WorldWideScience

Sample records for ferritic nuclear pipe

  1. Modification of the ASME code z-factor for circumferential surface crack in nuclear ferritic pipings

    International Nuclear Information System (INIS)

    Choi, Young Hwan; Chung, Yon Ki; Koh, Wan Young; Lee, Joung Bae

    1996-01-01

    The purpose of this paper is to modify the ASME Code Z-Factor, which is used in the evaluation of circumferential surface crack in nuclear ferritic pipings. The ASME Code Z-Factor is a load multiplier to compensate plastic load with elasto-plastic load. The current ASME Code Z-Factor underestimates pipe maximum load. In this study, the original SC. TNP method is modified first because the original SC. TNP method has a problem that the maximum allowable load predicted from the original SC. TNP method is slightly higher than that measured from the experiment. Then the new Z-Factor is developed using the modified SC. TNP method. The desirability of both the modified SC. TNP method and the new Z-Factor is examined using the experimental results for the circumferential surface crack in pipings. The results show that (1) the modified SC. TNP method is good for predicting the circumferential surface crack behavior in pipings, and (2) the Z-Factor obtained from the modified SC. TNP method well predicts the behavior of circumferential surface crack in ferritic pipings. 30 refs., 13 figs., 4 tabs. (author)

  2. Effects of toughness anisotropy and combined tension, torsion, and bending loads on fracture behavior of ferritic nuclear pipe

    Energy Technology Data Exchange (ETDEWEB)

    Mohan, R.; Marshall, C.; Ghadiali, N.; Wilkowski, G. [Battelle, Columbus, OH (United States)

    1997-04-01

    This paper summarizes work on angled through-wall-crack initiation and combined loading effects on ferritic nuclear pipe performed as part of the Nuclear Regulatory Commission`s research program entitled {open_quotes}Short Cracks In Piping an Piping Welds{close_quotes}. The reader is referred to Reference 1 for details of the experiments and analyses conducted as part of this program. The major impetus for this work stemmed from the observation that initially circumferentially oriented cracks in carbon steel pipes exhibited a high tendency to grow at a different angle when the cracked pipes were subjected to bending or bending plus pressure loads. This failure mode was little understood, and the effect of angled crack grown from an initially circumferential crack raised questions about how cracks in a piping system subjected to combined loading with torsional stresses would behave. There were three major efforts undertaken in this study. The first involved a literature review to assess the causes of toughness anisotropy in ferritic pipes and to develop strength and toughness data as a function of angle from the circumferential plane. The second effort was an attempt to develop a screening criterion based on toughness anisotropy and to compare this screening criterion with experimental pipe fracture data. The third and more significant effort involved finite element analyses to examine why cracks grow at an angle and what is the effect of combined loads with torsional stresses on a circumferentially cracked pipe. These three efforts are summarized.

  3. Effects of toughness anisotropy and combined tension, torsion, and bending loads on fracture behavior of ferritic nuclear pipe

    International Nuclear Information System (INIS)

    Mohan, R.; Marschall, C.; Krishnaswamy, P.; Brust, F.; Ghadiali, N.; Wilkowski, G.

    1995-04-01

    This topical report summarizes the work on angled crack growth and combined loading effects performed within the Nuclear Regulatory Commission's research program entitled open-quotes Short Cracks in Piping and Piping Weldsclose quotes. The major impetus for this work stemmed from the observation that initial circumferential cracks in carbon steel pipes exhibited angular crack growth. This failure mode was little understood, and the effect of angled crack growth from an initially circumferential crack raised questions of how pipes under combined loading with torsional stresses would behave. There were three major conclusions from this work. The first was that virtually all ferritic nuclear pipes will have toughness anisotropy. The second was that the ratio of the normalized crack driving force (as a function of angle) to the normalized toughness (also as a function of the angle of crack growth) showed that there was an equal likelihood of cracks growing at any angle between 25 and 65 degrees. This agreed with the scatter of crack growth angles observed in pipe tests. Third, for combined loads with torsional stresses, an effective moment allows pure bending analyses to be used up to crack initiation. Crack opening area under combined loads could also be determined in this mariner

  4. Effects of toughness anisotropy and combined tension, torsion, and bending loads on fracture behavior of ferritic nuclear pipe

    Energy Technology Data Exchange (ETDEWEB)

    Mohan, R.; Marschall, C.; Krishnaswamy, P.; Brust, F.; Ghadiali, N.; Wilkowski, G. [Battelle, Columbus, OH (United States)

    1995-04-01

    This topical report summarizes the work on angled crack growth and combined loading effects performed within the Nuclear Regulatory Commission`s research program entitled {open_quotes}Short Cracks in Piping and Piping Welds{close_quotes}. The major impetus for this work stemmed from the observation that initial circumferential cracks in carbon steel pipes exhibited angular crack growth. This failure mode was little understood, and the effect of angled crack growth from an initially circumferential crack raised questions of how pipes under combined loading with torsional stresses would behave. There were three major conclusions from this work. The first was that virtually all ferritic nuclear pipes will have toughness anisotropy. The second was that the ratio of the normalized crack driving force (as a function of angle) to the normalized toughness (also as a function of the angle of crack growth) showed that there was an equal likelihood of cracks growing at any angle between 25 and 65 degrees. This agreed with the scatter of crack growth angles observed in pipe tests. Third, for combined loads with torsional stresses, an effective moment allows pure bending analyses to be used up to crack initiation. Crack opening area under combined loads could also be determined in this mariner.

  5. Development of new Z-factors for the evaluation of the circumferential surface crack in nuclear pipes

    International Nuclear Information System (INIS)

    Choi, Y.H.; Chung, Y.K.; Park, Y.W.; Lee, J.B.

    1997-01-01

    The purpose of this study is to develop new Z-factors to evaluate the behavior of a circumferential surface crack in nuclear pipe. Z-factor is a load multiplier used in the Z-factor method, which is one of the ASME Code Sec. XI's recommendations for the estimation of a surface crack in nuclear pipe. It has been reported that the load carrying capacities predicted from the current ASME Code Z-factors, are not well in agreement with the experimental results for nuclear pipes with a surface crack. In this study, new Z-factors for ferritic base metal, ferritic submerged arc welding (SAW) weld metal, austenitic base metal, and austenitic SAW weld metal are obtained by use of the surface crack for thin pipe (SC.TNP) method based on GE/EPRI method. The desirability of both the SC.TNP method and the new Z-factors is examined using the results from 48 pipe fracture experiments for nuclear pipes with a circumferential surface crack. The results show that the SC.TNP method is good for describing the circumferential surface crack behavior and the new Z-factors are well in agreement with the measured Z-factors for both ferritic and austenitic pipes. (orig.)

  6. Effect of ferrite on the precipitation of σ phase in cast austenitic stainless steel used for primary coolant pipes of nuclear power plants

    Energy Technology Data Exchange (ETDEWEB)

    Wang, Yongqiang; Li, Na, E-mail: wangyongqiang1124@163.com [State Key Laboratory for Advanced Metals and Materials, University of Science and Technology, Beijing (China)

    2017-11-15

    The effect of ferrite phase on the precipitation of σ phase in a Z3CN20.09M cast austenitic stainless steel (CASS) used for primary coolant pipes of pressurized water reactor (PWR) nuclear power plants was investigated by using isothermal heat-treatment, optical microscopy (OM), transmission electron microscopy (TEM) and electron probe microanalysis (EPMA) techniques. The influence of different morphologies and volume fractions of ferrite in the σ phase formation mechanism was discussed. The amount of σ phase precipitated in all specimens with different microstructures increased with increasing of aging time, however, the precipitation rate is significant different. The formation of σ phase in specimens with the coarsest ferrite and the dispersively smallest ferrite is slowest. The lowest level Cr content in ferrite and fewest α/γ interfaces in specimen are the main reasons for the slowest σ precipitation due to they are unfavorable for the kinetics and thermodynamics of phase transformation respectively. By contraries, the fastest formation of σ phase takes place in specimens with narrow and long ferrite due to the most α/γ interfaces and higher Cr content in ferrite which are beneficial for preferential nucleation and formation thermodynamics of σ phase. (author)

  7. Leak-before-break behaviour of nuclear piping systems

    International Nuclear Information System (INIS)

    Bartholome, G.; Wellein, R.

    1992-01-01

    The general concept for break preclusion of nuclear piping systems in the FRG consists of two main prerequisites: Basic safety; independent redundancies. The leak-before-break behaviour is open of these redundancies and will be verified by fracture mechanics. The following items have to be evaluated: The growth of detected and postulated defects must be negligible in one life time of the plant; the growth behaviour beyond design (i.e. multiple load collectives are taken into account) leads to a stable leak; This leakage of the piping must be detected by an adequate leak detection system long before the critical defect size is reached. The fracture mechanics calculations concerning growth and instability of the relevant defects and corresponding leakage areas are described in more detail. The leak-before-break behaviour is shown for two examples of nuclear piping systems in pressurized water reactors: main coolant line of SIEMENS-PWR 1300 MW (ferritic material, diameter 800 mm); surge line of Russian WWER 440 (austenitic material, diameter 250 mm). The main results are given taking into account the relevant leak detection possibilities. (author). 9 refs, 9 figs

  8. Evaluation of flaws in ferritic piping: ASME Code Appendix J, Deformation Plasticity Failure Assessment Diagram (DPFAD)

    International Nuclear Information System (INIS)

    Bloom, J.M.

    1991-08-01

    This report summarizes the methods and bases used by an ASME Code procedure for the evaluation of flaws in ferritic piping. The procedure is currently under consideration by the ASME Boiler and Pressure Vessel Code Committee of Section 11. The procedure was initially proposed in 1985 for the evaluation of the acceptability of flaws detected in piping during in-service inspection for certain materials, identified in Article IWB-3640 of the ASME Boiler and Pressure Vessel Code Section 11 ''Rules for In-service Inspection of Nuclear Power Plant Components.'' for which the fracture toughness is not sufficiently high to justify acceptance based solely on the plastic limit load evaluation methodology of Appendix C and IWB-3641. The procedure, referred to as Appendix J, originally included two approaches: a J-integral based tearing instability (J-T) analysis and the deformation plasticity failure assessment diagram (DPFAD) methodology. In Appendix J, a general DPFAD approach was simplified for application to part-through wall flows in ferritic piping through the use of a single DPFAD curve for circumferential flaws. Axial flaws are handled using two DPFAD curves where the ratio of flaw depth to wall thickness is used to determine the appropriate DPFAD curve. Flaws are evaluated in Appendix J by comparing the actual pipe applied stress with the allowable stress with the appropriate safety factors for the flaw size at the end of the evaluation period. Assessment points for circumferential and axial flaws are plotted on the appropriate failure assessment diagram. In addition, this report summarizes the experimental test predictions of the results of the Battelle Columbus Laboratory experiments, the Eiber experiments, and the JAERI tests using the Appendix J DPFAD methodology. Lastly, this report also provides guidelines for handling residual stresses in the evaluation procedure. 22 refs., 13 figs., 5 tabs

  9. Effects of Induction Heat Bending and Heat Treatment on the Boric Acid Corrosion of Low Alloy Steel Pipe for Nuclear Power Plants

    Energy Technology Data Exchange (ETDEWEB)

    Kim, Ki-Tae; Kim, Young-Sik [Andong National University, Gyeongbuk (Korea, Republic of); Chang, Hyun-Young; Park, Heung-Bae [KEPCO EandC, Gyeongbuk (Korea, Republic of); Sung, Gi-Ho; Shin, Min-Chul [Sungil SIM Co. Ltd, Busan (Korea, Republic of)

    2016-11-15

    In many plants, including nuclear power plants, pipelines are composed of numerous fittings such as elbows. When plants use these fittings, welding points need to be increased, and the number of inspections also then increases. As an alternative to welding, the pipe bending process forms bent pipe by applying strain at low or high temperatures. This work investigates how heat treatment affects on the boric acid corrosion of ASME SA335 Gr. P22 caused by the induction heat bending process. Microstructure analysis and immersion corrosion tests were performed. It was shown that every area of the induction heat bent pipe exhibited a high corrosion rate in the boric acid corrosion test. This behavior was due to the enrichment of phosphorous in the ferrite phase, which occurred during the induction heat bending process. This caused the ferrite phase to act as a corrosion initiation site. However, when re-heat treatment was applied after the bending process, it enhanced corrosion resistance. It was proved that this resistance was closely related to the degree of the phosphorus segregation in the ferrite phase.

  10. Ice plugging of pipes using liquid nitrogen

    International Nuclear Information System (INIS)

    Twigg, R.J.

    1987-03-01

    This report presents a study on the ice plugging of pipe using liquid nitrogen, and is based on a literature review and on discussions with individuals who use the technique. Emphasis is placed on ferritic alloys, primarily carbon steels, in pipe sized up to 60 cm in diameter and on austenitic stainless steels in pipe sizes up to 30 cm in diameter. This technique is frequently used for leak testing in nuclear facilities

  11. Report of examination of the ruptured pipe at the Hamaoka Nuclear Power Station Unit-1

    International Nuclear Information System (INIS)

    2001-12-01

    In order to investigate root cause of the pipe rupture, which took place at the Hamaoka Nuclear Power Station Unit-1 of Chubu Electric Power Company on November 7, 2001, a task force was established within the Nuclear and Industrial Safety Agency (NISA) and initiated a detailed investigation of the ruptured pipe. The Japan Atomic Energy Research Institute (JAERI) was asked from the Ministry of Education, Culture, Sports, Science and Technology (MEXT) in response to the request from NISA to cooperate as an independent neutral organization with NISA and perform an examination of the ruptured pipe independently from Chubu Electric Power Company. JAERI accepted the request by considering the fact that JAERI is an integrated research institution for nuclear research and development, a prime research institution for nuclear safety research, a research institution with experience of root-cause investigation of various nuclear incidents and accidents of domestic as well as overseas, and a research institution provided with advanced examination facilities necessary for examination of the ruptured pipe. The JAERI examination group was formed at the Tokai Research Establishment and conducted detailed and thorough examination of the pieces taken from the ruptured pipe primarily in the Reactor Fuel Examination Facility (RFEF) with the use of tools such as scanning electron microscopes and other equipments. Purpose of examination was to provide technical information in order to identify causes of the pipe rupture through examination of the pieces taken from the ruptured region of the pipe. The following findings and conclusion were made as the result of the present examination. (1) Wall thickness of the pipe was significantly reduced in the ruptured region. (2) Dimple pattern resulting from ductile fracture by shearing was observed in the fracture surfaces of nearly all of the pieces and no indication of fatigue crack growth was found. (3) Microstructure showed a typical carbon

  12. Future directions for ferritic/martensitic steels for nuclear applications

    International Nuclear Information System (INIS)

    Klueh, R.L.; Swindeman, R.W.

    2000-01-01

    High-chromium (7-12% Cr) ferritic/martensitic steels are being considered for nuclear applications for both fission and fusion reactors. Conventional 9-12Cr Cr-Mo steels were the first candidates for these applications. For fusion reactors, reduced-activation steels were developed that were patterned on the conventional steels but with molybdenum replaced by tungsten and niobium replaced by tantalum. Both the conventional and reduced-activation steels are considered to have an upper operating temperature limit of about 550degC. For improved reactor efficiency, higher operating temperatures are required. For ferritic/martensitic steels that could meet such requirements, oxide dispersion-strengthened (ODS) steels are being considered. In this paper, the ferritic/martensitic steels that are candidate steels for nuclear applications will be reviewed, the prospect for ODS steel development and the development of steels produced by conventional processes will be discussed. (author)

  13. Pipe restraints for nuclear power plants

    International Nuclear Information System (INIS)

    Keever, R.E.; Broman, R.; Shevekov, S.

    1976-01-01

    A pipe restraint for nuclear power plants in which a support member is anchored on supporting surface is described. Formed in the support member is a semicylindrical wall. Seated on the semicylindrical wall is a ring-shaped pipe restrainer that has an inner cylindrical wall. The inner cylindrical wall of the pipe restrainer encircles the pressurized pipe. In a modification of the pipe restraint, an arched-shaped pipe restrainer is disposed to overlie a pressurized pipe. The ends of the arch-shaped pipe restrainer are fixed to support members, which are anchored in concrete or to a supporting surface. A strap depends from the arch-shaped pipe restrainer. The pressurized pipe is supported by the depending strap

  14. Seismic analysis of nuclear piping system

    International Nuclear Information System (INIS)

    Shrivastava, S.K.; Pillai, K.R.V.; Nandakumar, S.

    1975-01-01

    To illustrate seismic analysis of nuclear power plant piping, a simple piping system running between two floors of the reactor building is assumed. Reactor building floor response is derived from time-history method. El Centre earthquake (1940) accelerogram is used for time-history analysis. The piping system is analysed as multimass lumped system. Behaviour of the pipe during the said earthquake is discussed. (author)

  15. Nuclear class 1 piping stress analysis

    International Nuclear Information System (INIS)

    Lucas, J.C.R.; Maneschy, J.E.; Mariano, L.A.; Tamura, M.

    1981-01-01

    A nuclear class 1 piping stress analysis, according to the ASME code, is presented. The TRHEAT computer code has been used to determine the piping wall thermal gradient. The Nupipe computer code was employed for the piping stress analysis. Computer results were compared with the allowable criteria from the ASME code. (Author) [pt

  16. Piping engineering for nuclear power plant

    International Nuclear Information System (INIS)

    Curto, N.; Schmidt, H.; Muller, R.

    1988-01-01

    In order to develop piping engineering, an adequate dimensioning and correct selection of materials must be secured. A correct selection of materials together with calculations and stress analysis must be carried out with a view to minimizing or avoiding possible failures or damages in piping assembling, which could be caused by internal pressure, weight, temperature, oscillation, etc. The piping project for a nuclear power plant is divided into the following three phases. Phase I: Basic piping design. Phase II: Final piping design. Phase III: Detail engineering. (Author)

  17. Nuclear piping and pipe support design and operability relating to loadings and small bore piping

    International Nuclear Information System (INIS)

    Stout, D.H.; Tubbs, J.M.; Callaway, W.O.; Tang, H.T.; Van Duyne, D.A.

    1994-01-01

    The present nuclear piping system design practices for loadings, multiple support design and small bore piping evaluation are overly conservative. The paper discusses the results developed for realistic definitions of loadings and loading combinations with methodology for combining loads under various conditions for supports and multiple support design. The paper also discusses a simplified method developed for performing deadweight and thermal evaluations of small bore piping systems. Although the simplified method is oriented towards the qualification of piping in older plants, this approach is applicable to plants designed to any edition of the ASME Section III or B31.1 piping codes

  18. Development of support system for nuclear power plant piping

    International Nuclear Information System (INIS)

    Horino, Satoshi

    1987-01-01

    Ishikawajima-Harima Heavy Industries Co., Ltd. has advanced the development of Integrated Nuclear Plant Piping System (INUPPS) for nuclear power plants since 1980, and continued its improvement up to now. This time as its component, a piping support system (PISUP) has been developed. The piping support system deals with the structures such as piping supports and the stands for maintenance and inspection, and as for standard supporting structures, it builds up automatically the structures including the selection of optimum members by utilizing the standard patterns in cooperation with the piping design system including piping stress analysis. As for the supporting structures deviating from the standard, by amending a part of the standard patterns in dialogue from, structures can be built up. By using the data produced in this way, this system draws up consistently a design book, production management data and so on. From the viewpoint of safety, particular consideration is given to the aseismatic capability of nuclear power plants, and piping is fundamentally designed regidly to avoid resonance. It is necessary to make piping supports so as to have sufficient strength and rigidity. The features of the design of piping supports for nuclear power plant, the basic concept of piping support system, the constitution of the software and hardware, the standard patterns and the structural patterns of piping support system and so on are described. (Kako, I.)

  19. Piping support load data base for nuclear plants

    International Nuclear Information System (INIS)

    Childress, G.G.

    1991-01-01

    Nuclear Station Modifications are continuous through the life of a Nuclear Power Plant. The NSM often impacts an existing piping system and its supports. Prior to implementation of the NSM, the modified piping system is qualified and the qualification documented. This manual review process is tedious and an obvious bottleneck to engineering productivity. Collectively, over 100,000 piping supports exist at Duke Power Company's Nuclear Stations. Engineering support must maintain proper documentation of all data for each support. Duke Power Company has designed and developed a mainframe based system that: directly uses Support Load Summary data generated by a piping analysis computer program; streamlines the pipe support evaluation process; easily retrieves As-Built and NSM information for any pipe support from an NSM or AS-BUILT data base; and generated documentation for easy traceability of data to the information source. This paper discusses the design considerations for development of Support Loads Database System (SLDB) and reviews the program functionality through the user menus

  20. ADIMEW: Fracture assessment and testing of an aged dissimilar metal weld pipe assembly

    International Nuclear Information System (INIS)

    Wintle, J.B.; Hayes, B.; Goldthorpe, M.R.

    2004-01-01

    ADIMEW (Assessment of Aged Piping Dissimilar Metal Weld Integrity) was a three-year collaborative research programme carried out under the EC 5th Framework Programme. The objective of the study was to advance the understanding of the behaviour and safety assessment of defects in dissimilar metal welds between pipes representative of those found in nuclear power plant. ADIMEW studied and compared different methods for predicting the behaviour of defects located near the fusion boundaries of dissimilar metal welds typically used to join sections of austenitic and ferritic piping operating at high temperature. Assessment of such defects is complicated by issues that include: severe mis-match of yield strength of the constituent parent and weld metals, strong gradients of material properties, the presence of welding residual stresses and mixed mode loading of the defect. The study includes the measurement of material properties and residual stresses, predictive engineering analysis and validation by means of a large-scale test. The particular component studied was a 453mm diameter pipe that joins a section of type A508 Class 3 ferritic pipe to a section of type 316L austenitic pipe by means of a type 308 austenitic weld with type 308/309L buttering laid on the ferritic pipe. A circumferential, surface-breaking defect was cut using electro discharge machining into the 308L/309L weld buttering layer parallel to the fusion line. The test pipe was subjected to four-point bending to promote ductile tearing of the defect. This paper presents the results of TWI contributions to ADIMEW including: fracture toughness testing, residual stress measurements and assessments of the ADIMEW test using elastic-plastic, cracked body, finite element analysis. (orig.)

  1. Survey of heat-pipe application under nuclear environment

    International Nuclear Information System (INIS)

    Tsuyuzaki, Noriyoshi; Saito, Takashi; Okamoto, Yoshizo; Hishida, Makoto; Negishi, Kanji.

    1986-11-01

    Heat pipes today are employed in a wide variety of special heat transfer applications including nuclear reactor. In this nuclear technology area in Japan, A headway speed of the heat pipe application technique is not so high because of safety confirmation and investigation under each developing step. Especially, the outline of space craft is a tendency to increase the size. Therefore, the power supply is also tendency to increase the outlet power and keep the long life. Under SP-100 project, the development of nuclear power supply system which power is 1400 - 1600 KW thermal and 100 KW electric power is steadily in progress. Many heat pipes are adopted for thermionic conversion and coolant system in order to construct more safety and light weight system for the project. This paper describes the survey of the heat pipe applications under the present and future condition for nuclear environment. (author)

  2. Assessment of cracked pipes in primary piping systems of PWR nuclear reactors

    International Nuclear Information System (INIS)

    Jong, Rudolf Peter de

    2004-01-01

    Pipes related to the Primary System of Pressurized Water Reactors (PWR) are manufactured from high toughness austenitic and low alloy ferritic steels, which are resistant to the unstable growth of defects. A crack in a piping system should cause a leakage in a considerable rate allowing its identification, before its growth could cause a catastrophic rupture of the piping. This is the LBB (Leak Before Break) concept. An essential step in applying the LBB concept consists in the analysis of the stability of a postulated through wall crack in a specific piping system. The methods for the assessment of flawed components fabricated from ductile materials require the use of Elasto-Plastic Fracture Mechanics (EPFM). Considering that the use of numerical methods to apply the concepts of EPFM may be expensive and time consuming, the existence of the so called simplified methods for the assessment of flaws in piping are still considered of great relevance. In this work, some of the simplified methods, normalized procedures and criteria for the assessment of the ductile behavior of flawed components available in literature are described and evaluated. Aspects related to the selection of the material properties necessary for the application of these methods are also discussed. In a next .step, the methods are applied to determine the instability load in some piping configurations under bending and containing circumferential through wall cracks. Geometry and material variations are considered. The instability loads, obtained for these piping as the result of the application of the selected methods, are analyzed and compared among them and with some experimental results obtained from literature. The predictions done with the methods demonstrated that they provide consistent results, with good level of accuracy with regard to the determination of maximum loads. These methods are also applied to a specific Study Case. The obtained results are then analyzed in order to give

  3. Technical basis for the extension of ASME Code Case N-494 for assessment of austenitic piping

    International Nuclear Information System (INIS)

    Bloom, J.M.

    1995-01-01

    In 1990, the ASME Boiler and Pressure Vessel Code for Nuclear Components approved Code Case N-494 as an alternative procedure for evaluating laws in Light Water Reactor alterative procedure for evaluating flaws in Light Water Reactor (LWR) ferritic piping. The approach is an alternative to Appendix H of the ASME Code and alloys the user to remove some unnecessary conservatism in the existing procedure by allowing the use of pipe specific material properties. The Code Case is an implementation of the methodology of the Deformation Plasticity Failure Assessment diagram (DPFAD). The key ingredient in the application of DPFAD is that the material stress-strain curve must be in the format of a simple power law hardening stress-strain curve such as the Ramberg-Osgood (R-O) model. Ferritic materials can be accurately fit by the R-O model and, therefore, it was natural to use the DPFAD methodology for the assessment of LWR ferritic piping. An extension of Code Case N-494 to austenitic piping required a modification of the existing DPFAD methodology. The Code Case N-494 approach was revised using the PWFAD procedure in the same manner as in the development of the original N-494 approach for ferritic materials. A lower bound stress-strain curve was used to generate a PWFAD curve for the geometry of a part-through wall circumferential flaw in a cylinder under tension. Earlier work demonstrated that a cylinder under axial tension with a 50% flaw depth, 90 degrees in circumference, and radius to thickness of 10, produced a lower bound FAD curve. Validation of the new proposed Code Case procedure for austenitic piping was performed using actual pipe test data. Using the lower bound PWFAD curve, pipe test results were conservatively predicted. The resultant development of ht PWFAD curve for austenitic piping led to a revision of Code Case N-494 to include a procedure for assessment of flaws in austenitic piping

  4. Pipe support optimization in nuclear power plants

    International Nuclear Information System (INIS)

    Cleveland, A.B.; Kalyanam, N.

    1984-01-01

    A typical 1000 MWe nuclear power plant consists of 80,000 to 100,000 feet of piping which must be designed to withstand earthquake shock. For the required ground motion, seismic response spectra are developed for safety-related structures. These curves are used in the dynamic analysis of piping systems with pipe-stress analysis computer codes. To satisfy applicable Code requirements, the piping systems also require analysis for weight, thermal and possibly other lasting conditions. Bechtel Power Corporation has developed a design program called SLAM (Support Location Algorithm) for optimizing pipe support locations and types (rigid, spring, snubber, axial, lateral, etc.) while satisfying userspecified parameters such as locations, load combinations, stress and load allowables, pipe displacement and cost. This paper describes SLAM, its features, applications and benefits

  5. Review of nuclear piping seismic design requirements

    International Nuclear Information System (INIS)

    Slagis, G.C.; Moore, S.E.

    1994-01-01

    Modern-day nuclear plant piping systems are designed with a large number of seismic supports and snubbers that may be detrimental to plant reliability. Experimental tests have demonstrated the inherent ruggedness of ductile steel piping for seismic loading. Present methods to predict seismic loads on piping are based on linear-elastic analysis methods with low damping. These methods overpredict the seismic response of ductile steel pipe. Section III of the ASME Boiler and Pressure Vessel Code stresses limits for piping systems that are based on considerations of static loads and hence are overly conservative. Appropriate stress limits for seismic loads on piping should be incorporated into the code to allow more flexible piping designs. The existing requirements and methods for seismic design of piping systems, including inherent conservations, are explained to provide a technical foundation for modifications to those requirements. 30 refs., 5 figs., 3 tabs

  6. Research and design of hanger and support series of nuclear safety class process piping

    International Nuclear Information System (INIS)

    Mao Chengzhang; Shi Jiemin

    1995-12-01

    Hangers and supports of nuclear safety class piping are an important part of primary system piping in a nuclear power plant. They will directly affect the reliability of operation, the period at construction and the investment for a nuclear power plant. It is an absolutely necessary job for Pakistan Chashma Nuclear Power Plant Project to research and design a series of piping supports in accordance with ASME-III NF. It is also an important designing for developing nuclear power plant later in China. After working over two years, a series of piping supports of nuclear safety class which have 57 types and more than 2460 specifications have been designed. This series is perfect, and can satisfy the requirements of piping final designing for nuclear power plant. This series of hangers and supports is mainly used in the process piping of nuclear safety class 1,2,3. They can also be used in other piping of nuclear safety class and piping with aseismic requirement of non-nuclear safety class

  7. Effect of Pipe Flattening in API X65 Linepipe Steels Having Bainite vs. Ferrite/Pearlite Microstructures

    Directory of Open Access Journals (Sweden)

    Singon Kang

    2018-05-01

    Full Text Available The influence of microstructure on pipe flattening response was assessed using two different commercially produced U-ing, O-ing, and expansion (UOE pipes from API X65 steels having either a bainitic microstructure (steel B or a ferrite/pearlite microstructure (steel FP. A four-point bending apparatus and distinctive procedure were used to minimize strain localization during flattening. The flattened specimens were sectioned at different positions through the thickness, and tensile tested in both the longitudinal (LD and transverse directions (TD to assess the through-thickness variation in properties. Yield strength (YS distributions in the LD show V-shaped profiles through thickness in both steels, whereas the YS in the TD nearest the outside diameter (OD surface is reduced. These variations in YS are due to the Bauschinger effect associated with the compressive flattening pre-strain. The uniform elongation (UE of steel FP is almost independent of specimen position through the thickness, but for steel B there is a substantial reduction of the UE at both the inside and outside diameter positions and this reduction is greater in the LD. This work confirms that flattened pipe mechanical properties exhibit an important dependence on their microstructure type and it is postulated that the flattening procedure also influences the mechanical properties.

  8. Specialist meeting on leak before break in reactor piping and vessels

    Energy Technology Data Exchange (ETDEWEB)

    Bartholome, G.; Bazant, E.; Wellein, R. [Siemens KWU, Stuttgart (Germany)] [and others

    1997-04-01

    A series of research projects sponsored by the Federal Minister for Education, Science, Research and Technology, Bonn are summarized and compared to utility, manufacturer, and vendor tests. The purpose of the evaluation was to experimentally verify Leak-before-Break behavior, confirm the postulation of fracture preclusion for piping (straight pipe, bends and branches), and quantify the safety margin against massive failure. The results are applicable to safety assessment of ferritic and austenitic piping in primary and secondary nuclear power plant circuits. Moreover, because of the wide range of the test parameters, they are also important for the design and assessment of piping in other technical plant. The test results provide justification for ruling out catastrophic fractures, even on pipes of dimensions corresponding to those of a main coolant pipe of a pressurized water reactor plant on the basis of a mechanical deterministic safety analysis in correspondence with the Basis Safety Concept (Principle of Fracture Exclusion).

  9. Nuclear piping system damping data studies

    International Nuclear Information System (INIS)

    Ware, A.G.; Arendts, J.G.

    1985-01-01

    A programm has been conducted at the Idaho National Engineering Laboratory to study structural damping data for nuclear piping systems and to evaluate if changes in allowable damping values for structural seismic analyses are justified. The existing pipe damping data base was examined, from which a conclusion was made that there were several sets of data to support higher allowable values. The parameters which most influence pipe damping were identified and an analytical investigation demonstrated that increased damping would reduce the required number of seismic supports. A series of tests on several laboratory piping systems was used to determine the effect of various parameters such as types of supports, amplitude of vibration, frequency, insulation, and pressure on damping. A multiple regression analysis was used to statistically assess the influence of the various parameters on damping, and an international pipe damping data bank has been formed. (orig.)

  10. Application of heat pipes in nuclear reactors for passive heat removal

    Energy Technology Data Exchange (ETDEWEB)

    Haque, Z.; Yetisir, M., E-mail: haquez@aecl.ca [Atomic Energy of Canada Limited, Chalk River, Ontario (Canada)

    2013-07-01

    This paper introduces a number of potential heat pipe applications in passive (i.e., not requiring external power) nuclear reactor heat removal. Heat pipes are particularly suitable for small reactors as the demand for heat removal is significantly less than commercial nuclear power plants, and passive and reliable heat removal is required. The use of heat pipes has been proposed in many small reactor designs for passive heat removal from the reactor core. This paper presents the application of heat pipes in AECL's Nuclear Battery design, a small reactor concept developed by AECL. Other potential applications of heat pipes include transferring excess heat from containment to the atmosphere by integrating low-temperature heat pipes into the containment building (to ensure long-term cooling following a station blackout), and passively cooling spent fuel bays. (author)

  11. Remote controlled in-pipe manipulators for milling, welding and EC-testing, for application in BWRS

    International Nuclear Information System (INIS)

    Seeberger, E.K.

    2000-01-01

    Many pipes in power plants and industrial facilities have piping sections, which are not accessible from the outside or which are difficult to access. Accordingly, remote controlled pipe machining manipulators have been built which enable in-pipe inspection and repair. Since the 1980s, defects have been found at the Inconel welds of the RPV nozzles of boiling water reactors throughout the world. These defects comprise cracks caused by stress corrosion cracking in areas of manual welds made using the weld filler metal Inconel 182. The cracks were found in Inconel-182 buttering at the ferritic nozzles as well as in the welded joints connecting to the fully-austenitic safe ends (Inconel 600 and stainless steel). These welds are not accessible from outside. The ferritic nozzle is cladded with austenitic material on the inside. The adjacent buttering was applied manually using the weld filler metal Inconel 182. The safe end made of Inconel 600 was welded to the nozzle also using Inconel 182 as the filler metal. The repair problems for inside were solved with remote-controlled in-pipe manipulators which enable in-pipe inspection and repair. A complete systems of manipulators has been developed and qualified for application in nuclear power plants. The tasks that must be performed with this set of in-pipe manipulator are as follows: 1st step - Insertion of the milling/ET manipulator into piping to the work location; 2nd step Detection of the transition line with the ferritic measurement probe; 3rd step - Performance of a surface crack examination by eddy current (ET) method; 4th step - Milling of the groove and preparation for weld backlay and, in case of ET indications, elimination of such flaws also by milling. 5th step - Welding of backlay and/or repair weld using the GTA pulsed arc technique; 6th step - After welding it is necessary to prepare the surface for eddy current testing. A final milling inside the pipe is done with the milling manipulator to adjust the

  12. Analysis of Defective Pipings in Nuclear Power Plants and Applications of Guided Ultrasonic Wave Techniques

    International Nuclear Information System (INIS)

    Koo, Dae Seo; Cheong, Yong Moo; Jung, Hyun Kyu; Park, Chi Seung; Park, Jae Suck; Choi, H. R.; Jung, S. S.

    2006-07-01

    In order to apply the guided ultrasonic techniques to the pipes in nuclear power plants, the cases of defective pipes of nuclear power plants, were investigated. It was confirmed that geometric factors of pipes, such as location, shape, and allowable space were impertinent for the application of guided ultrasonic techniques to pipes of nuclear power plants. The quality of pipes, supports, signals analysis of weldment/defects, acquisition of accurate defects signals also make difficult to apply the guided ultrasonic techniques to pipes of nuclear power plants. Thus, a piping mock-up representing the pipes in the nuclear power plants were designed and fabricated. The artificial flaws will be fabricated on the piping mock-up. The signals of guided ultrasonic waves from the artificial flaws will be analyzed. The guided ultrasonic techniques will be applied to the inspection of pipes of nuclear power plants according to the basis of signals analysis of artificial flaws in the piping mock-up

  13. Leak before break behaviour of austenitic and ferritic pipes containing circumferential defects

    Energy Technology Data Exchange (ETDEWEB)

    Stadtmueller, W.; Sturm, D.

    1997-04-01

    Several research projects carried out at MPA Stuttgart to investigate the Leak-before-Break (LBB) behavior of safety relevant pressure bearing components are summarized. Results presented relate to pipes containing circumferential defects subjected to internal pressure and external bending loading. An overview of the experimentally determined results for ferritic components is presented. For components containing postulated or actual defects, the dependence of the critical loading limit on the defect size is shown in the form of LBB curves. These are determined experimentally and/or by calculation for through-wall slits, and represent the boundary curve between leakage and massive fracture. For surface defects and a given bending moment and internal pressure, no fracture will occur if the length at leakage remains smaller than the critical defect length given by the LBB curve for through-wall defects. The predictive capability of engineering calculational methods are presented by way of example. The investigation programs currently underway, testing techniques, and initial results are outlined.

  14. Basic fracture toughness requirements for ferritic materials of nuclear class pressure retaining equipment in NPP

    International Nuclear Information System (INIS)

    Ning Dong; Yao Weida

    2005-01-01

    In this paper, theory basis on cold brittleness and anti-brittle fracture design of ferritic materials are introduced summarily and fracture toughness requirements for ferritic materials in ASME code for nuclear safety class pressure retaining equipment in NPP are summarized and evaluated. The results show that notch impact toughness requirements for materials relate to nuclear safety class of materials so as to ensure that brittle fracture of retaining pressure boundary in NPP can not occur. (authors)

  15. Development of nonlinear dynamic analysis program for nuclear piping systems

    International Nuclear Information System (INIS)

    Kamichika, Ryoichi; Izawa, Masahiro; Yamadera, Masao

    1980-01-01

    In the design for nuclear power piping, pipe-whip protection shall be considered in order to keep the function of safety related system even when postulated piping rupture occurs. This guideline was shown in U.S. Regulatory Guide 1.46 for the first time and has been applied in Japanese nuclear power plants. In order to analyze the dynamic behavior followed by pipe rupture, nonlinear analysis is required for the piping system including restraints which play the role of an energy absorber. REAPPS (Rupture Effective Analysis of Piping Systems) has been developed for this purpose. This program can be applied to general piping systems having branches etc. Pre- and post- processors are prepared in this program in order to easily input the data for the piping engineer and show the results optically by use of a graphic display respectively. The piping designer can easily solve many problems in his daily work by use of this program. This paper describes about the theoretical background and functions of this program and shows some examples. (author)

  16. Impact of inservice inspection on the reliability of nuclear piping

    International Nuclear Information System (INIS)

    Woo, H.H.

    1983-12-01

    The reliability of nuclear piping is a function of piping quality as fabricated, service loadings and environments, plus programs of continuing inspection during operation. This report presents the results of a study of the impact of inservice inspection (ISI) programs on the reliability of specific nuclear piping systems that have actually failed in service. Two major factors are considered in the ISI programs: one is the capability of detecting flaws; the other is the frequency of performing ISI. A probabilistic fracture mechanics model issued to estimate the reliability of two nuclear piping lines over the plant life as functions of the ISI programs. Examples chosen for the study are the PWR feedwater steam generator nozzle cracking incident and the BWR recirculation reactor vessel nozzle safe-end cracking incident

  17. Quality control of stainless steel pipings for nuclear power generation

    International Nuclear Information System (INIS)

    Miki, Minoru; Kitamura, Ichiro; Ito, Hisao; Sasaki, Ryoichi

    1979-01-01

    The proportion of nuclear power in total power generation is increasing recently in order to avoid the concentrated dependence on petroleum resources, consequently the reliability of operation of nuclear power plants has become important. In order to improve the reliability of plants, the reliability of each machine or equipment must be improved, and for the purpose, the quality control at the time of manufacture is the important factor. The piping systems for BWRs are mostly made of carbon steel, and stainless steel pipings are used for the recirculation system cooling reactors and instrumentation system. Recently, grain boundary type stress corrosion cracking has occurred in the heat-affected zones of welded stainless steel pipings in some BWR plants. In this paper, the quality control of stainless steel pipings is described from the standpoint of preventing stress corrosion cracking in BWR plants. The pipings for nuclear power plants must have sufficient toughness so that the sudden rupture never occurs, and also sufficient corrosion resistance so that corrosion products do not raise the radioactivity level in reactors. The stress corrosion cracking occurred in SUS 304 pipings, the factors affecting the quality of stainless steel pipings, the working method which improves the corrosion resistance and welding control are explained. (Kako, I.)

  18. Situation of secondary system piping wearing in overseas nuclear power plants

    International Nuclear Information System (INIS)

    Chiba, Goro

    2005-01-01

    In consideration of secondary system piping rupture accident at Mihama Nuclear Power Station Unit 3 of Kansai Electric Power Company in August 2004, the management system of secondary pipe wall thickness of Japan and foreign countries were investigated. Moreover, the tendency of the secondary piping thinning events on overseas which the Institute of Nuclear Safety System, Inc. (INSS) obtained was analyzed in order to verify the validity of the Japanese management system. Consequently, it was shown that in the U.S., the fault phenomenon of secondary system piping was reported continuously, and there were also many cases of both degradation and penetration of pipe wall. (author)

  19. Heat pipe nuclear reactor for space power

    Science.gov (United States)

    Koening, D. R.

    1976-01-01

    A heat-pipe-cooled nuclear reactor has been designed to provide 3.2 MWth to an out-of-core thermionic conversion system. The reactor is a fast reactor designed to operate at a nominal heat-pipe temperature of 1675 K. Each reactor fuel element consists of a hexagonal molybdenum block which is bonded along its axis to one end of a molybdenum/lithium-vapor heat pipe. The block is perforated with an array of longitudinal holes which are loaded with UO2 pellets. The heat pipe transfers heat directly to a string of six thermionic converters which are bonded along the other end of the heat pipe. An assembly of 90 such fuel elements forms a hexagonal core. The core is surrounded by a thermal radiation shield, a thin thermal neutron absorber, and a BeO reflector containing boron-loaded control drums.

  20. Survey on application of probabilistic fracture mechanics approach to nuclear piping

    International Nuclear Information System (INIS)

    Kashima, Koichi

    1987-01-01

    Probabilistic fracture mechanics (PFM) approach is newly developed as one of the tools to evaluate the structural integrity of nuclear components. This report describes the current status of PFM studies for pressure vessel and piping system in light water reactors and focuses on the investigations of the piping failure probability which have been undertaken by USNRC. USNRC reevaluates the double-ended guillotine break (DEGB) of rector coolant piping as a design basis event for nuclear power plant by using the PFM approach. For PWR piping systems designed by Westinghouse, two causes of pipe break are considered: pipe failure due to the crack growth and pipe failure indirectly caused by failure of component supports due to an earthquake. PFM approach shows that the probability of DEGB from either cause is very low and that the effect of earthquake on pipe failure can be neglected. (author)

  1. Damping values for nuclear power plant piping during seismic events and fluid-induced transients

    International Nuclear Information System (INIS)

    Ware, A.G.

    1986-01-01

    For several years the Idaho National Engineering Laboratory (INEL) has been assisting the United States Nuclear Regulatory Commission (USNRC) in efforts to establish best-estimate damping values for use in the dynamic analysis of nuclear power plant piping systems. Data from a number of piping vibration tests conducted at facilities worldwide (including the INEL) have been collected, evaluated, reported, and placed in a nuclear piping data bank at the INEL. These data are being used to justify changes in allowable damping values for use in nuclear piping design, thus making piping systems safer, less costly, and easier to inspect and maintain

  2. Contributions of the ORNL piping program to nuclear piping design codes and standards

    International Nuclear Information System (INIS)

    Moore, S.E.

    1975-11-01

    The ORNL Piping Program was conceived and established to develop basic information on the structural behavior of nuclear power plant piping components and to prepare this information in forms suitable for use in design analysis and codes and standards. One of the objectives was to develop and qualify stress indices and flexibility factors for direct use in Code-prescribed design analysis methods. Progress in this area is described

  3. Fatigue check of nuclear safety class 1 reactor coolant pipe

    International Nuclear Information System (INIS)

    Wang Qing; Fang Yonggang; Chu Qibao; Xu Yu; Li Hailong

    2015-01-01

    Fatigue and thermal ratcheting analyses of nuclear safety Class 1 reactor coolant pipe in a nuclear power plant were independently carried out in this paper. The software used for calculation is ROCOCO, which is based on RCC-M code. The difference of nuclear safety Class 1 pipe fatigue evaluation between RCC-M code and ASME code was compared. The main aspects of comparison include the calculation scoping of fatigue design, the calculation method of primary plus secondary stress intensity, the elastic-plastic correction coefficient calculation, and the dynamic load combination method etc. By correcting inconsistent algorithm of ASME code within ROCOCO, the fatigue usage factor and thermal ratcheting design margin of 65 mm and 55 mm wall thickness of the pipe were obtained. The results show that the minimum wall thickness of the pipe must exceed 55 mm and the design value of the thermal ratcheting of 55 mm wall thickness reaches 95% of the allowable value. (authors)

  4. Basic concepts about application of dual vibration absorbers to seismic design of nuclear piping systems

    International Nuclear Information System (INIS)

    Hara, F.; Seto, K.

    1987-01-01

    The design value of damping for nuclear piping systems is a vital parameter in ensuring safety in nuclear plants during large earthquakes. Many experiments and on-site tests have been undertaken in nuclear-industry developed countries to determine rational design values. However damping value in nuclear piping systems is so strongly influenced by many piping parameters that it shows a tremendous dispersion in its experimental values. A new trend has recently appeared in designing nuclear pipings, where they attempt to use a device to absorb vibration energy induced by seismic excitation. A typical device is an energy absorbing device, made of a special material having a high capacity of plasticity, which is installed between the piping and the support. This paper deals with the basic study of application of dual vibration absorbers to nuclear piping systems to accomplish high damping value and reduce consequently seismic response at resonance frequencies of a piping system, showing their effectiveness from not only numerical calculation but also experimental evaluation of the vibration responses in a 3D model piping system equipped with dual two vibration absorbers

  5. Nuclear Power Plants Secondary Circuit Piping Wall-Thinning Management in China

    International Nuclear Information System (INIS)

    Zhong Zhimin; Li Jinsong; Zheng Hui

    2012-01-01

    Research and field feedbacks showed that nuclear power plants secondary circuit steam and water piping are more sensitive than that of fuel plant to the attack of flow-accelerated corrosion (FAC). FAC, Liquid droplet impingement or cavitation erosion will cause secondary circuit piping local wall-thinning in NPPs. Without effective management, the wall-thinning in those high energy piping will cause leakage or pipe rupture during nuclear power plant operation, more seriously cause unplanned shut down, injured and fatality, or heavy economic losses. This paper briefly introduces the history, development and state of the art of secondary circuit piping wall-thinning management in China NPPs. Then, the effectiveness of inspection grid size selecting was analyzed in detail based on field feedbacks. EPRI recommendatory inspection grid, JSME code recommendatory grid and plant specific inspection grid were compared and the detection probabilities of local wall-thinning were estimated. Then, the development and application of NPPs Secondary Circuit Piping Wall Thickness Management Information System, developed, operated and maintained by our team, was briefly introduced and the statistical analysis results of 11 PWR units were shared. It was conclude that the long term, systemic, effective wall-thinning management strategy of high energy piping was very important to the safety and economic operation of NPPs. Furthermore, take into account the actual situation of China nuclear power plants, some advice and suggestion on developing effective nuclear power plant secondary circuit steam and water piping wall-thinning management system are put forward from code development, design and manufacture, operation management, pipeline and locations selection, inspection method selection and application, thickness measurement result evaluation, residual life predication and decision making, feedbacks usage, personnel training and etc. (author)

  6. An assessment of seismic margins in nuclear plant piping

    International Nuclear Information System (INIS)

    Chen, W.P.; Jaquay, K.R.; Chokshi, N.C.; Terao, D.

    1995-01-01

    Interim results of an ongoing program to assist the U.S. Nuclear Regulatory Commission (NRC) in developing regulatory positions on the seismic analyses of piping and overall safety margins of piping systems are reported. Results of reviews of previous seismic testing, primarily the Electric Power Research Institute (EPRI)/NRC Piping and Fitting Dynamic Reliability Program, and assessments of the ASME Code, Section III, piping seismic design criteria as revised by the 1994 Addenda are reported. Major issues are identified herein only. Technical details are to be provided elsewhere. (author). 4 refs., 2 figs

  7. Manufacture of piping components for nuclear power plants

    International Nuclear Information System (INIS)

    Bartecek, R.

    1983-01-01

    Hammer forging of hollow forging ingots, extrusion and elestroslag remelting may be used for the manufacture of large pipes. Technologies have been developed for the manufacture of elbows based on various types of forming. These procedures mainly include the hydraulic pressing of elbows from tubes and the pressing of symmetrical halves of elbows with subsequent welding. The hammer forging of valves, cross pieces, etc., has been replaced by forging and pressing. In order to prevent failures from occurring in the pipes during operation of nuclear power plants, pipes are being made of larger forgings, which reduces the number of welds. This improves the quality of the pipes, reduces production and assembly costs and is metal-saving. (E.S.)

  8. Microstructural characterization of primary coolant pipe steel

    International Nuclear Information System (INIS)

    Miller, M.K.; Bentley, J.

    1986-01-01

    Atom probe field-ion microscopy, analytical electron microscopy, and optical microscopy have been used to investigate the changes that occur in the microstructure of cast CF 8 primary coolant pipe stainless steel after long term thermal aging. The cast duplex microstructure consisted of austenite with 15% delta-ferrite. Investigation of the aged material revealed that the ferrite spinodally decomposed into a fine scaled network of α and α'. A fine G-phase precipitate was also observed in the ferrite. The observed degradation in mechanical properties is probably a consequence of the spinodal decomposition in the ferrite

  9. Microstructure and properties of pipeline steel with a ferrite/martensite dual-phase microstructure

    International Nuclear Information System (INIS)

    Li Rutao; Zuo Xiurong; Hu Yueyue; Wang Zhenwei; Hu, Dingxu

    2011-01-01

    In order to satisfy the transportation of the crude oil and gas in severe environmental conditions, a ferrite/martensite dual-phase pipeline steel has been developed. After a forming process and double submerged arc welding, the microstructure of the base metal, heat affected zone and weld metal was characterized using scanning electron microscopy and transmission electron microscopy. The pipe showed good deformability and an excellent combination of high strength and toughness, which is suitable for a pipeline subjected to the progressive and abrupt ground movement. The base metal having a ferrite/martensite dual-phase microstructure exhibited excellent mechanical properties in terms of uniform elongation of 7.5%, yield ratio of 0.78, strain hardening exponent of 0.145, an impact energy of 286 J at - 10 deg. C and a shear area of 98% at 0 deg. C in the drop weight tear test. The tensile strength and impact energy of the weld metal didn't significantly reduce, because of the intragranularly nucleated acicular ferrites microstructure, leading to high strength and toughness in weld metal. The heat affected zone contained complete quenching zone and incomplete quenching zone, which exhibited excellent low temperature toughness of 239 J at - 10 deg. C. - Research Highlights: →The pipe with ferrite/martensite microstructure shows high deformability. →The base metal of the pipe consists of ferrite and martensite. →Heat affected zone shows excellent low temperature toughness. →Weld metal mainly consists of intragranularly nucleated acicular ferrites. →Weld metal shows excellent low temperature toughness and high strength.

  10. Nuclear power plant pressure vessels. Control of piping

    International Nuclear Information System (INIS)

    2000-01-01

    The guide presents requirements for the pipework of nuclear facilities in Finland. According to the section 117 of the Finnish Nuclear Energy Degree (161/88), the Radiation and Nuclear Safety Authority of Finland (STUK) controls the pressure vessels of nuclear facilities in accordance with the Nuclear Energy Act (990/87) and, to the extent applicable in accordance with the Act of Pressure Vessels (98/73) and the rules and regulations issued by the virtue of these. In addition STUK is an inspecting authority of pressure vessels of nuclear facilities in accordance with the Pressure Vessel Degree (549/1973). According to the section of the Pressure Vessel Degree, a pressure vessel is a steam boiler, pressure container, pipework of other such appliance in which the pressure is above or may come to exceed the atmospheric pressure. Guide YVL 3.0 describes in general terms how STUK controls pressure vessels. STUK controls Safety Class 1, 2 and 3 piping as well as Class EYT (non-nuclear) and their support structures in accordance with this guide and applies the provisions of the Decision of the Ministry of Trade and Industry on piping (71/1975) issued by virtue of the Pressure Vessel Decree

  11. A Hydrogen Ignition Mechanism for Explosions in Nuclear Facility Piping Systems

    Energy Technology Data Exchange (ETDEWEB)

    Leishear, Robert A.

    2013-09-18

    Hydrogen explosions may occur simultaneously with water hammer accidents in nuclear facilities, and a theoretical mechanism to relate water hammer to hydrogen deflagrations and explosions is presented herein. Hydrogen and oxygen generation due to the radiolysis of water is a recognized hazard in pipe systems used in the nuclear industry, where the accumulation of hydrogen and oxygen at high points in the pipe system is expected, and explosive conditions may occur. Pipe ruptures in nuclear reactor cooling systems were attributed to hydrogen explosions inside pipelines, i.e., Hamaoka, Nuclear Power Station in Japan, and Brunsbuettel in Germany. Prior to these accidents, an ignition source for hydrogen was not clearly demonstrated, but these accidents demonstrated that a mechanism was, in fact, available to initiate combustion and explosion. A new theory to identify an ignition source and explosion cause is presented here, and further research is recommended to fully understand this explosion mechanism.

  12. Nuclear-piping-repair planning today needs skill, organization

    International Nuclear Information System (INIS)

    O'Keefe, W.

    1986-01-01

    Nuclear power plant piping continues to experience failures and imminent threat of failure, despite a high level of care in design, analysis, fabrication, or installation. Continual inspection and surveillance and letter-by-letter following of procedures are not completely effective remedies, either. Both short-time-frame accidents and slowly progressing insidious complaints have caused loss of capacity, availability, and even confidence that the unit will work at close-to-expected performance. The fixes for nuclear-piping complaints cover a wide span, from mere carrying out of well-known repair procedures on either small scale or large, all the way to highly engineered solutions to a problem, with months of study and analysis followed by weighing of alternative methods. With some of the problems, little special planning is necessary. The repair is understood, and the time it needs is well within the envelope of a scheduled outage. Radiation exposure of personnel will not exceed expected moderate limits. And if the repair is a repeat performance of a recent similar one, little can go wrong. The planning for many other repairs, however, is so essential that even a minor failing in it will bring a debacle, with over-run, losses in revenue, and senseless expenditure of man-rems. Look at two types of planning for nuclear piping repair, as revealed at a recent American Welding Society conference on maintenance welding in nuclear power plants

  13. Nuclear power plant piping damping parametric effects

    International Nuclear Information System (INIS)

    Ware, A.G.

    1983-01-01

    The present NRC guidelines for structural damping to be used in the dynamic stress analyses of nuclear power plant piping systems are generally considered to be overly conservative. As a result, plant designers have in many instances used a considerable number of seismic supports to keep stresses calculated by large scale piping computer codes below the allowable limits. In response to this problem, the NRC and EG and G Idaho are engaged in programs to evaluate piping system damping, in order to provide more realistic and less conservative values to be used in seismic analyses. To generate revised guidelines, solidly based on technical data, new experimental data need to be generated and assessed, and the parameters which influence piping system damping need to be quantitatively identified. This paper presents the current state-of-the-art knowledge in the United States on parameters which influence piping system damping. Examples of inconsistencies in the data and areas of uncertainty are explained. A discussion of programs by EG and G Idaho and other organizations to evaluate various effects is included, and both short and long range goals of the program are outlined

  14. Design specifications for ASME B and PV Code Section III nuclear class 1 piping

    International Nuclear Information System (INIS)

    Richardson, J.A.

    1978-01-01

    ASME B and PV Code Section III code regulations for nuclear piping requires that a comprehensive Design Specification be developed for ensuring that the design and installation of the piping meets all code requirements. The intent of this paper is to describe the code requirements, discuss the implementation of these requirements in a typical Class 1 piping design specification, and to report on recent piping failures in operating light water nuclear power plants in the US. (author)

  15. Erosion/corrosion-induced pipe wall thinning in US Nuclear Power Plants

    International Nuclear Information System (INIS)

    Wu, P.C.

    1989-04-01

    Erosion/corrosion in single-phase piping systems was not clearly recognized as a potential safety issue before the pipe rupture incident at the Surry Power Station in December 1986. This incident reminded the nuclear industry and the regulators that neither the US Nuclear Regulatory Commission (NRC) nor Section XI of the American Society of Mechanical Engineers (ASME) Boiler and Pressure Vessel Code require utilities to monitor erosion/corrosion in the secondary systems of nuclear power plants. This report provides a brief review of the erosion/corrosion phenomenon and its major occurrence in nuclear power plants. In addition, efforts by the NRC, the industry, and the ASME Section XI Committee to address this issue are described. Finally, results of the survey and plant audits conducted by the NRC to assess the extent of erosion/corrosion-induced piping degradation and the status of program implementation regarding erosion/corrosion monitoring are discussed. This report will support a staff recommendation for an additional regulatory requirement concerning erosion/corrosion monitoring. 21 refs., 3 tabs

  16. Nuclear power plant piping prefabrication and assembly

    International Nuclear Information System (INIS)

    Schmidt, H.

    1990-01-01

    The piping design for nuclear power plants projects reveals, at the beginning, a modification through the application of new fabrication techniques for prefabrication and assembly. This report presents a fabrication methodology which aims to minimize the fabrication and assembly costs as well as to improve and assure quality. (Author) [es

  17. Evaluation of thermal aging effect on primary pipe material in nuclear power plant by micro hardness test method

    International Nuclear Information System (INIS)

    Xue Fei; Yu Weiwei; Wang Zhaoxi; Ma Qinzheng; Liu Wei

    2012-01-01

    The investigation was carried out on the changes in mechanical properties of the primary pipe material Z3CN20.09M after 10000 h aging at 400℃ by using micro- Vickers and impact testing machine. The results show that the impact energy of testing material decreases. However, the micro-Vickers hardness of ferrite phase and austenite phase which constitute the testing material increase and keep constant, respectively. The intrinsic relations were analyzed between the micro-Vickers hardness and the impact energy to make an attempt to present the micro-Vickers hardness measurement as a method applicable to evaluating the thermal aging of the primary pipe material. (authors)

  18. Prediction on corrosion rate of pipe in nuclear power system based on optimized grey theory

    International Nuclear Information System (INIS)

    Chen Yonghong; Zhang Dafa; Chen Dengke; Jiang Wei

    2007-01-01

    For the prediction of corrosion rate of pipe in nuclear power system, the pre- diction error from the grey theory is greater, so a new method, optimized grey theory was presented in the paper. A comparison among predicted results from present and other methods was carried out, and it is seem that optimized grey theory is correct and effective for the prediction of corrosion rate of pipe in nuclear power system, and it provides a fundamental basis for the maintenance of pipe in nuclear power system. (authors)

  19. Evaluation of hyper-tempering and machining residual stresses in a pipe and a cast elbow

    International Nuclear Information System (INIS)

    Dupas, P.; Le Delliou, P.; Sussen, L.

    1995-01-01

    Cast elbows in austeno-ferritic stainless steel from the primary circuit of nuclear power plants suffer from important residual stresses initiated during their manufacturing (hyper-tempering followed by machining). Measurements and calculations were performed to determine these stresses. Measurements show a difference between circumferential stresses in the depth of a pipe and of an elbow. On the contrary, calculations indicate similar profiles. Thus, the experimental differences cannot be explained by a geometrical effect of the elbow. (J.S.). 4 refs., 5 figs

  20. Probabilistic procedure to evaluate integrity of degraded pipes under internal pressure and bending moment

    International Nuclear Information System (INIS)

    Roos, E.; Herter, K.-H.; Julisch, P.; Otremba, F.; Schuler, X.

    2003-01-01

    The determination of critical crack sizes or permissible/allowable loading levels in pipes with degraded pipe sections (circumferential cracks) for the assurance of component integrity is usually based on deterministic approaches. Therefore along with numerical calculational methods (finite element (FE) analyses) limit load calculations, such as e.g. the 'Plastic limit load concept' and the 'Flow stress concept' as well as fracture mechanics approximation methods as e.g. the R-curve method or the 'Ductile fracture handbook' and the R6-Method are currently used for practical application. Numerous experimental tests on both ferritic and austenitic pipes with different pipe dimensions were investigated at MPA Stuttgart. The geometries of the pipes were comparable to actual piping systems in Nuclear Power Plants, both BWR as well as PWR. Through wall cracks and part wall through cracks on the inside surface of the pipes were considered. The results of these tests were used to determine the flow stresses used within the limit load calculations. Therefore the deterministic concepts assessing the integrity of degraded pipes are available A new post-calculation of the above mentioned tests was performed using probabilistic approaches to assure the component integrity of degraded piping systems. As a result the calculated probability of failure was compared to experimental behaviour during the pipe test. Different reliability techniques were used for the verification of the probabilistic approaches. (author)

  1. Probabilistic fracture failure analysis of nuclear piping containing defects using R6 method

    International Nuclear Information System (INIS)

    Lin, Y.C.; Xie, Y.J.; Wang, X.H.

    2004-01-01

    Failure analysis of in-service nuclear piping containing defects is an important subject in the nuclear power plants. Considering the uncertainties in various internal operating loadings and external forces, including earthquake and wind, flaw sizes, material fracture toughness and flow stress, this paper presents a probabilistic assessment methodology for in-service nuclear piping containing defects, which is especially designed for programming. A general sampling computation method of the stress intensity factor (SIF), in the form of the relationship between the SIF and the axial force, bending moment and torsion, is adopted in the probabilistic assessment methodology. This relationship has been successfully used in developing the software, Safety Assessment System of In-service Pressure Piping Containing Flaws (SAPP-2003), based on a well-known engineering safety assessment procedure R6. A numerical example is given to show the application of the SAPP-2003 software. The failure probabilities of each defect and the whole piping can be obtained by this software

  2. Estimation of residual stress distribution for pressurizer nozzle of Kori nuclear power plant considering safe end

    Energy Technology Data Exchange (ETDEWEB)

    Song, Tae Kwang; Bae, Hong Yeol; Chun, Yun Bae; Oh, Chang Young; Kim, Yun Jae [Korea University, Seoul (Korea, Republic of); Lee, Kyoung Soo; Park, Chi Yong [Korea Electric Power Research Institute, Daejeon (Korea, Republic of)

    2008-08-15

    In nuclear power plants, ferritic low alloy steel nozzle was connected with austenitic stainless steel piping system through alloy 82/182 butt weld. Accurate estimation of residual stress for weldment is important in the sense that alloy 82/182 is susceptible to stress corrosion cracking. There are many results which predict residual stress distribution for alloy 82/182 weld between nozzle and pipe. However, nozzle and piping system usually connected through safe end which has short length. In this paper, residual stress distribution for pressurizer nozzle of Kori nuclear power plant was predicted using FE analysis, which considered safe end. As a result, existing residual stress profile was redistributed and residual stress of inner surface was decreased specially. It means that safe end should be considered to reduce conservatism when estimating the piping system.

  3. Real-time corrosion control system for cathodic protection of buried pipes for nuclear power plant

    Energy Technology Data Exchange (ETDEWEB)

    Kim, Ki Tae; Kim, Hae Woong; Kim, Young Sik [School of Materials Science and Engineering, Andong National University, Andong (Korea, Republic of); Chang, Hyun Young; Lim, Bu Taek; Park, Heung Bae [Power Engineering Research Institute, KEPCO Engineering and Construction Company, Seongnam (Korea, Republic of)

    2015-02-15

    Since the operation period of nuclear power plants has increased, the degradation of buried pipes gradually increases and recently it seems to be one of the emerging issues. Maintenance on buried pipes needs high quality of management system because outer surface of buried pipe contacts the various soils but inner surface reacts with various electrolytes of fluid. In the USA, USNRC and EPRI have tried to manage the degradation of buried pipes. However, there is little knowledge about the inspection procedure, test and manage program in the domestic nuclear power plants. This paper focuses on the development and build-up of real-time monitoring and control system of buried pipes. Pipes to be tested are tape-coated carbon steel pipe for primary component cooling water system, asphalt-coated cast iron pipe for fire protection system, and pre-stressed concrete cylinder pipe for sea water cooling system. A control system for cathodic protection was installed on each test pipe which has been monitored and controlled. For the calculation of protection range and optimization, computer simulation was performed using COMSOL Multiphysics (Altsoft co.)

  4. Real-time corrosion control system for cathodic protection of buried pipes for nuclear power plant

    International Nuclear Information System (INIS)

    Kim, Ki Tae; Kim, Hae Woong; Kim, Young Sik; Chang, Hyun Young; Lim, Bu Taek; Park, Heung Bae

    2015-01-01

    Since the operation period of nuclear power plants has increased, the degradation of buried pipes gradually increases and recently it seems to be one of the emerging issues. Maintenance on buried pipes needs high quality of management system because outer surface of buried pipe contacts the various soils but inner surface reacts with various electrolytes of fluid. In the USA, USNRC and EPRI have tried to manage the degradation of buried pipes. However, there is little knowledge about the inspection procedure, test and manage program in the domestic nuclear power plants. This paper focuses on the development and build-up of real-time monitoring and control system of buried pipes. Pipes to be tested are tape-coated carbon steel pipe for primary component cooling water system, asphalt-coated cast iron pipe for fire protection system, and pre-stressed concrete cylinder pipe for sea water cooling system. A control system for cathodic protection was installed on each test pipe which has been monitored and controlled. For the calculation of protection range and optimization, computer simulation was performed using COMSOL Multiphysics (Altsoft co.)

  5. Calculation of dynamic hydraulic forces in nuclear plant piping systems

    International Nuclear Information System (INIS)

    Choi, D.K.

    1982-01-01

    A computer code was developed as one of the tools needed for analysis of piping dynamic loading on nuclear power plant high energy piping systems, including reactor safety and relief value upstream and discharge piping systems. The code calculates the transient hydraulic data and dynamic forces within the one-dimensional system, caused by a pipe rupture or sudden value motion, using a fixed space and varying time grid-method of characteristics. Subcooled, superheated, homogeneous two-phase and transition flow regimes are considered. A non-equilibrium effect is also considered in computing the fluid specific volume and fluid local sonic velocity in the two-phase mixture. Various hydraulic components such as a spring loaded or power operated value, enlarger, orifice, pressurized tank, multiple pipe junction (tee), etc. are considered as boundary conditions. Comparisons of calculated results with available experimental data shows a good agreement. (Author)

  6. Pipe rupture hardware minimization in pressurized water reactor system

    International Nuclear Information System (INIS)

    Mukherjee, S.K.; Szyslowski, J.J.; Chexal, V.; Norris, D.M.; Goldstein, N.A.; Beaudoin, B.; Quinones, D.; Server, W.

