anita

    2011-11-01

    Many groups have used Raman spectroscopy for diagnosing cervical dysplasia; however, there have been few studies looking at the effect of normal physiological variations on Raman spectra. We assess four patient variables that may affect normal Raman spectra: Race/ethnicity, body mass index (BMI), parity, and socioeconomic status. Raman spectra were acquired from a diverse population of 75 patients undergoing routine screening for cervical dysplasia. Classification of Raman spectra from patients with a normal cervix is performed using sparse multinomial logistic regression (SMLR) to determine if any of these variables has a significant effect. Results suggest that BMI and parity have the greatest impact, whereas race/ethnicity and socioeconomic status have a limited effect. Incorporating BMI and obstetric history into classification algorithms may increase sensitivity and specificity rates of disease classification using Raman spectroscopy. Studies are underway to assess the effect of these variables on disease.

  4. Nonlinear optics of fibre event horizons.

    Science.gov (United States)

    Webb, Karen E; Erkintalo, Miro; Xu, Yiqing; Broderick, Neil G R; Dudley, John M; Genty, Goëry; Murdoch, Stuart G

    2014-09-17

    The nonlinear interaction of light in an optical fibre can mimic the physics at an event horizon. This analogue arises when a weak probe wave is unable to pass through an intense soliton, despite propagating at a different velocity. To date, these dynamics have been described in the time domain in terms of a soliton-induced refractive index barrier that modifies the velocity of the probe. Here we complete the physical description of fibre-optic event horizons by presenting a full frequency-domain description in terms of cascaded four-wave mixing between discrete single-frequency fields, and experimentally demonstrate signature frequency shifts using continuous wave lasers. Our description is confirmed by the remarkable agreement with experiments performed in the continuum limit, reached using ultrafast lasers. We anticipate that clarifying the description of fibre event horizons will significantly impact on the description of horizon dynamics and soliton interactions in photonics and other systems.

  5. In vitro quantitation of human femoral artery atherosclerosis using near-infrared Raman spectroscopy

    Science.gov (United States)

    Dykes, Ava C.; Anastasiadis, Pavlos; Allen, John S., III; Sharma, Shiv K.

    2012-06-01

    Near-infrared Raman spectroscopy has been used in vitro to identify calcified atherosclerotic plaques in human femoral arteries. Raman techniques allow for the identification of these plaques in a nondestructive manner, which may allow for the diagnosis of coronary artery disease in cardiac patients in the future. As Raman spectroscopy also reveals chemical information about the composition of the arteries, it can also be used as a prognostic tool. The in vivo detection of atherosclerotic plaques at risk for rupture in cardiac patients will enhance treatment methods while improving clinical outcomes for these procedures. Raman spectra were excited by an Invictus 785-nm NIR laser and measured with a fiber-coupled micro-Raman RXN system (Kaiser Optical Systems, Inc., Ann Arbor, MI) equipped with a 785 nm CW laser and CCD detector. Chemical mapping of arteries obtained post mortem allowed for the discrete location of atherosclerotic plaques. Raman peaks at 961 and 1073 cm-1 reveal the presence of calcium hydroxyapatite and carbonate apatite, which are known to be present in calcified plaques. By mapping the locations of these peaks the boundaries of the plaques can be precisely determined. Areas of varying degrees of calcification were also identified. Because this can be useful in determining the degree of plaque calcification and vessel stenosis, this may have a significant impact on the clinical treatment of atherosclerotic plaques in the future.

  6. Nuisance alarm suppression techniques for fibre-optic intrusion detection systems

    Science.gov (United States)

    Mahmoud, Seedahmed S.; Visagathilagar, Yuvaraja; Katsifolis, Jim

    2012-02-01

    The suppression of nuisance alarms without degrading sensitivity in fibre-optic intrusion detection systems is important for maintaining acceptable performance. Signal processing algorithms that maintain the POD and minimize nuisance alarms are crucial for achieving this. A level crossings algorithm is presented for suppressing torrential rain-induced nuisance alarms in a fibre-optic fence-based perimeter intrusion detection system. Results show that rain-induced nuisance alarms can be suppressed for rainfall rates in excess of 100 mm/hr, and intrusion events can be detected simultaneously during rain periods. The use of a level crossing based detection and novel classification algorithm is also presented demonstrating the suppression of nuisance events and discrimination of nuisance and intrusion events in a buried pipeline fibre-optic intrusion detection system. The sensor employed for both types of systems is a distributed bidirectional fibre-optic Mach Zehnder interferometer.

  7. Isolan - A Fibre Optic Network Conforming To IEEE 802.3 Standards

    Science.gov (United States)

    Roworth, D. A. A.; Howe, N.

    1986-10-01

    The progress of the IEEE 802.3 standard for fibre optic LANs is indicated with reference to both mixed media networks and full fibre networks. For a fibre optic network the most suitable layout is a "snowflake" topology composed of multiport repeaters and active fibre hubs. A range of components is described which enables the realisation of such a topology in conformance with the IEEE 802.3 standard.

  8. Ion beam nanopatterning and micro-Raman spectroscopy analysis on HOPG for testing FIB performances

    International Nuclear Information System (INIS)

    Archanjo, B.S.; Maciel, I.O.; Martins Ferreira, E.H.; Peripolli, S.B.; Damasceno, J.C.; Achete, C.A.; Jorio, A.

    2011-01-01

    This work reports Ga + focused ion beam nanopatterning to create amorphous defects with periodic square arrays in highly oriented pyrolytic graphite and the use of Raman spectroscopy as a new protocol to test and compare progresses in ion beam optics, for low fluence bombardment or fast writing speed. This can be ultimately used as a metrological tool for comparing different FIB machines and can contribute to Focused Ion Beam (FIB) development in general for tailoring nanostructures with higher precision. In order to do that, the amount of ion at each spot was varied from about 10 6 down to roughly 1 ion per dot. These defects were also analyzed by using high resolution scanning electron microscopy and atomic force microscopy. The sensitivities of these techniques were compared and a geometrical model is proposed for micro-Raman spectroscopy in which the intensity of the defect induced D band, for a fixed ion dose, is associated with the diameter of the ion beam. In addition, the lateral increase in the bombarded spot due to the cascade effect of the ions on graphite surface was extracted from this model. A semi-quantitative analysis of the distribution of ions at low doses per dot or high writing speed for soft modification of materials is discussed. -- Highlights: → Highly oriented pyrolytic graphite surface is bombarded using a focused ion beam. → Raman spectroscopy is used to propose a new protocol to test focused ion beam optics. → Scattering diameter of the ions on HOPG surface is experimentally obtained. → Optical limitations of the ion column in fast writing speed are discussed. → Small level of modifications is considered for changing graphene conductive properties.

  9. Characterization of conducting polyaniline blends by Resonance Raman Spectroscopy

    International Nuclear Information System (INIS)

    Silva, Jose E. Pereira da; Temperini, Marcia L.A.; Torresi, Susana I. Cordoba de

    2005-01-01

    Raman and optical microscopy were used to investigate possible interactions between polyaniline (PANI) and different insulating polymers in conducting blends. Resonance Raman and optical micrographs were used to study the physical interaction in materials. Analysis Raman spectra was done investigating the relative intensity of bands at 574 and 607 cm -1 . A relationship between Raman bands and conductivity was also proposed. (author)

  10. Photon Irradiation Response on Ge and Al-Doped SiO2 Optical Fibres

    Science.gov (United States)

    Yaakob, Nor Haliza; Wagiran, Husin; Ramli, Ahmad Termizi; Ali, Hassan; Asni, Hazila

    2010-07-01

    Recently, research groups have reported a number of radiation effects on the applications of SiO2 optical fibres with possible use as dosimeter material because these optical fibre provide a good basis for medical radiation dosimetry. The objective of this study is to investigate the thermoluminescence response and fading characteristic for germanium and aluminium doped SiO2 optical fibres with photon irradiation. These optical fibres are placed in solid phantom and irradiated to 6 and 10 MV photon beam at dose ranging from 0.06 Gy to 0.24 Gy using Primus MLC 3339 linear accelerator at Hospital Sultan Ismail, Johor Bahru. In fading studies, the TL measurements were continued up to 14 days period. The optical fibres will produce glow curves whereby the information is then analyzed. Al and Ge-doped optical fibres have a linear dose-TL signal relationship that is proportionality between the TL signal and the doses. Comparison for TL response between different linear accelerator showed a good agreement because these optical fibres also have a linear dose-TL signal relationship even using different equipments.

  11. A novel method of rapidly modeling optical properties of actual photonic crystal fibres

    International Nuclear Information System (INIS)

    Li-Wen, Wang; Shu-Qin, Lou; Wei-Guo, Chen; Hong-Lei, Li

    2010-01-01

    The flexible structure of photonic crystal fibre not only offers novel optical properties but also brings some difficulties in keeping the fibre structure in the fabrication process which inevitably cause the optical properties of the resulting fibre to deviate from the designed properties. Therefore, a method of evaluating the optical properties of the actual fibre is necessary for the purpose of application. Up to now, the methods employed to measure the properties of the actual photonic crystal fibre often require long fibre samples or complex expensive equipments. To our knowledge, there are few studies of modeling an actual photonic crystal fibre and evaluating its properties rapidly. In this paper, a novel method, based on the combination model of digital image processing and the finite element method, is proposed to rapidly model the optical properties of the actual photonic crystal fibre. Two kinds of photonic crystal fibres made by Crystal Fiber A/S are modeled. It is confirmed from numerical results that the proposed method is simple, rapid and accurate for evaluating the optical properties of the actual photonic crystal fibre without requiring complex equipment. (rapid communication)

  12. Performance emulation and parameter estimation for nonlinear fibre-optic links

    DEFF Research Database (Denmark)

    Piels, Molly; Porto da Silva, Edson; Zibar, Darko

    2016-01-01

    Fibre-optic communication systems, especially when operating in the nonlinear regime, generally do not perform exactly as theory would predict. A number of methods for data-based evaluation of nonlinear fibre-optic link parameters, both for accurate performance emulation and optimization...

  13. Flow diagnostics using fibre optics

    Indian Academy of Sciences (India)

    hypersonic vehicle with a 2-component fibre-optic strain-gauge balance. ... ment suffers a fall in accuracy to uncomfortable levels (more than 5%) and the measurement .... 15 kW motor with an associated thyristor speed-control system.

  14. Raman spectroscopy an intensity approach

    CERN Document Server

    Guozhen, Wu

    2017-01-01

    This book summarizes the highlights of our work on the bond polarizability approach to the intensity analysis. The topics covered include surface enhanced Raman scattering, Raman excited virtual states and Raman optical activity (ROA). The first chapter briefly introduces the Raman effect in a succinct but clear way. Chapter 2 deals with the normal mode analysis. This is a basic tool for our work. Chapter 3 introduces our proposed algorithm for the Raman intensity analysis. Chapter 4 heavily introduces the physical picture of Raman virtual states. Chapter 5 offers details so that the readers can have a comprehensive idea of Raman virtual states. Chapter 6 demonstrates how this bond polarizability algorithm is extended to ROA intensity analysis. Chapters 7 and 8 offer details on ROA, showing many findings on ROA mechanism that were not known or neglected before. Chapter 9 introduces our proposed classical treatment on ROA which, as combined with the results from the bond polarizability analysis, leads to a com...

  15. Fibre and components induced limitations in high capacity optical networks

    DEFF Research Database (Denmark)

    Peucheret, Christophe

    2003-01-01

    The design of future all-optical networks relies on the knowledge of the physical layer transport properties. In this thesis, we focus on two types of system impairments: those induced by the non-ideal transfer functions of optical filters to be found in network elements such as optical add...... design in order to maximise the spectral efficiency in a four add-drop node ring network. The concept of "normalised transmission sections" is introduced in order to ease the dimensioning of transparent domains in future all-optical networks. Normalised sections based on standard single mode fibre (SMF......-drop multiplexers (OADM) and optical cross-connects (OXC), as well as those due to the interaction of group-velocity dispersion, optical fibre non-linearities and accumulation of amplifier noise in the transmission path. The dispersion of fibre optics components is shown to limit their cascadability. Dispersion...

  16. Flat Ge-doped optical fibres for food irradiation dosimetry

    Energy Technology Data Exchange (ETDEWEB)

    Noor, N. Mohd; Jusoh, M. A. [Department of Imaging, Faculty of Medicine and Health Sciences, Universiti Putra Malaysia, 43400 UPM Serdang, Selangor (Malaysia); Razis, A. F. Abdull [Food Safety Research Centre, Faculty of Food Science and Technology, Universiti Putra Malaysia, 43400 UPM Serdang, Selangor (Malaysia); Laboratory of UPM-MAKNA Cancer Research, Institute of Bioscience, Universiti Putra Malaysia, 43400 UPM Serdang, Selangor (Malaysia); Alawiah, A. [Faculty of Engineering and Technology, Multimedia University, 75450 Malacca (Malaysia); Bradley, D. A. [Department of Physics, University of Surrey, Guildford, Surrey GU2 7XH (United Kingdom); Department of Physics, University of Malaya, 50603 Kuala Lumpur (Malaysia)

    2015-04-24

    Exposing food to radiation can improve hygiene quality, germination control, retard sprouting, and enhance physical attributes of the food product. To provide for food safety, radiation dosimetry in irradiated food is required. Herein, fabricated germanium doped (Ge-doped) optical fibres have been used. The fibres have been irradiated using a gamma source irradiator, doses in the range 1 kGy to 10 kGy being delivered. Using Ge-doped optical fibres of variable size, type and dopant concentration, study has been made of linearity, reproducibility, and fading. The thermoluminescence (TL) yield of the fibres were obtained and compared. The fibres exhibit a linear dose response over the investigated range of doses, with mean reproducibility to within 2.69 % to 8.77 %, exceeding the dose range of all commercial dosimeters used in evaluating high doses for the food irradiation industry. TL fading of the Ge-doped flat fibres has been found to be < 13%.

  17. Flat Ge-doped optical fibres for food irradiation dosimetry

    International Nuclear Information System (INIS)

    Noor, N. Mohd; Jusoh, M. A.; Razis, A. F. Abdull; Alawiah, A.; Bradley, D. A.

    2015-01-01

    Exposing food to radiation can improve hygiene quality, germination control, retard sprouting, and enhance physical attributes of the food product. To provide for food safety, radiation dosimetry in irradiated food is required. Herein, fabricated germanium doped (Ge-doped) optical fibres have been used. The fibres have been irradiated using a gamma source irradiator, doses in the range 1 kGy to 10 kGy being delivered. Using Ge-doped optical fibres of variable size, type and dopant concentration, study has been made of linearity, reproducibility, and fading. The thermoluminescence (TL) yield of the fibres were obtained and compared. The fibres exhibit a linear dose response over the investigated range of doses, with mean reproducibility to within 2.69 % to 8.77 %, exceeding the dose range of all commercial dosimeters used in evaluating high doses for the food irradiation industry. TL fading of the Ge-doped flat fibres has been found to be < 13%

  18. Characterization of alkali silica reaction gels using Raman spectroscopy

    International Nuclear Information System (INIS)

    Balachandran, C.; Muñoz, J.F.; Arnold, T.

    2017-01-01

    The ability of Raman spectroscopy to characterize amorphous materials makes this technique ideal to study alkali silica reaction (ASR) gels. The structure of several synthetic ASR gels was thoroughly characterized using Raman Spectroscopy. The results were validated with additional techniques such as Fourier transmission infrared spectroscopy, X-ray powder diffraction and thermogravimetric analysis. The Raman spectra were found to have two broad bands in the 800 to 1200 cm −1 range and the 400 to 700 cm −1 range indicating the amorphous nature of the gel. Important information regarding the silicate polymerization was deduced from both of these spectral regions. An increase in alkali content of the gels caused a depolymerization in the silicate framework which manifested in the Raman spectra as a gradual shift of predominant peaks in both regions. The trends in silicate depolymerization were in agreement with results from a NMR spectroscopy study on similar synthetic ASR gels.

  19. Polarization Raman spectroscopy of GaN nanorod bundles

    International Nuclear Information System (INIS)

    Tite, T.; Lee, C. J.; Chang, Y.-M.

    2010-01-01

    We performed polarization Raman spectroscopy on single wurtzite GaN nanorod bundles grown by plasma-assisted molecular beam epitaxy. The obtained Raman spectra were compared with those of GaN epilayer. The spectral difference between the GaN nanorod bundles and epilayer reveals the relaxation of Raman selection rules in these GaN nanorod bundles. The deviation of polarization-dependent Raman spectroscopy from the prediction of Raman selection rules is attributed to both the orientation of the crystal axis with respect to the polarization vectors of incident and scattered light and the structural defects in the merging boundary of GaN nanorods. The presence of high defect density induced by local strain at the merging boundary was further confirmed by transmission electron microscopy. The averaged defect interspacing was estimated to be around 3 nm based on the spatial correlation model.

  20. Raman Spectroscopy Differentiates Each Tissue From the Skin to the Spinal Cord: A Novel Method for Epidural Needle Placement?

    Science.gov (United States)

    Anderson, T. Anthony; Kang, Jeon Woong; Gubin, Tatyana; Dasari, Ramachandra R.; So, Peter T. C.

    2016-01-01

    BACKGROUND Neuraxial anesthesia and epidural steroid injection techniques require precise anatomical targeting to ensure successful and safe analgesia. Previous studies suggest that only some of the tissues encountered during these procedures can be identified by spectroscopic methods, and no previous study has investigated the use of Raman, diffuse reflectance, and fluorescence spectroscopies. The authors hypothesized that real-time needle-tip spectroscopy may aid epidural needle placement and tested the ability of spectroscopy to distinguish each of the tissues in the path of neuraxial needles. METHODS For comparison of detection methods, the spectra of individual, dissected ex vivo paravertebral and neuraxial porcine tissues were collected using Raman spectroscopy (RS), diffuse reflectance spectroscopy (DRS), and fluorescence spectroscopy (FS). Real-time spectral guidance was tested using a 2 mm inner diameter fiber optic probe-in-needle device. Raman spectra were collected during the needle’s passage through intact paravertebral and neuraxial porcine tissue and analyzed afterward. The RS tissue signatures were verified as mapping to individual tissue layers using histochemical staining and widefield microscopy. RESULTS Raman spectroscopy revealed a unique spectrum for all ex vivo paravertebral and neuraxial tissue layers; DRS and FS spectra were not distinct for all tissues. Moreover, when accounting for the expected order of tissues, real-time Raman spectra recorded during needle insertion also permitted identification of each paravertebral and neuraxial porcine tissue. CONCLUSIONS This study demonstrates Raman spectroscopy can distinguish the tissues encountered during epidural needle insertion. This technology may prove useful during needle placement by providing evidence of its anatomical localization. PMID:27466032

  1. Power transients in time-division multiplexed discrete Raman fibre amplifier

    Czech Academy of Sciences Publication Activity Database

    Karásek, Miroslav; Radil, J.; Vojtěch, J.

    2009-01-01

    Roč. 282, č. 14 (2009), s. 2944-2949 ISSN 0030-4018 R&D Projects: GA AV ČR 1ET300670503 Institutional research plan: CEZ:AV0Z20670512 Keywords : optical communications * optical fibre * time division multiplexing Subject RIV: JA - Electronics ; Optoelectronics, Electrical Engineering Impact factor: 1.316, year: 2009

  2. Dispersion-based stimulated Raman scattering spectroscopy, holography, and optical coherence tomography.

    Science.gov (United States)

    Robles, Francisco E; Fischer, Martin C; Warren, Warren S

    2016-01-11

    Stimulated Raman scattering (SRS) enables fast, high resolution imaging of chemical constituents important to biological structures and functional processes, both in a label-free manner and using exogenous biomarkers. While this technology has shown remarkable potential, it is currently limited to point scanning and can only probe a few Raman bands at a time (most often, only one). In this work we take a fundamentally different approach to detecting the small nonlinear signals based on dispersion effects that accompany the loss/gain processes in SRS. In this proof of concept, we demonstrate that the dispersive measurements are more robust to noise compared to amplitude-based measurements, which then permit spectral or spatial multiplexing (potentially both, simultaneously). Finally, we illustrate how this method may enable different strategies for biochemical imaging using phase microscopy and optical coherence tomography.

  3. Channel addition/removal response in Raman fibre amplifiers: modeling and experimentation

    Czech Academy of Sciences Publication Activity Database

    Karásek, Miroslav; Menif, M.

    2002-01-01

    Roč. 20, č. 9 (2002), s. 1680-1687 ISSN 0733-8724 R&D Projects: GA AV ČR IAA2067202 Institutional research plan: CEZ:AV0Z2067918 Keywords : optical communication * wavelength division multiplexing * optical fibre amplifiers Subject RIV: BH - Optics, Masers, Lasers Impact factor: 1.791, year: 2002

  4. Strain characterization of FinFETs using Raman spectroscopy

    International Nuclear Information System (INIS)

    Kaleli, B.; Hemert, T. van; Hueting, R.J.E.; Wolters, R.A.M.

    2013-01-01

    Metal induced strain in the channel region of silicon (Si) fin-field effect transistor (FinFET) devices has been characterized using Raman spectroscopy. The strain originates from the difference in thermal expansion coefficient of Si and titanium-nitride. The Raman map of the device region is used to determine strain in the channel after preparing the device with the focused ion beam milling. Using the Raman peak shift relative to that of relaxed Si, compressive strain values up to – 0.88% have been obtained for a 5 nm wide silicon fin. The strain is found to increase with reducing fin width though it scales less than previously reported results from holographic interferometry. In addition, finite-element method (FEM) simulations have been utilized to analyze the amount of strain generated after thermal processing. It is shown that obtained FEM simulated strain values are in good agreement with the calculated strain values obtained from Raman spectroscopy. - Highlights: ► Strain is characterized in nanoscale devices with Raman spectroscopy. ► There is a fin width dependence of the originated strain. ► Strain levels obtained from this technique is in correlation with device simulations

  5. Evanescent field characterisation for a d-shaped optical fibre using scanning near-field optical microscopy

    International Nuclear Information System (INIS)

    Huntington, S.T.; Nugent, K.A.; Roberts, A.; Mulvaney, P.; Lo, K.M.

    1997-01-01

    Scanning near field optical microscopy is used to measure the evanescent filed and mode profile of a Ge-doped D-shaped optical fibre. The structure of the fibre is determined by differential etching followed by an investigation of the resultant topography with an atomic force microscope. This information is then used to theoretically model the expected behaviour of the fibre and it is shown that the theoretically model the expected behaviour of the fibre and it is shown that the theoretical results are in excellent agreement with the experimentally observed fields

  6. Next generation in-situ optical Raman sensor for seawater investigations

    Science.gov (United States)

    Kolomijeca, A.; Kwon, Y.-H.; Ahmad, H.; Kronfeldt, H.-D.

    2012-04-01

    We introduce the next generation of optical sensors based on a combination of surfaced enhanced Raman scattering (SERS) and shifted excitation Raman difference spectroscopy (SERDS) suited for investigations of tiny concentrations of pollutions in the seawater. First field measurements were carried out in the Arctic area which is of global interest since it is more affected by global warming caused climatic changes than any other areas of our planet and it is a recipient for many toxic organic pollutants. A significant long-range atmospheric transport of pollutants to Svalbard is mainly originated from industrialized countries in Europe and North America during the last decades. Therefore, the main interest is to investigate the Arctic water column and also the sediments. Standard chemical methods for water/sediment analysis are extremely accurate but complex and time-consuming. The primary objective of our study was to develop a fast response in-situ optical sensor for easy to use and quick analysis. The system comprises several components: a handheld measurement head containing a 671 nm microsystem diode laser and the Raman optical bench, a laser driver electronics board, a custom-designed miniature spectrometer with an optical resolution of 8 cm-1 and a netbook to control the spectrometer as well as for data evaluation. We introduced for the first time the portable Raman sensor system on an Artic sea-trial during a three week cruise on board of the James Clark Ross research vessel in August 2011. Numerous Raman and SERS measurements followed by SERDS evaluations were taken around locations 78° N and 9° E. Different SERS substrates developed for SERS measurements in sea-water were tested for their capability to detect different substances (PAHs) in the water down to very small (nmol/l) concentrations. Stability tests of the substrates were carried out also for the applicability of our system e.g. on a mooring. Details of the in-situ Raman sensor were presented

  7. Practical aspects of quantitative laser Raman microprobe spectroscopy for the study of fluid inclusions

    International Nuclear Information System (INIS)

    Pasteris, J.D.; Wopenka, B.; Seitz, J.C.

    1988-01-01

    This paper is addressed to both geologists who use laser Raman microprobe (LRM) spectroscopy to analyze fluid inclusions and to those who want to evaluate analyses done by this technique. Emphasis is on how to obtain quantitative analyses of fluid inclusions. The authors discuss the basic method of fluid inclusion analysis by LRM spectroscopy and the levels of accuracy and precision attainable with this technique. They evaluate which kinds of fluid inclusions and host mineral matrices will yield the most reliable compositional data. Necessary sample preparations, detection limits, problems with fluorescence, dependence of Raman scattering efficiencies on density, and many other questions asked at the workshop on Raman spectroscopy during the 1987 ACROFI meeting also are addressed. The complementary nature, advantages, and disadvantages of both LRM spectroscopy and microthermometry, the two techniques most frequently used for the analysis of individual fluid inclusions, are emphasized. Some discussions are intended to held LRM users calibrate, and evaluate the optical characteristics of, their particular instruments. It is hoped that this paper will further LRM users in finding a common ground on which to discuss the differences and similarities among different LRM instruments, and that it will encourage a future consensus on efficient means of calibration and on interlaboratory standards

  8. Numerical modelling of multimode fibre-optic communication lines

    Energy Technology Data Exchange (ETDEWEB)

    Sidelnikov, O S; Fedoruk, M P [Novosibirsk State University, Novosibirsk (Russian Federation); Sygletos, S; Ferreira, F [Aston University, England, Birmingham, B4 7ET (United Kingdom)

    2016-01-31

    The results of numerical modelling of nonlinear propagation of an optical signal in multimode fibres with a small differential group delay are presented. It is found that the dependence of the error vector magnitude (EVM) on the differential group delay can be reduced by increasing the number of ADC samples per symbol in the numerical implementation of the differential group delay compensation algorithm in the receiver. The possibility of using multimode fibres with a small differential group delay for data transmission in modern digital communication systems is demonstrated. It is shown that with increasing number of modes the strong coupling regime provides a lower EVM level than the weak coupling one. (fibre-optic communication lines)

  9. Structure fits the purpose: photonic crystal fibers for evanescent-field surface-enhanced Raman spectroscopy

    Czech Academy of Sciences Publication Activity Database

    Oo, M. K .K.; Han, Y.; Kaňka, Jiří; Sukhishvili, S.; Du, H.

    2010-01-01

    Roč. 35, č. 4 (2010), s. 466-468 ISSN 0146-9592 R&D Projects: GA ČR GA102/08/1719 Institutional research plan: CEZ:AV0Z20670512 Keywords : Photonic crystal fiber * Raman spectroscopy * Fiber-optic evanescent sensor Subject RIV: JA - Electronics ; Optoelectronics, Electrical Engineering Impact factor: 3.316, year: 2010

  10. [Research Progress of Raman Spectroscopy on Dyestuff Identification of Ancient Relics and Artifacts].

    Science.gov (United States)

    He, Qiu-ju; Wang, Li-qin

    2016-02-01

    As the birthplace of Silk Road, China has a long dyeing history. The valuable information about the production time, the source of dyeing material, dyeing process and preservation status were existed in organic dyestuff deriving from cultural relics and artifacts. However, because of the low contents, complex compositions and easily degraded of dyestuff, it is always a challenging task to identify the dyestuff in relics analyzing field. As a finger-print spectrum, Raman spectroscopy owns unique superiorities in dyestuff identification. Thus, the principle, characteristic, limitation, progress and development direction of micro-Raman spectroscopy (MRS/µ-Raman), near infrared reflection and Fourier transform Raman spectroscopy (NIR-FT-Raman), surface-enhanced Raman spectroscopy (SERS) and resonance raman spectroscopy (RRS) have been introduced in this paper. Furthermore, the features of Raman spectra of gardenia, curcumin and other natural dyestuffs were classified by MRS technology, and then the fluorescence phenomena of purpurin excitated with different wavelength laser was compared and analyzed. At last, gray green silver colloidal particles were made as the base, then the colorant of madder was identified combining with thin layer chromatography (TLC) separation technology and SERS, the result showed that the surface enhancement effect of silver colloidal particles could significantly reduce fluorescence background of the Raman spectra. It is pointed out that Raman spectroscopy is a rapid and convenient molecular structure qualitative methodology, which has broad application prospect in dyestuff analysis of cultural relics and artifacts. We propose that the combination of multi-Raman spectroscopy, separation technology and long distance transmission technology are the development trends of Raman spectroscopy.

  11. Sensitivity of a fibre scattered-light interferometer to external phase perturbations in an optical fibre

    Energy Technology Data Exchange (ETDEWEB)

    Alekseev, A E; Potapov, V T [V.A.Kotel' nikov Institute of Radio Engineering and Electronics, Russian Academy of Sciences, Fryazino Branch, Fryazino, Moscow region (Russian Federation); Gorshkov, B G [OOO ' Petrofaiber' , Russia, Tula region, Novomoskovsk (Russian Federation)

    2015-10-31

    Sensitivity of a fibre scattered-light interferometer to external phase perturbations is studied for the first time. An expression is derived for an average power of a useful signal at the interferometer output under external harmonic perturbations in a signal fibre of the interferometer. It is shown that the maximum sensitivity of the scattered-light interferometer depends on the dispersion of the interferogram intensity. An average signal-to-noise ratio is determined theoretically and experimentally at the output of the interferometer at different amplitudes of external perturbations. Using the measured dependences of the signal-to-noise ratio, the threshold sensitivity of the fibre scattered-light interferometer to external phase perturbations is found. The results obtained can be used to optimise characteristics of optical time-domain reflectometers and to design individual phase-sensitive fibre-optic sensors. (laser applications and other topics in quantum electronics)

  12. Dynamic terahertz spectroscopy of gas molecules mixed with unwanted aerosol under atmospheric pressure using fibre-based asynchronous-optical-sampling terahertz time-domain spectroscopy

    Science.gov (United States)

    Hsieh, Yi-Da; Nakamura, Shota; Abdelsalam, Dahi Ghareab; Minamikawa, Takeo; Mizutani, Yasuhiro; Yamamoto, Hirotsugu; Iwata, Tetsuo; Hindle, Francis; Yasui, Takeshi

    2016-06-01

    Terahertz (THz) spectroscopy is a promising method for analysing polar gas molecules mixed with unwanted aerosols due to its ability to obtain spectral fingerprints of rotational transition and immunity to aerosol scattering. In this article, dynamic THz spectroscopy of acetonitrile (CH3CN) gas was performed in the presence of smoke under the atmospheric pressure using a fibre-based, asynchronous-optical-sampling THz time-domain spectrometer. To match THz spectral signatures of gas molecules at atmospheric pressure, the spectral resolution was optimized to 1 GHz with a measurement rate of 1 Hz. The spectral overlapping of closely packed absorption lines significantly boosted the detection limit to 200 ppm when considering all the spectral contributions of the numerous absorption lines from 0.2 THz to 1 THz. Temporal changes of the CH3CN gas concentration were monitored under the smoky condition at the atmospheric pressure during volatilization of CH3CN droplets and the following diffusion of the volatilized CH3CN gas without the influence of scattering or absorption by the smoke. This system will be a powerful tool for real-time monitoring of target gases in practical applications of gas analysis in the atmospheric pressure, such as combustion processes or fire accident.

  13. Image transport through a disordered optical fibre mediated by transverse Anderson localization

    Science.gov (United States)

    Karbasi, Salman; Frazier, Ryan J.; Koch, Karl W.; Hawkins, Thomas; Ballato, John; Mafi, Arash

    2014-02-01

    Transverse Anderson localization of light allows localized optical-beam-transport through a transversely disordered and longitudinally invariant medium. Its successful implementation in disordered optical fibres recently resulted in the propagation of localized beams of radii comparable to that of conventional optical fibres. Here we demonstrate optical image transport using transverse Anderson localization of light. The image transport quality obtained in the polymer disordered optical fibre is comparable to or better than some of the best commercially available multicore image fibres with less pixelation and higher contrast. It is argued that considerable improvement in image transport quality can be obtained in a disordered fibre made from a glass matrix with near wavelength-size randomly distributed air-holes with an air-hole fill-fraction of 50%. Our results open the way to device-level implementation of the transverse Anderson localization of light with potential applications in biological and medical imaging.

  14. Programmable logic controller optical fibre sensor interface module

    Science.gov (United States)

    Allwood, Gary; Wild, Graham; Hinckley, Steven

    2011-12-01

    Most automated industrial processes use Distributed Control Systems (DCSs) or Programmable Logic Controllers (PLCs) for automated control. PLCs tend to be more common as they have much of the functionality of DCSs, although they are generally cheaper to install and maintain. PLCs in conjunction with a human machine interface form the basis of Supervisory Control And Data Acquisition (SCADA) systems, combined with communication infrastructure and Remote Terminal Units (RTUs). RTU's basically convert different sensor measurands in to digital data that is sent back to the PLC or supervisory system. Optical fibre sensors are becoming more common in industrial processes because of their many advantageous properties. Being small, lightweight, highly sensitive, and immune to electromagnetic interference, means they are an ideal solution for a variety of diverse sensing applications. Here, we have developed a PLC Optical Fibre Sensor Interface Module (OFSIM), in which an optical fibre is connected directly to the OFSIM located next to the PLC. The embedded fibre Bragg grating sensors, are highly sensitive and can detect a number of different measurands such as temperature, pressure and strain without the need for a power supply.

  15. Raman Optical Activity and Raman Spectra of Amphetamine Species

    DEFF Research Database (Denmark)

    Berg, Rolf W.; Shim, Irene; White, Peter Cyril

    2012-01-01

    Theoretical calculations and preliminary measurements of vibrational Raman optical activity (ROA) spectra of different species of amphetamine (amphetamine and amphetamine-H+) are reported for the first time. The quantum chemical calculations were carried out as hybrid ab initio DFT-molecular orbi......Theoretical calculations and preliminary measurements of vibrational Raman optical activity (ROA) spectra of different species of amphetamine (amphetamine and amphetamine-H+) are reported for the first time. The quantum chemical calculations were carried out as hybrid ab initio DFT...... are employed for identification purposes. The DFT calculations show that the most stable conformations are those allowing for close contact between the aromatic ring and the amine hydrogen atoms. The internal rotational barrier within the same amphetamine enanti- omer has a considerable influence on the Raman...

  16. Transcutaneous Raman Spectroscopy of Bone

    Science.gov (United States)

    Maher, Jason R.

