WorldWideScience

Sample records for fermilab fixed-target energies

  1. Fixed target experiments at the Fermilab Tevatron

    CERN Document Server

    Gutierrez, Gaston

    2014-01-01

    This paper presents a review of the study of Exclusive Central Production at a Center of Mass energy of $\\sqrt{s}=40$ GeV at the Fermilab Fixed Target program. In all reactions reviewed in this paper, protons with an energy of 800 GeV were extracted from the Tevatron accelerator at Fermilab and directed to a Liquid Hydrogen target. The states reviewed include $\\pi^+\\pi^-$, $K^0_s K^0_s$, $ K^0_sK^\\pm\\pi^\\mp$, $\\phi\\phi$ and $D^{*\\pm}$. Partial Wave Analysis results will be presented on the light states but only the cross section will be reviewed in the diffractive production of $D^{*\\pm}$

  2. High Transverse Momentum Direct Photon Production at Fermilab Fixed-Target Energies

    Energy Technology Data Exchange (ETDEWEB)

    Apanasevich, Leonard [Michigan State Univ., East Lansing, MI (United States)

    2005-01-01

    This thesis describes a study of the production of high transverse momentum direct photons and π0 mesons by proton beams at 530 and 800 GeV/c and π- beams at 515 GeV/c incident on beryllium, copper, and liquid hydrogen targets. The data were collected by Fermilab experiment E706 during the 1990 and 1991-92 fixed target runs. The apparatus included a large, finely segmented lead and liquid argon electromagnetic calorimeter and a charged particle spectrometer featuring silicon strip detectors in the target region and proportional wire chambers and drift tubes downstream of a large aperture analysis magnet. The inclusive cross sections are presented as functions of transverse momentum and rapidity. The measurements are compared with next-to-leading order perturbative QCD calculations and to results from previous experiments.

  3. Radiation damage effects on the silicon microstrip detector in E789 - a fixed target experiment at Fermilab

    Energy Technology Data Exchange (ETDEWEB)

    Kapustinsky, J.S.; Apolinski, M.; Boissevain, J.; Brown, C.N.; Brown, G.; Carey, T.A.; Chen, Y.C.; Childers, R.; Cooper, W.E.; Darden, C.W.; Gidal, G.; Glass, H.D.; Gounder, K.N.; Ho, P.M.; Isenhower, D.; Jansen, D.M.; Jeppesen, R.; Kaplan, D.M.; Kiang, G.C.; Kowitt, M.S.; Lane, D.W.; Lederman, L.; Leitch, M.J.; Lillberg, J.W.; Luebke, W.; Luk, K.B.; Martin, V.M.; McGaughey, P.L.; Mishra, C.S.; Moss, J.M.; Peng, J.C.; Preston, R.S.; Pripstein, D.; Sa, J.; Sadler, M.; Schnathorst, R.; Schub, M.H.; Schwint, R.; Snodgrass, D.; Tanikella, V.N.; Teng, P.K.; Wilson, J.W. (Los Alamos National Lab., Los Alamos, NM (United States) Northern Illinois Univ., Dekalb, IL (United States) Fermi National Accelerator Lab., Batavia, IL (United States) Abilene Christian Univ., Abilene, TX (United States) Academia Sinica (Taiwan, Province of China) National Cheng Kung Univ., Tainan (Taiwan, Province of China) Univ. of South Carolina, Columbia, SC (United States) Lawrence Berkeley Lab., CA (United States)

    1993-05-01

    A Silicon Microstrip Spectrometer has been installed and successfully operated in experiment E789 at Fermilab. The main physics goal of the experiment is to search for charged particle decays of B and D Mesons. Damage effects due to ionizing radiation exposure to the silicon during the experiment are reported. (orig.)

  4. Beam-Induced Effects and Radiological Issues in High-Intensity High-Energy Fixed Target Experiments

    CERN Document Server

    Mokhov, N V; Drozhdin, A I; Pronskikh, V S; Reitzner, D; Tropin, I S; Vaziri, K

    2014-01-01

    The next generation of accelerators for Megawatt proton and heavy-ion beams moves us into a completely new domain of extreme specific energies of up to 0.1 MJ/g (Megajoule/gram) and specific power up to 1 TW/g (Terawatt/gram) in beam interactions with matter. This paper is focused on deleterious effects of controlled and uncontrolled impacts of high-intensity beams on components of beam-lines, target stations, beam absorbers, shielding and environment. Two new experiments at Fermilab are taken as an example. The Long-Baseline Neutrino Experiment (LBNE) will explore the interactions and transformations of the world's highest-intensity neutrino beam by sending it from Fermilab more than 1,000 kilometers through the Earth's mantle to a large liquid argon detector. The Mu2e experiment is devoted to studies of the conversion of a negative muon to electron in the field of a nucleus without emission of neutrinos.

  5. Fermilab E791

    CERN Document Server

    Cremaldi, L M; D'Almeida, F; Amato, S; Anjos, J C; Appel, J A; Ashery, D; Astorga, J; Todorova-Nová, S; Beck, S; Bediaga, I; Blaylock, G; Bracker, S B; Burchat, Patricia R; Burnstein, R A; Carter, T; Costa, I; Denisenko, K; Darling, C L; Gagnon, P; Gerzon, S; Gounder, K; Granite, D; Halling, M; James, C; Kasper, P A; Kwan, S; Lichtenstadt, J; Lundberg, B; De Mello-Neto, J R T; Milburn, R H; De Miranda, J M; Napier, A; Nguyen, A; De Oliveira, A B; Peng, K C; Purohit, M V; Quinn, B; Radeztsky, S; Rafatian, A; Ramalho, A J; Reay, N W; Reibel, K; Reidy, J J; Rubin, H A; Santha, A K S; Santoro, A F S; Schwartz, A; Sheaff, M; Sidwell, R A; Da Silva-Carvalho, H; Slaughter, J; Sokoloff, M D; Souza, M; Stanton, N; Sugano, K; Summers, D J; Takach, S F; Thorne, K; Tripathi, A K; Trumer, D; Watanabe, S; Wiener, J; Witchey, N; Wolin, E; Yi, D

    1992-01-01

    Fermilab E791, a very high statistics charm particle experiment, recently completed its data taking at Fermilab's Tagged Photon Laboratory. Over 20 billion events were recorded through a loose transverse energy trigger and written to 8mm tape in the the 1991-92 fixed target run at Fermilab. This unprecedented data sample containing charm is being analysed on many-thousand MIP RISC computing farms set up at sites in the collaboration. A glimpse of the data taking and analysis effort is presented. We also show some preliminary results for common charm decay modes. Our present analysis indicates a very rich yield of over 200K reconstructed charm decays.

  6. Search For Muon Neutrino(anti-muon Neutrino) Decaying To Electron Neutrino(anti-electron Neutrino) Oscillations In The F815(nutev) Fixed Target Neutrino Experiment At Fermilab

    CERN Document Server

    Avvakumov, S

    2002-01-01

    Limits on νμ → νe and νμ → ν e oscillations (separately) are extracted using the NuTeV detector with sign selected νμ and ν μ beams. A statistical analysis of the longitudinal shower energy deposition in the neutrino target-calorimeter is used to identify the fraction of νeN charged-current interactions in a sample ν μN → νμX candidate events. Neutrino energies range from 30 to 350 GeV and νμ flight lengths vary from 0.9 to 1.4 km. In νμ mode, the NuTeV data exclude the high Δ m2 νμ → νe oscillation region favored by the LSND experiment. In addition, if we assume no CP violation in the neutrino sector, the NuTeV results exclude νμ(ν μ) → νe(ν e) oscillations with sin2 2α > 0.9 × 10−3 for large Δm2 ≫ 1000 eV2. Fo...

  7. Near-Threshold Production of W±, Z0, and H0 at a Fixed-Target Experiment at the Future Ultrahigh-Energy Proton Colliders

    Directory of Open Access Journals (Sweden)

    J. P. Lansberg

    2015-01-01

    Full Text Available We outline the opportunities to study the production of the Standard Model bosons, W±, Z0, and H0, at “low” energies at fixed-target experiments based on possible future ultrahigh-energy proton colliders, that is, the High-Energy LHC, the Super proton-proton Collider, and the Future Circular Collider hadron-hadron. These can be indeed made in conjunction with the proposed future colliders designed to reach up to s=100 TeV by using bent crystals to extract part of the halo of the beam which would then impinge on a fixed target. Without disturbing the collider operation, this technique allows for the extraction of a substantial amount of particles in addition to serving for a beam-cleaning purpose. With this method, high-luminosity fixed-target studies at centre-of-mass energies above the W±, Z0, and H0 masses, s≃170–300 GeV, are possible. We also discuss the possibility offered by an internal gas target, which can also be used as luminosity monitor by studying the beam transverse shape.

  8. Fixed Target Collisions at STAR

    Science.gov (United States)

    Meehan, Kathryn C.

    2016-12-01

    The RHIC Beam Energy Scan (BES) program was proposed to look for the turn-off of signatures of the quark gluon plasma (QGP), search for a possible QCD critical point, and study the nature of the phase transition between hadronic and partonic matter. Previous results have been used to claim that the onset of deconfinement occurs at a center-of-mass energy of 7 GeV. Data from lower energies are needed to test if this onset occurs. The goal of the STAR Fixed-Target Program is to extend the collision energy range in BES II to energies that are likely below the onset of deconfinement. Currently, STAR has inserted a gold target into the beam pipe and conducted test runs at center-of-mass energies of 3.9 and 4.5 GeV. Tests have been done with both Au and Al beams. First physics results from a Coulomb potential analysis of Au + Au fixed-target collisions are presented and are found to be consistent with results from previous experiments. Furthermore, the Coulomb potential, which is sensitive to the Z of the projectile and degree of baryonic stopping, will be compared to published results from the AGS.

  9. Measurement of Quark Energy Loss in Cold Nuclear Matter at Fermilab E906/SeaQuest

    Energy Technology Data Exchange (ETDEWEB)

    Lin, Po-Ju [Colorado U.

    2017-01-01

    Parton energy loss is a process within QCD that draws considerable interest. The measurement of parton energy loss can provide valuable information for other hard-scattering processes in nuclei, and also serves as an important tool for exploring the properties of the quark-gluon plasma (QGP). Quantifying the energy loss in cold nuclear matter will help to set a baseline relative to energy loss in the QGP. With the Drell-Yan process, the energy loss of incoming quarks in cold nuclear matter can be ideally investigated since the final state interaction is expected to be minimal. E906/SeaQuest is a fixed-target experiment using the 120 GeV proton beam from the Fermilab Main Injector and has been collecting data from p+p, p+d, p+C, p+Fe, and p+W collisions. Within the E906 kinematic coverage of Drell-Yan production via the dimuon channel, the quark energy loss can be measured in a regime where other nuclear effects are expected to be small. In this thesis, the study of quark ener gy loss from different cold nuclear targets is presented.

  10. Fermilab energy saver refrigeration system tests

    Energy Technology Data Exchange (ETDEWEB)

    Theilacker, J.; Rode, C.; Makara, J.; Richied, D.; Leninger, M.; Ferry, R.; Mizicko, D.; Misek, J.

    1981-06-01

    The Energy Saver Refrigeration System is based on the concept of a central helium liquefier (5000 l/hr) providing liquid to 24 satellite refrigerators (966 W at 4.6/degree/K), which operate as amplifiers with a gain of 12. This concept was tested, cooling two 125 m long strings of superconducting magnets. The test was run using one satellite refrigerator operating as the ''central liquefier'', shipping liquid helium through a 250 m long transfer line to a second satellite refrigerator, which in turn cooled the magnets. In addition to testing the satellite concept, the heat loads of the magnets and transfer line were also measured. 3 refs.

  11. Stability of electron energy in the Fermilab electron cooler

    Energy Technology Data Exchange (ETDEWEB)

    Shemyakin, A.; Carlson, K.; Prost, L.R.; Saewert, G.; /Fermilab

    2009-02-01

    A powerful electron beam (4.3 MeV, 0.1 A DC) generated by an electrostatic accelerator has been used at Fermilab for three years to cool antiprotons in the Recycler ring. For electron cooling to be effective, the electron energy should not deviate from its optimum value by more than 500V. The main tool for studying the energy stability is the electron beam position in a high-dispersion area. The energy ripple (frequencies above 0.2 Hz) was found to be less than 150 eV rms; the main cause of the ripple is the fluctuations of the chain current. In addition, the energy can drift to up to several keV that is traced to two main sources. One of them is a drift of the charging current, and another is a temperature dependence of generating voltmeter readings. The paper describes the efforts to reach the required level of stability as well as the setup, diagnostics, results of measurements, and operational experience.

  12. Fixed-target physics at LHCb

    CERN Document Server

    Maurice, Emilie Amandine

    2017-01-01

    The LHCb experiment has the unique possibility, among the LHC experiments, to be operated in fixed target mode, using its internal gas target SMOG. The energy scale achievable at the LHC and the excellent detector capabilities for vertexing, tracking and particle identification allow a wealth of measurements of great interest for cosmic ray and heavy ions physics. We report the first measurements made in this configuration: the measurement of antiproton production in proton-helium collisions and the measurements of open and hidden charm production in proton-argon collisions at $\\sqrt{s_\\textrm{NN}} =$ 110 GeV.

  13. CERN's Fixed Target Primary Ion Programme

    CERN Document Server

    Manglunki, Django; Axensalva, Jerome; Bellodi, Giulia; Blas, Alfred; Bodendorfer, Michael; Bohl, Thomas; Cettour-Cave, Stephane; Cornelis, Karel; Damerau, Heiko; Efthymiopoulos, Ilias; Fabich, Adrian; Ferreira Somoza, Jose; Findlay, Alan; Freyermuth, Pierre; Gilardoni, Simone; Hancock, Steven; Holzer, Eva Barbara; Jensen, Steen; Kain, Verena; Küchler, Detlef; Lombardi, Alessandra; Michet, Alice; O'Neil, Michael; Pasinelli, Sergio; Scrivens, Richard; Steerenberg, Rende; Tranquille, Gerard

    2016-01-01

    The renewed availability of heavy ions at CERN for the needs of the LHC programme has triggered the interest of the fixed-target community. The project, which involves sending several species of primary ions at various energies to the North Area of the Super Proton Synchrotron, has now entered its operational phase. The first argon run, with momenta ranging from 13 AGeV/c to 150 AGeV/c, took place from February 2015 to April 2015. This paper presents the status of the project, the performance achieved thus far and an outlook on future plans.

  14. Renaissance of the ~ 1-TeV Fixed-Target Program

    Energy Technology Data Exchange (ETDEWEB)

    Adams, T.; /Florida State U.; Appel, J.A.; /Fermilab; Arms, K.E.; /Minnesota U.; Balantekin, A.B.; /Wisconsin U., Madison; Conrad, J.M.; /MIT; Cooper, P.S.; /Fermilab; Djurcic, Z.; /Columbia U.; Dunwoodie, W.; /SLAC; Engelfried, J.; /San Luis Potosi U.; Fisher, P.H.; /MIT; Gottschalk, Erik Edward; /Fermilab; de Gouvea, A.; /Northwestern U.; Heller, K.; /Minnesota U.; Ignarra, C.M.; Karagiorgi, G.; /MIT; Kwan, S.; /Fermilab; Loinaz, W.A.; /Amherst Coll.; Meadows, B.; /Cincinnati U.; Moore, R.; Morfin, J.G.; /Fermilab; Naples, D.; /Pittsburgh U. /St. Mary' s Coll., Minnesota /New Mexico State U. /Michigan U. /Wayne State U. /South Carolina U. /Florida U. /Carnegie Mellon U. /Cincinnati U. /Columbia U. /Columbia U. /Northwestern U. /Yale U. /Fermilab /Argonne /Northwestern U. /APC, Paris

    2011-12-02

    This document describes the physics potential of a new fixed-target program based on a {approx}1 TeV proton source. Two proton sources are potentially available in the future: the existing Tevatron at Fermilab, which can provide 800 GeV protons for fixed-target physics, and a possible upgrade to the SPS at CERN, called SPS+, which would produce 1 TeV protons on target. In this paper we use an example Tevatron fixed-target program to illustrate the high discovery potential possible in the charm and neutrino sectors. We highlight examples which are either unique to the program or difficult to accomplish at other venues.

  15. Renaissance of the ~1 TeV Fixed-Target Program

    Energy Technology Data Exchange (ETDEWEB)

    Adams, T.; /Florida State U.; Appel, Jeffrey A.; /Fermilab; Arms, Kregg Elliott; /Minnesota U.; Balantekin, A.B.; /Wisconsin U., Madison; Conrad, Janet Marie; /MIT; Cooper, Peter S.; /Fermilab; Djurcic, Zelimir; /Columbia U.; Dunwoodie, William M.; /SLAC; Engelfried, Jurgen; /San Luis Potosi U.; Fisher, Peter H.; /MIT; Gottschalk, E.; /Fermilab /Northwestern U.

    2009-05-01

    This document describes the physics potential of a new fixed-target program based on a {approx} TeV proton source. Two proton sources are potentially available in the future: the existing Tevatron at Fermilab, which can provide 800 GeV protons for fixed-target physics, and a possible upgrade to the SPS at CERN, called SPS+, which would produce 1 TeV protons on target. In this paper we use an example Tevatron fixed-target program to illustrate the high discovery potential possible in the charm and neutrino sectors. We highlight examples which are either unique to the program or difficult to accomplish at other venues.

  16. Renaissance of the ~1 TeV Fixed-Target Program

    CERN Document Server

    Adams, T; Arms, K E; Balantekin, A B; Conrad, J M; Cooper, P S; Djurcic, Z; Dunwoodie, W; Engelfried, J; Fisher, P H; Gottschalk, E; De Gouvêa, A; Heller, K; Ignarra, C M; Karagiorgi, G; Kwan, S; Loinaz, W A; Meadows, B; Moore, R; Morfín, J G; Naples, D; Nienaber, P; Pate, S F; Papavassiliou, V; Petrov, A A; Purohit, M V; Ray, H; Russ, J; Schwartz, A J; Seligman, W G; Shaevitz, M H; Schellman, H; Spitz, J; Syphers, M J; Tait, T M P; Vannucci, F

    2009-01-01

    This document describes the physics potential of a new fixed-target program based on a ~1 TeV proton source. Two proton sources are potentially available in the future: the existing Tevatron at Fermilab, which can provide 800 GeV protons for fixed-target physics, and a possible upgrade to the SPS at CERN, called SPS+, which would produce 1 TeV protons on target. In this paper we use an example Tevatron fixed-target program to illustrate the high discovery potential possible in the charm and neutrino sectors. We highlight examples which are either unique to the program or difficult to accomplish at other venues.

  17. Energy Dependence of Direct-Quarkonium Production in pp Collisions from Fixed-Target to LHC Energies: Complete One-Loop Analysis

    CERN Document Server

    Feng, Yu; Wang, Jian-Xiong

    2015-01-01

    We compute the energy dependence of the P_T-integrated cross section of directly produced quarkonia in pp collisions at next-to-leading order (NLO), namely up to alpha_s^3, within nonrelativistic QCD (NRQCD). Our analysis is based on the idea that the P_T-integrated and the P_T-differential cross sections can be treated as two different observables. The colour-octet NRQCD parameters needed to predict the P_T-integrated yield can thus be extracted from the fits of the P_T-differential cross sections at mid and large P_T. For the first time, the total cross section is evaluated in NRQCD at full NLO accuracy using the recent NLO fits of the P_T-differential yields at RHIC, the Tevatron and the LHC. Both the normalisation and the energy dependence of the J/psi, psi' and Upsilon(1S), we obtained, are in disagreement with the data irrespective of the fit method. The same is true if one uses CEM-like colour-octet NRQCD parameters. If, on the contrary, one disregards the colour-octet contribution, the existing data i...

  18. Beauty, charm and hyperon production at fixed-target experiments

    Energy Technology Data Exchange (ETDEWEB)

    Erik Gottschalk

    2002-12-11

    Over the years fixed-target experiments have performed numerous studies of particle production in strong interactions. The experiments have been performed with different types of beam particles of varying energies, and many different target materials. Since the physics of particle production is still not understood, ongoing research of phenomena that we observe as beauty, charm and strange-particle production is crucial if we are to gain an understanding of these fundamental processes. It is in this context that recent results from fixed-target experiments on beauty, charm, and hyperon production will be reviewed.

  19. P-986 Letter of Intent: Medium-Energy Antiproton Physics at Fermilab

    Energy Technology Data Exchange (ETDEWEB)

    Asner, David M. [Carleton Univ., Ottawa, ON (Canada); Phillips, Thomas J. [Duke Univ., Durham, NC (United States); Apollinari, Giorgio [Fermi National Accelerator Lab. (FNAL), Batavia, IL (United States); Broemmelsiek, Daniel R. [Fermi National Accelerator Lab. (FNAL), Batavia, IL (United States); Brown, Charles N. [Fermi National Accelerator Lab. (FNAL), Batavia, IL (United States); Christian, David C. [Fermi National Accelerator Lab. (FNAL), Batavia, IL (United States); Derwent, Paul [Fermi National Accelerator Lab. (FNAL), Batavia, IL (United States); Gollwitzer, Keith [Fermi National Accelerator Lab. (FNAL), Batavia, IL (United States); Hahn, Alan [Fermi National Accelerator Lab. (FNAL), Batavia, IL (United States); Papadimitriou, Vaia [Fermi National Accelerator Lab. (FNAL), Batavia, IL (United States); Stefanski, Ray [Fermi National Accelerator Lab. (FNAL), Batavia, IL (United States); Werkema, Steven [Fermi National Accelerator Lab. (FNAL), Batavia, IL (United States); White, Herman B. [Fermi National Accelerator Lab. (FNAL), Batavia, IL (United States); Baldini, Wander [Istituto Nazionale di Fisica Nucleare (INFN), Ferrara (Italy); Stancari, Giulio [Istituto Nazionale di Fisica Nucleare (INFN), Ferrara (Italy); Stancari, Michelle [Istituto Nazionale di Fisica Nucleare (INFN), Ferrara (Italy); Jackson, Gerald P. [Hbar Technologies, Chicago, IL (United States); Kaplan, Daniel M. [Illinois Inst. of Technology, Chicago, IL (United States); Torun, Yagmur [Illinois Inst. of Technology, Chicago, IL (United States); White, Christopher G. [Illinois Inst. of Technology, Chicago, IL (United States); Park, HyangKyu [HyungPook National Univ., DaeGu (Korea, Republic of); Pedlar, Todd K. [Luther College, Decorah, IA (United States); Gustafson, H. Richard [Univ. of Michigan, Ann Arbor, MI (United States); Rosen, Jerome [Northwestern Univ., Evanston, IL (United States); Wayne, Mitchell [Univ. of Notre Dame, IN (United States); Chakravorty, Alak [St. Xavier Univ., Chicago, IL (United States); Dukes, E. Craig [Univ. of Virginia, Charlottesville, VA (United States)

    2009-02-05

    Fermilab has long had the world's most intense antiproton source. Despite this, the opportunities for medium-energy antiproton physics at Fermilab have been limited in the past and - with the antiproton source now exclusively dedicated to serving the needs of the Tevatron Collider - are currently nonexistent. The anticipated shutdown of the Tevatron in 2010 presents the opportunity for a world-leading medium-energy antiproton program. We summarize the current status of the Fermilab antiproton facility and review some physics topics for which the experiment we propose could make the world's best measurements. Among these, the ones with the clearest potential for high impact and visibility are in the area of charm mixing and CP violation. Continued running of the Antiproton Source following the shutdown of the Tevatron is thus one of the simplest ways that Fermilab can restore a degree of breadth to its future research program. The impact on the rest of the program will be minor. We request a small amount of effort over the coming months in order to assess these issues in more detail.

  20. Determination of the jet energy scale at the collider detector at Fermilab

    Energy Technology Data Exchange (ETDEWEB)

    Bhatti, A.; /Rockefeller U.; Canelli, Florencia; /UCLA; Heinemann, B.; /Liverpool U.; Adelman, J.; Ambrose, D.; Arguin, J.-F.; Barbaro-Galtieri, A.; Budd, H.; Chung, Y.S.; Chung, K.; Cooper, B.; Currat, C.; D' Onofrio, M.; Dorigo, T.; Erbacher, R.; Field, R.; Flanagan, G.; Gibson, A.; Hatakeyama, K.; Happacher, F.; Hoffman, D.; /Argonne /UCLA

    2005-10-01

    A precise determination of the energy scale of jets at the Collider Detector at Fermilab at the Tevatron p{bar p} collider is described. Jets are used in many analyses to estimate the energies of partons resulting from the underlying physics process. Several correction factors are developed to estimate the original parton energy from the observed jet energy in the calorimeter. The jet energy response is compared between data and Monte Carlo simulation for various physics processes, and systematic uncertainties on the jet energy scale are determined. For jets with transverse momenta above 50 GeV the jet energy scale is determined with a 3% systematic uncertainty.

  1. Fixed target facility at the SSC

    Energy Technology Data Exchange (ETDEWEB)

    Loken, S.C.; Morfin, J.G.

    1985-01-01

    The question of whether a facility for fixed target physics should be provided at the SSC must be answered before the final technical design of the SSC can be completed, particularly if the eventual form of extraction would influence the magnet design. To this end, an enthusiastic group of experimentalists, theoreticians and accelerator specialists have studied this point. The accelerator physics issues were addressed by a group led by E. Colton whose report is contained in these proceedings. The physics addressable by fixed target was considered by many of the Physics area working groups and in particular by the Structure Function Group. This report is the summary of the working group which considered various SSC fixed target experiments and determined which types of beams and detectors would be required. 13 references, 5 figures.

  2. UNIX trademark in high energy physics: What we can learn from the initial experiences at Fermilab

    Energy Technology Data Exchange (ETDEWEB)

    Butler, J.N.

    1991-03-01

    The reasons why Fermilab decided to support the UNIX operating system are reviewed and placed in the content of an overall model for high energy physics data analysis. The strengths and deficiencies of the UNIX environment for high energy physics are discussed. Fermilab's early experience in dealing with a an open'' multivendor environment, both for computers and for peripherals, is described. The human resources required to fully exploit the opportunities are clearly growing. The possibility of keeping the development and support efforts within reasonable bounds may depend on our ability to collaborate or at least to share information even more effectively than we have in the past. 7 refs., 4 figs., 5 tabs.

  3. Fermilab Central Computing Facility: Energy conservation report and mechanical systems design optimization and cost analysis study

    Energy Technology Data Exchange (ETDEWEB)

    Krstulovich, S.F.

    1986-11-12

    This report is developed as part of the Fermilab Central Computing Facility Project Title II Design Documentation Update under the provisions of DOE Document 6430.1, Chapter XIII-21, Section 14, paragraph a. As such, it concentrates primarily on HVAC mechanical systems design optimization and cost analysis and should be considered as a supplement to the Title I Design Report date March 1986 wherein energy related issues are discussed pertaining to building envelope and orientation as well as electrical systems design.

  4. Thermal and structural stability of medium energy target carrier assembly for NOvA at Fermilab

    Energy Technology Data Exchange (ETDEWEB)

    McGee, M.W.; Ader, C.; Anderson, K.; Hylen, J.; Martens, M.; /Fermilab

    2010-05-01

    The NOvA project will upgrade the existing Neutrino at Main Injector (NuMI) project beamline at Fermilab to accommodate beam power of 700 kW. The Medium Energy (ME) graphite target assembly is provided through an accord with the State Research Center of Russia Institute for High Energy Physics (IHEP) at Protvino, Russia. The effects of proton beam energy deposition within beamline components are considered as thermal stability of the target carrier assembly and alignment budget are critical operational issues. Results of finite element thermal and structural analysis involving the target carrier assembly is provided with detail regarding the target's beryllium windows.

  5. Event Display for the Fixed Target Experiment BM@N

    Directory of Open Access Journals (Sweden)

    Gertsenberger Konstantin

    2016-01-01

    Full Text Available One of the main problems to be solved in modern high energy physics experiments on particle collisions with a fixed target is the visual representation of the events during the experiment run. The article briefly describes the structure of the BM@N facility at the Nuclotron being under construction at the Joint Institute for Nuclear Research with the aim to study properties of the baryonic matter in collisions of ions with fixed target at energies up to 4 GeV/nucleon (for Au79+. Aspects concerning the visualization of data and detector details at the modern experiments and possibilities of practical applications are discussed. We present event display system intended to visualize the detector geometries and events of particle collisions with the fixed target, its options and features as well as integration with BMNRoot software. The examples of graphical representation of simulated and reconstructed points and particle tracks with BM@N geometry are given for central collisions of Au79+ ions with gold target and deuterons with carbon target.

  6. Event Display for the Fixed Target Experiment BM@N

    Science.gov (United States)

    Gertsenberger, Konstantin

    2016-02-01

    One of the main problems to be solved in modern high energy physics experiments on particle collisions with a fixed target is the visual representation of the events during the experiment run. The article briefly describes the structure of the BM@N facility at the Nuclotron being under construction at the Joint Institute for Nuclear Research with the aim to study properties of the baryonic matter in collisions of ions with fixed target at energies up to 4 GeV/nucleon (for Au79+). Aspects concerning the visualization of data and detector details at the modern experiments and possibilities of practical applications are discussed. We present event display system intended to visualize the detector geometries and events of particle collisions with the fixed target, its options and features as well as integration with BMNRoot software. The examples of graphical representation of simulated and reconstructed points and particle tracks with BM@N geometry are given for central collisions of Au79+ ions with gold target and deuterons with carbon target.

  7. Physics goals and experimental status of SELEX: Fermilab E781

    Energy Technology Data Exchange (ETDEWEB)

    Procario, M. [Carnegie Mellon University, Pittsburgh, Pennsylvania15206 (United States)

    1997-05-01

    SELEX is a fixed target experiment at Fermilab designed to do a systematic study of charm baryons. Data taking began in February, 1997, and preliminary charmed hadron signals have been observed. {copyright} {ital 1997 American Institute of Physics.}

  8. Low-energy run of Fermilab Electron Cooler's beam generation system

    Energy Technology Data Exchange (ETDEWEB)

    Prost, Lionel; Shemyakin, Alexander; /Fermilab; Fedotov, Alexei; Kewisch, Jorg; /Brookhaven

    2010-08-01

    As a part of a feasibility study of using the Fermilab Electron Cooler for a low-energy Relativistic Heavy Ion Collider (RHIC) run at Brookhaven National Laboratory (BNL), the cooler operation at 1.6 MeV electron beam energy was tested in a short beam line configuration. The main result of the study is that the cooler beam generation system is suitable for BNL needs. In a striking difference with running 4.3 MeV beam, no unprovoked beam recirculation interruptions were observed.

  9. Testing Light Dark Matter Coannihilation With Fixed-Target Experiments

    Energy Technology Data Exchange (ETDEWEB)

    Izaguirre, Eder [Brookhaven Natl. Lab.; Kahn, Yonatan [Princeton U.; Krnjaic, Gordan [Fermilab; Moschella, Matthew [Princeton U.

    2017-03-20

    In this paper, we introduce a novel program of fixed-target searches for thermal-origin Dark Matter (DM), which couples inelastically to the Standard Model. Since the DM only interacts by transitioning to a heavier state, freeze-out proceeds via coannihilation and the unstable heavier state is depleted at later times. For sufficiently large mass splittings, direct detection is kinematically forbidden and indirect detection is impossible, so this scenario can only be tested with accelerators. Here we propose new searches at proton and electron beam fixed-target experiments to probe sub-GeV coannihilation, exploiting the distinctive signals of up- and down-scattering as well as decay of the excited state inside the detector volume. We focus on a representative model in which DM is a pseudo-Dirac fermion coupled to a hidden gauge field (dark photon), which kinetically mixes with the visible photon. We define theoretical targets in this framework and determine the existing bounds by reanalyzing results from previous experiments. We find that LSND, E137, and BaBar data already place strong constraints on the parameter space consistent with a thermal freeze-out origin, and that future searches at Belle II and MiniBooNE, as well as recently-proposed fixed-target experiments such as LDMX and BDX, can cover nearly all remaining gaps. We also briefly comment on the discovery potential for proposed beam dump and neutrino experiments which operate at much higher beam energies.

  10. Beam Position Monitor and Energy Analysis at the Fermilab Accelerator Science and Technology Facility

    Energy Technology Data Exchange (ETDEWEB)

    Lopez, David Juarez [Univ. of Guanajuato (Mexico)

    2015-08-01

    Fermilab Accelerator Science and Technology Facility has produced its first beam with an energy of 20 MeV. This energy is obtained by the acceleration at the Electron Gun and the Capture Cavity 2 (CC2). When fully completed, the accelerator will consist of a photoinjector, one International Liner Collider (ILC)-type cryomodule, multiple accelerator R&D beamlines, and a downstream beamline to inject 300 MeV electrons into the Integrable Optics Test Accelerator (IOTA). We calculated the total energy of the beam and the corresponding energy to the Electron Gun and CC2. Subsequently, a Beam Position Monitors (BPM) error analysis was done, to calculate the device actual resolution.

  11. Fixed-target physics at LHCb arXiv

    CERN Document Server

    Maurice, Emilie

    The LHCb experiment has the unique possibility, among the LHC experiments, to be operated in fixed target mode, using its internal gas target SMOG. The energy scale achievable at the LHC and the excellent detector capabilities for vertexing, tracking and particle identification allow a wealth of measurements of great interest for cosmic ray and heavy ions physics. We report the first measurements made in this configuration: the measurement of antiproton production in proton-helium collisions and the measurements of open and hidden charm production in proton-argon collisions at $\\sqrt{s_\\textrm{NN}} =$ 110 GeV.

  12. The SELEX experiment at Fermilab

    Science.gov (United States)

    Smith, V. J.

    1998-05-01

    The SELEX experiment (Segmented Large-X Spectrometer) has been taking data in the 1996-7 Fermilab fixed-target run. The experiment uses a 650 GeV/c negative beam which is 50% Σ-, 50% π-. The primary purpose is to study the production and properties of charmed and charm-strange baryons, but there is also a wide program of other physics topics. The present status of the experiment and preliminary analysis are presented.

  13. The Selex experiment at Fermilab (E781)

    Energy Technology Data Exchange (ETDEWEB)

    Endler, A.M.F. [Centro Brasileiro de Pesquisas Fisicas (CBPF), Rio de Janeiro, RJ (Brazil)

    1999-07-01

    The Selex experiment (Segmented Large-X Spectrometer) took data in the 1996-1997 Fermilab fixed-target run with {pi}{sup -} and {sigma}{sup -} beams at 600 GeV/c, with the primary purpose to do a high statistics study of production and properties of charmed baryons. (author)

  14. Fermilab Project X nuclear energy application: Accelerator, spallation target and transmutation technology demonstration

    Energy Technology Data Exchange (ETDEWEB)

    Gohar, Yousry; /Argonne; Johnson, David; Johnson, Todd; Mishra, Shekhar; /Fermilab

    2011-04-01

    The recent paper 'Accelerator and Target Technology for Accelerator Driven Transmutation and Energy Production' and report 'Accelerators for America's Future' have endorsed the idea that the next generation particle accelerators would enable technological breakthrough needed for nuclear energy applications, including transmutation of waste. In the Fall of 2009 Fermilab sponsored a workshop on Application of High Intensity Proton Accelerators to explore in detail the use of the Superconducting Radio Frequency (SRF) accelerator technology for Nuclear Energy Applications. High intensity Continuous Wave (CW) beam from the Superconducting Radio Frequency (SRF) Linac (Project-X) at beam energy between 1-2 GeV will provide an unprecedented experimental and demonstration facility in the United States for much needed nuclear energy Research and Development. We propose to carry out an experimental program to demonstrate the reliability of the accelerator technology, Lead-Bismuth spallation target technology and a transmutation experiment of spent nuclear fuel. We also suggest that this facility could be used for other Nuclear Energy applications.

  15. Injury reduction at Fermilab

    Energy Technology Data Exchange (ETDEWEB)

    Griffing, Bill; /Fermilab

    2005-06-01

    In a recent DOE Program Review, Fermilab's director presented results of the laboratory's effort to reduce the injury rate over the last decade. The results, shown in the figure below, reveal a consistent and dramatic downward trend in OSHA recordable injuries at Fermilab. The High Energy Physics Program Office has asked Fermilab to report in detail on how the laboratory has achieved the reduction. In fact, the reduction in the injury rate reflects a change in safety culture at Fermilab, which has evolved slowly over this period, due to a series of events, both planned and unplanned. This paper attempts to describe those significant events and analyze how each of them has shaped the safety culture that, in turn, has reduced the rate of injury at Fermilab to its current value.

  16. A Computer Program to Measure the Energy Spread of Multi-turn Beam in the Fermilab Booster at Injection

    Science.gov (United States)

    Nelson, Jovan; Bhat, Chandrashekhara; Hendricks, Brian

    2016-03-01

    We have developed a computer program interfaced with the ACNET environment for Fermilab accelerators in order to measure the energy spread of the injected proton beam from the LINAC, at the energy of 400 MeV. This program allows the user to configure a digitizing oscilloscope and timing devices to optimize data acquisition from a resistive wall current monitor. When the program is launched, it secures control of the oscilloscope and then generates a ``one-shot'' timeline which initiates injection into the Booster. Once this is complete, a kicker is set to create a notch in the beam and the line charge distribution data is collected by the oscilloscope. The program then analyzes this data in order to obtain notch width, beam revolution period, and beam energy spread. This allows the program to be a possible useful diagnostic tool for the beginning of the acceleration cycle for the proton beam. Thank you to the SIST program at Fermilab.

  17. Fermilab at 50

    CERN Document Server

    Lykken, Joseph

    2017-01-01

    Fermilab — originally called the National Accelerator Laboratory — began operations in Illinois on June 15, 1967. Operated and managed by The University of Chicago and Universities Research Association, LLC for the US Department of Energy, it has the distinction of being the only US national laboratory solely dedicated to the advancement of high-energy particle physics, astrophysics and cosmology. It has been the site of major discoveries and observations: the top and bottom quarks; the tau neutrino; direct CP violation in kaon decays; a quasar 27 billion light years away from us; origin of high-energy cosmic rays; and confirmation of the evidence of dark energy, among others. For 25 years it operated the world's highest energy particle collider, the Tevatron. Fermilab contributed collaboratively to the Tevatron's successor, the Large Hadron Collider, which discovered the Higgs boson in 2012. Fermilab's core competencies in accelerators, superconducting technologies, detectors and computing have positione...

  18. The SELEX experiment at Fermilab

    Energy Technology Data Exchange (ETDEWEB)

    E781 collaboration

    1998-05-01

    The SELEX experiment (Segmented Large-X Spectrometer) has been taking data in the 1996{endash}7 Fermilab fixed-target run. The experiment uses a 650 GeV/c negative beam which is 50{percent} {Sigma}{sup {minus}}, 50{percent} {pi}{sup {minus}}. The primary purpose is to study the production and properties of charmed and charm-strange baryons, but there is also a wide program of other physics topics. The present status of the experiment and preliminary analysis are presented. {copyright} {ital 1998 American Institute of Physics.}

  19. In celebration of the fixed target program with the Tevatron

    Energy Technology Data Exchange (ETDEWEB)

    Jeffrey A. Appel et al.

    2001-12-28

    The Tevatron is the world's first large superconducting accelerator. With its construction, we gained the dual opportunities to advance the state of the art in accelerator technology with the machine itself and in particle physics with the experiments that became possible in a higher energy regime. There have been 43 experiments in the Tevatron fixed target program. Many of these are better described as experimental programs, each with a broad range of physics goals and results, and more than 100 collaborating physicists and engineers. The results of this program are three-fold: (1) new technologies in accelerators, beams and detectors which advanced the state of the art; (2) new experimental results published in the refereed physics journals; and (3) newly trained scientists who are both the next generation of particle physicists and an important part of the scientific, technical and educational backbone of the country as a whole. In this book they compile these results. There are sections from each experiment including what their physics goals and results were, what papers were published, and which students have received degrees. Summaries of these results from the program as a whole are quite interesting, but the physics results from this program are too broad to summarize globally. The most important of the results appear in later sections of this booklet.

  20. QA (Quality Assurance) role in advanced energy activities: Towards an /open quotes/orthodox/close quotes/ Quality Program: Canonizing the traditions at Fermilab

    Energy Technology Data Exchange (ETDEWEB)

    Bodnarczuk, M.W.

    1988-02-01

    After a brief description of the goal of Fermi National Accelerator Laboratory (Fermilab) this paper poses and answers three questions related to Quality Assurance (QA) at the Laboratory. First, what is the difference between 'orthodox' and 'unorthodox' QA and is there a place for 'orthodox' QA at a laboratory like Fermilab. Second, are the deeper philosophical and cultural frameworks of high-energy physics acommodating or antagonistic to an 'orthodox' QA Program. Finally, faced with the task of developing an institutional QA program for Fermilab where does one begin. The paper is based on experience with the on-going development and implementation of an institutional QA Program at Fermilab. 10 refs.

  1. Energy Spread of the Proton Beam in the Fermilab Booster at its Injection Energy

    CERN Document Server

    Bhat, C M; Chaurize, S J; Garcia, F G; Seiya, K; Pellico, W A; Sullivan, T M; Triplett, A K

    2015-01-01

    We have measured the total energy spread (99 persent energy spread) of the Booster beam at its injection energy of 400 MeV by three different methods - 1) creating a notch of about 40 nsec wide in the beam immediately after multiple turn injection and measuring the slippage time required for high and low momentum particles for a grazing touch in line-charge distribution, 2) injecting partial turn beam and letting it to debunch, and 3) comparing the beam profile monitor data with predictions from MAD simulations for the 400 MeV injection beam line. The measurements are repeated under varieties of conditions of RF systems in the ring and in the beam transfer line.

  2. Conceptual Design Report: Fermilab Upgrade: Main Injector - Technical Components and Civil Construction, January, 1989

    Energy Technology Data Exchange (ETDEWEB)

    None, None

    1989-01-12

    This report contains a description of the design and cost estimate of a new 150 GeV accelerator, designated the Main Injector, which will be required to support the upgrade of the Fermilab Collider. The construction of this accelerator will simultaneously result in significant enhancements to the Fermilab fixed target program.

  3. Energy Spread of the Proton Beam in the Fermilab Booster at its Injection Energy

    Energy Technology Data Exchange (ETDEWEB)

    Bhat, C. M. [Fermi National Accelerator Lab. (FNAL), Batavia, IL (United States); Chase, B. E. [Fermi National Accelerator Lab. (FNAL), Batavia, IL (United States); Chaurize, S. J. [Fermi National Accelerator Lab. (FNAL), Batavia, IL (United States); Garcia, F. G. [Fermi National Accelerator Lab. (FNAL), Batavia, IL (United States); Seiya, K. [Fermi National Accelerator Lab. (FNAL), Batavia, IL (United States); Pellico, W. A. [Fermi National Accelerator Lab. (FNAL), Batavia, IL (United States); Sullivan, T. M. [Fermi National Accelerator Lab. (FNAL), Batavia, IL (United States); Triplett, A. K. [Fermi National Accelerator Lab. (FNAL), Batavia, IL (United States)

    2015-04-27

    We have measured the energy spread of the Booster beam at its injection energy of 400 MeV by three different methods: (1) creating a notch of about 40 nsec wide in the beam immediately after multiple turn injection and measuring the slippage time required for high and low momentum particles for a grazing touch in line-charge distribution, (2) injecting partial turn beam and letting it to debunch, and (3) comparing the beam profile monitor data with predictions from MAD simulations for the 400 MeV injection beam line. The measurements are repeated under varieties of conditions of rf systems in the ring and in the beam transfer line.

  4. 400-MeV upgrade for the Fermilab linac

    Energy Technology Data Exchange (ETDEWEB)

    Young, D.E.; Noble, R.J.

    1989-09-01

    Fermilab plans to upgrade the Tevatron to expand the physics research program in both the fixed target and the collider operating modes. The first phase of this program is to increase the energy of the H{sup -} linac from 200 to 400 MeV in order to reduce the incoherent space change tuneshift at injection into the Booster which can limit either the brightness or the total intensity of the beam. The linac upgrade will be achieved by replacing the last four 201 MeV, with seven 805 MHz side-coupled cavity modules operating at an average axial field of about 8 MV/m. This will allow acceleration to 400 MeV in the existing Linac enclosure. 4 refs., 3 figs., 1 tab.

  5. Fermilab science at work

    CERN Document Server

    Six days. Three frontiers. One amazing lab. From 2010 to 2012, a film crew followed a group of scientists at the Department of Energy's Fermilab and filmed them at work and at home. This 40-minute documentary shows the diversity of the people, research and work at Fermilab. Viewers catch a true behind-the-scenes look of the United States' premier particle physics laboratory while scientists explain why their research is important to them and the world. Scientists included: Brendan Casey, Herman White, Craig Hogan, Denton Morris, Mary Convery, Bonnie Fleming, Deborah Harris, Dave Schmitz, Brenna Flaugher and Aron Soha.

  6. Fermilab and Latin America

    Science.gov (United States)

    Lederman, Leon M.

    2006-09-01

    As Director of Fermilab, starting in 1979, I began a series of meetings with scientists in Latin America. The motivation was to stir collaboration in the field of high energy particle physics, the central focus of Fermilab. In the next 13 years, these Pan American Symposia stirred much discussion of the use of modern physics, created several groups to do collaborative research at Fermilab, and often centralized facilities and, today, still provides the possibility for much more productive North-South collaboration in research and education. In 1992, I handed these activities over to the AAAS, as President. This would, I hoped, broaden areas of collaboration. Such collaboration is unfortunately very sensitive to political events. In a rational world, it would be the rewards, cultural and economic, of collaboration that would modulate political relations. We are not there yet.

  7. Dilepton and φ meson production in elementary and nuclear collisions at the NICA fixed-target experiment

    Energy Technology Data Exchange (ETDEWEB)

    Wolf, Gyoergy; Zetenyi, Miklos [Wigner Research Centre for Physics, Hungarian Academy of Sciences, Institute for Particle and Nuclear Physics, P.O. Box 49, Budapest (Hungary)

    2016-08-15

    We argue that the NICA fixed-target experiment will be able to provide very important new experimental data on dilepton and φ meson production in the basically undiscovered energy domain between the SIS and SPS energies. Experimental information about elementary cross sections in this energy region is an essential ingredient of models of nuclear collisions in the same energy range. (orig.)

  8. DAQ Software Contributions, Absolute Scale Energy Calibration and Background Evaluation for the NOvA Experiment at Fermilab

    Energy Technology Data Exchange (ETDEWEB)

    Flumerfelt, Eric Lewis [Univ. of Tennessee, Knoxville, TN (United States)

    2015-08-01

    The NOvA (NuMI Off-axis ve [nu_e] Appearance) Experiment is a long-baseline accelerator neutrino experiment currently in its second year of operations. NOvA uses the Neutrinos from the Main Injector (NuMI) beam at Fermilab, and there are two main off-axis detectors: a Near Detector at Fermilab and a Far Detector 810 km away at Ash River, MN. The work reported herein is in support of the NOvA Experiment, through contributions to the development of data acquisition software, providing an accurate, absolute-scale energy calibration for electromagnetic showers in NOvA detector elements, crucial to the primary electron neutrino search, and through an initial evaluation of the cosmic background rate in the NOvA Far Detector, which is situated on the surface without significant overburden. Additional support work for the NOvA Experiment is also detailed, including DAQ Server Administration duties and a study of NOvA’s sensitivity to neutrino oscillations into a “sterile” state.

  9. Mechanical Design of a High Energy Beam Absorber for the Advanced Superconducting Test Accelerator (ASTA) at Fermilab

    Energy Technology Data Exchange (ETDEWEB)

    Baffes, C.; Church, M.; Leibfritz, J.; Oplt, S.; Rakhno, I.; /Fermilab

    2012-05-10

    A high energy beam absorber has been built for the Advanced Superconducting Test Accelerator (ASTA) at Fermilab. In the facility's initial configuration, an electron beam will be accelerated through 3 TTF-type or ILC-type SRF cryomodules to an energy of 750MeV. The electron beam will be directed to one of multiple downstream experimental and diagnostic beam lines and then deposited in one of two beam absorbers. The facility is designed to accommodate up to 6 cryomodules, which would produce a 75kW beam at 1.5GeV; this is the driving design condition for the beam absorbers. The beam absorbers consist of water-cooled graphite, aluminum and copper layers contained in a helium-filled enclosure. This paper describes the mechanical implementation of the beam absorbers, with a focus on thermal design and analysis. The potential for radiation-induced degradation of the graphite is discussed.

  10. Mechanical Design of a High Energy Beam Absorber for the Advanced Superconducting Test Accelerator (ASTA) at Fermilab

    CERN Document Server

    Baffes, C; Leibfritz, J; Oplt, S; Rakhno, I

    2013-01-01

    A high energy beam absorber has been built for the Advanced Superconducting Test Accelerator (ASTA) at Fermilab. In the facility's initial configuration, an electron beam will be accelerated through 3 TTF-type or ILC-type RF cryomodules to an energy of 750MeV. The electron beam will be directed to one of multiple downstream experimental and diagnostic beam lines and then deposited in one of two beam absorbers. The facility is designed to accommodate up to 6 cryomodules, which would produce a 75kW beam at 1.5GeV; this is the driving design condition for the beam absorbers. The beam absorbers consist of water-cooled graphite, aluminum and copper layers contained in a Helium-filled enclosure. This paper describes the mechanical implementation of the beam absorbers, with a focus on thermal design and analysis. In addition, the potential for radiation-induced degradation of the graphite is discussed.

  11. Fermilab Future

    CERN Multimedia

    Kathryn Grim

    2011-01-01

    The closure of Fermilab’s Tevatron this autumn will mark the end of an historic era in particle physics. But as physicists continue to comb through data from the Tevatron detectors, the laboratory will continue to pursue a greater understanding of the make-up of the Universe on multiple experimental frontiers.   In August 2010, construction crews began installing the roof over the enclosure that will house the NOvA detector. Photo by Dan Traska of Einarson Flying Service. “We plan to extract every bit of physics we can from this final Tevatron running period,” Fermilab Director Pier Oddone wrote in a column for Fermilab Today. “The Tevatron has already exceeded all expectations and, given the large data sets, we will continue to find new results and discoveries in the Tevatron data for years to come.” This spring, particle astrophysicists at Fermilab will ship to Chile components of a 570-megapixel camera scientists will install on the Blanco tele...

  12. Analysis of charmonium production at fixed-target experiments in the NRQCD approach

    CERN Document Server

    Maltoni, F; Bargiotti, M; Bertin, A; Bruschi, M; De Castro, S; Fabbri, L; Faccioli, P; Giacobbe, B; Grimaldi, F; Massa, I; Piccinini, M; Semprini-Cesari, N; Spighi, R; Villa, M; Vitale, A; Zoccoli, A

    2006-01-01

    We present an analysis of the existing data on charmonium hadro-production based on non-relativistic QCD (NRQCD) calculations at the next-to-leading order (NLO). All the data on J/psi and psi' production in fixed-target experiments and on pp collisions at low energy are included. We find that the amount of color octet contribution needed to describe the data is about 1/10 of that found at the Tevatron.

  13. A new Mtest beamline for the 1999 fixed target run

    Energy Technology Data Exchange (ETDEWEB)

    C. N. Brown and T. R. Kobilarcik

    2000-05-18

    The beamline cryogenic system for the Meson area will not be run for the 1999 fixed target run. The current MTest (MT) beamline relies on cryogenic magnets. A non-cryogenic solution is proposed which can yield up to 1 x 10{sup 6} pions per cycle at 120 GeV/c per 1 x 10{sup 11} incident protons at 800 GeV/c.

  14. Fermilab Steering Group Report

    Energy Technology Data Exchange (ETDEWEB)

    Steering Group, Fermilab; /Fermilab

    2007-12-01

    industrialization of ILC components in the U.S. and creating an engineering opportunity for ILC cost reductions. It o.ers an early and tangible application for ILC R&D in superconducting technology, attracting participation from accelerator scientists worldwide and driving forward the technology for still higher-energy accelerators of the future, such as a muon collider. To prepare for a future decision, the Fermilab Steering Group recommends that the laboratory seek R&D support for Project X, in order to produce an overall design of Project X and to spur the R&D and industrialization of ILC linac components needed for Project X. Advice from the High Energy Physics Advisory Panel will guide any future decision to upgrade the Fermilab accelerator complex, taking into account developments a.ecting the ILC schedule and the continuing evaluation of scientific priorities for U.S. particle physics. Fermilab should also work toward increased resources for longer-term future accelerators such as a muon collider, aiming at higher energies than the ILC would provide.

  15. Fermilab Steering Group Report

    Energy Technology Data Exchange (ETDEWEB)

    Beier, Eugene; /Pennsylvania U.; Butler, Joel; /Fermilab; Dawson, Sally; /Brookhaven; Edwards, Helen; /Fermilab; Himel, Thomas; /SLAC; Holmes, Stephen; /Fermilab; Kim, Young-Kee; /Fermilab /Chicago U.; Lankford, Andrew; /UC, Irvine; McGinnis, David; /Fermilab; Nagaitsev, Sergei; /Fermilab; Raubenheimer, Tor; /SLAC /Fermilab

    2007-01-01

    industrialization of ILC components in the U.S. and creating an engineering opportunity for ILC cost reductions. It offers an early and tangible application for ILC R&D in superconducting technology, attracting participation from accelerator scientists worldwide and driving forward the technology for still higher-energy accelerators of the future, such as a muon collider. To prepare for a future decision, the Fermilab Steering Group recommends that the laboratory seek R&D support for Project X, in order to produce an overall design of Project X and to spur the R&D and industrialization of ILC linac components needed for Project X. Advice from the High Energy Physics Advisory Panel will guide any future decision to upgrade the Fermilab accelerator complex, taking into account developments affecting the ILC schedule and the continuing evaluation of scientific priorities for U.S. particle physics. Fermilab should also work toward increased resources for longer-term future accelerators such as a muon collider, aiming at higher energies than the ILC would provide.

  16. Charm physics at Fermilab E791

    CERN Document Server

    Summers, D J; D'Almeida, F; Amato, S; Anjos, J C; Appel, J A; Ashery, D; Astorga, J; Banerjee, S; Bediaga, I; Blaylock, G; Bracker, S B; Burchat, Patricia R; Burnstein, R A; Carter, T; Costa, I; Cremaldi, L M; Denisenko, K; Darling, C L; Gagnon, P; Gerzon, S A; Gounder, K; Granite, D; Halling, M; James, C; Kasper, P A; Kwan, S; Lichtenstadt, J; Lundberg, B G; May-Tal-Beck, S; De Mello-Neto, J R T; Milburn, R H; De Miranda, J M; Napier, A; Nguyen, A; De Oliveira, A B; Peng, K C; Purohit, M V; Quinn, B; Radeztsky, S; Rafatian, A; Ramalho, A J; Reay, N W; Reibel, K; Reidy, J J; Rubin, H A; Santha, A K S; Santoro, A F S; Schwartz, A; Sheaff, M; Sidwell, R A; Da Silva-Carvalho, H; Slaughter, J; Sokoloff, M D; Souza, M H G; Stanton, N; Sugano, K; Takach, S F; Thorne, K S; Tripathi, A K; Trumer, D; Wiener, J; Witchey, N; Wolin, E; Yi, D

    1992-01-01

    Experiment 791 at Fermilab's Tagged Photon Laboratory has just accumulated a high statistics charm sample by recording 20 billion events on 24000 8mm tapes. A 500 GeV/c pi- beam was used with a fixed target and a magnetic spectrometer which now includes 23 silicon fixed target and a magnetic spectrometer which now includes 23 silicon microstrip planes for vertex reconstruction. A new data acquisition system read out 9000 events/sec during the part of the Tevatron cycle that delivered beam. Digitization and readout took 50 uS per event. Data was buffered in eight large FIFO memories to allow continuous event building and continuous tape writing to a wall of 42 Exabytes at 9.6 MB/sec. The 50 terabytes of data buffered to tape is now being filtered on RISC CPUs. Preliminary results show D0 --> K- pi+ and D+ --> K- pi+ pi+ decays. Rarer decays will be pursued.

  17. Online Measurement of the Energy Spread of Multi-Turn Beam in the Fermilab Booster at Injection

    Energy Technology Data Exchange (ETDEWEB)

    Nelson, J. [Brown U.; Bhat, C. M. [Fermilab; Hendricks, B. S. [Fermilab

    2017-07-01

    We have developed a computer program interfaced with the ACNET environment of Fermilab accelerators to measure energy spread of the proton beam from the LINAC at an injection into the Booster. It uses a digitizing oscilloscope and provides users an ability to configure the scope settings for optimal data acquisition from a resistive wall current monitor. When the program is launched, a) a one shot timeline is generated to initiate beam injection into the Booster, b) a gap of about 40 ns is produced in the injected beam using a set of fast kickers, c) collects line charge distribution data from the wall current monitor for the first 200 μs from the injection and d) performs complete data analysis to extract full beam energy spread of the beam. The program also gives the option to store the data for offline analyses. We illustrate a case with an example. We also present results on beam energy spread as a function of beam intensity from recent measurements.

  18. Vertically Integrated Circuits at Fermilab

    Energy Technology Data Exchange (ETDEWEB)

    Deptuch, Grzegorz; Demarteau, Marcel; Hoff, James; Lipton, Ronald; Shenai, Alpana; Trimpl, Marcel; Yarema, Raymond; Zimmerman, Tom; /Fermilab

    2009-01-01

    The exploration of the vertically integrated circuits, also commonly known as 3D-IC technology, for applications in radiation detection started at Fermilab in 2006. This paper examines the opportunities that vertical integration offers by looking at various 3D designs that have been completed by Fermilab. The emphasis is on opportunities that are presented by through silicon vias (TSV), wafer and circuit thinning and finally fusion bonding techniques to replace conventional bump bonding. Early work by Fermilab has led to an international consortium for the development of 3D-IC circuits for High Energy Physics. The consortium has submitted over 25 different designs for the Fermilab organized MPW run organized for the first time.

  19. The Fermilab Particle Astrophysics Center

    Energy Technology Data Exchange (ETDEWEB)

    2004-11-01

    The Particle Astrophysics Center was established in fall of 2004. Fermilab director Michael S. Witherell has named Fermilab cosmologist Edward ''Rocky'' Kolb as its first director. The Center will function as an intellectual focus for particle astrophysics at Fermilab, bringing together the Theoretical and Experimental Astrophysics Groups. It also encompasses existing astrophysics projects, including the Sloan Digital Sky Survey, the Cryogenic Dark Matter Search, and the Pierre Auger Cosmic Ray Observatory, as well as proposed projects, including the SuperNova Acceleration Probe to study dark energy as part of the Joint Dark Energy Mission, and the ground-based Dark Energy Survey aimed at measuring the dark energy equation of state.

  20. Preparation of a primary argon beam for the CERN fixed target physics.

    Science.gov (United States)

    Küchler, D; O'Neil, M; Scrivens, R; Thomae, R

    2014-02-01

    The fixed target experiment NA61 in the North Area of the Super Proton Synchrotron is studying phase transitions in strongly interacting matter. Up to now they used the primary beams available from the CERN accelerator complex (protons and lead ions) or fragmented beams created from the primary lead ion beam. To explore a wider range of energies and densities a request was made to provide primary argon and xenon beams. This paper describes the results of the setting up and 10 week test run of the Ar(11+) beam from the 14.5 GHz ECR ion source and the linear accelerator (Linac3) at CERN.

