WorldWideScience

Sample records for fiber optic detector

  1. Optical fiber Cherenkov detector for beam current monitoring

    International Nuclear Information System (INIS)

    Pishchulin, I.V.; Solov'ev, N.G.; Romashkin, O.B.

    1991-01-01

    The results obtained in calculation of an optical fiber Cherenkov detector for accelerated beam current monitoring are presented. The technique of beam parameters monitoring is based on Cherenkov radiation excitation by accelerated electrons in the optical fiber. The formulas for calculations of optical power and time dependence of Cherenkov radiation pulse are given. The detector sensitivity and time resolution dependence on the fiber material characteristics are investigated. Parameters of a 10μm one-mode quartz optical fiber detector for the free electron laser photoinjector are calculated. The structure of a monitoring system with the optical fiber Cherenkov detector is considered. Possible applications of this technique are discussed and some recommendations are given

  2. Ionizing radiation detector using multimode optical fibers

    International Nuclear Information System (INIS)

    Suter, J.J.; Poret, J.C.; Rosen, M.; Rifkind, J.M.

    1993-01-01

    An optical ionizing radiation detector, based on the attenuation of 850-nm light in 50/125-μm multimode fibers, is described. The detector is especially well suited for application on spacecraft because of its small design. The detection element consists of a section of coiled fibers that has been designed to strip higher-order optical modes. Cylindrical radiation shields with atomic numbers ranging from Z = 13 (aluminum too) Z = 82 (lead) were placed around the ionizing radiation detector so that the effectiveness of the detector could be measured. By exposing the shields and the detector to 1.25-MeV cobalt 60 radiation, the mass attenuation coefficients of the shields were measured. The detector is based on the phenomenon that radiation creates optical color centers in glass fibers. Electron spin resonance spectroscopy performed on the 50/125-μm fibers showed the presence of germanium oxide and phosphorus-based color centers. The intensity of these centers is directly related to the accumulated gamma radiation

  3. Fiber optic fluid detector

    Science.gov (United States)

    Angel, S.M.

    1987-02-27

    Particular gases or liquids are detected with a fiber optic element having a cladding or coating of a material which absorbs the fluid or fluids and which exhibits a change of an optical property, such as index of refraction, light transmissiveness or fluoresence emission, for example, in response to absorption of the fluid. The fluid is sensed by directing light into the fiber optic element and detecting changes in the light, such as exit angle changes for example, that result from the changed optical property of the coating material. The fluid detector may be used for such purposes as sensing toxic or explosive gases in the atmosphere, measuring ground water contamination or monitoring fluid flows in industrial processes, among other uses. 10 figs.

  4. Fiber optic fluid detector

    Science.gov (United States)

    Angel, S. Michael

    1989-01-01

    Particular gases or liquids are detected with a fiber optic element (11, 11a to 11j) having a cladding or coating of a material (23, 23a to 23j) which absorbs the fluid or fluids and which exhibits a change of an optical property, such as index of refraction, light transmissiveness or fluoresence emission, for example, in response to absorption of the fluid. The fluid is sensed by directing light into the fiber optic element and detecting changes in the light, such as exit angle changes for example, that result from the changed optical property of the coating material. The fluid detector (24, 24a to 24j) may be used for such purposes as sensing toxic or explosive gases in the atmosphere, measuring ground water contamination or monitoring fluid flows in industrial processes, among other uses.

  5. Development of Optical Fiber Detector for Measurement of Fast Neutron

    International Nuclear Information System (INIS)

    YAGI, Takahiro; KAWAGUCHI, Shinichi; MISAWA, Tsuyoshi; PYEON, Cheol Ho; UNESAKI, Hironobu; SHIROYA, Seiji; OKAJIMA, Shigeaki; TANI, Kazuhiro

    2008-01-01

    Measurement of fast neutron flux is important for investigation of characteristic of fast reactors. In order to insert a neutron detector in a narrow space such as a gap of between fuel plates and measure the fast neutrons in real time, a neutron detector with an optical fiber has been developed. This detector consists of an optical fiber whose tip is covered with mixture of neutron converter material and scintillator such as ZnS(Ag). The detector for fast neutrons uses ThO 2 as converter material because 232 Th makes fission reaction with fast neutrons. The place where 232 Th can be used is limited by regulations because 232 Th is nuclear fuel material. The purpose of this research is to develop a new optical fiber detector to measure fast neutrons without 232 Th and to investigate the characteristic of the detector. These detectors were used to measure a D-T neutron generator and fast neutron flux distribution at Fast Critical Assembly. The results showed that the fast neutron flux distribution of the new optical fiber detector with ZnS(Ag) was the same as it of the activation method, and the detector are effective for measurement of fast neutrons. (authors)

  6. Ship Effect Measurements With Fiber Optic Neutron Detector

    International Nuclear Information System (INIS)

    King, Kenneth L.; Dean, Rashe A.; Akbar, Shahzad; Kouzes, Richard T.; Woodring, Mitchell L.

    2010-01-01

    The main objectives of this research project was to assemble, operate, test and characterize an innovatively designed scintillating fiber optic neutron radiation detector manufactured by Innovative American Technology with possible application to the Department of Homeland Security screening for potential radiological and nuclear threats at US borders (Kouzes 2004). One goal of this project was to make measurements of the neutron ship effect for several materials. The Virginia State University DOE FaST/NSF summer student-faculty team made measurements with the fiber optic radiation detector at PNNL above ground to characterize the ship effect from cosmic neutrons, and underground to characterize the muon contribution.

  7. On the possibilities of large-scale radio and fiber optics detectors in cosmic rays

    Science.gov (United States)

    Gusev, G. A.; Markov, M. A.; Zheleznykh, I. M.

    1985-01-01

    Different variants of radio and fiber optics detectors for registration of super high energy cascades in the atmosphere and in dense media are discussed. Particularly the possibilities for investigation of quasi horizontal cosmic ray showers (CRS) and simulated muons from these CRS with the help of radio detectors and fiber optics detectors located on the ice surface are considered.

  8. Scintillating plastic optical fiber radiation detectors in high energy particle physics

    International Nuclear Information System (INIS)

    Bross, A.D.

    1991-01-01

    We describe the application of scintillating optical fiber in instrumentation for high energy particle physics. The basic physics of the scintillation process in polymers is discussed first and then we outline the fundamentals of scintillating fiber technology. Fiber performance, optimization, and characterization measurements are given. Detector applications in the areas of particle tracking and particle energy determination are then described. 13 refs., 12 figs

  9. A tilted fiber-optic plate coupled CCD detector for high resolution neutron imaging

    Energy Technology Data Exchange (ETDEWEB)

    Kim, Jongyul; Cho, Gyuseong [Korea Advanced Institute of Science and Technology, Daejeon (Korea, Republic of); Kim, Jongyul; Hwy, Limchang; Kim, Taejoo; Lee, Kyehong [Korea Atomic Energy Research Institute, Daejeon (Korea, Republic of); Lee, Seungwook [Pusan National Univ., Pusan (Korea, Republic of)

    2013-05-15

    One of these efforts is that a tilted scintillator geometry and lens coupled CCD detector for neutron imaging system were used to improve spatial resolution in one dimension. The increased spatial resolution in one dimension was applied to fuel cell study. However, a lens coupled CCD detector has lower sensitivity than a fiber-optic plate coupled CCD detector due to light loss. In this research, a tilted detector using fiber-optic plate coupled CCD detector was developed to improve resolution and sensitivity. In addition, a tilted detector can prevent an image sensor from direct radiation damage. Neutron imaging has been used for fuel cell study, lithium ion battery study, and many scientific applications. High quality neutron imaging is demanded for more detailed studies of applications, and spatial resolution should be considered to get high quality neutron imaging. Therefore, there were many efforts to improve spatial resolution.

  10. System for testing optical fibers

    Science.gov (United States)

    Golob, John E. [Olathe, KS; Looney, Larry D. [Los Alamos, NM; Lyons, Peter B. [Los Alamos, NM; Nelson, Melvin A. [Santa Barbara, CA; Davies, Terence J. [Santa Barbara, CA

    1980-07-15

    A system for measuring a combination of optical transmission properties of fiber optic waveguides. A polarized light pulse probe is injected into one end of the optical fiber. Reflections from discontinuities within the fiber are unpolarized whereas reflections of the probe pulse incident to its injection remain polarized. The polarized reflections are prevented from reaching a light detector whereas reflections from the discontinuities reaches the detector.

  11. Improved Optical Fiber Chemical Sensors

    Science.gov (United States)

    Egalon, Claudio O.; Rogowski, Robert S.

    1994-01-01

    Calculations, based on exact theory of optical fiber, have shown how to increase optical efficiency sensitivity of active-core, step-index-profile optical-fiber fluorosensor. Calculations result of efforts to improve efficiency of optical-fiber chemical sensor of previous concept described in "Making Optical-Fiber Chemical Sensors More Sensitive" (LAR-14525). Optical fiber chemical detector of enhanced sensitivity made in several configurations. Portion of fluorescence or chemiluminescence generated in core, and launched directly into bound electromagnetic modes that propagate along core to photodetector.

  12. Low-Cost, Fiber-Optic Hydrogen Gas Detector Using Guided-Wave, Surface-Plasmon Resonance in Chemochromic Thin Films

    International Nuclear Information System (INIS)

    Tracy, C.E.; Benson, D.K.; Haberman, D.P.; Hishmeh, G.A.; Ciszek, P.A.

    1998-01-01

    Low-cost, hydrogen-gas-leak detectors are needed for many hydrogen applications, such as hydrogen-fueled vehicles where several detectors may be required in different locations on each vehicle. A fiber-optic leak detector could be inherently safer than conventional detectors, because it would remove all detector electronics from the vicinity of potential leaks. It would also provide freedom from electromagnetic interference, a serious problem in fuel-cell-powered electric vehicles. This paper describes the design of a fiber-optic, surface-plasmon-resonance hydrogen detector, and efforts to make it more sensitive, selective, and durable. Chemochromic materials, such as tungsten oxide and certain Lanthanide hydrides, can reversibly react with hydrogen in air while exhibiting significant changes in their optical properties. Thin films of these materials applied to a sensor at the end of an optical fiber have been used to detect low concentrations of hydrogen gas in air. The coatings include a thin silver layer in which the surface plasmon is generated, a thin film of the chemochromic material, and a catalytic layer of palladium that facilitates the reaction with hydrogen. The film thickness is chosen to produce a guided-surface plasmon wave along the interface between the silver and the chemochromic material. A dichroic beam-splitter separates the reflected spectrum into a portion near the resonance and a portion away from the resonance, and directs these two portions to two separate photodiodes. The electronic ratio of these two signals cancels most of the fiber transmission noise and provides a stable hydrogen signal

  13. Microstructured Optical Fiber for X-ray Detection

    Science.gov (United States)

    DeHaven, Stanton L.

    2009-01-01

    A novel scintillating optical fiber is presented using a composite micro-structured quartz optical fiber. Scintillating materials are introduced into the multiple inclusions of the fiber. This creates a composite optical fiber having quartz as a cladding with an organic scintillating material core. X-ray detection using these fibers is compared to a collimated cadmium telluride (CdTe) detector over an energy range from 10 to 40 keV. Results show a good correlation between the fiber count rate trend and that of the CdTe detector.

  14. Time domain optical spectrometry with fiber optic waveguides

    International Nuclear Information System (INIS)

    Whitten, W.B.

    1983-01-01

    Spectrometers which use optical fibers to obtain time domain spectral dispersion are reviewed. Pulse transmission through fiber optic waveguides is discussed and the basic requirements for sources and detectors are given. Multiplex spectrometry and time-of-flight spectrometry are then discussed. Resolution, fiber requirements, instrumentation and specific spectrometers are presented

  15. Design of fiber optic probes for laser light scattering

    Science.gov (United States)

    Dhadwal, Harbans S.; Chu, Benjamin

    1989-01-01

    A quantitative analysis is presented of the role of optical fibers in laser light scattering. Design of a general fiber optic/microlens probe by means of ray tracing is described. Several different geometries employing an optical fiber of the type used in lightwave communications and a graded index microlens are considered. Experimental results using a nonimaging fiber optic detector probe show that due to geometrical limitations of single mode fibers, a probe using a multimode optical fiber has better performance, for both static and dynamic measurements of the scattered light intensity, compared with a probe using a single mode fiber. Fiber optic detector probes are shown to be more efficient at data collection when compared with conventional approaches to measurements of the scattered laser light. Integration of fiber optic detector probes into a fiber optic spectrometer offers considerable miniaturization of conventional light scattering spectrometers, which can be made arbitrarily small. In addition static and dynamic measurements of scattered light can be made within the scattering cell and consequently very close to the scattering center.

  16. Multisector scintillation detector with fiber-optic light collection

    Science.gov (United States)

    Ampilogov, N. V.; Denisov, S. P.; Kokoulin, R. P.; Petrukhin, A. A.; Prokopenko, N. N.; Shulzhenko, I. A.; Unatlokov, I. B.; Yashin, I. I.

    2017-07-01

    A new type of scintillation detector for the use in high energy physics is described. The octagonal detector consists of eight triangular scintillator sectors with total area of 1 m2. Each sector represents two plates of 2 cm thick plastic scintillator. Seven 1 mm thick WLS fibers are laid evenly between the plates. The space between the fibers is filled with silicone compound to provide better light collection. Fiber ends from all eight sectors are gathered in the central part of the detector into a bunch and docked to the cathode of a FEU-115m photomultiplier. The read-out of the counter signals is carried out from 7th and 12th dynodes, providing a wide dynamic range up to about 10000 particles. The front-end electronics of the detector is based on the flash-ADC with a sampling frequency of 200 MHz. The features of detecting and recording systems of the multisector scintillation detector (MSD) and the results of its testing are discussed.

  17. Scintillating-fiber imaging detector for 14-MeV neutrons

    International Nuclear Information System (INIS)

    Ress, D.; Lerche, R.A.; Ellis, R.J.; Heaton, G.W.; Nelson, M.B.; Mant, G.; Lehr, D.E.

    1994-01-01

    The authors have created a detector to image the neutrons emitted by imploded inertial-confinement fusion targets. The 14-MeV neutrons, which are produced by deuterium-tritium fusion events in the target, pass through an aperture to create an image on the detector. The neutron radiation is converted to blue light (430 nm) with a 20-cm-square array of plastic scintillating fibers. Each fiber is 10-cm long with a 1-mm-square cross section; approximately 35-thousand fibers make up the array. The resulting blue-light image is reduced and amplified by a sequence of fiber-optic tapers and image intensifiers, then acquired by a CCD camera. The fiber-optic readout system was tested optically for overall throughput the resolution. The authors plan to characterize the scintillator array reusing an ion-beam neutron source as well as DT-fusion neutrons emitted by inertial confinement targets. Characterization experiments will measure the light-production efficiency, spatial resolution, and neutron scattering within the detector. Several neutron images of laser-fusion targets have been obtained with the detector. Several neutron images of laser-fusion targets have been obtained with the detector. They describe the detector and their characterization methods, present characterization results, and give examples of the neutron images

  18. Polymer fiber detectors for photoacoustic imaging

    Science.gov (United States)

    Grün, Hubert; Berer, Thomas; Pühringer, Karoline; Nuster, Robert; Paltauf, Günther; Burgholzer, Peter

    2010-02-01

    Photoacoustic imaging is a novel imaging method for medical and biological applications, combining the advantages of Diffuse Optical Imaging (high contrast) and Ultrasonic Imaging (high spatial resolution). A short laser pulse hits the sample. The absorbed energy causes a thermoelastic expansion and thereby launches a broadband ultrasonic wave (photoacoustic signal). The distribution of absorbed energy density is reconstructed from measurements of the photoacoustic signals around the sample. For collecting photoacoustic signals either point like or extended, integrating detectors can be used. The latter integrate the pressure at least in one dimension, e.g. along a line. Thereby, the three dimensional imaging problem is reduced to a two dimensional problem. For a tomography device consisting of a scanning line detector and a rotating sample, fiber-based detectors made of polymer have been recently introduced. Fiber-based detectors are easy to use and possess a constant, high spatial resolution over their entire active length. Polymer fibers provide a better impedance matching and a better handling compared with glass fibers which were our first approach. First measurement results using polymer fiber detectors and some approaches for improving the performance are presented.

  19. A Fiber-Optic Neutron Detector for a Drive-By Scenario

    International Nuclear Information System (INIS)

    Miley, H.S.

    1999-01-01

    The measurement scenario of a neutron source driving by a detector has been evaluated. It is possible to use PNNL lithium-loaded fiber optics to measure the source, even at reasonably high speeds. A detector sufficient to detect the neutrons from the source at a high confidence level can be produced in a compact and robust configuration for a reasonable cost. In addition, the PNNL solution measures gamma-ray signals and will effectively add the function of a proximity sensor, lower the false-alarm rate, and allow discrimination between certain neutron source scenarios. Finally, the need for definition of confidence levels (both the method of computation and the required false alarm probability), emplacement form-factor, and electronic interface is required of a potential user to revise or customize the design outlined in this paper

  20. Fiber-Optic Micrometeoroid/Orbital Debris Impact Detector System

    Science.gov (United States)

    Christiansen, Eric L.; Tennyson, R. C.; Morison, W. D.

    2012-01-01

    A document describes a reliable, lightweight micrometeoroid/orbital debris (MMOD) detection system that can be located at strategic positions of "high consequence" to provide real-time warning of a penetration, its location, and the extent of the damage to a spacecraft. The concept is to employ fiber-optic sensors to detect impact damage and penetration of spacecraft structures. The fibers are non-electrical, employ light waves, and are immune to electromagnetic interference. The fiber-optic sensor array can be made as a stand-alone product, being bonded to a flexible membrane material or a structure that is employed as a MMOD shield material. The optical sensors can also be woven into hybrid MMOD shielding fabrics. The glass fibers of the fiber-optic sensor provide a dual purpose in contributing to the breakup of MMOD projectiles. The grid arrays can be made in a modular configuration to provide coverage over any area desired. Each module can be connected to a central scanner instrument and be interrogated in a continuous or periodic mode.

  1. Analog data transmission via fiber optics

    International Nuclear Information System (INIS)

    Cisneros, E.L.; Burgueno, G.F.

    1987-01-01

    In the SLAC Linear Collider Detector (SLD), as in most high-energy particle detectors, the electromagnetic noise environment is the limiting factor in electronic readout performance. Front-end electronics are particularly susceptible to electromagnetic interference (EMI), and great care has been taken to minimize its effects. The transfer of preprocessed analog signals from the detector environs, to the remote digital processing electronics, by conventional means (via metal conductors), may ultimately limit the performance of the system. Because it is highly impervious to EMI and ground loops, a fiber-optic medium has been chosen for the transmission of these signals. This paper describes several fiber-optic transmission schemes which satisfy the requirements of the SLD analog data transmission

  2. Analog data transmission via fiber optics

    International Nuclear Information System (INIS)

    Cisneros, E.L.; Burgueno, G.F.

    1986-10-01

    In the SLAC Linear Collider Detector (SLD), as in most high-energy particle detectors, the electromagnetic noise environment is the limiting factor in electronic readout performance. Front-end electronics are particulary susceptible to electromagnetic interference (EMI), and great care has been taken to minimize its effects. The transfer of preprocessed analog signals from the detector environs, to the remote digital processing electronics, by conventional means (via metal conductors), may ultimately limit the performance of the system. Because it is highly impervious to EMI and ground loops, a fiber-optic medium has been chosen for the transmission of these signals. This paper describes several fiber-optic transmission schemes which satisfy the requirements of the SLD analog data transmission

  3. Scintillators and other particle optical detectors

    International Nuclear Information System (INIS)

    Chipaux, R.

    2011-01-01

    The author reports and comments his researcher career in the field of particle optical detectors. He addresses the cases of organic scintillators (scintillating fibers, liquid scintillators), inorganic scintillators (crystals for electromagnetic calorimetry, crystals for solar neutrino spectroscopy), and Cherenkov Effect detectors. He also reports his works on Cd Te detectors and their modelling

  4. Linear position sensitive neutron detector using fiber optic encoded scintillators

    International Nuclear Information System (INIS)

    Davidson, P.L.; Wroe, H.

    1983-01-01

    A linear position sensitive slow neutron detector with 3 mm resolution is described. It uses the fiber optic coding principle in which the resolution elements are separate pieces of lithium loaded glass scintillator each coupled by means of flexible polymer optical fibers to a unique combination of 3 photo multipliers (PM's) out of a bank of 12. A decoder circuit repsponds to a triple coincidence between PM outputs and generates a 12 bit work which identifies the scintillator element which stopped the incident neutron. Some details of the construction and decoding electronics are given together with test results obtained using a laboratory isotope neutron source and a monochomated, collimated neutron beam from a reactor. The count rate in the absence of neutron sources is 2 to 3 c min - 1 per element; the element to element variation in response to a uniform flux is a few percent for 95% of the elements; the resolution as measured by a 1 mm wide prode neutron beam is 3 mm; the relative long term stability is about 0.1% over 3 days and the detection efficiency measured by comparison with an end windowed, high pressure gas counter is about 65% at a neutron wavelength of 0.9A 0

  5. An optical fiber-based flexible readout system for micro-pattern gas detectors

    Science.gov (United States)

    Li, C.; Feng, C. Q.; Zhu, D. Y.; Liu, S. B.; An, Q.

    2018-04-01

    This paper presents an optical fiber-based readout system that is intended to provide a general purpose multi-channel readout solution for various Micro-Pattern Gas Detectors (MPGDs). The proposed readout system is composed of several front-end cards (FECs) and a data collection module (DCM). The FEC exploits the capability of an existing 64-channel generic TPC readout ASIC chip, named AGET, to implement 256 channels readout. AGET offers FEC a large flexibility in gain range (4 options from 120 fC to 10 pC), peaking time (16 options from 50 ns to 1 us) and sampling freqency (100 MHz max.). The DCM contains multiple 1 Gbps optical fiber serial link interfaces that allow the system scaling up to 1536 channels with 6 FECs and 1 DCM. Further scaling up is possible through cascading of multiple DCMs, by configuring one DCM as a master while other DCMs in slave mode. This design offers a rapid readout solution for different application senario. Tests indicate that the nonlinearity of each channel is less than 1%, and the equivalent input noise charge is typically around 0.7 fC in RMS (root mean square), with a noise slope of about 0.01 fC/pF. The system level trigger rate limit is about 700 Hz in all channel readout mode. When in hit channel readout mode, supposing that typically 10 percent of channels are fired, trigger rate can go up to about 7 kHz. This system has been tested with Micromegas detector and GEM detector, confirming its capability in MPGD readout. Details of hardware and FPGA firmware design, as well as system performances, are described in the paper.

  6. Scintillating optical fibers for fine-grained hodoscopes

    International Nuclear Information System (INIS)

    Borenstein, S.R.; Strand, R.C.

    1981-01-01

    Fast detectors with fine spatial resolution will be needed to exploit high event rates at ISABELLE. Scintillating optical fibers for fine grained hodoscopes have been developed by the authors. A commercial manufacturer of optical fibers has drawn and clad PVT scintillator. Detection efficiencies greater than 99% have been achieved for a 1 mm fiber with a PMT over lengths up to 60 cm. Small diameter PMT's and avalanche photodiodes have been tested with the fibers. Further improvements are sought for the fiber and for the APD's sensitivity and coupling efficiency with the fiber

  7. Side-emitting fiber optic position sensor

    Science.gov (United States)

    Weiss, Jonathan D [Albuquerque, NM

    2008-02-12

    A side-emitting fiber optic position sensor and method of determining an unknown position of an object by using the sensor. In one embodiment, a concentrated beam of light source illuminates the side of a side-emitting fiber optic at an unknown axial position along the fiber's length. Some of this side-illuminated light is in-scattered into the fiber and captured. As the captured light is guided down the fiber, its intensity decreases due to loss from side-emission away from the fiber and from bulk absorption within the fiber. By measuring the intensity of light emitted from one (or both) ends of the fiber with a photodetector(s), the axial position of the light source is determined by comparing the photodetector's signal to a calibrated response curve, look-up table, or by using a mathematical model. Alternatively, the side-emitting fiber is illuminated at one end, while a photodetector measures the intensity of light emitted from the side of the fiber, at an unknown position. As the photodetector moves further away from the illuminated end, the detector's signal strength decreases due to loss from side-emission and/or bulk absorption. As before, the detector's signal is correlated to a unique position along the fiber.

  8. Study of light transmission through optical fiber-to-fiber connector assemblies

    International Nuclear Information System (INIS)

    Chung, M.; Gutowski, M.; Adams, M.; Solomon, J.

    1998-01-01

    Optical fiber-to-fiber connectors are now being used widely in particle tracking detectors. We describe the properties of the connectors, their production, and measurements of the light transmission through the gap of the connector assembly. We studied light transmission for various types of connectors illuminated by several different light sources. The light transmission was found to be dependent on the angular distribution of the light rays passing through a connector assembly. Two arrangements were studied, a point source and a diffuse source. A green LED with a diffuser is believed to best reproduce the angular distributions of light in the real detector applications. We also studied the transmission as a function of the index of refraction of the optical couplants. The light transmission depends on the index of refraction of an optical couplant placed in the gap, and improves as it approaches the index of refraction of the fiber core. Light transmissions of 80%∼88% were obtained without any optical couplant in the connector gap and transmissions of 89%∼99% with various optical couplants. A Monte Carlo study using measured light distributions from a fiber end produced a reasonable agreement with the transmission measurements made on a connector assembly

  9. Study of light transmission through optical fiber-to-fiber connector assemblies

    International Nuclear Information System (INIS)

    Chung, M.; Gutowski, M.; Adams, M.; Solomon, J.

    1998-01-01

    Optical fiber-to-fiber connectors are now being used widely in particle tracking detectors. We describe the properties of the connectors, their production, and measurements of the light transmission through the gap of the connector assembly. We studied light transmission for various types of connectors illuminated by several different light sources. The light transmission was found to be dependent on the angular distribution of the light rays passing through a connector assembly. Two arrangements were studied, a point source and a diffuse source. A green LED with a diffuser is believed to best reproduce the angular distributions of light in the real detector applications. We also studied the transmission as a function of the index of refraction of the optical couplants. The light transmission depends on the index of refraction of an optical couplant placed in the gap, and improves as it approaches the index of refraction of the fiber core. Light transmissions of 80%∼88% were obtained without any optical couplant in the connector gap and transmissions of 89%∼99% with various optical couplants. A Monte Carlo study using measured light distributions from a fiber end produced a reasonable agreement with the transmission measurements made on a connector assembly. copyright 1998 American Institute of Physics

  10. An inexpensive high-temperature optical fiber thermometer

    International Nuclear Information System (INIS)

    Moore, Travis J.; Jones, Matthew R.; Tree, Dale R.; Allred, David D.

    2017-01-01

    An optical fiber thermometer consists of an optical fiber whose tip is coated with a highly conductive, opaque material. When heated, this sensing tip becomes an isothermal cavity that emits like a blackbody. This emission is used to predict the sensing tip temperature. In this work, analytical and experimental research has been conducted to further advance the development of optical fiber thermometry. An inexpensive optical fiber thermometer is developed by applying a thin coating of a high-temperature cement onto the tip of a silica optical fiber. An FTIR spectrometer is used to detect the spectral radiance exiting the fiber. A rigorous mathematical model of the irradiation incident on the detection system is developed. The optical fiber thermometer is calibrated using a blackbody radiator and inverse methods are used to predict the sensing tip temperature when exposed to various heat sources. - Highlights: • An inexpensive coating for an optical fiber thermometer sensing tip is tested. • Inverse heat transfer methods are used to estimate the sensing tip temperature. • An FTIR spectrometer is used as the detector to test the optical fiber thermometer using various heat sources.

  11. Power Budget Analysis of Fiber Optics Communication Links Along ...

    African Journals Online (AJOL)

    With the development of optical fiber communication system most telecommunication companies now prefer to use optical fiber transmission medium for higher information bandwidth. The design of such a system involves many aspects such as the type of source to be used, the kind of fiber to be employed and detector.

  12. WE-DE-201-07: Measurement of Real-Time Dose for Tandem and Ovoid Brachytherapy Procedures Using a High Precision Optical Fiber Radiation Detector

    Energy Technology Data Exchange (ETDEWEB)

    Belley, MD [Duke University, Durham, NC (United States); Current Address Rhode Island Hospital, Providence, RI (United States); Faught, A; Subashi, E; Chino, JP; Craciunescu, O [Duke University Medical Center, Durham, NC (United States); Moore, B; Langloss, B; Therien, MJ [Duke University, Durham, NC (United States); Yoshizumi, TT [Duke University, Durham, NC (United States); Duke University Medical Center, Durham, NC (United States)

    2016-06-15

    Purpose: Development of a novel on-line dosimetry tool is needed to move toward patient-specific quality assurance measurements for Ir-192 HDR brachytherapy to verify accurate dose delivery to the intended location. This work describes the development and use of a nano-crystalline yttrium oxide inorganic scintillator based optical-fiber detector capable of acquiring real-time high-precision dose measurements during tandem and ovoid (T&O) gynecological (GYN) applicator Ir-192 HDR brachytherapy procedures. Methods: An optical-fiber detector was calibrated by acquiring light output measurements in liquid water at 3, 5, 7, and 9cm radial source-detector-distances from an Ir-192 HDR source. A regression model was fit to the data to describe the relative light output per unit dose (TG-43 derived) as a function of source-detector-distance. Next, the optical-fiber detector was attached to a vaginal balloon fixed to a Varian Fletcher-Suit-Delclos-style applicator (to mimic clinical setup), and localized by acquiring high-resolution computed tomography (CT) images. To compare the physical point dose to the TPS calculated values (TG-43 and Acuros-BV), a phantom measurement was performed, by submerging the T&O applicator in a liquid water bath and delivering a treatment template representative of a clinical T&O procedure. The fiber detector collected scintillation signal as a function of time, and the calibration data was applied to calculate both real-time dose rate, and cumulative dose. Results: Fiber cumulative dose values were 100.0cGy, 94.3cGy, and 348.9cGy from the tandem, left ovoid, and right ovoid dwells, respectively (total of 443.2cGy). A plot of real time dose rate during the treatment was also acquired. The TPS values at the fiber location were 458.4cGy using TG-43, and 437.6cGy using Acuros-BV calculated as Dm,m (per TG-186). Conclusion: The fiber measured dose value agreement was 3% vs TG-43 and −1% vs Acuros-BV. This fiber detector opens up new possibilities

  13. Photoacoustic projection imaging using an all-optical detector array

    Science.gov (United States)

    Bauer-Marschallinger, J.; Felbermayer, K.; Berer, T.

    2018-02-01

    We present a prototype for all-optical photoacoustic projection imaging. By generating projection images, photoacoustic information of large volumes can be retrieved with less effort compared to common photoacoustic computed tomography where many detectors and/or multiple measurements are required. In our approach, an array of 60 integrating line detectors is used to acquire photoacoustic waves. The line detector array consists of fiber-optic MachZehnder interferometers, distributed on a cylindrical surface. From the measured variation of the optical path lengths of the interferometers, induced by photoacoustic waves, a photoacoustic projection image can be reconstructed. The resulting images represent the projection of the three-dimensional spatial light absorbance within the imaged object onto a two-dimensional plane, perpendicular to the line detector array. The fiber-optic detectors achieve a noise-equivalent pressure of 24 Pascal at a 10 MHz bandwidth. We present the operational principle, the structure of the array, and resulting images. The system can acquire high-resolution projection images of large volumes within a short period of time. Imaging large volumes at high frame rates facilitates monitoring of dynamic processes.

  14. Neptunium detector using fiber-optic light guides

    International Nuclear Information System (INIS)

    Spencer, W.A.; Killeen, T.E.; Herold, T.R.

    1981-01-01

    A colorimeter has been constructed and installed to detect neptunium (IV) on-line as it elutes from an ion exchange column in a plant process stream. Because of the high radiation and corrosive atmosphere at the monitoring location, the instrument was designed using remote electronics and glass fiber optic cables. The five-foot cables transmit pulsed white light into a glass monitoring window in a containment box and return the transmitted portion to a photosensor. A simple spring clamp was designed to couple the cables to the monitoring window without modifying existing processes. Details of the design, installation, and operational problems are discussed. Other applications and modifications of the present colorimeter for other actinides, as well as preliminary results on a fiber optic spectrophotometer, are presented

  15. Optical fiber sensors embedded in flexible polymer foils

    Science.gov (United States)

    van Hoe, Bram; van Steenberge, Geert; Bosman, Erwin; Missinne, Jeroen; Geernaert, Thomas; Berghmans, Francis; Webb, David; van Daele, Peter

    2010-04-01

    In traditional electrical sensing applications, multiplexing and interconnecting the different sensing elements is a major challenge. Recently, many optical alternatives have been investigated including optical fiber sensors of which the sensing elements consist of fiber Bragg gratings. Different sensing points can be integrated in one optical fiber solving the interconnection problem and avoiding any electromagnetical interference (EMI). Many new sensing applications also require flexible or stretchable sensing foils which can be attached to or wrapped around irregularly shaped objects such as robot fingers and car bumpers or which can even be applied in biomedical applications where a sensor is fixed on a human body. The use of these optical sensors however always implies the use of a light-source, detectors and electronic circuitry to be coupled and integrated with these sensors. The coupling of these fibers with these light sources and detectors is a critical packaging problem and as it is well-known the costs for packaging, especially with optoelectronic components and fiber alignment issues are huge. The end goal of this embedded sensor is to create a flexible optical sensor integrated with (opto)electronic modules and control circuitry. To obtain this flexibility, one can embed the optical sensors and the driving optoelectronics in a stretchable polymer host material. In this article different embedding techniques for optical fiber sensors are described and characterized. Initial tests based on standard manufacturing processes such as molding and laser structuring are reported as well as a more advanced embedding technique based on soft lithography processing.

  16. Fiber optically coupled radioluminescence detectors: A short review of key strengths and weaknesses of BCF-60 and Al2O3:C scintillating-material based systems in radiotherapy dosimetry applications

    DEFF Research Database (Denmark)

    Buranurak, Siritorn; Andersen, Claus E.

    2017-01-01

    the years, developments and research of the fiber detector systems have undergone in several groups worldwide. In this article, the in-house developed fiber detector systems based on two luminescence phosphors of (i) BCF-60 polystyrene-based organic plastic scintillator and (ii) carbon-doped aluminum oxide...... in the new hybrid MRI LINAC/cobalt systems, and (iii) in vivo measurements due to safety-issues related to the high operating voltage. Fiber optically coupled luminescence detectors provide a promising supplement to ionization chambers by offering the capability of real-time in vivo dose monitoring with high...... time resolution. In particular, the all-optical nature of these detectors is an advantage for in vivo measurements due to the absence of high voltage supply or electrical wire that could cause harm to the patient or disturb the treatment. Basically, fiber-coupled luminescence detector systems function...

  17. Frequency-Shifted Interferometry — A Versatile Fiber-Optic Sensing Technique

    Directory of Open Access Journals (Sweden)

    Fei Ye

    2014-06-01

    Full Text Available Fiber-optic sensing is a field that is developing at a fast pace. Novel fiber-optic sensor designs and sensing principles constantly open doors for new opportunities. In this paper, we review a fiber-optic sensing technique developed in our research group called frequency-shifted interferometry (FSI. This technique uses a continuous-wave light source, an optical frequency shifter, and a slow detector. We discuss the operation principles of several FSI implementations and show their applications in fiber length and dispersion measurement, locating weak reflections along a fiber link, fiber-optic sensor multiplexing, and high-sensitivity cavity ring-down measurement. Detailed analysis of FSI system parameters is also presented.

  18. Test Port for Fiber-Optic-Coupled Laser Altimeter

    Science.gov (United States)

    Ramos Izquierdo, Luis; Scott, V. Stanley; Rinis, Haris; Cavanaugh, John

    2011-01-01

    A test port designed as part of a fiber optic coupled laser altimeter receiver optical system allows for the back-illumination of the optical system for alignment verification, as well as illumination of the detector(s) for testing the receiver electronics and signal-processing algorithms. Measuring the optical alignment of a laser altimeter instrument is difficult after the instrument is fully assembled. The addition of a test port in the receiver aft-optics allows for the back-illumination of the receiver system such that its focal setting and boresight alignment can be easily verified. For a multiple-detector receiver system, the addition of the aft-optics test port offers the added advantage of being able to simultaneously test all the detectors with different signals that simulate the expected operational conditions. On a laser altimeter instrument (see figure), the aft-optics couple the light from the receiver telescope to the receiver detector(s). Incorporating a beam splitter in the aft-optics design allows for the addition of a test port to back-illuminate the receiver telescope and/or detectors. The aft-optics layout resembles a T with the detector on one leg, the receiver telescope input port on the second leg, and the test port on the third leg. The use of a custom beam splitter with 99-percent reflection, 1-percent transmission, and a mirrored roof can send the test port light to the receiver telescope leg as well as the detector leg, without unduly sacrificing the signal from the receiver telescope to the detector. The ability to test the receiver system alignment, as well as multiple detectors with different signals without the need to disassemble the instrument or connect and reconnect components, is a great advantage to the aft-optics test port. Another benefit is that the receiver telescope aperture is fully back-illuminated by the test port so the receiver telescope focal setting vs. pressure and or temperature can be accurately measured (as

  19. OPTICALLY BASED CHARGE INJECTION SYSTEM FOR IONIZATION DETECTORS

    International Nuclear Information System (INIS)

    CHEN, H.; CITTERIO, M.; LANNI, F.; LEITE, M.A.L.; RADEKA, V.; RESCIA, S.; TAKAI, H.

    2001-01-01

    An optically coupled charge injection system for ionization based radiation detectors which allows a test charge to be injected without the creation of ground loops has been developed. An ionization like signal from an external source is brought into the detector through an optical fiber and injected into the electrodes by means of a photodiode. As an application example, crosstalk measurements on a liquid Argon electromagnetic calorimeter readout electrodes were performed

  20. New Ethernet Based Optically Transparent Network for Fiber-to-the-Desk Application

    NARCIS (Netherlands)

    Radovanovic, Igor; van Etten, Wim

    2003-01-01

    We present a new optical local area network architecture based on multimode optical fibers and components, short wavelength lasers and detectors and the widely used fast Ethernet protocol. The presented optically transparent network represent a novel approach in fiber-to-the-desk applications. It is

  1. Quantum Dots Microstructured Optical Fiber for X-Ray Detection

    Science.gov (United States)

    DeHaven, Stan; Williams, Phillip; Burke, Eric

    2015-01-01

    Microstructured optical fibers containing quantum dots scintillation material comprised of zinc sulfide nanocrystals doped with magnesium sulfide are presented. These quantum dots are applied inside the microstructured optical fibers using capillary action. The x-ray photon counts of these fibers are compared to the output of a collimated CdTe solid state detector over an energy range from 10 to 40 keV. The results of the fiber light output and associated effects of an acrylate coating and the quantum dot application technique are discussed.

  2. WE-AB-BRB-12: Nanoscintillator Fiber-Optic Detector System for Microbeam Radiation Therapy Dosimetry

    Energy Technology Data Exchange (ETDEWEB)

    Rivera, J [University of North Carolina and North Carolina State University, Chapel Hill, NC (United States); Dooley, J; Chang, S [University of North Carolina School of Medicine, Chapel Hill, NC (United States); Belley, M; Yoshizumi, T [Duke University Medical Center, Durham, NC (United States); Stanton, I; Langloss, B; Therien, M [Duke University, Durham, NC (United States)

    2015-06-15

    Purpose: Microbeam Radiation Therapy (MRT) is an experimental radiation therapy that has demonstrated a higher therapeutic ratio than conventional radiation therapy in animal studies. There are several roadblocks in translating the promising treatment technology to clinical application, one of which is the lack of a real-time, high-resolution dosimeter. Current clinical radiation detectors have poor spatial resolution and, as such, are unsuitable for measuring microbeams with submillimeter-scale widths. Although GafChromic film has high spatial resolution, it lacks the real-time dosimetry capability necessary for MRT preclinical research and potential clinical use. In this work we have demonstrated the feasibility of using a nanoscintillator fiber-optic detector (nanoFOD) system for real-time MRT dosimetry. Methods: A microplanar beam array is generated using a x-ray research irradiator and a custom-made, microbeam-forming collimator. The newest generation nanoFOD has an effective size of 70 µm in the measurement direction and was calibrated against a kV ion chamber (RadCal Accu-Pro) in open field geometry. We have written a computer script that performs automatic data collection with immediate background subtraction. A computer-controlled detector positioning stage is used to precisely measure the microbeam peak dose and beam profile by translating the stage during data collection. We test the new generation nanoFOD system, with increased active scintillation volume, against the previous generation system. Both raw and processed data are time-stamped and recorded to enable future post-processing. Results: The real-time microbeam dosimetry system worked as expected. The new generation dosimeter has approximately double the active volume compared to the previous generation resulting in over 900% increase in signal. The active volume of the dosimeter still provided the spatial resolution that meets the Nyquist criterion for our microbeam widths. Conclusion: We have

  3. Photon Counting System for High-Sensitivity Detection of Bioluminescence at Optical Fiber End.

    Science.gov (United States)

    Iinuma, Masataka; Kadoya, Yutaka; Kuroda, Akio

    2016-01-01

    The technique of photon counting is widely used for various fields and also applicable to a high-sensitivity detection of luminescence. Thanks to recent development of single photon detectors with avalanche photodiodes (APDs), the photon counting system with an optical fiber has become powerful for a detection of bioluminescence at an optical fiber end, because it allows us to fully use the merits of compactness, simple operation, highly quantum efficiency of the APD detectors. This optical fiber-based system also has a possibility of improving the sensitivity to a local detection of Adenosine triphosphate (ATP) by high-sensitivity detection of the bioluminescence. In this chapter, we are introducing a basic concept of the optical fiber-based system and explaining how to construct and use this system.

  4. Feasibility Study on Fiber-optic Radiation Sensor for Remote Gamma-ray Spectroscopy

    International Nuclear Information System (INIS)

    Jeon, Hyesu; Jang, Kyoung Won; Shin, Sang Hun and others

    2014-01-01

    In this study, we fabricated a fiber-optic radiation sensor using an optical fiber and various scintillators. To select an adequate inorganic scintillator for the sensing probe of fiber-optic radiation sensor, 5 types of scintillators were evaluated. The spectra of gamma-rays emitted from a Na-22 radiation source were measured by using the manufactured sensors. As a result, the BGO was suitable for the sensing probe of fiber-optic radiation sensor due to its high scintillation output and exact photoelectric peak for the gamma-ray energy. The basic principle of radiation detection is to detect the signals caused by interactions between radiations and materials. There are various types of radiation detectors depending on types of radiation to be detected and physical quantities to be measured. As one of the radiation detectors, a fiber-optic radiation sensor using a scintillator and an optical fiber has two advantages such as no space restraint and remote sensing. Moreover, in nuclear environments, this kind of sensor has immunities for electromagnetic field, temperature, and pressure. Thus, the fiber-optic radiation sensor can be used in various fields including nondestructive inspection, radioactive waste management, nuclear safety, radiodiagnosis and radiation therapy. As a fundamental study of the fiber-optic radiation sensor for remote gamma-ray spectroscopy, in this study, we fabricated a fiber-optic radiation sensor using an optical fiber and various scintillators. To select an adequate inorganic scintillator for the sensing probe of fiber-optic radiation sensor, 5 types of scintillators were evaluated. The spectra of gamma-rays emitted from a Na-22 radiation source were measured by using the manufactured sensors

  5. Maximum-performance fiber-optic irradiation with nonimaging designs.

    Science.gov (United States)

    Fang, Y; Feuermann, D; Gordon, J M

    1997-10-01

    A range of practical nonimaging designs for optical fiber applications is presented. Rays emerging from a fiber over a restricted angular range (small numerical aperture) are needed to illuminate a small near-field detector at maximum radiative efficiency. These designs range from pure reflector (all-mirror), to pure dielectric (refractive and based on total internal reflection) to lens-mirror combinations. Sample designs are shown for a specific infrared fiber-optic irradiation problem of practical interest. Optical performance is checked with computer three-dimensional ray tracing. Compared with conventional imaging solutions, nonimaging units offer considerable practical advantages in compactness and ease of alignment as well as noticeably superior radiative efficiency.

  6. Alkali Halide Microstructured Optical Fiber for X-Ray Detection

    Science.gov (United States)

    DeHaven, S. L.; Wincheski, R. A.; Albin, S.

    2014-01-01

    Microstructured optical fibers containing alkali halide scintillation materials of CsI(Na), CsI(Tl), and NaI(Tl) are presented. The scintillation materials are grown inside the microstructured fibers using a modified Bridgman-Stockbarger technique. The x-ray photon counts of these fibers, with and without an aluminum film coating are compared to the output of a collimated CdTe solid state detector over an energy range from 10 to 40 keV. The photon count results show significant variations in the fiber output based on the materials. The alkali halide fiber output can exceed that of the CdTe detector, dependent upon photon counter efficiency and fiber configuration. The results and associated materials difference are discussed.

  7. Optical fiber applied to radiation detection

    Energy Technology Data Exchange (ETDEWEB)

    Junior, Francisco A.B.; Costa, Antonella L.; Oliveira, Arno H. de; Vasconcelos, Danilo C., E-mail: fanbra@yahoo.com.br, E-mail: antonella@nuclear.ufmg.br, E-mail: heeren@nuclear.ufmg.br, E-mail: danilochagas@yahoo.com.br [Universidade Federal de Minas Gerais (UFMG), Belo Horizonte, MG (Brazil). Escola de Engenharia. Departamento de Engenharia Nuclear

    2015-07-01

    In the last years, the production of optical fibers cables has make possible the development of a range of spectroscopic probes for in situ analysis performing beyond nondestructive tests, environmental monitoring, security investigation, application in radiotherapy for dose monitoring, verification and validation. In this work, a system using an optical fiber cable to light signal transmission from a NaI(Tl) radiation detector is presented. The innovative device takes advantage mainly of the optical fibers small signal attenuation and immunity to electromagnetic interference to application for radiation detection systems. The main aim was to simplify the detection system making it to reach areas where the conventional device cannot access due to its lack of mobility and external dimensions. Some tests with this innovative system are presented and the results stimulate the continuity of the researches. (author)

  8. Ionizing Radiation Detectors Based on Ge-Doped Optical Fibers Inserted in Resonant Cavities

    Directory of Open Access Journals (Sweden)

    Saverio Avino

    2015-02-01

    Full Text Available The measurement of ionizing radiation (IR is a crucial issue in different areas of interest, from environmental safety and industrial monitoring to aerospace and medicine. Optical fiber sensors have recently proven good candidates as radiation dosimeters. Here we investigate the effect of IR on germanosilicate optical fibers. A piece of Ge-doped fiber enclosed between two fiber Bragg gratings (FBGs is irradiated with gamma radiation generated by a 6 MV medical linear accelerator. With respect to other FBG-based IR dosimeters, here the sensor is only the bare fiber without any special internal structure. A near infrared laser is frequency locked to the cavity modes for high resolution measurement of radiation induced effects on the fiber optical parameters. In particular, we observe a variation of the fiber thermo-optic response with the radiation dose delivered, as expected from the interaction with Ge defect centers, and demonstrate a detection limit of 360 mGy. This method can have an impact in those contexts where low radiation doses have to be measured both in small volumes or over large areas, such as radiation therapy and radiation protection, while bare optical fibers are cheap and disposable.

  9. Noncontact measurement of high temperature using optical fiber sensors

    Science.gov (United States)

    Claus, R. O.

    1990-01-01

    The primary goal of this research program was the investigation and application of noncontact temperature measurement techniques using optical techniques and optical fiber methods. In particular, a pyrometer utilizing an infrared optical light pipe and a multiwavelength filtering approach was designed, revised, and tested. This work was motivated by the need to measure the temperatures of small metallic pellets (approximately 3 mm diameter) in free fall at the Microgravity Materials Processing Drop Tube at NASA Marshall Space Flight Center. In addition, research under this program investigated the adaptation of holography technology to optical fiber sensors, and also examined the use of rare-earth dopants in optical fibers for use in measuring temperature. The pyrometer development effort involved both theoretical analysis and experimental tests. For the analysis, a mathematical model based on radiative transfer principles was derived. Key parameter values representative of the drop tube system, such as particle size, tube diameter and length, and particle temperature, were used to determine an estimate of the radiant flux that will be incident on the face of an optical fiber or light pipe used to collect radiation from the incandescent falling particle. An extension of this work examined the advantage of inclining or tilting the collecting fiber to increase the time that the falling particle remains in the fiber field-of-view. Those results indicate that increases in total power collected of about 15 percent may be realized by tilting the fiber. In order to determine the suitability of alternative light pipes and optical fibers, and experimental set-up for measuring the transmittance and insertion loss of infrared fibers considered for use in the pyrometer was assembled. A zirconium fluoride optical fiber and several bundles of hollow core fiber of varying diameters were tested. A prototype two-color pyrometer was assembled and tested at Virginia Tech, and then

  10. Design of a multimodal fibers optic system for small animal optical imaging.

    Science.gov (United States)

    Spinelli, Antonello E; Pagliazzi, Marco; Boschi, Federico

    2015-02-01

    Small animals optical imaging systems are widely used in pre-clinical research to image in vivo the bio-distribution of light emitting probes using fluorescence or bioluminescence modalities. In this work we presented a set of simulated results of a novel small animal optical imaging module based on a fibers optics matrix, coupled with a position sensitive detector, devoted to acquire bioluminescence and Cerenkov images. Simulations were performed using GEANT 4 code with the GAMOS architecture using the tissue optics plugin. Results showed that it is possible to image a 30 × 30 mm region of interest using a fiber optics array containing 100 optical fibers without compromising the quality of the reconstruction. The number of fibers necessary to cover an adequate portion of a small animal is thus quite modest. This design allows integrating the module with magnetic resonance (MR) in order to acquire optical and MR images at the same time. A detailed model of the mouse anatomy, obtained by segmentation of 3D MRI images, will improve the quality of optical 3D reconstruction. Copyright © 2014 Associazione Italiana di Fisica Medica. Published by Elsevier Ltd. All rights reserved.

  11. Fiber optical assembly for fluorescence spectrometry

    Science.gov (United States)

    Carpenter, II, Robert W.; Rubenstein, Richard; Piltch, Martin; Gray, Perry

    2010-12-07

    A system for analyzing a sample for the presence of an analyte in a sample. The system includes a sample holder for containing the sample; an excitation source, such as a laser, and at least one linear array radially disposed about the sample holder. Radiation from the excitation source is directed to the sample, and the radiation induces fluorescent light in the sample. Each linear array includes a plurality of fused silica optical fibers that receive the fluorescent light and transmits a fluorescent light signal from the first end to an optical end port of the linear array. An end port assembly having a photo-detector is optically coupled to the optical end port. The photo-detector detects the fluorescent light signal and converts the fluorescent light signal into an electrical signal.

  12. FIBER OPTICAL MICRO-DETECTORS FOR OXYGEN SENSING IN POWER PLANTS

    International Nuclear Information System (INIS)

    Baker, Gregory L.; Ghosh, Ruby N.; Osborn, D.J. III

    2004-01-01

    A reflection mode fiber optic oxygen sensor that can operate at high temperatures for power plant applications is being developed. The sensor is based on the 3 O 2 quenching of the red emission from hexanuclear molybdenum chloride clusters. High temperature measurements of the emission of clusters in sol gel films show that the luminescence intensity from the films follow a 1/T relationship from room temperature to 150 C, and then declines at a slower rate at higher temperatures. The large number of photons available at 230 C is consistent with simple low cost optics for fiber optic probes based on the emission from clusters in sol gel films

  13. Research in high energy physics: Scintillating fiber detector development for the SSC: Annual progress report

    International Nuclear Information System (INIS)

    Ruchti, R.C.

    1988-01-01

    The scintillating fiber detector development program at the University of Notre Dame is divided into several components. These include: Research on scintillating glass fiber materials; Research on scintillating plastic fiber materials; Research on scintillating liquids in fiber capillaries; Studies of improvements in image intensification and light amplification of appropriate test and development facilities at Notre Dame. The overall goal of the program is to develop efficient scintillating fiber detectors with long, optical attenuation length, and excellent radiation resistance properties for tracking and microvertex detectors and as component active sampling materials for scintillation calorimetry. We now discuss each of these programs in turn. 2 figs., 3 tabs

  14. Detection of temperature rise at 4.2K by using a dual-core optical fiber-an optical method to detect a quench of a superconducting magnet

    International Nuclear Information System (INIS)

    Tsukamoto, O.; Kokubun, Y.; Toyama, T.

    1986-01-01

    We performed an experiment to detect a temperature rise at cryogenic temperature using a dual-core optical fiber. This fiber has two single-mode optical cores in one fiber. We demonstrated that a temperature rise of 4 K was detectable at 4.2 K. The sensitivity of this method can be improved using a longer fiber. This method may be applicable as a quench detector for superconducting magnets. A quench detector using this optical method is immune from electromagnetic noise, free from troubles caused by break-down of electrical insulator, and has many advantages over a conventional quench detector measuring voltages of a magnet

  15. Experimental refractive index determination of the optic fiber's core

    International Nuclear Information System (INIS)

    Oezelsoy, S.

    2005-01-01

    In this work, the Fresnel's fundamental Law was used to be able to obtain the refractive index of the fiber optic's core. The intensity of light reflected from the boundary between two mediums was measured by the optical powermeter (Melles Griot, Universal optical powermeter). In recent technology, the light that is illuminated from the light source can be transported to the boundary region and measured with minimum loss by using the optic fibers which make the measurement more sensitively. The liquid and the optic fiber's core whose refractive indices will be measured are the two mediums and the surface of the optic fiber's core is the boundary region. By dipping the fiber optic probe to the liquids, the reflected light intensities were measured with powermeter via Silicon Detector for single mode fiber and multimode fiber respectively to obtain the refractive index of the optic fiber's core. At this work, because of the using the diode laser with 661,4 nm (FWHM) and He-Ne laser with 632,8 nm (FWHM) the refractive indices were measured at this wavelengthes with the Refractometer (Abbe 60-70, Bellingham+Stanley). If the refractive indices of two mediums are equal, the light doesn't reflect from the boundary. The graphic is drawn depend upon the refractive index of the liquids versus the back reflected light energy and from the minimum point of the curve the effective refractive index of the fiber optic's core is calculated for 661,4 nm and 780 nm

  16. Development of wide-area radiation monitor using an optical fiber

    International Nuclear Information System (INIS)

    Kawata, Naoki; Kato, Masatoshi; Baba, Mamoru; Yamadera, Akira; Miura, Takako

    2002-01-01

    We have developed a method for radiation distribution measurement by combining an optical fiber of wave-length shift type with a plastic scintillator, and studied its properties to apply as a wide-area radiation monitor. The detector employs two photomultipliers in both ends of the fiber and locate the radiation position by using the difference of light arrival time from scintillators. We tested the detector with gamma-rays and neutrons concerning with the position-response and pulse-height response of the detector. From the experiment, we confirmed the proper operation of the detector and position response with spatial resolution of 30-60 cm

  17. Fiber optic connector

    Science.gov (United States)

    Rajic, Slobodan; Muhs, Jeffrey D.

    1996-01-01

    A fiber optic connector and method for connecting composite materials within which optical fibers are imbedded. The fiber optic connector includes a capillary tube for receiving optical fibers at opposing ends. The method involves inserting a first optical fiber into the capillary tube and imbedding the unit in the end of a softened composite material. The capillary tube is injected with a coupling medium which subsequently solidifies. The composite material is machined to a desired configuration. An external optical fiber is then inserted into the capillary tube after fluidizing the coupling medium, whereby the optical fibers are coupled.

  18. Distribution measurement of radiation intensity with optical fiber at narrow space

    Energy Technology Data Exchange (ETDEWEB)

    Mori, Chizuo [Nagoya Univ. (Japan). School of Engineering

    1998-07-01

    Recently, in the field or radiation measurement, optical fiber and scintillation fiber are also begun to use. In order to investigate a new application method of the optical fiber to radiation measurement, a lithium compound for neutron converter and a ZnS(Ag) scintillator are kneaded with epoxy type adhesives, and much few weight of them is coated at an end of optical fiber with 1 to 2 mm in diameter, which is further overcoated with black paint or an aluminum cap for its shielding light to produce a thermal neutron detector. The thermal neutron detector is found to be measurable to neutron flux distribution very rapidly and in high position resolution by moving with computer automatically. This method can be measured selctively aimed radiation such as thermal neutron, rapid neutron, {gamma}-ray, and so forth by means of changing the neutron converter. And, the developed fiber method could be widely used for measurement of neutron and {gamma}-ray intensity distribution at fine interval in the nuclear radiation facilities such as neighbors of accelerator facilities, medical radiation facilities. (G.K.)

  19. Pulsed beam dosimetry using fiber-coupled radioluminescence detectors

    DEFF Research Database (Denmark)

    Andersen, Claus Erik

    2012-01-01

    The objective of this work was to review and discuss the potential application of fiber-coupled radioluminescence detectors for dosimetry in pulsed MV photon beams. Two types of materials were used: carbon-doped aluminium oxide (Al2O3:C) and organic plastic scintillators. Special consideration...... was given to the discrimination between radioluminescence signals from the phosphors and unwanted light induced in the optical fiber cables during irradiation (Cerenkov and fluorescence). New instrumentation for dose-per-pulse measurements with organic plastic scintillators was developed....

  20. Recent Developments Of Optical Fiber Sensors For Automotive Use

    Science.gov (United States)

    Sasayama, Takao; Oho, Shigeru; Kuroiwa, Hiroshi; Suzuki, Seikoo

    1987-12-01

    Optical fiber sensing technologies are expected to apply for many future electronic control systems in automobiles, because of their original outstanding features, such as high noise immunity, high heat resistance, and flexible light propagation paths which can be applicable to measure the movements and directions of the mobiles. In this paper, two typical applications of fiber sensing technologies in automobiles have been described in detail. The combustion flame detector is one of the typical applications of a fiber spectroscopic technology which utilizes the feature of high noise and heat resistibility and remote sensibility. Measurements of engine combustion conditions, such as the detonation, the combustion initiation, and the air-fuel ratio, have been demonstrated in an experimental fiber sensing method. Fiber interferometers, such as a fiber gyroscope, have a lot of possibilities in future mobile applications because they are expandable to many kinds of measurements for movements and physical variables. An optical fiber gyroscope utilizing the single polarized optical fiber and optical devices has been developed. Quite an accurate measurement of vehicle position was displayed on a prototype navigation system which installed the fiber gyroscope as a rotational speed sensor.

  1. Noninvasive blood pressure measurement scheme based on optical fiber sensor

    Science.gov (United States)

    Liu, Xianxuan; Yuan, Xueguang; Zhang, Yangan

    2016-10-01

    Optical fiber sensing has many advantages, such as volume small, light quality, low loss, strong in anti-jamming. Since the invention of the optical fiber sensing technology in 1977, optical fiber sensing technology has been applied in the military, national defense, aerospace, industrial, medical and other fields in recent years, and made a great contribution to parameter measurement in the environment under the limited condition .With the rapid development of computer, network system, the intelligent optical fiber sensing technology, the sensor technology, the combination of computer and communication technology , the detection, diagnosis and analysis can be automatically and efficiently completed. In this work, we proposed a noninvasive blood pressure detection and analysis scheme which uses optical fiber sensor. Optical fiber sensing system mainly includes the light source, optical fiber, optical detector, optical modulator, the signal processing module and so on. wavelength optical signals were led into the optical fiber sensor and the signals reflected by the human body surface were detected. By comparing actual testing data with the data got by traditional way to measure the blood pressure we can establish models for predicting the blood pressure and achieve noninvasive blood pressure measurement by using spectrum analysis technology. Blood pressure measurement method based on optical fiber sensing system is faster and more convenient than traditional way, and it can get accurate analysis results in a shorter period of time than before, so it can efficiently reduce the time cost and manpower cost.