    Clinical diagnoses of bone health and fracture risk typically rely upon measurements of bone density or structure, but the strength of a bone is also dependent upon its chemical composition. One technology that has been used extensively in ex vivo, exposed-bone studies to measure the chemical composition of bone is Raman spectroscopy. This spectroscopic technique provides chemical information about a sample by probing its molecular vibrations. In the case of bone tissue, Raman spectra provide chemical information about both the inorganic mineral and organic matrix components, which each contribute to bone strength. To explore the relationship between bone strength and chemical composition, our laboratory has contributed to ex vivo, exposed-bone animal studies of rheumatoid arthritis, glucocorticoid-induced osteoporosis, and prolonged lead exposure. All of these studies suggest that Raman-based predictions of biomechanical strength may be more accurate than those produced by the clinically-used parameter of bone mineral density. The utility of Raman spectroscopy in ex vivo, exposed-bone studies has inspired attempts to perform bone spectroscopy transcutaneously. Although the results are promising, further advancements are necessary to make non-invasive, in vivo measurements of bone that are of sufficient quality to generate accurate predictions of fracture risk. In order to separate the signals from bone and soft tissue that contribute to a transcutaneous measurement, we developed an overconstrained extraction algorithm that is based upon fitting with spectral libraries derived from separately-acquired measurements of the underlying tissue components. This approach allows for accurate spectral unmixing despite the fact that similar chemical components (e.g., type I collagen) are present in both soft tissue and bone and was applied to experimental data in order to transcutaneously detect, to our knowledge for the first time, age- and disease-related spectral

  17. Accuracy Enhancement of Raman Spectroscopy Using Complementary Laser-Induced Breakdown Spectroscopy (LIBS) with Geologically Mixed Samples.

    Science.gov (United States)

    Choi, Soojin; Kim, Dongyoung; Yang, Junho; Yoh, Jack J

    2017-04-01

    Quantitative Raman analysis was carried out with geologically mixed samples that have various matrices. In order to compensate the matrix effect in Raman shift, laser-induced breakdown spectroscopy (LIBS) analysis was performed. Raman spectroscopy revealed the geological materials contained in the mixed samples. However, the analysis of a mixture containing different matrices was inaccurate due to the weak signal of the Raman shift, interference, and the strong matrix effect. On the other hand, the LIBS quantitative analysis of atomic carbon and calcium in mixed samples showed high accuracy. In the case of the calcite and gypsum mixture, the coefficient of determination of atomic carbon using LIBS was 0.99, while the signal using Raman was less than 0.9. Therefore, the geological composition of the mixed samples is first obtained using Raman and the LIBS-based quantitative analysis is then applied to the Raman outcome in order to construct highly accurate univariate calibration curves. The study also focuses on a method to overcome matrix effects through the two complementary spectroscopic techniques of Raman spectroscopy and LIBS.

  18. Blueberry juices: a rapid multi-analysis of quality indicators by means of dispersive Raman spectroscopy excited at 1064 nm

    Science.gov (United States)

    Ciaccheri, L.; Yuan, T.; Zhang, S.; Mencaglia, A. A.; Trono, C.; Yuan, L.; Mignani, A. G.

    2017-04-01

    Blueberry juices produced in China and in Italy were analyzed by means of Raman spectroscopy. The reference data of important nutraceutical indicators such as degrees Brix and carbohydrates were available. Some juices were produced from fresh organic fruits, while others were industrial grade, differing in qualities and prices. Raman spectra obtained with excitation at 1064 nm were acquired using a dispersive fiber-optic spectrometer. Degrees Brix were measured by means of a commercial refractometer, while carbohydrate contents were available from the producers. Multivariate processing was used for predicting Brix and carbohydrates from Raman spectra and from the reference data. Determination coefficients equal to 0.88 and 0.84, respectively, were obtained. This experiment further confirms the excellent potentials of Raman spectroscopy for both non-destructive and rapid assessments of food quality.

  19. Dengue viral infection monitoring from diagnostic to recovery using Raman spectroscopy

    International Nuclear Information System (INIS)

    Firdous, Shamaraz; Anwar, Shahzad

    2015-01-01

    Raman spectroscopy has been found useful for monitoring the dengue patient diagnostic and recovery after infection. In the present work, spectral changes that occurred in the blood sera of a dengue infected patient and their possible utilization for monitoring of infection and recovery were investigated using 532 nm wavelength of light. Raman spectrum peaks for normal and after recovery of dengue infection are observed at 1527, 1170, 1021 cm −1 attributed to guanine, adenine, TRP (protein) carbohydrates peak for solids, and skeletal C–C stretch of lipids acyl chains. Where in the dengue infected patient Raman peaks are at 1467, 1316, 1083, and 860 attributed to CH2/CH3 deformation of lipids and collagen, guanine (B, Z-marker), lipids and protein bands. Due to antibodies and antigen reactions the portions and lipids concentration totally changes in dengue viral infection compared to normal blood. These chemical changes in blood sera of dengue viral infection in human blood may be used as possible markers to indicate successful remission and suggest that Raman spectroscopy may provide a rapid optical method for continuous monitoring or evaluation of a protein bands and an antibodies population. Accumulate acquisition mode was used to reduce noise and thermal fluctuation and improve signal to noise ratio. This in vitro dengue infection monitoring methodology will lead in vivo noninvasive on-line monitoring and screening of viral infected patients and their recovery. (letter)

  20. Raman spectroscopy of triolein under high pressures

    Science.gov (United States)

    Tefelski, D. B.; Jastrzębski, C.; Wierzbicki, M.; Siegoczyński, R. M.; Rostocki, A. J.; Wieja, K.; Kościesza, R.

    2010-03-01

    This article presents results of the high pressure Raman spectroscopy of triolein. Triolein, a triacylglyceride (TAG) of oleic acid, is an unsaturated fat, present in natural oils such as olive oil. As a basic food component and an energy storage molecule, it has considerable importance for food and fuel industries. To generate pressure in the experiment, we used a high-pressure cylindrical chamber with sapphire windows, presented in (R.M. Siegoczyński, R. Kościesza, D.B. Tefelski, and A. Kos, Molecular collapse - modification of the liquid structure induced by pressure in oleic acid, High Press. Res. 29 (2009), pp. 61-66). Pressure up to 750 MPa was applied. A Raman spectrometer in "macro"-configuration was employed. Raman spectroscopy provides information on changes of vibrational modes related to structural changes of triolein under pressure. Interesting changes in the triglyceride C‒H stretching region at 2650-3100 cm-1 were observed under high-pressures. Changes were also observed in the ester carbonyl (C˭ O) stretching region 1700-1780 cm-1 and the C‒C stretching region at 1050-1150 cm-1. The overall luminescence of the sample decreased under pressure, making it possible to set longer spectrum acquisition time and obtain more details of the spectrum. The registered changes suggest that the high-pressure solid phase of triolein is organized as β-polymorphic, as was reported in (C. Akita, T. Kawaguchi, and F. Kaneko, Structural study on polymorphism of cis-unsaturated triacylglycerol: Triolein, J. Phys. Chem. B 110 (2006), pp. 4346-4353; E. Da Silva and D. Rousseau, Molecular order and thermodynamics of the solid-liquid transition in triglycerides via Raman spectroscopy, Phys. Chem. Chem. Phys. 10 (2008), pp. 4606-4613) (with temperature-induced phase transitions). The research has shown that Raman spectroscopy in TAGs under pressure reveals useful information about its structural changes.

  1. Fibre optic sensors in pressurized water reactor alternators

    International Nuclear Information System (INIS)

    Favennec, J.M.; Piguet, M.

    1994-01-01

    Measurement in the electrical engine environment (alternator, transformer...) is identified as one of the two main applications of fibre optic sensors within EDF; the other application niche is the monitoring of civil works (dams, containment building of nuclear reactors...). At the EDF Research and Development Division, temperature and vibration fibre optic sensors were evaluated by the Metrology Service, since their use is under consideration for alternator monitoring. For alternator stator thermal monitoring, the BERTIN company developed a fibre optic sensor network. The optic coding technique is based on broadband source spectral modulation; the sensors are interrogated sequentially by electronic commutation. For alternator stator vibration monitoring, a fibre optic accelerometer was developed in the frame of a manufacturers and universities consortium supported by the French Research and Technology Ministry. The accelerometer is of cantilever beam type and its networking is possible by chromatic multiplexing. The Metrology Service evaluated these temperature and vibration sensors in order to verify their metrological characteristics (bias error, hysteresis, repeatability, resolution, noise, amplitude linearity, response time, frequency response, etc.) and to test their behaviour in harsh alternator environmental conditions (pressure, vibrations and temperature). Ageing and accidental condition resistance tests were also carried out. Temperature sensor test results were very satisfactory. An eight-sensor BERTIN prototype was installed on the Tricastin 1 alternator during the september 1993 nuclear station periodic stop. On the contrary, the accelerometers presented deficient metrological characteristics (shorter span than foreseen, low repeatability...). They need some improvements and could not be installed on alternators. (authors). 5 refs., 8 figs

  2. Optical fibre temperature sensor technology and potential application in absorbed dose calorimetry

    International Nuclear Information System (INIS)

    Allen, P.D.; Hargrave, N.J.

    1992-09-01

    Optical fibre based sensors are proposed as a potential alternative to the thermistors traditionally used as temperature sensors in absorbed dose calorimetry. The development of optical fibre temperature sensor technology over the last ten years is reviewed. The potential resolution of various optical techniques is assessed with particular reference to the requirements of absorbed dose calorimetry. Attention is drawn to other issues which would require investigation before the development of practical optical fibre sensors for this purpose could occur. 192 refs., 5 tabs., 4 figs

  3. Research studies of aging changes of hyaline cartilage surface by using Raman-scattering spectroscopy

    Science.gov (United States)

    Timchenko, E. V.; Timchenko, P. E.; Dolgushkin, D. A.; Volova, L. T.; Lazarev, V. A.; Tyumchenkova, A. S.; Markova, M. D.

    2017-08-01

    The paper presents the results of a comparative analysis by the method of Raman spectroscopy of the joint hyaline cartilage of adults and children. Differences in the spectral characteristics of the surface of articular cartilage are shown. New optical coefficients have been introduced, which make it possible to evaluate the age-related changes in cartilaginous tissue.

  4. Implementation of Deep Ultraviolet Raman Spectroscopy

    DEFF Research Database (Denmark)

    Liu, Chuan

    of the aromatics, Toluene and Naphthalene, in the gasoline. Chapter 6 shows examples of other applications of DUV Raman spectroscopy, for instance for the illegal red food additive: Sudan I. For this dye Raman spectra - useful to indicate an unwanted presence - could not be obtained with green or blue laser line...... Raman spectrometry was further applied to detect another illegal food additive, Melamine, in milk sample. It was shown that the DUV constitutes a more sensitive measurement method than traditional Raman spectrometry and realizes a direct detection in liquid milk. In another research field regarding...... spectra of the gasoline samples. It is virtually unimportant what the rest of the sample consisted of. The most intense characteristic band is located at 1381 cm-1. The Raman spectra of home-made artificial gasoline mixtures - with gradually increasing Naphthalene contents - can be used to determine...

  5. Characterization and discrimination of human breast cancer and normal breast tissues using resonance Raman spectroscopy

    Science.gov (United States)

    Wu, Binlin; Smith, Jason; Zhang, Lin; Gao, Xin; Alfano, Robert R.

    2018-02-01

    Worldwide breast cancer incidence has increased by more than twenty percent in the past decade. It is also known that in that time, mortality due to the affliction has increased by fourteen percent. Using optical-based diagnostic techniques, such as Raman spectroscopy, has been explored in order to increase diagnostic accuracy in a more objective way along with significantly decreasing diagnostic wait-times. In this study, Raman spectroscopy with 532-nm excitation was used in order to incite resonance effects to enhance Stokes Raman scattering from unique biomolecular vibrational modes. Seventy-two Raman spectra (41 cancerous, 31 normal) were collected from nine breast tissue samples by performing a ten-spectra average using a 500-ms acquisition time at each acquisition location. The raw spectral data was subsequently prepared for analysis with background correction and normalization. The spectral data in the Raman Shift range of 750- 2000 cm-1 was used for analysis since the detector has highest sensitivity around in this range. The matrix decomposition technique nonnegative matrix factorization (NMF) was then performed on this processed data. The resulting leave-oneout cross-validation using two selective feature components resulted in sensitivity, specificity and accuracy of 92.6%, 100% and 96.0% respectively. The performance of NMF was also compared to that using principal component analysis (PCA), and NMF was shown be to be superior to PCA in this study. This study shows that coupling the resonance Raman spectroscopy technique with subsequent NMF decomposition method shows potential for high characterization accuracy in breast cancer detection.

  6. Raman Spectroscopy: An Emerging Tool in Neurodegenerative Disease Research and Diagnosis.

    Science.gov (United States)

    Devitt, George; Howard, Kelly; Mudher, Amrit; Mahajan, Sumeet

    2018-03-21

    The pathogenesis underlining many neurodegenerative diseases remains incompletely understood. The lack of effective biomarkers and disease preventative medicine demands the development of new techniques to efficiently probe the mechanisms of disease and to detect early biomarkers predictive of disease onset. Raman spectroscopy is an established technique that allows the label-free fingerprinting and imaging of molecules based on their chemical constitution and structure. While analysis of isolated biological molecules has been widespread in the chemical community, applications of Raman spectroscopy to study clinically relevant biological species, disease pathogenesis, and diagnosis have been rapidly increasing since the past decade. The growing number of biomedical applications has shown the potential of Raman spectroscopy for detection of novel biomarkers that could enable the rapid and accurate screening of disease susceptibility and onset. Here we provide an overview of Raman spectroscopy and related techniques and their application to neurodegenerative diseases. We further discuss their potential utility in research, biomarker detection, and diagnosis. Challenges to routine use of Raman spectroscopy in the context of neuroscience research are also presented.

  7. Characterization of Ge-doped optical fibres for MV radiotherapy dosimetry

    International Nuclear Information System (INIS)

    Noor, Noramaliza M.; Hussein, M.; Kadni, T.; Bradley, D.A.; Nisbet, A.

    2014-01-01

    Ge-doped optical fibres offer promising thermoluminescence (TL) properties together with small physical size and modest cost. Their use as dosimeters for postal radiotherapy dose audits of megavoltage photon beams has been investigated. Key dosimetric characteristics including reproducibility, linearity, dose rate, temperature and angular dependence have been established. A methodology of measuring absorbed dose under reference conditions was developed. The Ge-doped optical fibres offer linearity between TL yield and dose, with a reproducibility of better than 5%, following repeated measurements (n=5) for doses from 5 cGy to 1000 cGy. The fibres also offer dose rate, angular and temperature independence, while an energy-dependent response of 7% was found over the energy range 6 MV to 15 MV (TPR 20,10 of 0.660, 0.723 and 0.774 for 6, 10 and 15 MV respectively). The audit methodology has been developed with an expanded uncertainty of 4.22% at 95% confidence interval for the photon beams studied. - Highlights: • We investigate dosimetric characteristics of commercial Ge-doped optical fibres. • We develop audit methodology for measuring absorbed dose under reference conditions. • Ge-doped optical fibres offer promising thermoluminescence (TL) properties. • Audit methodology has been developed with an expanded uncertainty of 4.22%

  8. Optical fibre Bragg grating recorded in TOPAS cyclic olefin copolymer

    DEFF Research Database (Denmark)

    Johnson, I.P.; Yuan, Scott Wu; Stefani, Alessio

    2011-01-01

    A report is presented on the inscription of a fibre Bragg grating into a microstructured polymer optical fibre fabricated from TOPAS cyclic olefin copolymer. This material offers two important advantages over poly (methyl methacrylate), which up to now has formed the basis for polymer fibre Bragg...

  9. A fibre optic dosimeter customised for brachytherapy

    Energy Technology Data Exchange (ETDEWEB)

    Suchowerska, N. [Department of Radiation Oncology, Royal Prince Alfred Hospital, Camperdown, NSW 2050 (Australia); School of Physics, University of Sydney, NSW 2006 (Australia)], E-mail: Natalka@email.cs.nsw.gov.au; Lambert, J.; Nakano, T. [Department of Radiation Oncology, Royal Prince Alfred Hospital, Camperdown, NSW 2050 (Australia); School of Physics, University of Sydney, NSW 2006 (Australia); Law, S. [School of Physics, University of Sydney, NSW 2006 (Australia); Optical Fibre Technology Centre, University of Sydney, 206 National Innovation Centre, Australian Technology Park, Eveleigh, NSW 1430 (Australia); Elsey, J. [Bandwidth Foundry Pty Ltd, Australian Technology Park, NSW, 1430 (Australia); McKenzie, D.R. [School of Physics, University of Sydney, NSW 2006 (Australia)

    2007-04-15

    In-vivo dosimetry for brachytherapy cancer treatment requires a small dosimeter with a real time readout capability that can be inserted into the patient to determine the dose to critical organs. Fibre optic scintillation dosimeters, consisting of a plastic scintillator coupled to an optical fibre, are a promising dosimeter for this application. We have implemented specific design features to optimise the performance of the dosimeter for specific in-vivo dosimetry during brachytherapy. Two sizes of the BrachyFOD{sup TM} scintillation dosimeter have been developed, with external diameters of approximately 2 and 1 mm. We have determined their important dosimetric characteristics (depth dose relation, angular dependence, energy dependence). We have shown that the background signal created by Cerenkov and fibre fluorescence does not significantly affect the performance in most clinical geometries. The dosimeter design enables readout at less than 0.5 s intervals. The clinical demands of real time in-vivo brachytherapy dosimetry can uniquely be satisfied by the BrachyFOD{sup TM}.

  10. Shifted excitation resonance Raman difference spectroscopy using a microsystem light source at 488 nm

    Science.gov (United States)

    Maiwald, M.; Sowoidnich, K.; Schmidt, H.; Sumpf, B.; Erbert, G.; Kronfeldt, H.-D.

    2010-04-01

    Experimental results in shifted excitation resonance Raman difference spectroscopy (SERRDS) at 488 nm will be presented. A novel compact diode laser system was used as excitation light source. The device is based on a distributed feedback (DFB) diode laser as a pump light source and a nonlinear frequency doubling using a periodically poled lithium niobate (PPLN) waveguide crystal. All elements including micro-optics are fixed on a micro-optical bench with a footprint of 25 mm × 5 mm. An easy temperature management of the DFB laser and the crystal was used for wavelength tuning. The second harmonic generation (SHG) provides an additional suppression of the spontaneous emission. Raman spectra of polystyrene demonstrate that no laser bandpass filter is needed for the Raman experiments. Resonance-Raman spectra of the restricted food colorant Tartrazine (FD&C Yellow 5, E 102) in distilled water excited at 488 nm demonstrate the suitability of this light source for SERRDS. A limit of detection (LOD) of 0.4 μmol.l-1 of E102 enables SERRDS at 488 nm for trace detection in e.g. food safety control as an appropriate contactless spectroscopic technique.

  11. Distributed optical fibre sensing for early detection of shallow landslides triggering.

    Science.gov (United States)

    Schenato, Luca; Palmieri, Luca; Camporese, Matteo; Bersan, Silvia; Cola, Simonetta; Pasuto, Alessandro; Galtarossa, Andrea; Salandin, Paolo; Simonini, Paolo

    2017-10-31

    A distributed optical fibre sensing system is used to measure landslide-induced strains on an optical fibre buried in a large scale physical model of a slope. The fibre sensing cable is deployed at the predefined failure surface and interrogated by means of optical frequency domain reflectometry. The strain evolution is measured with centimetre spatial resolution until the occurrence of the slope failure. Standard legacy sensors measuring soil moisture and pore water pressure are installed at different depths and positions along the slope for comparison and validation. The evolution of the strain field is related to landslide dynamics with unprecedented resolution and insight. In fact, the results of the experiment clearly identify several phases within the evolution of the landslide and show that optical fibres can detect precursory signs of failure well before the collapse, paving the way for the development of more effective early warning systems.

  12. Nonlinear microstructured polymer optical fibres

    DEFF Research Database (Denmark)

    Frosz, Michael Henoch

    is potentially the case for microstructured polymer optical fibres (mPOFs). Another advantage is that polymer materials have a higher biocompatibility than silica, meaning that it is easier to bond certain types of biosensor materials to a polymer surface than to silica. As with silica PCFs, it is difficult...

  13. Non-destructive Identification of Individual Leukemia Cells by Optical Trapping Raman Spectroscopy

    Energy Technology Data Exchange (ETDEWEB)

    Chan, J W; Taylor, D S; Lane, S; Zwerdling, T; Tuscano, J; Huser, T

    2007-03-05

    Currently, a combination of technologies is typically required to assess the malignancy of cancer cells. These methods often lack the specificity and sensitivity necessary for early, accurate diagnosis. Here we demonstrate using clinical samples the application of laser trapping Raman spectroscopy as a novel approach that provides intrinsic biochemical markers for the noninvasive detection of individual cancer cells. The Raman spectra of live, hematopoietic cells provide reliable molecular fingerprints that reflect their biochemical composition and biology. Populations of normal T and B lymphocytes from four healthy individuals, and cells from three leukemia patients were analyzed, and multiple intrinsic Raman markers associated with DNA and protein vibrational modes have been identified that exhibit excellent discriminating power for cancer cell identification. A combination of two multivariate statistical methods, principal component analysis (PCA) and linear discriminant analysis (LDA), was used to confirm the significance of these markers for identifying cancer cells and classifying the data. The results indicate that, on average, 95% of the normal cells and 90% of the patient cells were accurately classified into their respective cell types. We also provide evidence that these markers are unique to cancer cells and not purely a function of differences in their cellular activation.

  14. Rapid Identification of Bacterial Pathogens of Military Interest Using Surface-Enhanced Raman Spectroscopy

    Science.gov (United States)

    2014-06-11

    Failloux, N., Bonnet, 1., Baron, M. H., & Perrier, E. (2003). Quantitative analysis of vitamin A degradation by raman spectroscopy. Applied Spectroscopy...analysis of the Raman-active modes of the anti-tumor agent 6- mercaptopurine . Journal of Raman Spectroscopy, 32(1), 1-8. doi: Doi 10.1002/1097- 4555

  15. Surface enhanced raman spectroscopy on chip

    DEFF Research Database (Denmark)

    Hübner, Jörg; Anhøj, Thomas Aarøe; Zauner, Dan

    2007-01-01

    In this paper we report low resolution surface enhanced Raman spectra (SERS) conducted with a chip based spectrometer. The flat field spectrometer presented here is fabricated in SU-8 on silicon, showing a resolution of around 3 nm and a free spectral range of around 100 nm. The output facet...... is projected onto a CCD element and visualized by a computer. To enhance the otherwise rather weak Raman signal, a nanosurface is prepared and a sample solutions is impregnated on this surface. The surface enhanced Raman signal is picked up using a Raman probe and coupled into the spectrometer via an optical...... fiber. The obtained spectra show that chip based spectrometer together with the SERS active surface can be used as Raman sensor....

  16. Remote in-situ laser-induced breakdown spectroscopy using optical fibers

    Science.gov (United States)

    Marquardt, Brian James

    The following dissertation describes the development of methods for performing remote Laser-Induced Breakdown Spectroscopy (LIBS) using optical fibers. Studies were performed to determine the optimal excitation and collection parameters for remote LIBS measurements of glasses, soils and paint. A number of fiber-optic LIBS probes were developed and used to characterize various samples by plasma emission spectroscopy. A novel method for launching high-power laser pulses into optical fibers without causing catastrophic failure is introduced. A systematic study of a number of commercially available optical fibers was performed to determine which optical fibers were best suited for delivering high-power laser pulses. The general design of an all fiber-optic LIBS probe is described and applied to the determination of Pb in soil. A fiber-optic probe was developed for the microanalysis of solid samples remotely by LIBS, Raman spectroscopy and Raman imaging. The design of the probe allows for real-time sample imaging in-situ using coherent imaging fibers. This allows for precise atomic emission and Raman measurements to be performed remotely on samples in hostile or inaccessible environments. A novel technique was developed for collecting spectral plasma images using an acousto-optic tunable filter (AOTF). The spatial and temporal characteristics of the plasma were studied as a function of delay time. From the plasma images the distribution of Pb emission could be determined and fiber-optic designs could be optimized for signal collection. The performance of a two fiber LIBS probe is demonstrated for the determination of the amount of lead in samples of dry paint. It is shown that dry paint samples can be analyzed for their Pb content in-situ using a fiber-optic LIBS probe with detection limits well below the levels currently regulated by the Consumer Products Safety Commission. It is also shown that these measurements can be performed on both latex and enamel paints, and

  17. Evolution of optical fibre cabling components at CERN: Performance and technology trends analysis

    Science.gov (United States)

    Shoaie, Mohammad Amin; Meroli, Stefano; Machado, Simao; Ricci, Daniel

    2018-05-01

    CERN optical fibre infrastructure has been growing constantly over the past decade due to ever increasing connectivity demands. The provisioning plan and fibre installation of this vast laboratory is performed by Fibre Optics and Cabling Section at Engineering Department. In this paper we analyze the procurement data for essential fibre cabling components during a five-year interval to extract the existing trends and anticipate future directions. The analysis predicts high contribution of LC connector and an increasing usage of multi-fibre connectors. It is foreseen that single-mode fibres become the main fibre type for mid and long-range installations while air blowing would be the major installation technique. Performance assessment of various connectors shows that the expanded beam ferrule is favored for emerging on-board optical interconnections thanks to its scalable density and stable return-loss.

  18. Nonlinear Pulse Shaping in Fibres for Pulse Generation and Optical Processing

    Directory of Open Access Journals (Sweden)

    Sonia Boscolo

    2012-01-01

    Full Text Available The development of new all-optical technologies for data processing and signal manipulation is a field of growing importance with a strong potential for numerous applications in diverse areas of modern science. Nonlinear phenomena occurring in optical fibres have many attractive features and great, but not yet fully explored, potential in signal processing. Here, we review recent progress on the use of fibre nonlinearities for the generation and shaping of optical pulses and on the applications of advanced pulse shapes in all-optical signal processing. Amongst other topics, we will discuss ultrahigh repetition rate pulse sources, the generation of parabolic shaped pulses in active and passive fibres, the generation of pulses with triangular temporal profiles, and coherent supercontinuum sources. The signal processing applications will span optical regeneration, linear distortion compensation, optical decision at the receiver in optical communication systems, spectral and temporal signal doubling, and frequency conversion.

  19. Identification of color development potential of quartz by Raman spectroscopy

    International Nuclear Information System (INIS)

    Alkmim, Danielle G.; Lameiras, Fernando S.; Almeida, Frederico O.T.

    2013-01-01

    Colorless quartz is usually exposed to ionizing radiation (gamma rays or high energy electron beams) to acquire different colors for jewelry. Color development is due to the presence of traces of some elements such as aluminum, iron, hydrogen, lithium, or sodium. Most quartz crystals are extracted colorless from nature and it is necessary to separate those that can develop colors from those that cannot. Irradiation tests can be used to accomplish this separation, but they take a long time. Infrared signature of colorless quartz can also be used. However, infrared spectroscopy is quite expensive, especially when using portable devices. Raman spectroscopy is now available as an inexpensive and portable technique that could provide identification of the samples of colorless quartz still in the field, facilitating the prediction for their economic exploitation. In addition, Raman spectroscopy usually requires a minimum or no sample preparation. This paper presents an investigation of the feasibility of using Raman spectroscopy as a substitute for infrared spectroscopy to predict the potential for color development of quartz. A band at 3595 cm -1 in the Raman shift spectrum was observed only along the c axis of a prasiolite excited by a high power 514 nm laser. This band was not observed in quartz samples that do not develop color after irradiation. Further studies are required to identify the potential for color development by Raman spectroscopy of other types of colorless quartz. (author)

  20. Femtosecond time-resolved impulsive stimulated Raman spectroscopy using sub-7-fs pulses: Apparatus and applications

    Energy Technology Data Exchange (ETDEWEB)

    Kuramochi, Hikaru [Molecular Spectroscopy Laboratory, RIKEN, 2-1 Hirosawa, Wako 351-0198 (Japan); Takeuchi, Satoshi; Tahara, Tahei, E-mail: tahei@riken.jp [Molecular Spectroscopy Laboratory, RIKEN, 2-1 Hirosawa, Wako 351-0198 (Japan); Ultrafast Spectroscopy Research Team, RIKEN Center for Advanced Photonics (RAP), 2-1 Hirosawa, Wako 351-0198 (Japan)

    2016-04-15

    We describe details of the setup for time-resolved impulsive stimulated Raman spectroscopy (TR-ISRS). In this method, snapshot molecular vibrational spectra of the photoreaction transients are captured via time-domain Raman probing using ultrashort pulses. Our instrument features transform-limited sub-7-fs pulses to impulsively excite and probe coherent nuclear wavepacket motions, allowing us to observe vibrational fingerprints of transient species from the terahertz to 3000-cm{sup −1} region with high sensitivity. Key optical components for the best spectroscopic performance are discussed. The TR-ISRS measurements for the excited states of diphenylacetylene in cyclohexane are demonstrated, highlighting the capability of our setup to track femtosecond dynamics of all the Raman-active fundamental molecular vibrations.

  1. Investigation on Clarified Fruit Juice Composition by Using Visible Light Micro-Raman Spectroscopy.

    Science.gov (United States)

    Camerlingo, Carlo; Zenone, Flora; Delfino, Ines; Diano, Nadia; Mita, Damiano Gustavo; Lepore, Maria

    2007-10-03

    Liquid samples of clarified apple and apricot juices at different productionstages were investigated using visible light micro-Raman spectroscopy in order to assessits potential in monitoring fruit juice production. As is well-known, pectin plays a strategicrole in the production of clarified juice and the possibility of using Raman for its detectionduring production was therefore evaluated. The data analysis has enabled the clearidentification of pectin. In particular, Raman spectra of apple juice samples from washedand crushed fruits revealed a peak at 845 cm -1 (typical of pectin) which disappears in theRaman spectra of depectinised samples. The fructose content was also revealed by thepresence of four peaks at 823 cm -1 , 872 cm -1 , 918 cm -1 and 975 cm -1 . In the case of apricotjuice, several Raman fingerprints of β-carotene at 1008, 1159 and 1520 cm -1 were alsohighlighted. Present results resulted interesting for the exclusive use of optical methods forthe quantitative determination of the above-mentioned substances in place of thebiochemical assays generally used for this purpose, which are time consuming and requiredifferent chemical reagents for each of them.

  2. On the Contribution of Raman Spectroscopy to Forensic Science

    Science.gov (United States)

    Buzzini, Patrick; Massonnet, Genevieve

    2010-08-01

    Raman spectroscopy has only recently sparked interest from forensic laboratories. The Raman technique has demonstrated important advantages such as its nondestructive nature, its fast analysis time, and especially the possibility of performing microscopical in situ analyses. In forensic applications, it is a versatile technique that covers a wide spectrum of substances such as trace evidence, illicit drugs and inks. An overview of the recent developments of Raman spectroscopy in forensic science will be discussed. Also, the requirements for an analytical technique for the examination of physical evidence will be described. Examples of casework will be depicted.

  3. Real-Time Quantitative Operando Raman Spectroscopy of a CrOx/Al2O3 Propane Dehydrogenation Catalyst in a Pilot-Scale Reactor

    NARCIS (Netherlands)

    Sattler, Jesper J. H. B.; Mens, Ad M.; Weckhuysen, Bert M.

    2014-01-01

    Combined operando UV/vis-Raman spectroscopy has been used to study the deactivation of CrOx/Al2O3 catalyst extrudates in a pilot scale propane dehydrogenation reactor. For this purpose, UV/vis and Raman optical fiber probes have been designed, constructed and tested. The light absorption measured by

  4. Metal-dielectric-CNT nanowires for surface-enhanced Raman spectroscopy

    Science.gov (United States)

    Bond, Tiziana C.; Altun, Ali; Park, Hyung Gyu

    2017-10-03

    A sensor with a substrate includes nanowires extending vertically from the substrate, a hafnia coating on the nanowires that provides hafnia coated nanowires, and a noble metal coating on the hafnia coated nanowires. The top of the hafnia and noble metal coated nanowires bent onto one another to create a canopy forest structure. There are numerous randomly arranged holes that let through scattered light. The many points of contact, hot spots, amplify signals. The methods include the steps of providing a Raman spectroscopy substrate, introducing nano crystals to the Raman spectroscopy substrate, growing a forest of nanowires from the nano crystals on the Raman spectroscopy substrate, coating the nanowires with hafnia providing hafnia coated nanowires, and coating the hafnia coated nanowires with a noble metal or other metal.

  5. Ex-vivo evaluation of an early caries detector based on integrated OCT and polarized Raman spectroscopy (Conference Presentation)

    Science.gov (United States)

    Lamouche, Guy; Padioleau, Christian; Hewko, Mark; Smith, Michael S. D.; Schattka, Bernie J.; Fulton, Crystal; Gauthier, Bruno; Beauchesne, André; Ko, Alex C.; Choo-Smith, Lin-P'ing; Sowa, Michael G.

    2017-02-01

    Early detection of incipient caries would allow dentists to provide more effective measures to delay or to reverse caries' progression at earlier stage. Such earlier intervention could lead to improved oral health for the patients and reduced burden to the health system. Previously, we have demonstrated that the combination of morphological and biochemical information furnished by optical coherence tomography (OCT) and polarized Raman spectroscopy (PRS), respectively, provided a unique tool for dental caries management. In this study we will report the first pre-clinical caries detection system that includes a hand-held probe with a size slightly larger than a tooth brush. This probe presents a novel platform combining both OCT and PRS optics in a very tight space ideal for clinical practice. OCT cross-sectional images of near-surface enamel morphology are obtained with miniaturized MEMS scanning device and are processed in real-time to identify culprit regions. These regions are sequentially analyzed with polarized Raman spectroscopy for further confirmation. PRS is performed using 830nm laser line and four detection channels in order to obtain polarized Raman spectroscopic data, i.e. depolarization ratio of the hydroxyapatite Raman band at 960 cm-1. A detailed description of this hand-held caries detector and ex-vivo/in-vivo test results will be presented.

  6. Surface-Enhanced Raman Spectroscopy for Heterogeneous Catalysis Research

    NARCIS (Netherlands)

    Harvey, C.E.

    2013-01-01

    Raman spectroscopy is valuable characterization technique for the chemical analysis of heterogeneous catalysts, both under ex-situ and in-situ conditions. The potential for Raman to shine light on the chemical bonds present in a sample makes the method highly desirable for detailed catalyst

  7. Nonlinear Raman spectroscopy of liquid crystals: orientational alignment and switching behaviour in a ferroelectric liquid crystal mixture

    Science.gov (United States)

    Grofcsik, Andras

    Picosecond inverse Raman spectroscopy has been employed to probe the alignment behaviour and switching characteristics of a 6 mum thick ferroelectric liquid crystal based on a host mixture of fluorinated phenyl biphenylcarboxylates and a chiral dopant. Optical bistability is observed in the Raman signal on application of dc electric fields of opposite polarity. For particular polarities of the applied field, the Raman signals display a cos4theta dependence on the angle of rotation around the beam direction. Reorientational rate constants of 300 mus and 590 mus are observed for the aromatic core at the high-voltage limit for the rise and decay of the 1600 cm-1 Raman signal on application of a switching ac electric field.

  8. Humidity insensitive step-index polymer optical fibre Bragg grating sensors

    DEFF Research Database (Denmark)

    Woyessa, Getinet; Fasano, Andrea; Stefani, Alessio

    2015-01-01

    We have fabricated and characterised a humidity insensitive step index(SI) polymer optical fibre(POF) Bragg grating sensors. The fibre was made based on the injection molding technique, which is an efficient method for fast, flexible and cost effective preparation of the fibre preform. The fabric...... poly-methyl-methacrylate (PMMA) based SIPOFs. The fibre has a minimum loss of similar to 6dB/m at 770nm....

  9. RT Self-assembly of Silica Nanoparticles on Optical Fibres

    DEFF Research Database (Denmark)

    Canning, John; Lindoy, Lachlan; Huyang, George

    2013-01-01

    The room temperature deposition of self-assembling silica nanoparticles onto D-shaped optical fibres x201c;D-fibrex201d;), drawn from milled preforms fabricated by modified chemical vapor deposition, is studied and preliminary results reported here.......The room temperature deposition of self-assembling silica nanoparticles onto D-shaped optical fibres x201c;D-fibrex201d;), drawn from milled preforms fabricated by modified chemical vapor deposition, is studied and preliminary results reported here....