  1. Preparation of a primary argon beam for the CERN fixed target physics

    Energy Technology Data Exchange (ETDEWEB)

    Küchler, D., E-mail: detlef.kuchler@cern.ch; O’Neil, M.; Scrivens, R. [CERN, BE Department, 1211 Geneva 23 (Switzerland); Thomae, R. [iThemba LABS, P.O. Box 722, Somerset West 7130 (South Africa)

    2014-02-15

    The fixed target experiment NA61 in the North Area of the Super Proton Synchrotron is studying phase transitions in strongly interacting matter. Up to now they used the primary beams available from the CERN accelerator complex (protons and lead ions) or fragmented beams created from the primary lead ion beam. To explore a wider range of energies and densities a request was made to provide primary argon and xenon beams. This paper describes the results of the setting up and 10 week test run of the Ar{sup 11+} beam from the 14.5 GHz ECR ion source and the linear accelerator (Linac3) at CERN.

  2. Fixed target project AFTER at the LHC beams for heavy ion and hadron physics

    Science.gov (United States)

    Kurepin, A. B.; Topilskaya, N. S.

    2017-09-01

    High intensity proton and lead ion beams at the LHC collider allow one to use the beam halo by placing a fixed target or a bent crystal for beam extraction. The particle energy in this case is just half that at the RHIC collider, but the luminosity exceeds the collider luminosity many times. It is also possible to install a polarized target in the extracted beam. The project AFTER is aimed at investigation of rare processes, polarization phenomena, determination of the parameters required for analysis of cosmic rays and neutrino astrophysics, detailed investigation of quarkonia production and suppression depending on the phase transition of matter to the quark-gluon phase.

  3. Beauty and charm production from Fermilab experiment 789

    Energy Technology Data Exchange (ETDEWEB)

    Jansen, D.M.; Boissevain, J.; Carey, T.A.; Jeppesen, R.G.; Kapustinsky, J.S.; Lane, D.W.; Leitch, M.J.; Lillberg, J.W.; McGaughey, P.L.; Moss, J.M.; Peng, J.C. [Los Alamos National Lab., NM (United States); Brown, G.; Isenhower, L.D.; Keyser, J.; Sadler, M.E.; Schnathorst, R.; Schwindt, R. [Abilene Christian Univ., TX (United States); Gidal, G.; Ho, P.M.; Kowitt, M.S.I.; Luk, K.B.; Pripstein, D. [Lawrence Berkeley Lab., CA (United States); Lederman, L.M.; Schub, M.H. [Chicago Univ., IL (United States); Brown, C.N.; Cooper, W.E.; Glass, H.D.; Gounder, K.N.; Mishra, C.S. [Fermi National Accelerator Lab., Batavia, IL (United States); Kaplan, D.M.; Luebke, W.R.; Martin, V.M.; Preston, R.S.; Sa, J.; Tanikella, V. [Northern Illinois Univ., De Kalb, IL (United States); Childers, R.; Darden, C.W.; Snodgrass, D.; Wilson, J.R. [South Carolina Univ., Columbia, SC (United States); Chen, Y.C. [Academia Sinica, Taipei (Taiwan, Province of China). Inst. of Physics]|[National Cheng Kung Univ., Tainan (Taiwan, Province of China). Inst. of Physics; Kiang, G.C.; Teng, P.K. [Academia Sinica, Taipei (Taiwan, Province of China). Inst. of Physics

    1993-06-01

    Experiment 789 is a fixed-target experiment at Fermilab designed to study low-multiplicity decays of charm and beauty. During the 1991 run. E789 collected {approx} 10{sup 9} events using an 800 GeV proton beam incident upon gold and beryllium targets. Analyses of these data include searches for b {yields} J/{psi}+{Chi} decays and {Alpha}- dependence measurements of neutral D meson production. Preliminary results from the 1991 run are presented in this paper.

  4. Nuclear effects on heavy quark production. Results from Fermilab experiments E772 and E789

    Energy Technology Data Exchange (ETDEWEB)

    Leitch, M.J.; Alde, D.; Baer, H.; Boissevain, J.; Carey, T.; Garvey, G.T.; Jeppesen, R.; Kapustinsky, J.; Klein, A.; Lane, D.; Lee, C.; Lillberg, J.; McGaughey, P.; Moss, J.M.; Peng, J.C. (Los Alamos National Lab., NM (United States)); Brooks, M.; Brown, G.; Isenhower, D.; Sadler, M.; Schnathorst, R. (Abilene Christian Univ., TX (United States)); Danner, G.; Wang, M. (Case Western Reserve Univ., Cleveland, OH (United States)); Lederman, L.; Schub, M. (Univ. of Chicago, IL (United States)); Brown, C.N.; Cooper, W.E.; Glass, H.; Hsiung, Y.B.; Mishra, C.S.; Gounder, K. (Fermilab, Batavia, IL (United States)); Adams, M.R. (Univ. of Illinois, Chicago, IL (United States)); Gidal, G.; Ho, P.M.; Kowitt, M.; Luk, K.B.; Pripstein, D. (Lawrence Berkeley Lab., CA (United States)); Apolinski, M.; Guo, R.; Kaplan, D.M.; Martin, V.; Preston, R.; Sa, J.; Tanikella, V. (Northern Illinois Univ., DeKalb, IL (United States)); Childers, R.; Darden, C.; Wilson, J. (Univ. of South Carolina, Columbia; E772 and E789 Collaborations

    1992-07-20

    Fermilab Experiments E772 and E789 are fixed target experiments with 800 GeV protons incident on nuclear targets corresponding to a center-of-mass energy of [radical]s [approx equal] 39 GeV. Measurements are made with a pair spectrometer which has a solid angle of a few percent and operates at high luminosity with up to [approx equal] 10[sup 12](E772) or [approx equal] 10[sup 11](E789) protons/spill. Our experimental program explores several types of nuclear medium effects: the modification of quark and gluon structure functions by the nucleus, effects on the production of vector mesons (e.g. J/[psi] and [Upsilon]), and effects on the production of D mesons. (orig.).

  5. Fermilab turns 50! Congratulations!

    CERN Multimedia

    Staff Association

    2017-01-01

    This year Fermilab turns 50 and the celebrations are ongoing. The ties between CERN and Fermilab are numerous and have been ranging from competition between two labs at the forefront of their field, e.g. with the chase of the top quark, finally discovered by Fermilab, to outright collaboration, e.g. on LHC low-beta quadrupole magnet development and production and in the CMS collaboration. In June, in the name of the CERN staff and scientific community, the CERN Staff Association sent a message to the Fermilab staff and scientific community, through Dr. Nigel Lockyer, Fermilab Director. The letter, and the assurance from Nigel Lockyer that the message has been passed onto the Fermilab community can be found on our website. Congratulations to Fermilab on its fiftieth Anniversary, and to the staff and collaborators who made this laboratory through their hard work, dedication and vision!

  6. Fixed target measurements at LHCb for cosmic rays physics arXiv

    CERN Document Server

    Graziani, Giacomo

    The LHCb experiment has the unique possibility, among the LHC experiments, to be operated in fixed target mode, using its internal gas target. The energy scale achievable at the LHC, combined with the LHCb forward geometry and detector capabilities, allow to explore particle production in a wide Bjorken-$x$ range at the $\\sqrt{s_{\\scriptscriptstyle\\rm NN}} \\sim 100$ GeV energy scale, providing novel inputs to nuclear and cosmic ray physics. The first measurement of antiproton production in collisions of LHC protons on helium nuclei at rest is presented. The knowledge of this cross-section is of great importance for the study of the cosmic antiproton flux, and the LHCb results are expected to improve the interpretation of the recent high-precision measurements of cosmic antiprotons performed by the space-borne PAMELA and AMS-02 experiments.

  7. Fermilab Antiproton Source, Recycler Ring, and Main Injector

    CERN Document Server

    Nagaitsev, Sergei

    2014-01-01

    At the end of its operations in 2011, the Fermilab antiproton production complex consisted of a sophisticated target system, three 8-GeV storage rings (namely the Debuncher, the Accumulator and the Recycler), 25 independent multi-GHz stochastic cooling systems, the world's only relativistic electron cooling system and a team of technical experts equal to none. The accelerator complex at Fermilab supported a broad physics program including the Tevatron Collider Run II, neutrino experiments using 8-GeV and 120-GeV proton beams, as well as a test beam facility and other fixed target experiments using 120-GeV primary proton beams. This paper provides a brief description of Fermilab accelerators as they operated at the end of the Collider Run II (2011).

  8. Wanted: Fermilab director who can build consensus

    CERN Multimedia

    Pierce, G M

    2004-01-01

    "With current Fermilab Director Michael Witherell stepping down in July 2005, an appointed committee has vowed to find a new leader who will keep the Batavia lab at the forefront of the high-energy physics field" (1 page).

  9. Is there a role for fixed target heavy ion physics beyond RHIC startup?

    Energy Technology Data Exchange (ETDEWEB)

    Sandweiss, J. [Yale Univ., New Haven, CT (United States)

    1995-07-15

    The interesting and important physics opportunities provided by AGS and CERN fixed target facilities will be far from exhausted by the time of RHIC turn on. Given the need for the AGS to provide heavy ion beams for injection into RHIC, the cost effectiveness of fixed target experimentation with AGS beams will be high. Examples of the physics are given.

  10. Spin physics and TMD studies at A Fixed-Target ExpeRiment at the LHC (AFTER@LHC

    Directory of Open Access Journals (Sweden)

    Lansberg J.P.

    2015-01-01

    Full Text Available We report on the opportunities for spin physics and Transverse-Momentum Dependent distribution (TMD studies at a future multi-purpose fixed-target experiment using the proton or lead ion LHC beams extracted by a bent crystal. The LHC multi-TeV beams allow for the most energetic fixed-target experiments ever performed, opening new domains of particle and nuclear physics and complementing that of collider physics, in particular that of RHIC and the EIC projects. The luminosity achievable with AFTER@LHC using typical targets would surpass that of RHIC by more that 3 orders of magnitude in a similar energy region. In unpolarised proton-proton collisions, AFTER@LHC allows for measurements of TMDs such as the Boer-Mulders quark distributions, the distribution of unpolarised and linearly polarised gluons in unpolarised protons. Using the polarisation of hydrogen and nuclear targets, one can measure transverse single-spin asymmetries of quark and gluon sensitive probes, such as, respectively, Drell-Yan pair and quarkonium production. The fixed-target mode has the advantage to allow for measurements in the target-rapidity region, namely at large x↑ in the polarised nucleon. Overall, this allows for an ambitious spin program which we outline here.

  11. Energy and target dependence of the pseudo-rapidity distributions in pion- and proton-nucleus collisions at Fermilab energies

    Energy Technology Data Exchange (ETDEWEB)

    Busza, W.; Luckey, D.; Votta, L.; Young, C.; Halliwell, C.; Elias, J.

    1976-01-01

    Multiparticle production in hadron-nucleus collisions has been studied using hodoscope arrays. Data on angular distributions were collected for incident ..pi../sup + -/, K/sup + -/, and P/sup + -/ at 50, 100, and 200 GeV with targets ranging from hydrogen through uranium. The extent in pseudo-rapidity of particles produced in the target fragmentation region increases with energy. Proton and pion induced reactions exhibit different behavior for the same target nucleus. However, for target nuclei with identical values of ..nu..bar, (where ..nu..bar is the average thickness in units of the mean free path of the incident particle) the behavior is similar. Pseudo-rapidity distributions are compared with theoretical models.

  12. Fermilab Program and Plans

    Energy Technology Data Exchange (ETDEWEB)

    Denisov, Dmitri [Fermilab

    2014-01-01

    This article is a short summary of the talk presented at 2014 Instrumentation Conference in Novosibirsk about Fermilab's experimental program and future plans. It includes brief description of the P5 long term planning progressing in US as well as discussion of the future accelerators considered at Fermilab.

  13. The Fermilab recycler ring

    Energy Technology Data Exchange (ETDEWEB)

    Martin Hu

    2001-07-24

    The Fermilab Recycler is a permanent magnet storage ring for the accumulation of antiprotons from the Antiproton Source, and the recovery and cooling of the antiprotons remaining at the end of a Tevatron store. It is an integral part of the Fermilab III luminosity upgrade. The following paper describes the design features, operational and commissioning status of the Recycler Ring.

  14. Some recent experimental results from Fermilab

    Energy Technology Data Exchange (ETDEWEB)

    Montgomery, H.E.

    1994-02-01

    The aim of this talk was to give an impression of the tremendous range and depth of the data being produced by experiments at Fermilab, both fixed target and collider. Despite the generous allotment of time it was not possible to do more than scratch the surface of some subjects. The collider experiments, using the measurements of the W mass and with top search and mass limits, are approaching the situation where a statement about the Higgs mass, or a sensitive test of the consistency of the standard model become a possibility. Subjects discussed were: (1) cross-sections, QCD measurements; (2) decay physics; (3) W/Z physics; (4) searches for new physics; and (5) search for top quark.

  15. Physics History Books in the Fermilab Library

    Energy Technology Data Exchange (ETDEWEB)

    Sara Tompson.

    1999-09-17

    Fermilab is a basic research high-energy physics laboratory operated by Universities Research Association, Inc. under contract to the U.S. Department of Energy. Fermilab researchers utilize the Tevatron particle accelerator (currently the worlds most powerful accelerator) to better understand subatomic particles as they exist now and as they existed near the birth of the universe. A collection review of the Fermilab Library monographs was conducted during the summers of 1998 and 1999. While some items were identified for deselection, the review proved most fruitful in highlighting some of the strengths of the Fermilab monograph collection. One of these strengths is history of physics, including biographies and astrophysics. A bibliography of the physics history books in the collection as of Summer, 1999 follows, arranged by author. Note that the call numbers are Library of Congress classification.

  16. US Department of Energy Secretary Bill Richardson (centre) at an LHC interaction region quadrupole test cryostat. part of the US contribution to LHC construction and built by the US-LHC collaboration (hence the Fermilab logo)

    CERN Multimedia

    Barbara Warmbein

    2000-01-01

    Photo 01 : September 2000 - Mr Bill Richardson, Secretary of Energy, United States of America (centre) at an LHC interaction region quadrupole test cryostat, part of the US contribution to LHC construction and built by the US-LHC collaboration (hence the Fermilab logo); with l. to r. Dr Mildred Dresselhaus, Dr Carlo Wyss, CERN Director General, Profesor Luciano Maiani, Professor Roger Cashmore, Ambassador George Moose, Dr Peter Rosen, Dr John Ellis. Photo 02 : Mr. Bill Richardson (right), Secretary of Energy United States of America with Prof. Luciano Maiani leaning over one of the LHC magnets produced at Fermilab during his visit to CERN on 16th September 2000.

  17. Prospectives for A Fixed-Target ExpeRiment at the LHC: AFTER@LHC

    CERN Document Server

    Lansberg, J P; Didelez, J P; Genolini, B; Hadjidakis, C; Lorce, C; Rosier, P; Anselmino, M; Arnaldi, R; Scomparin, E; Brodsky, S J; Ferreiro, E G; Fleuret, F; Rakotozafindrabe, A; Schienbein, I; Uggerhoj, U I

    2012-01-01

    We argue that the concept of a multi-purpose fixed-target experiment with the proton or lead-ion LHC beams extracted by a bent crystal would offer a number of ground-breaking precision-physics opportunities. The multi-TeV LHC beams will allow for the most energetic fixed-target experiments ever performed. The fixed-target mode has the advantage of allowing for high luminosities, spin measurements with a polarised target, and access over the full backward rapidity domain --uncharted until now-- up to x_F ~ -1.

  18. Workshop on the AGS fixed-target research program

    Energy Technology Data Exchange (ETDEWEB)

    Ahrens, L; Schewe, P; Wanderer, P; Weisberg, H [eds.

    1978-01-01

    The summarized results of a two day workshop to determine experiment programs for the Brookhaven AGS during the construction period of the ISABELLE storage rings and after are presented. Topics covered include: experiments with low-energy beams; experiments with higher energy beams; neutrino physics; and polarized protons. (GHT)

  19. Achieving high luminosity in the Fermilab Tevatron

    Energy Technology Data Exchange (ETDEWEB)

    Holmes, S.D.

    1991-05-01

    Fermilab has embarked upon a program, christened Fermilab III, to raise the luminosity in the Tevatron proton-antiproton collider over the next five years by at least a factor of thirty beyond the currently achieved level of 1.6{times}10{sup 30}cm{sup {minus}2}sec{sup {minus}1}. Components of the program include implementation of electrostatic separators, Antiproton Source improvements, installation of cold compressors, doubling the existing linac output energy, and the construction of a new accelerator--the Fermilab Main Injector. Basic limitations in the achievement of higher luminosity in the Tevatron, the strategy developed to achieve the Fermilab III goals, and the evolution of luminosity throughout the period will be discussed. 1 fig., 2 tabs.

  20. Highlights from Fermilab

    Energy Technology Data Exchange (ETDEWEB)

    Parke, Stephen J.; /Fermilab

    2009-12-01

    In these two lectures I will chose some highlights from the Tevatron experiments (CDF/D0) and the Neutrino experiments and then discuss the future direction of physics at Fermilab after the Tevatron collider era.

  1. Report of the Fermilab Committee for Site Studies

    Energy Technology Data Exchange (ETDEWEB)

    Steve Holmes, Vic Kuchler et. al.

    2001-09-10

    Fermilab is the flagship laboratory of the U.S. high-energy physics program. The Fermilab accelerator complex has occupied the energy frontier nearly continuously since its construction in the early 1970s. It will remain at the frontier until the Large Hadron Collider at CERN begins operating in 2006-7. A healthy future for Fermilab will likely require construction of a new accelerator in the post-LHC era. The process of identifying, constructing and operating a future forefront facility will require the support of the world high-energy-physics community, the governments and funding agencies of many nations and the people of surrounding communities. This report explores options for construction of a new facility on or near the existing Fermilab site. We began the study that forms the basis of this report with the idea that Fermilab, and the surrounding area of northeastern Illinois, possesses attributes that make it an attractive candidate for a new accelerator construction project: excellent geology; a Fermilab staff and local contractors who are experienced in subsurface construction; abundant energy supplies; good access to transportation networks; the presence of local universities with strong interest and participation in the Fermilab research program; Fermilab's demonstrated ability to mount large accelerator construction projects and operate complex accelerator facilities; and a surrounding community that is largely supportive of Fermilab's presence. Our report largely confirms these perceptions.

  2. Physics Opportunities of a Fixed-Target Experiment using the LHC Beams

    Energy Technology Data Exchange (ETDEWEB)

    Brodsky, S.J.; /SLAC; Fleuret, F.; /Ecole Polytechnique; Hadjidakis, C.; Lansberg, J.P.; /Orsay, IPN

    2012-03-16

    We outline the many physics opportunities offered by a multi-purpose fixed-target experiment using the proton and lead-ion beams of the LHC extracted by a bent crystal. In a proton run with the LHC 7-TeV beam, one can analyze pp, pd and pA collisions at center-of-mass energy {radical}s{sub NN} {approx_equal} 115 GeV and even higher using the Fermi motion of the nucleons in a nuclear target. In a lead run with a 2.76 TeV-per-nucleon beam, {radical}s{sub NN} is as high as 72 GeV. Bent crystals can be used to extract about 5 x 10{sup 8} protons/sec; the integrated luminosity over a year reaches 0.5 fb{sup -1} on a typical 1 cm-long target without nuclear species limitation. We emphasize that such an extraction mode does not alter the performance of the collider experiments at the LHC. By instrumenting the target-rapidity region, gluon and heavy-quark distributions of the proton and the neutron can be accessed at large x and even at x larger than unity in the nuclear case. Single diffractive physics and, for the first time, the large negative-xF domain can be accessed. The nuclear target-species versatility provides a unique opportunity to study nuclear matter versus the features of the hot and dense matter formed in heavy-ion collisions, including the formation of the quark-gluon plasma, which can be studied in PbA collisions over the full range of target-rapidity domain with a large variety of nuclei. The polarization of hydrogen and nuclear targets allows an ambitious spin program, including measurements of the QCD lensing effects which underlie the Sivers single-spin asymmetry, the study of transversity distributions and possibly of polarized parton distributions. We also emphasize the potential offered by pA ultra-peripheral collisions where the nucleus target A is used as a coherent photon source, mimicking photoproduction processes in ep collisions. Finally, we note that W and Z bosons can be produced and detected in a fixed-target experiment and in their

  3. Double-quarkonium production at a fixed-target experiment at the LHC (AFTER@LHC

    Directory of Open Access Journals (Sweden)

    Jean-Philippe Lansberg

    2015-11-01

    Full Text Available We present predictions for double-quarkonium production in the kinematical region relevant for the proposed fixed-target experiment using the LHC beams (dubbed as AFTER@LHC. These include all spin-triplet S-wave charmonium and bottomonium pairs, i.e. ψ(n1S+ψ(n2S, ψ(n1S+ϒ(m1S and ϒ(m1S+ϒ(m2S with n1,n2=1,2 and m1,m2=1,2,3. We calculate the contributions from double-parton scatterings and single-parton scatterings. With an integrated luminosity of 20 fb−1 to be collected at AFTER@LHC, we find that the yields for double-charmonium production are large enough for differential distribution measurements. We discuss some differential distributions for J/ψ+J/ψ production, which can help to study the physics of double-parton and single-parton scatterings in a new energy range and which might also be sensitive to double intrinsic cc¯ coalescence at large negative Feynman x.

  4. Study of the discovery potential for hidden photon emission at future electron scattering fixed target experiments

    CERN Document Server

    Beranek, T

    2013-01-01

    Electron scattering fixed target experiments are a versatile tool to explore various physics phenomena. Recently these experiments came into focus to search for $U(1)$ extensions of the Standard Model of particle physics at low energies. These extensions are motivated from anomalies in astrophysical observations as well as from deviations from Standard Model predictions, such as the discrepancy between the experimental and theoretical determination of the anomalous magnetic moment of the muon. They also arise naturally when the Standard Model is embedded into a more general theory. In the considered $U(1)$ extensions a new, light messenger particle $\\gamma^\\prime$, the hidden photon, couples to the hidden sector as well as to the electromagnetic current of the Standard Model by kinetic mixing, which allows for a search for this particle e.g. in the invariant mass distribution of the process $e (A,\\,Z)\\rightarrow e (A,\\,Z) l^+ l^-$. In this process the hidden photon is emitted by bremsstrahlung and decays into...

  5. Heavy ion and fixed target physics at LHCb: results and prospects

    CERN Document Server

    CERN. Geneva

    2016-01-01

    In 2015, the LHCb collaboration endorsed the proposal to pursue an ambitious heavy ion physics program. In 2013, LHCb has demonstrated its capabilities to operate successfully in p-Pb and Pb-p collisions, leading already to several important publications in the field. The measurements of the nuclear modification factors and forward-backward production of prompt and displaced J/psi, psi(2S) and Upsilon states, as well as the production of prompt D0 mesons, have allowed to extend the knowledge of Cold Nuclear Matter effects on open heavy flavours and quarkonium production. The measurement of Z-boson production, important to constrain nuclear PDFs, and the measurement of two-particle angular correlations, probing collective effects in the dense environment of high energy collisions, have also been performed. Furthermore, LHCb is the only experiment at the LHC that can be operated in fixed-target mode, owing to the injection of a small amount of gas inside the LHCb collision area. There have been several p-gas an...

  6. Theoretical Astrophysics at Fermilab

    Science.gov (United States)

    2004-01-01

    The Theoretical Astrophysics Group works on a broad range of topics ranging from string theory to data analysis in the Sloan Digital Sky Survey. The group is motivated by the belief that a deep understanding of fundamental physics is necessary to explain a wide variety of phenomena in the universe. During the three years 2001-2003 of our previous NASA grant, over 120 papers were written; ten of our postdocs went on to faculty positions; and we hosted or organized many workshops and conferences. Kolb and collaborators focused on the early universe, in particular and models and ramifications of the theory of inflation. They also studied models with extra dimensions, new types of dark matter, and the second order effects of super-horizon perturbations. S tebbins, Frieman, Hui, and Dodelson worked on phenomenological cosmology, extracting cosmological constraints from surveys such as the Sloan Digital Sky Survey. They also worked on theoretical topics such as weak lensing, reionization, and dark energy. This work has proved important to a number of experimental groups [including those at Fermilab] planning future observations. In general, the work of the Theoretical Astrophysics Group has served as a catalyst for experimental projects at Fennilab. An example of this is the Joint Dark Energy Mission. Fennilab is now a member of SNAP, and much of the work done here is by people formerly working on the accelerator. We have created an environment where many of these people made transition from physics to astronomy. We also worked on many other topics related to NASA s focus: cosmic rays, dark matter, the Sunyaev-Zel dovich effect, the galaxy distribution in the universe, and the Lyman alpha forest. The group organized and hosted a number of conferences and workshop over the years covered by the grant. Among them were:

  7. Message from Fermilab Director

    CERN Multimedia

    2009-01-01

    With this issue’s message, Fermilab Director Pier Oddone opens a new series of occasional exchanges between CERN and other laboratories world-wide. As part of this exchange, CERN Director-General Rolf Heuer, wrote a message in Tuesday’s edition of Fermilab TodayPerspectivesNothing is more important for our worldwide particle physics community than successfully turning on the LHC later this year. The promise for great discoveries is huge, and many of the plans for our future depend on LHC results. Those of us planning national programmes in anticipation of data from the LHC face formidable challenges to develop future facilities that are complementary to the LHC, whatever the physics discoveries may be. At Fermilab, this has led us to move forcefully with a programme at the intensity frontier, where experiments with neutrinos and rare decays open a complementary window into nature. Our ultimate goal for a unified picture of nat...

  8. Fermilab a laboratory at the frontier of research

    CERN Document Server

    Gillies, James D

    2002-01-01

    Since its foundation in 1967, creeping urbanization has taken away some of Fermilab's remoteness, but the famous buffalo still roam, and farm buildings evocative of frontier America dot the landscape - appropriately for a laboratory at the high-energy frontier of modern research. Topics discussed are the Tevatron, detector upgrades, the neutrino programme, Fermilab and the LHC and the non-accelerator programme.

  9. Search for $W'\\to t b $ in Events with Large Missing Transverse Energy and Jets with the CDF detector at the Fermilab Tevatron Collider

    Energy Technology Data Exchange (ETDEWEB)

    Bianchi, Ludovico [Univ. of Rome Tor Vergata (Italy)

    2012-01-01

    In the scope of the strong ongoing data analysis efforts of the CDF col- laboration at Fermilab, we present a search for the production of mas sive W1 bosons decaying to a top and a bottom quark in p$\\bar{p}$ collisions at √s = 1.96 TeV. To perform this search, we select events with large Missing Transverse Energy plus two or three jets, in which the W generated from top decays leptonically, and either the e or µ is lost or the τ is reconstructed as a jet. A complete study of the selected sample is discussed, including the creation and subsequent optimization of a Neural Network-based multivariate tool to reject the QCD multijet background from the signal region. Finally, we perform a likelihood-based multichannel Bayesian fit procedure on the invariant transverse mass of the Missing Transverse Energy and jets to extract 95% CL limits on σ(p$\\bar{p}$ . → W') × B(W' → tb) for MW' = 200 GeV/c2

  10. A framework to analyze searches for gauge bosons of the hidden light sector in electron scattering fixed target experiments

    Energy Technology Data Exchange (ETDEWEB)

    Beranek, T. [Institut für Kernphysik, Johannes Gutenberg-Universität Mainz, D-55099 Mainz and PRISMA Cluster of Excellence, Johannes Gutenberg-Universität Mainz, D-55099 Mainz (Germany)

    2013-11-07

    Electron scattering fixed target experiments are a versatile tool to probe various kinds of physics phenomena. Recently fixed target experiments in which an electron beam is scattered off a heavy nucleus and a lepton-antilepton pair is created, i.e. e(A,Z) →e(A,Z)l{sup +}l{sup −}, were utilized to search for physics beyond the standard model at modest energies. In these experiments one searches for a small, narrow resonance in the invariant mass spectrum of the lepton-antilepton pair, arising from the exchange of a new light gauge boson γ′ coupling to the dark sector as well as very weakly to standard model particles. Such a signal would appear as an enhancement over a smooth QED background. Hence a precise understanding of the background is crucial. We present a theoretical analysis of the process e(A,Z) →e(A,Z)l{sup +}l{sup −}. Therefore we have performed an analysis of the cross section, which is then used to extract exclusion limits on the parameter space of the γ′, describing the existing experimental data taken at MAMI.

  11. Spin physics and TMD studies at A Fixed-Target ExpeRiment at the LHC (AFTER@LHC)

    CERN Document Server

    Lansberg, J P; Arnaldi, R; Brodsky, S J; Chambert, V; Dunnen, W den; Didelez, J P; Genolini, B; Ferreiro, E G; Fleuret, F; Gao, Y; Hadjidakis, C; Hrvinacova, I; Lorce, C; Massacrier, L; Mikkelsen, R; Pisano, C; Rakotozafindrabe, A; Rosier, P; Schienbein, I; Schlegel, M; Scomparin, E; Trzeciak, B; Uggerhoj, U I; Ulrich, R; Yang, Z

    2014-01-01

    We report on the opportunities for spin physics and Transverse-Momentum Dependent distribution (TMD) studies at a future multi-purpose fixed-target experiment using the proton or lead ion LHC beams extracted by a bent crystal. The LHC multi-TeV beams allow for the most energetic fixed-target experiments ever performed, opening new domains of particle and nuclear physics and complementing that of collider physics, in particular that of RHIC and the EIC projects. The luminosity achievable with AFTER@LHC using typical targets would surpass that of RHIC by more that 3 orders of magnitude in a similar energy region. In unpolarised proton-proton collisions, AFTER@LHC allows for measurements of TMDs such as the Boer-Mulders quark distributions, the distribution of unpolarised and linearly polarised gluons in unpolarised protons. Using the polarisation of hydrogen and nuclear targets, one can measure transverse single-spin asymmetries of quark and gluon sensitive probes, such as, respectively, Drell-Yan pair and quar...

  12. Studying the high x frontier with A Fixed-Target ExpeRiment at the LHC

    CERN Document Server

    Rakotozafindrabe, A; Arnaldi, R; Brodsky, S J; Chambert, V; Didelez, J P; Ferreiro, E G; Fleuret, F; Genolini, B; Hadjidakis, C; Lansberg, J P; Lorce, C; Rosier, P; Schienbein, I; Scomparin, E; Uggerhoj, U I

    2013-01-01

    The opportunities which are offered by a next generation and multi-purpose fixed-target experiment exploiting the proton and lead LHC beams extracted by a bent crystal are outlined. In particular, such an experiment can greatly complement facilities with lepton beams by unraveling the partonic structure of polarised and unpolarised nucleons and of nuclei, especially at large momentum fractions.

  13. Spin physics at A Fixed-Target ExpeRiment at the LHC (AFTER@LHC)

    CERN Document Server

    Rakotozafindrabe, A; Arnaldi, R; Brodsky, S J; Chambert, V; Didelez, J P; Ferreiro, E G; Fleuret, F; Genolini, B; Hadjidakis, C; Lansberg, J P; Lorce, C; Rosier, P; Schienbein, I; Scomparin, E; Uggerhoj, U I

    2013-01-01

    We outline the opportunities for spin physics which are offered by a next generation and multi-purpose fixed-target experiment exploiting the proton LHC beam extracted by a bent crystal. In particular, we focus on the study of single transverse spin asymetries with the polarisation of the target.

  14. High Energy Accelerator and Colliding Beam User Group

    Energy Technology Data Exchange (ETDEWEB)

    Snow, G.A.; Skuja, A.

    1992-05-01

    This report discusses research in the following areas: the study of e{sup +}e{sup {minus}} interactions; Hadron collider physics at Fermilab; fixed target physics and particle physics of general interest; and, the solenoidal detector collaboration at SSCL.

  15. High Energy Accelerator and Colliding Beam User Group

    Energy Technology Data Exchange (ETDEWEB)

    Snow, G.A.; Skuja, A.

    1992-05-01

    This report discusses research in the following areas: the study of e{sup +}e{sup {minus}} interactions; Hadron collider physics at Fermilab; fixed target physics and particle physics of general interest; and, the solenoidal detector collaboration at SSCL.

  16. 2015 CERN-Fermilab HCP Summer School

    CERN Multimedia

    2015-01-01

    CERN and Fermilab are jointly offering a series of "Hadron Collider Physics Summer Schools", to prepare young researchers for these exciting times. The school has alternated between CERN and Fermilab, and will return to CERN for the tenth edition, from 24 June to 3 July 2015. The CERN-Fermilab Hadron Collider Physics Summer School is an advanced school targeted particularly at young postdocs and senior PhD students working towards the completion of their thesis project, in both Experimental High Energy Physics (HEP) and phenomenology. Lecture Topics include: Statistics in HEP, Heavy Flavour, Heavy Ion, Standard Model, Higgs searches and measurements, BSM theory, BSM searches, Top physics, QCD and Monte Carlos, Accelerators, Detectors for the future, Trigger and DAQ, Dark Matter Astroparticle, and two special lectures on Future Colliders, and 20 years after the top discovery. Calendar and Details: Mark your calendar for  24 June - 3 July 2015, when CERN will welcome students to t...

  17. Measurement of the Upsilon Production Cross Section in 920 GeV Fixed-Target Proton-Nucleus Collisions

    CERN Document Server

    Abt, I; Agari, M; Albrecht, H; Aleksandrov, A; Amaral, V S; Amorim, A; Aplin, S J; Aushev, V; Bagaturia, Yu S; Balagura, V; Bargiotti, M; Barsukova, O; Bastos, J; Batista, J; Bauer, C; Bauer, T S; Belkov, A; Belkov, Ar; Belotelov, I; Bertin, A; Bobchenko, B M; Böcker, M; Bogatyrev, A; Böhm, G; Brauer, M; Bruinsma, M; Bruschi, M; Buchholz, P; Buran, T; Carvalho, J; Conde, P; Cruse, C; Dam, M; Danielsen, K M; Danilov, M; De Castro, S; Deppe, H; Dong, X; Dreis, H B; Egorytchev, V; Ehret, K; Eisele, F; Emeliyanov, D; Essenov, S; Fabbri, L; Faccioli, P; Feuerstack-Raible, M; Flammer, J; Fominykh, B A; Funcke, M; Garrido, L; Gellrich, A; Giacobbe, B; Glass, J; Goloubkov, D; Golubkov, Y; Golutvin, A; Golutvin, I A; Gorbounov, I; Gorisek, A; Gouchtchine, O; Goulart, D C; Gradl, S; Gradl, W; Grimaldi, F; Guilitsky, Yu; Hansen, J D; Hernández, J M; Hofmann, W; Hohlmann, M; Hott, T; Hulsbergen, W; Husemann, U; Igonkina, O; Ispiryan, M; Jagla, T; Jiang, C; Kapitza, H; Karabekyan, S; Karpenko, N; Keller, S; Kessler, J; Khasanov, F; Kiryushin, Yu T; Kisel, I; Klinkby, E; Knöpfle, K T; Kolanoski, H; Korpar, S; Krauss, C; Kreuzer, P; Krizan, P; Krücker, D; Kupper, S; Kvaratskheliia, T; Lanyov, A; Lau, K; Lewendel, B; Lohse, T; Lomonosov, B N; Männer, R; Mankel, R; Masciocchi, S; Massa, I; Matchikhilian, I; Medin, G; Medinnis, M; Mevius, M; Michetti, A; Mikhailov, Yu; Mizuk, R; Muresan, R; Zur Nedden, M; Negodaev, M; Nörenberg, M; Nowak, S; Núñez-Pardo de Vera, M T; Ouchrif, M; Ould-Saada, F; Padilla, C; Peralta, D; Pernack, R; Pestotnik, R; Petersen, B AA; Piccinini, M; Pleier, M A; Poli, M; Popov, V; Pose, D; Prystupa, S; Pugatch, V; Pylypchenko, Y; Pyrlik, J; Reeves, K; Ressing, D; Rick, H; Riu, I; Robmann, P; Rostovtseva, I; Rybnikov, V; Sánchez, F; Sbrizzi, A; Schmelling, M; Schmidt, B; Schreiner, A; Schröder, H; Schwanke, U; Schwartz, A J; Schwarz, A S; Schwenninger, B; Schwingenheuer, B; Sciacca, F; Semprini-Cesari, N; Shuvalov, S; Silva, L; Sozuer, L; Solunin, S; Somov, A; Somov, S; Spengler, J; Spighi, R; Spiridonov, A A; Stanovnik, A; Staric, M; Stegmann, C; Subramanian, H S; Symalla, M; Tikhomirov, I; Titov, M; Tsakov, I; Uwer, U; Van Eldik, C; Vasilev, Yu; Villa, M; Vitale, A; Vukotic, I; Wahlberg, H; Walenta, Albert H; Walter, M; Wang, J J; Wegener, D; Werthenbach, U; Wolters, H; Wurth, R; Wurz, A; Zaitsev, Yu; Zavertyaev, M V; Zeuner, T; Zhelezov, A; Zheng, Z; Zimmermann, R; Zivko, T; Zoccoli, A 002601701 700 L; Adler, S S; al, et

    2006-01-01

    The proton-nucleon cross section ratio $R=Br(\\Upsilon\\to l^+l^-) d\\sigma(\\Upsilon)/dy|_{y=0} / {\\sigma(J/\\psi)}$ has been measured with the HERA-B spectrometer in fixed-target proton-nucleus collisions at 920 GeV proton beam energy corresponding to a proton-nucleon cms energy of sqrt{s}=41.6 GeV. The combined results for the Upsilon decay channels Upsilon $\\to e^+e^-$ and Upsilon $\\to\\mu^+\\mu^-$ yield a ratio $R=(9.0 \\pm 2.1) 10^{-6}$. The corresponding Upsilon production cross section per nucleon at mid-rapidity (y=0) has been determined to be $Br(\\Upsilon\\to{}l^+l^-) {d\\sigma(\\Upsilon)/dy}|_{y=0}= 4.5 \\pm 1.1 $ pb/nucleon.

  18. Control system for Fermilab`s low temperature upgrade

    Energy Technology Data Exchange (ETDEWEB)

    Norris, B.L.

    1996-09-01

    Fermilab recently upgraded the Tevatron Cryogenic Systems to allow for lower temperature operation. This Lower Temperature Upgrade grew out of a desire to increase the Colliding Beam Physics energy from 900 GeV to 1000 GeV. A key element in achieving this goal is the new cryogenic control system designed at Fermilab and installed in 24 satellite refrigerators and 8 compressor buildings. The cryogenic improvements and addition hardware like cold compressors exceeded the capability of the original distributed controls package. The new distributed controls package uses a Multibus II platform and Intel`s 80386 microprocessor. Token Ring is used as the link to the systems 6 primary crate locations with Arcnet used as the connection to the systems numerous I/O crates. I/0 capabilities are double the capabilities of the original system. Software has also been upgraded with the introduction of more flexible control loop strategies and Finite State Machines used for automatic sequential control, like quench recovery or cold compressor pump down.

  19. Fermilab research Program 1976

    Energy Technology Data Exchange (ETDEWEB)

    Lach, J., (Ed.); /Fermilab

    1976-01-01

    This collection of one-page summaries of Fermilab proposals is intended to serve as a way station between the experiment number with its short title and the full proposal. It is not intended to be a review of the Fermilab experimental program. Just as an abstract of a journal article embodies the main points of the article, so these one-page summaries are intended to convey the major points of a proposal. These should include its physics justification, a brief description of the apparatus and the demands that the experiment will make on the Laboratory. Of course these summaries are not intended to take the place of the proposal itself which is the primary document available in the Fermilab library and at SLAC, BNL and CERN. Individual copies should be obtained from the spokesman of the experiment whose name is underlined in these summaries. Summaries for all experiments and pending proposals are included. These comprise approved, unconsidered and deferred proposals. Rejected, withdrawn and inactive proposals are not included. It is the experimenters themselves who are best able to write the summary and in most cases that is what was done. For the early proposals and those cases where repeated cajoling could not produce one from the experimenters, the summary was prepared by a Fermilab staff member and then sent to the spokesman for comment. All proposals submitted before the May 7, 1976 deadline for consideration at the extended summer meeting of our Program Advisory Committee are included. It is not intended that this volume be updated annually but perhaps only reissued when the previous ones becomes hopelessly obsolete.

  20. Nuclear effects on heavy quark production: Results from Fermilab Experiments E772 and E789

    Energy Technology Data Exchange (ETDEWEB)

    E772 and E789 Collaborations

    1991-12-31

    Fermilab Experiments E772 and E789 are fixed target experiments with 800 GeV protons incident on nuclear targets corresponding to a center-of-mass energy of {radical}{bar s} {approximately} 39 GeV. Measurements are made with a pair spectrometer which has a solid angle of a few percent and operates at high luminosity with up to {approximately}10{sup 12}(E772) or {approximately}10{sup 11}(E789) protons/spill. Our experimental program explores several types of nuclear medium effects: the modification of quark and gluon structure functions by the nucleus, effects on the production of vector mesons (e.g. J/{psi} and {gamma}), and effects on the production of D mesons. The latter is accomplished with the use of a new silicon vertex detector. E789 also looks at the decays of B mesons including the decay to J/{psi} and searches for the decays to two-charged particles (e.g. B {yields} h{sup +}h{sup {minus}}) but I will not discuss this part of our program in this paper.

  1. High Energy Accelerator and Colliding Beam User Group. Progress report, March 1, 1992--October 31, 1992

    Energy Technology Data Exchange (ETDEWEB)

    Snow, G.A.; Skuja, A.

    1992-05-01

    This report discusses research in the following areas: the study of e{sup +}e{sup {minus}} interactions; Hadron collider physics at Fermilab; fixed target physics and particle physics of general interest; and, the solenoidal detector collaboration at SSCL.

  2. High Energy Accelerator and Colliding Beam User Group. Progress report, March 1, 1992--October 31, 1992

    Energy Technology Data Exchange (ETDEWEB)

    Snow, G.A.; Skuja, A.

    1992-05-01

    This report discusses research in the following areas: the study of e{sup +}e{sup {minus}} interactions; Hadron collider physics at Fermilab; fixed target physics and particle physics of general interest; and, the solenoidal detector collaboration at SSCL.

  3. Charm and beauty production from Fermilab experiment 789

    Energy Technology Data Exchange (ETDEWEB)

    Brown, C.N.; Cooper, W.E.; Glass, H.D.; Gounder, K.N.; Mishra, C.S. [Fermi National Accelerator Lab., Batavia, IL (United States); Boissevain, J.; Carey, T.A.; Jansen, D.M.; Jeppesen, R.G.; Kapustinsky, J.S. [Los Alamos National Lab., NM (United States)] [and others

    1994-12-31

    Fermilab E789 is a fixed-target charm and beauty experiment which uses a 2-arm spectrometer outfitted with a silicon vertex detector to look for 2-body decays of charm and beauty. The differential cross section for production and the nuclear dependence of neutral D meson production, and the D{sup 0}/D{sup 0}-bar production asymmetry has been measured. Evidence has been seen for beauty production via the inclusive decay B {yields} J/{psi}X, by observing J/{psi} decays well downstream of the target, and have measured a differential cross section for J/{psi} from b or b-bar for 800 GeV pN collisions. (author). 4 refs., 4 figs.

  4. Neutrino results from the Fermilab Tevatron

    Energy Technology Data Exchange (ETDEWEB)

    Shaevitz, M.H. [Columbia Univ., New York, NY (United States); Arroyo, C. [Columbia Univ., New York, NY (United States); Bachmann, K.T. [Columbia Univ., New York, NY (United States); Bazarko, A.O. [Columbia Univ., New York, NY (United States); Blair, R.E. [Columbia Univ., New York, NY (United States); Bolton, T.A. [Columbia Univ., New York, NY (United States); Foudas, C. [Columbia Univ., New York, NY (United States); King, B.J. [Columbia Univ., New York, NY (United States); Lefmann, W.C. [Columbia Univ., New York, NY (United States); Leung, W.C. [Columbia Univ., New York, NY (United States); Mishra, S.R. [Columbia Univ., New York, NY (United States); Oltman, E. [Columbia Univ., New York, NY (United States); Quintas, P.Z. [Columbia Univ., New York, NY (United States); Rabinowitz, S.A. [Columbia Univ., New York, NY (United States); Sciulli, F. [Columbia Univ., New York, NY (United States); Seligman, W.G. [Columbia Univ., New York, NY (United States); Merritt, F.S. [University of Chicago, Chicago, IL 60637 (United States); Oreglia, M.J. [University of Chicago, Chicago, IL 60637 (United States); Schumm, B.A. [University of Chicago, Chicago, IL 60637 (United States); Bernstein, R.H. [Fermilab, Batavia, IL 60510 (United States); Borcherding, F. [Fermilab, Batavia, IL 60510 (United States); Fisk, H.E. [Fermilab, Batavia, IL 60510 (United States); Lamm, M.J. [Fermilab, Batavia, IL 60510 (United States); Marsh, W. [Fermilab, Batavia, IL 60510 (United States); Merritt, K.W.B. [Fermilab, Batavia, IL 60510 (United States); Schellman, H. [Fermilab, Batavia, IL 60510 (United States); Yovanovitch, D.D. [Fermilab, Batavia, IL 60510 (United States); Bodek, A. [University of Rochester, Rochester, NY 14627 (United States); Budd, H.S. [University of Rochester, Rochester, NY 14627 (United States); De Barbaro, P.; Salcumoto, W.K. [University of Rochester, Rochester, NY 14627 (United States)

    1995-01-01

    Results from the high-energy, high-statistics studies of neutrino nucleon interactions by the CCFR collaboration at the Fermilab Tevatron are described. Using a data sample of over 3.7million events with energies up to 600GeV, precision measurements are presented for the weak mixing angle, sin{sup 2}{theta}{sub w}, the structure functions, F{sub 2}(x,Q{sup 2}) and xF{sub 3}(x,Q{sup 2}), aud the strange quark distribution, xs(x,Q{sup 2}). Comparisons of these measurements to those obtained in other processes are made in the context of global electroweak and QCD tests. Prospects for the next generation measurements by the NuTeV collaboration at Fermilab are also presented. ((orig.)).

  5. Integrated Guidance and Control of Homing Missiles Against Ground Fixed Targets

    Institute of Scientific and Technical Information of China (English)

    Hou Mingzhe; Duan Guangren

    2008-01-01

    This paper presents a scheme of integrated guidance and autopilot design for homing missiles against ground fixed targets. An in- tegrated guidance and control model in the pitch plane is formulated and further changed into a normal form by nonlinear coordinate transformation. By adopting the sliding mode control approach, an adaptive nonlinear control law of the system is designed so that the missile can hit the target accurately with a desired impact attitude angle. The stability analysis of the closed-loop system is also con- ducted. The numerical simulation has confirmed the usefulness of the proposed design scheme.

  6. The evolution of cryogenic safety at Fermilab

    Energy Technology Data Exchange (ETDEWEB)

    Stanek, R.; Kilmer, J.

    1992-12-01

    Over the past twenty-five years, Fermilab has been involved in cryogenic technology as it relates to pursuing experimentation in high energy physics. The Laboratory has instituted a strong cryogenic safety program and has maintained a very positive safety record. The solid commitment of management and the cryogenic community to incorporating safety into the system life cycle has led to policies that set requirements and help establish consistency for the purchase and installation of equipment and the safety analysis and documentation.

  7. Task A, High Energy Physics Program experiment and theory: Task B, High Energy Physics Program numerical simulation of quantum field theories. [Particle Physics Group, Physics Dept. , The Florida State Univ. , Tallahassee

    Energy Technology Data Exchange (ETDEWEB)

    1992-01-01

    The effort of the experimental group has been concentrated on the CERN ALEPH and FERMILAB D0 collider experiments and completion of two fixed target experiments. The BNL fixed target experiment 771 took the world's largest sample of D(1285) and E/iota(1420) events, using pion, kaon and antiproton beams. Observing the following resonances: 0[sup [minus plus

  8. Fermilab drift tube Linac revisited

    Energy Technology Data Exchange (ETDEWEB)

    Milorad Popovic

    2004-05-12

    Using the PARMILA code running under PC-WINDOWS, the present performance of the Fermilab Drift Tube Linac has been analyzed in the light of new demands on the Linac/Booster complex (the Proton Source). The Fermilab Drift Tube Linac (DTL) was designed in the sixties as a proton linac with a final energy of 200 MeV and a peak current of 100mA. In the seventies, in order to enable multi-turn charge exchange injection into the Booster, the ion source was replaced by an H- source with a peak beam current of 25mA. Since then the peak beam current was steadily increased up to 55mA. In the early nineties, part of the drift tube structure was replaced with a side-coupled cavity structure in order to increase the final energy to 400 MeV. The original and still primary purpose of the linac is to serve as the injector for the Booster. As an added benefit, the Neutron Therapy Facility (NTF) was built in the middle seventies. It uses 66MeV protons from the Linac to produce neutrons for medical purposes. The Linac/Booster complex was designed to run at a fundamental cycling rate of 15Hz, but beam is accelerated on every cycle only when NTF is running. Until recently the demand from the High Energy Physics program resulted in an average linac beam repetition rate of order 1 Hz. With the MiniBoone experiment and the NuMI program, the demands on the Proton Source have changed, with emphasis on higher beam repetition rates up to 7.5Hz. Historically the beam losses in the linac were small, localized at one spot, so activation was not an important issue. With higher beam rate, this has the potential to become the dominant issue. Until today all tuning in the linac and Proton Source was governed by two goals: to maximize the peak beam current out of the linac and to minimize the beam losses in the linac. If maximal peak current from the linac is no longer a primary goal, then the linac quadrupoles can be adjusted differently to achieve different goals.

  9. Beam emittance measurements at Fermilab

    Energy Technology Data Exchange (ETDEWEB)

    Wendt, Manfred; Eddy, Nathan; Hu, Martin; Scarpine, Victor; Syphers, Mike; Tassotto, Gianni; Thurman-Keup, Randy; Yang, Ming-Jen; Zagel, James; /Fermilab

    2008-01-01

    We give short overview of various beam emittance measurement methods, currently applied at different machine locations for the Run II collider physics program at Fermilab. All these methods are based on beam profile measurements, and we give some examples of the related instrumentation techniques. At the end we introduce a multi-megawatt proton source project, currently under investigation at Fermilab, with respect to the beam instrumentation challenges.

  10. Stochastic cooling technology at Fermilab

    Energy Technology Data Exchange (ETDEWEB)

    Pasquinelli, R.J. E-mail: pasquin@fnal.gov

    2004-10-11

    The first antiproton cooling systems were installed and commissioned at Fermilab in 1984-1985. In the interim period, there have been several major upgrades, system improvements, and complete reincarnation of cooling systems. This paper will present some of the technology that was pioneered at Fermilab to implement stochastic cooling systems in both the Antiproton Source and Recycler accelerators. Current performance data will also be presented.

  11. The unified database for the fixed target experiment BM@N

    Science.gov (United States)

    Gertsenberger, K. V.

    2016-09-01

    The article describes the developed database designed as comprehensive data storage of the fixed target experiment BM@N [1] at Joint Institute for Nuclear Research (JINR) in Dubna. The structure and purposes of the BM@N facility will be briefly presented. The scheme of the unified database and its parameters will be described in detail. The use of the BM@N database implemented on the PostgreSQL database management system (DBMS) allows one to provide user access to the actual information of the experiment. Also the interfaces developed for the access to the database will be presented. One was implemented as the set of C++ classes to access the data without SQL statements, the other-Web-interface being available on the Web page of the BM@N experiment.

  12. Nucleon PDF separation with the collider and fixed-target data

    CERN Document Server

    Alekhin, S; Caminada, L; Lipka, K; Lohwasser, K; Moch, S; Petti, R; Placakyte, R

    2014-01-01

    We consider the impact of the recent data obtained by the LHC, Tevatron, and fixed-target experiments on the nucleon quark distributions with a particular focus on disentangling different quark species. An improved determination of the poorly known strange sea distribution is obtained due to including data from the neutrino-induced deep-inelastic scattering experiments NOMAD and CHORUS. The impact of the associated (W + c) production data by CMS and ATLAS on the strange sea determination is also studied and a comparison with earlier results based on the collider data is discussed. Finally, the recent LHC and Tevatron data on the charged lepton asymmetry are compared to the NNLO ABM predictions and the potential of this input in improving the non-strange sea distributions is evaluated.

  13. Nucleon PDF separation with the collider and fixed-target data

    Energy Technology Data Exchange (ETDEWEB)

    Alekhin, Sergey [Institute for High Energy Physics, Protvino, Moscow Region (Russian Federation); Bluemlein, Johannes; Lohwasser, Kristin [Deutsches Elektronen-Synchrotron (DESY), Zeuthen (Germany); Caminada, Lea Michaela [Zuerich Univ. (Switzerland). Physik Inst.; Lipka, Katerina; Placakyt e, Ringaile [Deutsches Elektronen-Synchrotron (DESY), Hamburg (Germany); Moch, Sven-Olaf [Hamburg Univ. (Germany). 2. Inst. fuer Theoretische Physik; Petti, Roberto [South Carolina Univ., Columbia, SC (United States). Dept. of Physics and Astronomy

    2014-10-15

    We consider the impact of the recent data obtained by the LHC, Tevatron, and fixed-target experiments on the nucleon quark distributions with a particular focus on disentangling different quark species. An improved determination of the poorly known strange sea distribution is obtained due to including data from the neutrino-induced deep-inelastic scattering experiments NOMAD and CHORUS. The impact of the associated (W+c) production data by CMS and ATLAS on the strange sea determination is also studied and a comparison with earlier results based on the collider data is discussed. Finally, the recent LHC and Tevatron data on the charged lepton asymmetry are compared to the NNLO ABM predictions and the potential of this input in improving the non-strange sea distributions is evaluated.

  14. A Measurement Of The Top Quark Cross-section At Center Of Mass Energy = 1.96 Tev At The Collider Detector At Fermilab

    CERN Document Server

    Goldstein, D J

    2004-01-01

    We present a measurement of the ti cross-section in the dilepton channel, using 126 pb−1 of data collected with the Collider Detector at Fermilab (CDF). The data set corresponds to the period March 2002–May 2003 of Run II at the Fermilab Tevatron. The analysis includes the upgrade endplug detectors and plug silicon tracking for the first time in a top physics measurement. The total acceptance for dilepton top events is thereby increased by 30% over the Run I analysis. We find 10 candidates in the data; the measured value of the cross-section is σtt¯ = (7.6 ± 3.4stat. ± 1.5 syst.) pb, to be compared with the Standard Model prediction at s = 1.96 TeV of sNLOtt&d1; = (6.7 ± 0.5) pb. Kinematic distributions of the events are thus far not indicative of new phenomena beyond the Standard Model.

  15. Design and performance of the fermilab E781 (SELEX) hardware scattering trigger

    Science.gov (United States)

    Atamantchuk, A.; Bondar, N.; Golovtsov, V.; Golyash, A.; Razmyslovich, B.; Terentyev, N.; Vorobyov, A.; Skow, D.; Ferbel, T.; Hammer, C.; Slattery, P.; Moinester, M. A.; Ocherashvili, A.; Steiner, V.

    1999-04-01

    The design and performance of the Fermilab E781 (SELEX) Hardware Scattering Trigger (HST) are described. This trigger functioned by distinguishing beam scattering at small angles ( >150 μrad) from non-interacting beam. Six 50 μm pitch silicon planes grouped in three ( x, y) stations, two before and one after the target, were used as the particle detectors. The triggering system involved 1920 channels of readout providing data to the Fast Encoding and Readout System (FERS) with programmable trigger logic processor. The overall system was tested successfully at Fermilab during the 1996-1997 fixed target run. The encoding time of the readout part of the FERS device was 30 ns and the processor decision time was 55 ns. The HST provided an output signal 250 ns after beam traversal of the target.

  16. Design and performance of the fermilab E781 (SELEX) hardware scattering trigger

    Energy Technology Data Exchange (ETDEWEB)

    Atamantchuk, A. [Petersburg Nuclear Physics Institute, Gatchina (Russian Federation); Bondar, N. [Petersburg Nuclear Physics Institute, Gatchina (Russian Federation); Golovtsov, V. [Petersburg Nuclear Physics Institute, Gatchina (Russian Federation); Golyash, A. [Petersburg Nuclear Physics Institute, Gatchina (Russian Federation); Razmyslovich, B. [Petersburg Nuclear Physics Institute, Gatchina (Russian Federation); Terentyev, N. [Petersburg Nuclear Physics Institute, Gatchina (Russian Federation); Vorobyov, A. [Petersburg Nuclear Physics Institute, Gatchina (Russian Federation); Skow, D. [Fermi National Accelerator Laboratory, Box. 500 MS 369, Batavia, IL 60510 (United States); Ferbel, T. [University of Rochester, Rochester, NY (United States); Hammer, C. [University of Rochester, Rochester, NY (United States); Slattery, P. [University of Rochester, Rochester, NY (United States); Moinester, M.A. [Tel Aviv University, Tel Aviv (Israel); Ocherashvili, A. [Tel Aviv University, Tel Aviv (Israel); Steiner, V. [Tel Aviv University, Tel Aviv (Israel)

    1999-04-11

    The design and performance of the Fermilab E781 (SELEX) Hardware Scattering Trigger (HST) are described. This trigger functioned by distinguishing beam scattering at small angles (>150 {mu}rad) from non-interacting beam. Six 50 {mu}m pitch silicon planes grouped in three (x,y) stations, two before and one after the target, were used as the particle detectors. The triggering system involved 1920 channels of readout providing data to the Fast Encoding and Readout System (FERS) with programmable trigger logic processor. The overall system was tested successfully at Fermilab during the 1996-1997 fixed target run. The encoding time of the readout part of the FERS device was 30 ns and the processor decision time was 55 ns. The HST provided an output signal 250 ns after beam traversal of the target.

  17. Design and performance of the fermilab E781 (SELEX) hardware scattering trigger

    CERN Document Server

    Atamantchuk, A; Golovtsov, V L; Golyash, A; Razmyslovich, B V; Terentyev, N K; Vorobyov, A; Skow, D; Ferbel, T; Hammer, C; Slattery, P F; Moinester, M A; Ocherashvili, A; Steiner, V

    1999-01-01

    The design and performance of the Fermilab E781 (SELEX) Hardware Scattering Trigger (HST) are described. This trigger functioned by distinguishing beam scattering at small angles (>150 mu rad) from non-interacting beam. Six 50 mu m pitch silicon planes grouped in three (x,y) stations, two before and one after the target, were used as the particle detectors. The triggering system involved 1920 channels of readout providing data to the Fast Encoding and Readout System (FERS) with programmable trigger logic processor. The overall system was tested successfully at Fermilab during the 1996-1997 fixed target run. The encoding time of the readout part of the FERS device was 30 ns and the processor decision time was 55 ns. The HST provided an output signal 250 ns after beam traversal of the target.

  18. Design Considerations for Proposed Fermilab Integrable RCS

    Energy Technology Data Exchange (ETDEWEB)

    Eldred, Jeffrey [Fermilab; Valishev, Alexander

    2017-03-02

    Integrable optics is an innovation in particle accelerator design that provides strong nonlinear focusing while avoiding parametric resonances. One promising application of integrable optics is to overcome the traditional limits on accelerator intensity imposed by betatron tune-spread and collective instabilities. The efficacy of high-intensity integrable accelerators will be undergo comprehensive testing over the next several years at the Fermilab Integrable Optics Test Accelerator (IOTA) and the University of Maryland Electron Ring (UMER). We propose an integrable Rapid-Cycling Synchrotron (iRCS) as a replacement for the Fermilab Booster to achieve multi-MW beam power for the Fermilab high-energy neutrino program. We provide a overview of the machine parameters and discuss an approach to lattice optimization. Integrable optics requires arcs with integer-pi phase advance followed by drifts with matched beta functions. We provide an example integrable lattice with features of a modern RCS - long dispersion-free drifts, low momentum compaction, superperiodicity, chromaticity correction, separate-function magnets, and bounded beta functions.