  2. Fabrication of polymer microlenses on single mode optical fibers for light coupling

    Science.gov (United States)

    Zaboub, Monsef; Guessoum, Assia; Demagh, Nacer-Eddine; Guermat, Abdelhak

    2016-05-01

    In this paper, we present a technique for producing fibers optics micro-collimators composed of polydimethylsiloxane PDMS microlenses of different radii of curvature. The waist and working distance values obtained enable the optimization of optical coupling between optical fibers, fibers and optical sources, and fibers and detectors. The principal is based on the injection of polydimethylsiloxane (PDMS) into a conical micro-cavity chemically etched at the end of optical fibers. A spherical microlens is then formed that is self-centered with respect to the axis of the fiber. Typically, an optimal radius of curvature of 10.08 μm is obtained. This optimized micro-collimator is characterized by a working distance of 19.27 μm and a waist equal to 2.28 μm for an SMF 9/125 μm fiber. The simulation and experimental results reveal an optical coupling efficiency that can reach a value of 99.75%.

  3. Scintillating Optical Fiber Imagers for biology

    International Nuclear Information System (INIS)

    Mastrippolito, R.

    1990-01-01

    S.O.F.I (Scintillating Optical Fiber Imager) is a detector developed to replace the autoradiographic films used in molecular biology for the location of radiolabelled ( 32 P) DNA molecules in blotting experiments. It analyses samples on a 25 x 25 cm 2 square area still 25 times faster than autoradiographic films, with a 1.75 and 3 mm resolution for two orthogonal directions. This device performs numerised images with a dynamic upper than 100 which allows the direct quantitation of the analysed samples. First, this thesis describes the S.O.F.I. development (Scintillating Optical Fibers, coding of these fibers and specific electronic for the treatment of the Multi-Anode Photo-Multiplier signals) and experiments made in collaboration with molecular biology laboratories. In a second place, we prove the feasibility of an automatic DNA sequencer issued from S.O.F.I [fr

  4. Great circle solution to polarization-based quantum communication (QC) in optical fiber

    Science.gov (United States)

    Nordholt, Jane Elizabeth; Peterson, Charles Glen; Newell, Raymond Thorson; Hughes, Richard John

    2016-03-15

    Birefringence in optical fibers is compensated by applying polarization modulation at a receiver. Polarization modulation is applied so that a transmitted optical signal has states of polarization (SOPs) that are equally spaced on the Poincare sphere. Fiber birefringence encountered in propagation between a transmitter and a receiver rotates the great circle on the Poincare sphere that represents the polarization bases used for modulation. By adjusting received polarizations, polarization components of the received optical signal can be directed to corresponding detectors for decoding, regardless of the magnitude and orientation of the fiber birefringence. A transmitter can be configured to transmit in conjugate polarization bases whose SOPs can be represented as equidistant points on a great circle so that the received SOPs are mapped to equidistant points on a great circle and routed to corresponding detectors.

  5. Detection of gamma rays using scintillation optical fibers

    International Nuclear Information System (INIS)

    Park, J. W.; Hong, S. B.

    2002-01-01

    Scintillating optical fibers have several advantages over other conventional materials used for radiation detection. We have used glass and plastic scintillating fibers to detect gamma rays emitted from 60 Co and 137 Cs, and beta rays from 90 Sr. The sensors are constructed of single strand or multi-strand fibers of 1 mm diameter. The glass scintillating fiber used contains cerium-activated lithium-silicate as scintillating material and the plastic scintillating fiber used is Bicron model BCF-12. In this paper, we report the pulse-height spectra obtained by both sensor types, and analyze them in the aspect of their usability for radiation detectors. Our investigation suggests that the glass fiber can be used to develop gamma ray detectors which will function in high and low gamma ray flux environments. Use of the sensor for the beta ray detection was not satisfactory. The plastic fiber sensor did not work satisfactorily for the weak gamma sources, but did produce somewhat promising results. The scintillating plastic fiber offers some feasibility as beta ray sensor material

  6. Fiber-Optic Monitoring System of Particle Counters

    Directory of Open Access Journals (Sweden)

    A. A. Titov

    2016-01-01

    Full Text Available The article considers development of a fiber-optic system to monitor the counters of particles. Presently, optical counters of particles, which are often arranged at considerable distance from each other, are used to study the saltation phenomenon. For monitoring the counters, can be used electric communication lines.However, it complicates and raises the price of system Therefore, we offered a fiber-optic system and the counter of particles, free from these shortcomings. The difference between the offered counter of particles and the known one is that the input of radiation to the counter and the output of radiation scattering on particles are made by the optical fibers, and direct radiation is entered the optical fiber rather than is delayed by a light trap and can be used for lighting the other counters thereby allowing to use their connection in series.The work involved a choice of the quartz multimode optical fiber for communication, defining the optical fiber and lenses parameters of the counter of particles, and a selection of the radiation source and the photo-detector.Using the theory of light diffraction on a particle, a measuring range of the particle sizes has been determined. The system speed has been estimated, and it has been shown that a range of communication can reach 200km.It should be noted that modulation noise of counters of particles connected in series have the impact on the useful signal. To assess the extent of this influence we have developed a calculation procedure to illustrate that with ten counters connected in series this influence on the signal-to-noise ratio will be insignificant.Thus, it has been shown that the offered fiber-optic system can be used for monitoring the counters of particles across the desertified territories. 

  7. The development of a single-crystal fiber-array scintillator area detector

    International Nuclear Information System (INIS)

    Loong, Chun; Vitt, Richard; Sayir, Ali; Sayir, Haluk

    2001-01-01

    The scientific output of a neutron instrument is directly proportional to the effectiveness of its detector system-coverage of scattering area, pixel resolution, counting efficiency, signal-to-noise ratio, life time and cost. The current neutron scintillator detectors employ mainly 6 Li-doped glass and ZnS, both of which present well-know limitations such as low light output, high gamma sensitivity in the case of 6 Li-glass and optical opacity in the case of ZnS. We aim to develop a position-sensitive, flight-time differentiable, efficient and cost-effective neutron detector system based on single-crystal scintillator fiber-arrays. The laser-heated melt modulation fiber growth technology developed at NASA provides the means to grow high-purity single-crystal fibers or rods of variable diameters (200 μm to 5 mm) and essentially unlimited length. Arrays of such fibers can be tailored to meet the requirements of pixel size, geometric configuration, and coverage area for a detector system. We report a plan in the growth and characterization of scintillators based on lithium silicates and boron aluminates using Ce as activator. (author)

  8. Fiber optic based OSL set up for online and offline measurements of dose due to ionizing radiation

    International Nuclear Information System (INIS)

    Rawat, N.S.; Kulkarni, M.S.; Upadhyay, B.N.; Srikanth, G.; Bindra, K.S.; Oak, S.M.

    2016-01-01

    An optic-fiber dosimetry system based on optically stimulated luminescence (OSL) and radio-luminescence (RL) from Al_2O_3 : C single-crystal (detector) was designed and developed. The set up is intended to measure dose and dose rates at various radiological installations. The Al_2O_3:C single crystal (from Landaeur Inc. USA) was coupled to a fiber optic delivery system and OSL from the detector is stimulated via the optical fiber cable using light from a Nd:YAG laser. OSL and RL signals are later used to predict cumulative dose and dose rates using "6"0Co gamma source. (author)

  9. Monitoring of Moisture in Transformer Oil Using Optical Fiber as Sensor

    OpenAIRE

    S. Laskar; S. Bordoloi

    2013-01-01

    This paper describes an optical fiber sensor and temperature sensor-based instrumentation system to measure the moisture content in transformer oil. The sensor system consists of (i) Diode Laser Source, (ii) a bare and bent multimode fiber as sensor probe, (iii) an LDR as detector, (iv) LM35-based temperature sensor, and (v) microcontroller system having a trained ANN for processing and calibration. The bare and bent optical fiber sensor and the temperature sensor LM35 are used to provide the...

  10. Reconfigurable optical interconnection network for multimode optical fiber sensor arrays

    Science.gov (United States)

    Chen, R. T.; Robinson, D.; Lu, H.; Wang, M. R.; Jannson, T.; Baumbick, R.

    1992-01-01

    A single-source, single-detector architecture has been developed to implement a reconfigurable optical interconnection network multimode optical fiber sensor arrays. The network was realized by integrating LiNbO3 electrooptic (EO) gratings working at the Raman Na regime and a massive fan-out waveguide hologram (WH) working at the Bragg regime onto a multimode glass waveguide. The glass waveguide utilized the whole substrate as a guiding medium. A 1-to-59 massive waveguide fan-out was demonstrated using a WH operating at 514 nm. Measured diffraction efficiency of 59 percent was experimentally confirmed. Reconfigurability of the interconnection was carried out by generating an EO grating through an externally applied electric field. Unlike conventional single-mode integrated optical devices, the guided mode demonstrated has an azimuthal symmetry in mode profile which is the same as that of a fiber mode.

  11. Three dimensional phase imaging using a scanning optical fiber interferometer

    International Nuclear Information System (INIS)

    Walford, J.N.; Nugent, K.A.; Roberts, A.; Scholten, R.E.

    1998-01-01

    A quantitative method for measuring phase in three dimensions using a scanning optical fiber interferometer is described. By exploiting phase modulation in the reference arm, this technique is insensitive to large variations in the intensity of the field being studied, and is therefore highly suitable for measurement of phase within spatially confined optical beams. It uses only a single detector, and is not reliant on lock-in electronics. The technique is applied to the measurement of the near field of a cleaved optical fiber and shown to produce results in good agreement with theory. (authors)

  12. Fiber optics in adverse environments

    International Nuclear Information System (INIS)

    Lyous, P.B.

    1982-01-01

    Radiation effects in optical fibers are considered, taking into account recent progress in the investigation of radiation resistant optical fibers, radiation damage in optical fibers, radiation-induced transient absorption in optical fibers, X-ray-induced transient attenuation at low temperatures in polymer clad silica (PCS) fibers, optical fiber composition and radiation hardness, the response of irradiated optical waveguides at low temperatures, and the effect of ionizing radiation on fiber-optic waveguides. Other topics explored are related to environmental effects on components of fiber optic systems, and radiation detection systems using optical fibers. Fiber optic systems in adverse environments are also discussed, giving attention to the survivability of Army fiber optics systems, space application of fiber optics systems, fiber optic wavelength multiplexing for civil aviation applications, a new fiber optic data bus topology, fiber optics for aircraft engine/inlet control, and application of fiber optics in high voltage substations

  13. A long-baseline interferometer employing single-mode fiber optics

    Science.gov (United States)

    Shaklan, Stuart

    The idea of the Fiber-Linked Optical Array Telescope proposed by Connes (1987) is to mount several small optical telescopes around the perimeter of a radio dish or other large steerable structure, couple the light into single-mode (SM) fibers, and use the fibers to coherently combine the beams at the output. This paper examines the important properties of SM fibers and then discusses the whole system in general terms, starting with the telescopes and following the light through to the detectors, along with the results of laboratory experiments evaluating the performance of SM fibers. The imaging capabilities of the array were simulated, and it was found that, using 10 telescopes on a 440-m dish, the array obtains images with resolution of the order of 2 milliarc seconds in the visible range.

  14. Fiber-optical accelerometers based on polymer optical fiber Bragg gratings

    DEFF Research Database (Denmark)

    Yuan, Scott Wu; Stefani, Alessio; Bang, Ole

    2010-01-01

    Fiber-optical accelerometers based on polymer optical fiber Bragg gratings (FBGs) are reported. We have written 3mm FBGs for 1550nm operation, characterized their temperature and strain response, and tested their performance in a prototype accelerometer.......Fiber-optical accelerometers based on polymer optical fiber Bragg gratings (FBGs) are reported. We have written 3mm FBGs for 1550nm operation, characterized their temperature and strain response, and tested their performance in a prototype accelerometer....

  15. An All-Fiber-Optic Combined System of Noncontact Photoacoustic Tomography and Optical Coherence Tomography.

    Science.gov (United States)

    Eom, Jonghyun; Shin, Jun Geun; Park, Soongho; Rim, Sunghwan; Lee, Byeong Ha

    2016-05-20

    We propose an all-fiber-based dual-modal imaging system that combines noncontact photoacoustic tomography (PAT) and optical coherence tomography (OCT). The PAT remotely measures photoacoustic (PA) signals with a 1550-nm laser on the surface of a sample by utilizing a fiber interferometer as an ultrasound detector. The fiber-based OCT, employing a swept-source laser centered at 1310 nm, shares the sample arm of the PAT system. The fiber-optic probe for the combined system was homemade with a lensed single-mode fiber (SMF) and a large-core multimode fiber (MMF). The compact and robust common probe is capable of obtaining both the PA and the OCT signals at the same position without any physical contact. Additionally, the MMF of the probe delivers the short pulses of a Nd:YAG laser to efficiently excite the PA signals. We experimentally demonstrate the feasibility of the proposed dual-modal system with a phantom made of a fishing line and a black polyethylene terephthalate fiber in a tissue mimicking solution. The all-fiber-optic system, capable of providing complementary information about absorption and scattering, has a promising potential in minimally invasive and endoscopic imaging.

  16. An All-Fiber-Optic Combined System of Noncontact Photoacoustic Tomography and Optical Coherence Tomography

    Science.gov (United States)

    Eom, Jonghyun; Shin, Jun Geun; Park, Soongho; Rim, Sunghwan; Lee, Byeong Ha

    2016-01-01

    We propose an all-fiber-based dual-modal imaging system that combines noncontact photoacoustic tomography (PAT) and optical coherence tomography (OCT). The PAT remotely measures photoacoustic (PA) signals with a 1550-nm laser on the surface of a sample by utilizing a fiber interferometer as an ultrasound detector. The fiber-based OCT, employing a swept-source laser centered at 1310 nm, shares the sample arm of the PAT system. The fiber-optic probe for the combined system was homemade with a lensed single-mode fiber (SMF) and a large-core multimode fiber (MMF). The compact and robust common probe is capable of obtaining both the PA and the OCT signals at the same position without any physical contact. Additionally, the MMF of the probe delivers the short pulses of a Nd:YAG laser to efficiently excite the PA signals. We experimentally demonstrate the feasibility of the proposed dual-modal system with a phantom made of a fishing line and a black polyethylene terephthalate fiber in a tissue mimicking solution. The all-fiber-optic system, capable of providing complementary information about absorption and scattering, has a promising potential in minimally invasive and endoscopic imaging. PMID:27213392

  17. An All-Fiber-Optic Combined System of Noncontact Photoacoustic Tomography and Optical Coherence Tomography

    Directory of Open Access Journals (Sweden)

    Jonghyun Eom

    2016-05-01

    Full Text Available We propose an all-fiber-based dual-modal imaging system that combines noncontact photoacoustic tomography (PAT and optical coherence tomography (OCT. The PAT remotely measures photoacoustic (PA signals with a 1550-nm laser on the surface of a sample by utilizing a fiber interferometer as an ultrasound detector. The fiber-based OCT, employing a swept-source laser centered at 1310 nm, shares the sample arm of the PAT system. The fiber-optic probe for the combined system was homemade with a lensed single-mode fiber (SMF and a large-core multimode fiber (MMF. The compact and robust common probe is capable of obtaining both the PA and the OCT signals at the same position without any physical contact. Additionally, the MMF of the probe delivers the short pulses of a Nd:YAG laser to efficiently excite the PA signals. We experimentally demonstrate the feasibility of the proposed dual-modal system with a phantom made of a fishing line and a black polyethylene terephthalate fiber in a tissue mimicking solution. The all-fiber-optic system, capable of providing complementary information about absorption and scattering, has a promising potential in minimally invasive and endoscopic imaging.

  18. Detection system using scintillating optical fibers and image tube readout

    International Nuclear Information System (INIS)

    Alspector, J.; Borenstein, S.

    1979-01-01

    The hodoscope subgroup has studied a detection system consisting of bundles of optical fibers with readout via image tubes. The basic building block is an optical fiber with a scintillator inner core. The inner core has refractive index n/sub o/ (1.58 for plastic scintillator), and the outer sheath has a low index (approx. 1.4). Light is created in the core by passage of a particle track; if the light strikes the sheath at an angle greater than the critical angle phi/sub c/, it is trapped in the fiber until it finds its way to the photon detector

  19. Biosensing with optical fiber gratings

    Science.gov (United States)

    Chiavaioli, Francesco; Baldini, Francesco; Tombelli, Sara; Trono, Cosimo; Giannetti, Ambra

    2017-06-01

    Optical fiber gratings (OFGs), especially long-period gratings (LPGs) and etched or tilted fiber Bragg gratings (FBGs), are playing an increasing role in the chemical and biochemical sensing based on the measurement of a surface refractive index (RI) change through a label-free configuration. In these devices, the electric field evanescent wave at the fiber/surrounding medium interface changes its optical properties (i.e. intensity and wavelength) as a result of the RI variation due to the interaction between a biological recognition layer deposited over the fiber and the analyte under investigation. The use of OFG-based technology platforms takes the advantages of optical fiber peculiarities, which are hardly offered by the other sensing systems, such as compactness, lightness, high compatibility with optoelectronic devices (both sources and detectors), and multiplexing and remote measurement capability as the signal is spectrally modulated. During the last decade, the growing request in practical applications pushed the technology behind the OFG-based sensors over its limits by means of the deposition of thin film overlays, nanocoatings, and nanostructures, in general. Here, we review efforts toward utilizing these nanomaterials as coatings for high-performance and low-detection limit devices. Moreover, we review the recent development in OFG-based biosensing and identify some of the key challenges for practical applications. While high-performance metrics are starting to be achieved experimentally, there are still open questions pertaining to an effective and reliable detection of small molecules, possibly up to single molecule, sensing in vivo and multi-target detection using OFG-based technology platforms.

  20. Biosensing with optical fiber gratings

    Directory of Open Access Journals (Sweden)

    Chiavaioli Francesco

    2017-06-01

    Full Text Available Optical fiber gratings (OFGs, especially long-period gratings (LPGs and etched or tilted fiber Bragg gratings (FBGs, are playing an increasing role in the chemical and biochemical sensing based on the measurement of a surface refractive index (RI change through a label-free configuration. In these devices, the electric field evanescent wave at the fiber/surrounding medium interface changes its optical properties (i.e. intensity and wavelength as a result of the RI variation due to the interaction between a biological recognition layer deposited over the fiber and the analyte under investigation. The use of OFG-based technology platforms takes the advantages of optical fiber peculiarities, which are hardly offered by the other sensing systems, such as compactness, lightness, high compatibility with optoelectronic devices (both sources and detectors, and multiplexing and remote measurement capability as the signal is spectrally modulated. During the last decade, the growing request in practical applications pushed the technology behind the OFG-based sensors over its limits by means of the deposition of thin film overlays, nanocoatings, and nanostructures, in general. Here, we review efforts toward utilizing these nanomaterials as coatings for high-performance and low-detection limit devices. Moreover, we review the recent development in OFG-based biosensing and identify some of the key challenges for practical applications. While high-performance metrics are starting to be achieved experimentally, there are still open questions pertaining to an effective and reliable detection of small molecules, possibly up to single molecule, sensing in vivo and multi-target detection using OFG-based technology platforms.

  1. Evaluation of Aerogel Clad Optical Fibers Final Report CRADA No. TSB-1448-97

    Energy Technology Data Exchange (ETDEWEB)

    Maitland, Duncan [Lawrence Livermore National Lab. (LLNL), Livermore, CA (United States); Droege, M. W. [Lawrence Livermore National Lab. (LLNL), Livermore, CA (United States)

    2018-01-22

    Fiber-optic based sensors will be needed for in situ monitoring of degradation products in various components of nuclear weapons. These sensors typically consist of a transducer located at the measurement site whose optical properties are modulated by interaction with the targeted degradation product. The interrogating light source and the detector for determining sensor response are located remotely. These two subsystems are connected by fiber optic cables. LLNL has developed a new technology, aerogel clad optical fibers, that have the advantage of accepting incident rays over a much wider angular range than normal glass clad fibers. These fibers are also capable of transmitting light more efficiently. These advantages can lead to a factor of 2-4 improvement in sensitivity and detection limit.

  2. Two Fiber Optical Fiber Thermometry

    Science.gov (United States)

    Jones, Mathew R.; Farmer, Jeffery T.; Breeding, Shawn P.

    2000-01-01

    An optical fiber thermometer consists of an optical fiber whose sensing tip is given a metallic coating. The sensing tip of the fiber is essentially an isothermal cavity, so the emission from this cavity will be approximately equal to the emission from a blackbody. Temperature readings are obtained by measuring the spectral radiative heat flux at the end of the fiber at two wavelengths. The ratio of these measurements and Planck's Law are used to infer the temperature at the sensing tip. Optical fiber thermometers have high accuracy, excellent long-term stability and are immune to electromagnetic interference. In addition, they can be operated for extended periods without requiring re-calibration. For these reasons. it is desirable to use optical fiber thermometers in environments such as the International Space Station. However, it has recently been shown that temperature readings are corrupted by emission from the fiber when extended portions of the probe are exposed to elevated temperatures. This paper will describe several ways in which the reading from a second fiber can be used to correct the corrupted temperature measurements. The accuracy and sensitivity to measurement uncertainty will be presented for each method.

  3. Fiber Optic Microphone

    Science.gov (United States)

    Cho, Y. C.; George, Thomas; Norvig, Peter (Technical Monitor)

    1999-01-01

    Research into advanced pressure sensors using fiber-optic technology is aimed at developing compact size microphones. Fiber optic sensors are inherently immune to electromagnetic noise, and are very sensitive, light weight, and highly flexible. In FY 98, NASA researchers successfully designed and assembled a prototype fiber-optic microphone. The sensing technique employed was fiber optic Fabry-Perot interferometry. The sensing head is composed of an optical fiber terminated in a miniature ferrule with a thin, silicon-microfabricated diaphragm mounted on it. The optical fiber is a single mode fiber with a core diameter of 8 micron, with the cleaved end positioned 50 micron from the diaphragm surface. The diaphragm is made up of a 0.2 micron thick silicon nitride membrane whose inner surface is metallized with layers of 30 nm titanium, 30 nm platinum, and 0.2 micron gold for efficient reflection. The active sensing area is approximately 1.5 mm in diameter. The measured differential pressure tolerance of this diaphragm is more than 1 bar, yielding a dynamic range of more than 100 dB.

  4. Technical aspects of the use of optical fibers for data transmission in particle physics

    International Nuclear Information System (INIS)

    Petrolo, E.

    1991-01-01

    This presentation will discuss the major technical aspects related to the use of optical fibers for data transmission in particle physics. The different possibilities of use of optical links for different experimental applications and environments will be presented with an overview of the technical problems in the use of optical transmission components, such as fibers and their radiation damage, emitters, detectors, cables, transmission systems, etc. (orig.)

  5. Optical Communication over Plastic Optical Fibers Integrated Optical Receiver Technology

    CERN Document Server

    Atef, Mohamed

    2013-01-01

    This book presents high-performance data transmission over plastic optical fibers (POF) using integrated optical receivers having good properties with multilevel modulation, i.e. a higher sensitivity and higher data rate transmission over a longer plastic optical fiber length. Integrated optical receivers and transmitters with high linearity are introduced for multilevel communication. For binary high-data rate transmission over plastic optical fibers, an innovative receiver containing an equalizer is described leading also to a high performance of a plastic optical fiber link. The cheap standard PMMA SI-POF (step-index plastic optical fiber) has the lowest bandwidth and the highest attenuation among multimode fibers. This small bandwidth limits the maximum data rate which can be transmitted through plastic optical fibers. To overcome the problem of the plastic optical fibers high transmission loss, very sensitive receivers must be used to increase the transmitted length over POF. The plastic optical fiber li...

  6. Fiber Singular Optics

    OpenAIRE

    A. V. Volyar

    2002-01-01

    The present review is devoted to the optical vortex behavior both in free space and optical fibers. The processes of the vortex transformations in perturbed optical fibers are analyzed on the base of the operator of the spin – orbit interaction in order to forecast the possible ways of manufacturing the vortex preserving fibers and their applications in supersensitive optical devices.

  7. Hydrogen detector

    International Nuclear Information System (INIS)

    Kumagaya, Hiromichi; Yoshida, Kazuo; Sanada, Kazuo; Chigira, Sadao.

    1994-01-01

    The present invention concerns a hydrogen detector for detecting water-sodium reaction. The hydrogen detector comprises a sensor portion having coiled optical fibers and detects hydrogen on the basis of the increase of light transmission loss upon hydrogen absorption. In the hydrogen detector, optical fibers are wound around and welded to the outer circumference of a quartz rod, as well as the thickness of the clad layer of the optical fiber is reduced by etching. With such procedures, size of the hydrogen detecting sensor portion can be decreased easily. Further, since it can be used at high temperature, diffusion rate is improved to shorten the detection time. (N.H.)

  8. Testing of a Fiber Optic Wear, Erosion and Regression Sensor

    Science.gov (United States)

    Korman, Valentin; Polzin, Kurt A.

    2011-01-01

    The nature of the physical processes and harsh environments associated with erosion and wear in propulsion environments makes their measurement and real-time rate quantification difficult. A fiber optic sensor capable of determining the wear (regression, erosion, ablation) associated with these environments has been developed and tested in a number of different applications to validate the technique. The sensor consists of two fiber optics that have differing attenuation coefficients and transmit light to detectors. The ratio of the two measured intensities can be correlated to the lengths of the fiber optic lines, and if the fibers and the host parent material in which they are embedded wear at the same rate the remaining length of fiber provides a real-time measure of the wear process. Testing in several disparate situations has been performed, with the data exhibiting excellent qualitative agreement with the theoretical description of the process and when a separate calibrated regression measurement is available good quantitative agreement is obtained as well. The light collected by the fibers can also be used to optically obtain the spectra and measure the internal temperature of the wear layer.

  9. Applications of optical fibers in nuclear test diagnostics

    International Nuclear Information System (INIS)

    Lyons, P.B.; Hodson, E.K.; Looney, L.D.

    1980-01-01

    Two new plasma diagnostic experiments have been successfully fielded on nuclear device tests at NTS. Both systems rely on the unique advantages provided by optical fiber technology and both systems provide new diagnostic capabilities that previously were beyond the state-of-the-art in coaxial cable systems. One system addresses the need to record e wide bandwidth data on gamma-ray sources. Over the long (< 1 km) distances that characterize NTS testing, the bandwidth of coaxial cable systems is usually limited to < 200 to 400 MHz even with extensive equalization. The new system uses the Cerenkov process to generate light in a converter material. High bandwidth fibers and detectors are used to approach a 1-GHz bandwidth. In this case fibers provided the bandwidth capability. The second system provides time and space resolution of a neutron source on a fast (ns) time scale. Previous systems have utilized either an array of neutron detectors with individual coaxial cables or a fast scintillator viewed by a gated image intensifier. For a large number of channels, the coaxial system becomes very costly and is subject to potentially severe EMI concerns. The gated intensifier system requires complex electronics and accurate timing and can be affected by EMI. An alternative system is described which provides continuous time coverage with limited spatial resolution. Complete freedom from EMI is achieved through the use of optical data collection and transmission. The optical fibers offered a major (2 to 3 times) cost savings and a large weight savings relative to the coax system. Each system is discussed

  10. Fiber-Optic Chemical Sensors and Fiber-Optic Bio-Sensors

    Science.gov (United States)

    Pospíšilová, Marie; Kuncová, Gabriela; Trögl, Josef

    2015-01-01

    This review summarizes principles and current stage of development of fiber-optic chemical sensors (FOCS) and biosensors (FOBS). Fiber optic sensor (FOS) systems use the ability of optical fibers (OF) to guide the light in the spectral range from ultraviolet (UV) (180 nm) up to middle infrared (IR) (10 µm) and modulation of guided light by the parameters of the surrounding environment of the OF core. The introduction of OF in the sensor systems has brought advantages such as measurement in flammable and explosive environments, immunity to electrical noises, miniaturization, geometrical flexibility, measurement of small sample volumes, remote sensing in inaccessible sites or harsh environments and multi-sensing. The review comprises briefly the theory of OF elaborated for sensors, techniques of fabrications and analytical results reached with fiber-optic chemical and biological sensors. PMID:26437407

  11. Fiber-Optic Chemical Sensors and Fiber-Optic Bio-Sensors.

    Science.gov (United States)

    Pospíšilová, Marie; Kuncová, Gabriela; Trögl, Josef

    2015-09-30

    This review summarizes principles and current stage of development of fiber-optic chemical sensors (FOCS) and biosensors (FOBS). Fiber optic sensor (FOS) systems use the ability of optical fibers (OF) to guide the light in the spectral range from ultraviolet (UV) (180 nm) up to middle infrared (IR) (10 μm) and modulation of guided light by the parameters of the surrounding environment of the OF core. The introduction of OF in the sensor systems has brought advantages such as measurement in flammable and explosive environments, immunity to electrical noises, miniaturization, geometrical flexibility, measurement of small sample volumes, remote sensing in inaccessible sites or harsh environments and multi-sensing. The review comprises briefly the theory of OF elaborated for sensors, techniques of fabrications and analytical results reached with fiber-optic chemical and biological sensors.

  12. U-Shaped and Surface Functionalized Polymer Optical Fiber Probe for Glucose Detection.

    Science.gov (United States)

    Azkune, Mikel; Ruiz-Rubio, Leire; Aldabaldetreku, Gotzon; Arrospide, Eneko; Pérez-Álvarez, Leyre; Bikandi, Iñaki; Zubia, Joseba; Vilas-Vilela, Jose Luis

    2017-12-25

    In this work we show an optical fiber evanescent wave absorption probe for glucose detection in different physiological media. High selectivity is achieved by functionalizing the surface of an only-core poly(methyl methacrylate) (PMMA) polymer optical fiber with phenilboronic groups, and enhanced sensitivity by using a U-shaped geometry. Employing a supercontinuum light source and a high-resolution spectrometer, absorption measurements are performed in the broadband visible light spectrum. Experimental results suggest the feasibility of such a fiber probe as a low-cost and selective glucose detector.

  13. Application Specific Optical Fibers

    OpenAIRE

    Pal, Bishnu P.

    2010-01-01

    In this chapter we have attempted to provide a unified summary description of the most important propagation characteristics of an optical fiber followed by discussion on several variety of special fibers for realizing fiber amplifiers, dispersion compensating fibers, microstructured optical fibers, and so on. Even though huge progress has been made on development of optical fibers for telecom application, a need for developing special fibers, not necessarily for telecom alone, has arisen. Th...

  14. System and method for determination of the reflection wavelength of multiple low-reflectivity bragg gratings in a sensing optical fiber

    Science.gov (United States)

    Moore, Jason P. (Inventor)

    2009-01-01

    A system and method for determining a reflection wavelength of multiple Bragg gratings in a sensing optical fiber comprise: (1) a source laser; (2) an optical detector configured to detect a reflected signal from the sensing optical fiber; (3) a plurality of frequency generators configured to generate a signal having a frequency corresponding to an interferometer frequency of a different one of the plurality of Bragg gratings; (4) a plurality of demodulation elements, each demodulation element configured to combine the signal produced by a different one of the plurality of frequency generators with the detected signal from the sensing optical fiber; (5) a plurality of peak detectors, each peak detector configured to detect a peak of the combined signal from a different one of the demodulation elements; and (6) a laser wavenumber detection element configured to determine a wavenumber of the laser when any of the peak detectors detects a peak.

  15. Fiber-Optic Chemical Sensors and Fiber-Optic Bio-Sensors

    Directory of Open Access Journals (Sweden)

    Marie Pospíšilová

    2015-09-01

    Full Text Available This review summarizes principles and current stage of development of fiber-optic chemical sensors (FOCS and biosensors (FOBS. Fiber optic sensor (FOS systems use the ability of optical fibers (OF to guide the light in the spectral range from ultraviolet (UV (180 nm up to middle infrared (IR (10 μm and modulation of guided light by the parameters of the surrounding environment of the OF core. The introduction of OF in the sensor systems has brought advantages such as measurement in flammable and explosive environments, immunity to electrical noises, miniaturization, geometrical flexibility, measurement of small sample volumes, remote sensing in inaccessible sites or harsh environments and multi-sensing. The review comprises briefly the theory of OF elaborated for sensors, techniques of fabrications and analytical results reached with fiber-optic chemical and biological sensors.

  16. Fiber-optic annular detector array for large depth of field photoacoustic macroscopy

    Directory of Open Access Journals (Sweden)

    Johannes Bauer-Marschallinger

    2017-03-01

    Full Text Available We report on a novel imaging system for large depth of field photoacoustic scanning macroscopy. Instead of commonly used piezoelectric transducers, fiber-optic based ultrasound detection is applied. The optical fibers are shaped into rings and mainly receive ultrasonic signals stemming from the ring symmetry axes. Four concentric fiber-optic rings with varying diameters are used in order to increase the image quality. Imaging artifacts, originating from the off-axis sensitivity of the rings, are reduced by coherence weighting. We discuss the working principle of the system and present experimental results on tissue mimicking phantoms. The lateral resolution is estimated to be below 200 μm at a depth of 1.5 cm and below 230 μm at a depth of 4.5 cm. The minimum detectable pressure is in the order of 3 Pa. The introduced method has the potential to provide larger imaging depths than acoustic resolution photoacoustic microscopy and an imaging resolution similar to that of photoacoustic computed tomography.

  17. Fiber-optic annular detector array for large depth of field photoacoustic macroscopy.

    Science.gov (United States)

    Bauer-Marschallinger, Johannes; Höllinger, Astrid; Jakoby, Bernhard; Burgholzer, Peter; Berer, Thomas

    2017-03-01

    We report on a novel imaging system for large depth of field photoacoustic scanning macroscopy. Instead of commonly used piezoelectric transducers, fiber-optic based ultrasound detection is applied. The optical fibers are shaped into rings and mainly receive ultrasonic signals stemming from the ring symmetry axes. Four concentric fiber-optic rings with varying diameters are used in order to increase the image quality. Imaging artifacts, originating from the off-axis sensitivity of the rings, are reduced by coherence weighting. We discuss the working principle of the system and present experimental results on tissue mimicking phantoms. The lateral resolution is estimated to be below 200 μm at a depth of 1.5 cm and below 230 μm at a depth of 4.5 cm. The minimum detectable pressure is in the order of 3 Pa. The introduced method has the potential to provide larger imaging depths than acoustic resolution photoacoustic microscopy and an imaging resolution similar to that of photoacoustic computed tomography.

  18. Fiber optics: A brief introduction

    International Nuclear Information System (INIS)

    Gruchalla, M.E.

    1989-01-01

    A basic introduction into the principles of fiber optics is presented. A review of both the underlying physical principles and the individual elements of typical fiber-optic systems are presented. The optical phenomenon of total internal reflection is reviewed. The basic construction of the optical fiber is presented. Both step-index and graded-index fiber designs are reviewed. Multimode and single-mode fiber constructions are considered and typical performance parameters given. Typical optical-fiber bandwidth and loss characteristics are compared to various common coaxial cables, waveguides, and air transmission. The constructions of optical-fiber cables are reviewed. Both loose-tube and tightly-buffered designs are considered. Several optical connection approaches are presented. Photographs of several representative optical connectors are included. Light Emitting Diode and Laser Diode emitters for fiber-optic applications are reviewed, and some advantages and shortcomings of each are considered. The phenomenon of modal noise is briefly explained. Both PIN and Avalanche photodetectors are reviewed and their performance parameters compared. Methods of data transmission over optical fiber are introduced. Principles of Wavelength, Frequency, and Time Division Multiplexing are briefly presented. The technology of fiber-optic sensors is briefly reviewed with basic principles introduced. The performance of a fiber-optic strain sensor is included as a practical example. 7 refs., 10 figs

  19. Fiber optic hydrophone

    Science.gov (United States)

    Kuzmenko, Paul J.; Davis, Donald T.

    1994-01-01

    A miniature fiber optic hydrophone based on the principles of a Fabry-Perot interferometer. The hydrophone, in one embodiment, includes a body having a shaped flexible bladder at one end which defines a volume containing air or suitable gas, and including a membrane disposed adjacent a vent. An optic fiber extends into the body with one end terminating in spaced relation to the membrane. Acoustic waves in the water that impinge on the bladder cause the pressure of the volume therein to vary causing the membrane to deflect and modulate the reflectivity of the Fabry-Perot cavity formed by the membrane surface and the cleaved end of the optical fiber disposed adjacent to the membrane. When the light is transmitted down the optical fiber, the reflected signal is amplitude modulated by the incident acoustic wave. Another embodiment utilizes a fluid filled volume within which the fiber optic extends.

  20. Design of a fiber-optic interrogator module for telecommunication satellites

    Science.gov (United States)

    Putzer, Philipp; Koch, Alexander W.; Plattner, Markus; Hurni, Andreas; Manhart, Markus

    2017-11-01

    In this paper we present the results of the radiation tests performed on the optical components of the fiber-optic interrogator module as a part of the Hybrid Sensor Bus (HSB) system. The HSB-system is developed in the frame of an ESAARTES program and will be verified as flight demonstrator onboard the German Heinrich Hertz satellite in 2016. The HSB system is based on a modular concept which includes sensor interrogation modules based on I2C electrical and fiber Bragg grating (FBG) fiber-optical sensor elements. Onboard fiber-optic sensing allows the implementation of novel control and monitoring methods. For read-out of multiple FBG sensors, a design based on a tunable laser diode as well as a design based on a spectrometer is considered. The expected and tested total ionizing dose (TID) applicable to the HSB system is in the range between 100 krad and 300 krad inside the satellite in the geostationary orbit over a life time of 15 years. We present radiation test results carried out on critical optical components to be used in the fiber-optic interrogation module. These components are a modulated grating Y-branch (MGY) tunable laser diode acting as light source for the tuning laser approach, the line detector of a spectrometer, photodetectors and the FBG sensors acting as sensor elements. A detailed literature inquiry of radiation effects on optical fibers and FBG sensors, is also included in the paper. The fiber-optic interrogator module implemented in the HSB system is based on the most suitable technology, which sustains the harsh environment in the geostationary orbit.

  1. Fiber Temperature Sensor Based on Micro-mechanical Membranes and Optical Interference Structure

    International Nuclear Information System (INIS)

    Liu Yueming; Tian Weijian; Hua Jing

    2011-01-01

    A novel fiber temperature sensor is presented theoretically and experimentally in this paper. Its working principle is based on Optical Fabry-Perot interference structure that is formed between a polished optical fiber end and micro-mechanical Bi-layered membranes. When ambient temperature is varying, Bi-layered membranes will be deflected and the length of Fabry-Perot cavity will be changed correspondingly. By detecting the reflecting optical intensity from the Fabry-Perot cavity, the ambient temperature can be measured. Using finite element software ANSYS, the sensor structure was optimized based on optical Interference theory and Bi-layered membranes thermal expansion theory, and theoretical characteristics was simulated by computer software. In the end, using optical fiber 2x2 coupler and photo-electrical detector, the fabricated sample sensor was tested successfully by experiment that demonstrating above theoretical analysis and simulation results. This sensor has some favorable features, such as: micro size owing to its micro-mechanical structure, high sensitivity owing to its working Fabry-Perot interference cavity structure, and optical integration character by using optical fiber techniques.

  2. Experience with parallel optical link for the CDF silicon detector

    International Nuclear Information System (INIS)

    Hou, S.

    2003-01-01

    The Dense Optical Interface Module (DOIM) is a byte-wide optical link developed for the Run II upgrade of the CDF silicon tracking system [1]. The module consists of a transmitter with a laser-diode array for conversion of digitized detector signals to light outputs, a 22 m optical fiber ribbon cable for light transmission, and a receiver converting the light pulses back to electrical signals. We report on the design feature, characteristics, and radiation tolerance

  3. Demonstration of Femtosecond-Phase Stabilization in 2 km Optical Fiber

    International Nuclear Information System (INIS)

    Staples, J.W.; Wilcox, R.; Byrd, J.M.

    2007-01-01

    Long-term phase drifts of less than a femtosecond per hour have been demonstrated in a 2 km length of single-mode optical fiber, stabilized interferometrically at 1530 nm. Recent improvements include a wide-band phase detector that reduces the possibility of fringe jumping due to fast external perturbations of the fiber and locking of the master CW laser wavelength to an atomic absorption line. Mode-locked lasers may be synchronized using two wavelengths of the comb, multiplexed over one fiber, each wavelength individually interferometrically stabilized

  4. Optical fiber stripper positioning apparatus

    Science.gov (United States)

    Fyfe, Richard W.; Sanchez, Jr., Amadeo

    1990-01-01

    An optical fiber positioning apparatus for an optical fiber stripping device is disclosed which is capable of providing precise axial alignment between an optical fiber to be stripped of its outer jacket and the cutting blades of a stripping device. The apparatus includes a first bore having a width approximately equal to the diameter of an unstripped optical fiber and a counter bore axially aligned with the first bore and dimensioned to precisely receive a portion of the stripping device in axial alignment with notched cutting blades within the stripping device to thereby axially align the notched cutting blades of the stripping device with the axis of the optical fiber to permit the notched cutting blades to sever the jacket on the optical fiber without damaging the cladding on the optical fiber. In a preferred embodiment, the apparatus further includes a fiber stop which permits determination of the length of jacket to be removed from the optical fiber.

  5. Optical Fiber Fusion Splicing

    CERN Document Server

    Yablon, Andrew D

    2005-01-01

    This book is an up-to-date treatment of optical fiber fusion splicing incorporating all the recent innovations in the field. It provides a toolbox of general strategies and specific techniques that the reader can apply when optimizing fusion splices between novel fibers. It specifically addresses considerations important for fusion splicing of contemporary specialty fibers including dispersion compensating fiber, erbium-doped gain fiber, polarization maintaining fiber, and microstructured fiber. Finally, it discusses the future of optical fiber fusion splicing including silica and non-silica based optical fibers as well as the trend toward increasing automation. Whilst serving as a self-contained reference work, abundant citations from the technical literature will enable readers to readily locate primary sources.

  6. Balanced PIN-TIA photoreceiver with integrated 3 dB fiber coupler for distributed fiber optic sensors

    Science.gov (United States)

    Datta, Shubhashish; Rajagopalan, Sruti; Lemke, Shaun; Joshi, Abhay

    2014-06-01

    We report a balanced PIN-TIA photoreceiver integrated with a 3 dB fiber coupler for distributed fiber optic sensors. This detector demonstrates -3 dB bandwidth >15 GHz and coupled conversion gain >65 V/W per photodiode through either input port of the 3 dB coupler, and can be operated at local oscillator power of +17 dBm. The combined common mode rejection of the balanced photoreceiver and the integrated 3 dB coupler is >20 dB. We also present measurement results with various optical stimuli, namely impulses, sinusoids, and pseudo-random sequences, which are relevant for time domain reflectometry, frequency domain reflectometry, and code correlation sensors, respectively.

  7. The usage of optical fibers for damage detection in ballistic protection composite laminates

    Directory of Open Access Journals (Sweden)

    Živković Irena D.

    2006-01-01

    Full Text Available This paper describes the procedure of embedding fiber optic sensors in laminar thermoplastic composite material, as well as damage investigation after ballistic loading. Thermoplastic-reinforced composite materials were made for increased material damage resistance during ballistic loading. Damage inside the composite material was detected by observing the intensity drop of the light signal transmitted through the optical fibers. Experimental testing was carried out in order to observe and analyze the response of the material under various load conditions. Different types of Kevlar reinforced composite materials (thermoplastic, thermo reactive and thermoplastic with ceramic plate as the impact face were made. Material damage resistance during ballistic loading was investigated and compared. Specimens were tested under multiple load conditions. The opto-electronic part of the measurement system consists of two light-emitting diodes as light sources for the optical fibers, and two photo detectors for the light intensity measurement. The output signal was acquired from photo detectors by means of a data acquisition board and personal computer. The measurements showed an intensity drop of the transmitted light signal as a result of the applied loading on composite structure for all the optical fibers. All the diagrams show similar behavior of the light signal intensity. In fact, all of them may be divided into three zones: the zone of penetration of the first composite layer, the bullet traveling zone through the composite material till its final stop, and the material relaxation zone. The attenuation of the light signal intensity during impact is caused by the influence of the applied dynamic stress on the embedded optical fibers. The applied stress caused micro bending of the optical fiber, changes in the shape of the cross-section and the unequal changes of the indices of refraction of the core and cladding due to the stress-optic effect. The

  8. The CEBAF fiber optic phase reference system

    International Nuclear Information System (INIS)

    Crawford, K.; Simrock, S.; Hovater, C.; Krycuk, A.

    1995-01-01

    The specified phase stability of the CEBAF RF distribution system is 2.9 degree rms per linac. Stability is achieved through the use of a temperature and pressure regulated coaxial drive line. Purpose of the fiber optic phase reference system is to monitor the relative phase at the beginning and ending of this drive line, between linacs, injector and separator to determine drift due to ambient temperature fluctuations. The system utilizes an Ortel 1310 nm single mode laser driving Sumitumo optical fiber to distribute a reference signal at 1497 MHz. Phase of this reference signal is compared to the 1427 MHz (LO) and the 70 MHz (IF) via a 360 degree phase detector. The detected information is then routed to the CEBAF control system for display with a specified resolution of ±0.2 degree over a 20 degree phase delta

  9. Fiber optic-based biosensor

    Science.gov (United States)

    Ligler, Frances S.

    1991-01-01

    The NRL fiber optic biosensor is a device which measures the formation of a fluorescent complex at the surface of an optical fiber. Antibodies and DNA binding proteins provide the mechanism for recognizing an analyze and immobilizing a fluorescent complex on the fiber surface. The fiber optic biosensor is fast, sensitive, and permits analysis of hazardous materials remote from the instrumentation. The fiber optic biosensor is described in terms of the device configuration, chemistry for protein immobilization, and assay development. A lab version is being used for assay development and performance characterization while a portable device is under development. Antibodies coated on the fiber are stable for up to two years of storage prior to use. The fiber optic biosensor was used to measure concentration of toxins in the parts per billion (ng/ml) range in under a minute. Immunoassays for small molecules and whole bacteria are under development. Assays using DNA probes as the detection element can also be used with the fiber optic sensor, which is currently being developed to detect biological warfare agents, explosives, pathogens, and toxic materials which pollute the environment.

  10. Optical fiber sensor for low dose gamma irradiation monitoring

    Science.gov (United States)

    de Andrés, Ana I.; Esteban, Ã.`scar; Embid, Miguel

    2016-05-01

    An optical fiber gamma ray detector is presented in this work. It is based on a Terbium doped Gadolinium Oxysulfide (Gd2O2S:Tb) scintillating powder which cover a chemically etched polymer fiber tip. This etching improves the fluorescence gathering by the optical fiber. The final diameter has been selected to fulfill the trade-off between light gathering and mechanical strength. Powder has been encapsulated inside a microtube where the fiber tip is immersed. The sensor has been irradiated with different air Kerma doses up to 2 Gy/h with a 137Cs source, and the spectral distribution of the fluorescence intensity has been recorded in a commercial grade CCD spectrometer. The obtained signal-to-noise ratio is good enough even for low doses, which has allowed to reduce the integration time in the spectrometer. The presented results show the feasibility for using low cost equipment to detect/measure ionizing radiation as gamma rays are.

  11. Optical Fiber Array Assemblies for Space Flight on the Lunar Reconnaissance Orbiter

    Science.gov (United States)

    Ott, Jelanie; Matuszeski, Adam

    2011-01-01

    Custom fiber optic bundle array assemblies developed by the Photonics Group at NASA Goddard Space Flight Center were an enabling technology for both the Lunar Orbiter Laser Altimeter (LOLA) and the Laser Ranging (LR) Investigation on the Lunar Reconnaissance Orbiter (LRO) currently in operation. The unique assembly array designs provided considerable decrease in size and weight and met stringent system level requirements. This is the first time optical fiber array bundle assemblies were used in a high performance space flight application. This innovation was achieved using customized Diamond Switzerland AVIM optical connectors. For LOLA, a five fiber array was developed for the receiver telescope to maintain precise alignment for each of the 200/220 micron optical fibers collecting 1,064 nm wavelength light being reflected back from the moon. The array splits to five separate detectors replacing the need for multiple telescopes. An image illustration of the LOLA instrument can be found at the top of the figure. For the laser ranging, a seven-optical-fiber array of 400/440 micron fibers was developed to transmit light from behind the LR receiver telescope located on the end of the high gain antenna system (HGAS). The bundle was routed across two moving gimbals, down the HGAS boom arm, over a deployable mandrel and across the spacecraft to a detector on the LOLA instrument. The routing of the optical fiber bundle and its end locations is identified in the figure. The Laser Ranging array and bundle is currently accepting light at a wavelength of 532 nm sent to the moon from laser stations at Greenbelt MD and other stations around the world to gather precision ranging information from the Earth to the LRO spacecraft. The LR bundle assembly is capable of withstanding temperatures down to -55 C at the connectors, and 20,000 mechanical gimbal cycles at temperatures as cold as -20 C along the length of the seven-fiber bundle (that is packaged into the gimbals). The total

  12. Enhanced radiation resistant fiber optics

    Science.gov (United States)

    Lyons, P.B.; Looney, L.D.

    1993-11-30

    A process for producing an optical fiber having enhanced radiation resistance is provided, the process including maintaining an optical fiber within a hydrogen-containing atmosphere for sufficient time to yield a hydrogen-permeated optical fiber having an elevated internal hydrogen concentration, and irradiating the hydrogen-permeated optical fiber at a time while the optical fiber has an elevated internal hydrogen concentration with a source of ionizing radiation. The radiation source is typically a cobalt-60 source and the fiber is pre-irradiated with a dose level up to about 1000 kilorads of radiation. 4 figures.

  13. Enhanced radiation resistant fiber optics

    International Nuclear Information System (INIS)

    Lyons, P.B.; Looney, L.D.

    1993-01-01

    A process for producing an optical fiber having enhanced radiation resistance is provided, the process including maintaining an optical fiber within a hydrogen-containing atmosphere for sufficient time to yield a hydrogen-permeated optical fiber having an elevated internal hydrogen concentration, and irradiating the hydrogen-permeated optical fiber at a time while the optical fiber has an elevated internal hydrogen concentration with a source of ionizing radiation. The radiation source is typically a cobalt-60 source and the fiber is pre-irradiated with a dose level up to about 1000 kilorads of radiation. 4 figures

  14. Research on distributed optical fiber sensing data processing method based on LabVIEW

    Science.gov (United States)

    Li, Zhonghu; Yang, Meifang; Wang, Luling; Wang, Jinming; Yan, Junhong; Zuo, Jing

    2018-01-01

    The pipeline leak detection and leak location problem have gotten extensive attention in the industry. In this paper, the distributed optical fiber sensing system is designed based on the heat supply pipeline. The data processing method of distributed optical fiber sensing based on LabVIEW is studied emphatically. The hardware system includes laser, sensing optical fiber, wavelength division multiplexer, photoelectric detector, data acquisition card and computer etc. The software system is developed using LabVIEW. The software system adopts wavelet denoising method to deal with the temperature information, which improved the SNR. By extracting the characteristic value of the fiber temperature information, the system can realize the functions of temperature measurement, leak location and measurement signal storage and inquiry etc. Compared with traditional negative pressure wave method or acoustic signal method, the distributed optical fiber temperature measuring system can measure several temperatures in one measurement and locate the leak point accurately. It has a broad application prospect.

  15. Magneto-Optic Field Coupling in Optical Fiber Bragg Gratings

    Science.gov (United States)

    Carman, Gregory P. (Inventor); Mohanchandra, Panduranga K. (Inventor); Emmons, Michael C. (Inventor); Richards, William Lance (Inventor)

    2016-01-01

    The invention is a magneto-optic coupled magnetic sensor that comprises a standard optical fiber Bragg grating system. The system includes an optical fiber with at least one Bragg grating therein. The optical fiber has at least an inner core and a cladding that surrounds the inner core. The optical fiber is part of an optical system that includes an interrogation device that provides a light wave through the optical fiber and a system to determine the change in the index of refraction of the optical fiber. The cladding of the optical fiber comprises at least a portion of which is made up of ferromagnetic particles so that the ferromagnetic particles are subject to the light wave provided by the interrogation system. When a magnetic field is present, the ferromagnetic particles change the optical properties of the sensor directly.

  16. Fiber scintillator/streak camera detector for burn history measurement in inertial confinement fusion experiment

    International Nuclear Information System (INIS)

    Miyanaga, N.; Ohba, N.; Fujimoto, K.

    1997-01-01

    To measure the burn history in an inertial confinement fusion experiment, we have developed a new neutron detector based on plastic scintillation fibers. Twenty-five fiber scintillators were arranged in a geometry compensation configuration by which the time-of-flight difference of the neutrons is compensated by the transit time difference of light passing through the fibers. Each fiber scintillator is spliced individually to an ultraviolet optical fiber that is coupled to a streak camera. We have demonstrated a significant improvement of sensitivity compared with the usual bulk scintillator coupled to a bundle of the same ultraviolet fibers. copyright 1997 American Institute of Physics

  17. Fiber optic sensor based on reflectivity configurations to detect heart rate

    Science.gov (United States)

    Yunianto, M.; Marzuki, A.; Riyatun, R.; Lestari, D.

    2016-11-01

    Research of optical fiber-based heart rate detection sensor has been conducted using the reflection configurationon the thorax motion modified. Optical fiber used in this research was Plastic Optical Fiber (POF) with a diameter of 0.5. Optical fiber system is made with two pieces of fiber, the first fiber is to serve as a transmitter transmitting light from the source to the reflector membrane, the second fiber serves as a receiver. One of the endsfrom the two fibersis pressed and positioned perpendicular of reflector membrane which is placed on the surface of the chest. The sensor works on the principle of intensity changes captured by the receiver fiber when the reflector membrane gets the vibe from the heart. The light source used is in the form of Light Emitting Diode (LED) and Light Dependent Resistor (LDR) as a light sensor. Variations are performed on the reflector membrane diameter. The light intensity received by the detector increases along with the increasing width of the reflector membrane diameter. The results show that this sensor can detect the harmonic peak at a frequency of 1.5 Hz; 7.5 Hz; 10.5 Hz; and 22.5 Hz in a healthy human heart with an average value of Beat Per Minute (BPM) by 78 times, a prototype sensor that is made can work and function properly.

  18. Optical fiber spectrophotometer

    International Nuclear Information System (INIS)

    Zhuang Weixin; Tian Guocheng; Ye Guoan; Zhou Zhihong; Cheng Weiwei; Huang Lifeng; Liu Suying; Tang Yanji; Hu Jingxin; Zhao Yonggang

    1998-12-01

    A method called 'Two Arm's Photo out and Electricity Send-back' is introduced. UV-365 UV/VIS/NIR spectrophotometer has been reequipped by this way with 5 meters long optical fiber. Another method called 'One Arm's Photo out and Photo Send-back' is also introduced. λ 19 UV/VIS/NIR spectrophotometer has been reequipped by this way with 10 meters long optical fiber. Optical fiber spectrophotometer can work as its main set. So it is particularly applicable to radio activity work

  19. 100 MH/sub z/ fiber optic single transient gamma ray detection system

    International Nuclear Information System (INIS)

    Ogle, J.W.; Smith, R.C.; Ward, M.; Ramsey, R.; Hollabaugh, J.

    1984-01-01

    A fiber optic system has been developed to measure single transient gamma rays. The gamma ray signature is converted to light by the Cerenkov process in a 20 cm length of radiation resistant optical fiber. The signal is transmitted over 1 km of optical fiber and detected by state-of-the-art, 175 MHz analog receivers. The receivers are based on silicon PIN detectors with transimpedance hybrid amplifiers and two stages of power amplification. The dc coupled receivers have less than 2% distortion up to 5 volts with less than 10 mV rms noise and a responsivity of 37,500 V/watt at 800 nm. A calibration system measures relative fiber to fiber transit time delays and system sensitivity. System bandwidth measurements utilized an electron linear accelerator (Linac) with a 50 ps electron pulse as the Cerenkov light source. The system will be described with supporting calibration and characterization data of parts of the system and the whole system. 5 references, 7 figures, 4 tables

  20. A miniature gamma ray dosimeter with CWO scintillator and plastic optical fiber combination

    International Nuclear Information System (INIS)

    Jae Woo Park, Min Woo Seo

    2008-01-01

    Full text: Fiber-optic scintillation dosimeters possess several favorable characteristics, such as remote measurability and superior spatial resolution. Such a radiation dosimeter model was developed by attaching a small piece of CWO (CdWO 4 ) scintillator to a low attenuation plastic optical fiber. CWO was chosen since the higher atomic numbers of Cd and W would render the size of the scintillator smaller. The size of the scintillator was 4.7x4.7x10 mm 3 . The scintillator was optically glued to the plastic optical fiber of 3 mm diameter and 10 m length. A current-type PMT was optically coupled to the other end of the fiber to convert the lights generated in the scintillator into current signals. The dosimeter model was tested with two 60 Co standard sources of 0.5 mCi and 1 mCi to measure the PMT current as a function of the source-to-detector distance. It was then tested in a 60 Co irradiation chamber with an activity of about 6600 Ci. MCNPX simulations were performed for the source and detector arrangements to calculate the deposited energy in the CWO scintillator. The profiles of the measured current change are compared with those of the calculated energy deposition change. While there is some deviation between the measured and calculated profiles obtained with the lower-activity standard sources, the measured profile accurately coincides with the calculated one obtained in the higher-activity irradiation chamber. This study suggests that the fiber-optic scintillation dosimeter, operated in current mode, can be used to remotely measure radiation doses in high-intensity gamma fields

  1. Investigation of Optical Properties of Biomolecular Materials for Developing a Novel Fiber Optic Biosensor.

    Science.gov (United States)

    Gao, Harry Hong

    1995-01-01

    Recently considerable efforts have been devoted to the development of optical biosensors for applications such as environmental monitoring and biomedical technology. The research described in this thesis focuses on the development of a novel fiber optic biosensor system for pesticide detection based on enzyme catalyzed chemiluminescence. To optimize the collection efficiency, the tapering effect of a fiber tip has been studied in different cases of light source distribution utilizing fluorescence technique. Our results indicate that a continuously tapered tip with the largest tapering angle is the most efficient configuration when the light source is in a "thick" layer ({> }1 μm) while a combination tapered tip is the best configuration when the light source is either in a thin layer ({offers the flexibility of controlling the number of enzymes on a fiber surface. Multilayer of alkaline phosphatase have been characterized using various techniques including chemiluminescence, ellipsometry and surface plasma resonance. The results indicated that at least 3 layers of enzyme can be assembled on a fiber surface. With this approach, it is possible to immobilize different kinds of enzyme on a fiber surface for biosensors based on a multi-enzyme system. Based on the studies of tapered tip and immobilization schemes, a novel fiber optic biosensor system for the detection of organophosphorous-based pesticide has been developed. The detection mechanism is pesticide inhibition of alkaline phosphatase catalyzed chemiluminescence. Paraoxon with concentration as low as 167 ppb has been detected. This is the first fiber optic chemiluminescence-based biosensor utilizing tapered tips with enzyme immobilized on the fiber surface and a cooled CCD array detector.

  2. On the passive probing of fiber optic quantum communication channels

    International Nuclear Information System (INIS)

    Korol'kov, A. V.; Katamadze, K. G.; Kulik, S. P.; Molotkov, S. N.