  10. Near-infrared Raman spectroscopy for assessing biochemical changes of cervical tissue associated with precarcinogenic transformation.

    Science.gov (United States)

    Duraipandian, Shiyamala; Mo, Jianhua; Zheng, Wei; Huang, Zhiwei

    2014-11-07

    Raman spectroscopy measures the inelastically scattered light from tissue that is capable of identifying native tissue biochemical constituents and their changes associated with disease transformation. This study aims to characterize the Raman spectroscopic properties of cervical tissue associated with the multi-stage progression of cervical precarcinogenic sequence. A rapid-acquisition fiber-optic near-infrared (NIR) Raman diagnostic system was employed for tissue Raman spectral measurements at 785 nm excitation. A total of 68 Raman spectra (23 benign, 29 low-grade squamous intraepithelial lesions (LSIL) and 16 high grade squamous intraepithelial lesions (HSIL)) were measured from 25 cervical tissue biopsy specimens, as confirmed by colposcopy-histopathology. The semi-quantitative biochemical modeling based on the major biochemicals (i.e., DNA, proteins (histone, collagen), lipid (triolein) and carbohydrates (glycogen)) in cervical tissue uncovers the stepwise accumulation of biomolecular changes associated with progressive cervical precarcinogenesis. Multi-class partial least squares-discriminant analysis (PLS-DA) together with leave-one tissue site-out, cross-validation yielded the diagnostic sensitivities of 95.7%, 82.8% and 81.3%; specificities of 100.0%, 92.3% and 88.5%,for discrimination among benign, LSIL and HSIL cervical tissues, respectively. This work suggests that the Raman spectral biomarkers have identified the potential to be used for monitoring the multi-stage cervical precarcinogenesis, forming the foundation of applying NIR Raman spectroscopy for the early diagnosis of cervical precancer in vivo at the molecular level.

  11. Optimization of Sample Preparation processes of Bone Material for Raman Spectroscopy.

    Science.gov (United States)

    Chikhani, Madelen; Wuhrer, Richard; Green, Hayley

    2018-03-30

    Raman spectroscopy has recently been investigated for use in the calculation of postmortem interval from skeletal material. The fluorescence generated by samples, which affects the interpretation of Raman data, is a major limitation. This study compares the effectiveness of two sample preparation techniques, chemical bleaching and scraping, in the reduction of fluorescence from bone samples during testing with Raman spectroscopy. Visual assessment of Raman spectra obtained at 1064 nm excitation following the preparation protocols indicates an overall reduction in fluorescence. Results demonstrate that scraping is more effective at resolving fluorescence than chemical bleaching. The scraping of skeletonized remains prior to Raman analysis is a less destructive method and allows for the preservation of a bone sample in a state closest to its original form, which is beneficial in forensic investigations. It is recommended that bone scraping supersedes chemical bleaching as the preferred method for sample preparation prior to Raman spectroscopy. © 2018 American Academy of Forensic Sciences.

  12. Infrared and Raman Spectroscopy Principles and Spectral Interpretation

    CERN Document Server

    Larkin, Peter

    2011-01-01

    Infrared and Raman Spectroscopy: Principles and Spectral Interpretation explains the background, core principles and tests the readers understanding of the important techniques of Infrared and Raman Spectroscopy. These techniques are used by chemists, environmental scientists, forensic scientists etc to identify unknown chemicals. In the case of an organic chemist these tools are part of an armory of techniques that enable them to conclusively prove what compound they have made, which is essential for those being used in medical applications. The book reviews basic principles, instrumentation

  13. Parallelism between gradient temperature raman spectroscopy and differential scanning calorimetry results

    Science.gov (United States)

    Temperature dependent Raman spectroscopy (TDR) applies the temperature gradients utilized in differential scanning calorimetry (DSC) to Raman spectroscopy, providing a straightforward technique to identify molecular rearrangements that occur just prior to phase transitions. Herein we apply TDR and D...

  14. The substrate matters in the Raman spectroscopy analysis of cells

    Science.gov (United States)

    Mikoliunaite, Lina; Rodriguez, Raul D.; Sheremet, Evgeniya; Kolchuzhin, Vladimir; Mehner, Jan; Ramanavicius, Arunas; Zahn, Dietrich R. T.

    2015-08-01

    Raman spectroscopy is a powerful analytical method that allows deposited and/or immobilized cells to be evaluated without complex sample preparation or labeling. However, a main limitation of Raman spectroscopy in cell analysis is the extremely weak Raman intensity that results in low signal to noise ratios. Therefore, it is important to seize any opportunity that increases the intensity of the Raman signal and to understand whether and how the signal enhancement changes with respect to the substrate used. Our experimental results show clear differences in the spectroscopic response from cells on different surfaces. This result is partly due to the difference in spatial distribution of electric field at the substrate/cell interface as shown by numerical simulations. We found that the substrate also changes the spatial location of maximum field enhancement around the cells. Moreover, beyond conventional flat surfaces, we introduce an efficient nanostructured silver substrate that largely enhances the Raman signal intensity from a single yeast cell. This work contributes to the field of vibrational spectroscopy analysis by providing a fresh look at the significance of the substrate for Raman investigations in cell research.

  15. Visualizing cell state transition using Raman spectroscopy.

    Directory of Open Access Journals (Sweden)

    Taro Ichimura

    Full Text Available System level understanding of the cell requires detailed description of the cell state, which is often characterized by the expression levels of proteins. However, understanding the cell state requires comprehensive information of the cell, which is usually obtained from a large number of cells and their disruption. In this study, we used Raman spectroscopy, which can report changes in the cell state without introducing any label, as a non-invasive method with single cell capability. Significant differences in Raman spectra were observed at the levels of both the cytosol and nucleus in different cell-lines from mouse, indicating that Raman spectra reflect differences in the cell state. Difference in cell state was observed before and after the induction of differentiation in neuroblastoma and adipocytes, showing that Raman spectra can detect subtle changes in the cell state. Cell state transitions during embryonic stem cell (ESC differentiation were visualized when Raman spectroscopy was coupled with principal component analysis (PCA, which showed gradual transition in the cell states during differentiation. Detailed analysis showed that the diversity between cells are large in undifferentiated ESC and in mesenchymal stem cells compared with terminally differentiated cells, implying that the cell state in stem cells stochastically fluctuates during the self-renewal process. The present study strongly indicates that Raman spectral morphology, in combination with PCA, can be used to establish cells' fingerprints, which can be useful for distinguishing and identifying different cellular states.

  16. Highly sensitive high resolution Raman spectroscopy using resonant ionization methods

    International Nuclear Information System (INIS)

    Owyoung, A.; Esherick, P.

    1984-05-01

    In recent years, the introduction of stimulated Raman methods has offered orders of magnitude improvement in spectral resolving power for gas phase Raman studies. Nevertheless, the inherent weakness of the Raman process suggests the need for significantly more sensitive techniques in Raman spectroscopy. In this we describe a new approach to this problem. Our new technique, which we call ionization-detected stimulated Raman spectroscopy (IDSRS), combines high-resolution SRS with highly-sensitive resonant laser ionization to achieve an increase in sensitivity of over three orders of magnitude. The excitation/detection process involves three sequential steps: (1) population of a vibrationally excited state via stimulated Raman pumping; (2) selective ionization of the vibrationally excited molecule with a tunable uv source; and (3) collection of the ionized species at biased electrodes where they are detected as current in an external circuit

  17. Effects of Polarization–Maintaining Fibre Degrading on Precision of Fibre Optic Gyroscopes in Radiation Environment

    International Nuclear Information System (INIS)

    Wen, Xiao; De-Wen, Liu; Yang, Liu; Xiao-Su, Yi; Lin, Cong

    2008-01-01

    In the space environment, the precision of fibre optic gyroscopes (FOGs) degrades because of space radiation. Photonic components of FOGs are affected by radiation, especially the polarization-maintaining (PM) fibre coil. In relation to the space radiation environment characteristic, we have carried out a series of radiation experiments on a PM fibre coil with 60 Co radiation source at different dose rates. Based on the experimental results, the formula between the PM-fibre loss and radiation dose rate is built, and the relation between the precision of FOG and radiation dose is obtained accordingly. The results strongly show that the precision of our FOG degrades owing to the attenuation of the polarization-maintaining fibre, which provides theoretical foundation for the radiation-resistant design of the FOG

  18. Evaluation of Shifted Excitation Raman Difference Spectroscopy and Comparison to Computational Background Correction Methods Applied to Biochemical Raman Spectra.

    Science.gov (United States)

    Cordero, Eliana; Korinth, Florian; Stiebing, Clara; Krafft, Christoph; Schie, Iwan W; Popp, Jürgen

    2017-07-27

    Raman spectroscopy provides label-free biochemical information from tissue samples without complicated sample preparation. The clinical capability of Raman spectroscopy has been demonstrated in a wide range of in vitro and in vivo applications. However, a challenge for in vivo applications is the simultaneous excitation of auto-fluorescence in the majority of tissues of interest, such as liver, bladder, brain, and others. Raman bands are then superimposed on a fluorescence background, which can be several orders of magnitude larger than the Raman signal. To eliminate the disturbing fluorescence background, several approaches are available. Among instrumentational methods shifted excitation Raman difference spectroscopy (SERDS) has been widely applied and studied. Similarly, computational techniques, for instance extended multiplicative scatter correction (EMSC), have also been employed to remove undesired background contributions. Here, we present a theoretical and experimental evaluation and comparison of fluorescence background removal approaches for Raman spectra based on SERDS and EMSC.

  19. Distributed strain measurement in perfluorinated polymer optical fibres using optical frequency domain reflectometry

    International Nuclear Information System (INIS)

    Liehr, Sascha; Wendt, Mario; Krebber, Katerina

    2010-01-01

    We present the latest advances in distributed strain measurement in perfluorinated polymer optical fibres (POFs) using backscatter techniques. Compared to previously introduced poly(methyl methacrylate) POFs, the measurement length can be extended to more than 500 m at improved spatial resolution of a few centimetres. It is shown that strain in a perfluorinated POF can be measured up to 100%. In parallel to these investigations, the incoherent optical frequency domain reflectometry (OFDR) technique is introduced to detect strained fibre sections and to measure distributed length change along the fibre with sub-millimetre resolution by applying a cross-correlation algorithm to the backscatter signal. The overall superior performance of the OFDR technique compared to the optical time domain reflectometry in terms of accuracy, dynamic range, spatial resolution and measurement speed is presented. The proposed sensor system is a promising technique for use in structural health monitoring applications where the precise detection of high strain is required

  20. Control systems in optical fibre industry

    Czech Academy of Sciences Publication Activity Database

    Kostka, František

    1998-01-01

    Roč. 1, č. 4 (1998), s. 195-200 ISSN 1405-5546 Grant - others:AV ČR(CZ) KSK1067601 Projekt 10/96/K:4107 Keywords : control systems * real time systems * microcomputers * optical fibres Subject RIV: JA - Electronics ; Optoelectronics, Electrical Engineering

  1. Flat knitting of a light emitting textile with optical fibres

    DEFF Research Database (Denmark)

    Heimdal, Elisabeth Jacobsen

    2009-01-01

    Knitted products have a flexibility that offers many attractive possibilities. Combined with technical fibres, this gives interesting and innovative possibilities. Many technical fibres and yarns has however properties such as high stiffness and brittleness which are difficult to process in the p......Knitted products have a flexibility that offers many attractive possibilities. Combined with technical fibres, this gives interesting and innovative possibilities. Many technical fibres and yarns has however properties such as high stiffness and brittleness which are difficult to process...... in the practice of weft knitting. This paper is about the experimental product development of a light radiating textile lamp in which optical fibres are used as the only illumination source. The lampshade is produced on an electronic flat knitting machine with special equipment suitable for the feeding of yarn...... with high stiffness. The work was divided in two parts: exploring the possibilities to knit the desired shape on one hand and experimenting about knitting with optical fibres as a weft insertion on the other hand. The method is an inductive approach; a literature survey, information from suppliers...

  2. Raman spectroscopy for grading of live osteosarcoma cells.

    Science.gov (United States)

    Chiang, Yi-Hung; Wu, Stewart H; Kuo, Yi-Chun; Chen, How-Foo; Chiou, Arthur; Lee, Oscar K

    2015-04-18

    Osteosarcoma is the most common primary malignant bone tumor, and the grading of osteosarcoma cells relies on traditional histopathology and molecular biology methods, which require RNA extraction, protein isolation and immunohistological staining. All these methods require cell isolation, lysis or fixation, which is time-consuming and requires certain amount of tumor specimen. In this study, we report the use of Raman spectroscopy for grading of malignant osteosarcoma cells. We demonstrate that, based on the detection of differential production of mineral species, Raman spectroscopy can be used as a live cell analyzer to accurately assess the grades of osteosarcoma cells by evaluating their mineralization levels. Mineralization level was assessed by measuring amount of hydroxyapatite (HA), which is highly expressed in mature osteoblasts, but not in poorly differentiated osteosarcoma cell or mesenchymal stem cells, the putative cell-of-origin of osteosarcoma. We found that under Raman spectroscopy, the level of HA production was high in MG-63 cells, which are low-grade. Moreover, hydroxyapatite production was low in high-grade osteosarcoma cells such as 143B and SaOS2 cells (p Raman spectroscopy for the measurement of HA production by the protocol reported in this study may serve as a useful tool to rapidly and accurately assess the degree of malignancy in osteosarcoma cells in a label-free manner. Such application may shorten the period of pathological diagnosis and may benefit patients who are inflicted with osteosarcoma.

  3. In vivo confocal Raman spectroscopy of the human cornea.

    Science.gov (United States)

    Bauer, N J; Hendrikse, F; March, W F

    1999-07-01

    To investigate the feasibility of a confocal Raman spectroscopic technique for the noninvasive assessment of corneal hydration in vivo in two legally blind subjects. A laser beam (632.8 nm; 15 mJ) was maintained on the cornea by using a microscope objective lens (x25 magnification, NA = 0.5, f = 10 mm) both for focusing the incident light as well as collecting the Raman backscattered light, in a 180 degrees backscatter configuration. An optical fiber, acting as the confocal pinhole for elimination of light from out-of-focus places, was coupled to a spectrometer that dispersed the collected light onto a sensitive array detector for rapid spectral data acquisition over a range from 2,890 to 3,590/cm(-1). Raman spectra were recorded from the anterior 100-150 microm of the cornea over a period before and after topical application of a mild dehydrating solution. The ratio between the amplitudes of the signals at 3,400/cm(-1) (OH-vibrational mode of water) and 2,940/cm(-1) (CH-vibrational mode of proteins) was used as a measure for corneal hydration. High signal-to-noise ratio (SNR = 25) Raman spectra were obtained from the human corneas by using 15 mJ of laser light energy. Qualitative changes in the hydration of the anteriormost part of the corneas could be observed as a result of the dehydrating agent. With adequate improvements in system safety, confocal Raman spectroscopy could potentially be applied clinically as a noninvasive tool for the assessment of corneal hydration in vivo.

  4. Dispersion-engineered and highly-nonlinear microstructured polymer optical fibres

    DEFF Research Database (Denmark)

    Frosz, Michael Henoch; Nielsen, Kristian; Hlubina, Petr

    2009-01-01

    We demonstrate dispersion-engineering of microstructured polymer optical fibres (mPOFs) made of poly(methyl methacrylate) (PMMA). A significant shift of the total dispersion from the material dispersion is confirmed through measurement of the mPOF dispersion using white-light spectral interferome......We demonstrate dispersion-engineering of microstructured polymer optical fibres (mPOFs) made of poly(methyl methacrylate) (PMMA). A significant shift of the total dispersion from the material dispersion is confirmed through measurement of the mPOF dispersion using white-light spectral...

  5. Electron irradiation response on Ge and Al-doped SiO 2 optical fibres

    Science.gov (United States)

    Yaakob, N. H.; Wagiran, H.; Hossain, I.; Ramli, A. T.; Bradley, D. A.; Hashim, S.; Ali, H.

    2011-05-01

    This paper describes the thermoluminescence response, sensitivity, stability and reproducibility of SiO 2 optical fibres with various electron energies and doses. The TL materials that comprise Al- and Ge-doped silica fibres were used in this experiment. The TL results are compared with those of the commercially available TLD-100. The doped SiO 2 optical fibres and TLD-100 are placed in a solid phantom and irradiated with 6, 9 and 12 MeV electron beams at doses ranging from 0.2 to 4.0 Gy using the LINAC at Hospital Sultan Ismail, Johor Bahru, Malaysia. It was found that the commercially available Al- and Ge-doped optical fibres have a linear dose-TL signal relationship. The intensity of TL response of Ge-doped fibre is markedly greater than that of the Al-doped fibre.

  6. Electron irradiation response on Ge and Al-doped SiO2 optical fibres

    International Nuclear Information System (INIS)

    Yaakob, N.H.; Wagiran, H.; Hossain, I.; Ramli, A.T.; Bradley, D.A; Hashim, S.; Ali, H.

    2011-01-01

    This paper describes the thermoluminescence response, sensitivity, stability and reproducibility of SiO 2 optical fibres with various electron energies and doses. The TL materials that comprise Al- and Ge-doped silica fibres were used in this experiment. The TL results are compared with those of the commercially available TLD-100. The doped SiO 2 optical fibres and TLD-100 are placed in a solid phantom and irradiated with 6, 9 and 12 MeV electron beams at doses ranging from 0.2 to 4.0 Gy using the LINAC at Hospital Sultan Ismail, Johor Bahru, Malaysia. It was found that the commercially available Al- and Ge-doped optical fibres have a linear dose-TL signal relationship. The intensity of TL response of Ge-doped fibre is markedly greater than that of the Al-doped fibre.

  7. Detecting changes during pregnancy with Raman spectroscopy

    Science.gov (United States)

    Vargis, Elizabeth; Robertson, Kesha; Al-Hendy, Ayman; Reese, Jeff; Mahadevan-Jansen, Anita

    2010-02-01

    Preterm labor is the second leading cause of neonatal mortality and leads to a myriad of complications like delayed development and cerebral palsy. Currently, there is no way to accurately predict preterm labor, making its prevention and treatment virtually impossible. While there are some at-risk patients, over half of all preterm births do not fall into any high-risk category. This study seeks to predict and prevent preterm labor by using Raman spectroscopy to detect changes in the cervix during pregnancy. Since Raman spectroscopy has been used to detect cancers in vivo in organs like the cervix and skin, it follows that spectra will change over the course of pregnancy. Previous studies have shown that fluorescence decreased during pregnancy and increased during post-partum exams to pre-pregnancy levels. We believe significant changes will occur in the Raman spectra obtained during the course of pregnancy. In this study, Raman spectra from the cervix of pregnant mice and women will be acquired. Specific changes that occur due to cervical softening or changes in hormonal levels will be observed to understand the likelihood that a female mouse or a woman will enter labor.

  8. Polymer Optical Fibre Bragg Grating Humidity Sensor at 100ºC

    DEFF Research Database (Denmark)

    Woyessa, Getinet; Fasano, Andrea; Markos, Christos

    2016-01-01

    We have demonstrated a polymer optical fibre Bragg grating humidity sensor that can be operated up to 100ºC. The sensor has been fabricated from a polycarbonate (PC) microstructured polymer optical fibre Bragg grating (mPOFBG). PC mPOFBG gave a relative humidity (RH) sensitivity of 6.95±0.83 pm...

  9. LIBS, Raman spectroscopy, and optical microscopy analyses of superficial encrustations on ancient tesserae in Lebanon

    Science.gov (United States)

    Tomkowska, Anna; Chmielewski, Krzysztof; Skrzyczanowski, Wojciech; Mularczyk-Oliwa, Monika; Ostrowski, Roman; Strzelec, Marek

    2017-07-01

    The aim of research was determination of composition and nature of superficial deposits, cumulated at the selected mosaic's tesserae from Lebanon. Selected were three series of objects from different locations, namely from the seaside and mountain archaeological sites as well as from the mosaics exposed in the city center. Analyzed were stone and ceramic tesserae. The selection of objects was dictated by wide diversification of factors influencing the state of preservation and composition of deposits in given location. Investigations were performed including LIBS, FT-IR, Raman spectroscopy and optical 3D microscopy. The experimental results included composition and kind of deposit at the tesserae surfaces, and composition of tesserae itself. Compounds in the superficial deposits were identified. Confirmed was occurrence of different encrustations in dependence on geographic localization of a given sample. The interpretation of results was supported by multivariate statistical techniques, especially by the factor analysis. Performed analyses constitute the pioneer realization in terms of determination of deposits composition at the surface of mosaics from the Lebanon territory.

  10. Through tissue imaging of a live breast cancer tumour model using handheld surface enhanced spatially offset resonance Raman spectroscopy (SESORRS).

    Science.gov (United States)

    Nicolson, Fay; Jamieson, Lauren E; Mabbott, Samuel; Plakas, Konstantinos; Shand, Neil C; Detty, Michael R; Graham, Duncan; Faulds, Karen

    2018-04-21

    In order to improve patient survival and reduce the amount of unnecessary and traumatic biopsies, non-invasive detection of cancerous tumours is of imperative and urgent need. Multicellular tumour spheroids (MTS) can be used as an ex vivo cancer tumour model, to model in vivo nanoparticle (NP) uptake by the enhanced permeability and retention (EPR) effect. Surface enhanced spatially offset Raman spectroscopy (SESORS) combines both surface enhanced Raman spectroscopy (SERS) and spatially offset Raman spectroscopy (SORS) to yield enhanced Raman signals at much greater sub-surface levels. By utilizing a reporter that has an electronic transition in resonance with the laser frequency, surface enhanced resonance Raman scattering (SERRS) yields even greater enhancement in Raman signal. Using a handheld SORS spectrometer with back scattering optics, we demonstrate the detection of live breast cancer 3D MTS containing SERRS active NPs through 15 mm of porcine tissue. False color 2D heat intensity maps were used to determine tumour model location. In addition, we demonstrate the tracking of SERRS-active NPs through porcine tissue to depths of up to 25 mm. This unprecedented performance is due to the use of red-shifted chalcogenpyrylium-based Raman reporters to demonstrate the novel technique of surface enhanced spatially offset resonance Raman spectroscopy (SESORRS) for the first time. Our results demonstrate a significant step forward in the ability to detect vibrational fingerprints from a tumour model at depth through tissue. Such an approach offers significant promise for the translation of NPs into clinical applications for non-invasive disease diagnostics based on this new chemical principle of measurement.

  11. Rapid in situ detection of street samples of drugs of abuse on textile substrates using microRaman spectroscopy

    Science.gov (United States)

    Ali, Esam M. A.; Edwards, Howell G. M.; Scowen, Ian J.

    2011-10-01

    Trace amounts of street samples of cocaine hydrochloride and N-methyl-3,4-methylenedioxy-amphetamine (MDMA) on natural and synthetic textiles were successfully detected in situ using confocal Raman microscopy. The presence of some excipient bands in the spectra of the drugs did not prevent the unambiguous identification of the drugs. Raman spectra of the drugs were readily obtained without significant interference from the fibre substrates. Interfering bands arising from the fibre natural or synthetic polymer structure and/or dye molecules did not overlap with the characteristic Raman bands of the drugs. If needed, interfering bands could be successfully removed by spectral subtraction. Also, Raman spectra could be acquired from drug particles trapped between the fibres of highly fluorescent textile specimens. The total acquisition time of the spectra of the drug particles was 90 s accomplished non-destructively and without detachment from their substrates. Sample preparation was not required and spectra of the drugs could be obtained non-invasively preserving the integrity of the evidential material for further analysis.

  12. Influence of dose history on thermoluminescence response of Ge-doped silica optical fibre dosimeters

    International Nuclear Information System (INIS)

    Moradi, F.; Mahdiraji, G.A.; Dermosesian, E.; Khandaker, M.U.; Ung, N.M.; Mahamd Adikan, F.R.; Amin, Y.M.

    2017-01-01

    Nowadays, silica based optical fibres show enough potential to be used as TL dosimeters in different applications. Reuse of optical fibre as a practical dosimeter demands to complete removal of accumulated doses via previous irradiations. This work investigates the existence and/or effect of remnant doses in fibre dosimeter from the previous irradiations, and proposes a method to control this artifact. A single mode Ge-doped optical fibre is used as TL radiation sensor, while a well calibrated Gammacell with 60 Co source is used for irradiations. The effect of irradiation history on the TL response of optical fibres is surveyed extensively for doses ranged from 1 to 1000 Gy. The results show that the absorbed dose history in a fibre affects its response in the next irradiation cycles. It is shown that a dose history of around 100 Gy can increase the response of optical fibre by a factor of 1.72. The effect of annealing at higher temperatures on stabilizing the fibre response is also examined and results revealed that another alteration in the structure of trapping states occurs in glass medium which can change the sensitivity of fibres. Preservation of the sensitivity during successive irradiation cycles can be achieved by a proper annealing procedure accompanied by a pre-dose treatment. - Highlights: • Influence of dose history on TL characteristics of fibre dosimeter is explored. • The phenomenon behind the TL variation caused by dose history is discussed. • Effect of annealing temperature on performance of fibre dosimeter is studied. • Pre-treatment methods for mitigating variation in reproducibility are proposed.

  13. Near-infrared spectroscopy for cocrystal screening. A comparative study with Raman spectroscopy.

    Science.gov (United States)

    Allesø, Morten; Velaga, Sitaram; Alhalaweh, Amjad; Cornett, Claus; Rasmussen, Morten A; van den Berg, Frans; de Diego, Heidi Lopez; Rantanen, Jukka

    2008-10-15

    Near-infrared (NIR) spectroscopy is a well-established technique for solid-state analysis, providing fast, noninvasive measurements. The use of NIR spectroscopy for polymorph screening and the associated advantages have recently been demonstrated. The objective of this work was to evaluate the analytical potential of NIR spectroscopy for cocrystal screening using Raman spectroscopy as a comparative method. Indomethacin was used as the parent molecule, while saccharin and l-aspartic acid were chosen as guest molecules. Molar ratios of 1:1 for each system were subjected to two types of preparative methods. In the case of saccharin, liquid-assisted cogrinding as well as cocrystallization from solution resulted in a stable 1:1 cocrystalline phase termed IND-SAC cocrystal. For l-aspartic acid, the solution-based method resulted in a polymorphic transition of indomethacin into the metastable alpha form retained in a physical mixture with the guest molecule, while liquid-assisted cogrinding did not induce any changes in the crystal lattice. The good chemical peak selectivity of Raman spectroscopy allowed a straightforward interpretation of sample data by analyzing peak positions and comparing to those of pure references. In addition, Raman spectroscopy provided additional information on the crystal structure of the IND-SAC cocrystal. The broad spectral line shapes of NIR spectra make visual interpretation of the spectra difficult, and consequently, multivariate modeling by principal component analysis (PCA) was applied. Successful use of NIR/PCA was possible only through the inclusion of a set of reference mixtures of parent and guest molecules representing possible solid-state outcomes from the cocrystal screening. The practical hurdle related to the need for reference mixtures seems to restrict the applicability of NIR spectroscopy in cocrystal screening.

  14. [Current views on surface enhanced Raman spectroscopy in microbiology].

    Science.gov (United States)

    Jia, Xiaoxiao; Li, Jing; Qin, Tian; Deng, Aihua; Liu, Wenjun

    2015-05-01

    Raman spectroscopy has generated many branches during the development for more than 90 years. Surface enhanced Raman spectroscopy (SERS) improves SNR by using the interaction between tested materials and the surface of rough metal, as to quickly get higher sensitivity and precision spectroscopy without sample pretreatment. This article describes the characteristic and classification of SERS, and updates the theory and clinical application of SERS. It also summarizes the present status and progress of SERS in various disciplines and illustrates the necessity and urgency of its research, which provides rationale for the application for SERS in microbiology.

  15. Microstructured Optical Fibres

    DEFF Research Database (Denmark)

    1999-01-01

    The present invention relates to a new class of optical waveguides, in which waveguiding along one or more core regions is obtained through the application of the Photonic Bandgap (PBG) effect. The invention further relates to optimised two-dimensional lattice structures capable of providing......, which are easy to manufacture. Finally, the present invention relates to a new fabrication technique, which allows easy manufacturing of preforms for photonic crystal fibers with large void filling fractions, as well as it allows a high flexibility in the design of the cladding and core structures....... complete PBGs, which reflects light incident from air or vacuum. Such structures may be used as cladding structures in optical fibres, where light is confined and thereby guided in a hollow core region. In addition, the present invention relates to designs for ultra low-loss PBG waveguiding structures...

  16. Tackling field-portable Raman spectroscopy of real world samples

    Science.gov (United States)

    Shand, Neil C.

    2008-10-01

    A major challenge confronting first responders, customs authorities and other security-related organisations is the accurate, rapid, and safe identification of potentially hazardous chemicals outside a laboratory environment. Currently, a range of hand portable Raman equipment is commercially available that is low cost and increasingly more sophisticated. These systems are generally based on the 785nm Stokes shifted Raman technique with many using dispersive grating spectrometers. This technique offers a broad range of capabilities including the ability to analyse illicit drugs, explosives, chemical weapons and pre-cursors but still has some fundamental constraints. 'Real world' samples, such as those found at a crime scene, will often not be presented in the most accessible manner. Simple issues such as glass fluorescence can make an otherwise tractable sample impossible to analyse in-situ. A new generation of portable Raman equipment is currently being developed to address these issues. Consideration is given to the use of longer wavelength for fluorescence reduction. Alternative optical designs are being tested to compensate for the signal reduction incurred by moving to longer wavelengths. Furthermore, the use of anti-Stokes spectroscopy is being considered as well as investigating the robustness and portability of traditional Fourier Transform interferometer designs along with future advances in detector technology and ultra small spectrometers.

  17. Fast Resonance Raman Spectroscopy of Short-Lived Radicals

    DEFF Research Database (Denmark)

    Pagsberg, Palle Bjørn; Wilbrandt, Robert Walter; Hansen, Karina Benthin

    1976-01-01

    We report the first application of pulsed resonance Raman spectroscopy to the study of short-lived free radicals produced by pulse radiolysis. A single pulse from a flash-lamp pumped tunable dye laser is used to excite the resonance Raman spectrum of the p-terphenyl anion radical with an initial...

  18. Characterisation of Oil-Gas Mixtures by Raman Spectroscopy

    DEFF Research Database (Denmark)

    Hansen, Susanne Brunsgaard; Berg, Rolf W.; Stenby, Erling Halfdan

    2004-01-01

    . The present project deals with development of a technique for quick analysis of oil-gas mixtures. The main emphasis is laid on characterisation of gas phases in equilibrium with oil at high pressures and high temperatures by Raman spectroscopy. The Raman technique has a great potential of being useful, due...

  19. Raman spectroscopy of CNC-and CNF-based nanocomposites

    Science.gov (United States)

    Umesh P. Agarwal

    2017-01-01

    In this chapter, applications of Raman spectroscopy to nanocelluloses and nanocellulose composites are reviewed, and it is shown how use of various techniques in Raman can provide unique information. Some of the most important uses consisted of identification of cellulose nanomaterials, estimation of cellulose crystallinity, study of dispersion of cellulose...

  20. Optic axis determination by fibre-based polarization-sensitive swept-source optical coherence tomography

    Energy Technology Data Exchange (ETDEWEB)

    Lu Zenghai; Kasaragod, Deepa K; Matcher, Stephen J, E-mail: z.lu@sheffield.ac.uk, E-mail: s.j.matcher@sheffield.ac.uk [Department of Materials Science and Engineering, Kroto Research Institute, University of Sheffield, North Campus, Broad Lane, Sheffield, S3 7HQ (United Kingdom)

    2011-02-21

    We describe a fibre-based variable-incidence angle (VIA) polarization-sensitive swept-source optical coherence tomography (PS-SS-OCT) system to determine the 3D optical axis of birefringent biological tissues. Single-plane VIA-PS-OCT is also explored which requires measurement of the absolute fast-axis orientation. A state-of-the-art PS-SS-OCT system with some improvements both in hardware and software was used to determine the apparent optical birefringence of equine tendon for a number of different illumination directions. Polar and azimuthal angles of cut equine tendon were produced by the VIA method and compared with the nominal values. A quarter waveplate (QWP) and equine tendon were used as test targets to validate the fast-axis measurements using the system. Polar and azimuthal angles of cut equine tendon broadly agreed with the expected values within about 8% of the nominal values. A theoretical and experimental analysis of the effect of the sample arm fibre on determination of optical axis orientation using a proposed definition based on the orientation of the eigenpolarization ellipse experimentally confirms that this algorithm only works correctly for special settings of the sample arm fibre. A proposed algorithm based on the angle between Stokes vectors on the Poincare sphere is confirmed to work for all settings of the sample arm fibre. A calibration procedure is proposed to remove the sign ambiguity of the measured orientation and was confirmed experimentally by using the QWP.

  1. Optic axis determination by fibre-based polarization-sensitive swept-source optical coherence tomography

    International Nuclear Information System (INIS)

    Lu Zenghai; Kasaragod, Deepa K; Matcher, Stephen J

    2011-01-01

    We describe a fibre-based variable-incidence angle (VIA) polarization-sensitive swept-source optical coherence tomography (PS-SS-OCT) system to determine the 3D optical axis of birefringent biological tissues. Single-plane VIA-PS-OCT is also explored which requires measurement of the absolute fast-axis orientation. A state-of-the-art PS-SS-OCT system with some improvements both in hardware and software was used to determine the apparent optical birefringence of equine tendon for a number of different illumination directions. Polar and azimuthal angles of cut equine tendon were produced by the VIA method and compared with the nominal values. A quarter waveplate (QWP) and equine tendon were used as test targets to validate the fast-axis measurements using the system. Polar and azimuthal angles of cut equine tendon broadly agreed with the expected values within about 8% of the nominal values. A theoretical and experimental analysis of the effect of the sample arm fibre on determination of optical axis orientation using a proposed definition based on the orientation of the eigenpolarization ellipse experimentally confirms that this algorithm only works correctly for special settings of the sample arm fibre. A proposed algorithm based on the angle between Stokes vectors on the Poincare sphere is confirmed to work for all settings of the sample arm fibre. A calibration procedure is proposed to remove the sign ambiguity of the measured orientation and was confirmed experimentally by using the QWP.

  2. Stimulated Raman spectroscopy and nanoscopy of molecules using near field photon induced forces without resonant electronic enhancement gain

    Energy Technology Data Exchange (ETDEWEB)

    Tamma, Venkata Ananth [CaSTL Center, Department of Chemistry, University of California, Irvine, California 92697 (United States); Huang, Fei; Kumar Wickramasinghe, H., E-mail: hkwick@uci.edu [Department of Electrical Engineering and Computer Science, 142 Engineering Tower, University of California, Irvine, California 92697 (United States); Nowak, Derek [Molecular Vista, Inc., 6840 Via Del Oro, San Jose, California 95119 (United States)

    2016-06-06

    We report on stimulated Raman spectroscopy and nanoscopy of molecules, excited without resonant electronic enhancement gain, and recorded using near field photon induced forces. Photon-induced interaction forces between the sharp metal coated silicon tip of an Atomic Force Microscope (AFM) and a sample resulting from stimulated Raman excitation were detected. We controlled the tip to sample spacing using the higher order flexural eigenmodes of the AFM cantilever, enabling the tip to come very close to the sample. As a result, the detection sensitivity was increased compared with previous work on Raman force microscopy. Raman vibrational spectra of azobenzene thiol and l-phenylalanine were measured and found to agree well with published results. Near-field force detection eliminates the need for far-field optical spectrometer detection. Recorded images show spatial resolution far below the optical diffraction limit. Further optimization and use of ultrafast pulsed lasers could push the detection sensitivity towards the single molecule limit.