  19. Search for Diphoton Events with Large Missing Transverse Energy in 6.3 fb-1 of p$\\bar{p}$ Collisions using the D0 Detector at the Fermilab Tevatron Collider

    Energy Technology Data Exchange (ETDEWEB)

    Cooke, Mark Stephen [Columbia Univ., New York, NY (United States)

    2010-01-01

    A search for diphoton events with large missing transverse energy produced in p$\\bar{p}$ collisions at √s = 1.96 TeV is presented. The data were collected with the D0 detector at the Fermilab Tevatron Collider between 2002 and 2010, and correspond to 6.3 fb-1 of integrated luminosity. The observed missing transverse energy distribution is well described by the Standard Model prediction, and 95% C.L. limits are derived on two realizations of theories beyond the Standard Model. In a gauge mediated supersymmetry breaking scenario, the breaking scale Λ is excluded for Λ < 124 TeV. In a universal extra dimension model including gravitational decays, the compactification radius Rc is excluded for Rc-1 < 477 GeV.

  20. Low-Z polymer sample supports for fixed-target serial femtosecond X-ray crystallography

    Energy Technology Data Exchange (ETDEWEB)

    Feld, Geoffrey K. [Lawrence Livermore National Lab. (LLNL), Livermore, CA (United States); National Institute of Environmental Health Science, Research Triangle Park, NC (United States); Heymann, Michael [Brandeis Univ., Waltham, MA (United States); Univ. of Hamburg and DESY, Hamburg (Germany); Benner, W. Henry [Lawrence Livermore National Lab. (LLNL), Livermore, CA (United States); Pardini, Tommaso [Lawrence Livermore National Lab. (LLNL), Livermore, CA (United States); Tsai, Ching -Ju [Paul Scherrer Inst. (PSI), Villigen (Switzerland); Boutet, Sebastien [SLAC National Accelerator Lab., Menlo Park, CA (United States); Coleman, Matthew A. [Lawrence Livermore National Lab. (LLNL), Livermore, CA (United States); Hunter, Mark S. [Lawrence Livermore National Lab. (LLNL), Livermore, CA (United States); SLAC National Accelerator Lab., Menlo Park, CA (United States); Li, Xiaodan [Paul Scherrer Inst. (PSI), Villigen (Switzerland); Messerschmidt, Marc [SLAC National Accelerator Lab., Menlo Park, CA (United States); BioXFEL Science and Technology Center, Buffalo, NY (United States); Opathalage, Achini [Brandeis Univ., Waltham, MA (United States); Pedrini, Bill [Paul Scherrer Inst. (PSI), Villigen (Switzerland); Williams, Garth J. [SLAC National Accelerator Lab., Menlo Park, CA (United States); Krantz, Bryan A. [Univ. of California, Berkeley, CA (United States); Fraden, Seth [Brandeis Univ., Waltham, MA (United States); Hau-Riege, Stefan [Lawrence Livermore National Lab. (LLNL), Livermore, CA (United States); Evans, James E. [Pacific Northwest National Lab. (PNNL), Richland, WA (United States); Segelke, Brent W. [Lawrence Livermore National Lab. (LLNL), Livermore, CA (United States); Frank, Matthias [Lawrence Livermore National Lab. (LLNL), Livermore, CA (United States)

    2015-06-27

    X-ray free-electron lasers (XFELs) offer a new avenue to the structural probing of complex materials, including biomolecules. Delivery of precious sample to the XFEL beam is a key consideration, as the sample of interest must be serially replaced after each destructive pulse. The fixed-target approach to sample delivery involves depositing samples on a thin-film support and subsequent serial introduction via a translating stage. Some classes of biological materials, including two-dimensional protein crystals, must be introduced on fixed-target supports, as they require a flat surface to prevent sample wrinkling. A series of wafer and transmission electron microscopy (TEM)-style grid supports constructed of low-Z plastic have been custom-designed and produced. Aluminium TEM grid holders were engineered, capable of delivering up to 20 different conventional or plastic TEM grids using fixed-target stages available at the Linac Coherent Light Source (LCLS). As proof-of-principle, X-ray diffraction has been demonstrated from two-dimensional crystals of bacteriorhodopsin and three-dimensional crystals of anthrax toxin protective antigen mounted on these supports at the LCLS. In conclusion, the benefits and limitations of these low-Z fixed-target supports are discussed; it is the authors' belief that they represent a viable and efficient alternative to previously reported fixed-target supports for conducting diffraction studies with XFELs.

  1. Spin and diffractive physics with A Fixed-Target ExpeRiment at the LHC (AFTER@LHC)

    CERN Document Server

    Lorce, C; Arnaldi, R; Brodsky, S J; Chambert, V; Didelez, J P; Ferreiro, E G; Fleuret, F; Genolini, B; Hadjidakis, C; Lansberg, J P; Rakotozafindrabe, A; Rosier, P; Schienbein, I; Scomparin, E; Uggerhoj, U I

    2012-01-01

    We report on the spin and diffractive physics at a future multi-purpose fixed-target experiment with proton and lead LHC beams extracted by a bent crystal. The LHC multi-TeV beams allow for the most energetic fixed-target experiments ever performed, opening new domains of particle and nuclear physics and complementing that of collider physics, in particular that of RHIC and the EIC projects. The luminosity achievable with AFTER using typical targets would surpass that of RHIC by more than 3 orders of magnitude. The fixed-target mode has the advantage to allow for measurements of single-spin asymmetries with polarized target as well as of single-diffractive processes in the target region.

  2. 2014 Fermilab Laboratory Directoed Research & Development Annual Report

    Energy Technology Data Exchange (ETDEWEB)

    Wester, W. [Fermi National Accelerator Lab. (FNAL), Batavia, IL (United States)

    2016-05-26

    After initiation by the Fermilab Laboratory Director, a team from the senior Laboratory leadership and a Laboratory Directed Research and Development (LDRD) Advisory Committee developed an implementation plan for LDRD at Fermilab for the first time. This implementation was captured in the approved Fermilab 2014 LDRD Program Plan and followed directions and guidance from the Department of Energy (DOE) order, DOE O 413.2B, a “Roles, Responsibilities, and Guidelines, …” document, and examples of best practices at other DOE Office of Science Laboratories. At Fermilab, a FY14 midyear Call for Proposals was issued. A LDRD Selection Committee evaluated those proposals that were received and provided a recommendation to the Laboratory Director who approved seven LDRD projects. This Annual Report focuses on the status of those seven projects and provides an overview of the current status of LDRD at Fermilab. The seven FY14 LDRD approved projects had a date of initiation late in FY14 such that this report reflects approximately six months of effort approximately through January 2015. The progress of these seven projects, the subsequent award of six additional new projects beginning in FY15, and preparations for the issuance of the FY16 Call for Proposals indicates that LDRD is now integrated into the overall annual program at Fermilab. All indications are that LDRD is improving the scientific and technical vitality of the Laboratory and providing new, novel, or cutting edge projects carried out at the forefront of science and technology and aligned with the mission and strategic visions of Fermilab and the Department of Energy.

  3. Search for first generation leptoquarks in proton-antiproton collisions at the center of mass energy = 1.96 TeV in the dielectron + dijet channel using the D0 detector at Fermilab

    Energy Technology Data Exchange (ETDEWEB)

    Fu, Shaohua [Columbia Univ., New York, NY (United States)

    2004-01-01

    We describe a search for first generation leptoquarks decaying into the eejj final state in $p\\bar{p}$ collisions at a center of mass energy of 1.96 TeV using the D0 detector at the Fermilab Tevatron. this search is based on data collected during 2002-2003 with an integrated luminosity of (130.4 =- 8.5) pb -1. Leptoquarks are assumed to be produced in pairs and to decay into an electron and a quark with a branching ration β. We observe no evidence for leptoquarks, and set an upper cross section limit of 0.086 pb at the 95% confidence level corresponding to a lower mass limit of 231 GeV/c2 for scalar leptoquarks when β = 1.

  4. The Mu2e Experiment at Fermilab

    CERN Document Server

    Morescalchi, Luca

    2016-01-01

    The Mu2e Experiment at Fermilab will search for the coherent, neutrinoless conversion of muons into electrons in the field of an aluminium nucleus with an unprecedented sensitivity. Such a charged lepton flavor-violating reaction probes new physics at a scale inaccessible with direct searches at either present or planned high energy colliders. Moreover, the Mu2e experiment both complements and extends the current search for the {\\mu} $\\to$ e{\\gamma} decay at MEG and searches for new physics at the LHC. We will present the physics motivation for Mu2e, the experimental setup and the current status of the experiment.

  5. Multi-robot coverage to locate fixed targets using formation structures

    CERN Document Server

    Rogge, Jonathan

    2012-01-01

    This paper develops an algorithm that guides a multi-robot system in an unknown environment in search of fixed targets. The area to be scanned contains an unknown number of convex obstacles of unknown size and shape. The algorithm covers the entire free space in a sweeping fashion and as such relies on the use of robot formations. The geometry of the robot group is a lateral line formation, which is allowed to split and rejoin when passing obstacles. It is our main goal to exploit this formation structure in order to reduce robot resources to a minimum. Each robot has a limited and finite amount of memory available. No information of the topography is recorded. Communication between two robots is only possible up to a maximum inter-robot distance, and if the line-of-sight between both robots is not obstructed. Broadcasting capabilities and indirect communication are not allowed. Supervisory control is prohibited. The number of robots equipped with GPS is kept as small as possible. Applications of the algorith...

  6. Fixed target combined with spectral mapping: approaching 100% hit rates for serial crystallography.

    Science.gov (United States)

    Oghbaey, Saeed; Sarracini, Antoine; Ginn, Helen M; Pare-Labrosse, Olivier; Kuo, Anling; Marx, Alexander; Epp, Sascha W; Sherrell, Darren A; Eger, Bryan T; Zhong, Yinpeng; Loch, Rolf; Mariani, Valerio; Alonso-Mori, Roberto; Nelson, Silke; Lemke, Henrik T; Owen, Robin L; Pearson, Arwen R; Stuart, David I; Ernst, Oliver P; Mueller-Werkmeister, Henrike M; Miller, R J Dwayne

    2016-08-01

    The advent of ultrafast highly brilliant coherent X-ray free-electron laser sources has driven the development of novel structure-determination approaches for proteins, and promises visualization of protein dynamics on sub-picosecond timescales with full atomic resolution. Significant efforts are being applied to the development of sample-delivery systems that allow these unique sources to be most efficiently exploited for high-throughput serial femtosecond crystallography. Here, the next iteration of a fixed-target crystallography chip designed for rapid and reliable delivery of up to 11 259 protein crystals with high spatial precision is presented. An experimental scheme for predetermining the positions of crystals in the chip by means of in situ spectroscopy using a fiducial system for rapid, precise alignment and registration of the crystal positions is presented. This delivers unprecedented performance in serial crystallography experiments at room temperature under atmospheric pressure, giving a raw hit rate approaching 100% with an effective indexing rate of approximately 50%, increasing the efficiency of beam usage and allowing the method to be applied to systems where the number of crystals is limited.

  7. Accelerator neutrino program at Fermilab

    Energy Technology Data Exchange (ETDEWEB)

    Parke, Stephen J.; /Fermilab

    2010-05-01

    The accelerator neutrino programme in the USA consists primarily of the Fermilab neutrino programme. Currently, Fermilab operates two neutrino beamlines, the Booster neutrino beamline and the NuMI neutrino beamline and is the planning stages for a third neutrino beam to send neutrinos to DUSEL. The experiments in the Booster neutrino beamline are miniBooNE, SciBooNE and in the future microBooNE, whereas in the NuMI beamline we have MINOS, ArgoNut, MINERVA and coming soon NOvA. The major experiment in the beamline to DUSEL will be LBNE.

  8. Beam Trail Tracking at Fermilab

    Energy Technology Data Exchange (ETDEWEB)

    Nicklaus, Dennis J. [Fermilab; Carmichael, Linden Ralph [Fermilab; Neswold, Richard [Fermilab; Yuan, Zongwei [Fermilab

    2015-01-01

    We present a system for acquiring and sorting data from select devices depending on the destination of each particular beam pulse in the Fermilab accelerator chain. The 15 Hz beam that begins in the Fermilab ion source can be directed to a variety of additional accelerators, beam lines, beam dumps, and experiments. We have implemented a data acquisition system that senses the destination of each pulse and reads the appropriate beam intensity devices so that profiles of the beam can be stored and analysed for each type of beam trail. We envision utilizing this data long term to identify trends in the performance of the accelerators

  9. William Brinkman (centre), Director of the Department of Energy, U.S.A. at the superconducting magnet test hall SM18 with (from left to right) Coordinator for External Relations F. Pauss, Advisor for Non-Member States J. Ellis, J. Strait from Fermilab and Deputy Head of Technology Department L. Rossi on 13 November 2009.

    CERN Multimedia

    Maximilien Brice; SM18

    2009-01-01

    William Brinkman (centre), Director of the Department of Energy, U.S.A. at the superconducting magnet test hall SM18 with (from left to right) Coordinator for External Relations F. Pauss, Advisor for Non-Member States J. Ellis, J. Strait from Fermilab and Deputy Head of Technology Department L. Rossi on 13 November 2009.

  10. A Novel Fixed-Target Task to Determine Articulatory Speed Constraints in Persons with Amyotrophic Lateral Sclerosis

    Science.gov (United States)

    Mefferd, Antje S.; Green, Jordan R.; Pattee, Gary

    2012-01-01

    Purpose: The goal of this study was to determine if talkers with ALS are limited in their ability to increase lower lip and jaw speed at an early stage of the disease when their speaking rate and intelligibility are only minimally or not affected. Method: A novel metronome paced fixed-target task was used to assess movement speed capacities during…

  11. A Novel Fixed-Target Task to Determine Articulatory Speed Constraints in Persons with Amyotrophic Lateral Sclerosis

    Science.gov (United States)

    Mefferd, Antje S.; Green, Jordan R.; Pattee, Gary

    2012-01-01

    Purpose: The goal of this study was to determine if talkers with ALS are limited in their ability to increase lower lip and jaw speed at an early stage of the disease when their speaking rate and intelligibility are only minimally or not affected. Method: A novel metronome paced fixed-target task was used to assess movement speed capacities during…

  12. Future hadron physics facilities at Fermilab

    Energy Technology Data Exchange (ETDEWEB)

    Appel, Jeffrey A.; /Fermilab

    2004-12-01

    Fermilab's hadron physics research continues in all its accelerator-based programs. These efforts will be identified, and the optimization of the Fermilab schedules for physics will be described. In addition to the immediate plans, the Fermilab Long Range Plan will be cited, and the status and potential role of a new proton source, the Proton Driver, is described.

  13. Physics at the Fermilab Collider

    Energy Technology Data Exchange (ETDEWEB)

    Shochet, M.J. [Univ. of Chicago, Chicago, IL (United States)

    1994-09-01

    The CDF and D0 experiments at the Fermilab Tevatron Collider have produced many results from the search for the top quark, the study of both the electroweak and strong interactions, the production and decay of b quarks, and the search for new high mass objects. A sample of recently obtained results are presented.

  14. The FIFE Project at Fermilab

    Energy Technology Data Exchange (ETDEWEB)

    Box, D. [Fermilab; Boyd, J. [Fermilab; Di Benedetto, V. [Fermilab; Ding, P. [Fermilab; Dykstra, D. [Fermilab; Fattoruso, M. [Fermilab; Garzoglio, G. [Fermilab; Herner, K. [Fermilab; Levshina, T. [Fermilab; Kirby, M. [Fermilab; Kreymer, A. [Fermilab; Mazzacane, A. [Fermilab; Mengel, M. [Fermilab; Mhashilkar, P. [Fermilab; Podstavkov, V. [Fermilab; Retzke, K. [Fermilab; Sharma, N. [Fermilab

    2016-01-01

    The FabrIc for Frontier Experiments (FIFE) project is an initiative within the Fermilab Scientific Computing Division designed to steer the computing model for non-LHC Fermilab experiments across multiple physics areas. FIFE is a collaborative effort between experimenters and computing professionals to design and develop integrated computing models for experiments of varying size, needs, and infrastructure. The major focus of the FIFE project is the development, deployment, and integration of solutions for high throughput computing, data management, database access and collaboration management within an experiment. To accomplish this goal, FIFE has developed workflows that utilize Open Science Grid compute sites along with dedicated and commercial cloud resources. The FIFE project has made significant progress integrating into experiment computing operations several services including a common job submission service, software and reference data distribution through CVMFS repositories, flexible and robust data transfer clients, and access to opportunistic resources on the Open Science Grid. The progress with current experiments and plans for expansion with additional projects will be discussed. FIFE has taken the leading role in defining the computing model for Fermilab experiments, aided in the design of experiments beyond those hosted at Fermilab, and will continue to define the future direction of high throughput computing for future physics experiments worldwide.

  15. Status of Fermilab E-710

    Energy Technology Data Exchange (ETDEWEB)

    Rubinstein, R.; E-710 Collaboration

    1993-08-01

    This report give the current status of E-710, an experiment at the Fermilab {bar p}p Tevatron Collider to measure elastic scattering, total cross sections and diffraction dissociation up to {radical}s = 1.8 TeV.

  16. Quarkonium Physics at a Fixed-Target Experiment Using the LHC Beams

    Energy Technology Data Exchange (ETDEWEB)

    Lansberg, J.P.; /Orsay, IPN; Brodsky, S.J.; /SLAC; Fleuret, F.; /Ecole Polytechnique; Hadjidakis, C.; /Orsay, IPN

    2012-04-09

    We outline the many quarkonium-physics opportunities offered by a multi-purpose fixed-target experiment using the p and Pb LHC beams extracted by a bent crystal. This provides an integrated luminosity of 0.5 fb{sup -1} per year on a typical 1cm-long target. Such an extraction mode does not alter the performance of the collider experiments at the LHC. With such a high luminosity, one can analyse quarkonium production in great details in pp, pd and pA collisions at {radical}s{sub NN} {approx_equal} 115 GeV and at {radical}s{sub NN} {approx_equal} 72 GeV in PbA collisions. In a typical pp (pA) run, the obtained quarkonium yields per unit of rapidity are 2-3 orders of magnitude larger than those expected at RHIC and about respectively 10 (70) times larger than for ALICE. In PbA, they are comparable. By instrumenting the target-rapidity region, the large negative-x{sub F} domain can be accessed for the first time, greatly extending previous measurements by Hera-B and E866. Such analyses should help resolving the quarkonium-production controversies and clear the way for gluon PDF extraction via quarkonium studies. The nuclear target-species versatility provides a unique opportunity to study nuclear matter and the features of the hot and dense matter formed in PbA collisions. A polarised proton target allows the study of transverse-spin asymmetries in J/{Psi} and {Upsilon} production, providing access to the gluon and charm Sivers functions.

  17. 2014 Fermilab Laboratory Directed Research & Development Program Plan

    Energy Technology Data Exchange (ETDEWEB)

    Wester, W., editor

    2016-05-26

    Fermilab is executing Laboratory Directed Research and Development (LDRD) as outlined by order DOE O 413.2B in order to enhance and realize the mission of the laboratory in a manner that also supports the laboratory’s strategic objectives and the mission of the Department of Energy. LDRD funds enable scientific creativity, allow for exploration of “high risk, high payoff” research, and allow for the demonstration of new ideas, technical concepts, and devices. LDRD also has an objective of maintaining and enhancing the scientific and technical vitality of Fermilab.

  18. 2015 Fermilab Laboratory Directed Research & Development Program Plan

    Energy Technology Data Exchange (ETDEWEB)

    Wester, W., editor

    2015-05-26

    Fermilab is executing Laboratory Directed Research and Development (LDRD) as outlined by order DOE O 413.2B in order to enhance and realize the mission of the laboratory in a manner that also supports the laboratory’s strategic objectives and the mission of the Department of Energy. LDRD funds enable scientific creativity, allow for exploration of “high risk, high payoff” research, and allow for the demonstration of new ideas, technical concepts, and devices. LDRD also has an objective of maintaining and enhancing the scientific and technical vitality of Fermilab.

  19. Integrable RCS as a Proposed Replacement for Fermilab Booster

    Energy Technology Data Exchange (ETDEWEB)

    Eldred, Jeffrey [Fermilab; Valishev, Alexander [Fermilab

    2017-03-07

    Integrable optics is an innovation in particle accelerator design that potentially enables a greater betatron tune spread and damps collective instabilities. An integrable rapid-cycling synchrotron (RCS) would be an effective replacement for the Fermilab Booster, as part of a plan to reach multi-MW beam power at 120 GeV for the Fermilab high-energy neutrino program. We provide an example integrable lattice with features of a modern RCS - dispersion-free drifts, low momentum compaction factor, superperiodicity, chromaticity correction, bounded beta functions, and separate-function magnets.

  20. Fermilab Tevatron quadrupoles

    Energy Technology Data Exchange (ETDEWEB)

    Cooper, W.E.; Fisk, H.E.; Gross, D.A.; Lundy, R.A.; Schmidt, E.E.; Turkot, F.

    1983-03-01

    Details on the design, construction, and performance tests of Energy Saver/Doubler quadrupoles are presented along with recent data from the test of a special high gradient low beta prototype quadrupole.

  1. Fermilab Recycler Ring: Technical design report. Revision 1.1

    Energy Technology Data Exchange (ETDEWEB)

    Jackson, G. [ed.

    1996-07-01

    This report describes the technical design of the Fermilab Recycler Ring. The purpose of the Recycler is to augment the luminosity increase anticipated from the implementation of the Fermi III upgrade project, which has as its main component the Fermilab Main Injector construction project. The Recycler is a fixed 8 GeV kinetic energy storage ring. It is located in the Main Injector tunnel directly above the Main Injector beamline, near the ceiling. The construction schedule calls for the installation of the Recycler ring before the installation shutdown of the Main Injector. This aggressive construction schedule is made possible by the exclusive use of permanent magnets in the ring lattice, removing the need for expensive conventional iron/copper magnet construction along with the related power supplies, cooling water system, and electrical safety systems. The location, operating energy, and mode of construction are chosen to minimize operational impacts on both Fermilab`s ongoing High Energy Physics program and the Main Injector construction project.

  2. Neutrino Project X at Fermilab

    Energy Technology Data Exchange (ETDEWEB)

    Parke, Stephen J.; /Fermilab

    2008-07-01

    In this talk I will give a brief description of Project X and an outline of the Neutrino Physics possibilities it provides at Fermilab. Project X is the generic name given to a new intense proton source at Fermilab. This source would produce more than 2 MW of proton power at 50 to 120 GeV, using the main injector, which could be used for a variety of long baseline neutrino experiments. A new 8 GeV linac would be required with many components aligned with a possible future ILC. In addition to the beam power from the main injector there is an additional 200 kW of 8 GeV protons that could be used for kaon, muon, experiments.

  3. Beam intensity upgrade at Fermilab

    Energy Technology Data Exchange (ETDEWEB)

    Marchionni, A.; /Fermilab

    2006-07-01

    The performance of the Fermilab proton accelerator complex is reviewed. The coming into operation of the NuMI neutrino line and the implementation of slip-stacking to increase the anti-proton production rate has pushed the total beam intensity in the Main Injector up to {approx} 3 x 10{sup 13} protons/pulse. A maximum beam power of 270 kW has been delivered on the NuMI target during the first year of operation. A plan is in place to increase it to 350 kW, in parallel with the operation of the Collider program. As more machines of the Fermilab complex become available with the termination of the Collider operation, a set of upgrades are being planned to reach first 700 kW and then 1.2 MW by reducing the Main Injector cycle time and by implementing proton stacking.

  4. Particle Production Measurements using the MIPP Detector at Fermilab

    CERN Document Server

    Mahajan, Sonam

    2013-01-01

    The Main Injector Particle Production (MIPP) experiment is a fixed target hadron production experiment at Fermilab. It measures particle production in interactions of 120 GeV/c primary protons from the Main Injector and secondary beams of $\\pi^{\\pm}, \\rm{K}^{\\pm}$, p and $\\bar{\\rm{p}}$ from 5 to 90 GeV/c on nuclear targets which include H, Be, C, Bi and U, and a dedicated run with the NuMI target. MIPP is a high acceptance spectrometer which provides excellent charged particle identification using Time Projection Chamber (TPC), Time of Flight (ToF), multicell Cherenkov (CKOV), Ring Imaging Cherenkov (RICH) detectors, and Calorimeter for neutrons. We present inelastic cross section measurements for 58 and 85 GeV/c p-H interactions, and 58 and 120 GeV/c p-C interactions. A new method is described to account for the low multiplicity inefficiencies in the interaction trigger using KNO scaling. Inelastic cross sections as a function of multiplicity are also presented. The MIPP data are compared with the Monte Carl...

  5. 12th CERN-Fermilab Hadron Collider Physics Summer School

    CERN Document Server

    2017-01-01

    CERN and Fermilab are jointly offering a series of "Hadron Collider Physics Summer Schools", to prepare young researchers for these exciting times. The school has alternated between CERN and Fermilab, and will return to CERN for the twelfth edition, from 28th August to 6th September 2017. The CERN-Fermilab Hadron Collider Physics Summer School is an advanced school targeted particularly at young postdocs and senior PhD students working towards the completion of their thesis project, in both Experimental High Energy Physics (HEP) and phenomenology. Other schools, such as the CERN European School of High Energy Physics, may provide more appropriate training for students in experimental HEP who are still working towards their PhDs. Mark your calendar for 28 August - 6 September 2017, when CERN will welcome students to the twelfth CERN-Fermilab Hadron Collider Physics Summer School. The School will include nine days of lectures and discussions, and one free day in the middle of the period. Limited scholarship ...

  6. A Study of Nuclear effects in Drell-Yan and Charmonia Productions in p-A collisions at Fermilab E906/SeaQuest Experiment

    Science.gov (United States)

    Liu, Ming; E906/SeaQuest Collaboration

    2016-09-01

    Strong suppressions of charmonia have been observed in heavy ion collisions at RHIC and LHC. The suppressions exhibit strong nucleus A and kinematic dependences, especially with Feynman-x/rapidity and transverse momentum pT. Such suppression in heavy ion collisions is predicted to be an important signature for the formation of quark-gluon plasma (QGP) due to color screening, however, there are also other non-QGP effects, such as initial state parton energy loss, parton shadowing and final state breakup. It is important to quantify the contributions from the cold nuclear matter, which could be achieved through studying charmonia and Drell-Yan productions in proton-nucleus collisions where no significant QGP is expected. E906/SeaQuest is a fixed-target dimuon experiment at Fermilab using the 120 GeV proton beam from the Main Injector. E906 has been taking high statistic data samples of p+p, p+d, p+C, p+Fe and p+W collisions since 2014 and will continue data taking until the summer of 2017. E906 measures J / ψ ,ψ' and Drell-Yan productions in the dimuon channel in p+p and p+A collisions over a wide range of kinematic coverage, that is optimal for the study of the cold nuclear matter effects. Recently, we released the first preliminary results will be presented.

  7. Dedication of Fermilab's LHC Remote Operations Center

    CERN Multimedia

    Claudia Marcelloni

    2007-01-01

    Fermilab's Remote Operations Center will be dedicated simultaneously at Fermilab in the U.S. and from CMS (Point 5) in Cessy, France. Speakers will include: from the U.S. DOE Undersecretary for Science Raymond Orbach and Fermilab Director Pier Oddone (U.S.); and from CERN Director General Robert Aymar, CMS Spokesperson Jim Virdee, LHC Project Leader Lyn Evans and US CMS Project Manager Joel Butler.

  8. Development of Cogging at the Fermilab Booster

    Energy Technology Data Exchange (ETDEWEB)

    Seiya, K. [Fermi National Accelerator Lab. (FNAL), Batavia, IL (United States); Chaurize, S. [Fermi National Accelerator Lab. (FNAL), Batavia, IL (United States); Drennan, C. [Fermi National Accelerator Lab. (FNAL), Batavia, IL (United States); Pellico, W. [Fermi National Accelerator Lab. (FNAL), Batavia, IL (United States); Triplett, A. K. [Fermi National Accelerator Lab. (FNAL), Batavia, IL (United States); Waller, A. [Fermi National Accelerator Lab. (FNAL), Batavia, IL (United States)

    2015-01-30

    The development of magnetic cogging is part of the Fermilab Booster upgrade within the Proton Improvement Plan (PIP). The Booster is going to send 2.25E17 protons/hour which is almost double the present flux, 1.4E17 protons/hour to the Main Injector (MI) and Recycler (RR). The extraction kicker gap has to synchronize to the MI and RR injection bucket in order to avoid a beam loss at the rising edge of the extraction and injection kickers. Magnetic cogging is able to control the revolution frequency and the position of the gap using the magnetic field from dipole correctors while radial position feedback keeps the beam at the central orbit. The new cogging is expected to reduce beam loss due to the orbit changes and reduce beam energy loss when the gap is created. The progress of the magnetic cogging system development is going to be discussed in this paper.

  9. Status of the Fermilab electron cooling project

    Energy Technology Data Exchange (ETDEWEB)

    Nagaitsev, S. E-mail: nsergei@fnal.gov; Burov, A.; Carlson, K.; Dudnikov, V.; Kramper, B.; Kroc, T.; Leibfritz, J.; McGee, M.; Saewert, G.; Schmidt, C.W.; Shemyakin, A.; Warner, A.; Seletsky, S.; Tupikov, V

    2004-10-11

    A prototype of a 4.3-MeV electron cooling system has been assembled at Fermilab as part of the on-going R and D program in high-energy electron cooling. This electron cooler prototype will not demonstrate the actual cooling but it would allow to determine if the electron beam properties are suitable for antiproton beam cooling. An electron beam is accelerated by a 5-MV Pelletron (Van de Graaff type) accelerator and transported to a prototype cooling section. The cooling would take place in a 20-m long solenoid flanked on both sides by supply and return beam-lines--a total of 60 m of transport channel. This paper describes the status of the electron cooling R and D program.

  10. Development of Cogging at the Fermilab Booster

    Energy Technology Data Exchange (ETDEWEB)

    Seiya, K. [Fermi National Accelerator Lab. (FNAL), Batavia, IL (United States); Chaurize, S. [Fermi National Accelerator Lab. (FNAL), Batavia, IL (United States); Drennan, C. [Fermi National Accelerator Lab. (FNAL), Batavia, IL (United States); Pellico, W. [Fermi National Accelerator Lab. (FNAL), Batavia, IL (United States); Triplett, A. K. [Fermi National Accelerator Lab. (FNAL), Batavia, IL (United States); Waller, A. [Fermi National Accelerator Lab. (FNAL), Batavia, IL (United States)

    2015-01-30

    The development of magnetic cogging is part of the Fermilab Booster upgrade within the Proton Improvement Plan (PIP). The Booster is going to send 2.25E17 protons/hour which is almost double the present flux, 1.4E17 protons/hour to the Main Injector (MI) and Recycler (RR). The extraction kicker gap has to synchronize to the MI and RR injection bucket in order to avoid a beam loss at the rising edge of the extraction and injection kickers. Magnetic cogging is able to control the revolution frequency and the position of the gap using the magnetic field from dipole correctors while radial position feedback keeps the beam at the central orbit. The new cogging is expected to reduce beam loss due to the orbit changes and reduce beam energy loss when the gap is created. The progress of the magnetic cogging system development is going to be discussed in this paper.

  11. Task D, Participation in high energy physics

    Energy Technology Data Exchange (ETDEWEB)

    Lederman, L.M.

    1990-09-01

    This grant was initiated in December of 1989. My request for DOE funds (July 7, 1989) listed three activities which would require support from DOE. These were communication of HEP and Basic Research activities via lectures, articles, TV, etc., science education activities and participation in E789, a fixed-target research on beauty physics at Fermilab. These activities are discussed in this report.

  12. Results on the production and detection of $W$ bosons with the Collider Detector at Fermilab in $p\\bar{p}$ collisions at a center - of - mass energy of 1.96 TeV

    Energy Technology Data Exchange (ETDEWEB)

    Stadie, Hartmut [Univ. of Karlsruhe (TH) (Germany)

    2003-07-01

    We studied W boson production and decay with the Collider Detector at Fermilab, CDF, in proton-antiproton collisions with a center-of-mass energy of 1.96 TeV. The first (55.5 ± 3.3) pb-1 of data collected since the start of Run II in summer 2001 were used. We limited ourselves to the decay of the W boson into an electron and neutrino pair. As a good electron identification is crucial to disentangle the signal from the large number of QCD events, we reevaluated the efficiency and purity of the standard CDF electron identification using tight cuts and compared it with a method based on an Artificial Neural Net. The net was trained with a signal and background sample obtained from data and offered a better discrimination power than the standard method. Using the standard tight cuts and two different cuts on the net output of the Artificial Neural Net, we measured the W boson cross-section in three analyses. To estimate the amount of background from fake electrons in the data samples, we created a background sample by selecting events with an electron candidate that has a small electron probability. This sample and a signal Monte Carlo sample were fitted to the missing transverse energy distribution of the data in order to obtain the background fraction of the data sample. The cross-section times branching ratio result for the tight cuts analysis is (2.74 ± 0.02(stat) ± 0.12(syst) ± 0.16(lum)) nb and one result for an analysis cutting on the net output is (2.76 ± 0.01(stat) ± 0.12(syst) ± 0.16(lum)) nb. The latter has a better statistical error due to the improved electron identification of the Artificial Neural Net. These results are in good agreement with the theoretical predictions and the previous Run II measurement.

  13. NICA-MPD fixed target mode: soft jet studies in the relative 4-velocity space

    CERN Document Server

    Okorokov, V A

    2016-01-01

    Experimental results obtained by studying the properties of soft jets in the 4-velocity space at $\\sqrt{s} \\sim 2-20$ GeV are presented. The changes in the mean distance from the jet axis to the jet particles, the mean kinetic energy of these particles, and the cluster dimension in response to the growth of the collision energy are consistent with the assumption that quark degrees of freedom manifest themselves in processes of pion jet production at intermediate energies. The energy at which quark degrees of freedom begin to manifest themselves experimentally in the production of soft pion jets is estimated for the first time. The estimated value of this energy is $2.8 \\pm 0.6$ GeV. The suggestions are made for future investigations on NICA-MPD.

  14. Neutrino SuperBeams at Fermilab

    Energy Technology Data Exchange (ETDEWEB)

    Parke, Stephen J.; /Fermilab

    2011-08-23

    In this talk I will give a brief description of long baseline neutrino physics, the LBNE experiment and Project X at Fermilab. A brief outline of the physics of long baseline neutrino experiments, LBNE and Project X at Fermilab is given in this talk.

  15. Physics at an upgraded Fermilab proton driver

    Energy Technology Data Exchange (ETDEWEB)

    Geer, S.; /Fermilab

    2005-07-01

    In 2004 the Fermilab Long Range Planning Committee identified a new high intensity Proton Driver as an attractive option for the future, primarily motivated by the recent exciting developments in neutrino physics. Over the last few months a physics study has developed the physics case for the Fermilab Proton Driver. The potential physics opportunities are discussed.

  16. Physics at an upgraded Fermilab proton driver

    Energy Technology Data Exchange (ETDEWEB)

    Geer, S.; /Fermilab

    2005-07-01

    In 2004 the Fermilab Long Range Planning Committee identified a new high intensity Proton Driver as an attractive option for the future, primarily motivated by the recent exciting developments in neutrino physics. Over the last few months a physics study has developed the physics case for the Fermilab Proton Driver. The potential physics opportunities are discussed.

  17. 2016 Fermilab Laboratory Directed Research & Development Program Plan

    Energy Technology Data Exchange (ETDEWEB)

    Wester, W. [Fermi National Accelerator Lab. (FNAL), Batavia, IL (United States)

    2016-05-25

    Fermilab is executing Laboratory Directed Research and Development (LDRD) as outlined by order DOE O 413.2B in order to enhance and realize the mission of the laboratory in a manner that also supports the laboratory’s strategic objectives and the mission of the Department of Energy. LDRD funds enable scientific creativity, allow for exploration of “high risk, high payoff” research, and allow for the demonstration of new ideas, technical concepts, and devices. LDRD also has an objective of maintaining and enhancing the scientific and technical vitality of Fermilab. LDRD is able to fund employee-initiated proposals that address the current strategic objectives and better position Fermilab for future mission needs. The request for such funds is made in consideration of the investment needs, affordability, and directives from DOE and Congress. Review procedures of the proposals will insure that those proposals which most address the strategic goals of the DOE and the Laboratory or which best position Fermilab for the future will be recommended to the Laboratory Director who has responsibility for approval. The execution of each approved project will be the responsibility of the Principal Investigator, PI, who will follow existing Laboratory guidelines to ensure compliance with safety, environmental, and quality assurance practices. A Laboratory Director-appointed LDRD Coordinator will work with Committees, Laboratory Management, other Fermilab Staff, and the PI’s to oversee the implementation of policies and procedures of LDRD and provide the management and execution of this Annual Program Plan. FY16 represents third fiscal year in which LDRD has existed at Fermilab. The number of preliminary proposals (117) submitted in response to the LDRD Call for Proposals indicates very strong interest of the program within the Fermilab community. The first two Calls have resulted in thirteen active LDRD projects – and it is expected that between five and seven new

  18. The Fermilab Lattice Information Repository

    CERN Document Server

    Ostiguy, Jean-Francois; McCusker-Whiting, Michele; Michelotti, Leo

    2005-01-01

    Fermilab is a large accelerator complex with six rings and sixteen transfer beamlines operating in various modes and configurations, subject to modifications, improvements and occasional major redesign. Over the years, it became increasingly obvious that a centralized lattice repository with the ability to track revisions would be of great value. To that end, we evaluated potentially suitable revision systems, either freely available or commercial, and decided that expecting infrequent users to become fully conversant with complex revision system software was neither realistic nor practical. In this paper, we discuss technical aspects of the recently introduced FNAL Accelerator Division's Lattice Repository, whose fully web-based interface hides the complexity of Subversion, a comprehensive open source revision system. In particular we emphasize how the architecture of Subversion was a key ingredient in the technical success of the repository's implementation.

  19. Channeling Radiation Experiment at Fermilab ASTA

    Energy Technology Data Exchange (ETDEWEB)

    Mihalcea, D. [NIU, DeKalb; Edstrom, D. R. [Fermilab; Piot, P. [NIU, Dekalb; Rush, W. [Kansas U.; Sen, T. [Fermilab

    2015-06-01

    Electron beams with moderate energy ranging from 4 to 50 MeV can be used to produce x-rays through the Channeling Radiation (CR) mechanism. Typically, the xray spectrum from these sources extends up to 140 keV and this range covers the demand for most practical applications. The parameters of the electron beam determine the spectral brilliance of the x-ray source. The electron beam produced at the Fermilab new facility Advanced Superconducting Test Accelerator (ASTA) meets the requirements to assemble an experimental high brilliance CR xray source. In the first stage of the experiment the energy of the beam is 20 MeV and due to the very low emittance ($\\approx 100$ nm ) at low bunch charge (20 pC) the expected average brilliance of the x-ray source is about $10^9$ photons/[s- $(mm-mrad)^2$-0.1% BW]. In the second stage of the experiment the beam energy will be increased to 50 MeV and consequently the average brilliance will increase by a factor of five. Also, the x-ray spectrum will extend from about 30 keV to 140 keV

  20. A search for the higgs boson and a search for dark-matter particle with jets and missing transverse energy at collider detector at Fermilab

    Energy Technology Data Exchange (ETDEWEB)

    Liu, Qiuguang [Purdue Univ., West Lafayette, IN (United States)

    2013-05-01

    Finding the standard model Higgs boson and discovering beyond-standard model physics phenomena have been the most important goals for the high-energy physics in the last decades. In this thesis, we present two such searches. First is the search for the low mass standard model Higgs boson produced in association with a vector boson; second is the rst search for a dark-matter candidate (D) produced in association with a top quark (t) in particle colliders. We search in events with energetic jets and large missing transverse energy { a signature characterized by complicated backgrounds { in data collected by the CDF detector with proton-antiproton collisions at p s = 1:96 TeV. We discuss the techniques that have been developed for background modeling, for discriminating signal from background, and for reducing background resulting from detector e ects. In the Higgs search, we report the 95% con dence level upper limits on the pro- duction cross section across masses of 90 to 150 GeV/c2. The expected limits are improved by an average of 14% relative to the previous analysis. The Large Hadron Collider experiments reported a Higgs-like particle with mass of 125 GeV/c2 by study- ing the data collected in year 2011/12. At a Higgs boson mass of 125 GeV/c2, our observed (expected) limit is 3.06 (3.33) times the standard model prediction, corre- sponding to one of the most sensitive searches to date in this nal state. In the dark matter search, we nd the data are consistent with the standard model prediction, thus set 95% con dence level upper limits on the cross section of the process p p ! t + D as a function of the mass of the dark-matter candidate. The xviii upper limits are approximately 0.5 pb for a dark-matter particle with masses in the range of 0 􀀀 150 GeV/c2.

  1. The Muon g-2 experiment at Fermilab

    Science.gov (United States)

    Chapelain, Antoine

    2017-03-01

    The upcoming Fermilab E989 experiment will measure the muon anomalous magnetic moment aμ. This measurement is motivated by the previous measurement performed in 2001 by the BNL E821 experiment that reported a 3-4 standard deviation discrepancy between the measured value and the Standard Model prediction. The new measurement at Fermilab aims to improve the precision by a factor of four reducing the total uncertainty from 540 parts per billion (BNL E821) to 140 parts per billion (Fermilab E989). This paper gives the status of the experiment.

  2. Supporting multiple control systems at Fermilab

    Energy Technology Data Exchange (ETDEWEB)

    Nicklaus, Dennis J.; /Fermilab

    2009-10-01

    The Fermilab control system, ACNET, is used for controlling the Tevatron and all of its pre-accelerators. However, other smaller experiments at Fermilab have been using different controls systems, in particular DOOCS and EPICS. This paper reports some of the steps taken at Fermilab to integrate support for these outside systems. We will describe specific tools that we have built or adapted to facilitate interaction between the architectures. We also examine some of the difficulties that arise from managing this heterogeneous environment. Incompatibilities as well as common elements will be described.

  3. CERN stop-over for KEK and Fermilab Directors

    CERN Multimedia

    2001-01-01

    En route for a meeting of the International Committee for Future Accelerators, ICFA, held at Germany's DESY laboratory, the Directors of Japan's KEK laboratory and Fermilab in the United States had a stop-over at CERN last Wednesday 7 February. Dr Hirotaka Sugawara, Director General of Japan's high energy physics laboratory, KEK, visited the Antiproton Decelerator, AD. From left to right, Masaki Hori, member of the ASACUSA collaboration, John Eades, contact person for ASACUSA, Dr Hirotaka Sugawara, Werner Pirkl, the PS Division engineer responsible for the Radio Frequency Quadrupole decelerator in the foreground, and Kurt Hübner, CERN's Director of Accelerators. Dr Michael S. Witherell, Director of the Fermi National Accelerator Laboratory, Fermilab, visited construction sites for the LHC, ATLAS, and CMS. He is seen here with a module of the CMS hadronic calorimeter in building 186.

  4. Optics Corrections with LOCO in the Fermilab Booster

    Energy Technology Data Exchange (ETDEWEB)

    Tan, Cheng-Yang [Fermilab; Prost, Lionel [Fermilab; Seiya, Kiyomi [Fermilab; Triplett, A. Kent [Fermilab

    2016-06-01

    The optics of the Fermilab Booster has been corrected with LOCO (Linear Optics from Closed Orbits). However, the first corrections did not show any improvement in capture efficiency at injection. A detailed analysis of the results showed that the problem lay in the MADX optics file. Both the quadrupole and chromatic strengths were originally set as constants independent of beam energy. However, careful comparison between the measured and calculated tunes and chromatcity show that these strengths are energy dependent. After the MADX model was modified with these new energy dependent strengths, the LOCO corrected lattice has been applied to Booster. The effect of the corrected lattice will be discussed here.

  5. Operation and maintenance of Fermilab`s satellite refrigerator expansion engines

    Energy Technology Data Exchange (ETDEWEB)

    Soyars, W.M.

    1996-09-01

    Fermilab`s superconducting Tevatron accelerator is cooled to liquid helium temperatures by 24 satellite refrigerators, each of which uses for normal operations a reciprocating `wet` expansion engine. These expanders are basically Process System (formerly Koch) Model 1400 expanders installed in standalone cryostats designed by Fermilab. This paper will summarize recent experience with operations and maintenance of these expansion engines. Some of the statistics presented will include total engine hours, mean time between major and minor maintenance, and frequent causes of major maintenance.

  6. Development of Detector Systems for Internal and Fixed Target Heavy Ion Physics Experiments

    Energy Technology Data Exchange (ETDEWEB)

    Golubev, Pavel

    2003-04-01

    This thesis deals with intermediate energy heavy ion reactions with the particular aim to study the nuclear matter equation of state which defines the relation between statistical parameters of a fermionic system. The development of equipment for two experiments, CA47 at The Svedberg Laboratory in Uppsala, Sweden and R16 at Kernfysisch Versneller Inst. (KVI), Groningen, The Netherlands, are described. CA47 contains the CHICSi detector, a modular, ultra-high vacuum (UHV) compatible, multi-detector system, covering a solid angle of 3pi sr around the collision point. Together with two auxiliary detector systems CHICSi is placed at the cluster-jet target chamber of the CELSIUS storage ring. This thesis gives a technical overview of the detector and the development carried out in order to achieve the desired detection performance. Some laboratory and in-beam tests are described and the analysis of the first experimental results is discussed. The nuclear intensity interferometry experiment (R16) was performed in a dedicated beam-line of the AGOR superconducting cyclotron. Small-angle two-particle correlations were measured for the E/A = 61 MeV {sup 36}Ar + {sup 27}Al, {sup 112}Sn, {sup 124}Sn reactions, together with singles spectra. The experimental energy distributions of neutrons and light charged particles for the {sup 36}Ar + {sup 27}Al reaction have been analyzed with a Maxwellian multi-source prescription. These results, together with correlation function data, are used to extract information on the size of the emitting sources and their time evolution.

  7. Development of Detector Systems for Internal and Fixed Target Heavy Ion Physics Experiments

    Energy Technology Data Exchange (ETDEWEB)

    Golubev, Pavel

    2003-04-01

    This thesis deals with intermediate energy heavy ion reactions with the particular aim to study the nuclear matter equation of state which defines the relation between statistical parameters of a fermionic system. The development of equipment for two experiments, CA47 at The Svedberg Laboratory in Uppsala, Sweden and R16 at Kernfysisch Versneller Inst. (KVI), Groningen, The Netherlands, are described. CA47 contains the CHICSi detector, a modular, ultra-high vacuum (UHV) compatible, multi-detector system, covering a solid angle of 3pi sr around the collision point. Together with two auxiliary detector systems CHICSi is placed at the cluster-jet target chamber of the CELSIUS storage ring. This thesis gives a technical overview of the detector and the development carried out in order to achieve the desired detection performance. Some laboratory and in-beam tests are described and the analysis of the first experimental results is discussed. The nuclear intensity interferometry experiment (R16) was performed in a dedicated beam-line of the AGOR superconducting cyclotron. Small-angle two-particle correlations were measured for the E/A = 61 MeV {sup 36}Ar + {sup 27}Al, {sup 112}Sn, {sup 124}Sn reactions, together with singles spectra. The experimental energy distributions of neutrons and light charged particles for the {sup 36}Ar + {sup 27}Al reaction have been analyzed with a Maxwellian multi-source prescription. These results, together with correlation function data, are used to extract information on the size of the emitting sources and their time evolution.

  8. Conceptual Design Report: Fermilab Upgrade. Main Injector. Technical Components and Civil Construction, January, 1989

    Energy Technology Data Exchange (ETDEWEB)

    None

    1989-01-12

    This report contains a description of the design and cost estimate of a new 150 GeV accelerator, designated the Main Injector, which will be required to support the upgrade of the Fermilab Collider. The construction of this accelerator will simultaneously result in significant enhancements to the Fermilab fixed target program. The Main Injector (MI) is to be located south of the Antiproton Source and tangent to the Tevatron ring at the FO straight section as shown in Figure 1-1. The MI will perform all duties currently required of the existing Main Ring. Thus, operation of the Main Ring will cease following commissioning of the MI, with a concurrent reduction in background rates as seen in the colliding beam detectors. The performance of the MI, as measured in terms of protons per second delivered to the antiproton production target or total protons delivered to the Tevatron, is expected to exceed that of the Main Ring by a factor of two to three. In addition the MI will provide high duty factor 120 GeV beam to the experimental areas during collider operation, a capability which does not presently exist in the Main Ring.

  9. Conceptual Design Report: Fermilab Upgrade: Main Injector - Technical Components and Civil Construction, January 1990 (Rev. 2)

    Energy Technology Data Exchange (ETDEWEB)

    none,

    1990-01-10

    This report contains a description of the design and cost estimate of a new 150 GeV accelerator, designated the Main Injector, which will be required to support the upgrade of the Fermilab Accelerator Complex. The construction of this accelerator will simultaneously result in significant enhancements to both the Fermilab collider and fixed target programs. The Main Injector (MI) is to be located south of the Antiproton Source and tangent to the Tevatron ring at the FO straight section as shown in Figure 1-1. The MI will perform all duties currently required of the existing Main Ring. Thus, operation of the Main Ring will cease following commissioning of the MI, with a concurrent reduction in background rates as seen in the colliding beam detectors. The performance of the MI, as measured in terms of protons per second delivered to the antiproton production target or total protons delivered to the Tevatron, is expected to exceed that of the Main Ring by a factor of two to three. In addition the MI will provide high duty factor 120 GeV beam to the experimental areas during collider operation, a capability which does not presently exist in the Main Ring.

  10. Feasibility studies for quarkonium production at a fixed-target experiment using the LHC proton and lead beams (AFTER@LHC)

    CERN Document Server

    Massacrier, L; Fleuret, F; Hadjidakis, C; Kikola, D; Lansberg, J P; Shao, H -S

    2015-01-01

    Used in the fixed-target mode, the multi-TeV LHC proton and lead beams allow for studies of heavy-flavour hadroproduction with unprecedented precision at backward rapidities - far negative Feyman-x - using conventional detection techniques. At the nominal LHC energies, quarkonia can be studies in detail in p+p, p+d and p+A collisions at sqrt(s_NN) ~ 115 GeV as well as in Pb+p and Pb+A collisions at sqrt(s_NN) ~ 72 GeV with luminosities roughly equivalent to that of the collider mode, i.e. up to 20 fb-1 yr-1 in p+p and p+d collisions, up to 0.6 fb-1 yr-1 in p+A collisions and up to 10 nb-1 yr-1 in Pb+A collisions. In this paper, we assess the feasibility of such studies by performing fast simulations using the performance of a LHCb-like detector.

  11. Feasibility Studies for Quarkonium Production at a Fixed-Target Experiment Using the LHC Proton and Lead Beams (AFTER@LHC

    Directory of Open Access Journals (Sweden)

    L. Massacrier

    2015-01-01

    Full Text Available Being used in the fixed-target mode, the multi-TeV LHC proton and lead beams allow for studies of heavy-flavour hadroproduction with unprecedented precision at backward rapidities, far negative Feynman-x, using conventional detection techniques. At the nominal LHC energies, quarkonia can be studied in detail in p+p, p+d, and p+A collisions at sNN≃115 GeV and in Pb + p and Pb + A collisions at sNN≃72 GeV with luminosities roughly equivalent to that of the collider mode that is up to 20 fb−1 yr−1 in p+p and p+d collisions, up to 0.6 fb−1 yr−1 in p+A collisions, and up to 10 nb−1 yr−1 in Pb + A collisions. In this paper, we assess the feasibility of such studies by performing fast simulations using the performance of a LHCb-like detector.

  12. City shows gratitude for Fermilab relationship

    CERN Multimedia

    Pierce, Gala

    2006-01-01

    "Part of last week Batavia Chamber of Commerce celebration wasn't just to salute one of Batavia's heroes - Carla Hill - but to commemorate a 40-year relationship between the city and Fermilab" (1 page)

  13. Charged pion production in fixed-target Pb + Pb collisions at 158 GeV/nucleon

    Science.gov (United States)

    NA52 Collaboration; Ambrosini, G.; Arsenescu, R.; Baglin, C.; Beringer, J.; Bohm, C.; Borer, K.; Bussière, A.; Dittus, F.; Elsener, K.; Gorodetzky, Ph; Guillaud, J. P.; Hess, P.; Kabana, S.; Klingenberg, R.; Lohmann, K. D.; Mommsen, R.; Moser, U.; Pretzl, K.; Schacher, J.; Selldén, B.; Stoffel, F.; Weber, M.; Zhang, Q. P.

    1999-12-01

    Changes in pion production as a function of the impact parameter of the collision or the incident energy, may reveal characteristics of a possible first-order phase transition from nuclear to quark matter, as predicted by lattice quantum chromodynamics. In this paper we investigate charged pion production in Pb+Pb collisions at 158 GeV/nucleon near 0° production angle and at forward rapidity (4.3≤ y≤ 6.3). The centrality dependence of pion production is shown in the impact parameter range ~ 2-12 fm at the rapidities y = 5.7 and 6.3. An enhancement in the π-π+ ratio has been measured near beam rapidity, indicating Coulomb interaction of charged pions with the spectator protons. The charged pion yield per nucleon participating in the collision (Np) at y = 5.7 increases faster than linearly with Np, up to Np~100 and then it saturates, while at y = 6.3 it does not exhibit any sudden change as a function of Np.

  14. Fermilab Recycler Collimation System Design

    Energy Technology Data Exchange (ETDEWEB)

    Brown, B. C. [Fermilab; Adamson, P. [Fermilab; Ainsworth, R. [Fermilab; Capista, D. [Fermilab; Hazelwood, K. [Fermilab; Kourbanis, I. [Fermilab; Mokhov, N. V. [Fermilab; Morris, D. K. [Fermilab; Murphy, M. [Fermilab; Sidorov, V. [Fermilab; Stern, E. [Fermilab; Tropin, I. [Fermilab; Yang, M-J. [Fermilab

    2016-10-04

    To provide 700 kW proton beams for neutrino production in the NuMI facility, we employ slip stacking in the Recycler with transfer to the Main Injector for recapture and acceleration. Slip stacking with 12 Booster batches per 1.33 sec cycle of the Main Injector has been implemented and briefly tested while extensive operation with 8 batches and 10 batches per MI cycle has been demonstrated. Operation in this mode since 2013 shows that loss localization is an essential component for long term operation. Beam loss in the Recycler will be localized in a collimation region with design capability for absorbing up to 2 kW of lost protons in a pair of 20-Ton collimators (absorbers). This system will employ a two stage collimation with a thin molybdenum scattering foil to define the bottom edge of both the injected and decelerated-for-slipping beams. Optimization and engineering design of the collimator components and radiation shielding are based on comprehensive MARS15 simulations predicting high collimation efficiency as well as tolerable levels of prompt and residual radiation. The system installation during the Fermilab 2016 facility shutdown will permit commissioning in the subsequent operating period.

  15. Fermilab in 2012: Upgrades shift focus to the intensity frontier

    CERN Multimedia

    Kurt Riesselmann and Amy Dusto, Fermilab Office of Communication

    2012-01-01

    The upcoming year will be busy at Fermilab, and the largest projects are already beginning. Friday 16 December marks the ground-breaking for the Illinois Accelerator Research Center, a 3,900-square-metre building for accelerator research and development, industrialisation and training of the future generation of accelerator scientists. The centre is expected to open in about two years.   The NOvA project will generate and send a beam of neutrinos to a 15,000-ton detector in Ash River, Minnesota. The neutrinos will complete the 800-kilometre trip in less than three milliseconds. Image source: NoVA Experiment. At the high-energy frontier of particle physics, Fermilab scientists will continue analysing the dataset from the recently retired Tevatron particle accelerator’s two experiments, CDF and DZero, and will continue their strong participation in the CMS experiment at the LHC. Neutrino physics at Fermilab will take a big step forward. In February, crews will begin assembling the ...

  16. Fermilab in 2012: Upgrades shift focus to the intensity frontier

    CERN Multimedia

    Kurt Riesselmann and Amy Dusto, Fermilab Office of Communication

    2011-01-01

    The upcoming year will be busy at Fermilab, and the largest projects are already beginning. Friday 16 December marks the ground-breaking for the Illinois Accelerator Research Center, a 3,900-square-metre building for accelerator research and development, industrialisation and training of the future generation of accelerator scientists. The centre is expected to open in about two years.   The NOvA project will generate and send a beam of neutrinos to a 15,000-ton detector in Ash River, Minnesota. The neutrinos will complete the 800-kilometre trip in less than three milliseconds. Image source: NoVA Experiment. At the high-energy frontier of particle physics, Fermilab scientists will continue analysing the dataset from the recently retired Tevatron particle accelerator’s two experiments, CDF and DZero, and will continue their strong participation in the CMS experiment at the LHC. Neutrino physics at Fermilab will take a big step forward. In February, crews will begin assembling the ...

  17. CERN-Fermilab Hadron Collider Physics Summer School

    CERN Multimedia

    2007-01-01

    Applications are now open for the 2nd CERN-Fermilab Hadron Collider Physics Summer School, which will take place at CERN from 6 to 15 June 2007. The school web site is http://cern.ch/hcpss with links to the academic program and application procedure. The application deadline is 9 March 2007. The results of the selection process will be announced shortly thereafter. The goal of the CERN-Fermilab Hadron Collider Physics Summer Schools is to offer students and young researchers in high energy physics a concentrated syllabus on the theory and experimental challenges of hadron collider physics. The first school in the series, held last summer at Fermilab, covered extensively the physics at the Tevatron collider experiments. The second school to be held at CERN, will focus on the technology and physics of the LHC experiments. Emphasis will be given on the first years of data-taking at the LHC and on the discovery potential of the programme. The series of lectures will be  supported by in-depth discussion sess...

  18. High energy physics at the University of Iowa. Progress report, 1 September 1992--30 September 1993

    Energy Technology Data Exchange (ETDEWEB)

    McCliment, E.R.; Mallik, U.; Newsom, C.R.; Onel, Y.

    1993-11-01

    Efforts were devoted to three tasks: a study of electron proton physics with ZEUS at HERA (the ZEUS detector, the J/{psi} search, future upgrades), fixed-target experiments at Fermilab (Coulomb-nuclear interference measurement, inclusive {Lambda} measurements, hyperon radiative decay, charmed baryon studies at CERN and at Fermilab--detector status), and R&D related to Superconducting Supercollider (SSC) detector development with the GEM collaboration.

  19. Broad-band chopper for a CW proton linac at Fermilab

    Energy Technology Data Exchange (ETDEWEB)

    Gianfelice-Wendt, E.; Lebedev, V.A.; Solyak, N.; Nagaitsev, S.; Sun, D.; /Fermilab

    2011-03-01

    The future Fermilab program in the high energy physics is based on a new facility called the Project X [1] to be built in the following decade. It is based on a 3 MW CW linear accelerator delivering the 3 GeV 1 mA H{sup -} beam to a few experiments simultaneously. Small fraction of this beam will be redirected for further acceleration to 8 GeV to be injected to the Recycler/Main Injector for a usage in a neutrino program and other synchrotron based high energy experiments. Requirements and technical limitations to the bunch-by-bunch chopper for the Fermilab Project X are discussed.