    1987-01-01

    For much of the high energy piping in light water reactor systems, fracture mechanics calculations can be used to assure pipe failure resistance, thus allowing the elimination of excessive rupture restraint hardware both inside and outside containment. These calculations use the concept of leak-before-break (LBB) and include part-through-wall flaw fatigue crack propagation, through-wall flaw detectable leakage, and through-wall flaw stability analyses. Performing these analyses not only reduces initial construction, future maintenance, and radiation exposure costs, but the overall safety and integrity of the plant are improved since much more is known about the piping and its capabilities than would be the case had the analyses not been performed. This paper presents the LBB methodology applied at Beaver Valley Power Station - Unit 2 (BVPS-2); the application for two specific lines, one inside containment (stainless steel) and the other outside containment (ferritic steel), is shown in a generic sense using a simple parametric matrix. The overall results for BVPS-2 indicate that pipe rupture hardware is not necessary for stainless steel lines inside containment greater than or equal to 6-in (152 mm) nominal pipe size that have passed a screening criteria designed to eliminate potential problem systems (such as the feedwater system). Similarly, some ferritic steel lines as small as 3-in (76 mm) diameter (outside containment) can qualify for pipe rupture hardware elimination

  7. Solid0Core Heat-Pipe Nuclear Batterly Type Reactor

    Energy Technology Data Exchange (ETDEWEB)

    Ehud Greenspan

    2008-09-30

    This project was devoted to a preliminary assessment of the feasibility of designing an Encapsulated Nuclear Heat Source (ENHS) reactor to have a solid core from which heat is removed by liquid-metal heat pipes (HP).

  8. Failure probability assessment of wall-thinned nuclear pipes using probabilistic fracture mechanics

    International Nuclear Information System (INIS)

    Lee, Sang-Min; Chang, Yoon-Suk; Choi, Jae-Boong; Kim, Young-Jin

    2006-01-01

    The integrity of nuclear piping system has to be maintained during operation. In order to maintain the integrity, reliable assessment procedures including fracture mechanics analysis, etc., are required. Up to now, this has been performed using conventional deterministic approaches even though there are many uncertainties to hinder a rational evaluation. In this respect, probabilistic approaches are considered as an appropriate method for piping system evaluation. The objectives of this paper are to estimate the failure probabilities of wall-thinned pipes in nuclear secondary systems and to propose limited operating conditions under different types of loadings. To do this, a probabilistic assessment program using reliability index and simulation techniques was developed and applied to evaluate failure probabilities of wall-thinned pipes subjected to internal pressure, bending moment and combined loading of them. The sensitivity analysis results as well as prototypal integrity assessment results showed a promising applicability of the probabilistic assessment program, necessity of practical evaluation reflecting combined loading condition and operation considering limited condition

  9. Report of the US Nuclear Regulatory Commission Piping Review Committee. Volume 5. Summary - Piping Review Committee conclusions and recommendations

    International Nuclear Information System (INIS)

    1985-04-01

    This document summarizes a comprehensive review of NRC requirements for Nuclear Piping by the US NRC Piping Review Committee. Four topical areas, addressed in greater detail in Volumes 1 through 4 of this report, are included: (1) Stress Corrosion Cracking in Piping of Boiling Water Reactor Plants; (2) Evaluation of Seismic Design; (3) Evaluation of Potential for Pipe Breaks; and (4) Evaluation of Other Dynamic Loads and Load Combinations. This volume summarizes the major issues, reviews the interfaces, and presents the Committee's conclusions and recommendations for updating NRC requirements on these issues. This report also suggests research or other work that may be required to respond to issues not amenable to resolution at this time

  10. Summary and accomplishments of the ORNL program for nuclear piping design criteria

    International Nuclear Information System (INIS)

    Greenstreet, W.L.

    1975-11-01

    The ORNL Piping Program was defined and established to develop basic information on the structure behavior of nuclear power plant piping components and to prepare this information in forms suitable for use in design codes and standards. Charts are presented showing the percentage completion of the various program tasks

  11. Safety evaluation of socket weld integrity in nuclear piping

    International Nuclear Information System (INIS)

    Choi, Y.H.; Kim, H.J.; Choi, S.Y.; Kim, Y.J.; Kim, Y.J.

    2004-01-01

    The purposes of this paper are to evaluate the integrity of socket weld in nuclear piping and prepare the technical basis for a new guideline on radiographic testing (RT) for the socket weld. Recently, the integrity of the socket weld is regarded as a safety concern in nuclear power plants because lots of failures and leaks have been reported in the socket weld. The root causes of the socket weld failure are known as unanticipated loadings such as vibration or thermal fatigue and improper weld joint during construction. The ASME Code sec. III requires 1/16 inch gap between the pipe and fitting in the socket weld. Many failure cases, however, showed that the gap requirement was not satisfied. The Code also requires magnetic particle examination (MT) or liquid penetration examination (PT) on the socket weld, but not radiographic examination (RT). It means that it is not easy to examine the 1/16 inch gap in the socket weld by using the NDE methods currently required in the Code. In this paper, the effects of the requirements in the ASME Code sec. III on the socket weld integrity were evaluated by using finite element method. The crack behavior in the socket weld was also investigated under vibration event in nuclear power plants. The results showed that the socket weld was very susceptible to the vibration if the requirements in ASME Code were not satisfied. The constraint between the pipe and fitting due to the contact significantly affects the integrity of the socket weld. This paper also suggests a new guideline on the RT for the socket weld during construction stage in nuclear power plants. (orig.)

  12. Comparisons of ASME-code fatigue-evaluation methods for nuclear Class 1 piping with Class 2 or 3 piping

    International Nuclear Information System (INIS)

    Rodabaugh, E.C.

    1983-06-01

    The fatigue evaluation procedure used in the ASME Boiler and Pressure Vessel Code, Sect. III, Nuclear Power Plant Components, for Class 1 piping is different from the procedure used for Class 2 or 3 piping. The basis for each procedure is described, and correlations between the two procedures are presented. Conditions under which either procedure or both may be unconservative are noted. Potential changes in the Class 2 or 3 piping procedure to explicitly cover all loadings are discussed. However, the report is intended to be informative, and while the contents of the report may guide future Code changes, specific recommendations are not given herein

  13. Development and testing of restraints for nuclear piping systems

    International Nuclear Information System (INIS)

    Kelly, J.M.; Skinner, M.S.

    1980-06-01

    As an alternative to current practice of pipe restraint within nuclear power plants it has been proposed to adopt restraints capable of dissipating energy in the piping system. The specific mode of energy dissipation focused upon in these studies is the plastic yielding of steels utilizing relative movement between the pipe and the base of the restraint, a general mechanism which has been proven as reliable in several allied studies. This report discusses the testing of examples of two energy-absorbing devices, the results of this testing and the conclusions drawn. This study concentrated on the specific relevant performance characteristics of hysteretic behavior and degradation with use. The testing consisted of repetitive continuous loadings well into the plastic ranges of the devices in a sinusoidal or random displacement controlled mode

  14. Advanced concepts, analysis approaches and criteria for nuclear piping system design

    International Nuclear Information System (INIS)

    Tang, H.T.; Tagart, S.W. Jr.; Tang, Y.K.

    1992-01-01

    Recent research in piping system design and analysis has resulted in advancements on damping values, independent support motion (ISM), static coefficient method, simplified inelastic method and ASME code criteria changes. In the support area, passive type of supports such as energy-absorbing device and gap stopper have been developed. These advancements provide bases for improved and cost-effective design of future nuclear piping systems. (author)

  15. Program to justify life extension of older nuclear piping systems

    International Nuclear Information System (INIS)

    Burr, T.K.; Dwight, J.E. Jr.; Morton, D.K.

    1991-01-01

    The Idaho National Engineering Laboratory (INEL) has a history of more than 40 years devoted to the operation of nuclear reactors designed for research and experiments. The Advanced Test Reactor (ATR) is one such operating reactor whose mission requires continued operation for an additional 25 years or more. Since the ATR is approaching its design life of twenty years, life extension evaluations have been initiated. Of particular importance are the associated high temperature, high pressure loop piping system supporting in--reactor experiments. Failure of this piping could challenge core safety margins. Since regulatory rules for nuclear power plant life extension are only in the formulation stage, the current technical guidance on this subject provided by the Department of Energy (DOE) or the commercial nuclear industry is incomplete. In the interim, order to assure continued safe operation of this piping beyond its initial design life, a program has been developed to provide the necessary technical justification for life extension. This paper describes a program that establishes Section 11 of the ASME Boiler and Pressure Vessel Code as the governing criteria document, retains B31.1 as the Code of record for Section 11 activities, specifies additional inservice inspection requirements more strict than Section 11, and relies heavily on flaw detection and fracture mechanics evaluations. 18 refs., 2 figs

  16. Titanium Loop Heat Pipes for Space Nuclear Radiators, Phase I

    Data.gov (United States)

    National Aeronautics and Space Administration — This Small Business Innovation Research Phase I project will develop titanium Loop Heat Pipes (LHPs) that can be used in low-mass space nuclear radiators, such as...

  17. The development of design method of nuclear piping system supported by elasto-plastic support structures (part 2)

    International Nuclear Information System (INIS)

    Endo, R.; Murota, M.; Kawabata, J-I.; Hirose, J.; Nekomoto, Y.; Takayama, Y.; Kobayashi, H.

    1995-01-01

    The conventional seismic design method of nuclear piping system is very conservative because of the accumulation of various safety factors in the design process, and nuclear piping systems are thought to have a large safety margin. Considering this situations, research program was promoted to furthermore rationalize nuclear power plants by reducing the amount of support structures and reducing the piping's seismic response through vibration energy absorption resulting from the elasto-plastic behavior of piping support structures. The research had the following three stages. In the first stage, we selected conventional piping support structures in light-water reactors that exhibited elasto-plastic behavior, and studied the effect of displacement and the vibration frequency on the stiffness and on the energy absorption by testing these models. In the second stage, vibration tests were performed using piping models with support structures on shaking tables. The piping vibration characteristics were clarified by sinusoidal sweep tests and the piping response characteristics by seismic wave vibration tests when the support structures were in an elasto-plastic condition. In the third stage, a general method was developed to evaluate the characteristics of a variety of support structures in the tests. A simplified analysis method was also developed to evaluate the piping seismic response using the piping model test result. To expand the results mentioned above, we also established a new seismic design method of piping systems that allowed support structures to have elasto-plastic behavior. This paper reports the newly developed seismic design method based on the results of experiments conducted under the joint research program of Japanese electric power companies (The Japan Atomic Power Co., Hokkaido EPC, Tohoku EPC, Tokyo EPC, Chubu EPC, Hokuriku EPC, Kansai EPC, Chugoku EPC, Shikoku EPC, Kyushu EPC) and nuclear plant makers (Hitachi Ltd., Toshiba Co., MHI Ltd., HEC Ltd

  18. Study on quality control measures of static casting main pipe in PWR nuclear power plant

    International Nuclear Information System (INIS)

    Jiang Zhenbiao; Li Guanying; Liu Zhicheng

    2013-01-01

    This study analyzes the main reasons which impact the quality of primary pipe static casting elbows in PWR-M310 nuclear power plant. The quality control measures are developed from the election and inspection of material, improving sand production and casting process, improving lean management of personnel. The static casting defects of primary pipe elbows for Fuqing Unit 1 and 2 were down to less than 50% of the former project. The quality of static casting for the primary pipe elbows was significantly improved. Moreover, the implementation saves human resources and financing to repair casting defects, and also helps to win the delivery schedule. The quality control measures are good reference for improving primary pipe casting process. This study provides valuable experience for further study of improving the quality of static casting for the primary pipe of PWR nuclear power plant. (authors)

  19. Residual stress studies of austenitic and ferritic steels

    International Nuclear Information System (INIS)

    Chrenko, R.M.

    1978-01-01

    Residual studies have been made on austenitic and ferritic steels of the types used as structural materials. The residual stress results presented here will include residual stress measurements in the heat-affected zone on butt welded Type 304 stainless steel pipes, and the stresses induced in Type 304 austenitic stainless steel and Type A508 ferritic steel by several surface preparations. Such surface preparation procedures as machining and grinding can induce large directionality effects in the residual stresses determined by X-ray techniques and some typical data will be presented. A brief description is given of the mobile X-ray residual stress apparatus used to obtain most of the data in these studies. (author)

  20. Evaluation of welds on a ferritic-austenitic stainless steel

    International Nuclear Information System (INIS)

    Pleva, J.; Johansson, B.

    1984-01-01

    Five different welding methods for the ferritic-austenitic steel 22Cr6Ni3MoN have been evaluated on mill welded heavy wall pipes. The corrosion resistance of the weld joints has been tested both in standard tests and in special environments, related to certain oil and gas wells. The tests were conclusive in that a welding procedure with the addition of sufficient amounts of filler metal should be employed. TIG welds without or with marginal filler addition showed poor resistance to pitting, and to boiling nitric acid. Contents of main alloying elements in ferrite and austenite phases have been measured and causes of corrosion attack in welds are discussed

  1. Fatigue evaluation of socket welded piping in nuclear power plant

    International Nuclear Information System (INIS)

    Vecchio, R.S.

    1996-01-01

    Fatigue failures in piping systems occur, almost without exception, at the welded connections. In nuclear power plant systems, such failures occur predominantly at the socket welds of small diameter piping ad fillet attachment welds under high-cycle vibratory conditions. Nearly all socket weld fatigue failures are identified by leaks which, though not high in volume, generally are costly due to attendant radiological contamination. Such fatigue cracking was recently identified in the 3/4 in. diameter recirculation and relief piping socket welds from the reactor coolant system (RCS) charging pumps at a nuclear power plant. Consequently, a fatigue evaluation was performed to determine the cause of cracking and provide an acceptable repair. Socket weld fatigue life was evaluated using S-N type fatigue life curves for welded structures developed by AASHTO and the assessment of an effective cyclic stress range adjacent to each socket weld. Based on the calculated effective tress ranges and assignment of the socket weld details to the appropriate AASHTO S-N curves, the socket weld fatigue lives were calculated and found to be in excellent agreement with the accumulated cyclic life to-date

  2. Estimation of leak rate through circumferential cracks in pipes in nuclear power plants

    Directory of Open Access Journals (Sweden)

    Jai Hak Park

    2015-04-01

    Full Text Available The leak before break (LBB concept is widely used in designing pipe lines in nuclear power plants. According to the concept, the amount of leaking liquid from a pipe should be more than the minimum detectable leak rate of a leak detection system before catastrophic failure occurs. Therefore, accurate estimation of the leak rate is important to evaluate the validity of the LBB concept in pipe line design. In this paper, a program was developed to estimate the leak rate through circumferential cracks in pipes in nuclear power plants using the Henry–Fauske flow model and modified Henry–Fauske flow model. By using the developed program, the leak rate was calculated for a circumferential crack in a sample pipe, and the effect of the flow model on the leak rate was examined. Treating the crack morphology parameters as random variables, the statistical behavior of the leak rate was also examined. As a result, it was found that the crack morphology parameters have a strong effect on the leak rate and the statistical behavior of the leak rate can be simulated using normally distributed crack morphology parameters.

  3. Data book of examination of the ruptured pipe at the Hamaoka Nuclear Power Station Unit-1

    International Nuclear Information System (INIS)

    2002-03-01

    In order to investigate root cause of the pipe rupture, which took place at the Hamaoka Nuclear Power Station Unit-1 of Chubu Electric Power Company on November 7, 2001, a task force was established within the Nuclear and Industrial Safety Agency (NISA) and initiated a detailed investigation of the ruptured pipe. The Japan Atomic Energy Research Institute (JAERI) was asked from the Ministry of Education, Culture, Sports, Science and Technology (MEXT) in response to the request from NISA to cooperate as an independent neutral organization with NISA and perform an examination of the ruptured pipe independently from Chubu Electric Power Company. JAERI accepted the request by considering the fact that JAERI is an integrated research institution for nuclear research and development, a prime research institution for nuclear safety research, a research institution with experience of root-cause investigation of various nuclear incidents and accidents of domestic as well as overseas, and a research institution provided with advanced examination facilities necessary for examination of the ruptured pipe. The JAERI examination group was formed at the Tokai Research Establishment and conducted detailed and thorough examination of the pieces taken from the ruptured pipe primarily in the Reactor Fuel Examination Facility (RFEF) with the use of tools such as scanning electron microscopes and other equipments. Purpose of examination was to provide technical information in order to identify causes of the pipe rupture through examination of the pieces taken from the ruptured region of the pipe. The result of the present examination has already been reported to NISA and has also been published as the JAERI-Tech report No.2001-94. This report is a data book containing the detailed data obtained by the present examination. (author)

  4. Structural integrity evaluation of nuclear piping cracket

    International Nuclear Information System (INIS)

    Cadiz Deleito, J.C.

    1985-01-01

    The methodology to evaluation of cracks in nuclear piping is exposed. Linear elastic fracture mechanic is used to prediction of growing crack and the net section collapse theory compared with acceptation criteria of both ASME III and ASME XI code. A case allowable under ASME XI criteria is analysed under ASME III requirements. Consideration must be given to local phenomenon in crack area and local stress evaluated and compared with ASME III acceptation criteria. (author)

  5. Mechanical properties of roll extruded nuclear reactor piping

    International Nuclear Information System (INIS)

    Steichen, J.M.; Knecht, R.L.

    1975-01-01

    The elevated temperature mechanical properties of large diameter (28 inches) seamless pipe produced by roll extrusion for use as primary piping for sodium coolant in the Fast Flux Test Facility (FFTF) have been characterized. The three heats of Type 316H stainless steel piping material used exhibited consistent mechanical properties and chemical compositions. Tensile and creep-rupture properties exceeded values on which the allowable stresses for ASME Code Case 1592 on Nuclear Components in Elevated Temperature Service were based. Tensile strength and ductility were essentially unchanged by aging in static sodium at 1050 0 F for times to 10,000 hours. High strain rate tensile tests showed that tensile properties were insensitive to strain rate at temperatures to 900 0 F and that for temperatures of 1050 0 F and above both strength and ductility significantly increased with increasing strain rate. Fatigue-crack propagation properties were comparable to results obtained on plate material and no differences in crack propagation were found between axial and circumferential orientations. (U.S.)

  6. A simplified LBB evaluation procedure for austenitic and ferritic steel piping

    International Nuclear Information System (INIS)

    Gamble, R.M.; Wichman, K.R.

    1997-01-01

    The NRC previously has approved application of LBB analysis as a means to demonstrate that the probability of pipe rupture was extremely low so that dynamic loads associated with postulated pipe break could be excluded from the design basis (1). The purpose of this work was to: (1) define simplified procedures that can be used by the NRC to compute allowable lengths for circumferential throughwall cracks and assess margin against pipe fracture, and (2) verify the accuracy of the simplified procedures by comparison with available experimental data for piping having circumferential throughwall flaws. The development of the procedures was performed using techniques similar to those employed to develop ASME Code flaw evaluation procedures. The procedures described in this report are applicable to pipe and pipe fittings with: (1) wrought austenitic steel (Ni-Cr-Fe alloy) having a specified minimum yield strength less than 45 ksi, and gas metal-arc, submerged arc and shielded metal-arc austentic welds, and (2) seamless or welded wrought carbon steel having a minimum yield strength not greater than 40 ksi, and associated weld materials. The procedures can be used for cast austenitic steel when adequate information is available to place the cast material toughness into one of the categories identified later in this report for austenitic wrought and weld materials

  7. A simplified LBB evaluation procedure for austenitic and ferritic steel piping

    Energy Technology Data Exchange (ETDEWEB)

    Gamble, R.M.; Wichman, K.R.

    1997-04-01

    The NRC previously has approved application of LBB analysis as a means to demonstrate that the probability of pipe rupture was extremely low so that dynamic loads associated with postulated pipe break could be excluded from the design basis (1). The purpose of this work was to: (1) define simplified procedures that can be used by the NRC to compute allowable lengths for circumferential throughwall cracks and assess margin against pipe fracture, and (2) verify the accuracy of the simplified procedures by comparison with available experimental data for piping having circumferential throughwall flaws. The development of the procedures was performed using techniques similar to those employed to develop ASME Code flaw evaluation procedures. The procedures described in this report are applicable to pipe and pipe fittings with: (1) wrought austenitic steel (Ni-Cr-Fe alloy) having a specified minimum yield strength less than 45 ksi, and gas metal-arc, submerged arc and shielded metal-arc austentic welds, and (2) seamless or welded wrought carbon steel having a minimum yield strength not greater than 40 ksi, and associated weld materials. The procedures can be used for cast austenitic steel when adequate information is available to place the cast material toughness into one of the categories identified later in this report for austenitic wrought and weld materials.

  8. Development of automatic pipe welder for nuclear power plant

    International Nuclear Information System (INIS)

    Iwamoto, Taro; Ando, Shimon; Omae, Tsutomu; Ito, Yoshitoshi; Araya, Takeshi.

    1978-01-01

    Numerous pipings are installed in nuclear power plants, and of course, the reliability of these pipings are very important to preserve the safety of the plants. These pipings undergo periodic inspection yearly, and when some defects are found or some reconstructions to superior systems are made, field welding in the plants is required. When the places to be welded are in containment vessels, the works must be carried out in radiation environment. In order to maintain the highest quality of welding and to reduce the radiation exposure of workers, many skilled workers are required. This automatic pipe welder was developed to solve these problems, aiming at carrying out welding works by remote control at the safe places outside containment vessels. Especially in order to obtain the highest quality of welding, it was not perfectly automated, but the man-machine system so as to enable to utilize the delicate sense of workers was adopted. The visual and contact detecting systems to monitor welding works, remote control system, computer control, light, small and easily installed welding head, grinding and supersonic flow detecting equipments, the power source of transistor switching type, air cooling equipment, and the function for setting welding conditions according to algorithm were added to the welding machine. The outline and main components of this automatic pipe welder are explained. (Kako, I.)

  9. Underground nuclear power station using self-regulating heat-pipe controlled reactors

    International Nuclear Information System (INIS)

    Hampel, V.E.

    1989-01-01

    The author presents a nuclear reactor for generating electricity disposed underground at the bottom of a vertical hole that can be drilled using conventional drilling technology. The primary coolant of the reactor core is the working fluid in a plurality of thermodynamically coupled heat pipes emplaced in the hole between the heat source at the bottom of the hole and heat exchange means near the surface of the earth. Additionally, the primary coolant (consisting of the working fluid in the heat pipes in the reactor core) moderates neutrons and regulates their reactivity, thus keeping the power of the reactor substantially constant. At the end of its useful life, the reactor core may be abandoned in place. Isolation from the atmosphere in case of accident or for abandonment is provided by the operation of explosive closures and mechanical valves emplaced along the hole. This invention combines technology developed and tested for small, highly efficient, space-based nuclear electric power plants with the technology of fast-acting closure mechanisms developed and used for underground testing of nuclear weapons. This invention provides a nuclear power installation which is safe from the worst conceivable reactor accident, namely, the explosion of a nuclear weapon near the ground surface of a nuclear power reactor

  10. Underground nuclear power station using self-regulating heat-pipe controlled reactors

    Science.gov (United States)

    Hampel, Viktor E.

    1989-01-01

    A nuclear reactor for generating electricity is disposed underground at the bottom of a vertical hole that can be drilled using conventional drilling technology. The primary coolant of the reactor core is the working fluid in a plurality of thermodynamically coupled heat pipes emplaced in the hole between the heat source at the bottom of the hole and heat exchange means near the surface of the earth. Additionally, the primary coolant (consisting of the working flud in the heat pipes in the reactor core) moderates neutrons and regulates their reactivity, thus keeping the power of the reactor substantially constant. At the end of its useful life, the reactor core may be abandoned in place. Isolation from the atmosphere in case of accident or for abandonment is provided by the operation of explosive closures and mechanical valves emplaced along the hole. This invention combines technology developed and tested for small, highly efficient, space-based nuclear electric power plants with the technology of fast-acting closure mechanisms developed and used for underground testing of nuclear weapons. This invention provides a nuclear power installation which is safe from the worst conceivable reactor accident, namely, the explosion of a nuclear weapon near the ground surface of a nuclear power reactor.

  11. Development of Structural Health Monitoring System for pipes in Nuclear Power Plants

    International Nuclear Information System (INIS)

    Eom, H. S.; Choi, Y. C.; Shin, S. H.; Youn, D. B.; Park, J. H.

    2010-01-01

    Structural health monitoring (SHM) has becoming an important issue in the maintenance of various structures such as large steel plates, vessels, and pipes in nuclear power plants. There are important factors to be considered in developing an SHM system. With consideration of these factors, we have developed a computerized multi-channel ultrasonic system that can handle array transducers and generate a high-power pulse for online SHM of the plates and pipes. The proposed system is compact but has all the necessary functions for SHM of important structure such as pipes and plates in a NPP

  12. Estimation of Leak Rate Through Cracks in Bimaterial Pipes in Nuclear Power Plants

    Directory of Open Access Journals (Sweden)

    Jai Hak Park

    2016-10-01

    Full Text Available The accurate estimation of leak rate through cracks is crucial in applying the leak before break (LBB concept to pipeline design in nuclear power plants. Because of its importance, several programs were developed based on the several proposed flow models, and used in nuclear power industries. As the flow models were developed for a homogeneous pipe material, however, some difficulties were encountered in estimating leak rates for bimaterial pipes. In this paper, a flow model is proposed to estimate leak rate in bimaterial pipes based on the modified Henry–Fauske flow model. In the new flow model, different crack morphology parameters can be considered in two parts of a flow path. In addition, based on the proposed flow model, a program was developed to estimate leak rate for a crack with linearly varying cross-sectional area. Using the program, leak rates were calculated for through-thickness cracks with constant or linearly varying cross-sectional areas in a bimaterial pipe. The leak rate results were then compared and discussed in comparison with the results for a homogeneous pipe. The effects of the crack morphology parameters and the variation in cross-sectional area on the leak rate were examined and discussed.

  13. Ferrite control--Measurement problems and solutions during stainless steel fabrication

    International Nuclear Information System (INIS)

    Pickering, E.W.

    1986-01-01

    Ferrite is one of the magnetic phases found in many grades of otherwise nonmagnetic austenitic stainless steel weldments. Control of ferrite during the fabrication of cryogenic component parts is necessary to produce a reliable product, free of cracking and microfissuring. This is accomplished by balancing compositions in order to produce a small amount of ferrite which is generally accompanied with reduced toughness. Control of ferrite is essential during the fabrication of component parts. The means to accomplish this will vary with the type of material being welded, thickness, welding process, method of measurement and fabrication procedures. An application used during the fabrication of component parts for the Fast Flux Test Facility (FFTF) required specially formulated shielded manual arc welding (SMAW) electrodes and consumable inserts. Control of ferrite measurements and shop welding procedures were essential. The special materials and techniques were used to weld Type 316 stainless steel pipe joints, 28 in. (0.71 m) in diameter. By using three lots of electrodes, each with a different ferrite level, a compatible range of ferrite was achieved throughout the layers of weld metal. By extensive use of the Schaeffler and DeLong modified constitution diagrams for stainless steel weld metal, E-16-8-2 SMAW electrodes were developed with ''0'' ferrite level. The electrodes were used during fabrication of the Liquid Metal Fast Breader Reactor (LMFBR) component parts of Type 316 stainless steel. Metallographic evaluation of laboratory specimens, control of shop welding techniques and individual laboratory training of shop welders combined to produce a quality product

  14. Parametric calculations of fatigue-crack growth in piping

    International Nuclear Information System (INIS)

    Simonen, F.A.; Goodrich, C.W.

    1983-06-01

    This study presents calculations of the growth of piping flaws produced by fatigue. Flaw growth was predicted as a function of the initial flaw size, the level and number of stress cycles, the piping material, and environmental factors. The results indicate that the present flaw acceptance standards of ASME Section XI provide a relatively consistent set of allowable flaw sizes because the predicted life of flawed piping is relatively insensitive to pipe wall thickness, flaw aspect ratio, and piping material (ferritic versus austenitic). On the other hand, the results show that flaws that are acceptable under ASME Section XI can grow at unacceptable rates if the cyclic stresses are at the maximum level permitted by the design rules of ASME Section III. However, a review of the conservatisms inherent to the ASME code rules is presented to explain the low occurrence of piping fatigue failures in service. It is concluded that decreases in the allowable flaw sizes are not justified

  15. Gel structure of the corrosion layer on cladding pipes of nuclear fuels

    Czech Academy of Sciences Publication Activity Database

    Medek, Jiří; Weishauptová, Zuzana

    2009-01-01

    Roč. 393, č. 2 (2009), s. 306-310 ISSN 0022-3115 R&D Projects: GA ČR GA106/04/0043 Institutional research plan: CEZ:AV0Z30460519 Keywords : cladding pipes of nuclear fuels * corrosion layer * zirconium alloys Subject RIV: JF - Nuclear Energetics Impact factor: 1.933, year: 2009

  16. Pipe support

    International Nuclear Information System (INIS)

    Pollono, L.P.

    1979-01-01

    A pipe support for high temperature, thin-walled piping runs such as those used in nuclear systems is described. A section of the pipe to be suppported is encircled by a tubular inner member comprised of two walls with an annular space therebetween. Compacted load-bearing thermal insulation is encapsulated within the annular space, and the inner member is clamped to the pipe by a constant clamping force split-ring clamp. The clamp may be connected to pipe hangers which provide desired support for the pipe

  17. 77 FR 60478 - Control of Ferrite Content in Stainless Steel Weld Metal

    Science.gov (United States)

    2012-10-03

    ... NUCLEAR REGULATORY COMMISSION [[NRC-2012-0231] Control of Ferrite Content in Stainless Steel Weld... draft regulatory guide (DG), DG-1279, ``Control of Ferrite Content in Stainless Steel Weld Metal.'' This guide describes a method that the NRC staff considers acceptable for controlling ferrite content in...

  18. Nuclear power plant steam pipes repairing with TIRANT 3 robot system

    International Nuclear Information System (INIS)

    Soto Tomas, Marcelo; Curiel Nieva, Marceliano; Monzo Blasco, Enrique; Rodriguez, Salvador Pineda; Vaquer Perez, Juan I.

    2011-01-01

    A typical application functions covering the steam pipes inner surface in coal-fired power station and nuclear power plants. The results of this process are spectacular in terms of protection against corrosion and abrasion, but its application has conditioning factors, such as: Severe application conditions for workers. Due to the postural position (usually kneeling) in small diameter pipes and working with fireproof clothing and masks with outdoor air supplying, due to fumes, sparks and molten metal particles, radiological contamination, confined space, poor lighting... Coating uniformity. As metallization is a manual process, the carried out measurements show small variations in the thickness of the coating, always within the tolerance limits established by the applicable regulations and quality assurance. For all these reasons, Grupo Dominguis has developed the TIRANT 3 robot, a worldwide innovative system, for metallization of steam pipes inner surface. TIRANT 3 robot is teleoperated from outside of the pipe, so that human intervention is reduced to the operations of robot positioning and change of metallization wire. As it is an independent system of the human factor, metallization process performance is significantly increased by reducing rest periods due only to the robot maintenance. Likewise, TIRANT 3 system permits to increase resulting coating uniformity, and thus its resistance, keeping selected parameters constant depending on required type and thickness of wire. TIRANT 3 system has successfully worked in 2010 during the stops refueling of the Units I and II of Laguna Verde nuclear power plant in Mexico. (author)

  19. CASS Ferrite and Grain Structure Relationship

    Energy Technology Data Exchange (ETDEWEB)

    Ruud, Clayton O. [Pacific Northwest National Lab. (PNNL), Richland, WA (United States); Ramuhalli, Pradeep [Pacific Northwest National Lab. (PNNL), Richland, WA (United States); Meyer, Ryan M. [Pacific Northwest National Lab. (PNNL), Richland, WA (United States); Diaz, Aaron A. [Pacific Northwest National Lab. (PNNL), Richland, WA (United States); Anderson, Michael T. [Pacific Northwest National Lab. (PNNL), Richland, WA (United States)

    2016-07-13

    This document summarizes the results of research conducted at Pacific Northwest National Laboratory (PNNL) to determine whether, based on experimental measurements, a correlation existed between grain structure in cast austenitic stainless steel (CASS) piping and ferrite content of the casting alloy. The motivation for this research lies in the fact that ultrasonic testing (UT) is strongly influenced by CASS grain structure; knowledge of this grain structure may help improve the ability to interpret UT responses, thereby improving the overall reliability of UT inspections of CASS components.

  20. The Analysis of the Field Application Methodology of Electromagnetic Ultrasonic Testing for Piping in Nuclear Power Plant

    Energy Technology Data Exchange (ETDEWEB)

    Park, Chi Seung; Joo, Keum Jong; Choi, Jung Kweun; Um, Byung Kook; Park, Jea Suk [Korea Advanced Ispection Technology Co., Daejeon (Korea, Republic of)

    2008-08-15

    Nuclear plant piping is classified as the safety class and non-safety class piping in usual. Safety class piping has been examined in accordance with ASME Section XI and V during PSI/ISI using RT, UT, PT, ECT, etc and evaluated periodically for integrity. But failures in piping had reported at non-welded parts and non-safety class pipings as well as the safety class pipings. The existing NDT methods are suitable for the specific parts for instance weldments to inspect but difficult to examine all parts (total coverage) of pipe line and very expensive in cost and consume the time. And also inspection using those methods is difficult and limited for the parts which are complex configuration, embedded under ground and installed at high radiation area in nuclear power plants. In order to inspect all parts of long range piping systems and reduce the inspection time and cost, the electromagnetic ultrasonic inspection technology is suitable and effective. The electromagnetic ultrasonic method can cover more than 50 m apart from sensor at one time without moving the sensor and examined the parts which are in difficulties for accessibility, for example, high radiation area, insulated components and embedded under ground.

  1. Reliability Data for Piping Components in Nordic Nuclear Power Plants 'R-Book'. Project Phase 1. Rev 1

    International Nuclear Information System (INIS)

    Lydell, Bengt; Olsson, Anders

    2008-01-01

    This report constitutes a planning document for a new RandD project to develop a piping component reliability parameter handbook for use in probabilistic safety assessment (PSA) and related activities. The Swedish acronym for this handbook is 'R-Book.' The objective of the project is to utilize the OECD Nuclear Energy Agency 'OECD Pipe Failure Data Exchange Project' (OPDE) database to derive piping component failure rates and rupture probabilities for input to internal flooding probabilistic safety assessment, high-energy line break' (HELB) analysis, risk-informed in-service inspection (RI-ISI) program development, and other activities related to PSA. This new RandD project is funded by member organizations of the Nordic PSA Group (NPSAG) - Forsmark AB, OKG AB, Ringhals AB, and the Swedish Nuclear Power Inspectorate (SKI). The history behind the current effort to produce a handbook of piping reliability parameters goes back to 1994 when SKI funded a 5-year RandD project to explore the viability of establishing an international database on the service experience with piping system components in commercial nuclear power plants. An underlying objective behind this 5-year program was to investigate the different options and possibilities for deriving pipe failure rates and rupture probabilities directly from service experience data as an alternative to probabilistic fracture mechanics. The RandD project culminated in an international piping reliability seminar held in the fall of 1997 in Sigtuna (Sweden) and a pilot project to demonstrate an application of the pipe failure database to the estimation of loss-of-coolant-accident (LOCA) frequency (SKI Report 98:30). A particularly important outcome of the 5-year project was a decision by SKI to transfer the pipe failure database including the lessons learned to an international cooperative effort under the auspices of the OECD Nuclear Energy Agency. Following on information exchange and planning meetings that were

  2. Development of a software for the ASME code qualification of class-I nuclear piping systems

    International Nuclear Information System (INIS)

    Mishra, Rajesh; Umashankar, C.; Soni, R.S.; Kushwaha, H.S.; Venkat Raj, V.

    1999-11-01

    In nuclear industry, the designer often comes across the requirements of Class-1 piping systems which need to be qualified for various normal and abnormal loading conditions. In order to have quick design changes and the design reviews at various stages of design, it is quite helpful if a dedicated software is available for the qualification of Class-1 piping systems. BARC has already purchased a piping analysis software CAESAR-II and has used it for the life extension of heavy water plant, Kota. CAESAR-II facilitates the qualification of Class-2 and Class-3 piping systems among others. However, the present version of CAESAR-II does not have the capability to perform stress checks for the ASME Class-1 nuclear piping systems. With this requirement in mind and the prohibitive costs of commercially available software for the Class-1 piping analyses, it was decided to develop a separate software for this class of piping in such a way that the input and output details of the piping from the CAESAR-II software can be made use of. This report principally contains the details regarding development of a software for codal qualification of Class-1 nuclear piping as per ASME code section-III, NB-3600. The entire work was carried out in three phases. The first phase consisted of development of the routines for reading the output files obtained from the CAESAR-II software, and converting them into required format for further processing. In this phase, the nodewise informations available from the CAESAR-II output file were converted into element-wise informations. The second phase was to develop a general subroutine for reading the various input parameters such as diameter, wall thickness, corrosion allowance, bend radius and also to recognize the bend elements based on the bend radius, directly from the input file of CAESAR-II software. The third phase was regarding the incorporation of the required steps for performing the ASME codal checks as per NB-3600 for Class-1 piping

  3. The development of the design method of nuclear piping system supported by elasto-plastic support structures (Part 1)

    International Nuclear Information System (INIS)

    Endo, R.; Murota, M.; Kawahata, J.-I.; Sato, T.; Mekomoto, Y.; Takayama, Y.; Kobayashi, H.; Hirose, J.

    1993-01-01

    The conventional aseismic design method of nuclear piping system is very conservative because of the accumulation of various safety factors in the design process, and nuclear piping systems are thought to have a large safety margin. Considering this situation, we promoted research to further rationalize nuclear power plants by reducing the amount of support structures and reducing the piping seismic response through vibration energy absorption resulting from the elasto-plastic behavior of piping support structures. The research has the following three stages. In the first stage, we select conventional piping support structures in Japanese light-water reactors that exhibit elasto-plastic behavior, and study the displacement dependency and the vibration frequency dependency on the stiffness and the energy absorption by testing their model. In the second stage, we make a piping test model with support structures whose characteristics have already been obtained, and perform vibration tests on a shaking table. In this way, we analyze the piping vibration characteristics by sinusoidal wave sweep tests and the piping response characteristics by seismic wave vibration tests, when the support structures are in an elasto-plastic condition. In the third stage, a general method is developed to evaluate the characteristics of the support structures obtained in the tests and it is applied to the evaluation of the characteristics of general support structures. A simplified analysis method is developed to evaluate the piping seismic response using the piping model test result. To expand the results mentioned above, we are developing a seismic design method of piping systems that allows support structures to have elasto-plastic behaviour. This paper reports the results of experiments conducted under the joint research program of Japanese electric power companies with support elements in the first stage and those with piping models in the second stage

  4. Beam test of ferrite absorber in TRISTAN MR

    International Nuclear Information System (INIS)

    Tajima, T.; Asano, K.; Furuya, T.; Ishi, Y.; Kijima, Y.; Mitsunobu, S.; Sennyu, K.; Takahashi, T.

    1996-06-01

    A study on the effect of beams on the ferrite absorber was performed using TRISTAN MR. The tested absorber consists of a 300 mm-diam. copper pipe with 4 mm-thick ferrite inner layer, which was fabricated with Hot Isostatic Press (HIP) technique. No spark, damage, or degradation were observed up to the highest available single bunch current of 4.4 mA, i.e. 2.8x10 11 electrons per bunch, which is 8.5 times higher than that of KEKB low energy ring. The loss factor showed significant increase with bunch shortening, e.g. 2.6 V/pC at 4 mm was about 40% higher than the value predicted by the calculation assuming Gaussian bunch and no incoming power from outside of the chamber. (author)

  5. 78 FR 63517 - Control of Ferrite Content in Stainless Steel Weld Metal

    Science.gov (United States)

    2013-10-24

    ... NUCLEAR REGULATORY COMMISSION [NRC-2012-0231] Control of Ferrite Content in Stainless Steel Weld... Ferrite Content in Stainless Steel Weld Metal.'' This guide (Revision 4) describes a method that the NRC staff considers acceptable for controlling ferrite content in stainless steel weld metal. It updates the...

  6. An underground nuclear power station using self-regulating heat-pipe controlled reactors

    Science.gov (United States)

    Hampel, V.E.

    1988-05-17

    A nuclear reactor for generating electricity is disposed underground at the bottom of a vertical hole that can be drilled using conventional drilling technology. The primary coolant of the reactor core is the working fluid in a plurality of thermodynamically coupled heat pipes emplaced in the hole between the heat source at the bottom of the hole and heat exchange means near the surface of the earth. Additionally, the primary coolant (consisting of the working fluid in the heat pipes in the reactor core) moderates neutrons and regulates their reactivity, thus keeping the power of the reactor substantially constant. At the end of its useful life, the reactor core may be abandoned in place. Isolation from the atmosphere in case of accident or for abandonment is provided by the operation of explosive closures and mechanical valves emplaced along the hole. This invention combines technology developed and tested for small, highly efficient, space-based nuclear electric power plants with the technology of fast- acting closure mechanisms developed and used for underground testing of nuclear weapons. This invention provides a nuclear power installation which is safe from the worst conceivable reactor accident, namely, the explosion of a nuclear weapon near the ground surface of a nuclear power reactor. 5 figs.

  7. Test results of the Los Alamos ferrite-tuned rf cavity

    International Nuclear Information System (INIS)

    Friedrichs, C.C.; Spalek, G.; Carlini, R.D.; Smythe, W.R.

    1987-03-01

    An rf accelerating cavity appropriate for use in a 20% frequency bandwidth synchrotron has been designed, fabricated, and is now being tested at Los Alamos. The cavity-amplifier system was designed to produce a peak rf gap voltage of 90 kV over the range from 50 to 60 MHz. Special features of the system are the transversely biased ferrite tuner, capacitive coupling of the amplifier to the cavity, and a 15-cm beam pipe. High-power rf testing of the cavity-amplifier system started in August 1986, using an adjustable dc power supply to bias the ferrite. This paper describes the cavity-amplifier circuit and the test results to the present time. Future plans are also discussed

  8. Enhancement of J estimation for typical nuclear pipes with a circumferential surface crack under tensile load

    International Nuclear Information System (INIS)

    Cho, Doo Ho; Woo, Seung Wan; Choi, Jae Boong; Kim, Young Jin; Chang, Yoon Suk; Jhung, Myung Jo; Choi, Young Hwan

    2010-01-01

    This paper is to report enhancement of engineering J estimation for semi-elliptical surface cracks under tensile load. Firstly, limitation of the sole solution suggested by Zahoor is shown for reliable structural integrity assessment of thin-walled nuclear pipes. An improved solution is then developed based on extensive 3D FE analyses employing deformation plasticity theory for typical nuclear piping materials. It takes over the structure of the existing solution but provides new tabulated plastic influence functions to cover a wide range of pipe geometry and crack shape. Furthermore, to facilitate easy prediction of the plastic influence function, an alternative simple equation is also developed by using a statistical response surface method. The proposed H 1 values can be used for elastic-plastic fracture analyses of thin-walled pipes with a circumferential surface crack subjected to tensile loading

  9. Enhancement of J estimation for typical nuclear pipes with a circumferential surface crack under tensile load

    Energy Technology Data Exchange (ETDEWEB)

    Cho, Doo Ho; Woo, Seung Wan; Choi, Jae Boong; Kim, Young Jin [Sungkyunkwan University, Suwon (Korea, Republic of); Chang, Yoon Suk [Kyung Hee University, Yongin (Korea, Republic of); Jhung, Myung Jo; Choi, Young Hwan [Korea Institute of Nuclear Safety, Daejeon (Korea, Republic of)

    2010-03-15

    This paper is to report enhancement of engineering J estimation for semi-elliptical surface cracks under tensile load. Firstly, limitation of the sole solution suggested by Zahoor is shown for reliable structural integrity assessment of thin-walled nuclear pipes. An improved solution is then developed based on extensive 3D FE analyses employing deformation plasticity theory for typical nuclear piping materials. It takes over the structure of the existing solution but provides new tabulated plastic influence functions to cover a wide range of pipe geometry and crack shape. Furthermore, to facilitate easy prediction of the plastic influence function, an alternative simple equation is also developed by using a statistical response surface method. The proposed H{sub 1} values can be used for elastic-plastic fracture analyses of thin-walled pipes with a circumferential surface crack subjected to tensile loading

  10. Nuclear piping criteria for Advanced Light-Water Reactors, Volume 1--Failure mechanisms and corrective actions

    International Nuclear Information System (INIS)

    Anon.

    1993-01-01

    This WRC Bulletin concentrates on the major failure mechanisms observed in nuclear power plant piping during the past three decades and on corrective actions taken to minimize or eliminate such failures. These corrective actions are applicable to both replacement piping and the next generation of light-water reactors. This WRC Bulletin was written with the objective of meeting a need for piping criteria in Advanced Light-Water Reactors, but there is application well beyond the LWR industry. This Volume, in particular, is equally applicable to current nuclear power plants, fossil-fueled power plants, and chemical plants including petrochemical. Implementation of the recommendations for mitigation of specific problems should minimize severe failures or cracking and provide substantial economic benefit. This volume uses a case history approach to high-light various failure mechanisms and the corrective actions used to resolve such failures. Particular attention is given to those mechanisms leading to severe piping failures, where severe denotes complete severance, large ''fishmouth'' failures, or long throughwall cracks releasing a minimum of 50 gpm. The major failure mechanisms causing severe failure are erosion-corrosion and vibrational fatigue. Stress corrosion cracking also has been a common problem in nuclear piping systems. In addition thermal fatigue due to mixing-tee and to thermal stratification also is discussed as is microbiologically-induced corrosion. Finally, water hammer, which represents the ultimate in internally-generated dynamic high-energy loads, is discussed

  11. Determination of leakage areas in nuclear piping

    Energy Technology Data Exchange (ETDEWEB)

    Keim, E. [Siemens/KWU, Erlangen (Germany)

    1997-04-01

    For the design and operation of nuclear power plants the Leak-Before-Break (LBB) behavior of a piping component has to be shown. This means that the length of a crack resulting in a leak is smaller than the critical crack length and that the leak is safely detectable by a suitable monitoring system. The LBB-concept of Siemens/KWU is based on computer codes for the evaluation of critical crack lengths, crack openings, leakage areas and leakage rates, developed by Siemens/KWU. In the experience with the leak rate program is described while this paper deals with the computation of crack openings and leakage areas of longitudinal and circumferential cracks by means of fracture mechanics. The leakage areas are determined by the integration of the crack openings along the crack front, considering plasticity and geometrical effects. They are evaluated with respect to minimum values for the design of leak detection systems, and maximum values for controlling jet and reaction forces. By means of fracture mechanics LBB for subcritical cracks has to be shown and the calculation of leakage areas is the basis for quantitatively determining the discharge rate of leaking subcritical through-wall cracks. The analytical approach and its validation will be presented for two examples of complex structures. The first one is a pipe branch containing a circumferential crack and the second one is a pipe bend with a longitudinal crack.

  12. Determination of leakage areas in nuclear piping

    International Nuclear Information System (INIS)

    Keim, E.

    1997-01-01

    For the design and operation of nuclear power plants the Leak-Before-Break (LBB) behavior of a piping component has to be shown. This means that the length of a crack resulting in a leak is smaller than the critical crack length and that the leak is safely detectable by a suitable monitoring system. The LBB-concept of Siemens/KWU is based on computer codes for the evaluation of critical crack lengths, crack openings, leakage areas and leakage rates, developed by Siemens/KWU. In the experience with the leak rate program is described while this paper deals with the computation of crack openings and leakage areas of longitudinal and circumferential cracks by means of fracture mechanics. The leakage areas are determined by the integration of the crack openings along the crack front, considering plasticity and geometrical effects. They are evaluated with respect to minimum values for the design of leak detection systems, and maximum values for controlling jet and reaction forces. By means of fracture mechanics LBB for subcritical cracks has to be shown and the calculation of leakage areas is the basis for quantitatively determining the discharge rate of leaking subcritical through-wall cracks. The analytical approach and its validation will be presented for two examples of complex structures. The first one is a pipe branch containing a circumferential crack and the second one is a pipe bend with a longitudinal crack

  13. Evaluation and summary of seismic response of above ground nuclear power plant piping to strong motion earthquakes

    International Nuclear Information System (INIS)

    Stevenson, J.D.

    1985-01-01

    The purpose of this paper is to summarize the observations and experience which has been developed relative to the seismic behavior of above-ground, building-supported, industrial type piping (similar to piping used in nuclear power plants) in strong motion earthquakes. The paper also contains observations regarding the response of piping in experimental tests which attempted to excite the piping to failure. Appropriate conclusions regarding the behavior of such piping in large earthquakes and recommendations as to future design of such piping to resist earthquake motion damage are presented based on observed behavior in large earthquakes and simulated shake table testing

  14. Model engineering for piping layout of boiling water reactor nuclear station

    International Nuclear Information System (INIS)

    Tsukada, Koji; Uchiyama, Masayuki; Wada, Takanao; Jibu, Noboru.

    1977-01-01

    A nuclear power station is made up of a wide variety of equipment, piping, ventilation ducts, conduits, and cable trays, etc. Even if equipment arrangement and piping layout are carefully planned on drawings, troubles such as interference often occur at field installation. Accordingly, it is thought very useful to make thorough examinations with plastic three-dimensional models in addition to drawings in reducing troubles at field, shortening the construction period, and improving economics. Examination with plastic models offers the following features: (1) It permits visual three-dimensional examination. (2) Group thinking and examination is possible. (3) Troubles due to failure to understand complicated drawings can be reduced drastically. Manufacturing a 1/20 scale model of the reactor building of the Tokai No. 2 Power Station of the Japan Atomic Power Co., Hitachi has performed model engineering-solution of interference troubles related to equipment and piping, securing of work space for in-service inspection (ISI), carry-in/installation of various equipment and piping, and determination of the piping route of which only the starting and terminating points were given under the complicated ambient conditions. Success with this procedure has confirmed that model engineering is an effective technique for future plant engineering. (auth.)

  15. A study on probabilistic fracture mechanics for nuclear pressure vessels and piping

    International Nuclear Information System (INIS)

    Yagawa, Genki; Yoshimura, Shinobu

    1997-01-01

    This paper describes some recent research activities on probabilistic fracture mechanics (PFM) for nuclear pressure vessels and piping (PV and P) performed by the RC111 research committee of the Japan Society of Mechanical Engineers (JSME) under a subcontract of the Japan Atomic Energy Research Institute (JAERI). To establish standard procedures for evaluating failure probabilities of nuclear PV and P, we have set up the following three kinds of PFM round-robin problems on: (a) primary piping under normal operating conditions, (b) aged reactor pressure vessel (RPV) under normal and upset operating conditions, and (c) aged RPV under pressurised thermal shock (PTS) events. The basic problems of the last one are chosen from some US benchmark problems such as EPRI (Electric Power Research Institute) and US NRC (Nuclear Regulatory Commission) joint PTS benchmark problems. This paper summarizes some sensitivity studies on the three kinds of problems mainly varying material properties such as flow stress, fracture toughness, fatigue crack growth rate, Cu content. Employed in this study are the PFM computer codes developed in Japan and USA. Failure probabilities of nuclear PV and P are quantitatively discussed in detail. (author)

  16. The PEACE PIPE: Recycling nuclear weapons into a TRU storage/shipping container

    International Nuclear Information System (INIS)

    Floyd, D.; Edstrom, C.; Biddle, K.; Orlowski, R.; Geinitz, R.; Keenan, K.; Rivera, M.

    1997-01-01

    This paper describes results of a contract undertaken by the National Conversion Pilot Project (NCPP) at the Rocky Flats Environmental Technology Site (RFETS) to fabricate stainless steel ''pipe'' containers for use in certification testing at Sandia National Lab, Albuquerque to qualify the container for both storage of transuranic (TRU) waste at RFETS and other DOE sites and shipping of the waste to the Waste Isolation Pilot Project (WIPP). The paper includes a description of the nearly ten-fold increase in the amount of contained plutonium enabled by the product design, the preparation and use of former nuclear weapons facilities to fabricate the components, and the rigorous quality assurance and test procedures that were employed. It also describes how stainless steel nuclear weapons components can be converted into these pipe containers, a true ''swords into plowshare'' success story

  17. Piping information centralized management system for nuclear plant, PIMAS

    International Nuclear Information System (INIS)

    Matsumoto, Masaru

    1977-01-01

    Piping works frequently cause many troubles in the progress of construction works, because piping is the final procedure in design and construction and is forced to suffer the problems in earlier stages. The enormous amount of data on quality control and management leads to the employment of many unskilled designers of low technical ability, and it causes confusion in installation and inspection works. In order to improve the situation, the ''piping information management system for nuclear plants (PIMAS)'' has been introduced attempting labor-saving and speed-up. Its main purposes are the mechanization of drafting works, the centralization of piping informations, labor-saving and speed-up in preparing production control data and material management. The features of the system are as follows: anyone can use the same informations whenever he requires them because the informations handled in design works are contained in a large computer; the system can be operated on-line, and the terminals are provided in the sections which require informations; and the sub-systems are completed for preparing a variety of drawings and data. Through the system, material control has become possible by using the material data in each plant, stock material data and the information on the revision of drawings in the design department. Efficiency improvement and information centralization in the manufacturing department have also been achieved because the computer has prepared many kinds of slips based on unified drawings and accurate informations. (Wakatsuki, Y.)

  18. Review and assessment of research relevant to design aspects of nuclear power plant piping systems. Final report

    International Nuclear Information System (INIS)

    Rodabaugh, E.C.; Maxey, W.A.; Eiber, R.J.

    1977-06-01

    Significant research on piping systems is evaluated, and the correlation of that research with design practices is presented. The objective is to quantify the research/design practices in terms of the reliability of piping used in nuclear power plants

  19. Finite-element analysis of flawed and unflawed pipe tests

    International Nuclear Information System (INIS)

    James, R.J.; Nickell, R.E.; Sullaway, M.F.

    1989-12-01

    Contemporary versions of the general purpose, nonlinear finite element program ABAQUS have been used in structural response verification exercises on flawed and unflawed austenitic stainless steel and ferritic steel piping. Among the topics examined, through comparison between ABAQUS calculations and test results, were: (1) the effect of using variations in the stress-strain relationship from the test article material on the calculated response; (2) the convergence properties of various finite element representations of the pipe geometry, using shell, beam and continuum models; (3) the effect of test system compliance; and (4) the validity of ABAQUS J-integral routines for flawed pipe evaluations. The study was culminated by the development and demonstration of a ''macroelement'' representation for the flawed pipe section. The macroelement can be inserted into an existing piping system model, in order to accurately treat the crack-opening and crack-closing static and dynamic response. 11 refs., 20 figs., 1 tab

  20. Dimensional control of buttwelding pipe fitting for nuclear power plant Class 1 piping systems

    International Nuclear Information System (INIS)

    Rodabaugh, E.C.; Moore, S.E.; Robinson, J.N.

    1976-11-01

    Dimensional controls of wrought steel buttwelding fittings are examined from the standpoint of design adequacy. A fairly large number of fittings were purchased from different manufacturers. The dimensions of each fitting were measured and correlated along with additional information obtained from the manufacturers in an effort to establish ''standard'' shapes. This information and a critical examination of the present ANSI standards is used to develop a ''Supplementary Standard.'' The Supplementary Standard is intended to provide improved dimensional control and more complete design information for fittings used in Class 1 nuclear power plant piping systems

  1. Integrated CAE system for nuclear power plants. Development of piping design check system

    International Nuclear Information System (INIS)

    Narikawa, Noboru; Sato, Teruaki

    1994-01-01

    Toshiba Corporation has developed and operated the integrated CAE system for nuclear power plants, the core of which is the engineering data base to manage accurately and efficiently enormous amount of data on machinery, equipment and piping. As the first step of putting knowledge base system to practical use, piping design check system has been developed. By automatically checking up piping design, this system aims at the prevention of overlooking mistakes, efficient design works and the overall quality improvement of design. This system is based on the thought that it supports designers, and final decision is made by designers. This system is composed of the integrated data base, a two-dimensional CAD system and three-dimensional CAD system. The piping design check system is one of the application systems of the integrated CAE system. Object-oriented programming is the base of the piping design check system, and design knowledge and CAD data are necessary. As to the method of realizing the check system, the flow of piping design, the checkup functions, the checkup of interference and attribute base, and the integration of the system are explained. (K.I)

  2. Piping inspection round robin

    International Nuclear Information System (INIS)

    Heasler, P.G.; Doctor, S.R.

    1996-04-01

    The piping inspection round robin was conducted in 1981 at the Pacific Northwest National Laboratory (PNNL) to quantify the capability of ultrasonics for inservice inspection and to address some aspects of reliability for this type of nondestructive evaluation (NDE). The round robin measured the crack detection capabilities of seven field inspection teams who employed procedures that met or exceeded the 1977 edition through the 1978 addenda of the American Society of Mechanical Engineers (ASME) Section 11 Code requirements. Three different types of materials were employed in the study (cast stainless steel, clad ferritic, and wrought stainless steel), and two different types of flaws were implanted into the specimens (intergranular stress corrosion cracks (IGSCCs) and thermal fatigue cracks (TFCs)). When considering near-side inspection, far-side inspection, and false call rate, the overall performance was found to be best in clad ferritic, less effective in wrought stainless steel and the worst in cast stainless steel. Depth sizing performance showed little correlation with the true crack depths

  3. Thermal fatigue crack growth in mixing tees nuclear piping - An analytical approach

    International Nuclear Information System (INIS)

    Radu, V.

    2009-01-01

    The assessment of fatigue crack growth due to cyclic thermal loads arising from turbulent mixing presents significant challenges, principally due to the difficulty of establishing the actual loading spectrum. So-called sinusoidal methods represent a simplified approach in which the entire spectrum is replaced by a sine-wave variation of the temperature at the inner pipe surface. The need for multiple calculations in this process has lead to the development of analytical solutions for thermal stresses in a pipe subject to sinusoidal thermal loading, described in previous work performed at JRC IE Petten, The Netherlands, during the author's stage as seconded national expert. Based on these stress distributions solutions, the paper presents a methodology for assessment of thermal fatigue crack growth life in mixing tees nuclear piping. (author)

  4. Predicting local distributions of erosion-corrosion wear sites for the piping in the nuclear power plant using CFD models

    International Nuclear Information System (INIS)

    Ferng, Y.M.

    2008-01-01

    The erosion-corrosion (E/C) wear is an essential degradation mechanism for the piping in the nuclear power plant, which results in the oxide mass loss from the inside of piping, the wall thinning, and even the pipe break. The pipe break induced by the E/C wear may cause costly plant repairs and personal injures. The measurement of pipe wall thickness is a useful tool for the power plant to prevent this incident. In this paper, CFD models are proposed to predict the local distributions of E/C wear sites, which include both the two-phase hydrodynamic model and the E/C models. The impacts of centrifugal and gravitational forces on the liquid droplet behaviors within the piping can be reasonably captured by the two-phase model. Coupled with these calculated flow characteristics, the E/C models can predicted the wear site distributions that show satisfactory agreement with the plant measurements. Therefore, the models proposed herein can assist in the pipe wall monitoring program for the nuclear power plant by way of concentrating the measuring point on the possible sites of severe E/C wear for the piping and reducing the measurement labor works

  5. Microstructural control and high temperature mechanical property of ferritic/martensitic steels for nuclear reactor application

    International Nuclear Information System (INIS)

    Adetunji, G.J.

    1991-04-01

    The materials under study are 9-12% Cr ferritic/martensitic steels, alternative candidate materials for application in core components of nuclear power reactors. This work involves (1) Investigation of high temperature fracture mechanism during slow tensile and limited creep testing at 600 o C (2) Extensive study of solute element segregation both theoretically and experimentally (3) Investigation of effects by thermal ageing and irradiation on microstructural developments in relation to high temperature mechanical behaviour. From (1) the results obtained indicate that the important microstructural characteristics controlling the fracture of 9-12% Cr ferritic/martensitic steels at high temperature are (a) solute segregation to inclusion-matrix interfaces (b) hardness of the martensitic matrix and (c) carbide particle size distribution. From (2) the results indicate a strong concentration gradient of silicon and molybdenum near lath packet boundaries for certain quenching rates from the austenitizing temperature. From (3) high temperature tensile data were obtained for irradiated samples with thermally aged ones as control. (author)

  6. An overview of environmental degradation of materials in nuclear power plant piping systems

    International Nuclear Information System (INIS)

    Shack, W.J.

    1988-01-01

    Several types of environmental degradation of piping in light water reactor (LWR) power systems have already had significant economic impact on the industry. These include intergranular stress corrosion cracking (IGSCC) of austenitic stainless steel piping, erosion-corrosion of carbon steel piping in secondary systems, and a variety of types of fatigue failures. In addition, other problems have been identified that must be addressed in considering extended lifetimes for nuclear plants. These include the embrittlement of cast stainless steels after extended thermal aging at reactor operating temperatures and the effect of reactor environments on the design margin inherent in the ASME Section III fatigue design curves especially for carbon steel piping. These problems are being addressed by wide-ranging research programs in this country and abroad. The purpose of this review is to highlight some of the accomplishments of these programs and to note some of the remaining unanswered questions

  7. Performance Evaluation of the Concept of Hybrid Heat Pipe as Passive In-core Cooling Systems for Advanced Nuclear Power Plant

    International Nuclear Information System (INIS)

    Jeong, Yeong Shin; Kim, Kyung Mo; Kim, In Guk; Bang, In Cheol

    2015-01-01

    As an arising issue for inherent safety of nuclear power plant, the concept of hybrid heat pipe as passive in-core cooling systems was introduced. Hybrid heat pipe has unique features that it is inserted in core directly to remove decay heat from nuclear fuel without any changes of structures of existing facilities of nuclear power plant, substituting conventional control rod. Hybrid heat pipe consists of metal cladding, working fluid, wick structure, and neutron absorber. Same with working principle of the heat pipe, heat is transported by phase change of working fluid inside metal cask. Figure 1 shows the systematic design of the hybrid heat pipe cooling system. In this study, the concept of a hybrid heat pipe was introduced as a Passive IN-core Cooling Systems (PINCs) and demonstrated for internal design features of heat pipe containing neutron absorber. Using a commercial CFD code, single hybrid heat pipe model was analyzed to evaluate thermal performance in designated operating condition. Also, 1-dimensional reactor transient analysis was done by calculating temperature change of the coolant inside reactor pressure vessel using MATLAB. As a passive decay heat removal device, hybrid heat pipe was suggested with a concept of combination of heat pipe and control rod. Hybrid heat pipe has distinct feature that it can be a unique solution to cool the reactor when depressurization process is impossible so that refueling water cannot be injected into RPV by conventional ECCS. It contains neutron absorber material inside heat pipe, so it can stop the reactor and at the same time, remove decay heat in core. For evaluating the concept of hybrid heat pipe, its thermal performance was analyzed using CFD and one-dimensional transient analysis. From single hybrid heat pipe simulation, the hybrid heat pipe can transport heat from the core inside to outside about 18.20 kW, and total thermal resistance of hybrid heat pipe is 0.015 .deg. C/W. Due to unique features of long heat

  8. Estimates of margins in ASME Code strength values for stainless steel nuclear piping

    International Nuclear Information System (INIS)

    Ware, A.G.

    1995-01-01

    The margins in the ASME Code stainless steel allowable stress values that can be attributed to the variations in material strength are evaluated for nuclear piping steels. Best-fit curves were calculated for the material test data that were used to determine allowable stress values for stainless steels in the ASME Code, supplemented by more recent data, to estimate the mean stresses. The mean yield stresses (on which the stainless steel S m values are based) from the test data are about 15 to 20% greater than the ASME Code yield stress values. The ASME Code yield stress values are estimated to approximately coincide with the 97% confidence limit from the test data. The mean and 97% confidence limit values can be used in the probabilistic risk assessments of nuclear piping

  9. Microstructural characterization of pipe bomb fragments

    International Nuclear Information System (INIS)

    Gregory, Otto; Oxley, Jimmie; Smith, James; Platek, Michael; Ghonem, Hamouda; Bernier, Evan; Downey, Markus; Cumminskey, Christopher

    2010-01-01

    Recovered pipe bomb fragments, exploded under controlled conditions, have been characterized using scanning electron microscopy, optical microscopy and microhardness. Specifically, this paper examines the microstructural changes in plain carbon-steel fragments collected after the controlled explosion of galvanized, schedule 40, continuously welded, steel pipes filled with various smokeless powders. A number of microstructural changes were observed in the recovered pipe fragments: deformation of the soft alpha-ferrite grains, deformation of pearlite colonies, twin formation, bands of distorted pearlite colonies, slip bands, and cross-slip bands. These microstructural changes were correlated with the relative energy of the smokeless powder fillers. The energy of the smokeless powder was reflected in a reduction in thickness of the pipe fragments (due to plastic strain prior to fracture) and an increase in microhardness. Moreover, within fragments from a single pipe, there was a radial variation in microhardness, with the microhardness at the outer wall being greater than that at the inner wall. These findings were consistent with the premise that, with the high energy fillers, extensive plastic deformation and wall thinning occurred prior to pipe fracture. Ultimately, the information collected from this investigation will be used to develop a database, where the fragment microstructure and microhardness will be correlated with type of explosive filler and bomb design. Some analyses, specifically wall thinning and microhardness, may aid in field characterization of explosive devices.

  10. Remote controlled in-pipe manipulators for dye-penetrant inspection and grinding of weld roots inside of pipes

    International Nuclear Information System (INIS)

    Seeberger, E.K.

    2000-01-01

    Technical plants which have to satisfy stringent safety criteria must be continuously kept in line with the state of art. This applies in particular to nuclear power plants. The quality of piping in nuclear power plants has been improved quite considerably in recent years. By virtue of the very high quality requirements fulfilled in the manufacture of medium-carrying and pressure-retaining piping, one of the focal aspects of in-service inspections is the medium wetted inside of the piping. A remote controlled pipe crawler has been developed to allow to perform dye penetrant testing of weld roots inside piping (ID ≥ 150 mm). The light crawler has been designed such that it can be inserted into the piping via valves (gate valves, check valves,...) with their internals removed. Once in the piping, all crawler movements are remotely controlled (horizontal and vertical pipes incl. the elbows). If indications are found these discontinuities are ground according to a qualified procedure using a special grinding head attached to the crawler with complete extraction of all grinding residues. The in-pipe grinding is a special qualified three (3) step performance that ensures no residual tensile stress (less than 50 N/mm 2 ) in the finish machined austenitic material surface. The in-pipe inspection system, qualified according to both the specifications of the German Nuclear Safety Standards Commission (KTA) and the American Society of Mechanical Engineers (ASME), has already been used successfully in nuclear power plants on many occasions. (author)

  11. Evaluation of flawed-pipe experiments: Final report

    Energy Technology Data Exchange (ETDEWEB)

    Zahoor, A.; Gamble, R.M.