    2010-01-01

    Avalanche photodetectors based on InGaAs:P are the most sensitive and only detectors operating in the telecommunication wavelength range 1.30-1.55 μm in the fiber optic quantum cryptography systems that can operate in the single photon count mode. In contrast to the widely used silicon photodetectors for wavelengths up to 1 μm operating in a waiting mode, these detectors always operate in a gated mode. The production of an electron-hole pair in the process of the absorption of a photon and the subsequent appearance of an avalanche of carriers can be accompanied by the inverse processes of the recombination and emission of photons. Such a backward emission can present a potential serious problem for the stability of fiber optic quantum cryptography systems against passive probing. The results of analyzing the detection of backscattered radiation are reported. The probability of such an emission has been estimated.

  3. A directional fast neutron detector using scintillating fibers and an intensified CCD camera system

    International Nuclear Information System (INIS)

    Holslin, Daniel; Armstrong, A.W.; Hagan, William; Shreve, David; Smith, Scott

    1994-01-01

    We have been developing and testing a scintillating fiber detector (SFD) for use as a fast neutron sensor which can discriminate against neutrons entering at angles non-parallel to the fiber axis (''directionality''). The detector/convertor component is a fiber bundle constructed of plastic scintillating fibers each measuring 10 cm long and either 0.3 mm or 0.5 mm in diameter. Extensive Monte Carlo simulations were made to optimize the bundle response to a range of fast neutron energies and to intense fluxes of high energy gamma-rays. The bundle is coupled to a set of gamma-ray insenitive electro-optic intensifiers whose output is viewed by a CCD camera directly coupled to the intensifiers. Two types of CCD cameras were utilized: 1) a standard, interline RS-170 camera with electronic shuttering and 2) a high-speed (up to 850 frame/s) field-transfer camera. Measurements of the neutron detection efficiency and directionality were made using 14 MeV neutrons, and the response to gamma-rays was performed using intense fluxes from radioisotopic sources (up to 20 R/h). Recently, the detector was constructed and tested using a large 10 cm by 10 cm square fiber bundle coupled to a 10 cm diameter GEN I intensifier tube. We present a description of the various detector systems and report the results of experimental tests. ((orig.))

  4. Characterization of Scintillating X-ray Optical Fiber Sensors

    Science.gov (United States)

    Sporea, Dan; Mihai, Laura; Vâţă, Ion; McCarthy, Denis; O'Keeffe, Sinead; Lewis, Elfed

    2014-01-01

    The paper presents a set of tests carried out in order to evaluate the design characteristics and the operating performance of a set of six X-ray extrinsic optical fiber sensors. The extrinsic sensor we developed is intended to be used as a low energy X-ray detector for monitoring radiation levels in radiotherapy, industrial applications and for personnel dosimetry. The reproducibility of the manufacturing process and the characteristics of the sensors were assessed. The sensors dynamic range, linearity, sensitivity, and reproducibility are evaluated through radioluminescence measurements, X-ray fluorescence and X-ray imaging investigations. Their response to the operating conditions of the excitation source was estimated. The effect of the sensors design and implementation, on the collecting efficiency of the radioluminescence signal was measured. The study indicated that the sensors are efficient only in the first 5 mm of the tip, and that a reflective coating can improve their response. Additional tests were done to investigate the concentricity of the sensors tip against the core of the optical fiber guiding the optical signal. The influence of the active material concentration on the sensor response to X-ray was studied. The tests were carried out by measuring the radioluminescence signal with an optical fiber spectrometer and with a Multi-Pixel Photon Counter. PMID:24556676

  5. Optical fiber detectors as in-vivo dosimetry method of quality assurance in radiation therapy

    International Nuclear Information System (INIS)

    Plazas, M.C.; Justus, B.L.; Falkenstein, P.; Huston, A.L.; Ning, H.; Miller, R.

    2004-01-01

    A new in-vivo dosimetry system has been under development for some time using radio luminescent phosphors. These phosphors are activated, metal ion doped glasses (Ex: Cu 1± doped quartz fiber), have excellent optical transparency and offer several potential advantages for radiation dosimetry; including: small size, high sensitivity, linearity of dose response insensitivity to electromagnetic interference. The utility of these phosphors as a detection modality has been limited in real-time dosimetry applications due to the production of Cerenkov radiation in the carrier fiber, which produces a contaminant signal proportional to dose rate as well as the size of the radiation field. One possible method for eliminating this signal is using an electronic gating signal from the accelerator to delay data acquisition during the actual beam pulse, when Cerenkov radiation is produced. Due to the intrinsic properties of our particular scintillator, this method offers the best mechanism for eliminating Cerenkov noise, while retaining the ability to detect individual beam pulses. The dosimeter was tested using an external beam radiotherapy machine that provided pulses of 6 MeV x-rays. Gated detection was used to discriminate the signal collected during the radiation pulses, which included contributions from Cerenkov radiation and native fiber fluorescence, from the signal collected between the radiation pulses, which contained only the long-lived phosphorescence from the Cu 1± doped fused quartz detector. Gated detection of the phosphorescence provided accurate, real-time dose measurements that were linear with absorbed dose, independent of dose rate and that were accurate for all field sizes studied. (author)

  6. Fiber Optics Technology.

    Science.gov (United States)

    Burns, William E.

    1986-01-01

    Discusses various applications of fiber optics technology: information systems, industrial robots, medicine, television, transportation, and training. Types of jobs that will be available with fiber optics training (such as electricians and telephone cable installers and splicers) are examined. (CT)

  7. Introduction to optical fiber sensors

    International Nuclear Information System (INIS)

    Moukdad, S.

    1991-01-01

    Optical fiber sensors have many advantages over other types of sensors, for example: Low weight, immunity from EMI, electrical isolation, chemical passivity, and high sensitivity. In this seminar, a brief explanation of the optical fiber sensors, their use, and their advantages will be given. After, a description of the main optical fiber sensor components will be presented. Principles of some kinds of optical fiber sensors will be presented, and the principle of the fiber-optic rotation sensor and its realization will be discussed in some details, as well as its main applications. (author). 5 refs, 8 figs, 2 tabs

  8. Optical fiber switch

    Science.gov (United States)

    Early, James W.; Lester, Charles S.

    2002-01-01

    Optical fiber switches operated by electrical activation of at least one laser light modulator through which laser light is directed into at least one polarizer are used for the sequential transport of laser light from a single laser into a plurality of optical fibers. In one embodiment of the invention, laser light from a single excitation laser is sequentially transported to a plurality of optical fibers which in turn transport the laser light to separate individual remotely located laser fuel ignitors. The invention can be operated electro-optically with no need for any mechanical or moving parts, or, alternatively, can be operated electro-mechanically. The invention can be used to switch either pulsed or continuous wave laser light.

  9. Development of an Optical Fiber-Based MR Compatible Gamma Camera for SPECT/MRI Systems

    Science.gov (United States)

    Yamamoto, Seiichi; Watabe, Tadashi; Kanai, Yasukazu; Watabe, Hiroshi; Hatazawa, Jun

    2015-02-01

    Optical fiber is a promising material for integrated positron emission tomography (PET) and magnetic resonance imaging (MRI) PET/MRI systems. Because its material is plastic, it has no interference between MRI. However, it is unclear whether this material can also be used for a single photon emission tomography (SPECT)/MRI system. For this purpose, we developed an optical fiber-based block detector for a SPECT/MRI system and tested its performance by combining 1.2 ×1.2 ×6 mm Y2SiO5 (YSO) pixels into a 15 ×15 block and was coupled it to an optical fiber image guide that used was 0.5-mm in diameter with 80-cm long double clad fibers. The image guide had 22 ×22 mm rectangular input and an equal size output. The input of the optical fiber-based image guide was bent at 90 degrees, and the output was optically coupled to a 1-in square high quantum efficiency position sensitive photomultiplier tube (HQE-PSPMT). The parallel hole, 7-mm-thick collimator made of tungsten plastic was mounted on a YSO block. The diameter of the collimator holes was 0.8 mm which was positioned one-to-one coupled to the YSO pixels. We evaluated the intrinsic and system performances. We resolved most of the YSO pixels in a two-dimensional histogram for Co-57 gamma photons (122-keV) with an average peak-to-value ratio of 1.5. The energy resolution was 38% full-width at half-maximum (FWHM). The system resolution was 1.7-mm FWHM, 1.5 mm from the collimator surface, and the sensitivity was 0.06%. Images of a Co-57 point source could be successfully obtained inside 0.3 T MRI without serious interference. We conclude that the developed optical fiber-based YSO block detector is promising for SPECT/MRI systems.

  10. Scintillating fiber detector performance, detector geometries, trigger, and electronics issues for scintillating fiber tracking

    International Nuclear Information System (INIS)

    Baumbaugh, A.E.

    1994-06-01

    Scintillating Fiber tracking technology has made great advances and has demonstrated great potential for high speed charged particle tracking and triggering. The small detector sizes and fast scintillation fluors available make them very promising for use at high luminosity experiments at today's and tomorrow's colliding and fixed target experiments where high rate capability is essential. This talk will discuss the current state of Scintillating fiber performance and current Visual Light Photon Counter (VLPC) characteristics. The primary topic will be some of the system design and integration issues which should be considered by anyone attempting to design a scintillating fiber tracking system which includes a high speed tracking trigger. Design. constraints placed upon the detector system by the electronics and mechanical sub-systems will be discussed. Seemingly simple and unrelated decisions can have far reaching effects on overall system performance. SDC and DO example system designs will be discussed

  11. Fiber optics in SHIVA

    International Nuclear Information System (INIS)

    Severyn, J.; Parker, J.

    1978-01-01

    SHIVA is a twenty arm laser which is controlled with a network of fifty computers, interconnected with digital fiber optic links. Three different fiber optic systems employed on the Shiva laser will be described. Two of the systems are for digital communications, one at 9600 baud and the other at 1 megabaud. The third system uses fiber optics to distribute diagnostic triggers with subnanosecond jitter

  12. Photometric device using optical fibers

    International Nuclear Information System (INIS)

    Boisde, Gilbert; Perez, J.-J.

    1981-02-01

    Remote measurements in radioactive environment are now possible with optical fibers. Measurement instruments developed by CEA are constitued of: - an optical probe (5 mm to 1 meter optical path length), - a photometric measurement device, - optical fiber links. 'TELEPHOT' is a photometric device for industrial installations. It is uses interferentiel filters for 2 to 5 simultaneous wave lengths. 'CRUDMETER' measures the muddiness of water. It can be equipped with a high sensitivity cell of 50 cm optical path length tested up to 250 bars. Coupling a double beam spectrophotometer to a remote optical probe, up to 1 meter optical path length, is carried out by means of an optical device using optical fibers links, eventually several hundred meter long. For these equipments special step index large core fibers, 1 to 1.5 mm in diameter, have been developed as well connectors. For industrial control and research these instruments offer new prospect thanks to optical fibers use [fr

  13. Optical fiber radiation sensors: first in vivo measurements during orbital irradiation

    International Nuclear Information System (INIS)

    Gripp, S.; Bannach, B.; Muskalla, K.; Haesing, F.; Bueker, H.; Schmitt, G.

    1995-01-01

    Purpose: To investigate the applicability of doped optical fiber radiation sensors in clinical dosimetry. Methods: Ionizing radiation causes a dose depending discoloring in silica. When proper impurities (doping agents) are added, the radiation sensitivity may be increased to a range suited for clinical dosimetry. We performed in-vivo-measurements using a lead doped silica fiber (d TM ) in comparison to thermoluminescence detectors (TLDs). Results: The scattered radiation is easily detected with this sensor fiber. In contrast to TLDs the dose and doserate values are obtained immediately and setup errors can be recognized before irradiation is completed. The SD clearly depends on setup modifications due to the extent of disease. Other doping agents (GeP) provide better tissue equivalence and less energy dependence. Conclusions: Optical fibers are suitable for in vivo dosimetry purposes. Fiber sensors provide real time dose values, and the readout procedure is much easier compared to TLDs. These features may gain significance in quality assurance, conformal therapy, and intraoperative radiotherapy (IORT)

  14. Site-specific multipoint fluorescence measurement system with end-capped optical fibers.

    Science.gov (United States)

    Song, Woosub; Moon, Sucbei; Lee, Byoung-Cheol; Park, Chul-Seung; Kim, Dug Young; Kwon, Hyuk Sang

    2011-07-10

    We present the development and implementation of a spatially and spectrally resolved multipoint fluorescence correlation spectroscopy (FCS) system utilizing multiple end-capped optical fibers and an inexpensive laser source. Specially prepared end-capped optical fibers placed in an image plane were used to both collect fluorescence signals from the sample and to deliver signals to the detectors. The placement of independently selected optical fibers on the image plane was done by monitoring the end-capped fiber tips at the focus using a CCD, and fluorescence from specific positions of a sample were collected by an end-capped fiber, which could accurately represent light intensities or spectral data without incurring any disturbance. A fast multipoint spectroscopy system with a time resolution of ∼1.5 ms was then implemented using a prism and an electron multiplying charge coupled device with a pixel binning for the region of interest. The accuracy of our proposed system was subsequently confirmed by experimental results, based on an FCS analysis of microspheres in distilled water. We expect that the proposed multipoint site-specific fluorescence measurement system can be used as an inexpensive fluorescence measurement tool to study many intracellular and molecular dynamics in cell biology. © 2011 Optical Society of America

  15. Temperature monitoring and leak detection in sodium circuits of FBR using Raman distributed fiber optic sensor

    International Nuclear Information System (INIS)

    Kasinathan, M.; Murali, N.; Sosamma, S.; Babu Rao, C.; Kumar, Anish; Purnachandra Rao, B.; Jayakumar, T.

    2013-01-01

    This paper discusses the fiber optic temperature sensor based leak detection in the coolant circuits of fast breeder reactor. These sensors measure the temperature based on spontaneous Raman scattering principle and is not influenced by the electromagnetic interference. Various experiments were conducted to evaluate the performance of the fiber optic sensor based leak detection using Raman distributed Temperature Sensor (RDTS). This paper also deals with the details of fiber optic sensor type leak detector layout for the coolant circuit of FBR, performance requirement of leak detection system, description of the test facility, experimental procedure and test results of various experiments conducted. (author)

  16. Optical Fiber Protection

    Science.gov (United States)

    1999-01-01

    F&S Inc. developed and commercialized fiber optic and microelectromechanical systems- (MEMS) based instrumentation for harsh environments encountered in the aerospace industry. The NASA SBIR programs have provided F&S the funds and the technology to develop ruggedized coatings and coating techniques that are applied during the optical fiber draw process. The F&S optical fiber fabrication facility and developed coating methods enable F&S to manufacture specialty optical fiber with custom designed refractive index profiles and protective or active coatings. F&S has demonstrated sputtered coatings using metals and ceramics and combinations of each, and has also developed techniques to apply thin coatings of specialized polyimides formulated at NASA Langley Research Center. With these capabilities, F&S has produced cost-effective, reliable instrumentation and sensors capable of withstanding temperatures up to 800? C and continues building commercial sales with corporate partners and private funding. More recently, F&S has adapted the same sensing platforms to provide the rapid detection and identification of chemical and biological agents

  17. Fiber optic chemical sensors: The evolution of high- density fiber-optic DNA microarrays

    Science.gov (United States)

    Ferguson, Jane A.

    2001-06-01

    Sensors were developed for multianalyte monitoring, fermentation monitoring, lactate analysis, remote oxygen detection for use in bioremediation monitoring and in a fuel spill clean-up project, heavy metal analysis, and high density DNA microarrays. The major focus of this thesis involved creating and improving high-density DNA gene arrays. Fiber optic sensors are created using fluorescent indicators, polymeric supports, and optical fiber substrates. The fluorescent indicator is entrapped in a polymer layer and attached to the tip of the optical fiber. The tip of the fiber bearing the sensing layer (the distal end) is placed in the sample of interest while the other end of the fiber (the proximal end) is connected to an analysis system. Any length of fiber can be used without compromising the integrity or sensitivity of the system. A fiber optic oxygen sensor was designed incorporating an oxygen sensitive fluorescent dye and a gas permeable polymer attached to an optical fiber. The construction simplicity and ruggedness of the sensor enabled its deployment for in situ chemical oxidation and bioremediation studies. Optical fibers were also used as the substrate to detect biomolecules in solution. To monitor bioprocesses, the production of the analyte of interest must be coupled with a species that is optically measurable. For example, oxygen is consumed in many metabolic functions. The fiber optic oxygen sensor is equipped with an additional sensing layer. Upon contact with a specific biochemical in the sample, a reaction occurs in the additional sensing layer that either consumes or produces oxygen. This dual layer system was used to monitor the presence of lactate, an important metabolite for clinical and bioprocess analysis. In many biological and environmental systems, the generation of one species occurs coincidentally with the generation or consumption of another species. A multianalyte sensor was prepared that can monitor the simultaneous activity of pH, CO2

  18. Development of a cylindrical tracking detector with multichannel scintillation fibers and pixelated photon detector readout

    Energy Technology Data Exchange (ETDEWEB)

    Akazawa, Y.; Miwa, K.; Honda, R.; Shiozaki, T.; Chiga, N.

    2015-07-01

    We are developing a cylindrical tracking detector for a Σp scattering experiment in J-PARC with scintillation fibers and the Pixelated Photon Detector (PPD) readout, which is called as cylindrical fiber tracker (CFT), in order to reconstruct trajectories of charged particles emitted inside CFT. CFT works not only as a tracking detector but also a particle identification detector from energy deposits. A prototype CFT consisting of two straight layers and one spiral layer was constructed. About 1100 scintillation fibers with a diameter of 0.75 mm (Kuraray SCSF-78 M) were used. Each fiber signal was read by Multi-Pixel Photon Counter (MPPC, HPK S10362-11-050P, 1×1 mm{sup 2}, 400 pixels) fiber by fiber. MPPCs were handled with Extended Analogue Silicon Photomultipliers Integrated ReadOut Chip (EASIROC) boards, which were developed for the readout of a large number of MPPCs. The energy resolution of one layer was 28% for a 70 MeV proton where the energy deposit in fibers was 0.7 MeV.

  19. Design and evaluation of capillary coupled with optical fiber light-emitting diode induced fluorescence detection for capillary electrophoresis.

    Science.gov (United States)

    Ji, Hongyun; Li, Meng; Guo, Lihong; Yuan, Hongyan; Wang, Chunling; Xiao, Dan

    2013-09-01

    A new detector, capillary coupled with optical fiber LED-induced fluorescence detector (CCOF-LED-IFD, using CCOF for short), is introduced for CE. The strategy of the present work was that the optical fiber and separation capillary were, in the parallel direction, fastened in a fixation capillary with larger inner diameter. By employing larger inner diameter, the fixation capillary allowed the large diameter of the optical fiber to be inserted into it. By transmitting an enhanced excitation light through the optical fiber, the detection sensitivity was improved. The advantages of the CCOF-CE system were validated by the detection of riboflavin, and the results were compared to those obtained by the in-capillary common optical fiber LED-induced fluorescence detector (IC-COF-LED-IFD, using COF for short). The LODs of CCOF-CE and COF-CE were 0.29 nM and 11.0 nM (S/N = 3), respectively. The intraday (n = 6) repeatability and interday (n = 6) reproducibility of migration time and corresponding peak area for both types of CE were all less than 1.10 and 3.30%, respectively. The accuracy of the proposed method was judged by employing standard addition method, and recoveries obtained were in the range of 98.0-102.4%. The results indicated that the sensitivity of the proposed system was largely improved, and that its reproducibility and accuracy were satisfactory. The proposed system was successfully applied to separate and determine riboflavin in real sample. © 2013 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim.

  20. Nonlinear fiber optics formerly quantum electronics

    CERN Document Server

    Agrawal, Govind

    1995-01-01

    The field of nonlinear fiber optics has grown substantially since the First Edition of Nonlinear Fiber Optics, published in 1989. Like the First Edition, this Second Edition is a comprehensive, tutorial, and up-to-date account of nonlinear optical phenomena in fiber optics. It synthesizes widely scattered research material and presents it in an accessible manner for students and researchers already engaged in or wishing to enter the field of nonlinear fiber optics. Particular attention is paid to the importance of nonlinear effects in the design of optical fiber communication systems. This is

  1. Quench detection of superconducting magnet by dual-core optical fiber

    International Nuclear Information System (INIS)

    Tsukamoto, O.; Kawai, K.; Kokubun, Y.; Takao, T.

    1988-01-01

    A quench-detecting technique using two single-mode optical cores in one fiber has been developed. The technique can detect quench from a temperature rise of 1.0 K at 4.2 K. An electromagnetic force-stress to the fiber did not deteriorate quench detection sensitivity. A quench detector using this method was immune from electromagnetic noise and free from troubles caused by high voltage tension. Problems arising when applying this method to a large scale magnet and possible improvements in the instrumentation are discussed

  2. Radiation tolerant fiber optic humidity sensors for High Energy Physics applications

    CERN Document Server

    Berruti, Gaia Maria; Cusano, Andrea

    This work is devoted to the development of fiber optic humidity sensors to be applied in high-energy physics applications and in particular in experiments currently running at CERN. The high radiation level resulting from the operation of the accelerator at full luminosity can cause serious performance deterioration of the silicon sensors which are responsible for the particle tracking. To increase their lifetime, the sensors must be kept cold at temperatures below 0 C. At such low temperatures, any condensation risk has to be prevented and a precise thermal and hygrometric control of the air filling and surrounding the tracker detector cold volumes is mandatory. The technologies proposed at CERN for relative humidity monitoring are mainly based on capacitive sensing elements which are not designed with radiation resistance characteristic. In this scenario, fiber optic sensors seem to be perfectly suitable. Indeed, the fiber itself, if properly selected, can tolerate a very high level of radiation, optical fi...

  3. Fiber Optics Instrumentation Development

    Science.gov (United States)

    Chan, Patrick Hon Man; Parker, Allen R., Jr.; Richards, W. Lance

    2010-01-01

    This is a general presentation of fiber optics instrumentation development work being conducted at NASA Dryden for the past 10 years and recent achievements in the field of fiber optics strain sensors.

  4. Fiber Optics and Library Technology.

    Science.gov (United States)

    Koenig, Michael

    1984-01-01

    This article examines fiber optic technology, explains some of the key terminology, and speculates about the way fiber optics will change our world. Applications of fiber optics to library systems in three major areas--linkage of a number of mainframe computers, local area networks, and main trunk communications--are highlighted. (EJS)

  5. Electrospun amplified fiber optics.

    Science.gov (United States)

    Morello, Giovanni; Camposeo, Andrea; Moffa, Maria; Pisignano, Dario

    2015-03-11

    All-optical signal processing is the focus of much research aiming to obtain effective alternatives to existing data transmission platforms. Amplification of light in fiber optics, such as in Erbium-doped fiber amplifiers, is especially important for efficient signal transmission. However, the complex fabrication methods involving high-temperature processes performed in a highly pure environment slow the fabrication process and make amplified components expensive with respect to an ideal, high-throughput, room temperature production. Here, we report on near-infrared polymer fiber amplifiers working over a band of ∼20 nm. The fibers are cheap, spun with a process entirely carried out at room temperature, and shown to have amplified spontaneous emission with good gain coefficients and low levels of optical losses (a few cm(-1)). The amplification process is favored by high fiber quality and low self-absorption. The found performance metrics appear to be suitable for short-distance operations, and the large variety of commercially available doping dyes might allow for effective multiwavelength operations by electrospun amplified fiber optics.

  6. FIBER OPTIC LIGHTING SYSTEMS

    Directory of Open Access Journals (Sweden)

    Munir BATUR

    2013-01-01

    Full Text Available Recently there have been many important and valuable developments in the communication industry. The huge increase in the sound, data and visual communications has caused a parallel increase in the demand for systems with wider capacity, higher speed and higher quality. Communication systems that use light to transfer data are immensely increased. There have recently many systems in which glass or plastic fiber cables were developed for light wave to be transmitted from a source to a target place. Fiber optic systems, are nowadays widely used in energy transmission control systems, medicine, industry and lighting. The basics of the system is, movement of light from one point to another point in fiber cable with reflections. Fiber optic lighting systems are quite secure than other lighting systems and have flexibility for realizing many different designs. This situation makes fiber optics an alternative for other lighting systems. Fiber optic lighting systems usage is increasing day-by-day in our life. In this article, these systems are discussed in detail.

  7. Fiber-optic seismic sensor

    International Nuclear Information System (INIS)

    Finch, G. W.; Udd, E.

    1985-01-01

    A vibration sensor is constructed by providing two preferably matched coils of fiber-optic material. When the sensor experiences vibration, a differential pressure is exerted on the two fiber coils. The differential pressure results in a variation in the relative optical path lengths between the two fibers so that light beams transmitted through the two fibers are differently delayed, the phase difference therebetween being a detectable indication of the vibration applied to the sensor

  8. Chemistry Research of Optical Fibers.

    Science.gov (United States)

    1982-09-27

    BROADENING IN OPTICAL FIBERS Herbert B. Rosenstock* Naval Research Laboratory Washington, DC 20375 ABSTRACT A light pulse transmitted through a fiber...Marcatili, Marcuse , and Personick, "Dispersion Properties of Fibers" (Ch. 4 in "Optical Fiber Telecommunications," S. E. Miller and A. C. Chynoweth, eds

  9. Multimode optical fiber

    Science.gov (United States)

    Bigot-Astruc, Marianne; Molin, Denis; Sillard, Pierre

    2014-11-04

    A depressed graded-index multimode optical fiber includes a central core, an inner depressed cladding, a depressed trench, an outer depressed cladding, and an outer cladding. The central core has an alpha-index profile. The depressed claddings limit the impact of leaky modes on optical-fiber performance characteristics (e.g., bandwidth, core size, and/or numerical aperture).

  10. Design and characterization of a real time particle radiography system based on scintillating optical fibers

    Science.gov (United States)

    Longhitano, F.; Lo Presti, D.; Bonanno, D. L.; Bongiovanni, D. G.; Leonora, E.; Randazzo, N.; Reito, S.; Sipala, V.; Gallo, G.

    2017-02-01

    The fabrication and characterization of a charged particle imaging system composed of a tracker and a residual range detector (RRD) is described. The tracker is composed of four layers of scintillating fibers (SciFi), 500 μm side square section, arranged to form two planes orthogonal to each other. The fibers are coupled to two Multi-Pixel Photon Counter (MPPC) arrays by means of a channel reduction system patented by the Istituto Nazionale di Fisica Nucleare (INFN) (Presti, 2015) [1]. Sixty parallel layers of the same fibers used in the tracker compose the RRD. The various layers are optically coupled to a MPPC array by means of wavelength shifting (WLS) fibers. The sensitive area of the two detectors is 9×9 cm2. The results of the measurements, acquired by the prototypes with CATANA (Cirrone, 2008) [2] proton beam, and a comparison with the simulations of the detectors are presented.

  11. Overview of Fiber-Optical Sensors

    Science.gov (United States)

    Depaula, Ramon P.; Moore, Emery L.

    1987-01-01

    Design, development, and sensitivity of sensors using fiber optics reviewed. State-of-the-art and probable future developments of sensors using fiber optics described in report including references to work in field. Serves to update previously published surveys. Systems incorporating fiber-optic sensors used in medical diagnosis, navigation, robotics, sonar, power industry, and industrial controls.

  12. Signal enhancement by spectral equalization of high frequency broadband signals transmitted through optical fibers

    International Nuclear Information System (INIS)

    Lyons, P.B.; Ogle, J.W.; Holzman, M.A.

    1980-01-01

    A new technique is discussed for enhancing the bandwidth and intensity of high frequency (> 1 GHz) analog, spectrally broad (40 nm) signals transmitted through one kilometer of optical fiber. The existing method for bandwidth enhancement of such a signal uses a very narrow (approx. 1 nm) filter between the fiber and detector to limit bandwidth degradation due to material dispersion. Using this method, most of the available optical intensity is rejected and lost. This new technique replaces the narrow-band filter with a spectral equalizer device which uses a reflection grating to disperse the input signal spectrum and direct it onto a linear array of fibers

  13. Optical fiber-applied radiation detection system

    International Nuclear Information System (INIS)

    Nishiura, Ryuichi; Uranaka, Yasuo; Izumi, Nobuyuki

    2001-01-01

    A technique to measure radiation by using plastic scintillation fibers doped radiation fluorescent (scintillator) to plastic optical fiber for a radiation sensor, was developed. The technique contains some superiority such as high flexibility due to using fibers, relatively easy large area due to detecting portion of whole of fibers, and no electromagnetic noise effect due to optical radiation detection and signal transmission. Measurable to wide range of and continuous radiation distribution along optical fiber cable at a testing portion using scintillation fiber and flight time method, the optical fiber-applied radiation sensing system can effectively monitor space radiation dose or apparatus operation condition monitoring. And, a portable type scintillation optical fiber body surface pollution monitor can measure pollution concentration of radioactive materials attached onto body surface by arranging scintillation fiber processed to a plate with small size and flexibility around a man to be tested. Here were described on outline and fundamental properties of various application products using these plastic scintillation fiber. (G.K.)

  14. Career Directions--Fiber Optic Installer

    Science.gov (United States)

    Tech Directions, 2012

    2012-01-01

    Fiber-optic communication is a method of transmitting information from one place to another by sending pulses of light through an optical fiber that is roughly the diameter of a human hair. The light forms an electromagnetic carrier wave that is modulated to carry information. Each optical fiber is capable of carrying an enormous amount of…

  15. Assessment of fiber optic pressure sensors

    International Nuclear Information System (INIS)

    Hashemian, H.M.; Black, C.L.; Farmer, J.P.

    1995-04-01

    This report presents the results of a six-month Phase 1 study to establish the state-of-the-art in fiber optic pressure sensing and describes the design and principle of operation of various fiber optic pressure sensors. This study involved a literature review, contact with experts in the field, an industrial survey, a site visit to a fiber optic sensor manufacturer, and laboratory testing of a fiber optic pressure sensor. The laboratory work involved both static and dynamic performance tests. In addition, current requirements for environmental and seismic qualification of sensors for nuclear power plants were reviewed to determine the extent of the qualification tests that fiber optic pressure sensors may have to meet before they can be used in nuclear power plants. This project has concluded that fiber optic pressure sensors are still in the research and development stage and only a few manufacturers exist in the US and abroad which supply suitable fiber optic pressure sensors for industrial applications. Presently, fiber optic pressure sensors are mostly used in special applications for which conventional sensors are not able to meet the requirements

  16. Fiber optics standard dictionary

    CERN Document Server

    Weik, Martin H

    1997-01-01

    Fiber Optics Vocabulary Development In 1979, the National Communications System published Technical InfonnationBulle­ tin TB 79-1, Vocabulary for Fiber Optics and Lightwave Communications, written by this author. Based on a draft prepared by this author, the National Communications System published Federal Standard FED-STD-1037, Glossary of Telecommunications Terms, in 1980 with no fiber optics tenns. In 1981, the first edition of this dictionary was published under the title Fiber Optics and Lightwave Communications Standard Dictionary. In 1982, the then National Bureau of Standards, now the National Institute of Standards and Technology, published NBS Handbook 140, Optical Waveguide Communications Glossary, which was also published by the General Services Admin­ istration as PB82-166257 under the same title. Also in 1982, Dynamic Systems, Inc. , Fiberoptic Sensor Technology Handbook, co-authored and edited by published the this author, with an extensive Fiberoptic Sensors Glossary. In 1989, the handbook w...

  17. Detector trends

    International Nuclear Information System (INIS)

    Charpak, G.

    1986-01-01

    The author describes briefly the development of detectors for high energy physics experiments. Especially considered are semiconductor microstrip detectors, drift tubes, holographic bubble chambers, scintillating fiber optics, and calorimeters. (HSI).

  18. High pressure fiber optic sensor system

    Science.gov (United States)

    Guida, Renato; Xia, Hua; Lee, Boon K; Dekate, Sachin N

    2013-11-26

    The present application provides a fiber optic sensor system. The fiber optic sensor system may include a small diameter bellows, a large diameter bellows, and a fiber optic pressure sensor attached to the small diameter bellows. Contraction of the large diameter bellows under an applied pressure may cause the small diameter bellows to expand such that the fiber optic pressure sensor may measure the applied pressure.

  19. Catching Attention in Fiber Optics Class

    OpenAIRE

    Kezerashvili, R. Ya.; Leng, L.

    2004-01-01

    Following a brief review on the history and the current development of fiber optics, the significance of teaching fiber optics for science and non-science major college students is addressed. Several experimental demonstrations designed to aid the teaching and learning process in fiber optics lectures are presented. Sample laboratory projects are also proposed to help the students to understand the physical principles of fiber optics.

  20. [The recent development of fiber-optic chemical sensor].

    Science.gov (United States)

    Wang, Jian; Wei, Jian-ping; Yang, Bo; Gao, Zhi-yang; Zhang, Li-wei; Yang, Xue-feng

    2014-08-01

    The present article provides a brief review of recent research on fiber-optic chemical sensor technology and the future development trends. Especially, fiber-optic pH chemical sensor, fiber-optic ion chemicl sensor, and fiber-optic gas chemical sensor are introduced respectively. Sensing film preparation methods such as chemical bonding method and sol-gel method were briefly reviewed. The emergence of new type fiber-microstructured optical fiber opened up a new development direction for fiber-optic chemical sensor. Because of its large inner surface area, flexible design of structure, having internal sensing places in fibers, it has rapidly become an important development direction and research focus of the fiber-optic chemical sensors. The fiber-optic chemical sensor derived from microstructured optical fiber is also discussed in detail. Finally, we look to the future of the fiber-optic chemical sensor.

  1. Nonlinear fiber-optic strain sensor based on four-wave mixing in microstructured optical fiber

    DEFF Research Database (Denmark)

    Gu, Bobo; Yuan, Scott Wu; Frosz, Michael H.

    2012-01-01

    We demonstrate a nonlinear fiber-optic strain sensor, which uses the shifts of four-wave mixing Stokes and anti-Stokes peaks caused by the strain-induced changes in the structure and refractive index of a microstructured optical fiber. The sensor thus uses the inherent nonlinearity of the fiber a...

  2. Realization of fiber optic displacement sensors

    Science.gov (United States)

    Guzowski, Bartlomiej; Lakomski, Mateusz

    2018-03-01

    Fiber optic sensors are very promising because of their inherent advantages such as very small size, hard environment tolerance and impact of electromagnetic fields. In this paper three different types of Intensity Fiber Optic Displacement Sensors (I-FODS) are presented. Three configurations of I-FODS were realized in two varieties. In the first one, the cleaved multimode optical fibers (MMF) were used to collect reflected light, while in the second variety the MMF ended with ball lenses were chosen. To ensure an accurate alignment of optical fibers in the sensor head the MTP C9730 optical fiber ferrules were used. In this paper the influence of distribution of transmitting and detecting optical fibers on sensitivity and linear range of operation of developed I-FODS were investigated. We have shown, that I-FODS with ball lenses receive average 10.5% more reflected power in comparison to the cleaved optical fibers and they increase linearity range of I-FODS by 33%. In this paper, an analysis of each type of the realized sensor and detailed discussion are given.

  3. Thermoluminescence characteristics of Ge-doped optical fibers with different dimensions for radiation dosimetry

    International Nuclear Information System (INIS)

    Begum, Mahfuza; Rahman, A.K.M. Mizanur; Abdul-Rashid, H.A.; Yusoff, Z.; Begum, Mahbuba; Mat-Sharif, K.A.; Amin, Y.M.; Bradley, D.A.

    2015-01-01

    Important thermoluminescence (TL) properties of five (5) different core sizes Ge-doped optical fibers have been studied to develop new TL material with better response. These are drawn from same preform applying different speed and tension during drawing phase to produce Ge-doped optical fibers with five (5) different core sizes. The results of the investigations are also compared with most commonly used standard TLD-100 chips (LiF:Mg,Ti) and commercial multimode Ge-doped optical fiber (Yangtze Optical Fiber, China). Scanning Electron Microscope (SEM) and EDX analysis of the fibers are also performed to map Ge distribution across the deposited region. Standard Gamma radiation source in Secondary Standard Dosimetry Lab (SSDL) was used for irradiation covering dose range from 1 Gy to 10 Gy. The essential dosimetric parameters that have been studied are TL linearity, reproducibility and fading. Prior to irradiation all samples ∼0.5 cm length are annealed at temperature of 400 °C for 1 h period to standardize their sensitivities and background. Standard TLD-100 chips are also annealed for 1 h at 400 °C and subsequently 2 h at 100 °C to yield the highest sensitivity. TL responses of these fibers show linearity over a wide gamma radiation dose that is an important property for radiation dosimetry. Among all fibers used in this study, 100 μm core diameter fiber provides highest response that is 2.6 times than that of smallest core (20 μm core) optical fiber. These fiber-samples demonstrate better response than commercial multi-mode optical fiber and also provide low degree of fading about 20% over a period of fifteen days for gamma radiation. Effective atomic number (Z eff ) is found in the range (13.25–13.69) which is higher than soft tissue (7.5) however within the range of human-bone (11.6–13.8). All the fibers can also be re-used several times as a detector after annealing. TL properties of the Ge-doped optical fibers indicate promising applications in

  4. Fiber optic sensor and method for making

    Science.gov (United States)

    Vartuli, James Scott; Bousman, Kenneth Sherwood; Deng, Kung-Li; McEvoy, Kevin Paul; Xia, Hua

    2010-05-18

    A fiber optic sensor including a fiber having a modified surface integral with the fiber wherein the modified surface includes an open pore network with optical agents dispersed within the open pores of the open pore network. Methods for preparing the fiber optic sensor are also provided. The fiber optic sensors can withstand high temperatures and harsh environments.

  5. Radiation resistance of optical fibers, (10)

    International Nuclear Information System (INIS)

    Tsunoda, Tsunemi; Ara, Katsuyuki; Morimoto, Naoki; Sanada, Kazuo; Inada, Koichi.

    1991-01-01

    Optical fibers have many excellent characteristics such as the light weight of the material, insulation, the noninductivity of electromagnetic interference noise, the wide band of signal transmission, and small loss. Also in the field of atomic energy, the utilization of optical fibers is positively expanded, and the research on the method of application and so on has been advanced. However in optical fibers, there is the problem that color centers are formed at the relatively low level of radiation, and they are colored. Accordingly, for effectively utilizing optical fibers in radiation environment, it is indispensable to improve their radiation resistance. For the purpose of solving this problem, the authors have carried out the basic research on the effect that radiation exerts to optical fibers and the development of the optical fibers having excellent radiation resistance. For the purpose of expanding the range of application of GeO 2 -doped silica core fibers including GI type in radiation regions, the transmission characteristics of the fibers during irradiation were examined by using the Cl content as the parameter. Therefore, the results are reported. The fibers put to the test, the testing method and the results are described. (K.I.)

  6. Fiber Optic Calorimetry

    International Nuclear Information System (INIS)

    Rudy, C.; Bayliss, S.; Bracken, D.; Bush, J.; Davis, P.

    1997-01-01

    A twin-bridge calorimeter using optical fiber as the sensor element was constructed and tested. This system demonstrates the principle and capability of using optical fibers for heat-flow measurements of special nuclear material. This calorimeter uses piezoelectric-generated phase-carrier modulation with subsequent electronic signal processes to allow phase shifts as small as 1 microradian (microrad) to be measured. The sensing element consists of 21-m lengths of single-mode optical fiber wrapped around sample and reference chambers. The sensitivity of the calorimeter was determined to be 74 radians (rad) of phase shift per milliwatt of thermal power. One milliwatt of thermal power is equivalent to 400 mg of plutonium (6% 240 Pu). The system noise base was about 0.2 rad, equivalent to about 1 mg of plutonium

  7. Fiber optic calorimetry

    International Nuclear Information System (INIS)

    Rudy, C.R.; Bayliss, S.C.; Bracken, D.S.; Bush, I.J.; Davis, P.G.

    1998-01-01

    A twin-bridge calorimeter using optical fiber as the sensor element was constructed and tested. This system demonstrates the principle and capability of using optical fibers for heat-flow measurements of special nuclear material. This calorimeter uses piezoelectric-generated phase-carrier modulation with subsequent electronic signal processing to allow phase shifts as small as 1 microrad to be measured. The sensing element consists of 21-m lengths of single-mode optical fiber wrapped around sample and reference chambers. The sensitivity of the calorimeter was determined to be 74 rad of phase shift per mW of thermal power. One milliwatt of thermal power is equivalent to 400 mg of plutonium (6% 240 Pu). The system noise base was about 0.2 rad, equivalent to about 1 mg of plutonium

  8. Applications of nonlinear fiber optics

    CERN Document Server

    Agrawal, Govind

    2008-01-01

    * The only book describing applications of nonlinear fiber optics * Two new chapters on the latest developments: highly nonlinear fibers and quantum applications* Coverage of biomedical applications* Problems provided at the end of each chapterThe development of new highly nonlinear fibers - referred to as microstructured fibers, holey fibers and photonic crystal fibers - is the next generation technology for all-optical signal processing and biomedical applications. This new edition has been thoroughly updated to incorporate these key technology developments.The bo

  9. Collapsed optical fiber: A novel method for improving thermoluminescence response of optical fiber

    Energy Technology Data Exchange (ETDEWEB)

    Mahdiraji, G. Amouzad, E-mail: ghafour@um.edu.my [Integrated Lightwave Research Group, Department of Electrical Engineering, Faculty of Engineering, University of Malaya, 50603 Kuala Lumpur (Malaysia); Adikan, F.R. Mahamd [Integrated Lightwave Research Group, Department of Electrical Engineering, Faculty of Engineering, University of Malaya, 50603 Kuala Lumpur (Malaysia); Bradley, D.A. [Department of Physics, University of Surrey, Guildford, GU2 7XH (United Kingdom); Department of Physics, Faculty of Science, University of Malaya, 50603 Kuala Lumpur (Malaysia)

    2015-05-15

    A new technique is shown to provide improved thermoluminescence (TL) response from optical fibers, based on collapsing down hollow capillary optical fibers (COF) into flat fibers (FF), producing fused inner walls and consequent defects generation. Four different fused silica preform tubes are used to fabricate in-house COFs and FFs, i.e., ultra-pure (F300), relatively pure silica (PS), germanium-doped (Ge), and Ge–Boron-doped (GeB). The optical fibers are then subjected to 6 MeV electron irradiation. While the results show similar TL response from F300-COF and -FF, the TL response of PS-COF is improved by a factor of 6 by collapsing it down to a FF. By doping Ge into the F300 tube, the TL response of the resultant Ge-COF shows an improvement of 3 times over that of F300-COF, while an improvement of a factor of 12 is obtained by producing a Ge-FF. In GeB preform, by collapsing the capillary fiber into a FF, an improvement in TL response of 31 times that of GeB-COF is obtained. TL glow curve analysis shows an additional peak to be generated in the FFs compared to that observed in the COFs. The TL intensity value of the new peak is significantly increased in the doped FFs compared to the undoped FFs. The results suggest that defects generation occurs as a result of the fusing/collapsing technique, providing a TL response from the optical fibers that can substantially improve upon that of existing TL system sensitivities. - Highlights: • A new method for increasing TL response of optical fiber is presented. • By collapsing capillary fiber wall surface, TL response of the fiber increased. • By adding impurity in the collapsing area, TL response significantly improved.

  10. Apparatus and Method for Elimination of Polarization-Induced Fading in Fiber-optic Sensor System

    Science.gov (United States)

    Chan, Hon Man (Inventor); Parker, Jr., Allen R. (Inventor)

    2015-01-01

    The invention is an apparatus and method of eliminating polarization-induced fading in interferometric fiber-optic sensor system having a wavelength-swept laser optical signal. The interferometric return signal from the sensor arms are combined and provided to a multi-optical path detector assembly and ultimately to a data acquisition and processing unit by way of a switch that is time synchronized with the laser scan sweep cycle.

  11. Optical-domain Compensation for Coupling between Optical Fiber Conjugate Vortex Modes

    DEFF Research Database (Denmark)

    Lyubopytov, Vladimir S.; Tatarczak, Anna; Lu, Xiaofeng

    2016-01-01

    We demonstrate for the first time optical-domain compensation for coupling between conjugate vortex modes in optical fibers. We introduce a novel method for reconstructing the complex propagation matrix of the optical fiber with straightforward implementation.......We demonstrate for the first time optical-domain compensation for coupling between conjugate vortex modes in optical fibers. We introduce a novel method for reconstructing the complex propagation matrix of the optical fiber with straightforward implementation....

  12. Eliminating Crystals in Non-Oxide Optical Fiber Preforms and Optical Fibers

    Science.gov (United States)

    Tucker, Dennis S.; LaPointe, Michael R.

    2012-01-01

    Non ]oxide fiber optics such as heavy metal fluoride and chalcogenide glasses are extensively used in infrared transmitting applications such as communication systems, chemical sensors, and laser fiber guides for cutting, welding and medical surgery. The addition of rare earths such as erbium, enable these materials to be used as fiber laser and amplifiers. Some of these glasses however are very susceptible to crystallization. Even small crystals can lead to light scatter and a high attenuation coefficient, limiting their usefulness. Previously two research teams found that microgravity suppressed crystallization in heavy metal fluoride glasses. Looking for a less expensive method to suppress crystallization, ground based research was performed utilizing an axial magnetic field. The experiments revealed identical results to those obtained via microgravity processing. This research then led to a patented process for eliminating crystals in optical fiber preforms and the resulting optical fibers. In this paper, the microgravity results will be reviewed as well as patents and papers relating to the use of magnetic fields in various material and glass processing applications. Finally our patent to eliminate crystals in non ]oxide glasses utilizing a magnetic field will be detailed.

  13. Optical fibers and RF a natural combination

    CERN Document Server

    Romeiser, Malcolm

    2004-01-01

    The optical fiber industry has experienced a period of consolidation and reorganization and is now poised for a new surge in growth. To take advantage of that growth, and to respond to the demand to use fiber more efficiently, designers need a better understanding of fiber optics. Taking the approach that optical fibers are an extension of RF-based communications, the author explains basic optical concepts, applications, and systems; the nature and performance characteristics of optical fibers; and optical sources, connectors and splices. Subsequent chapters explore current applications of fib

  14. Optical fibers and their applications for radiation measurements

    International Nuclear Information System (INIS)

    Kakuta, Tsunemi

    1998-01-01

    As a new method of radiation measurements, several optical methods using optical fiber sensors have been developed. One is the application of 'radio-luminescence' from the optical fiber itself such as plastic scintillating fibers. Other researches are made to develop the 'combined-sensors' by combination of optical fibers and scintillating materials. Using the time domain method of optical fiber sensors, the profile of radiation distribution along the optical fiber can be easily determined. A multi-parameter sensing system for measurement of radiation, temperature, stress, etc, are also expected using these optical fiber sensors. (author)

  15. Shedding Light on Fiber Optics.

    Science.gov (United States)

    Bunch, Robert M.

    1994-01-01

    Explains the principles of fiber optics as a medium for light-wave communication. Current uses of fiber systems on college campuses include voice, video, and local area network applications. A group of seven school districts in Minnesota are linked via fiber-optic cables. Other uses are discussed. (MLF)

  16. Optical fiber communications

    CERN Document Server

    Keiser, Gerd

    2008-01-01

    The fourth edition of this popular text and reference book presents the fundamental principles for understanding and applying optical fiber technology to sophisticated modern telecommunication systems. Optical-fiber-based telecommunication networks have become a major information-transmission-system, with high capacity links encircling the globe in both terrestrial and undersea installations. Numerous passive and active optical devices within these links perform complex transmission and networking functions in the optical domain, such as signal amplification, restoration, routing, and switching. Along with the need to understand the functions of these devices comes the necessity to measure both component and network performance, and to model and stimulate the complex behavior of reliable high-capacity networks.

  17. Engineering modes in optical fibers with metamaterial

    DEFF Research Database (Denmark)

    Yan, Min; Mortensen, Asger; Qiu, Min

    2009-01-01

    In this paper, we report a preliminary theoretical study on optical fibers with fine material inclusions whose geometrical inhomogeneity is almost indistinguishable by the operating wavelength.We refer to such fibers as metamaterial optical fibers, which can conceptually be considered...... as an extension from the previously much publicized microstructured optical fibers. Metamaterials can have optical properties not obtainable in naturally existing materials, including artificial anisotropy as well as graded material properties. Therefore, incorporation of metamaterial in optical fiber designs can...

  18. A fiber-optic polarimetric demonstration kit

    International Nuclear Information System (INIS)

    Eftimov, T; Dimitrova, T L; Ivanov, G

    2012-01-01

    A simple and multifunctional fiber-optic polarimetric kit on the basis of highly birefringent single-mode fibers is presented. The fiber-optic polarimetric kit allows us to perform the following laboratory exercises: (i) fiber excitation and the measurement of numerical aperture, (ii) polarization preservation and (iii) obtain polarization-sensitive fiberized interferometers.

  19. Thermoluminescence characteristics of different dimensions of Ge-doped optical fibers in radiation dosimetry

    Energy Technology Data Exchange (ETDEWEB)

    Begum, M.; Mizanur R, A. K. M.; Abdul R, H. A.; Yusoff, Z. [Multimedia University, Faculty of Engineering, 63100 Cyberjaya, Selangor Darul Ehsan (Malaysia); Begum, M. [Bangladesh Atomic Energy Commission, E-12/A, Agargaon, Sher-e-Blanga Nagar Dhaka-1207 (Bangladesh); Mat-Sharif, K. A. [Lingkaran Teknokrat Timur, Telekom Research and Development, 63000 Cyberjaya, Selangor Darul Ehsan (Malaysia); Amin, Y. M. [University of Malaya, Faculty of Science, Depatment of Physics, 50603 Kuala Lumpur (Malaysia); Bradley, D. A., E-mail: go2munmun@yahoo.com [University of Surrey, Department of Physics, Guildford GU2 7XH (United Kingdom)

    2014-08-15

    Important thermoluminescence (Tl) properties of five (5) different core sizes Ge doped optical fibers have been studied to develop new Tl material with better response. These are drawn from same preform applying different speed and tension during drawing phase. The results of the investigations are also compared with most commonly used standard TLD-100 chips (LiF:Mg,Ti) and commercial multimode Ge doped optical fiber (Yangtze Optical Fiber, China). Scanning Electron Microscope (Sem) and EDX analysis of the fibers are also performed to map Ge distribution across the deposited region. Standard Gamma radiation source in SSDL (Secondary Standard Dosimetry Lab) was used for irradiation covering dose range from 1 Gy to 10 Gy. The essential dosimetric parameters that have been studied are Tl linearity, reproducibility and fading. Prior to irradiation all samples ∼0.5 cm length are annealed at temperature of 400 grades C for 1 hour period to standardize their sensitivities and background. Standard TLD-100 chips are also annealed for 1 hour at 400 grades C and subsequently 2 hours at 100 grades C to yield the highest sensitivity. Tl responses of these fibers show linearity over a wide gamma radiation dose that is an important property for radiation dosimetry. Among all fibers used in this study, 100 μm core diameter fiber provides highest response that is 2.6 times than that of smallest core (20 μm core) optical fiber. These fiber-samples demonstrate better response than commercial multi-mode optical fiber and also provide low degree of fading about 20% over a period of fifteen days for gamma radiation. Effective atomic number (Z{sub eff}) is found in the range (13.25 to 13.69) that is higher than soft tissue (7.5) however within the range of human-bone (11.6-13.8). All the fibers can also be re-used several times as a detector after annealing. Tl properties of the Ge-doped optical fibers indicate promising applications in ionizing radiation dosimetry. (author)

  20. Thermoluminescence characteristics of different dimensions of Ge-doped optical fibers in radiation dosimetry

    International Nuclear Information System (INIS)

    Begum, M.; Mizanur R, A. K. M.; Abdul R, H. A.; Yusoff, Z.; Begum, M.; Mat-Sharif, K. A.; Amin, Y. M.; Bradley, D. A.

    2014-08-01

    Important thermoluminescence (Tl) properties of five (5) different core sizes Ge doped optical fibers have been studied to develop new Tl material with better response. These are drawn from same preform applying different speed and tension during drawing phase. The results of the investigations are also compared with most commonly used standard TLD-100 chips (LiF:Mg,Ti) and commercial multimode Ge doped optical fiber (Yangtze Optical Fiber, China). Scanning Electron Microscope (Sem) and EDX analysis of the fibers are also performed to map Ge distribution across the deposited region. Standard Gamma radiation source in SSDL (Secondary Standard Dosimetry Lab) was used for irradiation covering dose range from 1 Gy to 10 Gy. The essential dosimetric parameters that have been studied are Tl linearity, reproducibility and fading. Prior to irradiation all samples ∼0.5 cm length are annealed at temperature of 400 grades C for 1 hour period to standardize their sensitivities and background. Standard TLD-100 chips are also annealed for 1 hour at 400 grades C and subsequently 2 hours at 100 grades C to yield the highest sensitivity. Tl responses of these fibers show linearity over a wide gamma radiation dose that is an important property for radiation dosimetry. Among all fibers used in this study, 100 μm core diameter fiber provides highest response that is 2.6 times than that of smallest core (20 μm core) optical fiber. These fiber-samples demonstrate better response than commercial multi-mode optical fiber and also provide low degree of fading about 20% over a period of fifteen days for gamma radiation. Effective atomic number (Z eff ) is found in the range (13.25 to 13.69) that is higher than soft tissue (7.5) however within the range of human-bone (11.6-13.8). All the fibers can also be re-used several times as a detector after annealing. Tl properties of the Ge-doped optical fibers indicate promising applications in ionizing radiation dosimetry. (author)

  1. Design and characterization of a real time particle radiography system based on scintillating optical fibers

    International Nuclear Information System (INIS)

    Longhitano, F.; Lo Presti, D.; Bonanno, D.L.; Bongiovanni, D.G.; Leonora, E.; Randazzo, N.; Reito, S.; Sipala, V.; Gallo, G.

    2017-01-01

    The fabrication and characterization of a charged particle imaging system composed of a tracker and a residual range detector (RRD) is described. The tracker is composed of four layers of scintillating fibers (SciFi), 500 μm side square section, arranged to form two planes orthogonal to each other. The fibers are coupled to two Multi-Pixel Photon Counter (MPPC) arrays by means of a channel reduction system patented by the Istituto Nazionale di Fisica Nucleare (INFN) (Presti, 2015) . Sixty parallel layers of the same fibers used in the tracker compose the RRD. The various layers are optically coupled to a MPPC array by means of wavelength shifting (WLS) fibers. The sensitive area of the two detectors is 9×9 cm"2. The results of the measurements, acquired by the prototypes with CATANA (Cirrone, 2008) proton beam, and a comparison with the simulations of the detectors are presented. - Highlights: • A real time charged particle imaging system is described. • The system is composed of a position sensitive and a residual range detectors. • The sensitive area of the system is composed of submillimeter scintillating fibers. • The read-out is based on a patented channel reduction system. • The results of the measurements with proton beam are presented.

  2. Design and characterization of a real time particle radiography system based on scintillating optical fibers

    Energy Technology Data Exchange (ETDEWEB)

    Longhitano, F., E-mail: fabio.longhitano@ct.infn.it [Istituto Nazionale di Fisica Nucleare (INFN), Sezione Catania (Italy); Lo Presti, D. [Istituto Nazionale di Fisica Nucleare (INFN), Sezione Catania (Italy); Department of Physics and Astronomy, University of Catania (Italy); Bonanno, D.L.; Bongiovanni, D.G.; Leonora, E.; Randazzo, N.; Reito, S. [Istituto Nazionale di Fisica Nucleare (INFN), Sezione Catania (Italy); Sipala, V. [University of Sassari, Sassari (Italy); Istituto Nazionale di Fisica Nucleare (INFN), Sezione di Cagliari (Italy); Gallo, G. [Department of Physics and Astronomy, University of Catania (Italy)

    2017-02-11

    The fabrication and characterization of a charged particle imaging system composed of a tracker and a residual range detector (RRD) is described. The tracker is composed of four layers of scintillating fibers (SciFi), 500 μm side square section, arranged to form two planes orthogonal to each other. The fibers are coupled to two Multi-Pixel Photon Counter (MPPC) arrays by means of a channel reduction system patented by the Istituto Nazionale di Fisica Nucleare (INFN) (Presti, 2015) . Sixty parallel layers of the same fibers used in the tracker compose the RRD. The various layers are optically coupled to a MPPC array by means of wavelength shifting (WLS) fibers. The sensitive area of the two detectors is 9×9 cm{sup 2}. The results of the measurements, acquired by the prototypes with CATANA (Cirrone, 2008) proton beam, and a comparison with the simulations of the detectors are presented. - Highlights: • A real time charged particle imaging system is described. • The system is composed of a position sensitive and a residual range detectors. • The sensitive area of the system is composed of submillimeter scintillating fibers. • The read-out is based on a patented channel reduction system. • The results of the measurements with proton beam are presented.

  3. Turbidimeter Design and Analysis: A Review on Optical Fiber Sensors for the Measurement of Water Turbidity

    Directory of Open Access Journals (Sweden)

    Mohd Zubir Bin MatJafri

    2009-10-01

    Full Text Available Turbidimeters operate based on the optical phenomena that occur when incident light through water body is scattered by the existence of foreign particles which are suspended within it. This review paper elaborates on the standards and factors that may influence the measurement of turbidity. The discussion also focuses on the optical fiber sensor technologies that have been applied within the lab and field environment and have been implemented in the measurement of water turbidity and concentration of particles. This paper also discusses and compares results from three different turbidimeter designs that use various optical components. Mohd Zubir and Bashah and Daraigan have introduced a design which has simple configurations. Omar and MatJafri, on the other hand, have established a new turbidimeter design that makes use of optical fiber cable as the light transferring medium. The application of fiber optic cable to the turbidimeter will present a flexible measurement technique, allowing measurements to be made online. Scattered light measurement through optical fiber cable requires a highly sensitive detector to interpret the scattered light signal. This has made the optical fiber system have higher sensitivity in measuring turbidity compared to the other two simple turbidimeters presented in this paper. Fiber optic sensors provide the potential for increased sensitivity over large concentration ranges. However, many challenges must be examined to develop sensors that can collect reliable turbidity measurements in situ.