  20. Colliding beam physics at Fermilab: detector considerations, general topics

    Energy Technology Data Exchange (ETDEWEB)

    Walker, J.K. (ed.)

    1977-01-01

    The purpose of the Colliding Beams Experiment Department at Fermilab was to bring about collisions of the stored beams in the energy Doubler/Saver and Main Ring, and construct experimental areas with appropriate detectors. To explore the feasibility of using the Main Ring as a storage device, several studies were carried out to investigate beam growth, loss, and the backgrounds in detectors at possible intersection regions. This range of developments constituted the major topics at the 1977 Summer Study reported here. Emphasis in part two is on detector considerations and general topics. 22 papers from this part are included in the data base. (GHT)

  1. An overview of plastic optical fiber end finishers at Fermilab

    Energy Technology Data Exchange (ETDEWEB)

    Mishina, M.; Lindenmeyer, C.; Korienek, J.

    1993-11-01

    Several years ago the need for equipment to precisely finish the ends of plastic optical fibers was recognized. Many high energy physics experiments use thousands of these fibers which must be polished on one or both ends. A fast, easy-to-operate machine yielding repeatable finishes was needed. Three types of machines were designed and constructed that are in daily use at Fermilab, all finish the fiber ends by flycutting with a diamond tool. Althrough diamond flycutting of plastic is not new, the size and fragility of plastic optical fibers present several challenges.

  2. Emittances Studies at the Fermilab/NICADD Photoinjector Laboratory

    CERN Document Server

    Tikhoplav, Rodion; Melissinos, A C; Regis-Guy Piot, Philippe

    2005-01-01

    The Fermilab/NICADD photoinjector incorporates an L-band rf-gun capable of generating 1-10 nC bunches. The bunches are then accelerated to 16 MeV with a TESLA superconducting cavity. In the present paper we present parametric studies of transverse emittances and energy spread for a various operating points of the electron source (RF-gun E-field, laser length and spot size, and solenoid settings). We especially study the impact, on transverse emittance, of Gaussian and Plateau temporal distribution of the photocathode drive-laser.

  3. A dumbed-down approach to unite Fermilab, its neighbors

    CERN Multimedia

    Constable, B

    2004-01-01

    "...Fermilab is reaching out to its suburban neighbors...With the nation on orange alert, Fermilab scientists no longer can sit on the front porch and invite neighbors in for coffee and quasars" (1 page).

  4. Long baseline neutrino physics: From Fermilab to Kamioka

    Energy Technology Data Exchange (ETDEWEB)

    DeJongh, Fritz

    2002-03-01

    We have investigated the physics potential of very long baseline experiments designed to measure nu_mu to nu_e oscillation probabilities. The principles of our design are to tune the beam spectrum to the resonance energy for the matter effect, and to have the spectrum cut off rapidly above this energy. The matter effect amplifies the signal, and the cut-off suppresses backgrounds which feed-down from higher energy. The signal-to-noise ratio is potentially better than for any other conventional nu_mu beam experiment. We find that a beam from Fermilab aimed at the Super-K detector has excellent sensitivity to sin^2(2theta_13) and the sign of Delta M^2. If the mass hierarchy is inverted, the beam can be run in antineutrino mode with a similar signal-to-noise ratio, and event rate 55% as high as for the neutrino mode. Combining the Fermilab beam with the JHF-Kamioka proposal adds very complementary information. We find good sensitivity to maximal CP violation for values of sin^2(2theta_13) ranging from 0.001 to 0.05.

  5. Impact parameter dependence of K+/-, p, pbar, d and dbar production in fixed-target Pb + Pb collisions at 158 GeV/nucleonImpact parameter dependence of K+/-, p, pbar, d and dbar production in fixed-target Pb + Pb collisions at 158 GeV/nucleon

    Science.gov (United States)

    NA52 Collaboration; Ambrosini, G.; Arsenescu, R.; Baglin, C.; Beringer, J.; Borer, K.; Bussière, A.; Elsener, K.; Gorodetzky, Ph; Guillaud, J. P.; Hess, P.; Kabana, S.; Klingenberg, R.; Lindén, T.; Lohmann, K. D.; Mommsen, R.; Moser, U.; Pretzl, K.; Schacher, J.; Stoffel, F.; Tuominiemi, J.; Weber, M.

    1999-12-01

    Nuclear matter is expected to undergo a phase transition to quark matter in ultrarelativistic heavy-ion collisions, possibly showing up as a discontinuity in the impact parameter dependence of relevant observables. Following this expectation, we have investigated the impact parameter dependence of the invariant yields of K+/-, p, d, pbar and dbar in the range ~ 2 - 12 fm in fixed-target Pb+Pb collisions at 158 GeV/nucleon incident energy at the CERN SPS. The particles have been measured near zero transverse momentum and in the rapidity range y = 3.1 - 4.4. In addition, the centrality dependence of the baryon chemical potential, the effective temperature and the size of the particle emitting source at freeze-out were studied. No dramatic change in the distribution of any of these variables is observed as a function of the impact parameter. The same is found for the particle yields, with the exception of the yield of charged kaons per number of nucleons participating in the collision (Np), where there is an indication of a threshold behaviour at Np~80.

  6. Bunched Beam Cooling in the Fermilab Recycler

    CERN Document Server

    Neuffer, David V; Burov, Alexey; Nagaitsev, Sergei

    2005-01-01

    Stochastic cooling with bunched beam in a linear bucket has been obtained and implemented operationally in the fermilab recycler. In this implementation the particle bunch length is much greater than the cooling system wavelengths. The simultaneous longitudinal bunching enables cooling to much smaller longitudinal emittances than the coasting beam or barrier bucket system. Characteristics and limitations of bunched beam stochastic cooling are discussed.

  7. Fermilab "Dumbfounded" by fiasco that broke magnet

    CERN Multimedia

    2007-01-01

    "In what is being described as a "pratfall on the world stage", the quadrupole magnet that Fermilab built for the Large Hadron Collider (LHC) particle accelerator failed high-pressure testing dramatically last week, resulting in a loud "bang" and a cloud of dust in the LHC tunnel." (1,5 page)

  8. Segmented Foil SEM Grids at Fermilab

    CERN Document Server

    Kopp, Sacha E; Childress, Sam; Ford, R; Harris, Debbie; Indurthy, Dharmaraj; Kendziora, Cary; Moore, Craig D; Pavlovich, Zarko; Proga, Marek; Tassotto, Gianni; Zwaska, Robert M

    2005-01-01

    We present recent beam data from a new design of a profile monitor for proton beams at Fermilab. The monitors, consisting of grids of segmented Ti foils 5micrometers thick, are secondary-electron emission monitors (SEM's). We review data on the device's precision on beam centroid position, beam width, and on beam loss associated with the SEM material placed in the beam.

  9. Attainment of an MeV-range, DC electron beam for the Fermilab cooler

    Energy Technology Data Exchange (ETDEWEB)

    Shemyakin, A. E-mail: shemyakin@fnal.gov; Burov, A.; Carlson, K.; Dudnikov, V.; Kramper, B.; Kroc, T.; Leibfritz, J.; McGee, M.; Nagaitsev, S.; Saewert, G.; Schmidt, C.W.; Warner, A.; Seletskiy, S.; Tupikov, V

    2004-10-11

    To prepare a beam generation device for Fermilab's future Recycler Electron Cooling system, an experimental set-up with a simplified beam line has been commissioned at Fermilab. Stable operation was achieved at an electron energy of 3.5 MeV and a DC beam current of up to 0.5 A. The main reason for interruptions of the operation was found to be microsecond long bursts of the cathode current. While the frequency of the interruptions is determined primarily by a flow of secondary ions, the resulting reduction in the duty factor depends on the beam optics, the protection systems, and the tube electric field strength.

  10. Fermilab's multi-petabyte scalable mass storage system

    Energy Technology Data Exchange (ETDEWEB)

    Oleynik, Gene; Alcorn, Bonnie; Baisley, Wayne; Bakken, Jon; Berg, David; Berman, Eileen; Huang, Chih-Hao; Jones, Terry; Kennedy, Robert D.; Kulyavtsev, Alexander; Moibenko, Alexander; Perelmutov, Timur; Petravick, Don; Podstavkov, Vladimir; Szmuksta, George; Zalokar, Michael; /Fermilab

    2005-01-01

    Fermilab provides a multi-Petabyte scale mass storage system for High Energy Physics (HEP) Experiments and other scientific endeavors. We describe the scalability aspects of the hardware and software architecture that were designed into the Mass Storage System to permit us to scale to multiple petabytes of storage capacity, manage tens of terabytes per day in data transfers, support hundreds of users, and maintain data integrity. We discuss in detail how we scale the system over time to meet the ever-increasing needs of the scientific community, and relate our experiences with many of the technical and economic issues related to scaling the system. Since the 2003 MSST conference, the experiments at Fermilab have generated more than 1.9 PB of additional data. We present results on how this system has scaled and performed for the Fermilab CDF and D0 Run II experiments as well as other HEP experiments and scientific endeavors.

  11. Spin Tracking of Polarized Protons in the Main Injector at Fermilab

    Energy Technology Data Exchange (ETDEWEB)

    Xiao, M. [Fermilab; Lorenzon, W. [Michigan U.; Aldred, C. [Michigan U.

    2016-07-01

    The Main Injector (MI) at Fermilab currently produces high-intensity beams of protons at energies of 120 GeV for a variety of physics experiments. Acceleration of polarized protons in the MI would provide opportunities for a rich spin physics program at Fermilab. To achieve polarized proton beams in the Fermilab accelerator complex, shown in Fig.1.1, detailed spin tracking simulations with realistic parameters based on the existing facility are required. This report presents studies at the MI using a single 4-twist Si-berian snake to determine the depolarizing spin resonances for the relevant synchrotrons. Results will be presented first for a perfect MI lattice, followed by a lattice that includes the real MI imperfections, such as the measured magnet field errors and quadrupole misalignments. The tolerances of each of these factors in maintaining polariza-tion in the Main Injector will be discussed.

  12. THE LINAC LASER NOTCHER FOR THE FERMILAB BOOSTER

    Energy Technology Data Exchange (ETDEWEB)

    Johnson, David E, [Fermilab; Duel, Kevin [Fermilab; Gardner, Matthew [Fermilab; Johnson, Todd [Fermilab; Slimmer, David [Fermilab; Patil, Screenvias [PriTel, Inc; Tafoya, Jason [Optical Engines, Inc

    2016-09-27

    In synchrotron machines, the beam extraction is accomplished by a combination of septa and kicker magnets which deflect the beam from an accelerator into another. Ideally the kicker field must rise/fall in between the beam bunches. However, in reality, an intentional beam-free time region (aka "notch") is created on the beam pulse to assure that the beam can be extracted with minimal losses. In the case of the Fermilab Booster, the notch is created in the ring near injection energy by the use of fast kickers which deposit the beam in a shielded collimation region within the accelerator tunnel. With increasing beam power it is desirable to create this notch at the lowest possible energy to minimize activation. The Fermilab Proton Improvement Plan (PIP) initiated an R&D project to build a laser system to create the notch within a linac beam pulse at 750 keV. This talk will describe the concept for the laser notcher and discuss our current status, commissioning results, and future plans.

  13. Production of High-Mass Pairs of Direct Photons and Neutral Mesons in a Tevatron Fixed-Target Experiment

    CERN Document Server

    Begel, M

    1999-01-01

    The production of high-mass pairs of direct photons, π 0's, and η's has been measured by Fermilab experiment E706. The experimental apparatus included a large, finely segmented lead-liquid argon electromagnetic calorimeter and a charged particle spectrometer consisting of silicon microstrip detectors in the target region and multiwire proportional chambers and straw tube drift chambers downstream of an analysis magnet. The experiment triggered on localized high- pT depositions in the electromagnetic calorimeter; the high-mass pair data required two depositions on opposite sides of the calorimeter. Correlations between high-pT particles are used to extract information about the transverse momentum of partons (k T). Comparisons are made between the diphoton data and the results of next-to-leading order perturbative Quantum Chromodynamic (NLO pQCD) calculations. The shapes of the NLO pQCD results are inconsistent with the data distributions. A resummed NLO pQCD calculation, which incorporates the ...

  14. Fermilab Physicists don't see higgs, argue they should keep looking

    CERN Multimedia

    Cho, Adrian

    2010-01-01

    "This year's International Conference on High Energy Physics was a case study in irony. The meeting was billed as the coming-out party for the Large Hadron Collider (LHC), the gigantic European atom smasher that started taking data in March, but the buzz surrounded results form the older Tevatron collider at Fermi National Accelerator Laboratory (Fermilab) in Batavia, Illinois." (1 page)

  15. Study of Fermilab data for the reaction. pi. /sup -/p. -->. eta n

    Energy Technology Data Exchange (ETDEWEB)

    Saleem, M.; Fazal-e-Aleem (University of the Punjab, Lahore (Pakistan). Dept. of Physics)

    1981-01-01

    Fermilab data for the angular distribution measurements of the reaction ..pi../sup -/p..-->..eta n are investigated and it is shown that a good fit with experiment is obtained by using a simple Regge pole model with phenomenological residue functions. The energy dependence in this case is found to be different from that for the dsigma/dt data obtained at Serpukhov.

  16. Duke University high energy physics

    Energy Technology Data Exchange (ETDEWEB)

    Fortney, L.R.; Goshaw, A.T.; Walker, W.D.

    1992-07-01

    This Progress Report presents a review of the research done in 1992 by the Duke High Energy Physics Group. This is the first year of a three-year grant which was approved by the Office of High Energy Physics at DOE after an external review of our research program during the summer of 1991. Our research is centered at Fermilab where we are involved with two active experiments, one using the Tevatron collider (CDF, the Collider Detector Facility) and the other using a proton beam in the high intensity laboratory (E771, study of beauty production). In addition to these running experiments we are continuing the analysis of data from experiments E735 (collider search for a quark-gluon plasma), E705 (fixed target study of direct photon and {sub {Chi}} meson production) and E597 (particle production from hadron-nucleus collisions). Finally, this year has seen an expansion of our involvement with the design of the central tracking detector for the Solenoidal Detector Collaboration (SDC) and an increased role in the governance of the collaboration. Descriptions of these research activities are presented in this report.

  17. Heavy-Ion Physics at a Fixed-Target Experiment Using the LHC Proton and Lead Beams (AFTER@LHC): Feasibility Studies for Quarkonium and Drell-Yan Production

    Science.gov (United States)

    Trzeciak, B.; Da Silva, C.; Ferreiro, E. G.; Hadjidakis, C.; Kikola, D.; Lansberg, J. P.; Massacrier, L.; Seixas, J.; Uras, A.; Yang, Z.

    2017-09-01

    We outline the case for heavy-ion-physics studies using the multi-TeV lead LHC beams in the fixed-target mode. After a brief contextual reminder, we detail the possible contributions of AFTER@LHC to heavy-ion physics with a specific emphasis on quarkonia. We then present performance simulations for a selection of observables. These show that Υ (nS), J/ψ and ψ (2S) production in heavy-ion collisions can be studied in new energy and rapidity domains with the LHCb and ALICE detectors. We also discuss the relevance to analyse the Drell-Yan pair production in asymmetric nucleus-nucleus collisions to study the factorisation of the nuclear modification of partonic densities and of further quarkonium states to restore their status of golden probes of the quark-gluon plasma formation.

  18. 3rd CERN-Fermilab Hadron Collider Physics Summer School

    CERN Document Server

    2008-01-01

    August 12-22, 2008, Fermilab The school web site is http://cern.ch/hcpss with links to the academic programme and the application procedure. The APPLICATION DEADLINE IS 29 FEBRUARY 2008. The goal of the CERN-Fermilab Hadron Collider Physics Summer Schools is to offer students and young researchers in high-energy physics a concentrated syllabus on the theory and experimental challenges of hadron collider physics. The third session of the summer school will focus on exposing young post-docs and advanced graduate students to broader theories and real data beyond what they’ve learned at their home institutions. Experts from across the globe will lecture on the theoretical and experimental foundations of hadron collider physics, host parallel discussion sessions and answer students’ questions. This year’s school will also have a greater focus on physics beyond the Standard Model, as well as more time for questions at the end of each lecture. The 2008 School will be held at ...

  19. 2nd CERN-Fermilab Hadron Collider Physics Summer School

    CERN Multimedia

    2007-01-01

    June 6-15, 2007, CERN The school web site is http://cern.ch/hcpss with links to the academic programme and the application procedure. The APPLICATION DEADLINE IS 9 MARCH 2007 The results of the selection process will be announced shortly thereafter. The goal of the CERN-Fermilab Hadron Collider Physics Summer Schools is to offer students and young researchers in high energy physics a concentrated syllabus on the theory and experimental challenges of hadron collider physics. The first school in the series, held last summer at Fermilab, extensively covered the physics at the Tevatron collider experiments. The second school, to be held at CERN, will focus on the technology and physics of the LHC experiments. Emphasis will be placed on the first years of data-taking at the LHC and on the discovery potential of the programme. The series of lectures will be supported by in-depth discussion sessions and will include the theory and phenomenology of hadron collisions, discovery physics topics, detector and analysis t...

  20. Celebrating 30 Years of K-12 Educational Programming at Fermilab

    Energy Technology Data Exchange (ETDEWEB)

    Bardeen, M.; Cooke, M.P.; /Fermilab

    2011-09-01

    In 1980 Leon Lederman started Saturday Morning Physics with a handful of volunteer physicists, around 300 students and all the physics teachers who tagged along. Today Fermilab offers over 30 programs annually with help from 250 staff volunteers and 50 educators, and serves around 40,000 students and 2,500 teachers. Find out why we bother. Over the years we have learned to take advantage of opportunities and confront challenges to offer effective programs for teachers and students alike. We offer research experiences for secondary school teachers and high school students. We collaborate with educators to design and run programs that meet their needs and interests. Popular school programs include classroom presentations, experience-based field trips, and high school tours. Through our work in QuarkNet and I2U2, we make real particle physics data available to high school students in datadriven activities as well as masterclasses and e-Labs. Our professional development activities include a Teacher Resource Center and workshops where teachers participate in authentic learning experiences as their students would. We offer informal classes for kids and host events where children and adults enjoy the world of science. Our website hosts a wealth of online resources. Funded by the U.S. Department of Energy, the National Science Foundation and Fermilab Friends for Science Education, our programs reach out across Illinois, throughout the United States and even around the world. We will review the program portfolio and share comments from the volunteers and participants.

  1. Proton synchrotron radiation at Fermilab

    Energy Technology Data Exchange (ETDEWEB)

    Thurman-Keup, Randy; /Fermilab

    2006-05-01

    While protons are not generally associated with synchrotron radiation, they do emit visible light at high enough energies. This paper presents an overview of the use of synchrotron radiation in the Tevatron to measure transverse emittances and to monitor the amount of beam in the abort gap. The latter is necessary to ensure a clean abort and prevent quenches of the superconducting magnets and damage to the silicon detectors of the collider experiments.

  2. The Muon g-2 experiment at Fermilab

    Directory of Open Access Journals (Sweden)

    Anastasi A.

    2015-01-01

    Full Text Available There is a long standing discrepancy between the Standard Model prediction for the muon g-2 and the value measured by the Brookhaven E821 Experiment. At present the discrepancy stands at about three standard deviations, with a comparable accuracy between experiment and theory. Two new proposals – at Fermilab and J-PARC – plan to improve the experimental uncertainty by a factor of 4, and it is expected that there will be a significant reduction in the uncertainty of the Standard Model prediction. I will review the status of the planned experiment at Fermilab, E989, which will analyse 21 times more muons than the BNL experiment and discuss how the systematic uncertainty will be reduced by a factor of 3 such that a precision of 0.14 ppm can be achieved.

  3. Physics at a new Fermilab proton driver

    Energy Technology Data Exchange (ETDEWEB)

    Geer, Steve; /Fermilab

    2006-04-01

    In 2004, motivated by the recent exciting developments in neutrino physics, the Fermilab Long Range Planning Committee identified a new high intensity Proton Driver as an attractive option for the future. At the end of 2004 the APS ''Study on the Physics of Neutrinos'' concluded that the future US neutrino program should have, as one of its components, ''A proton driver in the megawatt class or above and neutrino superbeam with an appropriate very large detector capable of observing Cp violation and measuring the neutrino mass-squared differences and mixing parameters with high precision''. The presently proposed Fermilab Proton Driver is designed to accomplish these goals, and is based on, and would help develop, Linear Collider technology. In this paper the Proton Driver parameters are summarized, and the potential physics program is described.

  4. FERMILAB CRYOMODULE TEST STAND RF INTERLOCK SYSTEM

    Energy Technology Data Exchange (ETDEWEB)

    Petersen, Troy [Fermilab; Diamond, J. S. [Fermilab; McDowell, D. [Fermilab; Nicklaus, D. [Fermilab; Prieto, P. S. [Fermilab; Semenov, A. [Fermilab

    2016-10-12

    An interlock system has been designed for the Fermilab Cryo-module Test Stand (CMTS), a test bed for the cryo- modules to be used in the upcoming Linac Coherent Light Source 2 (LCLS-II) project at SLAC. The interlock system features 8 independent subsystems, one per superconducting RF cavity and solid state amplifier (SSA) pair. Each system monitors several devices to detect fault conditions such as arcing in the waveguides or quenching of the SRF system. Additionally each system can detect fault conditions by monitoring the RF power seen at the cavity coupler through a directional coupler. In the event of a fault condition, each system is capable of removing RF signal to the amplifier (via a fast RF switch) as well as turning off the SSA. Additionally, each input signal is available for re- mote viewing and recording via a Fermilab designed digitizer board and MVME 5500 processor.

  5. The Fermilab main injector neutrino program

    Energy Technology Data Exchange (ETDEWEB)

    Morfin, Jorge G.; /Fermilab

    2007-01-01

    The NuMI Facility at Fermilab provides an extremely intense beam of neutrinos making it an ideal place for the study of neutrino oscillations as well as high statistics (anti)neutrino-nucleon/nucleus scattering experiments. The MINOS neutrino oscillation {nu}{mu} disappearance experiment is currently taking data and has published first results. The NO{nu}A {nu}e appearance experiment is planning to begin taking data at the start of the next decade. For the study of neutrino scattering, the MINER{nu}A experiment at Fermilab is a collaboration of elementary-particle and nuclear physicists planning to use a fully active fine-grained solid scintillator detector. The overall goals of the experiment are to measure absolute exclusive cross-sections, nuclear effects in {nu} - A interactions, a systematic study of the resonance-DIS transition region and the high-xBj - low Q2 DIS region.

  6. Hydro static water level systems at Fermilab

    Energy Technology Data Exchange (ETDEWEB)

    Volk, J.T.; Guerra, J.A.; Hansen, S.U.; Kiper, T.E.; Jostlein, H.; Shiltsev, V.; Chupyra, A.; Kondaurov, M.; Singatulin, S.

    2006-09-01

    Several Hydrostatic Water Leveling systems (HLS) are in use at Fermilab. Three systems are used to monitor quadrupoles in the Tevatron and two systems are used to monitor ground motion for potential sites for the International Linear Collider (ILC). All systems use capacitive sensors to determine the water level of water in a pool. These pools are connected with tubing so that relative vertical shifts between sensors can be determined. There are low beta quadrupoles at the B0 and D0 interaction regions of Tevatron accelerator. These quadrupoles use BINP designed and built sensors and have a resolution of 1 micron. All regular lattice superconducting quadrupoles (a total of 204) in the Tevatron use a Fermilab designed system and have a resolution of 6 microns. Data on quadrupole motion due to quenches, changes in temperature will be presented. In addition data for ground motion for ILC studies caused by natural and cultural factors will be presented.

  7. Prospects for Antiproton Experiments at Fermilab

    CERN Document Server

    Kaplan, Daniel M

    2011-01-01

    Fermilab operates the world's most intense antiproton source. Newly proposed experiments can use those antiprotons either parasitically during Tevatron Collider running or after the end of the Tevatron Collider program. For example, the annihilation of 5 to 8 GeV antiprotons is expected to yield world-leading sensitivities to hyperon rare decays and CP violation. It could also provide the world's most intense source of tagged D^0 mesons, and thus the best near-term opportunity to study charm mixing and, via CP violation, to search for new physics. Other measurements that could be made include properties of the X(3872) and the charmonium system. An experiment using a Penning trap and an atom interferometer could make the world's most precise measurement of the gravitational force on antimatter. These and other potential measurements using antiprotons offer a great opportunity for a broad and exciting physics program at Fermilab in the post-Tevatron era.

  8. Future possibilities with Fermilab neutrino beams

    Energy Technology Data Exchange (ETDEWEB)

    Saoulidou, Niki

    2008-01-01

    We will start with a brief overview of neutrino oscillation physics with emphasis on the remaining unanswered questions. Next, after mentioning near future reactor and accelerator experiments searching for a non zero {theta}{sub 13}, we will introduce the plans for the next generation of long-baseline accelerator neutrino oscillation experiments. We will focus on experiments utilizing powerful (0.7-2.1 MW) Fermilab neutrino beams, either existing or in the design phase.

  9. Search for quirks at the Fermilab Tevatron Collider

    Energy Technology Data Exchange (ETDEWEB)

    Abazov, V.M.; /Dubna, JINR; Abbott, B.; /Oklahoma U.; Abolins, M.; /Michigan State U.; Acharya, B.S.; /Tata Inst.; Adams, M.; /Illinois U., Chicago; Adams, T.; /Florida State U.; Alexeev, G.D.; /Dubna, JINR; Alkhazov, G.; /St. Petersburg, INP; Alton, A.; /Augustana Coll., Sioux Falls /Michigan U.; Alverson, G.; /Northeastern U.; Alves, G.A.; /Rio de Janeiro, CBPF /NIKHEF, Amsterdam

    2010-08-01

    We report results of a search for particles with anomalously high ionization in events with a high transverse energy jet and large missing transverse energy in 2.4 fb{sup -1} of integrated luminosity collected by the D0 experiment at the Fermilab Tevatron p{bar p} collider. Production of such particles (quirks) is expected in scenarios with extra QCD-like SU(N) sectors, and this study is the first dedicated search for such signatures. We find no evidence of a signal and set a lower mass limit of 107 GeV for the mass of a charged quirk with strong dynamics scale {Lambda} in the range from 10 keV to 1 MeV.

  10. Report on the Fermilab pilot N&S closure process

    Energy Technology Data Exchange (ETDEWEB)

    Coulson, L.

    1995-08-01

    This document outlines the plans and protocols for conducting a pilot of the Department of Energy`s Necessary & Sufficient Closure Process (Attachment A) at Fermilab National Accelerator Laboratory (FNAL) in Batavia, Illinois. The result of this pilot will be a set of standards which will serve as the agreed upon basis for providing FNAL with adequate Environment, Safety and Health Protection at the lowest possible cost. This pilot will seek out and emulate compatible industry practices which have been proven successful both in terms of safety performance and cost-effectiveness. This charter has been developed as a partnership effort by the parties to this agreement (see ``Responsibilities`` below), and is considered to be a living document.

  11. Search for new fermions ("quirks") at the Fermilab Tevatron collider.

    Science.gov (United States)

    Abazov, V M; Abbott, B; Abolins, M; Acharya, B S; Adams, M; Adams, T; Alexeev, G D; Alkhazov, G; Alton, A; Alverson, G; Alves, G A; Ancu, L S; Aoki, M; Arnoud, Y; Arov, M; Askew, A; Asman, B; Atramentov, O; Avila, C; Backusmayes, J; Badaud, F; Bagby, L; Baldin, B; Bandurin, D V; Banerjee, S; Barberis, E; Baringer, P; Barreto, J; Bartlett, J F; Bassler, U; Beale, S; Bean, A; Begalli, M; Begel, M; Belanger-Champagne, C; Bellantoni, L; Benitez, J A; Beri, S B; Bernardi, G; Bernhard, R; Bertram, I; Besançon, M; Beuselinck, R; Bezzubov, V A; Bhat, P C; Bhatnagar, V; Blazey, G; Blessing, S; Bloom, K; Boehnlein, A; Boline, D; Bolton, T A; Boos, E E; Borissov, G; Bose, T; Brandt, A; Brandt, O; Brock, R; Brooijmans, G; Bross, A; Brown, D; Brown, J; Bu, X B; Buchholz, D; Buehler, M; Buescher, V; Bunichev, V; Burdin, S; Burnett, T H; Buszello, C P; Calpas, B; Calvet, S; Camacho-Pérez, E; Carrasco-Lizarraga, M A; Carrera, E; Casey, B C K; Castilla-Valdez, H; Chakrabarti, S; Chakraborty, D; Chan, K M; Chandra, A; Chen, G; Chevalier-Théry, S; Cho, D K; Cho, S W; Choi, S; Choudhary, B; Christoudias, T; Cihangir, S; Claes, D; Clutter, J; Cooke, M; Cooper, W E; Corcoran, M; Couderc, F; Cousinou, M-C; Croc, A; Cutts, D; Cwiok, M; Das, A; Davies, G; De, K; de Jong, S J; De La Cruz-Burelo, E; Déliot, F; Demarteau, M; Demina, R; Denisov, D; Denisov, S P; Desai, S; Devaughan, K; Diehl, H T; Diesburg, M; Dominguez, A; Dorland, T; Dubey, A; Dudko, L V; Duggan, D; Duperrin, A; Dutt, S; Dyshkant, A; Eads, M; Edmunds, D; Ellison, J; Elvira, V D; Enari, Y; Eno, S; Evans, H; Evans, J A; Evdokimov, A; Evdokimov, V N; Facini, G; Ferapontov, A V; Ferbel, T; Fiedler, F; Filthaut, F; Fisher, W; Fisk, H E; Fortner, M; Fox, H; Fuess, S; Gadfort, T; Garcia-Bellido, A; Gavrilov, V; Gay, P; Geist, W; Geng, W; Gerbaudo, D; Gerber, C E; Gershtein, Y; Ginther, G; Golovanov, G; Goussiou, A; Grannis, P D; Greder, S; Greenlee, H; Greenwood, Z D; Gregores, E M; Grenier, G; Gris, Ph; Grivaz, J-F; Grohsjean, A; Grünendahl, S; Grünewald, M W; Guo, F; Guo, J; Gutierrez, G; Gutierrez, P; Haas, A; Hagopian, S; Haley, J; Han, L; Harder, K; Harel, A; Hauptman, J M; Hays, J; Hebbeker, T; Hedin, D; Hegab, H; Heinson, A P; Heintz, U; Hensel, C; Heredia-De La Cruz, I; Herner, K; Hesketh, G; Hildreth, M D; Hirosky, R; Hoang, T; Hobbs, J D; Hoeneisen, B; Hohlfeld, M; Hossain, S; Hubacek, Z; Huske, N; Hynek, V; Iashvili, I; Illingworth, R; Ito, A S; Jabeen, S; Jaffré, M; Jain, S; Jamin, D; Jesik, R; Johns, K; Johnson, M; Johnston, D; Jonckheere, A; Jonsson, P; Joshi, J; Juste, A; Kaadze, K; Kajfasz, E; Karmanov, D; Kasper, P A; Katsanos, I; Kehoe, R; Kermiche, S; Khalatyan, N; Khanov, A; Kharchilava, A; Kharzheev, Y N; Khatidze, D; Kirby, M H; Kohli, J M; Kozelov, A V; Kraus, J; Kumar, A; Kupco, A; Kurča, T; Kuzmin, V A; Kvita, J; Lammers, S; Landsberg, G; Lebrun, P; Lee, H S; Lee, S W; Lee, W M; Lellouch, J; Li, L; Li, Q Z; Lietti, S M; Lim, J K; Lincoln, D; Linnemann, J; Lipaev, V V; Lipton, R; Liu, Y; Liu, Z; Lobodenko, A; Lokajicek, M; Love, P; Lubatti, H J; Luna-Garcia, R; Luty, M A; Lyon, A L; Maciel, A K A; Mackin, D; Madar, R; Magaña-Villalba, R; Malik, S; Malyshev, V L; Maravin, Y; Martínez-Ortega, J; McCarthy, R; McGivern, C L; Meijer, M M; Melnitchouk, A; Menezes, D; Mercadante, P G; Merkin, M; Meyer, A; Meyer, J; Mondal, N K; Muanza, G S; Mulhearn, M; Nagy, E; Naimuddin, M; Narain, M; Nayyar, R; Neal, H A; Negret, J P; Neustroev, P; Nilsen, H; Novaes, S F; Nunnemann, T; Obrant, G; Onoprienko, D; Orduna, J; Osman, N; Osta, J; Otero Y Garzón, G J; Owen, M; Padilla, M; Pangilinan, M; Parashar, N; Parihar, V; Park, S K; Parsons, J; Partridge, R; Parua, N; Patwa, A; Penning, B; Perfilov, M; Peters, K; Peters, Y; Petrillo, G; Pétroff, P; Piegaia, R; Piper, J; Pleier, M-A; Podesta-Lerma, P L M; Podstavkov, V M; Pol, M-E; Polozov, P; Popov, A V; Prewitt, M; Price, D; Protopopescu, S; Qian, J; Quadt, A; Quinn, B; Rangel, M S; Ranjan, K; Ratoff, P N; Razumov, I; Renkel, P; Rich, P; Rijssenbeek, M; Ripp-Baudot, I; Rizatdinova, F; Rominsky, M; Royon, C; Rubinov, P; Ruchti, R; Safronov, G; Sajot, G; Sánchez-Hernández, A; Sanders, M P; Sanghi, B; Santos, A S; Savage, G; Sawyer, L; Scanlon, T; Schamberger, R D; Scheglov, Y; Schellman, H; Schliephake, T; Schlobohm, S; Schwanenberger, C; Schwienhorst, R; Sekaric, J; Severini, H; Shabalina, E; Shary, V; Shchukin, A A; Shivpuri, R K; Simak, V; Sirotenko, V; Skubic, P; Slattery, P; Smirnov, D; Smith, K J; Snow, G R; Snow, J; Snyder, S; Söldner-Rembold, S; Sonnenschein, L; Sopczak, A; Sosebee, M; Soustruznik, K; Spurlock, B; Stark, J; Stolin, V; Stoyanova, D A; Strauss, E; Strauss, M; Strom, D; Stutte, L; Svoisky, P; Takahashi, M; Tanasijczuk, A; Taylor, W; Titov, M; Tokmenin, V V; Tsybychev, D; Tuchming, B; Tully, C; Tuts, P M; Uvarov, L; Uvarov, S; Uzunyan, S; Van Kooten, R; van Leeuwen, W M; Varelas, N; Varnes, E W; Vasilyev, I A; Verdier, P; Vertogradov, L S; Verzocchi, M; Vesterinen, M; Vilanova, D; Vint, P; Vokac, P; Wahl, H D; Wang, M H L S; Warchol, J; Watts, G; Wayne, M; Weber, M; Wetstein, M; White, A; Wicke, D; Williams, M R J; Wilson, G W; Wimpenny, S J; Wobisch, M; Wood, D R; Wyatt, T R; Xie, Y; Xu, C; Yacoob, S; Yamada, R; Yang, W-C; Yasuda, T; Yatsunenko, Y A; Ye, Z; Yin, H; Yip, K; Yoo, H D; Youn, S W; Yu, J; Zelitch, S; Zhao, T; Zhou, B; Zhu, J; Zielinski, M; Zieminska, D; Zivkovic, L

    2010-11-19

    We report results of a search for particles with anomalously high ionization in events with a high transverse energy jet and large missing transverse energy in 2.4 fb⁻¹ of integrated luminosity collected by the D0 experiment at the Fermilab Tevatron pp collider. Production of such particles (quirks) is expected in scenarios with extra QCD-like SU(N) sectors, and this study is the first dedicated search for such signatures. We find no evidence of a signal and set a lower mass limit of 107, 119, and 133 GeV for the mass of a charged quirk with strong dynamics scale Λ in the range from 10 keV to 1 MeV and N=2, 3, and 5, respectively.

  12. Synchrotron radiation based beam diagnostics at the Fermilab Tevatron

    CERN Document Server

    Thurman-Keup, R; Hahn, A; Hurh, P; Lorman, E; Lundberg, C; Meyer, T; Miller, D; Pordes, S; Valishev, A

    2011-01-01

    Synchrotron radiation has been used for many years as a beam diagnostic at electron accelerators. It is not normally associated with proton accelerators as the intensity of the radiation is too weak to make detection practical. However, if one utilizes the radiation originating near the edge of a bending magnet, or from a short magnet, the rapidly changing magnetic field serves to enhance the wavelengths shorter than the cutoff wavelength, which for more recent high energy proton accelerators such as Fermilab's Tevatron, tends to be visible light. This paper discusses the implementation at the Tevatron of two devices. A transverse beam profile monitor images the synchrotron radiation coming from the proton and antiproton beams separately and provides profile data for each bunch. A second monitor measures the low-level intensity of beam in the abort gaps which poses a danger to both the accelerator's superconducting magnets and the silicon detectors of the high energy physics experiments. Comparisons of measur...

  13. A Study of Particle Production in Proton Induced Collisions Using the MIPP Detector at Fermilab

    Energy Technology Data Exchange (ETDEWEB)

    Mahajan, Sonam [Panjab Univ., Chandigarh (India)

    2015-01-01

    The Main Injector Particle Production (MIPP) experiment is a fixed target hadron production experiment at Fermilab. MIPP is a high acceptance spectrometer which provides excellent charged particle identification using Time Projection Chamber (TPC), Time of Flight (ToF), multicell Cherenkov (Ckov), ring imaging Cherenkov (RICH) detectors, and Calorimeter for neutrons. The MIPP experiment is designed to measure particle production in interactions of 120 GeV/c primary protons from the Main Injector and secondary beams of $\\pi^{\\pm}, \\rm{K}^{\\pm}$, p and $\\bar{\\rm{p}}$ from 5 to 90 GeV/c on nuclear targets which include H, Be, C, Bi and U, and a dedicated run with the NuMI target. The goal of the experiment is to measure hadron production cross sections or yields using these beams and targets. These hadronic interaction data can have a direct impact on the detailed understanding of the neutrino fluxes of several accelerator-based neutrino experiments like MINOS, MINER$\

  14. The Nature of Transverse Beam Instabilities at Injection in the Fermilab Main Ring

    Energy Technology Data Exchange (ETDEWEB)

    Chou, Ping Jung [Northwestern Univ., Evanston, IL (United States)

    1996-12-01

    Transverse beam instabilities have been observed in the Fermilab Main Ring since 1972. It was well controlled by two active feedback systems until the last fix target run in 1991. The current upgrade of accelerator facilities, where the replacement of the Main Ring by the Main Injector will allow acceleration of higher proton intensities, makes the importance of this issue surface again. Experimental studies were conducted to understand the nature and the cause of these transverse beam instabilities. The interplay between accelerator parameters and the growth rate of transverse beam oscillations is investigated. Some previously puzzling behavior of the Main Ring is now understood because of the knowledge gained from these studies. Experimental techniques were implemented to measure some important parameters of the Main Ring, such as the vertical impedance, bunch form factor, and the wake f~nction. Empirical theory is devised to understand the coupled bunch instability with many distributed gaps, and a satisfactory agreement is obtained between the analysis and the measured data. The cause of the transverse beam instabilities is identified to be the resistive wall impedance. Anomalous behavior in the frequency dependence of the impedance below the MHz range suggests that impedance sources other than the resistive wall also exist in the Main Ring. The performance of two active feedback systems is found to be inadequate to meet the goal of the Main Injector accelerator upgrade. Suggestions for hardware improvements and the choice of accelerator parameters are given.

  15. Preliminary Λ ^0 arrow p + π ^- Signal for SELEX - Fermilab Experiment 781

    Science.gov (United States)

    Parkhurst, James F.; Dauwe, Loretta J.; E781 Collaboration

    1997-10-01

    SELEX (SEgmented Large X baryon spectrometer), a fixed target experiment at Fermilab, collected data from February to September 1997, using both 650 GeV/c Σ ^-/π ^-, and 550 GeV/c p/π ^+ beams. This run resulted in 2 billion triggered interactions being logged to tape. Primarily designed to study charmed baryons, E781 can also study hyperon production and decays, and the Primakoff effect. Λ ^0 has several decay modes, however it primarily decays into a p and π ^-. A neutral particle decay to two charged particles appears in the spectrometer as two oppositely charged tracks, originating downstream from the primary interaction in the target. Spectrometer magnets provide a transverse momentum kick which spreads the particle trajectories in a direction depending on the particles' charge. Particle momentum is determined from knowledge of the magnetic field and the track curvature. Assuming masses for the positive and negative tracks, the invariant mass and momentum of the initial neutral particle is calculated. A preliminary reconstruction of Λ ^0 decay, including the mass distribution, will be presented.

  16. Physics potential and the status of DOE upgrade at Fermilab

    CERN Document Server

    Jaehoon, Yu

    2001-01-01

    The DOE experiment is one of the two collider experiments at Fermilab. The DOE detector is a multipurpose detector and took its data during Fermilab TeVatron collider run in 1992-1996. Both the DO detector and the Tevatron accelerator at Fermilab are currently undergoing significant upgrade to extend the reach to new physics and to further probe Standard Model. In this paper, physics potential of the upgraded DOE detector and the upgrade status are discussed.

  17. Fermilab main injector: High intensity operation and beam loss control

    Science.gov (United States)

    Brown, Bruce C.; Adamson, Philip; Capista, David; Chou, Weiren; Kourbanis, Ioanis; Morris, Denton K.; Seiya, Kiyomi; Wu, Guan Hong; Yang, Ming-Jen

    2013-07-01

    From 2005 through 2012, the Fermilab Main Injector provided intense beams of 120 GeV protons to produce neutrino beams and antiprotons. Hardware improvements in conjunction with improved diagnostics allowed the system to reach sustained operation at 400 kW beam power. Transmission was very high except for beam lost at or near the 8 GeV injection energy where 95% beam transmission results in about 1.5 kW of beam loss. By minimizing and localizing loss, residual radiation levels fell while beam power was doubled. Lost beam was directed to either the collimation system or to the beam abort. Critical apertures were increased while improved instrumentation allowed optimal use of available apertures. We will summarize the improvements required to achieve high intensity, the impact of various loss control tools and the status and trends in residual radiation in the Main Injector.

  18. Beam Loss Control for the Fermilab Main Injector

    CERN Document Server

    Brown, Bruce C

    2013-01-01

    From 2005 through 2012, the Fermilab Main Injector provided intense beams of 120 GeV protons to produce neutrino beams and antiprotons. Hardware improvements in conjunction with improved diagnostics allowed the system to reach sustained operation at 400 kW beam power. Losses were at or near the 8 GeV injection energy where 95% beam transmission results in about 1.5 kW of beam loss. By minimizing and localizing loss, residual radiation levels fell while beam power was doubled. Lost beam was directed to either the collimation system or to the beam abort. Critical apertures were increased while improved instrumentation allowed optimal use of available apertures. We will summarize the impact of various loss control tools and the status and trends in residual radiation in the Main Injector.

  19. Intensity-Frontier Antiproton Physics with The Antiproton Annihilation Spectrometer (TAPAS) at Fermilab

    Energy Technology Data Exchange (ETDEWEB)

    Apollinari, Giorgio; /Fermilab; Asner, David M.; /PNL, Richland; Baldini, Wander; /INFN, Ferrara; Bartoszek, Larry; Broemmelsiek, Daniel R.; Brown, Charles N.; /Fermilab; Chakravorty, Alak; /St. Xavier U., Chicago; Colas, Paul; /Saclay; Derwent, Paul; /Fermilab; Drutskoy, Alexey; /Moscow, ITEP; Fortner, Michael; /Northern Illinois U. /Saclay /Indian Inst. Tech., Hyderabad

    2011-11-01

    The Fermilab Antiproton Source is the world's most intense source of antimatter. With the Tevatron program now behind us, this unique facility can help make the case for Fermilab's continued accelerator operations. The Antiproton Source can be used for unique, dedicated antimatter studies, including medium-energy {bar p}-annihilation experiments. We propose to assemble a powerful, yet cost-effective, solenoidal magnetic spectrometer for antiproton-annihilation events, and to use it at the Fermilab Antiproton Accumulator to measure the charm production cross section, study rare hyperon decays, search for hyperon CP asymmetry, precisely measure the properties of several charmonium and nearby states, and make the first measurements of the Drell-Yan continuum in medium-energy antiproton annihilation. Should the charm production cross section be as large as some have proposed, we will also be able to measure D{sup 0}-{bar D}{sup 0} mixing with high precision and discover (or sensitively limit) charm CP violation. The observation of charm or hyperon CP violation would be evidence for physics beyond the Standard Model, with possible implications for the origin of the baryon asymmetry of the universe - the question of what happened to all the antimatter that must have been produced in the Big Bang. The experiment will be carried out by an international collaboration and will require some four years of running time. As possibly the sole hadron experiment in progress at Fermilab during that time, it will play an important role in maintaining a broad particle physics program at Fermilab and in the U.S. It will thus help us to continue attracting creative and capable young people into science and technology, and introducing them to the important technologies of accelerators, detectors, and data acquisition and analysis - key roles in society that accelerator-based particle physics has historically played.

  20. Fermilab accelerator control system: Analog monitoring facilities

    Energy Technology Data Exchange (ETDEWEB)

    Seino, K.; Anderson, L.; Smedinghoff, J.

    1987-10-01

    Thousands of analog signals are monitored in different areas of the Fermilab accelerator complex. For general purposes, analog signals are sent over coaxial or twinaxial cables with varying lengths, collected at fan-in boxes and digitized with 12 bit multiplexed ADCs. For higher resolution requirements, analog signals are digitized at sources and are serially sent to the control system. This paper surveys ADC subsystems that are used with the accelerator control systems and discusses practical problems and solutions, and it describes how analog data are presented on the console system.

  1. Numerical Tests of the Improved Fermilab Action

    Energy Technology Data Exchange (ETDEWEB)

    Detar, C.; Kronfeld, A.S.; Oktay, M.B.

    2010-11-01

    Recently, the Fermilab heavy-quark action was extended to include dimension-six and -seven operators in order to reduce the discretization errors. In this talk, we present results of the first numerical simulations with this action (the OK action), where we study the masses of the quarkonium and heavy-light systems. We calculate combinations of masses designed to test improvement and compare results obtained with the OK action to their counterparts obtained with the clover action. Our preliminary results show a clear improvement.

  2. Fermilab silicon strip readout chip for BTev

    Energy Technology Data Exchange (ETDEWEB)

    Yarema, Raymond; Hoff, Jim; Mekkaoui, Abderrezak; Manghisoni, Massimo; Re, Valerio; Angeleri, Valentina; Manfredi, Pier Francesco; Ratti, Lodovico; Speziali, Valeria; /Fermilab /Bergamo U. /INFN, Pavia /Pavia U.

    2005-05-01

    A chip has been developed for reading out the silicon strip detectors in the new BTeV colliding beam experiment at Fermilab. The chip has been designed in a 0.25 {micro}m CMOS technology for high radiation tolerance. Numerous programmable features have been added to the chip, such as setup for operation at different beam crossing intervals. A full size chip has been fabricated and successfully tested. The design philosophy, circuit features, and test results are presented in this paper.

  3. An operator's views on Fermilab's control system

    Science.gov (United States)

    Baddorf, Debra S.

    1986-06-01

    A Fermilab accelerator operator presents views and personal opinions on the control system there. The paper covers features contributing to ease of use and comprehension, as well as a few things that could be improved. Included are such hardware as the trackball and interrupt button, the touch sensitive TV screen, the color Lexidata display, and black and white and color hardcopy capabilities. It also covers the software such as the generic parameter page, the generic plot package, and prepared displays. The alarm system is discussed from an operations standpoint, and also the datalogging system.

  4. The VAXONLINE software system at Fermilab

    Energy Technology Data Exchange (ETDEWEB)

    White, V.; Heinicke, P.; Berman, E.; Constanta-Fanourakis, P.; MacKinnon, B.; Moore, C.; Nicinski, T.; Petravick, D.; Pordes, R.; Quigg, L.

    1987-06-01

    The VAXONLINE software system, started in late 1984, is now in use at 12 experiments at Fermilab, with at least one VAX or MicroVax. Data acquisition features now provide for the collection and combination of data from one or more sources, via a list-driven Event Builder program. Supported sources include CAMAC, FASTBUS, Front-end PDP-11's, Disk, Tape, DECnet, and other processors running VAXONLINE. This paper describes the functionality provided by the VAXONLINE system, gives performance figures, and discusses the ongoing program of enhancements.

  5. Status of the Fermilab (g-2) experiment

    CERN Document Server

    Kaspar, J

    2015-01-01

    The upcoming muon (g-2) experiment at Fermilab will measure the anomalous magnetic moment of the muon to a relative precision of 140 ppb, 4 times better than the previous experiment at BNL. The new experiment is motivated by the persistent 3-4 standard deviations difference between the experimental value and the Standard Model prediction, and it will have the statistical sensitivity necessary to either refute the claim or confirm it with a confidence level exceeding a discovery threshold. The experiment is under construction and scheduled to start running in early 2017.

  6. Experiment to Measure Deep Inelastic Electron Scattering on Hydrogen and Deuterium with Seperation of Nu(W)(2) and W(1) Nucleon Structure Functions, at the Highest Fermilab Energies and Q(2) Regions

    Energy Technology Data Exchange (ETDEWEB)

    Conger, G.; Edighoffer, J.; Grigorian, A.; Guiragossian, Z.G.T.; Hofstadter, R.; McPharlin, T.P.; Yearian, M.R.; /Stanford U.; Cox, B.C.; Peoples Jr., J.; /Fermilab

    1975-10-15

    The authors propose to measure the inclusive deep inelastic electron-nucleon scattering cross sections on hydrogen and deuterium. Cross sections will be measured in the range of momentum transfers Q{sub min}{sup 2} = 0.160 (GeV/c){sup 2} and Q{sub max}{sup 2} = 160.0 (GeV/c){sup 2}, in the range of recoil hadronic mass squared of W{sub min}{sup 2} = 2 GeV{sup 2} and W{sub max}{sup 2} = 450 GeV{sup 2}. The electromagnetic structure functions, {nu}W{sub 2}(Q{sup 2},{nu}) and W{sub 1}(Q{sup 2},{nu}), of both protons and neutrons will be measured and separated by well-known methods, in the highest possible unexplored FERMILAB kinematical regions. The high intensity Proton-West superconducting beam will be used to yield an electron beam of high purity, based on a synchrotron radiation compensated tuning technique. The electron beam will be used at 150 GeV (5 x 10{sup 8} e{sup {+-}}/pulse), at 175 GeV (3.6 x 10{sup 8} e{sup {+-}}/pulse) and at 250 GeV (1 x 10{sup 8} e{sup {+-}}/pulse). The scattered electron will be detected with good acceptance, good resolution and excellent identification. The detector will be the E-192 apparatus with small additions. A simple self-calibration procedure is available, both in experiment and apparatus, removing beam-associated and target-associated background in the entire (Q{sup 2}, W{sup 2}) kinematical regions. Usually, interesting physics occurs where counting rates are small. This experiment will be completely trust-worthy in such regions because their apparatus provides excellent information on the tracking and identification of scattered electrons.

  7. Fermilab Distributed Monitoring System(NGOP)

    Institute of Scientific and Technical Information of China (English)

    T.Dawson; J.Fromm; 等

    2001-01-01

    A Distributed Monitoring System(NGOP)that will scale to the anticipated requirements for RUn II computing has been under development at Fermilab.NGOP [1] provides a framework to create Monitoring Agents for monitoring the overall state of computers and software that are running on them.Several Monitoring Agents are available within NGOP that are capable of analyzing log files,and checking existence of system daemons,CPU and memory utilization,etc,NGOP also provides customizable graphical hierarchical representations of these monitored systems.NGOP is able to generate events when serious problems have occurred as well as raising alarms when potential problems have been detected.NGOP allows performing correctiv actions or sending notifications,NGOP provides persistent storage for collected events,alarms and actions.A first implementation of NGOP was recently deployed at Fermilab.This is a fully functional prototype that satisfies most of the existing requirements.For the time being the NGOP prototype is monitoring 512 nodes.During the first few months of running NGOP has proved to be a useful tool.Multiple problems such as node resets,offline CPUs,and dead system daemons have been detected.NGOP provided system administrators with information required for better system tuning and configuration.The current state of deployment and future steps to improve the prototype and to implement some new features will be presented.

  8. Muon g-2 Experiment at Fermilab

    CERN Document Server

    ,

    2015-01-01

    A new experiment at Fermilab will measure the anomalous magnetic moment of the muon with a precision of 140 parts per billion (ppb). This measurement is motivated by the results of the Brookhaven E821 experiment that were first released more than a decade ago, which reached a precision of 540 ppb. As the corresponding Standard Model predictions have been refined, the experimental and theoretical values have persistently differed by about 3 standard deviations. If the Brookhaven result is confirmed at Fermilab with this improved precision, it will constitute definitive evidence for physics beyond the Standard Model. The experiment observes the muon spin precession frequency in flight in a well-calibrated magnetic field; the improvement in precision will require both 20 times as many recorded muon decay events as in E821 and a reduction by a factor of 3 in the systematic uncertainties. This paper describes the current experimental status as well as the plans for the upgraded magnet, detector and storage ring sy...

  9. Muon g-2 Experiment at Fermilab

    Energy Technology Data Exchange (ETDEWEB)

    Gray, Frederick [Regis Univ., Denver, CO (United States)

    2015-10-01

    A new experiment at Fermilab will measure the anomalous magnetic moment of the muon with a precision of 140 parts per billion (ppb). This measurement is motivated by the results of the Brookhaven E821 experiment that were first released more than a decade ago, which reached a precision of 540 ppb. As the corresponding Standard Model predictions have been refined, the experimental and theoretical values have persistently differed by about 3 standard deviations. If the Brookhaven result is confirmed at Fermilab with this improved precision, it will constitute definitive evidence for physics beyond the Standard Model. The experiment observes the muon spin precession frequency in flight in a well-calibrated magnetic fi eld; the improvement in precision will require both 20 times as many recorded muon decay events as in E821 and a reduction by a factor of 3 in the systematic uncertainties. This paper describes the current experimental status as well as the plans for the upgraded magnet, detector and storage ring systems that are being prepared for the start of beam data collection in 2017.

  10. Muon g-2 Experiment at Fermilab

    Energy Technology Data Exchange (ETDEWEB)

    Gray, Frederick [Regis Univ., Denver, CO (United States)

    2015-10-01

    A new experiment at Fermilab will measure the anomalous magnetic moment of the muon with a precision of 140 parts per billion (ppb). This measurement is motivated by the results of the Brookhaven E821 experiment that were first released more than a decade ago, which reached a precision of 540 ppb. As the corresponding Standard Model predictions have been refined, the experimental and theoretical values have persistently differed by about 3 standard deviations. If the Brookhaven result is confirmed at Fermilab with this improved precision, it will constitute definitive evidence for physics beyond the Standard Model. The experiment observes the muon spin precession frequency in flight in a well-calibrated magnetic field; the improvement in precision will require both 20 times as many recorded muon decay events as in E821 and a reduction by a factor of 3 in the systematic uncertainties. This paper describes the current experimental status as well as the plans for the upgraded magnet, detector and storage ring systems that are being prepared for the start of beam data collection in 2017.

  11. Simulation Needs and Priorities of the Fermilab Intensity Frontier

    Energy Technology Data Exchange (ETDEWEB)

    Elvira, V. D. [Fermi National Accelerator Lab. (FNAL), Batavia, IL (United States); Genser, K. L. [Fermi National Accelerator Lab. (FNAL), Batavia, IL (United States); Hatcher, R. [Fermi National Accelerator Lab. (FNAL), Batavia, IL (United States); Perdue, G. [Fermi National Accelerator Lab. (FNAL), Batavia, IL (United States); Wenzel, H. J. [Fermi National Accelerator Lab. (FNAL), Batavia, IL (United States); Yarba, J. [Fermi National Accelerator Lab. (FNAL), Batavia, IL (United States)

    2015-06-11

    Over a two-year period, the Physics and Detector Simulations (PDS) group of the Fermilab Scientific Computing Division (SCD), collected information from Fermilab Intensity Frontier experiments on their simulation needs and concerns. The process and results of these activities are documented here.

  12. 2015 Fermilab Laboratory Directed Research & Development Annual Report

    Energy Technology Data Exchange (ETDEWEB)

    Wester, W. [Fermi National Accelerator Lab. (FNAL), Batavia, IL (United States)

    2016-05-26

    The Fermi National Accelerator Laboratory (FNAL) is conducting a Laboratory Directed Research and Development (LDRD) program. Fiscal year 2015 represents the first full year of LDRD at Fermilab and includes seven projects approved mid-year in FY14 and six projects approved in FY15. One of the seven original projects has been completed just after the beginning of FY15. The implementation of LDRD at Fermilab is captured in the approved Fermilab 2015 LDRD Annual Program Plan. In FY15, the LDRD program represents 0.64% of Laboratory funding. The scope of the LDRD program at Fermilab will be established over the next couple of years where a portfolio of about 20 on-going projects representing approximately between 1% and 1.5% of the Laboratory funding is anticipated. This Annual Report focuses on the status of the current projects and provides an overview of the current status of LDRD at Fermilab.

  13. Material Activation Benchmark Experiments at the NuMI Hadron Absorber Hall in Fermilab

    Science.gov (United States)

    Matsumura, H.; Matsuda, N.; Kasugai, Y.; Toyoda, A.; Yashima, H.; Sekimoto, S.; Iwase, H.; Oishi, K.; Sakamoto, Y.; Nakashima, H.; Leveling, A.; Boehnlein, D.; Lauten, G.; Mokhov, N.; Vaziri, K.

    2014-06-01

    In our previous study, double and mirror symmetric activation peaks found for Al and Au arranged spatially on the back of the Hadron absorber of the NuMI beamline in Fermilab were considerably higher than those expected purely from muon-induced reactions. From material activation bench-mark experiments, we conclude that this activation is due to hadrons with energy greater than 3 GeV that had passed downstream through small gaps in the hadron absorber.

  14. Material Activation Benchmark Experiments at the NuMI Hadron Absorber Hall in Fermilab

    Energy Technology Data Exchange (ETDEWEB)

    Matsumura, H., E-mail: hiroshi.matsumura@kek.jp [High Energy Accelerator Research Organization (KEK), Ibaraki-ken, 305-0801 (Japan); Matsuda, N.; Kasugai, Y. [Japan Atomic Energy Agency, Ibaraki-ken, 319-1195 (Japan); Toyoda, A. [High Energy Accelerator Research Organization (KEK), Ibaraki-ken, 305-0801 (Japan); Yashima, H.; Sekimoto, S. [Kyoto University Research Reactor Institute, Osaka-fu, 590-0494 (Japan); Iwase, H. [High Energy Accelerator Research Organization (KEK), Ibaraki-ken, 305-0801 (Japan); Oishi, K. [Shimizu Corporation, Tokyo, 135-8530 (Japan); Sakamoto, Y.; Nakashima, H. [Japan Atomic Energy Agency, Ibaraki-ken, 319-1195 (Japan); Leveling, A.; Boehnlein, D.; Lauten, G.; Mokhov, N.; Vaziri, K. [Fermi National Accelerator Laboratory, IL 60510-5011 (United States)

    2014-06-15

    In our previous study, double and mirror symmetric activation peaks found for Al and Au arranged spatially on the back of the Hadron absorber of the NuMI beamline in Fermilab were considerably higher than those expected purely from muon-induced reactions. From material activation bench-mark experiments, we conclude that this activation is due to hadrons with energy greater than 3 GeV that had passed downstream through small gaps in the hadron absorber.