    1986-11-01

    The purpose of this work was to perform elastic plastic fracture mechanics evaluations of experimental data that have become available from the NRC Degraded Pipe Program, Phase II (DPII) and other NRC and EPRI sponsored programs. These evaluations were used to assess flaw evaluation procedures for austenitic and ferritic steel piping. The results also have application to leak before break fracture mechanics analysis. An improved relationship was developed for computing the J-Integral for pipes containing throughwall flaws and loaded in pure bending. The results from several DPII experiments were compared to predictions based on new J estimation scheme solutions for circumferential, finite length part-throughwall flaws in pipes with bending loading. Comparisons of experimental maximum loads with those predicted using procedures in Paragraph IWB-3640, Section XI of the ASME Code indicate that the Code flaw evaluation procedures and allowables for austenitic steel pipe are appropriate and conservative. However, the comparisons also indicate that the base metal Code allowable loads may be about 15 to 20% high for small diameter piping (less than 8-inch diameter) at allowable a/t larger than about 0.5. The work further indicates that there is justification for reducing the conservatism in IWB-3640 allowable flaw sizes and loads for austenitic steel pipe with submerged or shielded metal arc welds.

  12. Using data visualization tools to support degradation assessment in nuclear piping

    International Nuclear Information System (INIS)

    Jyrkama, M.I.; Pandey, M.D.

    2012-01-01

    Nuclear utilities collect a vast amount of in-service inspection data as part of periodic inspection plans and the detailed assessment and monitoring of various degradation mechanisms, such as fretting, corrosion, and creep. In many cases, the focus is primarily on ensuring that the observed minimum or maximum values are within the acceptable regulatory limits, while the rest of the (often costly) surveillance data remains unused and unanalyzed. The objective of this study is to illustrate how data visualization tools can be used effectively to analyze and consider all of the in-service inspection data, and hence provide valuable support for the degradation assessment in nuclear piping. The 2D and 3D visualization tools discussed in this paper were developed mainly in the context of flow accelerated corrosion (FAC) assessment in feeder piping, where the complex pipe geometries and flow conditions have a significant impact on the ultrasonic (UT) wall thickness measurements. The visualization of eddy current inspection results from the assessment of pitting corrosion of steam generator tubing will also be discussed briefly. The visualization tools provide a more comprehensive view of the degree and extent of degradation, and hence directly support the planning of future inspection of critical components by identifying key locations and areas for detailed monitoring. The results furthermore increase the confidence and reliability of fitness-for-service (FFS) assessments and life cycle management (LCM) planning decisions with respect to component repair or replacement. (author)

  13. Pipe rupture and steam/water hammer design loads for dynamic analysis of piping systems

    International Nuclear Information System (INIS)

    Strong, B.R. Jr.; Baschiere, R.J.

    1978-01-01

    The design of restraints and protection devices for nuclear Class I and Class II piping systems must consider severe pipe rupture and steam/water hammer loadings. Limited stress margins require that an accurate prediction of these loads be obtained with a minimum of conservatism in the loads. Methods are available currently for such fluid transient load development, but each method is severely restricted as to the complexity and/or the range of fluid state excursions which can be simulated. This paper presents a general technique for generation of pipe rupture and steam/water hammer design loads for dynamic analysis of nuclear piping systems which does not have the limitations of existing methods. Blowdown thrust loadings and unbalanced piping acceleration loads for restraint design of all nuclear piping systems may be found using this method. The technique allows the effects of two-phase distributed friction, liquid flashing and condensation, and the surrounding thermal and mechanical equipment to be modeled. A new form of the fluid momentum equation is presented which incorporates computer generated fluid acceleration histories by inclusion of a geometry integral termed the 'force equivalent area' (FEA). The FEA values permit the coupling of versatile thermal-hydraulic programs to piping dynamics programs. Typical applications of the method to pipe rupture problems are presented and the resultant load histories compared with existing techniques. (Auth.)

  14. Structural Health Monitoring of Piping in Nuclear Power Plants - A Review of Efficiency of Existing Methods

    International Nuclear Information System (INIS)

    Stepinski, Tadeusz

    2011-05-01

    In the first part of the report, we review various efforts that have been recently performed in the USA in the field of reactor health monitoring. They were carried out by different organizations and they addressed different issues related to the safety of nuclear reactors. Among other aspects, we present technical issues related to the design of a self-diagnostic monitoring system for the next generation of nuclear reactors. We also give a brief review of the international experience of such systems in today's reactors. In the second part of the report we focus on long range ultrasonic techniques that can be used for monitoring piping in nuclear reactors. Common strategy used in the Swedish nuclear plants is leak before break (LBB), which relies on monitoring leaks from the pipelines as indications of possible pipe break. Significant parts of piping systems are partly or entirely inaccessible for the NDE inspectors, which complicates the use of proactive strategies. One solution to the problem could be implementing monitoring systems capable of monitoring pipelines over a long range. The method, which has shown much promise in such applications is the UT based on guided waves (GW) referred to as long range ultrasound testing (LRUT). In the report we give a brief review of the GW theory followed by the presentation the commercial GW instruments and transducers designed for the LRUT of piping. We also present examples of the baseline based systems using permanently installed transducers. In the final part we report capacity tests of the LRUT instruments performed in collaboration with two different manufactures

  15. Qualification of Manual Phased Array Ultrasonic Techniques for Pipe Weld Inspection in Nuclear Power Plants

    Energy Technology Data Exchange (ETDEWEB)

    Poirier, J.; Hayes, P.; Vicat, F. [GE Inspection Technologies (United States)

    2011-07-01

    Phasor XS can be used for piping weld inspection in any facilities that use EPRI procedures (example: nuclear power plant in Usa, Japan, ...). Whole pipe range is inspected with 5 probes and 6 wedges: 4 1-dimensional probe for sound wave scanning (different frequency, different apertures); 1 dual matrix probe for LW scanning; there are 3 types of wedges optimized for weld inspection. Weld is scanned in 'Raster Scan', maximum range from 35 up to 80 degrees. Probe selection is defined in the procedure according to pipe diameter, pipe thickness and type of access (single or dual side). We have to note that datasets for dual matrix probe are provided with the procedure because this kind of probe cannot be programmed inside Phasor XS

  16. Assessment of value-impact associated with the elimination of postulated pipe ruptures from the design basis for nuclear power plants

    International Nuclear Information System (INIS)

    Holman, G.S.; Chou, C.K.

    1985-01-01

    The US Nuclear Regulatory Commission is proposing to amend the regulations that currently require that the design basis for nuclear power plants include the postulation of dynamic effects from loss of coolant accidents up to and including the double-ended rupture of the largest pipe in the reactor coolant system. Proposed modifications would allow analyses to serve as a sufficient basis for excluding dynamic effects, including but not necessarily limited to pipe whip and jet impingement, associated with specific pipe ruptures. Only dynamic effects would be impacted; current design requirements for containment sizing and discharge capacity of emergency core cooling systems would remain unchanged. This report presents a detailed analysis of value-impact associated with the proposed amendment for PWR reactor coolant loop piping and for BWR recirculation loop piping. The effect of extending application of the proposed rule change to other piping systems is also assessed in a less quantitative manner

  17. Reliability Data for Piping Components in Nordic Nuclear Power Plants 'R-Book'. Project Phase 1. Rev 1

    Energy Technology Data Exchange (ETDEWEB)

    Lydell, Bengt (Scandpower Risk Management Inc., Houston, TX (US)); Olsson, Anders (Relcon Scandpower AB, Stockholm (SE))

    2008-01-15

    This report constitutes a planning document for a new RandD project to develop a piping component reliability parameter handbook for use in probabilistic safety assessment (PSA) and related activities. The Swedish acronym for this handbook is 'R-Book.' The objective of the project is to utilize the OECD Nuclear Energy Agency 'OECD Pipe Failure Data Exchange Project' (OPDE) database to derive piping component failure rates and rupture probabilities for input to internal flooding probabilistic safety assessment, high-energy line break' (HELB) analysis, risk-informed in-service inspection (RI-ISI) program development, and other activities related to PSA. This new RandD project is funded by member organizations of the Nordic PSA Group (NPSAG) - Forsmark AB, OKG AB, Ringhals AB, and the Swedish Nuclear Power Inspectorate (SKI). The history behind the current effort to produce a handbook of piping reliability parameters goes back to 1994 when SKI funded a 5-year RandD project to explore the viability of establishing an international database on the service experience with piping system components in commercial nuclear power plants. An underlying objective behind this 5-year program was to investigate the different options and possibilities for deriving pipe failure rates and rupture probabilities directly from service experience data as an alternative to probabilistic fracture mechanics. The RandD project culminated in an international piping reliability seminar held in the fall of 1997 in Sigtuna (Sweden) and a pilot project to demonstrate an application of the pipe failure database to the estimation of loss-of-coolant-accident (LOCA) frequency (SKI Report 98:30). A particularly important outcome of the 5-year project was a decision by SKI to transfer the pipe failure database including the lessons learned to an international cooperative effort under the auspices of the OECD Nuclear Energy Agency. Following on information exchange and planning

  18. In-service diagnostics of main circulating circuit pipes of WWER nuclear power plants

    International Nuclear Information System (INIS)

    Svoboda, V.; Merta, J.; Merta, V.

    1982-01-01

    The application is discussed of the acoustic emission method for testing the integrity of the components of the main circulating circuit of the WWER 440 nuclear power plant. A description is given of the main circulating circuit and a stress analysis on the basis of strength computations considering operating modes is presented. An analysis is also presented of the possible damage of the pipe material as related to the application of the acoustic emission method for in-service inspection of the pipes. Certain practical problems of application are discussed. (author)

  19. Non-metallic structural wrap systems for pipe

    International Nuclear Information System (INIS)

    Walker, R.H.; Wesley Rowley, C.

    2001-01-01

    The use of thermoplastics and reinforcing fiber has been a long-term application of non-metallic material for structural applications. With the advent of specialized epoxies and carbon reinforcing fiber, structural strength approaching and surpassing steel has been used in a wide variety of applications, including nuclear power plants. One of those applications is a NSWS for pipe and other structural members. The NSWS is system of integrating epoxies with reinforcing fiber in a wrapped geometrical configuration. This paper specifically addresses the repair of degraded pipe in heat removal systems used in nuclear power plants, which is typically caused by corrosion, erosion, or abrasion. Loss of structural material leads to leaks, which can be arrested by a NSWS for the pipe. The technical aspects of using thermoplastics to structurally improve degraded pipe in nuclear power plants has been addressed in the ASME B and PV Code Case N-589. Using the fundamentals described in that Code Case, this paper shows how this technology can be extended to pipe repair from the outside. This NSWS has already been used extensively in non-nuclear applications and in one nuclear application. The cost to apply this NSWS is typically substantially less than replacing the pipe and may be technically superior to replacing the pipe. (author)

  20. Seismic design of equipment and piping systems for nuclear power plants in Japan

    International Nuclear Information System (INIS)

    Minematsu, Akiyoshi

    1997-01-01

    The philosophy of seismic design for nuclear power plant facilities in Japan is based on 'Examination Guide for Seismic Design of Nuclear Power Reactor Facilities: Nuclear Power Safety Committee, July 20, 1981' (referred to as 'Examination Guide' hereinafter) and the present design criteria have been established based on the survey of governmental improvement and standardization program. The detailed design implementation procedure is further described in 'Technical Guidelines for Aseismic Design of Nuclear Power Plants, JEAG4601-1987: Japan Electric Association'. This report describes the principles and design procedure of the seismic design of equipment/piping systems for nuclear power plant in Japan. (J.P.N.)

  1. Seismic design of equipment and piping systems for nuclear power plants in Japan

    Energy Technology Data Exchange (ETDEWEB)

    Minematsu, Akiyoshi [Tokyo Electric Power Co., Inc. (Japan)

    1997-03-01

    The philosophy of seismic design for nuclear power plant facilities in Japan is based on `Examination Guide for Seismic Design of Nuclear Power Reactor Facilities: Nuclear Power Safety Committee, July 20, 1981` (referred to as `Examination Guide` hereinafter) and the present design criteria have been established based on the survey of governmental improvement and standardization program. The detailed design implementation procedure is further described in `Technical Guidelines for Aseismic Design of Nuclear Power Plants, JEAG4601-1987: Japan Electric Association`. This report describes the principles and design procedure of the seismic design of equipment/piping systems for nuclear power plant in Japan. (J.P.N.)

  2. Automatic welding processes for reactor coolant pipes used in PWR type nuclear power plant

    International Nuclear Information System (INIS)

    Hamada, T.; Nakamura, A.; Nagura, Y.; Sakamoto, N.

    1979-01-01

    The authors developed automatic welding processes (submerged arc welding process and TIG welding process) for application to the welding of reactor coolant pipes which constitute the most important part of the PWR type nuclear power plant. Submerged arc welding process is suitable for flat position welding in which pipes can be rotated, while TIG welding process is suitable for all position welding. This paper gives an outline of the two processes and the results of tests performed using these processes. (author)

  3. Stability of cracked pipe under seismic/dynamic displacement-controlled stresses. Subtask 1.2 final report

    International Nuclear Information System (INIS)

    Kramer, G.; Veith, P.; Marschall, C.

    1997-06-01

    Results of displacement-controlled pipe fracture experiments, analyses, and material characterization efforts performed within the International Piping Integrity Research Group, IPIRG, Program Subtask 1.2 are discussed. Effects of dynamic versus quasi-static and monotonic versus cyclic loading were evaluated for ductile tearing of two materials, A106 Grade B ferritic steel and TP304 austenitic steel. Twelve through-wall-cracked pipe experiments were conducted on 6-inch diameter Schedule 120 pipe at 288 C (550 F). The results indicated dynamic loading at seismic strain rates marginally increased the load-carrying capacity of austenitic steel. The ferritic steel tested was sensitive to dynamic strain-aging, and consequently, its load-carrying capacity decreased at dynamic strain rates. Two parameters were found to affect the apparent ductile crack growth resistance during cyclic loading, load ratio (R) and incremental plastic displacement that occurs in a cycle. Cyclic (R = 0) loading had minimal effect on ductile tearing for both materials. However, fully reversed loading decreased the load-carrying capacity and toughness for both materials. The incremental plastic displacement can be as important as the load ratio; however, it is harder to quantify from design stress reports. Large plastic displacements will minimize the effect of negative load ratios

  4. Pipe connector

    International Nuclear Information System (INIS)

    Sullivan, T.E.; Pardini, J.A.

    1978-01-01

    A safety test facility for testing sodium-cooled nuclear reactor components includes a reactor vessel and a heat exchanger submerged in sodium in the tank. The reactor vessel and heat exchanger are connected by an expansion/deflection pipe coupling comprising a pair of coaxially and slidably engaged tubular elements having radially enlarged opposed end portions of which at least a part is of spherical contour adapted to engage conical sockets in the ends of pipes leading out of the reactor vessel and in to the heat exchanger. A spring surrounding the pipe coupling urges the end portions apart and into engagement with the spherical sockets. Since the pipe coupling is submerged in liquid a limited amount of leakage of sodium from the pipe can be tolerated

  5. A Multi-State Physics Modeling approach for the reliability assessment of Nuclear Power Plants piping systems

    International Nuclear Information System (INIS)

    Di Maio, Francesco; Colli, Davide; Zio, Enrico; Tao, Liu; Tong, Jiejuan

    2015-01-01

    Highlights: • We model piping systems degradation of Nuclear Power Plants under uncertainty. • We use Multi-State Physics Modeling (MSPM) to describe a continuous degradation process. • We propose a Monte Carlo (MC) method for calculating time-dependent transition rates. • We apply MSPM to a piping system undergoing thermal fatigue. - Abstract: A Multi-State Physics Modeling (MSPM) approach is here proposed for degradation modeling and failure probability quantification of Nuclear Power Plants (NPPs) piping systems. This approach integrates multi-state modeling to describe the degradation process by transitions among discrete states (e.g., no damage, micro-crack, flaw, rupture, etc.), with physics modeling by (physic) equations to describe the continuous degradation process within the states. We propose a Monte Carlo (MC) simulation method for the evaluation of the time-dependent transition rates between the states of the MSPM. Accountancy is given for the uncertainty in the parameters and external factors influencing the degradation process. The proposed modeling approach is applied to a benchmark problem of a piping system of a Pressurized Water Reactor (PWR) undergoing thermal fatigue. The results are compared with those obtained by a continuous-time homogeneous Markov Chain Model

  6. Piping system damping data at higher frequencies

    International Nuclear Information System (INIS)

    Ware, A.G.

    1987-01-01

    Research has been performed at the Idaho National Engineering Laboratory (INEL) for the United States Nuclear Regulatory Commission (USNRC) to determine best-estimate damping values for dynamic analyses of nuclear piping systems excited in the 20 to 100 Hz frequency range. Vibrations in this frequency range are typical of fluid-induced transients, for which no formal pipe damping guidelines exist. The available data found in the open literature and the USNRC/INEL nuclear piping damping data bank were reviewed, and a series of tests on a straight 3-in. (76-mm) piping system and a 5-in. (127-mm) system with several bends and elbows were conducted as part of this research program. These two systems were supported with typical nuclear piping supports that could be changed from test to test during the series. The resulting damping values were ≥ those of the Pressure Vessel Research Committee (PVRC) proposal for unisulated piping. Extending the PVRC damping curve from 20 to 100 Hz at 3% of critical damping would give a satisfactory representation of the test data. This position has been endorsed by the PVRC Technical Committee on Piping Systems. 14 refs

  7. The water treatment in the dual-purpose nuclear plants of Babcock and Wilcox with straight pipes

    International Nuclear Information System (INIS)

    Martynova, O.I.

    1978-01-01

    A report is given on water processing and water chemistry in the dual-purpose nuclear power plants (as compared to the single-purpose nuclear power plants) of Babcock and Wilcox, with flow steam generators with straight pipes. The most important materials, especially regarding their corrosion resistance, and the water composition during 'hot' start-up of the Okonie-I power plant, the quality factors of the feedwater, the water quality factors of the steam generator with fast start-up and the experience with numerous corrosion-caused defects in steam generator pipes are dealt with from the aspect of optimum water processing and successful continuous operation. (HK) [de

  8. Water inlet and steam outlet pipes fitted one inside the other for nuclear reactors

    International Nuclear Information System (INIS)

    Mc Donald, B.N.

    1976-01-01

    A description is given of a combined exhaust nozzle and intake pipe system to support a heat exchanger inside a nuclear reactor pressure vessel. It comprises a generally cylindrical part on the exhaust nozzle, the cylindrical part having an inside passage, a flange around the passage and provided with means to secure the exhaust nozzle to the reactor pressure vessel so as to make it fluidtight. The cylindrical part has an aperture inside to take the intake pipe inside the passage so as to enable the intake pipe to project into the heat exchanger. A collar made on the heat exchanger projects from the heat exchanger to the cylindrical nozzle component to establish communication with the inside passage for the fluid [fr

  9. Boron-bearing Influences of 9Cr-0.5Mo-2W-V-Nb Ferritic/Martensitic Steels for a SFR Fuel Cladding

    International Nuclear Information System (INIS)

    Baek, Jong-Hyuk; Han, Chang-Hee; Kim, Woo-Gon; Kim, Sung-Ho; Lee, Chan-Bock

    2008-01-01

    Currently the principal materials in a SFR (sodium-cooled fast reactor) of Gen-IV nuclear system are considering stainless steels (e.g. austenitic steels and ferritic/martensitic steels) for pressure boundary and structural applications in the primary circuit (cladding, duct, cold and hot leg piping, and pressure vessel). There are sound technical justifications for these material selections, and the adoption of these stainless steels for a wide range of nuclear and non-nuclear applications has generated much industrial technology and experience. However, there are strong incentives to develop advanced materials, especially cladding, for the Gen-IV SFR. The Gen-IV SFR is to have a considerable increase in safety and be economically competitive when compared with the conventional water reactors. To accomplish these objectives, the development of the fuel cladding material should be set forth as a premise because its integrity is directly related to those of the reactor system as well as the fuel in the Gen-IV SFR. Since last year, a R and D program was launched to develop the improved ferritic/martensitic steel for the Gen-IV SFR fuel cladding. Categories of materials considered in the program included 8 - 12% Cr ferritic/ martensitic steels. A strong recommendation was made for the development of a high strength steel equivalent to or superior to ASTM Gr.92 steel to offset the difficulties encountered with commercial available steels of the 8 - 12% Cr group. That is, since fuel cladding in the Gen-IV SFR would operate under higher temperatures than 600 .deg. C, contacting with liquid sodium, and be irradiated by neutrons to as high as 200dpa, the cladding should thus sustain both superior irradiation and temperature stabilities during an operational life. The newly developed advanced steel should overcome the severe drawback; mechanical properties, especially creep, are deteriorated at a higher temperature over 600 .deg. C. In this study, as one of the composition

  10. Pipe damping

    International Nuclear Information System (INIS)

    Ware, A.G.

    1985-01-01

    Studies are being conducted at the Idaho National Engineering Laboratory to determine whether an increase in the damping values used in seismic structural analyses of nuclear piping systems is justified. Increasing the allowable damping would allow fewer piping supports which could lead to safer, more reliable, and less costly piping systems. Test data from availble literature were examined to determine the important parameters contributing to piping system damping, and each was investigated in separate-effects tests. From the combined results a world pipe damping data bank was established and multiple regression analyses performed to assess the relative contributions of the various parameters. The program is being extended to determine damping applicable to higher frequency (33 to 100 Hz) fluid-induced loadings. The goals of the program are to establish a methodology for predicting piping system damping and to recommend revised guidelines for the damping values to be included in analyses

  11. Piping reliability model development, validation and its applications to light water reactor piping

    International Nuclear Information System (INIS)

    Woo, H.H.

    1983-01-01

    A brief description is provided of a three-year effort undertaken by the Lawrence Livermore National Laboratory for the piping reliability project. The ultimate goal of this project is to provide guidance for nuclear piping design so that high-reliability piping systems can be built. Based on the results studied so far, it is concluded that the reliability approach can undoubtedly help in understanding not only how to assess and improve the safety of the piping systems but also how to design more reliable piping systems

  12. Procedure Development and Qualification of the Phased Array Ultrasonic Testing for the Nuclear Power Plant Piping Weld

    International Nuclear Information System (INIS)

    Yoon, Byung Sik; Yang, Seung Han; Kim, Yong Sik; Lee, Hee Jong

    2010-01-01

    The manual ultrasonic examination for the nuclear power plant piping welds has been demonstrated by using KPD(Korean Performance Demonstration) generic procedure. For automated ultrasonic examination, there is no generic procedure and it should be qualified by using applicable automated equipment. Until now, most of qualified procedures used pulse-echo technique and there is no qualified procedure using phased array technique. In this study, data acquisition and analysis software were developed and phased-array transducer and wedge were designed to implement phased array technique for nuclear power plant in-service inspection. The developed procedure are qualified for performance demonstration for the flaw detection, length sizing and depth sizing. The qualified procedure will be applied for the field examination in the nuclear power plant piping weld inspection

  13. On the behavior of pressurized pipings under excessive-stresses caused by earthquake loadings

    International Nuclear Information System (INIS)

    Udoguchi, Y.; Akino, K.; Shibata, H.

    1975-01-01

    Five types of breaking experiments on pipe elements and piping structures had been carried out from 1971 to 1973 by the technical sub-committee of the Japan Electric Association under the leadership taken by Y. Udoguchi, one of the authors. One of the fruitful results was to realize the guillotine-type rupture of pipe element on a shaking table. However, it was also shown that the margin for the design is enough, and allowable stresses under earthquake loading are obtained by modifying those of the Emergency Condition of the ASME Code. The experiments effected were as follows: straight pipe elements, curved pipes and T-branch pipe connections, made of both ferritic and austenitic steels, were subjected to repeated bending moment, torsional moment and combined under pressurized condition. The pressure corresponded to their design value, but the stresses caused by such moments exceeded over their allowable stress of the Faulted Condition of the ASME Code. The wave patterns were both sinusoidal and natural earthquake records

  14. A simplified leak-before-break evaluation procedure for austenitic and ferritic steel piping

    Energy Technology Data Exchange (ETDEWEB)

    Gamble, R.M.; Zahoor, A.; Ghassemi, B. [NOVETECH Corp., Rockville, MD (United States)

    1994-10-01

    A simplified procedure has been defined for computing the allowable circumferential throughwall crack length as a function of applied loads in piping. This procedure has been defined to enable leak-before-break (LBB) evaluations to be performed without complex and time consuming analyses. The development of the LBB evaluation procedure is similar to that now used in Section 11 of the ASME Code for evaluation of part-throughwall flaws found in piping. The LBB evaluation procedure was bench marked using experimental data obtained from pipes having circumferential throughwall flaws. Comparisons of the experimental and predicted load carrying capacities indicate that the method has a conservative bias, such that for at least 97% of the experiments the experimental load is equal to or greater than 90% of the predicted load. The procedures described in this report are applicable to pipe and pipe fittings with: (1) wrought austenitic steel (Ni-Cr-Fe alloy) having a specified minimum yield strength less than 45 ksi, and gas metal-arc, submerged arc and shielded metal-arc austenitic welds, and (2) seamless or welded wrought carbon steel having a minimum yield strength not greater than 40 ksi, and associated weld materials. The procedures can be used for cast austenitic steel when adequate information is available to place the cast material toughness into one of the categories identified later in this report for austenitic wrought and weld materials.

  15. Low activation ferritic alloys

    Science.gov (United States)

    Gelles, David S.; Ghoniem, Nasr M.; Powell, Roger W.

    1986-01-01

    Low activation ferritic alloys, specifically bainitic and martensitic stainless steels, are described for use in the production of structural components for nuclear fusion reactors. They are designed specifically to achieve low activation characteristics suitable for efficient waste disposal. The alloys essentially exclude molybdenum, nickel, nitrogen and niobium. Strength is achieved by substituting vanadium, tungsten, and/or tantalum in place of the usual molybdenum content in such alloys.

  16. Integrity of austenitic stainless steel piping welds for nuclear service

    International Nuclear Information System (INIS)

    Canalini, A.; Lopes, L.R.

    1983-01-01

    A criterion applying K 1d concept was developed to determine the fracture mechanics properties of austenitic stainless steel nuclear piping welds. The critical dimensions, lenght and depth, for crack initiation were established and plotted in a chart. This study enables the dimensions of a discontinuity detected in an in-service inspection to be compared to the critical dimensions for crack initiation, and the indication can be judged critical or non-critical for the component. (author) [pt

  17. Design and screening of nanoprecipitates-strengthened advanced ferritic alloys

    Energy Technology Data Exchange (ETDEWEB)

    Tan, Lizhen [Oak Ridge National Lab. (ORNL), Oak Ridge, TN (United States); Yang, Ying [Oak Ridge National Lab. (ORNL), Oak Ridge, TN (United States); Chen, Tianyi [Oak Ridge National Lab. (ORNL), Oak Ridge, TN (United States); Sridharan, K. [Univ. of Wisconsin, Madison, WI (United States); He, Li [Univ. of Wisconsin, Madison, WI (United States)

    2016-12-30

    Advanced nuclear reactors as well as the life extension of light water reactors require advanced alloys capable of satisfactory operation up to neutron damage levels approaching 200 displacements per atom (dpa). Extensive studies, including fundamental theories, have demonstrated the superior resistance to radiation-induced swelling in ferritic steels, primarily inherited from their body-centered cubic (bcc) structure. This study aims at developing nanoprecipitates strengthened advanced ferritic alloys for advanced nuclear reactor applications. To be more specific, this study aims at enhancing the amorphization ability of some precipitates, such as Laves phase and other types of intermetallic phases, through smart alloying strategy, and thereby promote the crystalline®amorphous transformation of these precipitates under irradiation.

  18. Fracture mechanics evaluation for at typical PWR primary coolant pipe

    Energy Technology Data Exchange (ETDEWEB)

    Tanaka, T. [Kansai Electric Power Company, Osaka (Japan); Shimizu, S.; Ogata, Y. [Mitsubishi Heavy Industries, Ltd., Kobe (Japan)

    1997-04-01

    For the primary coolant piping of PWRs in Japan, cast duplex stainless steel which is excellent in terms of strength, corrosion resistance, and weldability has conventionally been used. The cast duplex stainless steel contains the ferrite phase in the austenite matrix and thermal aging after long term service is known to change its material characteristics. It is considered appropriate to apply the methodology of elastic plastic fracture mechanics for an evaluation of the integrity of the primary coolant piping after thermal aging. Therefore we evaluated the integrity of the primary coolant piping for an initial PWR plant in Japan by means of elastic plastic fracture mechanics. The evaluation results show that the crack will not grow into an unstable fracture and the integrity of the piping will be secured, even when such through wall crack length is assumed to equal the fatigue crack growth length for a service period of up to 60 years.

  19. Fracture mechanics evaluation for at typical PWR primary coolant pipe

    International Nuclear Information System (INIS)

    Tanaka, T.; Shimizu, S.; Ogata, Y.

    1997-01-01

    For the primary coolant piping of PWRs in Japan, cast duplex stainless steel which is excellent in terms of strength, corrosion resistance, and weldability has conventionally been used. The cast duplex stainless steel contains the ferrite phase in the austenite matrix and thermal aging after long term service is known to change its material characteristics. It is considered appropriate to apply the methodology of elastic plastic fracture mechanics for an evaluation of the integrity of the primary coolant piping after thermal aging. Therefore we evaluated the integrity of the primary coolant piping for an initial PWR plant in Japan by means of elastic plastic fracture mechanics. The evaluation results show that the crack will not grow into an unstable fracture and the integrity of the piping will be secured, even when such through wall crack length is assumed to equal the fatigue crack growth length for a service period of up to 60 years

  20. Guidelines and criteria for nuclear piping and support evaluation and design

    International Nuclear Information System (INIS)

    Rehn, D.L.; Stout, D.H. Jr.; Minichiello, J.C.

    1993-05-01

    The EPRI Research Project 2967-2 has set its fundamental goal to be the development of realistic guidelines and criteria for piping and pipe support design and evaluation. The focus is on items that are most critical to utilities and consists of a variety of tasks relating to piping and pipe support design. One objective of this report is to summarize the recommendations from the seven task reports of the first phase of the project and to provide examples of how to use those recommendations. Criteria and methods for evaluating both short and long term system operation are addressed. Benefits gained from applying the recommendations to actual systems are discussed. The report also reviews other work currently being done within the nuclear industry and assesses the impact of that work on the recommended criteria/methods of this project. The second objective of the report is to discuss possible changes needed in the governing codes or licensing commitments in order to implement the recommendations. Finally, the report describes further research which can be done to advance the criteria presented and answer questions concerning applicability of the proposed criteria to designs not tested/investigated. The basic conclusion reached in the project is that many of the criteria/methods used today in piping analysis/design are overly conservative. The report's conclusion is supported by extensive literature searches, tests, and analyses. The report presents a robust source of reference to utilities which wish to implement changes in criteria and methods. Most of the criteria and methodologies described in the seven task reports and summarized in the following sections will require some effort in licensing or Code changes

  1. Hybrid heat pipe based passive cooling device for spent nuclear fuel dry storage cask

    International Nuclear Information System (INIS)

    Jeong, Yeong Shin; Bang, In Cheol

    2016-01-01

    Highlights: • Hybrid heat pipe was presented as a passive cooling device for dry storage cask of SNF. • A method to utilize waste heat from spent fuel was suggested using hybrid heat pipe. • CFD analysis was performed to evaluate the thermal performance of hybrid heat pipe. • Hybrid heat pipe can increase safety margin and storage capacity of the dry storage cask. - Abstract: Conventional dry storage facilities for spent nuclear fuel (SNF) were designed to remove decay heat through the natural convection of air, but this method has limited cooling capacity and a possible re-criticality accident in case of flooding. To enhance the safety and capacity of dry storage cask of SNF, hybrid heat pipe-based passive cooling device was suggested. Heat pipe is an excellent passive heat transfer device using the principles of both conduction and phase change of the working fluid. The heat pipe containing neutron absorber material, the so-called hybrid heat pipe, is expected to prevent the re-criticality accidents of SNF and to increase the safety margin during interim and long term storage period. Moreover, a hybrid heat pipe with thermoelectric module, a Stirling engine and a phase change material tank can be used for utilization of the waste heat as heat-transfer medium. Located at the guide tube or instrumentation tube, hybrid heat pipe can remove decay heat from inside the sealed metal cask to outside, decreasing fuel rod temperature. In this paper, a 2-step analysis was performed using computational fluid dynamics code to evaluate the heat and fluid flow inside a cask, which consisted of a single spent fuel assembly simulation and a full-scope dry cask simulation. For a normal dry storage cask, the maximum fuel temperature is 290.0 °C. With hybrid heat pipe cooling, the temperature decreased to 261.6 °C with application of one hybrid heat pipe per assembly, and to 195.1 °C with the application of five hybrid heat pipes per assembly. Therefore, a dry

  2. Resolution of concerns in auxiliary feedwater piping

    International Nuclear Information System (INIS)

    Bain, R.A.; Testa, M.F.

    1994-01-01

    Auxiliary feedwater piping systems at pressurized water reactor (PWR) nuclear power plants have experienced unanticipated operating conditions during plant operation. These unanticipated conditions have included plant events involving backleakage through check valves, temperatures in portions of the auxiliary feedwater piping system that exceed design conditions, and the occurrence of unanticipated severe fluid transients. The impact of these events has had an adverse effect at some nuclear stations on plant operation, installed plant components and hardware, and design basis calculations. Beaver Valley Unit 2, a three loop pressurized water reactor nuclear plant, has observed anomalies with the auxiliary feedwater system since the unit went operational in 1987. The consequences of these anomalies and plant events have been addressed and resolved for Beaver Valley Unit 2 by performing engineering and construction activities. These activities included pipe stress, pipe support and pipe rupture analysis, the monitoring of auxiliary feedwater system temperature and pressure, and the modification to plant piping, supports, valves, structures and operating procedures

  3. Stress corrosion cracking of steam generator tube and primary pipe in PWR type nuclear power plants

    International Nuclear Information System (INIS)

    Zhang Weiguo; Gao Fengqin; Zhou Hongyi

    1992-03-01

    The behavior of stress corrosion cracking (SCC) was studied by slow strain rate test (SSRT), constant load test (CLT) and low frequency cyclic loading test (LFCLT). The purpose of these tests is to get the test data for evaluating the integrity of pressurized boundary of pipes in Qinshan and Guangdong nuclear power plants (NPPs). Tested materials are 316 nuclear grade stainless steel (SS) for primary pipes in welded heat affected zone (WHAZ) and tubes of heat transfer, such as Incoloy-800, Inconel-600 and 321 SS which are used for steam generator in PWR NPPs. The effects of material metallurgy, shot peening treatment, tensile load, strain rate, cyclic load and water chemistry on the behavior of SCC were considered

  4. Stress corrosion cracking of steam generator tube and primary pipe in PWR type nuclear power plants

    International Nuclear Information System (INIS)

    Zhang Weiguo; Gao Fengqin; Zhou Hongyi

    1993-01-01

    The behavior of stress corrosion cracking (SCC) is studied by slow strain rate test (SSRT), constant load test (CLT) and low frequency cyclic loading test (LFCLT). The purpose of these tests is to get the test data for evaluating the integrity of pressurized boundary of pipes in Qinshan and Guangdong nuclear power plants. Tested materials are 316 nuclear grade stainless steel (SS) for primary pipes in welded heat affected zone (WHAZ) and steam generator tubes, such as Incoloy-800, Inconel-600, Inconel-690 and 321 SS which are used for steam generator in PWR. The effects of material metallurgy, shot-peening treatment, tensile load, strain rate, cyclic load and water chemistry on the behavior of SCC are investigated

  5. Inspection of nuclear power plant piping welds by in-process acoustic emission monitoring

    International Nuclear Information System (INIS)

    Prine, D.W.

    1976-01-01

    The results of using in-process acoustic emission monitoring on nuclear power plant piping welds are discussed. The technique was applied to good and intentionally flawed test welds as well as production welds, and the acoustic emission results are compared to standard NDT methods and selected metallographic cross-sections

  6. Structural and stress analysis of nuclear piping systems

    International Nuclear Information System (INIS)

    Hata, Hiromichi

    1982-01-01

    The design of the strength of piping system is important in plant design, and its outline on the example of PWRs is reported. The standards and guides concerning the design of the strength of piping system are shown. The design condition for the strength of piping system is determined by considering the requirements in the normal operation of plants and for the safety design of plants, and the loads in normal operation, testing, credible accident and natural environment are explained. The methods of analysis for piping system are related to the transient phenomena of fluid, piping structure and local heat conduction, and linear static analysis, linear time response analysis, nonlinear time response analysis, thermal stress analysis and fluid transient phenomenon analysis are carried out. In the aseismatic design of piping system, it is desirable to avoid the vibration together with a building supporting it, and as a rule, to make it into rigid structure. The piping system is classified into high temperature and low temperature pipings. The formulas for calculating stress and the allowable condition, the points to which attention must be paid in the design of piping strength and the matters to be investigated hereafter are described. (Kako, I.)

  7. Dissolution studies on Nickel ferrite in dilute chemical decontamination formulations

    Energy Technology Data Exchange (ETDEWEB)

    Ranganathan, S. [New Brunswick Univ., Fredericton, NB (Canada). Dept. of Chemical Engineering; Srinivasan, M.P. [Bhabha Atomic Research Centre (BARC) (India). Water and Steam Chemistry Laboratory; Raghavan, P.S. [Madras Christian College, Chennai (India); Narasimhan, S.V. [Bhabha Atomic Research Centre, Bombay (India); Gopalan, R. [Madras Christian College, Chennai (India). Department of Chemistry

    2004-09-01

    Nickel ferrite is one of the important corrosion products in the pipeline surfaces of water-cooled nuclear reactors. The dissolution of the nickel ferrite by chelating agents is very sensitive to the nature of the chelant, the nature of the reductant used in the formulation and the temperature at which the dissolution studies are performed. The dissolution is mainly controlled by the reductive dissolution of the ferrite particles, but complexing agents also play a significant role in the dissolution process. This study deals with the leaching of iron and nickel from nickel ferrite prepared by the solid-state method. The dissolution studies are performed in pyridine-2,6-dicarboxylic acid (PDCA), nitrilotriacetic acid (NTA), and ethylenediaminetetraacetic acid (EDTA) formulations containing organic reductants like ascorbic acid and low oxidation state transition metal ion reductants like Fe(II)-L (where L = PDCA, NTA, EDTA) at 85 C. The dissolution of nickel ferrite in PDCA, NTA and EDTA formulations is influenced by the presence of reductants in the formulations. The addition of Fe(II)-L in the formulation greatly enhances the dissolution of nickel ferrite. The preferential leaching of nickel over iron during the dissolution of nickel ferrite was observed in all the formulations. (orig.)

  8. Dissolution studies on Nickel ferrite in dilute chemical decontamination formulations

    International Nuclear Information System (INIS)

    Ranganathan, S.; Narasimhan, S.V.; Gopalan, R.

    2004-01-01

    Nickel ferrite is one of the important corrosion products in the pipeline surfaces of water-cooled nuclear reactors. The dissolution of the nickel ferrite by chelating agents is very sensitive to the nature of the chelant, the nature of the reductant used in the formulation and the temperature at which the dissolution studies are performed. The dissolution is mainly controlled by the reductive dissolution of the ferrite particles, but complexing agents also play a significant role in the dissolution process. This study deals with the leaching of iron and nickel from nickel ferrite prepared by the solid-state method. The dissolution studies are performed in pyridine-2,6-dicarboxylic acid (PDCA), nitrilotriacetic acid (NTA), and ethylenediaminetetraacetic acid (EDTA) formulations containing organic reductants like ascorbic acid and low oxidation state transition metal ion reductants like Fe(II)-L (where L = PDCA, NTA, EDTA) at 85 C. The dissolution of nickel ferrite in PDCA, NTA and EDTA formulations is influenced by the presence of reductants in the formulations. The addition of Fe(II)-L in the formulation greatly enhances the dissolution of nickel ferrite. The preferential leaching of nickel over iron during the dissolution of nickel ferrite was observed in all the formulations. (orig.)

  9. Rupture hardware minimization in pressurized water reactor piping

    International Nuclear Information System (INIS)

    Mukherjee, S.K.; Ski, J.J.; Chexal, V.; Norris, D.M.; Goldstein, N.A.; Beaudoin, B.F.; Quinones, D.F.; Server, W.L.

    1989-01-01

    For much of the high-energy piping in light reactor systems, fracture mechanics calculations can be used to assure pipe failure resistance, thus allowing the elimination of excessive rupture restraint hardware both inside and outside containment. These calculations use the concept of leak-before-break (LBB) and include part-through-wall flaw fatigue crack propagation, through-wall flaw detectable leakage, and through-wall flaw stability analyses. Performing these analyses not only reduces initial construction, future maintenance, and radiation exposure costs, but also improves the overall safety and integrity of the plant since much more is known about the piping and its capabilities than would be the case had the analyses not been performed. This paper presents the LBB methodology applied a Beaver Valley Power Station- Unit 2 (BVPS-2); the application for two specific lines, one inside containment (stainless steel) and the other outside containment (ferrutic steel), is shown in a generic sense using a simple parametric matrix. The overall results for BVPS-2 indicate that pipe rupture hardware is not necessary for stainless steel lines inside containment greater than or equal to 6-in. (152-mm) nominal pipe size that have passed a screening criteria designed to eliminate potential problem systems (such as the feedwater system). Similarly, some ferritic steel line as small as 3-in. (76-mm) diameter (outside containment) can qualify for pipe rupture hardware elemination

  10. Hydraulic simulation of the systems of a nuclear power plant for charges calculation in piping

    International Nuclear Information System (INIS)

    Masriera, N.

    1990-01-01

    This work presents a general description of the methodology used by the ENACE S.A. Fluids Working Group for hydraulics simulation of a nuclear power plant system for the calculation charges in piping. (Author) [es

  11. Synthesis and dissolution studies of nickel ferrite in PDCA based formulations

    International Nuclear Information System (INIS)

    Ranganathan, S.; Raghavan, P.S.; Gopalan, R.; Srinivasan, M.P.; Narasimhan, S.V.

    2000-01-01

    Nickel ferrite is one of the important corrosion product in the pipeline surfaces of water cooled nuclear reactors. The dissolution of the nickel ferrite by chelating agents is very sensitive to nature of the chelant, nature of the reductant used in the formulation and the temperature at which the dissolution studies have been performed. The dissolution is dominated by the adsorption of the complexing agent at the oxide surface, but mainly controlled by the reductive dissolution of the ferrite particles. This is due to the in situ release of Fe 2+ ions or the generation of Fe 2+ ions by the reduction of Fe 3+ ions by the reductants in the solution. This study deals with the leaching of iron and nickel from nickel ferrite prepared by the solid state method. The prepared nickel ferrite samples are characterised by XRD to confirm the ferrite formation. The dissolution studies are performed in PDCA formulations containing organic reductants like ascorbic acid and LOMI reductants like Fe(II)-PDCA. The dissolution rate of nickel ferrite at 85degC increased with the increase of Fe 2+ ion content in the crystal lattice. Fe(II)-PDCA was found to be better reductants in dissolving the nickel ferrite in comparison with ascorbic acid. (author)

  12. A Lift-Off-Tolerant Magnetic Flux Leakage Testing Method for Drill Pipes at Wellhead.

    Science.gov (United States)

    Wu, Jianbo; Fang, Hui; Li, Long; Wang, Jie; Huang, Xiaoming; Kang, Yihua; Sun, Yanhua; Tang, Chaoqing

    2017-01-21

    To meet the great needs for MFL (magnetic flux leakage) inspection of drill pipes at wellheads, a lift-off-tolerant MFL testing method is proposed and investigated in this paper. Firstly, a Helmholtz coil magnetization method and the whole MFL testing scheme are proposed. Then, based on the magnetic field focusing effect of ferrite cores, a lift-off-tolerant MFL sensor is developed and tested. It shows high sensitivity at a lift-off distance of 5.0 mm. Further, the follow-up high repeatability MFL probing system is designed and manufactured, which was embedded with the developed sensors. It can track the swing movement of drill pipes and allow the pipe ends to pass smoothly. Finally, the developed system is employed in a drilling field for drill pipe inspection. Test results show that the proposed method can fulfill the requirements for drill pipe inspection at wellheads, which is of great importance in drill pipe safety.

  13. A Lift-Off-Tolerant Magnetic Flux Leakage Testing Method for Drill Pipes at Wellhead

    Directory of Open Access Journals (Sweden)

    Jianbo Wu

    2017-01-01

    Full Text Available To meet the great needs for MFL (magnetic flux leakage inspection of drill pipes at wellheads, a lift-off-tolerant MFL testing method is proposed and investigated in this paper. Firstly, a Helmholtz coil magnetization method and the whole MFL testing scheme are proposed. Then, based on the magnetic field focusing effect of ferrite cores, a lift-off-tolerant MFL sensor is developed and tested. It shows high sensitivity at a lift-off distance of 5.0 mm. Further, the follow-up high repeatability MFL probing system is designed and manufactured, which was embedded with the developed sensors. It can track the swing movement of drill pipes and allow the pipe ends to pass smoothly. Finally, the developed system is employed in a drilling field for drill pipe inspection. Test results show that the proposed method can fulfill the requirements for drill pipe inspection at wellheads, which is of great importance in drill pipe safety.

  14. Analysis of Pipe Wall-thinning Caused by Water Chemistry Change in Secondary System of Nuclear Power Plant

    Energy Technology Data Exchange (ETDEWEB)

    Yun, Hun; Hwang, Kyeongmo [KEPCO E and C, Gimcheon (Korea, Republic of); Moon, Seung-Jae [Hanyang University, Seoul (Korea, Republic of)

    2015-12-15

    Pipe wall-thinning by flow-accelerated corrosion (FAC) is a significant and costly damage of secondary system piping in nuclear power plants (NPPs). All NPPs have their management programs to ensure pipe integrity from wall-thinning. This study analyzed the pipe wall-thinning caused by changing the amine, which is used for adjusting the water chemistry in the secondary system of NPPs. The pH change was analyzed according to the addition of amine. Then, the wear rate calculated in two different amines was compared at the steam cycle in NPPs. As a result, increasing the pH at operating temperature (Hot pH) can reduce the rate of FAC damage significantly. Wall-thinning is affected by amine characteristics depending on temperature and quality of water.

  15. A review of nondestructive examination technology for polyethylene pipe in nuclear power plant

    Science.gov (United States)

    Zheng, Jinyang; Zhang, Yue; Hou, Dongsheng; Qin, Yinkang; Guo, Weican; Zhang, Chuck; Shi, Jianfeng

    2018-05-01

    Polyethylene (PE) pipe, particularly high-density polyethylene (HDPE) pipe, has been successfully utilized to transport cooling water for both non-safety- and safety-related applications in nuclear power plant (NPP). Though ASME Code Case N755, which is the first code case related to NPP HDPE pipe, requires a thorough nondestructive examination (NDE) of HDPE joints. However, no executable regulations presently exist because of the lack of a feasible NDE technique for HDPE pipe in NPP. This work presents a review of current developments in NDE technology for both HDPE pipe in NPP with a diameter of less than 400 mm and that of a larger size. For the former category, phased array ultrasonic technique is proven effective for inspecting typical defects in HDPE pipe, and is thus used in Chinese national standards GB/T 29460 and GB/T 29461. A defect-recognition technique is developed based on pattern recognition, and a safety assessment principle is summarized from the database of destructive testing. On the other hand, recent research and practical studies reveal that in current ultrasonic-inspection technology, the absence of effective ultrasonic inspection for large size was lack of consideration of the viscoelasticity effect of PE on acoustic wave propagation in current ultrasonic inspection technology. Furthermore, main technical problems were analyzed in the paper to achieve an effective ultrasonic test method in accordance to the safety and efficiency requirements of related regulations and standards. Finally, the development trend and challenges of NDE test technology for HDPE in NPP are discussed.

  16. The 1995 forum on appropriate criteria and methods for seismic design of nuclear piping

    International Nuclear Information System (INIS)

    Slagis, G.C.

    1996-01-01

    A record of the 1995 Forum on Appropriate Criteria and Methods for Seismic Design of Nuclear Piping is provided. The focus of the forum was the earthquake experience data base and whether the data base demonstrates that seismic inertia loads will not cause failure in ductile piping systems. This was a follow-up to the 1994 Forum when the use of earthquake experience data, including the recent Northridge earthquake, to justify a design-by-rule method was explored. Two possible topics for the next forum were identified--inspection after an earthquake and design for safe-shutdown earthquake only

  17. A cost summary applicable to seismic construction and maintenance of nuclear safety related piping

    International Nuclear Information System (INIS)

    Stevenson, J.D.

    1995-01-01

    This paper presents a summary of costs applicable to nuclear power plant piping for an earthquake defined as 0.2 SSE-PGA as a function of three eras of initial construction: 1967--1974, 1974--1981 and 1981--1990. Costs have been presented for both new construction and maintenance in operating plants using both the original PSAR-FSAR design criteria and current SRP requirements. It is recommended that the cost information contained in this report be considered in evaluating the cost benefit relationships associated with current and proposed future changes in seismic design procedures applicable to safety-related piping systems

  18. Analysis of nuclear piping system seismic tests with conventional and energy absorbing supports

    International Nuclear Information System (INIS)

    Park, Y.; DeGrassi, G.; Hofmayer, C.; Bezler, P.; Chokshi, N.

    1997-01-01

    Large-scale models of main steam and feedwater piping systems were tested on the shaking table by the Nuclear Power Engineering Cooperation (NUPEC) of Japan, as part of the Seismic Proving Test Program. This paper describes the linear and nonlinear analyses performed by NRC/BNL and compares the results to the test data

  19. Fabrication of mechanical components and piping design for Brazilian nuclear reactors

    International Nuclear Information System (INIS)

    Deppe, L.O.

    1987-01-01

    The supply of Brazilian equipment and piping design for Angra 2 (and Angra 3 in some cases) have reached an advanced status in spite of the continuous outside difficulties which affect these nuclear power plants. The achieved quality is similar to the quality achieved in foreign countries and the nationalization program foreseen in 1975 is being largely surpassed. In this paper the actual situation is presented as well as the future perspectives. (Author) [pt

  20. Report of the U.S. Nuclear Regulatory Commission Piping Review Committee. Summary and evaluation of historical strong-motion earthquake seismic response and damage to aboveground industrial piping

    International Nuclear Information System (INIS)

    1985-04-01

    The primary purpose of this report is to collect in one reference document the observation and experience that has been developed with regard to the seismic behavior of aboveground, building-supported, industrial-type process piping (similar to piping used in nuclear power plants) in strong-motion earthquakes. The report will also contain observations regarding the response of piping in strong-motion experimental tests and appropriate conclusions regarding the behavior of such piping in large earthquakes. Recommendations are included covering the future design of such piping to resist earthquake motion damage based on observed behavior in large earthquakes and simulated shake table testing. Since available detailed data on the behavior of aboveground (building-supported) piping are quite limited, this report will draw heavily on the observations and experiences of experts in the field. In Section 2 of this report, observed earthquake damage to aboveground piping in a number of large-motion earthquakes is summarized. In Section 3, the available experience from strong-motion testing of piping in experimental facilities is summarized. In Section 4 are presented some observations that attempt to explain the observed response of piping to strong-motion excitation from actual earthquakes and shake table testing. Section 5 contains the conclusions based on this study and recommendations regarding the future seismic design of piping based on the observed strong-motion behavior and material developed for the NPC Piping Review Committee. Finally, in Section 6 the references used in this study are presented. It should be understood that the use of the term piping in this report, in general, is limited to piping supported by building structures. It does not include behavior of piping buried in soil media. It is believed that the seismic behavior of buried piping is governed primarily by the deformation of the surrounding soil media and is not dependent on the inertial response

  1. Task force activity to take the effect of elastic-plastic behaviour into account on the seismic safety evaluation of nuclear piping systems

    International Nuclear Information System (INIS)

    Nakamura, Izumi; Shiratori, Masaki; Morishita, Masaki; Otani, Akihito; Shibutani, Tadahito

    2015-01-01

    According to investigations of several nuclear power plants (NPPs) hit by actual seismic events and a number of experimental researches on the failure behavior of piping systems under seismic loads, it is recognized that piping systems used in NPPs include a large seismic safety margin until boundary failure. Since the stress assessment based on the elastic analysis does not reflect actual seismic capability of piping systems including plastic region, it is necessary to develop a rational procedures to estimate the elastic-plastic behavior of piping systems under a large seismic load. With the aim of establishing a procedure that takes into account the elastic-plastic behavior effect in the seismic safety estimation of nuclear piping systems, a task force activity has been planned. Through the activity, the authors intend to establish guidelines to estimate the elastic-plastic behavior of piping systems rationally and conservatively, and to provide new rational seismic safety criteria taking the effect of elastic-plastic behavior into account. As the first step of making out the analysis guideline, benchmark analyses are conducted for a pipe element test and a piping system test. In this paper, the outline of the research activity and the preliminary results of benchmark analyses are described. (author)

  2. Corrosion resistance improvement of ferritic steels through hydrogen additions to the BWR coolant

    International Nuclear Information System (INIS)

    Gordon, B.M.; Jewett, C.W.; Pickett, A.E.; Indig, M.E.

    1984-01-01

    Motivated by the success of oxygen suppression for mitigation of intergranular stress corrosion cracking (IGSCC) in weld sensitized austenitic materials used in Boiling Water Reactors (BWRs), oxygen suppression, through hydrogen additions to the feedwater was investigated to determine its affect on the corrosion resistance of ferritic and martensitic BWR structural materials. The results of these investigations are presented in this paper, where particular emphasis is placed on the corrosion performance of BWR pressure vessel low alloy steels, carbon steel piping materials and martensitic pump materials. It is important to note that the corrosion resistance of these materials in the BWR environment is excellent. Consequently this investigation was also motivated to determine whether there were any detrimental effects of hydrogen additions, as well as to identify any additional margin in ferritic/martensitic materials corrosion performance

  3. Flow Accelerated Erosion-Corrosion (FAC) considerations for secondary side piping in the AP1000{sup R} nuclear power plant design

    Energy Technology Data Exchange (ETDEWEB)

    Vanderhoff, J. F.; Rao, G. V. [Westinghouse Electric Company LLC, 1000 Westinghouse Drive, Cranberry Township, PA 16066 (United States); Stein, A. [Shaw Power Nuclear, 1000 Technology Center Drive, Stoughton, MA 02072 (United States)

    2012-07-01

    The issue of Flow Accelerated Erosion-Corrosion (FAC) in power plant piping is a known phenomenon that has resulted in material replacements and plant accidents in operating power plants. Therefore, it is important for FAC resistance to be considered in the design of new nuclear power plants. This paper describes the design considerations related to FAC that were used to develop a safe and robust AP1000{sup R} plant secondary side piping design. The primary FAC influencing factors include: - Fluid Temperature - Pipe Geometry/layout - Fluid Chemistry - Fluid Velocity - Pipe Material Composition - Moisture Content (in steam lines) Due to the unknowns related to the relative impact of the influencing factors and the complexities of the interactions between these factors, it is difficult to accurately predict the expected wear rate in a given piping segment in a new plant. This paper provides: - a description of FAC and the factors that influence the FAC degradation rate, - an assessment of the level of FAC resistance of AP1000{sup R} secondary side system piping, - an explanation of options to increase FAC resistance and associated benefits/cost, - discussion of development of a tool for predicting FAC degradation rate in new nuclear power plants. (authors)

  4. Socket weld integrity in nuclear piping under fatigue loading condition

    International Nuclear Information System (INIS)

    Choi, Young Hwan; Choi, Sun Yeong

    2007-01-01

    The purpose of this paper is to evaluate the integrity of socket weld in nuclear piping under the fatigue loading. The integrity of socket weld is regarded as a safety concern in nuclear power plants because many failures have been world-widely reported in the socket weld. Recently, socket weld failures in the chemical and volume control system (CVCS) and the primary sampling system (PSS) were reported in Korean nuclear power plants. The root causes of the socket weld failures were known as the fatigue due to the pressure and/or temperature loading transients and the vibration during the plant operation. The ASME boiler and pressure vessel (B and PV) Code Sec. III requires 1/16 in. gap between the pipe and fitting in the socket weld with the weld leg size of 1.09 x t 1 , where t 1 is the pipe wall thickness. Many failure cases, however, showed that the gap requirement was not satisfied. In addition, industry has demanded the reduction of weld leg size from 1.09 x t 1 to 0.75 x t 1 . In this paper, the socket weld integrity under the fatigue loading was evaluated using three-dimensional finite element analysis considering the requirements in the ASME Code. Three types of loading conditions such as the deflection due to vibration, the pressure transient ranging from P = 0 to 15.51 MPa, and the thermal transient ranging from T = 25 to 288 deg. C were considered. The results are as follows; (1) the socket weld is susceptible to the vibration where the vibration levels exceed the requirement in the ASME operation and maintenance (OM) code. (2) The effect of pressure or temperature transient load on socket weld in CVCS and PSS is not significant owing to the low frequency of transient during plant operation. (3) 'No gap' is very risky to the socket weld integrity for the systems having the vibration condition to exceed the requirement specified in the ASME OM Code and/or the transient loading condition from P = 0 and T = 25 deg. C to P = 15.51 MPa and T = 288 deg. C. (4

  5. Analysis of pipe stress using CAESAR II code

    International Nuclear Information System (INIS)

    Sitandung, Y.B.; Bandriyana, B.

    2002-01-01

    Analysis of this piping stress with the purpose of knowing stress distribution piping system in order to determine pipe supports configuration. As an example of analysis, Gas Exchanger to Warm Separator Line was chosen with, input data was firstly prepared in a document, i.e. piping analysis specification that its content named as pipe characteristics, material properties, operation conditions, guide equipment's and so on. Analysis result such as stress, load, displacement and the use support type were verified based on requirements in the code, standard, and regularities were suitable with piping system condition analyzed. As the proof that piping system is in safety condition, it can be indicated from analysis results (actual loads) which still under allowable load. From the analysis steps that have been done CAESAR II code fulfill requirements to be used as a tool of piping stress analysis as well as nuclear and non nuclear installation piping system

  6. Piping reliability improvement through passive seismic supports

    International Nuclear Information System (INIS)

    Baltus, R.; Rubbers, A.

    1999-01-01

    The nuclear plants designed in the 1970's were equipped with large quantities of snubbers in auxiliary piping systems. The experience revealed a poor performance of snubbers during periodic inspection, while non-nuclear facility piping survived through strong earthquakes. Consequently, seismic design rules evolved towards more realistic criteria and passive dynamic supports were developed to reduce snubber quantities. These solutions improve the pipe reliability during normal operation while reducing the radiation exposure in a sample line is presented with the impact on pipe stresses compared to the results obtained with passive supports named Limit Stops. (author)

  7. Delta ferrite in the weld metal of reduced activation ferritic martensitic steel

    Energy Technology Data Exchange (ETDEWEB)

    Sam, Shiju, E-mail: shiju@ipr.res.in [Institute for Plasma Research, Gandhinagar, Gujarat 382 428 (India); Das, C.R.; Ramasubbu, V.; Albert, S.K.; Bhaduri, A.K.; Jayakumar, T. [Indira Gandhi Centre for Atomic Research, Kalpakkam 603 102 (India); Rajendra Kumar, E. [Institute for Plasma Research, Gandhinagar, Gujarat 382 428 (India)

    2014-12-15

    Formation of delta(δ)-ferrite in the weld metal, during autogenous bead-on-plate welding of Reduced Activation Ferritic Martensitic (RAFM) steel using Gas Tungsten Arc Welding (GTAW) process, has been studied. Composition of the alloy is such that delta-ferrite is not expected in the alloy; but examination of the weld metal revealed presence of delta-ferrite in the weld metal. Volume fraction of delta-ferrite is found to be higher in the weld interface than in the rest of the fusion zone. Decrease in the volume fraction of delta-ferrite, with an increase in preheat temperature or with an increase in heat input, is observed. Results indicate that the cooling rate experienced during welding affects the volume fraction of delta-ferrite retained in the weld metal and variation in the delta-ferrite content with cooling rate is explained with variation in the time that the weld metal spends in various temperature regimes in which delta-ferrite is stable for the alloy during its cooling from the liquid metal to the ambient temperature. This manuscript will discuss the effect of welding parameters on formation of delta-ferrite and its retention in the weld metal of RAFM steel.

  8. Acoustical holographic Siamese image technique for imaging radial cracks in reactor piping

    International Nuclear Information System (INIS)

    Collins, H.D.; Gribble, R.P.

    1985-04-01

    This paper describes a unique technique (i.e., ''Siamese imaging'') for imaging quasi-vertical defects in reactor pipe weldments. The Siamese image is a bi-symmetrical view of the inner surface defect. Image construction geometry consists of two probes (i.e., source/receiver) operating either from opposite sides or the same side of the defect to be imaged. As the probes are scanned across a lower surface connected defect, they encounter two images - first the normal upright image and then the inverted image. The final integrated image consists of two images connected along their baselines, thus we call it a ''Siamese image.'' The experimental imaging results on simulated and natural cracks in reactor piping weldments graphically illustrate this unique technique. Excellent images of mechanical fatique and thermal cracks were obtained on ferritic and austenitic piping

  9. Numerical and experimental analysis of the vibratory behavior of a nuclear power plant piping system excitated by a pump

    International Nuclear Information System (INIS)

    Vatin, E.; Guillou, J.; Tephany, F.; Trollat, C.

    1993-08-01

    This paper presents a study on the dynamic response of piping systems installed in the French 1300 MWe Nuclear Power Plants. Variations in pressure are generated by a multi-staged centrifugal pump mounted on the piping system and provide a dynamic excitation of the pipe. This type of dynamic loading has led to nozzle cracks for some of the pipes, whereas, for other installations, it has not be found detrimental. This study presents an explanation of the different dynamic behavior observed at the various plants. To this end, a numerical model, calibrated with on-site measurements, is impleted. (authors). 8 figs., 1 tab., 5 refs

  10. Nanostructures in a ferritic and an oxide dispersion strengthened steel induced by dynamic plastic deformation

    DEFF Research Database (Denmark)

    Zhang, Zhenbo

    fission and fusion reactors. In this study, two candidate steels for nuclear reactors, namely a ferritic/martensitic steel (modified 9Cr-1Mo steel) and an oxide dispersion strengthened (ODS) ferritic steel (PM2000), were nanostructured by dynamic plastic deformation (DPD). The resulting microstructure...

  11. Thin-plate-type embedded ultrasonic transducer based on magnetostriction for the thickness monitoring of the secondary piping system of a nuclear power plant

    Energy Technology Data Exchange (ETDEWEB)

    Heo, Tae Hoon; Cho, Seung Hyun [Center for Safety Measurement, Korea Research Institute of Standards and Science, Daejeon (Korea, Republic of)

    2016-12-15

    Pipe wall thinning in the secondary piping system of a nuclear power plant is currently a major problem that typically affects the safety and reliability of the nuclear power plant directly. Regular in-service inspections are carried out to manage the piping system only during the overhaul. Online thickness monitoring is necessary to avoid abrupt breakage due to wall thinning. To this end, a transducer that can withstand a high-temperature environment and should be installed under the insulation layer. We propose a thin plate type of embedded ultrasonic transducer based on magnetostriction. The transducer was designed and fabricated to measure the thickness of a pipe under a high-temperature condition. A number of experimental results confirmed the validity of the present transducer.

  12. Careful determination of inservice inspection of piping by computer analysis in nuclear power plant

    International Nuclear Information System (INIS)

    Lim, H. T.; Lee, S. L.; Lee, J. P.; Kim, B. C.

    1992-01-01

    Stress analysis has been performed using computer program ANSYS in the pressurizer surge line in order to predict possibility of crack generation due to thermal stratification phenomena in pipes connected to reactor coolant system of Nuclear power plants. Highly vulnerable area to crack generation has been chosen by the analysis of fatigue due to thermal stress in pressurizer surge line. This kind of result can be helpful to choose the location requiring intensive care during inservice inspection of nuclear power plants.

  13. Elastic-plastic response of a piping system due to simulated double-ended guillotine break events

    International Nuclear Information System (INIS)

    Kussmaul, K.; Diem, H.; Hunger, H.; Katzenmeier, G.

    1987-01-01

    From the blowdown experiments performed on the HDR feedwater line with feedwater check valve the conclusion can be drawn that high transient loads of up to plastic strains of 3%, acting on an initially integer piping system, can be sustained without loss of integrity for a low number of load cycles due to the plasticizing capacity of the pipework materials nowadays used in reactor technology. In the experiments carried out with ferritic piping of ND 400 pressure peaks up to about 31,5 MPa were achieved which resulted in excessive strains of up to 3%. By nonlinear finite element computations (ABAQUS) it was possible to describe the elastic-plastic behaviour of the piping in a good approximation. (orig./GL)

  14. Technical considerations for flexible piping design in nuclear power plants

    International Nuclear Information System (INIS)

    Lu, S.C.; Chou, C.K.

    1985-01-01

    The overall objective of this research project is to develop a technical basis for flexible piping designs which will improve piping reliability and minimize the use of pipe supports, snubbers, and pipe whip restraints. The current study was conducted to establish the necessary groundwork based on the piping reliability analysis. A confirmatory piping reliability assessment indicated that removing rigid supports and snubbers tends to either improve or affect very little the piping reliability. A couple of changes to be implemented in Regulatory Guide (RG) 1.61 and RG 1.122 aimed at more flexible piping design were investigated. It was concluded that these changes substantially reduce calculated piping responses and allows piping redesigns with significant reduction in number of supports and snubbers without violating ASME code requirements

  15. Pipe support for use in a nuclear system

    International Nuclear Information System (INIS)

    Pollono, L.P.; Mello, R.M.