  3. Development of a Raman spectrometer to study surface-enhanced Raman scattering

    International Nuclear Information System (INIS)

    Biswas, Nandita; Chadha, Ridhima; Kapoor, Sudhir; Sarkar, Sisir K.; Mukherjee, Tulsi

    2011-02-01

    Raman spectroscopy is an important tool, which provides enormous information on the vibrational and structural details of materials. This understanding is not only interesting due to its fundamental importance, but also of considerable importance in optoelectronics and device applications of these materials in nanotechnology. In this report, we begin with a brief introduction on the Raman effect and various Raman scattering techniques, followed by a detailed discussion on the development of an instrument with home-built collection optics attachment. This Raman system consists of a pulsed laser excitation source, a sample compartment, collection optics to collect the scattered light, a notch filter to reject the intense laser light, a monochromator to disperse the scattered light and a detector to detect the Raman signal. After calibrating the Raman spectrometer with standard solvents, we present our results on Surface-Enhanced Raman Scattering (SERS) investigations on three different kinds of chemical systems. (author)

  4. Annealing effects on strain and stress sensitivity of polymer optical fibre based sensors

    DEFF Research Database (Denmark)

    Pospori, A.; Marques, C. A. F.; Zubel, M. G.

    2016-01-01

    The annealing effects on strain and stress sensitivity of polymer optical fibre Bragg grating sensors after their photoinscription are investigated. PMMA optical fibre based Bragg grating sensors are first photo-inscribed and then they were placed into hot water for annealing. Strain, stress...... fibre tends to increase the strain, stress and force sensitivity of the photo-inscribed sensor....

  5. Rapid detection of benzoyl peroxide in wheat flour by using Raman scattering spectroscopy

    Science.gov (United States)

    Zhao, Juan; Peng, Yankun; Chao, Kuanglin; Qin, Jianwei; Dhakal, Sagar; Xu, Tianfeng

    2015-05-01

    Benzoyl peroxide is a common flour additive that improves the whiteness of flour and the storage properties of flour products. However, benzoyl peroxide adversely affects the nutritional content of flour, and excess consumption causes nausea, dizziness, other poisoning, and serious liver damage. This study was focus on detection of the benzoyl peroxide added in wheat flour. A Raman scattering spectroscopy system was used to acquire spectral signal from sample data and identify benzoyl peroxide based on Raman spectral peak position. The optical devices consisted of Raman spectrometer and CCD camera, 785 nm laser module, optical fiber, prober, and a translation stage to develop a real-time, nondestructive detection system. Pure flour, pure benzoyl peroxide and different concentrations of benzoyl peroxide mixed with flour were prepared as three sets samples to measure the Raman spectrum. These samples were placed in the same type of petri dish to maintain a fixed distance between the Raman CCD and petri dish during spectral collection. The mixed samples were worked by pretreatment of homogenization and collected multiple sets of data of each mixture. The exposure time of this experiment was set at 0.5s. The Savitzky Golay (S-G) algorithm and polynomial curve-fitting method was applied to remove the fluorescence background from the Raman spectrum. The Raman spectral peaks at 619 cm-1, 848 cm-1, 890 cm-1, 1001 cm-1, 1234 cm-1, 1603cm-1, 1777cm-1 were identified as the Raman fingerprint of benzoyl peroxide. Based on the relationship between the Raman intensity of the most prominent peak at around 1001 cm-1 and log values of benzoyl peroxide concentrations, the chemical concentration prediction model was developed. This research demonstrated that Raman detection system could effectively and rapidly identify benzoyl peroxide adulteration in wheat flour. The experimental result is promising and the system with further modification can be applicable for more products in near

  6. Air-structured optical fibre drawn from a 3D-printed preform

    OpenAIRE

    Cook, Kevin; Canning, John; Leon-Saval, Sergio; Reid, Zane; Hossain, Md Arafat; Comatti, Jade-Edouard; Luo, Yanhua; Peng, Gang-Ding

    2016-01-01

    A structured optical fibre is drawn from a 3D-printed structured preform. Preforms containing a single ring of holes around the core are fabricated using filament made from a modified butadiene polymer. More broadly, 3D printers capable of processing soft glasses, silica and other materials are likely to come on line in the not-so distant future. 3D printing of optical preforms signals a new milestone in optical fibre manufacture.

  7. Studying the distribution of deep Raman spectroscopy signals using liquid tissue phantoms with varying optical properties.

    Science.gov (United States)

    Vardaki, Martha Z; Gardner, Benjamin; Stone, Nicholas; Matousek, Pavel

    2015-08-07

    In this study we employed large volume liquid tissue phantoms, consisting of a scattering agent (Intralipid), an absorption agent (Indian ink) and a synthesized calcification powder (calcium hydroxyapatite (HAP)) similar to that found in cancerous tissues (e.g. breast and prostate), to simulate human tissues. We studied experimentally the magnitude and origin of Raman signals in a transmission Raman geometry as a function of optical properties of the medium and the location of calcifications within the phantom. The goal was to inform the development of future noninvasive cancer screening applications in vivo. The results provide insight into light propagation and Raman scattering distribution in deep Raman measurements, exploring also the effect of the variation of relative absorbance of laser and Raman photons within the phantoms. Most notably when modeling breast and prostate tissues it follows that maximum signals is obtained from the front and back faces of the tissue with the central region contributing less to the measured spectrum.

  8. An optimal method for producing low-stress fibre optic cables for astronomy

    Science.gov (United States)

    Murray, Graham; Tamura, Naoyuki; Takato, Naruhisa; Ekpenyong, Paul; Jenkins, Daniel; Leeson, Kim; Trezise, Shaun; Butterley, Timothy; Gunn, James; Ferreira, Decio; Oliveira, Ligia; Sodre, Laerte

    2017-09-01

    An increasing number of astronomical spectrographs employ optical fibres to collect and deliver light. For integral-field and high multiplex multi-object survey instruments, fibres offer unique flexibility in instrument design by enabling spectrographs to be located remotely from the telescope focal plane where the fibre inputs are deployed. Photon-starved astronomical observations demand optimum efficiency from the fibre system. In addition to intrinsic absorption loss in optical fibres, another loss mechanism, so-called focal ratio degradation (FRD) must be considered. A fundamental cause of FRD is stress, therefore low stress fibre cables that impart minimum FRD are essential. The FMOS fibre instrument for Subaru Telescope employed a highly effective cable solution developed at Durham University. The method has been applied again for the PFS project, this time in collaboration with a company, PPC Broadband Ltd. The process, planetary stranding, is adapted from the manufacture of large fibre-count, large diameter marine telecommunications cables. Fibre bundles describe helical paths through the cable, incorporating additional fibre per unit length. As a consequence fibre stress from tension and bend-induced `race-tracking' is minimised. In this paper stranding principles are explained, covering the fundamentals of stranded cable design. The authors describe the evolution of the stranding production line and the numerous steps in the manufacture of the PFS prototype cable. The results of optical verification tests are presented for each stage of cable production, confirming that the PFS prototype performs exceptionally well. The paper concludes with an outline of future on-telescope test plans.

  9. Development of a Fiber-Optics Microspatially Offset Raman Spectroscopy Sensor for Probing Layered Materials.

    Science.gov (United States)

    Vandenabeele, Peter; Conti, Claudia; Rousaki, Anastasia; Moens, Luc; Realini, Marco; Matousek, Pavel

    2017-09-05

    Microspatially offset Raman spectroscopy (micro-SORS) has been proposed as a valuable approach to sample molecular information from layers that are covered by a turbid (nontransparent) layer. However, when large magnifications are involved, the approach is not straightforward, as spatial constraints exist to position the laser beam and the objective lens with the external beam delivery or, with internal beam delivery, the maximum spatial offset achievable is restricted. To overcome these limitations, we propose here a prototype of a new micro-SORS sensor, which uses bare glass fibers to transfer the laser radiation to the sample and to collect the Raman signal from a spatially offset zone to the Raman spectrometer. The concept also renders itself amenable to remote delivery and to the miniaturization of the probe head which could be beneficial for special applications, e.g., where access to sample areas is restricted. The basic applicability of this approach was demonstrated by studying several layered structure systems. Apart from proving the feasibility of the technique, also, practical aspects of the use of the prototype sensor are discussed.

  10. Measuring method for optical fibre sensors

    NARCIS (Netherlands)

    Lammerink, Theodorus S.J.; Fluitman, J.H.J.

    1984-01-01

    A new measuring method for the signal amplitude in intensity modulating fibre optic sensors is described. A reference signal is generated in the time domain. The method is insensitive for the sensitivity fluctuations of the light transmitter and the light receiver. The method is experimentally

  11. Raman spectroscopy of synthetic and natural iowaite.

    Science.gov (United States)

    Frost, Ray L; Adebajo, Moses O; Erickson, Kristy L

    2005-02-01

    The chemistry of a magnesium based hydrotalcite known as iowaite Mg6Fe2Cl2(OH)16.4H2O has been studied using Raman spectroscopy. Iowaite has chloride as the counter anion in the interlayer. The formula of synthetic iowaite was found to be Mg5.78Fe2.09(Cl,(CO3)0.5)(OH)16.4H2O. Oxidation of natural iowaite results in the formation of Mg4FeO(Cl,CO3) (OH)8.4H2O. X-ray diffraction (XRD) shows that the iowaite is a layered structure with a d(001) spacing of 8.0 angtsroms. For synthetic iowaite three Raman bands at 1376, 1194 and 1084 cm(-1) are attributed to CO3 stretching vibrations. These bands are not observed for the natural iowaite but are observed when the natural iowaite is exposed to air. The Raman spectrum of natural iowaite shows three bands at 708, 690 and 620 cm(-1) and upon exposure to air, two broad bands are found at 710 and 648 cm(-1). The Raman spectrum of synthetic iowaite has a very broad band at 712 cm(-1). The Raman spectrum of natural iowaite shows an intense band at 527 cm(-1). The air oxidized iowaite shows two bands at 547 and 484 cm(-1) attributed to the (CO3)(2-)nu2 bending mode. Raman spectroscopy has proven most useful for the study of the chemistry of iowaite and chemical changes induced in natural iowaite upon exposure to air.

  12. Detecting Kerogen as a Biosignature Using Colocated UV Time-Gated Raman and Fluorescence Spectroscopy.

    Science.gov (United States)

    Shkolyar, Svetlana; Eshelman, Evan J; Farmer, Jack D; Hamilton, David; Daly, Michael G; Youngbull, Cody

    2018-04-01

    The Mars 2020 mission will analyze samples in situ and identify any that could have preserved biosignatures in ancient habitable environments for later return to Earth. Highest priority targeted samples include aqueously formed sedimentary lithologies. On Earth, such lithologies can contain fossil biosignatures as aromatic carbon (kerogen). In this study, we analyzed nonextracted kerogen in a diverse suite of natural, complex samples using colocated UV excitation (266 nm) time-gated (UV-TG) Raman and laser-induced fluorescence spectroscopies. We interrogated kerogen and its host matrix in samples to (1) explore the capabilities of UV-TG Raman and fluorescence spectroscopies for detecting kerogen in high-priority targets in the search for possible biosignatures on Mars; (2) assess the effectiveness of time gating and UV laser wavelength in reducing fluorescence in Raman spectra; and (3) identify sample-specific issues that could challenge rover-based identifications of kerogen using UV-TG Raman spectroscopy. We found that ungated UV Raman spectroscopy is suited to identify diagnostic kerogen Raman bands without interfering fluorescence and that UV fluorescence spectroscopy is suited to identify kerogen. These results highlight the value of combining colocated Raman and fluorescence spectroscopies, similar to those obtainable by SHERLOC on Mars 2020, to strengthen the confidence of kerogen detection as a potential biosignature in complex natural samples. Key Words: Raman spectroscopy-Laser-induced fluorescence spectroscopy-Mars Sample Return-Mars 2020 mission-Kerogen-Biosignatures. Astrobiology 18, 431-453.

  13. Deformation Measurement of a Driven Pile Using Distributed Fibre-optic Sensing

    Science.gov (United States)

    Monsberger, Christoph; Woschitz, Helmut; Hayden, Martin

    2016-03-01

    New developments in distributed fibre-optic sensing allow the measurement of strain with a very high precision of about 1 µm / m and a spatial resolution of 10 millimetres or even better. Thus, novel applications in several scientific fields may be realised, e. g. in structural monitoring or soil and rock mechanics. Especially due to the embedding capability of fibre-optic sensors, fibre-optic systems provide a valuable extension to classical geodetic measurement methods, which are limited to the surface in most cases. In this paper, we report about the application of an optical backscatter reflectometer for deformation measurements along a driven pile. In general, pile systems are used in civil engineering as an efficient and economic foundation of buildings and other structures. Especially the length of the piles is crucial for the final loading capacity. For optimization purposes, the interaction between the driven pile and the subsurface material is investigated using pile testing methods. In a field trial, we used a distributed fibre-optic sensing system for measuring the strain below the surface of an excavation pit in order to derive completely new information. Prior to the field trial, the fibre-optic sensor was investigated in the laboratory. In addition to the results of these lab studies, we briefly describe the critical process of field installation and show the most significant results from the field trial, where the pile was artificially loaded up to 800 kN. As far as we know, this is the first time that the strain is monitored along a driven pile with such a high spatial resolution.

  14. Condition Assessment of Kevlar Composite Materials Using Raman Spectroscopy

    Science.gov (United States)

    Washer, Glenn; Brooks, Thomas; Saulsberry, Regor

    2007-01-01

    This viewgraph presentation includes the following main concepts. Goal: To evaluate Raman spectroscopy as a potential NDE tool for the detection of stress rupture in Kevlar. Objective: Test a series of strand samples that have been aged under various conditions and evaluate differences and trends in the Raman response. Hypothesis: Reduction in strength associated with stress rupture may manifest from changes in the polymer at a molecular level. If so, than these changes may effect the vibrational characteristics of the material, and consequently the Raman spectra produced from the material. Problem Statement: Kevlar composite over-wrapped pressure vessels (COPVs) on the space shuttles are greater than 25 years old. Stress rupture phenomena is not well understood for COPVs. Other COPVs are planned for hydrogen-fueled vehicles using Carbon composite material. Raman spectroscopy is being explored as an non-destructive evaluation (NDE) technique to predict the onset of stress rupture in Kevlar composite materials. Test aged Kevlar strands to discover trends in the Raman response. Strength reduction in Kevlar polymer will manifest itself on the Raman spectra. Conclusions: Raman spectroscopy has shown relative changes in the intensity and FWHM of the 1613 cm(exp -1) peak. Reduction in relative intensity for creep, fleet leader, and SIM specimens compared to the virgin strands. Increase in FWHM has been observed for the creep and fleet leader specimens compared to the virgin strands. Changes in the Raman spectra may result from redistributing loads within the material due to the disruption of hydrogen bonding between crystallites or defects in the crystallites from aging the Kevlar strands. Peak shifting has not been observed to date. Analysis is ongoing. Stress measurements may provide a tool in the short term.

  15. Simplifying the design of microstructured optical fibre pressure sensors.

    Science.gov (United States)

    Osório, Jonas H; Chesini, Giancarlo; Serrão, Valdir A; Franco, Marcos A R; Cordeiro, Cristiano M B

    2017-06-07

    In this paper, we propose a way to simplify the design of microstructured optical fibres with high sensitivity to applied pressure. The use of a capillary fibre with an embedded core allows the exploration of the pressure-induced material birefringence due to the capillary wall displacements and the photoelastic effect. An analytical description of pressure-induced material birefringence is provided, and fibre modal characteristics are explored through numerical simulations. Moreover, a capillary fibre with an embedded core is fabricated and used to probe pressure variations. Even though the embedded-core fibre has a non-optimized structure, measurements showed a pressure sensitivity of (1.04 ± 0.01) nm/bar, which compares well with more complex, specially designed fibre geometries reported in the literature. These results demonstrate that this geometry enables a novel route towards the simplification of microstructured fibre-based pressure sensors.

  16. Time-resolved resonance Raman spectroscopy of radiation-chemical processes

    International Nuclear Information System (INIS)

    Tripathi, G.N.R.

    1983-01-01

    A tunable pulsed laser Raman spectrometer for time resolved Raman studies of radiation-chemical processes is described. This apparatus utilizes the state of art optical multichannel detection and analysis techniques for data acquisition and electron pulse radiolysis for initiating the reactions. By using this technique the resonance Raman spectra of intermediates with absorption spectra in the 248-900 nm region, and mean lifetimes > 30 ns can be examined. This apparatus can be used to time resolve the vibrational spectral overlap between transients absorbing in the same region, and to follow their decay kinetics by monitoring the well resolved Raman peaks. For kinetic measurements at millisecond time scale, the Raman technique is preferable over optical absorption method where low frequency noise is quite bothersome. A time resolved Raman study of the pulse radiolytic oxidation of aqueous tetrafluorohydroquinone and p-methoxyphenol is briefly discussed. 15 references, 5 figures

  17. Raman Spectroscopy of Isotactic Polypropylene-Halloysite Nanocomposites

    Directory of Open Access Journals (Sweden)

    Elamin E. Ibrahim

    2012-01-01

    Full Text Available Raman spectroscopy investigations on nanocomposites obtained by dispersing halloysite within isotactic polypropylene are reported. A detailed analysis of the modifications of the regularity band associated to the polymeric matrix is presented. The Raman lines assigned to the polymeric matrix are broadened and weakened as the loading with halloysite is increased. The analysis of Raman lines indicates that the polymeric matrix becomes less crystalline upon the loading with halloysite and that the nanofiller is experiencing a weak dehydration upon dispersion within the polymeric matrix, probably due to the related thermal processing used to achieve the dispersion of halloysite.

  18. Combination of laser-induced breakdown spectroscopy and Raman spectroscopy for multivariate classification of bacteria

    Science.gov (United States)

    Prochazka, D.; Mazura, M.; Samek, O.; Rebrošová, K.; Pořízka, P.; Klus, J.; Prochazková, P.; Novotný, J.; Novotný, K.; Kaiser, J.

    2018-01-01

    In this work, we investigate the impact of data provided by complementary laser-based spectroscopic methods on multivariate classification accuracy. Discrimination and classification of five Staphylococcus bacterial strains and one strain of Escherichia coli is presented. The technique that we used for measurements is a combination of Raman spectroscopy and Laser-Induced Breakdown Spectroscopy (LIBS). Obtained spectroscopic data were then processed using Multivariate Data Analysis algorithms. Principal Components Analysis (PCA) was selected as the most suitable technique for visualization of bacterial strains data. To classify the bacterial strains, we used Neural Networks, namely a supervised version of Kohonen's self-organizing maps (SOM). We were processing results in three different ways - separately from LIBS measurements, from Raman measurements, and we also merged data from both mentioned methods. The three types of results were then compared. By applying the PCA to Raman spectroscopy data, we observed that two bacterial strains were fully distinguished from the rest of the data set. In the case of LIBS data, three bacterial strains were fully discriminated. Using a combination of data from both methods, we achieved the complete discrimination of all bacterial strains. All the data were classified with a high success rate using SOM algorithm. The most accurate classification was obtained using a combination of data from both techniques. The classification accuracy varied, depending on specific samples and techniques. As for LIBS, the classification accuracy ranged from 45% to 100%, as for Raman Spectroscopy from 50% to 100% and in case of merged data, all samples were classified correctly. Based on the results of the experiments presented in this work, we can assume that the combination of Raman spectroscopy and LIBS significantly enhances discrimination and classification accuracy of bacterial species and strains. The reason is the complementarity in

  19. [Surface-enhanced Raman spectroscopy analysis of thiabendazole pesticide].

    Science.gov (United States)

    Lin, Lei; Wu, Rui-mei; Liu, Mu-hua; Wang, Xiao-bin; Yan, Lin-yuan

    2015-02-01

    Surface-enhanced Raman spectroscopy (SERS) technique was used to analyze the Raman peaks of thiabendazole pesticides in the present paper. Surface enhanced substrates of silver nanoparticle were made based on microwave technology. Raman signals of thiabendazole were collected by laser Micro-Raman spectrometer with 514. 5 and 785 nm excitation wavelengths, respectively. The Raman peaks at different excitation wavelengths were analyzed and compared. The Raman peaks 782 and 1 012 at 785 nm excitation wavelength were stronger, which were C--H out-of-plane vibrations. While 1284, 1450 and 1592 cm(-1) at 514.5 nm excitation wavelength were stronger, which were vng and C==N stretching. The study results showed that the intensity of Raman peak and Raman shift at different excitation wavelengths were different And strong Raman signals were observed at 782, 1012, 1284, 1450 and 1592 cm(-1) at 514.5 and 785 nm excitation wavelengths. These characteristic vibrational modes are characteristic Raman peaks of carbendazim pesticide. The results can provide basis for the rapid screening of pesticide residue in agricultural products and food based on Raman spectrum.

  20. Fatigue processes in thermoplastic fibres; Les mecanismes de fatigue dans les fibres thermoplastiques

    Energy Technology Data Exchange (ETDEWEB)

    Herrera Ramirez, J.M.

    2004-09-15

    The present study examines and compares the behaviour of the two types of PA66 fibres and two types of PET fibres under fatigue loading up to failure, and the correlation between the fibres (nano)structures and their structural heterogeneities, with fatigue lifetimes. Several techniques have been used to analyze the materials, such as scanning electron microscopy (SEM), microanalysis (EDS), differential scanning calorimetry (DSC), wide angle X-ray diffraction (WAXD) and micro-Raman spectroscopy. A meticulous analysis by scanning electron microscopy of the fracture morphology of fibres broken in tension and in fatigue, as well as a study of the fatigue life, were undertaken. The fatigue process occurs when the cyclic load amplitude is sufficiently large, however a condition for fatigue failure is that the minimum load each cycle must be lower than a threshold stress level. Failure under fatigue conditions leads to distinctive fracture morphologies which are very different from those seen after tensile or creep failure and this allows easy identification of the fatigue process. The fibres have been analyzed in the as received state and after fatigue failure in order to observe the microstructural changes resulting from the fatigue loading. The results will be compared with those obtained for fibres loaded under conditions where the fatigue process was hindered. The role of the microstructure of the fibres in determining fatigue will be discussed in this work and the possibility of improving their resistance to fatigue or eliminating the fatigue process will be discussed. (author)

  1. Reliability of optical fibres and components final report of COST 246

    CERN Document Server

    Griffioen, Willem; Gadonna, Michel; Limberger, Hans; Heens, Bernard; Knuuttila, Hanna; Kurkjian, Charles; Mirza, Shehzad; Opacic, Aleksandar; Regio, Paola; Semjonov, Sergei

    1999-01-01

    Reliability of Optical Fibres and Components reports the findings of COST 246 (1993-1998) - European research initiative in the field of optical telecommunications. Experts in the materials and reliability field of optical fibres and components have contributed to this unique study programme. The results, conclusions and achievements of their work have been obtained through joint experimentation and discussion with representatives from manufacturing and research groups. Topics covered include: Lifetime estimation; Failure mechanisms; Ageing test methods; Field data and service environments for components. For the first time the reader can explore the reliability of products and examine the results and conclusions in published form. This comprehensive volume is intended to provide a deeper understanding of the reliability of optical fibres and components. The book will be extremely useful to all scientists and practitioners involved in the industry.

  2. Development of Single Cell Raman Spectroscopy for Cancer Screening and Therapy Monitoring

    Energy Technology Data Exchange (ETDEWEB)

    Chan, James W. [Lawrence Livermore National Lab. (LLNL), Livermore, CA (United States)

    2009-02-24

    The overall goal of this project was to develop a new technology for cancer detection based on single cell laser tweezers Raman spectroscopy (LTRS). This method has the potential to improve the detection of cancer characteristics in single cells by acquiring cellular spectral markers that reflect the intrinsic biology of the cell. These spectral biomarkers are a new form of molecular signatures in the field of cancer research that may hold promise in accurately identifying and diagnosing cancer and measuring patient response to treatment. The primary objectives of this proposed work were to perform a full characterization of the Raman spectra of single normal, transformed, and cancer cells to identify cancer spectral signatures, validate the clinical significance of these results by direct correlation to established clinical parameters for assessing cancer, and to develop the optical technology needed for efficient sampling and analysis of cells needed for the practical use of such a system in the clinic. The results indicated that normal T and B lymphocytes could be distinguished from their neoplastic cultured cells and leukemia patient cells with classification sensitivities and specificities routinely exceeding 90% based on multivariate statistical analysis and leave-one-out cross validation. Differences primarily in the Raman peaks associated with DNA and protein were observed between normal and leukemic cells and were consistent for both the cultured and primary cells. Differences between normal and leukemia patient cells were more subtle than between normal and leukemia cultured cells but were still significant to allow for accurate discrimination. Furthermore, it is revealed that the spectral differences are representative of the neoplastic phenotype of the cells and not a reflection of the different metabolic states (resting versus active) of normal and leukemic cells. The effect of different standard cell fixation protocols (i.e. methanol, paraformaledhye

  3. Investigation on Clarified Fruit Juice Composition by Using Visible Light Micro-Raman Spectroscopy

    Directory of Open Access Journals (Sweden)

    Maria Lepore

    2007-10-01

    Full Text Available Liquid samples of clarified apple and apricot juices at different productionstages were investigated using visible light micro-Raman spectroscopy in order to assessits potential in monitoring fruit juice production. As is well-known, pectin plays a strategicrole in the production of clarified juice and the possibility of using Raman for its detectionduring production was therefore evaluated. The data analysis has enabled the clearidentification of pectin. In particular, Raman spectra of apple juice samples from washedand crushed fruits revealed a peak at 845 cm-1 (typical of pectin which disappears in theRaman spectra of depectinised samples. The fructose content was also revealed by thepresence of four peaks at 823 cm-1, 872 cm-1, 918 cm-1 and 975 cm-1. In the case of apricotjuice, several Raman fingerprints of β-carotene at 1008, 1159 and 1520 cm-1 were alsohighlighted. Present results resulted interesting for the exclusive use of optical methods forthe quantitative determination of the above-mentioned substances in place of thebiochemical assays generally used for this purpose, which are time consuming and requiredifferent chemical reagents for each of them.

  4. A new on-axis micro-spectrophotometer for combining Raman, fluorescence and UV/Vis absorption spectroscopy with macromolecular crystallography at the Swiss Light Source

    International Nuclear Information System (INIS)

    Pompidor, Guillaume; Dworkowski, Florian S. N.; Thominet, Vincent; Schulze-Briese, Clemens; Fuchs, Martin R.

    2013-01-01

    The new version MS2 of the in situ on-axis micro-spectrophotometer at the macromolecular crystallography beamline X10SA of the Swiss Light Source supports the concurrent acquisition of Raman, resonance Raman, fluorescence and UV/Vis absorption spectra along with diffraction data. The combination of X-ray diffraction experiments with optical methods such as Raman, UV/Vis absorption and fluorescence spectroscopy greatly enhances and complements the specificity of the obtained information. The upgraded version of the in situ on-axis micro-spectrophotometer, MS2, at the macromolecular crystallography beamline X10SA of the Swiss Light Source is presented. The instrument newly supports Raman and resonance Raman spectroscopy, in addition to the previously available UV/Vis absorption and fluorescence modes. With the recent upgrades of the spectral bandwidth, instrument stability, detection efficiency and control software, the application range of the instrument and its ease of operation were greatly improved. Its on-axis geometry with collinear X-ray and optical axes to ensure optimal control of the overlap of sample volumes probed by each technique is still unique amongst comparable facilities worldwide and the instrument has now been in general user operation for over two years

  5. Micro spatial analysis of seashell surface using laser-induced breakdown spectroscopy and Raman spectroscopy

    Energy Technology Data Exchange (ETDEWEB)

    Lu, Yuan; Li, Yuandong; Li, Ying [Optics and Optoelectronics Lab, Ocean University of China, Qingdao 266100 (China); Wang, Yangfan; Wang, Shi; Bao, Zhenmin [Life Science College, Ocean University of China, Qingdao 266003 (China); Zheng, Ronger, E-mail: rzheng@ouc.edu.cn [Optics and Optoelectronics Lab, Ocean University of China, Qingdao 266100 (China)

    2015-08-01

    The seashell has been studied as a proxy for the marine researches since it is the biomineralization product recording the growth development and the ocean ecosystem evolution. In this work a hybrid of Laser Induced Breakdown Spectroscopy (LIBS) and Raman spectroscopy was introduced to the composition analysis of seashell (scallop, bivalve, Zhikong). Without any sample treatment, the compositional distribution of the shell was obtained using LIBS for the element detection and Raman for the molecule recognition respectively. The elements Ca, K, Li, Mg, Mn and Sr were recognized by LIBS; the molecule carotene and carbonate were identified with Raman. It was found that the LIBS detection result was more related to the shell growth than the detection result of Raman. The obtained result suggested the shell growth might be developing in both horizontal and vertical directions. It was indicated that the LIBS–Raman combination could be an alternative way for the shell researches. - Highlights: • A LIBS–Raman hybrid system was developed. • A seashell has been analyzed for the elementary and molecular distribution with a system. • The shell growth development was studied on the surface and in the depth.

  6. Determining the Effect of Calculus, Hypocalcification, and Stain on Using Optical Coherence Tomography and Polarized Raman Spectroscopy for Detecting White Spot Lesions

    Directory of Open Access Journals (Sweden)

    Amanda Huminicki

    2010-01-01

    Full Text Available Optical coherence tomography (OCT and polarized Raman spectroscopy (PRS have been shown as useful methods for distinguishing sound enamel from carious lesions ex vivo. However, factors in the oral environment such as calculus, hypocalcification, and stain could lead to false-positive results. OCT and PRS were used to investigate extracted human teeth clinically examined for sound enamel, white spot lesion (WSL, calculus, hypocalcification, and stain to determine whether these factors would confound WSL detection with these optical methods. Results indicate that OCT allowed differentiating caries from sound enamel, hypocalcification, and stain, with calculus deposits recognizable on OCT images. ANOVA and post-hoc unequal N HSD analyses to compare the mean Raman depolarization ratios from the various groups showed that the mean values were statistically significant at P<.05, except for several comparison pairs. With the current PRS analysis method, the mean depolarization ratios of stained enamel and caries are not significantly different due to the sloping background in the stained enamel spectra. Overall, calculus and hypocalcification are not confounding factors affecting WSL detection using OCT and PRS. Stain does not influence WSL detection with OCT. Improved PRS analysis methods are needed to differentiate carious from stained enamel.

  7. Electromagnetic field enhancement effects in group IV semiconductor nanowires. A Raman spectroscopy approach

    Science.gov (United States)

    Pura, J. L.; Anaya, J.; Souto, J.; Prieto, A. C.; Rodríguez, A.; Rodríguez, T.; Periwal, P.; Baron, T.; Jiménez, J.

    2018-03-01

    Semiconductor nanowires (NWs) are the building blocks of future nanoelectronic devices. Furthermore, their large refractive index and reduced dimension make them suitable for nanophotonics. The study of the interaction between nanowires and visible light reveals resonances that promise light absorption/scattering engineering for photonic applications. Micro-Raman spectroscopy has been used as a characterization tool for semiconductor nanowires. The light/nanowire interaction can be experimentally assessed through the micro-Raman spectra of individual nanowires. As compared to both metallic and dielectric nanowires, semiconductor nanowires add additional tools for photon engineering. In particular, one can grow heterostructured nanowires, both axial and radial, and also one could modulate the doping level and the surface condition among other factors than can affect the light/NW interaction. We present herein a study of the optical response of group IV semiconductor nanowires to visible photons. The study is experimentally carried out through micro-Raman spectroscopy of different group IV nanowires, both homogeneous and axially heterostructured (SiGe/Si). The results are analyzed in terms of the electromagnetic modelling of the light/nanowire interaction using finite element methods. The presence of axial heterostructures is shown to produce electromagnetic resonances promising new photon engineering capabilities of semiconductor nanowires.

  8. Gradient temperature Raman spectroscopy identifies flexible sites in proline and alanine peptides

    Science.gov (United States)

    Continuous thermo dynamic Raman spectroscopy (TDRS) applies the temperature gradients utilized in differential scanning calorimetry (DSC) to Raman spectroscopy, providing a straightforward technique to identify molecular rearrangements that occur just prior to phase transitions. Herein we apply TDRS...

  9. Breast cancer diagnosis using FT-RAMAN spectroscopy

    Science.gov (United States)

    Bitar, Renata A.; Martin, Airton A.; Criollo, Carlos J. T.; Ramalho, Leandra N. Z.

    2005-04-01

    In this study FT-RAMAN spectra of breast tissue from 35 patients were obtained and separated into nine groups for histopathologic analysis, which are as follows: normal breast tissue, fibrocystic condition, in situ ductal carcinoma, in situ ductal carcinoma with necrosis, infiltrate ductal carcinoma, infiltrate inflammatory ductal carcinoma, infiltrate medullar ductal carcinoma, infiltrate colloid ductal carcinoma, and infiltrate lobular carcinoma. Using spectrum averages taken from each group a qualitative analysis was performed to compare these molecular compositions to those known to be present in abnormal concentrations in pathological situations, e.g. the development of desmoplastic lesions with a stroma of dense collagen in tumoral breast tissues which substitute adipose stroma of non-diseased breast tissue. The band identified as amino acids, offered basis for observation in the existence of alterations in the proteins, thus proving Raman Spectroscopic capacity in identification of primary structures of proteins; secondary protein structure was also identified through the peptic links, Amide I and Amide III, which have also been identified by various authors. Alterations were also identified in the peaks and bandwidths of nucleic acids demonstrating the utilization of Raman Spectroscopy in the analysis of the cells nucleus manifestations. All studies involving Raman Spectroscopy and breast cancer have shown excellent result reliability and therefore a basis for the technical theory.

  10. CONFERENCE NOTE: CETO—Centro de Ciências e Tecnologias Opticas, Trends in Optical Fibre Metrology and Standards

    Science.gov (United States)

    1994-01-01

    Summer School, 27 June to 8 July 1994, Viana do Castelo, Hotel do Parque, Portugal Optical fibres, with their extremely low transmission loss, untapped bandwidth and controllable dispersion, dominate a broad range of technologies in which applications must respond to the increasing constraints of today's specifications as well as envisage future requirements. Optical fibres dominate communications systems. In the area of sensors, fibre optics will be fully exploited for their immunity to EMI, their high sensitivity and their large dynamic range. The maturity of single mode optical technology has led to intensive R&D of a range of components based on the advantages of transmission characteristics and signal processing. Specifications and intercompatibility requests for the new generation of both analogue and digital fibre optical components and systems has created a demand for sophisticated measuring techniques based on unique and complex instruments. In recent years there has been a signification evolution in response to the explosion of applications and the tightening of specifications. These developments justify a concerted effort to focus on trends in optical fibre metrology and standards. Objective The objective of this school is to provide a progressive and comprehensive presentation of current issues concerning passive and active optical fibre characterization and measurement techniques. Passive fibre components support a variety of developments in optical fibre systems and will be discussed in terms of relevance and standards. Particular attention will be paid to devices for metrological purposes such as reference fibres and calibration artefacts. The characterization and testing of optical fibre amplifiers, which have great potential in telecommunications, data distribution networks and as a system part in instrumentation, will be covered. Methods of measurement and means of calibration with traceability will be discussed, together with the characterization

  11. Identification of bacteria in drinking water with Raman spectroscopy

    NARCIS (Netherlands)

    van de Vossenberg, J.; Tervahauta, H.; Maquelin, K.; Blokker-Koopmans, C.H.W.; Uytewaal-Aaarts, M.; Kooij, D.; van Wezel, A.P.; van der Gaag, B.