  15. Study of Fermilab data for the reaction. pi. /sup -/p. --> pi. /sup 0/n

    Energy Technology Data Exchange (ETDEWEB)

    Fazale-e-Aleem; Saleem, M. (Punjab Univ., Lahore (Pakistan))

    1981-01-01

    Fermilab data for the angular distribution measurements of the reaction ..pi../sup -/p..--> pi../sup 0/n are investigated and it is shown that a good fit with experiment is obtained using a simple Regge pole model with phenomenological residue functions. The energy dependence in this case is found to be different from that for the dsigma/dt data obtained at Serpukhov.

  16. Fermilab Tevatron and Pbar source status report

    Energy Technology Data Exchange (ETDEWEB)

    Edwards, H.

    1986-08-01

    The antiproton production cycle is enumerated, and the commissioning of the antiproton source is described, giving milestones and major obstacles. The Tevatron collider operation is described, including procedure to load the Tevatron with three bunches of protons and three bunches of antiprotons. Commissioning of the Main Ring and Tevatron for collider operation is described. Development and accelerator studies in four areas were necessary: main ring RF manipulations; controls and applications software support; Tevatron storage and low-beta squeeze sequence; and study of various beam transfers, storage steps, and sequences. Final tests are described. A long range upgrade program is presently under evaluation to accomplish these goals: luminosity increase to 5 x 10/sup 31/ cm/sup -2/sec/sup -1/, production rates up to 4 x 10/sup 11/ antiprotons/hr, and intensity increase for fixed target operation. Beam quality is to be improved by the injector and main ring upgrades, and the luminosity goal is addressed by the Collider upgrade. (LEW)

  17. Charm baryon and hyperon physics at Fermilab`s SELEX spectrometer

    Energy Technology Data Exchange (ETDEWEB)

    Ramberg, E.J. [Fermi National Accelerator Lab., Batavia, IL (United States)

    1997-04-01

    Fermilab experiment 781, or SELEX, is starting to take data, with the goal of observing on the order of 1 million reconstructed charm decays. A variety of targets and beams will yield significant new information on charm production. The detector has good efficiency in the forward direction, which will enhance the yield of charm baryon decays. Several topics in hyperon physics can be addressed as well with this spectrometer. (orig.).

  18. Spin structure in high energy processes: Proceedings

    Energy Technology Data Exchange (ETDEWEB)

    DePorcel, L.; Dunwoodie, C. [eds.

    1994-12-01

    This report contains papers as the following topics: Spin, Mass, and Symmetry; physics with polarized Z{sup 0}s; spin and precision electroweak physics; polarized electron sources; polarization phenomena in quantum chromodynamics; polarized lepton-nucleon scattering; polarized targets in high energy physics; spin dynamics in storage rings and linear accelerators; spin formalism and applications to new physics searches; precision electroweak physics at LEP; recent results on heavy flavor physics from LEP experiments using 1990--1992 data; precise measurement of the left-right cross section asymmetry in Z boson production by electron-positron collisions; preliminary results on heavy flavor physics at SLD; QCD tests with SLD and polarized beams; recent results from TRISTAN at KEK; recent B physics results from CLEO; searching for the H dibaryon at Brookhaven; recent results from the compton observatory; the spin structure of the deuteron; spin structure of the neutron ({sup 3}HE) and the Bjoerken sum rule; a consumer`s guide to lattice QCD results; top ten models constrained by b {yields} sy; a review of the Fermilab fixed target program; results from the D0 experiment; results from CDF at FNAL; quantum-mechanical suppression of bremsstrahlung; report from the ZEUS collaboration at HERA; physics from the first year of H1 at HERA, and hard diffraction. These papers have been cataloged separately elsewhere.

  19. Siberian snakes for the Fermilab Main Injector

    Energy Technology Data Exchange (ETDEWEB)

    Anferov, V.A.; Baiod, R.; Courant, E.D. [and others

    1993-04-01

    Appropriate Siberian snakes were designed to maintain the proton beam polarization during acceleration in the Fermilab Main Injector from 8 to 150 GeV. Various snake designs were investigated to find one fitting into the 14 m straight section spaces with the required spin rotation axis and the minimum orbit excursion. The authors studied both cold and warm discrete magnet snakes as well as warm snakes with helical magnets. For the warm discrete magnet snake, obtaining small orbit excursions required a nearly longitudinal snake axis, while axes near {+-}45{degrees} are needed when using two snakes in a ring. The authors found acceptable snakes either by using superconducting magnets or by using warm magnets with a helical dipole field.

  20. Main injector particle production experiment at Fermilab

    Indian Academy of Sciences (India)

    Sonam Mahajan; Ashok Kumar; Rajendran Raja

    2012-11-01

    The main injector particle production (MIPP) experiment at Fermilab uses particle beams of charged pions, kaons, proton and antiproton with beam momenta of 5–90 GeV/c to measure particle production cross-sections of various nuclei including liquid hydrogen, MINOS target and thin targets of beryllium, carbon, bismuth and uranium. The physics motivation to perform such cross-section measurements is described here. Recent results on the analysis of NuMI target and forward neutron cross-sections are presented here. Preliminary cross-section measurements for 58 GeV/c proton on liquid hydrogen target are also presented. A new method is described to correct for low multiplicity inefficiencies in the trigger using KNO scaling.

  1. Early history of the Fermilab Main Ring

    Energy Technology Data Exchange (ETDEWEB)

    Malamud, E.; /Fermilab

    1983-10-01

    This note is written in response to a request from Phil Livdahl for corrections, and additions to a TM he is writing on Staffing Levels at Fermilab during Initial Construction Years and to a note that Hank Hinterberger is preparing on milestones. In my spare time over the past few years I have taken the original files of the Main Ring Section, my own notes from that period, and various other collections of relevant paper, and arranged them in a set of 44 large loose leaf binders in chronological order. I call this set of volumes the 'Main Ring Chronological Archives'. In response to Phil's request I have recently skimmed through these records of the period and extracted a small subset of documents which relate to the specific questions that Phil is addressing: staffing. administration, and milestones.

  2. Synchrotron radiation based beam diagnostics at the Fermilab Tevatron

    Science.gov (United States)

    Thurman-Keup, R.; Cheung, H. W. K.; Hahn, A.; Hurh, P.; Lorman, E.; Lundberg, C.; Meyer, T.; Miller, D.; Pordes, S.; Valishev, A.

    2011-09-01

    Synchrotron radiation has been used for many years as a beam diagnostic at electron accelerators. It is not normally associated with proton accelerators as the intensity of the radiation is too weak to make detection practical. However, if one utilizes the radiation originating near the edge of a bending magnet, or from a short magnet, the rapidly changing magnetic field serves to enhance the wavelengths shorter than the cutoff wavelength, which for more recent high energy proton accelerators such as Fermilab's Tevatron, tends to be visible light. This paper discusses the implementation at the Tevatron of two devices. A transverse beam profile monitor images the synchrotron radiation coming from the proton and antiproton beams separately and provides profile data for each bunch. A second monitor measures the low-level intensity of beam in the abort gaps which poses a danger to both the accelerator's superconducting magnets and the silicon detectors of the high energy physics experiments. Comparisons of measurements from the profile monitor to measurements from the flying wire profile systems are presented as are a number of examples of the application of the profile and abort gap intensity measurements to the modelling of Tevatron beam dynamics. Work supported by Fermi Research Alliance, LLC under Contract No. DE-AC02-07CH11359 with the United States Department of Energy.

  3. Grid Computing in the Collider Detector at Fermilab (CDF) scientific experiment

    CERN Document Server

    Benjamin, Douglas P

    2008-01-01

    The computing model for the Collider Detector at Fermilab (CDF) scientific experiment has evolved since the beginning of the experiment. Initially CDF computing was comprised of dedicated resources located in computer farms around the world. With the wide spread acceptance of grid computing in High Energy Physics, CDF computing has migrated to using grid computing extensively. CDF uses computing grids around the world. Each computing grid has required different solutions. The use of portals as interfaces to the collaboration computing resources has proven to be an extremely useful technique allowing the CDF physicists transparently migrate from using dedicated computer farm to using computing located in grid farms often away from Fermilab. Grid computing at CDF continues to evolve as the grid standards and practices change.

  4. An 800-MeV superconducting LINAC to support megawatt proton operations at Fermilab

    CERN Document Server

    Derwent, Paul; Lebedev, Valeri

    2015-01-01

    Active discussion on the high energy physics priorities in the US carried out since summer of 2013 resulted in changes in Fermilab plans for future development of the existing accelerator complex. In particular, the scope of Project X was reduced to the support of the Long Base Neutrino Facility (LBNF) at the project first stage. The name of the facility was changed to the PIP-II (Proton Improvement Plan). This new facility is a logical extension of the existing Proton Improvement Plan aimed at doubling average power of the Fermilab's Booster and Main Injector (MI). Its design and required R&D are closely related to the Project X. The paper discusses the goals of this new facility and changes to the Project X linac introduced to support the goals.

  5. The calorimeter of the Mu2e experiment at Fermilab

    Science.gov (United States)

    Atanov, N.; Baranov, V.; Budagov, J.; Cervelli, F.; Colao, F.; Cordelli, M.; Corradi, G.; Dané, E.; Davydov, Y. I.; Di Falco, S.; Diociaiuti, E.; Donati, S.; Donghia, R.; Echenard, B.; Flood, K.; Giovannella, S.; Glagolev, V.; Grancagnolo, F.; Happacher, F.; Hitlin, D. G.; Martini, M.; Miscetti, S.; Miyashita, T.; Morescalchi, L.; Murat, P.; Pezzullo, G.; Porter, F.; Raffaelli, F.; Radicioni, T.; Ricci, M.; Saputi, A.; Sarra, I.; Spinella, F.; Tassielli, G.; Tereshchenko, V.; Usubov, Z.; Zhu, R. Y.

    2017-01-01

    The Mu2e experiment at Fermilab looks for Charged Lepton Flavor Violation (CLFV) improving by 4 orders of magnitude the current experimental sensitivity for the muon to electron conversion in a muonic atom. A positive signal could not be explained in the framework of the current Standard Model of particle interactions and therefore would be a clear indication of new physics. In 3 years of data taking, Mu2e is expected to observe less than one background event mimicking the electron coming from muon conversion. Achieving such a level of background suppression requires a deep knowledge of the experimental apparatus: a straw tube tracker, measuring the electron momentum and time, a cosmic ray veto system rejecting most of cosmic ray background and a pure CsI crystal calorimeter, that will measure time of flight, energy and impact position of the converted electron. The calorimeter has to operate in a harsh radiation environment, in a 10‑4 Torr vacuum and inside a 1 T magnetic field. The results of the first qualification tests of the calorimeter components are reported together with the energy and time performances expected from the simulation and measured in beam tests of a small scale prototype.

  6. Duke University high energy physics. Progress report, 1992

    Energy Technology Data Exchange (ETDEWEB)

    Fortney, L.R.; Goshaw, A.T.; Walker, W.D.

    1992-07-01

    This Progress Report presents a review of the research done in 1992 by the Duke High Energy Physics Group. This is the first year of a three-year grant which was approved by the Office of High Energy Physics at DOE after an external review of our research program during the summer of 1991. Our research is centered at Fermilab where we are involved with two active experiments, one using the Tevatron collider (CDF, the Collider Detector Facility) and the other using a proton beam in the high intensity laboratory (E771, study of beauty production). In addition to these running experiments we are continuing the analysis of data from experiments E735 (collider search for a quark-gluon plasma), E705 (fixed target study of direct photon and {sub {Chi}} meson production) and E597 (particle production from hadron-nucleus collisions). Finally, this year has seen an expansion of our involvement with the design of the central tracking detector for the Solenoidal Detector Collaboration (SDC) and an increased role in the governance of the collaboration. Descriptions of these research activities are presented in this report.

  7. Improvement Plans of Fermilab's Proton Accelerator Complex

    Energy Technology Data Exchange (ETDEWEB)

    Shiltsev, Vladimir [Fermilab

    2016-01-01

    The flagship of Fermilab's long term research program is the Deep Underground Neutrino Experiment (DUNE), located Sanford Underground Research Facility (SURF) in Lead, South Dakota, which will study neutrino oscillations with a baseline of 1300 km. The neutrinos will be produced in the Long Baseline Neutrino Facility (LBNF), a proposed new beam line from Fermilab's Main Injector. The physics goals of the DUNE require a proton beam with a power of some 2.4 MW at 120 GeV, which is roughly four times the current maximum power. Here I discuss current performance of the Fermilab proton accelerator complex, our plans for construction of the SRF proton linac as key part of the Proton Improvement Plan-II (PIP-II), outline the main challenges toward multi-MW beam power operation of the Fermilab accelerator complex and the staged plan to achieve the required performance over the next 15 years.

  8. A Radiation shielding study for the Fermilab Linac

    Energy Technology Data Exchange (ETDEWEB)

    Rakhno, I.; Johnstone, C.; /Fermilab

    2006-02-01

    Radiation shielding calculations are performed for the Fermilab Linac enclosure and gallery. The predicted dose rates around the access labyrinth at normal operation and a comparison to measured dose rates are presented. An accident scenario is considered as well.

  9. Simulations and Measurements of Stopbands in the Fermilab Recycler

    Energy Technology Data Exchange (ETDEWEB)

    Ainsworth, Robert [Fermilab; Adamson, Philip [Fermilab; Hazelwood, Kyle [Fermilab; Kourbanis, Ioanis [Fermilab; Stern, Eric [Fermilab

    2016-06-01

    Fermilab has recently completed an upgrade to the complex with the goal of delivering 700 kW of beam power as 120 GeV protons to the NuMI target. A major part of boosting beam power is to use the Fermilab Recycler to stack protons. Simulations focusing on the betatron resonance stopbands are presented taking into account different effects such as intensity and chromaticity. Simulations are compared with measurements.

  10. Study of Fast Instability in Fermilab Recycler

    Energy Technology Data Exchange (ETDEWEB)

    Antipov, Sergey [Chicago U.; Adamson, Philip [Fermilab; Nagaitsev, Sergei [Fermilab; Yang, Ming-Jen [Fermilab

    2016-06-01

    One of the factors which may limit the intensity in the Fermilab Recycler is a fast transverse instability. It develops within a hundred turns and, in certain conditions, may lead to a beam loss. Various peculiar features of the instability: its occurrence only above a certain intensity threshold, and only in horizontal plane, as well as the rate of the instability, suggest that its cause is electron cloud. We studied the phenomena by observing the dynamics of stable and unstable beam. We found that beam motion can be stabilized by a clearing bunch, which confirms the electron cloud nature of the instability. The findings suggest electron cloud trapping in Recycler combined function mag-nets. Bunch-by-bunch measurements of betatron tune show a tune shift towards the end of the bunch train and allow the estimation of the density of electron cloud and the rate of its build-up. The experimental results are in agreement with numerical simulations of electron cloud build-up and its interaction with the beam.

  11. U.C. Davis high energy particle physics research: Technical progress report -- 1990

    Energy Technology Data Exchange (ETDEWEB)

    NONE

    1990-12-31

    Summaries of progress made for this period is given for each of the following areas: (1) Task A--Experiment, H1 detector at DESY; (2) Task C--Experiment, AMY detector at KEK; (3) Task D--Experiment, fixed target detectors at Fermilab; (4) Task F--Experiment, PEP detector at SLAC and pixel detector; (5) Task B--Theory, particle physics; and (6) Task E--Theory, particle physics.

  12. High Energy Physics at Tufts University. Progress report, 1992--1993

    Energy Technology Data Exchange (ETDEWEB)

    1993-07-15

    This report discusses the following topics: Fermilab fixed target experiments; Soudan II nucleon decay project; Physics at the proton-antiproton collider at {radical}s = 1.8 TeV; The Solenoidal Detector for the supercollider; Neutrino telescope proposal; Polarization in massive quark and hadron production; Production characteristics of top quarks; Scattering, spin dependence and mass corrections in Skyrmion models; and computation and networking.

  13. 3rd CERN-Fermilab HadronCollider Physics Summer School

    CERN Multimedia

    EP Department

    2008-01-01

    August 12-22, 2008, Fermilab The school web site is http://cern.ch/hcpss with links to the academic programme and the application procedure. The APPLICATION DEADLINE IS 29 FEBRUARY 2008. The goal of the CERN-Fermilab Hadron Collider Physics Summer Schools is to offer students and young researchers in high-energy physics a concentrated syllabus on the theory and experimental challenges of hadron collider physics. The third session of the summer school will focus on exposing young post-docs and advanced graduate students to broader theories and real data beyond what they’ve learned at their home institutions. Experts from across the globe will lecture on the theoretical and experimental foundations of hadron collider physics, host parallel discussion sessions and answer students’ questions. This year’s school will also have a greater focus on physics beyond the Standard Model, as well as more time for questions at the end of each lecture. The 2008 School will be held at Fermilab. Further enquiries should ...

  14. Diagnostics of the Fermilab Tevatron using an AC dipole

    Energy Technology Data Exchange (ETDEWEB)

    Miyamoto, Ryoichi [Univ. of Texas, Austin, TX (United States)

    2008-08-01

    The Fermilab Tevatron is currently the world's highest energy colliding beam facility. Its counter-rotating proton and antiproton beams collide at 2 TeV center-of-mass. Delivery of such intense beam fluxes to experiments has required improved knowledge of the Tevatron's beam optical lattice. An oscillating dipole magnet, referred to as an AC dipole, is one of such a tool to non-destructively assess the optical properties of the synchrotron. We discusses development of an AC dipole system for the Tevatron, a fast-oscillating (f ~ 20 kHz) dipole magnet which can be adiabatically turned on and off to establish sustained coherent oscillations of the beam particles without affecting the transverse emittance. By utilizing an existing magnet and a higher power audio amplifier, the cost of the Tevatron AC dipole system became relatively inexpensive. We discuss corrections which must be applied to the driven oscillation measurements to obtain the proper interpretation of beam optical parameters from AC dipole studies. After successful operations of the Tevatron AC dipole system, AC dipole systems, similar to that in the Tevatron, will be build for the CERN LHC. We present several measurements of linear optical parameters (beta function and phase advance) for the Tevatron, as well as studies of non-linear perturbations from sextupole and octupole elements.

  15. Microdosimetric investigations at the Fast Neutron Therapy Facility at Fermilab

    Energy Technology Data Exchange (ETDEWEB)

    Langen, K.M.

    1997-12-31

    Microdosimetry was used to investigate three issues at the neutron therapy facility (NTF) at Fermilab. Firstly, the conversion factor from absorbed dose in A-150 tissue equivalent plastic to absorbed dose in ICRU tissue was determined. For this, the effective neutron kerma factor ratios, i.e. oxygen tissue equivalent plastic and carbon to A-150 tissue equivalent plastic, were measured in the neutron beam. An A-150 tissue equivalent plastic to ICRU tissue absorbed dose conversion factor of 0.92 {+-} 0.04 determined. Secondly, variations in the radiobiological effectiveness (RBE) in the beam were mapped by determining variations in two related quantities, e{sup *} and R, with field size and depth in tissue. Maximal variation in e{sup *} and R of 9% and 15% respectively were determined. Lastly, the feasibility of utilizing the boron neutron capture reaction on boron-10 to selectively enhance the tumor dose in the NTF beam was investigated. In the unmodified beam, a negligible enhancement for a 50 ppm boron loading was measured. To boost the boron dose enhancement to 3% it was necessary to change the primary proton energy from 66 MeV and to filter the beam by 90 mm of tungsten.

  16. First Megascience Experiment at Fermilab: Through Hardship to Protons

    Science.gov (United States)

    Pronskikh, Vitaly; Higgins, Valerie

    The E-36 experiment on the small angle proton-proton scattering that officially started in 1970, making use of the Main Ring beams and giving rise to a chain of similar experiments that continued after 1972, was the first experiment at the newly built NAL. It was also the first US/USSR collaboration in particle physics as well as the first experiment that can be confidently characterized as megascience. The experimental data were interpreted as an indication of the pomeron, a quasiparticle that had been named after the Soviet theorist I. Pomeranchuk. The idea of the experiment can be traced back to the Rochester conference held in 1970 in Kiev where two American and Soviet physicists met to develop it and later acquainted NAL director Robert Wilson with it. Wilson enthusiastically set the stage for the experiment at NAL. Involving a gas-jet target built at the Dubna machine shop of Joint Institute for Nuclear Research and brought to Batavia, Illinois, the experiment established cooperation between the US and the Soviets in the spirit of their contemporary Apollo-Soyuz space program, thus breaking the ice of the Cold War from within high-energy physics. In this talk based on the Fermilab Archives and interviews, we discuss the financial and administrative obstacles raised by Soviet officials that the Russian collaborators had to overcome, interinstitutional tensions among the Soviets that accompanied the collaboration, NAL culture as well as the roles of scientists in megascience as ambassadors of peace.

  17. Improvements and Performance of the Fermilab Solenoid Test

    Energy Technology Data Exchange (ETDEWEB)

    Orris, Darryl; et al.

    2016-09-02

    The Solenoid Test Facility at Fermilab was built using a large vacuum vessel for testing of conduction-cooled superconducting solenoid magnets, and was first used to determine the performance of the MICE Coupling Coil [1, 2]. The facility was modified recently to enable testing of solenoid magnets for the Mu2e experiment, which operate at much higher current than the Coupling Coil. One pair of low current conduction-cooled copper and NbTi leads was replaced with two pairs of 10 kA HTS leads cooled by heat exchange with liquid nitrogen and liquid helium. The new design, with additional control and monitoring capability, also provides helium cooling of the superconducting magnet leads by conduction. A high current power supply with energy extraction was added, and several improvements to the quench protection and characterization system were made. Here we present details of these changes and report on performance results from a test of the Mu2e prototype Transport Solenoid (TS) module. Progress on additional improvements in preparation for production TS module testing will be presented.

  18. Measurement of Transverse Emittance in the Fermilab Booster.

    Science.gov (United States)

    Graves, William Sproull

    A new beam profile monitor has been built and installed in the Fermilab Booster synchrotron. It nondestructively measures the beam's vertical density distribution on a fast turn-by-turn basis. This enables one to measure the beam's transverse emittance and to observe emittance growth as it occurs. For high intensities (>2 times 10^{12 } protons), the normalized 95% emittance was observed to grow from 6pi mm-mrad at injection to 16pi mm-mrad at extraction. The initial (beam losses are shown to be caused by the space charge tune shift onto integer and 1/2 integer resonance lines. The growth near injection accounts for approximately 40% of the observed emittance increase throughout the acceleration cycle. The remaining 60% is due to two factors: slow linear growth due to betatron-motion driven by noise in the rf system; and faster growth after the transition energy that is caused by coupling of the longitudinal beam motion into the transverse planes.

  19. A disoriented chiral condensate search at the Fermilab Tevatron

    Energy Technology Data Exchange (ETDEWEB)

    Convery, Mary Elizabeth [Case Western Reserve Univ., Cleveland, OH (United States)

    1997-05-01

    MiniMax (Fermilab T-864) was a small test/experiment at the Tevatron designed to search for disoriented chiral condensates (DCC) in the forward direction. Relativistic quantum field theory treats the vacuum as a medium, with bulk properties characterized by long-range order parameters. This has led to suggestions that regions of "disoriented vacuum" might be formed in high-energy collision processes. In particular, the approximate chiral symmetry of QCD could lead to regions of vacuum which have chiral order parameters disoriented to directions which have non-zero isospin, i.e. disoriented chiral condensates. A signature of DCC is the resulting distribution of the fraction of produced pions which are neutral. The MiniMax detector at the C0 collision region of the Tevatron was a telescope of 24 multi-wire proportional chambers (MWPC`s) with a lead converter behind the eighth MWPC, allowing the detection of charged particles and photon conversions in an acceptance approximately a circle of radius 0.6 in pseudorapidity-azimuthal-angle space, centered on pseudorapidity η ≈ 4. An electromagnetic calorimeter was located behind the MWPC telescope, and hadronic calorimeters and scintillator were located in the upstream anti-proton direction to tag diffractive events.

  20. Study of an Impact-Parameter Optical Discriminator to be used for Beauty Search in Fixed-Target Mode~ at~the~LHC

    CERN Multimedia

    2002-01-01

    % RD30 \\\\ \\\\ We propose a research and development of an $^{\\prime}$Optical Trigger$^{\\prime}$ to be used for B-meson selection in a LHC fixed-target experiment. The optical trigger relies on the detection of Cerenkov light produced and trapped in a thin spherical crystal viewed by a fast photodetector. The device is, in principle, sensitive to charged particles with large impact parameter arising from secondary vertices belonging to the B-meson chain, but it is blind to minimum bias events originating in a small target. A full prototype using LiF fluoride crystal in 1992 and the experimental results are in agreement with expectations. Backgrounds due to delta-rays and nuclear interactions are measured to be about 2\\%. A second generation prototype with Sapphire crystal and liquid cladding is developed to improve the sensitivity of the device at very low impact parameters (100~$\\mu$m). A third generation prototype with fiber read-out is also under preparation. To improve further the sensitivity a novel read-o...

  1. Shielding Experiments Under JASMIN Collaboration at Fermilab(III) - Measurement of High-Energy Neutrons Penetrating a Thick Iron Shield from the Antiproton Production Target by AU Activation Method

    CERN Document Server

    Matsumura, H; Iwase, H; Toyoda, A; Kasugai, Y; Matsuda, N; Sakamoto, Y; Nakashima, H; Yashima, H; Mokhov, N; Leveling, A; Boehlein, D; Vaziri, K; Lautenschlager, G; Schmitt, W; Oishi, K

    2012-01-01

    In an antiproton production (Pbar) target station of the Fermi National Accelerator Laboratory (FNAL), the secondary particles produced by bombarding a target with 120-GeV protons are shielded by a thick iron shield. In order to obtain experimental data on high-energy neutron transport at more than 100-GeV-proton accelerator facilities, we indirectly measured more than 100-MeV neutrons at the outside of the iron shield at an angle of 50{\\deg} in the Pbar target station. The measurement was performed by using the Au activation method coupled with a low-background {\\gamma}-ray counting system. As an indicator for the neutron flux, we determined the production rates of 8 spallation nuclides (196-Au, 188-Pt, 189-Ir, 185-Os, 175-Hf, 173-Lu, 171-Lu, and 169-Yb) in the Au activation detector. The measured production rates were compared with the theoretical production rates calculated using PHITS. We proved that the Au activation method can serve as a powerful tool for indirect measurements of more than 100-MeV neutr...

  2. Production of the Doubly Heavy Baryons, $B_c$ meson and the Tetra-c-quark at the Fixed-target Experiment at the LHC with double intrinsic heavy approach

    CERN Document Server

    Koshkarev, Sergey

    2016-01-01

    In the paper we discuss production of the $B_c$ meson, the doubly heavy baryons and the tetra-c-quark at the future fixed-target experiment at the LHC (AFTER@LHC) with the doubly intrinsic heavy mechanism. The production cross sections are present.

  3. 6 Batch Injection and Slipped Beam Tune Measurements in Fermilab?s Main Injector

    Energy Technology Data Exchange (ETDEWEB)

    Scott, D.J.; Capista, D.; Kourbanis, I.; Seiya, K.; Yan, M.-J.; /Fermilab

    2012-05-01

    During NOVA operations it is planned to run the Fermilab Recycler in a 12 batch slip stacking mode. In preparation for this, measurements of the tune during a six batch injection and then as the beam is decelerated by changing the RF frequency have been carried out in the Main Injector. The coherent tune shifts due to the changing beam intensity were measured and compared well with the theoretically expected tune shift. The tune shifts due to changing RF frequency, required for slip stacking, also compare well with the linear theory, although some nonlinear affects are apparent at large frequency changes. These results give us confidence that the expected tunes shifts during 12 batch slip stacking Recycler operations can be accommodated.

  4. Applications of barrier bucket RF systems at Fermilab

    Energy Technology Data Exchange (ETDEWEB)

    Bhat, C.M.; /Fermilab

    2006-03-01

    In recent years, the barrier rf systems have become important tools in a variety of beam manipulation applications at synchrotrons. Four out of six proton synchrotrons at Fermilab are equipped with broad-band barrier rf systems. All of the beam manipulations pertaining to the longitudinal phase space in the Fermilab Recycler (synchrotron used for antiproton storage) are carried out using a barrier system. Recently, a number of new applications of barrier rf systems have been developed- the longitudinal momentum mining, longitudinal phase-space coating, antiproton stacking, fast bunch compression and more. Some of these techniques have been critical for the recent spectacular success of the collider performance at the Fermilab Tevatron. Barrier bunch coalescing to produce bright proton bunches has a high potential to increase proton antiproton luminosity significantly. In this paper, I will describe some of these techniques in detail. Finally, I make a few general remarks on issues related to barrier systems.

  5. Report of the Fermilab ILC Citizens' Task Force

    Energy Technology Data Exchange (ETDEWEB)

    None

    2008-06-01

    Fermi National Accelerator Laboratory convened the ILC Citizens' Task Force to provide guidance and advice to the laboratory to ensure that community concerns and ideas are included in all public aspects of planning and design for a proposed future accelerator, the International Linear Collider. In this report, the members of the Task Force describe the process they used to gather and analyze information on all aspects of the proposed accelerator and its potential location at Fermilab in northern Illinois. They present the conclusions and recommendations they reached as a result of the learning process and their subsequent discussions and deliberations. While the Task Force was charged to provide guidance on the ILC, it became clear during the process that the high cost of the proposed accelerator made a near-term start for the project at Fermilab unlikely. Nevertheless, based on a year of extensive learning and dialogue, the Task Force developed a series of recommendations for Fermilab to consider as the laboratory develops all successor projects to the Tevatron. The Task Force recognizes that bringing a next-generation particle physics project to Fermilab will require both a large international effort and the support of the local community. While the Task Force developed its recommendations in response to the parameters of a future ILC, the principles they set forth apply directly to any large project that may be conceived at Fermilab, or at other laboratories, in the future. With this report, the Task Force fulfills its task of guiding Fermilab from the perspective of the local community on how to move forward with a large-scale project while building positive relationships with surrounding communities. The report summarizes the benefits, concerns and potential impacts of bringing a large-scale scientific project to northern Illinois.

  6. Model Independent Searches for New Physics at the Fermilab Tevatron Collider

    CERN Document Server

    Piper, Joel

    2009-01-01

    The standard model is a successful but limited theory. There is significant theoretical motivation to believe that new physics may appear at the energy scale of a few TeV, the lower end of which is currently probed by the Fermilab Tevatron Collider. The methods used to search for physics beyond the standard model in a model independent way and the results of these searches based on 1.0 fb-1 of data collected with the D0 detector and 2.0 fb^-1 at the CDF detector are presented.

  7. Colliding beam physics at Fermilab: interaction regions, beam storage, antiproton cooling, production, and colliding

    Energy Technology Data Exchange (ETDEWEB)

    Walker, J.K. (ed.)

    1977-01-01

    The purpose of the colliding beams experment department at Fermilab was to bring about collisions of the stored beams in the energy doubler/saver and main ring, and construct experimental areas with appropriate detectors. To explore the feasibility of using the main ring as a storage device, several studies were carried out to investigate beam growth, loss, and the backgrounds in detectors at possible intersection regions. This range of developments constituted the major topics at the 1977 Summer Study reported here. Emphasis in part one is on interaction regions, beam storage, antiproton cooling, production, and colliding. 40 papers from this part are included in the data base. (GHT)

  8. Advanced Beamline Design for Fermilab's Advanced Superconducting Test Accelerator

    Energy Technology Data Exchange (ETDEWEB)

    Prokop, Christopher [Northern Illinois Univ., DeKalb, IL (United States)

    2014-01-01

    The Advanced Superconducting Test Accelerator (ASTA) at Fermilab is a new electron accelerator currently in the commissioning stage. In addition to testing superconducting accelerating cavities for future accelerators, it is foreseen to support a variety of Advanced Accelerator R&D (AARD) experiments. Producing the required electron bunches with the expected flexibility is challenging. The goal of this dissertation is to explore via numerical simulations new accelerator beamlines that can enable the advanced manipulation of electron bunches. The work especially includes the design of a low-energy bunch compressor and a study of transverse-to-longitudinal phase space exchangers.

  9. The new (g-2)mu experiment at Fermilab

    Energy Technology Data Exchange (ETDEWEB)

    Casey, Brendan C.K.; /Fermilab

    2009-01-01

    We present a proposal to measure the anomalous magnetic moment of the muon to 0.14 ppm precision. This new g-2 experiment will be hosted by Fermilab making use of minor modifications to the existing accelerator complex. The experiment will recycle several components from the previous g-2 experiment E821 hosted at Brookhaven. In particular, the entire storage ring and magnet will be shipped to Fermilab. We cover the motivation for the experiment and review the measurement technique. We then focus on a new in-vacuo straw tracking system planned for the new experiment and its impact on searching for a permanent electric dipole moment of the muon.

  10. Beam instrumentation for future high intense hadron accelerators at Fermilab

    Energy Technology Data Exchange (ETDEWEB)

    Wendt, M.; Hu, M.; Tassotto, G.; Thurman-Keup, R.; Scarpine, V.; Shin, S.; Zagel, J.; /Fermilab

    2008-08-01

    High intensity hadron beams of up to 2 MW beam power are a key element of new proposed experimental facilities at Fermilab. Project X, which includes a SCRF 8 GeV H{sup -} linac, will be the centerpiece of future HEP activities in the neutrino sector. After a short overview of this, and other proposed projects, we present the current status of the beam instrumentation activities at Fermilab with a few examples. With upgrades and improvements they can meet the requirements of the new beam facilities, however design and development of new instruments is needed, as shown by the prototype and conceptual examples in the last section.

  11. Research Activities at Fermilab for Big Data Movement

    Energy Technology Data Exchange (ETDEWEB)

    Mhashilkar, Parag; Wu, Wenji; Kim, Hyun W; Garzoglio, Gabriele; Dykstra, Dave; Slyz, Marko; DeMar, Phil

    2013-01-01

    Adaptation of 100GE Networking Infrastructure is the next step towards management of Big Data. Being the US Tier-1 Center for the Large Hadron Collider's (LHC) Compact Muon Solenoid (CMS) experiment and the central data center for several other large-scale research collaborations, Fermilab has to constantly deal with the scaling and wide-area distribution challenges of the big data. In this paper, we will describe some of the challenges involved in the movement of big data over 100GE infrastructure and the research activities at Fermilab to address these challenges.

  12. Bid for Fermilab an effort to keep U.S. a leader in particle physics

    CERN Multimedia

    Van, Jon

    2006-01-01

    During 20 years, the world's most powerful accelerator, the Tevatron, was in Fermilab, Batavia, Ill.; but next year, Fermilab will lose that title, as in CERN, a new machine will be brought into service. (1,5 pages)

  13. U. of C. to bid for Fermilab School hopes to bring new accelerator to site

    CERN Multimedia

    Van, Jon

    2006-01-01

    For more than 20 years, Fermilab in Batavia is home to the world's most powerful atomic particle accelerator, the Tevatron, but Fermilab will lose that title next year when a new machine in Switzerland and France fires up. (2 pages)

  14. Beam Diagnosis and Lattice Modeling of the Fermilab Booster

    Energy Technology Data Exchange (ETDEWEB)

    Huang, Xiaobiao [Indiana Univ., Bloomington, IN (United States)

    2005-09-01

    A realistic lattice model is a fundamental basis for the operation of a synchrotron. In this study various beam-based measurements, including orbit response matrix (ORM) and BPM turn-by-turn data are used to verify and calibrate the lattice model of the Fermilab Booster. In the ORM study, despite the strong correlation between the gradient parameters of adjacent magnets which prevents a full determination of the model parameters, an equivalent lattice model is obtained by imposing appropriate constraints. The fitted gradient errors of the focusing magnets are within the design tolerance and the results point to the orbit offsets in the sextupole field as the source of gradient errors. A new method, the independent component analysis (ICA) is introduced to analyze multiple BPM turn-by-turn data taken simultaneously around a synchrotron. This method makes use of the redundancy of the data and the time correlation of the source signals to isolate various components, such as betatron motion and synchrotron motion, from raw BPM data. By extracting clean coherent betatron motion from noisy data and separates out the betatron normal modes when there is linear coupling, the ICA method provides a convenient means to measure the beta functions and betatron phase advances. It also separates synchrotron motion from the BPM samples for dispersion function measurement. The ICA method has the capability to separate other perturbation signals and is robust over the contamination of bad BPMs. The application of the ICA method to the Booster has enabled the measurement of the linear lattice functions which are used to verify the existing lattice model. The transverse impedance and chromaticity are measured from turn-by-turn data using high precision tune measurements. Synchrotron motion is also observed in the BPM data. The emittance growth of the Booster is also studied by data taken with ion profile monitor (IPM). Sources of emittance growth are examined and an approach to cure

  15. Report on Workshop on Future Directions for Accelerator R&D at Fermilab

    Energy Technology Data Exchange (ETDEWEB)

    Shiltsev, V.; Church, M.; Spentzouris, P.; Chou, W.; /Fermilab

    2009-09-01

    Accelerator R&D has played a crucial role in enabling scientific discovery in the past century and will continue to play this role in the years to come. In the U.S., the Office of High Energy Physics of DOE's Office of Science is developing a plan for national accelerator R&D stewardship. Fermilab undertakes accelerator research, design, and development focused on superconducting radio-frequency (RF), superconducting magnet, beam cooling, and high intensity proton technologies. In addition, the Lab pursues comprehensive integrated theoretical concepts and simulations of complete future facilities on both the energy and intensity frontiers. At present, Fermilab (1) supplies integrated design concept and technology development for a multi-MW proton source (Project X) to support world-leading programs in long baseline neutrino and rare processes experiments; (2) plays a leading role in the development of ionization cooling technologies required for muon storage ring facilities at the energy (multi-TeV Muon Collider) and intensity (Neutrino Factory) frontiers, and supplies integrated design concepts for these facilities; and (3) carries out a program of advanced accelerator R&D (AARD) in the field of high quality beam sources, and novel beam manipulation techniques.

  16. Radiation damage limitations for the Fermilab Energy Doubler/Saver

    Energy Technology Data Exchange (ETDEWEB)

    Sanger, P.A.

    1977-01-01

    One important factor determining the lifetime of particle accelerators using superconducting magnets is the accumulated radiation damage of the magnet components. Using existing damage studies and a measured correlation between the radiation levels with the beam-off and the beam-on, a reasonable assessment of magnet lifetimes can be made. On the basis of this assessment it is expected that damage to the magnet conductor will not limit the magnet performance. The proper choice of polymeric materials used in the magnet is necessary to avoid frequent refurbishing of the magnets.

  17. CERN-Fermilab summer school is smash hit

    CERN Multimedia

    2006-01-01

    A new joint CERN-Fermilab summer school is proving more popular than the organizers ever imagined. Interest in the first CERN-Fermilab Hadron Collider Physics Summer School, to be held at Fermilab on 9-18 August, has proved far greater than anyone anticipated, with 300 applications for the planned 100 places. In response, the Organizing Committee, led by Fermilab's Jeffrey Appel and Bogdan Dobrescu, has had to increase the class size to nearly 150 participants. 'The success of this initiative, with an unexpectedly large number of applications, shows both the great anticipation that exists in the world for the start up of the LHC, and the need for greater educational support to enable the hundreds of young researchers to get ready for a full and prompt exploitation of the LHC data,' explains CERN's Michelangelo Mangano, who is a member of the International Advisory Committee (IAC) for the school. 'Fulfilling the expectations of the students will be a great challenge, which we are all eager to tackle.' Fabiol...

  18. Progress on the Fabric for Frontier Experiments Project at Fermilab

    Science.gov (United States)

    Box, Dennis; Boyd, Joseph; Dykstra, Dave; Garzoglio, Gabriele; Herner, Kenneth; Kirby, Michael; Kreymer, Arthur; Levshina, Tanya; Mhashilkar, Parag; Sharma, Neha

    2015-12-01

    The FabrIc for Frontier Experiments (FIFE) project is an ambitious, major-impact initiative within the Fermilab Scientific Computing Division designed to lead the computing model for Fermilab experiments. FIFE is a collaborative effort between experimenters and computing professionals to design and develop integrated computing models for experiments of varying needs and infrastructure. The major focus of the FIFE project is the development, deployment, and integration of Open Science Grid solutions for high throughput computing, data management, database access and collaboration within experiment. To accomplish this goal, FIFE has developed workflows that utilize Open Science Grid sites along with dedicated and commercial cloud resources. The FIFE project has made significant progress integrating into experiment computing operations several services including new job submission services, software and reference data distribution through CVMFS repositories, flexible data transfer client, and access to opportunistic resources on the Open Science Grid. The progress with current experiments and plans for expansion with additional projects will be discussed. FIFE has taken a leading role in the definition of the computing model for Fermilab experiments, aided in the design of computing for experiments beyond Fermilab, and will continue to define the future direction of high throughput computing for future physics experiments worldwide.

  19. Estimating the Transverse Impedance in the Fermilab Recycler

    Energy Technology Data Exchange (ETDEWEB)

    Ainsworth, Robert [Fermilab; Adamson, Philip [Fermilab; Burov, Alexey [Fermilab; Kourbanis, Ioanis [Fermilab; Yang, Ming-Jen [Fermilab

    2016-06-01

    Impedance could represent a limitation of running high intensity bunches in the Fermilab recycler. With high intensity upgrades foreseen, it is important to quantify the impedance. To do this, studies have been performed measuring the tune shift as a function of bunch intensity allowing the transverse impedance to be derived.

  20. Fermilab Test Beam Facility Annual Report. FY 2014

    Energy Technology Data Exchange (ETDEWEB)

    Brandt, A. [Fermi National Accelerator Lab. (FNAL), Batavia, IL (United States). et al.

    2015-01-01

    Fermilab Test Beam Facility (FTBF) operations are summarized for FY 2014. It is one of a series of publications intended to gather information in one place. In this case, the information concerns the individual experiments that ran at FTBF. Each experiment section was prepared by the relevant authors, and was edited for inclusion in this summary.

  1. Europeans quit, giving Fermilab edge in search for new particle

    CERN Multimedia

    Higgin, A G

    2000-01-01

    CERN has announced it will shut down the machine it has been using to find an elusive subatomic particle believed to be the key to understanding the universe. Fermilab has been upgrading its facilities for the last four years. It will start its Higgs bosons experiments in the spring (1/2 page).

  2. Neutrino production of dimuons at the Fermilab Tevatron

    Energy Technology Data Exchange (ETDEWEB)

    Shaevitz, M.H.; Arroyo, C.; Bachmann, K.T.; Bazarko, A.O.; Blair, R.E.; Bolton, T.; Foudis, C.; King, B.J.; Lefmann, W.C.; Leung, W.C.; Mishra, S.R.; Oltman, E.; Quintas, P.Z.; Rabinowitz, S.A.; Sciulli, F.; Seligman, W.G. (Columbia University, New York, NY 10027 (United States)); Merritt, F.S.; Oreglia, M.J.; Schumm, B.A. (University of Chicago, Chicago, IL 60637 (United States)); Bernstein, R.H.; Borcherding, F.; Fisk, H.E.; Lamm, M.J.; Marsh, W.; Merritt, K.W.B.; Schellman, H.; Yovanovitch, D.D. (Fermilab, Batavia, IL 60510 (United States)); Bodek, A.; Budd, H.S.; de Barbaro, P.; Sakamuto, W.K. (University of Rochester, Rochester, NY 14627 (United States)); Smith, W.H.; Kinnel, T.S.; Sandler, P.H. (University of Wisconsin, Madison, WI 53706 (United States))

    1992-02-01

    Neutrino and antineutrino interactions with two muons in the final state have been studied by the CCFR collaboration in the Fermilab Tevatron neutrino beam. The rate of neutrino- and antineutrino-induced prompt same-sign dimuon production in steel was measured using a sample of 220 [mu][sup [minus

  3. A search for disoriented chiral condensate at Fermilab

    Energy Technology Data Exchange (ETDEWEB)

    Bjorken, J.D.

    1996-10-01

    A small test/experiment at the Fermilab Collider which measures charged particle and photon multiplicities in the forward direction, {eta} {approx} 4.1, has been carried out, with the primary goal being the search for disoriented chiral condensate (DCC). The author describes the experiment and analysis methods, together with preliminary results.

  4. Experiences with the Fermilab HINS 325 MHz RFQ

    CERN Document Server

    Webber, R C; Madrak, R; Romanov, G; Scarpine, V; Steimel, J; Wildman, D

    2012-01-01

    The Fermilab High Intensity Neutrino Source program has built and commissioned a pulsed 325 MHz RFQ. The RFQ has successfully accelerated a proton beam at the RFQ design RF power. Experiences encountered during RFQ conditioning, including the symptoms and cause of a run-away detuning problem, and the first beam results are first reported.

  5. Fast Transverse Instability and Electron Cloud Measurements in Fermilab Recycler

    Energy Technology Data Exchange (ETDEWEB)

    Eldred, Jeffery; Adamson, Philip; Capista, David; Eddy, Nathan; Kourbanis, Ioanis; Morris, Denton; Thangaraj, Jayakar; Yang, Ming-Jen; Zwaska, Robert; Ji, Yichen

    2015-03-01

    A new transverse instability is observed that may limit the proton intensity in the Fermilab Recycler. The instability is fast, leading to a beam-abort loss within two hundred turns. The instability primarily affects the first high-intensity batch from the Fermilab Booster in each Recycler cycle. This paper analyzes the dynamical features of the destabilized beam. The instability excites a horizontal betatron oscillation which couples into the vertical motion and also causes transverse emittance growth. This paper describes the feasibility of electron cloud as the mechanism for this instability and presents the first measurements of the electron cloud in the Fermilab Recycler. Direct measurements of the electron cloud are made using a retarding field analyzer (RFA) newly installed in the Fermilab Recycler. Indirect measurements of the electron cloud are made by propagating a microwave carrier signal through the beampipe and analyzing the phase modulation of the signal. The maximum betatron amplitude growth and the maximum electron cloud signal occur during minimums of the bunch length oscillation.

  6. High brightness gamma-ray production at Fermilab Accelerator Science and Technology (FAST) facility

    Science.gov (United States)

    Mihalcea, D.; Jacobson, B.; Murokh, A.; Piot, P.; Ruan, J.

    2017-03-01

    Electron beams with energies of the order of a few 100's of MeV and low transverse emittance, in combination with powerful infrared lasers, allow for the production of high quality gamma rays through Inverse Compton Scattering (ICS). At Fermilab Accelerator Science and Technology (FAST) facility, a 300 MeV beam will be used to generate gamma rays with maximum photon energies of up to ˜1.5 MeV and brightness of the order of 1021 photons/[s-(mm-mrad)2- 0.1%BW]. Due to the low electron-beam transverse emittance, the relative bandwidth of the scattered radiation is expected to be ≤ 1%. A key challenge toward the production of high radiation dose and brightness is to enhance the energy of the infrared 3 ps laser pulses to the joule level. In this contribution, we present the plans for the experimental setup, along with comprehensive numerical simulations of the ICS process.

  7. Channeling collimation studies at the Fermilab Tevatron

    Energy Technology Data Exchange (ETDEWEB)

    Carrigan, Richard A.; Drozhdin, Alexandr I.; Fliller, Raymond P., III; Mokhov, Nikolai V.; Shiltsev, Vladimir D.; Still, Dean A.; /Fermilab

    2006-08-01

    Bent crystal channeling has promising advantages for accelerator beam collimation at high energy hadron facilities such as the LHC. This significance has been amplified by several surprising developments including multi-pass channeling and the observation of enhanced deflections over the entire arc of a bent crystal. The second effect has been observed both at RHIC and recently at the Tevatron. Results are reported showing channeling collimation of the circulating proton beam halo at the Tevatron. Parenthetically, this study is the highest energy proton channeling experiment ever carried out. The study is continuing.

  8. Feasibility of the Utilization of BNCT in the Fast Neutron Therapy Beam at Fermilab

    Science.gov (United States)

    Langen, Katja; Lennox, Arlene J.; Kroc, Thomas K.; DeLuca, Jr., Paul M.

    2000-06-01

    The Neutron Therapy Facility at Fermilab has treated cancer patients since 1976. Since then more than 2,300 patients have been treated and a wealth of clinical information accumulated. The therapeutic neutron beam at Fermilab is produced by bombarding a beryllium target with 66 MeV protons. The resulting continuous neutron spectrum ranges from thermal to 66 MeV in neutron energy. It is clear that this spectrum is not well suited for the treatment of tumors with boron neutron capture therapy (BNCT) only However, since this spectrum contains thermal and epithermal components the authors are investigating whether BNCT can be used in this beam to boost the tumor dose. There are clinical scenarios in which a selective tumor dose boost of 10 - 15% could be clinically significant. For these cases the principal treatment would still be fast neutron therapy but a tumor boost could be used either to deliver a higher dose to the tumor tissue or to reduce the dose to the normal healthy tissue while maintaining the absorbed dose level in the tumor tissue.

  9. 2nd CERN-Fermilab Hadron Collider Physics Summer School, June 6-15, 2007, CERN

    CERN Multimedia

    2007-01-01

    The school web site is http://cern.ch/hcpss with links to the academic programme and the application procedure. The APPLICATION DEADLINE IS 9 MARCH 2007. The results of the selection process will be announced shortly thereafter. The goal of the CERN-Fermilab Hadron Collider Physics Summer Schools is to offer students and young researchers in high energy physics a concentrated syllabus on the theory and experimental challenges of hadron collider physics. The first school in the series, held last summer at Fermilab, covered extensively the physics at the Tevatron collider experiments. The second school, to be held at CERN, will focus on the technology and physics of the LHC experiments. Emphasis will be placed on the first years of data-taking at the LHC and on the discovery potential of the programme. The series of lectures will be supported by in-depth discussion sessions and will include the theory and phenomenology of hadron collisions, discovery physics topics, detector and analysis techniques and tools...

  10. Identificacion De Muones En El Experimento E831 De Fermilab

    CERN Document Server

    Mirles-Muñiz, A

    1999-01-01

    The E831 experiment at Fermilab obtained a huge sample of production and decays of "charm quark". An important part of the analysis of this sample are the methods used for the identification of the decays products. We developed a method to increase the identification efficiency for muons with momentum lower than 10Gev/c for experiment E831 at Fermilab. The method keeps under control the misidentification (misid) error for particles that are not muons (mostly pions) making it possible to obtain cleaner signals for the study of particles that decay into muons. We also studied a new method to lower the misid by identifying the decays of $\\pi\\sp\\pm\\to\\mu\\sp\\pm+\

  11. Mechanical stability study of capture cavity II at Fermilab

    Energy Technology Data Exchange (ETDEWEB)

    McGee, M.W.; Pischalnikov, Y.; /Fermilab

    2007-06-01

    Problematic resonant conditions at both 18 Hz and 180 Hz were encountered and identified early during the commissioning of Capture Cavity II (CC2) at Fermilab. CC2 consists of an external vacuum vessel and a superconducting high gradient (close to 25 MV/m) 9-cell 1.3 GHz niobium cavity, transported from DESY for use in the A0 Photoinjector at Fermilab. An ANSYS modal finite element analysis (FEA) was performed in order to isolate the source of the resonance and directed the effort towards stabilization. Using a fast piezoelectric tuner to excite (or shake) the cavity at different frequencies (from 5 Hz to 250 Hz) at a low-range sweep for analysis purposes. Both warm (300 K) and cold (1.8 K) accelerometer measurements at the cavity were taken as the resonant ''fix'' was applied. FEA results, cultural and technical noise investigation, and stabilization techniques are discussed.

  12. The New Muon g₋2 experiment at Fermilab

    Energy Technology Data Exchange (ETDEWEB)

    Venanzoni, Graziano [Frascati

    2016-06-02

    There is a long standing discrepancy between the Standard Model prediction for the muon g-2 and the value measured by the Brookhaven E821 Experiment. At present the discrepancy stands at about three standard deviations, with a comparable accuracy between experiment and theory. Two new proposals -- at Fermilab and J-PARC -- plan to improve the experimental uncertainty by a factor of 4, and it is expected that there will be a significant reduction in the uncertainty of the Standard Model prediction. I will review the status of the planned experiment at Fermilab, E989, which will analyse 21 times more muons than the BNL experiment and discuss how the systematic uncertainty will be reduced by a factor of 3 such that a precision of 0.14 ppm can be achieved.

  13. Lattice QCD Production on a Commodity Cluster at Fermilab

    Institute of Scientific and Technical Information of China (English)

    D.Holmgren; P.Mackenzie; 等

    2001-01-01

    Large scale QCD Monte Carlo calculations have typically been performed on either commercial supercomputers or specially built massively parallel computers such as Fermilab's ACPMAPS.Commodity clusters equipped with high performance networking equipment present an attractive alternative,achieving superior performance to price ratios and offering clear upgrade paths.We describe the construction and results to date of Fermilab's prototype production cluster,which consists of 80 dual Pentium Ⅲsystems interconnected with Myrinet networking hardware.We describe software tools and techniques we have developed for operating system installation and administration.We discuss software optimizations using the Pentium's built-in parallel computation facilities(SSE),Finally,we present short and long term plans for the construction of larger facilities.

  14. Cryomdoule Test Stand Reduced-Magnetic Support Design at Fermilab

    Energy Technology Data Exchange (ETDEWEB)

    McGee, Mike [Fermilab; Chandrasekaran, Saravan Kumar [Fermilab; Crawford, Anthony [Fermilab; Harms, Elvin [Fermilab; Leibfritz, Jerry [Fermilab; Wu, Genfa [Fermilab

    2016-06-01

    In a partnership with SLAC National Accelerator Laboratory (SLAC) and Jefferson Lab, Fermilab will assemble and test 17 of the 35 total 1.3 GHz cryomodules for the Linac Coherent Light Source II (LCLS-II) Project. These devices will be tested at Fermilab's Cryomodule Test Facility (CMTF) within the Cryomodule Test Stand (CMTS-1) cave. The problem of magnetic pollution became one of major issues during design stage of the LCLS-II cryomodule as the average quality factor of the accelerating cavities is specified to be 2.7 x 10¹⁰. One of the possible ways to mitigate the effect of stray magnetic fields and to keep it below the goal of 5 mGauss involves the application of low permeable materials. Initial permeability and magnetic measurement studies regarding the use of 316L stainless steel material indicated that cold work (machining) and heat affected zones from welding would be acceptable.

  15. Impedances and beam stability issues of the Fermilab recycler ring

    Energy Technology Data Exchange (ETDEWEB)

    Ng, King-Yuen

    1996-04-01

    The Fermilab Recycler Ring (permanent magnets) will be built on top of the Fermilab Main Injector sharing the same tunnel; its main function is to recycle the anti-protons after a store in the Tevatron and to provide storage for them after after accumulation and cooling in the Accumulator. Estimates of coupling impedances show domination by space charge. Examination of longitudinal instabilities shows that microwave instability will not occur if there are only N = 2.53 x 10{sup 12} anti-protons in the beam. Longitudinal coupling-bunch instability during injection stacking does not appear possible because of long bunch lengths/short bunch gaps and lack of sharp resonances. Transverse instability, on the other hand, cannot be Landau damped by the momentum spread in the beam, but it can be cured by a small spread in the betatron tunes (either from space charge or an octupole).

  16. New Phenomena; 2, Recent Results from the Fermilab Tevatron

    CERN Document Server

    Toback, D

    2000-01-01

    The CDF and D\\O collaborations continue to search for new physics using more than 100~pb$^{-1}$ of \\xxbar{p} collisions at $\\sqrt{s}=1.8$ TeV collected at the Fermilab Tevatron. We present recent results from both experiments on R-parity violating Supersymmetry and $Z'$/Technicolor production with $ee$ and \\xxbar{t} final states. In addition we introduce Sherlock, a new quasi-model-independent search strategy.

  17. GammeV: results and future plans at Fermilab

    Energy Technology Data Exchange (ETDEWEB)

    Wester, William; /Fermilab

    2010-05-01

    GammeV is an axion-like particle photo regeneration experiment that employs the light shining through a wall technique. We obtain limits on the coupling of a photon to an axion-like particle that extend previous limits for both scalar and pseudoscalar particles in the milli-eV mass range. We have reconfigured our apparatus to search for chameleon particles. We describe the current results and future plans for similar activities at Fermilab.

  18. Resistive Wall Growth Rate Measurements in the Fermilab Recycler

    Energy Technology Data Exchange (ETDEWEB)

    Ainsworth, R. [Fermilab; Adamson, P. [Fermilab; Burov, A. [Fermilab; Kourbanis, I. [Fermilab

    2016-10-05

    Impedance could represent a limitation of running high intensity beams in the Fermilab recycler. With high intensity upgrades foreseen, it is important to quantify the impedance. To do this,studies have been performed measuring the growth rate of presumably the resistive wall instability. The growth rates at varying intensities and chromaticities are shown. The measured growth rates are compared to ones calculated with the resistive wall impedance.

  19. Fermilab Testbeam Facility Annual Report – FY 2016

    Energy Technology Data Exchange (ETDEWEB)

    Albrow, M. G. [Fermi National Accelerator Lab. (FNAL), Batavia, IL (United States). et al.

    2016-11-01

    This Technical Memorandum (TM) summarizes the Fermilab Test Beam operations for FY 2015. It is one of a series of annual publications intended to gather information in one place. In this case, the information concerns the individual experiments that ran at FTBF and are listed in Table TB-1. Each experiment section was prepared by the relevant authors, and was edited for inclusion in this summary.

  20. Muon Beam at the Fermilab Test Beam Area

    CERN Document Server

    Denisov, Dmitri; Lukić, Strahinja; Ujić, Predrag

    2016-01-01

    The intensities and profiles of the muon beam behind the beam dump of the Fermilab test beam area when the facility is running in the "pion" beam mode are measured and summarized in this note. This muon beam with momenta in the range 10 - 50 GeV/c provides an opportunity to perform various measurements in parallel with other users of the test beam area.

  1. Model of e-cloud instability in the Fermilab Recycler

    CERN Document Server

    Balbekov, V

    2015-01-01

    Simple model of electron cloud is developed in the paper to explain e-cloud instability of bunched proton beam in the Fermilab Recycler. The cloud is presented as an immobile snake in strong vertical magnetic field. The instability is treated as an amplification of the bunch injection errors from the batch head to its tail. Nonlinearity of the e-cloud field is taken into account. Results of calculations are compared with experimental data demonstrating good correlation.

  2. Model of E-Cloud Instability in the Fermilab Recycler

    Energy Technology Data Exchange (ETDEWEB)

    Balbekov, V. [Fermi National Accelerator Lab. (FNAL), Batavia, IL (United States)

    2015-06-24

    Simple model of electron cloud is developed in the paper to explain e-cloud instability of bunched proton beam in the Fermilab Recycler. The cloud is presented as an immobile snake in strong vertical magnetic field. The instability is treated as an amplification of the bunch injection errors from the batch head to its tail. Nonlinearity of the e-cloud field is taken into account. Results of calculations are compared with experimental data demonstrating good correlation.

  3. Fermilab Testbeam Facility Annual Report – FY 2015

    Energy Technology Data Exchange (ETDEWEB)

    Albrow, M. G. [Fermi National Accelerator Lab. (FNAL), Batavia, IL (United States)

    2015-11-01

    This Technical Memorandum (TM) summarizes the Fermilab Test Beam operations for FY 2015. It is one of a series of annual publications intended to gather information in one place. In this case, the information concerns the individual experiments that ran at FTBF and are listed in Table TB-1. Each experiment section was prepared by the relevant authors, and was edited for inclusion in this summary.