    1976-01-01

    Description is given of a vertical pipe support system. It comprises a tubular pipe support structure having the same inside diameter and the same wall thickness as the pipe, the pipe support structure having a generally triangularly shaped extension formed integral with and extending circumferentially around its outward side, the bottom side of this extension generally forming a ledge; an annular load-bearing insulation formed adjacent to the extension; means for clamping the load-bearing insulation to extension; and means for providing constant vertical support to means for clamping [fr

  16. Piping engineering and operation

    International Nuclear Information System (INIS)

    1993-01-01

    The conference 'Piping Engineering and Operation' was organized by the Institution of Mechanical Engineers in November/December 1993 to follow on from similar successful events of 1985 and 1989, which were attended by representatives from all sectors of the piping industry. Development of engineering and operation of piping systems in all aspects, including non-metallic materials, are highlighted. The range of issues covered represents a balance between current practices and implementation of future international standards. Twenty papers are printed. Two, which are concerned with pressurized pipes or steam lines in the nuclear industry, are indexed separately. (Author)

  17. Spin Seebeck effect in Y-type hexagonal ferrite thin films

    Czech Academy of Sciences Publication Activity Database

    Hirschner, Jan; Maryško, Miroslav; Hejtmánek, Jiří; Uhrecký, Róbert; Soroka, Miroslav; Buršík, Josef; Anadón, P.; Aguirre, M.H.; Knížek, Karel

    2017-01-01

    Roč. 96, č. 6 (2017), s. 1-8, č. článku 064428. ISSN 2469-9950 R&D Projects: GA ČR(CZ) GA14-18392S Institutional support: RVO:68378271 ; RVO:61388980 Keywords : hexagonal ferrites * spin Seebeck effect * thin films * magnetization * ferrimagnetic ferrites Subject RIV: BM - Solid Matter Physics ; Magnetism; CA - Inorganic Chemistry (UACH-T) OBOR OECD: Condensed matter physics (including formerly solid state physics, supercond.); Inorganic and nuclear chemistry (UACH-T) Impact factor: 3.836, year: 2016

  18. Fatigue analysis for analytically overloaded piping components and valves in nuclear power plants

    International Nuclear Information System (INIS)

    Charalambus, B.

    1992-01-01

    Lately, in connection with life extension aspects of power plants, an increasingly accurate determination of the lifetime of components in nuclear stations is being required. In order to assess reliably current fatigue levels in piping systems, variables such as pressure, temperature, and resultant force and moment transients as well as analytical methods which take into account the real operational history must be considered. This paper presents a method for analyzing the transient heat transfer between fluid and pipe wall in order to investigate effects which until now have been assumed conservatively to be caused by a sudden jump in temperature. Further, an example is given showing that the K e factor approach in current design codes for performing simplified elastic-plastic fatigue analyses is conservative. (orig.)

  19. Efficient erection of a piping unit in a nuclear power station

    International Nuclear Information System (INIS)

    Halstrick, V.; Peters, G.

    1986-01-01

    In consideration of the negative experience gathered in the past extensive project logistics are required for the erection of piping units in a nuclear power station in order to be able to recognize and master the numerous influences and different marginal conditions with reasonable certainty and at an early stage. The utilization of requirements from the analysis of experience for the conception of project management begins with the erection planning and results in check lists for the execution of erection. During production planning these check lists are verified for realization. Because of the extensive data, EDP-aided systems are applied for checking and controlling the flow of information and material. A dialogue-aided system is presented for project planning and controlling which enables a transparent and farsighted execution of a project. By means of comparable piping units it is demonstrated that due to the created controlling system a great success becomes obvious in relation to the past. (orig.) [de

  20. Inspection technology for high pressure pipes

    Energy Technology Data Exchange (ETDEWEB)

    Kim, Jae H.; Lee, Jae C.; Eum, Heung S.; Choi, Yu R.; Moon, Soon S.; Jang, Jong H

    2000-02-01

    Various kinds of defects are likely to be occurred in the welds of high pressure pipes in nuclear power plants. Considering the recent accident of Zuruga nuclear power plant in Japan, reasonable policy is strongly requested for the high pressure pipe integrity. In this study, we developed the technologies to inspect pipe welds automatically. After development of scanning robot prototype in the first research year, we developed and implemented the algorithm of automatic tracking of the scanning robot along the weld line of the pipes. We use laser slit beam on weld area and capture the image using digital camera. Through processing of the captures image, we finally determine the weld line automatically. In addition, we investigated a new technology on micro systems for developing micro scanning robotic inspection of the pipe welds. The technology developed in this study is being transferred to the industry. (author)

  1. Characterization of radioactive contamination inside pipes with the Pipe Explorer{sup trademark} system

    Energy Technology Data Exchange (ETDEWEB)

    Cremer, C.D.; Lowry, W.; Cramer, E. [Science and Engineering Associates, Inc., Albuquerque, NM (United States)] [and others

    1995-10-01

    The U.S. Department of Energy`s nuclear facility decommissioning program needs to characterize radiological contamination inside piping systems before the pipe can be recycled, remediated, or disposed. Historically, this has been attempted using hand held survey instrumentation, surveying only the accessible exterior portions of pipe systems. Difficulty, or inability of measuring threshold surface contamination values, worker exposure, and physical access constraints have limited the effectiveness of this approach. Science and Engineering associates, Inc. under contract with the DOE Morgantown Energy Technology Center has developed and demonstrated the Pipe Explorer{trademark} system, which uses an inverting membrane to transport various characterization sensors into pipes. The basic process involves inverting (turning inside out) a tubular impermeable membrane under air pressure. A characterization sensor is towed down the interior of the pipe by the membrane.

  2. Application of leak-before-break to primary loop piping to eliminate pipe whip restraints in a Spanish nuclear power plant

    International Nuclear Information System (INIS)

    Rodriguez, M.; Esteban, A.

    1990-01-01

    The Spanish plant described in this study is a 982 MWe PWR with a three-loop primary circuit of piping made from centrifugally-cast stainless steel SA351 CF8A. The licensee requested from Consejo de Seguridad Nuclear (CSN) an exemption from the general design criterion, GDC-4, so as to avoid the need to postulate a guillotine rupture of the primary loop piping. The request was based on the generic work performed for a US PWR plant group in order to have such an exemption. As the piping material in the Spanish plant is different from that in the plants included in the generic work, CSN performed a review of the applicability of the generic results to the Spanish plant. Also, aspects such as fatigue evaluation, net section collapse, crack growth and leak detection, specifically analyzed for the Spanish plant, were reviewed. CSN found that fracture toughness test results from generic work are applicable to the Spanish plant; sufficient margin exists against unstable crack extension, and adequate leak detection capability exists with the leakage detection systems available in the plant. Exemption from GDC-4 was approved and CSN authorized the licensee to remove protection devices against dynamic loads from guillotine breaks in the primary coolant loops. (author)

  3. Optimization and testing results of Zr-bearing ferritic steels

    Energy Technology Data Exchange (ETDEWEB)

    Tan, Lizhen [Oak Ridge National Lab. (ORNL), Oak Ridge, TN (United States); Yang, Ying [Oak Ridge National Lab. (ORNL), Oak Ridge, TN (United States); Tyburska-Puschel, Beata [Univ. of Wisconsin, Madison, WI (United States); Sridharan, K. [Univ. of Wisconsin, Madison, WI (United States)

    2014-09-01

    The mission of the Nuclear Energy Enabling Technologies (NEET) program is to develop crosscutting technologies for nuclear energy applications. Advanced structural materials with superior performance at elevated temperatures are always desired for nuclear reactors, which can improve reactor economics, safety margins, and design flexibility. They benefit not only new reactors, including advanced light water reactors (LWRs) and fast reactors such as sodium-cooled fast reactor (SFR) that is primarily designed for management of high-level wastes, but also life extension of the existing fleet when component exchange is needed. Developing and utilizing the modern materials science tools (experimental, theoretical, and computational tools) is an important path to more efficient alloy development and process optimization. Ferritic-martensitic (FM) steels are important structural materials for nuclear reactors due to their advantages over other applicable materials like austenitic stainless steels, notably their resistance to void swelling, low thermal expansion coefficients, and higher thermal conductivity. However, traditional FM steels exhibit a noticeable yield strength reduction at elevated temperatures above ~500°C, which limits their applications in advanced nuclear reactors which target operating temperatures at 650°C or higher. Although oxide-dispersion-strengthened (ODS) ferritic steels have shown excellent high-temperature performance, their extremely high cost, limited size and fabricability of products, as well as the great difficulty with welding and joining, have limited or precluded their commercial applications. Zirconium has shown many benefits to Fe-base alloys such as grain refinement, improved phase stability, and reduced radiation-induced segregation. The ultimate goal of this project is, with the aid of computational modeling tools, to accelerate the development of a new generation of Zr-bearing ferritic alloys to be fabricated using conventional

  4. Protection Performance Simulation of Coal Tar-Coated Pipes Buried in a Domestic Nuclear Power Plant Using Cathodic Protection and FEM Method

    Energy Technology Data Exchange (ETDEWEB)

    Chang, H. Y.; Lim, B. T.; Kim, K. S.; Kim, J. W.; Park, H. B. [KEPCO Engineering and Construction Company, Gimcheon (Korea, Republic of); Kim, Y. S.; Kim, K. T. [Andong National University, Andong (Korea, Republic of)

    2017-06-15

    Coal tar-coated pipes buried in a domestic nuclear power plant have operated under the cathodic protection. This work conducted the simulation of the coating performance of these pipes using a FEM method. The pipes, being ductile cast iron have been suffered under considerably high cathodic protection condition beyond the appropriate condition. However, cathodic potential measured at the site revealed non-protected status. Converting from 3D CAD data of the power plant to appropriate type for a FEM simulation was conducted and cathodic potential under the applied voltage and current was calculated using primary and secondary current distribution and physical conditions. FEM simulation for coal tar-coated pipe without defects revealed over-protection condition if the pipes were well-coated. However, the simulation for coal tar-coated pipes with many defects predict that the coated pipes may be severely degraded. Therefore, for high risk pipes, direct examination and repair or renewal of pipes are strongly recommended.

  5. Pipe damping studies

    International Nuclear Information System (INIS)

    Ware, A.G.

    1986-01-01

    The Idaho National Engineering Laboratory (INEL) is conducting a research program to assist the United States Nuclear Regulatory Commission (USNRC) in determining best-estimate damping values for use in the dynamic analysis of nuclear power plant piping systems. This paper describes four tasks in the program that were undertaken in FY-86. In the first task, tests were conducted on a 5-in. INEL laboratory piping system and data were analyzed from a 6-in. laboratory system at the ANCO Engineers facility to investigate the parameters influencing damping in the seismic frequency range. Further tests were conducted on 3- and 5-in. INEL laboratory piping systems as the second task to determine damping values representative of vibrations in the 33 to 100 Hz range, typical of hydrodynamic transients. In the third task a statistical evaluation of the available damping data was conduted to determine probability distributions suitable for use in probabilistic risk assessments (PRAs), and the final task evaluated damping data at high strain levels

  6. INEL/USNRC pipe damping experiments and studies

    International Nuclear Information System (INIS)

    Ware, A.G.

    1987-08-01

    Since the previous paper on this subject presented at the 8th SMiRT Conference, the Idaho National Engineering Laboratory (INEL) has conducted further research on piping system damping for the United States Nuclear Regulatory Commission (USNRC). These efforts have included vibration tests on two laboratory piping systems at response frequencies up to 100 Hz, and damping data calculations from both of these two systems and from a third laboratory piping system test series. In addition, a statistical analysis was performed on piping system damping data from tests representative of seismic and hydrodynamic events of greater than minimal excitation. The results of this program will be used to assist regulators in establishing suitable damping values for use in dynamic analyses of nuclear piping systems, and in revising USNRC Regulatory Guide (RG) 1.61

  7. Careful Determination of Inservice Inspection of piping by Computer Analysis in Nuclear Power Plant

    International Nuclear Information System (INIS)

    Lim, H. T.; Lee, S. L.; Lee, J. P.; Kim, B. C.

    1992-01-01

    Stress analysis has been performed using computer program ANSYS in the pressurizer surge line in accordance with ASME Sec. III in order to predict possibility of fatigue failure due to thermal stratification phenomena in pipes connected to reactor coolant system of nuclear power plants. Highly vulnerable area to crack generation has been chosen by the analysis of fatigue due to thermal stress in pressurizer surge line. This kind of result can be helpful to choose the location requiring intensive care during inservice inspection of nuclear power plants

  8. Stress corrosion cracking of nuclear reactor pressure vessel and piping steels

    International Nuclear Information System (INIS)

    Speidel, M.O.; Magdowski, R.M.

    1988-01-01

    This paper presents an extensive investigation of stress corrosion cracking of nuclear reactor pressure vessel and piping steels exposed to hot water. Experimental fracture mechanics results are compared with data from the literature and other laboratories. Thus a comprehensive overview of the present knowledge concerning stress corrosion crack growth rates is provided. Several sets of data confirm that 'fast' stress corrosion cracks with growth rates between 10 -8 and 10 -7 m/s and threshold stress intensities around 20 MN m -3/2 can occur under certain conditions. However, it appears possible that specific environmental, mechanical and metallurgical conditions which may prevail in reactors can result in significantly lower stress corrosion crack growth rates. The presently known stress corrosion crack growth rate versus stress intensity curves are discussed with emphasis on their usefulness in establishing safety margins against stress corrosion cracking of components in service. Further substantial research efforts would be helpful to provide a data base which permits well founded predictions as to how stress corrosion cracking in pressure vessels and piping can be reliably excluded or tolerated. It is emphasized, however, that the nucleation of stress corrosion cracks (as opposed to their growth) is difficult and may contribute substantially to the stress corrosion free service behaviour of the overwhelming majority of pressure vessels and pipes. (author)

  9. Short cracks in piping and piping welds. Seventh program report, March 1993-December 1994. Volume 4, Number 1

    Energy Technology Data Exchange (ETDEWEB)

    Wilkowski, G.M.; Ghadiali, N.; Rudland, D.; Krishnaswamy, P.; Rahman, S.; Scott, P. [Battelle, Columbus, OH (United States)

    1995-04-01

    This is the seventh progress report of the U.S. Nuclear Regulatory Commission`s research program entitled {open_quotes}Short Cracks in Piping and Piping Welds{close_quotes}. The program objective is to verify and improve fracture analyses for circumferentially cracked large-diameter nuclear piping with crack sizes typically used in leak-before-break (LBB) analyses and in-service flaw evaluations. All work in the eight technical tasks have been completed. Ten topical reports are scheduled to be published. Progress only during the reporting period, March 1993 - December 1994, not covered in the topical reports is presented in this report. Details about the following efforts are covered in this report: (1) Improvements to the two computer programs NRCPIPE and NRCPIPES to assess the failure behavior of circumferential through-wall and surface-cracked pipe, respectively; (2) Pipe material property database PIFRAC; (3) Circumferentially cracked pipe database CIRCUMCK.WKI; (4) An assessment of the proposed ASME Section III design stress rule changes on pipe flaw tolerance; and (5) A pipe fracture experiment on a section of pipe removed from service degraded by microbiologically induced corrosion (MIC) which contained a girth weld crack. Progress in the other tasks is not repeated here as it has been covered in great detail in the topical reports.

  10. Short cracks in piping and piping welds. Seventh program report, March 1993-December 1994. Volume 4, Number 1

    International Nuclear Information System (INIS)

    Wilkowski, G.M.; Ghadiali, N.; Rudland, D.; Krishnaswamy, P.; Rahman, S.; Scott, P.

    1995-04-01

    This is the seventh progress report of the U.S. Nuclear Regulatory Commission's research program entitled open-quotes Short Cracks in Piping and Piping Weldsclose quotes. The program objective is to verify and improve fracture analyses for circumferentially cracked large-diameter nuclear piping with crack sizes typically used in leak-before-break (LBB) analyses and in-service flaw evaluations. All work in the eight technical tasks have been completed. Ten topical reports are scheduled to be published. Progress only during the reporting period, March 1993 - December 1994, not covered in the topical reports is presented in this report. Details about the following efforts are covered in this report: (1) Improvements to the two computer programs NRCPIPE and NRCPIPES to assess the failure behavior of circumferential through-wall and surface-cracked pipe, respectively; (2) Pipe material property database PIFRAC; (3) Circumferentially cracked pipe database CIRCUMCK.WKI; (4) An assessment of the proposed ASME Section III design stress rule changes on pipe flaw tolerance; and (5) A pipe fracture experiment on a section of pipe removed from service degraded by microbiologically induced corrosion (MIC) which contained a girth weld crack. Progress in the other tasks is not repeated here as it has been covered in great detail in the topical reports

  11. Use of magnetoplumbite and spinel ferrite seed layers for the growth of oriented Y ferrite thin films

    Czech Academy of Sciences Publication Activity Database

    Uhrecký, Róbert; Buršík, Josef; Soroka, Miroslav; Kužel, R.; Prokleška, J.

    2017-01-01

    Roč. 622, JAN (2017), s. 104-110 ISSN 0040-6090 R&D Projects: GA ČR(CZ) GA14-18392S; GA MŠk(CZ) LM2015073 Institutional support: RVO:61388980 Keywords : Hexagonal ferrites * Seed layer * Thin film s * Chemical solution deposition Subject RIV: CA - Inorganic Chemistry OBOR OECD: Inorganic and nuclear chemistry Impact factor: 1.879, year: 2016

  12. Accelerated development of Zr-containing new generation ferritic steels for advanced nuclear reactors

    Energy Technology Data Exchange (ETDEWEB)

    Tan, Lizhen [Oak Ridge National Lab. (ORNL), Oak Ridge, TN (United States); Yang, Ying [Oak Ridge National Lab. (ORNL), Oak Ridge, TN (United States); Sridharan, K. [Univ. of Wisconsin, Madison, WI (United States)

    2015-12-01

    The mission of the Nuclear Energy Enabling Technologies (NEET) program is to develop crosscutting technologies for nuclear energy applications. Advanced structural materials with superior performance at elevated temperatures are always desired for nuclear reactors, which can improve reactor economics, safety margins, and design flexibility. They benefit not only new reactors, including advanced light water reactors (LWRs) and fast reactors such as the sodium-cooled fast reactor (SFR) that is primarily designed for management of high-level wastes, but also life extension of the existing fleet when component exchange is needed. Developing and utilizing the modern materials science tools (experimental, theoretical, and computational tools) is an important path to more efficient alloy development and process optimization. The ultimate goal of this project is, with the aid of computational modeling tools, to accelerate the development of Zr-bearing ferritic alloys that can be fabricated using conventional steelmaking methods. The new alloys are expected to have superior high-temperature creep performance and excellent radiation resistance as compared to Grade 91. The designed alloys were fabricated using arc-melting and drop-casting, followed by hot rolling and conventional heat treatments. Comprehensive experimental studies have been conducted on the developed alloys to evaluate their hardness, tensile properties, creep resistance, Charpy impact toughness, and aging resistance, as well as resistance to proton and heavy ion (Fe2+) irradiation.

  13. Ferrites and ceramic composites

    CERN Document Server

    Jotania, Rajshree B

    2013-01-01

    The Ferrite term is used to refer to all magnetic oxides containing iron as major metallic component. Ferrites are very attractive materials because they simultaneously show high resistivity and high saturation magnetization, and attract now considerable attention, because of the interesting physics involved. Typical ferrite material possesses excellent chemical stability, high corrosion resistivity, magneto-crystalline anisotropy, magneto-striction, and magneto-optical properties. Ferrites belong to the group of ferrimagnetic oxides, and include rare-earth garnets and ortho-ferrites. Several

  14. Numerical simulation of residual stress in piping components at Framatome-ANP

    International Nuclear Information System (INIS)

    Gilies, P.; Franco, C.; Cipiere, M.-F.; Ould, P.

    2005-01-01

    Numerous manufacturing processes induce residual stresses and distortions in piping components and associated welds: quenching of cast pipings, machining and welding. In Pressurized Water Reactors, most of the components have a large thickness for sustaining pressure and distortions are a minor source of concern. This is not the case for residual stresses which may have a strong influence on several type of damage such as fatigue, corrosion, brittle fracture. In low toughness components, residual stress fields may contribute to ductile tearing initiation. These potential damages are mitigated after welding by stress relief heat treatment, which is applied in a systematic manner to ferritic components of the primary system in nuclear reactors. This treatment is not applied on austenitic piping for which the heat treatment temperature is limited due to the risk of sensitization and residual stresses are difficult to eliminate completely. Since on site measurements are costly and difficult to perform, numerical simulation appears to be an attractive tool for estimating residual stress distributions. Framatome-ANP is working on modelling manufacturing processes with that purpose in mind. This paper presents three kinds of applications illustrating efforts on welding, quenching and machining simulation. First a comparison is shown between computations and measurements of residual stress induced by welding of a dissimilar weld metal junction. Then numerical simulations of quenching of a cast stainless steel nozzle are presented. Finally quenching followed by machining and grinding of this cast component are considered in a full simulation of the manufacturing process. Computed distortions and residual stresses are compared with experimental measurements at different stages of the manufacturing process. (authors)

  15. Load tests with a pipe bend DN 425, applying slowly changing bending loads up to occurrence of leak

    International Nuclear Information System (INIS)

    Uhlmann, D.; Hunger, H.

    1990-01-01

    The experimental program deals with the formation of incipient cracks and subsequent crack growth of axially oriented cracks at a pipe bend with a nominal width of DN 425. The pipe bend consists of the ferritic material 20MnMoNi55. The numerical experiments by means of 3 D-FE analyses concentrate on determining the influence of the asymmetric crack depths at the two bend halves, and of the multiple crack fields, on the effective crack strain. (DG) [de

  16. CSNI specialist meeting on leak-before-break in nuclear reactor piping: proceedings

    Energy Technology Data Exchange (ETDEWEB)

    1984-08-01

    On September 1 and 2, 1983, the CSNI subcommittee on primary system integrity held a special meeting in Monterey, California, on the subject of leak-before-break in nuclear reactor piping systems. The purpose of the meeting was to provide an international forum for the exchange of ideas, positions, and research results; to identify areas requiring additional research and development; and to determine the general attitude toward acceptance of the leak-before-break concept. The importance of the leak-before-break issue was evidenced by excellent attendance at the meeting and through active participation by the meeting attendees. Approximately 125 people representing fifteen different nations attended the meeting. The meeting was divided into four technical sessions addressing the following areas: Application of Piping Fracture Mechanics to Leak-Before Break, Leak Rate and Leak Detection, Leak-Before-Break Studies, Methods and Results, Current and Proposed Positions on Leak-Before-Break.

  17. CSNI specialist meeting on leak-before-break in nuclear reactor piping: proceedings

    International Nuclear Information System (INIS)

    1984-08-01

    On September 1 and 2, 1983, the CSNI subcommittee on primary system integrity held a special meeting in Monterey, California, on the subject of leak-before-break in nuclear reactor piping systems. The purpose of the meeting was to provide an international forum for the exchange of ideas, positions, and research results; to identify areas requiring additional research and development; and to determine the general attitude toward acceptance of the leak-before-break concept. The importance of the leak-before-break issue was evidenced by excellent attendance at the meeting and through active participation by the meeting attendees. Approximately 125 people representing fifteen different nations attended the meeting. The meeting was divided into four technical sessions addressing the following areas: Application of Piping Fracture Mechanics to Leak-Before Break, Leak Rate and Leak Detection, Leak-Before-Break Studies, Methods and Results, Current and Proposed Positions on Leak-Before-Break

  18. Piping research program plan

    International Nuclear Information System (INIS)

    1988-09-01

    This document presents the piping research program plan for the Structural and Seismic Engineering Branch and the Materials Engineering Branch of the Division of Engineering, Office of Nuclear Regulatory Research. The plan describes the research to be performed in the areas of piping design criteria, environmentally assisted cracking, pipe fracture, and leak detection and leak rate estimation. The piping research program addresses the regulatory issues regarding piping design and piping integrity facing the NRC today and in the foreseeable future. The plan discusses the regulatory issues and needs for the research, the objectives, key aspects, and schedule for each research project, or group of projects focussing of a specific topic, and, finally, the integration of the research areas into the regulatory process is described. The plan presents a snap-shot of the piping research program as it exists today. However, the program plan will change as the regulatory issues and needs change. Consequently, this document will be revised on a bi-annual basis to reflect the changes in the piping research program. (author)

  19. Surface crack behavior in socket weld of nuclear piping under fatigue loading condition

    International Nuclear Information System (INIS)

    Choi, Y.H.; Kim, J.S.; Choi, S.Y.

    2005-01-01

    The ASME B and PV Code Sec. III allows the socket weld for the nuclear piping in spite of the weakness on the weld integrity. Recently, the integrity of the socket weld is regarded as a safety concern in nuclear power plants because many failures and leaks have been reported in the socket weld. OPDE (OECD Piping Failure Data Exchange) database lists 108 socket weld failures among 2,399 nuclear piping failure cases during 1970 to 2001. Eleven failures in the socket weld were also reported in Korean NPPs. Many failure cases showed that the root cause of the failure is the fatigue and the gap requirement for the socket weld given in ASME Code was not satisfied. The purpose of this paper is to evaluate the fatigue crack behavior of a surface crack in the socket weld under fatigue loading condition considering the gap effect. Three-dimensional finite element analysis was performed to estimate the fatigue crack behavior of the surface crack. Three types of loading conditions such as the deflection due to vibration, the pressure transient ranging from P=0 to 15.51 MPa, and the thermal transient ranging from T=25 C to 288 C were considered. The results are as follows; 1) The socket weld is susceptible to the vibration where the vibration levels exceed the requirement in the ASME operation and maintenance (OM) Code. 2) The effect of pressure or temperature transient load on the socket weld integrity is not significant. 3) No-gap condition gives very high possibility of the crack initiation at the socket weld under vibration loading condition. 4) For the specific systems having the vibration condition to exceed the requirement in the ASME Code OM and/or the transient loading condition from P=0 and T=25 C to P=15.51 MPa and T=288 C, radiographic examination to examine the gap during the construction stage is recommended. (orig.)

  20. Pipe support program at Pickering

    International Nuclear Information System (INIS)

    Sahazizian, L.A.; Jazic, Z.

    1997-01-01

    This paper describes the pipe support program at Pickering. The program addresses the highest priority in operating nuclear generating stations, safety. We present the need: safety, the process: managed and strategic, and the result: assurance of critical piping integrity. In the past, surveillance programs periodically inspected some systems, equipment, and individual components. This comprehensive program is based on a managed process that assesses risk to identify critical piping systems and supports and to develop a strategy for surveillance and maintenance. The strategy addresses all critical piping supports. Successful implementation of the program has provided assurance of critical piping and support integrity and has contributed to decreasing probability of pipe failure, reducing risk to worker and public safety, improving configuration management, and reducing probability of production losses. (author)

  1. An in-pipe mobile micromachine using fluid power. A mechanism adaptable to pipe diameters

    International Nuclear Information System (INIS)

    Yoshida, Kazuhiro; Yokota, Shinichi; Takahashi, Ken

    2000-01-01

    To realize micro maintenance robots for small diameter pipes of nuclear reactors and so on, high power in-pipe mobile micromachines have been required. The authors have proposed the bellows microactuator using fluid power and have tried to apply the actuators to in-pipe mobile micromachines. In the previous papers, some inchworm mobile machine prototypes with 25 mm in diameter are fabricated and the traveling performances are experimentally investigated. In this paper, to miniaturize the in-pipe mobile machine and to make it adaptable to pipe diameters, firstly, a simple rubber-tube actuator constrained with a coil-spring is proposed and the static characteristics are investigated. Secondly, a supporting mechanism which utilizes a toggle mechanism and is adaptable to pipe diameters is proposed and the supporting forces are investigated. Finally, an in-pipe mobile micromachine for pipe with 4 - 5 mm in diameter is fabricated and the maximum traveling velocity of 7 mm/s in both ahead and astern movements is experimentally verified. (author)

  2. Probabilistic calibration of safety coefficients for flawed components in nuclear engineering

    International Nuclear Information System (INIS)

    Ardillon, E.; Pitner, P.; Barthelet, B.; Remond, A.

    1996-01-01

    The rules that are currently under application to verify the acceptance of flaws in nuclear components rely on deterministic criteria supposed to ensure the safe operating of plants. The interest of having a precise and reliable method to evaluate the safety margins and the integrity of components led Electricite de France to launch an approach to link directly safety coefficients with safety levels. This paper presents a probabilistic methodology to calibrate safety coefficients in relation to reliability target values. The proposed calibration procedure applies to the case of a ferritic flawed pipe using the R6 procedure for assessing the integrity of the structure. (authors). 5 refs., 5 figs

  3. Probabilistic calibration of safety coefficients for flawed components in nuclear engineering

    International Nuclear Information System (INIS)

    Ardillon, E.; Pitner, P.; Barthelet, B.; Remond, A.

    1995-01-01

    The current rules applied to verify the flaws acceptance in nuclear components rely on deterministic criteria supposed to ensure the plant safe operation. The interest in have a precise and reliable method to evaluate the safety margins and the integrity of components led Electricite de France to launch an approach to link directly safety coefficients with safety levels. This paper presents a probabilistic methodology to calibrate safety coefficients in relation do reliability target values. The proposed calibration procedure applies to the case of a ferritic flawed pipe using the R 6 procedure for assessing the structure integrity. (author). 5 refs., 5 figs., 1 tab

  4. Thin slab processing of acicular ferrite steels with high toughness

    Energy Technology Data Exchange (ETDEWEB)

    Reip, Carl-Peter; Hennig, Wolfgang; Hagmann, Rolf [SMS Demag Aktiengesellschaft, Duesseldorf (Germany); Sabrudin, Bin Mohamad Suren; Susanta, Ghosh; Lee, Weng Lan [Megasteel Sdn Bhd, Banting (Malaysia)

    2005-07-01

    Near-net-shape casting processes today represent an important option in steelmaking. High productivity and low production cost as well as the variety of steel grades that can be produced plus an excellent product quality are key factors for the acceptance of such processes in markets all over the world. Today's research focuses on the production of pipe steel with special requirements in terms of toughness at low temperatures. The subject article describes the production of hot strip made from acicular ferritic / bainitic steel grades using the CSP thin-slab technology. In addition, the resulting strength and toughness levels as a function of the alloying concepts are discussed. Optimal control of the CSP process allows the production of higher-strength hot-rolled steel grades with a fine-grain acicular-ferritic/bainitic microstructure. Hot strip produced in this way is characterized by a high toughness at low temperatures. In a drop weight tear test, transition temperatures of up to -50 deg C can be achieved with a shear-fracture share of 85%. (author)

  5. Development of testing system for the thermo-mechanical fatigue crack analysis of nuclear power plant pipes

    International Nuclear Information System (INIS)

    Lee, Ho Jin; Kim, Maan Won; Lee, Bong Sang

    2003-12-01

    Fatigue crack growth analysis plays an important role in the structural integrity assessment or the service life calculation of the nuclear power plant pipes. To obtain the material properties as a basic data to achieve an accurate crack growth analysis, a lot of tests and numerical crack growth simulations have been done for decades. The BS 7910 or the ASME Boiler and Pressure Vessel Code Section XI, generally used to evaluate crack growth behavior, were made under the based on simple stress states or at the evaluated isothermal temperature. It is well known that the ASME code could sometimes give so conservative results in some cases of which the cracked components are experiencing with cyclic thermal shock. In this report, we suggested a method for the life assessment of a crack embedded in nuclear power plant pipes under the thermal-mechanical fatigue loads. We here use the numerical method to get the temperature history for thermal- mechanical fatigue crack growth test. And then we can calculate the remaining life time of the pipe by using the fracture mechanics and the test results together. For this purpose, we constructed a thermal-mechanical fatigue crack growth testing system. We also gave a lot of review about recent researches in the experimental field of thermal-mechanical fatigue analysis

  6. Nuclear power plant steam pipes repairing with Tirant 3 Robot system

    Energy Technology Data Exchange (ETDEWEB)

    Soto, M.; Curiel, M. [Logistica y Acondicionamientos Industriales SAU, Sorolla Center, local 10, Av. de las Cortes Valencianas No. 58, 46015 Valencia (Spain); Lazaro, F. [Revestimientos Anticorrosivos Industriales, S. L. U., Sorolla Center, local 10, Av. de las Cortes Valencianas No. 58, 46015 Valencia (Spain); Arnaldos, A., E-mail: m.soto@lainsa.co [TITANIA Servicios Tecnologicos SL, Sorolla Center, local 10, Av. de las Cortes Valencianas No. 58, 46015 Valencia (Spain)

    2010-10-15

    The metallization arc spray process is based on the projection of molten metal, supplied by means of different stainless alloys wire, over a surface of carbon steel usually, with the object of serving as protection against erosion-corrosion, increasing resistance to abrasion and detrition. A typical application functions covering the steam pipes inner surface in coal-fired power station and nuclear power plants. The results of this process are spectacular in terms of protection against corrosion and abrasion, but its application has conditioning factors, such as: Severe application conditions for workers. Due to the worker's postural position (usually kneeling) in 32 diameter pipes and working with fireproof clothing and masks with outdoor air supplying, due to fumes, sparks and molten metal particles, radiological contamination, confined space, poor lighting, ... Coating uniformity. As metallization is a manual process, the carried out measurements show small variations in the thickness of the coating, always within the tolerance limits established by the applicable regulations and quality assurance. An increase in the uniformity of the projected coating, increase the resistance and give a better surface protection. For all these reasons, Lainsa has developed the Tirant 3 robot, a worldwide innovative system, for metallization of steam pipes inner surface. Tirant 3 robot is tele operated from outside of the pipe, so that human intervention is reduced to the operations of robot positioning and change of metallization wire. As it is an independent system of the human factor, metallization process performance is significantly increased by reducing rest periods due only to the robot maintenance. Likewise, Tirant 3 system permits to increase resulting coating uniformity and thus its resistance, keeping selected parameters constant (forward speed, rotation speed and inner surface distance) depending on required type and thickness of wire. (Author)

  7. Reliability of piping system components. Volume 1: Piping reliability - A resource document for PSA applications

    Energy Technology Data Exchange (ETDEWEB)

    Nyman, R; Erixon, S; Tomic, B; Lydell, B

    1995-12-01

    SKI has undertaken a multi-year research project to establish a comprehensive passive component failure database, validate failure rate parameter estimates and establish a model framework for integrating passive component failures in existing PSAs. Phase 1 of the project produced a relational database on worldwide piping system failure events in the nuclear and chemical industries. This phase 2 report gives a graphical presentation of piping system operating experience, and compares key failure mechanisms in commercial nuclear power plants and chemical process industry. Inadequacies of traditional PSA methodology are addressed, with directions for PSA methodology enhancements. A data-driven-and-systems-oriented analysis approach is proposed to enable assignment of unique identities to risk-significant piping system component failures. Sufficient operating experience does exist to generate quality data on piping failures. Passive component failures should be addressed by today`s PSAs to allow for aging analysis and effective, on-line risk management. 111 refs, 36 figs, 20 tabs.

  8. Reliability of piping system components. Volume 1: Piping reliability - A resource document for PSA applications

    International Nuclear Information System (INIS)

    Nyman, R.; Erixon, S.; Tomic, B.; Lydell, B.

    1995-12-01

    SKI has undertaken a multi-year research project to establish a comprehensive passive component failure database, validate failure rate parameter estimates and establish a model framework for integrating passive component failures in existing PSAs. Phase 1 of the project produced a relational database on worldwide piping system failure events in the nuclear and chemical industries. This phase 2 report gives a graphical presentation of piping system operating experience, and compares key failure mechanisms in commercial nuclear power plants and chemical process industry. Inadequacies of traditional PSA methodology are addressed, with directions for PSA methodology enhancements. A data-driven-and-systems-oriented analysis approach is proposed to enable assignment of unique identities to risk-significant piping system component failures. Sufficient operating experience does exist to generate quality data on piping failures. Passive component failures should be addressed by today's PSAs to allow for aging analysis and effective, on-line risk management. 111 refs, 36 figs, 20 tabs

  9. Development of an evaluation method for seismic isolation systems of nuclear power facilities. Seismic design analysis methods for crossover piping system

    International Nuclear Information System (INIS)

    Tai, Koichi; Sasajima, Keisuke; Fukushima, Shunsuke; Takamura, Noriyuki; Onishi, Shigenobu

    2014-01-01

    This paper provides seismic design analysis methods suitable for crossover piping system, which connects between seismic isolated building and non-isolated building in the seismic isolated nuclear power plant. Through the numerical study focused on the main steam crossover piping system, seismic response spectrum analysis applying ISM (Independent Support Motion) method with SRSS combination or CCFS (Cross-oscillator, Cross-Floor response Spectrum) method has found to be quite effective for the seismic design of multiply supported crossover piping system. (author)

  10. Analyzing the effects of geometrical discontinuity on dynamic strain aging behavior of ferritic steels

    International Nuclear Information System (INIS)

    Lee, Sa Yong; Kim, Jin Weon

    2012-01-01

    Low carbon ferritic steels, such as A106 Gr.B and A508 Gr.1a, are commonly used as piping material in nuclear power plants (NPPs). These ferritic steels are known to exhibit dynamic strain aging (DSA) when exposed to a certain range of elevated temperatures, including operating temperatures of NPPs, during deformation. DSA in low carbon steels is related to the interactions between free carbon and nitrogen atoms and dislocations during plastic deformation, and it leads to abnormal increase in strength and decrease in ductility and fracture toughness. Also, the DSA behavior is sensitive to the deformation rate. Therefore, DSA phenomenon has been considered to be a cause of uncertainty in the integrity evaluation of carbon steel components in NPPs, and a number of studies have been investigated the behavior of DSA under uni-axial tensile deformation. However, the behavior has not been clearly investigated under nonuniform stress and strain states induced by geometrical discontinuity. Our previous study only experimentally evaluated the effect of geometrical discontinuity on the DSA behavior via a series of tensile tests on the notched-bar and standard specimens. Thus, the present study performed finite element (FE) simulations on tensile data given by our previous study and evaluated the stress and strain states for each type of specimen during deformation. A relationship between DSA behavior and stress and strain states was obtained by comparing the results of experiment and FE simulation, and it was confirmed by crack propagation tests using compact tension (CT) specimens with electro discharge machining (EDM) notch

  11. Noncondensable gas accumulation phenomena in nuclear power plant piping

    International Nuclear Information System (INIS)

    Yamamoto, Yasushi; Aoki, Kazuyoshi; Sato, Teruaki; Shida, Akira; Ichikawa, Nagayoshi; Nishikawa, Akira; Inagaki, Tetsuhiko

    2011-01-01

    In the case of the boiling water reactor, hydrogen and oxygen slightly exist in the main steam, because these noncondensable gases are generated by the radiolytic decomposition of the reactor water. BWR plants have taken measures to prevent noncondensable gas accumulation. However, in 2001, the detonation of noncondensable gases occurred at Hamaoka-1 and Brunsbuttel, resulting in ruptured piping. The accumulation phenomena of noncondensable gases in BWR closed piping must be investigated and understood in order to prevent similar events from occurring in the future. Therefore, an experimental study on noncondensable gas accumulation was carried out. The piping geometries for testing were classified and modeled after the piping of actual BWR plants. The test results showed that 1) noncondensable gases accumulate in vertical piping, 2) it is hard for noncondensable gases to accumulate in horizontal piping, and 3) noncondensable gases accumulate under low-pressure conditions. A simple accumulation analysis method was proposed. To evaluate noncondensable gas accumulation phenomena, the three component gases were treated as a mixture. It was assumed that the condensation amount of the vapor is small, because the piping is certainly wrapped with heat insulation material. Moreover, local thermal equilibrium was assumed. This analysis method was verified using the noncondensable gas accumulation test data on branch piping with a closed top. Moreover, an experimental study on drain trap piping was carried out. The test results showed that the noncondensable gases dissolved in the drain water were discharged from the drain trap, and Henry's law could be applied to evaluate the amount of dissolved noncondensable gases in the drain water. (author)

  12. Pipe inspection using the pipe crawler. Innovative technology summary report

    International Nuclear Information System (INIS)

    1999-05-01

    The US Department of Energy (DOE) continually seeks safer and more cost-effective remediation technologies for use in the decontamination and decommissioning (D and D) of nuclear facilities. In several of the buildings at the Fernald Site, there is piping that was used to transport process materials. As the demolition of these buildings occur, disposal of this piping has become a costly issue. Currently, all process piping is cut into ten-foot or less sections, the ends of the piping are wrapped and taped to prevent the release of any potential contaminants into the air, and the piping is placed in roll off boxes for eventual repackaging and shipment to the Nevada Test Site (NTS) for disposal. Alternatives that allow for the onsite disposal of process piping are greatly desired due to the potential for dramatic savings in current offsite disposal costs. No means is currently employed to allow for the adequate inspection of the interior of piping, and consequently, process piping has been assumed to be internally contaminated and thus routinely disposed of at NTS. The BTX-II system incorporates a high-resolution micro color camera with lightheads, cabling, a monitor, and a video recorder. The complete probe is capable of inspecting pipes with an internal diameter (ID) as small as 1.4 inches. By using readily interchangeable lightheads, the same system is capable of inspecting piping up to 24 inches in ID. The original development of the BTX system was for inspection of boiler tubes and small diameter pipes for build-up, pitting, and corrosion. However, the system is well suited for inspecting the interior of most types of piping and other small, confined areas. The report describes the technology, its performance, uses, cost, regulatory and policy issues, and lessons learned

  13. Pipe inspection using the pipe crawler. Innovative technology summary report

    Energy Technology Data Exchange (ETDEWEB)

    NONE

    1999-05-01

    The US Department of Energy (DOE) continually seeks safer and more cost-effective remediation technologies for use in the decontamination and decommissioning (D and D) of nuclear facilities. In several of the buildings at the Fernald Site, there is piping that was used to transport process materials. As the demolition of these buildings occur, disposal of this piping has become a costly issue. Currently, all process piping is cut into ten-foot or less sections, the ends of the piping are wrapped and taped to prevent the release of any potential contaminants into the air, and the piping is placed in roll off boxes for eventual repackaging and shipment to the Nevada Test Site (NTS) for disposal. Alternatives that allow for the onsite disposal of process piping are greatly desired due to the potential for dramatic savings in current offsite disposal costs. No means is currently employed to allow for the adequate inspection of the interior of piping, and consequently, process piping has been assumed to be internally contaminated and thus routinely disposed of at NTS. The BTX-II system incorporates a high-resolution micro color camera with lightheads, cabling, a monitor, and a video recorder. The complete probe is capable of inspecting pipes with an internal diameter (ID) as small as 1.4 inches. By using readily interchangeable lightheads, the same system is capable of inspecting piping up to 24 inches in ID. The original development of the BTX system was for inspection of boiler tubes and small diameter pipes for build-up, pitting, and corrosion. However, the system is well suited for inspecting the interior of most types of piping and other small, confined areas. The report describes the technology, its performance, uses, cost, regulatory and policy issues, and lessons learned.

  14. The Development of Boiler Pipes Used for 700°C A-USC-PP in China

    Science.gov (United States)

    Liu, Zhengdong; Bao, Hansheng; Xu, Songqian; Wang, Qijiang; Yang, Yujun; Zhang, Peng; Lei, Bingwang

    This paper introduces the progress of boiler pipes used for the manufacturing of 700°C advanced ultra-super-critical (A-USC) fossil fuel power plants (PP) in China, with the emphasis on the detailed advancements of G115 and CN617 pipes, including technical exploration, industrial production and microstructure-property investigation. G115 is a novel ferritic heat resistant steels developed by CISRI, which is an impressive candidate material to make pipes for the temperature up to 650°C. CN617 is a recent modification of Inconel617B and the CN617 pipe with the dimension of Φ 460 × 80 mm was successfully manufactured in China. Some newly available data associated with above materials will be released. G115 and CN617 are imposing candidate materials for the manufacturing of 700°C advanced ultra-super-critical (A-USC) fossil fuel power plants (PP) in China.

  15. Improvement of layout and piping design for PWR nuclear power plants

    International Nuclear Information System (INIS)

    Nozue, Kosei; Waki, Masato; Kashima, Hiroo; Yoshioka, Tsuyoshi; Obara, Ichiro.

    1983-01-01

    For a nuclear power plant, a period of nearly ten years is required from the initial planning stage to commencement of transmission after passing through the design, manufacturing, installation and trial running stages. In the current climate there is a trend that the time required for nuclear power plant construction will further increase when locational problems, thorough explanation to residents in the neighborhood of the construction site and their under-standing, subsequent safety checks and measures to be taken in compliance with various controls and regulations which get tighter year after year, are taken into account. Under such circumstances, in order to satisfy requirements such as improving the reliability of the nuclear power plant design, manufacturing and construction departments, improvements in the economy as well as the quality and shortening of construction periods, the design structure for Mitsubishi PWR nuclear power plants was thoroughly consolidated with regard to layout and piping design. At the same time, diversified design improvements were made with the excellent domestic technology based on plant designs imported from the U.S.A. An outline of the priority items is introduced in this paper. (author)

  16. Nuclear power plant piping damping parametric effects

    International Nuclear Information System (INIS)

    Ware, A.G.

    1983-01-01

    The NRC and EG and G Idaho are engaged in programs to evaluate piping-system damping, in order to provide realistic and less conservative values to be used in seismic analyses. To generate revised guidelines, solidly based on technical data, new experimental data need to be generated and assessed, and the parameters which influence piping-system damping need to be quantitatively identified. This paper presents the current state-of-the-art knowledge in the United States on parameters which influence piping-system damping. Examples of inconsistencies in the data and areas of uncertainty are explained. A discussion of programs by EG and G Idaho and other organizations to evaluate various effects are included, and both short-and long-range goals of the program are outlined

  17. Mechanized ultrasonic examination of piping systems in nuclear power plants

    International Nuclear Information System (INIS)

    Edelmann, X.; Pfister, O.; Allidi, F.

    1988-01-01

    The success of mechanized ultrasonic examination applied on welds in piping systems in nuclear power plants is highly dependent on its careful preparation. From the development of an adequate examination technique to its implementation on site, many problems are to be solved. This is especially the case when dealing with austenitic welds or dissimilar metal welds. In addition to the specific needs for examination technique based on material properties and requirements for minimum flaw size detection, accessibility and radiation aspects have to be considered. A crew of skilled and highly trained examination personnel is required. Experience in various nuclear power plants, - BWR's and PWR's of different designs - has shown, that even difficult examination problems can be successfully solved, provided that there is a good preparation. The necessary step by step proceeding is illustrated by examples concerning mechanized examination. Preservice inspections and in-service inspections with specific requirements, due to the types of flaws to be found or the type of material concerned, are discussed

  18. Pipe failure probability - the Thomas paper revisited

    International Nuclear Information System (INIS)

    Lydell, B.O.Y.

    2000-01-01

    Almost twenty years ago, in Volume 2 of Reliability Engineering (the predecessor of Reliability Engineering and System Safety), a paper by H. M. Thomas of Rolls Royce and Associates Ltd. presented a generalized approach to the estimation of piping and vessel failure probability. The 'Thomas-approach' used insights from actual failure statistics to calculate the probability of leakage and conditional probability of rupture given leakage. It was intended for practitioners without access to data on the service experience with piping and piping system components. This article revisits the Thomas paper by drawing on insights from development of a new database on piping failures in commercial nuclear power plants worldwide (SKI-PIPE). Partially sponsored by the Swedish Nuclear Power Inspectorate (SKI), the R and D leading up to this note was performed during 1994-1999. Motivated by data requirements of reliability analysis and probabilistic safety assessment (PSA), the new database supports statistical analysis of piping failure data. Against the background of this database development program, the article reviews the applicability of the 'Thomas approach' in applied risk and reliability analysis. It addresses the question whether a new and expanded database on the service experience with piping systems would alter the original piping reliability correlation as suggested by H. M. Thomas

  19. The intermittent contact impact problem in piping systems of nuclear reactor

    International Nuclear Information System (INIS)

    Martin, A.; Ricard, A.; Millard, A.

    1981-09-01

    The intermittent contact problem is important in many pipe whip studies, specially as to the safety of nuclear reactors. The impact concept adopted is that of instantaneous impact, so that at the time of impact the two impacting structures instantaneously acquire the same velocity in the impact direction. Energy is dissipated by some mechanism whose spatial and temporal scale is small compared to these scales in the discrete model. This dissipation is associated with local plastic deformation. Different solutions are presented for solving this problem. The first one is a generalization of the modal superposition method, when the nonlinearities of the structure are only due to impact between structural components; the other ones are included in a step by step time history and can take in account geometrical non linearities and of behavior. Some industrial applications in nuclear technology are presented

  20. Application of risk-informed methods to in-service piping inspection in Framatome type nuclear power plants

    International Nuclear Information System (INIS)

    Kim, Jin Hoi; Lee, Jeong Seok; Yun, Eun Sub

    2014-01-01

    The Pressurized water reactor owners group (PWROG) developed and applied a risk-informed in-service inspection (RI-ISI) program, as an alternative to the existing ASME Section XI sampling inspection method. The RI-ISI programs enhance overall safety by focusing inspections of piping at high safety significance (HSS) locations where failure mechanisms are likely to be present. Additionally, the RI-ISI program can reduce nondestructive evaluation (NDE) exams, man-rem exposure for inspectors, and inspection time, among other benefits. The RI-ISI method of in-service piping inspection was applied to 3 units (KSNPs: Korea standard nuclear power plants) and is being deployed to the other units. In this paper, the results of RI-ISI for a Framatome type (France CPI) nuclear power plant are presented. It was concluded that application of RI-ISI to the plant could enhance and maintain plant safety, as well as provide the benefits of greater reliability.

  1. XXIst Century Ferrites

    International Nuclear Information System (INIS)

    Mazaleyrat, F; Zehani, K; Pasko, A; Loyau, V; LoBue, M

    2012-01-01

    Ferrites have always been a subject of great interest from point of view of magnetic application, since the fist compass to present date. In contrast, the scientific interest for iron based magnetic oxides decreased after Oersted discovery as they where replaced by coil as magnetizing sources. Neel discovery of ferrimagnetism boosted again interest and leads to strong developments during two decades before being of less interest. Recently, the evolution of power electronics toward higher frequency, the down sizing of ceramics microstructure to nanometer scale, the increasing price of rare-earth elements and the development of magnetocaloric materials put light again on ferrites. A review on three ferrite families is given herein: harder nanostructured Ba 2+ Fe 12 O 19 magnet processed by spark plasma sintering, magnetocaloric effect associated to the spin transition reorientation of W-ferrite and low temperature spark plasma sintered Ni-Zn-Cu ferrites for high frequency power applications.

  2. Investigation of local fields in different barium ferrite sublattices by means of nuclear magnetic resonance

    International Nuclear Information System (INIS)

    Utrecht, R.; Hankiewicz, J.

    1995-01-01

    The local fields on 57 Fe nuclei in ferrite (BaFe 12 O 19 ) polycrystals have been investigated by means of spin echo amplitudes measurements at 4.2 and 77 K. The magnetic moment orientation and local field intensity have been determined for five different ferrite sublattices

  3. Elastic-plastic dynamic behavior of guard pipes due to sudden opening of longitudinal cracks in the inner pipe and crash to the guard pipe wall

    International Nuclear Information System (INIS)

    Theuer, E.; Heller, M.

    1979-01-01

    Integrity of guard pipes is an important parameter in the design of nuclear steam supply systems. A guard pipe shall withstand all kinds of postulated inner pipe breaks without failure. Sudden opening of a crack in the inner pipe and crash of crack borders to the guard pipe wall represent a shock problem where complex phenomena of dynamic plastification as well as dynamic behavior of the entire system have to be taken in consideration. The problem was analyzed by means of Finite Element computation using the general purpose program MARC. Equation of motion was resolved by direct integration using the Newmark β-operator. Analysis shows that after 1,2 m sec crack borders touch the guard pipe wall for the first time. At this moment a considerable amount of local plastification appears in the inner pipe wall, while the guard pipe is nearly unstressed. After initial touching, the crack borders begin to slip along the guard pipe wall. Subsequently, a short withdrawal of the crack borders and a new crash occur, while the inner pipe rolls along the guard pipe wall. The analysis procedure described is suitable for designing numerous guard pipe geometries as well as U-Bolt restraint systems which have to withstand high-energy pipe rupture impact. (orig.)

  4. J evaluation by simplified method for cracked pipes under mechanical loading

    International Nuclear Information System (INIS)

    Lacire, M.H.; Michel, B.; Gilles, P.

    2001-01-01

    The integrity of structures behaviour is an important subject for the nuclear reactor safety. Most of assessment methods of cracked components are based on the evaluation of the parameter J. However to avoid complex elastic-plastic finite element calculations of J, a simplified method has been jointly developed by CEA, EDF and Framatome. This method, called Js, is based on the reference stress approach and a new KI handbook. To validate this method, a complete set of 2D and 3D elastic-plastic finite element calculations of J have been performed on pipes (more than 300 calculations are available) for different types of part through wall crack (circumferential or longitudinal); mechanical loading (pressure, bending moment, axial load, torsion moment, and combination of these loading); different kind of materials (austenitic or ferritic steel). This paper presents a comparison between the simplified assessment of J and finite element results on these configurations for mechanical loading. Then, validity of the method is discussed and an applicability domain is proposed. (author)

  5. Ferrite-guided cyclotron-resonance maser

    International Nuclear Information System (INIS)

    Jerby, Eli; Kesar, A.; Aharony, A.; Breitmeier, G.

    2002-01-01

    The concept of a cyclotron-resonance maser (CRM) with a ferrite loading incorporated in its waveguide is proposed. The CRM interaction occurs between the rotating electron beam and the em wave propagating along a longitudinally magnetized ferrite medium. The ferrite anisotropic permeability resembles the CRM susceptibility in many aspects, and particularly in their similar response to the axial magnetic field (the ferrite susceptibility can be regarded as a passive analog of the active CRM interaction). The ferrite loading slows down the phase velocity of the em wave and thus the axial (Weibel) mechanism of the CRM interaction dominates. The ferrite loading enables also a mechanism of spectral tunability for CRM's. The ferrite loading is proposed, therefore, as a useful ingredient for high-power CRM devices. A linear model of the combined ferrite-guided CRM interaction reveals its useful features. Future schemes may also incorporate ferrite sections functioning as isolators, gyrators, or phase shifters within the CRM device itself for selective suppression of backward waves and spurious oscillations, and for gain and efficiency enhancement

  6. Study on the residual stress relaxation in girth-welded steel pipes under bending load using diffraction methods

    International Nuclear Information System (INIS)

    Hempel, Nico; Nitschke-Pagel, Thomas; Dilger, Klaus

    2017-01-01

    This research is dedicated to the experimental investigation of the residual stress relaxation in girth-welded pipes due to quasi-static bending loads. Ferritic-pearlitic steel pipes are welded with two passes, resulting in a characteristic residual stress state with high tensile residual stresses at the weld root. Also, four-point bending is applied to generate axial load stress causing changes in the residual stress state. These are determined both on the outer and inner surfaces of the pipes, as well as in the pipe wall, using X-ray and neutron diffraction. Focusing on the effect of tensile load stress, it is revealed that not only the tensile residual stresses are reduced due to exceeding the yield stress, but also the compressive residual stresses for equilibrium reasons. Furthermore, residual stress relaxation occurs both parallel and perpendicular to the applied load stress.

  7. Pipe fracture evaluations for leak-rate detection: Probabilistic models

    International Nuclear Information System (INIS)

    Rahman, S.; Wilkowski, G.; Ghadiali, N.

    1993-01-01

    This is the second in series of three papers generated from studies on nuclear pipe fracture evaluations for leak-rate detection. This paper focuses on the development of novel probabilistic models for stochastic performance evaluation of degraded nuclear piping systems. It was accomplished here in three distinct stages. First, a statistical analysis was conducted to characterize various input variables for thermo-hydraulic analysis and elastic-plastic fracture mechanics, such as material properties of pipe, crack morphology variables, and location of cracks found in nuclear piping. Second, a new stochastic model was developed to evaluate performance of degraded piping systems. It is based on accurate deterministic models for thermo-hydraulic and fracture mechanics analyses described in the first paper, statistical characterization of various input variables, and state-of-the-art methods of modem structural reliability theory. From this model. the conditional probability of failure as a function of leak-rate detection capability of the piping systems can be predicted. Third, a numerical example was presented to illustrate the proposed model for piping reliability analyses. Results clearly showed that the model provides satisfactory estimates of conditional failure probability with much less computational effort when compared with those obtained from Monte Carlo simulation. The probabilistic model developed in this paper will be applied to various piping in boiling water reactor and pressurized water reactor plants for leak-rate detection applications

  8. Integrated piping structural analysis system

    International Nuclear Information System (INIS)

    Motoi, Toshio; Yamadera, Masao; Horino, Satoshi; Idehata, Takamasa

    1979-01-01

    Structural analysis of the piping system for nuclear power plants has become larger in scale and in quantity. In addition, higher quality analysis is regarded as of major importance nowadays from the point of view of nuclear plant safety. In order to fulfill to the above requirements, an integrated piping structural analysis system (ISAP-II) has been developed. Basic philosophy of this system is as follows: 1. To apply the date base system. All information is concentrated. 2. To minimize the manual process in analysis, evaluation and documentation. Especially to apply the graphic system as much as possible. On the basis of the above philosophy four subsystems were made. 1. Data control subsystem. 2. Analysis subsystem. 3. Plotting subsystem. 4. Report subsystem. Function of the data control subsystem is to control all information of the data base. Piping structural analysis can be performed by using the analysis subsystem. Isometric piping drawing and mode shape, etc. can be plotted by using the plotting subsystem. Total analysis report can be made without the manual process through the reporting subsystem. (author)

  9. Earthquake free design of pipe lines

    International Nuclear Information System (INIS)

    Kurihara, Chizuko; Sakurai, Akio

    1974-01-01

    Long structures such as cooling sea water pipe lines of nuclear power plants have a wide range of extent along the ground surface, and are incurred by not only the inertia forces but also forces due to ground deformations or the seismic wave propagation during earthquakes. Since previous reports indicated the earthquake free design of underground pipe lines, it is discussed in this report on behaviors of pipe lines on the ground during earthquakes and is proposed the aseismic design of pipe lines considering the effects of both inertia forces and ground deformations. (author)

  10. Inspection indications, stress corrosion cracks and repair of process piping in nuclear materials production reactors

    International Nuclear Information System (INIS)

    Louthan, M.R. Jr.; West, S.L.; Nelson, D.Z.

    1991-01-01

    Ultrasonic inspection of Schedule 40 Type 304 stainless steel piping in the process water system of the Savannah River Site reactors has provided indications of discontinuities in less than 10% of the weld heat affected zones. Pipe sections containing significant indications are replaced with Type 304L components. Post removal metallurgical evaluation showed that the indications resulted from stress corrosion cracking in weld heat-affected zones and that the overall weld quality was excellent. The evaluation also revealed weld fusion zone discontinuities such as incomplete penetration, incomplete fusion, inclusions, underfill at weld roots and hot cracks. Service induced extension of these discontinuities was generally not significant although stress corrosion cracking in one weld fusion zone was noted. One set of UT indications was caused by metallurgical discontinuities at the fusion boundary of an extra weld. This extra weld, not apparent on the outer pipe surface, was slightly overlapping and approximately parallel to the weld being inspected. This extra weld was made during a pipe repair, probably associated with initial construction processes. The two nearly parallel welds made accurate assessment of the UT signal difficult. The implications of these observations to the inspection and repair of process water systems of nuclear reactors is discussed

  11. Survey of a wireless NDT service for a nuclear piping wall thinning defect

    International Nuclear Information System (INIS)

    Choi, Yoo Rark; Lee, Jae Cheol

    2008-01-01

    The wireless sensor network has been issued for several years. The nuclear power plants all around world have adapted many kinds of sensor technologies for inspections and diagnostics of main instruments. Even though wireless sensor is more useful than wired sensor, wireless sensor based applications haven't been used in nuclear power plants because of the authorization of a jamming, an electromagnetic interference and so on. A wireless sensor uses a battery for its operations, but this battery can't be used for a long haul. It causes a battery change problem. There aren't any wireless sensor based NDT for a piping wall thinning part. We will describe a method of how to develop it in this paper

  12. New assessment of feed water piping in GKN I including optimisation of piping supports

    International Nuclear Information System (INIS)

    Zaiss, W.; Heil, C.; Baier, B.; Manke, A.

    2003-01-01

    The quality of nuclear power plant components and piping is specified according to the then current state of knowledge. In operation, the quality can be reduced by ageing phenomena, so in-service quality assessment is constantly required. The contribution discusses the individual aspects of reassessment and its technical procedure, using the example of a feedwater pipe in the GKN I containment. (orig.) [de

  13. International piping integrity research group (IPIRG) program final report

    International Nuclear Information System (INIS)

    Schmidt, R.; Wilkowski, G.; Scott, P.; Olsen, R.; Marschall, C.; Vieth, P.; Paul, D.

    1992-04-01

    This is the final report of the International Piping Integrity Research Group (IPIRG) Programme. The IPIRG Programme was an international group programme managed by the U.S. Nuclear Regulatory Commission and funded by a consortium of organizations from nine nations: Canada, France, Italy, Japan, Sweden, Switzerland, Taiwan, the United Kingdom, and the United states. The objective of the programme was to develop data needed to verify engineering methods for assessing the integrity of nuclear power plant piping that contains circumferential defects. The primary focus was an experimental task that investigated the behaviour of circumferentially flawed piping and piping systems to high-rate loading typical of seismic events. To accomplish these objectives a unique pipe loop test facility was designed and constructed. The pipe system was an expansion loop with over 30 m of 406-mm diameter pipe and five long radius elbows. Five experiments on flawed piping were conducted to failure in this facility with dynamic excitation. The report: provides background information on leak-before-break and flaw evaluation procedures in piping; summarizes the technical results of the programme; gives a relatively detailed assessment of the results from the various pipe fracture experiments and complementary analyses; and, summarizes the advances in the state-of-the-art of pipe fracture technology resulting from the IPIRG Program

  14. Nuclear Power Plant Steam Pipes repairing with Tirant 3R Robot System

    International Nuclear Information System (INIS)

    Ruiz-Martinez, Jose-Tomas; Soto-Tomas, Marcelo; Curiel-Nieva, Marceliano; Monzo-Blasco, Enrique; Pineda-Rodriguez, Salvador; Vaquer-Perez, Juan-Ignacio

    2012-09-01

    The metallization arc spray process is based on the projection of molten metal, supplied by means of different stainless alloys wire, over a surface of carbon steel usually, with the object of serving as protection against flow assisted corrosion (FAC), increasing resistance to abrasion and deteriorations. A typical application functions covering the steam pipes inner surface in Coal-fired power station and Nuclear Power Plants. The results of this process are spectacular in terms of protection against flow assisted corrosion and abrasion, but its application has conditioning factors, such as: Severe application conditions for workers. Due to the worker's postural position (usually kneeling) in 32' diameter pipes and working with fireproof clothing and masks with outdoor air supplying, due to fumes, sparks and molten metal particles, radiological contamination, confined space, poor lighting... Coating uniformity. As metallization is a manual process, the carried out measurements show small variations in the thickness of the coating, always within the tolerance limits established by the applicable regulations and Quality Assurance. An increase in the uniformity of the projected coating, increase the resistance and give a better surface protection. For all these reasons, Lainsa has developed the TIRANT 3 R system, a worldwide innovative system, for metallization of steam pipes inner surface. TIRANT 3 R system is tele-operated from outside of the pipe, so that human intervention is reduced to the operations of robot positioning and change of metallization wire. As it is an independent system of the human factor, metallization process performance is significantly increased by reducing rest periods due only to the robot maintenance. Likewise, TIRANT 3 R system permits to increase resulting coating uniformity and thus its resistance, keeping selected parameters constant (forward speed, rotation speed and inner surface distance) depending on required type and

  15. Elevated temperature mechanical properties of line pipe steels

    Science.gov (United States)

    Jacobs, Taylor Roth

    The effects of test temperature on the tensile properties of four line pipe steels were evaluated. The four materials include a ferrite-pearlite line pipe steel with a yield strength specification of 359 MPa (52 ksi) and three 485 MPa (70 ksi) yield strength acicular ferrite line pipe steels. Deformation behavior, ductility, strength, strain hardening rate, strain rate sensitivity, and fracture behavior were characterized at room temperature and in the temperature range of 200--350 °C, the potential operating range for steels used in oil production by the steam assisted gravity drainage process. Elevated temperature tensile testing was conducted on commercially produced as-received plates at engineering strain rates of 1.67 x 10 -4, 8.33 x 10-4, and 1.67 x 10-3 s-1. The acicular ferrite (X70) line pipe steels were also tested at elevated temperatures after aging at 200, 275, and 350 °C for 100 h under a tensile load of 419 MPa. The presence of serrated yielding depended on temperature and strain rate, and the upper bound of the temperature range where serrated yielding was observed was independent of microstructure between the ferrite-pearlite (X52) steel and the X70 steels. Serrated yielding was observed at intermediate temperatures and continuous plastic deformation was observed at room temperature and high temperatures. All steels exhibited a minimum in ductility as a function of temperature at testing conditions where serrated yielding was observed. At the higher temperatures (>275 °C) the X52 steel exhibited an increase in ductility with an increase in temperature and the X70 steels exhibited a maximum in ductility as a function of temperature. All steels exhibited a maximum in flow strength and average strain hardening rate as a function of temperature. The X52 steel exhibited maxima in flow strength and average strain hardening rate at lower temperatures than observed for the X70 steels. For all steels, the temperature where the maximum in both flow

  16. Base-plate effects on pipe-support stiffness

    International Nuclear Information System (INIS)

    Winkel, B.V.; LaSalle, F.R.

    1981-01-01

    Present nuclear power plant design methods require that pipe support spring rates be considered in the seismic design of piping systems. Base plate flexibility can have a significant effect on the spring rates of these support structures. This paper describes the field inspection, test, and analytical techniques used to identify and correct excessively flexible base plates on the Fast Flux Test Facility pipe support structures

  17. Defect Depth Measurement of Straight Pipe Specimen Using Shearography

    International Nuclear Information System (INIS)

    Chang, Ho Seob; Kim, Kyung Suk

    2012-01-01

    In the nuclear industry, wall thinning defect of straight pipe occur the enormous loss in life evaluation and safety evaluation. To use non-destructive technique, we measure deformation, vibration, defect evaluation. But, this techniques are a weak that is the measurement of the wide area is difficult and the time is caught long. In the secondary side of nuclear power plants mostly used steel pipe, artificiality wall thinning defect make in the side and different thickness make to the each other, wall thinning defect part of deformation measure by using shearography. In addition, optical measurement through deformation, vibration, defect evaluation evaluate pipe and thickness defects of pressure vessel is to evaluate quantitatively. By shearography interferometry to measure the pipe's internal wall thinning defect and the variation of pressure use the proposed technique, the quantitative defect is to evaluate the thickness of the surplus. The amount of deformation use thickness of surplus prediction of the actual thickness defect and approximately 7 percent error by ensure reliability. According to pressure the amount of deformation and the thickness of the surplus through DB construction, nuclear power plant pipe use wall thinning part soundness evaluation. In this study, pressure vessel of thickness defect measure proposed nuclear pipe of wall thinning defect prediction and integrity assessment technology development. As a basic research defected theory and experiment, pressure vessel of advanced stability and soundness and maintainability is expected to contribute foundation establishment

  18. Probabilistic analyses of failure in reactor coolant piping

    International Nuclear Information System (INIS)

    Holman, G.S.