  4. Turbidimeter Design and Analysis: A Review on Optical Fiber Sensors for the Measurement of Water Turbidity

    Science.gov (United States)

    Omar, Ahmad Fairuz Bin; MatJafri, Mohd Zubir Bin

    2009-01-01

    Turbidimeters operate based on the optical phenomena that occur when incident light through water body is scattered by the existence of foreign particles which are suspended within it. This review paper elaborates on the standards and factors that may influence the measurement of turbidity. The discussion also focuses on the optical fiber sensor technologies that have been applied within the lab and field environment and have been implemented in the measurement of water turbidity and concentration of particles. This paper also discusses and compares results from three different turbidimeter designs that use various optical components. Mohd Zubir and Bashah and Daraigan have introduced a design which has simple configurations. Omar and MatJafri, on the other hand, have established a new turbidimeter design that makes use of optical fiber cable as the light transferring medium. The application of fiber optic cable to the turbidimeter will present a flexible measurement technique, allowing measurements to be made online. Scattered light measurement through optical fiber cable requires a highly sensitive detector to interpret the scattered light signal. This has made the optical fiber system have higher sensitivity in measuring turbidity compared to the other two simple turbidimeters presented in this paper. Fiber optic sensors provide the potential for increased sensitivity over large concentration ranges. However, many challenges must be examined to develop sensors that can collect reliable turbidity measurements in situ. PMID:22408507

  5. Performance and safety of holmium: YAG laser optical fibers.

    Science.gov (United States)

    Knudsen, Bodo E; Glickman, Randolph D; Stallman, Kenneth J; Maswadi, Saher; Chew, Ben H; Beiko, Darren T; Denstedt, John D; Teichman, Joel M H

    2005-11-01

    Lower-pole ureteronephroscopy requires transmission of holmium:YAG energy along a deflected fiber. Current ureteroscopes are capable of high degrees of deflection, which may stress laser fibers beyond safe limits during lower-pole use. We hypothesized that optical fiber and safety measures differ among manufacturers. Small (200-273-microm) and medium-diameter (300-400-microm) Ho:YAG fibers were tested in a straight and 180 degrees bent configuration. Energy transmission was measured by an energy detector. Fiber durability was assessed by firing the laser in sequentially tighter bending diameters. The fibers were bent to 180 degrees with a diameter of 6 cm and run at 200- to 4000-mJ pulse energy to determine the minimum energy required to fracture the fiber. The bending diameter was decreased by 1-cm increments and testing repeated until a bending diameter of 1 cm was reached. The maximum deflection of the ACMI DUR-8E ureteroscope with each fiber in the working channel was recorded. The flow rate through the working channel of the DUR-8E was measured for each fiber. The mean energy transmission differed among fibers (P < 0.001). The Lumenis SL 200 and the InnovaQuartz 400 were the best small and medium-diameter fibers, respectively, in resisting thermal breakdown (P < 0.01). The Dornier Lightguide Super 200 fractured repeatedly at a bend diameter of 2 cm and with the lowest energy (200 mJ). The other small fibers fractured only at a bend diameter of 1 cm. The Sharplan 200 and InnovaQuartz Sureflex 273T were the most flexible fibers, the Lumenis SL 365 the least. The flow rate was inversely proportional to four times the power of the diameter of the fiber. Optical performance and safety differ among fibers. Fibers transmit various amounts of energy to their cladding when bent. During lower-pole nephroscopy with the fiber deflected, there is a risk of fiber fracture from thermal breakdown and laser-energy transmission to the endoscope. Some available laser fibers

  6. Novel Fiber-Optic Ring Acoustic Emission Sensor.

    Science.gov (United States)

    Wei, Peng; Han, Xiaole; Xia, Dong; Liu, Taolin; Lang, Hao

    2018-01-13

    Acoustic emission technology has been applied to many fields for many years. However, the conventional piezoelectric acoustic emission sensors cannot be used in extreme environments, such as those with heavy electromagnetic interference, high pressure, or strong corrosion. In this paper, a novel fiber-optic ring acoustic emission sensor is proposed. The sensor exhibits high sensitivity, anti-electromagnetic interference, and corrosion resistance. First, the principle of a novel fiber-optic ring sensor is introduced. Different from piezoelectric and other fiber acoustic emission sensors, this novel sensor includes both a sensing skeleton and a sensing fiber. Second, a heterodyne interferometric demodulating method is presented. In addition, a fiber-optic ring sensor acoustic emission system is built based on this method. Finally, fiber-optic ring acoustic emission experiments are performed. The novel fiber-optic ring sensor is glued onto the surface of an aluminum plate. The 150 kHz standard continuous sinusoidal signals and broken lead signals are successfully detected by the novel fiber-optic ring acoustic emission sensor. In addition, comparison to the piezoelectric acoustic emission sensor is performed, which shows the availability and reliability of the novel fiber-optic ring acoustic emission sensor. In the future, this novel fiber-optic ring acoustic emission sensor will provide a new route to acoustic emission detection in harsh environments.

  7. Review of High-Speed Fiber Optic Grating Sensors Systems

    Energy Technology Data Exchange (ETDEWEB)

    Udd, E; Benterou, J; May, C; Mihailov, S J; Lu, P

    2010-03-24

    Fiber grating sensors can be used to support a wide variety of high speed measurement applications. This includes measurements of vibrations on bridges, traffic monitoring on freeways, ultrasonic detection to support non-destructive tests on metal plates and providing details of detonation events. This paper provides a brief overview of some of the techniques that have been used to support high speed measurements using fiber grating sensors over frequency ranges from 10s of kHz, to MHZ and finally toward frequencies approaching the GHz regime. Very early in the development of fiber grating sensor systems it was realized that a high speed fiber grating sensor system could be realized by placing an optical filter that might be a fiber grating in front of a detector so that spectral changes in the reflection from a fiber grating were amplitude modulated. In principal the only limitation on this type of system involved the speed of the output detector which with the development of high speed communication links moved from the regime of 10s of MHz toward 10s of GHz. The earliest deployed systems involved civil structures including measurements of the strain fields on composite utility poles and missile bodies during break tests, bridges and freeways. This was followed by a series of developments that included high speed fiber grating sensors to support nondestructive testing via ultrasonic wave detection, high speed machining and monitoring ship hulls. Each of these applications involved monitoring mechanical motion of structures and thus interest was in speeds up to a few 10s of MHz. Most recently there has been interest in using fiber grating to monitor the very high speed events such as detonations and this has led to utilization of fiber gratings that are consumed during an event that may require detection speeds of hundreds of MHz and in the future multiple GHz.

  8. Fiber optics welder

    Science.gov (United States)

    Higgins, R.W.; Robichaud, R.E.

    A system is described for welding fiber optic waveguides together. The ends of the two fibers to be joined together are accurately, collinearly aligned in a vertical orientation and subjected to a controlled, diffuse arc to effect welding and thermal conditioning. A front-surfaced mirror mounted at a 45/sup 0/ angle to the optical axis of a stereomicroscope mounted for viewing the junction of the ends provides two orthogonal views of the interface during the alignment operation.

  9. Fiber optic neutron imaging system: calibration

    International Nuclear Information System (INIS)

    Malone, R.M.; Gow, C.E.; Thayer, D.R.

    1981-01-01

    Two neutron imaging experiments using fiber optics have been performed at the Nevada Test Site. In each experiment, an array of scintillator fluor tubes is exposed to neutrons. Light is coupled out through radiation resistant PCS fibers (8-m long) into high-bandwidth, graded index fibers. For image reconstruction to be accurate, common timing differences and transmission variations between fiber optic channels are needed. The calibration system featured a scanning pulsed dye laser, a specially designed fiber optic star coupler, a tektronix 7912AD transient digitizer, and a DEC PDP 11/34 computing system

  10. Optical fibers for FTTH application

    Science.gov (United States)

    Guzowski, Bartlomiej; Tosik, Grzegorz; Lisik, Zbigniew; Bedyk, Michal; Kubiak, Andrzej

    2013-07-01

    In this paper the specifics of FTTH (Fiber To The Home) networks in terms of requirements for optical fibers has been presented. Optical fiber samples used in FTTH applications acquired from the worldwide leading manufacturers were subjected to small diameter mandrel wraps tests. The detailed procedures of performed tests and the measurement results has been presented.

  11. Optical Fiber for High-Power Optical Communication

    Directory of Open Access Journals (Sweden)

    Kenji Kurokawa

    2012-09-01

    Full Text Available We examined optical fibers suitable for avoiding such problems as the fiber fuse phenomenon and failures at bends with a high power input. We found that the threshold power for fiber fuse propagation in photonic crystal fiber (PCF and hole-assisted fiber (HAF can exceed 18 W, which is more than 10 times that in conventional single-mode fiber (SMF. We considered this high threshold power in PCF and HAF to be caused by a jet of high temperature fluid penetrating the air holes. We showed examples of two kinds of failures at bends in conventional SMF when the input power was 9 W. We also observed the generation of a fiber fuse under a condition that caused a bend-loss induced failure. We showed that one solution for the failures at bends is to use optical fibers with a low bending loss such as PCF and HAF. Therefore, we consider PCF and HAF to be attractive solutions to the problems of the fiber fuse phenomenon and failures at bends with a high power input.

  12. Novel Fiber-Optic Ring Acoustic Emission Sensor

    Directory of Open Access Journals (Sweden)

    Peng Wei

    2018-01-01

    Full Text Available Acoustic emission technology has been applied to many fields for many years. However, the conventional piezoelectric acoustic emission sensors cannot be used in extreme environments, such as those with heavy electromagnetic interference, high pressure, or strong corrosion. In this paper, a novel fiber-optic ring acoustic emission sensor is proposed. The sensor exhibits high sensitivity, anti-electromagnetic interference, and corrosion resistance. First, the principle of a novel fiber-optic ring sensor is introduced. Different from piezoelectric and other fiber acoustic emission sensors, this novel sensor includes both a sensing skeleton and a sensing fiber. Second, a heterodyne interferometric demodulating method is presented. In addition, a fiber-optic ring sensor acoustic emission system is built based on this method. Finally, fiber-optic ring acoustic emission experiments are performed. The novel fiber-optic ring sensor is glued onto the surface of an aluminum plate. The 150 kHz standard continuous sinusoidal signals and broken lead signals are successfully detected by the novel fiber-optic ring acoustic emission sensor. In addition, comparison to the piezoelectric acoustic emission sensor is performed, which shows the availability and reliability of the novel fiber-optic ring acoustic emission sensor. In the future, this novel fiber-optic ring acoustic emission sensor will provide a new route to acoustic emission detection in harsh environments.

  13. A projective geometry lead fiber scintillator detector

    International Nuclear Information System (INIS)

    Paar, H.; Thomas, D.; Sivertz, M.; Ong, B.; Acosta, D.; Taylor, T.; Shreiner, B.

    1990-01-01

    The Superconducting Super Collider (SSC), presently under construction near Dallas, Texas requires highly sophisticated particle detectors. The energy and particle flux at the SSC are more than an order of magnitude higher than the highest machine located at the Fermi National Accelerator near Chicago. An important element of particle detectors for the SSC is the calorimeter. It measures a particle's energy by sampling its energy deposit in heavy material, such as (depleted) uranium or lead. The sampling medium must be interspersed with heavy absorber material. In the case of scintillating plastic, two methods are under consideration: plates and fibers. In the case of plates, a sandwich of scintillator plates and uranium plates is constructed. In the use of fibers (still in the prototype stage), 1 mm. diameter cylindrical scintillating fibers are inserted into grooves that are machined into lead layers. The layers are stacked and epoxied together to form the required geometrical shape of the detector. Lead and scintillating plastic sampling can meet the physics requirements of the detector. This has been shown in an R ampersand D program which is underway at the University of California at San Diego (UCSD), High Energy Physics Group. This R ampersand D is funded by the Department of Energy, High Energy Physics and SSC Divisions

  14. Enhancing Optical Communications with Brand New Fibers

    DEFF Research Database (Denmark)

    Morioka, Toshio; Awaji, Yoshinari; Ryf, Roland

    2012-01-01

    Optical fibers have often been considered to offer effectively infinite capacity to support the rapid traffic growth essential to our information society. However, as demand has grown and technology has developed, we have begun to realize that there is a fundamental limit to fiber capacity of ~ 100...... Tb/s per fiber for systems based on conventional single-core single-mode optical fiber as the transmission medium. This limit arises from the interplay of a number of factors including the Shannon limit, optical fiber nonlinearities, the fiber fuse effect, as well as optical amplifier bandwidth...... new fibers for space-division multiplexing and mode-division multiplexing....

  15. Applications of fiber optics in physical protection

    International Nuclear Information System (INIS)

    Buckle, T.H.

    1994-03-01

    The purpose of this NUREG is to provide technical information useful for the development of fiber-optic communications and intrusion detection subsystems relevant to physical protection. There are major sections on fiber-optic technology and applications. Other topics include fiber-optic system components and systems engineering. This document also contains a glossary, a list of standards and specifications, and a list of fiber-optic equipment vendors

  16. Fiber fuse light-induced continuous breakdown of silica glass optical fiber

    CERN Document Server

    Todoroki, Shin-ichi

    2014-01-01

    This book describes the fiber fuse phenomenon that causes a serious problem for the present optical communication systems. High-power light often brings about catastrophic damage to optical devices. Silica glass optical fibers with ultralow transmission loss are not the exception. A fiber fuse appears in a heated region of the fiber cable delivering a few watts of light and runs toward the light source destroying its core region. Understanding this phenomenon is a necessary first step in the development of future optical communication systems. This book provides supplementary videos and photog

  17. Handbook of fiber optics theory and applications

    CERN Document Server

    Yeh, Chai

    2013-01-01

    Dr. Yeh supplies a firm theoretical foundation in such topics as propagation of light through fibers, fiber fabrication, loss mechanisms, and dispersion properties. He then expands from this into such practical areas as fiber splicing, measuring loss in fibers, fiber-based communications networks, remote fiber sensors, and integrated optics. Whether involved in fiber optics research, design, or practical implementation of systems, this handbook will be extremely useful.Key Features* Here is a comprehensive, ""one-stop"" reference with state-of-the-art information on fiber optics Included is da

  18. Novel Electro-Optical Coupling Technique for Magnetic Resonance-Compatible Positron Emission Tomography Detectors

    Directory of Open Access Journals (Sweden)

    Peter D. Olcott

    2009-03-01

    Full Text Available A new magnetic resonance imaging (MRI-compatible positron emission tomography (PET detector design is being developed that uses electro-optical coupling to bring the amplitude and arrival time information of high-speed PET detector scintillation pulses out of an MRI system. The electro-optical coupling technology consists of a magnetically insensitive photodetector output signal connected to a nonmagnetic vertical cavity surface emitting laser (VCSEL diode that is coupled to a multimode optical fiber. This scheme essentially acts as an optical wire with no influence on the MRI system. To test the feasibility of this approach, a lutetium-yttrium oxyorthosilicate crystal coupled to a single pixel of a solid-state photomultiplier array was placed in coincidence with a lutetium oxyorthosilicate crystal coupled to a fast photomultiplier tube with both the new nonmagnetic VCSEL coupling and the standard coaxial cable signal transmission scheme. No significant change was observed in 511 keV photopeak energy resolution and coincidence time resolution. This electro-optical coupling technology enables an MRI-compatible PET block detector to have a reduced electromagnetic footprint compared with the signal transmission schemes deployed in the current MRI/PET designs.

  19. Novel electro-optical coupling technique for magnetic resonance-compatible positron emission tomography detectors.

    Science.gov (United States)

    Olcott, Peter D; Peng, Hao; Levin, Craig S

    2009-01-01

    A new magnetic resonance imaging (MRI)-compatible positron emission tomography (PET) detector design is being developed that uses electro-optical coupling to bring the amplitude and arrival time information of high-speed PET detector scintillation pulses out of an MRI system. The electro-optical coupling technology consists of a magnetically insensitive photodetector output signal connected to a nonmagnetic vertical cavity surface emitting laser (VCSEL) diode that is coupled to a multimode optical fiber. This scheme essentially acts as an optical wire with no influence on the MRI system. To test the feasibility of this approach, a lutetium-yttrium oxyorthosilicate crystal coupled to a single pixel of a solid-state photomultiplier array was placed in coincidence with a lutetium oxyorthosilicate crystal coupled to a fast photomultiplier tube with both the new nonmagnetic VCSEL coupling and the standard coaxial cable signal transmission scheme. No significant change was observed in 511 keV photopeak energy resolution and coincidence time resolution. This electro-optical coupling technology enables an MRI-compatible PET block detector to have a reduced electromagnetic footprint compared with the signal transmission schemes deployed in the current MRI/PET designs.

  20. Evaluations of fiber optic sensors for interior applications

    Energy Technology Data Exchange (ETDEWEB)

    Sandoval, M.W.; Malone, T.P.

    1996-02-01

    This report addresses the testing and evaluation of commercial fiber optic intrusion detection systems in interior applications. The applications include laying optical fiber cable above suspended ceilings to detect removal of ceiling tiles, embedding optical fibers inside a tamper or item monitoring blanket that could be placed over an asset, and installing optical fibers on a door to detect movement or penetration. Detection capability of the fiber optic sensors as well as nuisance and false alarm information were focused on during the evaluation. Fiber optic sensor processing, system components, and system setup are described.

  1. Optical pulse generation using fiber lasers and integrated optics

    International Nuclear Information System (INIS)

    Wilcox, R.B.; Browning, D.F.; Burkhart, S.C.; VanWonterghem, B.W.

    1995-01-01

    We have demonstrated an optical pulse forming system using fiber and integrated optics, and have designed a multiple-output system for a proposed fusion laser facility. Our approach is an advancement over previous designs for fusion lasers, and an unusual application of fiber lasers and integrated optics

  2. Fiber optic fire detection technology

    International Nuclear Information System (INIS)

    Hering, D.W.

    1990-01-01

    Electrostatic application of paint was, and still is, the most technically feasible method of reducing VOC (volatile organic compounds) emissions, while reducing the cost to apply the coatings. Prior to the use of electrostatics, only two sides of the traditional fire triangle were normally present in the booth, fuel (solvent), and oxygen (air). Now the third leg (the ignition source) was present at virtually all times during the production operation in the form of the electrostatic charge and the resulting energy in the system. The introduction of fiber optics into the field of fire detection was for specific application to the electrostatic painting industry, but specifically, robots used in the application of electrostatic painting in the automotive industry. The use of fiber optics in this hazard provided detection for locations that have been previously prohibited or inaccessible with the traditional fire detection systems. The fiber optic technology that has been adapted to the field of fire detection operates on the principle of transmission of photons through a light guide (optic fiber). When the light guide is subjected to heat, the cladding on the light guide melts away from the core and allows the light (photons) to escape. The controller, which contains the emitter and receiver is set-up to distinguish between partial loss of light and a total loss of light. Glass optical fibers carrying light offer distinct advantages over wires or coaxial cables carrying electricity as a transmission media. The uses of fiber optic detection will be expanded in the near future into such areas as aircraft, cable trays and long conveyor runs because fiber optics can carry more information and deliver it with greater clarity over longer distances with total immunity to all kinds of electrical interference

  3. Polymer optical fiber bragg grating sensors

    DEFF Research Database (Denmark)

    Stefani, Alessio; Yuan, Scott Wu; Andresen, Søren

    2010-01-01

    Fiber-optical accelerometers based on polymer optical fiber Bragg gratings are reported. We have written fiber Bragg gratings for 1550 nm and 850 nm operations, characterized their temperature and strain response, and tested their performance in a prototype accelerometer....

  4. Behavior of optical fibers under heavy irradiation

    International Nuclear Information System (INIS)

    Kakuta, T.; Sagawa, T.

    1998-01-01

    Several kinds of optical diagnostics are planned in a fusion reactor. Complicated optical systems such as periscopes are thought to be primary candidates for optical measurements, especially for visible wavelengths. However, optical fibers have several advantages over such optical systems. Also, the optical fibers could be a far better transmission line for signals under a high electromagnetic field. However, they have been considered vulnerable to heavy irradiation. In this study, several kinds of optical fibers were irradiated in the JMTR fission reactor. The optical transmissivity in fibers was measured in situ during fast neutron and gamma irradiation, up to doses of 2 x 10 24 n m -2 and 5 x 10 9 Gy, respectively. The irradiation temperature ranged from 300 to 700 K. For pure ionizing irradiation environments, some methods for improving the radiation resistance of optical fibers were indicated. The results showed that effects of the irradiation associated with fast neutrons would be different from the effects of pure ionizing irradiation. Some fibers were found to withstand the heavy irradiation, especially in an infrared wavelength range. (orig.)

  5. Refractive index retrieving of polarization maintaining optical fibers

    Science.gov (United States)

    Ramadan, W. A.; Wahba, H. H.; Shams El-Din, M. A.; Abd El-Sadek, I. G.

    2018-01-01

    In this paper, the cross-section images, of two different types of polarization maintaining (PM) optical fibers, are employed to estimate the optical phase variation due to transverse optical rays passing through these optical fibers. An adaptive algorithm is proposed to recognize the different areas constituting the PM optical fibers cross-sections. These areas are scanned by a transverse beam to calculate the optical paths for given values of refractive indices. Consequently, the optical phases across the PM optical fibers could be recovered. PM optical fiber is immersed in a matching fluid and set in the object arm of Mach-Zehnder interferometer. The produced interferograms are analyzed to extract the optical phases caused by the PM optical fibers. The estimated optical phases could be optimized to be in good coincidence with experimentally extracted ones. This has been achieved through changing of the PM optical fibers refractive indices to retrieve the correct values. The correct refractive indices values are confirmed by getting the best fit between the estimated and the extracted optical phases. The presented approach is a promising one because it provides a quite direct and accurate information about refractive index, birefringence and beat length of PM optical fibers comparing with different techniques handle the same task.

  6. Dynamically tunable optical bottles from an optical fiber

    DEFF Research Database (Denmark)

    Chen, Yuhao; Yan, Lu; Rishøj, Lars Søgaard

    2012-01-01

    Optical fibers have long been used to impose spatial coherence to shape free-space optical beams. Recent work has shown that one can use higher order fiber modes to create more exotic beam profiles. We experimentally generate optical bottles from Talbot imaging in the coherent superposition of two...... fiber modes excited with long period gratings, and obtain a 28 μm × 6 μm bottle with controlled contrast up to 10.13 dB. Our geometry allows for phase tuning of one mode with respect to the other, which enables us to dynamically move the bottle in free space....

  7. Optical fiber end-facet polymer suspended-mirror devices

    Science.gov (United States)

    Yao, Mian; Wu, Jushuai; Zhang, A. Ping; Tam, Hwa-Yaw; Wai, P. K. A.

    2017-04-01

    This paper presents a novel optical fiber device based on a polymer suspended mirror on the end facet of an optical fiber. With an own-developed optical 3D micro-printing technology, SU-8 suspended-mirror devices (SMDs) were successfully fabricated on the top of a standard single-mode optical fiber. Optical reflection spectra of the fabricated SU- 8 SMDs were measured and compared with theoretical analysis. The proposed technology paves a way towards 3D microengineering of the small end-facet of optical fibers to develop novel fiber-optic sensors.

  8. Application of Fiber Optic Instrumentation

    Science.gov (United States)

    Richards, William Lance; Parker, Allen R., Jr.; Ko, William L.; Piazza, Anthony; Chan, Patrick

    2012-01-01

    Fiber optic sensing technology has emerged in recent years offering tremendous advantages over conventional aircraft instrumentation systems. The advantages of fiber optic sensors over their conventional counterparts are well established; they are lighter, smaller, and can provide enormous numbers of measurements at a fraction of the total sensor weight. After a brief overview of conventional and fiber-optic sensing technology, this paper presents an overview of the research that has been conducted at NASA Dryden Flight Research Center in recent years to advance this promising new technology. Research and development areas include system and algorithm development, sensor characterization and attachment, and real-time experimentally-derived parameter monitoring for ground- and flight-based applications. The vision of fiber optic smart structure technology is presented and its potential benefits to aerospace vehicles throughout the lifecycle, from preliminary design to final retirement, are presented.

  9. Optical Characterization of Doped Thermoplastic and Thermosetting Polymer-Optical-Fibers

    Directory of Open Access Journals (Sweden)

    Igor Ayesta

    2017-03-01

    Full Text Available The emission properties of a graded-index thermoplastic polymer optical fiber and a step-index thermosetting one, both doped with rhodamine 6G, have been studied. The work includes a detailed analysis of the amplified spontaneous emission together with a study of the optical gains and losses of the fibers. The photostability of the emission of both types of fibers has also been investigated. Comparisons between the results of both doped polymer optical fibers are presented and discussed.

  10. Fiber optic vibration sensor using bifurcated plastic optical fiber

    Science.gov (United States)

    Abdullah, M.; Bidin, N.; Yasin, M.

    2016-11-01

    An extrinsic fiber optic vibration sensor is demonstrated for a fiber optic displacement sensor based on a bundled multimode fiber to measure a vibration frequency ranging from 100 until 3000 Hz. The front slope has a sensitivity of 0.1938mV/mm and linearity of 99.7% within a measurement range between 0.15-3.00 mm. By placing the diaphragm of the concave load-speaker within the linear range from the probe, the frequency of the vibration can be measured with error percentage of less than 1.54%. The graph of input against output frequency for low, medium and high frequency range show very high linearity up to 99%. Slope for low, medium, and high frequency range are calculated as 1.0026, 0.9934, and 1.0007 respectively. Simplicity, long term stability, low power consumption, wide dynamic and frequency ranges, noise reduction, ruggedness, linearity and light weight make it promising alternative to other well-establish methods for vibration frequency measurement.

  11. Accurate mode characterization of two-mode optical fibers by in-fiber acousto-optics.

    Science.gov (United States)

    Alcusa-Sáez, E; Díez, A; Andrés, M V

    2016-03-07

    Acousto-optic interaction in optical fibers is exploited for the accurate and broadband characterization of two-mode optical fibers. Coupling between LP 01 and LP 1m modes is produced in a broadband wavelength range. Difference in effective indices, group indices, and chromatic dispersions between the guided modes, are obtained from experimental measurements. Additionally, we show that the technique is suitable to investigate the fine modes structure of LP modes, and some other intriguing features related with modes' cut-off.

  12. Fiber-optic polarization diversity detection for rotary probe optical coherence tomography.

    Science.gov (United States)

    Lee, Anthony M D; Pahlevaninezhad, Hamid; Yang, Victor X D; Lam, Stephen; MacAulay, Calum; Lane, Pierre

    2014-06-15

    We report a polarization diversity detection scheme for optical coherence tomography with a new, custom, miniaturized fiber coupler with single mode (SM) fiber inputs and polarization maintaining (PM) fiber outputs. The SM fiber inputs obviate matching the optical lengths of the X and Y OCT polarization channels prior to interference and the PM fiber outputs ensure defined X and Y axes after interference. Advantages for this scheme include easier alignment, lower cost, and easier miniaturization compared to designs with free-space bulk optical components. We demonstrate the utility of the detection system to mitigate the effects of rapidly changing polarization states when imaging with rotating fiber optic probes in Intralipid suspension and during in vivo imaging of human airways.

  13. Optical Fiber Thermometer Based on Fiber Bragg Gratings

    Science.gov (United States)

    Rosli, Ekbal Bin; Mohd. Noor, Uzer

    2018-03-01

    Fiber Bragg grating has generated much interest in use as sensors to measure strain, temperature, and other physical parameters. It also the most common component used to develop this sensor with the advantages of simple, intrinsic sensing elements, electrically passive operation, EMI immunity, high sensitivity, compact size and potentially low cost [6]. This paper reports the design of an optical fiber thermometer based on fiber Bragg gratings. The system was developed for detecting temperature and strain by monitoring the shift of Bragg wavelength. The shifting of Bragg wavelength is used to indicate the temperature and strain due to the change in the surrounding temperature and strain. When the temperature and strain reach the exact wavelength level of the system, the temperature and strain value will display on the Arduino liquid crystal display (LCD). The optical fiber will provide the broadband light source and after passing the FBG the Bragg wavelength into the optical spectrum analyzer (OSA). The system is based on FBG as a physical quantity sensor. The temperatures measured is taken from the water bath and that of the strain is provided by amount of slotted mass used. The outcome of this project is to characterize the Bragg wavelength shifting from the fiber Bragg grating output. As the conclusion, this project provides an efficient optical fiber thermometer in measuring temperature and strain in order to replace the use of conventional electrical instruments.

  14. SBIR Final Report. Liquid Core Optical Scintillating Fibers

    International Nuclear Information System (INIS)

    Beetz, C.P.; Steinbeck, J.; Buerstler, R.

    2000-01-01

    This Phase I SBIR project focused on developing flexible scintillating liquid core optical fibers, with potential uses in high-energy calorimetry, tracking, preradiators, active targets or other fast detectors. Progress on the six tasks of the project is summarized. The technical developments involve three technology components: (1) highly flexible capillaries or tubes of relatively low n (index of refraction) to serve as cladding and liquid core containment; (2) scintillator (and clear) fluids of relatively high n to serve as a core-- these fluids must have a high light transmission and, for some applications, radiation hardness; (3) optical end plugs, plug insertion, and plug-cladding tube sealing technology to contain the core fluids in the tubes, and to transmit the light

  15. The Fiber Optic System for the Advanced Topographic Laser Altimeter System (ATLAS) Instrument

    Science.gov (United States)

    Ott, Melanie N.; Thomes, Joe; Onuma, Eleanya; Switzer, Robert; Chuska, Richard; Blair, Diana; Frese, Erich; Matyseck, Marc

    2016-01-01

    The Advanced Topographic Laser Altimeter System (ATLAS) Instrument has been in integration and testing over the past 18 months in preparation for the Ice, Cloud and Land Elevation Satellite - 2 (ICESat-2) Mission, scheduled to launch in 2017. ICESat-2 is the follow on to ICESat which launched in 2003 and operated until 2009. ATLAS will measure the elevation of ice sheets, glaciers and sea ice or the "cryosphere" (as well as terrain) to provide data for assessing the earth's global climate changes. Where ICESat's instrument, the Geo-Science Laser Altimeter (GLAS) used a single beam measured with a 70 m spot on the ground and a distance between spots of 170 m, ATLAS will measure a spot size of 10 m with a spacing of 70 cm using six beams to measure terrain height changes as small as 4 mm. The ATLAS pulsed transmission system consists of two lasers operating at 532 nm with transmitter optics for beam steering, a diffractive optical element that splits the signal into 6 separate beams, receivers for start pulse detection and a wavelength tracking system. The optical receiver telescope system consists of optics that focus all six beams into optical fibers that feed a filter system that transmits the signal via fiber assemblies to the detectors. Also included on the instrument is a system that calibrates the alignment of the transmitted pulses to the receiver optics for precise signal capture. The larger electro optical subsystems for transmission, calibration, and signal receive, stay aligned and transmitting sufficiently due to the optical fiber system that links them together. The robust design of the fiber optic system, consisting of a variety of multi fiber arrays and simplex assemblies with multiple fiber core sizes and types, will enable the system to maintain consistent critical alignments for the entire life of the mission. Some of the development approaches used to meet the challenging optical system requirements for ATLAS are discussed here.

  16. The fiber optic system for the Advanced Topographic Laser Altimeter System (ATLAS) instrument.

    Science.gov (United States)

    Ott, Melanie N; Thomes, Joe; Onuma, Eleanya; Switzer, Robert; Chuska, Richard; Blair, Diana; Frese, Erich; Matyseck, Marc

    2016-08-28

    The Advanced Topographic Laser Altimeter System (ATLAS) Instrument has been in integration and testing over the past 18 months in preparation for the Ice, Cloud and Land Elevation Satellite - 2 (ICESat-2) Mission, scheduled to launch in 2017. ICESat-2 is the follow on to ICESat which launched in 2003 and operated until 2009. ATLAS will measure the elevation of ice sheets, glaciers and sea ice or the "cryosphere" (as well as terrain) to provide data for assessing the earth's global climate changes. Where ICESat's instrument, the Geo-Science Laser Altimeter (GLAS) used a single beam measured with a 70 m spot on the ground and a distance between spots of 170 m, ATLAS will measure a spot size of 10 m with a spacing of 70 cm using six beams to measure terrain height changes as small as 4 mm.[1] The ATLAS pulsed transmission system consists of two lasers operating at 532 nm with transmitter optics for beam steering, a diffractive optical element that splits the signal into 6 separate beams, receivers for start pulse detection and a wavelength tracking system. The optical receiver telescope system consists of optics that focus all six beams into optical fibers that feed a filter system that transmits the signal via fiber assemblies to the detectors. Also included on the instrument is a system that calibrates the alignment of the transmitted pulses to the receiver optics for precise signal capture. The larger electro optical subsystems for transmission, calibration, and signal receive, stay aligned and transmitting sufficiently due to the optical fiber system that links them together. The robust design of the fiber optic system, consisting of a variety of multi fiber arrays and simplex assemblies with multiple fiber core sizes and types, will enable the system to maintain consistent critical alignments for the entire life of the mission. Some of the development approaches used to meet the challenging optical system requirements for ATLAS are discussed here.

  17. Laboratory Equipment Type Fiber Optic Refractometer

    Directory of Open Access Journals (Sweden)

    E. F. Carome

    2002-09-01

    Full Text Available Using fiber optics and micro optics technologies we designed aninnovative fiber optic index of refraction transducer that has uniqueproperties. On the base of this transducer a laboratory equipment typefiber optic refractometer was developed for liquid index of refractionmeasurements. Such refractometer may be used for medical,pharmaceutical, industrial fluid, petrochemical, plastic, food, andbeverage industry applications. For example, it may be used formeasuring the concentrations of aqueous solutions: as the concentrationor density of a solute increase, the refractive index increasesproportionately. The paper describes development work related to designof laboratory type fiber optic refractometer and describes experimentsto evaluation of its basic properties.

  18. Development of Optical Fiber Technology in Poland, International Journal of Electronics and Telecommunication, vol. 57, no 2, pp.191-197, July 2011

    CERN Document Server

    Dorosz, J

    2011-01-01

    In this paper, the authors, chairmen of the 13th Conference on Optical Fibers and Their Applications OFA2011, and editors of the conference proceedings summarize the development of optical fiber technology in Poland (during the period of 2009- 2011) on the basis of papers presented there and consecutively published in this volume. The digest is thus not full but covers the periodically presented material every 18 months during the meetings on optical fibers in Białystok-Białowie˙za and Lublin- Krasnobród. OFC systems are developed for HEP experiments and accelerators. OFC systems are also developed for virtual atomic clocks. EuCARD information presentation was organized during this meeting. Keywords— optical fibers, optical communication systems, photonic sources and detectors, photonic sensors, integrated optics, photonics applications, photonic materials.

  19. Fiber-optical microphones and accelerometers based on polymer optical fiber Bragg gratings

    DEFF Research Database (Denmark)

    Yuan, Scott Wu; Stefani, Alessio; Bang, Ole

    2010-01-01

    Polymer optical fibers (POFs) are ideal for applications as the sensing element in fiber-optical microphones and accelerometers based on fiber Bragg gratings (FBGs) due to their reduced Young’s Modulus of 3.2GPa, compared to 72GPa of Silica. To maximize the sensitivity and the dynamic range...... of the device the outer diameter and the length of the sensing fiber segment should be as small as possible. To this end we have fabricated 3mm FBGs in single-mode step-index POFs of diameter 115 micron, using 325nm UV writing and a phase-mask technique. 6mm POF sections with FBGs in the center have been glued...... to standard Silica SMF28 fibers. These POF FBGs have been characterized in terms of temperature and strain to find operating regimes with no hysteresis. Commercial fast wavelength interrogators (KHz) are shown to be able to track the thin POF FBGs and they are finally applied in a prototype accelerometer...

  20. Distributed Fiber-Optic Sensors for Vibration Detection.

    Science.gov (United States)

    Liu, Xin; Jin, Baoquan; Bai, Qing; Wang, Yu; Wang, Dong; Wang, Yuncai

    2016-07-26

    Distributed fiber-optic vibration sensors receive extensive investigation and play a significant role in the sensor panorama. Optical parameters such as light intensity, phase, polarization state, or light frequency will change when external vibration is applied on the sensing fiber. In this paper, various technologies of distributed fiber-optic vibration sensing are reviewed, from interferometric sensing technology, such as Sagnac, Mach-Zehnder, and Michelson, to backscattering-based sensing technology, such as phase-sensitive optical time domain reflectometer, polarization-optical time domain reflectometer, optical frequency domain reflectometer, as well as some combinations of interferometric and backscattering-based techniques. Their operation principles are presented and recent research efforts are also included. Finally, the applications of distributed fiber-optic vibration sensors are summarized, which mainly include structural health monitoring and perimeter security, etc. Overall, distributed fiber-optic vibration sensors possess the advantages of large-scale monitoring, good concealment, excellent flexibility, and immunity to electromagnetic interference, and thus show considerable potential for a variety of practical applications.

  1. Optical fiber sensors for harsh environments

    Science.gov (United States)

    Xu, Juncheng; Wang, Anbo

    2007-02-06

    A diaphragm optic sensor comprises a ferrule including a bore having an optical fiber disposed therein and a diaphragm attached to the ferrule, the diaphragm being spaced apart from the ferrule to form a Fabry-Perot cavity. The cavity is formed by creating a pit in the ferrule or in the diaphragm. The components of the sensor are preferably welded together, preferably by laser welding. In some embodiments, the entire ferrule is bonded to the fiber along the entire length of the fiber within the ferrule; in other embodiments, only a portion of the ferrule is welded to the fiber. A partial vacuum is preferably formed in the pit. A small piece of optical fiber with a coefficient of thermal expansion chosen to compensate for mismatches between the main fiber and ferrule may be spliced to the end of the fiber.

  2. A Silicon detector system on carbon fiber support at small radius

    International Nuclear Information System (INIS)

    Johnson, Marvin E.

    2004-01-01

    The design of a silicon detector for a p(bar p) collider experiment will be described. The detector uses a carbon fiber support structure with sensors positioned at small radius with respect to the beam. A brief overview of the mechanical design is given. The emphasis is on the electrical characteristics of the detector. General principles involved in grounding systems with carbon fiber structures will be covered. The electrical characteristics of the carbon fiber support structure will be presented. Test results imply that carbon fiber must be regarded as a conductor for the frequency region of interest of 10 to 100 MHz. No distinction is found between carbon fiber and copper. Performance results on noise due to pick-up through the low mass fine pitch cables carrying the analogue signals and floating metal is discussed

  3. Fiber optic calorimetry

    International Nuclear Information System (INIS)

    Rudy, C.; Bayliss, S.; Bracken, D.; Bush, J.; Davis, P.

    1998-01-01

    A twin-bridge calorimeter using optical fiber as the sensor element was constructed and tested. This system demonstrates the principle and capability of using fiber for heat-flow measurements of special nuclear material. This calorimeter uses piezoelectric-generated phase-carrier modulation with subsequent electronic signal processing to allow phase shifts as small as 1 microradian (μrad) to be measured. The sensing element consists of 21-m lengths of single-mode optical fiber wrapped around sample and reference chambers. The sensitivity of the calorimeter was determined to be 74 radians (rad) of phase shift per milliwatt of thermal power. One milliwatt of thermal power is equivalent to 400 mg of plutonium (6% 240 Pu). The system noise base was about 0.2 rad, equivalent to about 1 mg of plutonium

  4. Measurement of splanchnic photoplethysmographic signals using a new reflectance fiber optic sensor

    Science.gov (United States)

    Hickey, Michelle; Samuels, Neal; Randive, Nilesh; Langford, Richard M.; Kyriacou, Panayiotis A.

    2010-03-01

    Splanchnic organs are particularly vulnerable to hypoperfusion. Currently, there is no technique that allows for the continuous estimation of splanchnic blood oxygen saturation (SpO2). As a preliminary to developing a suitable splanchnic SpO2 sensor, a new reflectance fiber optic photoplethysmographic (PPG) sensor and processing system are developed. An experimental procedure to examine the effect of fiber source detector separation distance on acquired PPG signals is carried out before finalizing the sensor design. PPG signals are acquired from four volunteers for separation distances of 1 to 8 mm. The separation range of 3 to 6 mm provides the best quality PPG signals with large amplitudes and the highest signal-to-noise ratios (SNRs). Preliminary calculation of SpO2 shows that distances of 3 and 4 mm provide the most realistic values. Therefore, it is suggested that the separation distance in the design of a fiber optic reflectance pulse oximeter be in the range of 3 to 4 mm. Preliminary PPG signals from various splanchnic organs and the periphery are obtained from six anaesthetized patients. The normalized amplitudes of the splanchnic PPGs are, on average, approximately the same as those obtained simultaneously from the periphery. These observations suggest that fiber optic pulse oximetry may be a valid monitoring technique for splanchnic organs.

  5. Application technology for optical fiber in nuclear facilities

    International Nuclear Information System (INIS)

    Lee, Jong Min; Kim, Chul Jung; Lee, Yong Bum; Kim, Woong Ki; Yoon, Tae Seob; Sohn, Surg Won; Kim, Chang Hoi; Hwang, Suk Yong; Baik, Sung Hum; Kwon, Seong Ouk

    1987-12-01

    Lately, the optical fiber increasingly used in such adverse environments as nuclear power plant, radiation facilities because of their endurant properties against heat, radiation, corrosion, etc. Moreover, the transmission of signal through optical fiber does not induce interference from the electromagnetic wave. Basic theory about the optical fiber technology was studied and the developed techniques for nuclear facilities were reviewed. Since the radiations change the characteristics of the optical fiber, the effects of γ-ray irradiation on single mode and multimode optical fiber were examined. The image transmission system through optical fiber bundle was designed, constructed, and tested. Its software system was also updated. It can be used for remote internal inspection in adverse environment. (Author)

  6. All-fiber hybrid photon-plasmon circuits: integrating nanowire plasmonics with fiber optics.

    Science.gov (United States)

    Li, Xiyuan; Li, Wei; Guo, Xin; Lou, Jingyi; Tong, Limin

    2013-07-01

    We demonstrate all-fiber hybrid photon-plasmon circuits by integrating Ag nanowires with optical fibers. Relying on near-field coupling, we realize a photon-to-plasmon conversion efficiency up to 92% in a fiber-based nanowire plasmonic probe. Around optical communication band, we assemble an all-fiber resonator and a Mach-Zehnder interferometer (MZI) with Q-factor of 6 × 10(6) and extinction ratio up to 30 dB, respectively. Using the MZI, we demonstrate fiber-compatible plasmonic sensing with high sensitivity and low optical power.

  7. Two mode optical fiber in space optics communication

    Science.gov (United States)

    Hampl, Martin

    2017-11-01

    In our contribution we propose to use of a two-mode optical fiber as a primary source in a transmitting optical head instead of the laser diode. The distribution of the optical intensity and the complex degree of the coherence on the output aperture of the lens that is irradiated by a step-index weakly guiding optical fiber is investigated. In our treatment we take into account weakly guided modes with polarization corrections to the propagation constant and unified theory of second order coherence and polarization of electromagnetic beams.

  8. Fundamentals of plastic optical fibers

    CERN Document Server

    Koike, Yasuhiro

    2014-01-01

    Polymer photonics is an interdisciplinary field which demands excellence both in optics (photonics) and materials science (polymer). However, theses disciplines have developed independently, and therefore the demand for a comprehensive work featuring the fundamentals of photonic polymers is greater than ever.This volume focuses on Polymer Optical Fiber and their applications. The first part of the book introduces typical optical fibers according to their classifications of material, propagating mode, and structure. Optical properties, the high bandwidth POF and transmission loss are discussed,

  9. Curved Piezoelectric Actuators for Stretching Optical Fibers

    Science.gov (United States)

    Allison, Sidney G.; Shams, Qamar A.; Fox, Robert L.

    2008-01-01

    Assemblies containing curved piezoceramic fiber composite actuators have been invented as means of stretching optical fibers by amounts that depend on applied drive voltages. Piezoceramic fiber composite actuators are conventionally manufactured as sheets or ribbons that are flat and flexible, but can be made curved to obtain load-carrying ability and displacement greater than those obtainable from the flat versions. In the primary embodiment of this invention, piezoceramic fibers are oriented parallel to the direction of longitudinal displacement of the actuators so that application of drive voltage causes the actuator to flatten, producing maximum motion. Actuator motion can be transmitted to the optical fiber by use of hinges and clamp blocks. In the original application of this invention, the optical fiber contains a Bragg grating and the purpose of the controlled stretching of the fiber is to tune the grating as part of a small, lightweight, mode-hop-free, rapidly tunable laser for demodulating strain in Bragg-grating strain-measurement optical fibers attached to structures. The invention could also be used to apply controllable tensile force or displacement to an object other than an optical fiber.

  10. An all-optical fiber optic photoacoustic transducer

    Science.gov (United States)

    Thathachary, Supriya V.; Motameni, Cameron; Ashkenazi, Shai

    2018-02-01

    A highly sensitive fiber-optic Fabry-Perot photoacoustic transducer is proposed in this work. The transducer will consist of separate transmit and receive fibers. The receiver will be composed of a Fabry-Perot Ultrasound sensor with a selfwritten waveguide with all-optical ultrasound detection with high sensitivity. In previous work, we have shown an increase in resonator Q-factor from 1900 to 3200 for a simulated Fabry-Perot ultrasound detector of 45 μm thickness upon including a waveguide to limit lateral power losses. Subsequently, we demonstrated a prototype device with 30nm gold mirrors and a cavity composed of the photosensitive polymer Benzocyclobutene. This 80 µm thick device showed an improvement in its Q-factor from 2500 to 5200 after a selfaligned waveguide was written into the cavity using UV exposure. Current work uses a significantly faster fabrication technique using a combination of UV-cured epoxies for the cavity medium, and the waveguide within it. This reduces the fabrication time from several hours to a few minutes, and significantly lowers the cost of fabrication. We use a dip-coating technique to deposit the polymer layer. Future work will include the use of Dielectric Bragg mirrors in place of gold to achieve better reflectivity, thereby further improving the Q-factor of the device. The complete transducer presents an ideal solution for intravascular imaging in cases where tissue differentiation is desirable, an important feature in interventional procedures where arterial perforation is a risk. The final design proposed comprises the transducer within a guidewire to guide interventions for Chronic Total Occlusions, a disease state for which there are currently no invasive imaging options.

  11. Ultra-high Frequency Linear Fiber Optic Systems

    CERN Document Server

    Lau, Kam Y

    2009-01-01

    Designed for a one-semester course on fiber-optics systems and communication links, this book provides a concise but rigorous treatment of the theory and practice of analog (linear) fiber-optics links and systems that constitute the foundation of Hybrid Fiber Coax infrastructure in present-day CATV distribution and cable modem Internet access. Emerging applications in remote fiber-optic feed for free-space millimeter wave enterprise campus networks are also described. Issues such as dispersion and interferometric noise are treated quantitatively, and means for mitigating them are explained. This broad but concise text will thus be invaluable not only to students of fiber-optics communication but also to practicing engineers.

  12. Photonics and Fiber Optics Processor Lab

    Data.gov (United States)

    Federal Laboratory Consortium — The Photonics and Fiber Optics Processor Lab develops, tests and evaluates high speed fiber optic network components as well as network protocols. In addition, this...

  13. Damage detection in laminar thermoplastic composite materials by means of embedded optical fibers

    Directory of Open Access Journals (Sweden)

    Kojović Aleksandar M.

    2006-01-01

    Full Text Available This paper investigates the possibility of applying optical fibers as sensors for investigating low energy impact damage in laminar thermoplastic composite materials, in real time. Impact toughness testing by a Charpy impact pendulum with different loads was conducted in order to determine the method for comparative measurement of the resulting damage in the material. For that purpose intensity-based optical fibers were built in to specimens of composite materials with Kevlar 129 (the DuPont registered trade-mark for poly(p-phenylene terephthalamide woven fabric as reinforcement and thermoplastic PVB (poly(vinyl butyral as the matrix. In some specimens part of the layers of Kevlar was replaced with metal mesh (50% or 33% of the layers. Experimental testing was conducted in order to observe and analyze the response of the material under multiple low-energy impacts. Light from the light-emitting diode (LED was launched to the embedded optical fiber and was propagated to the phototransistor-based photo detector. During each impact, the signal level, which is proportional to the light intensity in the optical fiber, drops and then slowly recovers. The obtained signals were analyzed to determine the appropriate method for real time damage monitoring. The major part of the damage occurs during impact. The damage reflects as a local, temporary release of strain in the optical fiber and an increase of the signal level. The obtained results show that intensity-based optical fibers could be used for measuring the damage in laminar thermoplastic composite materials. The acquired optical fiber signals depend on the type of material, but the same set of rules (relatively different, depending on the type of material could be specified. Using real time measurement of the signal during impact and appropriate analysis enables quantitative evaluation of the impact damage in the material. Existing methods in most cases use just the intensity of the signal before

  14. Optical fiber cable chemical stripping fixture

    Science.gov (United States)

    Kolasinski, John R. (Inventor); Coleman, Alexander M. (Inventor)

    1995-01-01

    An elongated fixture handle member is connected to a fixture body member with both members having interconnecting longitudinal central axial bores for the passage of an optical cable therethrough. The axial bore of the fixture body member, however, terminates in a shoulder stop for the outer end of a jacket of the optical cable covering both an optical fiber and a coating therefor, with an axial bore of reduced diameter continuing from the shoulder stop forward for a predetermined desired length to the outer end of the fixture body member. A subsequent insertion of the fixture body member including the above optical fiber elements into a chemical stripping solution results in a softening of the exposed external coating thereat which permits easy removal thereof from the optical fiber while leaving a desired length coated fiber intact within the fixture body member.

  15. Fiber-optic technology review

    International Nuclear Information System (INIS)

    Lyons, P.B.

    1980-01-01

    A history of fiber technology is presented. The advantages of fiber optics are discussed (bandwidth, cost, weight and size, nonmetallic construction and isolation). Some aspects of the disadvantages of fiber systems briefly discussed are fiber and cable availability, fiber components, radiation effects, receivers and transmitters, and material dispersion. Particular emphasis over the next several years will involve development of fibers and systems optimized for use at wavelengths near 1.3 μm and development of wavelengths multiplexers for simultaneous system operation at several wavelengths

  16. Fiber-Optic Pyrometer with Optically Powered Switch for Temperature Measurements.

    Science.gov (United States)

    Vázquez, Carmen; Pérez-Prieto, Sandra; López-Cardona, Juan D; Tapetado, Alberto; Blanco, Enrique; Moreno-López, Jorge; Montero, David S; Lallana, Pedro C

    2018-02-06

    We report the experimental results on a new infrared fiber-optic pyrometer for very localized and high-speed temperature measurements ranging from 170 to 530 °C using low-noise photodetectors and high-gain transimpedance amplifiers with a single gain mode in the whole temperature range. We also report a shutter based on an optical fiber switch which is optically powered to provide a reference signal in an optical fiber pyrometer measuring from 200 to 550 °C. The tests show the potential of remotely powering via optical means a 300 mW power-hungry optical switch at a distance of 100 m, avoiding any electromagnetic interference close to the measuring point.

  17. Fiber-Optic Pyrometer with Optically Powered Switch for Temperature Measurements

    Directory of Open Access Journals (Sweden)

    Carmen Vázquez

    2018-02-01

    Full Text Available We report the experimental results on a new infrared fiber-optic pyrometer for very localized and high-speed temperature measurements ranging from 170 to 530 °C using low-noise photodetectors and high-gain transimpedance amplifiers with a single gain mode in the whole temperature range. We also report a shutter based on an optical fiber switch which is optically powered to provide a reference signal in an optical fiber pyrometer measuring from 200 to 550 °C. The tests show the potential of remotely powering via optical means a 300 mW power-hungry optical switch at a distance of 100 m, avoiding any electromagnetic interference close to the measuring point.

  18. Optofluidic in-fiber interferometer based on hollow optical fiber with two cores.

    Science.gov (United States)

    Yuan, Tingting; Yang, Xinghua; Liu, Zhihai; Yang, Jun; Li, Song; Kong, Depeng; Qi, Xiuxiu; Yu, Wenting; Long, Qunlong; Yuan, Libo

    2017-07-24

    We demonstrate a novel integrated optical fiber interferometer for in-fiber optofluidic detection. It is composed of a specially designed hollow optical fiber with a micro-channel and two cores. One core on the inner surface of the micro-channel is served as sensing arm and the other core in the annular cladding is served as reference arm. Fusion-and-tapering method is employed to couple light from a single mode fiber to the hollow optical fiber in this device. Sampling is realized by side opening a microhole on the surface of the hollow optical fiber. Under differential pressure between the end of the hollow fiber and the microhole, the liquids can form steady microflows in the micro-channel. Simultaneously, the interference spectrum of the interferometer device shifts with the variation of the concentration of the microfluid in the channel. The optofluidic in-fiber interferometer has a sensitivity of refractive index around 2508 nm/RIU for NaCl. For medicine concentration detection, its sensitivity is 0.076 nm/mmolL -1 for ascorbic acid. Significantly, this work presents a compact microfluidic in-fiber interferometer with a micro-channel which can be integrated with chip devices without spatial optical coupling and without complex manufacturing procedure of the waveguide on the chips.

  19. OptoCeramic-Based High Speed Fiber Multiplexer for Multimode Fiber, Phase I

    Data.gov (United States)

    National Aeronautics and Space Administration — A fiber-based fixed-array laser transmitter can be combined with a fiber-arrayed detector to create the next-generation NASA array LIDAR systems. High speed optical...

  20. Optical Fiber Sensor Based on Localized Surface Plasmon Resonance Using Silver Nanoparticles Photodeposited on the Optical Fiber End

    Directory of Open Access Journals (Sweden)

    J. Gabriel Ortega-Mendoza

    2014-10-01

    Full Text Available This paper reports the implementation of an optical fiber sensor to measure the refractive index in aqueous media based on localized surface plasmon resonance (LSPR. We have used a novel technique known as photodeposition to immobilize silver nanoparticles on the optical fiber end. This technique has a simple instrumentation, involves laser light via an optical fiber and silver nanoparticles suspended in an aqueous medium. The optical sensor was assembled using a tungsten lamp as white light, a spectrometer, and an optical fiber with silver nanoparticles. The response of this sensor is such that the LSPR peak wavelength is linearly shifted to longer wavelengths as the refractive index is increased, showing a sensitivity of 67.6 nm/RIU. Experimental results are presented.

  1. Development of a two-dimensional imaging detector based on a neutron scintillator with wavelength-shifting fibers

    CERN Document Server

    Sakai, K; Oku, T; Morimoto, K; Shimizu, H M; Tokanai, F; Gorin, A; Manuilov, I V; Ryazantsev, A; Ino, T; Kuroda, K; Suzuki, J

    2002-01-01

    For evaluating neutron optical devices, a two-dimensional (2D) detector based on a neutron scintillator with wavelength-shifting fibers has been developed at RIKEN. We have investigated a ZnS(Ag)+LiF and a Li glass plate as neutron scintillators with the coding technique for realizing the large sensitive area of 50 x 50 mm sup 2. After fabricating the 2D detector, its performance was tested using cold neutrons at JAERI. As a result, a spatial resolution of propor to 1.0 mm was obtained. (orig.)

  2. Fiber Optic Augmented Reality System (FOARS)

    Data.gov (United States)

    National Aeronautics and Space Administration — Innovation: Fiber Optics Augmented Reality System. This system in form of a mobile app interacts real time with the actual FOSS(Fiber Optics Sensing System) data and...

  3. Ultra-high Frequency Linear Fiber Optic Systems

    CERN Document Server

    Lau, Kam

    2011-01-01

    This book provides an in-depth treatment of both linear fiber-optic systems and their key enabling devices. It presents a concise but rigorous treatment of the theory and practice of analog (linear) fiber-optics links and systems that constitute the foundation of Hybrid Fiber Coax infrastructure in present-day CATV distribution and cable modem Internet access. Emerging applications in remote fiber-optic feed for free-space millimeter wave enterprise campus networks are also described. Issues such as dispersion and interferometric noise are treated quantitatively, and means for mitigating them are explained. This broad but concise text will thus be invaluable not only to students of fiber-optics communication but also to practicing engineers. To the second edition of this book important new aspects of linear fiber-optic transmission technologies are added, such as high level system architectural issues, algorithms for deriving the optimal frequency assignment, directly modulated or externally modulated laser t...

  4. Fiber-Optic Vibration Sensor Based on Multimode Fiber

    Directory of Open Access Journals (Sweden)

    I. Lujo

    2008-06-01

    Full Text Available The purpose of this paper is to present a fiberoptic vibration sensor based on the monitoring of the mode distribution in a multimode optical fiber. Detection of vibrations and their parameters is possible through observation of the output speckle pattern from the multimode optical fiber. A working experimental model has been built in which all used components are widely available and cheap: a CCD camera (a simple web-cam, a multimode laser in visible range as a light source, a length of multimode optical fiber, and a computer for signal processing. Measurements have shown good agreement with the actual frequency of vibrations, and promising results were achieved with the amplitude measurements although they require some adaptation of the experimental model. Proposed sensor is cheap and lightweight and therefore presents an interesting alternative for monitoring large smart structures.

  5. Cladding modes of optical fibers: properties and applications

    International Nuclear Information System (INIS)

    Ivanov, Oleg V; Nikitov, Sergei A; Gulyaev, Yurii V

    2006-01-01

    One of the new methods of fiber optics uses cladding modes for controlling propagation of radiation in optical fibers. This paper reviews the results of studies on the propagation, excitation, and interaction of cladding modes in optical fibers. The resonance between core and cladding modes excited by means of fiber Bragg gratings, including tilted ones, is analyzed. Propagation of cladding modes in microstructured fibers is considered. The most frequently used method of exciting cladding modes is described, based on the application of long-period fiber gratings. Examples are presented of long-period gratings used as sensors and gain equalizers for fiber amplifiers, as well as devices for coupling light into and out of optical fibers. (instruments and methods of investigation)

  6. Optical fiber strain sensor using fiber resonator based on frequency comb Vernier spectroscopy

    DEFF Research Database (Denmark)

    Zhang, Liang; Lu, Ping; Chen, Li

    2012-01-01

    A novel (to our best knowledge) optical fiber strain sensor using a fiber ring resonator based on frequency comb Vernier spectroscopy is proposed and demonstrated. A passively mode-locked optical fiber laser is employed to generate a phased-locked frequency comb. Strain applied to the optical fib...

  7. Optical fiber meta-tips

    Science.gov (United States)

    Principe, Maria; Micco, Alberto; Crescitelli, Alessio; Castaldi, Giuseppe; Consales, Marco; Esposito, Emanuela; La Ferrara, Vera; Galdi, Vincenzo; Cusano, Andrea

    2016-04-01

    We report on the first example of a "meta-tip" configuration that integrates a metasurface on the tip of an optical fiber. Our proposed design is based on an inverted-Babinet plasmonic metasurface obtained by patterning (via focused ion beam) a thin gold film deposited on the tip of an optical fiber, so as to realize an array of rectangular aperture nanoantennas with spatially modulated sizes. By properly tuning the resonances of the aperture nanoantennas, abrupt variations can be impressed in the field wavefront and polarization. We fabricated and characterized several proof-of-principle prototypes operating an near-infrared wavelengths, and implementing the beam-steering (with various angles) of the cross-polarized component, as well as the excitation of surface waves. Our results pave the way to the integration of the exceptional field-manipulation capabilities enabled by metasurfaces with the versatility and ubiquity of fiber-optics technological platforms.

  8. Superlattice Microstructured Optical Fiber

    Science.gov (United States)

    Tse, Ming-Leung Vincent; Liu, Zhengyong; Cho, Lok-Hin; Lu, Chao; Wai, Ping-Kong Alex; Tam, Hwa-Yaw

    2014-01-01

    A generic three-stage stack-and-draw method is demonstrated for the fabrication of complex-microstructured optical fibers. We report the fabrication and characterization of a silica superlattice microstructured fiber with more than 800 rhomboidally arranged air-holes. A polarization-maintaining fiber with a birefringence of 8.5 × 10−4 is demonstrated. The birefringent property of the fiber is found to be highly insensitive to external environmental effects, such as pressure. PMID:28788693

  9. Fiber optic pressure sensors for nuclear power plants

    Energy Technology Data Exchange (ETDEWEB)

    Hashemian, H.M.; Black, C.L. [Analysis and Measurement Services Corp., Knoxville, TN (United States)

    1995-04-01

    In the last few years, the nuclear industry has experienced some problems with the performance of pressure transmitters and has been interested in new sensors based on new technologies. Fiber optic pressure sensors offer the potential to improve on or overcome some of the limitations of existing pressure sensors. Up to now, research has been motivated towards development and refinement of fiber optic sensing technology. In most applications, reliability studies and failure mode analyses remain to be exhaustively conducted. Fiber optic sensors have currently penetrated certain cutting edge markets where they possess necessary inherent advantages over other existing technologies. In these markets (e.g. biomedical, aerospace, automotive, and petrochemical), fiber optic sensors are able to perform measurements for which no alternate sensor previously existed. Fiber optic sensing technology has not yet been fully adopted into the mainstream sensing market. This may be due to not only the current premium price of fiber optic sensors, but also the lack of characterization of their possible performance disadvantages. In other words, in conservative industries, the known disadvantages of conventional sensors are sometimes preferable to unknown or not fully characterized (but potentially fewer and less critical) disadvantages of fiber optic sensors. A six-month feasibility study has been initiated under the auspices of the US Nuclear Regulatory Commission (NRC) to assess the performance and reliability of existing fiber optic pressure sensors for use in nuclear power plants. This assessment will include establishment of the state of the art in fiber optic pressure sensing, characterization of the reliability of fiber optic pressure sensors, and determination of the strengths and limitations of these sensors for nuclear safety-related services.