    2013-01-01

    Raman spectroscopy was used to discriminate between Legionella strains and between E. coli and coliform strains. The relationship between triplicate Raman spectra derived from Legionella bacteria was compared with that derived from a blind set of samples and amplified fragment length polymorphism

  12. Optical fibres bringing the LHC into focus

    CERN Multimedia

    2003-01-01

    New components are being added to CERN's optical fibre network, which will transport the torrents of data produced by the LHC. 1500 kilometres of cables will be installed in the tunnels and at ground level.

  13. Upgrade of an old Raman Spectrometer

    DEFF Research Database (Denmark)

    Hansen, Susanne Brunsgaard; Berg, Rolf W.; Stenby, Erling Halfdan

    2004-01-01

    Improvement of a conventional Jeol Raman spectrometer with a single channel photo multiplier detector is described. New optical components (fibres, mirror, lens and CCD detector) have been chosen to design a high quality and easy-to-use instrument. Tests have shown that with this modified...... spectrometer Raman spectra can be acquired of a quality comparable to the spectra obtained previously, but the time needed to obtain a spectrum is markedly reduced. Selected test spectra and a simple calibration procedure to obtain the wavenumber values from the band CCD pixel position are presented....

  14. Structural studies of WO3-TeO2 glasses by high-Q-neutron diffraction and Raman spectroscopy

    International Nuclear Information System (INIS)

    Khanna, A.; Kaur, A.; Krishna, P.S.R.; Shinde, A.B.

    2013-01-01

    Glasses from the system: xWO 3 -(100-x)TeO 2 (x=15, 20 and 25 mol %) were prepared by melt quenching technique and characterized by density, UV-visible absorption spectroscopy, Differential Scanning Calorimetry (DSC), Raman spectroscopy and high-Q neutron diffraction measurements. Glass density and glass transition temperature increased with increase in WO 3 concentration, Raman spectroscopy indicated the conversion of TeO 4 units into TeO 3 units with increase in WO 3 content. The increase in glass transition temperature with the incorporation of WO 3 was attributed to the increase in average bond strength of the glass network since the bond dissociation energy of W-O bonds (672 kJ/mol) is significantly higher than that of Te-O bonds (376 kJ/mol). UV-visible studies found a very strong optical absorption band due to W 6+ ions, just below the absorption edge. High-Q neutron diffraction measurements were performed on glasses and radial distribution function analyses revealed changes in W-O and Te-O correlations in the glass network. The findings about changes in glass structure from neutron diffraction studies were consistent with structural information obtained from Raman spectroscopy and structure-property correlations were made. (author)

  15. Surface-enhanced Raman spectroscopy: nonlocal limitations

    DEFF Research Database (Denmark)

    Toscano, Giuseppe; Raza, Søren; Xiao, Sanshui

    2012-01-01

    for our understanding of surface-enhanced Raman spectroscopy (SERS). The intrinsic length scale of the electron gas serves to smear out assumed field singularities, leaving the SERS enhancement factor finite, even for geometries with infinitely sharp features. For silver nanogroove structures, mimicked...

  16. Optoelectronic line transmission an introduction to fibre optics

    CERN Document Server

    Tricker, Raymond L

    2013-01-01

    Optoelectronic Line Transmission: An Introduction to Fibre Optics presents a basic introduction as well as a background reference manual on fiber optic transmission. The book discusses the basic principles of optical line transmission; the advantages and disadvantages of optical fibers and optoelectronic signalling; the practical applications of optoelectronics; and the future of optoelectronics. The text also describes the theories of optical line transmission; fibers and cables for optical transmission; transmitters including light-emitting diodes and lasers; and receivers including photodi

  17. Regeneration of irradiated optical fibres by photo-bleaching?

    International Nuclear Information System (INIS)

    Henschel, H.; Koehn, O.

    1999-01-01

    It is known that a light power between 0,1 and 20 μW caused bleaching of colour centres, which implies a reduction of induced loss. Older fibres especially those with a core made of undoped, low OH silica, experience tremendous photo-bleaching. Light of shorter wavelengths has a higher bleaching efficiency than that of longer wavelengths and same light intensity. The investigations have demonstrated that the injection of photo-bleaching light of shorter wavelength and higher intensity can distinctly decrease the radiation-induced loss of Ge-doped fibres, especially at low temperatures. Another possibility to apply photo-bleaching by short wavelength is to regenerate fibres that are permanently installed in radiation environments. Modern undoped multi-mode (MM) step index (Si), Ge-doped MM graded index (Gi) and Ge-doped single-mode (SM) fibres that had been irradiated were submitted to bleaching light. In this article it is shown how loss reduction and necessary bleaching time depend on wavelength and intensity of the bleaching light, on fibre length (bleaching time) and on radiation dose. These results are promising for the regeneration of optical fibres in facilities where the fibres cannot be replaced easily by new ones. (A.C.)

  18. Pyridine Vapors Detection by an Optical Fibre Sensor

    Directory of Open Access Journals (Sweden)

    Alberto Fernandez-Gutiérrez

    2008-02-01

    Full Text Available An optical fibre sensor has been implemented towards pyridine vapors detection;to achieve this, a novel vapochromic material has been used, which, in solid state, suffers achange in colour from blue to pink-white in presence of pyridine vapours. This complex isadded to a solution of PVC (Poly Vinyl Chloride, TBP (Tributylphosphate andtetrahydrofuran (THF, forming a plasticized matrix; by dip coating technique, the sensingmaterial is fixed onto a cleaved ended optical fibre. The fabrication process was optimizedin terms of number of dips and dipping speed, evaluating the final devices by dynamicrange. Employing a reflection set up, the absorbance spectra and changes in the reflectedoptical power of the sensors were registered to determine their response. A linear relationbetween optical power versus vapor concentration was obtained, with a detection limit of 1ppm (v/v.

  19. Phenotypic Profiling of Antibiotic Response Signatures in Escherichia coli Using Raman Spectroscopy

    Science.gov (United States)

    Athamneh, A. I. M.; Alajlouni, R. A.; Wallace, R. S.; Seleem, M. N.

    2014-01-01

    Identifying the mechanism of action of new potential antibiotics is a necessary but time-consuming and costly process. Phenotypic profiling has been utilized effectively to facilitate the discovery of the mechanism of action and molecular targets of uncharacterized drugs. In this research, Raman spectroscopy was used to profile the phenotypic response of Escherichia coli to applied antibiotics. The use of Raman spectroscopy is advantageous because it is noninvasive, label free, and prone to automation, and its results can be obtained in real time. In this research, E. coli cultures were subjected to three times the MICs of 15 different antibiotics (representing five functional antibiotic classes) with known mechanisms of action for 30 min before being analyzed by Raman spectroscopy (using a 532-nm excitation wavelength). The resulting Raman spectra contained sufficient biochemical information to distinguish between profiles induced by individual antibiotics belonging to the same class. The collected spectral data were used to build a discriminant analysis model that identified the effects of unknown antibiotic compounds on the phenotype of E. coli cultures. Chemometric analysis showed the ability of Raman spectroscopy to predict the functional class of an unknown antibiotic and to identify individual antibiotics that elicit similar phenotypic responses. Results of this research demonstrate the power of Raman spectroscopy as a cellular phenotypic profiling methodology and its potential impact on antibiotic drug development research. PMID:24295982

  20. Electron irradiation response on Ge and Al-doped SiO{sub 2} optical fibres

    Energy Technology Data Exchange (ETDEWEB)

    Yaakob, N.H.; Wagiran, H. [Department of Physics, Universiti Teknologi Malaysia, 81310 Skudai, Johor Darul Takzim (Malaysia); Hossain, I., E-mail: imamhossain@utm.m [Department of Physics, Universiti Teknologi Malaysia, 81310 Skudai, Johor Darul Takzim (Malaysia); Ramli, A.T. [Department of Physics, Universiti Teknologi Malaysia, 81310 Skudai, Johor Darul Takzim (Malaysia); Bradley, D.A [Department of Physics, University of Surrey, Guildford GU2 7XH (United Kingdom); Hashim, S. [Department of Physics, Universiti Teknologi Malaysia, 81310 Skudai, Johor Darul Takzim (Malaysia); Ali, H. [Department of Radiotherapy and Oncology, Hospital Sultan Ismail, Johor Darul Takzim (Malaysia)

    2011-05-01

    This paper describes the thermoluminescence response, sensitivity, stability and reproducibility of SiO{sub 2} optical fibres with various electron energies and doses. The TL materials that comprise Al- and Ge-doped silica fibres were used in this experiment. The TL results are compared with those of the commercially available TLD-100. The doped SiO{sub 2} optical fibres and TLD-100 are placed in a solid phantom and irradiated with 6, 9 and 12 MeV electron beams at doses ranging from 0.2 to 4.0 Gy using the LINAC at Hospital Sultan Ismail, Johor Bahru, Malaysia. It was found that the commercially available Al- and Ge-doped optical fibres have a linear dose-TL signal relationship. The intensity of TL response of Ge-doped fibre is markedly greater than that of the Al-doped fibre.

  1. Applying Fibre-Optic Distributed Temperature Sensing to Near-surface Temperature Dynamics of Broadacre Cereals During Radiant Frost Events.

    Science.gov (United States)

    Stutsel, B.; Callow, J. N.

    2017-12-01

    Radiant frost events, particularly those during the reproductive stage of winter cereal growth, cost growers millions of dollars in lost yield. Whilst synoptic drivers of frost and factors influencing temperature variation at the landscape scale are relatively well understood, there is a lack of knowledge surrounding small-scale temperature dynamics within paddocks and plot trials. Other work has also suggested a potential significant temperature gradient (several degrees) vertically from ground to canopy, but this is poorly constrained experimentally. Subtle changes in temperature are important as frost damage generally occurs in a very narrow temperature range (-2 to -5°C). Once a variety's damage threshold is reached, a 1°C difference in minimum temperature can increase damage from 10 to 90%. This study applies Distributed Temperature Sensing (DTS) using fibre optics to understand how minimum temperature evolves during a radiant frost. DTS assesses the difference in attenuation of Raman scattering of a light pulse travelling along a fibre optic cable to measure temperature. A bend insensitive multimode fibre was deployed in a double ended duplex configuration as a "fence" run through four times of sowing at a trial site in the Western Australian Wheatbelt. The fibre optic fence was 160m long and 800mm tall with the fibre optic cable spaced 100mm apart vertically, and calibrated in ambient water ( 10 to 15oC) and a chilled glycol ( -8 to-10 oC) baths. The temperature measurements had a spatial resolution of 0.65m and temporal resolution of 60s, providing 2,215 measurements every minute. The results of this study inform our understanding of the subtle temperature changes from the soil to canopy, providing new insight into how to place traditional temperature loggers to monitor frost damage. It also addresses questions of within-trial temperature variability, and provides an example of how novel techniques such as DTS can be used to improve the way temperature

  2. Investigation of the in-solution relaxation of polymer optical fibre Bragg gratings

    DEFF Research Database (Denmark)

    Fasano, Andrea; Woyessa, Getinet; Janting, Jakob

    2016-01-01

    We investigate the response of PMMA microstructured polymer optical fibre Bragg gratings whenimmersed in methanol/water solutions. Overall we observe a permanent blue-shift in Bragg gratingwavelength after solvent evaporation. The main contribution in the resonance wavelength shift probably...... arisesfrom a permanent change in the size of the fibre, as already reported for high-temperature annealing ofpolymer optical fibres. As a consequence of the solution concentration dependence of the glass transitiontemperature of polymers, different methanol/water solutions lead to various degrees of frozen...

  3. Development of an optimal filter substrate for the identification of small microplastic particles in food by micro-Raman spectroscopy.

    Science.gov (United States)

    Oßmann, Barbara E; Sarau, George; Schmitt, Sebastian W; Holtmannspötter, Heinrich; Christiansen, Silke H; Dicke, Wilhelm

    2017-06-01

    When analysing microplastics in food, due to toxicological reasons it is important to achieve clear identification of particles down to a size of at least 1 μm. One reliable, optical analytical technique allowing this is micro-Raman spectroscopy. After isolation of particles via filtration, analysis is typically performed directly on the filter surface. In order to obtain high qualitative Raman spectra, the material of the membrane filters should not show any interference in terms of background and Raman signals during spectrum acquisition. To facilitate the usage of automatic particle detection, membrane filters should also show specific optical properties. In this work, beside eight different, commercially available membrane filters, three newly designed metal-coated polycarbonate membrane filters were tested to fulfil these requirements. We found that aluminium-coated polycarbonate membrane filters had ideal characteristics as a substrate for micro-Raman spectroscopy. Its spectrum shows no or minimal interference with particle spectra, depending on the laser wavelength. Furthermore, automatic particle detection can be applied when analysing the filter surface under dark-field illumination. With this new membrane filter, analytics free of interference of microplastics down to a size of 1 μm becomes possible. Thus, an important size class of these contaminants can now be visualized and spectrally identified. Graphical abstract A newly developed aluminium coated polycarbonate membrane filter enables automatic particle detection and generation of high qualitative Raman spectra allowing identification of small microplastics.

  4. Advances in laser technology and fibre-optic delivery systems in lithotripsy.

    Science.gov (United States)

    Fried, Nathaniel M; Irby, Pierce B

    2018-06-08

    The flashlamp-pumped, solid-state holmium:yttrium-aluminium-garnet (YAG) laser has been the laser of choice for use in ureteroscopic lithotripsy for the past 20 years. However, although the holmium laser works well on all stone compositions and is cost-effective, this technology still has several fundamental limitations. Newer laser technologies, including the frequency-doubled, double-pulse YAG (FREDDY), erbium:YAG, femtosecond, and thulium fibre lasers, have all been explored as potential alternatives to the holmium:YAG laser for lithotripsy. Each of these laser technologies is associated with technical advantages and disadvantages, and the search continues for the next generation of laser lithotripsy systems that can provide rapid, safe, and efficient stone ablation. New fibre-optic approaches for safer and more efficient delivery of the laser energy inside the urinary tract include the use of smaller-core fibres and fibres that are tapered, spherical, detachable or hollow steel, or have muzzle brake distal fibre-optic tips. These specialty fibres might provide advantages, including improved flexibility for maximal ureteroscope deflection, reduced cross section for increased saline irrigation rates through the working channel of the ureteroscope, reduced stone retropulsion for improved stone ablation efficiency, and reduced fibre degradation and burnback for longer fibre life.

  5. Identification of cave minerals by Raman spectroscopy: new technology for non-destructive analysis

    Directory of Open Access Journals (Sweden)

    White William B.

    2006-07-01

    Full Text Available The usual tools are X-ray powder diffraction, the optical microscope, and the scanning electron microscope. X-ray diffraction gives a definitive fingerprint by which the mineral can be identified by comparison with a catalog of reference patterns. However, samples must be ground to powder and unstable hydrated minerals may decompose before analysis is complete. Raman spectroscopy also provides a fingerprint useful for mineral identification but with the additional advantage that some a-priori interpretation of the spectra is possible (distinguishing carbonates from sulfates, for example. Because excitation of the spectra is by means of a laser beam, it is possible to measure the spectra of samples in sealed glass containers, thus preserving unstable samples. Because laser beams can be focused, spectra can be obtained from individual grains. New technology has reduced the size of the instrument and also the sensitivity of the optical system to vibration and transport so that a portable instrument has become possible. The sampling probe is linked to the spectrometer by optical fibers so that large specimens can be examined without damage. Comparative spectra of common cave minerals demonstrate the value of Raman spectra as an identification technique.

  6. Using Raman spectroscopy and SERS for in situ studies of rhizosphere bacteria

    Energy Technology Data Exchange (ETDEWEB)

    Mohseni, Hooman; Agahi, Massoud H.; Razeghi, Manijeh; Polisetti, Sneha; Baig, Nameera; Bible, Amber; Morrell-Falvey, Jennifer; Doktycz, Mitchel; Bohn, Paul W.

    2015-08-21

    Bacteria colonize plant roots to form a symbiotic relationship with the plant and can play in important role in promoting plant growth. Raman spectroscopy is a useful technique to study these bacterial systems and the chemical signals they utilize to interact with the plant. We present a Raman study of Pantoea YR343 that was isolated from the rhizosphere of Populus deltoides (Eastern Cottonwood). Pantoea sp. YR343 produce yellowish carotenoid pigment that play a role in protection against UV radiation, in the anti-oxidative pathways and in membrane fluidity. Raman spectroscopy is used to non-invasively characterize the membrane bound carotenoids. The spectra collected from a mutant strain created by knocking out the crtB gene that encodes a phytoene synthase responsible for early stage of carotenoid biosynthesis, lack the carotenoid peaks. Surface Enhanced Raman Spectroscopy is being employed to detect the plant phytoharmone indoleacetic acid that is synthesized by the bacteria. This work describes our recent progress towards utilizing Raman spectroscopy as a label free, non-destructive method of studying plant-bacteria interactions in the rhizosphere.

  7. Fibre optic connectors with high-return-loss performance

    Science.gov (United States)

    Knott, Michael P.; Johnson, R.; Cooke, K.; Longhurst, P. C.

    1990-09-01

    This paper describes the development of a single mode fibre optic connector with high return loss performance without the use of index matching. Partial reflection of incident light at a fibre optic connector interface is a recognised problem where the result can be increased noise and waveform distortion. This is particularly important for video transmission in subscriber networks which requires a high signal to noise ratio. A number of methods can be used to improve the return loss. The method described here uses a process which angles the connector endfaces. Measurements show typical return losses of -55dB can be achieved for an end angle of 6 degrees. Insertion loss results are also presented.

  8. Distributed gas sensing with optical fibre photothermal interferometry.

    Science.gov (United States)

    Lin, Yuechuan; Liu, Fei; He, Xiangge; Jin, Wei; Zhang, Min; Yang, Fan; Ho, Hoi Lut; Tan, Yanzhen; Gu, Lijuan

    2017-12-11

    We report the first distributed optical fibre trace-gas detection system based on photothermal interferometry (PTI) in a hollow-core photonic bandgap fibre (HC-PBF). Absorption of a modulated pump propagating in the gas-filled HC-PBF generates distributed phase modulation along the fibre, which is detected by a dual-pulse heterodyne phase-sensitive optical time-domain reflectometry (OTDR) system. Quasi-distributed sensing experiment with two 28-meter-long HC-PBF sensing sections connected by single-mode transmission fibres demonstrated a limit of detection (LOD) of ∼10 ppb acetylene with a pump power level of 55 mW and an effective noise bandwidth (ENBW) of 0.01 Hz, corresponding to a normalized detection limit of 5.5ppb⋅W/Hz. Distributed sensing experiment over a 200-meter-long sensing cable made of serially connected HC-PBFs demonstrated a LOD of ∼ 5 ppm with 62.5 mW peak pump power and 11.8 Hz ENBW, or a normalized detection limit of 312ppb⋅W/Hz. The spatial resolution of the current distributed detection system is limited to ∼ 30 m, but it is possible to reduce down to 1 meter or smaller by optimizing the phase detection system.

  9. Macro and micro Raman spectroscopy of YBa2Cu3O7 films and microbridges

    International Nuclear Information System (INIS)

    Bock, A.

    1993-01-01

    In the present work Raman spectroscopy is used as a method to characterize the properties of YBa 2 Cu 3 O 7 -films. This is done in the usual (macro-)Raman set-up as well as in the micro-Raman set-up where the spatial resolution is about one micron. To obtain comparable results the Raman spectra have to be corrected for the spectral response of the spectrometer. Therefore a calibration of the set-up was performed. The calibration can be used to determine spot temperatures by comparing Stokes and Anti-Stokes spectra. Two different methods are developed to correct for the straylight which is additionally observed in Raman-spectra of YBa 2 Cu 3 O 7 -films. Macro- as well as micro-Raman measurements are used to characterize the film properties, where care has been taken to avoid damages by the laser itself. The macro-Raman set-up is used to identify the properties of the film, such as orientation, oxygen-content and morphology. Outgrowths and other particles on the surface are on the other hand investigated by micro-Raman spectroscopy. The surface morphology is additionally characterized by scanning-electron-microscopy. This is compared to the Raman data. Raman spectra of epitaxial YBa 2 Cu 3 O 7 -films are taken as a function of the temperature and exciting wavelength. The influence on the phonons and on the electronic background is discussed separately. The obtained results are analyzed by comparison with single-crystal measurements. The investigation of YBa 2 Cu 3 O 7 -microbridges in the macro-Raman set-up allows a correlation between the local optical and electrical properties of the bridge. A method is presented which can account for the heating in the laser spot with high accuracy. This method allows to determine local critical current densities as well as local critical temperatures on the microbridge. It provides also the possibility to take Raman spectra at precise spot temperatures. (orig./WL)

  10. Optimizing laser crater enhanced Raman spectroscopy.

    Science.gov (United States)

    Lednev, V N; Sdvizhenskii, P A; Grishin, M Ya; Filichkina, V A; Shchegolikhin, A N; Pershin, S M

    2018-03-20

    Raman signal enhancement by laser crater production was systematically studied for 785 nm continuous wave laser pumping. Laser craters were produced in L-aspartic acid powder by a nanosecond pulsed solid state neodymium-doped yttrium aluminum garnet laser (532 nm, 8 ns, 1 mJ/pulse), while Raman spectra were then acquired by using a commercial spectrometer with 785 nm laser beam pumping. The Raman signal enhancement effect was studied in terms of the number of ablating pulses used, the lens-to-sample distance, and the crater-center-laser-spot offset. The influence of the experiment parameters on Raman signal enhancement was studied for different powder materials. Maximum Raman signal enhancement reached 11 fold for loose powders but decreased twice for pressed tablets. Raman signal enhancement was demonstrated for several diverse powder materials like gypsum or ammonium nitrate with better results achieved for the samples tending to give narrow and deep craters upon the laser ablation stage. Alternative ways of cavity production (steel needle tapping and hole drilling) were compared with the laser cratering technique in terms of Raman signal enhancement. Drilling was found to give the poorest enhancement of the Raman signal, while both laser ablation and steel needle tapping provided comparable results. Here, we have demonstrated for the first time, to the best of our knowledge, that a Raman signal can be enhanced 10 fold with the aid of simple cavity production by steel needle tapping in rough highly reflective materials. Though laser crater enhancement Raman spectroscopy requires an additional pulsed laser, this technique is more appropriate for automatization compared to the needle tapping approach.

  11. Laser-induced breakdown spectroscopy with multi-kHz fibre laser for mobile metal analysis tasks — A comparison of different analysis methods and with a mobile spark-discharge optical emission spectroscopy apparatus

    International Nuclear Information System (INIS)

    Scharun, Michael; Fricke-Begemann, Cord; Noll, Reinhard

    2013-01-01

    The identification and separation of different alloys are a permanent task of crucial importance in the metal recycling industry. Laser-induced breakdown spectroscopy (LIBS) offers important advantages in comparison to the state-of-the-art techniques for this application. For LIBS measurement no additional sample preparation is necessary. The overall analysis time is much smaller than for the state-of-the-art techniques. The LIBS setup presented in this study enables mobile operation with a handheld probe for the analysis of metallic materials. Excitation source is a fibre laser with a repetition rate of 30 kHz and a pulse energy of 1.33 mJ. The compact optical setup allows measurements at almost every point of a sample within 5 ms. The generated plasma light is analysed using a Multi-CCD spectrometer. The broad spectral coverage and high resolution provide an outstanding amount of spectroscopic information thereby enabling a variety of calibration approaches. Using a set of Al-based and a set of Fe-based samples the analytical performance of uni- and multivariate calibrations is evaluated. The same sample sets are analysed with a commercial state-of-the-art spark-discharge optical emission spectrometer allowing an assessment of the achieved results. Even though the possible analytical correctness of the fibre laser based LIBS measurements is found to similar or even better than that of the conventional technique, advantages of the multivariate data evaluation have not yet been realised in the investigations. However, due to the in situ sample preparation and short measurement times, fibre-laser based LIBS offers superior features. - Highlights: • Mobile, hand-guided LIBS apparatus for metal analysis, even for steel • Comparable results as state-of-the-art SD-OES instrument • New sectioned calibration function resulting in smaller deviations • Comparison of univariate and multivariate analysis methods

  12. Application of Raman Spectroscopy and Infrared Spectroscopy in the Identification of Breast Cancer.

    Science.gov (United States)

    Depciuch, Joanna; Kaznowska, Ewa; Zawlik, Izabela; Wojnarowska, Renata; Cholewa, Marian; Heraud, Philip; Cebulski, Józef

    2016-02-01

    Raman spectroscopy and infrared (IR) spectroscopy are both techniques that allow for the investigation of vibrating chemical particles. These techniques provide information not only about chemical particles through the identification of functional groups and spectral analysis of so-called "fingerprints", these methods allow for the qualitative and quantitative analyses of chemical substances in the sample. Both of these spectral techniques are frequently being used in biology and medicine in diagnosing illnesses and monitoring methods of therapy. The type of breast cancer found in woman is often a malignant tumor, causing 1.38 million new cases of breast cancer and 458 000 deaths in the world in 2013. The most important risk factors for breast cancer development are: sex, age, family history, specific benign breast conditions in the breast, ionizing radiation, and lifestyle. The main purpose of breast cancer screening tests is to establish early diagnostics and to apply proper treatment. Diagnoses of breast cancer are based on: (1) physical techniques (e.g., ultrasonography, mammography, elastography, magnetic resonance, positron emission tomography [PET]); (2) histopathological techniques; (3) biological techniques; and (4) optical techniques (e.g., photo acoustic imaging, fluorescence tomography). However, none of these techniques provides unique or especially revealing answers. The aim of our study is comparative spectroscopic measurements on patients with the following: normal non-cancerous breast tissue; breast cancer tissues before chemotherapy; breast cancer tissues after chemotherapy; and normal breast tissues received around the cancerous breast region. Spectra collected from breast cancer patients shows changes in amounts of carotenoids and fats. We also observed changes in carbohydrate and protein levels (e.g., lack of amino acids, changes in the concentration of amino acids, structural changes) in comparison with normal breast tissues. This fact

  13. Multi-Functional Fibre-Optic Microwave Links

    DEFF Research Database (Denmark)

    Gliese, Ulrik Bo

    1998-01-01

    The multi-functionality of microwave links based on remote heterodyne detection of signals from a dual-frequency laser transmitter is discussed and experimentally demonstrated in this paper. Typically, direct detection in conjunction with optical intensity modulation is used to implement fibre......-optic microwave links. The resulting links are inherently transparent and mainly used for signal transmission. As opposed to direct detection links, remote heterodyne detection links can directly perform functionalities such as modulation, frequency conversion, and transparent signal recovery in addition...

  14. Polymorph characterization of active pharmaceutical ingredients (APIs) using low-frequency Raman spectroscopy.

    Science.gov (United States)

    Larkin, Peter J; Dabros, Marta; Sarsfield, Beth; Chan, Eric; Carriere, James T; Smith, Brian C

    2014-01-01

    Polymorph detection, identification, and quantitation in crystalline materials are of great importance to the pharmaceutical industry. Vibrational spectroscopic techniques used for this purpose include Fourier transform mid-infrared (FT-MIR) spectroscopy, Fourier transform near-infrared (FT-NIR) spectroscopy, Raman spectroscopy, and terahertz (THz) and far-infrared (FIR) spectroscopy. Typically, the fundamental molecular vibrations accessed using high-frequency Raman and MIR spectroscopy or the overtone and combination of bands in the NIR spectra are used to monitor the solid-state forms of active pharmaceutical ingredients (APIs). The local environmental sensitivity of the fundamental molecular vibrations provides an indirect probe of the long-range order in molecular crystals. However, low-frequency vibrational spectroscopy provides access to the lattice vibrations of molecular crystals and, hence, has the potential to more directly probe intermolecular interactions in the solid state. Recent advances in filter technology enable high-quality, low-frequency Raman spectra to be acquired using a single-stage spectrograph. This innovation enables the cost-effective collection of high-quality Raman spectra in the 200-10 cm(-1) region. In this study, we demonstrate the potential of low-frequency Raman spectroscopy for the polymorphic characterization of APIs. This approach provides several benefits over existing techniques, including ease of sampling and more intense, information-rich band structures that can potentially discriminate among crystalline forms. An improved understanding of the relationship between the crystalline structure and the low-frequency vibrational spectrum is needed for the more widespread use of the technique.

  15. Fibre optic monitoring of pipes a world first

    International Nuclear Information System (INIS)

    Kuen, Thomas

    2014-01-01

    Full text: This article explains how water authorities can remotely monitor vast kilometres of underground pipe, quickly pinpoint faults and, more importantly, assess how critical they are. A new fibre optic system developed in a collaboration between Melbourne Water, Monash University, South East Water, CSIRO Land and Water, and Hawk Measurement Systems has the potential to provide 24/7 monitoring, inexpensive fault and deterioration location, and to reduce unnecessary pipe maintenance. Trials show the system is accurate to within one metre along 50km of pipe. A grant from the Department of State Development, Business and Innovation's Market Validation Program, along with cash and in-kind contributions, has resulted in a $2.5 million project. Existing fibre optic-sensing technology was known to have the capability to monitor the condition and integrity of pipes, but available solutions were largely confined to those above ground. What was needed was a system that allowed sensors to be installed and managed on buried pipes in a cost- effective manner for the long service life of water pipelines - about 100 years. Traditionally, leaks need to become visible first. They are then located with a stethoscope-like instrument, which requires a site visit. This observation can be drawn out because leaking water often appears at the surface some distance from the actual pipe fracture. With the new fibre optic system, once a fault is identified it can be evaluated remotely using a data-acquisition system capable of sensing three variables - stress and strain (or pressure), sound vibrations and temperature. A laser beam is sent to the optical fibre, which measures the signals coming back. Analysis of the spectrum interprets the signals, telling the operator what kind of fault is occurring, its location and dimensions. Continuous, long-term remote monitoring using fibre optics eliminates the need for onsite inspection. All the sensed variables are monitored and accuracy is

  16. High-Resolution Two-Dimensional Optical Spectroscopy of Electron Spins

    Directory of Open Access Journals (Sweden)

    M. Salewski

    2017-08-01

    Full Text Available Multidimensional coherent optical spectroscopy is one of the most powerful tools for investigating complex quantum mechanical systems. While it was conceived decades ago in magnetic resonance spectroscopy using microwaves and radio waves, it has recently been extended into the visible and UV spectral range. However, resolving MHz energy splittings with ultrashort laser pulses still remains a challenge. Here, we analyze two-dimensional Fourier spectra for resonant optical excitation of resident electrons to localized trions or donor-bound excitons in semiconductor nanostructures subject to a transverse magnetic field. Particular attention is devoted to Raman coherence spectra, which allow one to accurately evaluate tiny splittings of the electron ground state and to determine the relaxation times in the electron spin ensemble. A stimulated steplike Raman process induced by a sequence of two laser pulses creates a coherent superposition of the ground-state doublet which can be retrieved only optically because of selective excitation of the same subensemble with a third pulse. This provides the unique opportunity to distinguish between different complexes that are closely spaced in energy in an ensemble. The related experimental demonstration is based on photon-echo measurements in an n-type CdTe/(Cd,MgTe quantum-well structure detected by a heterodyne technique. The difference in the sub-μeV range between the Zeeman splittings of donor-bound electrons and electrons localized at potential fluctuations can be resolved even though the homogeneous linewidth of the optical transitions is larger by 2 orders of magnitude.

  17. Resonance Raman and UV-visible spectroscopy of black dyes on textiles.

    Science.gov (United States)

    Abbott, Laurence C; Batchelor, Stephen N; Smith, John R Lindsay; Moore, John N

    2010-10-10

    Resonance Raman and UV-visible diffuse reflectance spectra were recorded from samples of cotton, viscose, polyester, nylon, and acrylic textile swatches dyed black with one of seven single dyes, a mixture of two dyes, or one of seven mixtures of three dyes. The samples generally gave characteristic Raman spectra of the dyes, demonstrating that the technique is applicable for the forensic analysis of dyed black textiles. Survey studies of the widely used dye Reactive Black 5 show that essentially the same Raman spectrum is obtained on bulk sampling from the dye in solution, on viscose, on cotton at different uptakes, and on microscope sampling from the dye in cotton threads and single fibres. The effects of laser irradiation on the Raman bands and emission backgrounds from textile samples with and without dye are also reported. Copyright © 2010 Elsevier Ireland Ltd. All rights reserved.

  18. Citrus fruits freshness assessment using Raman spectroscopy.

    Science.gov (United States)

    Nekvapil, Fran; Brezestean, Ioana; Barchewitz, Daniel; Glamuzina, Branko; Chiş, Vasile; Cintă Pinzaru, Simona

    2018-03-01

    The freshness of citrus fruits commonly available in the market was non-destructively assessed by Raman spectroscopy. Intact clementine, mandarin and tangerine species were characterised concerning their carotenoids skin Raman signalling in a time course from the moment they were acquired as fresh stock, supplying the market, to the physical degradation, when they were no longer attractive to consumers. The freshness was found to strongly correlate to the peel Raman signal collected from the same area of the intact fruits in a time course of a maximum of 20days. We have shown that the intensity of the carotenoid Raman signal is indeed a good indicator of fruit freshness and introduced a Raman coefficient of freshness (C Fresh ), whose time course is linearly decreasing, with different slope for different citrus groups. Additionally, we demonstrated that the freshness assessment could be achieved using a portable Raman instrument. The results could have a strong impact for consumer satisfaction and the food industry. Copyright © 2017 Elsevier Ltd. All rights reserved.

  19. Glass fibre sensors for medical applications - fibre-optical dosimeter system. Cooperation project 1991-1994. Final report

    International Nuclear Information System (INIS)

    1996-01-01

    The final report summarizes the results of a cooperation project on the applications of fibre-optical sensors in medical technology. The FADOS dosimeter system is presented which comprises an implantable glass fibre dosimeter. It can be applied in radiotherapy for online dose metering directly at the tumour or in the surrounding healthy tissue. The dosimeter is placed in a tissue-compatible flexible catheter tube and remains inside the body during the radiotherapy treatiment. The measuring principle is based on the effect of radiation-induced damping inside a glass fibre. (DG) [de

  20. Raman spectroscopy as a PAT for pharmaceutical blending: Advantages and disadvantages.

    Science.gov (United States)

    Riolo, Daniela; Piazza, Alessandro; Cottini, Ciro; Serafini, Margherita; Lutero, Emilio; Cuoghi, Erika; Gasparini, Lorena; Botturi, Debora; Marino, Iari Gabriel; Aliatis, Irene; Bersani, Danilo; Lottici, Pier Paolo

    2018-02-05

    Raman spectroscopy has been positively evaluated as a tool for the in-line and real-time monitoring of powder blending processes and it has been proved to be effective in the determination of the endpoint of the mixing, showing its potential role as process analytical technology (PAT). The aim of this study is to show advantages and disadvantages of Raman spectroscopy with respect to the most traditional HPLC analysis. The spectroscopic results, obtained directly on raw powders, sampled from a two-axis blender in real case conditions, were compared with the chromatographic data obtained on the same samples. The formulation blend used for the experiment consists of active pharmaceutical ingredient (API, concentrations 6.0% and 0.5%), lactose and magnesium stearate (as excipients). The first step of the monitoring process was selecting the appropriate wavenumber region where the Raman signal of API is maximal and interference from the spectral features of excipients is minimal. Blend profiles were created by plotting the area ratios of the Raman peak of API (A API ) at 1598cm -1 and the Raman bands of excipients (A EXC ), in the spectral range between 1560 and 1630cm -1 , as a function of mixing time: the API content can be considered homogeneous when the time-dependent dispersion of the area ratio is minimized. In order to achieve a representative sampling with Raman spectroscopy, each sample was mapped in a motorized XY stage by a defocused laser beam of a micro-Raman apparatus. Good correlation between the two techniques has been found only for the composition at 6.0% (w/w). However, standard deviation analysis, applied to both HPLC and Raman data, showed that Raman results are more substantial than HPLC ones, since Raman spectroscopy enables generating data rich blend profiles. In addition, the relative standard deviation calculated from a single map (30 points) turned out to be representative of the degree of homogeneity for that blend time. Copyright © 2017

  1. Multimode laser emission from dye-doped hollow polymer optical fibre

    Indian Academy of Sciences (India)

    2014-02-09

    Feb 9, 2014 ... Fibre lasers; optical microcavities; whispering gallery modes. ... A blueshift in the mode structure was observed with decrease in fibre diameter leading to wide range tunability of the laser emission. ... International School of Photonics, Cochin University of Science & Technology, Cochin 682 022, India ...