    1984-01-01

    LLNL is performing probabilistic reliability analyses of PWR and BWR reactor coolant piping for the NRC Office of Nuclear Regulatory Research. Specifically, LLNL is estimating the probability of a double-ended guillotine break (DEGB) in the reactor coolant loop piping in PWR plants, and in the main stream, feedwater, and recirculation piping of BWR plants. In estimating the probability of DEGB, LLNL considers two causes of pipe break: pipe fracture due to the growth of cracks at welded joints (direct DEGB), and pipe rupture indirectly caused by the seismically-induced failure of critical supports or equipment (indirect DEGB)

  19. Generation of cross section data of heat pipe working fluids for compact nuclear reactors

    Energy Technology Data Exchange (ETDEWEB)

    Slewinski, Anderson; Ribeiro, Guilherme B. [Instituto Tecnológico de Aeronáutica (ITA), São José dos Campos, SP (Brazil); Caldeira, Alexandre D., E-mail: anderson_sle@live.com, E-mail: alexdc@ieav.cta.br, E-mail: gbribeiro@ieav.cta.br [Instituto de Estudos Avançados (IEAv), São José dos Campos, SP (Brazil). Divisão de Energia Nuclear

    2017-07-01

    For compact nuclear power plants, such as the nuclear space propulsion proposed by the TERRA project, aspects like mass, size and efficiency are essential drivers that must be managed during the project development. Moreover, for high temperature reactors, the use of liquid metal heat pipes as the heat removal mechanism provides some important advantages as simplicity and reliability. Considering these aforementioned aspects, this paper aims the development of the procedure necessary to calculate the microscopic absorption cross section data of several liquid metal to be used as working fluids with heat pipes; which will be later compared with the given data from JEF Report ⧣14. The information necessary to calculate the cross section data will be obtained from the latest ENDF library version. The NJOY system will be employed with the following modules: RECONR, BROADR, UNRESR and GROUPR, using the same specifications used to calculate the cross section data encountered in the JEF Report ⧣14. This methodology allows a comparison with published values, verifying the procedure developed to calculate the microscopic absorption cross section for selected isotopes using the TERRA reactor spectrum. Liquid metals isotopes of Sodium (Na), Lithium (Li), Thallium (TI) and Mercury (Hg) are part of this study. (author)

  20. Study on concept of web-based reactor piping design data platform

    International Nuclear Information System (INIS)

    Wang Yu; Zhou Yu; Dong Jianling; Meng Yang

    2005-01-01

    For solving the piping design problems such as design data deficiency, designer communication inconvenience and design project inconsistence, Reactor Piping Design Database Platform, which is the main part of the Integrated Nuclear Project Research Platform, is proposed by analyzing the nuclear piping designs in detail. The functions and system structures of the platform are described in the paper for the sake of the realization of the Reactor Piping Design Database Platform. The platform is constituted by web-based management interface, AutoPlant selected as CAD software, and relation database management system (DBMS). (authors)

  1. Mechanical assessment of local thinned pipings

    International Nuclear Information System (INIS)

    Meister, E.

    2007-01-01

    Local wall thinning is likely to be found in some piping systems of nuclear power plant under, for example, Flow Accelerated Corrosion in raw water systems or by loss of metal during the grinding of the weld seam. To assess the mechanical integrity in such situations, EDF/SEPTEN has developed calculation methods for the RSE-M (In Service Inspection Rules for the Mechanical components of PWR nuclear power islands) code. This paper focuses on the methodology used for internal pressure resistance evaluation based on limit load calculations. Beyond the Nuclear Safety classification and requirements given by the RSE-M code, this problem is general for Power Piping and the associated in service rules. (author) [fr

  2. Seismic Capacity Estimation of Steel Piping Elbow under Low-cycle Fatigue Loading

    Energy Technology Data Exchange (ETDEWEB)

    Jeon, Bub Gyu; Kim, Sung Wan; Choi, Hyoung Suk; Kim, Nam Sik [Pusan National University, Busan (Korea, Republic of); Hahm, Dae Gi [KAERI, Daejeon (Korea, Republic of)

    2016-05-15

    In some cases, this large relative displacement can increase seismic risk of the isolated facility. Especially, a inelastic behavior of crossover piping system to connect base isolated building and fixed base building can caused by a large relative displacement. Therefore, seismic capacity estimation for isolated piping system is needed to increase safety of nuclear power plant under seismic condition. Dynamic behavior analysis of piping system under seismic condition using shake table tests was performed by Touboul et al in 1995. In accordance with their study, plastic behavior could be occurred at pipe elbow under seismic condition. Experimental researches for dynamic behavior of typical piping system in nuclear power plant have been performed for several years by JNES(Japan Nuclear Energy Safety Organization) and NUPEC(Nuclear Power Engineering Corporation). A low cycle ratcheting fatigue test was performed with scaled model of elbow which is a weakest component in piping system by Mizuno et al. In-plane cyclic loading tests under internal pressure condition were performed to evaluate the seismic capacity of the steel piping elbow. Leakage phenomenon occurred on and near the crown in piping elbow. Those cracks grew up in axial direction. The fatigue curve was estimated from test results. In the fatigue curve, loading amplitude exponentially decreased as the number of cycles increased. A FEM model of piping elbow was modified with test results. The relationships between displacement and force from tests and numerical analysis was well matched.

  3. Fatigue evaluation of piping systems with limited vibration test data

    International Nuclear Information System (INIS)

    Huang, S.N.

    1990-11-01

    The safety-related piping in a nuclear power plant may be subjected to pump- or fluid-induced vibrations that, in general, affect only local areas of the piping systems. Pump- or fluid-induced vibrations typically are characterized by low levels of amplitudes and a high number of cycles over the lifetime of plant operation. Thus, the resulting fatigue damage to the piping systems could be an important safety concern. In general, tests and/or analyses are used to evaluate and qualify the piping systems. Test data, however, may be limited because of lack of instrumentation in critical piping locations and/or because of difficulty in obtaining data in inaccessible areas. This paper describes and summarizes a method to use limited pipe vibration test data, along with analytical harmonic response results from finite-element analyses, to assess the fatigue damage of nuclear power plant safety-related piping systems. 5 refs., 2 figs., 11 tabs

  4. Mis-Match Limit Load Analyses and Fracture Mechanics Assessment for Welded Pipe with Circumferential Crack at the Center of Weldment

    Energy Technology Data Exchange (ETDEWEB)

    Song, Tae Kwang; Jeon, Jun Young; Shim, Kwang Bo; Kim, Yun Jae [Korea University, Seoul (Korea, Republic of); Kim, Jong Sung [Sunchon University, Suncheon (Korea, Republic of); Jin, Tae Eun [Korea Power Engineering Company, Daejeon (Korea, Republic of)

    2010-01-15

    In this paper, limit load analyses and fracture mechanics analyses were conducted via finite element analyses for the welded pipe with circumferential crack at the center of the weldment. Systematic changes for strength mismatch ratio, width of weldment, crack shape and thickness ratio of the pipe were considered to provide strength mismatch limit load. And J-integral calculations based on reference stress method were conducted for two materials, stainless steel and ferritic steel. Reference stress defined by provided strength mis-match limit load gives much more accurate J-integral.

  5. International Piping Integrity Research Group (IPIRG) Program. Final report

    International Nuclear Information System (INIS)

    Wilkowski, G.; Schmidt, R.; Scott, P.

    1997-06-01

    This is the final report of the International Piping Integrity Research Group (IPIRG) Program. The IPIRG Program was an international group program managed by the U.S. Nuclear Regulatory Commission and funded by a consortium of organizations from nine nations: Canada, France, Italy, Japan, Sweden, Switzerland, Taiwan, the United Kingdom, and the United States. The program objective was to develop data needed to verify engineering methods for assessing the integrity of circumferentially-cracked nuclear power plant piping. The primary focus was an experimental task that investigated the behavior of circumferentially flawed piping systems subjected to high-rate loadings typical of seismic events. To accomplish these objectives a pipe system fabricated as an expansion loop with over 30 meters of 16-inch diameter pipe and five long radius elbows was constructed. Five dynamic, cyclic, flawed piping experiments were conducted using this facility. This report: (1) provides background information on leak-before-break and flaw evaluation procedures for piping, (2) summarizes technical results of the program, (3) gives a relatively detailed assessment of the results from the pipe fracture experiments and complementary analyses, and (4) summarizes advances in the state-of-the-art of pipe fracture technology resulting from the IPIRG program

  6. International Piping Integrity Research Group (IPIRG) Program. Final report

    Energy Technology Data Exchange (ETDEWEB)

    Wilkowski, G.; Schmidt, R.; Scott, P. [and others

    1997-06-01

    This is the final report of the International Piping Integrity Research Group (IPIRG) Program. The IPIRG Program was an international group program managed by the U.S. Nuclear Regulatory Commission and funded by a consortium of organizations from nine nations: Canada, France, Italy, Japan, Sweden, Switzerland, Taiwan, the United Kingdom, and the United States. The program objective was to develop data needed to verify engineering methods for assessing the integrity of circumferentially-cracked nuclear power plant piping. The primary focus was an experimental task that investigated the behavior of circumferentially flawed piping systems subjected to high-rate loadings typical of seismic events. To accomplish these objectives a pipe system fabricated as an expansion loop with over 30 meters of 16-inch diameter pipe and five long radius elbows was constructed. Five dynamic, cyclic, flawed piping experiments were conducted using this facility. This report: (1) provides background information on leak-before-break and flaw evaluation procedures for piping, (2) summarizes technical results of the program, (3) gives a relatively detailed assessment of the results from the pipe fracture experiments and complementary analyses, and (4) summarizes advances in the state-of-the-art of pipe fracture technology resulting from the IPIRG program.

  7. Reliability Data Handbook for Piping Components in Nordic Nuclear Power Plants - R Book, Phase 2

    International Nuclear Information System (INIS)

    Hedtjaern Swaling, Vidar; Olsson, Anders

    2011-02-01

    This report presents results of a long research and development project financed by the regulatory body Straalsaekerhetsmyndigheten (SSM) (former SKI), the Swedish nuclear power plant licensees. The report presents a harmonized method for estimating Reliability Data for Piping Components in ASME code class 1 and 2 piping components (R-Book). Data in the R-Book is measured based on 'data driven' strategy. This first version of the R-Book comprises rupture frequencies and failure rates for all systems where ASME Code Class 1 or 2 events could be found in the OECD OPDE database. Nordic and Non-Nordic data are presented separately. Worldwide experience data is used to set up the relevant calculation cases, i.e. intersections of attributes for which there are at least one event present

  8. Test and evaluation about damping characteristics of hanger supports for nuclear power plant piping systems (Seismic Damping Ratio Evaluation Program)

    International Nuclear Information System (INIS)

    Shibata, H.; Ito, A.; Tanaka, K.; Niino, T.; Gotoh, N.

    1981-01-01

    Generally, damping phenomena of structures and equipments is caused by very complex energy dissipation. Especially, as piping systems are composed of many components, it is very difficult to evaluate damping characteristics of its system theoretically. On the other hand, the damping value for aseismic design of nuclear power plants is very important design factor to decide seismic response loads of structures, equipments and piping systems. The very extensive studies titled SDREP (Seismic Damping Ratio Evaluation Program) were performed to establish proper damping values for seismic design of piping as a joint work among a university, electric companies and plant makers. In SDREP, various systematic vibration tests were conducted to investigate factors which may contribute to damping characteristics of piping systems and to supplement the data of the pre-operating tests. This study is related to the component damping characteristics tests of that program. The object of this study is to clarify damping characteristics and mechanism of hanger supports used in piping systems, and to establish the evaluation technique of dispersing energy at hanger support points and its effect to the total damping ability of piping system. (orig./WL)

  9. Calculation of the pipes failure probability of the Rcic system of a nuclear power station by means of software WinPRAISE 07

    International Nuclear Information System (INIS)

    Jasso G, J.; Diaz S, A.; Mendoza G, G.; Sainz M, E.; Garcia de la C, F. M.

    2014-10-01

    The growth and the cracks propagation by fatigue are a typical degradation mechanism that is presented in the nuclear industry as in the conventional industry; the unstable propagation of a crack can cause the catastrophic failure of a metallic component even with high ductility; for this reason, activities of programmed maintenance have been established in the industry using inspection and visual techniques and/or ultrasound with an established periodicity allowing to follow up to these growths, controlling the undesirable effects; however, these activities increase the operation costs; and in the peculiar case of the nuclear industry, they increase the radiation exposure to the participant personnel. The use of mathematical processes that integrate concepts of uncertainty, material properties and the probability associated to the inspection results, has been constituted as a powerful tool of evaluation of the component reliability, reducing costs and exposure levels. In this work the evaluation of the failure probability by cracks growth preexisting by fatigue is presented, in pipes of a Reactor Core Isolation Cooling system (Rcic) in a nuclear power station. The software WinPRAISE 07 (Piping Reliability Analysis Including Seismic Events) was used supported in the probabilistic fracture mechanics principles. The obtained values of failure probability evidenced a good behavior of the analyzed pipes with a maximum order of 1.0 E-6, therefore is concluded that the performance of the lines of these pipes is reliable even extrapolating the calculations at 10, 20, 30 and 40 years of service. (Author)

  10. An experimental study of damping characteristics with emphasis on insulation for nuclear power plant piping system (Seismic Damping Ratio Evaluation Program)

    International Nuclear Information System (INIS)

    Shibata, H.; Ito, M.; Hayashi, T.; Chiba, T.; Kobayashi, H.; Kitamura, K.; Ando, K.; Koyanagi, R.

    1981-01-01

    To clarify the damping characteristics and mechanism in nuclear power plant piping systems, the study group was established and conducted to study SDREP (Seismic Damping Ratio Evaluation Program). As the Phase II of this study, vibration tests were conducted to investigate factors which might contribute to damping characteristics of piping systems. These tests are composed of the next three model tests: 1) The component damping characteristics test of thermal insulator 2) The simplified piping model test 3) The scale model test. In these tests, we studied damping characteristics with emphasis on thermal insulator (mainly calcium silicate insulator). The acceleartion level of pipings is the same as that of the actual seismic response. The excitation was by sinusoidal sweep method using the shaking table and by free vibration method using snapback. (orig./RW)

  11. Thermal Performance and Operation Limit of Heat Pipe Containing Neutron Absorber

    Energy Technology Data Exchange (ETDEWEB)

    Kim, Kyung Mo; Jeong, Yeong Shin; Kim, In Guk; Bang, In Choel [UNIST, Ulsan (Korea, Republic of)

    2015-05-15

    Recently, passive safety systems are under development to ensure the core cooling in accidents involving impossible depressurization such as station blackout (SBO). Hydraulic control rod drive mechanisms, passive auxiliary feedwater system (PAFS), Passive autocatalystic recombiner (PAR), and so on are types of passive safety systems to enhance the safety of nuclear power plants. Heat pipe is used in various engineering fields due to its advantages in terms of easy fabrication, high heat transfer rate, and passive heat transfer. Also, the various concepts associated with safety system and heat transfer using the heat pipe were developed in nuclear engineering field.. Thus, our group suggested the hybrid control rod which combines the functions of existing control rod and heat pipe. If there is significant temperature difference between active core and condenser, the hybrid control rod can shutdown the nuclear fission reaction and remove the decay heat from the core to ultimate heat sink. The unique characteristic of the hybrid control rod is the presence of neutron absorber inside the heat pipe. Many previous researchers studied the effect of parameters on the thermal performance of heat pipe. However, the effect of neutron absorber on the thermal performance of heat pipe has not been investigated. Thus, the annular heat pipe which contains B{sub 4}C pellet in the normal heat pipe was prepared and the thermal performance of the annular heat pipe was studied in this study. Hybrid control rod concept was developed as a passive safety system of nuclear power plant to ensure the safety of the reactor at accident condition. The hybrid control rod must contain the neutron absorber for the function as a control rod. So, the effect of neutron absorber on the thermal performance of heat pipe was experimentally investigated in this study. Temperature distributions at evaporator section of annular heat pipe were lower than normal heat pipe due to the larger volume occupied by

  12. Nuclear interaction study around beam pipe region in the Tracker system at CMS with 13 TeV data

    CERN Document Server

    CMS Collaboration

    2015-01-01

    Analysis is presented to study the material in the Tracker system with nuclear interactions from proton-proton collisions recorded by the CMS experiment at the CERN LHC. The data correspond to an integrated luminosity of 7.3 pb$^{-1}$ at a centre-of-mass energy of 13 TeV collected at 3.8 Tesla magnetic field. With reconstructed nuclear interactions we observe the structure of the material, including beam pipe, in the Tracker system.

  13. Characterization of radioactive contamination inside pipes with the Pipe Explorer trademark system

    International Nuclear Information System (INIS)

    Kendrick, D.T.; Cremer, C.D.; Lowry, W.; Cramer, E.

    1995-01-01

    The U.S. Department of Energy's nuclear facility decommissioning program needs to characterize radiological contamination inside piping systems before the pipe can be recycled, remediated, or disposed. Science and Engineering associates, Inc. under contract with the DOE Morgantown Energy Technology Center has developed and demonstrated the Pipe Explorer trademark system, which uses an inverting membrane to transport various characterization sensors into pipes. The basic process involves inverting (turning inside out) a tubular impermeable membrane under air pressure. A characterization sensor is towed down the interior of the pipe by the membrane. Advantages of this approach include the capability of deploying through constrictions in the pipe, around 90 degrees bends, vertically up and down, and in slippery conditions. Because the detector is transported inside the membrane (which is inexpensive and disposable), it is protected from contamination, which eliminates cross-contamination. Characterization sensors that have been demonstrated with the system thus far include: gamma detectors, beta detectors, video cameras, and pipe locators. Alpha measurement capability is currently under development. A remotely operable Pipe Explorer trademark system has been developed and demonstrated for use in DOE facilities in the decommissioning stage. The system is capable of deployment in pipes as small as 2-inch-diameter and up to 250 feet long. This paper describes the technology and presents measurement results of a field demonstration conducted with the Pipe Explorer trademark system at a DOE site. These measurements identify surface activity levels of U-238 contamination as a function of location in drain lines. Cost savings to the DOE of approximately $1.5 million dollars were realized from this one demonstration

  14. Chimera of new nuclear materials

    International Nuclear Information System (INIS)

    Bush, S.H.

    1975-01-01

    The current and future needs in materials for light water reactors and liquid metal fast breeder reactors are reviewed. Information and discussions are included on boiling water reactors, pressurized water reactors, liquid metal fast breeder reactors, corrosion of piping systems and steam generators, ferritic steels, stainless steels, Inconel 600, pressure vessels, and radiation damage. (U.S.)

  15. Functional capability of piping systems

    International Nuclear Information System (INIS)

    Terao, D.; Rodabaugh, E.C.

    1992-11-01

    General Design Criterion I of Appendix A to Part 50 of Title 10 of the Code of Federal Regulations requires, in part, that structures, systems, and components important to safety be designed to withstand the effects of earthquakes without a loss of capability to perform their safety function. ne function of a piping system is to convey fluids from one location to another. The functional capability of a piping system might be lost if, for example, the cross-sectional flow area of the pipe were deformed to such an extent that the required flow through the pipe would be restricted. The objective of this report is to examine the present rules in the American Society of Mechanical Engineers Boiler and Pressure Vessel Code, Section III, and potential changes to these rules, to determine if they are adequate for ensuring the functional capability of safety-related piping systems in nuclear power plants

  16. Promethus Hot Leg Piping Concept

    International Nuclear Information System (INIS)

    AM Girbik; PA Dilorenzo

    2006-01-01

    The Naval Reactors Prime Contractor Team (NRPCT) recommended the development of a gas cooled reactor directly coupled to a Brayton energy conversion system as the Space Nuclear Power Plant (SNPP) for NASA's Project Prometheus. The section of piping between the reactor outlet and turbine inlet, designated as the hot leg piping, required unique design features to allow the use of a nickel superalloy rather than a refractory metal as the pressure boundary. The NRPCT evaluated a variety of hot leg piping concepts for performance relative to SNPP system parameters, manufacturability, material considerations, and comparison to past high temperature gas reactor (HTGR) practice. Manufacturability challenges and the impact of pressure drop and turbine entrance temperature reduction on cycle efficiency were discriminators between the piping concepts. This paper summarizes the NRPCT hot leg piping evaluation, presents the concept recommended, and summarizes developmental issues for the recommended concept

  17. Wall thinning trend analyses for secondary side piping of Korean NPPs

    International Nuclear Information System (INIS)

    Hwang, K.M.; Jin, T.E.; Lee, S.H.; Jeon, S.C.

    2003-01-01

    Since the mid-1990s, nuclear power plants in Korea have experienced wall thinning, leaks, and ruptures of secondary side piping caused by flow-accelerated corrosion (FAC). The pipe failures have increased as operating time progresses. In order to prevent the FAC-induced pipe failures and to develop an effective FAC management strategy, KEPRI and KOPEC have conducted a study for developing systematic FAC management technology for secondary side piping of all Korean nuclear power plants. As a part of the study, FAC analyses were performed using the CHECWORKS code. The analysis results were used to select components for inspection and to determine inspection intervals on each nuclear power plant. This paper describes the introduction of the FAC analysis method and the wall thinning trend analysis results by reactor type, system, and water treatment amine. This paper also represents the site application feasibility for secondary side piping management. The site application feasibility of the analysis results was proven by comparisons of predicted and measured wear rates. (author)

  18. Stress Distribution in the Dissimilar Metal Butt Weld of Nuclear Reactor Piping due to the Simulation Technique for the Repair Welding

    International Nuclear Information System (INIS)

    Lee, Hweeseung; Huh, Namsu; Kim, Jinsu; Lee, Jinho

    2013-01-01

    During welding, the dissimilar metal butt welds of nuclear piping are typically subjected to repair welding in order to eliminate defects that are found during post-weld inspection. It has been found that the repair weld can significantly increase the tensile residual stress in the weldment, and therefore, accurate estimation of the weld residual stress due to repair weld, especially for dissimilar metal welds using Ni-based alloy 82/182 in nuclear components, is of great importance in order to assess susceptibility to primary water stress corrosion cracking. In the present study, the stress distributions of dissimilar metal butt welds in nuclear reactor piping subjected to repair weld were investigated based on detailed nonlinear finite element analyses. Particular emphasis was placed on the variation of the stress distribution in the dissimilar metal butt weld according to the finite element welding analysis sequence for the repair welding process

  19. Team collaborative innovation management based on primary pipes automatic welding project

    International Nuclear Information System (INIS)

    Li Jing; Wang Dong; Zhang Ke

    2012-01-01

    The welding quality of primary pipe directly affects the safe operation of nuclear power plants. Primary pipe automatic welding, first of its kind in China, is a complex systematic project involving many facets, such as design, manufacturing, material, and on-site construction. A R and D team was formed by China Guangdong Nuclear Power Engineering Co., Ltd. (CNPEC) together with other domestic nuclear power design institutes, and manufacturing and construction enterprises. According to the characteristics of nuclear power plant construction, and adopting team collaborative innovation management mode, through project co-ordination, resources allocation and building production, education and research collaborative innovation platform, CNPEC successfully developed the primary pipe automatic welding technique which has been widely applied to the construction of nuclear power plant, creating considerable economic benefits. (authors)

  20. Reliability estimation of structures under stochastic loading—A case study on nuclear piping

    International Nuclear Information System (INIS)

    Hari Prasad, M.; Rami Reddy, G.; Dubey, P.N.; Srividya, A.; Verma, A.K.

    2013-01-01

    Highlights: ► Structures are generally subjected to different types of loadings. ► One such type of loading is random sequence and has been treated as a stochastic fatigue loading. ► In this methodology both stress amplitude and number of cycles to failure have been considered as random variables. ► The methodology has been demonstrated with a case study on nuclear piping. ► The failure probability of piping has been estimated as a function of time. - Abstract: Generally structures are subjected to different types of loadings throughout their life time. These loads can be either discrete in nature or continuous in nature and also these can be either stationary or non stationary processes. This means that the structural reliability analysis not only considers random variables but also considers random variables which are functions of time, referred to as stochastic processes. A stochastic process can be viewed as a family of random variables. When a structure is subjected to a random loading, based on the stresses developed in the structure and failure criteria the failure probability can be estimated. In practice the structures are designed with higher factor of safety to take care of such random loads. In such cases the structure will fail only when the random loads are cyclic in nature. In traditional reliability analysis, the variation in the load is treated as a random variable and to account for the number of occurrences of the loading the concept of extreme value theory is used. But with this method one is neglecting the damage accumulation that will take place from one loading to another loading. Hence, in this paper, a new way of dealing with these types of problems has been discussed by using the concept of stochastic fatigue loading. The random loading has been considered as earthquake loading. The methodology has been demonstrated with a case study on nuclear power plant piping.

  1. Elevated-Temperature Ferritic and Martensitic Steels and Their Application to Future Nuclear Reactors

    Energy Technology Data Exchange (ETDEWEB)

    Klueh, RL

    2005-01-31

    In the 1970s, high-chromium (9-12% Cr) ferritic/martensitic steels became candidates for elevated-temperature applications in the core of fast reactors. Steels developed for conventional power plants, such as Sandvik HT9, a nominally Fe-12Cr-1Mo-0.5W-0.5Ni-0.25V-0.2C steel (composition in wt %), were considered in the United States, Europe, and Japan. Now, a new generation of fission reactors is in the planning stage, and ferritic, bainitic, and martensitic steels are again candidates for in-core and out-of-core applications. Since the 1970s, advances have been made in developing steels with 2-12% Cr for conventional power plants that are significant improvements over steels originally considered. This paper will review the development of the new steels to illustrate the advantages they offer for the new reactor concepts. Elevated-temperature mechanical properties will be emphasized. Effects of alloying additions on long-time thermal exposure with and without stress (creep) will be examined. Information on neutron radiation effects will be discussed as it applies to ferritic and martensitic steels.

  2. Characterization of pipes, drain lines, and ducts using the pipe explorer system

    International Nuclear Information System (INIS)

    Cremer, C.D.; Kendrick, D.T.; Cramer, E.

    1997-01-01

    As DOE dismantles its nuclear processing facilities, site managers must employ the best means of disposing or remediating hundreds of miles of potentially contaminated piping and duct work. Their interiors are difficult to access, and in many cases even the exteriors are inaccessible. Without adequate characterization, it must be assumed that the piping is contaminated, and the disposal cost of buried drain lines can be on the order of $1,200/ft and is often unnecessary as residual contamination levels often are below free release criteria. This paper describes the program to develop a solution to the problem of characterizing radioactive contamination in pipes. The technical approach and results of using the Pipe Explorer trademark system are presented. The heart of the system is SEA's pressurized inverting membrane adapted to transport radiation detectors and other tools into pipes. It offers many benefits over other pipe inspection approaches. It has video and beta/gamma detection capabilities, and the need for alpha detection has been addressed through the development of the Alpha Explorer trademark. These systems have been used during various stages of decontamination and decommissioning of DOE sites, including the ANL CP-5 reactor D ampersand D. Future improvements and extensions of their capabilities are discussed

  3. Automatic welding machine for piping

    International Nuclear Information System (INIS)

    Yoshida, Kazuhiro; Koyama, Takaichi; Iizuka, Tomio; Ito, Yoshitoshi; Takami, Katsumi.

    1978-01-01

    A remotely controlled automatic special welding machine for piping was developed. This machine is utilized for long distance pipe lines, chemical plants, thermal power generating plants and nuclear power plants effectively from the viewpoint of good quality control, reduction of labor and good controllability. The function of this welding machine is to inspect the shape and dimensions of edge preparation before welding work by the sense of touch, to detect the temperature of melt pool, inspect the bead form by the sense of touch, and check the welding state by ITV during welding work, and to grind the bead surface and inspect the weld metal by ultrasonic test automatically after welding work. The construction of this welding system, the main specification of the apparatus, the welding procedure in detail, the electrical source of this welding machine, the cooling system, the structure and handling of guide ring, the central control system and the operating characteristics are explained. The working procedure and the effect by using this welding machine, and the application to nuclear power plants and the other industrial field are outlined. The HIDIC 08 is used as the controlling computer. This welding machine is useful for welding SUS piping as well as carbon steel piping. (Nakai, Y.)

  4. Failure analysis on a chemical waste pipe

    International Nuclear Information System (INIS)

    Ambler, J.R.

    1985-01-01

    A failure analysis of a chemical waste pipe illustrates how nuclear technology can spin off metallurgical consultant services. The pipe, made of zirconium alloy (Zr-2.5 wt percent Nb, UNS 60705), had cracked in several places, all at butt welds. A combination of fractography and metallography indicated delayed hydride cracking

  5. BNL NONLINEAR PRE TEST SEISMIC ANALYSIS FOR THE NUPEC ULTIMATE STRENGTH PIPING TEST PROGRAM

    International Nuclear Information System (INIS)

    DEGRASSI, G.; HOFMAYER, C.; MURPHY, C.; SUZUKI, K.; NAMITA, Y.

    2003-01-01

    The Nuclear Power Engineering Corporation (NUPEC) of Japan has been conducting a multi-year research program to investigate the behavior of nuclear power plant piping systems under large seismic loads. The objectives of the program are: to develop a better understanding of the elasto-plastic response and ultimate strength of nuclear piping; to ascertain the seismic safety margin of current piping design codes; and to assess new piping code allowable stress rules. Under this program, NUPEC has performed a large-scale seismic proving test of a representative nuclear power plant piping system. In support of the proving test, a series of materials tests, static and dynamic piping component tests, and seismic tests of simplified piping systems have also been performed. As part of collaborative efforts between the United States and Japan on seismic issues, the US Nuclear Regulatory Commission (USNRC) and its contractor, the Brookhaven National Laboratory (BNL), are participating in this research program by performing pre-test and post-test analyses, and by evaluating the significance of the program results with regard to safety margins. This paper describes BNL's pre-test analysis to predict the elasto-plastic response for one of NUPEC's simplified piping system seismic tests. The capability to simulate the anticipated ratcheting response of the system was of particular interest. Analyses were performed using classical bilinear and multilinear kinematic hardening models as well as a nonlinear kinematic hardening model. Comparisons of analysis results for each plasticity model against test results for a static cycling elbow component test and for a simplified piping system seismic test are presented in the paper

  6. Development of the simplified local stress analysis methodology for the nuclear class 2 and 3 piping welded to the seal plate

    International Nuclear Information System (INIS)

    Lee, Dae Hee; Park, Jun Soo; Jeong, Seung Ha; Kim, Jong Min; Eom, Se Yoon

    1996-06-01

    Lugs, brackets, stiffeners and other attachments may be welded, bolted and studded to the outside or inside of piping and the local stresses arise because of the radial thermal expansion of the piping, the dilatation of the piping due to its internal pressure, the circumferential contraction of the pipe as a results of an axial tensile force, etc., constrained by those. So the evaluation of the local stress for the piping constrained by the attachment in accordance with the ASME Section III, NB-3651.3, NC-3645 and ND-3645 are required for the Class 1, 2, and 3 piping. In this report, the formula for the local stress analysis for the piping welded to the seal plate was developed and the results from the theoretical analysis were compared with the results from the theoretical analysis were compared with the results analyzed by the ANSYS. The results from the theoretical analysis agree well to the results analyzed by the ANSYS with a conservatism. The conservatism in the theoretical analysis can be considered as a safety factor in the design stage. So, the formula developed in this report can be used very effectively for the design of the seal plate and the local stress analysis of the nuclear class 2 and 3 piping welded to the seal plate. 2 tabs., 7 figs., 5 refs. (Author) .new

  7. Remotely controlled repair of piping at Douglas Point

    International Nuclear Information System (INIS)

    Conrath, J.J.

    1983-06-01

    The 200 MWe Douglas Point Nuclear Generating Station which started operation in 1966 was Canada's first commercial nuclear power plant. In 1977, after 11 years of operation, leakage of heavy water was detected and traced to the Moderator Piping System (pipe sizes 19 mm to 76 mm) located in a vault below the reactor where the radiation fields during shutdown ranged up to 5000 R/Hr. Inspection using remotely operated TV cameras showed that a 'U' bolt clamp support had worn through the wall of one pipe and resulted in the leakage and also that wear was occurring on other pipes. An extensive repair plan was subsequently undertaken in the form of a joint venture of the designer-owner Atomic Energy of Canada Limited, and the builder-operator, Ontario Hydro. This paper describes the equipment and procedures used in remotely controlled repairs at Douglas Point

  8. Ultra-sonic testing for brittle-ductile transition temperature of ferritic steels

    International Nuclear Information System (INIS)

    Nomakuchi, Michiyoshi

    1979-01-01

    The ultra-sonic testing for the brittle-ductile transition temperature, the USTB test for short, of ferritic steels is proposed in the present paper. And also the application of the USTB test into the nuclear pressure vessel surveillance is discussed. The USTB test is based upon the experimental results in the present work that the ultrasonic pressure attenuation coefficient of a ferritic steel has the evident transition property with its temperature due to the nature from which the brittle-ductile fracture transition property of the steel come and for four ferritic steels the upper boundary temperatute of the region in which the transition of the attenuation coefficient of a steel takes place is 4 to 5 0 C higher than the sub(D)T sub(E), i.e. the transition temperature of the fracture absorption energy of the steel by the DWTT test. The USTB test estimates the crack arrest temperature which is defined to be the fracture transition elastic temperature by the upper boundary temperature. (author)

  9. Design of megawatt power level heat pipe reactors

    Energy Technology Data Exchange (ETDEWEB)

    Mcclure, Patrick Ray [Los Alamos National Lab. (LANL), Los Alamos, NM (United States); Poston, David Irvin [Los Alamos National Lab. (LANL), Los Alamos, NM (United States); Dasari, Venkateswara Rao [Los Alamos National Lab. (LANL), Los Alamos, NM (United States); Reid, Robert Stowers [Los Alamos National Lab. (LANL), Los Alamos, NM (United States)

    2015-11-12

    An important niche for nuclear energy is the need for power at remote locations removed from a reliable electrical grid. Nuclear energy has potential applications at strategic defense locations, theaters of battle, remote communities, and emergency locations. With proper safeguards, a 1 to 10-MWe (megawatt electric) mobile reactor system could provide robust, self-contained, and long-term power in any environment. Heat pipe-cooled fast-spectrum nuclear reactors have been identified as a candidate for these applications. Heat pipe reactors, using alkali metal heat pipes, are perfectly suited for mobile applications because their nature is inherently simpler, smaller, and more reliable than “traditional” reactors. The goal of this project was to develop a scalable conceptual design for a compact reactor and to identify scaling issues for compact heat pipe cooled reactors in general. Toward this goal two detailed concepts were developed, the first concept with more conventional materials and a power of about 2 MWe and a the second concept with less conventional materials and a power level of about 5 MWe. A series of more qualitative advanced designs were developed (with less detail) that show power levels can be pushed to approximately 30 MWe.

  10. Low cycle fatigue of pressurized pipes with circumferential flaws under cyclic bending moment

    International Nuclear Information System (INIS)

    Stoppler, W.; Sturm, D.

    1993-01-01

    Pipes of 706 mm inner diameter, 47 mm wall thickness and about 5,000 mm in length were provided with circumferential surface cracks and loaded by internal pressure of 15 MPa whilst being simultaneously subjected to an alternating external bending moment. Usually a load ratio R of -1 (M min /M max ), in one case R = 0.1, was applied. The pipes were fabricated of two types of ferritic steel: one, grade 20 MnMoNi 5 5, with a high upper shelf impact energy of about 200 J and one, MnMoNiV-special melt, with a low upper shelf impact energy of about 60 J. Deformation and crack growth in the wall thickness and circumferential direction were determined and compared with calculated values. 9 refs., 13 figs

  11. Failure rates in piping manufactured to different standards

    International Nuclear Information System (INIS)

    Barnes, R.W.; Cooper, G.D.

    1995-11-01

    Most non-nuclear process piping systems in Canada and the United States are constructed to the requirements of the piping codes of the American Society of Mechanical Engineers (ASME B31.1 and B31.3). Section III of the ASME Boiler and Pressure Vessel Code, has additional requirements for piping that are expected to provide further assurance of pressure boundary integrity. This project attempted to determine if the additional requirements of Section III were beneficial in preventing failure of the pressure boundary. The approach taken in the study was to determine the causes of failure of non-nuclear piping subjected to service similar to that experienced by piping in CANDU nuclear power plants. The study examined information on carbon steel piping systems filled with water/steam which operate up to a maximum temperature of 600 F and a maximum pressure of 1600 psi. The failure mechanisms were identified and analysed to determine whether application of the requirements of Section III would have prevented the failure. Through a process of interviews and literature search, 186 failures were identified and assembled into a reference database. Many of the records were incomplete; therefore, the reference database was trimmed to include a subset of 65 failure points supported by complete data. This subset formed the basis for this study. The results from the study of other databases assembled for similar purposes were reviewed and compared to the conclusions reached in this study. These reviews confirmed the conclusions reached in this study. (author). 48 refs., 20 tabs

  12. OPDE-The international pipe failure data exchange project

    Energy Technology Data Exchange (ETDEWEB)

    Lydell, Bengt [OPDE Clearinghouse, 16917 S. Orchid Flower Trail, Vail, AZ 85641-2701 (United States)], E-mail: boylydell@msn.com; Riznic, Jovica [Canadian Nuclear Safety Commission, Operational Engineering Assessment Division, PO Box 1046, Station B, Ottawa, Ont. K1P 5S9 (Canada)], E-mail: jovica.riznic@cnsc-ccsn.gc.ca

    2008-08-15

    Certain member countries of the Organization for Economic Cooperation and development (OECD) in 2002 established the OECD pipe failure data exchange project (OPDE) to produce an international database on the piping service experience applicable to commercial nuclear power plants. OPDE is operated under the umbrella of the OECD Nuclear Energy Agency (NEA). The Project collects pipe failure data including service-induced wall thinning, part through-wall crack, pinhole leak, leak, and rupture/severance (i.e., events involving large through-wall flow rates up to and beyond the make-up capacity of engineered safeguards systems). The part through-wall events include degradation in excess of design code allowable for pipe wall thinning or crack depth. OPDE also addresses such degradation that could have generic implications regarding the reliability of in-service inspection. Currently the OPDE database includes approximately 3,700 records on pipe failure affecting ASME Code Class 1 through 3 and non-safety-related (non-Code) piping. This paper presents the motivations and objectives behind the establishment of the OPDE project. The paper also summarizes the unique data quality considerations that are associated with the reporting and recording of piping component degradation and failure. An overview of the database content is included to place it in perspective relative to past efforts to systematically collect and evaluate service experience data on piping performance. Finally, a brief summary is given of current database application studies.

  13. OPDE-The international pipe failure data exchange project

    International Nuclear Information System (INIS)

    Lydell, Bengt; Riznic, Jovica

    2008-01-01

    Certain member countries of the Organization for Economic Cooperation and development (OECD) in 2002 established the OECD pipe failure data exchange project (OPDE) to produce an international database on the piping service experience applicable to commercial nuclear power plants. OPDE is operated under the umbrella of the OECD Nuclear Energy Agency (NEA). The Project collects pipe failure data including service-induced wall thinning, part through-wall crack, pinhole leak, leak, and rupture/severance (i.e., events involving large through-wall flow rates up to and beyond the make-up capacity of engineered safeguards systems). The part through-wall events include degradation in excess of design code allowable for pipe wall thinning or crack depth. OPDE also addresses such degradation that could have generic implications regarding the reliability of in-service inspection. Currently the OPDE database includes approximately 3,700 records on pipe failure affecting ASME Code Class 1 through 3 and non-safety-related (non-Code) piping. This paper presents the motivations and objectives behind the establishment of the OPDE project. The paper also summarizes the unique data quality considerations that are associated with the reporting and recording of piping component degradation and failure. An overview of the database content is included to place it in perspective relative to past efforts to systematically collect and evaluate service experience data on piping performance. Finally, a brief summary is given of current database application studies

  14. Report of the US Nuclear Regulatory Commission Piping Review Committee. Volume 3. Evaluation of potential for pipe breaks

    Energy Technology Data Exchange (ETDEWEB)

    1984-11-01

    The Executive Director for Operations (EDO) in establishing the Piping Review Committee concurred in its overall scope that included an evaluation of the potential for pipe breaks. The Pipe Break Task Group has responded to this directive. This report summarizes a review of regulatory documents and contains the Task Group's recommendations for application of the leak-before-break (LBB) approach to the NRC licensing process. The LBB approach means the application of fracture mechanics technology to demonstrate that high energy fluid piping is very unlikely to experience double-ended ruptures or their equivalent as longitudinal or diagonal splits. The Task Group's reommendations and discussion are founded on current and ongoing NRC staff actions as presented in Section 3.0 of this report. Additional more detailed comments and discussion are presented in Section 5.0 and in Appendices A and B. The obvious issues are the reexamination of the large pipe break criteria and the implications of any changes in the criteria as they influence items such as jet loads and pipe whip. The issues have been considered and the Task Group makes the following recommendations.

  15. Report of the US Nuclear Regulatory Commission Piping Review Committee. Volume 3. Evaluation of potential for pipe breaks

    International Nuclear Information System (INIS)

    1984-11-01

    The Executive Director for Operations (EDO) in establishing the Piping Review Committee concurred in its overall scope that included an evaluation of the potential for pipe breaks. The Pipe Break Task Group has responded to this directive. This report summarizes a review of regulatory documents and contains the Task Group's recommendations for application of the leak-before-break (LBB) approach to the NRC licensing process. The LBB approach means the application of fracture mechanics technology to demonstrate that high energy fluid piping is very unlikely to experience double-ended ruptures or their equivalent as longitudinal or diagonal splits. The Task Group's reommendations and discussion are founded on current and ongoing NRC staff actions as presented in Section 3.0 of this report. Additional more detailed comments and discussion are presented in Section 5.0 and in Appendices A and B. The obvious issues are the reexamination of the large pipe break criteria and the implications of any changes in the criteria as they influence items such as jet loads and pipe whip. The issues have been considered and the Task Group makes the following recommendations

  16. Effect of alloying element partitioning on ferrite hardening in a low alloy ferrite-martensite dual phase steel

    Energy Technology Data Exchange (ETDEWEB)

    Ebrahimian, A., E-mail: ebrahimiana@yahoo.com; Ghasemi Banadkouki, S.S.

    2016-11-20

    In this paper, the effect of carbon and other alloying elements partitioning on ferrite hardening behavior were studied in details using a low alloy AISI4340 ferrite-martensite dual phase (DP) steel. To do so, various re-austenitised samples at 860 °C for 60 min were isothermally heated at 650 °C from 3 to 60 min and then water–quenched to obtain the final ferrite-martensite DP microstructures containing different ferrite and martensite volume fractions. Light and electron microscopic observations were supplemented with electron dispersive spectroscopy (EDS) and nanoindentation tests to explore the localized compositional and hardening variations within ferrite grains in DP samples. The experimental results showed that the ferrite hardness was varied with progress of austenite to ferrite phase transformation in DP samples. In the case of a particular ferrite grain in a particular DP sample, despite a homogeneous distribution of carbon concentration, the ferrite hardness was significantly increased by increasing distance from the central location toward the interfacial α/γ areas. Beside a considerable influence of martensitic phase transformation on adjacent ferrite hardness, these results were rationalized in part to the significant level of Cr and Mo pile-up at α/γ interfaces leading to higher solid solution hardening effect of these regions. The reduction of potential energy developed by attractive interaction between C-Cr and C-Mo couples toward the carbon enriched prior austenite areas were the dominating driving force for pile-up segregation.

  17. Mechanism of selective corrosion in electrical resistance seam welded carbon steel pipe

    Energy Technology Data Exchange (ETDEWEB)

    Lopez Fajardo, Pedro; Godinez Salcedo, Jesus; Gonzalez Velasquez, Jorge L. [Instituto Politecnico Nacional, Mexico D.F., (Mexico). Escuela Superior de Ingenieria Quimica e Industrias Extractivas. Dept. de Ingenieria Metalurgica

    2009-07-01

    In this investigation the studies of the mechanism of selective corrosion in electrical resistance welded (ERW) carbon steel pipe was started. Metallographic characterizations and evaluations for inclusions were performed. The susceptibility of ERW pipe to selective corrosion in sea water (NACE 1D182, with O{sub 2} or CO{sub 2} + H{sub 2}S) was studied by the stepped potential Potentiostatic electrochemical test method in samples of 1 cm{sup 3} (ASTM G5) internal surface of the pipe (metal base-weld). The tests were looking for means for predicting the susceptibility of ERW pipe to selective corrosion, prior to placing the pipeline in service. Manganese sulfide inclusions are observed deformed by the welding process and they are close to the weld centerline. A slight decarburization at the weld line is observed, and a distinct out bent fiber pattern remains despite the post-weld seam annealing. The microstructure of the weld region consists of primarily polygonal ferrite grains mixed with small islands of pearlite. It is possible to observe the differences of sizes of grain of the present phases in the different zones. Finally, scanning electron microscopic observation revealed that the corrosion initiates with the dissolution of MnS inclusions and with small crack between the base metal and ZAC. (author)

  18. Dynamic J-R Characteristics of RCS Pipe Materials for Ulchin Unit 3/4. (Evaluation of Dynamic Strain Aging Effects)

    Energy Technology Data Exchange (ETDEWEB)

    Hong, Jun Hwa; Lee, Bong Sang; Yoon, Ji Hyun; Oh, Jong Myung; Kim, Jin Won [Korea Atomic Energy Research Institute, Taejon (Korea, Republic of)

    1997-09-01

    5 materials (45 1T-CT specimens) were tested to evaluate dynamic J-R characteristics of RCS Pipe Materials for Ulchin Unit 3/4 (Evaluation of Dynamic Strain Aging Effects). The tests were performed by DCPD method at 316 deg C and 25 deg C. The loading rates were 1000mm/min and 2000mm/min. The objectives of this project were to obtain the dynamic J-R curves data of ferritic steels for application of LBB to the RCS pipes of Ulchin Unit 3/4. The test results showed that all of the tested dynamic J-R curves of 5 materials were above the lower bound curve of static J-R curve of pipe materials for Ulchin Unit 3/4. 10 refs., 4 tabs., 16 figs. (author)

  19. Effects of the steam chest on steamhammer analysis for nuclear piping systems

    International Nuclear Information System (INIS)

    Luk, C.

    1975-01-01

    When applying the method of characteristics for the steamhammer analysis of a nuclear piping system, if the dynamic fluid behavior in the steam chest is not considered, the boundary condition thus formulated to describe the time-dependent fluid behavior of the steam chest would lead to numerical unstable solution. To overcome this difficulty, the dynamic fluid behavior in the steam chest can be described by a single degree mechanical system. The corresponding flow conditions there are then determined by the time-step amplification method. This dynamic boundary condition reduces the calculated steamhammer loads and helps avoid numerical instability problems in the computing procedure. 4 refs

  20. Evaluation of LBB margin of nuclear piping systems

    International Nuclear Information System (INIS)

    Hwang, Il Soon; Kim, Ji Hyeon; Oh, Yeong Jin; Lim, Jun; Kim, In Seob; Kim, Yong Seon; Lee, Joo Seok

    1999-04-01

    Most of previous elastic-plastic fracture studies for LBB assessment of low alloy steel piping have been focused on base metals and weld metals. In contract, the heat affected zone of welded pipe has not been studied in detail primarily because the size of heat affected zone in welded pipe os too small to make specimens for mechanical properties measurement. When structural members are joined by welding, the base metal is heated to its melting point and then cooled rapidly. As a result of this very severe thermal cycle, mechanical properties in the heat affected zone can be degraded by grain coarsening, the precipitation and the segregation of trace impurities. In this study, a thermal and microstructural analysis is performed, and mechanical properties are measured for the weld heat affected zone of SA106Gr.C low allowed piping steel. In addition, inter critical annealing treatment. in two-phase (alpha+gamma) region was performed to investigate the possibilities of improving the toughness and reducing dynamic strain aging (DSA) susceptibility for giving allowable LBB safety margins. From the results, intercritical annealing is shown to give a smaller ductility loss due to DSA than the case of as-received material. Furthermore, the intercritical annealing was able to increase the impact toughness by a factor of 1.5 compared to the as-received material

  1. Evaluation of LBB margin of nuclear piping systems

    Energy Technology Data Exchange (ETDEWEB)

    Hwang, Il Soon; Kim, Ji Hyeon; Oh, Yeong Jin; Lim, Jun [Seoul Nationl Univ., Seoul (Korea, Republic of); Kim, In Seob; Kim, Yong Seon; Lee, Joo Seok [Korea Advanced Institute of Science and Technology, Taejon (Korea, Republic of)

    1999-04-15

    Most of previous elastic-plastic fracture studies for LBB assessment of low alloy steel piping have been focused on base metals and weld metals. In contract, the heat affected zone of welded pipe has not been studied in detail primarily because the size of heat affected zone in welded pipe os too small to make specimens for mechanical properties measurement. When structural members are joined by welding, the base metal is heated to its melting point and then cooled rapidly. As a result of this very severe thermal cycle, mechanical properties in the heat affected zone can be degraded by grain coarsening, the precipitation and the segregation of trace impurities. In this study, a thermal and microstructural analysis is performed, and mechanical properties are measured for the weld heat affected zone of SA106Gr.C low allowed piping steel. In addition, inter critical annealing treatment. in two-phase (alpha+gamma) region was performed to investigate the possibilities of improving the toughness and reducing dynamic strain aging (DSA) susceptibility for giving allowable LBB safety margins. From the results, intercritical annealing is shown to give a smaller ductility loss due to DSA than the case of as-received material. Furthermore, the intercritical annealing was able to increase the impact toughness by a factor of 1.5 compared to the as-received material.

  2. Residual-stresses in austenitic stainless-steel primary coolant pipes and welds of pressurized-water reactors

    International Nuclear Information System (INIS)

    Faure, F.; Leggatt, R.H.

    1996-01-01

    Surface and through thickness residual stress measurements were performed on an aged cast austenitic-ferritic stainless steel pipe and on an orbital TIG weld representative of those of primary coolant pipes in pressurized water reactors. An abrasive-jet hole drilling method and a block removal and layering method were used. Surface stresses and through thickness stress profiles are strongly dependent upon heat treatments, machining and welding operations. In the aged cast stainless steel pipe, stresses ranged between -250 and +175 MPa. On and near the orbital TIG weld, the outside surface of the weld was in tension both in the axial and hoop directions, with maximum values reaching 420 MPa in the weld. On the inside surface, the hoop stresses were compressive, reaching -300 MPa. However, the stresses in the axial direction at the root of the weld were tensile within 4 mm depth from the inside surface, locally reaching 280 MPa. (author)

  3. Experimental investigation on Heat Transfer Performance of Annular Flow Path Heat Pipe

    International Nuclear Information System (INIS)

    Kim, In Guk; Kim, Kyung Mo; Jeong, Yeong Shin; Bang, In Cheol

    2015-01-01

    Mochizuki et al. was suggested the passive cooling system to spent nuclear fuel pool. Detail analysis of various heat pipe design cases was studied to determine the heat pipes cooling performance. Wang et al. suggested the concept PRHRS of MSR using sodium heat pipes, and the transient performance of high temperature sodium heat pipe was numerically simulated in the case of MSR accident. The meltdown at the Fukushima Daiichi nuclear power plants alarmed to the dangers of station blackout (SBO) accident. After the SBO accident, passive decay heat removal systems have been investigated to prevent the severe accidents. Mochizuki et al. suggested the heat pipes cooling system using loop heat pipes for decay heat removal cooling and analysis of heat pipe thermal resistance for boiling water reactor (BWR). The decay heat removal systems for pressurized water reactor (PWR) were suggested using natural convection mechanisms and modification of PWR design. Our group suggested the concept of a hybrid heat pipe with control rod as Passive IN-core Cooling System (PINCs) for decay heat removal for advanced nuclear power plant. Hybrid heat pipe is the combination of the heat pipe and control rod. In the present research, the main objective is to investigate the effect of the inner structure to the heat transfer performance of heat pipe containing neutron absorber material, B 4 C. The main objective is to investigate the effect of the inner structure in heat pipe to the heat transfer performance with annular flow path. ABS pellet was used instead of B 4 C pellet as cylindrical structures. The thermal performances of each heat pipes were measured experimentally. Among them, concentric heat pipe showed the best performance compared with others. 1. Annular evaporation section heat pipe and annular flow path heat pipe showed heat transfer degradation. 2. AHP also had annular vapor space and contact cooling surface per unit volume of vapor was increased. Heat transfer coefficient of

  4. IPIRG-2 task 1 - pipe system experiments with circumferential cracks in straight-pipe locations. Final report, September 1991--November 1995

    Energy Technology Data Exchange (ETDEWEB)

    Scott, P.; Olson, R.; Marschall, C.; Rudland, D. [and others

    1997-02-01

    This report presents the results from Task 1 of the Second International Piping Integrity Research Group (IPIRG-2) program. The IPIRG-2 program is an international group program managed by the US Nuclear Regulatory Commission (US NRC) and funded by a consortium of organizations from 15 nations including: Bulgaria, Canada, Czech Republic, France, Hungary, Italy, Japan, Republic of Korea, Lithuania, Republic of China, Slovak Republic, Sweden, Switzerland, the United Kingdom, and the United States. The objective of the program was to build on the results of the IPIRG-1 and other related programs by extending the state-of-the-art in pipe fracture technology through the development of data needed to verify engineering methods for assessing the integrity of nuclear power plant piping systems that contain defects. The IPIRG-2 program included five main tasks: Task 1 - Pipe System Experiments with Flaws in Straight Pipe and Welds Task 2 - Fracture of Flawed Fittings Task 3 - Cyclic and Dynamic Load Effects on Fracture Toughness Task 4 - Resolution of Issues From IPIRG-1 and Related Programs Task 5 - Information Exchange Seminars and Workshops, and Program Management. The scope of this report is to present the results from the experiments and analyses associated with Task 1 (Pipe System Experiments with Flaws in Straight Pipe and Welds). The rationale and objectives of this task are discussed after a brief review of experimental data which existed after the IPIRG-1 program.

  5. IPIRG-2 task 1 - pipe system experiments with circumferential cracks in straight-pipe locations. Final report, September 1991--November 1995

    International Nuclear Information System (INIS)

    Scott, P.; Olson, R.; Marschall, C.; Rudland, D.

    1997-02-01

    This report presents the results from Task 1 of the Second International Piping Integrity Research Group (IPIRG-2) program. The IPIRG-2 program is an international group program managed by the US Nuclear Regulatory Commission (US NRC) and funded by a consortium of organizations from 15 nations including: Bulgaria, Canada, Czech Republic, France, Hungary, Italy, Japan, Republic of Korea, Lithuania, Republic of China, Slovak Republic, Sweden, Switzerland, the United Kingdom, and the United States. The objective of the program was to build on the results of the IPIRG-1 and other related programs by extending the state-of-the-art in pipe fracture technology through the development of data needed to verify engineering methods for assessing the integrity of nuclear power plant piping systems that contain defects. The IPIRG-2 program included five main tasks: Task 1 - Pipe System Experiments with Flaws in Straight Pipe and Welds Task 2 - Fracture of Flawed Fittings Task 3 - Cyclic and Dynamic Load Effects on Fracture Toughness Task 4 - Resolution of Issues From IPIRG-1 and Related Programs Task 5 - Information Exchange Seminars and Workshops, and Program Management. The scope of this report is to present the results from the experiments and analyses associated with Task 1 (Pipe System Experiments with Flaws in Straight Pipe and Welds). The rationale and objectives of this task are discussed after a brief review of experimental data which existed after the IPIRG-1 program

  6. Ferrite materials for memory applications

    CERN Document Server

    Saravanan, R

    2017-01-01

    The book discusses the synthesis and characterization of various ferrite materials used for memory applications. The distinct feature of the book is the construction of charge density of ferrites by deploying the maximum entropy method (MEM). This charge density gives the distribution of charges in the ferrite unit cell, which is analyzed for charge related properties.

  7. A study of the long-range inspection method for on-line monitoring of pipes in nuclear power plants

    International Nuclear Information System (INIS)

    Eom, Heung Seop; Lim, Sa Hoe; Kim, Jae Hee; Kim, Young H.; Song, Sung Jin

    2005-01-01

    Deployment of an advanced on-line monitoring of the component integrity offers the prospect of an improved performance, enhanced safety, and reduced overall cost for nuclear power plants (NPPs). Also ultrasonic guided ultrasonic wave has been known as one of the promising techniques that could be utilized for on-line monitoring, because it enables us to undertake a long-range inspection of structures such as plates and pipes. The present work is aimed at developing a new method using ultrasonic guided waves for the on-line monitoring of pipes. For this purpose we fabricated the necessary hardware and carried out transmitter tuning, group velocity measurement, receiver tuning, and mode identification. Finally we carried out an experiment on a long-range inspection with the developed hardware and the techniques. In the experiment, we could detect the flaws at a distance of about 20M from the transmitter, and we could verify the possibility of using the developed hardware and techniques for on-line monitoring of pipes in NPPs

  8. Strain Limits within the Scope of the Integrity Assessment of Piping Systems

    International Nuclear Information System (INIS)

    Mutz, Alexander

    2008-01-01

    Allowable stresses in nuclear power plant piping resulting from loading conditions to be considered in Germany are determined on the basis of the German Safety Standards of the Nuclear Safety Standards Commission, KTA. The limitation of the different stress categories within the analysis of the mechanical behaviour is based on a linear elastic material behaviour. Because of the ductile material used in high energy nuclear piping, a more realistic assessment can be performed on the basis of allowable strains using elastic plastic material behaviour. In the present work comparison between the analysis of piping systems considering the elastic material model and the actual elastic plastic material behaviour is performed. The possibilities of allocating plastic strains to calculated elastic stresses is discussed. A parametric study on straight pipes with the actual elastic plastic material model under pure bending is the basis of deriving the elastic plastic strains for the calculated elastic stresses. Strain limits are suggested which correspond to the different stress categories. The aim is to utilize the deformation possibilities of ductile materials used in German nuclear piping and the allocation of maximum strains to different load categories. Keywords: strain limit, ductile material, stress category. (author)

  9. Strain Limits within the Scope of the Integrity Assessment of Piping Systems

    Energy Technology Data Exchange (ETDEWEB)

    Mutz, Alexander [EnBW, Durlacher Allee 93, Karlsruhe 76131 (Germany)

    2008-07-01

    Allowable stresses in nuclear power plant piping resulting from loading conditions to be considered in Germany are determined on the basis of the German Safety Standards of the Nuclear Safety Standards Commission, KTA. The limitation of the different stress categories within the analysis of the mechanical behaviour is based on a linear elastic material behaviour. Because of the ductile material used in high energy nuclear piping, a more realistic assessment can be performed on the basis of allowable strains using elastic plastic material behaviour. In the present work comparison between the analysis of piping systems considering the elastic material model and the actual elastic plastic material behaviour is performed. The possibilities of allocating plastic strains to calculated elastic stresses is discussed. A parametric study on straight pipes with the actual elastic plastic material model under pure bending is the basis of deriving the elastic plastic strains for the calculated elastic stresses. Strain limits are suggested which correspond to the different stress categories. The aim is to utilize the deformation possibilities of ductile materials used in German nuclear piping and the allocation of maximum strains to different load categories. Keywords: strain limit, ductile material, stress category. (author)

  10. Tool to release quick-fitting pipe union

    International Nuclear Information System (INIS)

    Schultz, J.C.; Laurent, M.

    1993-01-01

    A tool is claimed to disconnect pipes feeding an apparatus with a fluid in a nuclear enclosure. It comprises a key with a disconnecting head and a lever that can be fixed on a manipulator. The disconnecting head is shaped for introduction between the plug and socket connection and to push a button releasing the pipe by tilting

  11. Stochastic evaluation of the dynamic response and the cumulative damage of nuclear power plant piping

    International Nuclear Information System (INIS)

    Suzuki, Kohei; Aoki, Shigeru; Hanaoka, Masaaki

    1981-01-01

    This report deals with a fundamental study concerning an evaluation of uncertainties of the nuclear piping response and cumulative damage under excess-earthquake loadings. The main purposes of this study cover following several problems. (1) Experimental estimation analysis of the uncertainties concerning the dynamic response and the cumulative failure by using piping test model. (2) Numerical simulation analysis by Monte Carlo method under the assumption that relation between restoring force and deformation is characterized by perfectly elasto-plastic one. (Checking the mathematical model.) (3) Development of the conventional uncertainty estimating method by introducing a perturbation technique based on an appropriate equivalently linearized approach. (Checking the estimation technique.) (4) An application of this method to more realistical cases. Through above mentioned procedures some important results are obtained as follows; First, fundamental statistical properties of the natural frequencies and the number of cycle to failure crack initiation are evaluated. Second, the effect of the frequency fluctuation and the yielding fluctuation are estimated and examined through Monte Carlo simulation technique. It has become clear that the yielding fluctuation gives significant effect on the piping power response up to its failure initiation. Finally some results through proposed perturbation technique are discussed. Statistical properties estimated coincide fairly well with those through numerical simulation. (author)

  12. High-cycle fatigue properties of small-bore socket-welded pipe joint

    International Nuclear Information System (INIS)

    Maekawa, Akira; Noda, Michiyasu; Suzuki, Michiaki

    2009-01-01

    Piping and equipment in nuclear power plants are structures including many welded joints. Reliability of welded joints is one of high-priority issues to improve the safety of nuclear power plants. However, occurrence of fatigue failures in small-bore socket-welded pipe joints by high-cycle vibrations is still reported. In this study, fatigue experiments on a socket-welded joint of austenitic stainless steel pipe was conducted under excitation conditions similar to those in actual plants to investigate vibration characteristics and fatigue strength. It was found that the natural frequency of pipe with socket-welded joint gradually decreased as fatigue damage developed, according to the Miner rule for fatigue life evaluation. The results indicate that the fatigue life of the welded pipe joint could be estimated by monitoring the decreasing ratio of the natural frequency of the pipe. The evaluation of decreasing ratio of the natural frequency in addition to fatigue damage evaluation by the Miner rule could enhance the accuracy of fatigue life evaluation. (author)

  13. Analysis of gamma ray intensity on the S/C vent pipes area in the unit 2 reactor building of the Fukushima Daiichi Nuclear Power Plant

    Energy Technology Data Exchange (ETDEWEB)

    Cho, Jai Wan; Choi, Young Soo; Jeong, Kyung Min [Korea Atomic Energy Research Institute, Daejeon (Korea, Republic of)

    2014-05-15

    The robot is equipped with cameras, a dosimeter, and 2 DOF (degree of freedom) manipulation arms. It loads a small vehicle equipped with a camera that can access and inspect narrow areas. TEPCO is using the four-legged walking robot to inspect the suppression chamber (S/C) area of the unit 2 reactor building basement in the Fukushima Daiichi Nuclear Power Plant. The robot carried out 6 missions for about four months, from 11 December, 2012 to 15 March, 2013, where it examined an evidence of a leakage of radioactivity contaminated water in the S/C area of unit 2 reactor building. When a camera's signal processing unit, which is consist of ASIC and FPGA devices manufactured by a CMOS fabrication process, is exposed to a higher dose rate gamma ray, the speckle distribution in the camera image increase more. From the inspection videos, released by TEPCO, of the underground 8 vent pipes in the unit 2 reactor building, we analyzed the speckle distribution from the high dose-rate gamma rays. Based on the distribution of the speckle, we attempted to characterize the vent pipe with much radioactivity contaminated materials among the eight vent pipes connected to the PCV. The numbers of speckles viewed in the image of a CCD (or CMOS) camera are related to an intensity of the gamma ray energy emitted by a nuclear fission reaction from radioactivity materials. The numbers of speckles generated by gamma ray irradiation in the camera image are calculated by an image processing technique. Therefore, calculating the speckles counts, we can determine the vent pipe with relatively most radioactivity-contaminated materials among the other vent pipes. From the comparison of speckles counts calculated in the inspection image of the vent pipe with the speckles counts extracted by gamma ray irradiation experiment of the same small vehicle camera model loaded with the four-legged walking robot, we can qualitatively estimate the gamma ray dose-rate in the S/C vent pipe area of the

  14. Growth modes of individual ferrite grains in the austenite to ferrite transformation of low carbon steels

    International Nuclear Information System (INIS)

    Li, D.Z.; Xiao, N.M.; Lan, Y.J.; Zheng, C.W.; Li, Y.Y.

    2007-01-01

    The mesoscale deterministic cellular automaton (CA) method and probabilistic Q-state Potts-based Monte Carlo (MC) model have been adopted to investigate independently the individual growth behavior of ferrite grain during the austenite (γ)-ferrite (α) transformation. In these models, the γ-α phase transformation and ferrite grain coarsening induced by α/α grain boundary migration could be simulated simultaneously. The simulations demonstrated that both the hard impingement (ferrite grain coarsening) and the soft impingement (overlapping carbon concentration field) have a great influence on the individual ferrite growth behavior. Generally, ferrite grains displayed six modes of growth behavior: parabolic growth, delayed nucleation and growth, temporary shrinkage, partial shrinkage, complete shrinkage and accelerated growth in the transformation. Some modes have been observed before by the synchrotron X-ray diffraction experiment. The mesoscopic simulation provides an alternative tool for investigating both the individual grain growth behavior and the overall transformation behavior simultaneously during transformation

  15. Pipe rupture test results; 6 in. pipe whip test under BWR LOCA conditions

    International Nuclear Information System (INIS)

    Kurihara, Ryoichi; Yano, Toshikazu; Ueda, Shuzo; Isozaki, Toshikuni; Miyazaki, Noriyuki; Kato, Rokuro; Miyazono, Shohachiro

    1983-02-01

    A series of pipe rupture tests has been performed in JAERI to demonstrate the safety of the primary coolant circuits in the event of pipe rupture, in nuclear power plants. The present report summarizes the results of 6 in. pipe whip tests (RUN 5605, 5606), under BWR LOCA conditions (285 0 C, 6.8 MPa), which were performed in August, 1981. The test pipe is made of Type 304 stainless steel and its outer diameter is 6 in. and its thickness is 11.1 mm. The restraints are made of Type 304 stainless steel and its diameter is 16.0 mm. Two restraints were set on the restraint support with clearance of 100 mm. Overhang length was varied as the parameter in these tests and was 300 mm or 700 mm. The following results are obtained. (1) The deformations of a pipe and restraints are limited effectively by shorter overhang length of 300. However, they become larger when the overhang length is 700 mm, and the pipe deforms especially at the setting point of restraints. (2) Velocity at the free end of pipe becomes about 30 m/sec just after the break. However, velocity at the setting point of restraint becomes about only 4 m/sec just after the break. (3) It seems from the comparison between the 4 in. tests and 6 in. tests that the maximum restraint force of 6 in. tests is about two times as large as that of 4 in. tests. (author)

  16. Sensitivity analyses of finite element method for estimating residual stress of dissimilar metal multi-pass weldment in nuclear power plant

    Energy Technology Data Exchange (ETDEWEB)

    Song, Tae Kwang; Bae, Hong Yeol; Kim, Yun Jae [Korea Unviersity, Seoul (Korea, Republic of); Lee, Kyoung Soo; Park, Chi Yong [Korea Electric Power Research Institute, Daejeon (Korea, Republic of)

    2008-09-15

    In nuclear power plants, ferritic low alloy steel components were connected with austenitic stainless steel piping system through alloy 82/182 butt weld. There have been incidents recently where cracking has been observed in the dissimilar metal weld. Alloy 82/182 is susceptible to primary water stress corrosion cracking. Weld-induced residual stress is main factor for crack growth. Therefore exact estimation of residual stress is important for reliable operating. This paper presents residual stress computation performed by 6'' safety and relief nozzle. Based on 2 dimensional and 3 dimensional finite element analyses, effect of welding variables on residual stress variation is estimated for sensitivity analysis.