  10. Fiber optic pressure sensors for nuclear power plants

    International Nuclear Information System (INIS)

    Hashemian, H.M.; Black, C.L.

    1995-01-01

    In the last few years, the nuclear industry has experienced some problems with the performance of pressure transmitters and has been interested in new sensors based on new technologies. Fiber optic pressure sensors offer the potential to improve on or overcome some of the limitations of existing pressure sensors. Up to now, research has been motivated towards development and refinement of fiber optic sensing technology. In most applications, reliability studies and failure mode analyses remain to be exhaustively conducted. Fiber optic sensors have currently penetrated certain cutting edge markets where they possess necessary inherent advantages over other existing technologies. In these markets (e.g. biomedical, aerospace, automotive, and petrochemical), fiber optic sensors are able to perform measurements for which no alternate sensor previously existed. Fiber optic sensing technology has not yet been fully adopted into the mainstream sensing market. This may be due to not only the current premium price of fiber optic sensors, but also the lack of characterization of their possible performance disadvantages. In other words, in conservative industries, the known disadvantages of conventional sensors are sometimes preferable to unknown or not fully characterized (but potentially fewer and less critical) disadvantages of fiber optic sensors. A six-month feasibility study has been initiated under the auspices of the US Nuclear Regulatory Commission (NRC) to assess the performance and reliability of existing fiber optic pressure sensors for use in nuclear power plants. This assessment will include establishment of the state of the art in fiber optic pressure sensing, characterization of the reliability of fiber optic pressure sensors, and determination of the strengths and limitations of these sensors for nuclear safety-related services

  11. Optical fibers and their applications for radiation measurements

    International Nuclear Information System (INIS)

    Kakuta, Tsunemi

    1998-01-01

    When optical fibers are used in a strong radiation field, it is necessary to increase the radiation-resistant capacity. Aiming at the improvement of such property, the characteristics of recent optical fibers made from quartz-glass were reviewed and the newly developed techniques for radiation measurement using those fibers were summarized in this report. Since optical fibers became able to use in the levels near the core conditions, their applications have started in various fields of technologies related to radiation. By combining the optical fibers and a small sensor, it became possible to act as 'Key Component' for measuring wide range radioactivity from a trace activity to a strong radiation field in the reactor core. Presently, the fibers are utilized for investigation of the optical mechanisms related in radiation, evaluation of their validities so on. Further, the optical fibers are expected to utilize in a multi-parametric measuring system which allows to concomitantly determine the radiation, temperature, pressure, flow amount etc. as an incore monitor. (M.N.)

  12. Optical fibers and their applications for radiation measurements

    Energy Technology Data Exchange (ETDEWEB)

    Kakuta, Tsunemi [Japan Atomic Energy Research Inst., Tokyo (Japan)

    1998-07-01

    When optical fibers are used in a strong radiation field, it is necessary to increase the radiation-resistant capacity. Aiming at the improvement of such property, the characteristics of recent optical fibers made from quartz-glass were reviewed and the newly developed techniques for radiation measurement using those fibers were summarized in this report. Since optical fibers became able to use in the levels near the core conditions, their applications have started in various fields of technologies related to radiation. By combining the optical fibers and a small sensor, it became possible to act as `Key Component` for measuring wide range radioactivity from a trace activity to a strong radiation field in the reactor core. Presently, the fibers are utilized for investigation of the optical mechanisms related in radiation, evaluation of their validities so on. Further, the optical fibers are expected to utilize in a multi-parametric measuring system which allows to concomitantly determine the radiation, temperature, pressure, flow amount etc. as an incore monitor. (M.N.)

  13. Fiber-Optic Chemical Sensors and Fiber-Optic Bio-Sensors

    Czech Academy of Sciences Publication Activity Database

    Pospíšilová, M.; Kuncová, Gabriela; Trögl, J.

    2015-01-01

    Roč. 15, č. 10 (2015), s. 25208-25259 ISSN 1424-8220 Institutional support: RVO:67985858 Keywords : fiber-optic sensor * chemical sensors * enzymatic sensor Subject RIV: JB - Sensors, Measurment, Regulation Impact factor: 2.033, year: 2015

  14. Portable fiber-optic taper coupled optical microscopy platform

    Science.gov (United States)

    Wang, Weiming; Yu, Yan; Huang, Hui; Ou, Jinping

    2017-04-01

    The optical fiber taper coupled with CMOS has advantages of high sensitivity, compact structure and low distortion in the imaging platform. So it is widely used in low light, high speed and X-ray imaging systems. In the meanwhile, the peculiarity of the coupled structure can meet the needs of the demand in microscopy imaging. Toward this end, we developed a microscopic imaging platform based on the coupling of cellphone camera module and fiber optic taper for the measurement of the human blood samples and ascaris lumbricoides. The platform, weighing 70 grams, is based on the existing camera module of the smartphone and a fiber-optic array which providing a magnification factor of 6x.The top facet of the taper, on which samples are placed, serves as an irregular sampling grid for contact imaging. The magnified images of the sample, located on the bottom facet of the fiber, are then projected onto the CMOS sensor. This paper introduces the portable medical imaging system based on the optical fiber coupling with CMOS, and theoretically analyzes the feasibility of the system. The image data and process results either can be stored on the memory or transmitted to the remote medical institutions for the telemedicine. We validate the performance of this cell-phone based microscopy platform using human blood samples and test target, achieving comparable results to a standard bench-top microscope.

  15. Essentials of modern optical fiber communication

    CERN Document Server

    Noé, Reinhold

    2016-01-01

    This is a concise introduction into optical fiber communication. It covers important aspects from the physics of optical wave propagation and amplification to the essentials of modulation formats and receivers. The combination of a solid coverage of necessary fundamental theory with an in-depth discussion of recent relevant research results enables the reader to design modern optical fiber communication systems. The book serves both graduate students and professionals. It includes many worked examples with solutions for lecturers. For the second edition, Reinhold Noé made many changes and additions throughout the text so that this concise book presents the essentials of optical fiber communication in an easy readable and understandable way.

  16. Fiber Optic Temperature Sensor Insert for High Temperature Environments

    Science.gov (United States)

    Black, Richard James (Inventor); Costa, Joannes M. (Inventor); Moslehi, Behzad (Inventor); Zarnescu, Livia (Inventor)

    2017-01-01

    A thermal protection system (TPS) test plug has optical fibers with FBGs embedded in the optical fiber arranged in a helix, an axial fiber, and a combination of the two. Optionally, one of the optical fibers is a sapphire FBG for measurement of the highest temperatures in the TPS plug. The test plug may include an ablating surface and a non-ablating surface, with an engagement surface with threads formed, the threads having a groove for placement of the optical fiber. The test plug may also include an optical connector positioned at the non-ablating surface for protection of the optical fiber during insertion and removal.

  17. The scintillating optical fiber isotope experiment: Bevalac calibrations of test models

    International Nuclear Information System (INIS)

    Connell, J.J.; Binns, W.R.; Dowkontt, P.F.; Epstein, J.W.; Israel, M.H.; Klarmann, J.; Washington Univ., St. Louis, MO; Webber, W.R.; Kish, J.C.

    1990-01-01

    The Scintillating Optical Fiber Isotope Experiment (SOFIE) is a Cherenkov dE/dx-range experiment being developed to study the isotopic composition of cosmic rays in the iron region with sufficient resolution to resolve isotopes separated by one mass unit at iron. This instrument images stopping particles with a block of scintillating optical fibers coupled to an image intensified video camera. From the digitized video data the trajectory and range of particles stopping in the fiber bundle can be determined; this information, together with a Cherenkov measurement, is used to determine mass. To facilitate this determination, a new Cherenkov response equation was derived for heavy ions at energies near threshold in thick Cherenkov radiators. Test models of SOFIE were calibrated at the Lawrence Berkeley Laboratory's Bevalac heavy ion accelerator in 1985 and 1986 using beams of iron nuclei with energies of 465 to 515 MeV/nucleon. This paper presents the results of these calibrations and discusses the design of the SOFIE Bevalac test models in the context of the scientific objectives of the eventual balloon experiment. The test models show a mass resolution of σ A ≅0.30 amu and a range resolution of σ R ≅250 μm. These results are sufficient for a successful cosmic ray isotope experiment, thus demonstrating the feasibility of the detector system. The SOFIE test models represent the first successful application in the field of cosmic ray astrophysics of the emerging technology of scintillating optical fibers. (orig.)

  18. Integrated Optical Circuit Engineering For Optical Fiber Gyrocopes

    Science.gov (United States)

    Bristow, Julian P.; We, Albert C.; Keur, M.; Lukas, Greg; Ott, Daniel M...; Sriram, S.

    1988-03-01

    Fiber optic gyroscopes are of interest for low-cost, high performance rotation sensors. Integrated optical implementations of the processing optics offer the hope of mass-production, and associated cost reductions. The development of a suitable integrated optical system has been reported by other authors at a wavelength of 850nm [1]. Despite strong technical advantages at 1.3μm wavelength [2], no results have yet appeared. This wavelength is preferred for telecommunications applications applications, thus significantly reduced fiber costs may be realized. Lithium niobate is relatively immune from the photorefractive effect at this wavelength, whereas it is not at at 850nm [3].

  19. High-temperature fiber optic pressure sensor

    Science.gov (United States)

    Berthold, J. W.

    1984-01-01

    Attention is given to a program to develop fiber optic methods to measure diaphragm deflection. The end application is intended for pressure transducers capable of operating to 540 C. In this paper are reported the results of a laboratory study to characterize the performance of the fiber-optic microbend sensor. The data presented include sensitivity and spring constant. The advantages and limitations of the microbend sensor for static pressure measurement applications are described. A proposed design is presented for a 540 C pressure transducer using the fiber optic microbend sensor.

  20. Fiber optic communications fundamentals and applications

    CERN Document Server

    Kumar, Shiva

    2014-01-01

    Fiber-optic communication systems have advanced dramatically over the last four decades, since the era of copper cables, resulting in low-cost and high-bandwidth transmission. Fiber optics is now the backbone of the internet and long-distance telecommunication. Without it we would not enjoy the benefits of high-speed internet, or low-rate international telephone calls. This book introduces the basic concepts of fiber-optic communication in a pedagogical way. The important mathematical results are derived by first principles rather than citing research articles. In addition, physical interpre

  1. Single-photon semiconductor photodiodes for distributed optical fiber sensors: state of the art and perspectives

    Science.gov (United States)

    Ripamonti, Giancarlo; Lacaita, Andrea L.

    1993-03-01

    The extreme sensitivity and time resolution of Geiger-mode avalanche photodiodes (GM- APDs) have already been exploited for optical time domain reflectometry (OTDR). Better than 1 cm spatial resolution in Rayleigh scattering detection was demonstrated. Distributed and quasi-distributed optical fiber sensors can take advantage of the capabilities of GM-APDs. Extensive studies have recently disclosed the main characteristics and limitations of silicon devices, both commercially available and developmental. In this paper we report an analysis of the performance of these detectors. The main characteristics of GM-APDs of interest for distributed optical fiber sensors are briefly reviewed. Command electronics (active quenching) is then introduced. The detector timing performance sets the maximum spatial resolution in experiments employing OTDR techniques. We highlight that the achievable time resolution depends on the physics of the avalanche spreading over the device area. On the basis of these results, trade-off between the important parameters (quantum efficiency, time resolution, background noise, and afterpulsing effects) is considered. Finally, we show first results on Germanium devices, capable of single photon sensitivity at 1.3 and 1.5 micrometers with sub- nanosecond time resolution.

  2. 355-nm hypersensitization of optical fibers

    NARCIS (Netherlands)

    Canagasabey, A.; Canning, J.; Groothoff, N.

    2003-01-01

    A study is presented on 355-nm hypersensitization of optical fibers. It is found that the intrinsic 244-nm photosensitivity of boron-codoped germanosilicate optical fibers is enhanced by 355-nm hypersensitization. Hypersensitization through standard polymer coating is also demonstrated.

  3. All-optical, thermo-optical path length modulation based on the vanadium-doped fibers.

    Science.gov (United States)

    Matjasec, Ziga; Campelj, Stanislav; Donlagic, Denis

    2013-05-20

    This paper presents an all-fiber, fully-optically controlled, optical-path length modulator based on highly absorbing optical fiber. The modulator utilizes a high-power 980 nm pump diode and a short section of vanadium-co-doped single mode fiber that is heated through absorption and a non-radiative relaxation process. The achievable path length modulation range primarily depends on the pump's power and the convective heat-transfer coefficient of the surrounding gas, while the time response primarily depends on the heated fiber's diameter. An absolute optical length change in excess of 500 µm and a time-constant as short as 11 ms, were demonstrated experimentally. The all-fiber design allows for an electrically-passive and remote operation of the modulator. The presented modulator could find use within various fiber-optics systems that require optical (remote) path length control or modulation.

  4. Development of the optical components of an alignment system for the muon spectrometer of the ATLAS detector

    International Nuclear Information System (INIS)

    Widmann, P.

    1994-09-01

    In the framework of the development of an electro-optical alignment system for the muon spectrometer of the ATLAS detector different types of optical sensors as well as components of a glass fiber network for the light distribution were studied for their suitability for a possible application. For the sensors a resolution of 10-20 μm in one and about 100 μm in the other coordinate is required. Especially for the application in the ATLAS detector developed silicon strip detectors permit in their current state of development a position resolution of 5-7 μm in the strip coordinate and 30 μm in the ohter coordinate (with current division on the strip). In the combination of several sensors in a beam the beam deviation by light refraction has been proved as additional error source. as much promising alternative strip sensors of amorphous silicon have been proved. These sensors allow in both directions an equally high position resolution. With a not transparent prototype resolutions of 1.8 μm in one and 2.3 μm in the second coordinate were reached without corrections. Additionally it is possible to fabricate these sensors in transparent form on glass substrates with optical quality, which may permit a complet abandonment on corrections of the beam deviation. The transmission of these sensors amounts at a wavelength of 690 nm currently to about 60%. By optimization of the layer thicknesses however transmission rates of up to 80% should be reachable. The studied components for the light distribution via glass fibers corresponded to their specifications. The application of one-mode fibers guarantees thereby the Gaussian profile of the laser beams collimated with objectives desirable for the position measurement with strip detectors

  5. Optical fiber powered pressure sensor

    International Nuclear Information System (INIS)

    Schweizer, P.; Neveux, L.; Ostrowsky, D.B.

    1987-01-01

    In the system described, a pressure sensor and its associated electronics are optically powered by a 20 mw laser and a photovoltaic cell via an optical fiber. The sensor is periodically interrogated and sends the measures obtained back to the central unit using an LED and a second fiber. The results obtained as well as the expected evolution will be described

  6. Extrinsic Fabry-Perot ultrasonic detector

    Science.gov (United States)

    Kidwell, J. J.; Berthold, John W., III

    1996-10-01

    We characterized the performance of a commercial fiber optic extrinsic Fabry-Perot interferometer for use as an ultrasonic sensor, and compared the performance with a standard lead zirconate titanate (PZT) detector. The interferometer was unstabilized. The results showed that the fiber sensor was about 12 times less sensitive than the PZT detector. Ultrasonic frequency response near 100 kHz was demonstrated. We describe the design of the fiber sensor, the details of the tests performed, and potential applications.

  7. Direct writing of fiber optic components in photonic crystal fibers and other specialty fibers

    Science.gov (United States)

    Fernandes, Luis Andre; Sezerman, Omur; Best, Garland; Ng, Mi Li; Kane, Saidou

    2016-04-01

    Femtosecond direct laser writing has recently shown great potential for the fabrication of complex integrated devices in the cladding of optical fibers. Such devices have the advantage of requiring no bulk optical components and no breaks in the fiber path, thus reducing the need for complicated alignment, eliminating contamination, and increasing stability. This technology has already found applications using combinations of Bragg gratings, interferometers, and couplers for the fabrication of optical filters, sensors, and power monitors. The femtosecond laser writing method produces a local modification of refractive index through non-linear absorption of the ultrafast laser pulses inside the dielectric material of both the core and cladding of the fiber. However, fiber geometries that incorporate air or hollow structures, such as photonic crystal fibers (PCFs), still present a challenge since the index modification regions created by the writing process cannot be generated in the hollow regions of the fiber. In this work, the femtosecond laser method is used together with a pre-modification method that consists of partially collapsing the hollow holes using an electrical arc discharge. The partial collapse of the photonic band gap structure provides a path for femtosecond laser written waveguides to couple light from the core to the edge of the fiber for in-line power monitoring. This novel approach is expected to have applications in other specialty fibers such as suspended core fibers and can open the way for the integration of complex devices and facilitate miniaturization of optical circuits to take advantage of the particular characteristics of the PCFs.

  8. Microstructured optical fibers - Fundamentals and applications

    DEFF Research Database (Denmark)

    Lægsgaard, Jesper; Bjarklev, Anders Overgaard

    2006-01-01

    In recent years optical fibers having a complex microstructure in the transverse plane have attracted much attention from both researchers and industry. Such fibers can either guide light through total internal reflection or the photonic bandgap effect. Among the many unique applications offered...... by these fibers are mode guidance in air, highly flexible dispersion engineering, and the use of very heterogeneous material combinations. In this paper, we review the different types and applications of microstructured optical fibers, with particular emphasis on recent advances in the field....

  9. Small Angle X-Ray Scattering Detector

    Energy Technology Data Exchange (ETDEWEB)

    Hessler, Jan P.

    2004-06-15

    A detector for time-resolved small-angle x-ray scattering includes a nearly constant diameter, evacuated linear tube having an end plate detector with a first fluorescent screen and concentric rings of first fiber optic bundles for low angle scattering detection and an annular detector having a second fluorescent screen and second fiber optic bundles concentrically disposed about the tube for higher angle scattering detection. With the scattering source, i.e., the specimen under investigation, located outside of the evacuated tube on the tube's longitudinal axis, scattered x-rays are detected by the fiber optic bundles, to each of which is coupled a respective photodetector, to provide a measurement resolution, i.e., dq/q, where q is the momentum transferred from an incident x-ray to an x-ray scattering specimen, of 2% over two (2) orders of magnitude in reciprocal space, i.e., qmax/qmin approx=lO0.

  10. Polymer optical fiber with Rhodamine doped cladding for fiber light systems

    Energy Technology Data Exchange (ETDEWEB)

    Narro-García, R., E-mail: roberto.narro@gmail.com [Centro de Física Aplicada y Tecnología Avanzada, Universidad Nacional Autónoma de México, Boulevard Juriquilla 3001, Querétaro 76230 (Mexico); Quintero-Torres, R. [Centro de Física Aplicada y Tecnología Avanzada, Universidad Nacional Autónoma de México, Boulevard Juriquilla 3001, Querétaro 76230 (Mexico); Domínguez-Juárez, J.L. [Centro de Física Aplicada y Tecnología Avanzada, Universidad Nacional Autónoma de México, Boulevard Juriquilla 3001, Querétaro 76230 (Mexico); Cátedras CONACyT, Centro de Física Aplicada y Tecnología Avanzada, Universidad Nacional Autónoma de México, Boulevard Juriquilla 3001, Querétaro 76230 (Mexico); Ocampo, M.A. [Centro de Física Aplicada y Tecnología Avanzada, Universidad Nacional Autónoma de México, Boulevard Juriquilla 3001, Querétaro 76230 (Mexico)

    2016-01-15

    Both preform and polymer optical fiber with a Poly(methyl methacrylate) core and THV–Rhodamine 6G cladding were characterized. UV–vis absorbance, photoluminescence spectra and lifetime of the preform were measured. Axial and lateral photoluminescence spectra of the polymer optical fiber were studied under 404 nm excitation in order to study the illumination performance of the fiber. It was observed that the peak wavelength from the fiber photoluminescence spectra is higher than the peak wavelength from the fiber preform and that the peak wavelength from the fiber photoluminescence spectra is red shifted with the fiber length in the case of axial emission. The obtained results suggest the influence of self-absorption on the photoluminescence shape. Strong lateral emission along the fiber was observed with the naked eyes in all the cases. The lateral photoluminescence spectra show that the lateral emission is a combination between the pump laser and the Rh6G molecule photoluminescence. The results suggest that this polymer optical fiber could be a potential candidate for the development of fiber lighting systems. - Highlights: • Axial and lateral emission along the fiber was studied. • Self-absorption effect was confirmed in the case of axial photoluminescence. • The lateral emission is a combination between the laser and the RhG6 emission. • This fiber could be a potential candidate for the development of lighting systems.

  11. Fiber optic applications in nuclear power plants

    International Nuclear Information System (INIS)

    Collette, P.; Kwapien, D.

    1984-01-01

    Fiber optic technology possesses many desirable attributes for applications in commercial nuclear power plants. The non-electrical nature of fiber optics is an important factor in an industry governed by federal safety regulations such as Class 1E isolation and separation criteria. Immunity from Electromagnetic Interference (EMI), an increasing industry problem area, is another significant characteristic. Because of the extremely wide bandwidth offered, fiber optics better addresses the data acquistion and communication requirements of the complex processes of a nuclear power plant. Potential for fiber optic sensor applications exists within the nuclear industry because their small size and physical flexibility allows access into normally inaccessible areas. They possess high accuracy and allow environmentally sensitive electronics to be remotely located. The purpose of this paper is to explore current applications for fiber optic technology in modern nuclear plants, document examples of present day usage in C-E plants and suggest possible future application areas

  12. Near-field scanning optical microscopy using polymethylmethacrylate optical fiber probes

    International Nuclear Information System (INIS)

    Chibani, H.; Dukenbayev, K.; Mensi, M.; Sekatskii, S.K.; Dietler, G.

    2010-01-01

    We report the first use of polymethylmethacrylate (PMMA) optical fiber-made probes for scanning near-field optical microscopy (SNOM). The sharp tips were prepared by chemical etching of the fibers in ethyl acetate, and the probes were prepared by proper gluing of sharpened fibers onto the tuning fork in the conditions of the double resonance (working frequency of a tuning fork coincides with the resonance frequency of dithering of the free-standing part of the fiber) reported earlier for the case of glass fibers. Quality factors of the probes in the range 2000-6000 were obtained, which enables the realization of an excellent topographical resolution including state-of-art imaging of single DNA molecules. Near-field optical performance of the microscope is illustrated by the Photon Scanning Tunneling Microscope images of fluorescent beads with a diameter of 100 nm. The preparation of these plastic fiber probes proved to be easy, needs no hazardous material and/or procedures, and typical lifetime of a probe essentially exceeds that characteristic for the glass fiber probe.

  13. Fiber lightguide-coupled high frequency analog data system

    International Nuclear Information System (INIS)

    Davies, T.J.; Nelson, M.A.; Morton, J.R.; Pruett, B.

    1976-06-01

    An experimental system is described for measuring the time history of a high voltage, high frequency electrical pulse from a radiation detector. The system employs several fibers of a 500-m graded index light-guide cable to carry modelocked laser pulses from a safe location to an electro-optical Kerr cell located near the detector. These 200-ps pulses are widened to 500 ps at the cell by fiber dispersion. They are intensity-modulated in the cell by the electrical signal and returned over other cable fibers to an optical detector and recorder located near the laser. System frequency response exceeds 500 MHz over an amplitude dynamic range of 1000:1

  14. Environmental performance of an elliptical core polarization maintaining optical fiber for fiber optic gyro applications

    Science.gov (United States)

    Martinelli, Vincent P.; Squires, Emily M.; Watkins, James J.

    1994-03-01

    Corning has introduced a new polarization-maintaining optical fiber to satisfy customer requirements for a range of commercial and military FOG applications. This fiber has an elliptical core, matched-clad design, and is intended for operation in the 780 to 850 nm wavelength region. The fiber has a beat length less than 1.5 mm, attenuation rate less than 10 dB/km, and a typical coiled h-parameter less than 1.5 X 10-4 m-1 in the designated operating wavelength range. It has a cladding diameter of 80 micrometers and a coating diameter of 185 micrometers . The coating is an acrylate system, similar to that used in telecommunications optical fibers. We report on the performance of this elliptical core fiber for a variety of environmental exposures representative of an automotive application.

  15. Embedded fiber optic ultrasonic sensors and generators

    Science.gov (United States)

    Dorighi, John F.; Krishnaswamy, Sridhar; Achenbach, Jan D.

    1995-04-01

    Ultrasonic sensors and generators based on fiber-optic systems are described. It is shown that intrinsic fiber optic Fabry-Perot ultrasound sensors that are embedded in a structure can be stabilized by actively tuning the laser frequency. The need for this method of stabilization is demonstrated by detecting piezoelectric transducer-generated ultrasonic pulses in the presence of low frequency dynamic strains that are intentionally induced to cause sensor drift. The actively stabilized embedded fiber optic Fabry-Perot sensor is also shown to have sufficient sensitivity to detect ultrasound that is generated in the interior of a structure by means of a high-power optical fiber that pipes energy from a pulsed laser to an embedded generator of ultrasound.

  16. Engineering surface plasmon based fiber-optic sensors

    International Nuclear Information System (INIS)

    Dhawan, Anuj; Muth, John F.

    2008-01-01

    Ordered arrays of nanoholes with subwavelength diameters, and submicron array periodicity were fabricated on the tips of gold-coated optical fibers using focused ion beam (FIB) milling. This provided a convenient platform for evaluating extraordinary transmission of light through subwavelength apertures and allowed the implementation of nanostructures for surface plasmon engineered sensors. The fabrication procedure was straightforward and implemented on single mode and multimode optical fibers as well as etched and tapered fiber tips. Control of the periodicity and spacing of the nanoholes allowed the wavelength of operation to be tailored. Large changes in optical transmission were observed at the designed wavelengths, depending on the surrounding refractive index, allowing the devices to be used as fiber-optic sensors

  17. Engineering surface plasmon based fiber-optic sensors

    Energy Technology Data Exchange (ETDEWEB)

    Dhawan, Anuj [Department of Electrical and Computer Engineering, NC State University, Raleigh, NC 27606 (United States); Muth, John F. [Department of Electrical and Computer Engineering, NC State University, Raleigh, NC 27606 (United States)], E-mail: muth@unity.ncsu.edu

    2008-04-15

    Ordered arrays of nanoholes with subwavelength diameters, and submicron array periodicity were fabricated on the tips of gold-coated optical fibers using focused ion beam (FIB) milling. This provided a convenient platform for evaluating extraordinary transmission of light through subwavelength apertures and allowed the implementation of nanostructures for surface plasmon engineered sensors. The fabrication procedure was straightforward and implemented on single mode and multimode optical fibers as well as etched and tapered fiber tips. Control of the periodicity and spacing of the nanoholes allowed the wavelength of operation to be tailored. Large changes in optical transmission were observed at the designed wavelengths, depending on the surrounding refractive index, allowing the devices to be used as fiber-optic sensors.

  18. A New Generation Fiber Optic Probe: Characterization of Biological Fluids, Protein Crystals and Ophthalmic Diseases

    Science.gov (United States)

    Ansari, Rafat R.; Suh, Kwang I.

    1996-01-01

    A new fiber optic probe developed for determining transport properties of sub-micron particles in fluids experiments in a microgravity environment has been applied to characterize particulate dispersions/suspensions in various challenging environments which have been hitherto impossible. The probe positioned in front of a sample delivers a low power light (few nW - 3mW) from a laser and guides the light which is back scattered by the suspended particles through a receiving optical fiber to a photo detector and to a digital correlator. The probe provides rapid determination of macromolecular diffusivities and their respective size distributions. It has been applied to characterize various biological fluids, protein crystals, and ophthalmic diseases.

  19. Non-destructive evaluation of fiber-reinforced composites with a fast 2D fiber-optic laser-ultrasound scanner

    Science.gov (United States)

    Pelivanov, Ivan; Buma, Takashi; Xia, Jinjun; Wei, Chen-Wei; Shtokolov, Alex; O'Donnell, Matthew

    2015-03-01

    Laser ultrasonic (LU) inspection represents an attractive, non-contact method to evaluate composite materials. Current non-contact systems, however, have relatively low sensitivity compared to contact piezoelectric detection. They are also difficult to adjust, very expensive, and strongly influenced by environmental noise. Here, we demonstrate that most of these drawbacks can be eliminated by combining a new generation of compact, inexpensive fiber lasers with new developments in fiber telecommunication optics and an optimally designed balanced probe scheme. In particular, a new type of a balanced fiber-optic Sagnac interferometer is presented as part of an all-optical LU pump-probe system for high speed non-destructive testing and evaluation (NDT&E) of aircraft composites. The performance of the LU system is demonstrated on a composite sample typically used in the aircraft industry. Wide-band ultrasound probe signals are generated directly at the sample surface with a pulsed diode-pumped laser delivering nanosecond laser pulses at a 1 kHz repetition rate with a pulse energy of 2 mJ. A balanced fiber-optic Sagnac interferometer is employed to detect pressure signals in a 1-10 MHz frequency range at the same point (an 8 μm focal spot) on the composite surface. A fast (up to 100 mm/s) 2D translation system is employed to move the sample during scanning and produce a complete B-scan consisting of one thousand A-scans in less than a second. The sensitivity of this system, in terms of the noise equivalent pressure, is found to be only 10 dB above the Nyquist thermal noise limit. To our knowledge, this is the best reported sensitivity for a non-contact ultrasonic detector of this dimension.

  20. Computational imaging through a fiber-optic bundle

    Science.gov (United States)

    Lodhi, Muhammad A.; Dumas, John Paul; Pierce, Mark C.; Bajwa, Waheed U.

    2017-05-01

    Compressive sensing (CS) has proven to be a viable method for reconstructing high-resolution signals using low-resolution measurements. Integrating CS principles into an optical system allows for higher-resolution imaging using lower-resolution sensor arrays. In contrast to prior works on CS-based imaging, our focus in this paper is on imaging through fiber-optic bundles, in which manufacturing constraints limit individual fiber spacing to around 2 μm. This limitation essentially renders fiber-optic bundles as low-resolution sensors with relatively few resolvable points per unit area. These fiber bundles are often used in minimally invasive medical instruments for viewing tissue at macro and microscopic levels. While the compact nature and flexibility of fiber bundles allow for excellent tissue access in-vivo, imaging through fiber bundles does not provide the fine details of tissue features that is demanded in some medical situations. Our hypothesis is that adapting existing CS principles to fiber bundle-based optical systems will overcome the resolution limitation inherent in fiber-bundle imaging. In a previous paper we examined the practical challenges involved in implementing a highly parallel version of the single-pixel camera while focusing on synthetic objects. This paper extends the same architecture for fiber-bundle imaging under incoherent illumination and addresses some practical issues associated with imaging physical objects. Additionally, we model the optical non-idealities in the system to get lower modelling errors.

  1. Single Mode Fiber Optic Transceiver Using Short Wavelength Active Devices In Long Wavelength Fiber

    Science.gov (United States)

    Gillham, Frederick J.; Campbell, Daniel R.; Corke, Michael; Stowe, David W.

    1990-01-01

    Presently, single mode optical fiber technology is being utilized in systems to supply telephone service to the subscriber. However, in an attempt to be competitive with copper based systems, there are many development programs underway to determine the most cost effective solution while still providing a service that will either satisfy or be upgradeable to satisfy the demands of the consumer for the next 10 to 20 years. One such approach is to combine low cost laser transmitters and silicon receivers, which have been developed for the "compact disc" industry, with fiber that operates in the single mode regime at 1300 nm. In this paper, an optical transceiver will be presented, consisting of a compact disc laser, a silicon detector and a single mode coupler at 1300 nm. A possible system layout is presented which operates at 780 nm bi-directionally for POTS and upgradeable to 1300 nm for video services. There are several important design criteria that have to be considered in the development of such a system which will be addressed. These include: 1. Optimization of coupled power from laser to fiber while maintaining stable launched conditions over a wide range of environmental conditions. 2. Consideration of the multimode operation of the 1300 nm single mode fiber while operating in the 780 nm wavelength region. 3. Development of a low cost pseudo-wavelength division multiplexer for 1300 nm single mode/780 nm multimode operation and a low cost dual mode 50/50, 780 nm splitter using 1300 nm fiber. Details will be given of the design criteria and solution in terms of optimized design. Results of the performance of several prototype devices will be given with indications of the merits of this approach and where further development effort should be applied.

  2. Optic Fiber Sensing IOT Technology and Application Research

    Directory of Open Access Journals (Sweden)

    Wenjuan Zeng

    2014-10-01

    Full Text Available The growth of the Internet of Things (IOT industry has become a new mark of the communication domain. As the development of the technology of the IOT and the fiber-optical sensor, the combination of the both is a big question to be discussed, and the fiber-optical IOT also has a good development prospect. This article first introduces IOT’s current status, the key technology, the theoretical frame and the applications. Then, it discusses the classification of the optical fiber sensor as well as the development and its application’s situation. Lastly, it puts the optical fiber sensing technology into the IOT, and introduces a specific application which is used in the mine safety based on the fiber-optical IOT.

  3. Monitoring techniques for the manufacture of tapered optical fibers.

    Science.gov (United States)

    Mullaney, Kevin; Correia, Ricardo; Staines, Stephen E; James, Stephen W; Tatam, Ralph P

    2015-10-01

    The use of a range of optical techniques to monitor the process of fabricating optical fiber tapers is investigated. Thermal imaging was used to optimize the alignment of the optical system; the transmission spectrum of the fiber was monitored to confirm that the tapers had the required optical properties and the strain induced in the fiber during tapering was monitored using in-line optical fiber Bragg gratings. Tapers were fabricated with diameters down to 5 μm and with waist lengths of 20 mm using single-mode SMF-28 fiber.

  4. A novel thermoset polymer optical fiber

    NARCIS (Netherlands)

    Flipsen, T.A C; Steendam, R; Pennings, A.J; Hadziioannou, G

    Polymer optical fibers are being investigated with a view to overcoming some of the disadvantages of glass optical fibers in communications applications. Dense cross-linked polymers, such as the polyisocyanurate discussed here (see figure), have been found to be superior in some respects to the

  5. Dispersion properties of plasma cladded annular optical fiber

    Science.gov (United States)

    KianiMajd, M.; Hasanbeigi, A.; Mehdian, H.; Hajisharifi, K.

    2018-05-01

    One of the considerable problems in a conventional image transferring fiber optic system is the two-fold coupling of propagating hybrid modes. In this paper, using a simple and practical analytical approach based on exact modal vectorial analysis together with Maxwell's equations, we show that applying plasma as a cladding medium of an annular optical fiber can remove this defect of conventional fiber optic automatically without any external instrument as the polarization beam splitter. Moreover, the analysis indicates that the presence of plasma in the proposed optical fiber could extend the possibilities for controlling the propagation property. The proposed structure presents itself as a promising route to advanced optical processing and opens new avenues in applied optics and photonics.

  6. Optical-fiber interferometer for velocity measurements with picosecond resolution

    International Nuclear Information System (INIS)

    Weng Jidong; Tan Hua; Wang Xiang; Ma Yun; Hu Shaolou; Wang Xiaosong

    2006-01-01

    The conventional Doppler laser-interference velocimeters are made up of traditional optical elements such as lenses and mirrors and will generally restrict its applications in multipoint velocity measurements. By transfering the light from multimode optical fiber to single-mode optical fiber and using the currently available conventional telecommunications elements, the authors have constructed a velocimeter called all-fiber displacement interferometer system for any reflector. The unique interferometer system is only made up of fibers or fiber-coupled components. The viability of this technique is demonstrated by measuring the velocity of an interface moving at velocity of 2133 m/s with 50 ps time resolution. In addition, the concept of optical-fiber mode conversion would provide a way to develop various optical-fiber sensors

  7. Fluoride glass fiber optics

    CERN Document Server

    Aggarwal, Ishwar D

    1991-01-01

    Fluoride Glass Fiber Optics reviews the fundamental aspects of fluoride glasses. This book is divided into nine chapters. Chapter 1 discusses the wide range of fluoride glasses with an emphasis on fluorozirconate-based compositions. The structure of simple fluoride systems, such as BaF2 binary glass is elaborated in Chapter 2. The third chapter covers the intrinsic transparency of fluoride glasses from the UV to the IR, with particular emphasis on the multiphonon edge and electronic edge. The next three chapters are devoted to ultra-low loss optical fibers, reviewing methods for purifying and

  8. Bridge SHM system based on fiber optical sensing technology

    Science.gov (United States)

    Li, Sheng; Fan, Dian; Fu, Jiang-hua; Huang, Xing; Jiang, De-sheng

    2015-09-01

    The latest progress of our lab in recent 10 years on the area of bridge structural health monitoring (SHM) based on optical fiber sensing technology is introduced. Firstly, in the part of sensing technology, optical fiber force test-ring, optical fiber vibration sensor, optical fiber smart cable, optical fiber prestressing loss monitoring method and optical fiber continuous curve mode inspection system are developed, which not only rich the sensor types, but also provides new monitoring means that are needed for the bridge health monitoring system. Secondly, in the optical fiber sensing network and computer system platform, the monitoring system architecture model is designed to effectively meet the integration scale and effect requirement of engineering application, especially the bridge expert system proposed integration of sensing information and informatization manual inspection to realize the mode of multi index intelligence and practical monitoring, diagnosis and evaluation. Finally, the Jingyue bridge monitoring system as the representative, the research on the technology of engineering applications are given.

  9. Extended-length fiber optic carbon dioxide monitoring

    Science.gov (United States)

    Delgado-Alonso, Jesus; Lieberman, Robert A.

    2013-05-01

    This paper discusses the design and performance of fiber optic distributed intrinsic sensors for dissolved carbon dioxide, based on the use optical fibers fabricated so that their entire lengths are chemically sensitive. These fibers use a polymer-clad, silica-core structure where the cladding undergoes a large, reversible, change in optical absorbance in the presence of CO2. The local "cladding loss" induced by this change is thus a direct indication of the carbon dioxide concentration in any section of the fiber. To create these fibers, have developed a carbon dioxide-permeable polymer material that adheres well to glass, is physically robust, has a refractive index lower than fused silica, and acts as excellent hosts for a unique colorimetric indicator system that respond to CO2. We have used this proprietary material to produce carbon-dioxide sensitive fibers up to 50 meters long, using commercial optical fiber fabrication techniques. The sensors have shown a measurement range of dissolved CO2 of 0 to 1,450 mg/l (0 to 100% CO2 saturation), limit of detection of 0.3 mg/l and precision of 1.0 mg/l in the 0 to 50 mg/l dissolved CO2 range, when a 5 meter-long sensor fiber segment is used. Maximum fiber length, minimum detectable concentration, and spatial resolution can be adjusted by adjusting indicator concentration and fiber design.

  10. A microbent fiber optic pH sensor

    NARCIS (Netherlands)

    Thomas Lee, S.; Aneeshkumar, B.N.; Radhakrishnan, P.; Vallabhan, C.P.G.; Nampoori, V.P.N.

    2002-01-01

    Optical fiber sensors developed for measuring pH values usually employ an unclad and unstrained section of the fiber. In this paper, we describe the design and fabrication of a microbent fiber optic sensor that can be used for pH sensing. In order to obtain the desired performance, a permanently

  11. Single mode optical fiber vibration sensor: design and development

    Science.gov (United States)

    Alanis-Carranza, L. E.; Alvarez-Chavez, J. A.; Perez-Sanchez, G. G.; Sierra-Calderon, A.; Rodriguez-Novelo, J. C.

    2016-09-01

    This work deals with the design and development of an SMF28-based vibration detector including the fiber segment, the data acquisition via an NI-USB-6212 card, the data processing code in Visual Basic and the signal spectrum obtained via Fourier analysis. The set-up consists of a regulated voltage source at 2.6V, 300mA, which serves as the power source for a 980nm semiconductor laser operating at 150mW which is fiber coupled into a 20m-piece of SMF-28 fiber. Perpendicular to such fiber the perturbations ranged from 1 to 100 kHz, coming from a DC motor at 12 Volts. At the detection stage, a simple analog filter and a commercial photo diode were employed for data acquisition, before a transimpedance amplification stage reconstructed the signal into the National Instruments data acquisition card. At the output, the signals Fourier transformation allows the signal to be displayed in a personal computer. The presentation will include a full electrical and optical characterization of the device and preliminary sensing results, which could be suitable for structural health monitoring applications.

  12. FOREX-A Fiber Optics Diagnostic System For Study Of Materials At High Temperatures And Pressures

    Science.gov (United States)

    Smith, D. E.; Roeske, F.

    1983-03-01

    We have successfully fielded a Fiber Optics Radiation EXperiment system (FOREX) designed for measuring material properties at high temperatures and pressures on an underground nuclear test. The system collects light from radiating materials and transmits it through several hundred meters of optical fibers to a recording station consisting of a streak camera with film readout. The use of fiber optics provides a faster time response than can presently be obtained with equalized coaxial cables over comparable distances. Fibers also have significant cost and physical size advantages over coax cables. The streak camera achieves a much higher information density than an equivalent oscilloscope system, and it also serves as the light detector. The result is a wide bandwidth high capacity system that can be fielded at a relatively low cost in manpower, space, and materials. For this experiment, the streak camera had a 120 ns time window with a 1.2 ns time resolution. Dynamic range for the system was about 1000. Beam current statistical limitations were approximately 8% for a 0.3 ns wide data point at one decade above the threshold recording intensity.

  13. 46 CFR 111.60-6 - Fiber optic cable.

    Science.gov (United States)

    2010-10-01

    ... 46 Shipping 4 2010-10-01 2010-10-01 false Fiber optic cable. 111.60-6 Section 111.60-6 Shipping COAST GUARD, DEPARTMENT OF HOMELAND SECURITY (CONTINUED) ELECTRICAL ENGINEERING ELECTRIC SYSTEMS-GENERAL REQUIREMENTS Wiring Materials and Methods § 111.60-6 Fiber optic cable. Each fiber optic cable must— (a) Be...

  14. Modeling fiber Bragg grating device networks in photomechanical polymer optical fibers

    Science.gov (United States)

    Lanska, Joseph T.; Kuzyk, Mark G.; Sullivan, Dennis M.

    2015-09-01

    We report on the modeling of fiber Bragg grating (FBG) networks in poly(methyl methacrylate) (PMMA) polymer fibers doped with azo dyes. Our target is the development of Photomechanical Optical Devices (PODs), comprised of two FBGs in series, separated by a Fabry-Perot cavity of photomechanical material. PODs exhibit photomechanical multi-stability, with the capacity to access multiple length states for a fixed input intensity when a mechanical shock is applied. Using finite-difference time-domain (FDTD) numerical methods, we modeled the photomechanical response of both Fabry-Perot and Bragg-type PODs in a single polymer optical fiber. The polymer fiber was modeled as an instantaneous Kerr-type nonlinear χ(3) material. Our model correctly predicts the essential optical features of FBGs as well as the photomechanical multi-stability of nonlinear Fabry-Perot cavity-based PODs. Networks of PODs may provide a framework for smart shape-shifting materials and fast optical computation where the decision process is distributed over the entire network. In addition, a POD can act as memory, and its response can depend on input history. Our models inform and will accelerate targeted development of novel Bragg grating-based polymer fiber device networks for a variety of applications in optical computing and smart materials.

  15. Radiation cured coatings for fiber optics

    International Nuclear Information System (INIS)

    Ketley, A.D.; Morgan, C.R.

    1978-01-01

    A continuous protective coating is formed on a fiber optic by coating the fiber optic in a bath of a liquid radiation curable composition at a temperature up to 90 0 C and exposing the coated conductor to ultraviolet or high energy ionizing radiation to cure the coating

  16. A scintillating fiber detector for the D0 upgrade

    International Nuclear Information System (INIS)

    Wayne, M.

    1993-03-01

    In the Step 1 version of the D0 upgrade, the inner vertex chamber will be replaced by a system of silicon microstrips surrounded by a scintillating fiber detector. Details of the detector design and status of R ampersand D and construction programs for the detector are presented. Progress on the upcoming large-scale cosmic ray test at Fermilab is also reported

  17. 21 CFR 872.4620 - Fiber optic dental light.

    Science.gov (United States)

    2010-04-01

    ... 21 Food and Drugs 8 2010-04-01 2010-04-01 false Fiber optic dental light. 872.4620 Section 872...) MEDICAL DEVICES DENTAL DEVICES Surgical Devices § 872.4620 Fiber optic dental light. (a) Identification. A fiber optic dental light is a device that is a light, usually AC-powered, that consists of glass or...

  18. Fabrication of Optical Fiber Devices

    Science.gov (United States)

    Andres, Miguel V.

    In this paper we present the main research activities of the Laboratorio de Fibras Opticas del Instituto de Ciencia de los Materiales de la Universidad de Valencia. We show some of the main results obtained for devices based on tapered fibers, fiber Bragg gratings, acousto-optic effects and photonic crystal fibers.

  19. Fiber Optics: A New World of Possibilities in Light.

    Science.gov (United States)

    Hutchinson, John

    1990-01-01

    The background and history of light and fiber optics are discussed. Applications for light passed either directly or indirectly through optical fibers are described. Suggestions for science activities that use fiber optics are provided. (KR)

  20. Rayleigh scattering in few-mode optical fibers.

    Science.gov (United States)

    Wang, Zhen; Wu, Hao; Hu, Xiaolong; Zhao, Ningbo; Mo, Qi; Li, Guifang

    2016-10-24

    The extremely low loss of silica fibers has enabled the telecommunication revolution, but single-mode fiber-optic communication systems have been driven to their capacity limits. As a means to overcome this capacity crunch, space-division multiplexing (SDM) using few-mode fibers (FMF) has been proposed and demonstrated. In single-mode optical fibers, Rayleigh scattering serves as the dominant mechanism for optical loss. However, to date, the role of Rayleigh scattering in FMFs remains elusive. Here we establish and experimentally validate a general model for Rayleigh scattering in FMFs. Rayleigh backscattering not only sets the intrinsic loss limit for FMFs but also provides the theoretical foundation for few-mode optical time-domain reflectometry, which can be used to probe perturbation-induced mode-coupling dynamics in FMFs. We also show that forward inter-modal Rayleigh scattering ultimately sets a fundamental limit on inter-modal-crosstalk for FMFs. Therefore, this work not only has implications specifically for SDM systems but also broadly for few-mode fiber optics and its applications in amplifiers, lasers, and sensors in which inter-modal crosstalk imposes a fundamental performance limitation.

  1. Modeling illumination performance of plastic optical fiber passive daylighting system

    Energy Technology Data Exchange (ETDEWEB)

    Sulaiman, F; Ahmad, A [Universiti Teknologi MARA, Shah Alam (Malaysia). Faculty of Electrical Engineering; Ahmed, A Z [Universiti Teknologi MARA, Shah Alam (Malaysia). Bureau of Reseaarch and Consultancy

    2006-12-15

    of the most direct methods of utilizing solar energy for energy conservation is to bring natural light indoors to light up an area. This paper reports on the investigation of the feasibility to utilize large core optical fibers to convey and distribute solar light passively throughout residential or commercial structures. The focus of this study is on the mathematical modeling of the illumination performance and the light transmission efficiency of solid core end light fiber for optical day lighting systems. The Meatball simulations features the optical fiber transmittance for glass and plastic fibers, illumination performance over lengths of plastic end-lit fiber, spectral transmission, light intensity loss through the large diameter solid core optical fibers as well as the transmission efficiency of the optical fiber itself. It was found that plastic optical fiber has less transmission loss over the distance of the fiber run which clearly shows that the Plastic Optical Fiber should be optimized for emitting visible light. The findings from the analysis on the performance of large diameter optical fibers for day lighting systems seems feasible for energy efficient lighting system in commercial or residential buildings.

  2. Modeling illumination performance of plastic optical fiber passive daylighting system

    International Nuclear Information System (INIS)

    Sulaiman, F.; Ahmad, A.; Ahmed, A.Z.

    2006-01-01

    One of the most direct methods of utilizing solar energy for energy conservation is to bring natural light indoors to light up an area. This paper reports on the investigation of the feasibility to utilize large core optical fibers to convey and distribute solar light passively throughout residential or commercial structures. The focus of this study is on the mathematical modeling of the illumination performance and the light transmission efficiency of solid core end light fiber for optical day lighting systems. The Meatball simulations features the optical fiber transmittance for glass and plastic fibers, illumination performance over lengths of plastic end-lit fiber, spectral transmission, light intensity loss through the large diameter solid core optical fibers as well as the transmission efficiency of the optical fiber itself. It was found that plastic optical fiber has less transmission loss over the distance of the fiber run which clearly shows that the Plastic Optical Fiber should be optimized for emitting visible light. The findings from the analysis on the performance of large diameter optical fibers for day lighting systems seems feasible for energy efficient lighting system in commercial or residential buildings

  3. Radiation damage in optical fibers

    International Nuclear Information System (INIS)

    Lyons, P.B.; Looney, L.D.; Ogle, J.W.

    1983-01-01

    Optical fibers provide important advantages over coaxial cables for many data transmission applications. Some of these applications require that the fibers transmit data during a radiation pulse. Other applications utilize the fiber as a radiation-to-light transducer. In either case, radiation-induced luminescence and absorption must be understood. Most studies of radiation effects in fibers have emphasized time scales of interest in telecommunication systems, from the msec to hour range. Few studies have concentrated on response at times below 1 + s. At Los Alamos, both laboratory electron accelerators and nuclear tests have been used as radiation sources to probe this early time region. The use of a fiber (or any optical medium) as a Cerenkov radiation-to-light transducer is discussed. Since the radiation induces attenuation in the medium, the light output is not proportional to the radiation input. The nonlinearity introduced by this attenuation is calculated

  4. Optical Fiber Spectroscopy

    Science.gov (United States)

    Buoncristiani, A. M.

    1999-01-01

    This is the final report of work done on NASA Grant NAG-1-443. The work covers the period from July 1, 1992 to December 1, 1998. During this period several distinct but related research studies and work tasks were undertaken. These different subjects are enumerated below with a description of the work done on each of them. The focus of the research was the development of optical fibers for use as distributed temperature and stress sensors. The initial concept was to utilize the utilize the temperature and stress dependence of emission from rare earth and transition metal ions substitutionally doped into crystalline or glass fibers. During the course of investigating this it became clear that fiber Bragg gratings provided a alternative for making the desired measurements and there was a shift of research focus on to include the photo-refractive properties of germano-silicate glasses used for most gratings and to the possibility of developing fiber laser sources for an integrated optical sensor in the research effort. During the course of this work several students from Christopher Newport University and other universities participated in this effort. Their names are listed below. Their participation was an important part of their education.

  5. The HERMES recoil detector. Particle identification and determination of detector efficiency of the scintillating fiber tracker

    Energy Technology Data Exchange (ETDEWEB)

    Lu, Xianguo

    2009-11-15

    HERMES is a fixed target experiment using the HERA 27.6 GeV polarized electron/positron beams. With the polarized beams and its gas targets, which can be highly polarized, HERMES is dedicated to study the nucleon spin structure. One of its current physics programs is to measure deeply virtual Compton scattering (DVCS). In order to detect the recoiling proton the Recoil Detector was installed in the target region in the winter of 2005, taking data until the HERA-shutdown in the summer of 2007. The Recoil Detector measured energy loss of the traversing particles with its sub-detectors, including the silicon strip detector and the scintillating fiber tracker. This enables particle identification for protons and pions. In this work a systematic particle identification procedure is developed, whose performance is quantified. Another aspect of this work is the determination of the detector efficiency of the scintillating fiber tracker. (orig.)

  6. Development of an optical fiber flow velocity sensor.

    Science.gov (United States)

    Harada, Toshio; Kamoto, Kenji; Abe, Kyutaro; Izumo, Masaki

    2009-01-01

    A new optical fiber flow velocity sensor was developed by using an optical fiber information network system in sewer drainage pipes. The optical fiber flow velocity sensor operates without electric power, and the signals from the sensor can be transmitted over a long distance through the telecommunication system in the optical fiber network. Field tests were conducted to check the performance of the sensor in conduits in the pumping station and sewage pond managed by the Tokyo Metropolitan Government. Test results confirmed that the velocity sensor can be used for more than six months without any trouble even in sewer drainage pipes.

  7. Experimental study of optical fibers influence on composite

    Science.gov (United States)

    Liu, Rong-Mei; Liang, Da-Kai

    2010-03-01

    Bending strength and elasticity modulus of composite, with and without embedded optical fibers, were experimentally studied. Two kinds of laminates, which were denoted as group 1 and group 2, were fabricated from an orthogonal woven glass/epoxy prepreg. Since the normal stress value becomes the biggest at the surface of a beam, the optical fibers were embedded at the outmost layer and were all along the loading direction. Four types of materials, using each kind of laminated prepreg respectively, were manufactured. The embedded optical fibers for the 4 material types were 0, 10, 30 and 50 respectively. Three-point bending tests were carried out on the produced specimens to study the influence of embedded optical fiber on host composite. The experimental results indicated that the materials in group 2 were more sensitive to the embedded optical fibers.

  8. A fiber-dosimetry method based on OSL from Al2O3:C for radiotherapy applications

    International Nuclear Information System (INIS)

    Gaza, R.; McKeever, S.W.S.; Akselrod, M.S.; Akselrod, A.; Underwood, T.; Yoder, C.; Andersen, C.E.; Aznar, M.C.; Marckmann, C.J.; Boetter-Jensen, L.

    2004-01-01

    We describe a high-sensitivity, fiber-optic dosimetry system based on optically stimulated luminescence (OSL) and radioluminescence from Al 2 O 3 :C single-crystal fibers (detectors). The detectors are coupled to a fiber optic delivery system and OSL from the detector is stimulated via the optical fiber cable using light from a Nd:YAG laser. The OSL is guided back along the same fiber and is detected by a photomultiplier tube. The Al 2 O 3 :C detectors are small and demonstrate high sensitivity with a large signal-to-noise ratio. We describe two modes of operation of the system and discuss algorithms that provide accurate estimation of dose rate and integrated dose in near real time. The system is free from magnetic and electrical interference, and is designed for use in several forms of radiotherapy, including in vitro brachytherapy source calibration, and in vivo dosimetry during patient treatment

  9. A radiation tolerant fiber-optic readout system for the LHCb Silicon Tracker

    CERN Document Server

    Agari, M; Blouw, J; Hofmann, W; Knöpfle, K T; Löchner, S; Schmelling, M; Schwingenheuer, B; Pugatch, V; Pylypchenko, Y; Bay, A; Carron, B; Fauland, P; Frei, R; Jiménez-Otero, S; Perrin, A; Tran, M T; Van Hunen, J J; Vervink, K; Vollhardt, A; Voss, H; Adeva, B; Esperante-Pereira, D; Lois, C; Vázquez, P; Bernhard, R P; Bernet, R; Gassner, J; Köstner, S; Lehner, F; Needham, M; Steinkamp, O; Straumann, U; Volyanskyy, D; Wenger, A

    2005-01-01

    A fiber-optic readout system has been designed for the LHCb Silicon Tracker to transmit the detector data to the counting room at a distance of 120 m from the detectors. In total, data from over 272000 detector channels have to be transmitted at an average trigger frequency of 1.1 MHz. In the design of the system, special attention was given to its radiation tolerance, as the transmitting section is located close to the beamline and therefore is exposed to moderate particle fluences and ionizing dose during the expected operational life of 10 years. We give a general overview of the readout link scheme and present performance data on its reliability and radiation tolerance obtained from first preseries elements of the system. Poster presented on the 10th European Symposium on Semiconductor Detectors, June 12th â€" June 16th 2005, Wildbad Kreuth, Germany.

  10. Optical Fiber Sensors Based on Fiber Ring Laser Demodulation Technology.

    Science.gov (United States)

    Xie, Wen-Ge; Zhang, Ya-Nan; Wang, Peng-Zhao; Wang, Jian-Zhang

    2018-02-08

    A review for optical fiber sensors based on fiber ring laser (FRL) demodulation technology is presented. The review focuses on the principles, main structures, and the sensing performances of different kinds of optical fiber sensors based on FRLs. First of all, the theory background of the sensors has been discussed. Secondly, four different types of sensors are described and compared, which includes Mach-Zehnder interferometer (MZI) typed sensors, Fabry-Perot interferometer (FPI) typed sensors, Sagnac typed sensors, and fiber Bragg grating (FBG) typed sensors. Typical studies and main properties of each type of sensors are presented. Thirdly, a comparison of different types of sensors are made. Finally, the existing problems and future research directions are pointed out and analyzed.

  11. Accuracy of Analog Fiber-Optic Links in Pulsed Radiation Environments

    International Nuclear Information System (INIS)

    E K Miller; G S Macrum; I J McKenna

    2007-01-01

    second case, we present data using a state-of-the-art fiber-optic link for single-shot transmission and recording, fielded at the OMEGA laser facility on high-yield fusion experiments. Gamma reaction history data are measured with a gas Cherenkov detector (GCD) [4], [5] and transmitted by M-Z link to a 12 GHz digitizer. Since radiation effects on the fibers are not above the noise floor, the error analysis for the unfolded data is dominated by the performance of the fast digitizer, the photoreceiver, and the laser

  12. Supersymmetric Transformations in Optical Fibers

    Science.gov (United States)

    Macho, Andrés; Llorente, Roberto; García-Meca, Carlos

    2018-01-01

    Supersymmetry (SUSY) has recently emerged as a tool to design unique optical structures with degenerate spectra. Here, we study several fundamental aspects and variants of one-dimensional SUSY in axially symmetric optical media, including their basic spectral features and the conditions for degeneracy breaking. Surprisingly, we find that the SUSY degeneracy theorem is partially (totally) violated in optical systems connected by isospectral (broken) SUSY transformations due to a degradation of the paraxial approximation. In addition, we show that isospectral constructions provide a dimension-independent design control over the group delay in SUSY fibers. Moreover, we find that the studied unbroken and isospectral SUSY transformations allow us to generate refractive-index superpartners with an extremely large phase-matching bandwidth spanning the S +C +L optical bands. These singular features define a class of optical fibers with a number of potential applications. To illustrate this, we numerically demonstrate the possibility of building photonic lanterns supporting broadband heterogeneous supermodes with large effective area, a broadband all-fiber true-mode (de)multiplexer requiring no mode conversion, and different mode-filtering, mode-conversion, and pulse-shaping devices. Finally, we discuss the possibility of extrapolating our results to acoustics and quantum mechanics.

  13. Vibro-Perception of Optical Bio-Inspired Fiber-Skin.

    Science.gov (United States)

    Li, Tao; Zhang, Sheng; Lu, Guo-Wei; Sunami, Yuta

    2018-05-12

    In this research, based on the principle of optical interferometry, the Mach-Zehnder and Optical Phase-locked Loop (OPLL) vibro-perception systems of bio-inspired fiber-skin are designed to mimic the tactile perception of human skin. The fiber-skin is made of the optical fiber embedded in the silicone elastomer. The optical fiber is an instinctive and alternative sensor for tactile perception with high sensitivity and reliability, also low cost and susceptibility to the magnetic interference. The silicone elastomer serves as a substrate with high flexibility and biocompatibility, and the optical fiber core serves as the vibro-perception sensor to detect physical motions like tapping and sliding. According to the experimental results, the designed optical fiber-skin demonstrates the ability to detect the physical motions like tapping and sliding in both the Mach-Zehnder and OPLL vibro-perception systems. For direct contact condition, the OPLL vibro-perception system shows better performance compared with the Mach-Zehnder vibro-perception system. However, the Mach-Zehnder vibro-perception system is preferable to the OPLL system in the indirect contact experiment. In summary, the fiber-skin is validated to have light touch character and excellent repeatability, which is highly-suitable for skin-mimic sensing.