  2. Evaluation of Fibre Lifetime in Optical Ground Wire Transmission Lines

    Science.gov (United States)

    Grunvalds, R.; Ciekurs, A.; Porins, J.; Supe, A.

    2017-06-01

    In the research, measurements of polarisation mode dispersion of two OPGWs (optical ground wire transmission lines), in total four fibres, have been carried out, and the expected lifetime of the infrastructure has been assessed on the basis of these measurements. The cables under consideration were installed in 1995 and 2011, respectively. Measurements have shown that polarisation mode dispersion values for cable installed in 1995 are four times higher than that for cable installed in 2011, which could mainly be explained by technological differences in fibre production and lower fibre polarisation mode dispersion requirements in 1995 due to lack of high-speed (over 10 Gbit/s) optical transmission systems. The calculation methodology of non-refusal work and refusal probabilities, using the measured polarisation mode dispersion parameters, is proposed in the paper. Based on reliability calculations, the expected lifetime is then predicted, showing that all measured fibres most likely will be operational within minimum theoretical service life of 25 years accepted by the industry.

  3. Non-invasive optical detection of esophagus cancer based on urine surface-enhanced Raman spectroscopy

    Science.gov (United States)

    Huang, Shaohua; Wang, Lan; Chen, Weiwei; Lin, Duo; Huang, Lingling; Wu, Shanshan; Feng, Shangyuan; Chen, Rong

    2014-09-01

    A surface-enhanced Raman spectroscopy (SERS) approach was utilized for urine biochemical analysis with the aim to develop a label-free and non-invasive optical diagnostic method for esophagus cancer detection. SERS spectrums were acquired from 31 normal urine samples and 47 malignant esophagus cancer (EC) urine samples. Tentative assignments of urine SERS bands demonstrated esophagus cancer specific changes, including an increase in the relative amounts of urea and a decrease in the percentage of uric acid in the urine of normal compared with EC. The empirical algorithm integrated with linear discriminant analysis (LDA) were employed to identify some important urine SERS bands for differentiation between healthy subjects and EC urine. The empirical diagnostic approach based on the ratio of the SERS peak intensity at 527 to 1002 cm-1 and 725 to 1002 cm-1 coupled with LDA yielded a diagnostic sensitivity of 72.3% and specificity of 96.8%, respectively. The area under the receive operating characteristic (ROC) curve was 0.954, which further evaluate the performance of the diagnostic algorithm based on the ratio of the SERS peak intensity combined with LDA analysis. This work demonstrated that the urine SERS spectra associated with empirical algorithm has potential for noninvasive diagnosis of esophagus cancer.

  4. A new on-axis micro-spectrophotometer for combining Raman, fluorescence and UV/Vis absorption spectroscopy with macromolecular crystallography at the Swiss Light Source

    Science.gov (United States)

    Pompidor, Guillaume; Dworkowski, Florian S. N.; Thominet, Vincent; Schulze-Briese, Clemens; Fuchs, Martin R.

    2013-01-01

    The combination of X-ray diffraction experiments with optical methods such as Raman, UV/Vis absorption and fluorescence spectroscopy greatly enhances and complements the specificity of the obtained information. The upgraded version of the in situ on-axis micro-spectrophotometer, MS2, at the macromolecular crystallography beamline X10SA of the Swiss Light Source is presented. The instrument newly supports Raman and resonance Raman spectroscopy, in addition to the previously available UV/Vis absorption and fluorescence modes. With the recent upgrades of the spectral bandwidth, instrument stability, detection efficiency and control software, the application range of the instrument and its ease of operation were greatly improved. Its on-axis geometry with collinear X-ray and optical axes to ensure optimal control of the overlap of sample volumes probed by each technique is still unique amongst comparable facilities worldwide and the instrument has now been in general user operation for over two years. PMID:23955041

  5. A new on-axis micro-spectrophotometer for combining Raman, fluorescence and UV/Vis absorption spectroscopy with macromolecular crystallography at the Swiss Light Source.

    Science.gov (United States)

    Pompidor, Guillaume; Dworkowski, Florian S N; Thominet, Vincent; Schulze-Briese, Clemens; Fuchs, Martin R

    2013-09-01

    The combination of X-ray diffraction experiments with optical methods such as Raman, UV/Vis absorption and fluorescence spectroscopy greatly enhances and complements the specificity of the obtained information. The upgraded version of the in situ on-axis micro-spectrophotometer, MS2, at the macromolecular crystallography beamline X10SA of the Swiss Light Source is presented. The instrument newly supports Raman and resonance Raman spectroscopy, in addition to the previously available UV/Vis absorption and fluorescence modes. With the recent upgrades of the spectral bandwidth, instrument stability, detection efficiency and control software, the application range of the instrument and its ease of operation were greatly improved. Its on-axis geometry with collinear X-ray and optical axes to ensure optimal control of the overlap of sample volumes probed by each technique is still unique amongst comparable facilities worldwide and the instrument has now been in general user operation for over two years.

  6. Mode-dependent dispersion in Raman line shapes: Observation and implications from ultrafast Raman loss spectroscopy

    International Nuclear Information System (INIS)

    Umapathy, S.; Mallick, B.; Lakshmanna, A.

    2010-01-01

    Ultrafast Raman loss spectroscopy (URLS) enables one to obtain the vibrational structural information of molecular systems including fluorescent materials. URLS, a nonlinear process analog to stimulated Raman gain, involves a narrow bandwidth picosecond Raman pump pulse and a femtosecond broadband white light continuum. Under nonresonant condition, the Raman response appears as a negative (loss) signal, whereas, on resonance with the electronic transition the line shape changes from a negative to a positive through a dispersive form. The intensities observed and thus, the Franck-Condon activity (coordinate dependent), are sensitive to the wavelength of the white light corresponding to a particular Raman frequency with respect to the Raman pump pulse wavelength, i.e., there is a mode-dependent response in URLS.

  7. XPS, AES and laser raman spectroscopy: A fingerprint for a materials surface characterisation

    International Nuclear Information System (INIS)

    Zaidi Embong

    2011-01-01

    This review briefly describes some of the techniques available for analysing surfaces and illustrates their usefulness with a few examples such as a metal and alloy. In particular, Auger electron spectroscopy (AES), X-ray photoelectron spectroscopy (XPS) and laser Raman spectroscopy are all described as advanced surface analytical techniques. In analysing a surface, AES and XPS would normally be considered first, with AES being applied where high spatial resolution is required and XPS where chemical state information is needed. Laser Raman spectroscopy is useful for determining molecular bonding. A combination of XPS, AES and Laser Raman spectroscopy can give quantitative analysis from the top few atomic layers with a lateral spatial resolution of < 10 nm. (author)

  8. Generation and characterization of erbium-Raman noise-like pulses from a figure-eight fibre laser

    International Nuclear Information System (INIS)

    Santiago-Hernandez, H; Pottiez, O; Paez-Aguirre, R; Ibarra-Villalon, H E; Tenorio-Torres, A; Duran-Sanchez, M; Ibarra-Escamilla, B; Kuzin, E A; Hernandez-Garcia, J C

    2015-01-01

    We report an experimental study of the noise-like pulses generated by a ∼300 m long passively mode-locked erbium-doped figure-eight fibre laser. Non-self-starting mode locking yields the formation of ns scale bunches of sub-ps pulses. Depending on birefringence adjustments, noise-like pulses with a variety of temporal profiles and optical spectra are obtained. In particular, for some adjustments the Raman-enhanced spectrum reaches a 10 dB bandwidth of ∼130 nm. For the first time to our knowledge, we extract information on the inner structure of the noise-like pulses, using a birefringent Sagnac interferometer as a spectral filter and a nonlinear optical loop mirror as an intensity filter. In particular we show that the different spectral components of the bunch are homogeneously distributed within the temporal envelope of the bunch, whereas the amplitude and/or the density of the sub-pulses present substantial variations along the envelope. In some cases, the analysis reveals the existence of an intermediate level of organization in the structure of the noise-like pulse, between the ns bunch and the sub-ps inner pulses, suggesting that these objects may be even more complex than previously recognized. (paper)

  9. Optical biopsy of breast tissue using differential path-length spectroscopy

    International Nuclear Information System (INIS)

    Veen, Robert L P van; Amelink, Arjen; Menke-Pluymers, Marian; Pol, Carmen van der; Sterenborg, Henricus J C M

    2005-01-01

    Differential path-length spectroscopy (DPS) was used to determine the local optical properties of breast tissue in vivo. DPS measurements were made on healthy and malignant breast tissue using a fibre-optic needle probe, and were correlated to the histological outcome of core-needle biopsies taken from the same location as the measurements. DPS yields information on the local tissue blood content, the local blood oxygenation, the average micro-vessel diameter, the β-carotene concentration and the scatter slope. Our data show that malignant breast tissue is characterized by a significant decrease in tissue oxygenation and a higher blood content compared to normal breast tissue

  10. A fibre optic chemical sensor for the detection of cocaine

    Science.gov (United States)

    Nguyen, T. Hien; Sun, Tong; Grattan, Kenneth T. V.; Hardwick, S. A.

    2010-09-01

    A fibre-optic chemical sensor for the detection of cocaine has been developed, based on a molecularly imprinted polymer (MIP) containing a fluorescein moiety as the signalling group. The fluorescent MIP was formed and covalently attached to the distal end of an optical fibre. The sensor exhibited an increase in fluorescence intensity in response to cocaine in the concentration range of 0 - 500 μM in aqueous acetonitrile mixtures with good reproducibility over 24 h. Selectivity for cocaine over others drugs has also been demonstrated.

  11. Detection of leaks in steam lines by distributed fibre-optic temperature sensing (DTS)

    Energy Technology Data Exchange (ETDEWEB)

    Craik, N G [Maritime Nuclear, Fredericton, N.B. (Canada)

    1997-12-31

    This paper describes an instrumentation system concept which should be capable of early detection of a leak-before-break in main steam lines. Distributed fibre-optic Temperature Sensing (DTS) systems have been used in commercial application for a few years now, but in other industries and applications. DTS uses very long fibre optical cable both as a temperature sensor and as a means of bringing the information back from the sensor to the terminal equipment. The entire length of the fibre is sensitive to temperature and each resolvable section of fibre is equivalent to a point sensor. This commercially available DTS system could be adapted to indicate leaks in steam lines. The fibre-optic cable could either be run either just underneath the aluminium sheathing covering the installation over a steam line, or between the two layers of insulation. This would detect an increase in the temperature of the insulation due to a steam leak. 1 ref., 4 figs.

  12. Detection of leaks in steam lines by distributed fibre-optic temperature sensing (DTS)

    International Nuclear Information System (INIS)

    Craik, N.G.

    1996-01-01

    This paper describes an instrumentation system concept which should be capable of early detection of a leak-before-break in main steam lines. Distributed fibre-optic Temperature Sensing (DTS) systems have been used in commercial application for a few years now, but in other industries and applications. DTS uses very long fibre optical cable both as a temperature sensor and as a means of bringing the information back from the sensor to the terminal equipment. The entire length of the fibre is sensitive to temperature and each resolvable section of fibre is equivalent to a point sensor. This commercially available DTS system could be adapted to indicate leaks in steam lines. The fibre-optic cable could either be run either just underneath the aluminium sheathing covering the installation over a steam line, or between the two layers of insulation. This would detect an increase in the temperature of the insulation due to a steam leak. 1 ref., 4 figs

  13. Biological sensing with surface-enhanced Raman spectroscopy (SERS) using a facile and rapid silver colloid-based synthesis technique

    Science.gov (United States)

    Smyth, C.; Mehigan, S.; Rakovich, Y. P.; Bell, S. E. J.; McCabe, E. M.

    2011-03-01

    Optical techniques towards the realisation of sensitive and selective biosensing platforms have received a considerable amount of attention in recent times. Techniques based on interferometry, surface plasmon resonance, field-effect transistors and waveguides have all proved popular, and in particular, spectroscopy offers a large range of options. Raman spectroscopy has always been viewed as an information rich technique in which the vibrational frequencies reveal a lot about the structure of a compound. The issue with Raman spectroscopy has traditionally been that its rather low cross section leads to poor limits-of-detection. In response to this problem, Surface-enhanced Raman Scattering (SERS), which increases sensitivity by bringing the sample in contact with many types of enhanceing substrates, has been developed. Here we discuss a facile and rapid technique for the detection of pterins using colloidal silver suspensions. Pteridine compounds are a family of biochemicals, heterocyclic in structure, and employed in nature as components of colour pigmentation and also as facilitators for many metabolic pathways, particularly those relating to the amino acid hydroxylases. In this work, xanthopterin, isoxanthopterin and 7,8- dihydrobiopterin have been examined whilst absorbed to SERS-active silver colloids. SERS, while far more sensitive than regular Raman spectroscopy, has its own issues relating to the reproducibility of substrates. In order to obtain quantitative data for the pteridine compounds mentioned above, exploratory studies of methods for introducing an internal standard for normalisation of the signals have been carried out.e

  14. Time-Gated Raman Spectroscopy for Quantitative Determination of Solid-State Forms of Fluorescent Pharmaceuticals.

    Science.gov (United States)

    Lipiäinen, Tiina; Pessi, Jenni; Movahedi, Parisa; Koivistoinen, Juha; Kurki, Lauri; Tenhunen, Mari; Yliruusi, Jouko; Juppo, Anne M; Heikkonen, Jukka; Pahikkala, Tapio; Strachan, Clare J

    2018-04-03

    Raman spectroscopy is widely used for quantitative pharmaceutical analysis, but a common obstacle to its use is sample fluorescence masking the Raman signal. Time-gating provides an instrument-based method for rejecting fluorescence through temporal resolution of the spectral signal and allows Raman spectra of fluorescent materials to be obtained. An additional practical advantage is that analysis is possible in ambient lighting. This study assesses the efficacy of time-gated Raman spectroscopy for the quantitative measurement of fluorescent pharmaceuticals. Time-gated Raman spectroscopy with a 128 × (2) × 4 CMOS SPAD detector was applied for quantitative analysis of ternary mixtures of solid-state forms of the model drug, piroxicam (PRX). Partial least-squares (PLS) regression allowed quantification, with Raman-active time domain selection (based on visual inspection) improving performance. Model performance was further improved by using kernel-based regularized least-squares (RLS) regression with greedy feature selection in which the data use in both the Raman shift and time dimensions was statistically optimized. Overall, time-gated Raman spectroscopy, especially with optimized data analysis in both the spectral and time dimensions, shows potential for sensitive and relatively routine quantitative analysis of photoluminescent pharmaceuticals during drug development and manufacturing.

  15. Dynamic optical bistability in resonantly enhanced Raman generation

    International Nuclear Information System (INIS)

    Novikova, I.; Phillips, D.F.; Zibrov, A.S.; Andre, A.; Walsworth, R.L.

    2004-01-01

    We report observations of novel dynamic behavior in resonantly enhanced stimulated Raman scattering in Rb vapor. In particular, we demonstrate a dynamic hysteresis of the Raman scattered optical field in response to changes of the drive laser field intensity and/or frequency. This effect may be described as a dynamic form of optical bistability resulting from the formation and decay of atomic coherence. We have applied this phenomenon to the realization of an all-optical switch

  16. Characterization of Kevlar Using Raman Spectroscopy

    Science.gov (United States)

    Washer, Glenn; Brooks, Thomas; Saulsberry, Regor

    2007-01-01

    This paper explores the characterization of Kevlar composite materials using Raman spectroscopy. The goal of the research is to develop and understand the Raman spectrum of Kevlar materials to provide a foundation for the development of nondestructive evaluation (NDE) technologies based on the interaction of laser light with the polymer Kevlar. The paper discusses the fundamental aspects of experimental characterization of the spectrum of Kevlar, including the effects of incident wavelength, polarization and laser power. The effects of environmental exposure of Kevlar materials on certain characteristics of its Raman spectrum are explored, as well as the effects of applied stress. This data may provide a foundation for the development of NDE technologies intended to detect the in-situ deterioration of Kevlar materials used for engineering applications that can later be extended to other materials such as carbon fiber composites.

  17. Raman spectroscopy and imaging: applications in human breast cancer diagnosis.

    Science.gov (United States)

    Brozek-Pluska, Beata; Musial, Jacek; Kordek, Radzislaw; Bailo, Elena; Dieing, Thomas; Abramczyk, Halina

    2012-08-21

    The applications of spectroscopic methods in cancer detection open new possibilities in early stage diagnostics. Raman spectroscopy and Raman imaging represent novel and rapidly developing tools in cancer diagnosis. In the study described in this paper Raman spectroscopy has been employed to examine noncancerous and cancerous human breast tissues of the same patient. The most significant differences between noncancerous and cancerous tissues were found in regions characteristic for the vibrations of carotenoids, lipids and proteins. Particular attention was paid to the role played by unsaturated fatty acids in the differentiation between the noncancerous and the cancerous tissues. Comparison of Raman spectra of the noncancerous and the cancerous tissues with the spectra of oleic, linoleic, α-linolenic, γ-linolenic, docosahexaenoic and eicosapentaenoic acids has been presented. The role of sample preparation in the determination of cancer markers is also discussed in this study.

  18. Use of radiochromic film as a high-spatial resolution dosimeter by Raman spectroscopy

    Energy Technology Data Exchange (ETDEWEB)

    Mirza, Jamal Ahmad; Park, Hyeonsuk [Program in Biomedical Radiation Sciences, Department of Transdisciplinary Studies, Graduate School of Convergence Science and Technology, Seoul National University, Seoul 08826 (Korea, Republic of); Park, So-Yeon [Interdisciplinary Program in Radiation Applied Life Sciences, Seoul National University College of Medicine, Seoul 03080 (Korea, Republic of); Ye, Sung-Joon, E-mail: sye@snu.ac.kr [Program in Biomedical Radiation Sciences, Department of Transdisciplinary Studies, Graduate School of Convergence Science and Technology, Seoul National University, Seoul 08826 (Korea, Republic of)

    2016-08-15

    Purpose: Due to increasing demand for high-spatial resolution dosimetry, radiochromic films have been investigated as potential candidates but are often limited by the scanning system, e.g., flatbed optical scanner. In this study, Raman spectroscopy in conjunction with a microscope was selected as an alternative method for high-spatial resolution dosimetry of radiochromic film. Methods: Unlaminated Gafchromic™ EBT3 films were irradiated with doses between 0 and 50 Gy using 6 MV x-rays of a clinical linear accelerator. Depth profiling from the surface of unlaminated film was performed to acquire the maximum Raman intensity peaks of C≡C and C=C stretching bands of diacetylene polymer. The Raman mapping technique for a region of interest (200 × 200, 30 × 30 μm{sup 2}) was developed to reduce a large variation in a Raman spectrum produced with a sampling resolution of a few μm. The preprocessing of Raman spectra was carried out to determine a dosimetric relationship with the amount of diacetylene polymerization. Results: Due to partial diacetylene polymerization upon irradiation, two Raman peaks of C=C and C≡C stretching bands were observed around 1447 and 2060 cm{sup −1}, respectively. The maximum intensities of the two peaks were obtained by positioning a focused laser spot on the surface of unlaminated film. For the dose range of 0–50 Gy, the band heights of both C≡C and C=C peaks increase asymptotically with increasing doses and can be fit with an exponential function of two components. The relative standard deviation in Raman mapping was found to be less than ±5%. By using this technique, dose uniformity was found to be within ±2%. Conclusions: The Raman intensity for C=C and C≡C peaks increases with an increase in the amount of diacetylene polymerization due to an increase in dose. This study shows the potential of Raman spectroscopy as an alternative for absolute dosimetry verifications with a high-spatial resolution of a few μm, but these

  19. Medical applications of atomic force microscopy and Raman spectroscopy.

    Science.gov (United States)

    Choi, Samjin; Jung, Gyeong Bok; Kim, Kyung Sook; Lee, Gi-Ja; Park, Hun-Kuk

    2014-01-01

    This paper reviews the recent research and application of atomic force microscopy (AFM) and Raman spectroscopy techniques, which are considered the multi-functional and powerful toolkits for probing the nanostructural, biomechanical and physicochemical properties of biomedical samples in medical science. We introduce briefly the basic principles of AFM and Raman spectroscopy, followed by diagnostic assessments of some selected diseases in biomedical applications using them, including mitochondria isolated from normal and ischemic hearts, hair fibers, individual cells, and human cortical bone. Finally, AFM and Raman spectroscopy applications to investigate the effects of pharmacotherapy, surgery, and medical device therapy in various medicines from cells to soft and hard tissues are discussed, including pharmacotherapy--paclitaxel on Ishikawa and HeLa cells, telmisartan on angiotensin II, mitomycin C on strabismus surgery and eye whitening surgery, and fluoride on primary teeth--and medical device therapy--collagen cross-linking treatment for the management of progressive keratoconus, radiofrequency treatment for skin rejuvenation, physical extracorporeal shockwave therapy for healing of Achilles tendinitis, orthodontic treatment, and toothbrushing time to minimize the loss of teeth after exposure to acidic drinks.

  20. In Situ Raman Spectroscopy of COOH-Functionalized SWCNTs Trapped with Optoelectronic Tweezers

    Directory of Open Access Journals (Sweden)

    Peter J. Pauzauskie

    2012-01-01

    Full Text Available Optoelectronic tweezers (OETs were used to trap and deposit aqueous dispersions of carboxylic-acid-functionalized single-walled carbon nanotube bundles. Dark-field video microscopy was used to visualize the dynamics of the bundles both with and without virtual electrodes, showing rapid accumulation of carbon nanotubes when optical virtual electrodes are actuated. Raman microscopy was used to probe SWCNT materials following deposition onto metallic fiducial markers as well as during trapping. The local carbon nanotube concentration was observed to increase rapidly during trapping by more than an order of magnitude in less than one second due to localized optical dielectrophoresis forces. This combination of enrichment and spectroscopy with a single laser spot suggests a broad range of applications in physical, chemical, and biological sciences.

  1. In situ monitoring of cocrystals in formulation development using low-frequency Raman spectroscopy.

    Science.gov (United States)

    Otaki, Takashi; Tanabe, Yuta; Kojima, Takashi; Miura, Masaru; Ikeda, Yukihiro; Koide, Tatsuo; Fukami, Toshiro

    2018-05-05

    In recent years, to guarantee a quality-by-design approach to the development of pharmaceutical products, it is important to identify properties of raw materials and excipients in order to determine critical process parameters and critical quality attributes. Feedback obtained from real-time analyses using various process analytical technology (PAT) tools has been actively investigated. In this study, in situ monitoring using low-frequency (LF) Raman spectroscopy (10-200 cm -1 ), which may have higher discriminative ability among polymorphs than near-infrared spectroscopy and conventional Raman spectroscopy (200-1800 cm -1 ), was investigated as a possible application to PAT. This is because LF-Raman spectroscopy obtains information about intermolecular and/or lattice vibrations in the solid state. The monitoring results obtained from Furosemide/Nicotinamide cocrystal indicate that LF-Raman spectroscopy is applicable to in situ monitoring of suspension and fluidized bed granulation processes, and is an effective technique as a PAT tool to detect the conversion risk of cocrystals. LF-Raman spectroscopy is also used as a PAT tool to monitor reactions, crystallizations, and manufacturing processes of drug substances and products. In addition, a sequence of conversion behaviors of Furosemide/Nicotinamide cocrystals was determined by performing in situ monitoring for the first time. Copyright © 2018 Elsevier B.V. All rights reserved.

  2. Raman Optical Activity of Biological Molecules

    Science.gov (United States)

    Blanch, Ewan W.; Barron, Laurence D.

    Now an incisive probe of biomolecular structure, Raman optical activity (ROA) measures a small difference in Raman scattering from chiral molecules in right- and left-circularly polarized light. As ROA spectra measure vibrational optical activity, they contain highly informative band structures sensitive to the secondary and tertiary structures of proteins, nucleic acids, viruses and carbohydrates as well as the absolute configurations of small molecules. In this review we present a survey of recent studies on biomolecular structure and dynamics using ROA and also a discussion of future applications of this powerful new technique in biomedical research.

  3. Raman spectroscopy of normal oral buccal mucosa tissues: study on intact and incised biopsies

    Science.gov (United States)

    Deshmukh, Atul; Singh, S. P.; Chaturvedi, Pankaj; Krishna, C. Murali

    2011-12-01

    Oral squamous cell carcinoma is one of among the top 10 malignancies. Optical spectroscopy, including Raman, is being actively pursued as alternative/adjunct for cancer diagnosis. Earlier studies have demonstrated the feasibility of classifying normal, premalignant, and malignant oral ex vivo tissues. Spectral features showed predominance of lipids and proteins in normal and cancer conditions, respectively, which were attributed to membrane lipids and surface proteins. In view of recent developments in deep tissue Raman spectroscopy, we have recorded Raman spectra from superior and inferior surfaces of 10 normal oral tissues on intact, as well as incised, biopsies after separation of epithelium from connective tissue. Spectral variations and similarities among different groups were explored by unsupervised (principal component analysis) and supervised (linear discriminant analysis, factorial discriminant analysis) methodologies. Clusters of spectra from superior and inferior surfaces of intact tissues show a high overlap; whereas spectra from separated epithelium and connective tissue sections yielded clear clusters, though they also overlap on clusters of intact tissues. Spectra of all four groups of normal tissues gave exclusive clusters when tested against malignant spectra. Thus, this study demonstrates that spectra recorded from the superior surface of an intact tissue may have contributions from deeper layers but has no bearing from the classification of a malignant tissues point of view.

  4. Asymptotic solutions of glass temperature profiles during steady optical fibre drawing

    KAUST Repository

    Taroni, M.; Breward, C. J. W.; Cummings, L. J.; Griffiths, I. M.

    2013-01-01

    In this paper we derive realistic simplified models for the high-speed drawing of glass optical fibres via the downdraw method that capture the fluid dynamics and heat transport in the fibre via conduction, convection and radiative heating. We

  5. Assessment of nerve ultrastructure by fibre-optic confocal microscopy.

    Science.gov (United States)

    Cushway, T R; Lanzetta, M; Cox, G; Trickett, R; Owen, E R

    1996-01-01

    Fibre-optic technology combined with confocality produces a microscope capable of optical thin sectioning. In this original study, tibial nerves have been stained in a rat model with a vital dye, 4-(4-diethylaminostyryl)-N-methylpyridinium iodide, and analysed by fibre-optic confocal microscopy to produce detailed images of nerve ultrastructure. Schwann cells, nodes of Ranvier and longitudinal myelinated sheaths enclosing axons were clearly visible. Single axons appeared as brightly staining longitudinal structures. This allowed easy tracing of multiple signal axons within the nerve tissue. An accurate measurement of internodal lengths was easily accomplished. This technique is comparable to current histological techniques, but does not require biopsy, thin sectioning or tissue fixing. This study offers a standard for further in vivo microscopy, including the possibility of monitoring the progression of nerve regeneration following microsurgical neurorraphy.

  6. Surface-Enhanced Raman Spectroscopy Integrated Centrifugal Microfluidics Platform

    DEFF Research Database (Denmark)

    Durucan, Onur

    This PhD thesis demonstrates (i) centrifugal microfluidics disc platform integrated with Au capped nanopillar (NP) substrates for surface-enhanced Raman spectroscopy (SERS) based sensing, and (ii) novel sample analysis concepts achieved by synergistical combination of sensing techniques and minia......This PhD thesis demonstrates (i) centrifugal microfluidics disc platform integrated with Au capped nanopillar (NP) substrates for surface-enhanced Raman spectroscopy (SERS) based sensing, and (ii) novel sample analysis concepts achieved by synergistical combination of sensing techniques...... dense array of NP structures. Furthermore, the wicking assisted nanofiltration procedure was accomplished in centrifugal microfluidics platform and as a result additional sample purification was achieved through the centrifugation process. In this way, the Au coated NP substrate was utilized...

  7. Structure in nascent carbon nanotubes revealed by spatially resolved Raman spectroscopy

    Energy Technology Data Exchange (ETDEWEB)

    Landois, Périne [CEA, IRAMIS, SPAM, Laboratoire Francis Perrin (CNRS URA 2453), 91191 Gif-sur-Yvette (France); Laboratoire de Physique des Solides, UMR CNRS 8502, Université Paris Sud 11, 91405 Orsay (France); Pinault, Mathieu [CEA, IRAMIS, SPAM, Laboratoire Francis Perrin (CNRS URA 2453), 91191 Gif-sur-Yvette (France); Huard, Mickaël [Laboratoire de Physique des Solides, UMR CNRS 8502, Université Paris Sud 11, 91405 Orsay (France); Reita, Valérie [Univ. Grenoble Alpes, Inst NEEL, F-38042 Grenoble (France); CNRS, Inst NEEL, F-38042 Grenoble (France); Rouzière, Stéphan; Launois, Pascale [Laboratoire de Physique des Solides, UMR CNRS 8502, Université Paris Sud 11, 91405 Orsay (France); Mayne-L' Hermite, Martine [CEA, IRAMIS, SPAM, Laboratoire Francis Perrin (CNRS URA 2453), 91191 Gif-sur-Yvette (France); Bendiab, Nedjma, E-mail: nedjma.bendiab@grenoble.cnrs.fr [Univ. Grenoble Alpes, Inst NEEL, F-38042 Grenoble (France); CNRS, Inst NEEL, F-38042 Grenoble (France)

    2014-10-01

    The understanding of carbon nanotube (CNT) growth is crucial for the control of their production. In particular, the identification of structural changes of carbon possibly occurring near the catalyst particle in the very early stages of their formation is of high interest. In this study, samples of nascent CNT obtained during nucleation step and samples of vertically aligned CNT obtained during growth step are analysed by combined spatially resolved Raman spectroscopy and X-ray diffraction measurements. Spatially resolved Raman spectroscopy reveals that iron-based phases and carbon phases are co-localized at the same position, and indicates that sp{sup 2} carbon nucleates preferentially on iron-based particles during this nucleation step. Depth scan Raman spectroscopy analysis, performed on nascent CNT, highlights that carbon structural organisation is significantly changing from defective graphene layers surrounding the iron-based particles at their base up to multi-walled nanotube structures in the upper part of iron-based particles. - Highlights: • Spatial co-localization of iron and carbon structures in nascent carbon nanotubes • Imaging local carbon structure changes along catalyst particles by Raman spectroscopy. • In nascent nanotubes, significant structural changes occur along catalyst particle.

  8. Spectroscopy for Dummies

    DEFF Research Database (Denmark)

    Lindvold, Lars René

    This presentation will give short introduction to the most pertinent topics of optical spectroscopy. The following topics will be discussed: • The origin of spectra in UV, VIS and IR spectral range • Spectroscopic methods like absorption, luminescence and Raman • Wavelength dispersive optical...... components • Materials for use optical spectroscopy • Spectrometer geometries • Detectors for use in spectrometer • Practical examples of optical spectroscopy The objective of this presentation is to give the audience a good feel for the range of possibilities that optical spectroscopy can provide....

  9. Raman spectroscopy and single-photon source in an ion-cavity system

    International Nuclear Information System (INIS)

    Goncalves de Barros, H.

    2010-01-01

    The work presented in this thesis explores the interaction between a single trapped 40Ca+ ion and the electromagnetic field inside a high-finesse optical cavity. The coupling takes place via the use of a vacuum stimulated Raman transition, which transfers atomic population from the S1/2 to the D3/2 manifolds of the calcium ion producing a photon in the cavity. This photon is measured and properties of the system are evaluated. Spectroscopy measurements of the Raman transitions are performed and all possible transitions are identified for different polarizations of both drive laser and cavity fields. The system is also used to deterministically produce single photons. Simulation curves quantitatively match the experimental results within calibration error bars. The single-photon creation efficiency obtained in this work overcomes previous ion-cavity setups and is comparable to state-of-the-art systems composed of a neutral atom and a cavity operating in the strong coupling regime. (author)

  10. Two-dimensional electronic femtosecond stimulated Raman spectroscopy

    Directory of Open Access Journals (Sweden)

    Ogilvie J.P.

    2013-03-01

    Full Text Available We report two-dimensional electronic spectroscopy with a femtosecond stimulated Raman scattering probe. The method reveals correlations between excitation energy and excited state vibrational structure following photoexcitation. We demonstrate the method in rhodamine 6G.

  11. A Dual Sensor for pH and Hydrogen Peroxide Using Polymer-Coated Optical Fibre Tips.

    Science.gov (United States)

    Purdey, Malcolm S; Thompson, Jeremy G; Monro, Tanya M; Abell, Andrew D; Schartner, Erik P

    2015-12-17

    This paper demonstrates the first single optical fibre tip probe for concurrent detection of both hydrogen peroxide (H₂O₂) concentration and pH of a solution. The sensor is constructed by embedding two fluorophores: carboxyperoxyfluor-1 (CPF1) and seminaphtharhodafluor-2 (SNARF2) within a polymer matrix located on the tip of the optical fibre. The functionalised fibre probe reproducibly measures pH, and is able to accurately detect H₂O₂ over a biologically relevant concentration range. This sensor offers potential for non-invasive detection of pH and H₂O₂ in biological environments using a single optical fibre.

  12. Design of a fibre-optic disc accelerometer: theory and experiment

    Science.gov (United States)

    Wang, Yongjie; Xiao, Hao; Zhang, Songwei; Li, Fang; Liu, Yuliang

    2007-06-01

    Mechanical principles of fibre-optic disc accelerometers (FODA) different from those assumed in previous calculation methods are presented. An FODA with a high sensitivity of 82 rad/g and a resonance frequency of 360 Hz is designed and tested. In this system, the minimum measurable demodulation phase of the phase-generated carrier (PGC) is 10-5 rad, and the minimum acceleration reaches 120 ng theoretically. This kind of FODA, with its high responsivity, all-optic-fibre configuration, small size, light weight and stiff shell housing, ensures effective performance in practice.

  13. Optical properties study of nano-composite filled D shape photonic crystal fibre

    Science.gov (United States)

    Udaiyakumar, R.; Mohamed Junaid, K. A.; Janani, T.; Maheswar, R.; Yupapin, P.; Amiri, I. S.