  17. Heat pipe applications for future Air Force spacecraft

    International Nuclear Information System (INIS)

    Mahefkey, T.; Barthelemy, R.R.

    1980-01-01

    This paper summarizes the envisioned, future usage of high and low temperature heat pipes in advanced Air Force spacecraft. Thermal control requirements for a variety of communications, surveillance, and space defense missions are forecast. Thermal design constraints implied by survivability to potential weapons effects are outlined. Applications of heat pipes to meet potential low and high power spacecraft mission requirements and envisioned design constraints are suggested. A brief summary of past Air Force sponsored heat pipe development efforts is presented and directions for future development outlined, including those applicable to advanced photovoltaic and nuclear power subsystem applications of heat pipes

  18. Microcomputer generated pipe support calculations

    International Nuclear Information System (INIS)

    Hankinson, R.F.; Czarnowski, P.; Roemer, R.E.

    1991-01-01

    The cost and complexity of pipe support design has been a continuing challenge to the construction and modification of commercial nuclear facilities. Typically, pipe support design or qualification projects have required large numbers of engineers centrally located with access to mainframe computer facilities. Much engineering time has been spent repetitively performing a sequence of tasks to address complex design criteria and consolidating the results of calculations into documentation packages in accordance with strict quality requirements. The continuing challenges of cost and quality, the need for support engineering services at operating plant sites, and the substantial recent advances in microcomputer systems suggested that a stand-alone microcomputer pipe support calculation generator was feasible and had become a necessity for providing cost-effective and high quality pipe support engineering services to the industry. This paper outlines the preparation for, and the development of, an integrated pipe support design/evaluation software system which maintains all computer programs in the same environment, minimizes manual performance of standard or repetitive tasks, and generates a high quality calculation which is consistent and easily followed

  19. Development of an on-line ultrasonic system to monitor flow-accelerated corrosion of piping in nuclear power plants

    International Nuclear Information System (INIS)

    Lee, N.Y.; Bahn, C.B.; Lee, S.G.; Kim, J.H.; Hwang, I.S.; Lee, J.H.; Kim, J.T.; Luk, V.

    2004-01-01

    Designs of contemporary nuclear power plants (NPPs) are concentrated on improving plant life as well as safety. As the nuclear industry prepares for continued operation beyond the design lifetime of existing NPP, aging management through advanced monitoring is called for. Therefore, we suggested two approaches to develop the on-line piping monitoring system. Piping located in some position is reported to go through flow accelerated corrosion (FAC). One is to monitor electrochemical parameters, ECP and pH, which can show occurrence of corrosion. The other is to monitor mechanical parameters, displacement and acceleration. These parameters are shown to change with thickness. Both measured parameters will be combined to quantify the amount of FAC of a target piping. In this paper, we report the progress of a multidisciplinary effort on monitoring of flow-induced vibration, which changes with reducing thickness. Vibration characteristics are measured using accelerometers, capacitive sensor and fiber optic sensors. To theoretically support the measurement, we analyzed the vibration mode change in a given thickness with the aid of finite element analysis assuming FAC phenomenon is represented only as thickness change. A high temperature flow loop has been developed to simulate the NPP secondary condition to show the applicability of new sensors. Ultrasonic transducer is introduced as validation purpose by directly measuring thickness. By this process, we identify performance and applicability of chosen sensors and also obtain base data for analyzing measured value in unknown conditions. (orig.)

  20. The development of monitoring techniques for thermal stratification in nuclear plant piping

    International Nuclear Information System (INIS)

    Sim, Cheul Muu; Joo, Young Sang; Yoon, Kwang Sik; Park, Chi Seung; Choi, Ha Lim; Moon, Jae Wha; Bae, Sang Ho.

    1996-12-01

    The conventional nondestructive testing has been performed in those area which are susceptible to thermal stress in according to NRC 88-08,11. In addition to that, it is necessary to set up a monitoring system to prevent severe thermal stress to pipes in early stages and to develop the non-intrusive techniques to diagnose the check valve because the thermal stratification has been caused by the malfunction of the check valve in ECCS pipe. Thermal stratification monitoring system has been designed and installed at ECCS line permanently and surge line temporally in YG nuclear power plant. The data is acceptable in according to TASCS guide line. Also, the data originated from ISMS is useful for the arrangement of a special UT program and stress analysis. Applying a togetherness of acoustics and magnetics signal, it is possible to determine the parameters of the function of the check valve internals without disassembling it. This series of tests show that the accelerometers can be use d to measure and to differentiate the three types of impacts; metal to metal impacts mechanical rubs, and worn internal parts. The magnet sensors can be used to detect the opening/closing of stainless check and fluttering of disk. (author). 50 refs., 5 tabs., 28 figs

  1. The development of monitoring techniques for thermal stratification in nuclear plant piping

    Energy Technology Data Exchange (ETDEWEB)

    Sim, Cheul Muu; Joo, Young Sang; Yoon, Kwang Sik; Park, Chi Seung; Choi, Ha Lim; Moon, Jae Wha; Bae, Sang Ho

    1996-12-01

    The conventional nondestructive testing has been performed in those area which are susceptible to thermal stress in according to NRC 88-08,11. In addition to that, it is necessary to set up a monitoring system to prevent severe thermal stress to pipes in early stages and to develop the non-intrusive techniques to diagnose the check valve because the thermal stratification has been caused by the malfunction of the check valve in ECCS pipe. Thermal stratification monitoring system has been designed and installed at ECCS line permanently and surge line temporally in YG nuclear power plant. The data is acceptable in according to TASCS guide line. Also, the data originated from ISMS is useful for the arrangement of a special UT program and stress analysis. Applying a togetherness of acoustics and magnetics signal, it is possible to determine the parameters of the function of the check valve internals without disassembling it. This series of tests show that the accelerometers can be use d to measure and to differentiate the three types of impacts; metal to metal impacts mechanical rubs, and worn internal parts. The magnet sensors can be used to detect the opening/closing of stainless check and fluttering of disk. (author). 50 refs., 5 tabs., 28 figs.

  2. Leak before break piping evaluation diagram

    International Nuclear Information System (INIS)

    Fabi, R.J.; Peck, D.A.

    1994-01-01

    Traditionally Leak Before Break (LBB) has been applied to the evaluation of piping in existing nuclear plants. This paper presents a simple method for evaluating piping systems for LBB during the design process. This method produces a piping evaluation diagram (PED) which defines the LBB requirements to the piping designer for use during the design process. Several sets of LBB analyses are performed for each different pipe size and material considered in the LBB application. The results of this method are independent of the actual pipe routing. Two complete LBB evaluations are performed to determine the maximum allowable stability load, one evaluation for a low normal operating load, and the other evaluation for a high normal operating load. These normal operating loads span the typical loads for the particular system being evaluated. In developing the allowable loads, the appropriate LBB margins are included in the PED preparation. The resulting LBB solutions are plotted as a set of allowable curves for the maximum design basis load, such is the seismic load versus the normal operating load. Since the required margins are already accounted for in the LBB PED, the piping designer can use the diagram directly with the results of the piping analysis and determine immediately if the current piping arrangement passes LBB. Since the LBB PED is independent of pipe routing, changes to the piping system can be evaluated using the existing PED. For a particular application, all that remains is to confirm that the actual materials and pipe sizes assumed in creating the particular design are built into the plant

  3. Protecting against failure by brittle fracture in ferritic steel shipping containers

    International Nuclear Information System (INIS)

    Schwartz, M.W.; Langland, R.T.

    1983-01-01

    The possible use of ferritic steels for the containment structure of shipping casks has motivated the development of criteria for assuring the integrity of these casks under both normal and hypothetical accident conditions specified in Part 71 of the Code of Federal Regulations. The US Nuclear Regulatory Commission Regulation Guide 7.6 provides design criteria for preventing ductile failure steel shipping containers. The research described in this paper deals with criteria for preventing brittle fracture of ferritic steel shipping containers. Initially guidelines were developed for ferritic steel up to four inches thick (I). This was followed by an investigation of various criteria that might be used for monolithic thick walled casks greater than four inches thick (2). Three categories of safety are identified in the design of shipping containers. Category I, the highest level of safety, is appropriate for containment systems for spent nuclear fuel and high level waste transport packaging. In Category I, containers are designed to the highest level of safety and brittle fracture is essentially not possible. Categories II and III represent levels of safety commensurate with the consequences of release of lower levels of radioactivity. In these latter categories, consideration of factors contributing to brittle fracture, good engineering practice, and careful selection of material make brittle fracture unlikely under environmental conditions encountered during shipping. This paper will deal primarily with Category I containers. The guidelines for Category II and III containers are fully described elsewhere. 5 references, 10 figures, 3 tables

  4. Multiscale description of carbon-supersaturated ferrite in severely drawn pearlitic wires

    International Nuclear Information System (INIS)

    Nematollahi, Gh. Ali; Grabowski, Blazej; Raabe, Dierk; Neugebauer, Jörg

    2016-01-01

    A multiscale simulation approach based on atomistic calculations and a discrete diffusion model is developed and applied to carbon-supersaturated ferrite, as experimentally observed in severely deformed pearlitic steel. We employ the embedded atom method and the nudged elastic band technique to determine the energetic profile of a carbon atom around a screw dislocation in bcc iron. The results clearly indicate a special region in the proximity of the dislocation core where C atoms are strongly bound, but where they can nevertheless diffuse easily due to low barriers. Our analysis suggests that the previously proposed pipe mechanism for the case of a screw dislocation is unlikely. Instead, our atomistic as well as the diffusion model results support the so-called drag mechanism, by which a mobile screw dislocation is able to transport C atoms along its glide plane. Combining the C-dislocation interaction energies with density-functional-theory calculations of the strain dependent C formation energy allows us to investigate the C supersaturation of the ferrite phase under wire drawing conditions. Corresponding results for local and total C concentrations agree well with previous atom probe tomography measurements indicating that a significant contribution to the supersaturation during wire drawing is due to dislocations.

  5. BWR pipe crack remedies evaluation

    International Nuclear Information System (INIS)

    Shack, W.J.; Kassner, T.F.; Maiya, P.S.; Park, J.Y.; Ruther, W.; Kuzay, T.; Rybicki, E.F.; Stonesifer, R.B.

    1988-01-01

    Piping in light-water-reactor power systems has been affected by several types of environmental degradation. This paper presents results from studies of (1) stress corrosion crack growth in fracture mechanics specimens of modified Type 347 SS and Type 304/308L SS weld overlay material, (2) heat-to-heat variations in stress corrosion cracking (SCC) of Types 316NG and 347 SS, (3) SCC of sensitized Type 304 SS in water with cupric ion or organic acid impurities, (4) electrochemical potential (ECP) measurements under gamma irradiation, (5) SCC of ferritic steels, (6) strain-controlled fatigue of Type 316NG SS in air at ambient temperature, and (7) through-wall residual stress measurements and finite-element calculation of residual stresses in weldments treated by a mechanical stress improvement process (MSIP). Fracture-mechanics crack-growth-rate tests on Type 316NG SS have shown that transgranular cracking can occur even in high purity environments, whereas no crack growth was observed in Type 347 SS even in impurity environments. In tests on weld overlay specimens, no cracks penetrated into the overlay even in impurity environments. Instead, the cracks branched when they approached the overlay, and then grew parallel to interface. In SCC tests on sensitized Type 304 SS, cupric ions at concentrations greater than ∼1 ppm were found to be deleterious, whereas organic acids at this concentration were not detrimental. Tests on several ferritic steels indicate a strong correlation between the sulfur content of the steels and susceptibility to SCC. External gamma radiation fields produced a large positive shift in the ECP of Type 304 SS at low dissolved-oxygen concentrations (<5 ppb), whereas in the absence of an external gamma field there was no difference in the ECP values of irradiated and nonirradiated material. Fatigue data for Type 316NG SS are consistent with the ASME code mean curve at high strains, but fall below the curve at low strains. Calculations of the

  6. Design considerations for the protection from the effects of pipe rupture

    International Nuclear Information System (INIS)

    1975-11-01

    The methods which are employed by Ebasco Services, Inc. to satisfy the requirement of 10 CFR 50, Appendix A, General Design Criterion (GDC) 4 are discussed. This criterion provides the design basis for protection against the dynamic effects of postulated piping failures (ruptures and cracks) in Nuclear Power Plants. The criteria for postulating pipe failure locations, determining the dynamic effects associated with the postulated failure and designing the plant to satisfactorily withstand postulated pipe failures have been the subject of a great deal of recent work by the nuclear power industry and the Nuclear Regulatory Commission (NRC). This topical report is largely based upon that work as well as upon Ebasco's independent development of analytical tools to aid in the plant design process

  7. Study on the Simulation of Crud Formation using Piping Materials of Nuclear Power Plant in High Temperature Water

    International Nuclear Information System (INIS)

    Kim, Sang Hyun; Kim, In Sup; Lee, Kun Jai

    2005-01-01

    High temperature - high pressure apparatus was developed to simulate nickel fewite corrosion products which were main compositions of the radioactive crud in the nuclear power plant. Corrosion product similar to the crud was obtained by a tube accumulator system. Nickel alloy (Inconel 690) and carbon steel (SA106 Gr. C) were corroded at 270 in the corrosion product generator. Ni ions and Fe ions dissolved by corrosion reaction were able to be transported to the accumulator because the crud generation mechanism was the solubility change with temperature. To evaluate the properties of simulated corrosion products, scanning electron microscope (SEM) observation and EDAX analysis were performed. SEM observation of corrosion product showed the needle like or crystal structure of oxide depending on precipitating location. The crystal oxide was the nickel ferrite, which was similar to the crud in nuclear power plants.

  8. A critical review on the application of elastic-plastic fracture mechanics to nuclear pressure vessel and piping systems

    International Nuclear Information System (INIS)

    Scarth, D.A.; Kim, Y.J.; Vanderglas, M.L.

    1985-10-01

    A comprehensive literature survey on the application of Elastic-Plastic Fracture Mechanics to the assessment of the structural integrity of nuclear pressure vessels and piping is presented. In particular, the J-integral/Tearing Modulus (J/T) approach and the Failure Assessment Diagram (FAD) are covered in detail because of their general suitability for use in Ontario Hydro. (25 refs.)

  9. Study on seismic design margin based upon inelastic shaking test of the piping and support system

    International Nuclear Information System (INIS)

    Ishiguro, Takami; Eto, Kazutoshi; Ikeda, Kazutoyo; Yoshii, Toshiaki; Kondo, Masami; Tai, Koichi

    2009-01-01

    In Japan, according to the revised Regulatory Guide for Aseismic Design of Nuclear Power Reactor Facilities, September 2006, criteria of design basis earthquakes of Nuclear Power Reactor Facilities become more severe. Then, evaluating seismic design margin took on a great importance and it has been profoundly discussed. Since seismic safety is one of the major key issues of nuclear power plant safety, it has been demonstrated that nuclear piping system possesses large safety margins by various durability test reports for piping in ultimate conditions. Though the knowledge of safety margin has been accumulated from these reports, there still remain some technical uncertainties about the phenomenon when both piping and support structures show inelastic behavior in extremely high seismic excitation level. In order to obtain the influences of inelastic behavior of the support structures to the whole piping system response when both piping and support structures show inelastic behavior, we examined seismic proving tests and we conducted simulation analyses for the piping system which focused on the inelastic behavior of the support to the whole piping system response. This paper introduces major results of the seismic shaking tests of the piping and support system and the simulation analyses of these tests. (author)

  10. Development of a Multi-Channel Ultrasonic Testing System for Automated Ultrasonic Pipe Inspection of Nuclear Power Plant

    International Nuclear Information System (INIS)

    Lee, Hee Jong; Cho, Chan Hee; Cho, Hyun Joon

    2009-01-01

    Currently almost all in-service-inspection techniques, applied in domestic nuclear power plants, are partial to field inspection technique. These kinds of techniques are related to managing nuclear power plants by the operation of foreign-produced inspection devices. There have been so many needs for development of native in-service-inspection device because there is no native diagnosis device for nuclear power plant inspection yet in Korea. In this research, we developed several core techniques to make an automated ultrasonic pipe inspection system for nuclear power plants. A high performance multi-channel ultrasonic pulser/receiver module, an A/D converter module and a digital main CPU module were developed and the performance of the developed modules was verified. The S/N ratio, noise level and signal acquisition performance of the developed modules showed proper level as we designed in the beginning.

  11. Experience with the TUeV pipe monitoring system at the Grohnde nuclear power station

    International Nuclear Information System (INIS)

    Dittmar, H.; Hofstoetter, P.

    1995-01-01

    A special pipe monitoring system has been developed by TUeV Rheinland during the construction, commissioning and operation of the Grohnde nuclear power station. On the basis of measurements during construction and commissioning a basic monitoring system has been developed, using not only a system of sophisticated sensors that had been permanently installed from the beginning but also a large number of quite simple additional sensors. Measurements were taken before, during and after inspections and led to the discovery of unexpected and high stresses during service as well as to long-term changes over a period of years.Special measurements were taken with high temperature strain gauges and thermocouples to identify problems such as temperature layering. A special on-line measuring device was developed and used for the continuous monitoring of temperatures during operation.All these measurements help to identify out areas with high stresses or service conditions giving rise to high loads, in order on the one hand to prevent damage and on the other hand to prove that the pipes are functioning within their design parameters without problems. ((orig.))

  12. Austenitic stainless steel-to-ferritic steel transition joint welding for elevated temperature service

    International Nuclear Information System (INIS)

    King, J.F.; Goodwin, G.M.; Slaughter, G.M.

    1978-01-01

    Transition weld joints between ferritic steels and austenitic stainless steels are required for fossil-fired power plants and proposed nuclear plants. The experience with these dissimilar-metal transition joints has been generally satisfactory, but an increasing number of failures of these joints is occurring prematurely in service. These concerns with transition joint service history prompted a program to develop more reliable joints for application in proposed nuclear power plants

  13. Seismic fragility test of a 6-inch diameter pipe system

    International Nuclear Information System (INIS)

    Chen, W.P.; Onesto, A.T.; DeVita, V.

    1987-02-01

    This report contains the test results and assessments of seismic fragility tests performed on a 6-inch diameter piping system. The test was funded by the US Nuclear Regulatory Commission (NRC) and conducted by ETEC. The objective of the test was to investigate the ability of a representative nuclear piping system to withstand high level dynamic seismic and other loadings. Levels of loadings achieved during seismic testing were 20 to 30 times larger than normal elastic design evaluations to ASME Level D limits would permit. Based on failure data obtained during seismic and other dynamic testing, it was concluded that nuclear piping systems are inherently able to withstand much larger dynamic seismic loadings than permitted by current design practice criteria or predicted by the probabilistic risk assessment (PRA) methods and several proposed nonlinear methods of failure analysis

  14. Development of a screening procedure for vibrational fatigue in small bore piping

    International Nuclear Information System (INIS)

    Smith, J.K.; Riccardella, P.C.; Gosselin, S.R.

    1995-01-01

    Approximately 80% of the documented fatigue failures in nuclear power plants are caused by high cycle vibrational fatigue. These failures typically occur in socket welded pipe fittings in small bore piping (2 in. nominal diameter and smaller). These failures have been unexpected, and have caused costly, unscheduled outages in some cases. In order to reduce the number of vibrational fatigue failures in operating nuclear power plants, a vibrational fatigue screening procedure has been developed under Electric Power Research Institute (EPRI) sponsorship. The purpose of this paper is to describe this procedure, and to discuss topics related to vibrational fatigue failures. These topics include sources of vibration in nuclear power plants, the effect of socket welds on vibrational fatigue failures, vibrational fatigue screening criteria for small bore piping systems, and good design practices for reducing the number of vibrational fatigue failures in small bore piping

  15. Radioactive recontamination on mechanically polished piping at Shimane-1 Nuclear Power Plant

    International Nuclear Information System (INIS)

    Umeda, K.; Komoto, I.; Imamura, K.; Kataoka, I.; Uchida, S.

    1998-01-01

    In a series of preventive maintenance tasks for an aging plant, recirculation pipes of Shimane-1 NPP have been replaced by newly fabricated type 316 NG stainless steel pipes. Suppression of shutdown dose rate caused by 60 Co recontamination on the newly replaced piping was one of the major concerns in the recirculation pipe replacement. In order to suppress the shutdown dose rate, control of the 60 Co deposition rate coefficient as well as 60 Co radioactivity in the reactor water are essential. The deposition rate coefficient depends on surface roughness. The coefficient is suppressed by reduction of the effective surface area of pipes through mechanical polishing. Then the inner surface of the pipes was polished mechanically to reduce roughness prior to application in the plant. After measuring and evaluating radioactive recontamination, it was estimated that deposited amounts of radioactive corrosion products on the pipe inner surface would reach the saturated value in a few years, and would not exceed the level before replacement unless water chemistry is degraded. (author)

  16. Evaluation of flaws in carbon steel piping. Final report

    Energy Technology Data Exchange (ETDEWEB)

    Zahoor, A.; Gamble, R.M.; Mehta, H.S.; Yukawa, S.; Ranganath, S.

    1986-10-01

    The objective of this program was to develop flaw evaluation procedures and allowable flaw sizes for ferritic piping used in light water reactor (LWR) power generation facilities. The program results provide relevant ASME Code groups with the information necessary to define flaw evaluation procedures, allowable flaw sizes, and their associated bases for Section XI of the code. Because there are several possible flaw-related failure modes for ferritic piping over the LWR operating temperature range, three analysis methods were employed to develop the evaluation procedures. These include limit load analysis for plastic collapse, elastic plastic fracture mechanics (EPFM) analysis for ductile tearing, and linear elastic fracture mechanics (LEFM) analysis for non ductile crack extension. To ensure the appropriate analysis method is used in an evaluation, a step by step procedure also is provided to identify the relevant acceptance standard or procedure on a case by case basis. The tensile strength and toughness properties required to complete the flaw evaluation for any of the three analysis methods are included in the evaluation procedure. The flaw evaluation standards are provided in tabular form for the plastic collapse and ductile tearing modes, where the allowable part through flaw depth is defined as a function of load and flaw length. For non ductile crack extension, linear elastic fracture mechanics analysis methods, similar to those in Appendix A of Section XI, are defined. Evaluation flaw sizes and procedures are developed for both longitudinal and circumferential flaw orientations and normal/upset and emergency/faulted operating conditions. The tables are based on margins on load of 2.77 and 1.39 for circumferential flaws and 3.0 and 1.5 for longitudinal flaws for normal/upset and emergency/faulted conditions, respectively.

  17. Evaluation of flaws in carbon steel piping. Final report

    International Nuclear Information System (INIS)

    Zahoor, A.; Gamble, R.M.; Mehta, H.S.; Yukawa, S.; Ranganath, S.

    1986-10-01

    The objective of this program was to develop flaw evaluation procedures and allowable flaw sizes for ferritic piping used in light water reactor (LWR) power generation facilities. The program results provide relevant ASME Code groups with the information necessary to define flaw evaluation procedures, allowable flaw sizes, and their associated bases for Section XI of the code. Because there are several possible flaw-related failure modes for ferritic piping over the LWR operating temperature range, three analysis methods were employed to develop the evaluation procedures. These include limit load analysis for plastic collapse, elastic plastic fracture mechanics (EPFM) analysis for ductile tearing, and linear elastic fracture mechanics (LEFM) analysis for non ductile crack extension. To ensure the appropriate analysis method is used in an evaluation, a step by step procedure also is provided to identify the relevant acceptance standard or procedure on a case by case basis. The tensile strength and toughness properties required to complete the flaw evaluation for any of the three analysis methods are included in the evaluation procedure. The flaw evaluation standards are provided in tabular form for the plastic collapse and ductile tearing modes, where the allowable part through flaw depth is defined as a function of load and flaw length. For non ductile crack extension, linear elastic fracture mechanics analysis methods, similar to those in Appendix A of Section XI, are defined. Evaluation flaw sizes and procedures are developed for both longitudinal and circumferential flaw orientations and normal/upset and emergency/faulted operating conditions. The tables are based on margins on load of 2.77 and 1.39 for circumferential flaws and 3.0 and 1.5 for longitudinal flaws for normal/upset and emergency/faulted conditions, respectively

  18. Plastic collapse moment for pipe repaired with weld overlay

    International Nuclear Information System (INIS)

    Li, Yinsheng; Hasegawa, Kunio; Shibuya, Akira; Deardorff, Arthur

    2009-01-01

    The Weld Overlay has been used in several countries as an effective method to repair the stress corrosion cracks in nuclear power plant piping. However, the method to evaluate the plastic collapse stress for the pipe repaired with Weld Overlay has not been proposed and the limit load criterion for single uniform material has been used to design its structure by now. In this paper, the equations to evaluate the plastic collapse moment for the pipe repaired with Weld Overlay have been derived considering two layer materials. Moreover, several numerical examples are given to show the validity of Weld Overlay. The equations given in this paper are simple to use like the limit load criterion showed in present standards such as JSME Rules on Fitness-for-Service for Nuclear Power Plants or ASME Boiler and Pressure Vessel Code Section XI, and they can not only be used to evaluate the fracture of the pipe, but also be applied to design the weld structure. (author)

  19. Environmental Assisted Fatigue Evaluation of Direct Vessel Injection Piping Considering Thermal Stratification

    International Nuclear Information System (INIS)

    Kim, Taesoon; Lee, Dohwan

    2016-01-01

    As the environmentally assisted fatigue (EAF) due to the primary water conditions is to be a critical issue, the fatigue evaluation for the components and pipes exposed to light water reactor coolant conditions has become increasingly important. Therefore, many studies to evaluate the fatigue life of the components and pipes in LWR coolant environments on fatigue life of materials have been conducted. Among many components and pipes of nuclear power plants, the direct vessel injection piping is known to one of the most vulnerable pipe systems because of thermal stratification occurred in that systems. Thermal stratification occurs because the density of water changes significantly with temperature. In this study, fatigue analysis for DVI piping using finite element analysis has been conducted and those results showed that the results met design conditions related with the environmental fatigue evaluation of safety class 1 pipes in nuclear power plants. Structural and fatigue integrity for the DVI piping system that thermal stratification occurred during the plant operation has conducted. First of all, thermal distribution of the piping system is calculated by computational fluid dynamic analysis to analyze the structural integrity of that piping system. And the fatigue life evaluation considering environmental effects was carried out. Our results showed that the DVI piping system had enough structural integrity and fatigue life during the design lifetime of 60 years

  20. Monitoring corrosion and biofilm formation in nuclear plants using electrochemical methods

    International Nuclear Information System (INIS)

    Licina, G.J.; Nekoksa, G.; Ward, G.L.; Howard, R.L.; Cubicciotti, D.

    1993-01-01

    During the 1980's, degradation of piping, heat exchangers, and other components in raw water cooled systems by a variety of corrosion mechanisms became an important in the reliability and cost effectiveness of U.S. nuclear plants. General and localized corrosion, including pitting and crevice corrosion, have all been shown to be operative in nuclear plant cooling systems. Microbiologically influenced corrosion (MIC) also afflicts nuclear cooling water and service water systems. The prediction of locations to be inspected, selection of mitigation measures, and control of water treatments and maintenance planning rely upon the accuracy and sensitivity of monitoring techniques. Electrochemical methods can provide rapid measurements of corrosion and biological activity on line. The results from a corrosion monitoring study in a service water system at a fresh water cooled nuclear plant are presented. This study utilized determinations of open circuit potential and reversed potentiodynamic scans on carbon steels, Admiralty, and stainless steels (Types 304 and 316 as well as high chromium, high molybdenum ferritic and austenitic grades) to evaluate the rate and form of corrosion to be anticipated in typical service. An electrochemical method that permits the monitoring of biofilm activity on-line has been developed. Results from laboratory and in-plant exposure in a nuclear power plant system are presented

  1. Concepts for benchmark problem development for fracture mechanics application in safety evaluation of nuclear piping in subcreep service

    International Nuclear Information System (INIS)

    Reich, M.; Esztergar, E.P.; Erdogan, F.; Gray, T.G.F.; Spence, J.

    1979-01-01

    This report provides basic concepts and a review of the problem areas associated with the development of analytical and experimental programs for a systematic evaluation and comparison of the currently available fracture mechanics theories. The basis for such an evaluation is conceived as a series of benchmark problems which are accurately specified examples of geometry, loading, and environmental conditions, characteristic of large diameter thin wall piping systems in nuclear service. Starting from the simplest test coupons for cracked plate specimens, the program is to be designed in such a way that the range of validity and relative merit of the competing assessment methods can be evaluated and the results applied to increasingly more complex test configurations and ultimately to real piping systems. (Auth.)

  2. A Lift-Off-Tolerant Magnetic Flux Leakage Testing Method for Drill Pipes at Wellhead

    OpenAIRE

    Wu, Jianbo; Fang, Hui; Li, Long; Wang, Jie; Huang, Xiaoming; Kang, Yihua; Sun, Yanhua; Tang, Chaoqing

    2017-01-01

    To meet the great needs for MFL (magnetic flux leakage) inspection of drill pipes at wellheads, a lift-off-tolerant MFL testing method is proposed and investigated in this paper. Firstly, a Helmholtz coil magnetization method and the whole MFL testing scheme are proposed. Then, based on the magnetic field focusing effect of ferrite cores, a lift-off-tolerant MFL sensor is developed and tested. It shows high sensitivity at a lift-off distance of 5.0 mm. Further, the follow-up high repeatabilit...

  3. Material property requirements for application leak-before-break technology on nuclear power plant high-energy piping

    International Nuclear Information System (INIS)

    Li Chengliang; Deng Xiaoyun; Yin Zhiying; Liu Meng

    2012-01-01

    The application of leak-before-break (LBB) technology on nuclear power plant high-energy piping systems can improve their safety and economy, while propose some new requirements on testing material properties. The U.S. Nuclear Regulatory Commission's LBB related standard review plan and implementation specifications were analyzed, and test items, object, temperature, quantity and thermal aging effect of five general requirements were summarized. In addition, four key testing technical requirements, such as specimen size, side grooves, strain range and the orientation of specimens were also discussed to ensure the test data usefulness, representativeness and integrity. This study can provide some guidance for the aforementioned test program on domestic materials. (authors)

  4. Assessment of the integrity of ferritic-austenitic dissimilar weld joints of different grades of Cr-Mo ferritic steels

    Energy Technology Data Exchange (ETDEWEB)

    Laha, K.; Chandravathi, K.S.; Parameswaran, P.; Goyal, Sunil; Mathew, M.D. [Indira Gandhi Centre for Atomic Research, Kalpakkam (India). Metallurgy and Materials Group

    2010-07-01

    Integrity of the 2.25 Cr-1Mo / Alloy 800, 9Cr-1Mo / Alloy 800 and 9Cr-1Mo-VNb / Alloy 800 ferritic-austenitic dissimilar joints, fusion welded employing Inconel 182 electrode, has been assessed under creep conditions at 823 K. The dissimilar weld joints displayed lower creep rupture strength than their respective ferritic steel base metals. The strength reduction was more for 2.25Cr-1Mo steel joint and least for 9Cr-1Mo steel joint. The failure location in the joints was found to shift from the ferritic steel base metal to the intercritical region of heat-affected zone (HAZ) in ferritic steel (type IV cracking) with decrease in stress. At still lower stresses the failure occurred at the ferritic / austenitic weld interface. Localized creep deformation and cavitation in the soft intercritical HAZ induced type IV failure whereas creep cavitation at the weld interface particles induced ferritic / austenitic interface cracking due to high creep strength mismatch across it. Micromechanisms of type IV failure and interface cracking in the ferritic / austenitic joints and different susceptibility to failure for different grades of ferritic steels are discussed based on microstructural investigation, mechanical testing and finite element analysis. (Note from indexer: paper contains many typographical errors.)

  5. Contribution to the structural study of austeno-ferritic steels. Morphological and analytical definition of the ferritic phase

    International Nuclear Information System (INIS)

    Bathily, Alassane.

    1977-07-01

    Conditions of fast and selective austenite dissolution were defined by means of current-voltage curves using AISI 316-type materials (welding beads). The ferritic phase was isolated and identified with X-rays. The percentages of ferrite were compared gravimetrically with those obtained by traditional methods. The ferrite isolated was chemically analysed by atomic absorption, the only doubtful value being carbon. It is shown by this method that a morphological study of the solidification of the ferritic lattice is possible, even for percentages around 1% [fr

  6. Utilizing clad piping to improve process plant piping integrity, reliability, and operations

    International Nuclear Information System (INIS)

    Chakravarti, B.

    1996-01-01

    During the past four years carbon steel piping clad with type 304L (UNS S30403) stainless steel has been used to solve the flow accelerated corrosion (FAC) problem in nuclear power plants with exceptional success. The product is designed to allow ''like for like'' replacement of damaged carbon steel components where the carbon steel remains the pressure boundary and type 304L (UNS S30403) stainless steel the corrosion allowance. More than 3000 feet of piping and 500 fittings in sizes from 6 to 36-in. NPS have been installed in the extraction steam and other lines of these power plants to improve reliability, eliminate inspection program, reduce O and M costs and provide operational benefits. This concept of utilizing clad piping in solving various corrosion problems in industrial and process plants by conservatively selecting a high alloy material as cladding can provide similar, significant benefits in controlling corrosion problems, minimizing maintenance cost, improving operation and reliability to control performance and risks in a highly cost effective manner. This paper will present various material combinations and applications that appear ideally suited for use of the clad piping components in process plants

  7. Pressurized water-reactor feedwater piping response to water hammer

    International Nuclear Information System (INIS)

    Arthur, D.

    1978-03-01

    The nuclear power industry is interested in steam-generator water hammer because it has damaged the piping and components at pressurized water reactors (PWRs). Water hammer arises when rapid steam condensation in the steam-generator feedwater inlet of a PWR causes depressurization, water-slug acceleration, and slug impact at the nearest pipe elbow. The resulting pressure pulse causes the pipe system to shake, sometimes violently. The objective of this study is to evaluate the potential structural effects of steam-generator water hammer on feedwater piping. This was accomplished by finite-element computation of the response of two sections of a typical feedwater pipe system to four representative water-hammer pulses. All four pulses produced high shear and bending stresses in both sections of pipe. Maximum calculated pipe stresses varied because the sections had different characteristics and were sensitive to boundary-condition modeling

  8. Pipe whip analysis using the TEDEL code

    International Nuclear Information System (INIS)

    Millard, D.; Hoffmann, A.

    1985-02-01

    In view of their abundance, piping systems are one of the main components in power industries and in particular in nuclear power plants. They must be designed for normal as well as faulted conditions, for safety requirements. The prediction of the dynamic behaviour of the free pipe requires accounting for several nonlinearities. For this purpose, a beam type finite element program (TEDEL) has been used. The aim of this paper is to enlight the main features of this program, when applied to pipe whip analysis. An example of application to a real case will also be presented

  9. Resolving piping analysis issues to minimize impact on installation activities during refueling outage at nuclear power plants

    International Nuclear Information System (INIS)

    Bhavnani, D.

    1996-01-01

    While it is required to maintain piping code compliance for all phases of installation activities during outages at a nuclear plant, it is equally essential to reduce challenges to the installation personnel on how plant modification work should be performed. Plant betterment activities that incorporate proposed design changes are continually implemented during the outages. Supporting analysis are performed to back these activities for operable systems. The goal is to reduce engineering and craft man-hours and minimize outage time. This paper outlines how plant modification process can be streamlined to facilitate construction teams to do their tasks that involve safety related piping. In this manner, installation can proceed by minimizing on the spot analytical effort and reduce downtime to support the proposed modifications. Examples are provided that permit performance of installation work in any sequence. Piping and hangers including the branch lines are prequalified and determined operable. The system is up front analyzed for all possible scenarios. The modification instructions in the work packages is flexible enough to permit any possible installation sequence. The benefit to this approach is large enough in the sense that valuable outage time is not extended and on site analytical work is not required

  10. Pipe line systems in nuclear power plant

    International Nuclear Information System (INIS)

    Sasada, Yasuhiro; Tanno, Kazuo; Shibato, Eizo.

    1979-01-01

    Purpose: To prevent stress corrosion cracks, in particular, for branched pipeways by conducting water quality control in the branched pipeways as well as in the main pipeways, and reducing the thermal stress in the branched pipeways. Constitution: A water quality monitoring device is provided to a drain pipe and a failed element detection pipe to monitor the quality of stagnated water continuously or periodically. If the impurity concentration or oxygen concentration exceeds a specified value in the stagnated water, a drain valve or a check valve is opened by a signal from the water quality monitoring device to replace the stagnated water with recycling water in the main pipeway. The temperature for the branched loop pipeway and the main pipeway are collectively kept to a same temperature to thereby reduce the thermal stress in the branched pipeway. (Kawakami, Y.)

  11. Influence of plastic deformation on seismic response of piping

    International Nuclear Information System (INIS)

    Yao Yanping; Chen Yong; Lu Mingwan

    2000-01-01

    On the basis of a brief summary of linear elastic seismic analysis methods, the importance for consideration of plastic deformation during the dynamic response analysis of piping system is indicated. The present methods of considering plasticity and the disadvantages of these methods are discussed. And the authors point out that in order to reduce the conservatism of present codes and to put forward appropriate and realistic piping seismic design methods, the key is to understand the plastic dynamic failure mode for piping under seismic excitation and to calculate the inelastic energy dissipation. The analysis and evaluation are applicable to nuclear piping systems

  12. Visual observation of a heat pipe working characteristics

    International Nuclear Information System (INIS)

    Tsuyuzaki, Noriyoshi; Saito, Takashi; Ishigami, Shinya; Kawada, Michitaka; Konno, Masanobu; Kaminaga, Fumito; Okamoto, Yoshizo.

    1988-10-01

    When the heat pipe is used in a nuclear engineering field, it is indispensable to understand transient characteristics of an accident condition as well as in a steady state at a normal operation. However there have been few informations about the transient characteristics of a heat pipe in case of rapid temperature or heat load change in an evaporator section. The purpose of this study is to examine transient and steady state characteristics of a gravity assisted heat pipe and variable conductance heat pipe(VCHP) which will be used in a neutron irradiation capsule. This report presents results of visual observation of boiling and condensation patterns on steady state or transient condition in a visible heat pipe made of a glass. The response time of the heat pipe is on the order of a few seconds when the temperature of the evaporator part is kept above the operating temperature. (author)

  13. Piping failures in United States nuclear power plants 1961-1995

    International Nuclear Information System (INIS)

    Bush, S.H.; Do, M.J.; Slavich, A.L.; Chockie, A.D.

    1996-01-01

    Over 1500 reported piping failures were identified and summarized based on an extensive review of tens of thousands of event reports that have been submitted to the US regulatory agencies over the last 35 years. The data base contains only piping failures; failures in vessels, pumps, valves and steam generators or any cracks that were not through-wall are not included. It was observed that there has been a marked decrease in the number of failures after 1983 for almost all sizes of pipes. This is likely due to the changes in the reporting requirements at that time and the corrective actions taken by utilities to minimize fatigue failures of small lines and IGSCC in BWRs. One failure mechanism that continues to occur is erosion-corrosion, which accounts for most of the ruptures reported and probably is responsible for the absence of downward trends in ruptures. Fatigue-vibration is also a significant contributor to piping failures. However, most of such events occur in lines approx. one inch or less in diameter. Together, erosion-corrosion and fatigue-vibration account for over 43 per cent of the failures. The overwhelming majority of failures have been leaks, over half the failures occurred in pipes with a diameter of one inch or less. Included in the report is a listing of the number of welds in various systems in LWRs

  14. Application of numerical analysis technique to make up for pipe wall thinning prediction program

    International Nuclear Information System (INIS)

    Hwang, Kyeong Mo; Jin, Tae Eun; Park, Won; Oh, Dong Hoon

    2009-01-01

    Flow Accelerated Corrosion (FAC) leads to wall thinning of steel piping exposed to flowing water or wet steam. Experience has shown that FAC damage to piping at fossil and nuclear plants can lead to costly outages and repairs and can affect plant reliability and safety. CHEWORKS have been utilized in domestic nuclear plants as a predictive tool to assist FAC engineers in planning inspections and evaluating the inspection data to prevent piping failures caused by FAC. However, CHECWORKS may be occasionally left out local susceptible portions owing to predicting FAC damage by pipeline group after constructing a database for all secondary side piping in nuclear plants. This paper describes the methodologies that can complement CHECWORKS and the verifications of the CHECWORKS prediction results in terms of numerical analysis. FAC susceptible locations based on CHECWORKS for the two pipeline groups of a nuclear plant was compared with those of numerical analysis based on FLUENT.

  15. Shock resistance of composite material pipes

    International Nuclear Information System (INIS)

    Pays, M.F.

    1995-01-01

    Composite materials have found a wide range of applications for EDF nuclear plants. Applications include fire pipework, demineralized water, service water, and emergency-supplied service water piping. Some of those pipework is classified nuclear safety, their integrity (resistance to water aging and earthquakes or accidental excess pressure (water hammer)) must be safeguarded. As composite materials generally suffer damage for low energy impacts (under 10 J), the pipes planned for the Civaux power plant have been studied for their resistance to a low speed shock (0 to 50 m/s) and of a 0 to 110 J energy level. For three representative diameters (20, 150, 600 mm), the minimum impact energy that leads to a leak has been determined to be respectively 18, 20 and 48 J. Then the leak rate versus impact energy was plotted; until roughly 90 J, the leak rate remains stable at less than 25 cm 3 /h and raises to higher values (300 cm 3 /h) afterwards. The level of leakage in the range of impact energy tested always stays within the limits set by the Safety Authorities for metallic pipes. These results have been linked to destructive examinations, to clarify the damage mechanisms. Other tests are still ongoing to follow the evolution of the damage and of the leak rate while the pipe is maintained under service pressure during one year

  16. Ageing of reinforced concrete pipes subjected to seawater in nuclear plants: optimization of maintenance operations

    International Nuclear Information System (INIS)

    Auge, L.; Capra, B.; Lasne, M.; Benefice, P.; Comby, R.

    2007-01-01

    Seaside nuclear power plants have to face the ageing of nuclear reactor cooling piping systems. In order to minimize the duration of the production unit shutdown, maintenance operations have to be planned well in advance. In a context where owners of infrastructures tend to extend the life span of their goods while having to keep the safety level maximum, it is more and more important to develop high level expertise and know-how in management of infrastructures life cycle. A patented monitoring technique based on optic fiber sensors, has been designed. This preventive maintenance enables the owner to determine criteria for network replacement based on degradation impacts. A methodology to evaluate and optimize operation budgets, depending on predictions of future functional deterioration and available maintenance solutions, has been developed and applied. (authors)

  17. Examination of applicability of thermoelectric power measurement for thermal aging evaluation of cast duplex stainless steel to real components in nuclear power plants

    International Nuclear Information System (INIS)

    Joubouji, Katsuo

    2006-01-01

    It is known the mechanical properties of cast duplex stainless steel, which is used for main coolant pipes of pressurized water reactor type nuclear power plants, change due to thermal aging. Non-destructive evaluation method for thermal aging using thermoelectric power measurement has been studied in INSS. And it has been found that there was some relation between mechanical properties and thermoelectric power in the case of accelerated aging sample and change in thermoelectric power was caused by change in microstructure due to thermal aging. In this study, n-site measurement of thermoelectric power of a main coolant pipe with the measurement device which has been used in a laboratory was carried out. As a result, thermoelectric power of the main coolant pipe was almost measured within the range from -2.2 to -2μ V/degC, and that was corresponding to the relation of accelerated aging samples between thermoelectric power and the product of ferrite content and aging parameter considering the standard error. Moreover, applying the measured thermoelectric power to the relation of accelerated aging samples between thermoelectric power and impact value, change in the impact value of the pipe seemed to be corresponding to about 40% of the maximum change assumed by thermal aging. (author)

  18. Evaluation of underground pipe-structure interface for surface impact load

    Energy Technology Data Exchange (ETDEWEB)

    Wang, Shen, E-mail: swang@terrapower.com

    2017-06-15

    Highlights: • A simple method is proposed for the evaluation of underground pipelines for surface impact load considering the effect of a nearby pipe-structure interface. • The proposed simple method can be used to evaluate the magnitude of damage within a short period of time after accidental drop occurs. • The proposed method is applied in a practical example and compared by using finite element analysis. - Abstract: Nuclear safety related buried pipelines need to be assessed for the effects of postulated surface impact loads. In published solutions, the buried pipe is often considered within an elastic half space without interference with other underground structures. In the case that a surface impact occurs in short distance from an underground pipe-structure interface, this boundary condition will further complicate the buried pipe evaluation. Neglecting such boundary effect in the assessment may lead to underestimating potential damage of buried pipeline, and jeopardizing safety of the nuclear power plant. Comprehensive analysis of such structure-pipe-soil system is often subjected to availability of state-of-art finite element tools, as well as costly and time consuming. Simple, but practical conservative techniques have not been established. In this study, a mechanics based solution is proposed in order to assess the magnitude of damage to a buried pipeline beneath a heavy surface impact considering the effect of a nearby pipe-structure interface. The proposed approach provides an easy to use tool in the early stage of evaluation before the decision of applying more costly technique can be made by owner of the nuclear facility.

  19. Evaluation of underground pipe-structure interface for surface impact load

    International Nuclear Information System (INIS)

    Wang, Shen

    2017-01-01

    Highlights: • A simple method is proposed for the evaluation of underground pipelines for surface impact load considering the effect of a nearby pipe-structure interface. • The proposed simple method can be used to evaluate the magnitude of damage within a short period of time after accidental drop occurs. • The proposed method is applied in a practical example and compared by using finite element analysis. - Abstract: Nuclear safety related buried pipelines need to be assessed for the effects of postulated surface impact loads. In published solutions, the buried pipe is often considered within an elastic half space without interference with other underground structures. In the case that a surface impact occurs in short distance from an underground pipe-structure interface, this boundary condition will further complicate the buried pipe evaluation. Neglecting such boundary effect in the assessment may lead to underestimating potential damage of buried pipeline, and jeopardizing safety of the nuclear power plant. Comprehensive analysis of such structure-pipe-soil system is often subjected to availability of state-of-art finite element tools, as well as costly and time consuming. Simple, but practical conservative techniques have not been established. In this study, a mechanics based solution is proposed in order to assess the magnitude of damage to a buried pipeline beneath a heavy surface impact considering the effect of a nearby pipe-structure interface. The proposed approach provides an easy to use tool in the early stage of evaluation before the decision of applying more costly technique can be made by owner of the nuclear facility.

  20. Elastic-plastic response of a piping system due to simulated double-ended guillotine break events

    International Nuclear Information System (INIS)

    Kussmaul, K.; Diem, H.; Hunger, H.; Katzenmeier, G.

    1987-01-01

    From the blowdown experiments performed on the HDR feedwater line with feedwater check valve the conclusion can be drawn that high transient loads of up to plastic strains of 3%, acting on an initially integer piping system, can be sustained without loss of integrity for a low number of load cycles due to the plasticizing capacity of the pipework materials nowadays used in the reactor technology. In the experiments carried out with ferritic piping of ND 400 pressure peaks up to about 31,5 mPA were achieved which resulted in excessive strains of up to 3%. By nonlinear finite element computations (ABAQUS) it was possible to describe the elastic-plastic behaviour of the piping in a good approximation. On account of the safety margins proved in the experiments, potential inaccuracies in theoretical structure analyses are recommended so as to be on the safe side. On the other hand, it appears that designing pipework with reference to elastic stress categories does not adequately take into account the actual reserves of the pipework material

  1. High-Q perpendicular-biased ferrite-tuned cavity

    International Nuclear Information System (INIS)

    Carlini, R.D.; Thiessen, H.A.; Potter, J.M.

    1983-01-01

    Rapid-cycling proton synchrotrons, such as the proposed LAMPF II accelerator, require approximately 10 MV per turn rf with 17% tuning range near 50 MHz. The traditional approach to ferrite-tuned cavities uses a ferrite which is longitudinally biased (rf magnetic field parallel to bias field). This method leads to unacceptably high losses in the ferrite. At Los Alamos, we are developing a cavity with transverse bias (rf magnetic field perpendicular to the bias field) that makes use of the tensor permeability of the ferrite. Modest power tests of a small (10-cm-dia) quarter-wave singly re-entrant cavity tuned by nickel-zinc ferrites and aluminum-doped garnets indicate that the losses in the ferrite can be made negligible compared with the losses due to the surface resistivity of the copper cavity at power levels from 2 to 200 watts

  2. A study of NiZnCu-ferrite/SiO2 nanocomposites with different ferrite contents synthesized by sol-gel method

    International Nuclear Information System (INIS)

    Yan Shifeng; Geng Jianxin; Chen Jianfeng; Yin Li; Zhou Yunchun; Liu Leijing; Zhou Enle

    2005-01-01

    Ni 0.65 Zn 0.35 Cu 0.1 Fe 1.9 O 4 /SiO 2 nanocomposites with different weight percentages of NiZnCu-ferrite dispersed in silica matrix were successfully fabricated by the sol-gel method using tetraethylorthosilicate (TEOS) as a precursor of silica, and metal nitrates as precursors of NiZnCu ferrite. The thermal decomposition process of the dried gel was studied by thermogravimetric analysis (TGA) and differential thermal analysis (DTA). The obtained Ni 0.65 Zn 0.35 Cu 0.1 Fe 1.9 O 4 /SiO 2 nanocomposites were characterized by X-ray diffraction (XRD), transmission electron microscope (TEM), scanning electron microscope (SEM), Mossbauer spectroscopy and vibrating sample magnetometry (VSM). The formation of stoichiometric NiZnCu-ferrite dispersed in silica matrix is confirmed when the weight percentage of ferrite is not more than 30%. Samples with higher ferrite content have small amount of α-Fe 2 O 3 . The transition from the paramagnetic to the ferromagnetic state is observed as the ferrite content increases from 20 to 90wt%. The magnetic properties of the nanocomposites are closely related to the ferrite content. The saturation magnetization increases with the ferrite content, while the coercivity reaches a maximum when the ferrite is 80wt% in the silica matrix

  3. View of industry on the impact of pipe break criteria

    International Nuclear Information System (INIS)

    Bernsen, S.A.

    1983-01-01

    Historically, large pipe breaks in the types of materials used and under operating conditions similar to those in light water reactor service have not occurred. Nevertheless, the non-mechanistic assumption of a double ended pipe break of the early sixties, selected for loss of coolant accident analysis purposes, has become a mechanistic criterion for the design and arrangement of high pressure piping systems and their associated supports and enclosures in today's nuclear plants. While it seems reasonable and appropriate to continue to design the Emergency Core Cooling Systems for a range of loss of coolant accidents up to and including those that approximate the area of the largest pipe connected to the reactor vessel and to use this break in determining the loading and temperature rise rate for containment structures and equipment qualification, it no longer seems reasonable to provide precisely engineered break protection for a limited number of potential pipe break locations. This observation is gaining increasing support, particularly as engineering judgment and historical perspectives are being supplemented by both deterministic and probabilistic studies that indicate the potential for large instantaneous breaks in nuclear grade piping systems is virtually incredible. Fracture mechanics analyses support leak-before-break assumptions with wide margins and probabilistic studies indicate potentials for double-ended pipe breaks in the range of less than one in a billion years

  4. The effect of cooling rate and austenite grain size on the austenite to ferrite transformation temperature and different ferrite morphologies in microalloyed steels

    International Nuclear Information System (INIS)

    Esmailian, M.

    2010-01-01

    The effect of different austenite grain size and different cooling rates on the austenite to ferrite transformation temperature and different ferrite morphologies in one Nb-microalloyed high strength low alloy steel has been investigated. Three different austenite grain sizes were selected and cooled at two different cooling rates for obtaining austenite to ferrite transformation temperature. Moreover, samples with specific austenite grain size have been quenched, partially, for investigation on the microstructural evolution. In order to assess the influence of austenite grain size on the ferrite transformation temperature, a temperature differences method is established and found to be a good way for detection of austenite to ferrite, pearlite and sometimes other ferrite morphologies transformation temperatures. The results obtained in this way show that increasing of austenite grain size and cooling rate has a significant influence on decreasing of the ferrite transformation temperature. Micrographs of different ferrite morphologies show that at high temperatures, where diffusion rates are higher, grain boundary ferrite nucleates. As the temperature is lowered and the driving force for ferrite formation increases, intragranular sites inside the austenite grains become operative as nucleation sites and suppress the grain boundary ferrite growth. The results indicate that increasing the austenite grain size increases the rate and volume fraction of intragranular ferrite in two different cooling rates. Moreover, by increasing of cooling rate, the austenite to ferrite transformation temperature decreases and volume fraction of intragranular ferrite increases.

  5. Feedback regarding leaks in pipe work

    International Nuclear Information System (INIS)

    Guerville, C.; Boudouin, E.

    2011-01-01

    Contaminated effluent from nuclear medicine departments is stored in decay tanks before being discharged via the sewage system. Generally speaking, these tanks are located outside hospital wards, within the hospital's maintenance rooms. Pipes leading from the evacuation points (e.g. toilets in isolation wards) to the tanks may nonetheless pass through various other parts of the hospital premises (wards, corridors, offices, etc.). Should a leak occur in any of these pipes, this may impact on the public, workers or the environment. (author)

  6. Pipe Decontamination Involving String-Foam Circulation

    International Nuclear Information System (INIS)

    Turchet, J.P.; Estienne, G.; Fournel, B.

    2002-01-01

    Foam applications number for nuclear decontamination purposes has recently increased. The major advantage of foam decontamination is the reduction of secondary liquid wastes volumes. Among foam applications, we focus on foam circulation in contaminated equipment. Dynamic properties of the system ensures an homogeneous and rapid effect of the foam bed-drifted chemical reagents present in the liquid phase. This paper describes a new approach of foam decontamination for pipes. It is based on an alternated air and foam injections. We called it 'string-foam circulation'. A further reduction of liquid wastes is achieved compared to continuous foam. Secondly, total pressure loss along the pipe is controlled by the total foam length in the pipe. It is thus possible to clean longer pipes keeping the pressure under atmospheric pressure value. This ensures the non dispersion of contamination. This study describes experimental results obtained with a neutral foam as well with an acid foam on a 130 m long loop. Finally, the decontamination of a 44 meters pipe is presented. (authors)

  7. Comparative study of computational model for pipe whip analysis

    International Nuclear Information System (INIS)

    Koh, Sugoong; Lee, Young-Shin

    1993-01-01

    Many types of pipe whip restraints are installed to protect the structural components from the anticipated pipe whip phenomena of high energy lines in nuclear power plants. It is necessary to investigate these phenomena accurately in order to evaluate the acceptability of the pipe whip restraint design. Various research programs have been conducted in many countries to develop analytical methods and to verify the validity of the methods. In this study, various calculational models in ANSYS code and in ADLPIPE code, the general purpose finite element computer programs, were used to simulate the postulated pipe whips to obtain impact loads and the calculated results were compared with the specific experimental results from the sample pipe whip test for the U-shaped pipe whip restraints. Some calculational models, having the spring element between the pipe whip restraint and the pipe line, give reasonably good transient responses of the restraint forces compared with the experimental results, and could be useful in evaluating the acceptability of the pipe whip restraint design. (author)

  8. Seismic proving test of ultimate piping strength (current status of preliminary tests)

    International Nuclear Information System (INIS)

    Suzuki, K.; Namita, Y.; Abe, H.; Ichihashi, I.; Suzuki, K.; Ishiwata, M.; Fujiwaka, T.; Yokota, H.

    2001-01-01

    In 1998 Fiscal Year, the 6 year program of piping tests was initiated with the following objectives: i) to clarify the elasto-plastic response and ultimate strength of nuclear piping, ii) to ascertain the seismic safety margin of the current seismic design code for piping, and iii) to assess new allowable stress rules. In order to resolve extensive technical issues before proceeding on to the seismic proving test of a large-scale piping system, a series of preliminary tests of materials, piping components and simplified piping systems is intended. In this paper, the current status of the material tests and the piping component tests is reported. (author)

  9. Pipe damping: experimental results from laboratory tests in the seismic frequency range

    International Nuclear Information System (INIS)

    Ware, A.G.; Arendts, J.G.

    1986-06-01

    The Idaho National Engineering Laboratory (INEL) has been conducting a research program to assist the United States Nuclear Regulatory Commission (USNRC) in determining best-estimate damping values for the seismic analysis of nuclear piping systems. As part of this program, a 5-in. piping system was tested by the INEL, and data from USNRC/EPRI piping vibration tests at the ANCO Engineers facility were evaluated. These systems were subjected to various types of excitation methods and magnitudes, the support configurations were varied, and the effects of pipe insulation and internal pressure were investigated on the INEL system. The INEL has used several different methods to reduce the data to determine the damping in both these piping systems under the various test conditions. It was concluded that at representative seismic excitation levels, pressure was not a contributing factor, but the supports, insulation, and magnitude of response all were major influences contributing to damping. These tests are part of the ongoing program to determine how various parameters and data reduction methods affect piping system damping. The evaluation of all relevant test results, including these two series, will potentially lead to revised damping guidelines for the seismic analysis of nuclear plants, making them safer, less costly, and easier to inspect and maintain. The test results as well as accompanying evaluations and recommendations are presented in this report. 27 refs., 72 figs., 13 tabs

  10. Heat pipe effects in nuclear waste isolation: a review

    International Nuclear Information System (INIS)

    Doughty, C.; Pruess, K.

    1985-12-01

    The existence of fractures favors heat pipe development in a geologic repository as does a partially saturated medium. A number of geologic media are being considered as potential repository sites. Tuff is partially saturated and fractured, basalt and granite are saturated and fractured, salt is unfractured and saturated. Thus the most likely conditions for heat pipe formation occur in tuff while the least likely occur in salt. The relative permeability and capillary pressure dependences on saturation are of critical importance for predicting thermohydraulic behavior around a repository. Mineral redistribution in heat pipe systems near high-level waste packages emplaced in partially saturated formations may significantly affect fluid flow and heat transfer processes, and the chemical environment of the packages. We believe that a combined laboratory, field, and theoretical effort will be needed to identify the relevant physical and chemical processes, and the specific parameters applicable to a particular site. 25 refs., 1 fig

  11. Hot Leg Piping Materials Issues

    International Nuclear Information System (INIS)

    V. Munne

    2006-01-01

    With Naval Reactors (NR) approval of the Naval Reactors Prime Contractor Team (NRPCT) recommendation to develop a gas cooled reactor directly coupled to a Brayton power conversion system as the space nuclear power plant (SNPP) for Project Prometheus (References a and b) the reactor outlet piping was recognized to require a design that utilizes internal insulation (Reference c). The initial pipe design suggested ceramic fiber blanket as the insulation material based on requirements associated with service temperature capability within the expected range, very low thermal conductivity, and low density. Nevertheless, it was not considered to be well suited for internal insulation use because its very high surface area and proclivity for holding adsorbed gases, especially water, would make outgassing a source of contaminant gases in the He-Xe working fluid. Additionally, ceramic fiber blanket insulating materials become very friable after relatively short service periods at working temperatures and small pieces of fiber could be dislodged and contaminate the system. Consequently, alternative insulation materials were sought that would have comparable thermal properties and density but superior structural integrity and greatly reduced outgassing. This letter provides technical information regarding insulation and materials issues for the Hot Leg Piping preconceptual design developed for the Project Prometheus space nuclear power plant (SNPP)

  12. IEA-R1 renewed primary coolant piping system stress analysis

    International Nuclear Information System (INIS)

    Fainer, Gerson; Faloppa, Altair A.; Oliveira, Carlos A. de; Mattar Neto, Miguel

    2015-01-01

    A partial replacement of the IEA-R1 piping system was conducted in 2014. The aim of this work is to perform the stress analysis of the renewed primary piping system of the IEA-R1, taking into account the as built conditions and the pipe modifications. The nuclear research reactor IEA-R1 is a pool type reactor designed by Babcox-Willcox, which is operated by IPEN since 1957. The primary coolant system is responsible for removing the residual heat of the Reactor core. As a part of the life management, a regular inspection detected some degradation in the primary piping system. In consequence, part of the piping system was replaced. The partial renewing of the primary piping system did not imply in major piping layout modifications. However, the stress condition of the piping systems had to be reanalyzed. The structural stress analysis of the primary piping systems is now presented and the final results are discussed. (author)

  13. Development of engineering program for integrity evaluation of pipes with local wall thinned defects

    International Nuclear Information System (INIS)

    Park, Chi Yong; Lee, Sung Ho; Kim, Tae Ryong; Park, Sang Kyu

    2008-01-01

    Integrity evaluation of pipes with local wall thinning by erosion and corrosion is increasingly important in maintenance of wall thinned carbon steel pipes in nuclear power plants. Though a few program for integrity assessment of wall thinned pipes have been developed in domestic nuclear field, however those are limited to straight pipes and methodology proposed in ASME Sec.XI Code Case N-597. Recently, the engineering program for integrity evaluation of pipes with all kinds of local wall defects such as straight, elbow, reducer and branch pipes was developed successfully. The program was designated as PiTEP (Pipe Thinning Evaluation Program), which name was registered as a trademark in the Korea Intellectual Property Office. A developed program is carried out by sequential step of four integrity evaluation methodologies, which are composed of construction code, code case N-597, its engineering method and two developed owner evaluation method. As PiTEP program will be performed through GUI (Graphic User Interface) with user's familiarity, it would be conveniently used by plant engineers with only measured thickness data, basic operation conditions and pipe data

  14. Surveys of embedded piping for Shoreham license termination

    International Nuclear Information System (INIS)

    Williams, D.E. Jr.

    2004-01-01

    In planning the decommissioning of the Shoreham Nuclear Power Station (SNPS) in Wading River, N.Y., it was determined that the cost of removing contaminated floor drain piping was prohibitive. The piping is typically embedded approximately four feet deep in reinforced concrete, often below structural I-beams. A decision was made to develop remote survey devices ('pipe crawlers') that would allow SNPS to decontaminate and survey embedded piping within NRC free release limits. Pipe crawlers currently in use at SNPS are able to traverse multiple 45 and 90 degree bends while maintaining all detectors in the required geometry (less than 1 cm detector to surface distance). The following aspects of this project will be presented: 1) System classification and cost-benefit analysis 2) Overview of system decontamination 3) Pipe crawler mechanical and electrical development 4) Detector backgrounds and MDA's 5) Additional devices and techniques 6) NRC position on crawler use. 7) SNPS results to date. (author)

  15. Evaluation of vibration and vibration fatigue life for small bore pipe in nuclear power plants

    International Nuclear Information System (INIS)

    Wang Zhaoxi; Xue Fei; Gong Mingxiang; Ti Wenxin; Lin Lei; Liu Peng

    2011-01-01

    The assessment method of the steady state vibration and vibration fatigue life of the small bore pipe in the supporting system of the nuclear power plants is proposed according to the ASME-OM3 and EDF evaluation methods. The GGR supporting pipe system vibration is evaluated with this method. The evaluation process includes the filtration of inborn sensitivity, visual inspection, vibration tests, allowable vibration effective velocity calculation and vibration stress calculation. With the allowable vibration effective velocity calculated and the vibration velocity calculated according to the acceleration data tested, the filtrations are performed. The vibration stress at the welding coat is calculated with the spectrum method and compared with the allowable value. The response of the stress is calculated with the transient dynamic method, with which the fatigue life is evaluated with the Miners linear accumulation model. The vibration stress calculated with the spectrum method exceeds the allowable value, while the fatigue life calculated from the transient dynamic method is larger than the designed life with a big safety margin. (authors)

  16. The 1994 Forum on Appropriate Criteria and Methods for Seismic Design of Nuclear Piping

    International Nuclear Information System (INIS)

    Slagis, G.C.