  4. Neutrino production of dimuons at the Fermilab Tevatron

    Energy Technology Data Exchange (ETDEWEB)

    Smith, W.H.; Kinnel, T.S.; Sandler, P.H.; Arroyo, C.; Bachmann, K.T.; Bazarko, A.O.; Blair, R.E.; Foudas, C.; King, B.J.; Lefmann, W.C.; Leung, W.C.; Mishra, S.R.; Oltman, E.; Quintas, P.Z.; Rabinowitz, S.A.; Sciulli, F.; Seligman, W.G.; Shaevitz, M.H.; Merritt, F.S.; Oreglia, M.J.; Schumm, B.A.; Bernstein, R.H.; Borcherding, F.; Fisk, H.E.; Lamm, M.J.; Marsh, W.; Merritt, K.W.B.; Schellman, H.; Yovanovitch, D.D.; Bodek, A.; Budd, H.S.; Barbaro, P. de; Sakumoto, W.K. (Univ. of Wisconsin, Madison, WI (United States) Columbia Univ., New York, NY (United States) Univ. of Chicago, IL (United States) Fermilab, Batavia, IL (United States) Univ. of Rochester, NY (United States))

    1993-04-01

    Neutrino and antineutrino interactions with two muons in the final state have been studied by the CCFR collaboration in the Fermilab Tevatron neutrino beam. The rate of neutrino- and antineutrino-induced prompt same-sign dimuon production in steel was measured using a sample of 220 [mu][sup -] [mu][sup -] events and 15 [mu][sup +] [mu][sup +] events with P[sub [mu

  5. Charm Baryon and Hyperon Physics at Fermilab's SELEX Spectrometer

    Science.gov (United States)

    Ramberg, Erik J.

    1997-04-01

    Fermilab experiment 781, or SELEX, is starting to take data, with the goal of observing on the order of 1 million reconstructed charm decays. A variety of targets and beams will yield significant new information on charm production. The detector has good efficiency in the forward direction, which will enhance the yield of charm baryon decays. Several topics in hyperon physics can be addressed as well with this spectrometer.

  6. Installation Progress at the PIP-II Injector Test at Fermilab

    Energy Technology Data Exchange (ETDEWEB)

    Baffes, C. [Fermilab; Alvarez, M. [Fermilab; Andrews, R. [Fermilab; Chen, A. [Fermilab; Czajkowski, J. [Fermilab; Derwent, P. [Fermilab; Edelen, J. [Fermilab; Hanna, B. [Fermilab; Hartsell, B. [Fermilab; Kendziora, K. [Fermilab; Mitchell, D. [Fermilab; Prost, L. [Fermilab; Scarpine, V. [Fermilab; Shemyakin, A. [Fermilab; Steimel, J. [Fermilab; Zuchnik, T. [Fermilab; Edelen, A. [Colorado State U.

    2016-10-04

    A CW-compatible, pulsed H- superconducting linac “PIP-II” is being planned to upgrade Fermilab's injection complex. To validate the front-end concept, a test acceler-ator (The PIP-II Injector Test, formerly known as "PXIE") is under construction. The warm part of this accelerator comprises a 10 mA DC, 30 keV H- ion source, a 2 m-long Low Energy Beam Transport (LEBT), a 2.1 MeV Radio Frequency Quadrupole (RFQ) capable of operation in Con-tinuous Wave (CW) mode, and a 10 m-long Medium En-ergy Beam Transport (MEBT). The paper will report on the installation of the RFQ and the first sections of the MEBT and related mechanical design considerations.

  7. Demonstration of Transverse-to-Longitudinal Emittance Exchange at the Fermilab Photoinjector

    Energy Technology Data Exchange (ETDEWEB)

    Johnson, A.; Ruan, J.; Edwards, H.; Koeth, T.; Lumpkin, A.; Piot, P.; Santucci, J.; Sun, Y.-E; Thurman-Keup, R.; /Fermilab /Northern Illinois U.

    2010-05-01

    Phase space manipulation techniques within two degrees of freedom are foreseen to enhance the performances of next generation accelerators such as high-energy physics colliders and accelerator based light sources. At the Fermilab A0 photoinjector, a proof-of-principle experiment to demonstrate the exchange of the transverse and longitudinal emittances is ongoing. The emittance exchange beamline consists of a 3.9 GHz normal conducting deflecting mode cavity flanked by two doglegs. Electron bunches with charges of 250 pC and energy of 14.3 MeV are routinely sent through the exchanger. In this paper, we report our latest results on the demonstration of emittance exchange obtained with significantly improved beam diagnostics. We also compare our experimental results with a simple numerical model.

  8. The SciBooNE neutrino experiment at Fermilab: an overview

    Science.gov (United States)

    Tanaka, Hide-Kazu

    2008-04-01

    The precise measurement of neutrino-nucleus cross-sections in the few GeV energy range is an essential ingredient in the interpretation of neutrino oscillation experiments. For the measurement of the cross-sections, a new experiment, SciBooNE, has been proposed and approved at Fermilab. From June 2007, SciBooNE has started operation and data taking. The experiment is carried out by installing the K2K SciBar detector in the FNAL Booster Neutrino Beamline. The marriage of a high rate, low energy neutrino beam and the fine granularity of SciBar detector is unique for precise measurements of neutrino cross sections since both the beamline and detectors have been built and operated successfully. We will present an overview of the SciBooNE physics program with emphasis on unique elements of the detector systems that allow for identification and measurement of several types of neutrino interactions.

  9. Toward a cold electron beam in the Fermilab's Electron Cooler

    Energy Technology Data Exchange (ETDEWEB)

    Vitali S. Tupikov et al.

    2004-05-12

    Fermilab is developing a high-energy electron cooling system to cool 8.9-GeV/c antiprotons in the Recycler ring [1]. Cooling of antiprotons requires a round electron beam with a small angular spread propagating through 20-m long cooling section with a kinetic energy of 4.3 MeV. To confine the electron beam tightly and to keep its transverse angles below 0.1 mrad, the cooling section will be immersed into a solenoidal field of 50-150G. This paper describes the technique of measuring and adjusting the magnetic field quality in the cooling section and presents preliminary results of beam quality measurements in the cooler prototype.

  10. Check Mate! The CERN vs Fermilab Chess Competition

    CERN Multimedia

    2001-01-01

    7,000 kilometers and a 7 hour time difference had no impact upon the enthusiasm that pervaded the chess competition between CERN and Fermilab. In spite of the computer era, one game was played over a real wooden board.  Tomas Davidek and Irwin Gaines took advantage of Irwin's momentary presence at CERN. Several chess servers span the world and they are used by all sorts of people from many walks of life. However in mid-November on freechess.org there was a sudden influx of physicists as CERN and Fermilab faced off in their first online chess match. While technically a competition, the aim of the match was above all a 'friendly' contest between the two sister labs.  Usually, in serious chess competitions, each team plays in its strongest available constellation at the moment of the match.  But both CERN and Fermilab did quite the opposite and made getting all interested players involved the top priority. 'This was all put together for the purpose of having good fun' said Tibor Sim...

  11. Fermilab Muon Campus g-2 Cryogenic Distribution Remote Control System

    CERN Document Server

    Pei, L; Klebaner, A; Soyars, W; Bossert, R

    2015-01-01

    The Muon Campus (MC) is able to measure Muon g-2 with high precision and comparing its value to the theoretical prediction. The MC has four 300 KW screw compressors and four liquid helium refrigerators. The centerpiece of the Muon g-2 experiment at Fermilab is a large, 50-foot-diameter superconducting muon storage ring. This one-of-a-kind ring, made of steel, aluminum and superconducting wire, was built for the previous g-2 experiment at Brookhaven. Due to each subsystem has to be far away from each other and be placed in the distant location, therefore, Siemens Process Control System PCS7-400, Automation Direct DL205 & DL05 PLC, Synoptic and Fermilab ACNET HMI are the ideal choices as the MC g-2 cryogenic distribution real-time and on-Line remote control system. This paper presents a method which has been successfully used by many Fermilab distribution cryogenic real-time and On-Line remote control systems.

  12. Fermilab Muon Campus g-2 Cryogenic Distribution Remote Control System

    Energy Technology Data Exchange (ETDEWEB)

    Pei, L.; Theilacker, J.; Klebaner, A.; Soyars, W.; Bossert, R.

    2015-11-05

    The Muon Campus (MC) is able to measure Muon g-2 with high precision and comparing its value to the theoretical prediction. The MC has four 300 KW screw compressors and four liquid helium refrigerators. The centerpiece of the Muon g-2 experiment at Fermilab is a large, 50-foot-diameter superconducting muon storage ring. This one-of-a-kind ring, made of steel, aluminum and superconducting wire, was built for the previous g-2 experiment at Brookhaven. Due to each subsystem has to be far away from each other and be placed in the distant location, therefore, Siemens Process Control System PCS7-400, Automation Direct DL205 & DL05 PLC, Synoptic and Fermilab ACNET HMI are the ideal choices as the MC g-2 cryogenic distribution real-time and on-Line remote control system. This paper presents a method which has been successfully used by many Fermilab distribution cryogenic real-time and On-Line remote control systems.

  13. Progress Towards Doubling the Beam Power at Fermilab's Accelerator Complex

    Energy Technology Data Exchange (ETDEWEB)

    Kourbanis, Ioanis [Fermilab

    2014-07-01

    After a 16 month shutdown to reconfigure the Fermilab Accelerators for high power operations, the Fermilab Accelerator Complex is again providing beams for numerous Physics Experiments. By using the Recycler to slip stack protons while the Main Injector is ramping, the beam power at 120 GeV can reach 700 KW, a factor of 2 increase. The progress towards doubling the Fermilab's Accelerator complex beam power will be presented.

  14. Beam Tests of Beampipe Coatings for Electron Cloud Mitigation in Fermilab Main Injector

    CERN Document Server

    Backfish, Michael; Tan, Cheng Yang; Zwaska, Robert

    2015-01-01

    Electron cloud beam instabilities are an important consideration in virtually all high-energy particle accelerators and could pose a formidable challenge to forthcoming high-intensity accelerator upgrades. Dedicated tests have shown beampipe coatings dramatically reduce the density of electron cloud in particle accelerators. In this work, we evaluate the performance of titanium nitride, amorphous carbon, and diamond-like carbon as beampipe coatings for the mitigation of electron cloud in the Fermilab Main Injector. Altogether our tests represent 2700 ampere-hours of proton operation spanning five years. Three electron cloud detectors, retarding field analyzers, are installed in a straight section and allow a direct comparison between the electron flux in the coated and uncoated stainless steel beampipe. We characterize the electron flux as a function of intensity up to a maximum of 50 trillion protons per cycle. Each beampipe material conditions in response to electron bombardment from the electron cloud and ...

  15. The Tevatron Tripler How to Upgrade the Fermilab Tevatron for the Higgs Boson and Supersymmetry

    CERN Document Server

    McIntyre, P; Arnowitt, Richard Lewis; Dutta, B; Kamon, T; Sattarov, A

    1999-01-01

    Recent advances in superconductor properties and superconducting magnet technology have made it possible to build cost-effective, high-performance dipoles with a field of 12 Tesla - 3 times the field strength of the Tevatron. Such magnets could be used to upgrade Fermilab's collider in its existing tunnel to a collision energy $\\sqrt s$= 6 TeV and luminosity {$\\cal L$}$>$ 10$^{33}$ cm$^{-2}$s$^{-1}$. We have calculated the parton luminosities for quark-antiquark and gluon-gluon scattering for the Tevatron, the Tripler, and LHC. In most models of the Higgs field and supersymmetry, the Tripler would have a high likelihood to discover many of the predicted particle states.

  16. Muon g-2 at Fermilab: Magnetic Field Preparations for a New Physics Search

    Science.gov (United States)

    Kiburg, Brendan; Muon g-2 Collaboration

    2016-03-01

    The Muon g - 2 experiment at Fermilab will measure the muon's anomalous magnetic moment, aμ, to 140 parts-per-billion. Modern calculations for aμ differ from the current experimental value by 3.6 σ. Our effort will test this discrepancy by collecting 20 times more muons and implementing several upgrades to the well-established storage ring technique. The experiment utilizes a superconducting electromagnet with a 7-meter radius and a uniform 1.45-Tesla magnetic field to store ~104 muons at a time. The times, energies, and locations of the subsequent decay positrons are determined and combined with magnetic field measurements to extract aμ. This talk will provide a brief snapshot of the current discrepancy. The role and requirements of the precision magnetic field will be described. Recent progress to establish the required magnetic field uniformity will be highlighted.

  17. Status and plans for a SRF accelerator test faciliy at Fermilab

    CERN Document Server

    Leibfritz, J; Carlson, K; Chase, B; Church, M; Harms, E; Klebaner, A; Kucera, M; Lackey, S; Martinez, A; Nagaitsev, S; Nobrega, L; Piot, P; Reid, J; Wendt, M; Wesseln, S

    2012-01-01

    A superconducting RF accelerator test facility is being constructed at Fermilab. The existing New Muon Lab (NML) building is being converted for this facility. The accelerator will consist of an electron gun, injector, beam acceleration section consisting of 3 TTF-type or ILC-type cryomodules, multiple downstream beam lines for testing diagnostics and conducting various beam tests, and a high power beam dump. When completed, it is envisioned that this facility will initially be capable of generating an 810 MeV electron beam with ILC beam intensity. Expansion plans of the facility are underway that will provide the capability to upgrade the accelerator to a total beam energy of 1.5 GeV. In addition to testing accelerator components, this facility will be used to test RF power equipment, instrumentation, LLRF and controls systems for future SRF accelerators such as the ILC and Project-X. This paper describes the current status and overall plans for this facility.

  18. Status and Plans for an SRF Accelerator Test Facility at Fermilab

    CERN Document Server

    Church, M; Nagaitsev, S

    2012-01-01

    A superconducting RF accelerator test facility is currently under construction at Fermilab. The accelerator will consist of an electron gun, 40 MeV injector, beam acceleration section consisting of 3 TTF-type or ILC-type cryomodules, and multiple downstream beam lines for testing diagnostics and performing beam experiments. With 3 cryomodules installed this facility will initially be capable of generating an 810 MeV electron beam with ILC beam intensity. The facility can accommodate up to 6 cryomodules for a total beam energy of 1.5 GeV. This facility will be used to test SRF cryomodules under high intensity beam conditions, RF power equipment, instrumentation, and LLRF and controls systems for future SRF accelerators such as the ILC and Project-X. This paper describes the current status and overall plans for this facility.

  19. Using the Fermilab proton source for a muon to electron conversion experiment

    Energy Technology Data Exchange (ETDEWEB)

    Ankenbrandt, C.; Bogert, D.; DeJongh, F.; Geer, S.; McGinnis, D.; Neuffer, D.; Popovic, M.; Prebys, E.; /Fermilab

    2006-11-01

    The Fermilab proton source is capable of providing 8 GeV protons for both the future long-baseline neutrino program (NuMI), and for a new program of low energy muon experiments. In particular, if the 8 GeV protons are rebunched and then slowly extracted into an external beamline, the resulting proton beam would be suitable for a muon-to-electron conversion experiment designed to improve on the existing sensitivity by three orders of magnitude. We describe a scheme for the required beam manipulations. The scheme uses the Accumulator for momentum stacking, and the Debuncher for bunching and slow extraction. This would permit simultaneous operation of the muon program with the future NuMI program, delivering 10{sup 20} protons per year at 8 GeV for the muon program at the cost of a modest ({approx}10%) reduction in the protons available to the neutrino program.

  20. The Fermilab Main Injector: high intensity operation and beam loss control

    CERN Document Server

    Brown, Bruce C; Capista, David; Chou, Weiren; Kourbanis, Ioanis; Morris, Denton K; Seiya, Kiyomi; Wu, Guan Hong; Yang, Ming-Jen

    2013-01-01

    From 2005 through 2012, the Fermilab Main Injector provided intense beams of 120 GeV protons to produce neutrino beams and antiprotons. Hardware improvements in conjunction with improved diagnostics allowed the system to reach sustained operation at ~400 kW beam power. Transmission was very high except for beam lost at or near the 8 GeV injection energy where 95% beam transmission results in about 1.5 kW of beam loss. By minimizing and localizing loss, residual radiation levels fell while beam power was doubled. Lost beam was directed to either the collimation system or to the beam abort. Critical apertures were increased while improved instrumentation allowed optimal use of available apertures. We will summarize the improvements required to achieve high intensity, the impact of various loss control tools and the status and trends in residual radiation in the Main Injector.

  1. Logic and control module for the Fermilab booster beam damper

    Energy Technology Data Exchange (ETDEWEB)

    Sandberg, B.R.

    1977-01-01

    A logic and control module is included in the electronic system of the booster superdamper. This module produces a 9-bit digital word that controls the delay of beam bunch position information in the Fermilab booster synchrotron so that it arrives at the damping electrodes at the same time as the bunch of beam to be corrected. This delay word generator also has an output feature that only allows delay time decreases as the booster synchrotron frequency program increases monotonically. Such a feature guards against low-index incidental FM from affecting the delay computations.

  2. The Advanced Superconducting Test Accelerator at Fermilab: Science Program

    Energy Technology Data Exchange (ETDEWEB)

    Piot, Philippe [Fermilab; Harms, Elvin [Fermilab; Henderson, Stuart [Fermilab; Leibfritz, Jerry [Fermilab; Nagaitsev, Sergei [Fermilab; Shiltsev, Vladimir [Fermilab; Valishev, Alexander [Fermilab

    2014-07-01

    The Advanced Superconducting Test Accelerator (ASTA) currently in commissioning phase at Fermilab is foreseen to support a broad range of beam-based experiments to study fundamental limitations to beam intensity and to develop novel approaches to particle-beam generation, acceleration and manipulation. ASTA incorporates a superconducting radiofrequency (SCRF) linac coupled to a flexible high-brightness photoinjector. The facility also includes a small-circumference storage ring capable of storing electrons or protons. This report summarizes the facility capabilities, and provide an overview of the accelerator-science researches to be enabled.

  3. Electron cloud and space charge effects in the Fermilab Booster

    Energy Technology Data Exchange (ETDEWEB)

    Ng, K.Y.; /Fermilab

    2007-06-01

    The stable region of the Fermilab Booster beam in the complex coherent-tune-shift plane appears to have been shifted far away from the origin by its intense space charge making Landau damping appear impossible. Simulations reveal a substantial buildup of electron cloud in the whole Booster ramping cycle, both inside the unshielded combined-function magnets and the beam pipes joining the magnets, whenever the secondary-emission yield (SEY) is larger than {approx}1.6. The implication of the electron-cloud effects on the space charge and collective instabilities of the beam is investigated.

  4. Beam Position Monitor Electronics Upgrade for Fermilab Switchyard

    CERN Document Server

    Stabile, P; Fitzgerald, J A; Liu, N; Morris, D K; Prieto, P S; Seraphin, J P

    2015-01-01

    The beam position monitor (BPM) system for Fermilab Switchyard (SY) provides the position, intensity and integrated intensity of the 53.10348 MHz RF bunched resonant extracted beam from the Main Injector over 4 seconds of spill. The total beam intensity varies from 1x10^11 to 1x10^13 protons. The spill is measured by stripline beam postion monitors and resonant circuit. The BPMs have an external resonant circuit tuned to 53.10348 MHz. The corresponding voltage signal out of the BPM has been estimated to be between -110 dBm and -80 dBm.

  5. Status of the LHC inner triplet quadrupole program at Fermilab

    CERN Document Server

    Andreev, N; Bauer, P; Bossert, R; Brandt, J; Carson, J; Caspi, S; Chichili, D R; Chiesa, L; Darve, C; Di Marco, J; Fehér, S; Ghosh, A; Glass, H; Huang, Y; Kerby, J S; Lamm, M J; Markarov, A A; McInturff, A D; Nicol, T H; Nobrega, A; Novitski, I; Ogitsu, T; Orris, D; Ozelis, J P; Page, T; Peterson, T; Rabehl, Roger Jon; Robotham, W; Sabbi, G L; Scanlan, R M; Schlabach, P; Sylvester, C D; Strait, J B; Tartaglia, M; Tompkins, J C; Velev, G V; Yadav, S; Zlobin, A V

    2001-01-01

    Fermilab, in collaboration with LBNL and BNL, is developing a quadrupole for installation in the interaction region inner triplets of the LHC. This magnet is required to have an operating gradient of 215 T/m across a 70 mm coil bore, and operates in superfluid helium at 1.9 K. A 2 m magnet program addressing mechanical, magnetic, quench protection, and thermal issues associated with the design was completed earlier this year, and production of the first full length, cryostatted prototype magnet is underway. This paper summarizes the conclusions of the 2 m program, and the design and status of the first full-length prototype magnet. (11 refs).

  6. High Gradient Tests of the Fermilab SSR1 Cavity

    CERN Document Server

    Khabiboulline, T; Gonin, I; Madrak, R; Melnychuk, O; Ozelis, J; Pischalnikov, Y; Ristori, L; Rowe, A; Sergatskov, D A; Sukhanov, A; Terechkine, I; Wagner, R; Webber, R; Yakovlev, V

    2013-01-01

    In Fermilab we are build and tested several superconducting Single Spoke Resonators (SSR1, \\beta=0.22) which can be used for acceleration of low beta ions. Fist two cavities performed very well during cold test in Vertical Test Station at FNAL. One dressed cavity was also tested successfully in Horizontal Test Station. Currently we are building 8 cavity cryomodule for PIXIE project. Additional 10 cavities were manufactured in the industry and on-going cold test results will be presented in this poster.

  7. The muon EDM in the g-2 experiment at Fermilab

    Directory of Open Access Journals (Sweden)

    Chislett Rebecca

    2016-01-01

    Full Text Available The observation of a muon electric dipole moment would provide an additional source of CP violation which is required to explain the matter anti-matter asymmetry in the universe. The current experimental limit, |dμ| < 1.9 × 10−19e·cm, was set by the BNL E821 experiment. This paper discusses how the new experiment at Fermilab, E989 [3], aims to decrease this by two orders of magnitude down to 10−21e·cm.

  8. HyperCP at Fermilab -- A status report

    Energy Technology Data Exchange (ETDEWEB)

    M. J. Longo et al.

    2001-10-23

    The primary purpose of the HyperCP experiment at Fermilab is to test CP in hyperon decays by comparing the alpha parameters for {Xi}{sup -} and {Xi}{sup +} decays in the decay sequence: {Xi}{sup -} {yields} {pi} + {Lambda}{sup 0}, {Lambda}{sup 0} {yields} {pi}{sup -} + p. In addition, we can test CP in charged kaon decays by comparing the slopes of the Dalitz plot for K{sup +} and K{sup -} decays. They are also looking at rare decay modes of charged kaons and hyperons, particularly those involving muons.

  9. Development of a high density pixel multichip module at Fermilab

    Energy Technology Data Exchange (ETDEWEB)

    Cardoso, G. [and others

    2001-03-08

    At Fermilab, both pixel detector multichip module and sensor hybridization are being developed for the BTeV experiment. The BTeV pixel detector is based on a design relying on a hybrid approach. With this approach, the readout chip and the sensor array are developed separately and the detector is constructed by flip-chip mating the two together. This method offers maximum flexibility in the development process, choice of fabrication technologies, and the choice of sensor material. This paper presents strategies to handle the required data rate and performance results of the first prototype and detector hybridization.

  10. Overview of the Fermilab Muon g-2 Experiment

    Energy Technology Data Exchange (ETDEWEB)

    Kim, SeungCheon [Cornell U., Phys. Dept.

    2015-01-01

    The measurement of the anomalous magnetic moment of muon provides a precision test of the Standard Model. The Brookhaven muon g-2 experiment (E821) measured the muon magnetic moment anomaly with 0.54 ppm precision, a more than 3 deviation from the Standard Model predictions, spurring speculation about the possibility of new physics. The new g-2 experiment at Fermilab (E989) will reduce the combined statistical and systematic error of the BNL experiment by a factor of 4. An overview of the new experiment is described in this article.

  11. Inverse muon decay,. nu. sub. mu. +e yields. mu. sup - +. nu. sub e , at the Fermilab Tevatron

    Energy Technology Data Exchange (ETDEWEB)

    Mishra, S.R.; Bachmann, K.T.; Blair, R.E.; Foudas, C.; King, B.J.; Lefmann, W.C.; Leung, W.C.; Oltman, E.; Quintas, P.Z.; Rabinowitz, S.A.; Sciulli, F.J.; Seligman, B.; Shaevitz, M.H.; Smith, W.H. (Columbia Univ., New York (USA)); Merritt, F.S.; Oreglia, M.J.; Schumm, B.A. (Chicago Univ., IL (USA)); Bernstein, R.H.; Borcherding, F.; Fisk, H.E.; Lamm, M.J.; Marsh, W.; Merritt, K.W.B.; Schellman, H.; Yovanovitch, D.D. (Fermi National Accelerator Lab., Batavia, IL (USA)); Bodek, A.; Budd, H.S.; De Barbaro, P.; Sakumoto, W.K. (Rochester Univ., NY (USA))

    1990-12-06

    We report an improved measurement of the inverse muon decay process, v{sub {mu}}+e{yields}{mu}{sup -}+v{sub e}, at the Fermilab Tevatron. The rate of this reaction with respect to the v{sub {mu}}-N charged current interaction is measured to be (0.1245{plus minus}0.0057(stat.){plus minus}0.0031(sys.))x10{sup -2}. The measurement confirms the standard model predictions for the Lorentz structure of the weak current, the helicity of the neutrino, and the energy dependence of the cross section. (orig.).

  12. Fermilab Plan with a High Intensity Proton Source

    CERN Document Server

    CERN. Geneva

    2008-01-01

    Fermilab, the US’s primary laboratory for particle physics, proposes a plan to maintain leadership for the laboratory and U.S. particle physics in the quest to discover the fundamental nature of the physical universe in the decades ahead. Discoveries of the physics of the Quantum Universe would come from powerful next generation particle accelerators. Fermilab’s Tevatron, currently the world’s most powerful particle accelerator, will shut down by the end of this decade after the LHC at CERN begins operations. At the LHC, U.S. physicists will join scientists from around the world in the exploration of the physics of the Terascale. To follow the LHC, physicists propose the International Linear Collider, a globally funded and operated accelerator to build on LHC results and illuminate Terascale science. Fermilab will work to host the proposed ILC in the U.S. as soon as possible, maintaining the nation’s historic leadership of frontier particle physics. Should events postpone the start of the ILC, Ferm...

  13. Transport of DESY 1.3 GHZ Cryomodule at Fermilab

    Energy Technology Data Exchange (ETDEWEB)

    McGee, M.W.; Arkan, T.; Borissov, E.; Leibfritz, J.; Schappert, W.; /Fermilab; Barbanotti, S.; /LASA, Segrate /INFN, Milan

    2009-05-01

    In an exchange of technology agreement, Deutsches Elektron-Synchrotron (DESY) Laboratory in Hamburg Germany has provided a 1.3 GHz cryomodule 'kit' to Fermilab. The cryomodule components (qualified dressed cavities, cold mass parts, vacuum vessel, etc.) sent from Germany in pieces were assembled at Fermilab's Cryomodule Assembly Facility (CAF). The cavity string was assembled at CAF-MP9 Class 10 cleanroom and then transported to CAF-ICB cold mass assembly area via a flatbed air ride truck. Finite Element Analysis (FEA) studies were implemented to define location of instrumentation for initial cold mass transport, providing modal frequencies and shapes. Subsequently, the fully assembled cryomodule was transported to the SRF Accelerator Test Facility at New Muon Lab (NML). Internal geophones (velocity sensors) were attached during the coldmass assembly for transport (warm) and operational (cold) measurements. A description of the isolation system that maintained alignment during transport and protected fragile components is provided. Shock and vibration measurement results of each transport and modal analysis are discussed.

  14. Status report on the survey and alignment activities at Fermilab

    Energy Technology Data Exchange (ETDEWEB)

    Oshinowo, Babatunde O' Sheg; /Fermilab

    2004-10-01

    The surveying and alignment activities at Fermilab are the responsibility of the Alignment and Metrology Group. The Group supports and interacts with physicists and engineers working on any particular project, from the facility construction phase to the installation and final alignment of components in the beam line. One of the goals of the Alignment and Metrology Group is to upgrade the old survey networks in the tunnel using modern surveying technology, such as the Laser Tracker for tunnel networks and GPS for the surface networks. According to the job needs, all surveys are done with Laser Trackers and/or Videogrammetry (V-STARS) systems for spatial coordinates; optical and electronic levels are used for elevations, Gyro-Theodolite for azimuths, Mekometer for distances and GPS for baseline vectors. The group has recently purchased two new API Laser Trackers, one INCA3 camera for the V-Stars, and one DNA03 digital level. This report presents the projects and major activities of the Alignment and Metrology Group at Fermilab during the period of 2000 to 2004. It focuses on the most important current projects, especially those that have to be completed during the currently scheduled three-month shutdown period. Future projects, in addition to the status of the current projects, are also presented.

  15. Proton Beam Intensity Upgrades for the Neutrino Program at Fermilab

    Energy Technology Data Exchange (ETDEWEB)

    Bhat, C. M. [Fermilab

    2016-12-15

    Fermilab is committed to upgrading its accelerator complex towards the intensity frontier to pursue HEP research in the neutrino sector and beyond. The upgrade has two steps: 1) the Proton Improvement Plan (PIP), which is underway, has its primary goal to start providing 700 kW beam power on NOvA target by the end of 2017 and 2) the foreseen PIP–II will replace the existing LINAC, a 400 MeV injector to the Booster, by an 800 MeV superconducting LINAC by the middle of next decade, with output beam intensity from the Booster increased significantly and the beam power on the NOvA target increased to <1.2 MW. In any case, the Fermilab Booster is going to play a very significant role for the next two decades. In this context, we have recently developed and commissioned an innovative beam injection scheme for the Booster called "early injection scheme". This scheme is already in operation and has a potential to increase the Booster beam intensity from the PIP design goal by a considerable amount with a reduced beam emittance and beam loss. In this paper, we will present results from our experience from the new scheme in operation, current status and future plans.

  16. RF Test Results from Cryomodule 1 at the Fermilab SRF Beam Test Facility

    CERN Document Server

    Harms, E; Chase, B; Cullerton, E; Hocker, A; Jensen, C; Joireman, P; Klebaner, A; Kubicki, T; Kucera, M; Legan, A; Leibfritz, J; Martinez, A; McGee, M; Nagaitsev, S; Nezhevenko, O; Nicklaus, D; Pfeffer, H; Pischalnikov, Y; Prieto, P; Reid, J; Schappert, W; Tupikov, V; Varghese, P; Branlard, J

    2012-01-01

    Powered operation of Cryomodule 1 (CM-1) at the Fermilab SRF Beam Test Facility began in late 2010. Since then a series of tests first on the eight individual cavities and then the full cryomodule have been performed. We report on the results of these tests and lessons learned which will have an impact on future module testing at Fermilab.

  17. Fermilab Booster Transition Crossing Simulations and Beam Studies

    Energy Technology Data Exchange (ETDEWEB)

    Bhat, C. M. [Fermilab; Tan, C. Y. [Fermilab

    2016-01-01

    The Fermilab Booster accelerates beam from 400 MeV to 8 GeV at 15 Hz. In the PIP (Proton Improvement Plan) era, it is required that Booster deliver 4.2 x $10^{12}$ protons per pulse to extraction. One of the obstacles for providing quality beam to the users is the longitudinal quadrupole oscillation that the beam suffers from right after transition. Although this oscillation is well taken care of with quadrupole dampers, it is important to understand the source of these oscillations in light of the PIP II requirements that require 6.5 x $10^{12}$ protons per pulse at extraction. This paper explores the results from machine studies, computer simulations and solutions to prevent the quadrupole oscillations after transition.

  18. Nonlinear effects at the Fermilab Recycler e-cloud instability

    CERN Document Server

    Balbekov, V

    2016-01-01

    Theoretical analysis of e-cloud instability in the Fermilab Recycler is represented in the paper. The e-cloud in strong magnetic field is treated as a set of immovable snakes each being initiated by some proton bunch. It is shown that the instability arises because of injection errors of the bunches which increase in time and from the batch to its bunch being amplified by the e-cloud electric field. The particular attention is given to nonlinear additions to the cloud field. It is shown that the nonlinearity is the main factor which restricts growth of the bunch amplitude. Possible role of the field free parts of the Recycler id discussed as well. Results of calculations are compared with experimental data demonstrating good correlation.

  19. Electron Cloud Measurements in Fermilab Main Injector and Recycler

    Energy Technology Data Exchange (ETDEWEB)

    Eldred, Jeffrey Scott [Indiana U.; Backfish, M. [Fermilab; Tan, C. Y. [Fermilab; Zwaska, R. [Fermilab

    2015-06-01

    This conference paper presents a series of electron cloud measurements in the Fermilab Main Injector and Recycler. A new instability was observed in the Recycler in July 2014 that generates a fast transverse excitation in the first high intensity batch to be injected. Microwave measurements of electron cloud in the Recycler show a corresponding depen- dence on the batch injection pattern. These electron cloud measurements are compared to those made with a retard- ing field analyzer (RFA) installed in a field-free region of the Recycler in November. RFAs are also used in the Main Injector to evaluate the performance of beampipe coatings for the mitigation of electron cloud. Contamination from an unexpected vacuum leak revealed a potential vulnerability in the amorphous carbon beampipe coating. The diamond-like carbon coating, in contrast, reduced the electron cloud signal to 1% of that measured in uncoated stainless steel beampipe.

  20. Vibrational measurement for commissioning SRF Accelerator Test Facility at Fermilab

    CERN Document Server

    McGee, M W; Martinez, A; Pischalnikov, Y; Schappert, W

    2012-01-01

    The commissioning of two cryomodule components is underway at Fermilab's Superconducting Radio Frequency (SRF) Accelerator Test Facility. The research at this facility supports the next generation high intensity linear accelerators such as the International Linear Collider (ILC), a new high intensity injector (Project X) and other future machines. These components, Cryomodule #1 (CM1) and Capture Cavity II (CC2), which contain 1.3 GHz cavities are connected in series in the beamline and through cryogenic plumbing. Studies regarding characterization of ground motion, technical and cultural noise continue. Mechanical transfer functions between the foundation and critical beamline components have been measured and overall system displacement characterized. Baseline motion measurements given initial operation of cryogenic, vacuum systems and other utilities are considered.

  1. Mechanical Stability Study for Integrable Optics Test Accelerator at Fermilab

    Energy Technology Data Exchange (ETDEWEB)

    McGee, Mike [Fermilab; Andrews, Richard [Fermilab; Carlson, Kermit [Fermilab; Leibfritz, Jerry [Fermilab; Nobrega, Lucy [Fermilab; Valishev, Alexander [Fermilab

    2016-07-01

    The Integrable Optics Test Accelerator (IOTA) is proposed for operation at Fermilab. The goal of IOTA is to create practical nonlinear accelerator focusing systems with a large frequency spread and stable particle motion. The IOTA is a 40 m circumference, 150 MeV (e-), 2.5 MeV (p⁺) diagnostic test ring. A heavy low frequency steel floor girder is proposed as the primary tier for IOTA device component support. Two design lengths; (8) 4 m and (2) 2.8 m long girders with identical cross section completely encompass the ring. This study focuses on the 4 m length girder and the development of a working prototype. Hydrostatic Level Sensor (HLS), temperature, metrology and fast motion measurements characterize the anticipated mechanical stability of the IOTA ring.

  2. A New Beam Injection Scheme for the Fermilab Booster

    CERN Document Server

    Bhat, C M

    2015-01-01

    A new beam injection scheme is proposed for the Fermilab Booster to increase beam brightness. The beam is injected on the deceleration part of the sinusoidal magnetic ramp and capture is started immediately after the injection. During the entire capture process we impose Pdot=0 in a changing B field. Beam dynamics simulations clearly show that this method is very efficient with no longitudinal beam emittance dilution and no beam loss. As a consequence of preserved emittance, the required RF power on a typical Booster cycle can be reduced by ~30% as compared with the scheme in current operation. Further, we also propose snap bunch rotation at extraction to reduce dP/P of the beam to improve the slip-stacking efficiency in MI/RR.

  3. Vibrational Stability of SRF Accelerator Test Facility at Fermilab

    Energy Technology Data Exchange (ETDEWEB)

    McGee, M.W.; Volk, J.T.; /Fermilab

    2009-05-01

    Recently developed, the Superconducting Radio Frequency (SRF) Accelerator Test Facilities at Fermilab support the International Linear Collider (ILC), High Intensity Neutrino Source (HINS), a new high intensity injector (Project X) and other future machines. These facilities; Meson Detector Building (MDB) and New Muon Lab (NML) have very different foundations, structures, relative elevations with respect to grade level and surrounding soil composition. Also, there are differences in the operating equipment and their proximity to the primary machine. All the future machines have stringent operational stability requirements. The present study examines both near-field and ambient vibration in order to develop an understanding of the potential contribution of near-field sources (e.g. compressors, ultra-high and standard vacuum equipment, klystrons, modulators, utility fans and pumps) and distant noise sources to the overall system displacements. Facility vibration measurement results and methods of possible isolation from noise sources are presented and discussed.

  4. Vibrational measurement for commissioning SRF Accelerator Test Facility at Fermilab

    Energy Technology Data Exchange (ETDEWEB)

    McGee, M.W.; Leibfritz, J.; Martinez, A.; Pischalnikov, Y.; Schappert, W.; /Fermilab

    2011-03-01

    The commissioning of two cryomodule components is underway at Fermilab's Superconducting Radio Frequency (SRF) Accelerator Test Facility. The research at this facility supports the next generation high intensity linear accelerators such as the International Linear Collider (ILC), a new high intensity injector (Project X) and other future machines. These components, Cryomodule No.1 (CM1) and Capture Cavity II (CC2), which contain 1.3 GHz cavities are connected in series in the beamline and through cryogenic plumbing. Studies regarding characterization of ground motion, technical and cultural noise continue. Mechanical transfer functions between the foundation and critical beamline components have been measured and overall system displacement characterized. Baseline motion measurements given initial operation of cryogenic, vacuum systems and other utilities are considered.

  5. Mechanical stability study for Integrable Optics Test Accelerator at Fermilab

    CERN Document Server

    McGee, M W; Carlson, K; Leibfritz, J; Nobrega, L; Valishev, A

    2016-01-01

    The Integrable Optics Test Accelerator (IOTA) is proposed for operation at Fermilab. The goal of IOTA is to create practical nonlinear accelerator focusing systems with a large frequency spread and stable particle motion. The IOTA is a 40 m circumference, 150 MeV (e-), 2.5 MeV (p+) diagnostic test ring. A heavy low frequency steel floor girder is proposed as the primary tier for IOTA device component support. Two design lengths; (8) 3.96 m and (2) 3.1 m long girders with identical cross section completely encompass the ring. This study focuses on the 3.96 m length girder and the development of a working prototype. Hydrostatic Level Sensor (HLS), temperature, metrology and fast motion measurements characterize the anticipated mechanical stability of the IOTA ring.

  6. New Pulsed Orbit Bump Magnets for the Fermilab Booster Synchrotron

    CERN Document Server

    Lackey, James; John, Carson; Kashikhin, Vladimir; Makarov, Alexander; Prebys, Eric

    2005-01-01

    The beam from the Fermilab Linac is injected onto a bump in the closed orbit of the Booster Synchrotron where a carbon foil strips the electrons from the Linac’s negative ion hydrogen beam. Although the Booster itself runs at 15Hz, heat dissipation in the orbit bump magnets has been one limitation to the fraction of the cycles that can be used for beam. New, 0.28T pulsed window frame dipole magnets have been constructed that will fit into the same space as the old ones, run at the full repetition rate of the Booster, and provide a larger bump to allow a cleaner injection orbit. The new magnets use a high saturation flux density Ni-Zn ferrite in the yoke rather than laminated steel. The presented magnetic design includes two and three dimensional magnetic field calculations with eddy currents and ferrite nonlinear effects.

  7. Forward Neutron Production at the Fermilab Main Injector

    CERN Document Server

    Nigmanov, T S; Longo, M J; Akgun, U; Aydin, G; Baker, W; Barnes, P D; Jr.,; Bergfeld, T; Bujak, A; Carey, D; Dukes, E C; Duru, F; Feldman, G J; Godley, A; Gülmez, E; Gunaydin, Y O; Graf, N; Gustafson, H R; Gutay, L; Hartouni, E; Hanlet, P; Heffner, M; Johnstone, C; Kaplan, D M; Kamaev, O; Klay, J; Kostin, M; Lange, D; Lebedev, A; Lu, L C; Materniak, C; Messier, M D; Meyer, H; Miller, D E; Mishra, S R; Nelson, K S; Norman, A; Onel, Y; Paley, J M; Park, H K; Penzo, A; Peterson, R J; Raja, R; Rosenfeld, C; Rubin, H A; Seun, S; Solomey, N; Soltz, R; Swallow, E; Torun, Y; Wilson, K; Wright, D; Wu, K

    2010-01-01

    We have measured cross sections for forward neutron production from a variety of targets using proton beams from the Fermilab Main Injector. Measurements were performed for proton beam momenta of 58 GeV/c, 84 GeV/c, and 120 GeV/c. The cross section dependence on the atomic weight (A) of the targets was found to vary as $A^(alpha)$ where $\\alpha$ is $0.46\\pm0.06$ for a beam momentum of 58 GeV/c and 0.54$\\pm$0.05 for 120 GeV/c. The cross sections show reasonable agreement with FLUKA and DPMJET Monte Carlos. Comparisons have also been made with the LAQGSM Monte Carlo.

  8. Two decades of prairie restoration at Fermilab, Batavia, Illinois

    Energy Technology Data Exchange (ETDEWEB)

    Betz, R.F. [Northeastern Illinois Univ., Chicago, IL (United States); Lootens, R.J.; Becker, M.K. [Fermi National Accelerator Lab., Batavia, IL (United States)

    1996-12-31

    Successional Restoration is the method being used to restore the prairie at Fermilab on the former agricultural fields. This involves an initial planting, using aggressive species that have wide ecological tolerances which will grow well on abandoned agricultural fields. Collectively, these species are designated as the prairie matrix. The species used for this prairie matrix compete with and eventually eliminate most weedy species. They also provide an adequate fuel load capable of sustaining a fire within a few years after a site has been initially planted. Associated changes in the biological and physical structure of the soil help prepare the way for the successful introduction of plants of the later successional species. Only after the species of the prairie matrix are well established, is the species diversity increased by introducing species with narrower ecological tolerances. These species are thus characteristic of the later successional stages.

  9. Nonlinear Effects at the Fermilab Recycler e-Cloud Instability

    Energy Technology Data Exchange (ETDEWEB)

    Balbekov, V. [Fermi National Accelerator Lab. (FNAL), Batavia, IL (United States)

    2016-06-10

    Theoretical analysis of e-cloud instability in the Fermilab Recycler is represented in the paper. The e-cloud in strong magnetic field is treated as a set of immovable snakes each being initiated by some proton bunch. It is shown that the instability arises because of injection errors of the bunches which increase in time and from bunch to bunch along the batch being amplified by the e-cloud electric field. The particular attention is given to nonlinear additions to the cloud field. It is shown that the nonlinearity is the main factor which restricts growth of the bunch amplitude. Possible role of the field free parts of the Recycler id discussed as well. Results of calculations are compared with experimental data demonstrating good correlation.

  10. 1.3 GHz superconducting RF cavity program at Fermilab

    Energy Technology Data Exchange (ETDEWEB)

    Ginsburg, C.M.; Arkan, T.; Barbanotti, S.; Carter, H.; Champion, M.; Cooley, L.; Cooper, C.; Foley, M.; Ge, M.; Grimm, C.; Harms, E.; /Fermilab

    2011-03-01

    At Fermilab, 9-cell 1.3 GHz superconducting RF (SRF) cavities are prepared, qualified, and assembled into cryomodules (CMs) for Project X, an International Linear Collider (ILC), or other future projects. The 1.3 GHz SRF cavity program includes targeted R&D on 1-cell 1.3 GHz cavities for cavity performance improvement. Production cavity qualification includes cavity inspection, surface processing, clean assembly, and one or more cryogenic low-power CW qualification tests which typically include performance diagnostics. Qualified cavities are welded into helium vessels and are cryogenically tested with pulsed high-power. Well performing cavities are assembled into cryomodules for pulsed high-power testing in a cryomodule test facility, and possible installation into a beamline. The overall goals of the 1.3 GHz SRF cavity program, supporting facilities, and accomplishments are described.

  11. Fermilab Booster Transition Crossing Simulations and Beam Studies

    Energy Technology Data Exchange (ETDEWEB)

    Bhat, C. M. [Fermilab; Tan, C. Y. [Fermilab

    2016-01-01

    The Fermilab Booster accelerates beam from 400 MeV to 8 GeV at 15 Hz. In the PIP (Proton Improvement Plan) era, it is required that Booster deliver 4.2 x $10^{12}$ protons per pulse to extraction. One of the obstacles for providing quality beam to the users is the longitudinal quadrupole oscillation that the beam suffers from right after transition. Although this oscillation is well taken care of with quadrupole dampers, it is important to understand the source of these oscillations in light of the PIP II requirements that require 6.5 x $10^{12}$ protons per pulse at extraction. This paper explores the results from machine studies, computer simulations and solutions to prevent the quadrupole oscillations after transition.

  12. The Fermilab Short-Baseline Program: MicroBooNE

    Energy Technology Data Exchange (ETDEWEB)

    Schukraft, Anne [Fermi National Accelerator Lab. (FNAL), Batavia, IL (United States)

    2016-01-01

    The MicroBooNE experiment is the first of three detectors of the Fermilab short-baseline neutrino program that started operation in the Booster Neutrino Beamline in October 2015 [1]. When completed, the three-detector lineup will explore short-baseline neutrino oscillations and will be sensitive to sterile neutrino scenarios. MicroBooNE in itself is now starting its own physics program, with the measurement of neutrino-argon cross sections in the ~1GeV range being one of its main physics goals. These proceedings describe the status of the detector, the start of operation, and the automated reconstruction of the first neutrino events observed with MicroBooNE. Prospects for upcoming cross section measurements are also given.

  13. Correlations in bottom quark pair production at the Fermilab Tevatron

    Energy Technology Data Exchange (ETDEWEB)

    Galyardt, Jason Edward [Carnegie Mellon Univ., Pittsburgh, PA (United States)

    2009-01-01

    I present an analysis of b$\\bar{b}$ pair production correlations, using dimuon-triggered data collected with the Collider Detector at Fermilab (CDF) in p$\\bar{p}$ collisions at √s = 1.96 TeV during Run II of the TeVatron. The leading order (LO) and next-to-leading order (NLO) b quark production processes are discriminated by the angular and momentum correlations between the b{bar b} pair. Track-level jets containing a muon are classified by b quark content and used to estimate the momentum vector of the progenitor b quark. The theoretical distributions given by the MC@NLO event generator are tested against the data.

  14. Proton Injection into the Fermilab Integrable Optics Test Accelerator (IOTA)

    Energy Technology Data Exchange (ETDEWEB)

    Prebys, Eric [Fermilab; Antipov, Sergey [Chicago U.; Piekarz, Henryk [Fermilab; Valishev, A. [Fermilab

    2015-06-01

    The Integrable Optics Test Accelerator (IOTA) is an experimental synchrotron being built at Fermilab to test the concept of non-linear "integrable optics". These optics are based on a lattice including non-linear elements that satisfies particular conditions on the Hamiltonian. The resulting particle motion is predicted to be stable but without a unique tune. The system is therefore insensitive to resonant instabilities and can in principle store very intense beams, with space charge tune shifts larger than those which are possible in conventional linear synchrotrons. The ring will initially be tested with pencil electron beams, but this poster describes the ultimate plan to install a 2.5 MeV RFQ to inject protons, which will produce tune shifts on the order of unity. Technical details will be presented, as well as simulations of protons in the ring.

  15. Proton Injection into the Fermilab Integrable Optics Test Accelerator (IOTA)

    Energy Technology Data Exchange (ETDEWEB)

    Prebys, Eric [Fermilab; Antipov, Sergey [Chicago U.; Piekarz, Henryk [Fermilab; Valishev, A. [Fermilab

    2015-06-01

    The Integrable Optics Test Accelerator (IOTA) is an experimental synchrotron being built at Fermilab to test the concept of non-linear "integrable optics". These optics are based on a lattice including non-linear elements that satisfies particular conditions on the Hamiltonian. The resulting particle motion is predicted to be stable but without a unique tune. The system is therefore insensitive to resonant instabilities and can in principle store very intense beams, with space charge tune shifts larger than those which are possible in conventional linear synchrotrons. The ring will initially be tested with pencil electron beams, but this poster describes the ultimate plan to install a 2.5 MeV RFQ to inject protons, which will produce tune shifts on the order of unity. Technical details will be presented, as well as simulations of protons in the ring.

  16. High Brightness Gamma-Ray Production at Fermilab Accelerator Science and Technology (FAST) Facility

    Energy Technology Data Exchange (ETDEWEB)

    Mihalcea, Daniel [Northern Illinois U.; Jacobson, B. [RadiaBeam Tech.; Murokh, A. [RadiaBeam Tech.; Piiot, P. [Northern Illinois U.; Ruan, J. [Fermilab

    2016-10-10

    Electron beams with energies of the order of a few 100’s of MeV and low transverse emittance, in combination with powerful infrared lasers, allow for the production of high quality gamma rays through Inverse Compton Scattering (ICS). At Fermilab Accelerator Science and Technology (FAST) facility, a 300 MeV beam will be used to generate gamma rays with maximum photon energies of up to ∼ 1.5 MeV and brightness of the order of 1021 photons/[s-(mm-mrad)2- 0.1%BW]. Due to the low electron-beam transverse emittance, the relative bandwidth of the scattered radiation is expected to be ≤ 1%. A key challenge toward the production of high radiation dose and brightness is to enhance the energy of the infrared 3 ps laser pulses to the joule level. In this contribution, we present the plans for the experimental setup, along with comprehensive numerical simulations of the ICS process.

  17. Development of a machine protection system for the Superconducting Beam Test Facility at Fermilab

    Energy Technology Data Exchange (ETDEWEB)

    Warner, A.; Carmichael, L.; Church, M.; Neswold, R.; /Fermilab

    2011-09-01

    Fermilab's Superconducting RF Beam Test Facility currently under construction will produce electron beams capable of damaging the acceleration structures and the beam line vacuum chambers in the event of an aberrant accelerator pulse. The accelerator is being designed with the capability to operate with up to 3000 bunches per macro-pulse, 5Hz repetition rate and 1.5 GeV beam energy. It will be able to sustain an average beam power of 72 KW at the bunch charge of 3.2 nC. Operation at full intensity will deposit enough energy in niobium material to approach the melting point of 2500 C. In the early phase with only 3 cryomodules installed the facility will be capable of generating electron beam energies of 810 MeV and an average beam power that approaches 40 KW. In either case a robust Machine Protection System (MPS) is required to mitigate effects due to such large damage potentials. This paper will describe the MPS system being developed, the system requirements and the controls issues under consideration.

  18. Measurement of the inclusive b$\\bar{b}$ jet cross section at the Collidor Detector at Fermilab

    Energy Technology Data Exchange (ETDEWEB)

    Gajjar, Anant [Univ. of Liverpool (United Kingdom)

    2005-09-01

    Data collected by the Fermilab CDF detector are used to measure the inclusive b$\\bar{b}$ jet production cross section in proton-antiproton collisions at a center-of-mass energy of 1.96 TeV. Vertices displaced from the primary interaction point (secondary vertices) are a signature for long-lived decay and are used to identify jets originating from b quarks. An event sample containing two jets, each having an identified secondary vertex, is used. The jets are required to be within the pseudo-rapidity region |η| < 1.2. One of the jets is required to have a transverse energy greater than 30 GeV and the other jet is required to have a transverse energy greater than 20 GeV. The results are compared to Leading Order (Pythia and Herwig) and Next to Leading Order (MC@NLO) predictions.

  19. Task A, High Energy Physics Program experiment and theory: Task B, High Energy Physics Program numerical simulation of quantum field theories. Progress report, July 1, 1991--June 30, 1992

    Energy Technology Data Exchange (ETDEWEB)

    1992-12-01

    The effort of the experimental group has been concentrated on the CERN ALEPH and FERMILAB D0 collider experiments and completion of two fixed target experiments. The BNL fixed target experiment 771 took the world`s largest sample of D(1285) and E/iota(1420) events, using pion, kaon and antiproton beams. Observing the following resonances: 0{sup {minus_plus}} [1280], 1{sup {plus}{plus}} [1280], 0{sup {minus_plus}} [1420], 0{sup {minus_plus}} [1470], 1{sup {plus_minus}} [1415]. The Fermilab fixed target experiment E711, dihadron production in pN interactions at 800 GeV, completed data reduction and analysis. The atomic weight dependence, when parameterized as {sigma}(A) = {sigma}{sub o}A{sup {alpha}}, yielded a value of {alpha} = 1.043 {plus_minus} 0.011 {plus_minus} .012. The cross section per nucleon and angular distributions was also measured as a function of two particle mass and agrees very well with QCD calculations. The D0 Fermilab Collider Experiment E740 began its first data taking run in April 1992. The CERN collider experiment ALEPH at LEP is presently taking more data. The Z mass and width, the couplings to the upper and lower components of the hadronic isospin doublet, forward-backward asymmetries of hadronic events, and measurements of the fragmentation process have been made. The effort of detector development for the SSC has substantially increased with particular emphasis on scintillators, both in fibers and plates. Work has continued on higher-order QCD calculations using the Monte Carlo technique developed previously. This year results for WW, ZZ, WZ, and {sub {gamma}{gamma}} production have been published. A method for incorporating parton showering in such calculations was developed and applied to W production. The multicanonical Monte Carlo algorithm has stood up to the promises anticipated; it was used in multicanonical simulations of first-order phase transitions and for spin glass systems.

  20. Aspects of operation of the Fermilab Booster RF System at very high intensity

    Energy Technology Data Exchange (ETDEWEB)

    Griffin, J.E.

    1996-04-01

    The purpose of this note is to examine the likelihood and problems associated with operation of the Fermilab Booster rf systems as it presently exists, or with only minor modifications, at beam intensity approaching 5x10{sup 13} protons per pulse. Beam loading of the rf system at such an intensity will be one order of magnitude larger than at the present operation level. It is assumed that the injection energy will be raised to 1 GeV with no major increase in the injected energy spread (longitudinal emittance). The beam will be bunched by adiabatic capture as is presently done although it may be necessary to remove one or two bunches prior to acceleration to allow clean extraction at 8 GeV. At very high intensity the charge in each bunch will interact with the vacuum chamber impedance (and with itself) in such a way as to reduce in some cases the bucket area generated by the rf voltage. Because this decrement must be made up by changes in the rf ring voltage if the required bucket area is to be maintained, these effects must be taken into consideration in any analysis of the capability of the rf system to accelerate very large intensity.

  1. Electron cooling for the Fermilab recycler: Present concept and provisional parameters

    Energy Technology Data Exchange (ETDEWEB)

    Nagaitsev, S. [Fermi National Accelerator Lab., Batavia, IL (United States)

    1997-09-01

    In all scenarios of the possible Tevatron upgrades, luminosity is essentially proportional to the number of antiprotons. Thus, a tenfold increase in luminosity could be achieved by putting five times more protons on the antiproton production target and gaining an additional factor of two from recycling antiprotons left over from the previous store. Stacking and storing ten times more antiprotons puts an unbearable burden on the stochastic cooling system of the existing Accumulator Ring. Thus, one is led to consider an additional stage of antiproton storage the so called Recycler Ring. Electron cooling of the 8 GeV antiprotons in the Recycler could provide an attractive way around the problems of large stacks. Such a system would look much like the IUCF proposal to cool 12 GeV protons in the SSC Medium Energy Booster. Although electron cooling has now become a routine tool in many laboratories, its use has been restricted to lower energy accelerators (< 500 MeV/nucleon). An R&D program is currently underway at Fermilab to extend electron cooling technology to the GeV range. This paper describes the electron cooling system design as well as the Recycler ring parameters required to accommodate this system.