    2018-06-01

    With the nano-composite materials gaining momentum in the optical field, a new nano-composite filled D shape Photonic Crystal Fiber (PCF) is designed and the various optical properties are investigated with help of Finite Element Method. In the proposed structure the D-shape PCF is made up of silica with embedded silver nanoparticles and air holes are distributed along the fibre. The designed fibre shows various optical properties such as dispersion, birefringence, beat length and loss with respect to wavelength and compared with different filling factor like 0.1, 0.3 and 0.5. From our estimation and comparative analysis, it has been proved that the fibre loss has been decreased with increasing filling factor. Further this also showed flat dispersion at maximum filling factor.

  14. Raman spectroscopy applied to identify metabolites in urine of physically active subjects.

    Science.gov (United States)

    Moreira, Letícia Parada; Silveira, Landulfo; da Silva, Alexandre Galvão; Fernandes, Adriana Barrinha; Pacheco, Marcos Tadeu Tavares; Rocco, Débora Dias Ferraretto Moura

    2017-11-01

    Raman spectroscopy is a rapid and non-destructive technique suitable for biological fluids analysis. In this work, dispersive Raman spectroscopy has been employed as a rapid and nondestructive technique to detect the metabolites in urine of physically active subjects before and after vigorous 30min pedaling or running compared to sedentary subjects. For so, urine samples from 9 subjects were obtained before and immediately after physical activities and submitted to Raman spectroscopy (830nm excitation, 250mW laser power, 20s integration time) and compared to urine from 5 sedentary subjects. The Raman spectra of urine from sedentary showed peaks related to urea, creatinine, ketone bodies, phosphate and other nitrogenous compounds. These metabolic biomarkers presented peaks with different intensities in the urine of physically active individuals after exercises compared to before, measured by the intensity of selected peaks the Raman spectra, which means different concentrations after training. These peaks presented different intensity values for each subject before physical activity, also behaving differently compared to the post-training: some subjects presented increase while others decrease the intensity. Raman spectroscopy may allow the development of a rapid and non-destructive test for metabolic evaluation of the physical training in active and trained subjects using urine samples, allowing nutrition adjustment with the sport's performance. Copyright © 2017 Elsevier B.V. All rights reserved.

  15. E1 Gap of Wurtzite InAs Single Nanowires Measured by Means of Resonant Raman Spectroscopy

    International Nuclear Information System (INIS)

    Moeller, M.; Lima, M. M. Jr. de; Cantarero, A.; Dacal, L. C. O.; Iikawa, F.; Chiaramonte, T.; Cotta, M. A.

    2011-01-01

    Indium arsenide nanowires were synthesized with an intermixing of wurtzite and zincblende structure by chemical beam epitaxy with the vapor-liquid-solid mechanism. Resonant Raman spectroscopy of the transverse optical phonon mode at 215 cm -1 reveals an E 1 gap of 2.47 eV which is assigned to the electronic band gap at the A point in the indium arsenide wurtzite phase.

  16. E1 Gap of Wurtzite InAs Single Nanowires Measured by Means of Resonant Raman Spectroscopy

    Science.gov (United States)

    Möller, M.; Dacal, L. C. O.; de Lima, M. M.; Iikawa, F.; Chiaramonte, T.; Cotta, M. A.; Cantarero, A.

    2011-12-01

    Indium arsenide nanowires were synthesized with an intermixing of wurtzite and zincblende structure by chemical beam epitaxy with the vapor-liquid-solid mechanism. Resonant Raman spectroscopy of the transverse optical phonon mode at 215 cm-1 reveals an E1 gap of 2.47 eV which is assigned to the electronic band gap at the A point in the indium arsenide wurtzite phase.

  17. Multimode laser emission from dye-doped hollow polymer optical fibre

    Indian Academy of Sciences (India)

    2014-02-09

    Feb 9, 2014 ... Dye-doped polymer optical fibre preforms were fabricated by the controlled polymeriza- tion of Rh B-doped methyl methacrylate (MMA). Hole in the preform can be achieved by placing a teflon rod on the centre of the glass tube during the polymerization. Final fibre structure with required diameter was ...

  18. Dynamical mass of a star cluster in M 83: a test of fibre-fed multi-object spectroscopy

    NARCIS (Netherlands)

    Moll, S.L.; Grijs, R.; Anders, P.; Crowther, P.A.; Larsen, S.S.; Smith, L.J.; Portegies Zwart, S.F.

    2008-01-01

    Aims. We obtained VLT/FLAMES+UVES high-resolution, fibre-fed spectroscopy of five young massive clusters (YMCs) in M 83 (NGC 5236). This forms the basis of a pilot study testing the feasibility of using fibre-fed spectroscopy to measure the velocity dispersions of several clusters simultaneously, in

  19. Dynamical mass of a star cluster in M 83: A test of fibre-fed multi-object spectroscopy

    NARCIS (Netherlands)

    Moll, S.L.; de Grijs, R.; Anders, P.; Crowther, P.A.; Larsen, S.S.; Smith, L.J.; Portegies Zwart, S.F.

    2008-01-01

    Aims. We obtained VLT/FLAMES+UVES high-resolution, fibre-fed spectroscopy of five young massive clusters (YMCs) in M 83 (NGC 5236). This forms the basis of a pilot study testing the feasibility of using fibre-fed spectroscopy to measure the velocity dispersions of several clusters simultaneously, in

  20. Blood proteins analysis by Raman spectroscopy method

    Science.gov (United States)

    Artemyev, D. N.; Bratchenko, I. A.; Khristoforova, Yu. A.; Lykina, A. A.; Myakinin, O. O.; Kuzmina, T. P.; Davydkin, I. L.; Zakharov, V. P.

    2016-04-01

    This work is devoted to study the possibility of plasma proteins (albumin, globulins) concentration measurement using Raman spectroscopy setup. The blood plasma and whole blood were studied in this research. The obtained Raman spectra showed significant variation of intensities of certain spectral bands 940, 1005, 1330, 1450 and 1650 cm-1 for different protein fractions. Partial least squares regression analysis was used for determination of correlation coefficients. We have shown that the proposed method represents the structure and biochemical composition of major blood proteins.

  1. Sum-Frequency-Generation-Based Laser Sidebands for Tunable Femtosecond Raman Spectroscopy in the Ultraviolet

    Directory of Open Access Journals (Sweden)

    Liangdong Zhu

    2015-04-01

    Full Text Available Femtosecond stimulated Raman spectroscopy (FSRS is an emerging molecular structural dynamics technique for functional materials characterization typically in the visible to near-IR range. To expand its applications we have developed a versatile FSRS setup in the ultraviolet region. We use the combination of a narrowband, ~400 nm Raman pump from a home-built second harmonic bandwidth compressor and a tunable broadband probe pulse from sum-frequency-generation-based cascaded four-wave mixing (SFG-CFWM laser sidebands in a thin BBO crystal. The ground state Raman spectrum of a laser dye Quinolon 390 in methanol that strongly absorbs at ~355 nm is systematically studied as a standard sample to provide previously unavailable spectroscopic characterization in the vibrational domain. Both the Stokes and anti-Stokes Raman spectra can be collected by selecting different orders of SFG-CFWM sidebands as the probe pulse. The stimulated Raman gain with the 402 nm Raman pump is >21 times larger than that with the 550 nm Raman pump when measured at the 1317 cm−1 peak for the aromatic ring deformation and ring-H rocking mode of the dye molecule, demonstrating that pre-resonance enhancement is effectively achieved in the unique UV-FSRS setup. This added tunability in the versatile and compact optical setup enables FSRS to better capture transient conformational snapshots of photosensitive molecules that absorb in the UV range.

  2. Characterization of redeposited carbon layers on TEXTOR limiter by Laser Raman spectroscopy

    International Nuclear Information System (INIS)

    Egashira, K.; Tanabe, T.; Yoshida, M.; Nakazato, H.; Philipps, V.; Brezinsek, S.; Kreter, A.

    2011-01-01

    Highlights: ► Laser Raman technique has applied to analyze the deposited carbon layers on TEXTOR test limiters of C and W. ► The carbon deposited layers showed the Raman spectra composed of G-peak and D-peak. ► For W limiter, hydrogen concentrations in the deposited carbon layers and their thicknesses correlated to the two peaks. ► The Laser Raman spectroscopy is a promising tool for in situ analysis of carbon redeposit layers on plasma facing W materials. - Abstract: Laser Raman spectroscopy is quite sensitive to detect the changes of graphite structure. In this study, the Laser Raman technique was applied to analyze the deposited carbon layers on TEXTOR test limiters of carbon (C) and tungsten (W) produced by intentional carbon deposition experiments by methane gas puffing. The carbon deposited layers showed the Raman spectra composed of two broad peaks, G-peak and D-peak, centered at around 1580 and 1355 cm −1 respectively. For W limiter, the G-peak position and the integrated intensity of the two peaks well correlate to hydrogen concentrations in the deposited carbon layers and their thicknesses, respectively. Hence Laser Raman spectroscopy is a promising tool for the in situ analysis of carbon redeposit layers on plasma facing W materials and probably on Be materials.

  3. Micro-Raman spectroscopy of natural and synthetic indigo samples.

    Science.gov (United States)

    Vandenabeele, Peter; Moens, Luc

    2003-02-01

    In this work indigo samples from three different sources are studied by using Raman spectroscopy: the synthetic pigment and pigments from the woad (Isatis tinctoria) and the indigo plant (Indigofera tinctoria). 21 samples were obtained from 8 suppliers; for each sample 5 Raman spectra were recorded and used for further chemometrical analysis. Principal components analysis (PCA) was performed as data reduction method before applying hierarchical cluster analysis. Linear discriminant analysis (LDA) was implemented as a non-hierarchical supervised pattern recognition method to build a classification model. In order to avoid broad-shaped interferences from the fluorescence background, the influence of 1st and 2nd derivatives on the classification was studied by using cross-validation. Although chemically identical, it is shown that Raman spectroscopy in combination with suitable chemometric methods has the potential to discriminate between synthetic and natural indigo samples.

  4. Stress strain modelling and analysis of a piezo-coated optical fibre sensor

    Science.gov (United States)

    Al-Raweshidy, H.; Ali, H.; Obayya, S. S. A.; Langley, R.; Batchelor, J.

    2005-02-01

    A finite element model, using commercially available software, is presented to simulate the piezoelectrically induced stresses and strains in an optical fibre to be used as antenna. These stresses and strains are generated by a layer of piezoelectric polymer deposited on the cladding of a short fibre sample. The theoretical basis for the work is briefly explained and the modelling process is emphasised. Two types of fibre are investigated - circular fibre and D-fibre, and the results compared, analysed and discussed. It is shown that in the D-fibre, the stress and displacement increased by 1.46 and 115 times, respectively, in comparison with the circular fibre.

  5. Identifying a common origin of toner printed counterfeit banknotes by micro-Raman spectroscopy.

    Science.gov (United States)

    Skenderović Božičević, Martina; Gajović, Andreja; Zjakić, Igor

    2012-11-30

    This study explores the applicability of micro-Raman spectroscopy as a non-destructive technique for the analysis of color toner printed counterfeits. The main aim of the research paper was to find out whether Raman spectroscopy is a suitable method for establishing the connection between different specimens of counterfeits suspected to be printed with the same toner on the same machine. Specimens of different types of toners printed on different types of paper are analyzed by means of the micro-Raman spectroscopy system with the excitation line at 514.5 nm. For each specimen cyan, magenta and yellow toners are analyzed separately. The yellow toners displayed the most distinctive Raman spectra. The results show that micro-Raman spectroscopy can be successfully applied as a method for the analysis of color toner printed counterfeits, such as banknotes and documents, in order to establish links between more or less different specimens of counterfeits by measuring the properties of a color toner. Copyright © 2012 Elsevier Ireland Ltd. All rights reserved.

  6. Quantitative monitoring of yeast fermentation using Raman spectroscopy

    DEFF Research Database (Denmark)

    Iversen, Jens A.; Berg, Rolf W.; Ahring, Birgitte K.

    2014-01-01

    of a Saccharomyces cerevisiae fermentation process using a Raman spectroscopy instrument equipped with a robust sapphire ball probe.A method was developed to correct the Raman signal for the attenuation caused by light scattering cell particulate, hence enabling quantification of reaction components and possibly...... measurement of yeast cell concentrations. Extinction of Raman intensities to more than 50 % during fermentation was normalized with approximated extinction expressions using Raman signal of water around 1,627 cm−1 as internal standard to correct for the effect of scattering. Complicated standard multi...... was followed by linear regression. In situ quantification measurements of the fermentation resulted in root mean square errors of prediction (RMSEP) of 2.357, 1.611, and 0.633 g/L for glucose, ethanol, and yeast concentrations, respectively....

  7. Full Spectrum Diffused and Beamed Solar Energy Application Using Optical Fibre

    OpenAIRE

    Majumdar, M. R. Dutta; Das, Debasish

    2007-01-01

    Existing solar energy application systems use small fraction of full spectrum of solar energy. So attempts are made to show how full spectrum solar energy can be used for diffused and beamed form of incident solar energy. Luminescent Solar Concentrator (LSC) principle with optical fibre in diffused sun light and dielectric mirror separation technique with optical fibre in beamed form are discussed. Comparison of both the cases are done. Keywords: full spectrum, solar photonics, diffused solar...

  8. Raman amplification in optical communication systems

    DEFF Research Database (Denmark)

    Kjær, Rasmus

    2008-01-01

    Fiber Raman amplifiers are investigated with the purpose of identifying new applications and limitations for their use in optical communication systems. Three main topics are investigated, namely: New applications of dispersion compensating Raman amplifiers, the use Raman amplification to increase...... fiberbaserede Raman-forstærkere med henblik på at identificere både deres begrænsninger og nye anvendelsesmuligheder i optiske kommunikationssystemer. En numerisk forstærkermodel er blevet udviklet for bedre at forstå forstærkerens dynamik, dens gain- og støjbegrænsninger. Modellen bruges til at forudsige...... forstærkerens statiske og dynamiske egenskaber, og det eftervises at dens resultater er i god overensstemmelse med eksperimentelle forstærkermålinger. Dispersions-kompenserende fiber er på grund af sin store udbredelse og fiberens høje Raman gain effektivitet et meget velegnet Raman gain-medium. Tre nye...

  9. Spectral and kinetic analysis of radiation induced optical attenuation in silica: towards intrinsic fibre optic dosimetry?

    International Nuclear Information System (INIS)

    Borgermans, P.

    2002-01-01

    The document is an abstract of a PhD thesis. The PhD work concerns the detailed investigation of the behaviour of optical fibres in radiation fields such as is the case for various nuclear and space application,s. The core of the work concerns the spectral and kinetic analysis of the radiation induced optical attenuation. Models describing underlying physical phenomena, both for the spectral and the time dimensions, have been developed. The potential of silica optical fibre waveguides for intrinsic dosimetry has been assessed by employing specific properties of radiation induced defects in the silica waveguide material

  10. Analysis of 2-ethylhexyl-p-methoxycinnamate in sunscreen products by HPLC and Raman spectroscopy.

    Science.gov (United States)

    Cheng, J; Li, Y S; L Roberts, R; Walker, G

    1997-10-01

    The analyses of 2-ethylhexyl-p-methoxycinnamate (EHMC) using HPLC and Raman spectroscopy have been undertaken and compared. EHMC, which is one of the most widely used sunscreen agents in suncare products in the US, exhibits a strong Raman signal. This signal clearly appears in both ethanol solutions of EHMC as well as in commercial sunscreen lotions containing this sun screen agent. A method for the direct detection and analysis of EHMC has been developed using Raman spectroscopy. This was accomplished by correlating the Raman intensities with the HPLC assays for a series of prototype suncare formulations. Based upon this information, it would be possible to employ Raman spectroscopy as an in-process control method in the commercial production of suncare products containing EHMC. The possibility of applying surface-enhanced Raman scattering for trace analysis was discussed.

  11. Investigation of the Brill transition in nylon 6,6 by Raman, THz-Raman, and two-dimensional correlation spectroscopy.

    Science.gov (United States)

    Bertoldo Menezes, D; Reyer, A; Musso, M

    2018-02-05

    The Brill transition is a phase transition process in polyamides related with structural changes between the hydrogen bonds of the lateral functional groups (CO) and (NH). In this study, we have used the potential of Raman spectroscopy for exploring this phase transition in polyamide 6,6 (nylon 6,6), due to the sensitivity of this spectroscopic technique to small intermolecular changes affecting vibrational properties of relevant functional groups. During a step by step heating and cooling process of the sample we collected Raman spectra allowing us from two-dimensional Raman correlation spectroscopy to identify which spectral regions suffered the largest influence during the Brill transition, and from Terahertz Stokes and anti-Stokes Raman spectroscopy to obtain complementary information, e.g. on the temperature of the sample. This allowed us to grasp signatures of the Brill transition from peak parameters of vibrational modes associated with (CC) skeletal stretches and (CNH) bending, and to verify the Brill transition temperature at around 160°C, as well as the reversibility of this phase transition. Copyright © 2017 Elsevier B.V. All rights reserved.

  12. Distributed acoustic fibre optic sensors for condition monitoring of pipelines

    Science.gov (United States)

    Hussels, Maria-Teresa; Chruscicki, Sebastian; Habib, Abdelkarim; Krebber, Katerina

    2016-05-01

    Industrial piping systems are particularly relevant to public safety and the continuous availability of infrastructure. However, condition monitoring systems based on many discrete sensors are generally not well-suited for widespread piping systems due to considerable installation effort, while use of distributed fibre-optic sensors would reduce this effort to a minimum. Specifically distributed acoustic sensing (DAS) is employed for detection of third-party threats and leaks in oil and gas pipelines in recent years and can in principle also be applied to industrial plants. Further possible detection routes amenable by DAS that could identify damage prior to emission of medium are subject of a current project at BAM, which aims at qualifying distributed fibre optic methods such as DAS as a means for spatially continuous monitoring of industrial piping systems. Here, first tests on a short pipe are presented, where optical fibres were applied directly to the surface. An artificial signal was used to define suitable parameters of the measurement system and compare different ways of applying the sensor.

  13. Reflective variable optical attenuators and fibre ring lasers for wavelength-division multiplexing systems

    Science.gov (United States)

    Liu, He Liang

    Wavelength division multiplexing (WDM) optical fibre system is an important enabling technology to fulfill the demands for bandwidth in the modern information age. The main objective of this project is to study novel devices with the potential to enhance the performance of WDM systems. In particular, a novel reflective variable optical attenuator (RVOA) used for dynamic gain equalization (DGE) and fibre lasers based on an entirely new type of erbium-doped fibres with ultrawide tuning range were investigated theoretically and experimentally. We proposed a new type of RVOA device which could be potentially integrated with arrayed waveguide grating (AWG) to reduce the cost of DGE substantially. Initially, fibre-based RVOAs, fabricated with optical fibre components such as fibre coupler and Faraday rotator mirror, were investigated theoretically and experimentally. Larger attenuation range up to 22 dB was realized for fibre coupler-based ROVA with a Faraday rotator mirror and its polarization-dependent loss is about 0.5 dB. Then polymeric waveguide-based RVOAs were investigated theoretically and experimentally. Using an epoxy Novolak resin as core material and an UV-cured resin (Norland's NOA61) as cladding material, a polymeric waveguide RVOA was successfully fabricated. The dynamic 15 dB attenuation range was achieved and the PDL was less than 0.2 dB. The measured insertion loss of the polymeric waveguide RVOA was too large (about 18 dB) and was mainly induced by coupling loss, material loss and poor alignment. In the second part of the study, fibre ring lasers with continuous wavelength tuning over wide wavelength range and fibre ring lasers with discrete wavelength tuning were investigated. Tunable lasers are important devices in WDM systems because they could be employed as reserved sources and therefore avoiding the need to stock large inventory of lasers to cover the ITU-wavelength grid. In this project, erbium ions doped bismuth oxide glass fibres instead of

  14. TH-E-BRF-07: Raman Spectroscopy for Radiation Treatment Response Assessment in a Lung Metastases Mouse Model

    Energy Technology Data Exchange (ETDEWEB)

    Devpura, S; Barton, K; Brown, S; Siddiqui, F; Chetty, I [Henry Ford Health System, Detroit, MI (United States); Sethi, S [Karmanos Cancer Center, Detroit, MI (United States); Klein, M [Children' s Hospital of Michigan, Detroit, MI (United States)

    2014-06-15

    Purpose: Raman spectroscopy is an optical spectroscopic method used to probe chemical information about a target tissue. Our goal was to investigate whether Raman spectroscopy is able to distinguish lung tumors from normal lung tissue and whether this technique can identify the molecular changes induced by radiation. Methods: 4T1 mouse breast cancer cells were implanted subcutaneously into the flanks of 6 Balb/C female mice. Four additional mice were used as “normal lung” controls. After 14 days, 3 mice bearing tumors received 6Gy to the left lung with 6MV photons and the other three were treated as “unirradiated tumor” controls. At a 24-hour time point, lungs were excised and the specimens were sectioned using a cryostat; alternating sections were either stained with hematoxylin and eosin (H and E) for evaluation by a pathologist or unstained for Raman measurements. 240 total Raman spectra were collected; 84 from normal lung controls; 63 from unirradiated tumors and 64 from tumors irradiated with 6Gy in a single fraction. Raman spectra were also collected from normal lung tissues of mice with unirradiated tumors. Principal component analysis (PCA) and discriminant function analysis (DFA) were performed to analyze the data. Results: Raman bands assignable to DNA/RNA showed prominent contributions in tumor tissues while Raman bands associated with hemoglobin showed strong contributions in normal lung tissue. PCA/DFA analysis identified normal lung tissue and tumor with 100% and 98.4% accuracy, respectively, relative to pathologic scoring. Additionally, normal lung tissues from unirradiated mice bearing tumors were classified as normal with 100% accuracy. In a model consisting of unirradiated and irradiated tumors identification accuracy was 79.4% and 93.8% respectively, relative to pathologic assessment. Conclusion: Initial results demonstrate the promise for Raman spectroscopy in the diagnosis normal vs. lung metastases as well as the assessment of

  15. TH-E-BRF-07: Raman Spectroscopy for Radiation Treatment Response Assessment in a Lung Metastases Mouse Model

    International Nuclear Information System (INIS)

    Devpura, S; Barton, K; Brown, S; Siddiqui, F; Chetty, I; Sethi, S; Klein, M

    2014-01-01

    Purpose: Raman spectroscopy is an optical spectroscopic method used to probe chemical information about a target tissue. Our goal was to investigate whether Raman spectroscopy is able to distinguish lung tumors from normal lung tissue and whether this technique can identify the molecular changes induced by radiation. Methods: 4T1 mouse breast cancer cells were implanted subcutaneously into the flanks of 6 Balb/C female mice. Four additional mice were used as “normal lung” controls. After 14 days, 3 mice bearing tumors received 6Gy to the left lung with 6MV photons and the other three were treated as “unirradiated tumor” controls. At a 24-hour time point, lungs were excised and the specimens were sectioned using a cryostat; alternating sections were either stained with hematoxylin and eosin (H and E) for evaluation by a pathologist or unstained for Raman measurements. 240 total Raman spectra were collected; 84 from normal lung controls; 63 from unirradiated tumors and 64 from tumors irradiated with 6Gy in a single fraction. Raman spectra were also collected from normal lung tissues of mice with unirradiated tumors. Principal component analysis (PCA) and discriminant function analysis (DFA) were performed to analyze the data. Results: Raman bands assignable to DNA/RNA showed prominent contributions in tumor tissues while Raman bands associated with hemoglobin showed strong contributions in normal lung tissue. PCA/DFA analysis identified normal lung tissue and tumor with 100% and 98.4% accuracy, respectively, relative to pathologic scoring. Additionally, normal lung tissues from unirradiated mice bearing tumors were classified as normal with 100% accuracy. In a model consisting of unirradiated and irradiated tumors identification accuracy was 79.4% and 93.8% respectively, relative to pathologic assessment. Conclusion: Initial results demonstrate the promise for Raman spectroscopy in the diagnosis normal vs. lung metastases as well as the assessment of

  16. Collisions and turbulence in optical rogue wave formation

    DEFF Research Database (Denmark)

    Genty, G.; de Sterke, C.M.; Bang, Ole

    2010-01-01

    We discuss optical rogue wave generation in terms of collisions and turbulence processes. Simulations of picosecond pulse propagation in optical fibres show rogue soliton generation from either third-order dispersion or Raman scattering independently. Simulations of rogue soliton emergence...

  17. Shifted excitation Raman difference spectroscopy for authentication of cheese and cheese analogues

    Science.gov (United States)

    Sowoidnich, Kay; Kronfeldt, Heinz-Detlef

    2016-04-01

    Food authentication and the detection of adulterated products are recent major issues in the food industry as these topics are of global importance for quality control and food safety. To effectively address this challenge requires fast, reliable and non-destructive analytical techniques. Shifted Excitation Raman Difference Spectroscopy (SERDS) is well suited for identification purposes as it combines the chemically specific information obtained by Raman spectroscopy with the ability for efficient fluorescence rejection. The two slightly shifted excitation wavelengths necessary for SERDS are realized by specially designed microsystem diode lasers. At 671 nm the laser (optical power: 50 mW, spectral shift: 0.7 nm) is based on an external cavity configuration whereas an emission at 783 nm (optical power: 110 mW, spectral shift: 0.5 nm) is achieved by a distributed feedback laser. To investigate the feasibility of SERDS for rapid and nondestructive authentication purposes four types of cheese and three different cheese analogues were selected. Each sample was probed at 8 different positions using integration times of 3-10 seconds and 10 spectra were recorded at each spot. Principal components analysis was applied to the SERDS spectra revealing variations in fat and protein signals as primary distinction criterion between cheese and cheese analogues for both excitation wavelengths. Furthermore, to some extent, minor compositional differences could be identified to discriminate between individual species of cheese and cheese analogues. These findings highlight the potential of SERDS for rapid food authentication potentially paving the way for future applications of portable SERDS systems for non-invasive in situ analysis.

  18. In situ Raman spectroscopy studies of bulk and surface metal

    NARCIS (Netherlands)

    Weckhuysen, B.M.; Wachs, I.E.; Jehng, J.M.; Deo, G.; Guliants, V.V.; Benziger, J.B.

    1996-01-01

    Bulk V-P-O and model supported vanadia catalysts were investigated with in situ Raman spectroscopy during n-butane oxidation to maleic anhydride in order to determine the fundamental molecular structure-reactivity/selectivity insights that can be obtained from such experiments. The in situ Raman

  19. THE ROLE OF RAMAN SPECTROSCOPY IN THE ANALYTICAL CHEMISTRY OF POTABLE WATER

    Science.gov (United States)

    Advances in instrumentation are making Raman spectroscopy the tool of choice for an increasing number of chemical applications. For example, many recalcitrant industrial process monitoring problems have been solved in recent years with in-line Raman spectrometers. Raman is attr...

  20. New radiation-induced effects in optical fibres feasible for dosimetry

    International Nuclear Information System (INIS)

    Tomashuk, A.L.; Golant, K.M.; Dianov, E.M.; Nikolin, I.V.; Zakharkin, I.I.; Stepanov, V.A.

    1999-01-01

    Three new radiation-induced effects in silica optical fibres suitable for dosimetry are proposed: 1) in fibres with a high-OH cladding and a low-OH core, ionizing radiation disrupts the O-H bonds to let hydrogen diffuse into the core. This results in an increase in the OH-group absorption band amplitude, 2) the polymers used to coat optical fibres consist of hydrogen to the extent of about 50 %. Energetic neutrons produce recoil protons in the fibre coating, which can ''stick'' in the core, turn into hydrogen, and enter the glass network in the form of OH-group, and 3) in N-doped silica fibres irradiated with thermal neutrons, the following reaction 7 N 14 ( 0 n 1 , 1 p 1 ) 6 C 14 occurs and produces protons with energy 620 keV. With this energy, propagation length of protons in silica is 7 μm which means that the escape of protons from a 50 μm core is very weak. In fact all 3 effects lead to the irreversible increase in the OH-group absorption bands, which is proportional to the absorbed dose. With the help of these effects, temperature and dose-rate independent measurements of high doses become possible

  1. Self-centring technique for fibre optic microlens mounting using a concave cone-etched fibre

    International Nuclear Information System (INIS)

    Demagh, Nacer-Eddine; Guessoum, Assia; Zegari, Rabah; Gharbi, Tijani

    2011-01-01

    Several techniques of centring a microlens onto the fibre optic end face are studied. In most of them, microsphere lenses are centred with the aid of high-accuracy micro-positioners. This process is complicated with regard to the difficulty in manipulating microsphere lenses. In this paper, a simple and accurate self-centring method for mounting microsphere lenses using a concave cone etched fibre (Demagh et al 2006 Meas. Sci. Technol. 17 119–22) is described. This technique allows the centring of a wide variety of microlens radii, typically 7 µm to over 24 µm. The proposed process, however, is not affected by any spatial positioning control of microspheres. In over 85% of the attempts, the microsphere lenses were centred on the fibre axis to within 0.12 µm

  2. Investigation of bending loss in a single-mode optical fibre

    Indian Academy of Sciences (India)

    been studied. Twisting the optical fibre and its influence on power loss also have been investigated. ... been employed, to investigate their effects on bending loss. A simple semi-empirical .... optical correction factor [10]). This model (equation) ...

  3. Analytical Raman spectroscopic study for discriminant analysis of different animal-derived feedstuff: Understanding the high correlation between Raman spectroscopy and lipid characteristics.

    Science.gov (United States)

    Gao, Fei; Xu, Lingzhi; Zhang, Yuejing; Yang, Zengling; Han, Lujia; Liu, Xian

    2018-02-01

    The objectives of the current study were to explore the correlation between Raman spectroscopy and lipid characteristics and to assess the potential of Raman spectroscopic methods for distinguishing the different sources of animal-originated feed based on lipid characteristics. A total of 105 lipid samples derived from five animal species have been analyzed by gas chromatography (GC) and FT-Raman spectroscopy. High correlations (r 2 >0.94) were found between the characteristic peak ratio of the Raman spectra (1654/1748 and 1654/1445) and the degree of unsaturation of the animal lipids. The results of FT-Raman data combined with chemometrics showed that the fishmeal, poultry, porcine and ruminant (bovine and ovine) MBMs could be well separated based on their lipid spectral characteristics. This study demonstrated that FT-Raman spectroscopy can mostly exhibit the lipid structure specificity of different species of animal-originated feed and can be used to discriminate different animal-originated feed samples. Copyright © 2017. Published by Elsevier Ltd.

  4. Feedback dew-point sensor utilizing optimally cut plastic optical fibres

    Science.gov (United States)

    Hadjiloucas, S.; Irvine, J.; Keating, D. A.

    2000-01-01

    A plastic optical fibre reflectance sensor that makes full use of the critical angle of the fibres is implemented to monitor dew formation on a Peltier-cooled reflector surface. The optical configuration permits isolation of optoelectronic components from the sensing head and better light coupling between the reflector and the detecting fibre, giving a better signal of the onset of dew formation on the reflector. Continuous monitoring of the rate of change in reflectance as well as the absolute reflectance signals, the use of a novel polymethyl-methacrylate-coated hydrophobic film reflector on the Peltier element and the application of feedback around the point of dew formation, further reduces the possibility of contamination of the sensor head. Under closed-loop operation, the sensor is capable of cycling around the point of dew formation at a frequency of 2.5 Hz.

  5. Using Raman Spectroscopy and Surface-Enhanced Raman Scattering to Identify Colorants in Art: An Experiment for an Upper-Division Chemistry Laboratory

    Science.gov (United States)

    Mayhew, Hannah E.; Frano, Kristen A.; Svoboda, Shelley A.; Wustholz, Kristin L.

    2015-01-01

    Surface-enhanced Raman scattering (SERS) studies of art represent an attractive way to introduce undergraduate students to concepts in nanoscience, vibrational spectroscopy, and instrumental analysis. Here, we present an undergraduate analytical or physical chemistry laboratory wherein a combination of normal Raman and SERS spectroscopy is used to…

  6. A Dual Sensor for pH and Hydrogen Peroxide Using Polymer-Coated Optical Fibre Tips

    Directory of Open Access Journals (Sweden)

    Malcolm S. Purdey

    2015-12-01

    Full Text Available This paper demonstrates the first single optical fibre tip probe for concurrent detection of both hydrogen peroxide (H2O2 concentration and pH of a solution. The sensor is constructed by embedding two fluorophores: carboxyperoxyfluor-1 (CPF1 and seminaphtharhodafluor-2 (SNARF2 within a polymer matrix located on the tip of the optical fibre. The functionalised fibre probe reproducibly measures pH, and is able to accurately detect H2O2 over a biologically relevant concentration range. This sensor offers potential for non-invasive detection of pH and H2O2 in biological environments using a single optical fibre.

  7. Monitoring emulsion homopolymerization reactions using FT-Raman spectroscopy

    Directory of Open Access Journals (Sweden)

    M. M. Reis

    2005-03-01

    Full Text Available The present work describes a methodology for estimation of monomer concentration during homopolymerization reactions by Raman spectroscopy. The estimation is done using linear models based on two different approaches: a univariate approach and a multivariate approach (with principal component regression, PCR, or partial least squares regression, PLS. The linear models are fitted with data from spectra collected from synthetic samples, i.e., samples prepared by dispersing a known concentration of monomer in polymer emulsions. Homopolymerizations of butyl acrylate and of vinyl acetate were monitored by collecting samples from the reactor, and results show that the methodology is efficient for the model fitting and that Raman spectroscopy is a promising technique for on-line monitoring of the emulsion polymerization process.

  8. Raman Spectroscopy and in Situ Raman Spectroelectrochemistry of Isotopically Engineered Graphene Systems

    Czech Academy of Sciences Publication Activity Database

    Frank, Otakar; Dresselhaus, M. S.; Kalbáč, Martin

    2015-01-01

    Roč. 48, č. 1 (2015), s. 111-118 ISSN 0001-4842 R&D Projects: GA MŠk LH13022; GA MŠk LL1301 Institutional support: RVO:61388955 Keywords : Raman spectroscopy * spectroelectrochemistry * graphene Subject RIV: CG - Electrochemistry Impact factor: 22.003, year: 2015

  9. Using Deep UV Raman Spectroscopy to Identify In Situ Microbial Activity

    Science.gov (United States)

    Sapers, H. M.; Wanger, G.; Amend, J.; Orphan, V. J.; Bhartia, R.

    2017-12-01

    Microbial communities living in close association with lithic substrates play a critical role in biogeochemical cycles. Understanding the interactions between microorganisms and their abiotic substrates requires knowledge of microbial activity. Identifying active cells adhered to complex environmental substrates, especially in low biomass systems, remains a challenge. Stable isotope probing (SIP) provides a means to trace microbial activity in environmental systems. Active members of the community take up labeled substrates and incorporate the labels into biomolecules that can be detected through downstream analyses. Here we show for the first time that Deep UV (248 nm) Raman spectroscopy can differentiate microbial cells labeled with stable isotopes. Previous studies have used Raman spectroscopy with a 532 nm source to identify active bacterial cells by measuring a Raman shift between peaks corresponding to amino acids incorporating 13C compared to controls. However, excitation at 532 nm precludes detection on complex substrates due to high autofluorescence of native minerals. Excitation in the DUV range offers non-destructive imaging on mineral surfaces - retaining critical contextual information. We prepared cultures of E. coli grown in 50 atom% 13C glucose spotted onto Al wafers to test the ability of DUV Raman spectroscopy to differentiate labeled and unlabeled cells. For the first time, we are able to demonstrate a distinct and repeatable shift between cells grown in labeled media and unlabeled media when imaged on Al wafers with DUV Raman spectroscopy. The Raman spectra are dominated by the characteristic Raman bands of guanine. The dominant marker peak for guanine attributed to N7-C8 and C8-N9 ring stretching and C8-H in-plane bending, is visible at 1480 cm-1 in the unlabeled cells and is blue-shifted by 20 wavenumbers to 1461 cm-1 in the labeled cells. The ability of DUV Raman to effectively identify regions containing cells that have incorporated isotopic

  10. CCD technology beyond fibre optics

    International Nuclear Information System (INIS)

    Tuffen, J.