  14. Fiber optic evanescent wave biosensor

    Science.gov (United States)

    Duveneck, Gert L.; Ehrat, Markus; Widmer, H. M.

    1991-09-01

    The role of modern analytical chemistry is not restricted to quality control and environmental surveillance, but has been extended to process control using on-line analytical techniques. Besides industrial applications, highly specific, ultra-sensitive biochemical analysis becomes increasingly important as a diagnostic tool, both in central clinical laboratories and in the doctor's office. Fiber optic sensor technology can fulfill many of the requirements for both types of applications. As an example, the experimental arrangement of a fiber optic sensor for biochemical affinity assays is presented. The evanescent electromagnetic field, associated with a light ray guided in an optical fiber, is used for the excitation of luminescence labels attached to the biomolecules in solution to be analyzed. Due to the small penetration depth of the evanescent field into the medium, the generation of luminescence is restricted to the close proximity of the fiber, where, e.g., the luminescent analyte molecules combine with their affinity partners, which are immobilized on the fiber. Both cw- and pulsed light excitation can be used in evanescent wave sensor technology, enabling the on-line observation of an affinity assay on a macroscopic time scale (seconds and minutes), as well as on a microscopic, molecular time scale (nanoseconds or microseconds).

  15. Irradiation of fiber optics in the SSC tunnel

    International Nuclear Information System (INIS)

    Dickey, C.E.

    1990-03-01

    The salient question is not whether optical fiber will survive in the Super Conducting Supercollider (SSC) tunnel, but rather how long will it survive. Current estimates indicate that single mode fiber under ideal conditions will have an expected lifetime of at least 25 years. Future development of optical fiber will lead to longer service lifetimes and increased radiation hardness. But conservatively speaking, current production optical fibers can probably not be depended upon for more than 25 years of service even under ideal conditions

  16. Scifi97: Conference on Scintillating Fiber Detectors. Proceedings

    International Nuclear Information System (INIS)

    Bross, A.D.; Ruchti, R.C.; Wayne, M.R.

    1998-01-01

    These proceedings represent papers presented at the Conference on Scintillating and Fiber Detectors SCIFI97 held at Notre Dame, Indiana in November 1997. The topics discussed included the developments in photosensor technology, calorimetry, including upgrading of hadron calorimeters and EM calorimeters. Medical imaging instrumentation and techniques were also discussed, particularly the PET scanners. Astrophysical applications in detection and composition determination of galactic cosmic rays and solar neutrons were discussed. General developments in scintillation fiber trackers including new materials were a popular topic at the Conference. The Conference reviewed the state-of-the-art of the field of scintillation fiber detectors and their applications in nuclear medicine, astrophysics, and particle physics. The Conference was sponsored by the U.S. Department of Energy, the Fermi National Accelerator Laboratory, and Argonne National Laboratory, as well as other sponsors. There were 66 papers presented at the Conference,out of which 23 have been abstracted for the Energy,Science and Technology database

  17. Improving fiber-optic laser beam delivery by incorporating GRADIUM optics

    International Nuclear Information System (INIS)

    Hunter, B.V.; Leong, K.H.

    1997-01-01

    The performance of a fiber-optic laser beam delivery system strongly depends on the fiber and the optics used to image the fiber face on the workpiece. We have compared off-the-shelf homogenous (BK7) and GRADIUM (axial-gradient) singlets to determine what improvement the GRADIUM offers in practice to the typical laser user. The realized benefit for this application, although significant, is much smaller than would be realized by a conventional imaging application. The figure of merit for laser-based materials processing is the 86% energy-enclosure radius, which is not directly supported by commerical ray-tracing software. Therefore empirical rules of thumb are presented to understand when GRADIUM (or any other well-corrected optics) will yield meaningful improvement to the beam delivery system. copyright 1997 Optical Society of America

  18. Optical fiber head for providing lateral viewing

    Science.gov (United States)

    Everett, Matthew J.; Colston, Billy W.; James, Dale L.; Brown, Steve; Da Silva, Luiz

    2002-01-01

    The head of an optical fiber comprising the sensing probe of an optical heterodyne sensing device includes a planar surface that intersects the perpendicular to axial centerline of the fiber at a polishing angle .theta.. The planar surface is coated with a reflective material so that light traveling axially through the fiber is reflected transverse to the fiber's axial centerline, and is emitted laterally through the side of the fiber. Alternatively, the planar surface can be left uncoated. The polishing angle .theta. must be no greater than 39.degree. or must be at least 51.degree.. The emitted light is reflected from adjacent biological tissue, collected by the head, and then processed to provide real-time images of the tissue. The method for forming the planar surface includes shearing the end of the optical fiber and applying the reflective material before removing the buffer that circumscribes the cladding and the core.

  19. Fiber optic strain measurements using an optically-active polymer

    Science.gov (United States)

    Buckley, Leonard J.; Neumeister, Gary C.

    1992-03-01

    A study encompassing the use of an optically-active polymer as the strain-sensing medium in an organic matrix composite was performed. Several compounds were synthesized for use as the inner cladding material for silica fiber-optic cores. These materials include a diacetylene containing polyamide. It is possible to dynamically modify the optical properties of these materials through changes in applied strain or temperature. By doing so the characteristic absorption in the visible is reversibly shifted to a higher energy state. The polymer-coated fiber-optic cores were initially studied in epoxy resin. Additionally, one of the polyamide/diacetylene polymers was studied in a spin-fiber form consisting of 15 micron filaments assembled in multifilament tows. The most promising configuration and materials were then investigated further by embedding in graphite/epoxy composite laminates. In each case the shift in the visible absorption peak was monitored as a function of applied mechanical strain.

  20. Characterization of Fiber Optic CMM Probe System

    Energy Technology Data Exchange (ETDEWEB)

    K.W.Swallow

    2007-05-15

    This report documents a study completed on the fiber optic probe system that is a part of the Werth optical CMM. This study was necessary due to a lack of documentation from the vendor for the proper use and calibration of the fiber probe, and was performed in support of the Lithographie Galvanoformung Abformung (LIGA) development program at the FM&T. As a result of this study, a better understanding of the fiber optic probe has been developed, including guidelines for its proper use and calibration.

  1. Crystal-free Formation of Non-Oxide Optical Fiber

    Science.gov (United States)

    Nabors, Sammy A.

    2015-01-01

    Researchers at NASA Marshall Space Flight Center have devised a method for the creation of crystal-free nonoxide optical fiber preforms. Non-oxide fiber optics are extensively used in infrared transmitting applications such as communication systems, chemical sensors, and laser fiber guides for cutting, welding and medical surgery. However, some of these glasses are very susceptible to crystallization. Even small crystals can lead to light scatter and a high attenuation coefficient, limiting their usefulness. NASA has developed a new method of non-oxide fiber formation that uses axial magnetic fields to suppress crystallization. The resulting non-oxide fibers are crystal free and have lower signal attenuation rates than silica based optical fibers.

  2. Fiber optic sensing for telecommunication satellites

    Science.gov (United States)

    Reutlinger, Arnd; Glier, Markus; Zuknik, Karl-Heinz; Hoffmann, Lars; Müller, Mathias; Rapp, Stephan; Kurvin, Charles; Ernst, Thomas; McKenzie, Iain; Karafolas, Nikos

    2017-11-01

    Modern telecommunication satellites can benefit from the features of fiber optic sensing wrt to mass savings, improved performance and lower costs. Within the course of a technology study, launched by the European Space Agency, a fiber optic sensing system has been designed and is to be tested on representative mockups of satellite sectors and environment.

  3. Femtosecond Laser Structuring in Optical Fiber and Transparent Films

    Directory of Open Access Journals (Sweden)

    Herman Peter R.

    2013-11-01

    Full Text Available Femtosecond laser processing is optimized for writing optical circuits, optical resonators, and microfluidic devices inside the cladding of single-mode optical fiber that couple efficiently with the fiber core waveguide. The laser processes open new directions towards Labon-a-Fiber.

  4. Neural networks within multi-core optic fibers.

    Science.gov (United States)

    Cohen, Eyal; Malka, Dror; Shemer, Amir; Shahmoon, Asaf; Zalevsky, Zeev; London, Michael

    2016-07-07

    Hardware implementation of artificial neural networks facilitates real-time parallel processing of massive data sets. Optical neural networks offer low-volume 3D connectivity together with large bandwidth and minimal heat production in contrast to electronic implementation. Here, we present a conceptual design for in-fiber optical neural networks. Neurons and synapses are realized as individual silica cores in a multi-core fiber. Optical signals are transferred transversely between cores by means of optical coupling. Pump driven amplification in erbium-doped cores mimics synaptic interactions. We simulated three-layered feed-forward neural networks and explored their capabilities. Simulations suggest that networks can differentiate between given inputs depending on specific configurations of amplification; this implies classification and learning capabilities. Finally, we tested experimentally our basic neuronal elements using fibers, couplers, and amplifiers, and demonstrated that this configuration implements a neuron-like function. Therefore, devices similar to our proposed multi-core fiber could potentially serve as building blocks for future large-scale small-volume optical artificial neural networks.

  5. Fiber Optic Sensors for Health Monitoring of Morphing Airframes. Part 2; Chemical Sensing Using Optical Fibers with Bragg Gratings

    Science.gov (United States)

    Wood, Karen; Brown, Timothy; Rogowski, Robert; Jensen, Brian

    2000-01-01

    Part 1 of this two part series described the fabrication and calibration of Bragg gratings written into a single mode optical fiber for use in strain and temperature monitoring. Part 2 of the series describes the use of identical fibers and additional multimode fibers, both with and without Bragg gratings, to perform near infrared spectroscopy. The demodulation system being developed at NASA Langley Research Center currently requires the use of a single mode optical fiber. Attempts to use this single mode fiber for spectroscopic analysis are problematic given its small core diameter, resulting in low signal intensity. Nonetheless, we have conducted a preliminary investigation using a single mode fiber in conjunction with an infrared spectrometer to obtain spectra of a high-performance epoxy resin system. Spectra were obtained using single mode fibers that contained Bragg gratings; however, the peaks of interest were barely discernible above the noise. The goal of this research is to provide a multipurpose sensor in a single optical fiber capable of measuring a variety of chemical and physical properties.

  6. Effects of Temperature and X-rays on Plastic Scintillating Fiber and Infrared Optical Fiber.

    Science.gov (United States)

    Lee, Bongsoo; Shin, Sang Hun; Jang, Kyoung Won; Yoo, Wook Jae

    2015-05-11

    In this study, we have studied the effects of temperature and X-ray energy variations on the light output signals from two different fiber-optic sensors, a fiber-optic dosimeter (FOD) based on a BCF-12 as a plastic scintillating fiber (PSF) and a fiber-optic thermometer (FOT) using a silver halide optical fiber as an infrared optical fiber (IR fiber). During X-ray beam irradiation, the scintillating light and IR signals were measured simultaneously using a dosimeter probe of the FOD and a thermometer probe of the FOT. The probes were placed in a beaker with water on the center of a hotplate, under variation of the tube potential of a digital radiography system or the temperature of the water in the beaker. From the experimental results, in the case of the PSF, the scintillator light output at the given tube potential decreased as the temperature increased in the temperature range from 25 to 60 °C. We demonstrated that commonly used BCF-12 has a significant temperature dependence of -0.263 ± 0.028%/°C in the clinical temperature range. Next, in the case of the IR fiber, the intensity of the IR signal was almost uniform at each temperature regardless of the tube potential range from 50 to 150 kVp. Therefore, we also demonstrated that the X-ray beam with an energy range used in diagnostic radiology does not affect the IR signals transmitted via a silver halide optical fiber.

  7. Hot Springs-Garrison Fiber Optic Project

    International Nuclear Information System (INIS)

    1994-10-01

    Bonneville Power Administration (BPA) is proposing to upgrade its operational telecommunications system between the Hot Springs Substation and the Garrison Substation using a fiber optic system. The project would primarily involve installing 190 kilometers (120 miles) of fiber optic cable on existing transmission structures and installing new fiber optic equipment in BPA's substation yards and control houses. BPA prepared an environmental assessment (EA) evaluating the proposed action. This EA was published in October 1994. The EA identifies a number of minor impacts that might occur as a result of the proposed action, as well as some recommended mitigation measures. This Mitigation Action Plan (MAP) identifies specific measures to avoid, minimize, or compensate for impacts identified in the EA

  8. Hot Springs-Garrison Fiber Optic Project

    Energy Technology Data Exchange (ETDEWEB)

    1994-10-01

    Bonneville Power Administration (BPA) is proposing to upgrade its operational telecommunications system between the Hot Springs Substation and the Garrison Substation using a fiber optic system. The project would primarily involve installing 190 kilometers (120 miles) of fiber optic cable on existing transmission structures and installing new fiber optic equipment in BPA`s substation yards and control houses. BPA prepared an environmental assessment (EA) evaluating the proposed action. This EA was published in October 1994. The EA identifies a number of minor impacts that might occur as a result of the proposed action, as well as some recommended mitigation measures. This Mitigation Action Plan (MAP) identifies specific measures to avoid, minimize, or compensate for impacts identified in the EA.

  9. Recent Development in Optical Fiber Biosensors

    Directory of Open Access Journals (Sweden)

    Catalina Bosch Ojeda

    2007-06-01

    Full Text Available Remarkable developments can be seen in the field of optical fibre biosensors in the last decade. More sensors for specific analytes have been reported, novel sensing chemistries or transduction principles have been introduced, and applications in various analytical fields have been realised. This review consists of papers mainly reported in the last decade and presents about applications of optical fiber biosensors. Discussions on the trends in optical fiber biosensor applications in real samples are enumerated.

  10. Use of optical fibers in spectrophotometry

    Science.gov (United States)

    Ramsey, Lawrence W.

    1988-01-01

    The use of single or small numbers of fiber optic fibers in astronomical spectroscopy with the goal of greater spectrophotometric and radial velocity accuracy is discussed. The properties of multimode step index fibers which are most important for this application are outlined, as are laboratory tests of currently available fibers.

  11. Multi-mode optical fibers for connecting space-based spectrometers

    Science.gov (United States)

    Roberts, W. T.; Lindenmisth, C. A.; Bender, S.; Miller, E. A.; Motts, E.; Ott, M.; LaRocca, F.; Thomes, J.

    2017-11-01

    Laser spectral analysis systems are increasingly being considered for in situ analysis of the atomic and molecular composition of selected rock and soil samples on other planets [1][2][3]. Both Laser Induced Breakdown Spectroscopy (LIBS) and Raman spectroscopy are used to identify the constituents of soil and rock samples in situ. LIBS instruments use a high peak-power laser to ablate a minute area of the surface of a sample. The resulting plasma is observed with an optical head, which collects the emitted light for analysis by one or more spectrometers. By identifying the ion emission lines observed in the plasma, the constituent elements and their abundance can be deduced. In Raman spectroscopy, laser photons incident on the sample surface are scattered and experience a Raman shift, exchanging small amounts of energy with the molecules scattering the light. By observing the spectrum of the scattered light, it is possible to determine the molecular composition of the sample. For both types of instruments, there are advantages to physically separating the light collecting optics from the spectroscopy optics. The light collection system will often have articulating or rotating elements to facilitate the interrogation of multiple samples with minimum expenditure of energy and motion. As such, the optical head is often placed on a boom or an appendage allowing it to be pointed in different directions or easily positioned in different locations. By contrast, the spectrometry portion of the instrument is often well-served by placing it in a more static location. The detectors often operate more consistently in a thermally-controlled environment. Placing them deep within the spacecraft structure also provides some shielding from ionizing radiation, extending the instrument's useful life. Finally, the spectrometry portion of the instrument often contains significant mass, such that keeping it off of the moving portion of the platform, allowing that portion to be

  12. Recent Developments in Fiber Optics Humidity Sensors.

    Science.gov (United States)

    Ascorbe, Joaquin; Corres, Jesus M; Arregui, Francisco J; Matias, Ignacio R

    2017-04-19

    A wide range of applications such as health, human comfort, agriculture, food processing and storage, and electronic manufacturing, among others, require fast and accurate measurement of humidity. Sensors based on optical fibers present several advantages over electronic sensors and great research efforts have been made in recent years in this field. The present paper reports the current trends of optical fiber humidity sensors. The evolution of optical structures developed towards humidity sensing, as well as the novel materials used for this purpose, will be analyzed. Well-known optical structures, such as long-period fiber gratings or fiber Bragg gratings, are still being studied towards an enhancement of their sensitivity. Sensors based on lossy mode resonances constitute a platform that combines high sensitivity with low complexity, both in terms of their fabrication process and the equipment required. Novel structures, such as resonators, are being studied in order to improve the resolution of humidity sensors. Moreover, recent research on polymer optical fibers suggests that the sensitivity of this kind of sensor has not yet reached its limit. Therefore, there is still room for improvement in terms of sensitivity and resolution.

  13. Residual strain sensor using Al-packaged optical fiber and Brillouin optical correlation domain analysis.

    Science.gov (United States)

    Choi, Bo-Hun; Kwon, Il-Bum

    2015-03-09

    We propose a distributed residual strain sensor that uses an Al-packaged optical fiber for the first time. The residual strain which causes Brillouin frequency shifts in the optical fiber was measured using Brillouin optical correlation domain analysis with 2 cm spatial resolution. We quantified the Brillouin frequency shifts in the Al-packaged optical fiber by the tensile stress and compared them for a varying number of Al layers in the optical fiber. The Brillouin frequency shift of an optical fiber with one Al layer had a slope of 0.038 MHz/με with respect to tensile stress, which corresponds to 78% of that for an optical fiber without Al layers. After removal of the stress, 87% of the strain remained as residual strain. When different tensile stresses were randomly applied, the strain caused by the highest stress was the only one detected as residual strain. The residual strain was repeatedly measured for a time span of nine months for the purpose of reliability testing, and there was no change in the strain except for a 4% reduction, which is within the error tolerance of the experiment. A composite material plate equipped with our proposed Al-packaged optical fiber sensor was hammered for impact experiment and the residual strain in the plate was successfully detected. We suggest that the Al-packaged optical fiber can be adapted as a distributed strain sensor for smart structures, including aerospace structures.

  14. Utilization of Infrared Fiber Optic in the Automotive Industry

    Science.gov (United States)

    Tucker, Dennis S.; Brantley, Lott W. (Technical Monitor)

    2001-01-01

    Fiber optics are finding a place in the automotive industry. Illumination is the primary application today. Soon, however, fiber optics will be used for data communications and sensing applications. Silica fiber optics and plastic fibers are sufficient for illumination and communication applications however, sensing applications involving high temperature measurement and remote gas analysis would benefit from the use of infrared fiber optics. Chalcogonide and heavy metal fluoride glass optical fibers are two good candidates for these applications. Heavy metal fluoride optical fibers are being investigated by NASA for applications requiring transmission in the infrared portion of the electromagnetic spectrum. Zirconium-Barium-Lanthanum-Aluminum-Sodium-Fluoride (ZBLAN) is one such material which has been investigated. This material has a theoretical attenuation coefficient 100 times lower than that of silica and transmits into the mid-IR. However, the measured attenuation coefficient is higher than silica due to impurities and crystallization. Impurities can be taken care of by utilizing cleaner experimental protocol. It has been found that crystallization can be suppressed by processing in reduced gravity. Fibers processed in reduced gravity on the KC135 reduced gravity aircraft were found to be free of crystals while those processed on the ground were found to have crystals. These results will be presented along with plans for producing continuous lengths of ZBLAN optical fiber on board the International Space Station.

  15. Radiation resistant characteristics of optical fibers

    International Nuclear Information System (INIS)

    Nakasuji, Masaaki; Tanaka, Gotaro; Watanabe, Minoru; Kyodo, Tomohisa; Mukunashi, Hiroaki

    1983-01-01

    It is required to develop the optical fibers with good radiation resistivity because the fibers cause the increase of transmission loss due to glass colouring when they are used under the presence of radiation such as γ-ray. Generally, it is known that SI (step index) fibers are more resistive to radiation than GI (graded index) fibers. However, since a wide band can not be obtained with SI fibers, the development of radiation resistive GI optical fibers is desirable. In this report, the production for trial of the GI fibers of fluorine-doped silica core, the examination of radiation effect on their optical transmission loss by exposing them to γ-ray, thermal and fast neutron beams and also of mechanical strength are described. The GI fibers of fluorine-doped silica core show better radiation resistivity than Ge-doped ones. The B- and F-doped GI fibers show small increase of loss due to γ-ray, but large increase of loss due to thermal neutron beam. This is supposed to be caused by the far greater neutron absorption cross-section of boron than that of other elements. Significant increase of loss was not recognized when 14 MeV fast neutrons (8.6 x 10 4 n/cm 2 .s) were applied by 1.8 x 10 9 n/cm 2 . It was found that ETFE-covered fiber cores generated fluorine-containing gas due to γ irradiation, and the strength was remarkably lowered, but the lowering of strength can be prevented by adding titanium-white to the covering material. (Wakatsuki, Y.)

  16. Optical fibers and their instrumentation applications

    International Nuclear Information System (INIS)

    Boisde, Gilbert.

    1982-09-01

    The use of optical fibers in instrumentation requires a knowledge of their properties as ''photon carriers'' and ''sensors''. New instrumentation design implies a satisfactory evaluation of the entire measurement circuit, including the emitter, optical coupling, optical fiber with its physical, spectral and physico-chemical properties, the connector, receiver, signal amplifier and data processing system. An example, is provided of the development of a new technique in physico-chemical instrumentation: remote spectrophotometry. Three aspects are discussed: 1) industrial measurement in ''process control'' using the Telephot (R), 2) remote spectral measurement, 3) opical multiplexing. This is followed by a review of various optical fiber based instrumental techniques used in the fields of medicine (endoscopy, fluorothermy, laser surgery), solar energy industrial applications subject to electrical disturbances (position sensors, strain measurements), and in physico-chemical analysis (fluorescence, redox potentials) [fr

  17. Lab-on-fiber electrophoretic trace mixture separating and detecting an optofluidic device based on a microstructured optical fiber.

    Science.gov (United States)

    Yang, Xinghua; Guo, Xiaohui; Li, Song; Kong, Depeng; Liu, Zhihai; Yang, Jun; Yuan, Libo

    2016-04-15

    We report an in-fiber integrated electrophoretic trace mixture separating and detecting an optofluidic optical fiber sensor based on a specially designed optical fiber. In this design, rapid in situ separation and simultaneous detection of mixed analytes can be realized under electro-osmotic flow in the microstructured optical fiber. To visually display the in-fiber separating and detecting process, two common fluorescent indicators are adopted as the optofluidic analytes in the optical fiber. Results show that a trace amount of the mixture (0.15 μL) can be completely separated within 3.5 min under a high voltage of 5 kV. Simultaneously, the distributed information of the separated analytes in the optical fiber can be clearly obtained by scanning along the optical fiber using a 355 nm laser. The emission from the analytes can be efficiently coupled into the inner core and guides to the remote end of the optical fiber. In addition, the thin cladding around the inner core in the optical fiber can prevent the fluorescent cross talk between the analytes in this design. Compared to previous optical fiber optofluidic devices, this device first realizes simultaneously separating treatment and the detection of the mixed samples in an optical fiber. Significantly, such an in-fiber integrated separating and detecting optofluidic device can find wide applications in various analysis fields involves mixed samples, such as biology, chemistry, and environment.

  18. Automated Inspection of Defects in Optical Fiber Connector End Face Using Novel Morphology Approaches.

    Science.gov (United States)

    Mei, Shuang; Wang, Yudan; Wen, Guojun; Hu, Yang

    2018-05-03

    Increasing deployment of optical fiber networks and the need for reliable high bandwidth make the task of inspecting optical fiber connector end faces a crucial process that must not be neglected. Traditional end face inspections are usually performed by manual visual methods, which are low in efficiency and poor in precision for long-term industrial applications. More seriously, the inspection results cannot be quantified for subsequent analysis. Aiming at the characteristics of typical defects in the inspection process for optical fiber end faces, we propose a novel method, “difference of min-max ranking filtering” (DO2MR), for detection of region-based defects, e.g., dirt, oil, contamination, pits, and chips, and a special model, a “linear enhancement inspector” (LEI), for the detection of scratches. The DO2MR is a morphology method that intends to determine whether a pixel belongs to a defective region by comparing the difference of gray values of pixels in the neighborhood around the pixel. The LEI is also a morphology method that is designed to search for scratches at different orientations with a special linear detector. These two approaches can be easily integrated into optical inspection equipment for automatic quality verification. As far as we know, this is the first time that complete defect detection methods for optical fiber end faces are available in the literature. Experimental results demonstrate that the proposed DO2MR and LEI models yield good comprehensive performance with high precision and accepted recall rates, and the image-level detection accuracies reach 96.0 and 89.3%, respectively.

  19. Automated Inspection of Defects in Optical Fiber Connector End Face Using Novel Morphology Approaches

    Directory of Open Access Journals (Sweden)

    Shuang Mei

    2018-05-01

    Full Text Available Increasing deployment of optical fiber networks and the need for reliable high bandwidth make the task of inspecting optical fiber connector end faces a crucial process that must not be neglected. Traditional end face inspections are usually performed by manual visual methods, which are low in efficiency and poor in precision for long-term industrial applications. More seriously, the inspection results cannot be quantified for subsequent analysis. Aiming at the characteristics of typical defects in the inspection process for optical fiber end faces, we propose a novel method, “difference of min-max ranking filtering” (DO2MR, for detection of region-based defects, e.g., dirt, oil, contamination, pits, and chips, and a special model, a “linear enhancement inspector” (LEI, for the detection of scratches. The DO2MR is a morphology method that intends to determine whether a pixel belongs to a defective region by comparing the difference of gray values of pixels in the neighborhood around the pixel. The LEI is also a morphology method that is designed to search for scratches at different orientations with a special linear detector. These two approaches can be easily integrated into optical inspection equipment for automatic quality verification. As far as we know, this is the first time that complete defect detection methods for optical fiber end faces are available in the literature. Experimental results demonstrate that the proposed DO2MR and LEI models yield good comprehensive performance with high precision and accepted recall rates, and the image-level detection accuracies reach 96.0 and 89.3%, respectively.

  20. Feasibility of Ultra-Thin Fiber-Optic Dosimeters for Radiotherapy Dosimetry.

    Science.gov (United States)

    Lee, Bongsoo; Kwon, Guwon; Shin, Sang Hun; Kim, Jaeseok; Yoo, Wook Jae; Ji, Young Hoon; Jang, Kyoung Won

    2015-11-17

    In this study, prototype ultra-thin fiber-optic dosimeters were fabricated using organic scintillators, wavelength shifting fibers, and plastic optical fibers. The sensor probes of the ultra-thin fiber-optic dosimeters consisted of very thin organic scintillators with thicknesses of 100, 150 and 200 μm. These types of sensors cannot only be used to measure skin or surface doses but also provide depth dose measurements with high spatial resolution. With the ultra-thin fiber-optic dosimeters, surface doses for gamma rays generated from a Co-60 therapy machine were measured. Additionally, percentage depth doses in the build-up regions were obtained by using the ultra-thin fiber-optic dosimeters, and the results were compared with those of external beam therapy films and a conventional fiber-optic dosimeter.

  1. Demonstration of theoretical and experimental simulations in fiber optics course

    Science.gov (United States)

    Yao, Tianfu; Wang, Xiaolin; Shi, Jianhua; Lei, Bing; Liu, Wei; Wang, Wei; Hu, Haojun

    2017-08-01

    "Fiber optics" course plays a supporting effect in the curriculum frame of optics and photonics at both undergraduate and postgraduate levels. Moreover, the course can be treated as compulsory for students specialized in the fiber-related field, such as fiber communication, fiber sensing and fiber light source. The corresponding content in fiber optics requires the knowledge of geometrical and physical optics as background, including basic optical theory and fiber components in practice. Thus, to help the students comprehend the relatively abundant and complex content, it is necessary to investigate novel teaching method assistant the classic lectures. In this paper, we introduce the multidimensional pattern in fiber-optics teaching involving theoretical and laboratory simulations. First, the theoretical simulations is demonstrated based on the self-developed software named "FB tool" which can be installed in both smart phone with Android operating system and personal computer. FB tool covers the fundamental calculations relating to transverse modes, fiber lasers and nonlinearities and so on. By comparing the calculation results with other commercial software like COMSOL, SFTool shows high accuracy with high speed. Then the laboratory simulations are designed including fiber coupling, Erbium doped fiber amplifiers, fiber components and so on. The simulations not only supports students understand basic knowledge in the course, but also provides opportunities to develop creative projects in fiber optics.

  2. Miniature fiber-optic multiphoton microscopy system using frequency-doubled femtosecond Er-doped fiber laser.

    Science.gov (United States)

    Huang, Lin; Mills, Arthur K; Zhao, Yuan; Jones, David J; Tang, Shuo

    2016-05-01

    We report on a miniature fiber-optic multiphoton microscopy (MPM) system based on a frequency-doubled femtosecond Er-doped fiber laser. The femtosecond pulses from the laser source are delivered to the miniature fiber-optic probe at 1.58 µm wavelength, where a standard single mode fiber is used for delivery without the need of free-space dispersion compensation components. The beam is frequency-doubled inside the probe by a periodically poled MgO:LiNbO3 crystal. Frequency-doubled pulses at 786 nm with a maximum power of 80 mW and a pulsewidth of 150 fs are obtained and applied to excite intrinsic signals from tissues. A MEMS scanner, a miniature objective, and a multimode collection fiber are further used to make the probe compact. The miniature fiber-optic MPM system is highly portable and robust. Ex vivo multiphoton imaging of mammalian skins demonstrates the capability of the system in imaging biological tissues. The results show that the miniature fiber-optic MPM system using frequency-doubled femtosecond fiber laser can potentially bring the MPM imaging for clinical applications.

  3. Optical bistability of optical fiber ring doped by Erbium and quantum dots

    International Nuclear Information System (INIS)

    Safari, S.; Tofighi, S.; Bahrampour, A.; Sajad, B.; Shahshahani, F.

    2012-01-01

    In this paper, theoretical analysis of the steady state behavior of the optical bistability in an optical fiber ring doped by Erbium and quantum dots is presented. The up and down switching power is calculated and the dependence of the switching power on different fiber ring parameters is investigated. The switching power for this type of optical bistability device is obtained much lower than the fiber ring which its half length is doped by Erbium ion.

  4. Optical Fiber Grating Hydrogen Sensors: A Review.

    Science.gov (United States)

    Dai, Jixiang; Zhu, Li; Wang, Gaopeng; Xiang, Feng; Qin, Yuhuan; Wang, Min; Yang, Minghong

    2017-03-12

    In terms of hydrogen sensing and detection, optical fiber hydrogen sensors have been a research issue due to their intrinsic safety and good anti-electromagnetic interference. Among these sensors, hydrogen sensors consisting of fiber grating coated with sensitive materials have attracted intensive research interests due to their good reliability and distributed measurements. This review paper mainly focuses on optical fiber hydrogen sensors associated with fiber gratings and various materials. Their configurations and sensing performances proposed by different groups worldwide are reviewed, compared and discussed in this paper. Meanwhile, the challenges for fiber grating hydrogen sensors are also addressed.

  5. [An optical-fiber-sensor-based spectrophotometer for soil non-metallic nutrient determination].

    Science.gov (United States)

    He, Dong-xian; Hu, Juan-xiu; Lu, Shao-kun; He, Hou-yong

    2012-01-01

    In order to achieve rapid, convenient and efficient soil nutrient determination in soil testing and fertilizer recommendation, a portable optical-fiber-sensor-based spectrophotometer including immersed fiber sensor, flat field holographic concave grating, and diode array detector was developed for soil non-metallic nutrient determination. According to national standard of ultraviolet and visible spectrophotometer with JJG 178-2007, the wavelength accuracy and repeatability, baseline stability, transmittance accuracy and repeatability measured by the prototype instrument were satisfied with the national standard of III level; minimum spectral bandwidth, noise and excursion, and stray light were satisfied with the national standard of IV level. Significant linear relationships with slope of closing to 1 were found between the soil available nutrient contents including soil nitrate nitrogen, ammonia nitrogen, available phosphorus, available sulfur, available boron, and organic matter measured by the prototype instrument compared with that measured by two commercial single-beam-based and dual-beam-based spectrophotometers. No significant differences were revealed from the above comparison data. Therefore, the optical-fiber-sensor-based spectrophotometer can be used for rapid soil non-metallic nutrient determination with a high accuracy.

  6. US long distance fiber optic networks: Technology, evolution and advanced concepts. Volume 2: Fiber optic technology and long distance networks

    Science.gov (United States)

    1986-10-01

    The study projects until 2000 the evolution of long distance fiber optic networks in the U.S. Volume 1 is the Executive Summary. Volume 2 focuses on fiber optic components and systems that are directly related to the operation of long-haul networks. Optimistic, pessimistic and most likely scenarios of technology development are presented. The activities of national and regional companies implementing fiber long haul networks are also highlighted, along with an analysis of the market and regulatory forces affecting network evolution. Volume 3 presents advanced fiber optic network concept definitions. Inter-LATA traffic is quantified and forms the basis for the construction of 11-, 15-, 17-, and 23-node networks. Using the technology projections from Volume 2, a financial model identifies cost drivers and determines circuit mile costs between any two LATAs. A comparison of fiber optics with alternative transmission concludes the report.

  7. A low-cost, manufacturable method for fabricating capillary and optical fiber interconnects for microfluidic devices.

    Science.gov (United States)

    Hartmann, Daniel M; Nevill, J Tanner; Pettigrew, Kenneth I; Votaw, Gregory; Kung, Pang-Jen; Crenshaw, Hugh C

    2008-04-01

    Microfluidic chips require connections to larger macroscopic components, such as light sources, light detectors, and reagent reservoirs. In this article, we present novel methods for integrating capillaries, optical fibers, and wires with the channels of microfluidic chips. The method consists of forming planar interconnect channels in microfluidic chips and inserting capillaries, optical fibers, or wires into these channels. UV light is manually directed onto the ends of the interconnects using a microscope. UV-curable glue is then allowed to wick to the end of the capillaries, fibers, or wires, where it is cured to form rigid, liquid-tight connections. In a variant of this technique, used with light-guiding capillaries and optical fibers, the UV light is directed into the capillaries or fibers, and the UV-glue is cured by the cone of light emerging from the end of each capillary or fiber. This technique is fully self-aligned, greatly improves both the quality and the manufacturability of the interconnects, and has the potential to enable the fabrication of interconnects in a fully automated fashion. Using these methods, including a semi-automated implementation of the second technique, over 10,000 interconnects have been formed in almost 2000 microfluidic chips made of a variety of rigid materials. The resulting interconnects withstand pressures up to at least 800psi, have unswept volumes estimated to be less than 10 femtoliters, and have dead volumes defined only by the length of the capillary.

  8. Camera System MTF: combining optic with detector

    Science.gov (United States)

    Andersen, Torben B.; Granger, Zachary A.

    2017-08-01

    MTF is one of the most common metrics used to quantify the resolving power of an optical component. Extensive literature is dedicated to describing methods to calculate the Modulation Transfer Function (MTF) for stand-alone optical components such as a camera lens or telescope, and some literature addresses approaches to determine an MTF for combination of an optic with a detector. The formulations pertaining to a combined electro-optical system MTF are mostly based on theory, and assumptions that detector MTF is described only by the pixel pitch which does not account for wavelength dependencies. When working with real hardware, detectors are often characterized by testing MTF at discrete wavelengths. This paper presents a method to simplify the calculation of a polychromatic system MTF when it is permissible to consider the detector MTF to be independent of wavelength.

  9. Physics studies with ICARUS and a hybrid ionization and scintillation fiber detector

    International Nuclear Information System (INIS)

    Cline, D.B.

    1992-01-01

    We discuss the physics possibilities for the ICARUS detector currently being tested at CERN. The physics potential goes from a massive proton decay detector to the study of solar neutrinos. In addition, the detection of ν μ → ν τ and ν e → ν τ will be possible with such a detector. One major topic involves the possibility of a complete determination of the MSW solar neutrino parameters with the ICARUS. The possibility of detecting WIMPS with a scintillating fiber liquid Argon (Ar) detector or fiber Xenon (Xe) detector doped with Ar is also described. Some comments on the measurement of the 42 Ar level from an experiment at the Gran Sasso will be made

  10. A microstructured Polymer Optical Fiber Biosensor

    DEFF Research Database (Denmark)

    Emiliyanov, Grigoriy Andreev; Jensen, Jesper Bo; Hoiby, Poul E.

    2006-01-01

    We demonstrate selective detection of fluorophore labeled antibodies from minute samples probed by a sensor layer of the complementary biomolecules immobilized inside the air holes of microstructured Polymer Optical Fibers.......We demonstrate selective detection of fluorophore labeled antibodies from minute samples probed by a sensor layer of the complementary biomolecules immobilized inside the air holes of microstructured Polymer Optical Fibers....

  11. A new fiber optic sensor for inner surface roughness measurement

    Science.gov (United States)

    Xu, Xiaomei; Liu, Shoubin; Hu, Hong

    2009-11-01

    In order to measure inner surface roughness of small holes nondestructively, a new fiber optic sensor is researched and developed. Firstly, a new model for surface roughness measurement is proposed, which is based on intensity-modulated fiber optic sensors and scattering modeling of rough surfaces. Secondly, a fiber optical measurement system is designed and set up. Under the help of new techniques, the fiber optic sensor can be miniaturized. Furthermore, the use of micro prism makes the light turn 90 degree, so the inner side surface roughness of small holes can be measured. Thirdly, the fiber optic sensor is gauged by standard surface roughness specimens, and a series of measurement experiments have been done. The measurement results are compared with those obtained by TR220 Surface Roughness Instrument and Form Talysurf Laser 635, and validity of the developed fiber optic sensor is verified. Finally, precision and influence factors of the fiber optic sensor are analyzed.

  12. A compact fiber optics-based heterodyne combined normal and transverse displacement interferometer.

    Science.gov (United States)

    Zuanetti, Bryan; Wang, Tianxue; Prakash, Vikas

    2017-03-01

    While Photonic Doppler Velocimetry (PDV) has become a common diagnostic tool for the measurement of normal component of particle motion in shock wave experiments, this technique has not yet been modified for the measurement of combined normal and transverse motion, as needed in oblique plate impact experiments. In this paper, we discuss the design and implementation of a compact fiber-optics-based heterodyne combined normal and transverse displacement interferometer. Like the standard PDV, this diagnostic tool is assembled using commercially available telecommunications hardware and uses a 1550 nm wavelength 2 W fiber-coupled laser, an optical focuser, and single mode fibers to transport light to and from the target. Two additional optical probes capture first-order beams diffracted from a reflective grating at the target free-surface and deliver the beams past circulators and a coupler where the signal is combined to form a beat frequency. The combined signal is then digitized and analyzed to determine the transverse component of the particle motion. The maximum normal velocity that can be measured by this system is limited by the equivalent transmission bandwidth (3.795 GHz) of the combined detector, amplifier, and digitizer and is estimated to be ∼2.9 km/s. Sample symmetric oblique plate-impact experiments are performed to demonstrate the capability of this diagnostic tool in the measurement of the combined normal and transverse displacement particle motion.

  13. Radiation hardening of optical fibers and fiber sensors for space applications: recent advances

    Science.gov (United States)

    Girard, S.; Ouerdane, Y.; Pinsard, E.; Laurent, A.; Ladaci, A.; Robin, T.; Cadier, B.; Mescia, L.; Boukenter, A.

    2017-11-01

    In these ICSO proceedings, we review recent advances from our group concerning the radiation hardening of optical fiber and fiber-based sensors for space applications and compare their benefits to state-of-the-art results. We focus on the various approaches we developed to enhance the radiation tolerance of two classes of optical fibers doped with rare-earths: the erbium (Er)-doped ones and the ytterbium/erbium (Er/Yb)-doped ones. As a first approach, we work at the component level, optimizing the fiber structure and composition to reduce their intrinsically high radiation sensitivities. For the Erbium-doped fibers, this has been achieved using a new structure for the fiber that is called Hole-Assisted Carbon Coated (HACC) optical fibers whereas for the Er/Ybdoped optical fibers, their hardening was successfully achieved adding to the fiber, the Cerium element, that prevents the formation of the radiation-induced point defects responsible for the radiation induced attenuation in the infrared part of the spectrum. These fibers are used as part of more complex systems like amplifiers (Erbium-doped Fiber Amplifier, EDFA or Yb-EDFA) or source (Erbium-doped Fiber Source, EDFS or Yb- EDFS), we discuss the impact of using radiation-hardened fibers on the system radiation vulnerability and demonstrate the resistance of these systems to radiation constraints associated with today and future space missions. Finally, we will discuss another radiation hardening approach build in our group and based on a hardening-by-system strategy in which the amplifier is optimized during its elaboration for its future mission considering the radiation effects and not in-lab.

  14. Optical fiber designs for beam shaping

    Science.gov (United States)

    Farley, Kevin; Conroy, Michael; Wang, Chih-Hao; Abramczyk, Jaroslaw; Campbell, Stuart; Oulundsen, George; Tankala, Kanishka

    2014-03-01

    A large number of power delivery applications for optical fibers require beams with very specific output intensity profiles; in particular applications that require a focused high intensity beam typically image the near field (NF) intensity distribution at the exit surface of an optical fiber. In this work we discuss optical fiber designs that shape the output beam profile to more closely correspond to what is required in many real world industrial applications. Specifically we present results demonstrating the ability to transform Gaussian beams to shapes required for industrial applications and how that relates to system parameters such as beam product parameter (BPP) values. We report on the how different waveguide structures perform in the NF and show results on how to achieve flat-top with circular outputs.

  15. Fiber break location technique utilizing stimulated Brillouin scattering effects in optical fiber

    International Nuclear Information System (INIS)

    Bakar, A A A; Al-Mansoori, M H; Mahdi, M A; Mohd Azau, M A; Zainal Abidin, M S

    2009-01-01

    A new technique of fiber break detection system in optical communication networks is proposed and experimentally demonstrated in this paper. This technique is based-on continuous wave light source rather than pulsed source that is commonly deployed in existing techniques. The nonlinear effect of stimulated Brillouin scattering is manipulated to locate the fiber-break position in optical communication networks. This technique enables the utilization of a less-sensitive photodetector to detect the Brillouin Stokes line since its intensity increases with the fiber length in the detectable region. The fiber break location can be determined with accuracy of more than 98% for fiber length less than 50 km using this technique

  16. Optical frequency upconversion technique for transmission of wireless MIMO-type signals over optical fiber.

    Science.gov (United States)

    Shaddad, R Q; Mohammad, A B; Al-Gailani, S A; Al-Hetar, A M

    2014-01-01

    The optical fiber is well adapted to pass multiple wireless signals having different carrier frequencies by using radio-over-fiber (ROF) technique. However, multiple wireless signals which have the same carrier frequency cannot propagate over a single optical fiber, such as wireless multi-input multi-output (MIMO) signals feeding multiple antennas in the fiber wireless (FiWi) system. A novel optical frequency upconversion (OFU) technique is proposed to solve this problem. In this paper, the novel OFU approach is used to transmit three wireless MIMO signals over a 20 km standard single mode fiber (SMF). The OFU technique exploits one optical source to produce multiple wavelengths by delivering it to a LiNbO3 external optical modulator. The wireless MIMO signals are then modulated by LiNbO3 optical intensity modulators separately using the generated optical carriers from the OFU process. These modulators use the optical single-sideband with carrier (OSSB+C) modulation scheme to optimize the system performance against the fiber dispersion effect. Each wireless MIMO signal is with a 2.4 GHz or 5 GHz carrier frequency, 1 Gb/s data rate, and 16-quadrature amplitude modulation (QAM). The crosstalk between the wireless MIMO signals is highly suppressed, since each wireless MIMO signal is carried on a specific optical wavelength.

  17. Radioactivity measurement of radioactive contaminated soil by using a fiber-optic radiation sensor

    Science.gov (United States)

    Joo, Hanyoung; Kim, Rinah; Moon, Joo Hyun

    2016-06-01

    A fiber-optic radiation sensor (FORS) was developed to measure the gamma radiation from radioactive contaminated soil. The FORS was fabricated using an inorganic scintillator (Lu,Y)2SiO5:Ce (LYSO:Ce), a mixture of epoxy resin and hardener, aluminum foil, and a plastic optical fiber. Before its real application, the FORS was tested to determine if it performed adequately. The test result showed that the measurements by the FORS adequately followed the theoretically estimated values. Then, the FORS was applied to measure the gamma radiation from radioactive contaminated soil. For comparison, a commercial radiation detector was also applied to measure the same soil samples. The measurement data were analyzed by using a statistical parameter, the critical level to determine if net radioactivity statistically different from background was present in the soil sample. The analysis showed that the soil sample had radioactivity distinguishable from background.

  18. Brillouin lasing in single-mode tapered optical fiber with inscribed fiber Bragg grating array

    Directory of Open Access Journals (Sweden)

    S.M. Popov

    2018-06-01

    Full Text Available A tapered optical fiber has been manufactured with an array of fiber Bragg gratings (FBG inscribed during the drawing process. The total fiber peak reflectivity is 5% and the reflection bandwidth is ∼3.5 nm. A coherent frequency domain reflectometry has been applied for precise profiling of the fiber core diameter and grating reflectivity both distributed along the whole fiber length. These measurements are in a good agreement with the specific features of Brillouin lasing achieved in the semi-open fiber cavity configuration. Keywords: Tapered optical fibers, Fiber Bragg gratings, Random lasers

  19. All-optical fiber anemometer based on laser heated fiber Bragg gratings.

    Science.gov (United States)

    Gao, Shaorui; Zhang, A Ping; Tam, Hwa-Yaw; Cho, L H; Lu, Chao

    2011-05-23

    A fiber-optic anemometer based on fiber Bragg gratings (FBGs) is presented. A short section of cobalt-doped fiber was utilized to make a fiber-based "hot wire" for wind speed measurement. Fiber Bragg gratings (FBGs) were fabricated in the cobalt-doped fiber using 193 nm laser pulses to serve as localized temperature sensors. A miniature all-optical fiber anemometer is constructed by using two FBGs to determine the dynamic thermal equilibrium between the laser heating and air flow cooling through monitoring the FBGs' central wavelengths. It was demonstrated that the sensitivity of the sensor can be adjusted through the power of pump laser or the coating on the FBG. Experimental results reveal that the proposed FBG-based anemometer exhibits very good performance for wind speed measurement. The resolution of the FBG-based anemometer is about 0.012 m/s for wind speed range between 2.0 m/s and 8.0 m/s.

  20. Temperature measurement distributed on a building by fiber optic BOTDA sensor

    International Nuclear Information System (INIS)

    Kwon, Il Bum; Kim, Chi Yeop; Choi, Man Yong; Lee, Seung Seok

    2002-01-01

    We have focused on the development of a fiber optic BOTDA (Brillouin Optical Time Domain Analysis) sensor system in order to measure temperature distributed on large structures. Also, we present a feasibility study of the fiber optic sensor to monitor the distributed temperature on a building construction. A fiber optic BOTDA sensor system, which has a capability of measuring the temperature distribution, attempted over several kilometers of long fiber paths. This simple fiber optic sensor system employs a laser diode and two electro-optic modulators. The optical fiber of the length of 1400 m was installed on the surfaces of the building. The change of the distributed temperature on the building construction was well measured by this fiber optic sensor. The temperature changed normally up to 4 degrees C through one day.

  1. Electro-optical behaviour of silica optical fibers under transient ionizing irradiation

    International Nuclear Information System (INIS)

    Johan, A.; Charre, P.

    1989-01-01

    Centre d'Etudes de GRAMAT has perfected an experimental method on behaviour study for optical fiber under X-ray transient irradiation. This method allows recording of working light intensity in the fiber core or induced light (luminescence) during and after irradiation. The measured phenomena are the luminescence photon production and working light absorption. Monomode and multimode fiber behaviours have been studied and compared versus dose irradiation, light wavelength and injected optical power [fr

  2. Dynamic Characterization of Polymer Optical Fibers

    DEFF Research Database (Denmark)

    Stefani, Alessio; Andresen, Søren; Yuan, Wu

    2012-01-01

    With the increasing interest in fiber sensors based on polymer optical fibers, it becomes fundamental to determine the real applicability and reliability of this type of sensor. The viscoelastic nature of polymers gives rise to questions about the mechanical behavior of the fibers. In particular...

  3. Design and test of a high resolution plastic scintillating fiber detector with intensified CCD readout

    International Nuclear Information System (INIS)

    Rebourgeard, P.

    1991-01-01

    We present the design of a particle detector involving a coherent array of 100 000 plastic scintillating microfibers, with an individual core diameter around 50 micrometers, and an intensified bidimensional CCD array. We investigate both theoretically and experimentally the use of polystyrene based scintillators in optical multimodal fibers. The isotropic excitation of modes and the characteristics of energy transfers between the polystyrene matrix and the added fluorescent dyes are of particular interest. An experimental approach is proposed and applied to the development of a new binary scintillator. In order to study the transmission of the signal from the interaction area to the output face, we specify the loss factors, the resolution and the signal to noise ratio within the fiber array. The low light level at the output face of the detector leads us to use image intensifiers in photon counting mode. This requires a detailed analysis of resolutions, gain, noise and detectivity concepts. We propose to describe these strongly correlated notions by the moment generation formalism. Thus, a previous modelisation of the photoelectronic devices allows us to evaluate the performance of the readout chain. A complete detector has been assembled and tested on a high energy hadron beam; the measurements are in good agreement with the modelisation [fr

  4. Damage and failure detection of composites using optical fiber vibration sensor

    International Nuclear Information System (INIS)

    Yang, Y. C.; Han, K. S.

    2001-01-01

    An intensity-based optical fiber vibration sensor is applied to detect and evaluate damages and fiber failure of composites. The optical fiber vibration sensor is constructed by placing two cleaved fiber end, one of which is cantilevered in a hollow glass tube. The movement of the cantilevered section lags behind the rest of the sensor in response to an applied vibration and the amount of light coupled between the two fibers is thereby modulated. Vibration characteristics of the optical fiber vibration sensor are investigated. Surface mounted optical fiber vibration sensor is used in tensile and indentation test. Experimental results show that the optical fiber sensor can detect damages and fiber failure of composites correctly

  5. An in-fiber integrated optofluidic device based on an optical fiber with an inner core.

    Science.gov (United States)

    Yang, Xinghua; Yuan, Tingting; Teng, Pingping; Kong, Depeng; Liu, Chunlan; Li, Entao; Zhao, Enming; Tong, Chengguo; Yuan, Libo

    2014-06-21

    A new kind of optofluidic in-fiber integrated device based on a specially designed hollow optical fiber with an inner core is designed. The inlets and outlets are built by etching the surface of the optical fiber without damaging the inner core. A reaction region between the end of the fiber and a solid point obtained after melting is constructed. By injecting samples into the fiber, the liquids can form steady microflows and react in the region. Simultaneously, the emission from the chemiluminescence reaction can be detected from the remote end of the optical fiber through evanescent field coupling. The concentration of ascorbic acid (AA or vitamin C, Vc) is determined by the emission intensity of the reaction of Vc, H2O2, luminol, and K3Fe(CN)6 in the optical fiber. A linear sensing range of 0.1-3.0 mmol L(-1) for Vc is obtained. The emission intensity can be determined within 2 s at a total flow rate of 150 μL min(-1). Significantly, this work presents information for the in-fiber integrated optofluidic devices without spatial optical coupling.

  6. Integrated fiber optical and thermal sensor for noninvasive monitoring of blood and human tissue

    Science.gov (United States)

    Saetchnikov, Vladimir A.; Tcherniavskaia, Elina A.; Schiffner, Gerhard

    2007-05-01

    A novel concept of noninvasive monitoring of human tissue and blood based on optical diffuse reflective spectroscopy combined with metabolic heat measurements has been under development. A compact integrated fiber optical and thermal sensor has been developed. The idea of the method was to evaluate by optical spectroscopy haemoglobin and derivative concentrations and supplement with data associated with the oxidative metabolism of glucose. Body heat generated by glucose oxidation is based on the balance of capillary glucose and oxygen supply to the cells. The variation in glucose concentration is followed also by a difference from a distance (or depth) of scattered through the body radiation. So, blood glucose can be estimated by measuring the body heat and the oxygen supply. The sensor pickup contains of halogen lamp and LEDs combined with fiber optical bundle to deliver optical radiation inside and through the patient body, optical and thermal detectors. Fiber optical probe allows diffuse scattering measurement down to a depth of 2.5 mm in the skin including vascular system, which contributes to the control of the body temperature. The sensor pickup measures thermal generation, heat balance, blood flow rate, haemoglobin and derivative concentrations, environmental conditions. Multivariate statistical analysis was applied to convert various signals from the sensor pickup into physicochemical variables. By comparing the values from the noninvasive measurement with the venous plasma result, analytical functions for patient were obtained. Cluster analysis of patient groups was used to simplify a calibration procedure. Clinical testing of developed sensor is being performed.

  7. Switch configuration for migration to optical fiber network

    Science.gov (United States)

    Zobrist, George W.

    1993-01-01

    The purpose is to investigate the migration of an Ethernet LAN segment to fiber optics. At the present time it is proposed to support a Fiber Distributed Data Interface (FDDI) backbone and to upgrade the VAX cluster to fiber optic interface. Possibly some workstations will have an FDDI interface. The remaining stations on the Ethernet LAN will be segmented. The rationale for migrating from the present Ethernet configuration to a fiber optic backbone is due to the increase in the number of workstations and the movement of applications to a windowing environment, extensive document transfers, and compute intensive applications.

  8. Raman Probe Based on Optically-Poled Double-Core Fiber

    DEFF Research Database (Denmark)

    Brunetti, Anna Chiara; Margulis, Walter; Rottwitt, Karsten

    2012-01-01

    A Raman probe based on an optically-poled double-core fiber. In-fiber SHG allows for Raman spectroscopy of DMSO at 532nm when illuminating the fiber with 1064nm light. The fiber structure provides independent excitation and collection paths.......A Raman probe based on an optically-poled double-core fiber. In-fiber SHG allows for Raman spectroscopy of DMSO at 532nm when illuminating the fiber with 1064nm light. The fiber structure provides independent excitation and collection paths....

  9. Integrated Miniature Arrays of Optical Biomolecule Detectors

    Science.gov (United States)

    Iltchenko, Vladimir; Maleki, Lute; Lin, Ying; Le, Thanh

    2009-01-01

    Integrated miniature planar arrays of optical sensors for detecting specific biochemicals in extremely small quantities have been proposed. An array of this type would have an area of about 1 cm2. Each element of the array would include an optical microresonator that would have a high value of the resonance quality factor (Q . 107). The surface of each microresonator would be derivatized to make it bind molecules of a species of interest, and such binding would introduce a measurable change in the optical properties of the microresonator. Because each microresonator could be derivatized for detection of a specific biochemical different from those of the other microresonators, it would be possible to detect multiple specific biochemicals by simultaneous or sequential interrogation of all the elements in the array. Moreover, the derivatization would make it unnecessary to prepare samples by chemical tagging. Such interrogation would be effected by means of a grid of row and column polymer-based optical waveguides that would be integral parts of a chip on which the array would be fabricated. The row and column polymer-based optical waveguides would intersect at the elements of the array (see figure). At each intersection, the row and column waveguides would be optically coupled to one of the microresonators. The polymer-based waveguides would be connected via optical fibers to external light sources and photodetectors. One set of waveguides and fibers (e.g., the row waveguides and fibers) would couple light from the sources to the resonators; the other set of waveguides and fibers (e.g., the column waveguides and fibers) would couple light from the microresonators to the photodetectors. Each microresonator could be addressed individually by row and column for measurement of its optical transmission. Optionally, the chip could be fabricated so that each microresonator would lie inside a microwell, into which a microscopic liquid sample could be dispensed.

  10. 7 CFR 1755.404 - Fiber optic cable telecommunications plant measurements.

    Science.gov (United States)

    2010-01-01

    ... performed on each optical fiber within the cable. (2) Method of measurement. For single mode fibers, the end-to-end attenuation measurements of each optical fiber at 1310 and/or 1550 nanometers in each...-end attenuation of each single mode optical fiber at 1310 and/or 1550 nanometers shall not exceed the...

  11. Laser backlight unit based on a leaky optical fiber

    Science.gov (United States)

    Okuda, Yuuto; Onoda, Kousuke; Fujieda, Ichiro

    2012-07-01

    A backlight unit is constructed by laying out an optical fiber on a two-dimensional plane and letting the light leak out in a controlled manner. In experiment, we formed multiple grooves on the surface of a plastic optical fiber by pressing a heated knife edge. The depth of the groove determined the percentage of the optical power leaking out. The optical fiber with multiple grooves was embedded in an acrylic plate with a spiral trench, and a diffuser sheet was placed over it. When we injected laser light into the end of the optical fiber, this configuration successfully worked as an area illuminator. However, the coherent nature of the laser light caused severe speckle noise. We evaluated the speckle contrast under darkness, and it varied from 80% to 23%, depending on the lens aperture used to capture the images of the illuminator. We glued an ultrasound generator to the optical fiber to introduce phase modulation for the light propagating inside the optical fiber. In this way, the speckle contrast was reduced by a factor of seven to four. Under room lighting, the speckle noise was made barely noticeable by turning on the ultrasound generator.

  12. Quartz fiber calorimeter

    International Nuclear Information System (INIS)

    Akchurin, N.; Doulas, S.; Ganel, O.; Gershtein, Y.; Gavrilov, V.; Kolosov, V.; Kuleshov, S.; Litvinsev, D.; Merlo, J.-P.; Onel, Y.; Osborne, D.; Rosowsky, A.; Stolin, V.; Sulak, L.; Sullivan, J.; Ulyanov, A.; Wigmans, R.; Winn, D.

    1996-01-01

    A calorimeter with optical quartz fibers embedded into an absorber matrix was proposed for the small angle region of the CMS detector at LHC (CERN). This type of calorimeter is expected to be radiation hard and to produce extremely fast signal. Some results from beam tests of the quartz fiber calorimeter prototype are presented. (orig.)

  13. Miniaturized Optical Tweezers Through Fiber-End Microfabrication

    KAUST Repository

    Liberale, Carlo; Cojoc, Gheorghe; Rajamanickam, Vijayakumar; Ferrara, Lorenzo; Bragheri, Francesca; Minzioni, Paolo; Perozziello, Gerardo; Candeloro, Patrizio; Cristiani, Ilaria; Di Fabrizio, Enzo M.

    2014-01-01

    Optical tweezers represent a powerful tool for a variety of applications both in biology and in physics, and their miniaturization and full integration is of great interest so as to reduce size (towards portable systems), and to minimize the required intervention from the operator. Optical fibers represent a natural solution to achieve this goal, and here we review the realization of single-fiber optical tweezers able to create a purely optical three-dimensional trap. © Springer International Publishing Switzerland 2015.

  14. Miniaturized Optical Tweezers Through Fiber-End Microfabrication

    KAUST Repository

    Liberale, Carlo

    2014-07-30

    Optical tweezers represent a powerful tool for a variety of applications both in biology and in physics, and their miniaturization and full integration is of great interest so as to reduce size (towards portable systems), and to minimize the required intervention from the operator. Optical fibers represent a natural solution to achieve this goal, and here we review the realization of single-fiber optical tweezers able to create a purely optical three-dimensional trap. © Springer International Publishing Switzerland 2015.

  15. Moiré phase-shifted fiber Bragg gratings in polymer optical fibers

    DEFF Research Database (Denmark)

    Min, Rui; Marques, Carlos; Bang, Ole

    2018-01-01

    We demonstrate a simple way to fabricate phase-shifted fiber Bragg grating in polymer optical fibers as a narrowband transmission filter for a variety of applications at telecom wavelengths. The filters have been fabricated by overlapping two uniform fiber Bragg gratings with slightly different...