  2. Measurement of the Top Quark Mass with the Collider Detector at Fermilab

    CERN Document Server

    Affolder, T; Akopian, A M; Albrow, Michael G; Amaral, P; Amendolia, S R; Amidei, D; Anikeev, K; Antos, J; Apollinari, G; Arisawa, T; Asakawa, T; Ashmanskas, W J; Atac, Muzaffer; Azfar, F; Azzi-Bacchetta, P; Bacchetta, N; Bailey, M W; Bailey, S; De Barbaro, P; Barbaro-Galtieri, A; Barnes, Virgil E; Barnett, B A; Barone, M; Bauer, G; Bedeschi, F; Belforte, S; Bellettini, Giorgio; Bellinger, J; Benjamin, D; Bensinger, J; Beretvas, A; Bergé, J P; Berryhill, J W; Bevensee, B; Bhatti, A A; Binkley, M; Bisello, D; Blair, R E; Blocker, C A; Bloom, K; Blumenfeld, B; Blusk, S R; Bocci, A; Bodek, Arie; Bokhari, W; Bölla, G; Bonushkin, Yu; Bortoletto, Daniela; Boudreau, J; Brandl, A; van den Brink, S C; Bromberg, C; Brozovic, M; Bruner, N L; Buckley-Geer, E; Budagov, Yu A; Budd, H S; Burkett, K; Busetto, G; Byon-Wagner, A; Byrum, K L; Calafiura, P; Campbell, M; Carithers, W C; Carlson, J; Carlsmith, D; Cassada, J A; Castro, A; Cauz, D; Cerri, A; Chan, A W; Chang, P S; Chang, P T; Chapman, J; Chen, C; Chen, Y C; Cheng, M T; Chertok, M; Chiarelli, G; Chirikov-Zorin, I E; Chlachidze, G; Chlebana, F S; Christofek, L S; Chu, M L; Chung, Y S; Ciobanu, C I; Clark, A G; Connolly, A; Conway, J; Cooper, J; Cordelli, M; Cranshaw, J; Cronin-Hennessy, D; Cropp, R; Culbertson, R J; Dagenhart, D; De Jongh, F; Dell'Agnello, S; Dell'Orso, Mauro; Demina, R; Demortier, L; Deninno, M M; Derwent, P F; Devlin, T; Dittmann, J R; Donati, S; Done, J; Dorigo, T; Eddy, N; Einsweiler, Kevin F; Elias, J E; Engels, E; Erdmann, W; Errede, D; Errede, S; Fan, Q; Feild, R G; Ferretti, C; Field, R D; Fiori, I; Flaugher, B L; Foster, G W; Franklin, M; Freeman, J; Friedman, J; Fukui, Y; Furic, I K; Galeotti, S; Gallinaro, M; Gao, T; García-Sciveres, M; Garfinkel, A F; Gatti, P; Gay, C; Geer, S; Gerdes, D W; Giannetti, P; Giromini, P; Glagolev, V; Gold, M; Goldstein, J; Gordon, A; Goshaw, A T; Gotra, Yu; Goulianos, K; Green, C; Groer, L S; Grosso-Pilcher, C; Günther, M; Guillian, G; Guimarães da Costa, J; Guo, R S; Haas, R M; Haber, C; Hafen, E S; Hahn, S R; Hall, C; Handa, T; Handler, R; Hao, W; Happacher, F; Hara, K; Hardman, A D; Harris, R M; Hartmann, F; Hatakeyama, K; Hauser, J; Heinrich, J; Heiss, A; Herndon, M; Hinrichsen, B; Hoffman, K D; Holck, C; Hollebeek, R J; Holloway, L E; Hughes, R; Huston, J; Huth, J E; Ikeda, H; Incandela, J R; Introzzi, G; Iwai, J; Iwata, Y; James, E; Jensen, H; Jones, M; Joshi, U; Kambara, H; Kamon, T; Kaneko, T; Karr, K M; Kasha, H; Kato, Y; Keaffaber, T A; Kelley, K; Kelly, M; Kennedy, R D; Kephart, R D; Khazins, D M; Kikuchi, T; Kilminster, B; Kirby, M; Kirk, M; Kim, B J; Kim, D H; Kim, H S; Kim, M J; Kim, S H; Kim, Y K; Kirsch, L; Klimenko, S; Koehn, P; Köngeter, A; Kondo, K; Konigsberg, J; Kordas, K; Korn, A J; Korytov, A V; Kovács, E; Kroll, J; Kruse, M; Kuhlmann, S E; Kurino, K; Kuwabara, T; Laasanen, A T; Lai, N; Lami, S; Lammel, S; Lamoureux, J I; Lancaster, M; Latino, G; LeCompte, T J; Lee, A M; Lee, K; Leone, S; Lewis, J D; Lindgren, M; Liss, T M; Liu, J B; Liu, Y C; Lockyer, N; Loken, J G; Loreti, M; Lucchesi, D; Lukens, P; Lusin, S; Lyons, L; Lys, J; Madrak, R; Maeshima, K; Maksimovic, P; Malferrari, L; Mangano, Michelangelo L; Mariotti, M; Martignon, G; Martin, A; Matthews, J A J; Mayer, J; Mazzanti, P; McFarland, K S; McIntyre, P; McKigney, E A; Menguzzato, M; Menzione, A; Mesropian, C; Meyer, A; Miao, T; Miller, R; Miller, J S; Minato, H; Miscetti, S; Mishina, M; Mitselmakher, G; Moggi, N; Moore, E; Moore, R; Morita, Y; Mulhearn, M; Mukherjee, A; Müller, T; Munar, A; Murat, P; Murgia, S; Musy, M; Nachtman, J; Nahn, S; Nakada, H; Nakaya, T; Nakano, I; Nelson, C; Neuberger, D; Newman-Holmes, C; Ngan, Y P; Nicolaidi, P; Niu, H; Nodulman, L; Nomerotski, A; Oh, S H; Ohmoto, T; Ohsugi, T; Oishi, R; Okusawa, T; Olsen, J; Orejudos, W; Pagliarone, C; Palmonari, F; Paoletti, R; Papadimitriou, V; Pappas, S P; Partos, D S; Patrick, J; Pauletta, G; Paulini, M; Paus, C; Pescara, L; Phillips, T J; Piacentino, G; Pitts, K T; Plunkett, R K; Pompos, A; Pondrom, L; Pope, G; Popovic, M; Prokoshin, F; Proudfoot, J; Ptohos, F; Pukhov, O; Punzi, G; Ragan, K; Rakitine, A; Reher, D; Reichold, A; Riegler, W; Ribon, A; Rimondi, F; Ristori, L; Robertson, W J; Robinson, A; Rodrigo, T; Rolli, S; Rosenson, L; Roser, R M; Rossin, R; Safonov, A; Sakumoto, W K; Saltzberg, D; Sansoni, A; Santi, L; Sato, H; Savard, P; Schlabach, P; Schmidt, E E; Schmidt, M P; Schmitt, M; Scodellaro, L; Scott, A; Scribano, A; Segler, S L; Seidel, S; Seiya, Y; Semenov, A A; Semeria, F; Shah, T; Shapiro, M D; Shepard, P F; Shibayama, T; Shimojima, M; Shochet, M J; Siegrist, J L; Signorelli, G; Sill, A F; Sinervo, P K; Singh, P; Slaughter, A J; Sliwa, K; Smith, C; Snider, F D; Solodsky, A; Spalding, J; Speer, T; Sphicas, Paris; Spinella, F; Spiropulu, M; Spiegel, L; Steele, J; Stefanini, A; Strologas, J; Strumia, F; Stuart, D; Sumorok, K; Suzuki, T; Takano, T; Takashima, R; Takikawa, K; Tamburello, P D; Tanaka, M; Tannenbaum, B; Taylor, W; Tecchio, M; Teng, P K; Terashi, K; Tether, S; Theriot, D; Thurman-Keup, R M; Tipton, P; Tkaczyk, S M; Tollefson, K; Tollestrup, Alvin V; Toyoda, H; Trischuk, W; De Trocóniz, J F; Tseng, J; Turini, N; Ukegawa, F; Vaiciulis, T; Valls, J; Vejcik, S; Velev, G V; Vidal, R; Vilar, R; Volobuev, I P; Vucinic, D; Wagner, R G; Wagner, R L; Wahl, J; Wallace, N B; Walsh, A M; Wang, C; Wang, C H; Wang, M J; Watanabe, T; Waters, D; Watts, T; Webb, R; Wenzel, H; Wester, W C; Wicklund, A B; Wicklund, E; Williams, H H; Wilson, P; Winer, B L; Winn, D; Wolbers, S; Wolinski, D; Wolinski, J; Wolinski, S; Worm, S D; Wu, X; Wyss, J; Yagil, A; Yao, W; Yeh, G P; Yeh, P; Yoh, J K; Yosef, C; Yoshida, T; Yu, I; Yu, S; Yu, Z; Zanetti, A; Zetti, F; Zucchelli, S

    2001-01-01

    This report describes a measurement of the top quark mass in $\\ppbar$ collisions at a center of mass energy of 1.8 TeV. The data sample was collected with the CDF detector during the 1992--95 collider run at the Fermilab Tevatron, and corresponds to an integrated luminosity of 106 \\pb. Candidate $t\\bar{t}$ events in the ``lepton+jets'' decay channel provide our most precise measurement of the top quark mass. For each event a top mass is determined by using energy and momentum constraints on the production of the $\\ttbar$ pair and its subsequent decay. A likelihood fit to the distribution of reconstructed masses in the data sample gives a top mass in the lepton+jets channel of $176.1\\pm 5.1 (stat.)\\pm 5.3 (syst.) \\gevcc$. Combining this result with measurements from the ``all-hadronic'' and ``dilepton'' decay topologies yields a top mass of $176.1\\pm 6.6 \\gevcc$.

  3. Development of the beam extraction synchronization system at the Fermilab Booster

    Energy Technology Data Exchange (ETDEWEB)

    Seiya, K.; Chaurize, S.; Drennan, C.C.; Pellico, W.; Sullivan, T.; Triplett, A.K.; Waller, A.M.

    2015-11-01

    The new beam extraction synchronization control system called “Magnetic Cogging” was developed at the Fermilab Booster and it replaces a system called “RF Cogging” as part of the Proton Improvement Plan (PIP).[1] The flux throughput goal for the PIP is 2.2×10{sup 17} protons per hour, which is double the present flux. The flux increase will be accomplished by doubling the number of beam cycles which, in turn, will double the beam loss in the Booster accelerator if nothing else is done. The Booster accelerates beam from 400 MeV to 8 GeV and extracts it to the Main Injector (MI) or Recycler Ring (RR). Cogging controls the beam extraction gap position which is created early in the Booster cycle and synchronizes the gap to the rising edge of the Booster extraction kicker and the MI/RR injection kicker. The RF Cogging system controls the gap position by changing only the radial position of the beam thus limiting the beam aperture and creating beam loss due to beam scraping. The Magnetic Cogging system controls the gap position with the magnetic field of the dipole correctors while the radial position feedback keeps the beam on a central orbit. Also with Magnetic Cogging the gap creation can occur earlier in the Booster cycle when the removed particles are at a lower energy. Thus Magnetic Cogging reduces the deposited energy of the lost particles (beam energy loss) and results in less beam loss activation. Energy loss was reduced by 40% by moving the gap creation energy from 700 MeV to 400 MeV when the Booster Cogging system was switched from RF Cogging to Magnetic Cogging in March 2015.

  4. Biomedical user facility at the 400-MeV Linac at Fermilab

    Energy Technology Data Exchange (ETDEWEB)

    Chu, W.T.

    1993-12-01

    In this paper, general requirements are discussed on a biomedical user facility at the Fermilab`s 400-MeV Linac, which meets the needs of biology and biophysics experiments, and a conceptual design and typical operations requirements of the facility is presented. It is assumed that no human patient treatment will take place in this facility. If human patients were treated, much greater attention would have to be paid to safeguarding the patients.

  5. Updated Report Acceleration of Polarized Protons to 120-150 GeV/c at Fermilab

    CERN Document Server

    Courant, E D; Leonova, M A; Lin, A M T; Liu, J; Lorenzon, W; Nees, D A; Raymond, R S; Sivers, D W; Wong, V K; Kourbanis, I; Derbenev, Ya S; Morozov, V S; Crabb, D G; Reimer, P E; O'Fallon, J R; Fidecaro, G; Fidecaro, M; Hinterberger, F; Troshin, S M; Ukhanov, M N; Kondratenko, A M; van Oers, W T H

    2011-01-01

    The SPIN@FERMI collaboration has updated its 1991-95 Reports on the acceleration of polarized protons in Fermilab's Main Injector, which was commissioned by Fermilab. This Updated Report summarizes some updated Physics Goals for a 120-150 GeV/c polarized proton beam. It also contains an updated discussion of the Modifications and Hardware needed for a polarized beam in the Main Injector, along with an updated Schedule and Budget.

  6. Observation Of Diffractive J/ Y Production At The Fermilab Tevatron

    CERN Document Server

    Solodsky, A

    2001-01-01

    The first observation of diffractive J/ y (→ m+m- ) production in p¯p collisions at s = 1.8 TeV is presented using data collected from the Collider Detector at Fermilab (CDF). In a sample of events with two muons of transverse momentum PmT > 2 GeV/c within the pseudorapidity region |η| < 1.0, the ratio of diffractive to total J/ y production rates is found to be RJ/y = (1.45 ± 0.25)%. Diffractive events are identified by their rapidity gap signature. The ratio RJ/y is studied as a function of the momentum fraction x bj of the struck parton in the (anti)proton. By combining this measurement with a similar one of diffractive dijet production with a leading antiproton, the gluon fraction of the (anti)proton diffractive structure is found to be 0.59 ± 0.15. These results are compared with reported results for diffractive W, dijet and b-quark production.

  7. Progress in Antiproton Production at the Fermilab Tevatron Collider

    Energy Technology Data Exchange (ETDEWEB)

    Pasquinelli, Ralph J.; Drendel, Brian; Gollwitzer, Keith; Johnson, Stan; Lebedev, Valeri; Leveling, Anthony; Morgan, James; Nagaslaev, Vladimir; Peterson, Dave; Sondgeroth, Alan; Werkema, Steve; /Fermilab

    2009-04-01

    Fermilab Collider Run II has been ongoing since 2001. During this time peak luminosities in the Tevatron have increased from approximately 10 x 10{sup 30} cm{sup -2}sec{sup -1} to 300 x 10{sup 30} cm{sup 02}sec{sup -1}. A major contributing factor in this remarkable performance is a greatly improved antiproton production capability. Since the beginning of Run II, the average antiproton accumulation rate has increased from 2 x 10{sup 10}{anti p}/hr to about 24 x 10{sup 10}{anti p}/hr. Peak antiproton stacking rates presently exceed 28 x 10{sup 10}{anti p}/hr. The antiproton stacking rate has nearly doubled since 2005. It is this recent progress that is the focus of this paper. The process of transferring antiprotons to the Recycler Ring for subsequent transfer to the collider has been significantly restructured and streamlined, yielding additional cycle time for antiproton production. Improvements to the target station have greatly increased the antiproton yield from the production target. The performance of the Antiproton Source stochastic cooling systems has been enhanced by upgrades to the cooling electronics, accelerator lattice optimization, and improved operating procedures. In this paper, we will briefly report on each of these modifications.

  8. The pixel tracking telescope at the Fermilab Test Beam Facility

    Energy Technology Data Exchange (ETDEWEB)

    Kwan, Simon; Lei, CM [Fermi National Accelerator Laboratory, Batavia, IL (United States); Menasce, Dario; Moroni, Luigi; Ngadiuba, Jennifer [Istituto Nazionale di Fisica Nucleare, Sezione di Milano Bicocca, and Università degli Studi di Milano Bicocca, Piazza della Scienza 3, 20126 Milano (Italy); Prosser, Alan; Rivera, Ryan [Fermi National Accelerator Laboratory, Batavia, IL (United States); Terzo, Stefano [Istituto Nazionale di Fisica Nucleare, Sezione di Milano Bicocca, and Università degli Studi di Milano Bicocca, Piazza della Scienza 3, 20126 Milano (Italy); Turqueti, Marcos [Fermi National Accelerator Laboratory, Batavia, IL (United States); Uplegger, Lorenzo, E-mail: uplegger@fnal.gov [Fermi National Accelerator Laboratory, Batavia, IL (United States); Vigani, Luigi; Dinardo, Mauro E. [Fermi National Accelerator Laboratory, Batavia, IL (United States)

    2016-03-01

    An all silicon pixel telescope has been assembled and used at the Fermilab Test Beam Facility (FTBF) since 2009 to provide precise tracking information for different test beam experiments with a wide range of Detectors Under Test (DUTs) requiring high resolution measurement of the track impact point. The telescope is based on CMS pixel modules left over from the CMS forward pixel production. Eight planes are arranged to achieve a resolution of less than 8 μm on the 120 GeV proton beam transverse coordinate at the DUT position. In order to achieve such resolution with 100×150 μm{sup 2} pixel cells, the planes were tilted to 25 degrees to maximize charge sharing between pixels. Crucial for obtaining this performance is the alignment software, called Monicelli, specifically designed and optimized for this system. This paper will describe the telescope hardware, the data acquisition system and the alignment software constituting this particle tracking system for test beam users.

  9. Celebrating 30 Years of K-12 Educational Programing at Fermilab

    CERN Document Server

    Bardeen, M

    2011-01-01

    In 1980 Leon Lederman started Saturday Morning Physics with a handful of volunteer physicists, around 300 students and all the physics teachers who tagged along. Today Fermilab offers over 30 programs annually with help from 250 staff volunteers and 50 educators, and serves around 40,000 students and 2,500 teachers. Find out why we bother. Over the years we have learned to take advantage of opportunities and confront challenges to offer effective programs for teachers and students alike. We offer research experiences for secondary school teachers and high school students. We collaborate with educators to design and run programs that meet their needs and interests. Popular school programs include classroom presentations, experience-based field trips, and high school tours. Through our work in QuarkNet and I2U2, we make real particle physics data available to high school students in datadriven activities as well as masterclasses and e-Labs. Our professional development activities include a Teacher Resource Cent...

  10. Performance Analysis for the New g-2 Experiment at Fermilab

    Energy Technology Data Exchange (ETDEWEB)

    Stratakis, Diktys [Fermilab; Convery, Mary [Fermilab; Crmkovic, J. [RIKEN BNL; Froemming, Nathan [CENPA, Seattle; Johnstone, Carol [Fermilab; Johnstone, John [Fermilab; Korostelev, Maxim [Lancaster U.; Morgan, James [Fermilab; Morse, William [RIKEN BNL; Syphers, Michael [Fermilab; Tishchenko, Vladimir [RIKEN BNL

    2016-06-01

    The new g-2 experiment at Fermilab aims to measure the muon anomalous magnetic moment to a precision of ±0.14 ppm - a fourfold improvement over the 0.54 ppm precision obtained in the g-2 BNL E821experiment. Achieving this goal requires the delivery of highly polarized 3.094 GeV/c muons with a narrow ±0.5% Δp/p acceptance to the g-2 storage ring. In this study, we describe a muon capture and transport scheme that should meet this requirement. First, we present the conceptual design of our proposed scheme wherein we describe its basic features. Then, we detail its performance numerically by simulating the pion production in the (g-2) production target, the muon collection by the downstream beamline optics as well as the beam polarization and spin-momentum correlation up to the storage ring. The sensitivity in performance of our proposed channel against key parameters such as magnet apertures and magnet positioning errors is analyzed

  11. Research into The Cross Location in Airborne Single-station Fixed Target Direction-finding%机载单站固定目标测向交叉定位研究

    Institute of Scientific and Technical Information of China (English)

    田明辉; 方青; 任清安

    2012-01-01

    机载平台对地面固定目标定位是电子侦察中的一项重要任务。针对机载平台的特点,提出了一种机载单站对地面固定目标的纯方位交叉定位算法,通过测量地面辐射源信号的方位角,结合机载平台的位置与航向信息,建立三维球面弧线计算模型求解目标的地理经纬度,给出了快速计算目标方位斜率的方法,通过多次融合定位提高定位精度。仿真实验中采用卫星工具开发包(STK)仿真软件生成机载平台的位置数据和目标的方位角数据,分析了多次融合定位的收敛情况及不同测向精度下的定位性能,最后给出了一些工程实践性的建议,具有一定的参考意义。%It is an important task in the electronic reconnaissance that the airborne platform locates the ground fixed target.Aiming at the characteristics of airborne platform,this paper puts forward a cross location algorithm that the airborne single-station locates the ground fixed target based on azimuth only,by measuring the azimuth angles of ground radiation source signal,establishes the 3D spherical pitch arc calculation model to find the solution of geographical latitude and longitude of target combining with the position and course information of airborne platform,presents the method to calculate the azimuth slope of target rapidly,improves the locating precision through multi-fusion location,uses satelite took kit(STK) simulation software to generate the position data of airborne platform and azimuth data of target in the simulation experiment,analyzes the convergence of multi-fusion location and the locating performance at different direction finding precision,finally gives some suggestions with engineering practicality,which has definite reference meaning.

  12. Forward-Backward Asymmetry of Top Quark Pair Productionn at the Fermilab Tevatron

    Energy Technology Data Exchange (ETDEWEB)

    Hong, Ziqing [Texas A & M Univ., College Station, TX (United States)

    2015-12-01

    This dissertation presents the final measurements of the forward-backward asymmetry (AFB) of top quark-antiquark pair events (t t-) at the Collider Detector at Fermilab (CDF) experiment. The t t- events are produced in proton{anti-proton collisions with a center of mass energy of 1:96 TeV during the Run II of the Fermilab Tevatron. The measurements are performed with the full CDF Run II data (9.1 fb-1) in the final state that contain two charged leptons (electrons or muons, the dilepton final state), and are designed to con rm or deny the evidence-level excess in the AFB measurements in the final state with a single lepton and hadronic jets (lepton+jets final state) as well as the excess in the preliminary measurements in the dilepton final state with the first half of the CDF Run II data. New measurements include the leptonic AFB (AlFB), the lepton-pair AFB (All FB) and the reconstructed top AFB (At t FB). Each are combined with the previous results from the lepton+jets final state measured at the CDF experiment. The inclusive Al FB, All FB, and At t FB measured in the dilepton final state are 0.072 ± 0.060, 0.076 ± 0.081, and 0.12 ± 0.13, to be compared with the Standard Model (SM) predictions of 0.038 ± 0.003, 0.048 ± 0.004, and 0.010 ± 0.006, respectively. The CDF combination of AlFB and At t FB are 0.090+0:028 -0.026, and 0.160 ± 0.045, respectively. The overall results are consistent with the SM predictions.

  13. Status and Plans for a Superconducting RF Accelerator Test Facility at Fermilab

    CERN Document Server

    Leibfritz, J; Baffes, C M; Carlson, K; Chase, B; Church, M D; Harms, E R; Klebaner, A L; Kucera, M; Martinez, A; Nagaitsev, S; Nobrega, L E; Piot, P; Reid, J; Wendt, M; Wesseln, S J

    2013-01-01

    The Advanced Superconducting Test Acccelerator (ASTA) is being constructed at Fermilab. The existing New Muon Lab (NML) building is being converted for this facility. The accelerator will consist of an electron gun, injector, beam acceleration section consisting of 3 TTF-type or ILC-type cryomodules, multiple downstream beamlines for testing diagnostics and conducting various beam tests, and a high power beam dump. When completed, it is envisioned that this facility will initially be capable of generating a 750-MeV electron beam with ILC beam intensity. An expansion of this facility was recently completed that will provide the capability to upgrade the accelerator to a total beam energy of 1.5-GeV. Two new buildings were also constructed adjacent to the ASTA facility to house a new cryogenic plant and multiple superconducting RF (SRF) cryomodule test stands. In addition to testing accelerator components, this facility will be used to test RF power systems, instrumentation, and control systems for future SRF a...

  14. Observation of Exclusive Dijet Production at the Fermilab Tevatron p-pbar Collider

    Energy Technology Data Exchange (ETDEWEB)

    Aaltonen, T.; /Helsinki Inst. of Phys.; Adelman, J.; /Chicago U., EFI; Akimoto, T.; /Tsukuba U.; Albrow, M.G.; /Fermilab; Gonzalez, B.Alvarez; /Cantabria U., Santander; Amerio, S.; /Padua U.; Amidei, D.; /Michigan U.; Anastassov, A.; /Rutgers U., Piscataway; Annovi, A.; /Frascati; Antos, J.; /Comenius U.; Aoki, M.; /Illinois U., Urbana /Fermilab

    2007-12-01

    The authors present the first observation and cross section measurement of exclusive dijet production in {bar p}p interactions, {bar p}p {yields} {bar p} + dijet + p. Using a data sample of 310 pb{sup -1} collected by the Run II Collider Detector at Fermilab at {radical}s = 1.96 TeV, exclusive cross sections for events with two jets of transverse energy E{sub T}{sup jet} {ge} 10 GeV have been measured as a function of minimum E{sub T}{sup jet}. The exclusive signal is extracted from fits to data distributions based on Monte Carlo simulations of expected dijet signal and background shapes. The simulated background distribution shapes are checked in a study of a largely independent data sample of 200 pb{sup -1} of b-tagged jet events, where exclusive dijet production is expected to be suppressed by the J{sub z} = 0 total angular momentum selection rule. Results obtained are compared with theoretical expectations, and implications for exclusive Higgs boson production at the pp Large Hadron Collider at {radical}s = 14 TeV are discussed.

  15. Nuevos Aspectos Del Analisis De Los Datos De Cerenkov Del Experimento 831 De Fermilab (spanish Text)

    CERN Document Server

    Rivera, O C J

    1998-01-01

    We present the results of a study made with the Cerenkov system of Fermilab experiment 831. This experiment has accumulated many events containing the charm quark. The identification of the particles in the analysis of this large sample is very important for the success of the experiment. Typically, the Cerenkov system is used for particle identification in high-energy physics experiments. For the particular case of the E831 we studied the possibility of using the Cerenkov System to help identify muons at low momentum. We achieved a 16-20 191332ecrease in misidentification with only a 5-9 10000ecrease in efficiency in the 5 to 20 Gev/c momentum range. In addition, the procedure developed to use the information of a new time measuring device installed in the Cerenkov system is reported. The procedure includes the calibration, the development of the necessary software that makes the time information available and the application of this information to the analysis of the signal $\\rm K\\sb{s}\\to\\pi\\sp {+}+\\pi\\sp{...

  16. High performance parallel computers for science: New developments at the Fermilab advanced computer program

    Energy Technology Data Exchange (ETDEWEB)

    Nash, T.; Areti, H.; Atac, R.; Biel, J.; Cook, A.; Deppe, J.; Edel, M.; Fischler, M.; Gaines, I.; Hance, R.

    1988-08-01

    Fermilab's Advanced Computer Program (ACP) has been developing highly cost effective, yet practical, parallel computers for high energy physics since 1984. The ACP's latest developments are proceeding in two directions. A Second Generation ACP Multiprocessor System for experiments will include $3500 RISC processors each with performance over 15 VAX MIPS. To support such high performance, the new system allows parallel I/O, parallel interprocess communication, and parallel host processes. The ACP Multi-Array Processor, has been developed for theoretical physics. Each $4000 node is a FORTRAN or C programmable pipelined 20 MFlops (peak), 10 MByte single board computer. These are plugged into a 16 port crossbar switch crate which handles both inter and intra crate communication. The crates are connected in a hypercube. Site oriented applications like lattice gauge theory are supported by system software called CANOPY, which makes the hardware virtually transparent to users. A 256 node, 5 GFlop, system is under construction. 10 refs., 7 figs.

  17. Observation of Exclusive Dijet Production at the Fermilab Tevatron p-pbar Collider

    CERN Document Server

    Aaltonen, T; Adelman, J; Akimoto, T; Albrow, M G; Alvarez-Gonzalez, B; Amerio, S; Amidei, D; Anastassov, A; Annovi, A; Antos, J; Aoki, M; Apollinari, G; Apresyan, A; Arisawa, T; Artikov, A; Ashmanskas, W; Attal, A; Aurisano, A; Azfar, F; Azzi-Bacchetta, P; Azzurri, P; Bacchetta, N; Badgett, W; Barbaro-Galtieri, A; Barnes, V E; Barnett, B A; Baroiant, S; Bartsch, V; Bauer, G; Beauchemin, P H; Bedeschi, F; Bednar, P; Behari, S; Bellettini, G; Bellinger, J; Belloni, A; Benjamin, D; Beretvas, A; Beringer, J; Berry, T; Bhatti, A; Binkley, M; Bisello, D; Bizjak, I; Blair, R E; Blocker, C; Blumenfeld, B; Bocci, A; Bodek, A; Boisvert, V; Bölla, G; Bolshov, A; Bortoletto, D; Boudreau, J; Boveia, A; Brau, B; Bridgeman, A; Brigliadori, L; Bromberg, C; Brubaker, E; Budagov, Yu A; Budd, H S; Budd, S; Burkett, K; Busetto, G; Bussey, P; Buzatu, A; Byrum, K L; Cabrerar, S; Campanelli, M; Campbell, M; Canelli, F; Canepa, A; Carlsmith, D; Carosi, R; Carrillol, S; Carron, S; Casal, B; Casarsa, M; Castro, A; Catastini, P; Cauz, D; Cavalli-Sforza, M; Cerri, A; Cerritop, L; Chang, S H; Chen, Y C; Chertok, M; Chiarelli, G; Chlachidze, G; Chlebana, F; Cho, K; Chokheli, D; Chou, J P; Choudalakis, G; Chuang, S H; Chung, K; Chung, W H; Chung, Y S; Ciobanu, C I; Ciocci, M A; Clark, A; Clark, D; Compostella, G; Convery, M E; Conway, J; Cooper, B; Copic, K; Cordelli, M; Cortiana, G; Crescioli, F; Cuenca Almenarr, C; Cuevaso, J; Culbertson, R; Cully, J C; Dagenhart, D; Datta, M; Davies, T; De Barbaro, P; De Cecco, S; Deisher, A; De Lentdeckerd, G; De Lorenzo, G; Dell'Orso, Mauro; Demortier, L; Deng, J; Deninno, M; De Pedis, D; Derwent, P F; Di Giovanni, G P; Dionisi, C; Di Ruzza, B; Dittmann, J R; D'Onofrio, M; Donati, S; Dong, P; Donini, J; Dorigo, T; Dube, S; Efron, J; Erbacher, R; Errede, D; Errede, S; Eusebi, R; Fang, H C; Farrington, S; Fedorko, W T; Feild, R G; Feindt, M; Fernández, J P; Ferrazza, C; Field, R; Flanagan, G; Forrest, R; Forrester, S; Franklin, M; Freeman, J C; Furic, I; Gallinaro, M; Galyardt, J; Garberson, F; García, J E; Garfinkel, A F; Genser, K; Gerberich, H; Gerdes, D; Giagu, S; Giakoumopoloua, V; Giannetti, P; Gibson, K; Gimmell, J L; Ginsburg, C M; Giokarisa, N; Giordani, M; Giromini, P; Giunta, M; Glagolev, V; Glenzinski, D; Gold, M; Goldschmidt, N; Golossanov, A; Gómez, G; Gómez-Ceballos, G; Goncharov, M; Gonzlez, O; Gorelov, I; Goshaw, A T; Goulianos, K; Gresele, A; Grinstein, S; Grosso-Pilcher, C; Group, R C; Grundler, U; Guimaraesda Costa, J; Gunay-Unalan, Z; Haber, C; Hahn, K; Hahn, S R; Halkiadakis, E; Hamilton, A; Han, B Y; Han, J Y; Handler, R; Happacher, F; Hara, K; Hare, D; Hare, M; Harper, S; Harr, R F; Harris, R M; Hartz, M; Hatakeyama, K; Hauser, J; Hays, C; Heck, M; Heijboer, A; Heinemann, B; Heinrich, J; Henderson, C; Herndon, M; Heuser, J; Hewamanage, S; Hidas, D; Hillc, C S; Hirschbuehl, D; Höcker, A; Hou, S; Houlden, M; Hsu, S C; Huffman, B T; Hughes, R E; Husemann, U; Huston, J; Incandela, J; Introzzi, G; Iori, M; Ivanov, A; Iyutin, B; James, E; Jayatilaka, B; Jeans, D; Jeon, E J; Jindariani, S; Johnson, W; Jones, M; Joo, K K; Jun, S Y; Jung, J E; Junk, T R; Kamon, T; Kar, D; Karchin, P E; Kato, Y; Kephart, R; Kerzel, U; Khotilovich, V; Kilminster, B; Kim, D H; Kim, H S; Kim, J E; Kim, M J; Kim, S B; Kim, S H; Kim, Y K; Kimura, N; Kirsch, L; Klimenko, S; Klute, M; Knuteson, B; Ko, B R; Koay, S A; Kondo, K; Kong, D J; Konigsberg, J; Korytov, A; Kotwal, A V; Kraus, J; Kreps, M; Kroll, J; Krumnack, N; Kruse, M; Krutelyov, V; Kubo, T; Kuhlmann, S E; Kuhr, T; Kulkarni, N P; Kusakabe, Y; Kwang, S; Laasanen, A T; Lai, S; Lami, S; Lammel, S; Lancaster, M; Lander, R L; Lannon, K; Lath, A; Latino, G; Lazzizzera, I; Le Compte, T; Lee, J; Lee, J; Lee, Y J; Leeq, S W; Lefèvre, R; Leonardo, N; Leone, S; Levy, S; Lewis, J D; Lin, C; Lin, C S; Linacre, J; Lindgren, M; Lipeles, E; Lister, A; Litvintsev, D O; Liu, T; Lockyer, N S; Loginov, A; Loreti, M; Lovas, L; Lu, R S; Lucchesi, D; Lueck, J; Luci, C; Lujan, P; Lukens, P; Lungu, G; Lyons, L; Lys, J; Lysak, R; Lytken, E; Mack, P; MacQueen, D; Madrak, R; Maeshima, K; Makhoul, K; Mäki, T; Maksimovic, P; Malde, S; Malik, S; Manca, G; Manousakisa, A; Margaroli, F; Marino, C; Marino, C P; Martin, A; Martin, M; Martinj, V; Martínez, M; Martinez-Ballarin, R; Maruyama, T; Mastrandrea, P; Masubuchi, T; Mattson, M E; Mazzanti, P; McFarland, K S; McIntyre, P; McNultyi, R; Mehta, A; Mehtälä, P; Menzemerk, S; Menzione, A; Merkel, P; Mesropian, C; Messina, A; Miao, T; Miladinovic, N; Miles, J; Miller, R; Mills, C; Milnik, M; Mitra, A; Mitselmakher, G; Miyake, H; Moed, S; Moggi, N; Moon, C S; Moore, R; Morello, M; Movilla-Fernández, P A; Mülmenstädt, J; Mukherjee, A; Müller, T; Mumford, R; Murat, P; Mussini, M; Nachtman, J; Nagai, Y; Nagano, A; Naganoma, J; Nakamura, K; Nakano, I; Napier, A; Necula, V; Neu, C; Neubauer, M S; Nielsenf, J; Nodulman, L; Norman, M; Norniella, O; Nurse, E; Oh, S H; Oh, Y D; Oksuzian, I; Okusawa, T; Oldeman, R; Orava, R; Österberg, K; Pagan Griso, S; Pagliarone, C; Palencia, E; Papadimitriou, V; Papaikonomou, A; Paramonov, A A; Parks, B; Pashapour, S; Patrick, J; Pauletta, G; Paulini, M; Paus, C; Pellett, D E; Penzo, Aldo L; Phillips, T J; Piacentino, G; Piedra, J; Pinera, L; Pitts, K; Plager, C; Pondrom, L; Portell, X; Poukhov, O; Pounder, N; Prakoshyn, F; Pronko, A; Proudfoot, J; Ptohosh, F; Punzi, G; Pursley, J; Rademackerc, J; Rahaman, A; Ramakrishnan, V; Ranjan, N; Redondo, I; Reisert, B; Rekovic, V; Renton, P B; Rescigno, M; Richter, S; Rimondi, F; Ristori, L; Robson, A; Rodrigo, T; Rogers, E; Rolli, S; Roser, R; Rossi, M; Rossin, R; Roy, P; Ruiz, A; Russ, J; Rusu, V; Saarikko, H; Safonov, A; Sakumoto, W K; Salamanna, G; Salt, O; Santi, L; Sarkar, S; Sartori, L; Sato, K; Savoy-Navarro, A; Scheidle, T; Schlabach, P; Schmidt, E E; Schmidt, M A; Schmidt, M P; Schmitt, M; Schwarz, T; Scodellaro, L; Scott, A L; Scribano, A; Scuri, F; Sedov, A; Seidel, S; Seiya, Y; Semenov, A; Sexton-Kennedy, L; Sfyria, A; Shalhout, S Z; Shapiro, M D; Shears, T G; Shepard, P F; Sherman, D; Shimojiman, M; Shochet, M; Shon, Y; Shreyber, I; Sidoti, A; Sinervo, P; Sisakian, A; Slaughter, A J; Slaunwhite, J; Sliwa, K; Smith, J R; Snider, F D; Snihur, R; Söderberg, M; Soha, A; Somalwar, S; Sorin, V; Spalding, J; Spinella, F; Spreitzer, T; Squillacioti, P; Stanitzki, M; Saint-Denis, R; Stelzer, B; Stelzer-Chilton, O; Stentz, D; Strologas, J; Stuart, D; Suh, J S; Sukhanov, A; Sun, H; Suslov, I; Suzuki, T; Taffarde, A; Takashima, R; Takeuchi, Y; Tanaka, R; Tecchio, M; Teng, P K; Terashi, K; Thomg, J; Thompson, A S; Thompson, G A; Thomson, E; Tipton, P; Tiwari, V; Tkaczyk, S; Toback, D; Tokar, S; Tollefson, K; Tomura, T; Tonelli, D; Torre, S; Torretta, D; Tourneur, S; Trischuk, W; Tu, Y; Turini, N; Ukegawa, F; Uozumi, S; Vallecorsa, S; Van Remortel, N; Varganov, A; Vataga, E; Vazquezl, F; Velev, G; Vellidisa, C; Veszpremi, V; Vidal, M; Vidal, R; Vila, I; Vilar, R; Vine, T; Vogel, M; Volobouevq, I; Volpi, G; Würthwein, F; Wagner, P; Wagner, R G; Wagner, R L; Wagner-Kuhr, J; Wagner, W; Wakisaka, T; Wallny, R; Wang, S M; Warburton, A; Waters, D; Weinberger, M; Wester, W C; Whitehouse, B; Whitesone, D; Wicklund, A B; Wicklund, E; Williams, G; Williams, H H; Wilson, P; Winer, B L; Wittichg, P; Wolbers, S; Wolfe, C; Wright, T; Wu, X; Wynne, S M; Yagil, A; Yamamoto, K; Yamaoka, J; Yamashita, T; Yang, C; Yangm, U K; Yang, Y C; Yao, W M; Yeh, G P; Yoh, J; Yorita, K; Yoshida, T; Yu, G B; Yu, I; Yu, S S; Yun, J C; Zanello, L; Zanetti, A; Zaw, I; Zhang, X; Zhengb, Y; Zucchelli, S

    2007-01-01

    We present the first observation and cross section measurement of exclusive dijet production in pbar-p interactions, pbar + p --> pbar + dijet + p. Using a data sample of 310 pb-1 collected by the Run II Collider Detector at Fermilab at sqrt{s}=1.96 TeV, exclusive cross sections for events with two jets of transverse energy ET >= 10 GeV have been measured as a function of minimum ET(jet). The exclusive signal is extracted from fits to data distributions based on Monte Carlo simulations of expected dijet signal and background shapes. The simulated background distribution shapes are checked in a study of a largely independent data sample of 200 pb-1 of b-tagged jet events, where exclusive dijet production is expected to be suppressed by the Jz=0 total angular momentum selection rule. Results obtained are compared with theoretical expectations, and implications for exclusive Higgs boson production at the pp Large Hadron Collider at sqrt{s}=14 TeV are discussed.

  18. New results for light gravitinos at hadron colliders: Fermilab Tevatron limits and CERN LHC perspectives

    Science.gov (United States)

    Klasen, Michael; Pignol, Guillaume

    2007-06-01

    We derive Feynman rules for the interactions of a single gravitino with (s)quarks and gluons/gluinos from an effective supergravity Lagrangian in nonderivative form and use them to calculate the hadroproduction cross sections and decay widths of single gravitinos. We confirm the results obtained previously with a derivative Lagrangian as well as those obtained with the nonderivative Lagrangian in the high-energy limit and elaborate on the connection between gauge independence and the presence of quartic vertices. We perform extensive numerical studies of branching ratios, total cross sections, and transverse-momentum spectra at the Fermilab Tevatron and the CERN LHC. From the latest CDF monojet cross section limit, we derive a new and robust exclusion contour in the gravitino-squark/gluino mass plane, implying that gravitinos with masses below 2×10-5 to 1×10-5eV are excluded for squark/gluino masses below 200 and 500 GeV, respectively. These limits are complementary to the one obtained by the CDF Collaboration, 1.1×10-5eV, under the assumption of infinitely heavy squarks and gluinos. For the LHC, we conclude that supersymmetric scenarios with light gravitinos will lead to a striking monojet signal very quickly after its startup.

  19. Status and Plans for a Superconducting RF Accelerator Test Facility at Fermilab

    Energy Technology Data Exchange (ETDEWEB)

    Leibfritz, J.; Andrews, R.; Baffes, C.M.; Carlson, K.; Chase, B.; Church, M.D.; Harms, E.R.; Klebaner, A.L.; Kucera, M.; Martinez, A.; Nagaitsev, S.; /Fermilab

    2012-05-01

    The Advanced Superconducting Test Accelerator (ASTA) is being constructed at Fermilab. The existing New Muon Lab (NML) building is being converted for this facility. The accelerator will consist of an electron gun, injector, beam acceleration section consisting of 3 TTF-type or ILC-type cryomodules, multiple downstream beam lines for testing diagnostics and conducting various beam tests, and a high power beam dump. When completed, it is envisioned that this facility will initially be capable of generating a 750 MeV electron beam with ILC beam intensity. An expansion of this facility was recently completed that will provide the capability to upgrade the accelerator to a total beam energy of 1.5 GeV. Two new buildings were also constructed adjacent to the ASTA facility to house a new cryogenic plant and multiple superconducting RF (SRF) cryomodule test stands. In addition to testing accelerator components, this facility will be used to test RF power systems, instrumentation, and control systems for future SRF accelerators such as the ILC and Project-X. This paper describes the current status and overall plans for this facility.

  20. Simultaneous Heavy Flavor Fractions and Top Cross Section Measurement at the Collider Detector at Fermilab

    Energy Technology Data Exchange (ETDEWEB)

    Mathis, Mark J. [Johns Hopkins Univ., Baltimore, MD (United States)

    2010-04-01

    This dissertation describes the measurement of the top pair production cross section, using data from proton–antiproton collisions at a center-of-mass energy of 1.96 TeV, with 2.7 ± 0.2 fb-1 of data collected by the Collider Detector at Fermilab. Background contributions are measured concurrently with the top cross section in the b-tagged lepton-plus-jets sample using a kinematic fit, which simultaneously determines the cross sections and normalizations of t$\\bar{t}$, W + jets, QCD, and electroweak processes. This is the first application of a procedure of this kind. The top cross section is measured to be σt$\\bar{t}$ = 7.64±0.57(stat + syst)±0.45(lumi) pb and the Monte Carlo simulation scale factors KWb$\\bar{b}$ = 1.57±0.25, KW$\\bar{c}$ = 0.94±0.79, KWc = 1.9 ± 0.3, and KWq$\\bar{q}$ = 1.1 ± 0.3. These results are consistent with existing measurements using other procedures. More data will reduce the systematic uncertainties and will lead to the most precise of any single analysis to date.

  1. Initial beam-profiling tests with the NML prototype station at the Fermilab A0 Photoinjector

    Energy Technology Data Exchange (ETDEWEB)

    Lumpkin, A.; Flora, R.; Johnson, A.S.; Ruan, J.; Santucci, J.; Scarpine, V.; Sun, Y.-E.; Thurman-Keup, R.; Church, M.; Wendt, M.; /Fermilab

    2011-03-01

    The beam-profile diagnostics station prototype for the superconducting rf electron linac being constructed at Fermilab at the New Muon Lab has been tested. The station uses intercepting radiation converter screens for the low-power beam mode: either a 100-{micro}m thick YAG:Ce single crystal scintillator or a 1-{micro}m thin Al optical transition radiation (OTR) foil. The screens are oriented with the surface perpendicular to the beam direction. A downstream mirror with its surface at 45 degrees to the beam direction is used to direct the radiation into the optical transport. The optical system has better than 20 (10) {micro}m rms spatial resolution when covering a vertical field of view of 18 (5) mm. The initial tests were performed at the A0 Photoinjector at a beam energy of {approx}15 MeV and with micropulse charges from 25 to 500 pC for beam sizes of 45 to 250 microns. Example results will be presented.

  2. Initial beam-profiling tests with the NML prototype station at the Fermilab A0 Photoinjector

    CERN Document Server

    Lumpkin, A; Johnson, A S; Ruan, J; Santucci, J; Scarpine, V; Sun, Y -E; Thurman-Keup, R; Church, M; Wendt, M

    2012-01-01

    The beam-profile diagnostics station prototype for the superconducting rf electron linac being constructed at Fermilab at the New Muon Lab has been tested. The station uses intercepting radiation converter screens for the low-power beam mode: either a 100-\\mu m thick YAG:Ce single crystal scintillator or a 1-\\mu m thin Al optical transition radiation (OTR) foil. The screens are oriented with the surface perpendicular to the beam direction. A downstream mirror with its surface at 45 degrees to the beam direction is used to direct the radiation into the optical transport. The optical system has better than 20 (10) \\mu m rms spatial resolution when covering a vertical field of view of 18 (5) mm. The initial tests were performed at the A0 Photoinjector at a beam energy of ~15 MeV and with micropulse charges from 25 to 500 pC for beam sizes of 45 to 250 microns. Example results will be presented.

  3. Observation of exclusive dijet production at the Fermilab Tevatron pmacr p collider

    Science.gov (United States)

    Aaltonen, T.; Adelman, J.; Akimoto, T.; Albrow, M. G.; González, B. Álvarez; Amerio, S.; Amidei, D.; Anastassov, A.; Annovi, A.; Antos, J.; Aoki, M.; Apollinari, G.; Apresyan, A.; Arisawa, T.; Artikov, A.; Ashmanskas, W.; Attal, A.; Aurisano, A.; Azfar, F.; Azzi-Bacchetta, P.; Azzurri, P.; Bacchetta, N.; Badgett, W.; Barbaro-Galtieri, A.; Barnes, V. E.; Barnett, B. A.; Baroiant, S.; Bartsch, V.; Bauer, G.; Beauchemin, P.-H.; Bedeschi, F.; Bednar, P.; Behari, S.; Bellettini, G.; Bellinger, J.; Belloni, A.; Benjamin, D.; Beretvas, A.; Beringer, J.; Berry, T.; Bhatti, A.; Binkley, M.; Bisello, D.; Bizjak, I.; Blair, R. E.; Blocker, C.; Blumenfeld, B.; Bocci, A.; Bodek, A.; Boisvert, V.; Bolla, G.; Bolshov, A.; Bortoletto, D.; Boudreau, J.; Boveia, A.; Brau, B.; Bridgeman, A.; Brigliadori, L.; Bromberg, C.; Brubaker, E.; Budagov, J.; Budd, H. S.; Budd, S.; Burkett, K.; Busetto, G.; Bussey, P.; Buzatu, A.; Byrum, K. L.; Cabrera, S.; Campanelli, M.; Campbell, M.; Canelli, F.; Canepa, A.; Carlsmith, D.; Carosi, R.; Carrillo, S.; Carron, S.; Casal, B.; Casarsa, M.; Castro, A.; Catastini, P.; Cauz, D.; Cavalli-Sforza, M.; Cerri, A.; Cerrito, L.; Chang, S. H.; Chen, Y. C.; Chertok, M.; Chiarelli, G.; Chlachidze, G.; Chlebana, F.; Cho, K.; Chokheli, D.; Chou, J. P.; Choudalakis, G.; Chuang, S. H.; Chung, K.; Chung, W. H.; Chung, Y. S.; Ciobanu, C. I.; Ciocci, M. A.; Clark, A.; Clark, D.; Compostella, G.; Convery, M. E.; Conway, J.; Cooper, B.; Copic, K.; Cordelli, M.; Cortiana, G.; Crescioli, F.; Almenar, C. Cuenca; Cuevas, J.; Culbertson, R.; Cully, J. C.; Dagenhart, D.; Datta, M.; Davies, T.; de Barbaro, P.; de Cecco, S.; Deisher, A.; de Lentdecker, G.; de Lorenzo, G.; Dell'Orso, M.; Demortier, L.; Deng, J.; Deninno, M.; de Pedis, D.; Derwent, P. F.; di Giovanni, G. P.; Dionisi, C.; di Ruzza, B.; Dittmann, J. R.; D'Onofrio, M.; Donati, S.; Dong, P.; Donini, J.; Dorigo, T.; Dube, S.; Efron, J.; Erbacher, R.; Errede, D.; Errede, S.; Eusebi, R.; Fang, H. C.; Farrington, S.; Fedorko, W. T.; Feild, R. G.; Feindt, M.; Fernandez, J. P.; Ferrazza, C.; Field, R.; Flanagan, G.; Forrest, R.; Forrester, S.; Franklin, M.; Freeman, J. C.; Furic, I.; Gallinaro, M.; Galyardt, J.; Garberson, F.; Garcia, J. E.; Garfinkel, A. F.; Genser, K.; Gerberich, H.; Gerdes, D.; Giagu, S.; Giakoumopolou, V.; Giannetti, P.; Gibson, K.; Gimmell, J. L.; Ginsburg, C. M.; Giokaris, N.; Giordani, M.; Giromini, P.; Giunta, M.; Glagolev, V.; Glenzinski, D.; Gold, M.; Goldschmidt, N.; Golossanov, A.; Gomez, G.; Gomez-Ceballos, G.; Goncharov, M.; González, O.; Gorelov, I.; Goshaw, A. T.; Goulianos, K.; Gresele, A.; Grinstein, S.; Grosso-Pilcher, C.; Group, R. C.; Grundler, U.; da Costa, J. Guimaraes; Gunay-Unalan, Z.; Haber, C.; Hahn, K.; Hahn, S. R.; Halkiadakis, E.; Hamilton, A.; Han, B.-Y.; Han, J. Y.; Handler, R.; Happacher, F.; Hara, K.; Hare, D.; Hare, M.; Harper, S.; Harr, R. F.; Harris, R. M.; Hartz, M.; Hatakeyama, K.; Hauser, J.; Hays, C.; Heck, M.; Heijboer, A.; Heinemann, B.; Heinrich, J.; Henderson, C.; Herndon, M.; Heuser, J.; Hewamanage, S.; Hidas, D.; Hill, C. S.; Hirschbuehl, D.; Hocker, A.; Hou, S.; Houlden, M.; Hsu, S.-C.; Huffman, B. T.; Hughes, R. E.; Husemann, U.; Huston, J.; Incandela, J.; Introzzi, G.; Iori, M.; Ivanov, A.; Iyutin, B.; James, E.; Jayatilaka, B.; Jeans, D.; Jeon, E. J.; Jindariani, S.; Johnson, W.; Jones, M.; Joo, K. K.; Jun, S. Y.; Jung, J. E.; Junk, T. R.; Kamon, T.; Kar, D.; Karchin, P. E.; Kato, Y.; Kephart, R.; Kerzel, U.; Khotilovich, V.; Kilminster, B.; Kim, D. H.; Kim, H. S.; Kim, J. E.; Kim, M. J.; Kim, S. B.; Kim, S. H.; Kim, Y. K.; Kimura, N.; Kirsch, L.; Klimenko, S.; Klute, M.; Knuteson, B.; Ko, B. R.; Koay, S. A.; Kondo, K.; Kong, D. J.; Konigsberg, J.; Korytov, A.; Kotwal, A. V.; Kraus, J.; Kreps, M.; Kroll, J.; Krumnack, N.; Kruse, M.; Krutelyov, V.; Kubo, T.; Kuhlmann, S. E.; Kuhr, T.; Kulkarni, N. P.; Kusakabe, Y.; Kwang, S.; Laasanen, A. T.; Lai, S.; Lami, S.; Lammel, S.; Lancaster, M.; Lander, R. L.; Lannon, K.; Lath, A.; Latino, G.; Lazzizzera, I.; Lecompte, T.; Lee, J.; Lee, J.; Lee, Y. J.; Lee, S. W.; Lefèvre, R.; Leonardo, N.; Leone, S.; Levy, S.; Lewis, J. D.; Lin, C.; Lin, C. S.; Linacre, J.; Lindgren, M.; Lipeles, E.; Lister, A.; Litvintsev, D. O.; Liu, T.; Lockyer, N. S.; Loginov, A.; Loreti, M.; Lovas, L.; Lu, R.-S.; Lucchesi, D.; Lueck, J.; Luci, C.; Lujan, P.; Lukens, P.; Lungu, G.; Lyons, L.; Lys, J.; Lysak, R.; Lytken, E.; Mack, P.; MacQueen, D.; Madrak, R.; Maeshima, K.; Makhoul, K.; Maki, T.; Maksimovic, P.; Malde, S.; Malik, S.; Manca, G.; Manousakis, A.; Margaroli, F.; Marino, C.; Marino, C. P.; Martin, A.; Martin, M.; Martin, V.; Martínez, M.; Martínez-Ballarín, R.; Maruyama, T.; Mastrandrea, P.; Masubuchi, T.; Mattson, M. E.; Mazzanti, P.; McFarland, K. S.; McIntyre, P.; McNulty, R.; Mehta, A.; Mehtala, P.; Menzemer, S.; Menzione, A.; Merkel, P.; Mesropian, C.; Messina, A.; Miao, T.; Miladinovic, N.; Miles, J.; Miller, R.; Mills, C.; Milnik, M.; Mitra, A.; Mitselmakher, G.; Miyake, H.; Moed, S.; Moggi, N.; Moon, C. S.; Moore, R.; Morello, M.; Fernandez, P. Movilla; Mülmenstädt, J.; Mukherjee, A.; Muller, Th.; Mumford, R.; Murat, P.; Mussini, M.; Nachtman, J.; Nagai, Y.; Nagano, A.; Naganoma, J.; Nakamura, K.; Nakano, I.; Napier, A.; Necula, V.; Neu, C.; Neubauer, M. S.; Nielsen, J.; Nodulman, L.; Norman, M.; Norniella, O.; Nurse, E.; Oh, S. H.; Oh, Y. D.; Oksuzian, I.; Okusawa, T.; Oldeman, R.; Orava, R.; Osterberg, K.; Griso, S. Pagan; Pagliarone, C.; Palencia, E.; Papadimitriou, V.; Papaikonomou, A.; Paramonov, A. A.; Parks, B.; Pashapour, S.; Patrick, J.; Pauletta, G.; Paulini, M.; Paus, C.; Pellett, D. E.; Penzo, A.; Phillips, T. J.; Piacentino, G.; Piedra, J.; Pinera, L.; Pitts, K.; Plager, C.; Pondrom, L.; Portell, X.; Poukhov, O.; Pounder, N.; Prakoshyn, F.; Pronko, A.; Proudfoot, J.; Ptohos, F.; Punzi, G.; Pursley, J.; Rademacker, J.; Rahaman, A.; Ramakrishnan, V.; Ranjan, N.; Redondo, I.; Reisert, B.; Rekovic, V.; Renton, P.; Rescigno, M.; Richter, S.; Rimondi, F.; Ristori, L.; Robson, A.; Rodrigo, T.; Rogers, E.; Rolli, S.; Roser, R.; Rossi, M.; Rossin, R.; Roy, P.; Ruiz, A.; Russ, J.; Rusu, V.; Saarikko, H.; Safonov, A.; Sakumoto, W. K.; Salamanna, G.; Saltó, O.; Santi, L.; Sarkar, S.; Sartori, L.; Sato, K.; Savoy-Navarro, A.; Scheidle, T.; Schlabach, P.; Schmidt, E. E.; Schmidt, M. A.; Schmidt, M. P.; Schmitt, M.; Schwarz, T.; Scodellaro, L.; Scott, A. L.; Scribano, A.; Scuri, F.; Sedov, A.; Seidel, S.; Seiya, Y.; Semenov, A.; Sexton-Kennedy, L.; Sfyria, A.; Shalhout, S. Z.; Shapiro, M. D.; Shears, T.; Shepard, P. F.; Sherman, D.; Shimojima, M.; Shochet, M.; Shon, Y.; Shreyber, I.; Sidoti, A.; Sinervo, P.; Sisakyan, A.; Slaughter, A. J.; Slaunwhite, J.; Sliwa, K.; Smith, J. R.; Snider, F. D.; Snihur, R.; Soderberg, M.; Soha, A.; Somalwar, S.; Sorin, V.; Spalding, J.; Spinella, F.; Spreitzer, T.; Squillacioti, P.; Stanitzki, M.; Denis, R. St.; Stelzer, B.; Stelzer-Chilton, O.; Stentz, D.; Strologas, J.; Stuart, D.; Suh, J. S.; Sukhanov, A.; Sun, H.; Suslov, I.; Suzuki, T.; Taffard, A.; Takashima, R.; Takeuchi, Y.; Tanaka, R.; Tecchio, M.; Teng, P. K.; Terashi, K.; Thom, J.; Thompson, A. S.; Thompson, G. A.; Thomson, E.; Tipton, P.; Tiwari, V.; Tkaczyk, S.; Toback, D.; Tokar, S.; Tollefson, K.; Tomura, T.; Tonelli, D.; Torre, S.; Torretta, D.; Tourneur, S.; Trischuk, W.; Tu, Y.; Turini, N.; Ukegawa, F.; Uozumi, S.; Vallecorsa, S.; van Remortel, N.; Varganov, A.; Vataga, E.; Vázquez, F.; Velev, G.; Vellidis, C.; Veszpremi, V.; Vidal, M.; Vidal, R.; Vila, I.; Vilar, R.; Vine, T.; Vogel, M.; Volobouev, I.; Volpi, G.; Würthwein, F.; Wagner, P.; Wagner, R. G.; Wagner, R. L.; Wagner-Kuhr, J.; Wagner, W.; Wakisaka, T.; Wallny, R.; Wang, S. M.; Warburton, A.; Waters, D.; Weinberger, M.; Wester, W. C., III; Whitehouse, B.; Whiteson, D.; Wicklund, A. B.; Wicklund, E.; Williams, G.; Williams, H. H.; Wilson, P.; Winer, B. L.; Wittich, P.; Wolbers, S.; Wolfe, C.; Wright, T.; Wu, X.; Wynne, S. M.; Yagil, A.; Yamamoto, K.; Yamaoka, J.; Yamashita, T.; Yang, C.; Yang, U. K.; Yang, Y. C.; Yao, W. M.; Yeh, G. P.; Yoh, J.; Yorita, K.; Yoshida, T.; Yu, G. B.; Yu, I.; Yu, S. S.; Yun, J. C.; Zanello, L.; Zanetti, A.; Zaw, I.; Zhang, X.; Zheng, Y.; Zucchelli, S.

    2008-03-01

    We present the first observation and cross section measurement of exclusive dijet production in pmacr p interactions, pmacr p→ pmacr +dijet+p. Using a data sample of 310pb-1 collected by the Run II Collider Detector at Fermilab at s=1.96TeV, exclusive cross sections for events with two jets of transverse energy ETjet≥10GeV have been measured as a function of minimum ETjet. The exclusive signal is extracted from fits to data distributions based on Monte Carlo simulations of expected dijet signal and background shapes. The simulated background distribution shapes are checked in a study of a largely independent data sample of 200pb-1 of b-tagged jet events, where exclusive dijet production is expected to be suppressed by the Jz=0 total angular momentum selection rule. Results obtained are compared with theoretical expectations, and implications for exclusive Higgs boson production at the pp Large Hadron Collider at s=14TeV are discussed.