    1995-01-01

    A record of the 1994 Forum on Appropriate Criteria and Methods for Seismic Design of Nuclear Piping is provided. The focus of the forum was the design-by-rule method for seismic design of piping. Issues such as acceptance criteria, ductility considerations, demonstration of margin, training, verification and costs were discussed. The use of earthquake experience data, including the recent Northridge earthquake, to justify a design-by-rule method was explored. The majority of the participants felt there are not significant advantages to developing a design-by-rule approach for new plant design. One major disadvantage was considered by many to be training. Extensive training will be required to properly implement a design-by-rule approach. Verification of designs was considered by the majority to be equally important for design-by-rule as for design-by-analysis. If a design-by-rule method is going to be effective, the method will have to be based on ductility considerations (UBC approach). A significant issue will be justification of seismic margins with liberal rules. The UBC approach is being questioned by some because of the recent structural cracking problems in the Northridge earthquake

  17. Battelle integrity of nuclear piping program. Summary of results and implications for codes/standards

    International Nuclear Information System (INIS)

    Miura, Naoki

    2005-01-01

    The BINP(Battelle Integrity of Nuclear Piping) program was proposed by Battelle to elaborate pipe fracture evaluation methods and to improve LBB and in-service flaw evaluation criteria. The program has been conducted from October 1998 to September 2003. In Japan, CRIEPI participated in the program on behalf of electric utilities and fabricators to catch up the technical backgrounds for possible future revision of LBB and in-service flaw evaluation standards and to investigate the issues needed to be reflected to current domestic standards. A series of the results obtained from the program has been well utilized for the new LBB Regulatory Guide Program by USNRC and for proposal of revised in-service flaw evaluation criteria to the ASME Code Committee. The results were assessed whether they had implications for the existing or future domestic standards. As a result, the impact of many of these issues, which were concerned to be adversely affected to LBB approval or allowable flaw sizes in flaw evaluation criteria, was found to be relatively minor under actual plant conditions. At the same time, some issues that needed to be resolved to address advanced and rational standards in the future were specified. (author)

  18. Innovative technology summary report: Pipe Explorertrademark system

    International Nuclear Information System (INIS)

    1996-01-01

    The Pipe Explorertrademark system, developed by Science and Engineering Associates, Inc. (SEA), under contract with the US Department of Energy (DOE) Morgantown Energy Technology Center, has been used to transport various characterizing sensors into piping systems that have been radiologically contaminated. DOE's nuclear facility decommissioning program must characterize radiological contamination inside piping systems before the pipe can be recycled, remediated, or disposed. Historically, this has been attempted using hand-held survey instrumentation, surveying only the accessible exterior portions of pipe systems. Various measuring difficulties, and in some cases, the inability to measure threshold surface contamination values and worker exposure, and physical access constraints have limited the effectiveness of traditional survey approaches. The Pipe Explorertrademark system provides a viable alternative. The heart of the system is an air-tight membrane, which is initially spooled inside a canister. The end of the membrane protrudes out of the canister and attaches to the pipe being inspected. The other end of the tubular membrane is attached to the tether and characterization tools. When the canister is pressurized, the membrane inverts and deploys inside the pipe. The characterization detector and its cabling is attached to the tethered end of the membrane. As the membrane is deployed into the pipe, the detector and its cabling is towed into the pipe inside the protective membrane; measurements are taken from within the protective membrane. Once the survey measurements are completed, the process is reversed to retrieve the characterization tools

  19. The method for measuring residual stress in stainless steel pipes

    International Nuclear Information System (INIS)

    Shimov, Georgy; Rozenbaum, Mikhail; Serebryakov, Alexandr; Serebryakov, Andrey

    2016-01-01

    The main reason of appearance and growth of corrosion damages of the nuclear steam generator heat exchanger tubes is the process of stress-corrosion cracking of metal under the influence of residual tensile stress. Methods used in the production for estimating residual stresses (such as a method of ring samples) allow measuring only the average tangential stress of the pipe wall. The method of ring samples does not allow to assess the level of residual stress in the surface layer of the pipe. This paper describes an experimental method for measuring the residual stresses on the pipe surface by etching a thin surface layer of the metal. The construction and working principle of a trial installation are described. The residual stresses in the wall of the tubes 16 × 1.5 mm (steel AISI 321) for nuclear steam generators is calculated. Keywords: heat exchange pipes, stress corrosion cracking, residual stresses, stress distribution, stress measurement.

  20. Material science and manufacturing of heat-resistant reduced-activation ferritic-martensitic steels for fusion

    International Nuclear Information System (INIS)

    Ioltukhovskiy, A.G.; Blokhin, A.I.; Budylkin, N.I.; Chernov, V.M.; Leont'eva-Smirnova, M.V.; Mironova, E.G.; Medvedeva, E.A.; Solonin, M.I.; Porollo, S.I.; Zavyalsky, L.P.

    2000-01-01

    A number of issues regarding the development and use of 10-12% Cr reduced-activation ferritic-martensitic steels (RAFMS) for fusion are considered. These include: (1) problems of manufacturing and modifying their composition and metallurgical condition; (2) the influence on properties of their composition, purity, δ-ferrite concentration and cooling rates in the final stages of manufacturing; and (3) the effects of neutron irradiation at 320-650 deg. C up to 108 dpa on their mechanical properties. In addition, neutron activation and nuclear accumulation of elements in RAFMS with different initial concentrations of alloying and impurity elements for typical fusion reactor (DEMO) irradiation regimes have been calculated

  1. Fabrication and evaluation of chemically vapor deposited tungsten heat pipe.

    Science.gov (United States)

    Bacigalupi, R. J.

    1972-01-01

    A network of lithium-filled tungsten heat pipes is being considered as a method of heat extraction from high temperature nuclear reactors. The need for material purity and shape versatility in these applications dictates the use of chemically vapor deposited (CVD) tungsten. Adaptability of CVD tungsten to complex heat pipe designs is shown. Deposition and welding techniques are described. Operation of two lithium-filled CVD tungsten heat pipes above 1800 K is discussed.

  2. Local microstructures, Hardness and mechanical properties of a stainless steel pipe-welded joint

    International Nuclear Information System (INIS)

    Zhao Yongxiang; Gao Qing; Cai Lixun

    2000-01-01

    An experimental investigation is carefully performed into the local microstructures, hardness values and monotonic mechanical properties of the three zones (the base metal, heat affecting zone and weld metal) of 1Cr18Ni9Ti stainless steel pipe-welded joint. The local microstructures are observed by a metallurgical test and a surface replica technology, the local hardness values are measures by a random Vickers hardness test, and the local mechanical properties are characterized by the Ramberg-Osgood and modified Ramberg-Osgood stress-stain relations. The investigation reveals that there are significant differences of the three zones in the local microstructures, hardness values and monotonic mechanical properties, especially of the three zones in the local microstructure, hardness values and monotonic mechanical properties, especially of the weld metal. The weld metal exhibits the largest heterogeneity of local microstructures and monotonic mechanical properties, and the largest scatter of local hardness values. It is necessary to consider these difference and introduce the reliability method to model the scatter in the pipe analysis. In addition, it is verified that a columnar grain structure, which is made up of matrix-rich δ ferrite bands, can characterize the weld metal and the distance between the neighboring rich δ ferrite bands is an appropriate measurement of the columnar grain structure. This measurement is in accordance with the transition point between the microstructural short crack and physical small crack stages, which are generally used for characterizing the short fatigue crack behavior of materials. This indicates that the microstructure controls the fatigue damage character of the present material

  3. Manufacturing of Mn-Zn ferrite transformer cores

    International Nuclear Information System (INIS)

    Waqas, H.; Qureshi, A.H.; Hussain, N.; Ahmed, N.

    2012-01-01

    The present work is related to the development of soft ferrite transformer cores, which are extensively used in electronic devices such as switch mode power supplies, electromagnetic devices, computers, amplifiers etc. Mn-Zn Ferrite (soft ferrite) powders were prepared by conventional mixed oxide and auto combustion routes. These powders were calcined and then pressed in toroid shapes. Sintering was done at different temperatures to develop desired magnetic phase. Impedance resistance of sintered toroid cores was measured at different frequencies. Results revealed that Mn-Zn Ferrite cores synthesized by auto combustion route worked more efficiently in a high frequency range i.e. > 2MHz than the cores developed by conventional mixed oxide method. It was noticed that compact size, light weight and high impedance resistance are the prime advantages of auto combustion process which supported the performance of core in MHz frequency range. Furthermore, these compact size cores were successfully tested in linear pulse amplifier circuit of Pakistan Atomic Research Reactor-I. The fabrication of soft ferrite (Mn-Zn Ferrite) cores by different processing routes is an encouraging step towards indigenization of ferrite technology. (Orig./A.B.)

  4. Design and analysis for piping systems

    International Nuclear Information System (INIS)

    Sterkel, H.-P.; Cutrim, J.H.C.

    1981-01-01

    The procedure and the typical techniques that are used in NUCLEN for the design and the calculation of the piping of Nuclear Plants. The classification system are generically described and the analysis techniques which are used for the design and verification of the piping systems, i.e. pressure design for the dimensioning of the wallthicknesses, temperature and dead weight analysis together with determination of support points, are shown. The techniques of dynamic design and analyses are described for earthquake and pressure impulse loadings. (Author) [pt

  5. Microwave dielectric properties of nanostructured nickel ferrite

    Indian Academy of Sciences (India)

    Wintec

    Abstract. Nickel ferrite is one of the important ferrites used in microwave devices. In the present work, we have synthesized nanoparticles of nickel ferrite using chemical precipitation technique. The crystal structure and grain size of the particles are studied using XRD. The microwave dielectric properties of nanostructured.

  6. Characterization of radioactive contamination inside pipes with the Pipe Explorer{trademark} system. Final report

    Energy Technology Data Exchange (ETDEWEB)

    Cremer, C.D.; Kendrick, D.T.; Lowry, W.; Cramer, E.

    1997-09-30

    The Department of Energy (DOE) is currently in the process of decommissioning and dismantling many of its nuclear materials processing facilities that have been in use for several decades. Site managers throughout the DOE complex must employ the safest and most cost effective means to characterize, remediate and recycle or dispose of hundreds of miles of potentially contaminated piping and duct work. The DOE discovered that standard characterization methods were inadequate for its pipes, drains, and ducts because many of the systems are buried or encased. In response to the DOE`s need for a more specialized characterization technique, Science and Engineering Associates, Inc. (SEA) developed the Pipe Explorer{trademark} system through a DOE Office of Science and Technology (OST) contract administered through the Federal Energy Technology Center (FETC). The purpose of this report is to serve as a comprehensive overview of all phases of the Pipe Explorer{trademark} development project. The report is divided into 6 sections. Section 2 of the report provides an overview of the Pipe Explorer{trademark} system, including the operating principles of using an inverting membrane to tow sensors into pipes. The basic components of the characterization system are also described. Descriptions of the various deployment systems are given in Section 3 along with descriptions of the capabilities of the deployment systems. During the course of the development project 7 types of survey instruments were demonstrated with the Pipe Explorer{trademark} and are a part of the basic toolbox of instruments available for use with the system. These survey tools are described in Section 4 along with their typical performance specifications. The 4 demonstrations of the system are described chronologically in Section 5. The report concludes with a summary of the history, status, and future of the Pipe Explorer{trademark} system in Section 6.

  7. Characterization of radioactive contamination inside pipes with the Pipe Explorer trademark system. Final report

    International Nuclear Information System (INIS)

    Cremer, C.D.; Kendrick, D.T.; Lowry, W.; Cramer, E.

    1997-01-01

    The Department of Energy (DOE) is currently in the process of decommissioning and dismantling many of its nuclear materials processing facilities that have been in use for several decades. Site managers throughout the DOE complex must employ the safest and most cost effective means to characterize, remediate and recycle or dispose of hundreds of miles of potentially contaminated piping and duct work. The DOE discovered that standard characterization methods were inadequate for its pipes, drains, and ducts because many of the systems are buried or encased. In response to the DOE's need for a more specialized characterization technique, Science and Engineering Associates, Inc. (SEA) developed the Pipe Explorer trademark system through a DOE Office of Science and Technology (OST) contract administered through the Federal Energy Technology Center (FETC). The purpose of this report is to serve as a comprehensive overview of all phases of the Pipe Explorer trademark development project. The report is divided into 6 sections. Section 2 of the report provides an overview of the Pipe Explorer trademark system, including the operating principles of using an inverting membrane to tow sensors into pipes. The basic components of the characterization system are also described. Descriptions of the various deployment systems are given in Section 3 along with descriptions of the capabilities of the deployment systems. During the course of the development project 7 types of survey instruments were demonstrated with the Pipe Explorer trademark and are a part of the basic toolbox of instruments available for use with the system. These survey tools are described in Section 4 along with their typical performance specifications. The 4 demonstrations of the system are described chronologically in Section 5. The report concludes with a summary of the history, status, and future of the Pipe Explorer trademark system in Section 6

  8. Specific heat of nano-ferrites modified composites

    Directory of Open Access Journals (Sweden)

    Muntenita Cristian

    2017-01-01

    Full Text Available The specific heat of nano-ferrites modified composites was studied using differential scanning calorimeter (DSC method in the temperature range of 30 to 150°C. Initially, nano-ferrites were introduced in epoxy systems in order to improve the electromagnetic properties of formed materials. Together with the changes in electromagnetic properties some modifications occur regarding thermal and mechanical properties. The materials were formed by placing 5g or 10g of ferrite into 250g polymer matrix leading to a very low weight ratio of modifying agent. At so low ratios the effect of ferrite presence should be insignificant according to mixing rule. Anyway there is possible to appear some chelation reaction with effects on thermal properties of materials. Three types of epoxy resins had been used as matrix and barium ferrite and strontium ferrite as modifying agents. The thermal analysis was developed on two heatingcooling cycles and the specific heat was evaluated for each segment of the cycle analysis.

  9. Development of a simplified piping support system

    International Nuclear Information System (INIS)

    Leung, J.; Anderson, P.H.; Tang, Y.K.; Kassawara, R.P.; Tang, H.T.

    1987-01-01

    This paper presents the results of experimental and analytical studies for developing a simplified piping support system (SPSS) for nuclear power piping in place of snubbers. The basic concept of the SPSS is a passive seismic support system consisting of limit stops. Large gaps are provided to allow for free thermal expansion during normal plant operation while preventing excessive displacement during a seismic event. The results are part of a research and development program sponsored by EPRI. (orig./HP)

  10. Characterization of Austempered Ferritic Ductile Iron

    Science.gov (United States)

    Dakre, Vinayak S.; Peshwe, D. R.; Pathak, S. U.; Likhite, A. A.

    2018-04-01

    The ductile iron (DI) has graphite nodules enclose in ferrite envelop in pearlitic matrix. The pearlitic matrix in DI was converted to ferritic matrix through heat treatment. This heat treatment includes austenitization of DI at 900°C for 1h, followed by furnace cooling to 750°C & hold for 1h, then again furnace cooling to 690°C hold for 2h, then samples were allowed to cool in furnace. The new heat treated DI has graphite nodules in ferritic matrix and called as ferritic ductile iron (FDI). Both DIs were austenitized at 900°C for 1h and then quenched into salt bath at 325°C. The samples were soaked in salt bath for 60, 120, 180, 240 and 300 min followed by air cooling. The austempered samples were characterized with help of optical microscopy, SEM and X-ray diffraction analysis. Austempering of ferritic ductile iron resulted in finer ausferrite matrix as compared to ADI. Area fraction of graphite, ferrite and austenite were determining using AXIOVISION-SE64 software. Area fraction of graphite was more in FDI than that of as cast DI. The area fraction of graphite remains unaffected due to austempering heat treatment. Ausferritic matrix coarsened (feathered) with increasing in austempering time for both DI and FDI. Bulk hardness test was carried on Rockwell Hardness Tester with load of 150 kgf and diamond indenter. Hardness obtained in as cast DI is 28 HRC which decreased to 6 HRC in FDI due conversion of pearlitic matrix to ferritic matrix. Hardness is improved by austempering process.

  11. Application of tearing modulus stability concepts to nuclear piping. Final report

    International Nuclear Information System (INIS)

    Cotter, K.H.; Chang, H.Y.; Zahoor, A.

    1982-02-01

    The recently developed tearing modulus stability concept was successfully applied to several boiling water reactor (BWR) and pressurized water reactor (PWR) piping systems. Circumferentially oriented through-the-thickness cracks were postulated at numerous locations in each system. For each location, the simplified tearing stability methods developed in USNRC Report NUREG/CR-0838 were used to determine crack stability. The J-T diagram was used to present the results of the computations. The piping systems considered included Type 304 stainless steel as well as A106 carbon steel materials. These systems were analyzed using the piping analysis computer code MINK

  12. Heat-pipe development for the SPAR space-power system

    International Nuclear Information System (INIS)

    Ranken, W.A.

    1981-01-01

    The SPAR space power system design is based on a high temperature fast spectrum nuclear reactor that furnishes heat to a thermoelectric conversion system to generate an electrical power output of 100 kW/sub (e)/. An important feature of this design is the use of alkali metal heat pipes to provide redundant, reliable, and low-loss heat transfer at high temperature. Three sets of heat pipes are used in the system. These include sodium/molybdenum heat pipes to transfer heat from the reactor core to the conversion system, potassium/niobium heat pipes to couple the conversion system to the radiator in a redundant manner, and potassium/titanium heat pipes to distribute rejected heat throughout the radiator surface. The designs of these units are discussed and fabrication methods and testing results are described. 12 figures

  13. Significance of high level test data in piping design

    International Nuclear Information System (INIS)

    McLean, J.L.; Bitner, J.L.

    1991-01-01

    During the 1980's the piping technical community in the U.S. initiated a series of research activities aimed at reducing the conservatism inherent in nuclear piping design. One of these activities was directed at the application of the ASME Code rules to the design of piping subjected to dynamic loads. This paper surveys the test data obtained from three groups in the U.S. and none in the U.K., and correlates the findings as they relate to the failure modes of piping subjected to seismic loads. The failure modes experienced as the result of testing at dynamic loads significantly in excess of anticipated loads specified for any of the ASME Code service levels are discussed. A recommendation is presented for modifying the Code piping rules to reduce the conservatism inherent in seismic design

  14. Efficient improvement of nuclear power plant safety by reorganization of risk-informed safety importance evaluation methods for piping welded portions

    Energy Technology Data Exchange (ETDEWEB)

    Irie, Takashi; Hanafusa, Hidemitsu; Suyama, Takeshi [Institute of Nuclear Safety System, Inc., Mihama, Fukui (Japan); Morota, Hidetsugu; Kojima, Sigeo; Mizuno, Yoshinobu [Computer Software Development Co., Ltd., Tokyo (Japan)

    2002-09-01

    In this work, risk information was used to evaluate the safety importance of piping welded portions which were important for plant operation and maintenance of nuclear power plants. There are two types of risk-informed safety importance evaluation methods, namely the ASME method and the EPRI method. Since both methods have advantages and disadvantages, elements of each method were combined and reorganized. Considerations included whether the degradation mechanisms would be objectively evaluated and whether plant safety would be efficiently improved. The most objective and efficient method was as follows. Piping failure potential is quantitatively and objectively evaluated for failure with probabilistic fracture mechanics (PFM) and for other degradation mechanisms with empirical failure rates, and conditional core damage probability (CCDP) is calculated with PSA. This method reduces the inspected segment numbers to 1/4 of the deterministic method and increases the ratio of risk, which is covered by the inspected segments, to total risk from 80% of the deterministic method to 95%. Piping inspection numbers decreased for safety injection systems that were required the inspections by the deterministic method. Piping inspections were required for part of main feed water and main steam systems that were not required the inspections by the deterministic method. (author)

  15. Development of a Short-term Failure Assessment of High Density Polyethylene Pipe Welds - Application of the Limit Load Analysis -

    Energy Technology Data Exchange (ETDEWEB)

    Ryu, Ho-Wan; Han, Jae-Jun; Kim, Yun-Jae [Korea University, Seoul (Korea, Republic of); Kim, Jong-Sung [Sunchon National University, Suncheon (Korea, Republic of); Kim, Jeong-Hyeon; Jang, Chang-Heui [KAIST, Daejeon (Korea, Republic of)

    2015-04-15

    In the US, the number of cases of subterranean water contamination from tritium leaking through a damaged buried nuclear power plant pipe continues to increase, and the degradation of the buried metal piping is emerging as a major issue. A pipe blocked from corrosion and/or degradation can lead to loss of cooling capacity in safety-related piping resulting in critical issues related to the safety and integrity of nuclear power plant operation. The ASME Boiler and Pressure Vessel Codes Committee (BPVC) has recently approved Code Case N-755 that describes the requirements for the use of polyethylene (PE) pipe for the construction of Section III, Division 1 Class 3 buried piping systems for service water applications in nuclear power plants. This paper contains tensile and slow crack growth (SCG) test results for high-density polyethylene (HDPE) pipe welds under the environmental conditions of a nuclear power plant. Based on these tests, the fracture surface of the PENT specimen was analyzed, and the fracture mechanisms of each fracture area were determined. Finally, by using 3D finite element analysis, limit loads of HDPE related to premature failure were verified.

  16. Incremental-hinge piping analysis methods for inelastic seismic response prediction

    International Nuclear Information System (INIS)

    Jaquay, K.R.; Castle, W.R.; Larson, J.E.

    1989-01-01

    This paper proposes nonlinear seismic response prediction methods for nuclear piping systems based on simplified plastic hinge analyses. The simplified plastic hinge analyses utilize an incremental series of flat response spectrum loadings and replace yielded components with hinge elements when a predefined hinge moment is reached. These hinge moment values, developed by Rodabaugh, result in inelastic energy dissipation of the same magnitude as observed in seismic tests of piping components. Two definitions of design level equivalent loads are employed: one conservatively based on the peaks of the design acceleration response spectra, the other based on inelastic frequencies determined by the method of Krylov and Bogolyuboff recently extended by Lazzeri to piping. Both definitions account for piping system inelastic energy dissipation using Newmark-Hall inelastic response spectrum reduction factors and the displacement ductility results of the incremental-hinge analysis. Two ratchet-fatigue damage models are used: one developed by Rodabaugh that conservatively correlates Markl static fatigue expressions to seismic tests to failure of piping components; the other developed by Severud that uses the ratchet expression of Bree for elbows and Edmunds and Beer for straights, and defines ratchet-fatigue interaction using Coffin's ductility based fatigue equation. Comparisons of predicted behavior versus experimental results are provided for a high-level seismic test of a segment of a representative nuclear plant piping system. (orig.)

  17. Ferrite measurements for SNS accelerating cavities

    International Nuclear Information System (INIS)

    Bendall, R.G.; Church, R.A.

    1979-03-01

    The RF system for the SNS has six double accelerating cavities each containing seventy ferrite toroids. Difficulties experienced in obtaining toroids to the required specifications are discussed and the two toroid test cavity built to test those supplied is described. Ferrite measurements are reported which were undertaken to measure; (a) μQf as a function of frequency and RF field level and (b) bias current as a function of frequency for different ranges of ferrite permeability μ. (U.K.)

  18. Applications of equivalent linearization approaches to nonlinear piping systems

    International Nuclear Information System (INIS)

    Park, Y.; Hofmayer, C.; Chokshi, N.

    1997-01-01

    The piping systems in nuclear power plants, even with conventional snubber supports, are highly complex nonlinear structures under severe earthquake loadings mainly due to various mechanical gaps in support structures. Some type of nonlinear analysis is necessary to accurately predict the piping responses under earthquake loadings. The application of equivalent linearization approaches (ELA) to seismic analyses of nonlinear piping systems is presented. Two types of ELA's are studied; i.e., one based on the response spectrum method and the other based on the linear random vibration theory. The test results of main steam and feedwater piping systems supported by snubbers and energy absorbers are used to evaluate the numerical accuracy and limitations

  19. Modification of the Structure of Low-Carbon Pipe Steel by Helical Rolling, and the Increase in Its Strength and Cold Resistance

    Science.gov (United States)

    Derevyagina, L. S.; Gordienko, A. I.; Pochivalov, Yu. I.; Smirnova, A. S.

    2018-01-01

    The paper reports the investigation results on the microstructure and mechanical properties of low-carbon pipe steel after helical rolling. The processing of the steel leads to the refinement of ferritic grains from 12 (for the coarse-grained state) to 5 μm, to the strengthening of ferrite by carbide particles, a decrease in the total fraction of perlite grains, a more uniform alternation of ferrite and perlite, and the formation of regions with bainitic structure. The mechanical properties of the steel have been determined in the conditions of static and dynamic loading in the range of test temperatures from +20 to-70°C. As a result of processing, the ultimate tensile strength increases (from 650 to 770 MPa at a rolling temperature from 920°C) and the viscoplastic properties at negative temperatures are improved significantly. The ductile-brittle transition temperature of the rolled steel decreases from-32 to-55°C and the impact toughness at the test temperature-40°C increases eight times compared to the initial state of the steel.

  20. Leak detection in the primary reactor coolant piping of nuclear power plant by applying beam-microphone technology

    International Nuclear Information System (INIS)

    Kasai, Yoshimitsu; Shimanskiy, Sergey; Naoi, Yosuke; Kanazawa, Junichi

    2004-01-01

    A microphone leak detection method was applied to the inlet piping of the ATR-prototype reactor, Fugen. Statistical analysis results showed that the cross-correlation method provided the effective results for detection of a small leakage. However, such a technique has limited application due to significant distortion of the signals on the reactor site. As one of the alternative methods, the beam-microphone provides necessary spatial selectivity and its performance is less affected by signal distortion. A prototype of the beam-microphone was developed and then tested at the O-arai Engineering Center of the Japan Nuclear Cycle Development Institute (JNC). On-site testing of the beam-microphone was carried out in the inlet piping room of an RBMK reactor of the Leningrad Nuclear Power Plant (LNPP) in Russia. A leak sound imitator was used to simulate the leakage sound under the leakage flow condition of 1-3 gpm (0.23-0.7 m 3 /h). Analysis showed that signal distortion does not seriously affect the performance of this method, and that sound reflection may result in the appearance of ghost sound sources. The test results showed that the influences of sound reflection and background noise were smaller at the high frequencies where the leakage location could be estimated with an angular accuracy of 5deg which is the range of localization accuracy required for the leak detection system. (author)

  1. Development of a simplified piping support system

    International Nuclear Information System (INIS)

    Leung, J.; Anderson, P.H.; Tang, Y.K.; Kassawara, R.P.; Tang, H.T.

    1987-01-01

    This paper presents the results of experimental and analytical studies for developing a simplified piping support system (SPSS) for nuclear power piping in place of snubbers. The basic concept of the SPSS is a passive seismic support system consisting of limit stops. Large gaps are provided to allow for free thermal expansion during normal plant operation while preventing excessive displacement during a seismic event. The results are part of a research and development program sponsored by the Electric Power Research Institute

  2. Vibration test on KMRR reactor structure and primary cooling system piping

    Energy Technology Data Exchange (ETDEWEB)

    Chung, Seung Hoh; Kim, Tae Ryong; Park, Jin Hoh; Park, Jin Suk; Ryoo, Jung Soo [Korea Atomic Energy Research Institute, Taejon (Korea, Republic of)

    1994-10-01

    Most equipments, piping systems and reactor structures in nuclear power plants are subjected to flow induced vibration due to high temperature and high pressure coolant flowing inside or outside of the equipments, systems and structures. Because the flow induced vibration sometimes causes significant damage to reactor structures and piping systems, it is important and necessary to evaluate the vibration effect on them and to prove their structural integrity. Korea Multipurpose Research Reactor (KMRR) being constructed by KAERI is 30 MWt pool type research reactor. Since its main structures and piping systems were designed and manufactured in accordance with the standards and guidelines for commercial nuclear power plant, it was decided to evaluate their vibratory response in accordance with the standards and guidelines for commercial NPP. The objective of this vibration test is the assessment of vibration levels of KMRR reactor structure and primary cooling piping system for their structural integrity under the steady-state or transient operating condition. 38 figs, 14 tabs, 2 refs. (Author).

  3. Vibration test on KMRR reactor structure and primary cooling system piping

    International Nuclear Information System (INIS)

    Chung, Seung Hoh; Kim, Tae Ryong; Park, Jin Hoh; Park, Jin Suk; Ryoo, Jung Soo

    1994-10-01

    Most equipments, piping systems and reactor structures in nuclear power plants are subjected to flow induced vibration due to high temperature and high pressure coolant flowing inside or outside of the equipments, systems and structures. Because the flow induced vibration sometimes causes significant damage to reactor structures and piping systems, it is important and necessary to evaluate the vibration effect on them and to prove their structural integrity. Korea Multipurpose Research Reactor (KMRR) being constructed by KAERI is 30 MWt pool type research reactor. Since its main structures and piping systems were designed and manufactured in accordance with the standards and guidelines for commercial nuclear power plant, it was decided to evaluate their vibratory response in accordance with the standards and guidelines for commercial NPP. The objective of this vibration test is the assessment of vibration levels of KMRR reactor structure and primary cooling piping system for their structural integrity under the steady-state or transient operating condition. 38 figs, 14 tabs, 2 refs. (Author)

  4. Seismic design of piping systems

    International Nuclear Information System (INIS)

    Anglaret, G.; Beguin, J.L.

    1986-01-01

    This paper deals with the method used in France for the PWR nuclear plants to derive locations and types of supports of auxiliary and secondary piping systems taking earthquake in account. The successive steps of design are described, then the seismic computation method and its particular conditions of applications for piping are presented. The different types of support (and especially seismic ones) are described and also their conditions of installation. The method used to compare functional tests results and computation results in order to control models is mentioned. Some experiments realised on site or in laboratory, in order to validate models and methods, are presented [fr

  5. Seismic ratchet-fatigue failure of piping systems

    International Nuclear Information System (INIS)

    Severud, L.K.; Anderson, M.J.; Lindquist, M.R.; Weiner, E.O.

    1986-01-01

    Failures of piping systems during earthquakes have been rare. Those that have failed were either made of brittle material such as cast iron, were rigid systems between major components where component relative seismic motions tore the pipe out of the component, or were high pressure systems where a ratchet-fatigue fracture followed a local bulging of the pipe diameter. Tests to failure of an unpressurized 3-in. and a pressurized 6-in. diameter carbon steel nuclear pipe systems subjected to high level shaking have been accomplished. Failure analyses of these tests are presented and correlated to the test results. It was found that failure of the unpressurized system could be correlated well with standard ASME type fatigue analysis predictions. Moreover, the pressurized system failure occurred in significantly less load cycles than predicted by standard fatigue analysis. However, a ratchet-fatigue and ductility exhaustion analysis of the pressurized system did correlate very well. These findings indicate modifications to design analysis methods and the present ASME Code piping design rules may be appropriate to cover the ratchet-fatigue failure mode

  6. Thinned pipe management program of Korean NPPs

    International Nuclear Information System (INIS)

    Lee, S.H.; Kim, T.R.; Jeon, S.C.; Hwang, K.M.

    2003-01-01

    Wall thinning of carbon steel pipe components due to Flow-Accelerated Corrosion (FAC) is one of the most serious threats to the integrity of steam cycle systems in Nuclear Power Plants (NPP). If the thickness of a pipe component is reduced below the critical level, it cannot sustain stress and consequently results in leakage or rupture. In order to minimize the possibility of excessive wall thinning, Thinned Pipe Management Program (TPMP) has been set up and being implemented to all Korean NPPs. Important elements of the TPMP include the prediction of the FAC rate for each component based on model analysis, prioritization of pipe components for inspection, thickness measurement, calculation of wear and wear rate for each component. Additionally, decision making associated with replacement or continuous service for thinned pipe components and establishment of long-term strategic management plan based on diagnosis of plant condition regarding overall wall thinning also are essential part of the TPMP. From pre-service inspection data, it has been found that initial thickness is varies, which influences wear and wear rate calculations. (author)

  7. Evolution of thermal fatigue management of piping in US LWRs

    International Nuclear Information System (INIS)

    McDewitt, M.; Wolfe, K.; McGill, R.

    2015-01-01

    Fatigue usage caused by cyclic changes of thermally stratified reactor coolant in Light Water Reactor (LWR) pressure boundary piping was not an original consideration in US Nuclear Power Plant (NPP) designs. During the mid 1980's, several events involving cracking and leakage due to thermal cycling occurred in reactor coolant system branch piping at both US and International NPPs. In 1988, the US Nuclear Regulatory Commission (US NRC) issued Bulletin 88-08 to alert LWR licensees of the potential for piping failures due to stratified thermal cycling. In response to these events, the US nuclear industry developed initiatives to identify susceptible components and established measures to monitor and prevent future failures. These initiatives have been effective in preventing leakage events, but have also identified fewer defects than expected based on screening model predictions. Improved analytical techniques are being investigated to maintain program effectiveness while minimizing unnecessary non-destructive examinations. This paper discusses the evolution of the US thermal fatigue initiatives, and analytical concepts being evaluated to improve program efficiency. (authors)

  8. Analytical modeling of demagnetizing effect in magnetoelectric ferrite/PZT/ferrite trilayers taking into account a mechanical coupling

    Science.gov (United States)

    Loyau, V.; Aubert, A.; LoBue, M.; Mazaleyrat, F.

    2017-03-01

    In this paper, we investigate the demagnetizing effect in ferrite/PZT/ferrite magnetoelectric (ME) trilayer composites consisting of commercial PZT discs bonded by epoxy layers to Ni-Co-Zn ferrite discs made by a reactive Spark Plasma Sintering (SPS) technique. ME voltage coefficients (transversal mode) were measured on ferrite/PZT/ferrite trilayer ME samples with different thicknesses or phase volume ratio in order to highlight the influence of the magnetic field penetration governed by these geometrical parameters. Experimental ME coefficients and voltages were compared to analytical calculations using a quasi-static model. Theoretical demagnetizing factors of two magnetic discs that interact together in parallel magnetic structures were derived from an analytical calculation based on a superposition method. These factors were introduced in ME voltage calculations which take account of the demagnetizing effect. To fit the experimental results, a mechanical coupling factor was also introduced in the theoretical formula. This reflects the differential strain that exists in the ferrite and PZT layers due to shear effects near the edge of the ME samples and within the bonding epoxy layers. From this study, an optimization in magnitude of the ME voltage is obtained. Lastly, an analytical calculation of demagnetizing effect was conducted for layered ME composites containing higher numbers of alternated layers (n ≥ 5). The advantage of such a structure is then discussed.

  9. Report of the US Nuclear Regulatory Commission Piping Review Committee. Volume 2. Evaluation of seismic designs: a review of seismic design requirements for Nuclear Power Plant Piping

    Energy Technology Data Exchange (ETDEWEB)

    1985-04-01

    This document reports the position and recommendations of the NRC Piping Review Committee, Task Group on Seismic Design. The Task Group considered overlapping conservation in the various steps of seismic design, the effects of using two levels of earthquake as a design criterion, and current industry practices. Issues such as damping values, spectra modification, multiple response spectra methods, nozzle and support design, design margins, inelastic piping response, and the use of snubbers are addressed. Effects of current regulatory requirements for piping design are evaluated, and recommendations for immediate licensing action, changes in existing requirements, and research programs are presented. Additional background information and suggestions given by consultants are also presented.

  10. Progress on the degraded piping program - Phase II. Battelle Columbus Division

    International Nuclear Information System (INIS)

    Wilkowski, Gery; Ahmad, J.; Barnes, C.; Brust, F.; Guerrieri, D.; Kramer, G.; Landow, M.; Marschall, C.; Nakagaki, M.; Papaspyropoulos; Scott, P.

    1988-01-01

    The overall objective of the Degraded Piping Program is to verify and improve simple estimation schemes to predict the fracture behavior of circumferentially cracked pipe. The program is limited to quasi-static fracture and cracks in straight pipe. There are a variety of materials, flaw geometries, pipe sizes, and loading conditions evaluated. The Degraded Piping Program,which has been extended for one more year, will supply results that provide a basis for regulatory decisions regard applications for leak-before-break (LBB) and In-service flaw assessment. The significance of our results are summarized relative to how they may affect regulatory technical needs. The scope of the work in The Degraded Piping Program includes both analytical and experimental efforts. The experimental efforts have concentrated on testing circumferentially cracked pipe at 550 F (288 C) under si-static loading. Many of the tasks within this program were undertaken with the objective of determining if any detailed efforts were needed. This is true for both the analytical and experimental efforts. i e of the tasks have been slightly expanded during the course of the gram, while others were found to be of lesser concern and further efforts in those areas were not pursued. The results of this summary include the efforts of the third year. These efforts have contributed considerably to the understanding of the application of elastic-plastic fracture mechanics to nuclear piping systems. Rather than listing the significant technical contributions, these contributions are summarized below in relation to their application to LBB analyses, in-service flaw assessment criteria, and (3) material characterization and unusual behavior of nuclear piping materials at light water reactor (LWR) temperatures

  11. Field measurement of the piping system vibration of Ko-Ri unit 4 during the load-following operation

    International Nuclear Information System (INIS)

    Chung, Tae-Young; Hong, Sung-Yull; Kim, Bum-Nyun.

    1989-01-01

    During the load-following operation of nuclear power plants, flow rate, temperature, and pressure in the piping system can be varied by changing the electric power output level, and these variations can cause different vibration phenomena in the piping system. The piping system vibration is important because it is directly related to the dynamic stress of the piping system and can affect the life of the piping system through structural fatigue. An assessment of vibration levels for the classes II and III piping systems of the Ko-Ri Unit 4950-MW nuclear power plant was performed according to the given pattern of the load-following operation to study its feasibility from the viewpoint of piping system vibration. The classes II and III piping system vibration of the Ko-Ri Unit 4 may not cause any potential problem under the given pattern of the load-following operation; however, it is recommended that long-term operation in the 85 to 95% power range be avoided as much as possible

  12. Lead plant application of leak-before-break to high energy piping. Final report, January 1989

    International Nuclear Information System (INIS)

    1989-01-01

    This report presents the experience gained during a successful application of a leak-before-break program by Duquesne Light Company. This program was directed at the high energy nuclear piping at Beaver Valley Power Station - Unit 2. This experience can be applied to other nuclear plant leak-before-break efforts in order to minimize the number of pipe whip restraints, jet impingement shields, snubbers, and to discount the consideration of remaining pipe rupture dynamic effects. The chronology of events leading to Nuclear Regulatory Commission approval of the Beaver Valley Power Station - Unit 2 lead plant effort is described. The final report and pertinent sections of the final Safety Evaluation Report are also included. (author)

  13. Application of bounding spectra to seismic design of piping based on the performance of above ground piping in power plants subjected to strong motion earthquakes

    International Nuclear Information System (INIS)

    Stevenson, J.D.

    1995-02-01

    This report extends the potential application of Bounding Spectra evaluation procedures, developed as part of the A-46 Unresolved Safety Issue applicable to seismic verification of in-situ electrical and mechanical equipment, to in-situ safety related piping in nuclear power plants. The report presents a summary of earthquake experience data which define the behavior of typical U.S. power plant piping subject to strong motion earthquakes. The report defines those piping system caveats which would assure the seismic adequacy of the piping systems which meet those caveats and whose seismic demand are within the bounding spectra input. Based on the observed behavior of piping in strong motion earthquakes, the report describes the capabilities of the piping system to carry seismic loads as a function of the type of connection (i.e. threaded versus welded). This report also discusses in some detail the basic causes and mechanisms for earthquake damages and failures to power plant piping systems

  14. Crack initiation through vibration fatigue of small-diameter pipes

    International Nuclear Information System (INIS)

    Comby, R.; Thebault, Y.; Papaconstantinou, T.

    2002-01-01

    Socket welds are used extensively for small bore piping connections in nuclear power plant systems. Numerous fatigue-related failures occurred in the past ten years mainly on safeguard systems and continue to occur frequently, showing that corrective actions did not take into account all aspects of the problem. Destructive examination of cracked small bore piping connections allowed a better understanding of failure mechanisms and a prediction of crack initiation site depending on nozzle fittings such as run pipe and small bore pipe thickness. A three-dimensional finite element model confirmed the conclusions of the lab examinations. For thick run pipes, it was shown that the failure tend to initiate predominantly at the socket weld toe or at the root, depending on the respective thickness of coupling and small bore pipe. Some additional studies, based on RSE-M code, are in progress in order to determine the maximum stresses location. Lessons learned through these investigations led to optimise the in-service inspection scope and to define solutions to be carried out to prevent failure of ''susceptible'' small bore pipe connections. Since July 2000, a large program is in progress to select all ''susceptible'' small bore pipes in safety-related systems and to apply corrective measures such as piping modifications or system operational modifications. (authors)

  15. Development of solutions to benchmark piping problems

    Energy Technology Data Exchange (ETDEWEB)

    Reich, M; Chang, T Y; Prachuktam, S; Hartzman, M

    1977-12-01

    Benchmark problems and their solutions are presented. The problems consist in calculating the static and dynamic response of selected piping structures subjected to a variety of loading conditions. The structures range from simple pipe geometries to a representative full scale primary nuclear piping system, which includes the various components and their supports. These structures are assumed to behave in a linear elastic fashion only, i.e., they experience small deformations and small displacements with no existing gaps, and remain elastic through their entire response. The solutions were obtained by using the program EPIPE, which is a modification of the widely available program SAP IV. A brief outline of the theoretical background of this program and its verification is also included.

  16. Micromagnetic simulations of spinel ferrite particles

    International Nuclear Information System (INIS)

    Dantas, Christine C.; Gama, Adriana M.

    2010-01-01

    This paper presents the results of simulations of the magnetization field ac response (at 2-12 GHz) of various submicron ferrite particles (cylindrical dots). The ferrites in the present simulations have the spinel structure, expressed here by M 1 - n Zn n Fe 2 O 4 (where M stands for a divalent metal), and the parameters chosen were the following: (a) for n=0: M={Fe, Mn, Co, Ni, Mg, Cu }; (b) for n=0.1: M = {Fe, Mg} (mixed ferrites). These runs represent full 3D micromagnetic (one-particle) ferrite simulations. We find evidences of confined spin waves in all simulations, as well as a complex behavior nearby the main resonance peak in the case of the M = {Mg, Cu} ferrites. A comparison of the n=0 and n=0.1 cases for fixed M reveals a significant change in the spectra in M = Mg ferrites, but only a minor change in the M=Fe case. An additional larger scale simulation of a 3 by 3 particle array was performed using similar conditions of the Fe 3 O 4 (magnetite; n=0, M = Fe) one-particle simulation. We find that the main resonance peak of the Fe 3 O 4 one-particle simulation is disfigured in the corresponding 3 by 3 particle simulation, indicating the extent to which dipolar interactions are able to affect the main resonance peak in that magnetic compound.

  17. Design for whipping pipe impact on reinforced concrete panels

    International Nuclear Information System (INIS)

    Chen, C.C.; Gurbuz, O.

    1984-01-01

    This paper describes determination of local and overall effects on reinforced concrete panels due to whipping pipe impact in postulated pipe break events. Local damage includes the prediction of minimum concrete panel thickness required to prevent spalling from the back face of the target reinforced concrete panels. Evaluation of overall effect deals with the ductility ratio calculation for the target reinforced concrete panels. Design curves for determining the minimum panel thickness and the minimum reinforcement of reinforced concrete panels are presented in this paper for some cases commonly encountered in nuclear applications. The methodology and the results provided can be used to determine if an existing reinforced concrete wall is capable of resisting the whipping pipe impact, and consequently, if pipe whip restraints can be eliminated

  18. Structural integrity investigations of feeder pipe ice plugging procedures

    International Nuclear Information System (INIS)

    Flaman, M.T.; Shah, N.N.

    1985-03-01

    A procedure involving the use of a liquid nitrogen cooled heat exchanger to form internal ice plugs in feeder pipes is routinely used in nuclear generating stations. The use of this procedure has caused concerns with regard to the safety of station maintenance personnel, and in regard to the integrity of the feeder pipes. This report describes the results of laboratory stress and pressure measurements which were performed on a feeder pipe section during ice plugging operations to investigate these concerns. From the results of this study, and from the results of previous studies of material behaviour at low temperatures, it has been determined that the ice plugging procedure can be performed on feeder pipes in a safe and effective manner

  19. Simulation of non-linear coaxial line using ferrite beads

    International Nuclear Information System (INIS)

    Furuya, S.; Matsumoto, H.; Tachi, K.; Takano, S.; Irisawa, J.

    2002-01-01

    A ferrite sharpener is a non-linear coaxial line using ferrite beads, which produces high-voltage, high-dV/dt pulses. We have been examining the characteristics of ferrite sharpeners experimentally, varying various parameters. Also we have made the simulation of the ferrite sharpener and compared the predictions with the experimental results in detail to analyze the characteristics of the sharpener. In this report, calculating the magnetization M of the ferrite bead, we divide the bead into n sections radially instead of adopting M at the average radius in the previous report. (author)

  20. Development of piping evaluation diagram for LBB application to KNGR surge line

    International Nuclear Information System (INIS)

    Yoon, K. S.; Park, W. B.; Kim, J. M.; Choi, T. S.; Yang, J. S.; Park, C. Y.

    1998-01-01

    Plant specific data, such as pipe geometry, material properties and pipe loads, are required in order to evaluate Leak-Before-Break (LBB) applicability to piping systems in nuclear power plant under the construction. However, the existing method of LBB evaluation for KSNP's can not be used for newly developed nuclear plants such as Korean Next Generation Reactor (KNGR) which material properties is not available and LBB evaluation is required during design process. In order to solve this problem during developing process for KNGR surge line LBB Piping Evaluation Diagram (PED), which is independent of piping geometry and has a function of the loads applied in piping system, is developed in this paper. Also, in order to evaluate LBB applicability during construction process with only the comparative evaluation of material properties between actually used and expected, the expected changes of material properties are considered in the PED. The PED, therefore, can be used for quick LBB evaluation of KNGR surge line in the process of both design and construction. The benefit obtained by using the PED is : 1) to be able to very quickly confirm LBB applicability without calculating any leakage crack length for all concerned piping locations in the process of both iterative design for optimal routing and construction and 2) to save significantly a lot of computing times required for the corresponding LBB analyses

  1. Review of liquid metal heat pipe work at Los Alamos

    International Nuclear Information System (INIS)

    Reid, R.S.; Merrigan, M.A.; Sena, J.T.

    1990-01-01

    A survey of space-power related liquid metal heat pipe work at Los Alamos National Laboratory is presented. Heat pipe development at Los Alamos has been on-going since 1963. Heat pipes were initially developed for thermionic nuclear-electrical power production in space. Since then Los Alamos has developed liquid metal heat pipes for numerous applications related to high temperature systems in both the space and terrestrial environments. Some of these applications include thermionic electrical generators, thermoelectric energy conversion (both in-core and direct radiation), thermal energy storage, hypersonic vehicle leading edge cooling, and heat pipe vapor laser cells. Some of the work performed at Los Alamos has been documented in internal reports that are often little-known. A representative description and summary of progress in space-related liquid metal heat pipe technology is provided followed by a reference section citing sources where these works may be found. 53 refs

  2. Ductile fracture mechanics methodology for complex cracks in nuclear piping

    Energy Technology Data Exchange (ETDEWEB)

    Zahoor, A.

    1988-02-01

    Limit load and J-integral estimation solutions are developed for circumferentially complex-cracked pipes in bending. The limit load solution is developed using thick-walled cylinder analysis which included the effects of flaw depth accurately. J-integral estimation solutions are developed that are suitable for a wide range of loading from linear elastic, elastic-plastic to net-section yielding of the flawed section. Mode I stress intensity factor solution is developed from experimental compliance data. Two types of J solutions are developed. First, J solutions for determining the J-resistance curve from single load-displacement record are presented. Next, elastic-plastic J solution in the format of EPRI J estimation scheme is presented. The latter solution was used to predict the load carrying capacity of complex-cracked pipes made of Type-304 stainless steel, Inconel 600, and A106 GrB materials. Predictions were compared against pipe tests to demonstrate the accuracy of the limit load and J estimation solutions.

  3. Ductile fracture mechanics methodology for complex cracks in nuclear piping

    International Nuclear Information System (INIS)

    Zahoor, A.

    1988-01-01

    Limit load and J-integral estimation solutions are developed for circumferentially complex-cracked pipes in bending. The limit load solution is developed using thick-walled cylinder analysis which included the effects of flaw depth accurately. J-integral estimation solutions are developed that are suitable for a wide range of loading from linear elastic, elastic-plastic to net-section yielding of the flawed section. Mode I stress intensity factor solution is developed from experimental compliance data. Two types of J solutions are developed. First, J solutions for determining the J-resistance curve from single load-displacement record are presented. Next, elastic-plastic J solution in the format of EPRI J estimation scheme is presented. The latter solution was used to predict the load carrying capacity of complex-cracked pipes made of Type-304 stainless steel, Inconel 600, and A106 GrB materials. Predictions were compared against pipe tests to demonstrate the accuracy of the limit load and J estimation solutions. (orig.)

  4. Application of tearing instability analysis for complex crack geometries in nuclear piping

    International Nuclear Information System (INIS)

    Pan, J.; Wilkowski, G.

    1984-01-01

    The analysis of the experimental data of 304 stainless steel pipes using Zahoor and Kanninen's estimation scheme has shown that the J resistance curve of a circumferentially cracked pipe with a simulated internal surface crack around the remaining net section is much lower than the J resistance curve of pipes with a idealized through-wall crack (without a simulated internal surface crack). The implications of the low J at initiation and tearing modulus on the stability analysis of typical BWR piping systems are discussed on the condition that an internal circumferential surface crack is assumed to occur along with a circumferential through-wall crack due to stress corrosion. The results presented here show that the margin of safety is reduced and in some cases instability is predicted due to the low J resistance curve and tearing modulus

  5. Diffusion bonding of 9Cr ODS ferritic/martensitic steel with a phase transformation

    Energy Technology Data Exchange (ETDEWEB)

    Noh, Sanghoon, E-mail: shnoh@kaeri.re.kr [Nuclear Materials Division, Korea Atomic Energy Research Institute, Yuseong-gu, Daejeon (Korea, Republic of); Kimura, Akihiko [Institute of Advanced Energy, Kyoto University, Gokasho, Uji, Kyoto (Japan); Kim, Tae Kyu [Nuclear Materials Division, Korea Atomic Energy Research Institute, Yuseong-gu, Daejeon (Korea, Republic of)

    2014-10-15

    Highlights: • Diffusion bonding was employed to join 9Cr oxide dispersion strengthened ferritic/martensitic steel under uniaxial hydrostatic pressure, and the microstructure and tensile properties of the joints were investigated. • ODS steel was successfully diffusion bonded at an austenization temperature to migrate a residual diffusion bonding interface. • The tensile properties of the joint region were comparable with that of the base metal with a ductile fracture occurred far from the bonding interface. • It is considered that diffusion bonding with a phase transformation can be a very useful joining method for fabricating components in next-generation nuclear systems using 9Cr ODS ferritic/martensitic steel. - Abstract: Diffusion bonding was employed to join oxide-dispersion-strengthened ferritic/martensitic steel under uniaxial hydrostatic pressure using a high vacuum hot press, and the microstructure and tensile properties of the joints were investigated. 9Cr oxide dispersion strengthened (ODS) steel was successfully diffusion bonded at 1150 °C for 1 h to migrate a residual bonding interface. Following heat treatment, including normalising at 1050 °C and tempering at 800 °C for 1 h, comparable results without inclusions or micro-voids at the bonding interface, or degradation in the base metal were achieved. Transmission electron microscopy (TEM) observation revealed that the nano-oxide particles in the bonding region were uniformly distributed in the matrix. At room temperature, the joint had nearly the same tensile properties with that of the base metal. The tensile strength of the joint region at elevated temperatures was comparable with that of the base metal. The total elongation of the joint region decreased slightly, but reached 80% of the base metal at 700 °C, and a ductile fracture occurred far from the bonding interface. Therefore, it is considered that diffusion bonding with a phase transformation can be a very useful joining method for

  6. Microwave Measurements of Ferrite Polymer Composite Materials

    Directory of Open Access Journals (Sweden)

    Rastislav Dosoudil

    2004-01-01

    Full Text Available The article focuses on the microwave measurements performed on the nickel-zinc sintered ferrite with the chemical formula Ni0.3Zn0.7Fe2O4 produced by the ceramic technique and composite materials based on this ferrite and a non-magnetic polymer (polyvinyl chloride matrix. The prepared composite samples had the same particle size distribution 0-250um but different ferrite particle concentrations between 23 vol% and 80 vol%. The apparatus for measurement of the signal proportional to the absolute value of scattering parameter S11 (reflexion coefficient is described and the dependence of measured reflected signal on a bias magnetic field has been studied. By means of experiments, the resonances to be connected with the geometry of microwave experimental set-up were distinguished from ferromagnetic resonance arising in ferrite particles of composite structure. The role of local interaction fields of ferrite particles in composite material has been discussed.

  7. Reliability of piping system components. Framework for estimating failure parameters from service data

    International Nuclear Information System (INIS)

    Nyman, R.; Hegedus, D.; Tomic, B.; Lydell, B.

    1997-12-01

    This report summarizes results and insights from the final phase of a R and D project on piping reliability sponsored by the Swedish Nuclear Power Inspectorate (SKI). The technical scope includes the development of an analysis framework for estimating piping reliability parameters from service data. The R and D has produced a large database on the operating experience with piping systems in commercial nuclear power plants worldwide. It covers the period 1970 to the present. The scope of the work emphasized pipe failures (i.e., flaws/cracks, leaks and ruptures) in light water reactors (LWRs). Pipe failures are rare events. A data reduction format was developed to ensure that homogenous data sets are prepared from scarce service data. This data reduction format distinguishes between reliability attributes and reliability influence factors. The quantitative results of the analysis of service data are in the form of conditional probabilities of pipe rupture given failures (flaws/cracks, leaks or ruptures) and frequencies of pipe failures. Finally, the R and D by SKI produced an analysis framework in support of practical applications of service data in PSA. This, multi-purpose framework, termed 'PFCA'-Pipe Failure Cause and Attribute- defines minimum requirements on piping reliability analysis. The application of service data should reflect the requirements of an application. Together with raw data summaries, this analysis framework enables the development of a prior and a posterior pipe rupture probability distribution. The framework supports LOCA frequency estimation, steam line break frequency estimation, as well as the development of strategies for optimized in-service inspection strategies

  8. Reliability of piping system components. Framework for estimating failure parameters from service data

    Energy Technology Data Exchange (ETDEWEB)

    Nyman, R [Swedish Nuclear Power Inspectorate, Stockholm (Sweden); Hegedus, D; Tomic, B [ENCONET Consulting GesmbH, Vienna (Austria); Lydell, B [RSA Technologies, Vista, CA (United States)

    1997-12-01

    This report summarizes results and insights from the final phase of a R and D project on piping reliability sponsored by the Swedish Nuclear Power Inspectorate (SKI). The technical scope includes the development of an analysis framework for estimating piping reliability parameters from service data. The R and D has produced a large database on the operating experience with piping systems in commercial nuclear power plants worldwide. It covers the period 1970 to the present. The scope of the work emphasized pipe failures (i.e., flaws/cracks, leaks and ruptures) in light water reactors (LWRs). Pipe failures are rare events. A data reduction format was developed to ensure that homogenous data sets are prepared from scarce service data. This data reduction format distinguishes between reliability attributes and reliability influence factors. The quantitative results of the analysis of service data are in the form of conditional probabilities of pipe rupture given failures (flaws/cracks, leaks or ruptures) and frequencies of pipe failures. Finally, the R and D by SKI produced an analysis framework in support of practical applications of service data in PSA. This, multi-purpose framework, termed `PFCA`-Pipe Failure Cause and Attribute- defines minimum requirements on piping reliability analysis. The application of service data should reflect the requirements of an application. Together with raw data summaries, this analysis framework enables the development of a prior and a posterior pipe rupture probability distribution. The framework supports LOCA frequency estimation, steam line break frequency estimation, as well as the development of strategies for optimized in-service inspection strategies. 63 refs, 30 tabs, 22 figs.

  9. Influence of displacement damage on deuterium and helium retention in austenitic and ferritic-martensitic alloys considered for ADS service

    Energy Technology Data Exchange (ETDEWEB)

    Voyevodin, V.N.; Karpov, S.A.; Kopanets, I.E.; Ruzhytskyi, V.V. [National Science Center “Kharkov Institute of Physics and Technology” Kharkov, 1, Akademicheskaya St., Kharkov, 61108 (Ukraine); Tolstolutskaya, G.D., E-mail: g.d.t@kipt.kharkov.ua [National Science Center “Kharkov Institute of Physics and Technology” Kharkov, 1, Akademicheskaya St., Kharkov, 61108 (Ukraine); Garner, F.A. [Radiation Effects Consulting, Richland, WA (United States)

    2016-01-15

    The behavior of ion-implanted hydrogen (deuterium) and helium in austenitic 18Cr10NiTi stainless steel, EI-852 ferritic steel and ferritic/martensitic steel EP-450 and their interaction with displacement damage were investigated. Energetic argon irradiation was used to produce displacement damage and bubble formation to simulate nuclear power environments. The influence of damage morphology and the features of radiation-induced defects on deuterium and helium trapping in structural alloys was studied using ion implantation, the nuclear reaction D({sup 3}He,p){sup 4}He, thermal desorption spectrometry and transmission electron microscopy. It was found in the case of helium irradiation that various kinds of helium-radiation defect complexes are formed in the implanted layer that lead to a more complicated spectra of thermal desorption. Additional small changes in the helium spectra after irradiation with argon ions to a dose of ≤25 dpa show that the binding energy of helium with these traps is weakly dependent on the displacement damage. It was established that retention of deuterium in ferritic and ferritic-martensitic alloys is three times less than in austenitic steel at damage of ∼1 dpa. The retention of deuterium in steels is strongly enhanced by presence of radiation damages created by argon ion irradiation, with a shift in the hydrogen release temperature interval of 200 K to higher temperature. At elevated temperatures of irradiation the efficiency of deuterium trapping is reduced by two orders of magnitude.

  10. A method to assign failure rates for piping reliability assessments

    International Nuclear Information System (INIS)

    Gamble, R.M.; Tagart, S.W. Jr.

    1991-01-01

    This paper reports on a simplified method that has been developed to assign failure rates that can be used in reliability and risk studies of piping. The method can be applied on a line-by-line basis by identifying line and location specific attributes that can lead to piping unreliability from in-service degradation mechanisms and random events. A survey of service experience for nuclear piping reliability also was performed. The data from this survey provides a basis for identifying in-service failure attributes and assigning failure rates for risk and reliability studies

  11. Analysis of residual stresses in girth welded type 304 stainless steel pipes

    International Nuclear Information System (INIS)

    Brust, F.W.; Kanninen, M.F.

    1981-01-01

    Intergranular stress corrosion cracking (IGSCC) in boiling water reactor (BWR) piping is a problem for the nuclear power industry. Tensile residual stresses induced by welding are an important factor in IGSCC of Type 304 stainless steel pipes. Backlay and heat sink welding can retard IGSCC. 17 refs

  12. Development of piping support structure design software based on PDMS

    International Nuclear Information System (INIS)

    Tang Yongtao; Guan Hui; Su Rongfu; Huang Wei; Mao Huihui

    2014-01-01

    In order to enhance the efficiency of nuclear power process system piping support design, the veracity of interface with support, piping and anchor, and decrease the clash between supports and other disciplines, developed piping support structure design software NPHS based on PDMS independently. That achieved the seamless integration of PDMS and NPHS by method of embedded development, reduce the size of program code, improve the running efficiency; That predigested the 3D modeling and information storage for support parts, that increased the support database opening and maintenance using the special mechanism and configuration of database. The support modeling efficiency due to setting of the connection key point of support parts is improved. Practices in several real nuclear power projects proved that NPHS software is provided with such outstanding performances: quick running, strong stability, accurate data, easy to operate and maintain, and output results satisfied the engineering requirements. (authors)

  13. Development of seismic design method for piping system supported by elastoplastic damper. 3. Vibration test of three-dimensional piping model and its response analysis

    International Nuclear Information System (INIS)

    Namita, Yoshio; Kawahata, Jun-ichi; Ichihashi, Ichiro; Fukuda, Toshihiko.

    1995-01-01

    Component and piping systems in current nuclear power plants and chemical plants are designed to employ many supports to maintain safety and reliability against earthquakes. However, these supports are rigid and have a slight energy-dissipating effect. It is well known that applying high-damping supports to the piping system is very effective for reducing the seismic response. In this study, we investigated the design method of the elastoplastic damper [energy absorber (EAB)] and the seismic design method for a piping system supported by the EAB. Our final goal is to develop technology for applying the EAB to the piping system of an actual plant. In this paper, the vibration test results of the three-dimensional piping model are presented. From the test results, it is confirmed that EAB has a large energy-dissipating effect and is effective in reducing the seismic response of the piping system, and that the seismic design method for the piping system, which is the response spectrum mode superposition method using each modal damping and requires iterative calculation of EAB displacement, is applicable for the three-dimensional piping model. (author)

  14. Fracture behavior of short circumferentially surface-cracked pipe

    International Nuclear Information System (INIS)

    Krishnaswamy, P.; Scott, P.; Mohan, R.

    1995-11-01

    This topical report summarizes the work performed for the Nuclear Regulatory Comniission's (NRC) research program entitled ''Short Cracks in Piping and Piping Welds'' that specifically focuses on pipes with short, circumferential surface cracks. The following details are provided in this report: (i) material property deteminations, (ii) pipe fracture experiments, (iii) development, modification and validation of fracture analysis methods, and (iv) impact of this work on the ASME Section XI Flaw Evaluation Procedures. The material properties developed and used in the analysis of the experiments are included in this report and have been implemented into the NRC's PIFRAC database. Six full-scale pipe experiments were conducted during this program. The analyses methods reported here fall into three categories (i) limit-load approaches, (ii) design criteria, and (iii) elastic-plastic fracture methods. These methods were evaluated by comparing the analytical predictions with experimental data. The results, using 44 pipe experiments from this and other programs, showed that the SC.TNP1 and DPZP analyses were the most accurate in predicting maximum load. New Z-factors were developed using these methods. These are being considered for updating the ASME Section XI criteria

  15. Development of Inspection Technique for Socket Weld of Small Bore Piping in Nuclear Power Plant

    International Nuclear Information System (INIS)

    Yoon, Byungsik; Kim, Yongsik; Lee, Jeongseok

    2013-01-01

    The losses incurred by unplanned shutdowns are significant; consequently, early crack initiation and crack detection, including the detection of fillet weld manufacturing defects, is of the utmost importance. Current inspection techniques are not capable of reliably inspecting socket welds; therefore, new approaches are needed. The new technique must be sensitive to socket weld cracking, which usually initiates from the root, in order to detect the cracking during the early failure phase. In 2008, Kori unit 3 experienced leakage from the drain line socket weld of a steam generator. From this experience, KHNP enforced a management program to focus on enhancing the reliability of small bore socket weld piping inspections. Currently, conventional manual ultrasonic inspection techniques are used to detect service induced fatigue cracks. But there was uncertainty on manual ultrasonic inspection because of limited access to the welds and difficulties with contact between the ultrasonic probe and the OD surface of small bore piping. In this study, phased array ultrasonic inspection techniques are applied to increase inspection speed and reliability. Additionally a manually encoded scanner has been developed to enhance contact conditions and maintain constant signal quality. A phased array UT technique and system was developed to inspect small bore socket welds. The experimental results show all artificial flaws in the specimen were detected and measured. These experimental results show, that the newly developed inspection system, has improved the reliability and speed of small bore socket weld inspection. Based on these results, future works shall focus on additional experiments, with more realistic flaw responses. By applying this technique to the field, we expect that it can improve the integrity of small bore piping in nuclear power plants

  16. Oxide dispersion-strengthened ferritic alloys

    International Nuclear Information System (INIS)

    Asbroeck, P. van.

    1976-10-01

    The publication gives the available data on the DTO2 dispersion-strengthened ferritic alloy developed at C.E.N./S.C.K. Mol, Belgium. DTO2 is a Fe-Cr-Mo ferritic alloy, strengthened by addition of titanium oxide and of titanium leading to the formation of Chi phase. It was developed for use as canning material for fast breeder reactors. (author)

  17. Experimental investigation of high cycle thermal fatigue in a T-junction piping system

    Energy Technology Data Exchange (ETDEWEB)

    Selvam, P. Karthick; Kulenovic, Rudi; Laurien, Eckart [Stuttgart Univ. (Germany). Inst. of Nuclear Technology and Energy Systems (IKE)

    2015-10-15

    High cycle thermal fatigue damage of structure in the vicinity of T-junction piping systems in nuclear power plants is of importance. Mixing of coolant streams at significant temperature differences causes thermal fluctuations near piping wall leading to gradual thermal degradation. Flow mixing in a T-junction is performed. The determined factors result in bending stresses being imposed on the piping system ('Banana effect').

  18. Study on filling materials suitable for seawater piping trench closure work at Fukushima Daiichi Nuclear Power Plant

    International Nuclear Information System (INIS)

    Yanai, Shuji; Hibi, Yasuki; Nishikori, Kazumasa; Sato, Keita

    2016-01-01

    Highly contaminated water leaking from the reactor buildings and turbine buildings damaged by the 2011 Great East Japan Earthquake has accumulated in the seawater piping trenches of Fukushima Daiichi Nuclear Power Station Units 2, 3, and 4. In November 2014, work commenced to replace and remove this contaminated water by filling the trenches with filling materials, and this work was completed in December 2015. This paper summarizes the contents of this study on various filling materials, including special fillers with long-distance underwater flowability applied to the horizontal tunnel parts of the trenches. (author)

  19. Structural investigation of chemically synthesized ferrite magnetic nanomaterials

    Science.gov (United States)

    Uyanga, E.; Sangaa, D.; Hirazawa, H.; Tsogbadrakh, N.; Jargalan, N.; Bobrikov, I. A.; Balagurov, A. M.

    2018-05-01

    In recent times, interest in ferrite magnetic nanomaterials has considerably grown, mainly due to their highly promising medical and biological applications. Spinel ferrite powder samples, with high heat generation abilities in AC magnetic fields, were studied for their application to the hyperthermia treatment of cancer tumors. These properties of ferrites strongly depend on their chemical composition, ion distribution between crystallographic positions, magnetic structure and method of preparation. In this study, crystal and magnetic structures of several magnetic spinels were investigated by neutron diffraction. The explanation of the mechanism triggering the heat generation ability in the magnetic materials, and the electronic and magnetic states of ferrite-spinel type structures, were theoretically defined by a first-principles method. Ferrites with the composition of CuxMg1-xFe2O4 have been investigated as a heat generating magnetic nanomaterial. Atomic fraction of copper in ferrite was varied between 0 and 100% (that is, x between 0 and 1.0 with 0.2 steps), with the copper dope limit corresponding to appear a tetragonal phase.

  20. Acoustic emission reviling and danger level evaluation of stress corrosion cracking in stainless steel pipes

    International Nuclear Information System (INIS)

    Muravin, Gregory; Muravin, Boris; Lezvinsky, Luidmila

    2000-01-01

    Breakdowns and catastrophic damage occurring during the operation of nuclear power stations pipelines cause substantial economic and social loss annually throughout the world. Stress corrosion, vibration, fatigue, erosion, water shock, dynamic load, construction defects/errors are the main causes of pipes failures. For these reasons and in view of the age of nuclear power station pipes, there is an increased interest in finding means to prevent potential pipe failures. Nevertheless, statistical data of pipe failures continues to show significant numbers of accidents mainly due to stress corrosion cracking (about 65-80% of total number). To this end, a complex of investigations was carried out for the reliable AE diagnosis of pipes undergone stress corrosion cracking. These include: finding AE indications (fingerprints) of flaws developing in the metal in original condition as well as in metal subjected to stress corrosion; preparing AE criteria for evaluating the danger level of defects. (author)

  1. Proceedings of transient thermal-hydraulics and coupled vessel and piping system responses 1991

    International Nuclear Information System (INIS)

    Wang, G.Y.; Shin, Y.W.; Moody, F.J.

    1991-01-01

    This book reports on transient thermal-hydraulics and coupled vessel and piping system responses. Topics covered include: nuclear power plant containment designs; analysis of control rods; gate closure of hydraulic turbines; and shock wave solutions for steam water mixtures in piping systems

  2. Crystallization of -type hexagonal ferrites from mechanically

    Indian Academy of Sciences (India)

    Crystallization of -type hexagonal ferrites from mechanically activated mixtures of barium carbonate and goethite ... Abstract. -type hexagonal ferrite precursor was prepared by a soft mechanochemical ... Bulletin of Materials Science | News.