  16. New development in optical fibers for data center applications

    Science.gov (United States)

    Sun, Yi; Shubochkin, Roman; Zhu, Benyuan

    2015-01-01

    VCSEL-multimode optical fiber based links is the most successful optical technology in Data Centers. Laser-optimized multimode optical fibers, OM3 and OM4, have been the primary choice of physical media for 10 G serial, 4 x 10 G parallel, 10 x 10 G parallel, and 4 x 25 G parallel optical solutions in IEEE 802.3 standards. As the transition of high-end servers from 10 Gb/s to 40 Gb/s is driving the aggregation of speeds to 40 Gb/s now, and to 100 Gb/s and 400 Gb/s in near future, industry experts are coming together in IEEE 802.3bs 400 Gb/s study group and preliminary discussion of Terabit transmission for datacom applications has also been commenced. To meet the requirement of speed, capacity, density, power consumption and cost for next generation datacom applications, optical fiber design concepts beyond the standard OM3 and OM4 MMFs have a revived research and developmental interest, for example, wide band multimode optical fiber using multiple dopants for coarse wavelength division multiplexing; multicore multimode optical fiber using plural multimode cores in a single fiber strand to improve spatial density; and perhaps 50 Gb/s per lane and few mode fiber in spatial division multiplexing for ultimate capacity increase in far future. This talk reviews the multitude of fiber optic media being developed in the industry to address the upcoming challenges of datacom growth. We conclude that multimode transmission using low cost VCSEL technology will continue to be a viable solution for datacom applications.

  17. Tunable light source for fiber optic lighting applications

    Science.gov (United States)

    Narendran, Nadarajah; Bierman, Andrew; Finney, Mark J.; Edwards, Ian K.

    1997-09-01

    This paper examines the possibility of tuning the lamp spectrum to compensate for color distortions in fiber optic lighting systems. Because most optical fibers have strong absorption in the blue and red wavelength regions, white light entering and propagating down an optical fiber suffers varied amounts of attenuation as a function of wavelength. As a result, the light exiting the optical fiber has a greenish tint that the lighting design community considers undesirable in interior lighting applications. HID lamps are commonly used for the light source in this industry. Certain classes of HID lamps tend to shift in color when their operating position or the input voltage to the lamp is changed. An experimental study is being conducted to characterize the color shift properties of a small HID lamp as a function of tilt and input voltage. The study also examines the possibility of exploiting this color shift to compensate for the color distortions caused by optical fibers. The details of the experiment and the results are presented in this manuscript.

  18. Mach-Zehnder atom interferometer inside an optical fiber

    Science.gov (United States)

    Xin, Mingjie; Leong, Wuiseng; Chen, Zilong; Lan, Shau-Yu

    2017-04-01

    Precision measurement with light-pulse grating atom interferometry in free space have been used in the study of fundamental physics and applications in inertial sensing. Recent development of photonic band-gap fibers allows light for traveling in hollow region while preserving its fundamental Gaussian mode. The fibers could provide a very promising platform to transfer cold atoms. Optically guided matter waves inside a hollow-core photonic band-gap fiber can mitigate diffraction limit problem and has the potential to bring research in the field of atomic sensing and precision measurement to the next level of compactness and accuracy. Here, we will show our experimental progress towards an atom interferometer in optical fibers. We designed an atom trapping scheme inside a hollow-core photonic band-gap fiber to create an optical guided matter waves system, and studied the coherence properties of Rubidium atoms in this optical guided system. We also demonstrate a Mach-Zehnder atom interferometer in the optical waveguide. This interferometer is promising for precision measurements and designs of mobile atomic sensors.

  19. Flexible optical fiber sensor based on polyurethane

    DEFF Research Database (Denmark)

    Kaysir, Md Rejvi; Stefani, Alessio; Lwin, Richard

    Polyurethane (PU) based hollow core fibers are investigated as optical sensors. The flexibility of PU fibers makes it suitable for sensing mechanical perturbations. We fabricated a PU fiber using the fiber drawing method, characterized the fiber and experimentally demonstrated a simple way...... to measure deformation, in the form of applied pressure....

  20. Applications of fiber optic sensors in concrete structural health monitoring

    Science.gov (United States)

    Dai, Jingyun; Zhang, Wentao; Sun, Baochen; Du, Yanliang

    2007-11-01

    The research of fiber optic extrinsic Fabry-Perot interferometer (EFPI) sensors and their applications in concrete structural health monitoring are presented in this paper. Different types of fiber optic EFPI sensors are designed and fabricated. Experiments are carried out to test the performance of the sensors. The results show that the sensors have good linearity and stability. The applications of the fiber optic EFPI sensors in concrete structural health monitoring are also introduced. Ten fiber optic sensors are embedded into one section of the Liaohe Bridge in Qinghuangdao-Shenyang Railway. Field test demonstrates that the results of fiber optic sensors agree well with conventional strain gauges.

  1. Fast modal decomposition for optical fibers using digital holography.

    Science.gov (United States)

    Lyu, Meng; Lin, Zhiquan; Li, Guowei; Situ, Guohai

    2017-07-26

    Eigenmode decomposition of the light field at the output end of optical fibers can provide fundamental insights into the nature of electromagnetic-wave propagation through the fibers. Here we present a fast and complete modal decomposition technique for step-index optical fibers. The proposed technique employs digital holography to measure the light field at the output end of the multimode optical fiber, and utilizes the modal orthonormal property of the basis modes to calculate the modal coefficients of each mode. Optical experiments were carried out to demonstrate the proposed decomposition technique, showing that this approach is fast, accurate and cost-effective.

  2. Short-pulse propagation in fiber optical parametric amplifiers

    DEFF Research Database (Denmark)

    Cristofori, Valentina

    Fiber optical parametric amplifiers (FOPAs) are attractive because they can provide large gain over a broad range of central wavelengths, depending only on the availability of a suitable pump laser. In addition, FOPAs are suitable for the realization of all-optical signal processing functionalities...... transfer can be reduced in saturated F OPAs. In order to characterize propagation impairments such as dispersion and Kerr effect, affecting signals reaching multi-terabit per second per channel, short pulses on the order of 500 fs need to be considered. Therefore, a short pulses fiber laser source...... is implemented to obtain an all-fiber system. The advantages of all fiber-systems are related to their reliability, long-term stability and compactness. Fiber optical parametric chirped pulse amplification is promising for the amplification of such signals thanks to the inherent compatibility of FOPAs with fiber...

  3. Fiber optic utilization at the Nevada Test Site

    International Nuclear Information System (INIS)

    Lyons, P.B.; Golob, J.E.; Looney, L.D.; Robichaud, R.E.; Nelson, M.A.; Davies, T.J.

    1978-11-01

    Optical fiber cables have been successfully used for 100-MHz analog data transmission during an underground nuclear test at the Nevada Test Site. Two 700-m Corning Corguide cables were used to provide thirteen single fiber data channels from the vicinity of the underground detonation, 350 meters below ground level, to recording instrumentation, 350 meters from the downhole shaft. No fiber performance degradation was observed during the extensive procedures used to seal the shaft. These procedures included backfilling the shaft with layers of sand and gravel, as well as poured epoxy plugs. Techniques were developed for internal sealing of the Corguide cable to prevent any possible radioactive gas flow through voids within the cable. The effects on optical fibers of intense, pulsed neutron and gamma irradiation were studied. Specialized tools, including a system for location of faults or breaks in the optical fibers, were developed. The success of this first test will allow consideration of fiber optic cables for future nuclear tests as well as for other applications involving extremely rough handling in field environments

  4. Fiber optics principles and practices

    CERN Document Server

    Al-Azzawi, Abdul

    2007-01-01

    Since the invention of the laser, our fascination with the photon has led to one of the most dynamic and rapidly growing fields of technology. New advances in fiber optic devices, components, and materials make it more important than ever to stay current. Comprising chapters drawn from the author's highly anticipated book Photonics: Principles and Practices, Fiber Optics: Principles and Practices offers a detailed and focused treatment for anyone in need of authoritative information on this critical area underlying photonics.Using a consistent approach, the author leads you step-by-step throug

  5. Fiber optics physics and technology

    CERN Document Server

    Mitschke, Fedor

    2016-01-01

    This book tells you all you want to know about optical fibers: Their structure, their light-guiding mechanism, their material and manufacture, their use. It began with telephone, then came telefax and email. Today we use search engines, music downloads and internet videos, all of which require shuffling of bits and bytes by the zillions. The key to all this is the conduit: the line which is designed to carry massive amounts of data at breakneck speed. In their data carrying capacity optical fiber lines beat all other technologies (copper cable, microwave beacons, satellite links) hands down, at least in the long haul; wireless devices rely on fibers, too. Several effects tend to degrade the signal as it travels down the fiber: they are spelled out in detail. Nonlinear processes are given due consideration for a twofold reason: On the one hand they are fundamentally different from the more familiar processes in electrical cable. On the other hand, they form the basis of particularly interesting and innovative ...

  6. Fiber-Optic Sensor Facility

    Data.gov (United States)

    Federal Laboratory Consortium — FUNCTION: Constructs and evaluates fiber-optic sensors for a variety of measurands. These measurands include acoustic, pressure, magnetic, and electric field as well...

  7. Optically sensitive Medipix2 detector for adaptive optics wavefront sensing

    CERN Document Server

    Vallerga, John; Tremsina, Anton; Siegmund, Oswald; Mikulec, Bettina; Clark, Allan G; CERN. Geneva

    2005-01-01

    A new hybrid optical detector is described that has many of the attributes desired for the next generation adaptive optics (AO) wavefront sensors. The detector consists of a proximity focused microchannel plate (MCP) read out by multi-pixel application specific integrated circuit (ASIC) chips developed at CERN ("Medipix2") with individual pixels that amplify, discriminate and count input events. The detector has 256 x 256 pixels, zero readout noise (photon counting), can be read out at 1 kHz frame rates and is abutable on 3 sides. The Medipix2 readout chips can be electronically shuttered down to a temporal window of a few microseconds with an accuracy of 10 ns. When used in a Shack-Hartmann style wavefront sensor, a detector with 4 Medipix chips should be able to centroid approximately 5000 spots using 7 x 7 pixel sub-apertures resulting in very linear, off-null error correction terms. The quantum efficiency depends on the optical photocathode chosen for the bandpass of interest.

  8. Optically sensitive Medipix2 detector for adaptive optics wavefront sensing

    International Nuclear Information System (INIS)

    Vallerga, John; McPhate, Jason; Tremsin, Anton; Siegmund, Oswald; Mikulec, Bettina; Clark, Allan

    2005-01-01

    A new hybrid optical detector is described that has many of the attributes desired for the next generation adaptive optics (AO) wavefront sensors. The detector consists of a proximity focused microchannel plate (MCP) read out by multi-pixel application specific integrated circuit (ASIC) chips developed at CERN ('Medipix2') with individual pixels that amplify, discriminate and count input events. The detector has 256x256 pixels, zero readout noise (photon counting), can be read out at 1 kHz frame rates and is abutable on 3 sides. The Medipix2 readout chips can be electronically shuttered down to a temporal window of a few microseconds with an accuracy of 10 ns. When used in a Shack-Hartmann style wavefront sensor, a detector with 4 Medipix chips should be able to centroid approximately 5000 spots using 7x7 pixel sub-apertures resulting in very linear, off-null error correction terms. The quantum efficiency depends on the optical photocathode chosen for the bandpass of interest

  9. 3m vacuum ultraviolet spectrometer with optical multichanel detector

    International Nuclear Information System (INIS)

    Marin, P.; Peraza, C.; Blanco, F.; Campos, J.

    1993-01-01

    This paper, describes the design and the performance of a normal incidence vacuum ultraviolet spectrometer, for the 300-2400 A spectral range. It is provided with a multichannel detection system. The monochromator is original design and it has been built at CIEMAT: It is equipped with a 3 m concave holographic grating with 2400 grooves/mm. The multichannel detector consists of a windowless double microchannel plate/phosphor screen image intensifier, coupled by fiber optic to a 1024 elements self-scanning linear photodiode array. The output from the arrays is digitized by a 12-bit analog to digital converter and stored in a computer for its later analysis. The necessary software to store and display data has been developed. (Author)

  10. Nonlinear fiber optics

    CERN Document Server

    Agrawal, Govind

    2012-01-01

    Since the 4e appeared, a fast evolution of the field has occurred. The 5e of this classic work provides an up-to-date account of the nonlinear phenomena occurring inside optical fibers, the basis of all our telecommunications infastructure as well as being used in the medical field. Reflecting the big developments in research, this new edition includes major new content: slow light effects, which offers a reduction in noise and power consumption and more ordered network traffic-stimulated Brillouin scattering; vectorial treatment of highly nonlinear fibers; and a brand new chapter o

  11. A Fiber-Optic Sensor for Leak Detection in a Space Environment

    Science.gov (United States)

    Sinko, John E.; Korman, Valentin; Hendrickson, Adam; Polzin, Kurt A.

    2009-01-01

    A miniature fiber-optic, laser-based, interferometric leak detector is presented for application as a means to detect on-orbit gas leaks. The sensor employs a fiber-coupled modified Michelson interferometer to detect gas leaks by measuring an increase in gas density in the sensing region. Monitoring changes in the fringe pattern output by the interferometer allows for direct measurement of the gas density in the sensing region and, under the assumption of an equation of state, this can be used to obtain a pressure measurement. Measurements obtained over a pressure range from 20 mtorr to 760 torr using a prototypical interferometer on working gases of air, nitrogen, argon, and helium generally exhibit agreement with a theoretical prediction of the pressure increase required before an interference fringe completely moves over the detector. Additional measurements performed on various gases demonstrate the range of detectable species, measuring sub-torr pressure changes in the process. A high-fidelity measurement places the ultimate pressure resolution for this particular sensor configuration in the 10 mtorr range. Time-resolved data prove the capability of this sensor to detect fast gas flow phenomena associated with transients and pressure waves.

  12. Performance and calibration of wave length shifting fibers for K2K SciBar detector

    International Nuclear Information System (INIS)

    Morita, Taichi

    2004-01-01

    The wave length shifting (WLS) fibers (Kuraray Y11 (200) MS) are used for light collection from scintillators in the SciBar detector. The performance of WLS fibers was measured before installation. Because the number of WLS fibers is about 15,000, it is necessary to make a system to measure attenuation length of WLS fibers efficiently. I will report the pre-calibration method for measurement and the performance of the WLS fibers in SciBar detector. (author)

  13. An Intrinsic Fiber-Optic Sensor for Structure Lightning Current Measurement

    Science.gov (United States)

    Nguyen, Truong X.; Ely, Jay J.; Szatkowski, George N.; Mata, Carlos T.; Mata, Angel. G.; Snyder, Gary P.

    2014-01-01

    An intrinsic optical-fiber sensor based on Faraday Effect is developed that is highly suitable for measuring lightning current on aircraft, towers and complex structures. Originally developed specifically for aircraft installations, it is light-weight, non-conducting, structure conforming, and is immune to electromagnetic interference, hysteresis and saturation. It can measure total current down to DC. When used on lightning towers, the sensor can help validate other sensors and lightning detection network measurements. Faraday Effect causes light polarization to rotate when the fiber is exposed to a magnetic field in the direction of light propagation. Thus, the magnetic field strength can be determined from the light polarization change. By forming closed fiber loops and applying Ampere's law, measuring the total light rotation yields the total current enclosed. A broadband, dual-detector, reflective polarimetric scheme allows measurement of both DC component and AC waveforms with a 60 dB dynamic range. Two systems were built that are similar in design but with slightly different sensitivities. The 1310nm laser system can measure 300 A - 300 kA, and has a 15m long sensing fiber. It was used in laboratory testing, including measuring current on an aluminum structure simulating an aircraft fuselage or a lightning tower. High current capabilities were demonstrated up to 200 kA at a lightning test facility. The 1550nm laser system can measure 400 A - 400 kA and has a 25m fiber length. Used in field measurements, excellent results were achieved in the summer of 2012 measuring rocket-triggered lightning at the International Center for Lightning Research and Testing (ICLRT), Camp Blanding, Florida. In both systems increased sensitivity can be achieved with multiple fiber loops. The fiber optic sensor provides many unique capabilities not currently possible with traditional sensors. It represents an important new tool for lightning current measurement where low weight

  14. Respiratory monitoring system based on fiber optic macro bending

    Science.gov (United States)

    Purnamaningsih, Retno Wigajatri; Widyakinanti, Astari; Dhia, Arika; Gumelar, Muhammad Raditya; Widianto, Arif; Randy, Muhammad; Soedibyo, Harry

    2018-02-01

    We proposed a respiratory monitoring system for living activities in human body based on fiber optic macro-bending for laboratory scale. The respiration sensor consists of a single-mode optical fiber and operating on a wavelength at around 1550 nm. The fiber optic was integrated into an elastic fabric placed on the chest and stomach of the monitored human subject. Deformations of the flexible textile involving deformations of the fiber optic bending curvature, which was proportional to the chest and stomach expansion. The deformation of the fiber was detected using photodetector and processed using microcontroller PIC18F14K50. The results showed that this system able to display various respiration pattern and rate for sleeping, and after walking and running activities in real time.

  15. A microfabricated, low dark current a-Se detector for measurement of microplasma optical emission in the UV for possible use on-site

    Science.gov (United States)

    Abbaszadeh, Shiva; Karim, Karim S.; Karanassios, Vassili

    2013-05-01

    Traditionally, samples are collected on-site (i.e., in the field) and are shipped to a lab for chemical analysis. An alternative is offered by using portable chemical analysis instruments that can be used on-site (i.e., in the field). Many analytical measurements by optical emission spectrometry require use of light-sources and of spectral lines that are in the Ultra-Violet (UV, ~200 nm - 400 nm wavelength) region of the spectrum. For such measurements, a portable, battery-operated, fiber-optic spectrometer equipped with an un-cooled, linear, solid-state detector may be used. To take full advantage of the advanced measurement capabilities offered by state-of-the-art solid-state detectors, cooling of the detector is required. But cooling and other thermal management hamper portability and use on-site because they add size and weight and they increase electrical power requirements. To address these considerations, an alternative was implemented, as described here. Specifically, a microfabricated solid-state detector for measurement of UV photons will be described. Unlike solid-state detectors developed on crystalline Silicon, this miniaturized and low-cost detector utilizes amorphous Selenium (a-Se) as its photosensitive material. Due to its low dark current, this detector does not require cooling, thus it is better suited for portable use and for chemical measurements on-site. In this paper, a microplasma will be used as a light-source of UV photons for the a-Se detector. For example, spectra acquired using a microplasma as a light-source will be compared with those obtained with a portable, fiber-optic spectrometer equipped with a Si-based 2080-element detector. And, analytical performance obtained by introducing ng-amounts of analytes into the microplasma will be described.

  16. Optical Fiber Sensing Based on Reflection Laser Spectroscopy

    Directory of Open Access Journals (Sweden)

    Gianluca Gagliardi

    2010-03-01

    Full Text Available An overview on high-resolution and fast interrogation of optical-fiber sensors relying on laser reflection spectroscopy is given. Fiber Bragg-gratings (FBGs and FBG resonators built in fibers of different types are used for strain, temperature and acceleration measurements using heterodyne-detection and optical frequency-locking techniques. Silica fiber-ring cavities are used for chemical sensing based on evanescent-wave spectroscopy. Various arrangements for signal recovery and noise reduction, as an extension of most typical spectroscopic techniques, are illustrated and results on detection performances are presented.

  17. Development of self-sensing BFRP bars with distributed optic fiber sensors

    Science.gov (United States)

    Tang, Yongsheng; Wu, Zhishen; Yang, Caiqian; Shen, Sheng; Wu, Gang; Hong, Wan

    2009-03-01

    In this paper, a new type of self-sensing basalt fiber reinforced polymer (BFRP) bars is developed with using the Brillouin scattering-based distributed optic fiber sensing technique. During the fabrication, optic fiber without buffer and sheath as a core is firstly reinforced through braiding around mechanically dry continuous basalt fiber sheath in order to survive the pulling-shoving process of manufacturing the BFRP bars. The optic fiber with dry basalt fiber sheath as a core embedded further in the BFRP bars will be impregnated well with epoxy resin during the pulling-shoving process. The bond between the optic fiber and the basalt fiber sheath as well as between the basalt fiber sheath and the FRP bar can be controlled and ensured. Therefore, the measuring error due to the slippage between the optic fiber core and the coating can be improved. Moreover, epoxy resin of the segments, where the connection of optic fibers will be performed, is uncured by isolating heat from these parts of the bar during the manufacture. Consequently, the optic fiber in these segments of the bar can be easily taken out, and the connection between optic fibers can be smoothly carried out. Finally, a series of experiments are performed to study the sensing and mechanical properties of the propose BFRP bars. The experimental results show that the self-sensing BFRP bar is characterized by not only excellent accuracy, repeatability and linearity for strain measuring but also good mechanical property.

  18. Objective-lens-free Fiber-based Position Detection with Nanometer Resolution in a Fiber Optical Trapping System.

    Science.gov (United States)

    Ti, Chaoyang; Ho-Thanh, Minh-Tri; Wen, Qi; Liu, Yuxiang

    2017-10-13

    Position detection with high accuracy is crucial for force calibration of optical trapping systems. Most existing position detection methods require high-numerical-aperture objective lenses, which are bulky, expensive, and difficult to miniaturize. Here, we report an affordable objective-lens-free, fiber-based position detection scheme with 2 nm spatial resolution and 150 MHz bandwidth. This fiber based detection mechanism enables simultaneous trapping and force measurements in a compact fiber optical tweezers system. In addition, we achieved more reliable signal acquisition with less distortion compared with objective based position detection methods, thanks to the light guiding in optical fibers and small distance between the fiber tips and trapped particle. As a demonstration of the fiber based detection, we used the fiber optical tweezers to apply a force on a cell membrane and simultaneously measure the cellular response.

  19. The effect of irradiation process on the optical fiber coating

    Science.gov (United States)

    Wang, Zeyu; Xiao, Chun; Rong, Liang; Ji, Wei

    2018-03-01

    Protective fiber coating decides the mechanical strength of an optical fiber as well as its resistance against the influence of environment, especially in some special areas like irradiation atmospheres. According to the experiment in this paper, it was found that the tensile force and peeling force of resistant radiation optical fiber was improved because of the special optical fiber coating.

  20. Research and investigation of a communication chain on optical fiber with a Fabry-Perot power diode for the automotive industry

    Science.gov (United States)

    Bacis, Irina Bristena; Vasile, Alexandru; Ionescu, Ciprian; Marghescu, Cristina

    2016-12-01

    The purpose of this paper is to analyze different power devices - emitters of optical flow, from the point of view of optical coupling, emitted optical powers, optical fiber losses and receiver. The research and characterization of the transmission through a power optical system is done using a computer system specialized for the automotive industry. This system/platform can deliver current pulses that are controlled by a computer through a software (it is possible to set different parameters such as pulse repetition frequency, duty cycle, and current intensity). For the experiments a power Fabry Perot 1035 laser diode operating in pulse with μφ 1055 nm, Ith = 40 mA, and Iop =750 mA was used with a single-mode SFM 128 optical fiber and an EM type optical coupler connected through alignment. Two types of measurements were conducted to demonstrate the usefulness of the experimental structure. In the first case the amplitude of the voltage pulses was measured at the output of an optical detector with receiving diode in a built-in amplifier with a 50 kΩ load resistance. In the second stage measurements were conducted to determine the optical power injected in the optical fiber and received at the reception cell of a power meter. Another parameter of optical coupling that can be measured using the experimental structure is irradiation. This parameter is very important to determine the optimum cutting angle of the fiber for continuity welding.

  1. Simultaneous remote measurement of CO2 concentration, humidity and temperature with a matrix of optical fiber sensors

    Science.gov (United States)

    Wysokiński, Karol; Filipowicz, Marta; Stańczyk, Tomasz; Lipiński, Stanisław; Napierała, Marek; Murawski, Michał; Nasiłowski, Tomasz

    2017-10-01

    A matrix of optical fiber sensors eligible for remote measurements is reported in this paper. The aim of work was to monitor the air quality with a device, which does not need any electricity on site of the measurement. The matrix consists of several sensors detecting carbon dioxide concentration, relative humidity and temperature. Sensors utilize active optical materials, which change their color when exposed to varied conditions. All the sensors are powered with standard light emitting diodes. Light is transmitted by an optical fiber from the light source and then it reaches the active layer which changes its color, when the conditions change. This results in a change of attenuation of light passing through the active layer. Modified light is then transmitted by another optical fiber to the detector, where simple photoresistor is used. It is powered by a stabilized DC power supply and the current is measured. Since no expensive elements are needed to manufacture such a matrix of sensors, its price may be competitive to the price of the devices already available on the market, while the matrix also exhibits other valuable properties.

  2. Radiation imaging with optically read out GEM-based detectors

    Science.gov (United States)

    Brunbauer, F. M.; Lupberger, M.; Oliveri, E.; Resnati, F.; Ropelewski, L.; Streli, C.; Thuiner, P.; van Stenis, M.

    2018-02-01

    Modern imaging sensors allow for high granularity optical readout of radiation detectors such as MicroPattern Gaseous Detectors (MPGDs). Taking advantage of the high signal amplification factors achievable by MPGD technologies such as Gaseous Electron Multipliers (GEMs), highly sensitive detectors can be realised and employing gas mixtures with strong scintillation yield in the visible wavelength regime, optical readout of such detectors can provide high-resolution event representations. Applications from X-ray imaging to fluoroscopy and tomography profit from the good spatial resolution of optical readout and the possibility to obtain images without the need for extensive reconstruction. Sensitivity to low-energy X-rays and energy resolution permit energy resolved imaging and material distinction in X-ray fluorescence measurements. Additionally, the low material budget of gaseous detectors and the possibility to couple scintillation light to imaging sensors via fibres or mirrors makes optically read out GEMs an ideal candidate for beam monitoring detectors in high energy physics as well as radiotherapy. We present applications and achievements of optically read out GEM-based detectors including high spatial resolution imaging and X-ray fluorescence measurements as an alternative readout approach for MPGDs. A detector concept for low intensity applications such as X-ray crystallography, which maximises detection efficiency with a thick conversion region but mitigates parallax-induced broadening is presented and beam monitoring capabilities of optical readout are explored. Augmenting high resolution 2D projections of particle tracks obtained with optical readout with timing information from fast photon detectors or transparent anodes for charge readout, 3D reconstruction of particle trajectories can be performed and permits the realisation of optically read out time projection chambers. Combining readily available high performance imaging sensors with compatible

  3. Measurement of entrance surface dose on an anthropomorphic thorax phantom using a miniature fiber-optic dosimeter.

    Science.gov (United States)

    Yoo, Wook Jae; Shin, Sang Hun; Jeon, Dayeong; Hong, Seunghan; Sim, Hyeok In; Kim, Seon Geun; Jang, Kyoung Won; Cho, Seunghyun; Youn, Won Sik; Lee, Bongsoo

    2014-04-01

    A miniature fiber-optic dosimeter (FOD) system was fabricated using a plastic scintillating fiber, a plastic optical fiber, and a multi-pixel photon counter to measure real-time entrance surface dose (ESD) during radiation diagnosis. Under varying exposure parameters of a digital radiography (DR) system, we measured the scintillating light related to the ESD using the sensing probe of the FOD, which was placed at the center of the beam field on an anthropomorphic thorax phantom. Also, we obtained DR images using a flat panel detector of the DR system to evaluate the effects of the dosimeter on image artifacts during posteroanterior (PA) chest radiography. From the experimental results, the scintillation output signals of the FOD were similar to the ESDs including backscatter simultaneously obtained using a semiconductor dosimeter. We demonstrated that the proposed miniature FOD can be used to measure real-time ESDs with minimization of DR image artifacts in the X-ray energy range of diagnostic radiology.

  4. Measurement of Entrance Surface Dose on an Anthropomorphic Thorax Phantom Using a Miniature Fiber-Optic Dosimeter

    Directory of Open Access Journals (Sweden)

    Wook Jae Yoo

    2014-04-01

    Full Text Available A miniature fiber-optic dosimeter (FOD system was fabricated using a plastic scintillating fiber, a plastic optical fiber, and a multi-pixel photon counter to measure real-time entrance surface dose (ESD during radiation diagnosis. Under varying exposure parameters of a digital radiography (DR system, we measured the scintillating light related to the ESD using the sensing probe of the FOD, which was placed at the center of the beam field on an anthropomorphic thorax phantom. Also, we obtained DR images using a flat panel detector of the DR system to evaluate the effects of the dosimeter on image artifacts during posteroanterior (PA chest radiography. From the experimental results, the scintillation output signals of the FOD were similar to the ESDs including backscatter simultaneously obtained using a semiconductor dosimeter. We demonstrated that the proposed miniature FOD can be used to measure real-time ESDs with minimization of DR image artifacts in the X-ray energy range of diagnostic radiology.

  5. The strength and failure of silica optical fibers

    International Nuclear Information System (INIS)

    Yan, C; Bai, R X; Yu, H; Canning, J; Law, S

    2010-01-01

    The mechanical strength and failure behavior of conventional and microstructured silica optical fibers was investigated using a tensile test and fracture mechanics and numerical analyses. The effect of polymer coating on failure behavior was also studied. The results indicate that all these fibers fail in a brittle manner and failure normally starts from fiber surfaces. The failure loads observed in coated fibers are higher than those in bare fibers. The introduction of air holes reduces fiber strength and their geometrical arrangements have a remarkable effect on stress distribution in the longitudinal direction. These results are potentially useful for the design, fabrication and evaluation of optical fibers for a wide range of applications.

  6. Beam tests of prototype fiber detectors for the H1 forward proton spectrometer

    International Nuclear Information System (INIS)

    Baehr, J.; Hiller, K.; Hoffmann, B.; Luedecke, H.; Menchikov, A.; Nahnhauer, R.; Roloff, H.E.; Tonisch, F.; Voelkert, R.

    1994-07-01

    Different prototypes of fiber detectors with an internal trigger system were tested in a 5 GeV electron beam at DESY. A silicon microstrip telescope was used for an external reference measurement of the beam to study the spatial resolution of the fiber detectors. On average 75% of all crossing electron tracks could be reconstructed with a precision better than 150 μm. These successful methodical investigations led to the installation of similar detectors in the proton beamline 81 m downstream of the central H1-detector at HERA as part of a forward proton spectrometer in spring 1994. (orig.)

  7. Beam tests of prototype fiber detectors for the H1 forward proton spectrometer

    International Nuclear Information System (INIS)

    Baehr, J.; Hiller, K.; Hoffmann, B.; Luedecke, H.; Menchikov, A.; Nahnhauer, R.; Roloff, H.E.; Tonisch, F.; Voelkert, R.

    1995-01-01

    Different prototypes of fiber detectors with an internal trigger system were tested in a 5 GeV electron beam at DESY. A silicon microstrip telescope was used for an external reference measurement of the beam to study the spatial resolution of the fiber detectors. On average 75% of all crossing electron tracks could be reconstructed with a precision better than 150 μm. These successful methodical investigations led to the installation of similar detectors in the proton beamline 81 m downstream of the central H1-detector at HERA as part of a forward proton spectrometer in spring 1994. (orig.)

  8. Benefits of glass fibers in solar fiber optic lighting systems.

    Science.gov (United States)

    Volotinen, Tarja T; Lingfors, David H S

    2013-09-20

    The transmission properties and coupling of solar light have been studied for glass core multimode fibers in order to verify their benefits for a solar fiber optic lighting system. The light transportation distance can be extended from 20 m with plastic fibers to over 100 m with the kind of glass fibers studied here. A high luminous flux, full visible spectrum, as well as an outstanding color rendering index (98) and correlated color temperature similar to the direct sun light outside have been obtained. Thus the outstanding quality of solar light transmitted through these fibers would improve the visibility of all kinds of objects compared to fluorescent and other artificial lighting. Annual relative lighting energy savings of 36% in Uppsala, Sweden, and 76% in Dubai were estimated in an office environment. The absolute savings can be doubled by using glass optical fibers, and are estimated to be in the order of 550 kWh/year in Sweden and 1160 kWh/year in Dubai for one system of only 0.159 m(2) total light collecting area. The savings are dependent on the fiber length, the daily usage time of the interior, the type of artificial lighting substituted, the system light output flux, and the available time of sunny weather at the geographic location.

  9. Mode conversion in hybrid optical fiber coupler

    Science.gov (United States)

    Stasiewicz, Karol A.; Marc, P.; Jaroszewicz, Leszek R.

    2012-04-01

    Designing of all in-line fiber optic systems with a supercontinuum light source gives some issues. The use of a standard single mode fiber (SMF) as an input do not secure single mode transmission in full wavelength range. In the paper, the experimental results of the tested hybrid fiber optic coupler were presented. It was manufactured by fusing a standard single mode fiber (SMF28) and a photonic crystal fiber (PCF). The fabrication process is based on the standard fused biconical taper technique. Two types of large mode area fibers (LMA8 and LAM10 NKT Photonics) with different air holes arrangements were used as the photonic crystal fiber. Spectral characteristics within the range of 800 nm - 1700 nm were presented. All process was optimized to obtain a mode conversion between SMF and PCF and to reach a single mode transmission in the PCF output of the coupler.

  10. Metal-coated optical fibers for high temperature sensing applications

    Science.gov (United States)

    Fidelus, Janusz D.; Wysokiński, Karol; Stańczyk, Tomasz; Kołakowska, Agnieszka; Nasiłowski, Piotr; Lipiński, Stanisław; Tenderenda, Tadeusz; Nasiłowski, Tomasz

    2017-10-01

    An novel low-temperature method was used to enhance the corrosion resistance of copper or gold-coated optical fibers. A characterization of the elaborated materials and reports on selected studies such as cyclic temperature tests together with tensile tests is presented. Gold-coated optical fibers are proposed as a component of optical fiber sensors working in oxidizing atmospheres under temperatures exceeding 900 °C.

  11. Fiber-optic-coupled dosemeter for remote optical sensing of radiation

    International Nuclear Information System (INIS)

    Justus, B.L.; Huston, A.L.

    1996-01-01

    Remote sensing technologies for the detection and measurement of ionizing radiation exposure are of current interest for applications such as patient dose verification during radiotherapy and the monitoring of environmental contaminants. Fiberoptic-based sensing is attractive due to the advantages of small size, low cost, long life and freedom from electromagnetic interference. Several fiberoptic-based radiation sensing systems have been described that utilize radiation induced changes in the optical characteristics of the fiber such as reduced transmission as a result of darkening of the glass, optical phase shifts due to heating, or changes in the birefringence of a polarization-maintaining fiber. The measurement of radiation induced darkening is limited in both sensitivity and dynamic range and requires long fiber lengths. Phase shift measurements require the use of single-mode lasers, phase sensitive interferometric detection, long fiber lengths and complex signal processing techniques. Alternatively, thermoluminescent (TL) phosphor powders have been coated onto fiberoptic cables and remote dosimetry measurements performed using traditional laser heating techniques. The sensitivity is limited by the requirement for a very thin layer of phosphor material, due to problems associated with light scattering and efficient heating by thermal diffusion. In this paper we report the development of an all-optical, fiber-optic-coupled, thermoluminescence dosemeter for remote radiation sensing that offers significant advantages compared to previous technologies. We recently reported the development of an optically transparent, TL glass material having exceptionally good characteristics for traditional dosimetry applications. We also reported a modified TL glass incorporating a rare earth ion dopant in order to absorb light from a semiconductor laser and utilize the absorbed light energy to internally heat the glass and release the trapped electrons. (author)

  12. A fiber-optic current sensor for lightning measurement applications

    Science.gov (United States)

    Nguyen, Truong X.; Ely, Jay J.; Szatkowski, George N.

    2015-05-01

    An optical-fiber sensor based on Faraday Effect is developed for measuring total lightning electric current. It has many unique capabilities not possible with traditional current sensors. Designed for aircraft installation, the sensor is lightweight, non-conducting, structure-conforming, and is immune to electromagnetic interference, hysteresis and saturation. It can also be used on windmills, lightning towers, and can help validate lightning detection network measurements. Faraday Effect causes light polarization to rotate when the fiber is exposed to a magnetic field in the direction of light propagation. Thus, the magnetic field strength can be determined from the light polarization change. By forming closed fiber loops and applying Ampere's law, measuring the total light rotation yields the total current enclosed. The broadband, dual-detector, reflective polarimetric scheme allows measurement of both DC component and AC waveforms with about 60 dB dynamic range. Three sensor systems were built with different sensitivities from different laser wavelengths. Operating at 850nm, the first system uses twisted single-mode fiber and has a 150 A - 150 KA range. The second system operates at 1550nm, uses spun polarization maintaining fiber, and can measure 400 A - 400 KA. Both systems were validated with rocket-triggered lightning measurements and achieved excellent results when compared to a resistive shunt. The third system operates at 1310nm, uses spun polarization maintaining fiber, and can measure approximately 300 A - 300 KA. High current measurements up to 200 KA were demonstrated at a commercial lightning test facility. The system was recently installed on an aircraft and flown near icing weather conditions.

  13. A Fiber-Optic Current Sensor for Lightning Measurement Applications

    Science.gov (United States)

    Nguyen, Truong X.; Ely, Jay J.; Szatkowski, George N.

    2015-01-01

    An optical-fiber sensor based on Faraday Effect is developed for measuring total lightning electric current. It has many unique capabilities not possible with traditional current sensors. Designed for aircraft installation, the sensor is lightweight, non-conducting, structure-conforming, and is immune to electromagnetic interference, hysteresis and saturation. It can also be used on windmills, lightning towers, and can help validate lightning detection network measurements. Faraday Effect causes light polarization to rotate when the fiber is exposed to a magnetic field in the direction of light propagation. Thus, the magnetic field strength can be determined from the light polarization change. By forming closed fiber loops and applying Ampere's law, measuring the total light rotation yields the total current enclosed. The broadband, dual-detector, reflective polarimetric scheme allows measurement of both DC component and AC waveforms with about 60 dB dynamic range. Three sensor systems were built with different sensitivities from different laser wavelengths. Operating at 850nm, the first system uses twisted single-mode fiber and has a 150 A - 150 KA range. The second system operates at 1550nm, uses spun polarization maintaining fiber, and can measure 400 A - 400 KA. Both systems were validated with rocket-triggered lightning measurements and achieved excellent results when compared to a resistive shunt. The third system operates at 1310nm, uses spun polarization maintaining fiber, and can measure approximately 300 A - 300 KA. High current measurements up to 200 KA were demonstrated at a commercial lightning test facility. The system was recently installed on an aircraft and flown near icing weather conditions.

  14. Gross beta determination in drinking water using scintillating fiber array detector.

    Science.gov (United States)

    Lv, Wen-Hui; Yi, Hong-Chang; Liu, Tong-Qing; Zeng, Zhi; Li, Jun-Li; Zhang, Hui; Ma, Hao

    2018-04-04

    A scintillating fiber array detector for measuring gross beta counting is developed to monitor the real-time radioactivity in drinking water. The detector, placed in a stainless-steel tank, consists of 1096 scintillating fibers, both sides of which are connected to a photomultiplier tube. The detector parameters, including working voltage, background counting rate and stability, are tested, and the detection efficiency is calibrated using standard potassium chloride solution. Water samples are measured with the detector and the results are compared with those by evaporation method. The results show consistency with those by evaporation method. The background counting rate of the detector is 38.131 ± 0.005 cps, and the detection efficiency for β particles is 0.37 ± 0.01 cps/(Bq/l). The MDAC of this system can be less than 1.0 Bq/l for β particles in 120 min without pre-concentration. Copyright © 2018 Elsevier Ltd. All rights reserved.

  15. Pulsed laser damage to optical fibers

    International Nuclear Information System (INIS)

    Allison, S.W.; Gillies, G.T.; Magnuson, D.W.; Pagano, T.S.

    1985-01-01

    This paper describes some observations of pulsed laser damage to optical fibers with emphasis on a damage mode characterized as a linear fracture along the outer core of a fiber. Damage threshold data are presented which illustrate the effects of the focusing lens, end-surface preparation, and type of fiber. An explanation based on fiber-beam misalignment is given and is illustrated by a simple experiment and ray trace

  16. CO2 laser ablation of bent optical fibers for sensing applications

    International Nuclear Information System (INIS)

    Lévesque, L; Jdanov, V

    2011-01-01

    A procedure for the fabrication of a fiber optic sensor involving CO 2 laser ablation at λ = 10.6 µm is proposed. A basic system to achieve optical fiber bending and material processing on a single mode optical fiber is described and it is demonstrated that an optical fiber can be bent at a very precise angle by focusing a CO 2 beam locally near the glass cladding surface until it reaches melting temperature. A method is also described for removing material at the apex of a bent fiber to obtain a smooth and well flattened plane surface that is suitable for optical fiber sensing

  17. Poly aniline Nano fiber as Modified Cladding for Optical Fiber Sensor to Detect Acetone Vapor

    International Nuclear Information System (INIS)

    Akhiruddin maddu; Ahmad aminuddin; Setyanto Tri Wahyudi; Hamdani Zain

    2008-01-01

    In this research, we used poly aniline nano fiber as modified cladding material for a fiber optic sensor system to detect the acetone vapor. The sensor was designed based on variation of evanescent field absorption on the core-modified cladding interface when exposed with varied acetone vapor. Poly aniline nano fiber synthesized by interfacial polymerization was coated onto the un-cladded core and acts as sensing element. Response of the fiber optic sensor was investigated by measuring the transmission light intensity via fiber optic sensor system while exposed with acetone vapor. Based on the sensor response curve, it is obtained a very fast response time of 30 s and recovery time of 10 s. The fiber optic sensor also exhibits a good reversibility and repeatability. Sensitivity of the sensor to variation of acetone vapor pressure was obtained 1.25 %/mmHg, that means the transmission intensity of the sensor changes 1.25 % for acetone vapor change of 1 mmHg. (author)

  18. Fiber Optics Deliver Real-Time Structural Monitoring

    Science.gov (United States)

    2013-01-01

    To alter the shape of aircraft wings during flight, researchers at Dryden Flight Research Center worked on a fiber optic sensor system with Austin-based 4DSP LLC. The company has since commercialized a new fiber optic system for monitoring applications in health and medicine, oil and gas, and transportation, increasing company revenues by 60 percent.

  19. Fiber-tile optical studies at Argonne

    International Nuclear Information System (INIS)

    Underwood, D.G.; Morgan, D.J.; Proudfoot, J.

    1991-01-01

    In support of a fiber-tile calorimeter for SDC, we have done studies on a number of topics. The most basic problems were light output and uniformity of response. Using a small electron beam, we have studied fiber placement, tile preparation, wrapping and masking, fiber splicing, fiber routing, phototube response, and some degradation factors. We found two configurations which produced more light output than the others and reasonably uniform response. We have chosen one of these to go into production for the EM test module on the basis of fiber routing for ease of assembly of the calorimeter. We have also applied some of the tools we developed to CDF end plug tile uniformity, shower max testing and development for a couple of detectors, and development of better techniques for radiation damage studies. 18 figs

  20. Multi-Stress Monitoring System with Fiber-Optic Mandrels and Fiber Bragg Grating Sensors in a Sagnac Loop.

    Science.gov (United States)

    Kim, Hyunjin; Sampath, Umesh; Song, Minho

    2015-07-29

    Fiber Bragg grating sensors are placed in a fiber-optic Sagnac loop to combine the grating temperature sensors and the fiber-optic mandrel acoustic emission sensors in single optical circuit. A wavelength-scanning fiber-optic laser is used as a common light source for both sensors. A fiber-optic attenuator is placed at a specific position in the Sagnac loop in order to separate buried Bragg wavelengths from the Sagnac interferometer output. The Bragg wavelength shifts are measured with scanning band-pass filter demodulation and the mandrel output is analyzed by applying a fast Fourier transform to the interference signal. This hybrid-scheme could greatly reduce the size and the complexity of optical circuitry and signal processing unit, making it suitable for low cost multi-stress monitoring of large scale power systems.

  1. Study of fiber optic sugar sensor

    Indian Academy of Sciences (India)

    is connected. By varying the concentration of sugar solution, the output power is noted. ... and Lin [3] and Ghatak et al [4] have studied the use of optical fibers as sensing elements. ... at the interface, an evanescent wave propagates parallel to the interface. .... the ends of the fiber are fixed with fiber holders on either side.

  2. Ultrafast photoconductor detector-laser-diode transmitter

    International Nuclear Information System (INIS)

    Wang, C.L.; Davis, B.A.; Davies, T.J.; Nelson, M.A.; Thomas, M.C.; Zagarino, P.A.

    1987-01-01

    We report the results of an experiment in which we used an ultrafast, photoconductive, radiation detector to drive a fast laser-diode transmitter. When we irradiated the neutron-damaged Cr-doped GaAs detector with 17-MeV electron beams, the temporal response was measured to be less than 30 ps. The pulses from this detector modulated a fast GaAlAs laser diode to transmit the laser output through 30- and 1100-m optical fibers. Preliminary results indicate that 50- and 80-ps time resolutions, respectively, are obtainable with these fibers. We are now working to integrate the photoconductive detector and the laser diode transmitter into a single chip

  3. Interfacial characterization of soil-embedded optical fiber for ground deformation measurement

    International Nuclear Information System (INIS)

    Zhang, Cheng-Cheng; Zhu, Hong-Hu; Shi, Bin; She, Jun-Kuan

    2014-01-01

    Recently fiber-optic sensing technologies have been applied for performance monitoring of geotechnical structures such as slopes, foundations, and retaining walls. However, the validity of measured data from soil-embedded optical fibers is strongly influenced by the properties of the interface between the sensing fiber and the soil mass. This paper presents a study of the interfacial properties of an optical fiber embedded in soil with an emphasis on the effect of overburden pressure. Laboratory pullout tests were conducted to investigate the load-deformation characteristics of a 0.9 mm tight-buffered optical fiber embedded in soil. Based on a tri-linear interfacial shear stress-displacement relationship, an analytical model was derived to describe the progressive pullout behavior of an optical fiber from soil matrix. A comparison between the experimental and predicted results verified the effectiveness of the proposed pullout model. The test results are further interpreted and discussed. It is found that the interfacial bond between an optical fiber and soil is prominently enhanced under high overburden pressures. The apparent coefficients of friction of the optical fiber/soil interface decrease as the overburden pressure increases, due to the restrained soil dilation around the optical fiber. Furthermore, to facilitate the analysis of strain measurement, three working states of a soil-embedded sensing fiber were defined in terms of two characteristic displacements. (paper)

  4. Multipoint fiber-optic laser-ultrasonic actuator based on fiber core-opened tapers.

    Science.gov (United States)

    Tian, Jiajun; Dong, Xiaolong; Gao, Shimin; Yao, Yong

    2017-11-27

    In this study, a novel fiber-optic, multipoint, laser-ultrasonic actuator based on fiber core-opened tapers (COTs) is proposed and demonstrated. The COTs were fabricated by splicing single-mode fibers using a standard fiber splicer. A COT can effectively couple part of a core mode into cladding modes, and the coupling ratio can be controlled by adjusting the taper length. Such characteristics are used to obtain a multipoint, laser-ultrasonic actuator with balanced signal strength by reasonably controlling the taper lengths of the COTs. As a prototype, we constructed an actuator that generated ultrasound at four points with a balanced ultrasonic strength by connecting four COTs with coupling ratios of 24.5%, 33.01%, 49.51%, and 87.8% in a fiber link. This simple-to-fabricate, multipoint, laser-ultrasonic actuator with balanced ultrasound signal strength has potential applications in fiber-optic ultrasound testing technology.

  5. Theoretical Investigation of Oxazine 170 Perchlorate Doped Polymeric Optical Fiber Amplifier

    Directory of Open Access Journals (Sweden)

    Piotr Miluski

    2017-01-01

    Full Text Available Optical signal amplification in the waveguiding structure of optical fibers can be used for optical telecommunication systems and new light sources constructions. Organic dyes doped materials are interesting for new applications in polymeric optical fibers technology due to their benefits (efficient fluorescence, high absorption cross section, and easy processing. This article presents a numerical simulation of gain in poly(methyl methacrylate optical fiber doped by Oxazine 170 Perchlorate. The calculated gain characteristic for the used dye molar concentration (0.2·10-6–1.4·10-6 and pump power (1–10 kW is presented. The fabricated fluorescent polymeric optical fiber is also shown. The presented analysis can be used for optical amplifier construction based on dye-doped polymeric optical fiber (POF.

  6. Scintillating ribbon x-ray detector

    International Nuclear Information System (INIS)

    Kinchen, B.E.; Rogers, A.

    1995-01-01

    A patent in the early 1970's by Aerojet Corporation in Sacramento, CA put forth the idea of using an array of scintillating fibers for x-ray detection and imaging. In about 1975, Pratt and Whitney Aircraft in East Hartford, CT designed and manufactured an imaging system based on the patent. The device was 1.75 in thick in the direction of the x-ray beam and about 4 in. by 4 in. square. The device was used with a 8 MeV x-ray source to image and measure internal clearances within operating aircraft, gas turbines engines. There are significant advantages of fiber optic detectors in x-ray detection. However, the advantages are often outweighed by the disadvantages. Two of the advantages of scintillating fiber optic x-ray detectors are: (1) high limiting spatial frequency -- between 20 and 25 lp/mm; and (2) excellent x-ray stopping power -- they can be made thick and retain spatial resolution. In traditional fiber optic detectors the x-rays are oriented parallel to the long axis of the fiber. For the scintillating ribbon x-ray sensor, the x-rays are oriented normal to the fiber long axis. This ribbon sensor technique has a number of advantages over the two current radiographic techniques digital x-radiography and x-ray film: The main advantage the ribbon has is size and shape. It can be as thin as 0.05 in., virtually any width or length, and flexible. Once positioned in a given location, 20 to 100 square inches of the object being inspected can be imaged with a single x-ray beam sweep. It is clear that conventional digital cameras do not lend themselves to placement between walls of aircraft structures or similar items requiring x-ray inspections. A prototype scintillating ribbon x-ray sensor has been fabricated and tested by Synergistic Detector Designs. Images were acquired on corrosion test panels of aluminum fabricated by Iowa State University

  7. Optimize Etching Based Single Mode Fiber Optic Temperature Sensor

    OpenAIRE

    Ajay Kumar; Dr. Pramod Kumar

    2014-01-01

    This paper presents a description of etching process for fabrication single mode optical fiber sensors. The process of fabrication demonstrates an optimized etching based method to fabricate single mode fiber (SMF) optic sensors in specified constant time and temperature. We propose a single mode optical fiber based temperature sensor, where the temperature sensing region is obtained by etching its cladding diameter over small length to a critical value. It is observed that th...

  8. Evanescent field refractometry in planar optical fiber.

    Science.gov (United States)

    Holmes, Christopher; Jantzen, Alexander; Gray, Alan C; Gow, Paul C; Carpenter, Lewis G; Bannerman, Rex H S; Gates, James C; Smith, Peter G R

    2018-02-15

    This Letter demonstrates a refractometer in integrated optical fiber, a new optical platform that planarizes fiber using flame hydrolysis deposition (FHD). The unique advantage of the technology is survivability in harsh environments. The platform is mechanically robust, and can survive elevated temperatures approaching 1000°C and exposure to common solvents, including acetone, gasoline, and methanol. For the demonstrated refractometer, fabrication was achieved through wet etching an SMF-28 fiber to a diameter of 8 μm before FHD planarization. An external refractive index was monitored using fiber Bragg gratings (FBGs), written into the core of the planarized fiber. A direct comparison to alternative FBG refractometers is made, for which the developed platform is shown to have comparable sensitivity, with the added advantage of survivability in harsh environments.

  9. Composite cavity based fiber optic Fabry–Perot strain sensors demodulated by an unbalanced fiber optic Michelson interferometer with an electrical scanning mirror

    International Nuclear Information System (INIS)

    Zhang, Jianzhong; Yang, Jun; Sun, Weimin; Yuan, Libo; Jin, Wencai; Peng, G D

    2008-01-01

    A composite cavity based fiber optic Fabry–Perot strain sensor system, interrogated by a white light source and demodulated by an unbalanced fiber optic Michelson interferometer with an electrical scanning mirror, is proposed and demonstrated. Comparing with the traditional extrinsic fiber optic Fabry–Perot strain sensor, the potential multiplexing capability and the dynamic measurement range are improved simultaneously. At the same time, the measurement stability of the electrical scanning mirror system is improved by the self-referenced signal of the sensor structure

  10. Fiber optical sensing on-board communication satellites

    Science.gov (United States)

    Hurni, A.; Lemke, N. M. K.; Roner, M.; Obermaier, J.; Putzer, P.; Kuhenuri Chami, N.

    2017-11-01

    Striving constantly to reduce mass, AIT effort and overall cost of the classical point-to-point wired temperature sensor harness on-board telecommunication satellites, OHB System (formerly Kayser-Threde) has introduced the Hybrid Sensor Bus (HSB) system. As a future spacecraft platform element, HSB relies on electrical remote sensor units as well as fiber-optical sensors, both of which can serially be connected in a bus architecture. HSB is a modular measurement system with many applications, also thanks to the opportunities posed by the digital I²C bus. The emphasis, however, is on the introduction of fiber optics and especially fiber-Bragg grating (FBG) temperature sensors as disruptive innovation for the company's satellite platforms. The light weight FBG sensors are directly inscribed in mechanically robust and radiation tolerant fibers, reducing the need for optical fiber connectors and splices to a minimum. Wherever an FBG sensor shall be used, the fiber is glued together with a corresponding temperature transducer to the satellites structure or to a subsystem. The transducer is necessary to provide decoupling of mechanical stress, but simultaneously ensure a high thermal conductivity. HSB has been developed in the frame of an ESA-ARTES program with European and German co-funding and will be verified as flight demonstrator on-board the German Heinrich Hertz satellite (H2Sat). In this paper the Engineering Model development of HSB is presented and a Fiber-optical Sensor Multiplexer for a more flexible sensor bus architecture is introduced. The HSB system aims at telecommunication satellite platforms with an operational life time beyond 15 years in geostationary orbit. It claims a high compatibility in terms of performance and interfaces with existing platforms while it was designed with future applications with increased radiation exposure already in mind. In its basic configuration HSB consists of four modules which are the Power Supply Unit, the HSB

  11. Radiation damage in commercial optical fibers

    International Nuclear Information System (INIS)

    Bertolotti, M.; Franceschini, F.A.; Serra, A.

    1978-01-01

    Experimental results obtained by exposure of commercial optical fibers to 60 Co γ-ray irradiation, are reported. The possibility of utilizing these fibers as far as a total dose of 6000 rad in the light spectrum is shown. It is also shown that it is possible to obtain total recovery of irradiated fibers by annealing at 500 0 C. (author)

  12. All-optical fiber compressor

    International Nuclear Information System (INIS)

    Ivanov, Luben M.

    2015-01-01

    A simple all-optical fiber compressor, based on an idea of dispersion management using a fiber of positive dispersion in the first part and of negative dispersion in the second one at the working wavelength, is investigated. The method allows a combination of the advantages of the classic fiber-grating and of the multisoliton compression. It is possible to improve substantially the quality of the compressed pulse compared to the multisoliton compression. The compression factor could be increased up to 2-2.5 times when the fraction of the input pulse energy appearing within the compressed pulse enhances more than 2 times. Thus, the peak power of the compressed pulse is able to increase about 5 times and the quality of the obtained pulses should be comparable with those obtained by the fiber-grating compressor

  13. Fast tracking detector with fiber scintillators and a position sensitive photomultiplier

    International Nuclear Information System (INIS)

    Salomon, M.; Li, V.; Smith, G.; Wu, Y.S.

    1988-11-01

    We have studied the properties of a tracking detector composed of 32 fiber scintillators coupled to a multianode photomultiplier placed in a pion beam at TRIUMF. We measured the efficiency of the detector, as well as its tracking capabilities and double hit resolution

  14. From space qualified fiber optic gyroscope to generic fiber optic solutions available for space application

    Science.gov (United States)

    Buret, Thomas; Ramecourt, David; Napolitano, Fabien

    2017-11-01

    The aim of this article is to present how the qualification of the Fiber Optic Gyroscope technology from IXSEA has been achieved through the qualification of a large range of optical devices and related manufacturing processes. These qualified optical devices and processes, that are now fully mastered by IXSEA through vertical integration of the technology, can be used for other space optical sensors. The example of the SWARM project will be discussed.

  15. 3m Vacuum Ultraviolet Spectrometer with Optical Multichannel Detector

    International Nuclear Information System (INIS)

    Martin, P.; Peraza, C.; Blanco, F.; Campos, J.

    1993-01-01

    This paper describes the design and the performance of a normal incidence vacuum ultraviolet spectrometer, for the 300-2400 A spectral range. It is provided with a multichannel detection system. The monochromator is original design and it has been built at CIEMAT. It is equipped with a 3 m concave holographic grating with 2400 grooves/mm. The multichannel detector consists of a windowless double microchannel plate / phosphor screen image intensifier, coupled by fiber optic to a 1024 elements self-scanning linear photodiode array. The output from the array is digitized by a 12-bit analog to digital converter and stored in a computer, for its later analysis. The necessary software to store and display data has been developed. (Author) 18 refs

  16. Spectrophotometry with optical fibers applied to nuclear product processing

    International Nuclear Information System (INIS)

    Boisde, G.; Perez, J.J.; Velluet, M.T.; Jeunhomme, L.B.

    1988-01-01

    Absorption spectrophotometry is widely used in laboratories for composition analysis and quality control of chemical processes. Using optical fibers for transmitting the light between the instrument and the process line allows to improve the safety and productivity of chemical processes, thanks to real time measurements. Such applications have been developed since 1975 in CEA for the monitoring of nuclear products. This has led to the development of fibers, measurement cells, and optical feedthrough sustaining high radiation doses, of fiber/spectrophotometer couplers, and finally of a photodiode array spectrophotometer optimized for being used together with optical fibers [fr

  17. On-line defect detection of aluminum coating using fiber optic sensor

    Science.gov (United States)

    Patil, Supriya S.; Shaligram, A. D.

    2015-03-01

    Aluminum metallization using the sprayed coating for exhaust mild steel (MS) pipes of tractors is a standard practice for avoiding rusting. Patches of thin metal coats are prone to rusting and are thus considered as defects in the surface coating. This paper reports a novel configuration of the fiber optic sensor for on-line checking the aluminum metallization uniformity and hence for defect detection. An optimally chosen high bright 440 nm BLUE LED (light-emitting diode) launches light into a transmitting fiber inclined at the angle of 60° to the surface under inspection placed adequately. The reflected light is transported by a receiving fiber to a blue enhanced photo detector. The metallization thickness on the coated surface results in visually observable variation in the gray shades. The coated pipe is spirally inspected by a combination of linear and rotary motions. The sensor output is the signal conditioned and monitored with RISHUBH DAS. Experimental results show the good repeatability in the defect detection and coating non-uniformity measurement.

  18. Development of a fast, fine-grained, scintillating fiber hodoscope for use in advanced detector systems for high-energy-physics research. Technical progress report, June 1, 1983-May 31, 1984

    International Nuclear Information System (INIS)

    Borenstein, S.R.