    1988-01-01

    For the past 25 years the accepted method of viewing inside industrial components, or indeed the human body, has been by the use of either flexible or rigid fibre optics. In the last five years however, many developments have enabled television cameras to reduce to a size small enough to allow internal viewing of an object, without prior dismantling. This concept was achieved five years ago, with the Welch Allyn Videoprobe 2000, a charge coupled device. (author)

  11. [Application of in situ cryogenic Raman spectroscopy to analysis of fluid inclusions in reservoirs].

    Science.gov (United States)

    Chen, Yong; Lin, Cheng-yan; Yu, Wen-quan; Zheng, Jie; Wang, Ai-guo

    2010-01-01

    Identification of salts is a principal problem for analysis of fluid inclusions in reservoirs. The fluid inclusions from deep natural gas reservoirs in Minfeng sub-sag were analyzed by in situ cryogenic Raman spectroscopy. The type of fluid inclusions was identified by Raman spectroscopy at room temperature. The Raman spectra show that the inclusions contain methane-bearing brine aqueous liquids. The fluid inclusions were analyzed at -180 degrees C by in situ cryogenic Raman spectroscopy. The spectra show that inclusions contain three salts, namely NaCl2, CaCl2 and MgCl2. Sodium chloride is most salt component, coexisting with small calcium chloride and little magnesium chloride. The origin of fluids in inclusions was explained by analysis of the process of sedimentation and diagenesis. The mechanism of diagenesis in reservoirs was also given in this paper. The results of this study indicate that in situ cryogenic Raman spectroscopy is an available method to get the composition of fluid inclusions in reservoirs. Based on the analysis of fluid inclusions in reservoirs by in situ cryogenic Raman spectroscopy with combination of the history of sedimentation and diagenesis, the authors can give important evidence for the type and mechanism of diagenesis in reservoirs.

  12. Raman Spectroscopy for In-Line Water Quality Monitoring—Instrumentation and Potential

    Directory of Open Access Journals (Sweden)

    Zhiyun Li

    2014-09-01

    Full Text Available Worldwide, the access to safe drinking water is a huge problem. In fact, the number of persons without safe drinking water is increasing, even though it is an essential ingredient for human health and development. The enormity of the problem also makes it a critical environmental and public health issue. Therefore, there is a critical need for easy-to-use, compact and sensitive techniques for water quality monitoring. Raman spectroscopy has been a very powerful technique to characterize chemical composition and has been applied to many areas, including chemistry, food, material science or pharmaceuticals. The development of advanced Raman techniques and improvements in instrumentation, has significantly improved the performance of modern Raman spectrometers so that it can now be used for detection of low concentrations of chemicals such as in-line monitoring of chemical and pharmaceutical contaminants in water. This paper briefly introduces the fundamentals of Raman spectroscopy, reviews the development of Raman instrumentations and discusses advanced and potential Raman techniques for in-line water quality monitoring.

  13. Optimizing laser crater enhanced Raman scattering spectroscopy

    Science.gov (United States)

    Lednev, V. N.; Sdvizhenskii, P. A.; Grishin, M. Ya.; Fedorov, A. N.; Khokhlova, O. V.; Oshurko, V. B.; Pershin, S. M.

    2018-05-01

    The laser crater enhanced Raman scattering (LCERS) spectroscopy technique has been systematically studied for chosen sampling strategy and influence of powder material properties on spectra intensity enhancement. The same nanosecond pulsed solid state Nd:YAG laser (532 nm, 10 ns, 0.1-1.5 mJ/pulse) was used for laser crater production and Raman scattering experiments for L-aspartic acid powder. Increased sampling area inside crater cavity is the key factor for Raman signal improvement for the LCERS technique, thus Raman signal enhancement was studied as a function of numerous experimental parameters including lens-to-sample distance, wavelength (532 and 1064 nm) and laser pulse energy utilized for crater production. Combining laser pulses of 1064 and 532 nm wavelengths for crater ablation was shown to be an effective way for additional LCERS signal improvement. Powder material properties (particle size distribution, powder compactness) were demonstrated to affect LCERS measurements with better results achieved for smaller particles and lower compactness.

  14. Three-dimensional hybrid silicon nanostructures for surface enhanced Raman spectroscopy based molecular detection

    Science.gov (United States)

    Vendamani, V. S.; Nageswara Rao, S. V. S.; Venugopal Rao, S.; Kanjilal, D.; Pathak, A. P.

    2018-01-01

    Three-dimensional silver nanoparticles decorated vertically aligned Si nanowires (Si NWs) are effective surface-enhanced Raman spectroscopy (SERS) substrates for molecular detection at low concentration levels. The length of Si NWs prepared by silver assisted electroless etching is increased with an increase in etching time, which resulted in the reduced optical reflection in the visible region. These substrates were tested and optimized by measuring the Raman spectrum of standard dye Rhodamine 6G (R6G) of 10 nM concentration. Further, effective SERS enhancements of ˜105 and ˜104 were observed for the cytosine protein (concentration of 50 μM) and ammonium perchlorate (oxidizer used in explosives composition with a concentration of 10 μM), respectively. It is established that these three-dimensional SERS substrates yielded considerably higher enhancement factors for the detection of R6G when compared to previous reports. The sensitivity can further be increased and optimized since the Raman enhancement was found to increase with an increase in the density of silver nanoparticles decorated on the walls of Si NWs.

  15. The development of methods of analysis of documents on the basis of the methods of Raman spectroscopy and fluorescence analysis

    Science.gov (United States)

    Gorshkova, Kseniia O.; Tumkin, Ilya I.; Kirillova, Elizaveta O.; Panov, Maxim S.; Kochemirovsky, Vladimir A.

    2017-05-01

    The investigation of natural aging of writing inks printed on paper using Raman spectroscopy was performed. Based on the obtained dependencies of the Raman peak intensities ratios on the exposure time, the dye degradation model was proposed. It was suggested that there are several competing bond breaking and bond forming reactions corresponding to the characteristic vibration frequencies of the dye molecule that simultaneously occur during ink aging process. Also we propose a methodology based on the study of the optical properties of paper, particularly changes in the fluorescence of optical brighteners included in its composition as well as the paper reflectivity using spectrophotometric methods. These results can be implemented to develop the novel and promising method of criminology.

  16. A simple model for fibre optics: planar dielectric waveguides in rotation

    International Nuclear Information System (INIS)

    Perez-Ocon, F; Pena, A; Jimenez, J R; Diaz, J A

    2006-01-01

    In planar dielectric waveguides, there is only one type of propagated ray: the one that crosses the waveguide axis after each total internal reflection. According to the model of geometrical optics, there are two types of guided ray in fibre optics: meridional and skew. Each one is formulated by a suitable mathematical treatment. In this work, we demonstrate that the complex mathematical treatment for the skew rays can be avoided by considering a planar waveguide (with the same refractive index profile as the fibre and thickness equal to its diameter) that rotates around the direction of the axis with angular velocity ω. A section of this fibre is inscribed in the hypothetical slab. This model has been successfully introduced to students of engineering and physics

  17. Raman spectroscopy on simple molecular systems at very high density

    International Nuclear Information System (INIS)

    Schiferl, D.; LeSar, R.S.; Moore, D.S.

    1988-01-01

    We present an overview of how Raman spectroscopy is done on simple molecular substances at high pressures. Raman spectroscopy is one of the most powerful tools for studying these substances. It is often the quickest means to explore changes in crystal and molecular structures, changes in bond strength, and the formation of new chemical species. Raman measurements have been made at pressures up to 200 GPa (2 Mbar). Even more astonishing is the range of temperatures (4-5200/degree/K) achieved in various static and dynamic (shock-wave) pressure experiments. One point we particularly wish to emphasize is the need for a good theoretical understanding to properly interpret and use experimental results. This is particularly true at ultra-high pressures, where strong crystal field effects can be misinterpreted as incipient insulator-metal transitions. We have tried to point out apparatus, techniques, and results that we feel are particularly noteworthy. We have also included some of the /open quotes/oral tradition/close quotes/ of high pressure Raman spectroscopy -- useful little things that rarely or never appear in print. Because this field is rapidly expanding, we discuss a number of exciting new techniques that have been informally communicated to us, especially those that seem to open new possibilities. 58 refs., 18 figs

  18. Near field plasmonic gradient effects on high vacuum tip-enhanced Raman spectroscopy.

    Science.gov (United States)

    Fang, Yurui; Zhang, Zhenglong; Chen, Li; Sun, Mengtao

    2015-01-14

    Near field gradient effects in high vacuum tip-enhanced Raman spectroscopy (HV-TERS) are a recent developing ultra-sensitive optical and spectral analysis technology on the nanoscale, based on the plasmons and plasmonic gradient enhancement in the near field and under high vacuum. HV-TERS can not only be used to detect ultra-sensitive Raman spectra enhanced by surface plasmon, but also to detect clear molecular IR-active modes enhanced by strongly plasmonic gradient. Furthermore, the molecular overtone modes and combinational modes can also be experimentally measured, where the Fermi resonance and Darling-Dennison resonance were successfully observed in HV-TERS. Theoretical calculations using electromagnetic field theory firmly supported experimental observation. The intensity ratio of the plasmon gradient term over the linear plasmon term can reach values greater than 1. Theoretical calculations also revealed that with the increase in gap distance between tip and substrate, the decrease in the plasmon gradient was more significant than the decrease in plasmon intensity, which is the reason that the gradient Raman can be only observed in the near field. Recent experimental results of near field gradient effects on HV-TERS were summarized, following the section of the theoretical analysis.

  19. Wavenumber selection based analysis in Raman spectroscopy improves skin cancer diagnostic specificity at high sensitivity levels (Conference Presentation)

    Science.gov (United States)

    Zhao, Jianhua; Zeng, Haishan; Kalia, Sunil; Lui, Harvey

    2017-02-01

    Background: Raman spectroscopy is a non-invasive optical technique which can measure molecular vibrational modes within tissue. A large-scale clinical study (n = 518) has demonstrated that real-time Raman spectroscopy could distinguish malignant from benign skin lesions with good diagnostic accuracy; this was validated by a follow-up independent study (n = 127). Objective: Most of the previous diagnostic algorithms have typically been based on analyzing the full band of the Raman spectra, either in the fingerprint or high wavenumber regions. Our objective in this presentation is to explore wavenumber selection based analysis in Raman spectroscopy for skin cancer diagnosis. Methods: A wavenumber selection algorithm was implemented using variably-sized wavenumber windows, which were determined by the correlation coefficient between wavenumbers. Wavenumber windows were chosen based on accumulated frequency from leave-one-out cross-validated stepwise regression or least and shrinkage selection operator (LASSO). The diagnostic algorithms were then generated from the selected wavenumber windows using multivariate statistical analyses, including principal component and general discriminant analysis (PC-GDA) and partial least squares (PLS). A total cohort of 645 confirmed lesions from 573 patients encompassing skin cancers, precancers and benign skin lesions were included. Lesion measurements were divided into training cohort (n = 518) and testing cohort (n = 127) according to the measurement time. Result: The area under the receiver operating characteristic curve (ROC) improved from 0.861-0.891 to 0.891-0.911 and the diagnostic specificity for sensitivity levels of 0.99-0.90 increased respectively from 0.17-0.65 to 0.20-0.75 by selecting specific wavenumber windows for analysis. Conclusion: Wavenumber selection based analysis in Raman spectroscopy improves skin cancer diagnostic specificity at high sensitivity levels.

  20. Raman spectroscopy for diagnosis of glioblastoma multiforme

    Science.gov (United States)

    Clary, Candace Elise

    Glioblastoma multiforme (GBM), the most common and most fatal malignant brain tumor, is highly infiltrative and incurable. Although improved prognosis has been demonstrated by surgically resecting the bulk tumor, a lack of clear borders at the tumor margins complicates the selection decision during surgery. This dissertation investigates the potential of Raman spectroscopy for distinguishing between normal and malignant brain tissue and sets the groundwork for a surgical diagnostic guide for resection of gross malignant gliomas. These studies revealed that Raman spectroscopy was capable of discriminating between normal scid mouse brain tissue and human xenograft tumors induced in those mice. The spectra of normal and malignant tissue were normalized by dividing by the respective magnitudes of the peaks near 1440 cm -1. Spectral differences include the shape of the broad peaks near 1440 cm-1 and 1660 cm-1 and the relative magnitudes of the peaks at 1264 cm-1, 1287 cm-1, 1297 cm-1, 1556 cm -1, 1586 cm-1, 1614 cm-1, and 1683 cm-1. From these studies emerged questions regarding how to objectively normalize and compare spectra for future automation. Some differences in the Raman spectra were shown to be inherent in the disease states of the cells themselves via differences in the Raman spectra of normal human astrocytes in culture and cultured cells derived from GBM tumors. The spectra of astrocytes and glioma cells were normalized by dividing by the respective magnitudes of the peaks near 1450 cm-1. The differences between the Raman spectra of normal and transformed cells include the ratio of the 1450 cm-1/1650 cm-1 peaks and the relative magnitudes of the peaks at 1181 cm-1, 1191 cm-1, 1225 cm-1, 1263 cm -1, 1300 cm-1, 1336 cm-1, 1477 cm-1, 1494 cm-1, and 1695 cm -1. Previous Raman spectroscopic studies of biological cells have shown that the magnitude of the Raman signal decreases over time, indicating sample damage. Cells exposed to laser excitation at similar power

  1. Application de la spectroscopie Raman à l’analyse de colorants sur fibres de coton dans le contexte de la criminalistique

    OpenAIRE

    Lepot, Laurent

    2011-01-01

    Forensic examination of textile fibres is based on fibre morphology and on fibre material and dyes characterization. Cotton is the most frequently used fibre in textiles but also the most encountered in casework. While man-made fibres show various morphologies and materials, cotton is a natural cellulosic fibre with constant morphology. Cotton fibres examination can consequently be summarized in the characterization of fibre dyes. However forensic needs require non-destructive, fast and sensi...

  2. Effects of time-temperature profiles on glow curves of germanium-doped optical fibre

    Science.gov (United States)

    Lam, S. E.; Alawiah, A.; Bradley, D. A.; Mohd Noor, N.

    2017-08-01

    The Germanium (Ge) doped silica optical fibres have demonstrated the great potential to be developed as a thermoluminescent (TL) dosimeter that can be used in various applications in radiotherapy, diagnostic radiology, UV dosimetry system and food irradiation industry. Different time-temperature profile (TTP) parameters of the TL reader have been employed by many researchers in various of TL studies. Nevertheless, none of those studies adequately addressed the effects of the reader's preheat temperature and heating rate on the kinetic parameters of the TL glow curve specifically, the Ge-doped silica optical fibres. This research addresses the issue of TTP parameters with special attention to the determination of the kinetic parameters of the glow curve. The glow curve responses were explored and the kinetic parameters were analyzed by the WinGCF software, to show the effect of the preheat temperature and heating rate of the reader on Ge-doped fibre irradiated with 18 Gy of 6 MV photons radiation. The effect of TTP parameters was discussed and compared against the commercial fibre and tailored made fibre of 6 mol% Ge-doped of flat and cylindrical shape. The deconvolution of glow peaks and the kinetic parameters were obtained by the WinGCF software. This enables to fit accurately (1.5%fibre (50 °C) and cylindrical fibre (80 °C and 160 °C). It is found that the glow peaks of cylindrical fibre exhibit the highest peak integral as compared to flat and commercial fibres. This study revealed the possible relationship between the reader's TTP parameters and the kinetic parameters of TL glow curves for the commercial and tailored made Ge-doped silica optical fibres.

  3. Contact angle measurement on xerogel sensitivity layer for optical fibre sensor

    Czech Academy of Sciences Publication Activity Database

    Cherif, K.; Hleli, S.; Abdelghani, A.; Jaffrezic-Renault, N.; Matějec, Vlastimil

    2003-01-01

    Roč. 23, č. 5 (2003), s. 571-577 ISSN 0928-4931 R&D Projects: GA ČR GA102/02/0780 Institutional research plan: CEZ:AV0Z2067918 Keywords : optical fibres * measurement * fibre lasers Subject RIV: JA - Electronics ; Optoelectronics, Electrical Engineering Impact factor: 1.122, year: 2003

  4. Charge Transfer Effect on Raman and Surface Enhanced Raman Spectroscopy of Furfural Molecules.

    Science.gov (United States)

    Wan, Fu; Shi, Haiyang; Chen, Weigen; Gu, Zhaoliang; Du, Lingling; Wang, Pinyi; Wang, Jianxin; Huang, Yingzhou

    2017-08-02

    The detection of furfural in transformer oil through surface enhanced Raman spectroscopy (SERS) is one of the most promising online monitoring techniques in the process of transformer aging. In this work, the Raman of individual furfural molecules and SERS of furfural-M x (M = Ag, Au, Cu) complexes are investigated through density functional theory (DFT). In the Raman spectrum of individual furfural molecules, the vibration mode of each Raman peak is figured out, and the deviation from experimental data is analyzed by surface charge distribution. In the SERS of furfural-M x complexes, the influence of atom number and species on SERS chemical enhancement factors (EFs) are studied, and are further analyzed by charge transfer effect. Our studies strengthen the understanding of charge transfer effect in the SERS of furfural molecules, which is important in the online monitoring of the transformer aging process through SERS.

  5. Miniaturised Optical Fibre Sensor for Dew Detection Inside Organ Pipes

    Directory of Open Access Journals (Sweden)

    Francesco Baldini

    2008-01-01

    Full Text Available A new optical sensor for the continuous monitoring of the dew formation inside organ pipes was designed. This aspect is particularly critical for the conservation of organs in unheated churches since the dew formation or the condensation on the pipe surfaces can contribute to many kinds of physical and chemical disruptive mechanisms. The working principle is based on the change in the reflectivity which is observed on the surface of the fibre tip, when a water layer is formed on its distal end. Intensity changes of the order of 35% were measured, following the formation of the water layer on the distal end of a 400/430 μm optical fibre. Long-term tests carried out placing the fibre tip inside the base of an in-house-made metallic foot of an organ pipe located in an external environment revealed the consistency of the proposed system.

  6. Optical properties study of nano-composite filled D shape photonic crystal fibre

    Directory of Open Access Journals (Sweden)

    R. Udaiyakumar

    2018-06-01

    Full Text Available With the nano-composite materials gaining momentum in the optical field, a new nano-composite filled D shape Photonic Crystal Fiber (PCF is designed and the various optical properties are investigated with help of Finite Element Method. In the proposed structure the D-shape PCF is made up of silica with embedded silver nanoparticles and air holes are distributed along the fibre. The designed fibre shows various optical properties such as dispersion, birefringence, beat length and loss with respect to wavelength and compared with different filling factor like 0.1, 0.3 and 0.5. From our estimation and comparative analysis, it has been proved that the fibre loss has been decreased with increasing filling factor. Further this also showed flat dispersion at maximum filling factor. Keywords: Nanoparticles, Nano-composite, Dispersion, Birefringence, Beat length

  7. Raman laser spectrometer optical head: qualification model assembly and integration verification

    Science.gov (United States)

    Ramos, G.; Sanz-Palomino, M.; Moral, A. G.; Canora, C. P.; Belenguer, T.; Canchal, R.; Prieto, J. A. R.; Santiago, A.; Gordillo, C.; Escribano, D.; Lopez-Reyes, G.; Rull, F.

    2017-08-01

    Raman Laser Spectrometer (RLS) is the Pasteur Payload instrument of the ExoMars mission, within the ESA's Aurora Exploration Programme, that will perform for the first time in an out planetary mission Raman spectroscopy. RLS is composed by SPU (Spectrometer Unit), iOH (Internal Optical Head), and ICEU (Instrument Control and Excitation Unit). iOH focuses the excitation laser on the samples (excitation path), and collects the Raman emission from the sample (collection path, composed on collimation system and filtering system). Its original design presented a high laser trace reaching to the detector, and although a certain level of laser trace was required for calibration purposes, the high level degrades the Signal to Noise Ratio confounding some Raman peaks. So, after the bread board campaign, some light design modifications were implemented in order to fix the desired amount of laser trace, and after the fabrication and the commitment of the commercial elements, the assembly and integration verification process was carried out. A brief description of the iOH design update for the engineering and qualification model (iOH EQM) as well as the assembly process are briefly described in this papers. In addition, the integration verification and the first functional tests, carried out with the RLS calibration target (CT), results are reported on.

  8. Validation and qualification of surface-applied fibre optic strain sensors using application-independent optical techniques

    International Nuclear Information System (INIS)

    Schukar, Vivien G; Kadoke, Daniel; Kusche, Nadine; Münzenberger, Sven; Gründer, Klaus-Peter; Habel, Wolfgang R

    2012-01-01

    Surface-applied fibre optic strain sensors were investigated using a unique validation facility equipped with application-independent optical reference systems. First, different adhesives for the sensor's application were analysed regarding their material properties. Measurements resulting from conventional measurement techniques, such as thermo-mechanical analysis and dynamic mechanical analysis, were compared with measurements resulting from digital image correlation, which has the advantage of being a non-contact technique. Second, fibre optic strain sensors were applied to test specimens with the selected adhesives. Their strain-transfer mechanism was analysed in comparison with conventional strain gauges. Relative movements between the applied sensor and the test specimen were visualized easily using optical reference methods, digital image correlation and electronic speckle pattern interferometry. Conventional strain gauges showed limited opportunities for an objective strain-transfer analysis because they are also affected by application conditions. (paper)

  9. Effects of {gamma} and neutron irradiation on the optical absorption of pure silica core single-mode optical fibres from Nufern

    Energy Technology Data Exchange (ETDEWEB)

    Calderon, A. [Instituto de Fisica de Cantabria, CSIC-University of Cantabria, Santander (Spain); Martinez-Rivero, C. [Instituto de Fisica de Cantabria, CSIC-University of Cantabria, Santander (Spain); Matorras, F. [Instituto de Fisica de Cantabria, CSIC-University of Cantabria, Santander (Spain); Rodrigo, T. [Instituto de Fisica de Cantabria, CSIC-University of Cantabria, Santander (Spain); Sobron, M. [Instituto de Fisica de Cantabria, CSIC-University of Cantabria, Santander (Spain); Vila, I. [Instituto de Fisica de Cantabria, CSIC-University of Cantabria, Santander (Spain); Virto, A.L. [Instituto de Fisica de Cantabria, CSIC-University of Cantabria, Santander (Spain); Alberdi, J. [CIEMAT, Particle Physics, Avda. Complutense 22, 28040, Madrid (Spain); Arce, P. [CIEMAT, Particle Physics, Avda. Complutense 22, 28040, Madrid (Spain); Barcala, J.M. [CIEMAT, Particle Physics, Avda. Complutense 22, 28040, Madrid (Spain); Calvo, E. [CIEMAT, Particle Physics, Avda. Complutense 22, 28040, Madrid (Spain); Ferrando, A. [CIEMAT, Particle Physics, Avda. Complutense 22, 28040, Madrid (Spain)]. E-mail: Antonio.Ferrando@ciemat.es; Josa, M.I. [CIEMAT, Particle Physics, Avda. Complutense 22, 28040, Madrid (Spain); Luque, J.M. [CIEMAT, Particle Physics, Avda. Complutense 22, 28040, Madrid (Spain); Molinero, A. [CIEMAT, Particle Physics, Avda. Complutense 22, 28040, Madrid (Spain); Navarrete, J. [CIEMAT, Particle Physics, Avda. Complutense 22, 28040, Madrid (Spain); Oller, J.C. [CIEMAT, Particle Physics, Avda. Complutense 22, 28040, Madrid (Spain); Valdivieso, P. [CIEMAT, Particle Physics, Avda. Complutense 22, 28040, Madrid (Spain); Yuste, C. [CIEMAT, Particle Physics, Avda. Complutense 22, 28040, Madrid (Spain); Fenyvesi, A. [Institute of Nuclear Research, ATOMKI, Debrecen (Hungary); Molnar, J. [Institute of Nuclear Research, ATOMKI, Debrecen (Hungary)

    2006-09-15

    A measurement of the optical absorption, induced by photon irradiation up to a dose of 0.9 MGy, in Nufern silica core single-mode optical fibres is presented. In addition, the fibres were irradiated with neutrons, up to a total fluence of 2x10{sup 14} cm{sup -2} and the induced optical absorption was evaluated for four different wavelengths: 630, 670, 681 and 785 nm.

  10. Effects of γ and neutron irradiation on the optical absorption of pure silica core single-mode optical fibres from Nufern

    International Nuclear Information System (INIS)

    Calderon, A.; Martinez-Rivero, C.; Matorras, F.; Rodrigo, T.; Sobron, M.; Vila, I.; Virto, A.L.; Alberdi, J.; Arce, P.; Barcala, J.M.; Calvo, E.; Ferrando, A.; Josa, M.I.; Luque, J.M.; Molinero, A.; Navarrete, J.; Oller, J.C.; Valdivieso, P.; Yuste, C.; Fenyvesi, A.; Molnar, J.

    2006-01-01

    A measurement of the optical absorption, induced by photon irradiation up to a dose of 0.9 MGy, in Nufern silica core single-mode optical fibres is presented. In addition, the fibres were irradiated with neutrons, up to a total fluence of 2x10 14 cm -2 and the induced optical absorption was evaluated for four different wavelengths: 630, 670, 681 and 785 nm

  11. Process spectroscopy in microemulsions—Raman spectroscopy for online monitoring of a homogeneous hydroformylation process

    International Nuclear Information System (INIS)

    Paul, Andrea; Meyer, Klas; Ruiken, Jan-Paul; Maiwald, Michael; Illner, Markus; Müller, David-Nicolas; Esche, Erik; Wozny, Günther; Westad, Frank

    2017-01-01

    A major industrial reaction based on homogeneous catalysis is hydroformylation for the production of aldehydes from alkenes and syngas. Hydroformylation in microemulsions, which is currently under investigation at Technische Universität Berlin on a mini-plant scale, was identified as a cost efficient approach which also enhances product selectivity. Herein, we present the application of online Raman spectroscopy on the reaction of 1-dodecene to 1-tridecanal within a microemulsion. To achieve a good representation of the operation range in the mini-plant with regard to concentrations of the reactants a design of experiments was used. Based on initial Raman spectra partial least squares regression (PLSR) models were calibrated for the prediction of 1-dodecene and 1-tridecanal. Limits of predictions arise from nonlinear correlations between Raman intensity and mass fractions of compounds in the microemulsion system. Furthermore, the prediction power of PLSR models becomes limited due to unexpected by-product formation. Application of the lab-scale derived calibration spectra and PLSR models on online spectra from a mini-plant operation yielded promising estimations of 1-tridecanal and acceptable predictions of 1-dodecene mass fractions suggesting Raman spectroscopy as a suitable technique for process analytics in microemulsions. (paper)

  12. Non-invasive analysis of hormonal variations and effect of postmenopausal Vagifem treatment on women using in vivo high wavenumber confocal Raman spectroscopy.

    Science.gov (United States)

    Duraipandian, Shiyamala; Zheng, Wei; Ng, Joseph; Low, Jeffrey J H; Ilancheran, A; Huang, Zhiwei

    2013-07-21

    This study aims to evaluate the feasibility of applying high wavenumber (HW) confocal Raman spectroscopy for non-invasive assessment of menopause-related hormonal changes in the cervix as well as for determining the effect of Vagifem(®) treatment on postmenopausal women with atrophic cervix. A rapid HW confocal Raman spectroscopy system coupled with a ball lens fiber-optic Raman probe was utilized for in vivo cervical tissue Raman measurements at 785 nm excitation. A total of 164 in vivo HW Raman spectra (premenopausal (n = 104), postmenopausal-prevagifem (n = 34), postmenopausal-postvagifem (n = 26)) were measured from the normal cervix of 26 patients undergoing colposcopy. We established the biochemical basis of premenopausal, postmenopausal-prevagifem and postmenopausal-postvagifem cervix using semiquantitative biomolecular modeling derived from Raman-active biochemicals (i.e., lipids, proteins and water) that play a critical role in HW Raman spectral changes associated with the menopausal process. The diagnostic algorithms developed based on partial least squares-discriminant analysis (PLS-DA) together with leave-one patient-out, cross-validation yielded the diagnostic sensitivities of 88.5%, 91.2% and 88.5%, and specificities of 91.7%, 90.8% and 99.3%, respectively, for non-invasive in vivo discrimination among premenopausal, postmenopausal-prevagifem and postmenopausal-postvagifem cervix. This work demonstrates for the first time that HW confocal Raman spectroscopy in conjunction with biomolecular modeling can be a powerful diagnostic tool for identifying hormone/menopause-related variations in the native squamous epithelium of normal cervix, as well as for assessing the effect of Vagifem treatment on postmenopausal atrophic cervix in vivo during clinical colposcopic inspections.

  13. A Micro-Computed Tomography Technique to Study the Quality of Fibre Optics Embedded in Composite Materials

    Directory of Open Access Journals (Sweden)

    Gabriele Chiesura

    2015-05-01

    Full Text Available Quality of embedment of optical fibre sensors in carbon fibre-reinforced polymers plays an important role in the resultant properties of the composite, as well as for the correct monitoring of the structure. Therefore, availability of a tool able to check the optical fibre sensor-composite interaction becomes essential. High-resolution 3D X-ray Micro-Computed Tomography, or Micro-CT, is a relatively new non-destructive inspection technique which enables investigations of the internal structure of a sample without actually compromising its integrity. In this work the feasibility of inspecting the position, the orientation and, more generally, the quality of the embedment of an optical fibre sensor in a carbon fibre reinforced laminate at unit cell level have been proven.

  14. Photoinduced Bragg grating formation in optical fibres as a consequence of convective instability

    International Nuclear Information System (INIS)

    Furman, A.S.

    1993-10-01

    The photoinduced formation of Bragg gratings in optical fibres is explained as a consequence of convective instability. Close analogy is emphasized between this phenomenon and the photoinduced second harmonic generation in optical fibres. The observed grating formation is interpreted as amplification of very low frequency noise. Predictions concerning the transient processes are made which could be checked experimentally. (author). 9 refs

  15. ORIENTATIONAL MICRO-RAMAN SPECTROSCOPY ON HYDROXYAPATITE SINGLE-CRYSTALS AND HUMAN ENAMEL CRYSTALLITES

    NARCIS (Netherlands)

    TSUDA, H; ARENDS, J

    Single crystals of synthetic hydroxyapatite have been examined by orientational micro-Raman spectroscopy. The observed Raman bands include the PO43-/OH- internal and external. modes over the spectral range from 180 to 3600 cm(-1). The Raman-active symmetry tensors (A, E(1), and E(2)) of

  16. Identification of Abnormal Stem Cells Using Raman Spectroscopy

    DEFF Research Database (Denmark)

    Harkness, Linda; Novikov, Sergey M; Beermann, Jonas

    2012-01-01

    The clinical use of stem cells in cell-based therapeutics for degenerative diseases requires development of criteria for defining normal stem cells to ensure safe transplantation. Currently, identification of abnormal from normal stem cells is based on extensive ex vivo and in vivo testing. Raman...... microscopy is a label-free method for rapid and sensitive detection of changes in cells' bio-molecular composition. Here, we report that by using Raman spectroscopy, we were able to map the distribution of different biomolecules within 2 types of stem cells: adult human bone marrow-derived stromal stem cells...... and human embryonic stem cells and to identify reproducible differences in Raman's spectral characteristics that distinguished genetically abnormal and transformed stem cells from their normal counterparts. Raman microscopy can be prospectively employed as a method for identifying abnormal stem cells in ex...

  17. Surface enhanced Raman spectroscopy: A review of recent applications in forensic science

    Science.gov (United States)

    Fikiet, Marisia A.; Khandasammy, Shelby R.; Mistek, Ewelina; Ahmed, Yasmine; Halámková, Lenka; Bueno, Justin; Lednev, Igor K.

    2018-05-01

    Surface enhanced Raman spectroscopy has many advantages over its parent technique of Raman spectroscopy. Some of these advantages such as increased sensitivity and selectivity and therefore the possibility of small sample sizes and detection of small concentrations are invaluable in the field of forensics. A variety of new SERS surfaces and novel approaches are presented here on a wide range of forensically relevant topics.

  18. The effect of mechanical drawing on optical and structural properties of nylon 6 fibres

    Science.gov (United States)

    El-Bakary, M. A.

    2007-09-01

    The Pluta polarizing double-refracting interference microscope was attached to a mechanical drawing device to study the effect of cold drawing on the optical and structural properties of nylon 6 fibres. The microscope was used in its two positions for determining the refractive indices and birefringence of fibres. Different applied stresses and strain rates were obtained using the mechanical-drawing device. The effect of the applied stresses on the optical and physical parameters was investigated. The resulting optical parameters were utilized to investigate the polarizability per unit volume, the optical orientation factor, the orientation angle and the average work per chain. The refractive index and birefringence profiles were measured. Relationships between the average work per chain and optical parameters at different strains rates were determined. An empirical formula was deduced for these fibres. Micro-interferograms are given for illustration.

  19. Rationale for single molecule detection by means of Raman spectroscopy

    International Nuclear Information System (INIS)

    Gaponenko, S.V.; Guzatov, D.V.

    2009-01-01

    A consistent quantum electrodynamical description is proposed of Raman scattering of light by a molecule in a medium with a modified photon density of states. Enhanced local density of states near a metal nanobody is shown to increase a scattering rate by several orders of magnitude, thus providing a rationale for experimental detection of single molecules by means of Raman spectroscopy. For an ellipsoidal particle 10 14 -fold enhancement of the Raman scattering cross-section is obtained. (authors)

  20. Evaluating Lignocellulosic Biomass, Its Derivatives, and Downstream Products with Raman Spectroscopy

    Science.gov (United States)

    Lupoi, Jason S.; Gjersing, Erica; Davis, Mark F.

    2015-01-01

    The creation of fuels, chemicals, and materials from plants can aid in replacing products fabricated from non-renewable energy sources. Before using biomass in downstream applications, it must be characterized to assess chemical traits, such as cellulose, lignin, or lignin monomer content, or the sugars released following an acid or enzymatic hydrolysis. The measurement of these traits allows researchers to gage the recalcitrance of the plants and develop efficient deconstruction strategies to maximize yields. Standard methods for assessing biomass phenotypes often have experimental protocols that limit their use for screening sizeable numbers of plant species. Raman spectroscopy, a non-destructive, non-invasive vibrational spectroscopy technique, is capable of providing qualitative, structural information and quantitative measurements. Applications of Raman spectroscopy have aided in alleviating the constraints of standard methods by coupling spectral data with multivariate analysis to construct models capable of predicting analytes. Hydrolysis and fermentation products, such as glucose and ethanol, can be quantified off-, at-, or on-line. Raman imaging has enabled researchers to develop a visual understanding of reactions, such as different pretreatment strategies, in real-time, while also providing integral chemical information. This review provides an overview of what Raman spectroscopy is, and how it has been applied to the analysis of whole lignocellulosic biomass, its derivatives, and downstream process monitoring. PMID:25941674