  3. Wall thinning of piping in power plants

    International Nuclear Information System (INIS)

    Ohta, Joji; Inada, Fumio; Morita, Ryo; Kawai, Noboru; Yoneda, Kimitoshi

    2005-01-01

    Major mechanisms causing wall thinning of piping in power plants are flow accelerated corrosion (FAC), cavitation erosion and droplet erosion. Their fundamental aspects are reviewed on the basis of literature data. FAC is chemical process and it is affected by hydrodynamic factors, temperature, pH, dissolved oxygen concentration and chemical composition of materials. On the other hand, cavitation erosion and droplet erosion are mechanical process and they are mainly affected by hydrodynamic factors and mechanical properties of materials. Evaluation codes for FAC and mitigation methods of FAC and the erosion are also described. Wall thinning of piping is one of public concerns after an accident of a pipe failure at Mihama Nuclear Power Plant Unit 3, Kansai Electric Power Co., Inc., in August 2004. This paper gives comprehensive understanding of the wall thinning mechanism. (author)

  4. PWR composite materials use. A particular case of safety-related service water pipes

    International Nuclear Information System (INIS)

    Pays, M.F.; Le Courtois, T.

    1997-11-01

    This paper shows the present and future uses of composite materials in French nuclear and fossil-fuel power plants. Electricite de France has decided to install composite materials in service water piping in its future nuclear power plant (PWR) at Civaux (West of France) and for the firs time in France, in safety-related applications. A wide range of studies has been performed about the durability, the control and damage mechanisms of those materials under service conditions among an ongoing Research and Development project. The main results are presented under the following headlines: selection of basic materials and manufacturing processes; aging processes (mechanical behavior during 'lifetime'); design rules; non destructive examination during manufacturing process and during operation. The studies have been focused on epoxy pipings. The importance of strong quality insurance policy requirements are outlined. A study of the use of composite pipes in power plants (hydraulic, fossil fuel, and nuclear) in France and around the world (USA, Japan, Western Europe) are presented whether it be safety related or non safety-related applications. The different technical solutions for materials and manufacturing processes are presented and an economic comparison is made between steel and composite pipes. (author)

  5. PWR composite materials use. A particular case of safety-related service water pipes

    Energy Technology Data Exchange (ETDEWEB)

    Pays, M.F.; Le Courtois, T

    1997-11-01

    This paper shows the present and future uses of composite materials in French nuclear and fossil-fuel power plants. Electricite de France has decided to install composite materials in service water piping in its future nuclear power plant (PWR) at Civaux (West of France) and for the firs time in France, in safety-related applications. A wide range of studies has been performed about the durability, the control and damage mechanisms of those materials under service conditions among an ongoing Research and Development project. The main results are presented under the following headlines: selection of basic materials and manufacturing processes; aging processes (mechanical behavior during `lifetime`); design rules; non destructive examination during manufacturing process and during operation. The studies have been focused on epoxy pipings. The importance of strong quality insurance policy requirements are outlined. A study of the use of composite pipes in power plants (hydraulic, fossil fuel, and nuclear) in France and around the world (USA, Japan, Western Europe) are presented whether it be safety related or non safety-related applications. The different technical solutions for materials and manufacturing processes are presented and an economic comparison is made between steel and composite pipes. (author) 2 refs.

  6. Evaluation methods of vibration stress of small bore piping

    Energy Technology Data Exchange (ETDEWEB)

    Hiramatsu, Miki; Sasaki, Toru [Institute of Nuclear Safety System Inc., Mihama, Fukui (Japan)

    2001-09-01

    Fatigue fracture by vibration stress is one of the main causes of troubles which occur at small bore piping in nuclear power plants. Therefore at the plants they manage small bore piping using a method in which their vibration accelerations are measured and the vibration stresses are calculated. In this work, vibration tests for two sets of mock-ups simulating actual piping in the plants by sinusoidal oscillation and by that obtained at an actual plant were carried out, and then an evaluation method was developed to obtain proper value of vibration stress from the measured data by the vibration tests. In comparison of the vibration stress obtained from the measured acceleration with that directly measured using strain gauges, it is confirmed that accurate vibration stress can be evaluated by a formula in which the real center of gravity of small bore piping and the acceleration of main (system) piping are considered. (author)

  7. Calculation of the pipes failure probability of the Rcic system of a nuclear power station by means of software WinPRAISE 07; Calculo de la probabilidad de falla de tuberias del sistema RCIC de una central nuclear mediante el software WinPRAISE 07

    Energy Technology Data Exchange (ETDEWEB)

    Jasso G, J.; Diaz S, A.; Mendoza G, G.; Sainz M, E. [ININ, Carretera Mexico-Toluca s/n, 52750 Ocoyoacac, Estado de Mexico (Mexico); Garcia de la C, F. M., E-mail: angeles.diaz@inin.gob.mx [Comision Federal de Electricidad, Central Nucleoelectrica Laguna Verde, Km 44.5 Carretera Cardel-Nautla, 91476 Laguna Verde, Alto Lucero, Veracruz (Mexico)

    2014-10-15

    The growth and the cracks propagation by fatigue are a typical degradation mechanism that is presented in the nuclear industry as in the conventional industry; the unstable propagation of a crack can cause the catastrophic failure of a metallic component even with high ductility; for this reason, activities of programmed maintenance have been established in the industry using inspection and visual techniques and/or ultrasound with an established periodicity allowing to follow up to these growths, controlling the undesirable effects; however, these activities increase the operation costs; and in the peculiar case of the nuclear industry, they increase the radiation exposure to the participant personnel. The use of mathematical processes that integrate concepts of uncertainty, material properties and the probability associated to the inspection results, has been constituted as a powerful tool of evaluation of the component reliability, reducing costs and exposure levels. In this work the evaluation of the failure probability by cracks growth preexisting by fatigue is presented, in pipes of a Reactor Core Isolation Cooling system (Rcic) in a nuclear power station. The software WinPRAISE 07 (Piping Reliability Analysis Including Seismic Events) was used supported in the probabilistic fracture mechanics principles. The obtained values of failure probability evidenced a good behavior of the analyzed pipes with a maximum order of 1.0 E-6, therefore is concluded that the performance of the lines of these pipes is reliable even extrapolating the calculations at 10, 20, 30 and 40 years of service. (Author)

  8. Seismic analysis of piping systems subjected to multiple support excitations

    International Nuclear Information System (INIS)

    Sundararajan, C.; Vaish, A.K.; Slagis, G.C.

    1981-01-01

    The paper presents the results of a comparative study between the multiple response spectrum method and the time-history method for the seismic analysis of nuclear piping systems subjected to different excitation at different supports or support groups. First, the necessary equations for the above analysis procedures are derived. Then, three actual nuclear piping systems subjected to single and multiple excitations are analyzed by the different methods, and extensive comparisons of the results (stresses) are made. Based on the results, it is concluded that the multiple response spectrum analysis gives acceptable results as compared to the ''exact'', but much more costly, time-history analysis. 6 refs

  9. Experimental study on the vibrational characteristics of piping snubbers

    International Nuclear Information System (INIS)

    Kobatake, K.; Ooka, Y.; Suzuki, M.; Katsuki, T.; Hashimoto, T.

    1982-01-01

    Oil snubbers have been widely used for the anti-earthquake suports of piping systems in nuclear power plants. Several types of mechanical snubbers are now being considered. Vibration tests were performed on three models to obtain their fundamental characteristics by using a shaking table. From tests on a pendulum structure model, a piping model, and a vessel model, the equivalent stiffness and fundamental characteristics are estimated, and useful suggestions for applications are made

  10. Bayesian analysis of heat pipe life test data for reliability demonstration testing

    International Nuclear Information System (INIS)

    Bartholomew, R.J.; Martz, H.F.

    1985-01-01

    The demonstration testing duration requirements to establish a quantitative measure of assurance of expected lifetime for heat pipes was determined. The heat pipes are candidate devices for transporting heat generated in a nuclear reactor core to thermoelectric converters for use as a space-based electric power plant. A Bayesian analysis technique is employed, utilizing a limited Delphi survey, and a geometric mean accelerated test criterion involving heat pipe power (P) and temperature (T). Resulting calculations indicate considerable test savings can be achieved by employing the method, but development testing to determine heat pipe failure mechanisms should not be circumvented

  11. Preliminary Study for Development of Welds Integrity Verification Equipment for the Small Bore Piping

    International Nuclear Information System (INIS)

    Choi, Geun Suk; Lee, Jong Eun; Ryu, Jung Hoon; Cho, Kyoung Youn; Sohn, Myoung Sung; Lee, Sanghoon; Sung, Gi Ho; Cho, Hong Seok

    2016-01-01

    It has been reported leakage accident of small-bore piping in Korea. Leakage accident of small-bore pipes are those that will increase due to the aging of the nuclear power plant. And if leakage of the pipe is repaired by using the clamping device when it occur accident, it is economically benefits. The clamping device is a fastening device used to hold or secure objects tightly together to prevent movement or separation through the application of inward pressure. However, when the accident occurs, it can't immediately respond because maintenance and repairing technology are not institutionalized in KEPIC. Thus it appears an economic loss. The technology for corresponding thereto is necessary for the safety of the operation of nuclear power plants. The purpose of this research is to develop an online repairing technology of socket welded pipe and vibration monitoring system of small-bore pipe in the nuclear power plant. Specifically, detailed studies are as follows : • Development of weld overlay method of safety class socket welded connections • Development of Mechanical Clamping Devices for Safety Class 2, 3 small-bore pipe. The purpose of this study is to develop an online repairing technology of socket welded pipe and vibration monitoring system of small-bore pipe, resulting in degraded plant systems. And it is necessary to institutionalize the technology. The fatigue crack testing of socket welded overlay will be performed and fatigue life evaluation method will be developed in second year. Also prototype fabrication of mechanical clamping device will be completed. Base on final goal, the intent is to propose practical evaluation tools, design and fabrication methods for socket welded connection integrity. And result of this study is to development of KEPIC code case approved technology for on-line repairing system of socket welded connection and fabrication of mechanical clamping device

  12. Pipe-to-pipe impact program

    International Nuclear Information System (INIS)

    Alzheimer, J.M.; Bampton, M.C.C.; Friley, J.R.; Simonen, F.A.

    1984-06-01

    This report documents the tests and analyses performed as part of the Pipe-to-Pipe Impact (PTPI) Program at the Pacific Northwest Laboratory. This work was performed to assist the NRC in making licensing decisions regarding pipe-to-pipe impact events following postulated breaks in high energy fluid system piping. The report scope encompasses work conducted from the program's start through the completion of the initial hot oil tests. The test equipment, procedures, and results are described, as are analytic studies of failure potential and data correlation. Because the PTPI Program is only partially completed, the total significance of the current test results cannot yet be accurately assessed. Therefore, although trends in the data are discussed, final conclusions and recommendations will be possible only after the completion of the program, which is scheduled to end in FY 1984

  13. Piping stress analysis with personal computers

    International Nuclear Information System (INIS)

    Revesz, Z.

    1987-01-01

    The growing market of the personal computers is providing an increasing number of professionals with unprecedented and surprisingly inexpensive computing capacity, which if using with powerful software, can enhance immensely the engineers capabilities. This paper focuses on the possibilities which opened in piping stress analysis by the widespread distribution of personal computers, on the necessary changes in the software and on the limitations of using personal computers for engineering design and analysis. Reliability and quality assurance aspects of using personal computers for nuclear applications are also mentioned. The paper resumes with personal views of the author and experiences gained during interactive graphic piping software development for personal computers. (orig./GL)

  14. Some considerations for establishing seismic design criteria for nuclear plant piping

    International Nuclear Information System (INIS)

    Chen, W.P.; Chokshi, N.C.

    1997-01-01

    The Energy Technology Engineering Center (ETEC) is providing assistance to the U.S. NRC in developing regulatory positions on the seismic analysis of piping. As part of this effort, ETEC previously performed reviews of the ASME Code, Section III piping seismic design criteria as revised by the 1994 Addenda. These revised criteria were based on evaluations by the ASME Special Task Group on Integrated Piping Criteria (STGIPC) and the Technical Core Group (TCG) of the Advanced Reactor Corporation (ARC) of the earlier joint Electric Power Research Institute (EPRI)/NRC Piping ampersand Fitting Dynamic Reliability (PFDR) program. Previous ETEC evaluations reported at the 23rd WRSM of seismic margins associated with the revised criteria are reviewed. These evaluations had concluded, in part, that although margins for the timed PFDR tests appeared acceptable (>2), margins in detuned tests could be unacceptable (<1). This conclusion was based primarily on margin reduction factors (MRFs) developed by the ASME STGIPC and ARC/TCG from realistic analyses of PFDR test 36. This paper reports more recent results including: (1) an approach developed for establishing appropriate seismic margins based on PRA considerations, (2) independent assessments of frequency effects on margins, (3) the development of margins based on failure mode considerations, and (4) the implications of Code Section III rules for Section XI

  15. Development of an evaluation method for seismic isolation systems of nuclear power facilities. Development of crossover piping design method for seismic isolation systems

    International Nuclear Information System (INIS)

    Otoyo, Teruyoshi; Otani, Akihito; Otani, Akihito; Fukushima, Shunsuke; Jimbo, Masakazu; Yamamoto, Tomofumi; Sakakida, Takaaki; Onishi, Shigenobu

    2014-01-01

    In the conceptual design of seismic isolation systems of nuclear power facilities, there exist two types of installation. The first type is to isolate both the reactor and the turbine buildings, the other is to isolate only the reactor building. In the latter type, the crossover piping, which installed between the isolated and the non-isolated buildings, is excited and deformed by the different motions of those buildings. In this study, shaking tests of 1/10 scaled model of the main steam piping and FEM analyses under multiple support excitation conditions have been performed to investigate the vibration behavior of the crossover piping. It was confirmed that modal time-history analyses could be in good agreement with the shaking test results. Also, Numerous combination methods were investigated by comparing response spectrum analyses and modal time-history analyses. In conclusion, response spectrum analyses using SRSS combinations could correspond to time-history analyses. (author)

  16. Piping data bank and erection system of Angra 2: structure, computational resources and systems

    International Nuclear Information System (INIS)

    Abud, P.R.; Court, E.G.; Rosette, A.C.

    1992-01-01

    The Piping Data Bank of Angra 2 called - Erection Management System - Was developed to manage the piping erection of the Nuclear Power Plant of Angra 2. Beyond the erection follow-up of piping and supports, it manages: the piping design, the material procurement, the flow of the fabrication documents, testing of welds and material stocks at the Warehouse. The works developed in the sense of defining the structure of the Data Bank, Computational Resources and System are here described. (author)

  17. A numerical analysis on thermal stratification phenomenon in the SCS piping

    International Nuclear Information System (INIS)

    Kim, Kwang Chu; Park, Man Heung; Youm, Hag Ki; Lee, Sun Ki; Kim, Tae Ryong

    2003-01-01

    A numerical study is performed to estimate on an unsteady thermal stratification phenomenon in the Shutdown Cooling System(SCS) piping branched off the Reactor Coolant System(RCS) piping of Nuclear Power Plant. In the results, turbulent penetration reaches to the 1 st isolation valve. At 500sec, the maximum temperature difference between top and bottom inner wall in piping is observed at the starting point of horizontal piping passing elbow. The temperature of coolant in the rear side of the 1 st isolation valve disk is very slowly increased and the inflection point in temperature difference curve for time is observed at 2700sec. At the beginning of turbulent penetration from RCS piping, the fast inflow generates the higher temperature for the inner wall than the outer wall in the SCS piping. In the case the hot-leg injection piping and the drain piping are connected to the SCS piping, the effect of thermal stratification in the SCS piping is decreased due to an increase of heat loss compared with no connection case. The hot-leg injection piping affected by turbulent penetration from the SCS piping has a severe temperature difference that exceeds criterion temperature stated in reference. But the drain piping located in the rear compared with the hot-leg injection piping shows a tiny temperature difference. In a viewpoint of designer, for the purpose of decreasing the thermal stratification effect, it is necessary to increase the length of vertical piping in the SCS piping, and to move the position of the hot-leg injection piping backward

  18. Identification of G-phase in aged cast CF 8 type stainless steel

    International Nuclear Information System (INIS)

    Bentley, J.; Miller, M.K.; Brenner, S.S.; Spitznagel, J.A.

    1985-01-01

    The microstructure of as-cast and aged CF 8 type stainless steel, used for the primary coolant pipes in pressurized light-water nuclear reactors, is being studied by analytical electron microscopy (AEM) and atom probe field-ion microscopy (APFIM). The phase transformations of the ferrite (approx. 19 vol % of the duplex structure) that occur after aging at 673 K for 7500 h are described by Miller et al. The present work deals with the identification of G-phase (prototype compound Ni 16 Ti 6 Si 7 ) observed in the ferrite of aged material. 2 references, 3 figures

  19. Ferrite HOM Absorber for the RHIC ERL

    Energy Technology Data Exchange (ETDEWEB)

    Hahn,H.; Choi, E.M.; Hammons, L.

    2008-10-01

    A superconducting Energy Recovery Linac is under construction at Brookhaven National Laboratory to serve as test bed for RHIC upgrades. The damping of higher-order modes in the superconducting five-cell cavity for the Energy-Recovery linac at RHIC is performed exclusively by two ferrite absorbers. The ferrite properties have been measured in ferrite-loaded pill box cavities resulting in the permeability values given by a first-order Debye model for the tiled absorber structure and an equivalent permeability value for computer simulations with solid ring dampers. Measured and simulated results for the higher-order modes in the prototype copper cavity are discussed. First room-temperature measurements of the finished niobium cavity are presented which confirm the effective damping of higher-order modes in the ERL. by the ferrite absorbers.

  20. Response of buried pipes to missile impact

    International Nuclear Information System (INIS)

    Vardanega, C.; Cremonini, M.G.; Mirone, M.; Luciani, A.

    1989-01-01

    This paper presents the methodology and results of the analyses carried out to determine an effective layout and the dynamic response of safety related cooling water pipes, buried in backfill, for the Alto Lazio Nuclear Power Plant in Italy, subjected to missile impact loading at the backfill surface. The pipes are composed of a steel plate encased in two layers of high-quality reinforced concrete. The methodology comprises three steps. The first step is the definition of the 'free-field' dynamic response of the backfill soil, not considering the presence of the pipes, through a dynamic finite element direct integration analysis utilizing an axisymmetric model. The second step is the pipe-soil interaction analysis, which is conducted by utilizing the soil displacement and stress time-histories obtained in the previous steps. Soil stress time-histories, combined with the geostatic and other operational stresses (such as those due to temperature and pressure), are used to obtain the actions in the pipe walls due to ring type deformation. For the third step, the analysis of the beam type response, a lumped parameter model is developed which accounts for the soil stiffness, the pipe characteristics and the position of the pipe with respect to the impact area. In addition, the effect of the presence of large concrete structures, such as tunnels, between the ground surface and the pipe is evaluated. The results of the structural analyses lead to defining the required steel thickness and also allow the choice of appropriate embedment depth and layout of redundant lines. The final results of the analysis is not only the strength verification of the pipe section, but also the definition of an effective layout of the lines in terms of position, depth, steel thickness and joint design. (orig.)

  1. Materials Integrity Analysis for Application of Hyper Duplex Stainless Steels to Korean Nuclear Power Plants

    International Nuclear Information System (INIS)

    Chang, Hyun Young; Park, Heung Bae; Park, Yong Soo; Kim, Soon Tae; Kim, Young Sik; Kim, Kwang Tae; Jhang, Yoon Young

    2010-01-01

    Hyper duplex stainless steels have been developed in Korea for the purpose of application to the seawater system of Korean nuclear power plants. This system supplies seawater to cooling water heat exchanger tubes, related pipes and chlorine injection system. In normal operation, seawater is supplied to heat exchanger through the exit of circulating water pump headers, and the heat exchanged sea water is extracted to the discharge pipes in circulating water system connected to the circulating water discharge lines. The high flow velocity of some part of seawater system in nuclear power plants accelerates damages of components. Therefore, high strength and high corrosion resistant steels need to be applied for this environment. Hyper duplex stainless steel (27Cr-7.0Ni-2.5Mo-3.2W-0.35N) has been newly developed in Korea and is being improved for applying to nuclear power plants. In this study, the physical and mechanical properties and corrosion resistance of newly developed materials are quantitatively evaluated in comparative to commercial stainless steels in other countries. The properties of weld and HAZ (heat affected zone) are analyzed and the best compositions are suggested. The optimum conditions in welding process are derived for ensuring the volume fraction of ferrite(α) and austenite(γ) in HAZ and controlling weld cracks. For applying these materials to the seawater heat exchanger, CCT and CPT in weldments are measured. As a result of all experiments, it was found that the newly developed hyper duplex stainless steel WREMBA has higher corrosion resistance and mechanical properties than those of super austenitic stainless steels including welded area. It is expected to be a promising material for seawater systems of Korean nuclear power plants

  2. The installation welding of pressure water reactor coolant piping

    International Nuclear Information System (INIS)

    Deng Feng

    2010-01-01

    Large pressure water reactor nuclear power plants are constructing in our country. There are three symmetry standard loops in reactor coolant system. Each loop possesses a steam generator and a primary poop, in which one of the loops is equipped with a pressurizer. These components are connected with reactor pressure vessel by installation welding of the coolant piping. The integrity of reactor coolant pressure boundary is the second barrier to protect the radioactive substance from release to outside, so the safe operation of nuclear power plant is closely related to the quality of coolant piping installation welding. The heavy tube with super low carbon content austenitic stainless steel is selected for coolant piping. This kind of material has good welding behavior, but the poor thermal conductivity, the big liner expansion coefficient and the big welding deformation will cause bigger welding stress. To reduce the welding deformation, to control the dimension precision, to reduce the residual stress and to ensure the welding quality the installation sequence should be properly designed and the welding technology should be properly controlled. (authors)

  3. Assessment of Pipe Wall Loss Using Guided Wave Testing

    International Nuclear Information System (INIS)

    Joo, Kyung Mun; Jin, Seuk Hong; Moon, Yong Sig

    2010-01-01

    Flow accelerated corrosion(FAC) of carbon steel pipes in nuclear power plants has been known as one of the major degradation mechanisms. It could have bad influence on the plant reliability and safety. Also detection of FAC is a significant cost to the nuclear power plant because of the need to remove and replace insulation. Recently, the interest of the guided wave testing(GWT) has grown because it allows long range inspection without removing insulation of the pipe except at the probe position. If GWT can be applied to detection of FAC damages, it will can significantly reduce the cost for the inspection of the pipes. The objective of this study was to determine the capability of GWT to identify location of FAC damages. In this paper, three kinds of techniques were used to measure the amplitude ratio between the first and the second welds at the elbow area of mock-ups that contain real FAC damages. As a result, optimal inspection technique and minimum detectability to detect FAC damages drew a conclusion

  4. Development of carbon steel with superior resistance to wall thinning and fracture for nuclear piping system

    International Nuclear Information System (INIS)

    Rhee, Chang Kyu; Lee, Min Ku; Park, Jin Ju

    2010-07-01

    Carbon steel is usually used for piping for secondary coolant system in nuclear power plant because of low cost and good machinability. However, it is generally reported that carbon steel was failed catastrophically because of its low resistance to wall thinning and fracture toughness. Especially, flow accelerated corrosion (FAC) is one of main problems of the wall thinning of piping in the nuclear power plant. Therefore, in this project, fabrication technology of new advanced carbon steel materials modified by dispersion of nano-carbide ceramics into the matrix is developed first in order to improve the resistance to wall thinning and fracture toughness drastically compared to the conventional one. In order to get highly wettable fine TiC ceramic particles into molten metal, the micro-sized TiC particles were first mechanically milled by Fe (MMed TiC/Fe) in a high energy ball mill machine in Ar gas atmosphere, and then mixed with surfactant metal elements (Sn, Cr, Ni) to obtain better wettability, as this lowered surface tension of the carbon steel melt. According to microscopic images revealed that an addition of MMed TiC/Fe-surfactant mixed powders favorably disperses the fine TiC particles in the carbon steel matrix. It was also found that the grain size refinement of the cast matrix is achieved remarkably when fine TiC particles were added due to the fact that they act as nucleation sites during the solidification process. As a results, a cast carbon steel dispersed with fine TiC particles shows improved mechanical properties such as hardness, tensile strength and cavitation resistance compared to that of without particles. However, the slight decrease of toughness was found

  5. Fatigue damage evaluation of stainless steel pipes in nuclear power plants using positron annihilation lineshape analysis

    Energy Technology Data Exchange (ETDEWEB)

    Kawaguchi, Yasuhiro [Institute of Nuclear Safety System, Inc., Mihama, Fukui (Japan); Nakamura, Noriko; Yusa, Satoru [Ishikawajima-Harima Heavy Industries Co., Tokyo (Japan)

    2002-09-01

    Since positron annihilation lineshape analysis can evaluate the degree of fatigue damage by detecting defects such as dislocations in metals, we applied this method to evaluate that in a type 316 stainless steel pipe which was used in the primary system of a nuclear power plant. Using {sup 68}Ge as a positron source, an energy spread of annihilation gamma ray peak from the material was measured and expressed as the S-parameter. Actual plant material cut from a surge line pipe of a pressurizer in a pressurized water reactor type nuclear power plant was measured by positron annihilation lineshape analysis and the S-parameter was obtained. Comparing the S-parameter with a relationship between the S-parameter and fatigue life ratio of the type 316 stainless steel, we evaluated the degree of fatigue damage of the actual material. Furthermore, to verify the evaluation, microstructures of the actual material were investigated with TEM (transmission electron microscope) to observe dislocation densities. As a result, a change in the S-parameter of the actual material from standard as-received material (type 316 stainless steel) was in the range from -0.0013 to 0.0014, while variations in the S-parameter of the standard as-received material were about {+-}0.002, and hence the differences between the actual material and the as-received material were negligible. Moreover, the dislocation density of the actual plant material observed with TEM was almost the same as that of the as-received one. In conclusion, we could confirm the applicability of the positron annihilation lineshape analysis to fatigue damage evaluation of stainless steel. (author)

  6. Intragranular ferrite morphologies in medium carbon vanadium-microalloyed steel

    Directory of Open Access Journals (Sweden)

    Fadel A.

    2013-01-01

    Full Text Available The aim of this work was to determine TTT diagram of medium carbon V-N micro-alloyed steel with emphasis on the development of intragranular ferrite morphologies. The isothermal treatment was carried out at 350, 400, 450, 500, 550 and 600°C. These treatments were interrupted at different times in order to analyze the evolution of the microstructure. Metallographic evaluation was done using optical and scanning electron microscopy (SEM. The results show that at high temperatures (≥ 500°C polygonal intragranulary nucleated ferrite idiomorphs, combined with grain boundary ferrite and pearlite were produced and followed by an incomplete transformation phenomenon. At intermediate temperatures (450, 500°C an interloced acicular ferrite (AF microstructure is produced, and at low temperatures (400, 350°C the sheave of parallel acicular ferrite plates, similar to bainitic sheaves but intragranularly nucleated were observed. In addition to sheaf type acicular ferrite, the grain boundary nucleated bainitic sheaves are observed. [Projekat Ministartsva nauke Republike Srbije, br. OI174004

  7. Temperature dependent viscosity of cobalt ferrite / ethylene glycol ferrofluids

    Science.gov (United States)

    Kharat, Prashant B.; Somvanshi, Sandeep B.; Kounsalye, Jitendra S.; Deshmukh, Suraj S.; Khirade, Pankaj P.; Jadhav, K. M.

    2018-04-01

    In the present work, cobalt ferrite / ethylene glycol ferrofluid is prepared in 0 to 1 (in the step of 0.2) volume fraction of cobalt ferrite nanoparticles synthesized by co-precipitation method. The XRD results confirmed the formation of single phase spinel structure. The Raman spectra have been deconvoluted into individual Lorentzian peaks. Cobalt ferrite has cubic spinel structure with Fd3m space group. FT-IR spectra consist of two major absorption bands, first at about 586 cm-1 (υ1) and second at about 392 cm-1 (υ2). These absorption bands confirm the formation of spinel-structured cobalt ferrite. Brookfield DV-III viscometer and programmable temperature-controlled bath was used to study the relationship between viscosity and temperature. Viscosity behavior with respect to temperature has been studied and it is revealed that the viscosity of cobalt ferrite / ethylene glycol ferrofluids increases with an increase in volume fraction of cobalt ferrite. The viscosity of the present ferrofluid was found to decrease with increase in temperature.

  8. Pipe explorer trademark: Overview, applications, and recent developments

    International Nuclear Information System (INIS)

    Kendrick, D.T.; Cremer, C.D.

    1996-01-01

    As the Department of Energy (DOE) continues to dismantle its nuclear process facilities, site managers throughout the complex must employ the safest and most cost effective means of disposing or remediating hundreds of miles of potentially contaminated piping and duct work. Much of this is buried or encased, making quantification of contamination levels inside the pipes extremely difficult. Without adequate characterization, it is usually necessary to assume the piping is contaminated and to extract and dispose of it accordingly. For buried drain lines this approach can cost on the order of $1,200/ft and is often unnecessary as residual contamination levels are below free release criteria. The Science ampersand Engineering Associates, Inc. (SEA) Pipe Explorer trademark technology offers a simple and effective approach of transporting characterization tools into pipes and ducts so that these costs can be avoided. The system uses a pneumatically operated tubular membrane to tow radiation detectors and video cameras into pipes while simultaneously providing a clean conduit for the sensors to travel through. This paper describes the operation of the system, the DOE sites where it has been used, and the cost savings that have resulted from its use. In addition, recently added features to the technology, such as the ability to perform alpha and video surveys, are discussed

  9. Recent evaluations of crack-opening-area in circumferentially cracked pipes

    Energy Technology Data Exchange (ETDEWEB)

    Rahman, S.; Brust, F.; Ghadiali, N.; Wilkowski, G.; Miura, N.

    1997-04-01

    Leak-before-break (LBB) analyses for circumferentially cracked pipes are currently being conducted in the nuclear industry to justify elimination of pipe whip restraints and jet shields which are present because of the expected dynamic effects from pipe rupture. The application of the LBB methodology frequently requires calculation of leak rates. The leak rates depend on the crack-opening area of the through-wall crack in the pipe. In addition to LBB analyses which assume a hypothetical flaw size, there is also interest in the integrity of actual leaking cracks corresponding to current leakage detection requirements in NRC Regulatory Guide 1.45, or for assessing temporary repair of Class 2 and 3 pipes that have leaks as are being evaluated in ASME Section XI. The objectives of this study were to review, evaluate, and refine current predictive models for performing crack-opening-area analyses of circumferentially cracked pipes. The results from twenty-five full-scale pipe fracture experiments, conducted in the Degraded Piping Program, the International Piping Integrity Research Group Program, and the Short Cracks in Piping and Piping Welds Program, were used to verify the analytical models. Standard statistical analyses were performed to assess used to verify the analytical models. Standard statistical analyses were performed to assess quantitatively the accuracy of the predictive models. The evaluation also involved finite element analyses for determining the crack-opening profile often needed to perform leak-rate calculations.

  10. Design evaluation on sodium piping system and comparison of the design codes

    International Nuclear Information System (INIS)

    Lee, Dong Won; Jeong, Ji Young; Lee, Yong Bum; Lee, Hyeong Yeon

    2015-01-01

    A large-scale sodium test loop of STELLA-1 (Sodium integral effect test loop for safety simulation and assessment) with two main piping systems has been installed at KAERI. In this study, design evaluations on the main sodium piping systems in STELLA-1 have been conducted according to the DBR (design by rule) codes of the ASME B31.1 and RCC-MRx RB-3600. In addition, design evaluations according to the DBA (design by analysis) code of the ASME Section III Subsection NB-3200 have been conducted. The evaluation results for the present piping systems showed that results from the DBR codes were more conservative than those from the DBA code, and among the DBR codes, the non-nuclear code of the ASME B31.1 was more conservative than the French nuclear DBR code of the RCC-MRx RB-3600. The conservatism on the DBR codes of the ASME B31.1 and RCC-MRx RB-3600 was quantified based on the present sodium piping analyses.

  11. Design evaluation on sodium piping system and comparison of the design codes

    Energy Technology Data Exchange (ETDEWEB)

    Lee, Dong Won; Jeong, Ji Young; Lee, Yong Bum; Lee, Hyeong Yeon [KAERI, Daejeon (Korea, Republic of)

    2015-03-15

    A large-scale sodium test loop of STELLA-1 (Sodium integral effect test loop for safety simulation and assessment) with two main piping systems has been installed at KAERI. In this study, design evaluations on the main sodium piping systems in STELLA-1 have been conducted according to the DBR (design by rule) codes of the ASME B31.1 and RCC-MRx RB-3600. In addition, design evaluations according to the DBA (design by analysis) code of the ASME Section III Subsection NB-3200 have been conducted. The evaluation results for the present piping systems showed that results from the DBR codes were more conservative than those from the DBA code, and among the DBR codes, the non-nuclear code of the ASME B31.1 was more conservative than the French nuclear DBR code of the RCC-MRx RB-3600. The conservatism on the DBR codes of the ASME B31.1 and RCC-MRx RB-3600 was quantified based on the present sodium piping analyses.

  12. Seismic ratchet-fatigue failure of piping systems

    International Nuclear Information System (INIS)

    Severud, L.K.; Anderson, M.J.; Lindquist, M.R.; Weiner, E.O.

    1987-01-01

    Failures of piping systems during earthquakes have been rare. Those that have failed were either made of brittle material such as cast iron, were rigid systems between major components where component relative seismic motions tore the pipe out of the component, or were high pressure systems where a ratchet-fatigue fracture followed a local bulging of the pipe diameter. Tests to failure of an unpressurized 3-inch and a pressurized 6-inch diameter carbon steel nuclear pipe systems subjected to high-level shaking have been accomplished. The high-level shaking loads needed to cause failure were much higher than ASME Code rules would permit with present design limits. Failure analyses of these tests are presented and correlated to the test results. It was found that failure of the unpressurized system could be correlated well with standard ASME type fatigue analysis predictions. Moreover, the pressurized system failure occured in significantly less load cycles than predicted by standard fatigue analysis. However, a ratchet-fatigue and ductility exhaustion analysis of the pressurized system did correlate reasonably well. These findings indicate modifications to design analysis methods and the present ASME Code piping design rules to reduce unneeded conservatisms and to cover the ratchet-fatigue failure mode may be appropriate

  13. Damping test results for straight sections of 3-inch and 8-inch unpressurized pipes

    International Nuclear Information System (INIS)

    Ware, A.G.; Thinnes, G.L.

    1984-04-01

    EG and G Idaho is assisting the Nuclear Regulatory Commission and the Pressure Vessel Research Committee in supporting a final position on revised damping values for structural analyses of nuclear piping systems. As part of this program, a series of vibrational tests on unpressurized 3-in. and 8-in. Schedule 40 carbon steel piping was conducted to determine the changes in structural damping due to various parametric effects. The 33-ft straight sections of piping were supported at the ends. Additionally, intermediate supports comprising spring, rod, and constant-force hangers, as well as a sway brace and snubbers, were used. Excitation was provided by low-force-level hammer impacts, a hydraulic shaker, and a 50-ton overhead crane for snapback testing. Data was recorded using acceleration, strain, and displacement time histories. This report presents test results showing the effect of stress level and type of supports on structural damping in piping

  14. DARHT-II Injector Transients and the Ferrite Damper

    Energy Technology Data Exchange (ETDEWEB)

    Waldron, Will; Reginato, Lou; Chow, Ken; Houck, Tim; Henestroza, Enrique; Yu, Simon; Kang, Michael; Briggs, Richard

    2006-08-04

    This report summarizes the transient response of the DARHT-II Injector and the design of the ferrite damper. Initial commissioning of the injector revealed a rise time excited 7.8 MHz oscillation on the diode voltage and stalk current leading to a 7.8 MHz modulation of the beam current, position, and energy. Commissioning also revealed that the use of the crowbar to decrease the voltage fall time excited a spectrum of radio frequency modes which caused concern that there might be significant transient RF electric field stresses imposed on the high voltage column insulators. Based on the experience of damping the induction cell RF modes with ferrite, the concept of a ferrite damper was developed to address the crowbar-excited oscillations as well as the rise-time-excited 7.8 MHz oscillations. After the Project decided to discontinue the use of the crowbar, further development of the concept focused exclusively on damping the oscillations excited by the rise time. The design was completed and the ferrite damper was installed in the DARHT-II Injector in February 2006. The organization of this report is as follows. The suite of injector diagnostics are described in Section 2. The data and modeling of the injector transients excited on the rise-time and also by the crowbar are discussed in Section 3; the objective is a concise summary of the present state of understanding. The design of the ferrite damper, and the small scale circuit simulations used to evaluate the ferrite material options and select the key design parameters like the cross sectional area and the optimum gap width, are presented in Section 4. The details of the mechanical design and the installation of the ferrite damper are covered in Section 5. A brief summary of the performance of the ferrite damper following its installation in the injector is presented in Section 6.

  15. Refurbishment of the IEAR1 primary coolant system piping supports

    International Nuclear Information System (INIS)

    Fainer, Gerson; Faloppa, Altair A.; Oliveira, Carlos A. de; Mattar Neto, Miguel

    2015-01-01

    A partial replacement of the IEA-R1 piping system was concluded in 2014. This paper presents the study and the structural analysis of the IEA-R1 primary circuit piping supports, considering all the changes involved in the replacement. The IEA-R1 is a nuclear reactor for research purposes designed by Babcox-Willcox that is operated by IPEN since 1957. The reactor life management and modernization program is being conducted for the last two decades and already resulted in a series of changes, especially on the reactor coolant system. This set of components, divided in primary and secondary circuit, is responsible for the circulation of water into the core to remove heat. In the ageing management program that includes regular inspection, some degradation was observed in the primary piping system. As result, the renewing of the piping system was conducted in 2014. Moreover the poor condition of some original piping supports gave rise to the refurbishment of all piping supports. The aim of the present work is to review the design of the primary system piping supports taking into account the current conditions after the changes and refurbishment. (author)

  16. Secondary pipe rupture at Mihama unit 3

    International Nuclear Information System (INIS)

    Hajime Ito; Takehiko Sera

    2005-01-01

    The secondary system pipe rupture occurred on August 9, 2004, while Mihama unit 3 was operating at the rated thermal power. The rupture took place on the condensate line-A piping between the No.4 LP heater and the deaerator, downstream of an orifice used for measuring the condensate flux. The pipe is made of carbon steel, and normally has 558.8 mm diameter and 10 mm thickness. The pipe wall had thinned to 0.4 mm at the point of minimum thickness. It is estimated that the disturbed flow of water downstream of the orifice caused erosion/corrosion and developed wall thinning, leading to a rupture at the thinnest section under internal pressure, about 1MPa. Observation of the pipe internal surface revealed a scale-like pattern typical in this kind of phenomenon. Eleven workers who were preparing for an annual outage that was to start from August 14 suffered burn injuries, of who five died. Since around 1975, we, Kansai Electric, have been checking pipe wall thickness while focusing on the thinning of carbon steel piping in the secondary system. Summarizing the results from such investigation and reviewing the latest technical knowledge including operating experience from overseas utilities, we compiled the pipe thickness management guideline for PWR secondary pipes, 1990. The pipe section that ruptured at the Mihama unit 3 should have been included within the inspection scopes according to the guideline but was not registered on the inspection list. It had not been corrected for almost thirty years. As the result, this pipe section had not been inspected even once since the beginning of the plant operation, 1976. It seems that the quality assurance and maintenance management had not functioned well regarding the secondary system piping management, although we were responsible for the safety of nuclear power plants as licensee. We will review the secondary system inspection procedure and also improve the pipe thickness management guideline. And also, we would replace

  17. The construction for remediation work of contaminated water at Fukushima Daiichi Nuclear Power Plant. Closure work of seawater piping trench and screen pump chamber

    International Nuclear Information System (INIS)

    Hibi, Yasuki; Yanai, Shuji; Nishikori, Kazumasa; Soma, Yu

    2016-01-01

    In the seawater piping trench of Fukushima Daiichi Nuclear Power Plant, highly contaminated water was stagnating, which flowed in from the reactor building and turbine building affected by the tsunami caused by the Tohoku Pacific Ocean Earthquake. Although the screen pump chamber, adjacent to the seawater piping trench, escaped from the inflow and retention of contaminated water, it was exposed to the leakage risk of contaminated water from the seawater piping trench. As measures against these conditions, the following emergency work was applied: (1) contaminated water replacement and removal operation based on the implantation of fillers into the seawater piping trench, and (2) closure operation of the screen pump chamber by implanting fillers into the screen pump chamber. In face of these operations, long-distance underwater flow special filler, high workable concrete, and underwater non-separation concrete were developed and used. The implantation of the long-distance underwater-flow special fillers into the seawater piping trench was successfully completed by filling to the tunnel top without gap and without water head difference, and by preventing the occurrence of movement or water path formation of the fillers in the initial curing process. Other fillers were also able to be implanted as planned. The leakage risk of contaminated water to the periphery could be suppressed to a large extent by this work. (A.O.)

  18. Automated numerical simulation of cracked plates, pipes and elbows

    International Nuclear Information System (INIS)

    Reddy, Babu; Sreehari Kumar, B.; Bhate, S.R.; Kushwaha, H.S.

    2008-01-01

    In the nuclear industry, piping components are one of the key elements participating in its operation. Integrity of structural tubes and pipes plays a major role in nuclear power plants. The ideal procedure to ensure this aspect would be to conduct experimental studies on pilot/test specimens. However, it may not always be feasible to carry out the experimental investigation, as it requires pre-requisite infrastructure which may not be economically viable. This makes it imperative to conduct numerical simulations of the same particularly in the study of presence of cracks in the critical components. While performing the effect of cracks, the quality of the finite element mesh nearer to the crack tip plays a critical role while estimating J-integral value. The designer is often familiar with design methodology only and he obviously requires a convenient and reliable numerical tool to model and perform the analysis. In this context, an effort has been made in NISA, the general purpose finite element software, to automate the generation of FE meshes for a set of pre-defined components with different crack configurations. To simplify the procedure of FE mesh generation, analysis, and post processing, a graphical user interface (GUI) has been developed accordingly. This paper discusses the automated numerical simulation of plates and pipes with different crack configurations. This simulation software is also designed to help parametric study of cracked pipes. (author)

  19. Probabilistic pipe fracture evaluations for leak-rate-detection applications

    International Nuclear Information System (INIS)

    Rahman, S.; Ghadiali, N.; Paul, D.; Wilkowski, G.

    1995-04-01

    Regulatory Guide 1.45, open-quotes Reactor Coolant Pressure Boundary Leakage Detection Systems,close quotes was published by the U.S. Nuclear Regulatory Commission (NRC) in May 1973, and provides guidance on leak detection methods and system requirements for Light Water Reactors. Additionally, leak detection limits are specified in plant Technical Specifications and are different for Boiling Water Reactors (BWRs) and Pressurized Water Reactors (PWRs). These leak detection limits are also used in leak-before-break evaluations performed in accordance with Draft Standard Review Plan, Section 3.6.3, open-quotes Leak Before Break Evaluation Proceduresclose quotes where a margin of 10 on the leak detection limit is used in determining the crack size considered in subsequent fracture analyses. This study was requested by the NRC to: (1) evaluate the conditional failure probability for BWR and PWR piping for pipes that were leaking at the allowable leak detection limit, and (2) evaluate the margin of 10 to determine if it was unnecessarily large. A probabilistic approach was undertaken to conduct fracture evaluations of circumferentially cracked pipes for leak-rate-detection applications. Sixteen nuclear piping systems in BWR and PWR plants were analyzed to evaluate conditional failure probability and effects of crack-morphology variability on the current margins used in leak rate detection for leak-before-break

  20. Development of an on-site measurement method for residual stress in primary system piping of nuclear power plants

    International Nuclear Information System (INIS)

    Maekawa, Akira; Takahashi, Shigeru; Fujiwara, Masaharu

    2014-01-01

    In residual stress measurement for large-scale pipes and vessels in high radiation areas and highly contaminated areas of nuclear plants, it is difficult to bring the radioactivated pipes and vessels out of the areas as they are. If they can brought out, it is very burdensome to handle them for the measurement. Development of an on-site measurement method of residual stress which can be quickly applied and has sufficient measurement accuracy is desirable. In this study, a new method combining an electric discharge skim-cut method with a microscopic strain measurement method using markers was proposed to realize the on-site residual stress measurement on pipes in high radiation areas and highly contaminated areas. In the electric discharge skim-cut method, a boat-type sample is skimmed out of a pipe outer/inner surface using electric discharge machining and released residual stress is measured. The on-site measurement of residual stress by the method can be done using a small, portable electric discharge machine. In the microscopic strain measurement method using markers, the residual stress is estimated by microscopic measurement of the distance between markers after the stress release. The combination of both methods can evaluate the residual stress with the same accuracy as conventional methods offer and it can achieve reduction of radiation exposure in the measurement because the work is done simply and rapidly. In this study, the applicability of the electric discharge skim-cut method was investigated because the applicability of the microscopic strain measurement method using markers was confirmed previously. The experimental examination clarified the applicable conditions for the residual stress measurement with the same accuracy as the conventional methods. Furthermore, the electric discharge machining conditions using pure water as the machining liquid was found to eliminate the amount of liquid radioactive waste completely. (author)

  1. Development of reliability-based load and resistance factor design methods for piping

    International Nuclear Information System (INIS)

    Ayyub, Bilal M.; Hill, Ralph S. III; Balkey, Kenneth R.

    2003-01-01

    Current American Society of Mechanical Engineers (ASME) nuclear codes and standards rely primarily on deterministic and mechanistic approaches to design. The American Institute of Steel Construction and the American Concrete Institute, among other organizations, have incorporated probabilistic methodologies into their design codes. ASME nuclear codes and standards could benefit from developing a probabilistic, reliability-based, design methodology. This paper provides a plan to develop the technical basis for reliability-based, load and resistance factor design of ASME Section III, Class 2/3 piping for primary loading, i.e., pressure, deadweight and seismic. The plan provides a proof of concept in that LRFD can be used in the design of piping, and could achieve consistent reliability levels. Also, the results from future projects in this area could form the basis for code cases, and additional research for piping secondary loads. (author)

  2. Probabilistic pipe fracture evaluations for applications to leak-rate detection

    Energy Technology Data Exchange (ETDEWEB)

    Rahman, S; Wilkowski, G; Ghadiali, N [Battelle Columbus Labs., OH (United States)

    1993-12-31

    Stochastic pipe fracture evaluations are conducted for applications to leak-rate detection. A state-of-the-art review was first conducted to evaluate the adequacy of current deterministic models for thermo-hydraulic and elastic-plastic fracture analyses. Then a new probabilistic model was developed with the above deterministic models for structural reliability analysis of cracked piping systems and statistical characterization of crack morphology parameters, material properties of pipe, and crack location. The proposed models are then applied for computing conditional probability of failure for various nuclear piping systems in BWR and PWR plants. The PRAISE code was not used, and the probabilistic model is based on modern methods of stochastic mechanics, computationally far superior to Monte Carlo and Stratified Sampling methods used in PRAISE. 10 refs., 9 figs., 1 tab.

  3. Probabilistic pipe fracture evaluations for applications to leak-rate detection

    International Nuclear Information System (INIS)

    Rahman, S.; Wilkowski, G.; Ghadiali, N.

    1992-01-01

    Stochastic pipe fracture evaluations are conducted for applications to leak-rate detection. A state-of-the-art review was first conducted to evaluate the adequacy of current deterministic models for thermo-hydraulic and elastic-plastic fracture analyses. Then a new probabilistic model was developed with the above deterministic models for structural reliability analysis of cracked piping systems and statistical characterization of crack morphology parameters, material properties of pipe, and crack location. The proposed models are then applied for computing conditional probability of failure for various nuclear piping systems in BWR and PWR plants. The PRAISE code was not used, and the probabilistic model is based on modern methods of stochastic mechanics, computationally far superior to Monte Carlo and Stratified Sampling methods used in PRAISE. 10 refs., 9 figs., 1 tab

  4. Pipe whip: a summary of the damage observed in BNL pipe-on-pipe impact tests

    International Nuclear Information System (INIS)

    Baum, M.R.

    1987-01-01

    This paper describes examples of the damage resulting from the impact of a whipping pipe on a nearby pressurised pipe. The work is a by-product of a study of the motion of a whipping pipe. The tests were conducted with small-diameter pipes mounted in rigid supports and hence the results are not directly applicable to large-scale plant applications where flexible support mountings are employed. The results illustrate the influence of whipping pipe energy, impact position and support type on the damage sustained by the target pipe. (author)

  5. Acoustic analysis of a piping system

    International Nuclear Information System (INIS)

    Misra, A.S.; Vijay, D.K.

    1996-01-01

    Acoustic pulsations in the Darlington Nuclear Generating Station, a 881 MW CANDU, primary heat transport piping system caused fuel bundle failures under short term operations. The problem was successfully analyzed using the steady-state acoustic analysis capability of the ABAQUS program. This paper describes in general, modelling of low amplitude acoustic pulsations in a liquid filled piping system using ABAQUS. The paper gives techniques for estimating the acoustic medium properties--bulk modulus, fluid density and acoustic damping--and modelling fluid-structure interactions at orifices and elbows. The formulations and techniques developed are benchmarked against the experiments given in 3 cited references. The benchmark analysis shows that the ABAQUS results are in excellent agreement with the experiments

  6. Piping inspection activities at the EPRI NDE Center

    International Nuclear Information System (INIS)

    Ammirato, F.V.

    1988-01-01

    Intergranular stress corrosion cracking (IGSCC) in the primary system of boiling water reactors (BWRs) has been a major reliability issue in recent years. BWR pipe cracking was first reported in 1974 with a low percentage of only small-diameter lines affected. However, with increased plant operating time, the number of reported cracking incidents has risen significantly and in 1982 and 1983 included the large-diameter recirculation lines. With the advent of cracking in large-diameter piping, innovative repair remedies were developed, such as weld overlay for repair (WOR). Although these remedies are effective in extending the service life of piping, they also present challenging NDE problems. The EPRI program for improving piping examination has aimed at systematically resolving the difficulties by optimizing techniques and procedures as well as by developing field-qualified automated examination equipment. The EPRI NDE Center's role has been the evaluation and transfer of the technology necessary to address the current piping examination problems of the nuclear utility industry. These activities normally include the following: technology assessment and improvement; validation through demonstrations and field trials; technology transfer reports, workshops, training, and qualification testing; and acquisition of relevant samples. The activities of the NDE Center are discussed

  7. Valve for the mechanical isolation of a pipe to take up a test probe

    International Nuclear Information System (INIS)

    Uecker, D.F.

    1976-01-01

    A valve is introduced for application in a pipe in which a test probe is arranged. The valve serves to isolate the pipe in a gas-tight way, thus preventing the escape of radioactive gas or dust during operation in a nuclear reactor. (TK) [de

  8. Pressurized Hybrid Heat Pipe for Passive IN-Core Cooling System (PINCs) in Advanced Nuclear Power Plants

    Energy Technology Data Exchange (ETDEWEB)

    Kim, Kyung Mo; Bang, In Cheol [Ulsan National Institute of Science and Technology, Ulsan (Korea, Republic of)

    2016-05-15

    The representative operating limit of the thermosyphon heat pipe is flooding limit that arises from the countercurrent flow of vapor and liquid. The effect of difference between wetted perimeter and heated perimeter on the flooding limit of the thermosyphons has not been studied; despite the effect of cross-sectional area of the vapor path on the heat transfer characteristics of thermosyphons have been studied. Additionally, the hybrid heat pipe must operate at the high temperature and high pressure environment because it will be inserted to the active core to remove the decay heat. However, the previously studied heat pipes operated below the atmospheric pressure. Therefore, the effect of the unique geometry for hybrid heat pipe and operating pressure on the heat transfer characteristics including the flooding limit of hybrid heat pipe was experimentally measured. Hybrid heat pipe as a new conceptual decay heat removal device was proposed. For the development of hybrid heat pipe operating at high temperature and high pressure conditions, the pressurized hybrid heat pipe was prepared and the thermal performances including operation limits of hybrid heat pipe were experimentally measured. Followings were obtained: (1) As operating pressure of the heat pipe increases, the evaporation heat transfer coefficient increases due to heat transfer with convective pool boiling mode. (2) Non-condensable gas charged in the test section for the pressurization lowered the condensation heat transfer by impeding the vapor flow to the condenser. (3) The deviations between experimentally measured flooding limits for hybrid heat pipes and the values from correlation for annular thermosyphon were observed.

  9. Recent advances in processing and applications of microwave ferrites

    International Nuclear Information System (INIS)

    Harris, Vincent G.; Geiler, Anton; Chen Yajie; Yoon, Soack Dae; Wu Mingzhong; Yang, Aria; Chen Zhaohui; He Peng; Parimi, Patanjali V.; Zuo Xu; Patton, Carl E.; Abe, Manasori; Acher, Olivier

    2009-01-01

    Next generation magnetic microwave devices will be planar, smaller, weigh less, and perform well beyond the present state-of-the-art. For this to become a reality advances in ferrite materials must first be realized. These advances include self-bias magnetization, tunability of the magnetic anisotropy, low microwave loss, and volumetric and weight reduction. To achieve these goals one must turn to novel materials processing methods. Here, we review recent advances in the processing of microwave ferrites. Attention is paid to the processing of ferrite films by pulsed laser deposition, liquid phase epitaxy, spin spray ferrite plating, screen printing, and compaction of quasi-single crystals. Conventional and novel applications of ferrite materials, including microwave non-reciprocal passive devices, microwave signal processing, negative index metamaterial-based electronics, and electromagnetic interference suppression are discussed.

  10. In-situ rehabilitation cleans, lines, and renews pipe systems

    International Nuclear Information System (INIS)

    Munden, B.A.

    1990-01-01

    This article discusses how, in the past five years, developments in coating and lining material technology have found their way into pipe line application and have yielded successful results. The thick film, high solids material often used to repair tanks, vessels and offshore structures has now been adapted for existing pipe lines. One of the most promising of these systems in successful service is an epoxy, high solids (95%) material originally developed for nuclear service as a lining for reactor containment vessels

  11. Sensitization development in austenitic stainless steel piping

    International Nuclear Information System (INIS)

    Bruemmer, S.M.; Page, R.E.; Atteridge, D.G.

    1984-10-01

    Pacific Northwest Laboratory and the Division of Engineering Technology of the US Nuclear Regulatory Commission are conducting a program to determine a method for evaluating welded and rapair-welded stainless steel piping for light-water reactor service. Validated models, based on experimental data, are being developed to predict the degree of sensitization (DOS) and the intergranular stress corrosion cracking (IGSCC) susceptibility in the heat-affected zone (HAZ) of the SS weldments. The cumulative effects of material composition, past fabrication procedures, past service exposure, weldment thermomechanical (TM) history, and projected post-repair component life are being considered. This program will measure and model the development of HAZ TM history and resultant sensitized microstructure in welded and repair-welded piping. An empirical correlation between a material's DOS and its susceptibility to SCC will be determined using slow strain rate tensile tests. Mill heat chemistries and processing/fabrication records already required in the nuclear industry will be used as input for initial DOS predictions

  12. Ring thermal shield piping modification at Pickering Nuclear Generating Station 'A' Unit 1

    International Nuclear Information System (INIS)

    Brown, R.; Cobanoglu, M.M.

    1995-01-01

    Each of the four Pickering Nuclear Generating Station A (PNGSA) CANDU units was constructed with its reactor and dump tank surrounded by a concrete Calandria Vault (CV). The Ring Thermal Shield (RTS) system at PNGSA units is a water cooled structure with internal cooling channels with the purpose of attenuating excessive heat flux from the calandria shell to the end shield rings and adjoining concrete (Figure 1). In newer CANDU units the reactor calandria vessel is surrounded by a large water filled shield tank which eliminates the requirement for the RTS system. The RTS structures are situated in the space between the calandria and the vault walls. Each RTS is assembled from eight flat sided carbon steel segments, tilted towards the calandria and supported from the end shield rings. Cooling water to the RTS is supplied by carbon steel cooling pipes with a portion of the pipe run embedded in the vault walls. Flow through each RTS is divided into two independent circuits, having an inlet and an outlet cooling line. There are four locations of RTS inlet and outlet cooling lines. The inlet lines are located at the bottom and the outlet lines at the top of the RTS. The 'L' shaped section of RTS inlet and outlet cooling lines, from the RTS waterbox to the start of embedded portion at the concrete wall, had become defective due to corrosion induced by excessive Moisture levels in the calandria vaults. An on-line leak sealing capability was developed and placed in service in all four PNGSA units. However, a leak found during the 1994 Unit 1 outage was too large,to seal with the current capability, forcing Ontario Hydro (OH) to develop a method to replace the corroded pipes. The repair project was subject to some lofty performance targets. All tools had to be able to withstand dose rates of up to 3000 Rem/hour. These tools, along with procedures and personnel had to successfully repair the RTS system within 6 months otherwise a costly outage extension would result. This

  13. Stress corrosion evaluation on stainless steel 304 pipes in Laguna Verde Nuclear Power Plant

    International Nuclear Information System (INIS)

    Arganis J, C.R.

    1996-01-01

    Inside the frame of the project IAEA/MEX-41044 'Stress corrosion as a starting event of accidents in nuclear plants', and of the institutional project IA-252 under the same name, it was required from the Laguna Verde Nuclear Plant, material equivalent to the one employed in the piping of the primary recycling system. Laguna Verde Nuclear Plant granted two tracks of tubes, that could be used to substitute the ones that are in operation, as is the tube SA-358TP304 CL-QC with transversal welding, designated as ER-316-LQA. According to the report entitles 'Revision of the operational experience related to corrosion in the nuclear plants' it was found that the stress corrosion is the principal mechanism of corrosion present in the nuclear plants. Previous records indicate that sensitized stainless steels are resistant to stress corrosion in testings of constant loading in sea water (3.5% of chlorides approximately) to 80 Centigrade and to 80% of the limit of conveyance and that a solution of 22% of NaCl to 90 Centigrade, produces cracking due to stress corrosion in highly sensitized steels, in tests of speed of slow extension (SSRT), to a speed of 1x10 -6 s -1 . Daniels reports that there is a direct relation between the speed limit of detection of the SSRT test and the concentration of chlorides, for stainless steels tested to 100 Centigrade. The minimum detection speed of susceptibility to stress corrosion for solution to 20% of NaCl, is of 1x10 -7 s -1 . Taking into account these considerations, the employment of a solution with 22% of NaCl to 90 Centigrade to a speed of 1x10 -6 s -1 seems a good choice for the evaluation of stainless steel. (Author)

  14. Environmentally assisted cracking of light-water reactor materials

    International Nuclear Information System (INIS)

    Chopra, O.K.; Chung, H.M.; Kassner, T.F.; Shack, W.J.

    1996-02-01

    Environmentally assisted cracking (EAC) of lightwater reactor (LWR) materials has affected nuclear reactors from the very introduction of the technology. Corrosion problems have afflicted steam generators from the very introduction of pressurized water reactor (PWR) technology. Shippingport, the first commercial PWR operated in the United States, developed leaking cracks in two Type 304 stainless steel (SS) steam generator tubes as early as 1957, after only 150 h of operation. Stress corrosion cracks were observed in the heat-affected zones of welds in austenitic SS piping and associated components in boiling-water reactors (BRWs) as early as 1965. The degradation of steam generator tubing in PWRs and the stress corrosion cracking (SCC) of austenitic SS piping in BWRs have been the most visible and most expensive examples of EAC in LWRs, and the repair and replacement of steam generators and recirculation piping has cost hundreds of millions of dollars. However, other problems associated with the effects of the environment on reactor structures and components am important concerns in operating plants and for extended reactor lifetimes. Cast duplex austenitic-ferritic SSs are used extensively in the nuclear industry to fabricate pump casings and valve bodies for LWRs and primary coolant piping in many PWRs. Embrittlement of the ferrite phase in cast duplex SS may occur after 10 to 20 years at reactor operating temperatures, which could influence the mechanical response and integrity of pressure boundary components during high strain-rate loading (e.g., seismic events). The problem is of most concern in PWRs where slightly higher temperatures are typical and cast SS piping is widely used

  15. Mode Identification of Guided Waves in a Curved Pipe

    International Nuclear Information System (INIS)

    Eom, Heung-Seop; Lim, Sa-Hoe; Kim, Jae-Hee

    2006-01-01

    Ultrasonic guided wave technique has been widely employed for the long range inspection of structures such as plates and pipes because it has the ability to propagate over long distances. In the nuclear power field, there recently appeared a need for on-line nondestructive monitoring which can be employed during the operation stage of power plants. As ultrasonic guided waves have shown promise for on-line monitoring of power plants, a lot of work has been done in the institutes and universities on this matter. In the case of detecting defects in simple straight pipes, the dispersion curves obtained from the modeling processes are closely akin to the experimental results. But the modeling of wave propagation in some structures, such as an elbow region of a pipe, is not practical due to elbow echo and unpredictable interface conditions. This paper presents an experimental approach to identify the most dominant modes of guided waves in a curved region of a pipe, which is a key factor in detecting flaws in a pipe

  16. Corrosion of austenitic and ferritic-martensitic steels exposed to supercritical carbon dioxide

    International Nuclear Information System (INIS)

    Tan, L.; Anderson, M.; Taylor, D.; Allen, T.R.

    2011-01-01

    Highlights: → Oxidation is the primary corrosion phenomenon for the steels exposed to S-CO 2 . → The austenitic steels showed significantly better corrosion resistance than the ferritic-martensitic steels. → Alloying elements (e.g., Mo and Al) showed distinct effects on oxidation behavior. - Abstract: Supercritical carbon dioxide (S-CO 2 ) is a potential coolant for advanced nuclear reactors. The corrosion behavior of austenitic steels (alloys 800H and AL-6XN) and ferritic-martensitic (FM) steels (F91 and HCM12A) exposed to S-CO 2 at 650 deg. C and 20.7 MPa is presented in this work. Oxidation was identified as the primary corrosion phenomenon. Alloy 800H had oxidation resistance superior to AL-6XN. The FM steels were less corrosion resistant than the austenitic steels, which developed thick oxide scales that tended to exfoliate. Detailed microstructure characterization suggests the effect of alloying elements such as Al, Mo, Cr, and Ni on the oxidation of the steels.

  17. An overview of environmental degradation of materials in nuclear power plant piping systems

    International Nuclear Information System (INIS)

    Shack, W.J.

    1987-08-01

    Piping in light water reactor (LWR) power systems is affected by several types of environmental degradation: intergranular stress corrosion cracking (IGSCC) of austenitic stainless steel piping in boiling water reactors (BWRs) has required research, inspection, and mitigation programs that will ultimately cost several billion dollars; erosion-corrosion of carbon steel piping has been observed frequently in the secondary systems of both BWRs and pressurized water reactors (PWRs); the effect of the BWR environment can greatly diminish the design margin inherent in the ASME Section III fatigue design curves for carbon steel piping; and cast stainless steels are subject to embrittlement after extended thermal aging at reactor operating temperatures. These problems are being addressed by wide-ranging research programs in this country and abroad. The purpose of this review is to highlight some of the accomplishments of these programs and to note some of the remaining unanswered questions

  18. Application of sensitivity analysis for optimized piping support design

    International Nuclear Information System (INIS)

    Tai, K.; Nakatogawa, T.; Hisada, T.; Noguchi, H.; Ichihashi, I.; Ogo, H.

    1993-01-01

    The objective of this study was to see if recent developments in non-linear sensitivity analysis could be applied to the design of nuclear piping systems which use non-linear supports and to develop a practical method of designing such piping systems. In the study presented in this paper, the seismic response of a typical piping system was analyzed using a dynamic non-linear FEM and a sensitivity analysis was carried out. Then optimization for the design of the piping system supports was investigated, selecting the support location and yield load of the non-linear supports (bi-linear model) as main design parameters. It was concluded that the optimized design was a matter of combining overall system reliability with the achievement of an efficient damping effect from the non-linear supports. The analysis also demonstrated sensitivity factors are useful in the planning stage of support design. (author)

  19. Continuous wavelet transform analysis and modal location analysis acoustic emission source location for nuclear piping crack growth monitoring

    Energy Technology Data Exchange (ETDEWEB)

    Mohd, Shukri [Nondestructive Testing Group, Industrial Technology Division, Malaysian Nuclear Agency, 43000, Bangi, Selangor (Malaysia); Holford, Karen M.; Pullin, Rhys [Cardiff School of Engineering, Cardiff University, Queen' s Buildings, The Parade, CARDIFF CF24 3AA (United Kingdom)

    2014-02-12

    Source location is an important feature of acoustic emission (AE) damage monitoring in nuclear piping. The ability to accurately locate sources can assist in source characterisation and early warning of failure. This paper describe the development of a novelAE source location technique termed 'Wavelet Transform analysis and Modal Location (WTML)' based on Lamb wave theory and time-frequency analysis that can be used for global monitoring of plate like steel structures. Source location was performed on a steel pipe of 1500 mm long and 220 mm outer diameter with nominal thickness of 5 mm under a planar location test setup using H-N sources. The accuracy of the new technique was compared with other AE source location methods such as the time of arrival (TOA) techniqueand DeltaTlocation. Theresults of the study show that the WTML method produces more accurate location resultscompared with TOA and triple point filtering location methods. The accuracy of the WTML approach is comparable with the deltaT location method but requires no initial acoustic calibration of the structure.

  20. Continuous wavelet transform analysis and modal location analysis acoustic emission source location for nuclear piping crack growth monitoring

    International Nuclear Information System (INIS)

    Shukri Mohd

    2013-01-01

    Full-text: Source location is an important feature of acoustic emission (AE) damage monitoring in nuclear piping. The ability to accurately locate sources can assist in source characterisation and early warning of failure. This paper describe the development of a novelAE source location technique termed Wavelet Transform analysis and Modal Location (WTML) based on Lamb wave theory and time-frequency analysis that can be used for global monitoring of plate like steel structures. Source location was performed on a steel pipe of 1500 mm long and 220 mm outer diameter with nominal thickness of 5 mm under a planar location test setup using H-N sources. The accuracy of the new technique was compared with other AE source location methods such as the time of arrival (TOA) technique and DeltaTlocation. The results of the study show that the WTML method produces more accurate location results compared with TOA and triple point filtering location methods. The accuracy of the WTML approach is comparable with the deltaT location method but requires no initial acoustic calibration of the structure. (author)