    1983-01-01

    This report will indicate the progress made since the last report in the following categories of activity: (1) procurement of a stock of acceptable plastic scintillator perform; (2) improvements in the technique and quality control of drawing and cladding scintillating fibers; (3) fabrication of the bilayer ribbon hodoscope; (4) operation of a prototype hodoscope at the AGS; (5) software development for data acquisition; (6) preparation of an efficient optical coupling between the scintillating fiber and the photo-detector; and (7) determination of the feasibility of the Avalanche Photodiode (APD) as a photo-detector

  19. Fiber Optics: No Illusion.

    Science.gov (United States)

    American School and University, 1983

    1983-01-01

    A campus computer center at Hofstra University (New York) that holds 70 terminals for student use was first a gymnasium, then a language laboratory. Strands of fiber optics are used for the necessary wiring. (MLF)

  20. Irradiation tests of radiation resistance optical fibers for fusion diagnostic application

    Science.gov (United States)

    Kakuta, Tsunemi; Shikama, Tatsuo; Nishitani, Takeo; Yamamoto, Shin; Nagata, Shinji; Tsuchiya, Bun; Toh, Kentaro; Hori, Junichi

    2002-11-01

    To promote development of radiation-resistant core optical fibers, the ITER-EDA (International Thermonuclear Experimental Reactor-Engineering Design Activity) recommended carrying out international round-robin irradiation tests of optical fibers to establish a reliable database for their applications in the ITER plasma diagnostics. Ten developed optical fibers were irradiation-tested in a Co-60 gamma cell, a Japan Materials Testing Reactor (JMTR). Also, some of them were irradiation tested in a fast neutron irradiation facility of FNS (Fast Neutron Source), especially to study temperature dependence of neutron-associated irradiation effects. Included were several Japanese fluorine doped fibers and one Japanese standard fiber (purified and undoped silica core), as well as seven Russian fibers. Some of Russian fibers were drawn by Japanese manufactures from Russian made pre-form rods to study effects of manufacturing processes to radiation resistant properties. The present paper will describe behaviors of growth of radiation-induced optical transmission loss in the wavelength range of 350-1750nm. Results indicate that role of displacement damages by fast neutrons are very important in introducing permanent optical transmission loss. Spectra of optical transmission loss in visible range will depend on irradiation temperatures and material parameters of optical fibers.

  1. Radiation resistance of GeO2-doped silica core optical fibers

    International Nuclear Information System (INIS)

    Shibata, Shuichi; Nakahara, Motohiro; Omori, Yasuharu

    1985-01-01

    Effects of hlogen addition to silica glass on the loss in optical fibers are examined by using halogen-free, chlorine-containing and fluorine-containing GeO 2 -doped silica core optical fibers. Measurements are made for dependence of induced loss in these optical fibers on various factors such as wavelength and total dose of gamma radiation as well as GeO 2 content. Ultraviolet absorption spectra are also observed. In addition, effects of halogens added to pure silica fibers are considered on the basis of Raman spectra of three different optical fibers (pure, F-doped, and F- and GeO 2 -codoped silica core). Thus, it is concluded that (1) addition of halogens (F and Cl) serves to decrease GeO defects and Ge(3) defects in GeO 2 -doped silica optical fibers ; (2) addition of halogens suppresses the increase in loss in GeO 2 -doped silica optical fibers induced by gamma radiation ; and (3) there are close relations between the increase in loss induced by gamma radiation and defects originally existing in the fibers. Effects of halogens added to GeO 2 -doped and pure silica optical fibers can be explained on the basis of the latter relations. (Nogami, K.)

  2. An electromagnetically actuated fiber optic switch using magnetized ferromagnetic materials

    Science.gov (United States)

    Pandojirao-S, Praveen; Dhaubanjar, Naresh; Phuyal, Pratibha C.; Chiao, Mu; Chiao, J.-C.

    2008-03-01

    This paper presents the design, fabrication and testing of a fiber optic switch actuated electromagnetically. The ferromagnetic gel coated optical fiber is actuated using external electromagnetic fields. The ferromagnetic gel consists of ferromagnetic powders dispersed in epoxy. The fabrication utilizes a simple cost-effective coating setup. A direct fiberto-fiber alignment eliminates the need for complementary optical parts and the displacement of fiber switches the laser coupling. The magnetic characteristics of magnetized ferromagnetic materials are performed using alternating gradient magnetometer and the magnetic hysteresis curves are measured for different ferromagnetic materials including iron, cobalt, and nickel. Optical fiber switches with various fiber lengths are actuated and their static and dynamic responses for the same volume of ferromagnetic gel are summarized. The highest displacement is 1.345 mm with an input current of 260mA. In this paper, the performance of fiber switches with various coating materials is presented.

  3. Optical feedback-induced light modulation for fiber-based laser ablation.

    Science.gov (United States)

    Kang, Hyun Wook

    2014-11-01

    Optical fibers have been used as a minimally invasive tool in various medical fields. However, due to excessive heat accumulation, the distal end of a fiber often suffers from severe melting or devitrification, leading to the eventual fiber failure during laser treatment. In order to minimize thermal damage at the fiber tip, an optical feedback sensor was developed and tested ex vivo. Porcine kidney tissue was used to evaluate the feasibility of optical feedback in terms of signal activation, ablation performance, and light transmission. Testing various signal thresholds demonstrated that 3 V was relatively appropriate to trigger the feedback sensor and to prevent the fiber deterioration during kidney tissue ablation. Based upon the development of temporal signal signatures, full contact mode rapidly activated the optical feedback sensor possibly due to heat accumulation. Modulated light delivery induced by optical feedback diminished ablation efficiency by 30% in comparison with no feedback case. However, long-term transmission results validated that laser ablation assisted with optical feedback was able to almost consistently sustain light delivery to the tissue as well as ablation efficiency. Therefore, an optical feedback sensor can be a feasible tool to protect optical fiber tips by minimizing debris contamination and delaying thermal damage process and to ensure more efficient and safer laser-induced tissue ablation.

  4. Development Of Fiber Optics For Passenger Car Applications

    Science.gov (United States)

    Steele, R. E.; Schmitt, H. J.

    1987-12-01

    The benefits of fiber optics for telecommunications and Local Area Networks (LANs) are well documented. The benefits to passenger car applications are not as clearly defined. This paper examines the differences between Telecommunications, LAN, and automotive point to point and network applications. Current production automotive applications of optics and fiber optics, automotive data communications trends, and both functional and non-functional requirements and constraints will be described.

  5. A Fiber-Optic Aircraft Lightning Current Measurement Sensor

    Science.gov (United States)

    Nguyen, Truong X.; Ely, Jay J.; Szatkowski, George N.

    2013-01-01

    A fiber-optic current sensor based on the Faraday Effect is developed for aircraft installations. It can measure total lightning current amplitudes and waveforms, including continuing current. Additional benefits include being small, lightweight, non-conducting, safe from electromagnetic interference, and free of hysteresis and saturation. The Faraday Effect causes light polarization to rotate in presence of magnetic field in the direction of light propagation. Measuring the total induced light polarization change yields the total current enclosed. The system operates at 1310nm laser wavelength and can measure approximately 300 A - 300 kA, a 60 dB range. A reflective polarimetric scheme is used, where the light polarization change is measured after a round-trip propagation through the fiber. A two-detector setup measures the two orthogonal polarizations for noise subtraction and improved dynamic range. The current response curve is non-linear and requires a simple spline-fit correction. Effects of high current were achieved in laboratory using combinations of multiple fiber and wire loops. Good result comparisons against reference sensors were achieved up to 300 kA. Accurate measurements on a simulated aircraft fuselage and an internal structure illustrate capabilities that maybe difficult with traditional sensors. Also tested at a commercial lightning test facility from 20 kA to 200 kA, accuracy within 3-10% was achieved even with non-optimum setups.

  6. Polarization mode dispersion in optical fiber transmission systems

    Science.gov (United States)

    Cameron, John Charles

    The birefringence of optical fibers causes pulse broadening in fiber-optic communication systems. This phenomenon is known as polarization mode dispersion (PMD). PMD is one of the most important limiting factors for high capacity fiber-optic systems. A number of aspects of PMD are examined in this thesis. In Chapter 2 an expression is derived for the probability density function of the pulse broadening due to first-order PMD. This result is used to obtain an expression for the system limitation due to PMD. The birefringence of optical fibers is commonly simulated with the waveplate model. In Chapter 3 two standard versions of the waveplate model are introduced. In addition, a novel waveplate model is proposed. The characteristics of the three versions of the waveplate model are examined to confirm their suitability for use in subsequent chapters of the thesis. Simulations with the waveplate model are performed in Chapter 4 for three purposes: (1) to determine the impact of chromatic dispersion on the system limitation due to PMD, (2) to examine the effectiveness of three different PMD compensation techniques in the presence of chromatic dispersion, and (3) to examine the interaction of second-order chromatic dispersion with PMD. The simulations in Chapter 4 reveal that it is possible with one compensation technique to have output pulses that are narrower than the input pulses. In Chapter 5, this anomalous pulse narrowing is demonstrated analytically for a simple model of PMD and through experiment. It is also shown that this pulse narrowing can be explained as an interference phenomenon. Chapter 6 presents measurements of PMD and state of polarization on installed optical fibers. The PMD coefficients of 122 fibers are presented and the results are analyzed in terms of the age of the fibers and the type of cabling. Measurements of the time evolution of PMD and state of polarization are presented for fibers installed in both buried and aerial cables. The uncertainty

  7. Silver metaphosphate glass wires inside silica fibers--a new approach for hybrid optical fibers.

    Science.gov (United States)

    Jain, Chhavi; Rodrigues, Bruno P; Wieduwilt, Torsten; Kobelke, Jens; Wondraczek, Lothar; Schmidt, Markus A

    2016-02-22

    Phosphate glasses represent promising candidates for next-generation photonic devices due to their unique characteristics, such as vastly tunable optical properties, and high rare earth solubility. Here we show that silver metaphosphate wires with bulk optical properties and diameters as small as 2 µm can be integrated into silica fibers using pressure-assisted melt filling. By analyzing two types of hybrid metaphosphate-silica fibers, we show that the filled metaphosphate glass has only negligible higher attenuation and a refractive index that is identical to the bulk material. The presented results pave the way towards new fiber-type optical devices relying on metaphosphate glasses, which are promising materials for applications in nonlinear optics, sensing and spectral filtering.

  8. Numerical Investigations on a Distributed Fiber-Optic Lighting System with an End Reflector

    International Nuclear Information System (INIS)

    Li Shuhua; Gong Huaping; Tu Yumeng; Meng Ying

    2011-01-01

    A novel distributed fiber-optic decorative lighting system with the reflection coating on the extremity of fiber-optic is designed, which used the multi-mold optical fiber made up of large core diameter(Diameter of core and cladding is 105μm and 125μm, respectly). After introducing the distributional optical fiber decorative lighting system briefly, the ralationship between corrosion depth of the optical fiber core and the leakage of fiber-optic has been analyzed with the Rsoft, and then the relationship of the lighting power and the uniformity of lighting power with the leakage rate of optical fiber lamp, the reflective of reflection coating has been discussed.The simulation analysis shows that, when the core diameter is corroded to 80∼85 μm, the leakage rate of optical fiber may achieve 5.0%, which suits the optical fiber decorative lighting. Considering all kinds of factors, when optical fiber lamp's quantity is 20, the coating index of reflection is 95%, optical fiber lamp's leakage of light rate is 5.0%, and the optical fiber lamp's distance is 1 meter, the quite high illuminating power may be achieved, as well as the good lighting uniformity.Finally the experimental study of decorative lighting system is given. And the experimental result is in keeping well with the theory simulation conclusion.

  9. Prototype of a fiber optic sensor for online measurement of coating thickness

    Science.gov (United States)

    D'Emilia, Giulio

    1999-09-01

    In this paper the experimental characterization of a transducer for on line measurement of coating thickness in food industry applications is described, which is composed by a fiber optic probe and by an eddy-current proximity one. The method is based on measuring reflectance by a fiber optic probe of the coating plated on thin steel sheets. The eddy current proximity probe should be used to measure the substrate position. In order to evaluate the feasibility of this approach, a particular attention has been paid to the accuracy of the method, since an accuracy in the order of plus or minus 1 micrometer should be achieved for practical interest. With this aim, the effect of the main interfering and modifying quantities of geometrical (sensor size, probe head angle of incidence, working distance, ...) and optical (light source and photo-detector behavior stability, ...) type has been evaluated both theoretically and experimentally by using a calibration test bench in stationary working conditions. Furthermore, a calibration test bench has been built, where a translating and vibrating steel plate is realized, in order to evaluate the effect of translation velocity of the plate and also of cross vibrations. Results of dynamic calibration are also described and discussed, in order to get information about the final sensor configuration.

  10. Fiber optic modification of a diode array spectrophotometer

    International Nuclear Information System (INIS)

    Van Hare, D.R.; Prather, W.S.

    1986-01-01

    Fiber optics were adapted to a Hewlett-Packard diode array spectrophotometer to permit the analysis of radioactive samples without risking contamination of the instrument. Instrument performance was not compromised by the fiber optics. The instrument is in routine use at the Savannah River Plant control laboratories

  11. Fiber coupled optical spark delivery system

    Science.gov (United States)

    Yalin, Azer; Willson, Bryan; Defoort, Morgan

    2008-08-12

    A spark delivery system for generating a spark using a laser beam is provided, the spark delivery system including a laser light source and a laser delivery assembly. The laser delivery assembly includes a hollow fiber and a launch assembly comprising launch focusing optics to input the laser beam in the hollow fiber. In addition, the laser delivery assembly includes exit focusing optics that demagnify an exit beam of laser light from the hollow fiber, thereby increasing the intensity of the laser beam and creating a spark. In accordance with embodiments of the present invention, the assembly may be used to create a spark in a combustion engine. In accordance with other embodiments of the present invention, a method of using the spark delivery system is provided. In addition, a method of choosing an appropriate fiber for creating a spark using a laser beam is also presented.

  12. Fiber-optic coupling based on nonimaging expanded-beam optics.

    Science.gov (United States)

    Moslehi, B; Ng, J; Kasimoff, I; Jannson, T

    1989-12-01

    We have fabricated and experimentally tested low-cost and mass-producible multimode fiber-optic couplers and connectors based on nonimaging beam-expanding optics and Liouville's theorem. Analysis indicates that a pair coupling loss of -0.25 dB can be achieved. Experimentally, we measured insertion losses as low as -0.38 dB. The beam expanders can be mass produced owing to the use of plastic injection-molding fabrication techniques and packaged in standard connector housings. This design is compatible with the fiber geometry and can yield highly stable coupling owing to its high tolerance for misalignments.

  13. Anisotropic elliptic optical fibers

    Science.gov (United States)

    Kang, Soon Ahm

    1991-05-01

    The exact characteristic equation for an anisotropic elliptic optical fiber is obtained for odd and even hybrid modes in terms of infinite determinants utilizing Mathieu and modified Mathieu functions. A simplified characteristic equation is obtained by applying the weakly guiding approximation such that the difference in the refractive indices of the core and the cladding is small. The simplified characteristic equation is used to compute the normalized guide wavelength for an elliptical fiber. When the anisotropic parameter is equal to unity, the results are compared with the previous research and they are in close agreement. For a fixed value normalized cross-section area or major axis, the normalized guide wavelength lambda/lambda(sub 0) for an anisotropic elliptic fiber is small for the larger value of anisotropy. This condition indicates that more energy is carried inside of the fiber. However, the geometry and anisotropy of the fiber have a smaller effect when the normalized cross-section area is very small or very large.

  14. Moire-Fringe-Based Fiber Optic Tiltmeter for Structural Health Monitoring

    International Nuclear Information System (INIS)

    Kim, Dae Hyun

    2008-01-01

    This paper presents a novel fiber optic tiltmeter system for the health monitoring of large-size structures. The system is composed of a sensor head, a light control unit and a signal processing unit. The sensing mechanism of the sensor head is based on a novel integration of the moire fringe phenomenon with fiber optics to achieve a robust performance in addition to its immunity to EM interference, easy ratting, and low cost. In this paper, a prototype of the fiber optic tiltmeter system has been developed successfully. A low-cost light control unit has been developed to drive the system's optic and electronic components. From an experimental test, the fiber optic tiltmeter is proven to be a prospective sensor for the monitoring of the tilting angle of civil structure with a good linearity. Finally, the test also successfully demonstrates the performance and the potential of the novel fiber optic tiltmeter system to monitor the health of civil infrastructures.

  15. Moire-Fringe-Based Fiber Optic Tiltmeter for Structural Health Monitoring

    Energy Technology Data Exchange (ETDEWEB)

    Kim, Dae Hyun [Seoul National of Technology, Seoul (Korea, Republic of)

    2008-04-15

    This paper presents a novel fiber optic tiltmeter system for the health monitoring of large-size structures. The system is composed of a sensor head, a light control unit and a signal processing unit. The sensing mechanism of the sensor head is based on a novel integration of the moire fringe phenomenon with fiber optics to achieve a robust performance in addition to its immunity to EM interference, easy ratting, and low cost. In this paper, a prototype of the fiber optic tiltmeter system has been developed successfully. A low-cost light control unit has been developed to drive the system's optic and electronic components. From an experimental test, the fiber optic tiltmeter is proven to be a prospective sensor for the monitoring of the tilting angle of civil structure with a good linearity. Finally, the test also successfully demonstrates the performance and the potential of the novel fiber optic tiltmeter system to monitor the health of civil infrastructures.

  16. Security System Responsive to Optical Fiber Having Bragg Grating

    Science.gov (United States)

    Gary, Charles K. (Inventor); Ozcan, Meric (Inventor)

    1997-01-01

    An optically responsive electronic lock is disclosed comprising an optical fiber serving as a key and having Bragg gratings placed therein. Further, an identification system is disclosed which has the optical fiber serving as means for tagging and identifying an object. The key or tagged object is inserted into a respective receptacle and the Bragg gratings cause the optical fiber to reflect a predetermined frequency spectra pattern of incident light which is detected by a decoder and compared against a predetermined spectrum to determine if an electrical signal is generated to either operate the lock or light a display of an authentication panel.

  17. Fiber-optic multipoint radiation sensing system using waveguide scintillators

    International Nuclear Information System (INIS)

    Maekawa, Tatsuyuki; Yoda, Masaki; Tanaka, Koutarou; Masumaru, Tarou; Morimoto, Souichirou.

    1996-01-01

    Novel fiber-optic radiation sensors and a multipoint measurement method that takes advantage of them have been developed. The new sensor design, which we call a 'waveguide scintillator', consists of a scintillating material and a wavelength-shifting fiber (WLSF). The WLSF is embedded in the scintillating material, and each end is connected to a transparent optical fiber. These waveguide scintillators can be connected in series along an optical fiber loop to form a radiation monitoring system, and each end of the fiber loop is terminated with a photodetector. This new radiation monitoring arrangement dispenses with the need for electronic apparatus at each measuring point and consequently improves resistance to noise. Furthermore, it offers the advantages of multipoint monitoring - meaning that radiation intensity can be measured at multiple sensors - using only two photodetectors. We have examined the light output characteristics and time resolution of a prototype arrangement of these new waveguide scintillators, thus confirming the feasibility of multipoint measurements using a system of multiple waveguide scintillators connected in series in an optical fiber loop. (author)

  18. Lasers and optical fibers in medicine

    CERN Document Server

    Katzir, Abraham

    1993-01-01

    The increasing use of fiber optics in the field of medicine has created a need for an interdisciplinary perspective of the technology and methods for physicians as well as engineers and biophysicists. This book presents a comprehensive examination of lasers and optical fibers in an hierarchical, three-tier system. Each chapter is divided into three basic sections: the Fundamentals section provides an overview of basic concepts and background; the Principles section offers an in-depth engineering approach; and the Advances section features specific information on systems an

  19. Study of Optical Fiber Sensors for Cryogenic Temperature Measurements.

    Science.gov (United States)

    De Miguel-Soto, Veronica; Leandro, Daniel; Lopez-Aldaba, Aitor; Beato-López, Juan Jesus; Pérez-Landazábal, José Ignacio; Auguste, Jean-Louis; Jamier, Raphael; Roy, Philippe; Lopez-Amo, Manuel

    2017-11-30

    In this work, the performance of five different fiber optic sensors at cryogenic temperatures has been analyzed. A photonic crystal fiber Fabry-Pérot interferometer, two Sagnac interferometers, a commercial fiber Bragg grating (FBG), and a π-phase shifted fiber Bragg grating interrogated in a random distributed feedback fiber laser have been studied. Their sensitivities and resolutions as sensors for cryogenic temperatures have been compared regarding their advantages and disadvantages. Additionally, the results have been compared with the given by a commercial optical backscatter reflectometer that allowed for distributed temperature measurements of a single mode fiber.

  20. Study of Optical Fiber Sensors for Cryogenic Temperature Measurements

    Directory of Open Access Journals (Sweden)

    Veronica De Miguel-Soto

    2017-11-01

    Full Text Available In this work, the performance of five different fiber optic sensors at cryogenic temperatures has been analyzed. A photonic crystal fiber Fabry-Pérot interferometer, two Sagnac interferometers, a commercial fiber Bragg grating (FBG, and a π-phase shifted fiber Bragg grating interrogated in a random distributed feedback fiber laser have been studied. Their sensitivities and resolutions as sensors for cryogenic temperatures have been compared regarding their advantages and disadvantages. Additionally, the results have been compared with the given by a commercial optical backscatter reflectometer that allowed for distributed temperature measurements of a single mode fiber.

  1. Cobra Fiber-Optic Positioner Upgrade

    Science.gov (United States)

    Fisher, Charles D.; Braun, David F.; Kaluzny, Joel V.

    2013-01-01

    A prime focus spectrometer (PFS), along with corrective optics, will mount in place of the secondary mirror of the Subaru telescope on Mauna Kea, Hawaii. This will allow simultaneous observations of cosmologic targets. It will enable large-scale galactic archeology and dark energy surveys to help unlock the secrets of the universe. To perform these cosmologic surveys, an array of 2,400 optical fibers needs to be independently positioned within the 498-mm-diameter focal plane of the PFS instrument to collect light from galaxies and stars for spectrographic analyses. To allow for independent re-positioning of the fibers, a very small positioner (7.7 mm in diameter) is required. One hundred percent coverage of the focal plane is also required, so these small actuators need to cover a patrol region of 9.5 mm in diameter. To optimize the amount of light that can be collected, the fibers need to be placed within 5 micrometers of their intended target (either a star or galaxy). The Cobra Fiber Positioner was designed to meet the size and accuracy requirements stated above. Cobra is a two-degrees-of-freedom mechanism that can position an optical fiber in the focal plane of the PFS instrument to a precision of 5 micrometers. It is a theta-phi style positioner containing two rotary piezo tube motors with one offset from the other, which enables the optic fibers to be placed anywhere in a small circular patrol region. The patrol region of the actuator is such that the array of 2,400 positioners allows for full coverage of the instrument focal plane by overlapping the patrol areas. A second-generation Cobra positioner was designed based on lessons learned from the original prototype built in 2009. Improvements were made to the precision of the ceramic motor parts, and hard stops were redesigned to minimize friction and prevent jamming. These changes resulted in reducing the number of move iterations required to position the optical fiber within 5 micrometers of its target. At

  2. Nanomechanical Optical Fiber with Embedded Electrodes Actuated by Joule Heating.

    Science.gov (United States)

    Lian, Zhenggang; Segura, Martha; Podoliak, Nina; Feng, Xian; White, Nicholas; Horak, Peter

    2014-07-31

    Nanomechanical optical fibers with metal electrodes embedded in the jacket were fabricated by a multi-material co-draw technique. At the center of the fibers, two glass cores suspended by thin membranes and surrounded by air form a directional coupler that is highly temperature-dependent. We demonstrate optical switching between the two fiber cores by Joule heating of the electrodes with as little as 0.4 W electrical power, thereby demonstrating an electrically actuated all-fiber microelectromechanical system (MEMS). Simulations show that the main mechanism for optical switching is the transverse thermal expansion of the fiber structure.

  3. Nanomechanical Optical Fiber with Embedded Electrodes Actuated by Joule Heating

    Science.gov (United States)

    Lian, Zhenggang; Segura, Martha; Podoliak, Nina; Feng, Xian; White, Nicholas; Horak, Peter

    2014-01-01

    Nanomechanical optical fibers with metal electrodes embedded in the jacket were fabricated by a multi-material co-draw technique. At the center of the fibers, two glass cores suspended by thin membranes and surrounded by air form a directional coupler that is highly temperature-dependent. We demonstrate optical switching between the two fiber cores by Joule heating of the electrodes with as little as 0.4 W electrical power, thereby demonstrating an electrically actuated all-fiber microelectromechanical system (MEMS). Simulations show that the main mechanism for optical switching is the transverse thermal expansion of the fiber structure. PMID:28788148

  4. Femtosecond laser inscription of asymmetric directional couplers for in-fiber optical taps and fiber cladding photonics.

    Science.gov (United States)

    Grenier, Jason R; Fernandes, Luís A; Herman, Peter R

    2015-06-29

    Precise alignment of femtosecond laser tracks in standard single mode optical fiber is shown to enable controllable optical tapping of the fiber core waveguide light with fiber cladding photonic circuits. Asymmetric directional couplers are presented with tunable coupling ratios up to 62% and bandwidths up to 300 nm at telecommunication wavelengths. Real-time fiber monitoring during laser writing permitted a means of controlling the coupler length to compensate for micron-scale alignment errors and to facilitate tailored design of coupling ratio, spectral bandwidth and polarization properties. Laser induced waveguide birefringence was harnessed for polarization dependent coupling that led to the formation of in-fiber polarization-selective taps with 32 dB extinction ratio. This technology enables the interconnection of light propagating in pre-existing waveguides with laser-formed devices, thereby opening a new practical direction for the three-dimensional integration of optical devices in the cladding of optical fibers and planar lightwave circuits.

  5. Fiber optical asssembly for fluorescence spectrometry

    Science.gov (United States)

    Piltch, Martin S.; Gray, Perry Clayton; Rubenstein, Richard

    2015-08-18

    System is provided for detecting the presence of an analyte of interest in a sample, said system comprising an elongated, transparent container for a sample; an excitation source in optical communication with the sample, wherein radiation from the excitation source is directed along the length of the sample, and wherein the radiation induces a signal which is emitted from the sample; and, at least two linear arrays disposed about the sample holder, each linear array comprising a plurality of optical fibers having a first end and a second end, wherein the first ends of the fibers are disposed along the length of the container and in proximity thereto; the second ends of the fibers of each array are bundled together to form a single end port.

  6. Precision-analog fiber-optic transmission system

    International Nuclear Information System (INIS)

    Stover, G.

    1981-06-01

    This article describes the design, experimental development, and construction of a DC-coupled precision analog fiber optic link. Topics to be covered include overall electrical and mechanical system parameters, basic circuit organization, modulation format, optical system design, optical receiver circuit analysis, and the experimental verification of the major design parameters

  7. Fiber-optic evanescent-field sensor for attitude measurement

    Science.gov (United States)

    Liu, Yun; Chen, Shimeng; Liu, Zigeng; Guang, Jianye; Peng, Wei

    2017-11-01

    We proposed a new approach to attitude measurement by an evanescent field-based optical fiber sensing device and demonstrated a liquid pendulum. The device consisted of three fiber-optic evanescent-filed sensors which were fabricated by tapered single mode fibers and immersed in liquid. Three fiber Bragg gratings were used to measure the changes in evanescent field. And their reflection peaks were monitored in real time as measurement signals. Because every set of reflection responses corresponded to a unique attitude, the attitude of the device could be measured by the three fiber-optic evanescent-filed sensors. After theoretical analysis, computerized simulation and experimental verification, regular responses were obtained using this device for attitude measurement. The measurement ranges of dihedral angle and direction angle were 0°-50° and 0°-360°. The device is based on cost-effective power-referenced scheme. It can be used in electromagnetic or nuclear radiation environment.

  8. Constitutive Modeling of the Mechanical Properties of Optical Fibers

    Science.gov (United States)

    Moeti, L.; Moghazy, S.; Veazie, D.; Cuddihy, E.

    1998-01-01

    Micromechanical modeling of the composite mechanical properties of optical fibers was conducted. Good agreement was obtained between the values of Young's modulus obtained by micromechanics modeling and those determined experimentally for a single mode optical fiber where the wave guide and the jacket are physically coupled. The modeling was also attempted on a polarization-maintaining optical fiber (PANDA) where the wave guide and the jacket are physically decoupled, and found not to applicable since the modeling required perfect bonding at the interface. The modeling utilized constituent physical properties such as the Young's modulus, Poisson's ratio, and shear modulus to establish bounds on the macroscopic behavior of the fiber.

  9. Water-equivalent one-dimensional scintillating fiber-optic dosimeter for measuring therapeutic photon beam

    International Nuclear Information System (INIS)

    Moon, Jinsoo; Won Jang, Kyoung; Jae Yoo, Wook; Han, Ki-Tek; Park, Jang-Yeon; Lee, Bongsoo

    2012-01-01

    In this study, we fabricated a one-dimensional scintillating fiber-optic dosimeter, which consists of 9 scintillating fiber-optic dosimeters, septa, and PMMA blocks for measuring surface and percentage depth doses of a therapeutic photon beam. Each dosimeter embedded in the 1-D scintillating fiber-optic dosimeter is composed of square type organic scintillators and plastic optical fibers. Also black PVC films are used as septa to minimize cross-talk between the scintillating fiber-optic dosimeters. To construct a dosimeter system, a 1-D scintillating fiber-optic dosimeter and a CMOS image sensor were combined with 20 m-length plastic optical fibers. Using the dosimeter system, we measured surface and percentage depth doses of 6 and 15 MV photon beams and compared the results with those of EBT films and an ionization chamber. - Highlights: ► Fabrication of a one-dimensional scintillating fiber-optic dosimeter. ► The one-dimensional scintillating fiber-optic dosimeter has 9 scintillating fiber-optic dosimeters. ► Measurements of surface and percentage depth doses of a therapeutic photon beam. ► The results were compared with those of EBT films and an ionization chamber.

  10. Fiber optic/cone penetrometer system for subsurface heavy metals detection

    International Nuclear Information System (INIS)

    Saggese, S.; Greenwell, R.

    1995-01-01

    The objective of this project is to develop an integrated fiber optic sensor/cone penetrometer system to analyze the heavy metals content of the subsurface. This site characterization tool will use an optical fiber cable assembly which delivers high power laser energy to vaporize and excite a sample in-situ and return the emission spectrum from the plasma produced for chemical analysis. The chemical analysis technique, often referred to as laser induced breakdown spectroscopy (LIBS), has recently shown to be an effective method for the quantitative analysis of contaminants soils. By integrating the fiber optic sensor with the cone penetrometer, we anticipate that the resultant system will enable in-situ, low cost, high resolution, real-time subsurface characterization of numerous heavy metal soil contaminants simultaneously. There are several challenges associated with the integration of the LIBS sensor and cone penetrometer. One challenge is to design an effective means of optically accessing the soil via the fiber probe in the penetrometer. A second challenge is to develop the fiber probe system such that the resultant emission signal is adequate for quantitative analysis. Laboratory techniques typically use free space delivery of the laser to the sample. The high laser powers used in the laboratory cannot be used with optical fibers, therefore, the effectiveness of the LIBS system at the laser powers acceptable to fiber delivery must be evaluated. The primary objectives for this project are: (1) Establish that a fiber optic LIBS technique can be used to detect heavy metals to the required concentration levels; (2) Design and fabricate a fiber optic probe for integration with the penetrometer system for the analysis of heavy metals in soil samples; (3) Design, fabricate, and test an integrated fiber/penetrometer system; (4) Fabricate a rugged, field deployable laser source and detection hardware system; and (6) Demonstrate the prototype in field deployments

  11. Ultrafast photoconductive detector-laser-diode transmitter

    International Nuclear Information System (INIS)

    Wang, C.L.; Davies, T.J.; Nelson, M.A.; Thomas, M.C.; Zagarino, P.A.; Davis, B.A.

    1987-01-01

    The authors report the results of an experiment in which they used an ultrafast, photoconductive, radiation detector to drive a fast laser-diode transmitter. When they irradiated the neutron-damaged Cr-doped Ga/As detector with 17-MeV electron beams, the temporal response of was measured to be less than 30 ps. The pulses from this detector modulated a fast GaAlAs laser diode to transmit the laser output through 30- and 1100-m optical fibers. Preliminary results indicate that 50- and 80-ps time resolutions, respectively, are obtainable with these fibers. They are now working to integrate the photoconductive detector and the laser diode transmitter into a single chip

  12. Ageing studies of wavelength shifter fibers for the TILECAL/ATLAS experiment

    International Nuclear Information System (INIS)

    Silva, J.; Maio, A.; Pina, J.; Santos, J.; Saraiva, J.G.

    2007-01-01

    Natural and accelerated ageing studies for the different components of the TILECAL calorimeter, of the ATLAS experiment, play a central role in forecasting the evolution of the detector's performance throughout its operating life. It is possible that the operation of ATLAS will be extended by 5 years in an upgraded LHC scenario. Such prospect makes these studies even more important, in order to assess the contribution of the natural ageing in relation to the other processes inducing performance loss in the optical components. Among other activities in this LHC/CERN collaboration, the Lisbon calorimetry group is involved in studying the impact of radiation damage and natural ageing in optical characteristics of the TILECAL wavelength shifter (WLS) optical fibers and scintillators, and to reevaluate the light budget of the tile/fiber system. The light yield and the attenuation length of the WLS and scintillating optical fibers are measured using an X-Y table. Results are presented for several sets of WLS optical fibers (Kuraray Y11(200)MSJ) whose characteristics have been monitored since 1999. Most of those 338 fibers are from the mass production for the TILECAL detector: 208 non-aluminized 200 cm fibers, from several production batches, and 128 batch no. 6 aluminized fibers, with lengths ranging from 114 to 207 cm

  13. Fiber optics in the BNL Booster radiation environment

    International Nuclear Information System (INIS)

    Beadle, E.R.

    1991-01-01

    The Booster instrumentation uses analog and digital fiber optic links, designed to withstand at least 50 krads without performance degradation. The links use inexpensive and commercially available components that operate at a center wavelength of 820 nm. The analog link operates to 30 MHz over a 200 m fiber and can provide insertion gain. The digital link provides 60 ns timing pulses without the dispersive effects of coaxial cables. The optical fiber is a step-index hard clad silica type with a 200 micron core. This paper presents the component selection criteria, link design, installation, testing and performance for the optical links in the Booster instrumentation systems

  14. Femtosecond nonlinear fiber optics in the ionization regime.

    Science.gov (United States)

    Hölzer, P; Chang, W; Travers, J C; Nazarkin, A; Nold, J; Joly, N Y; Saleh, M F; Biancalana, F; Russell, P St J

    2011-11-11

    By using a gas-filled kagome-style photonic crystal fiber, nonlinear fiber optics is studied in the regime of optically induced ionization. The fiber offers low anomalous dispersion over a broad bandwidth and low loss. Sequences of blueshifted pulses are emitted when 65 fs, few-microjoule pulses, corresponding to high-order solitons, are launched into the fiber and undergo self-compression. The experimental results are confirmed by numerical simulations which suggest that free-electron densities of ∼10(17) cm(-3) are achieved at peak intensities of 10(14) W/cm(2) over length scales of several centimeters.

  15. Fiber Optics Technician. Curriculum Research Project. Final Report.

    Science.gov (United States)

    Whittington, Herschel K.

    A study examined the role of technicians in the fiber optics industry and determined those elements that should be included in a comprehensive curriculum to prepare fiber optics technicians for employment in the Texas labor market. First the current literature, including the ERIC database and equipment manufacturers' journals were reviewed. After…

  16. Distributed fiber?optic temperature sensing for hydrologic systems

    NARCIS (Netherlands)

    Selker, J.S.; Thévenaz, L.; Huwald, H.; Mallet, A.; Luxemburg, W.M.J.; Van de Giesen, N.; Stejskal, M.; Zeman, J.; Westhoff, M.; Parlange, M.B.

    2006-01-01

    Instruments for distributed fiber-optic measurement of temperature are now available with temperature resolution of 0.01°C and spatial resolution of 1 m with temporal resolution of fractions of a minute along standard fiber-optic cables used for communication with lengths of up to 30,000 m. We

  17. Distributed fiber-optic temperature sensing for hydrologic systems

    NARCIS (Netherlands)

    Selker, John S.; Thévenaz, Luc; Huwald, Hendrik; Mallet, Alfred; Luxemburg, Wim; van de Giesen, Nick C.; Stejskal, Martin; Zeman, Josef; Westhoff, Martijn; Parlange, Marc B.

    2006-01-01

    Instruments for distributed fiber-optic measurement of temperature are now available with temperature resolution of 0.01°C and spatial resolution of 1 m with temporal resolution of fractions of a minute along standard fiber-optic cables used for communication with lengths of up to 30,000 m. We

  18. Modelling of Extrinsic Fiber Optic Sagnac Ultrasound Interferometer ...

    African Journals Online (AJOL)

    Ultrasonic waves are used extensively in nondestructive testing both for characterization of material properties, in this paper, we describe a fiber optic sensor suitable for detection of ultrasonic waves. This sensor is based on an extrinsic fiber optic sagnac interferometer. The proposed sensor model can act as a conventional ...

  19. Fabrication and optical characterization of silica optical fibers containing gold nanoparticles.

    Science.gov (United States)

    de Oliveira, Rafael E P; Sjödin, Niclas; Fokine, Michael; Margulis, Walter; de Matos, Christiano J S; Norin, Lars

    2015-01-14

    Gold nanoparticles have been used since antiquity for the production of red-colored glasses. More recently, it was determined that this color is caused by plasmon resonance, which additionally increases the material's nonlinear optical response, allowing for the improvement of numerous optical devices. Interest in silica fibers containing gold nanoparticles has increased recently, aiming at the integration of nonlinear devices with conventional optical fibers. However, fabrication is challenging due to the high temperatures required for silica processing and fibers with gold nanoparticles were solely demonstrated using sol-gel techniques. We show a new fabrication technique based on standard preform/fiber fabrication methods, where nanoparticles are nucleated by heat in a furnace or by laser exposure with unprecedented control over particle size, concentration, and distribution. Plasmon absorption peaks exceeding 800 dB m(-1) at 514-536 nm wavelengths were observed, indicating higher achievable nanoparticle concentrations than previously reported. The measured resonant nonlinear refractive index, (6.75 ± 0.55) × 10(-15) m(2) W(-1), represents an improvement of >50×.

  20. Structurally integrated fiber optic damage assessment system for composite materials.

    Science.gov (United States)

    Measures, R M; Glossop, N D; Lymer, J; Leblanc, M; West, J; Dubois, S; Tsaw, W; Tennyson, R C

    1989-07-01

    Progress toward the development of a fiber optic damage assessment system for composite materials is reported. This system, based on the fracture of embedded optical fibers, has been characterized with respect to the orientation and location of the optical fibers in the composite. Together with a special treatment, these parameters have been tailored to yield a system capable of detecting the threshold of damage for various impacted Kevlar/epoxy panels. The technique has been extended to measure the growth of a damage region which could arise from either impact, manufacturing flaws, or static overloading. The mechanism of optical fiber fracture has also been investigated. In addition, the influence of embedded optical fibers on the tensile and compressive strength of the composite material has been studied. Image enhanced backlighting has been shown to be a powerful and convenient method of assessing internal damage to translucent composite materials.

  1. Tunable photonic bandgap fiber based devices for optical networks

    DEFF Research Database (Denmark)

    Alkeskjold, Thomas Tanggaard; Scolari, Lara; Rottwitt, Karsten

    2005-01-01

    In future all optical networks one of the enabling technologies is tunable elements including reconfigurable routers, switches etc. Thus, the development of a technology platform that allows construction of tuning components is critical. Lately, microstructured optical fibers, filled with liquid......, for example a liquid crystal that changes optical properties when subjected to, for example, an optical or an electrical field. The utilization of these two basic properties allows design of tunable optical devices for optical networks. In this work, we focus on applications of such devices and discuss recent...... crystals, have proven to be a candidate for such a platform. Microstructured optical fibers offer unique wave-guiding properties that are strongly related to the design of the air holes in the cladding of the fiber. These wave-guiding properties may be altered by filling the air holes with a material...

  2. Chemical imaging of cotton fibers using an infrared microscope and a focal-plane array detector

    Science.gov (United States)

    In this presentation, the chemical imaging of cotton fibers with an infrared microscope and a Focal-Plane Array (FPA) detector will be discussed. Infrared spectroscopy can provide us with information on the structure and quality of cotton fibers. In addition, FPA detectors allow for simultaneous spe...

  3. Optical Coupling Structures of Fiber-Optic Mach-Zehnder Interferometers Using CO2 Laser Irradiation

    Directory of Open Access Journals (Sweden)

    Chien-Hsing Chen

    2014-01-01

    Full Text Available The Mach-Zehnder interferometer (MZI can be used to test changes in the refractive index of sucrose solutions at different concentrations. However, the popularity of this measurement tool is limited by its substantial size and portability. Therefore, the MZI was integrated with a small fiber-optic waveguide component to develop an interferometer with fiber-optic characteristics, specifically a fiber-optic Mach-Zehnder interferometer (FO-MZI. Optical fiber must be processed to fabricate two optical coupling structures. The two optical coupling structures are a duplicate of the beam splitter, an optical component of the interferometer. Therefore, when the sensor length and the two optical coupling structures vary, the time or path for optical transmission in the sensor changes, thereby influencing the back-end interference signals. The researchers successfully developed an asymmetrical FO-MZI with sensing abilities. The spacing value between the troughs of the sensor length and interference signal exhibited an inverse relationship. In addition, image analysis was employed to examine the size-matching relationship between various sensor lengths and the coupling and decoupling structure. Furthermore, the spectral wavelength shift results measured using a refractive index sensor indicate that FO-MZIs with a sensor length of 38 mm exhibited excellent sensitivity, measuring 59.7 nm/RIU.

  4. Fiber Optics Physics and Technology

    CERN Document Server

    Mitschke, Fedor

    2010-01-01

    Telephone, telefax, email and internet -- the key ingredient of the inner workings is the conduit: the line which is designed to carry massive amounts of data at breakneck speed. In their data-carrying capacity optical fiber lines beat other technologies (copper cable, microwave beacons, satellite links) hands down, at least in the long haul. This book tells you all you want to know about optical fibers: Their structure, their light-guiding mechanism, their material and manufacture, their use. Several effects tend to degrade the signal as it travels down the fiber: they are spelled out in detail. Nonlinear processes are given due consideration for a twofold reason: On the one hand they are fundamentally different from the more familiar processes in electrical cable. On the other hand, they form the basis of particularly interesting and innovative applications, provided they are understood well enough. A case in point is the use of so-called solitons, i.e. special pulses of light which have the wonderful prope...

  5. Fiber-Optic Continuous Liquid Sensor for Cryogenic Propellant Gauging

    Science.gov (United States)

    Xu. Wei

    2010-01-01

    An innovative fiber-optic sensor has been developed for low-thrust-level settled mass gauging with measurement uncertainty optical fiber to measure liquid level and liquid distribution of cryogenic propellants. Every point of the sensing fiber is a point sensor that not only distinguishes liquid and vapor, but also measures temperature. This sensor is able to determine the physical location of each point sensor with 1-mm spatial resolution. Acting as a continuous array of numerous liquid/vapor point sensors, the truly distributed optical sensing fiber can be installed in a propellant tank in the same manner as silicon diode point sensor stripes using only a single feedthrough to connect to an optical signal interrogation unit outside the tank. Either water or liquid nitrogen levels can be measured within 1-mm spatial resolution up to a distance of 70 meters from the optical interrogation unit. This liquid-level sensing technique was also compared to the pressure gauge measurement technique in water and liquid nitrogen contained in a vertical copper pipe with a reasonable degree of accuracy. It has been demonstrated that the sensor can measure liquid levels in multiple containers containing water or liquid nitrogen with one signal interrogation unit. The liquid levels measured by the multiple fiber sensors were consistent with those virtually measured by a ruler. The sensing performance of various optical fibers has been measured, and has demonstrated that they can survive after immersion at cryogenic temperatures. The fiber strength in liquid nitrogen has also been measured. Multiple water level tests were also conducted under various actual and theoretical vibration conditions, and demonstrated that the signal-to-noise ratio under these vibration conditions, insofar as it affects measurement accuracy, is manageable and robust enough for a wide variety of spacecraft applications. A simple solution has been developed to absorb optical energy at the termination of

  6. A New scintillator tile / fiber preshower detector for the CDF central calorimeter

    Energy Technology Data Exchange (ETDEWEB)

    Gallinaro, Michele; /Rockefeller U.; Artikov, A.; Bromberg, C.; Budagov, J.; Byrum, K.; Chang, S.; Chlachidze, G.; Goulianos, K.; Huston, J.; Iori, M.; Kim, M.; Kuhlmann,; Lami, S.; Lindgren, M.; Lytken, E.; Miller, R.; Nodulman, L.; Pauletta, G.; Penzo, A.; Proudfoot, J.; Roser, R.; /Argonne /Dubna, JINR /Fermilab /Kyungpook Natl. U. /Michigan

    2004-11-01

    A detector designed to measure early particle showers has been installed in front of the central CDF calorimeter at the Tevatron. This new preshower detector is based on scintillator tiles coupled to wavelength-shifting fibers read out by multianode photomultipliers and has a total of 3,072 readout channels. The replacement of the old gas detector was required due to an expected increase in instantaneous luminosity of the Tevatron collider in the next few years. Calorimeter coverage, jet energy resolution, and electron and photon identification are among the expected improvements. The final detector design, together with the R&D studies that led to the choice of scintillator and fiber, mechanical assembly, and quality control are presented. The detector was installed in the fall 2004 Tevatron shutdown and is expected to start collecting colliding beam data by the end of 2004. First measurements indicate a light yield of 12 photoelectrons/MIP, a more than two-fold increase over the design goals.

  7. Development of Optical Fiber-Based Daylighting System and Its Comparison

    Directory of Open Access Journals (Sweden)

    Irfan Ullah

    2015-07-01

    Full Text Available Fiber-optic daylighting systems have been shown to be a promising and effective way to transmit sunlight in the interior space whilst reducing electric lighting energy consumption. To increase efficiency in terms of providing uniform illumination in the interior, the current need is to illuminate optical fiber-bundle with uniform light flux. To this end, we propose a method for achieving collimated light, which illuminates the fiber-bundle uniformly. Light is collected through a parabolic concentrator and focused toward a collimating lens, which distributes the light over each optical fiber. An optics diffusing structure is utilized at the end side of the fiber bundle to spread light in the interior. The results clearly reveal that the efficiency in terms of uniform illumination, which also reduces the heat problem for optical fibers, is improved. Furthermore, a comparison study is conducted between current and previous approaches. As a result, the proposed daylighting system turns out convenient in terms of energy saving and reduction in greenhouse gas emissions.

  8. Remote in-situ laser-induced breakdown spectroscopy using optical fibers

    Science.gov (United States)

    Marquardt, Brian James

    The following dissertation describes the development of methods for performing remote Laser-Induced Breakdown Spectroscopy (LIBS) using optical fibers. Studies were performed to determine the optimal excitation and collection parameters for remote LIBS measurements of glasses, soils and paint. A number of fiber-optic LIBS probes were developed and used to characterize various samples by plasma emission spectroscopy. A novel method for launching high-power laser pulses into optical fibers without causing catastrophic failure is introduced. A systematic study of a number of commercially available optical fibers was performed to determine which optical fibers were best suited for delivering high-power laser pulses. The general design of an all fiber-optic LIBS probe is described and applied to the determination of Pb in soil. A fiber-optic probe was developed for the microanalysis of solid samples remotely by LIBS, Raman spectroscopy and Raman imaging. The design of the probe allows for real-time sample imaging in-situ using coherent imaging fibers. This allows for precise atomic emission and Raman measurements to be performed remotely on samples in hostile or inaccessible environments. A novel technique was developed for collecting spectral plasma images using an acousto-optic tunable filter (AOTF). The spatial and temporal characteristics of the plasma were studied as a function of delay time. From the plasma images the distribution of Pb emission could be determined and fiber-optic designs could be optimized for signal collection. The performance of a two fiber LIBS probe is demonstrated for the determination of the amount of lead in samples of dry paint. It is shown that dry paint samples can be analyzed for their Pb content in-situ using a fiber-optic LIBS probe with detection limits well below the levels currently regulated by the Consumer Products Safety Commission. It is also shown that these measurements can be performed on both latex and enamel paints, and

  9. Erbium Doped Fiber Optic Gravimeter

    International Nuclear Information System (INIS)

    Pérez-Sánchez, G G; Pérez-Torres, J R; Flores-Bravo, J A; Álvarez-Chávez, J A; Martínez-Piñón, F

    2017-01-01

    Gravimeters are devices that can be used in a wide range of applications, such as mining, seismology, geodesy, archeology, geophysics and many others. These devices have great sensibility, which makes them susceptible to external vibrations like electromagnetic waves. There are several technologies regarding gravimeters that are of use in industrial metrology. Optical fiber is immune to electromagnetic interference, and together with long period gratings can form high sensibility sensors of small size, offering advantages over other systems with different technologies. This paper shows the development of an optical fiber gravimeter doped with Erbium that was characterized optically for loads going from 1 to 10 kg in a bandwidth between 1590nm to 1960nm, displaying a weight linear response against power. Later on this paper, the experimental results show that the previous described behavior can be modeled as characteristic function of the sensor. (paper)

  10. 1st International Conference on Fiber-Optic Rotation Sensors

    CERN Document Server

    Arditty, Hervé

    1982-01-01

    Currently there is considerable interest in the application of optical meth­ ods for the measurement of absolute rotation. Active approaches, so-called ring laser gyros, have been under serious development for at least 15 years. More recently, passive approaches using ring resonators or multi turn fiber interferometers have also demonstrated much pro~ise. The only previous conference devoted exclusively to optical rotation sensors, held in 1978 in San Diego, California, was organized by the Society of Photo-optical Instru­ mentation Engineers(S.P.I.E.J. Although the main emphasis at that conference was on ring laser gyros, a number of papers were also included that described the early development of fiber gyroscopes. Since then the field of fiber optic rotation sensors has grown so rapidly that a conference devoted primarily to this subject was needed. The First International Conference on Fiber-Optic Rotation Sensors was held at the Massachusetts Institute of Technology, Cambridge, Massachusetts, Nove~­ b...

  11. Analysis of Plasmonics Based Fiber Optic Sensing Structures

    Science.gov (United States)

    Moayyed, Hamed

    The work described in this PhD Thesis focuses on the post-processing of optical fibers and their enhancement as sensing element. Since the majority of sensors presented are based in Fabry-Perot interferometers, an historical overview of this category of optical fiber sensors is firstly presented. This review considers the works published since the early years, in the beginning of the 1980s, until the middle of 2015. The incorporation of microcavities at the tip of a single mode fiber was extensively studied, particularly for the measurement of nitrogen and methane gas pressure. These cavities were fabricated using hollow core silica tubes and a hollow core photonic crystal fiber. Following a different approach, the microcavities were incorporated between two sections of single mode fiber. In this case, the low sensitivity to temperature makes these microcavities highly desirable for the measurement of strain at high temperatures. Competences in post-processing techniques such as the chemical etching and the writing of periodical structures in the fiber core by means of an excimer or a femtosecond laser were also acquired in the course of the PhD programme. One of the works consisted in the design and manufacturing of a double clad optical fiber. The refractive index of the inner cladding was higher than the one of the outer cladding and the core. Thus, light was guided in the inner cladding instead of propagating in the core. This situation was overcome by applying chemical etching, thus removing the inner cladding. The core, surrounded by air, was then able to guide light. Two different applications were found for this fiber, as a temperature sensor and as an optical refractometer. In the last, the optical phase changes with the liquid refractive index. Two different types of fiber Bragg gratings were characterized in strain and temperature. Sensing structures obtained through the phase mask technique at the tip of an optical fiber were subjected to chemical

  12. Cryogenic Fiber Optic Assemblies for Spaceflight Environments: Design, Manufacturing, Testing, and Integration

    Science.gov (United States)

    Thomes, W. Joe; Ott, Melanie N.; Chuska, Richard; Switzer, Robert; Onuma, Eleanya; Blair, Diana; Frese, Erich; Matyseck, Marc

    2016-01-01

    Fiber optic assemblies have been used on spaceflight missions for many years as an enabling technology for routing, transmitting, and detecting optical signals. Due to the overwhelming success of NASA in implementing fiber optic assemblies on spaceflight science-based instruments, system scientists increasingly request fibers that perform in extreme environments while still maintaining very high optical transmission, stability, and reliability. Many new applications require fiber optic assemblies that will operate down to cryogenic temperatures as low as 20 Kelvin. In order for the fiber assemblies to operate with little loss in optical throughput at these extreme temperatures requires a system level approach all the way from how the fiber assembly is manufactured to how it is held, routed, and integrated. The NASA Goddard Code 562 Photonics Group has been designing, manufacturing, testing, and integrating fiber optics for spaceflight and other high reliability applications for nearly 20 years. Design techniques and lessons learned over the years are consistently applied to developing new fiber optic assemblies that meet these demanding environments. System level trades, fiber assembly design methods, manufacturing, testing, and integration will be discussed. Specific recent examples of ground support equipment for the James Webb Space Telescope (JWST); the Ice, Cloud and Land Elevation Satellite-2 (ICESat-2); and others will be included.

  13. Selective Serial Multi-Antibody Biosensing with TOPAS Microstructured Polymer Optical Fibers

    DEFF Research Database (Denmark)

    Emiliyanov, Grigoriy Andreev; Høiby, Poul E.; Pedersen, Lars H.

    2013-01-01

    We have developed a fluorescence-based fiber-optical biosensor, which can selectively detect different antibodies in serial at preselected positions inside a single piece of fiber. The fiber is a microstructured polymer optical fiber fabricated from TOPAS cyclic olefin copolymer, which allows...

  14. System for diffusing light from an optical fiber or light guide

    Science.gov (United States)

    Maitland, Duncan J [Pleasant Hill, CA; Wilson, Thomas S [San Leandro, CA; Benett, William J [Livermore, CA; Small, IV, Ward [

    2008-06-10

    A system for diffusing light from an optical fiber wherein the optical fiber is coupled to a light source, comprising forming a polymer element adapted to be connected to the optical fiber and incorporating a scattering element with the polymer element wherein the scattering element diffuses the light from the polymer element. The apparatus of the present invention comprises a polymer element operatively connected to the optical fiber and a scattering element operatively connected with the shape polymer element that diffuses the light from the polymer element.

  15. Cryogenic fiber optic temperature sensor and method of manufacturing the same

    Science.gov (United States)

    Kochergin, Vladimir (Inventor)

    2012-01-01

    This invention teaches the fiber optic sensors temperature sensors for cryogenic temperature range with improved sensitivity and resolution, and method of making said sensors. In more detail, the present invention is related to enhancement of temperature sensitivity of fiber optic temperature sensors at cryogenic temperatures by utilizing nanomaterials with a thermal expansion coefficient that is smaller than the thermal expansion coefficient of the optical fiber but larger in absolute value than the thermal expansion coefficient of the optical fiber at least over a range of temperatures.

  16. Electrically tunable Brillouin fiber laser based on a metal-coated single-mode optical fiber

    Directory of Open Access Journals (Sweden)

    S.M. Popov

    Full Text Available We explore tunability of the Brillouin fiber laser employing Joule heating. For this purpose, 10-m-length of a metal-coated single-mode optical cavity fiber has been directly included into an electrical circuit, like a conductor wire. With the current up to ∼3.5 A the laser tuning is demonstrated over a spectrum range of ∼400 MHz. The observed laser line broadening up to ∼2 MHz is explained by frequency drift and mode-hoping in the laser caused by thermal noise. Keywords: Brillouin fiber laser, Metal-coated optical fiber, Laser tuning, Fiber sensors

  17. Polymer Optical Fiber Compound Parabolic Concentrator fiber tip based glucose sensor: In-Vitro Testing

    DEFF Research Database (Denmark)

    Hassan, Hafeez Ul; Janting, Jakob; Aasmul, Soren

    2016-01-01

    We present in-vitro sensing of glucose using a newly developed efficient optical fiber glucose sensor based on a Compound Parabolic Concentrator (CPC) tipped polymer optical fiber (POF). A batch of 9 CPC tipped POF sensors with a 35 mm fiber length is shown to have an enhanced fluorescence pickup...... efficiency with an average increment factor of 1.7 as compared to standard POF sensors with a plane cut fiber tip. Invitro measurements for two glucose concentrations (40 and 400 mg/dL) confirm that the CPC tipped sensors efficiently can detect both glucose concentrations. it sets the footnote at the bottom...

  18. Fluorescence based fiber optic and planar waveguide biosensors. A review

    International Nuclear Information System (INIS)

    Benito-Peña, Elena; Valdés, Mayra Granda; Glahn-Martínez, Bettina; Moreno-Bondi, Maria C.

    2016-01-01

    The application of optical biosensors, specifically those that use optical fibers and planar waveguides, has escalated throughout the years in many fields, including environmental analysis, food safety and clinical diagnosis. Fluorescence is, without doubt, the most popular transducer signal used in these devices because of its higher selectivity and sensitivity, but most of all due to its wide versatility. This paper focuses on the working principles and configurations of fluorescence-based fiber optic and planar waveguide biosensors and will review biological recognition elements, sensing schemes, as well as some major and recent applications, published in the last ten years. The main goal is to provide the reader a general overview of a field that requires the joint collaboration of researchers of many different areas, including chemistry, physics, biology, engineering, and material science. - Highlights: • Principles, configurations and fluorescence techniques using fiber optic and planar waveguide biosensors are discussed. • The biorecognition elements and sensing schemes used in fiber optic and planar waveguide platforms are reviewed. • Some major and recent applications of fiber optic and planar waveguide biosensors are introduced.

  19. Fluorescence based fiber optic and planar waveguide biosensors. A review

    Energy Technology Data Exchange (ETDEWEB)

    Benito-Peña, Elena [Department of Analytical Chemistry, Faculty of Chemistry, Complutense University, 28040 Madrid (Spain); Valdés, Mayra Granda [Department of Analytical Chemistry, Faculty of Chemistry, University of La Habana, 10400 La Habana (Cuba); Glahn-Martínez, Bettina [Department of Analytical Chemistry, Faculty of Chemistry, Complutense University, 28040 Madrid (Spain); Moreno-Bondi, Maria C., E-mail: mcmbondi@quim.ucm.es [Department of Analytical Chemistry, Faculty of Chemistry, Complutense University, 28040 Madrid (Spain)

    2016-11-02

    The application of optical biosensors, specifically those that use optical fibers and planar waveguides, has escalated throughout the years in many fields, including environmental analysis, food safety and clinical diagnosis. Fluorescence is, without doubt, the most popular transducer signal used in these devices because of its higher selectivity and sensitivity, but most of all due to its wide versatility. This paper focuses on the working principles and configurations of fluorescence-based fiber optic and planar waveguide biosensors and will review biological recognition elements, sensing schemes, as well as some major and recent applications, published in the last ten years. The main goal is to provide the reader a general overview of a field that requires the joint collaboration of researchers of many different areas, including chemistry, physics, biology, engineering, and material science. - Highlights: • Principles, configurations and fluorescence techniques using fiber optic and planar waveguide biosensors are discussed. • The biorecognition elements and sensing schemes used in fiber optic and planar waveguide platforms are reviewed. • Some major and recent applications of fiber optic and planar waveguide biosensors are introduced.

  20. Construction of a positron emission tomograph with 2.4 mm detectors

    International Nuclear Information System (INIS)

    McIntyre, J.A.; Sprosst, R.L.; Wang, K.

    1986-01-01

    One-quarter of one ring of a positron tomograph has been constructed. The positron annihilation gamma rays are detected by polished plastic scintillators which direct scintillation light by internal reflection to optical fibers for transmission to the photo-multiplier tubes. By viewing each scintillator with four sets of optical fibers, the number of photomultipliers required for an eight ring tomograph with 1024 detectors per ring (2.4 mm wide detectors) can be reduced from 8192 to 288, and the cost of the tomograph reduced accordingly