  4. Measurement of the W Boson Mass with the Collider Detector at Fermilab

    CERN Document Server

    Affolder, T; Akopian, A M; Albrow, Michael G; Amaral, P; Amendolia, S R; Amidei, D; Anikeev, K; Antos, J; Apollinari, G; Arisawa, T; Asakawa, T; Ashmanskas, W J; Atac, Muzaffer; Azfar, F; Azzi-Bacchetta, P; Bacchetta, N; Bailey, M W; Bailey, S; De Barbaro, P; Barbaro-Galtieri, A; Barnes, Virgil E; Barnett, B A; Barone, M; Bauer, G; Bedeschi, F; Belforte, S; Bellettini, Giorgio; Bellinger, J; Benjamin, D; Bensinger, J; Beretvas, A; Bergé, J P; Berryhill, J W; Bevensee, B; Bhatti, A A; Binkley, M; Bisello, D; Blair, R E; Blocker, C A; Bloom, K; Blumenfeld, B; Blusk, S R; Bocci, A; Bodek, Arie; Bokhari, W; Bölla, G; Bonushkin, Yu; Bortoletto, Daniela; Boudreau, J; Brandl, A; van den Brink, S C; Bromberg, C; Brozovic, M; Bruner, N L; Buckley-Geer, E; Budagov, Yu A; Budd, H S; Burkett, K; Busetto, G; Byon-Wagner, A; Byrum, K L; Calafiura, P; Campbell, M; Carithers, W C; Carlson, J; Carlsmith, D; Cassada, J A; Castro, A; Cauz, D; Cerri, A; Chan, A W; Chang, P S; Chang, P T; Chapman, J; Chen, C; Chen, Y C; Cheng, M T; Chertok, M; Chiarelli, G; Chirikov-Zorin, I E; Chlachidze, G; Chlebana, F S; Christofek, L S; Chu, M L; Chung, Y S; Ciobanu, C I; Clark, A G; Connolly, A; Conway, J; Cooper, J; Cordelli, M; Cranshaw, J; Cronin-Hennessy, D; Cropp, R; Culbertson, R J; Dagenhart, D; De Jongh, F; Dell'Agnello, S; Dell'Orso, Mauro; Demina, R; Demortier, L; Deninno, M M; Derwent, P F; Devlin, T; Dittmann, J R; Donati, S; Done, J; Dorigo, T; Eddy, N; Einsweiler, Kevin F; Elias, J E; Engels, E; Erdmann, W; Errede, D; Errede, S; Fan, Q; Feild, R G; Ferretti, C; Field, R D; Fiori, I; Flaugher, B L; Foster, G W; Franklin, M; Freeman, J; Friedman, J; Fukui, Y; Furic, I K; Galeotti, S; Gallinaro, M; Gao, T; García-Sciveres, M; Garfinkel, A F; Gatti, P; Gay, C; Geer, S; Gerdes, D W; Giannetti, P; Giromini, P; Glagolev, V; Gold, M; Goldstein, J; Gordon, A; Goshaw, A T; Gotra, Yu; Goulianos, K; Green, C; Groer, L S; Grosso-Pilcher, C; Günther, M; Guillian, G; Guimarães da Costa, J; Guo, R S; Haas, R M; Haber, C; Hafen, E S; Hahn, S R; Hall, C; Handa, T; Handler, R; Hao, W; Happacher, F; Hara, K; Hardman, A D; Harris, R M; Hartmann, F; Hatakeyama, K; Hauser, J; Heinrich, J; Heiss, A; Herndon, M; Hoffman, K D; Holck, C; Hollebeek, R J; Holloway, L E; Hughes, R; Huston, J; Huth, J E; Ikeda, H; Incandela, J R; Introzzi, G; Iwai, J; Iwata, Y; James, E; Jensen, H; Jones, M; Joshi, U; Kambara, H; Kamon, T; Kaneko, T; Karr, K M; Kasha, H; Kato, Y; Keaffaber, T A; Kelley, K; Kelly, M; Kennedy, R D; Kephart, R D; Khazins, D M; Kikuchi, T; Kilminster, B; Kirby, M; Kirk, M; Kim, B J; Kim, D H; Kim, H S; Kim, M J; Kim, S H; Kim, Y K; Kirsch, L; Klimenko, S; Koehn, P; Köngeter, A; Kondo, K; Konigsberg, J; Kordas, K; Korn, A J; Korytov, A V; Kovács, E; Kroll, J; Kruse, M; Kuhlmann, S E; Kurino, K; Kuwabara, T; Laasanen, A T; Lai, N; Lami, S; Lammel, S; Lamoureux, J I; Lancaster, M; Latino, G; LeCompte, T J; Lee, A M; Lee, K; Leone, S; Lewis, J D; Lindgren, M; Liss, T M; Liu, J B; Liu, Y C; Lockyer, N; Loken, J G; Loreti, M; Lucchesi, D; Lukens, P; Lusin, S; Lyons, L; Lys, J; Madrak, R; Maeshima, K; Maksimovic, P; Malferrari, L; Mangano, Michelangelo L; Mariotti, M; Martignon, G; Martin, A; Matthews, J A J; Mayer, J; Mazzanti, P; McFarland, K S; McIntyre, P; McKigney, E A; Menguzzato, M; Menzione, A; Mesropian, C; Meyer, A; Miao, T; Miller, R; Miller, J S; Minato, H; Miscetti, S; Mishina, M; Mitselmakher, G; Moggi, N; Moore, E; Moore, R; Morita, Y; Mulhearn, M; Mukherjee, A; Müller, T; Munar, A; Murat, P; Murgia, S; Musy, M; Nachtman, J; Nahn, S; Nakada, H; Nakaya, T; Nakano, I; Nelson, C; Neuberger, D; Newman-Holmes, C; Ngan, C Y P; Nicolaidi, P; Niu, H; Nodulman, L; Nomerotski, A; Oh, S H; Ohmoto, T; Ohsugi, T; Oishi, R; Okusawa, T; Olsen, J; Orejudos, W; Pagliarone, C; Palmonari, F; Paoletti, R; Papadimitriou, V; Pappas, S P; Partos, D S; Patrick, J; Pauletta, G; Paulini, M; Paus, C; Pescara, L; Phillips, T J; Piacentino, G; Pitts, K T; Plunkett, R K; Pompos, A; Pondrom, L; Pope, G; Popovic, M; Prokoshin, F; Proudfoot, J; Ptohos, F; Pukhov, O; Punzi, G; Ragan, K; Rakitine, A; Reher, D; Reichold, A; Riegler, W; Ribon, A; Rimondi, F; Ristori, L; Riveline, M; Robertson, W J; Robinson, A; Rodrigo, T; Rolli, S; Rosenson, L; Roser, R M; Rossin, R; Safonov, A; Sakumoto, W K; Saltzberg, D; Sansoni, A; Santi, L; Sato, H; Savard, P; Schlabach, P; Schmidt, E E; Schmidt, M P; Schmitt, M; Scodellaro, L; Scott, A; Scribano, A; Segler, S L; Seidel, S; Seiya, Y; Semenov, A A; Semeria, F; Shah, T; Shapiro, M D; Shepard, P F; Shibayama, T; Shimojima, M; Shochet, M J; Siegrist, J L; Signorelli, G; Sill, A F; Sinervo, P K; Singh, P; Slaughter, A J; Sliwa, K; Smith, C; Snider, F D; Solodsky, A; Spalding, J; Speer, T; Sphicas, Paris; Spinella, F; Spiropulu, M; Spiegel, L; Steele, J; Stefanini, A; Strologas, J; Strumia, F; Stuart, D; Sumorok, K; Suzuki, T; Takano, T; Takashima, R; Takikawa, K; Tamburello, P D; Tanaka, M; Tannenbaum, B; Taylor, W; Tecchio, M; Teng, P K; Terashi, K; Tether, S; Theriot, D; Thurman-Keup, R M; Tipton, P; Tkaczyk, S M; Tollefson, K; Tollestrup, Alvin V; Toyoda, H; Trischuk, W; De Trocóniz, J F; Tseng, J; Turini, N; Ukegawa, F; Vaiciulis, T; Valls, J; Vejcik, S; Velev, G V; Vidal, R; Vilar, R; Volobuev, I P; Vucinic, D; Wagner, R G; Wagner, R L; Wahl, J; Wallace, N B; Walsh, A M; Wang, C; Wang, C H; Wang, M J; Watanabe, T; Waters, D; Watts, T; Webb, R; Wenzel, H; Wester, W C; Wicklund, A B; Wicklund, E; Williams, H H; Wilson, P; Winer, B L; Winn, D; Wolbers, S; Wolinski, D; Wolinski, J; Wolinski, S; Worm, S D; Wu, X; Wyss, J; Yagil, A; Yao, W; Yeh, G P; Yeh, P; Yoh, J K; Yosef, C; Yoshida, T; Yu, I; Yu, S; Yu, Z; Zanetti, A; Zetti, F; Zucchelli, S

    2001-01-01

    We present a measurement of the W boson mass using data collected with the CDF detector during the 1994-95 collider run at the Fermilab Tevatron. A fit to the transverse mass spectrum of a sample of 30,115 W -> enu events recorded in an integrated luminosity of 84 pb^(-1) gives a mass Mw = 80.473 +- 0.065(stat.) +- 0.092(syst.) GeV/c^2. A fit to the transverse mass spectrum of a sample of 14,740 W -> munu events from 80 pb^(-1) gives a mass Mw = 80.465 +- 0.100(stat.) +- 0.103(syst.) GeV/c^2. The dominant contributions to the systematic uncertainties are the uncertainties in the electron energy scale and the muon momentum scale, 0.075 GeV/c^2 and 0.085 GeV/c^2, respectively. The combined value for the electron and muon channel is Mw = 80.470 +- 0.089 GeV/c^2. When combined with previously published CDF measurements, we obtain Mw = 80.433 +- 0.079 GeV/c^2.

  5. Improving the Fermilab Booster Notching Efficiency, Beam Losses and Radiation Levels

    CERN Document Server

    Rakhno, I L; Mokhov, N V; Sidorov, V I; Tropin, I S

    2012-01-01

    Currently a fast vertical 1.08-m long kicker (notcher) located in the Fermilab Booster Long-5 straight section is used to remove 3 out of 84 circulating bunches after injection to generate an abort gap. With magnetic field of 72.5 Gauss it removes only 87% of the 3-bunch intensity at 400 MeV, with 75% loss on pole tips of the focusing Booster magnets, 11% on the Long-6 collimators, and 1% in the rest of the ring. We propose to improve the notching efficiency and reduce beam loss in the Booster by using two horizontal kickers in the Long-12 section. The STRUCT calculations show that using such horizontal notchers, one can remove up to 99% of the 3-bunch intensity at 400-700 MeV, directing 96% of it to a new beam dump at the Long-13 section. This fully decouples notching and collimation. The beam dump absorbs most of the impinging proton energy in its jaws. The latter are encapsulated into an appropriate radiation shielding that reduces impact on the machine components, personnel and environment to the tolerabl...

  6. The Calibration System of the E989 Experiment at Fermilab

    Energy Technology Data Exchange (ETDEWEB)

    Anastasi, Antonio [Univ. of Messina (Italy)

    2017-01-01

    The muon anomaly aµ is one of the most precise quantity known in physics experimentally and theoretically. The high level of accuracy permits to use the measurement of aµ as a test of the Standard Model comparing with the theoretical calculation. After the impressive result obtained at Brookhaven National Laboratory in 2001 with a total accuracy of 0.54 ppm, a new experiment E989 is under construction at Fermilab, motivated by the diff of aexp SM µ - aµ ~ 3σ. The purpose of the E989 experiment is a fourfold reduction of the error, with a goal of 0.14 ppm, improving both the systematic and statistical uncertainty. With the use of the Fermilab beam complex a statistic of × 21 with respect to BNL will be reached in almost 2 years of data taking improving the statistical uncertainty to 0.1 ppm. Improvement on the systematic error involves the measurement technique of ωa and ωp, the anomalous precession frequency of the muon and the Larmor precession frequency of the proton respectively. The measurement of ωp involves the magnetic field measurement and improvements on this sector related to the uniformity of the field should reduce the systematic uncertainty with respect to BNL from 170 ppb to 70 ppb. A reduction from 180 ppb to 70 ppb is also required for the measurement of ωa; new DAQ, a faster electronics and new detectors and calibration system will be implemented with respect to E821 to reach this goal. In particular the laser calibration system will reduce the systematic error due to gain fl of the photodetectors from 0.12 to 0.02 ppm. The 0.02 ppm limit on systematic requires a system with a stability of 10-4 on short time scale (700 µs) while on longer time scale the stability is at the percent level. The 10-4 stability level required is almost an order of magnitude better than the existing laser calibration system in particle physics, making the calibration system a very challenging item. In addition to the high level

  7. Emittance and Phase Space Tomography for the Fermilab Linac

    Energy Technology Data Exchange (ETDEWEB)

    Garcia, F.G.G.; Johnstone, C.; Kobilarcik, T.; Koizumi, G.M.; Moore, C.D.; /Fermilab; Newhart, D.L.; /Fermilab

    2012-05-01

    The Fermilab Linac delivers a variable intensity, 400-MeV beam to the MuCool Test Area experimental hall via a beam line specifically designed to facilitate measurements of the Linac beam emittance and properties. A 10 m, dispersion-free and magnet-free straight utilizes an upstream quadrupole focusing triplet in combination with the necessary in-straight beam diagnostics to fully characterize the transverse beam properties. Since the Linac does not produce a strictly elliptical phase space, tomography must be performed on the profile data to retrieve the actual particle distribution in phase space. This is achieved by rotating the phase space distribution using different waist focusing conditions of the upstream triplet and performing a deconvolution of the profile data. Preliminary measurements using this diagnostic section are reported here. These data represent a first-pass measurement of the Linac emittance based on various techniques. It is clear that the most accurate representation of the emittance is given by the 3-profile approach. Future work will entail minimizing the beam spot size on MW5 to test and possibly improve the accuracy of the 2-profile approach. The 95% emittance is {approx} 18{pi} in the vertical and {approx} 13{pi} in the horizontal, which is especially larger than anticipated - 8-10{pi} was expected. One possible explanation is that the entire Linac pulse is extracted into the MTA beamline and during the first few microseconds, the feed forward and RF regulation are not stable. This may result in a larger net emittance observed versus beam injected into Booster, where the leading part of the Linac beam pulse is chopped. Future studies will clearly entail a measurement of the emittance vs. pulse length. One additional concern is that the Linac phase space is most likely aperture-defined and non-elliptical in nature. A non-elliptical phase-space determination would require a more elaborate analysis and provide another explanation of the

  8. Ugrades of beam diagnostics in support of emittance-exchange experiments at the Fermilab A0 photoinjector

    Energy Technology Data Exchange (ETDEWEB)

    Lumpkin, A.H.; Johnson, A.S.; Ruan, J.; Santucci, J.; Sun, Y.-E.; Thurman-Keup, R.; Edwards, H.; /Fermilab

    2011-01-01

    The possibility of using electron beam phase space manipulations to support a free-electron laser accelerator design optimization has motivated our research. An ongoing program demonstrating the exchange of transverse horizontal and longitudinal emittances at the Fermilab A0 photoinjector has benefited recently from the upgrade of several of the key diagnostics stations. Accurate measurements of these properties upstream and downstream of the exchanger beamline are needed. Improvements in the screen resolution term and reduced impact of the optical system's depth-of-focus by using YAG:Ce single crystals normal to the beam direction will be described. The requirement to measure small energy spreads (<10 keV) in the spectrometer and the exchange process which resulted in bunch lengths less than 500 fs led to other diagnostics performance adjustments and upgrades as well. A longitudinal to transverse exchange example is also reported.

  9. Ugrades of beam diagnostics in support of emittance-exchange experiments at the Fermilab A0 photoinjector

    Energy Technology Data Exchange (ETDEWEB)

    Lumpkin, A.H.; Johnson, A.S.; Ruan, J.; Santucci, J.; Sun, Y.-E.; Thurman-Keup, R.; Edwards, H.; /Fermilab

    2011-01-01

    The possibility of using electron beam phase space manipulations to support a free-electron laser accelerator design optimization has motivated our research. An ongoing program demonstrating the exchange of transverse horizontal and longitudinal emittances at the Fermilab A0 photoinjector has benefited recently from the upgrade of several of the key diagnostics stations. Accurate measurements of these properties upstream and downstream of the exchanger beamline are needed. Improvements in the screen resolution term and reduced impact of the optical system's depth-of-focus by using YAG:Ce single crystals normal to the beam direction will be described. The requirement to measure small energy spreads (<10 keV) in the spectrometer and the exchange process which resulted in bunch lengths less than 500 fs led to other diagnostics performance adjustments and upgrades as well. A longitudinal to transverse exchange example is also reported.

  10. High Energy Physics: Report of research accomplishments and future goals, FY 1983

    Energy Technology Data Exchange (ETDEWEB)

    Barish, B C

    1983-12-31

    Continuing research in high energy physics carried out by the group from the California Institute of Technology. The program includes research in theory, phenomenology, and experimental high energy physics. The experimental program includes experiments at SLAC, FERMILAB, and DESY.

  11. High Energy Physics: Report of research accomplishments and furture goals, FY1983

    Energy Technology Data Exchange (ETDEWEB)

    Barish, B C

    1981-05-08

    Continuing research in high energy physics carried out by the group from the California Institute of Technology. The program includes research in theory, phenomenology, and experimental high energy physics. The experimental program includes experiments at SLAC and FERMILAB.

  12. From the CERN web: Collide@CERN, Fermilab neutrinos and more

    CERN Multimedia

    2015-01-01

    This new section highlights articles, blog posts and press releases published in the CERN web environment over the past weeks. This way, you won’t miss a thing...   Ruth Jarman and Joe Gerhardt. (Photo: Matthias H. Risse). Collide@CERN Ars Electronica Award goes to “Semiconductor” 10 August – Collide@CERN Ruth Jarman and Joe Gerhardt, two English artists collaborating under the name Semiconductor, are this year’s recipients of the Collide@CERN Ars Electronica Award. In the coming months, they will begin a two-month residency at CERN.  Continue to read…     Illustration: Fermilab/Sandbox Studio.   Fermilab experiment sees neutrinos change over 500 miles 7 August - Fermilab press release Scientists on the NOvA experiment saw their first evidence of oscillating neutrinos, confirming that the extraordinary detector built for the project not only functions as planned but is also making great p...

  13. The Science Training Program for Young Italian Physicists and Engineers at Fermilab

    Energy Technology Data Exchange (ETDEWEB)

    Barzi, Emanuela [Fermilab; Bellettini, Giorgio [INFN, Pisa; Donati, Simone [INFN, Pisa

    2015-03-12

    Since 1984 Fermilab has been hosting a two-month summer training program for selected undergraduate and graduate Italian students in physics and engineering. Building on the traditional close collaboration between the Italian National Institute of Nuclear Physics (INFN) and Fermilab, the program is supported by INFN, by the DOE and by the Scuola Superiore di Sant`Anna of Pisa (SSSA), and is run by the Cultural Association of Italians at Fermilab (CAIF). This year the University of Pisa has qualified it as a “University of Pisa Summer School”, and will grant successful students with European Supplementary Credits. Physics students join the Fermilab HEP research groups, while engineers join the Particle Physics, Accelerator, Technical, and Computing Divisions. Some students have also been sent to other U.S. laboratories and universities for special trainings. The programs cover topics of great interest for science and for social applications in general, like advanced computing, distributed data analysis, nanoelectronics, particle detectors for earth and space experiments, high precision mechanics, applied superconductivity. In the years, over 350 students have been trained and are now employed in the most diverse fields in Italy, Europe, and the U.S. In addition, the existing Laurea Program in Fermilab Technical Division was extended to the whole laboratory, with presently two students in Master’s thesis programs on neutrino physics and detectors in the Neutrino Division. And finally, a joint venture with the Italian Scientists and Scholars North-America Foundation (ISSNAF) provided this year 4 professional engineers free of charge for Fermilab. More details on all of the above can be found below.

  14. Beam manipulation and compression using broadband rf systems in the Fermilab Main Injector and Recycler

    Energy Technology Data Exchange (ETDEWEB)

    G William Foster et al.

    2004-07-09

    A novel method for beam manipulation, compression, and stacking using a broad band RF system in circular accelerators is described. The method uses a series of linear voltage ramps in combination with moving barrier pulses to azimuthally compress, expand, or cog the beam. Beam manipulations can be accomplished rapidly and, in principle, without emittance growth. The general principle of the method is discussed using beam dynamics simulations. Beam experiments in the Fermilab Recycler Ring convincingly validate the concept. Preliminary experiments in the Fermilab Main Injector to investigate its potential for merging two ''booster batches'' to produce high intensity proton beams for neutrino and antiproton production are described.

  15. First high power pulsed tests of a dressed 325 MHz superconducting single spoke resonator at Fermilab

    Energy Technology Data Exchange (ETDEWEB)

    Madrak, R.; Branlard, J.; Chase, B.; Darve, C.; Joireman, P.; Khabiboulline, T.; Mukherjee, A.; Nicol, T.; Peoples-Evans, E.; Peterson, D.; Pischalnikov, Y.; /Fermilab

    2011-03-01

    In the recently commissioned superconducting RF cavity test facility at Fermilab (SCTF), a 325 MHz, {beta} = 0.22 superconducting single-spoke resonator (SSR1) has been tested for the first time with its input power coupler. Previously, this cavity had been tested CW with a low power, high Q{sub ext} test coupler; first as a bare cavity in the Fermilab Vertical Test Stand and then fully dressed in the SCTF. For the tests described here, the design input coupler with Q{sub ext} {approx} 10{sup 6} was used. Pulsed power was provided by a Toshiba E3740A 2.5 MW klystron.

  16. Installation status of the electron beam profiler for the Fermilab Main Injector

    CERN Document Server

    Thurman-Keup, R; Fitzgerald, J; Lundberg, C; Prieto, P; Roberts, M; Zagel, J; Blokland, W

    2015-01-01

    The planned neutrino program at Fermilab requires large proton beam intensities in excess of 2 MW. Measuring the transverse profiles of these high intensity beams is challenging and often depends on non-invasive techniques. One such technique involves measuring the deflection of a probe beam of electrons with a trajectory perpendicular to the proton beam. A device such as this is already in use at the Spallation Neutron Source at ORNL and the installation of a similar device is underway in the Main Injector at Fermilab. The present installation status of the electron beam profiler for the Main Injector will be discussed together with some simulations and test stand results.

  17. Observation of Instabilities of Coherent Transverse Ocillations in the Fermilab Booster

    Energy Technology Data Exchange (ETDEWEB)

    Alexahin, Y.; Eddy, N.; Gianfelice-Wendt, E.; Lebedev, V.; Marsh, W.; Pellico, W.; Triplett, K.; /Fermilab

    2012-05-01

    The Fermilab Booster - built more than 40 years ago - operates well above the design proton beam intensity of 4 {center_dot} 10{sup 12} ppp. Still, the Fermilab neutrino experiments call for even higher intensity exceeding 5.5 {center_dot} 10{sup 12} ppp. A multitude of intensity related effects must be overcome in order to meet this goal including suppression of coherent dipole instabilities of transverse oscillations which manifest themselves as a sudden drop in the beam current. In this report we present the results of observation of these instabilities at different tune, coupling and chromaticity settings and discuss possible cures.

  18. Experiment and simulations of sub-ps electron bunch train generation at Fermilab photoinjectors

    Energy Technology Data Exchange (ETDEWEB)

    Sun, Y.-E; Church, M.; /Fermilab; Piot, P.; Prokop, C.R.; /Fermilab /Northern Illinois U.

    2011-10-01

    Recently the generation of electron bunch trains with sub-picosecond time structure has been experimentally demonstrated at the A0 photoinjector of Fermilab using a transverse-longitudinal phase-space exchange beamline. The temporal profile of the bunch train can be easily tuned to meet the requirements of the applications of modern accelerator beams. In this paper we report the A0 bunch-train experiment and explore numerically the possible extension of this technique to shorter time scales at the Fermilab SRF Accelerator Test Facility, a superconducting linear electron accelerator currently under construction in the NML building.

  19. Installation Status of the Electron Beam Profiler for the Fermilab Main Injector

    Energy Technology Data Exchange (ETDEWEB)

    Thurman-Keup, R.; Alvarez, M.; Fitzgerald, J.; Lundberg, C.; Prieto, P.; Roberts, M.; Zagel, J.; Blokland, W.

    2015-11-06

    The planned neutrino program at Fermilab requires large proton beam intensities in excess of 2 MW. Measuring the transverse profiles of these high intensity beams is challenging and often depends on non-invasive techniques. One such technique involves measuring the deflection of a probe beam of electrons with a trajectory perpendicular to the proton beam. A device such as this is already in use at the Spallation Neutron Source at ORNL and the installation of a similar device is underway in the Main Injector at Fermilab. The present installation status of the electron beam profiler for the Main Injector will be discussed together with some simulations and test stand results.

  20. Design report for an indirectly cooled 3-m diameter superconducting solenoid for the Fermilab Collider Detector Facility

    Energy Technology Data Exchange (ETDEWEB)

    Fast, R.; Grimson, J.; Kephart, R.

    1982-10-01

    The Fermilab Collider Detector Facility (CDF) is a large detector system designed to study anti pp collisions at very high center of mass energies. The central detector for the CDF shown employs a large axial magnetic field volume instrumented with a central tracking chamber composed of multiple layers of cylindrical drift chambers and a pair of intermediate tracking chambers. The purpose of this system is to determine the trajectories, sign of electric charge, and momenta of charged particles produced with polar angles between 10 and 170 degrees. The magnetic field volume required for tracking is approximately 3.5 m long an 3 m in diameter. To provide the desired ..delta..p/sub T/p/sub T/ less than or equal to 1.5% at 50 GeV/c using drift chambers with approx. 200..mu.. resolution the field inside this volume should be 1.5 T. The field should be as uniform as is practical to simplify both track finding and the reconstruction of particle trajectories with the drift chambers. Such a field can be produced by a cylindrical current sheet solenoid with a uniform current density of 1.2 x 10/sup 6/ A/m (1200 A/mm) surrounded by an iron return yoke. For practical coils and return yokes, both central electromagnetic and central hadronic calorimetry must be located outside the coil of the magnet. This geometry requires that the coil and the cryostat be thin both in physical thickness and in radiation and absorption lengths. This dual requirement of high linear current density and minimal coil thickness can only be satisfied using superconducting technology. In this report we describe the design for an indirectly cooled superconducting solenoid to meet the requirements of the Fermilab CDF. The components of the magnet system are discussed in the following chapters, with a summary of parameters listed in Appendix A.

  1. Architecture Design of Trigger and DAQ System for Fermilab CKM Experiment

    Institute of Scientific and Technical Information of China (English)

    JinyuanWU

    2001-01-01

    The Fermilab CKM (E921) experiment studies a rare kaon decay which has a very small branching ratio and can be very hard to separate from background processes.A trigger and DAQ system is required to collecto all necessary unformation for background rejection and to maintain high reliability at high beam rate.The unique challenges have emphasized the following guiding concepts:(1) Collecting background is as important as collecting good events.(2) A DAQ "event" should not be just a "snap shot" of the detector.It should be a short history record of the detector around the candidate event. The hit history provides information to understand temporary detector blindness,which is extremely important to the CKM experiment.(3) The main purpose of the trigger system should not be "knocking down trigger rate" or "throwing out garbage events" .Instead,it should classify the events and select appropriate data collecting straegies among various predefined ones for the given types of the events.The following methodologies are epmployed in the architecture to fulfill the experiment requirements without confronting unnecessary technical difficulties.(1) Continuous digitization near the detector elements is utilized to preserve the data quality.(2) The concept of minimum synchronization is adopted to eliminate the needs of time matching signal paths.(3) A global level 1 trigger performs coincident and veto functions using digital timing information to avoid problems due to signal degrading in long calbes.(4) The DAQ logic allows to collect chronicle records around the interesting events with different levels of detail of ADC information,so that very low energy particles in the veto systems can be best detected.(5) A re-programmable hardware trigger(L2.5)and a software trigger(L3) sitting in the DAQ stream are planned to perform data selection functioins based on full detector data with adjustability.

  2. Report Tunneling Cost Reduction Study prepared for Fermilab

    Energy Technology Data Exchange (ETDEWEB)

    1999-07-16

    Fermi National Accelerator Laboratories has a need to review the costs of constructing the very long tunnels which would be required for housing the equipment for the proposed Very Large Hadron Collider (VLHC) project. Current tunneling costs are high, and the identification of potential means of significantly reducing them, and thereby helping to keep overall project costs within an acceptable budget, has assumed great importance. Fermilab has contracted with The Robbins Company to provide an up-to-date appraisal of tunneling technology, and to review the potential for substantially improving currently the state-of-practice performance and construction costs in particular. The Robbins Company was chosen for this task because of its long and successful experience in hard rock mechanical tunnel boring. In the past 40 years, Robbins has manufactured over 250 tunneling machines, the vast majority for hard rock applications. In addition to also supplying back-up equipment, Robbins has recently established a division dedicated to the manufacture of continuous conveying equipment for the efficient support of tunneling operations. The study extends beyond the tunnel boring machine (TBM) itself, and into the critical area of the logistics of the support of the machine as it advances, including manpower. It is restricted to proven methods using conventional technology, and its potential for incremental but meaningful improvement, rather than examining exotic and undeveloped means of rock excavation that have been proposed from time to time by the technical community. This is the first phase of what is expected to be a number of studies in increasing depth of technical detail, and as such has been restricted to the issues connected with the initial 34 kilometer circumference booster tunnel, and not the proposed 500 kilometer circumference tunnel housing the VLHC itself. The booster tunnel is entirely sited within low to medium strength limestone and dolomite formations

  3. Design and implementation of the medium-beta insert of the Fermilab recycler ring

    Energy Technology Data Exchange (ETDEWEB)

    Weishi Wan et al.

    2001-08-15

    The design of the newly installed medium-{beta} insert of the Fermilab Recycler Ring is presented. The design philosophy is outlined. The stringent optical and physical constraints, as well as their influence on the design, are discussed. The impact of the medium-{beta} insert on the Recycler Ring is shown. Engineering design and installation of the new insert is presented.

  4. Measurement of the Top Quark Mass with the Collider Detector at Fermilab

    Energy Technology Data Exchange (ETDEWEB)

    Sato, Koji [Univ. of Tsukuba (Japan)

    2005-02-01

    We present a measurement of the top quark mass using tt pair creation events decaying into the lepton+jets channel in pp collisions at √s = 1.96 TeV. The data sample used in this analysis was collected with the Collider Detector at Fermilab (CDF) in Tevatron Run II during the period from March 2002 through August 2003.

  5. Operation of the CDF silicon vertex detector with colliding beams at Fermilab

    Energy Technology Data Exchange (ETDEWEB)

    Bedeschi, F.; Bolognesi, V.; Dell' Agnello, S.; Galeotti, S.; Grieco, G.; Mariotti, M.; Menzione, A.; Punzi, G.; Raffaelli, F.; Ristori, L.; Tartarelli, F.; Turini, N.; Wenzel, H.; Zetti, F. (INFN, University and Scuola Normale Superiore of Pisa, Pisa, Italy, I-56100 (Italy)); Bailey, M.W.; Garfinkel, A.F.; Kruse, M.C.; Shaw, N.M. (Purdue University, West Lafayette, Indiana 47907 (United States)); Carithers, W.C.; Ely, R.; Haber, C.; Holland, S.; Kleinfelder, S.; Merrick, T.; Schneider, O.; Wester, W.; Wong, M.; Yao, W. (Lawrence Berkeley Laboratory, Berkeley, California 94720 (United States)); Carter, H.; Flaugher, B.; Nelson, C.; Segler, S.; Shaw, T.; Tkaczyk, S.; Turner, K.; Wesson, T.R. (Fermi National Accelerator Laboratory, Batavia, Illinois 60510 (United States)); Barnett, B.; Boswell, C.; Skarha, J.; Snider, F.D.; Spies, A.; Tseng, J.; Vejcik, S. (The John Hopkins University, Baltimore, Maryland 21218 (United States)); Amidei, D.; Derwent, P.F.; Song, T.Y.; Dunn, A. (Univer

    1992-02-05

    In this paper we briefly describe the main features of the CDF Silicon Vertex Detector (SVX) and discuss its performance during actual colliding beam operation at the Fermilab Tevatron. Details on [ital S]/[ital N] ratio, alignment, resolution, and efficiency are given.

  6. Operation of the CDF Silicon Vertex Detector with colliding beams at Fermilab

    Energy Technology Data Exchange (ETDEWEB)

    Bedeschi, F.; Bolognesi, V.; Dell' Agnello, S.; Galeotti, S.; Grieco, G.; Mariotti, M.; Menzione, A.; Punzi, G.; Raffaelli, F.; Ristori, L.; Tartarelli, F.; Turini, N.; Wenzel, H.; Zetti, F. (Scuola Normale Superiore, Pisa (Italy)); Bailey, M.W.; Garfinkel, A.F.; Kruse, M.C.; Shaw, N.M. (Purdue Univ., Lafayette, IN (United States)); Carithers, W.C.; Ely, R.; Haber, C.; Holland, S.; Kleinfelder, S.; Merrick, T.; Schneide

    1992-10-01

    In this paper we briefly describe the main features of the CDF Silicon Vertex Detector (SVX) and discuss its performance during actual colliding beam operation at the Fermilab Tevatron. Details on S/N ratio, alignment, resolution and efficiency are given.

  7. DOE Lab-Wide Review of Fermilab May 19-20, 1987

    Energy Technology Data Exchange (ETDEWEB)

    Green, Dan [Fermilab

    1987-05-01

    This book is submitted as a written adjunct to the Annual DOE Lab-Wide Review of Fermilab, scheduled this year for May 19, 20, 1987. In it are described the functions and activities of the various laboratory areas plus statements of plans and goals for the coming year.

  8. Fermilab digs 4,000-foot tunnel for neutrino study near Batavia

    CERN Multimedia

    Grady, W

    2002-01-01

    As part of a construction project that began more than two years ago, workers have carved out 4,000 feet of tunnel and two huge caverns under a portion of Fermilab's site near Batavia. The $171 million project will provide research facilities for an experiment designed to study neutrinos (1 page).

  9. CERN-Fermilab Hadron Collider Physics Summer School 2013 open for applications

    CERN Multimedia

    2013-01-01

    Mark your calendar for 28 August - 6 September 2013, when CERN will welcome students to the eighth CERN-Fermilab Hadron Collider Physics Summer School.   Experiments at hadron colliders will continue to provide our best tools for exploring physics at the TeV scale for some time. With the completion of the 7-8 TeV runs of the LHC, and the final results from the full Tevatron data sample becoming available, a new era in particle physics is beginning, heralded by the Higgs-like particle recently discovered at 125 GeV. To realize the full potential of these developments, CERN and Fermilab are jointly offering a series of "Hadron Collider Physics Summer Schools", to prepare young researchers for these exciting times. The school has alternated between CERN and Fermilab, and will return to CERN for the eighth edition, from 28 August to 6 September 2013. The CERN-Fermilab Hadron Collider Physics Summer School is an advanced school which particularly targets young postdocs in exper...

  10. T864 (MiniMax): A search for disoriented chiral condensate at the Fermilab Collider

    Energy Technology Data Exchange (ETDEWEB)

    Bjorken, J.D.

    1996-10-01

    A small test/experiment has been performed at the Fermilab Collider to measure charged particle and photon multiplicities in the forward direction, {eta} {approximately} 4.1. The primary goal is to search for disoriented chiral condensate (DCC). The experiment and analysis methods are described, and preliminary results of the DCC search are presented.

  11. A precise measurement of the $W$-boson mass with the Collider Detector at Fermilab

    CERN Document Server

    Aaltonen, Timo Antero; Amidei, Dante E; Anastassov, Anton Iankov; Annovi, Alberto; Antos, Jaroslav; Apollinari, Giorgio; Appel, Jeffrey A; Arisawa, Tetsuo; Artikov, Akram Muzafarovich; Asaadi, Jonathan A; Ashmanskas, William Joseph; Auerbach, Benjamin; Aurisano, Adam J; Azfar, Farrukh A; Badgett, William Farris; Bae, Taegil; Barbaro-Galtieri, Angela; Barnes, Virgil E; Barnett, Bruce Arnold; Barreiro Guimaraes da Costa, Joao; Barria, Patrizia; Bartos, Pavol; Bauce, Matteo; Bedeschi, Franco; Beecher, Daniel Paul; Behari, Satyajit; Bellettini, Giorgio; Bellinger, James Nugent; Benjamin, Douglas P; Beretvas, Andrew F; Bhatti, Anwar Ahmad; Bizjak, Ilija; Bland, Karen Renee; Blumenfeld, Barry J; Bocci, Andrea; Bodek, Arie; Bortoletto, Daniela; Boudreau, Joseph Francis; Boveia, Antonio; Brigliadori, Luca; Bromberg, Carl Michael; Brucken, Erik; Budagov, Ioulian A; Budd, Howard Scott; Burkett, Kevin Alan; Busetto, Giovanni; Bussey, Peter John; Butti, Pierfrancesco; Buzatu, Adrian; Calamba, Aristotle; Camarda, Stefano; Campanelli, Mario; Canelli, Florencia; Carls, Benjamin; Carlsmith, Duncan L; Carosi, Roberto; Carrillo Moreno, Salvador; Casal Larana, Bruno; Casarsa, Massimo; Castro, Andrea; Catastini, Pierluigi; Cauz, Diego; Cavaliere, Viviana; Cavalli-Sforza, Matteo; Cerri, Alessandro; Cerrito, Lucio; Chen, Yen-Chu; Chertok, Maxwell Benjamin; Chiarelli, Giorgio; Chlachidze, Gouram; Cho, Kihyeon; Chokheli, Davit; Clark, Allan Geoffrey; Clarke, Christopher Joseph; Convery, Mary Elizabeth; Conway, John Stephen; Corbo, Matteo; Cordelli, Marco; Cox, Charles Alexander; Cox, David Jeremy; Cremonesi, Matteo; Cruz Alonso, Daniel; Cuevas Maestro, Javier; Culbertson, Raymond Lloyd; D'Ascenzo, Nicola; Datta, Mousumi; de Barbaro, Pawel; Demortier, Luc M; Deninno, Maria Maddalena; D'Errico, Maria; Devoto, Francesco; Di Canto, Angelo; Di Ruzza, Benedetto; Dittmann, Jay Richard; Donati, Simone; D'Onofrio, Monica; Dorigo, Mirco; Driutti, Anna; Ebina, Koji; Edgar, Ryan Christopher; Elagin, Andrey L; Erbacher, Robin D; Errede, Steven Michael; Esham, Benjamin; Eusebi, Ricardo; Farrington, Sinead Marie; Fernández Ramos, Juan Pablo; Field, Richard D; Flanagan, Gene U; Forrest, Robert David; Franklin, Melissa EB; Freeman, John Christian; Frisch, Henry J; Funakoshi, Yujiro; Galloni, Camilla; Garfinkel, Arthur F; Garosi, Paola; Gerberich, Heather Kay; Gerchtein, Elena A; Giagu, Stefano; Giakoumopoulou, Viktoria Athina; Gibson, Karen Ruth; Ginsburg, Camille Marie; Giokaris, Nikos D; Giromini, Paolo; Giurgiu, Gavril A; Glagolev, Vladimir; Glenzinski, Douglas Andrew; Gold, Michael S; Goldin, Daniel; Golossanov, Alexander; Gomez, Gervasio; Gomez-Ceballos, Guillelmo; Goncharov, Maxim T; González López, Oscar; Gorelov, Igor V; Goshaw, Alfred T; Goulianos, Konstantin A; Gramellini, Elena; Grinstein, Sebastian; Grosso-Pilcher, Carla; Group, Robert Craig; Hahn, Stephen R; Han, Ji-Yeon; Happacher, Fabio; Hara, Kazuhiko; Hare, Matthew Frederick; Harr, Robert Francis; Harrington-Taber, Timothy; Hatakeyama, Kenichi; Hays, Christopher Paul; Heinrich, Joel G; Herndon, Matthew Fairbanks; Hocker, James Andrew; Hong, Ziqing; Hopkins, Walter Howard; Hou, Suen Ray; Hughes, Richard Edward; Husemann, Ulrich; Hussein, Mohammad; Huston, Joey Walter; Introzzi, Gianluca; Iori, Maurizio; Ivanov, Andrew Gennadievich; James, Eric B; Jang, Dongwook; Jayatilaka, Bodhitha Anjalike; Jeon, Eun-Ju; Jindariani, Sergo Robert; Jones, Matthew T; Joo, Kyung Kwang; Jun, Soon Yung; Junk, Thomas R; Kambeitz, Manuel; Kamon, Teruki; Karchin, Paul Edmund; Kasmi, Azeddine; Kato, Yukihiro; Ketchum, Wesley Robert; Keung, Justin Kien; Kilminster, Benjamin John; Kim, DongHee; Kim, Hyunsoo; Kim, Jieun; Kim, Min Jeong; Kim, Shin-Hong; Kim, Soo Bong; Kim, Young-Jin; Kim, Young-Kee; Kimura, Naoki; Kirby, Michael H; Knoepfel, Kyle James; Kondo, Kunitaka; Kong, Dae Jung; Konigsberg, Jacobo; Kotwal, Ashutosh Vijay; Kreps, Michal; Kroll, IJoseph; Kruse, Mark Charles; Kuhr, Thomas; Kurata, Masakazu; Laasanen, Alvin Toivo; Lammel, Stephan; Lancaster, Mark; Lannon, Kevin Patrick; Latino, Giuseppe; Lee, Hyun Su; Lee, Jaison; Leo, Sabato; Leone, Sandra; Lewis, Jonathan D; Limosani, Antonio; Lipeles, Elliot David; Lister, Alison; Liu, Hao; Liu, Qiuguang; Liu, Tiehui Ted; Lockwitz, Sarah E; Loginov, Andrey Borisovich; Lucchesi, Donatella; Lucà, Alessandra; Lueck, Jan; Lujan, Paul Joseph; Lukens, Patrick Thomas; Lungu, Gheorghe; Lys, Jeremy E; Lysak, Roman; Madrak, Robyn Leigh; Maestro, Paolo; Malik, Sarah Alam; Manca, Giulia; Manousakis-Katsikakis, Arkadios; Marchese, Luigi Marchese; Margaroli, Fabrizio; Marino, Christopher Phillip; Martínez-Perez, Mario; Matera, Keith; Mattson, Mark Edward; Mazzacane, Anna; Mazzanti, Paolo; McNulty, Ronan; Mehta, Andrew; Mehtala, Petteri; Mesropian, Christina; Miao, Ting; Mietlicki, David John; Mitra, Ankush; Miyake, Hideki; Moed, Shulamit; Moggi, Niccolo; Moon, Chang-Seong; Moore, Ronald Scott; Morello, Michael Joseph; Mukherjee, Aseet; Muller, Thomas; Murat, Pavel A; Mussini, Manuel; Nachtman, Jane Marie; Nagai, Yoshikazu; Naganoma, Junji; Nakano, Itsuo; Napier, Austin; Nett, Jason Michael; Neu, Christopher Carl; Nigmanov, Turgun S; Nodulman, Lawrence J; Noh, Seoyoung; Norniella Francisco, Olga; Nurse, Emily L; Oakes, Louise Beth; Oh, Seog Hwan; Oh, Young-do; Oksuzian, Iuri Artur; Okusawa, Toru; Orava, Risto Olavi; Ortolan, Lorenzo; Pagliarone, Carmine Elvezio; Palencia, Jose Enrique; Palni, Prabhakar; Papadimitriou, Vaia; Parker, William Chesluk; Pauletta, Giovanni; Paulini, Manfred; Paus, Christoph Maria Ernst; Phillips, Thomas J; Piacentino, Giovanni M; Pianori, Elisabetta; Pilot, Justin Robert; Pitts, Kevin T; Plager, Charles; Pondrom, Lee G; Poprocki, Stephen; Potamianos, Karolos Jozef; Pranko, Aliaksandr Pavlovich; Prokoshin, Fedor; Ptohos, Fotios K; Punzi, Giovanni; Ranjan, Niharika; Redondo Fernández, Ignacio; Renton, Peter B; Rescigno, Marco; Riddick, Thomas C; Rimondi, Franco; Ristori, Luciano; Robson, Aidan; Rodriguez, Tatiana Isabel; Rolli, Simona; Ronzani, Manfredi; Roser, Robert Martin; Rosner, Jonathan L; Ruffini, Fabrizio; Ruiz Jimeno, Alberto; Russ, James S; Rusu, Vadim Liviu; Sakumoto, Willis Kazuo; Sakurai, Yuki; Santi, Lorenzo; Sato, Koji; Saveliev, Valeri; Savoy-Navarro, Aurore; Schlabach, Philip; Schmidt, Eugene E; Schwarz, Thomas A; Scodellaro, Luca; Scuri, Fabrizio; Seidel, Sally C; Seiya, Yoshihiro; Semenov, Alexei; Sforza, Federico; Shalhout, Shalhout Zaki; Shears, Tara G; Shekhar, Ravi; Shepard, Paul F; Shimojima, Makoto; Shochet, Melvyn J; Simonenko, Alexander V; Sliwa, Krzysztof Jan; Smith, John Rodgers; Snider, Frederick Douglas; Song, Hao; Sorin, Maria Veronica; St Denis, Richard Dante; Stancari, Michelle Dawn; Stelzer-Chilton, Oliver; Stentz, Dale James; Strologas, John; Sudo, Yuji; Sukhanov, Alexander I; Sun, Siyuan; Suslov, Igor M; Takemasa, Ken-ichi; Takeuchi, Yuji; Tang, Jian; Tecchio, Monica; Tecker-Shreyber, Irina; Teng, Ping-Kun; Thom, Julia; Thomson, Evelyn Jean; Thukral, Vaikunth; Toback, David A; Tokar, Stanislav; Tollefson, Kirsten Anne; Tomura, Tomonobu; Tonelli, Diego; Torre, Stefano; Torretta, Donatella; Totaro, Pierluigi; Trovato, Marco; Ukegawa, Fumihiko; Uozumi, Satoru; Vázquez-Valencia, Elsa Fabiola; Velev, Gueorgui; Vellidis, Konstantinos; Vernieri, Caterina; Vidal Marono, Miguel; Vilar Cortabitarte, Rocio; Vizán Garcia, Jesus Manuel; Vogel, Marcelo; Volpi, Guido; Wagner, Peter; Wallny, Rainer S; Wang, Song-Ming; Waters, David S; Wester, William Carl; Whiteson, Daniel O; Wicklund, Arthur Barry; Wilbur, Scott; Williams, Hugh H; Wilson, Jonathan Samuel; Wilson, Peter James; Winer, Brian L; Wittich, Peter; Wolbers, Stephen A; Wolfe, Homer; Wright, Thomas Roland; Wu, Xin; Wu, Zhenbin; Yamamoto, Kazuhiro; Yamato, Daisuke; Yang, Tingjun; Yang, Un-Ki; Yang, Yu Chul; Yao, Wei-Ming; Yeh, Gong Ping; Yi, Kai; Yoh, John; Yorita, Kohei; Yoshida, Takuo; Yu, Geum Bong; Yu, Intae; Zanetti, Anna Maria; Zeng, Yu; Zhou, Chen; Zucchelli, Stefano

    2014-01-01

    We present a measurement of the $W$-boson mass, $M_W$, using data corresponding to 2.2/fb of integrated luminosity collected in ppbar collisions at $\\sqrt{s}$ = 1.96 TeV with the CDF II detector at the Fermilab Tevatron. The selected sample of 470126 $W\\to e\

  12. A precise measurement of the $W$-boson mass with the Collider Detector at Fermilab

    CERN Document Server

    Aaltonen, Timo Antero; Amidei, Dante E; Anastassov, Anton Iankov; Annovi, Alberto; Antos, Jaroslav; Apollinari, Giorgio; Appel, Jeffrey A; Arisawa, Tetsuo; Artikov, Akram Muzafarovich; Asaadi, Jonathan A; Ashmanskas, William Joseph; Auerbach, Benjamin; Aurisano, Adam J; Azfar, Farrukh A; Badgett, William Farris; Bae, Taegil; Barbaro-Galtieri, Angela; Barnes, Virgil E; Barnett, Bruce Arnold; Barreiro Guimaraes da Costa, Joao; Barria, Patrizia; Bartos, Pavol; Bauce, Matteo; Bedeschi, Franco; Beecher, Daniel Paul; Behari, Satyajit; Bellettini, Giorgio; Bellinger, James Nugent; Benjamin, Douglas P; Beretvas, Andrew F; Bhatti, Anwar Ahmad; Bizjak, Ilija; Bland, Karen Renee; Blumenfeld, Barry J; Bocci, Andrea; Bodek, Arie; Bortoletto, Daniela; Boudreau, Joseph Francis; Boveia, Antonio; Brigliadori, Luca; Bromberg, Carl Michael; Brucken, Erik; Budagov, Ioulian A; Budd, Howard Scott; Burkett, Kevin Alan; Busetto, Giovanni; Bussey, Peter John; Butti, Pierfrancesco; Buzatu, Adrian; Calamba, Aristotle; Camarda, Stefano; Campanelli, Mario; Canelli, Florencia; Carls, Benjamin; Carlsmith, Duncan L; Carosi, Roberto; Carrillo Moreno, Salvador; Casal Larana, Bruno; Casarsa, Massimo; Castro, Andrea; Catastini, Pierluigi; Cauz, Diego; Cavaliere, Viviana; Cavalli-Sforza, Matteo; Cerri, Alessandro; Cerrito, Lucio; Chen, Yen-Chu; Chertok, Maxwell Benjamin; Chiarelli, Giorgio; Chlachidze, Gouram; Cho, Kihyeon; Chokheli, Davit; Clark, Allan Geoffrey; Clarke, Christopher Joseph; Convery, Mary Elizabeth; Conway, John Stephen; Corbo, Matteo; Cordelli, Marco; Cox, Charles Alexander; Cox, David Jeremy; Cremonesi, Matteo; Cruz Alonso, Daniel; Cuevas Maestro, Javier; Culbertson, Raymond Lloyd; D'Ascenzo, Nicola; Datta, Mousumi; de Barbaro, Pawel; Demortier, Luc M; Deninno, Maria Maddalena; D'Errico, Maria; Devoto, Francesco; Di Canto, Angelo; Di Ruzza, Benedetto; Dittmann, Jay Richard; Donati, Simone; D'Onofrio, Monica; Dorigo, Mirco; Driutti, Anna; Ebina, Koji; Edgar, Ryan Christopher; Elagin, Andrey L; Erbacher, Robin D; Errede, Steven Michael; Esham, Benjamin; Eusebi, Ricardo; Farrington, Sinead Marie; Fernández Ramos, Juan Pablo; Field, Richard D; Flanagan, Gene U; Forrest, Robert David; Franklin, Melissa EB; Freeman, John Christian; Frisch, Henry J; Funakoshi, Yujiro; Galloni, Camilla; Garfinkel, Arthur F; Garosi, Paola; Gerberich, Heather Kay; Gerchtein, Elena A; Giagu, Stefano; Giakoumopoulou, Viktoria Athina; Gibson, Karen Ruth; Ginsburg, Camille Marie; Giokaris, Nikos D; Giromini, Paolo; Giurgiu, Gavril A; Glagolev, Vladimir; Glenzinski, Douglas Andrew; Gold, Michael S; Goldin, Daniel; Golossanov, Alexander; Gomez, Gervasio; Gomez-Ceballos, Guillelmo; Goncharov, Maxim T; González López, Oscar; Gorelov, Igor V; Goshaw, Alfred T; Goulianos, Konstantin A; Gramellini, Elena; Grinstein, Sebastian; Grosso-Pilcher, Carla; Group, Robert Craig; Hahn, Stephen R; Han, Ji-Yeon; Happacher, Fabio; Hara, Kazuhiko; Hare, Matthew Frederick; Harr, Robert Francis; Harrington-Taber, Timothy; Hatakeyama, Kenichi; Hays, Christopher Paul; Heinrich, Joel G; Herndon, Matthew Fairbanks; Hocker, James Andrew; Hong, Ziqing; Hopkins, Walter Howard; Hou, Suen Ray; Hughes, Richard Edward; Husemann, Ulrich; Hussein, Mohammad; Huston, Joey Walter; Introzzi, Gianluca; Iori, Maurizio; Ivanov, Andrew Gennadievich; James, Eric B; Jang, Dongwook; Jayatilaka, Bodhitha Anjalike; Jeon, Eun-Ju; Jindariani, Sergo Robert; Jones, Matthew T; Joo, Kyung Kwang; Jun, Soon Yung; Junk, Thomas R; Kambeitz, Manuel; Kamon, Teruki; Karchin, Paul Edmund; Kasmi, Azeddine; Kato, Yukihiro; Ketchum, Wesley Robert; Keung, Justin Kien; Kilminster, Benjamin John; Kim, DongHee; Kim, Hyunsoo; Kim, Jieun; Kim, Min Jeong; Kim, Shin-Hong; Kim, Soo Bong; Kim, Young-Jin; Kim, Young-Kee; Kimura, Naoki; Kirby, Michael H; Knoepfel, Kyle James; Kondo, Kunitaka; Kong, Dae Jung; Konigsberg, Jacobo; Kotwal, Ashutosh Vijay; Kreps, Michal; Kroll, IJoseph; Kruse, Mark Charles; Kuhr, Thomas; Kurata, Masakazu; Laasanen, Alvin Toivo; Lammel, Stephan; Lancaster, Mark; Lannon, Kevin Patrick; Latino, Giuseppe; Lee, Hyun Su; Lee, Jaison; Leo, Sabato; Leone, Sandra; Lewis, Jonathan D; Limosani, Antonio; Lipeles, Elliot David; Lister, Alison; Liu, Hao; Liu, Qiuguang; Liu, Tiehui Ted; Lockwitz, Sarah E; Loginov, Andrey Borisovich; Lucchesi, Donatella; Lucà, Alessandra; Lueck, Jan; Lujan, Paul Joseph; Lukens, Patrick Thomas; Lungu, Gheorghe; Lys, Jeremy E; Lysak, Roman; Madrak, Robyn Leigh; Maestro, Paolo; Malik, Sarah Alam; Manca, Giulia; Manousakis-Katsikakis, Arkadios; Marchese, Luigi; Margaroli, Fabrizio; Marino, Christopher Phillip; Martínez-Perez, Mario; Matera, Keith; Mattson, Mark Edward; Mazzacane, Anna; Mazzanti, Paolo; McNulty, Ronan; Mehta, Andrew; Mehtala, Petteri; Mesropian, Christina; Miao, Ting; Mietlicki, David John; Mitra, Ankush; Miyake, Hideki; Moed, Shulamit; Moggi, Niccolo; Moon, Chang-Seong; Moore, Ronald Scott; Morello, Michael Joseph; Mukherjee, Aseet; Muller, Thomas; Murat, Pavel A; Mussini, Manuel; Nachtman, Jane Marie; Nagai, Yoshikazu; Naganoma, Junji; Nakano, Itsuo; Napier, Austin; Nett, Jason Michael; Neu, Christopher Carl; Nigmanov, Turgun S; Nodulman, Lawrence J; Noh, Seoyoung; Norniella Francisco, Olga; Nurse, Emily L; Oakes, Louise Beth; Oh, Seog Hwan; Oh, Young-do; Oksuzian, Iuri Artur; Okusawa, Toru; Orava, Risto Olavi; Ortolan, Lorenzo; Pagliarone, Carmine Elvezio; Palencia, Jose Enrique; Palni, Prabhakar; Papadimitriou, Vaia; Parker, William Chesluk; Pauletta, Giovanni; Paulini, Manfred; Paus, Christoph Maria Ernst; Phillips, Thomas J; Piacentino, Giovanni M; Pianori, Elisabetta; Pilot, Justin Robert; Pitts, Kevin T; Plager, Charles; Pondrom, Lee G; Poprocki, Stephen; Potamianos, Karolos Jozef; Pranko, Aliaksandr Pavlovich; Prokoshin, Fedor; Ptohos, Fotios K; Punzi, Giovanni; Ranjan, Niharika; Redondo Fernández, Ignacio; Renton, Peter B; Rescigno, Marco; Riddick, Thomas C; Rimondi, Franco; Ristori, Luciano; Robson, Aidan; Rodriguez, Tatiana Isabel; Rolli, Simona; Ronzani, Manfredi; Roser, Robert Martin; Rosner, Jonathan L; Ruffini, Fabrizio; Ruiz Jimeno, Alberto; Russ, James S; Rusu, Vadim Liviu; Sakumoto, Willis Kazuo; Sakurai, Yuki; Santi, Lorenzo; Sato, Koji; Saveliev, Valeri; Savoy-Navarro, Aurore; Schlabach, Philip; Schmidt, Eugene E; Schwarz, Thomas A; Scodellaro, Luca; Scuri, Fabrizio; Seidel, Sally C; Seiya, Yoshihiro; Semenov, Alexei; Sforza, Federico; Shalhout, Shalhout Zaki; Shears, Tara G; Shekhar, Ravi; Shepard, Paul F; Shimojima, Makoto; Shochet, Melvyn J; Simonenko, Alexander V; Sliwa, Krzysztof Jan; Smith, John Rodgers; Snider, Frederick Douglas; Song, Hao; Sorin, Maria Veronica; St Denis, Richard Dante; Stancari, Michelle Dawn; Stelzer-Chilton, Oliver; Stentz, Dale James; Strologas, John; Sudo, Yuji; Sukhanov, Alexander I; Sun, Siyuan; Suslov, Igor M; Takemasa, Ken-ichi; Takeuchi, Yuji; Tang, Jian; Tecchio, Monica; Tecker-Shreyber, Irina; Teng, Ping-Kun; Thom, Julia; Thomson, Evelyn Jean; Thukral, Vaikunth; Toback, David A; Tokar, Stanislav; Tollefson, Kirsten Anne; Tomura, Tomonobu; Tonelli, Diego; Torre, Stefano; Torretta, Donatella; Totaro, Pierluigi; Trovato, Marco; Ukegawa, Fumihiko; Uozumi, Satoru; Vázquez-Valencia, Elsa Fabiola; Velev, Gueorgui; Vellidis, Konstantinos; Vernieri, Caterina; Vidal Marono, Miguel; Vilar Cortabitarte, Rocio; Vizán Garcia, Jesus Manuel; Vogel, Marcelo; Volpi, Guido; Wagner, Peter; Wallny, Rainer S; Wang, Song-Ming; Waters, David S; Wester, William Carl; Whiteson, Daniel O; Wicklund, Arthur Barry; Wilbur, Scott; Williams, Hugh H; Wilson, Jonathan Samuel; Wilson, Peter James; Winer, Brian L; Wittich, Peter; Wolbers, Stephen A; Wolfe, Homer; Wright, Thomas Roland; Wu, Xin; Wu, Zhenbin; Yamamoto, Kazuhiro; Yamato, Daisuke; Yang, Tingjun; Yang, Un-Ki; Yang, Yu Chul; Yao, Wei-Ming; Yeh, Gong Ping; Yi, Kai; Yoh, John; Yorita, Kohei; Yoshida, Takuo; Yu, Geum Bong; Yu, Intae; Zanetti, Anna Maria; Zeng, Yu; Zhou, Chen; Zucchelli, Stefano

    2014-04-03

    We present a measurement of the $W$-boson mass, $M_W$, using data corresponding to 2.2/fb of integrated luminosity collected in ppbar collisions at $\\sqrt{s}$ = 1.96 TeV with the CDF II detector at the Fermilab Tevatron. The selected sample of 470126 $W\\to e\

  13. High Energy Physics at the University of Illinois

    Energy Technology Data Exchange (ETDEWEB)

    Liss, Tony M. [University of Illinois; Thaler, Jon J. [University of Illinois

    2013-07-26

    This is the final report for DOE award DE-FG02-91ER40677 (“High Energy Physics at the University of Illinois”), covering the award period November 1, 2009 through April 30, 2013. During this period, our research involved particle physics at Fermilab and CERN, particle physics related cosmology at Fermilab and SLAC, and theoretical particle physics. Here is a list of the activities described in the final report: * The CDF Collaboration at the Fermilab Tevatron * Search For Lepton Flavor Violation in the Mu2e Experiment At Fermilab * The ATLAS Collaboration at the CERN Large Hadron Collider * the Study of Dark Matter and Dark Energy: DES and LSST * Lattice QCD * String Theory and Field Theory * Collider Phenomenology

  14. TeV/m nano-accelerator: Investigation on feasibility of CNT-channeling acceleration at Fermilab

    Energy Technology Data Exchange (ETDEWEB)

    Shin, Y. M. [Northern Illinois Univ., DeKalb, IL (United States); Fermi National Accelerator Lab. (FNAL), Batavia, IL (United States); Lumpkin, A. H. [Fermi National Accelerator Lab. (FNAL), Batavia, IL (United States); Thurman-Keup, R. M. [Fermi National Accelerator Lab. (FNAL), Batavia, IL (United States)

    2015-03-23

    The development of high gradient acceleration and tight phase-space control of high power beams is a key element for future lepton and hadron colliders since the increasing demands for higher energy and luminosity significantly raise costs of modern HEP facilities. Atomic channels in crystals are known to consist of 10–100 V/Å potential barriers capable of guiding and collimating a high energy beam providing continuously focused acceleration with exceptionally high gradients (TeV/m). However, channels in natural crystals are only angstrom-size and physically vulnerable to high energy interactions, which has prevented crystals from being applied to high power accelerators. Carbon-based nano-crystals such as carbon-nanotubes (CNTs) and graphenes have a large degree of dimensional flexibility and thermo-mechanical strength, which could be suitable for channeling acceleration of MW beams. Nano-channels of the synthetic crystals can accept a few orders of magnitude larger phase-space volume of channeled particles with much higher thermal tolerance than natural crystals. This study presents the current status of CNT-channeling acceleration research at the Advanced Superconducting Test Accelerator (ASTA) in Fermilab.

  15. Straw man 900-1000 GeV crystal extraction test beam for Fermilab collider operation

    Energy Technology Data Exchange (ETDEWEB)

    Carrigan, R.A. Jr.

    1996-10-01

    A design for a 900-1000 GeV, 100 khz parasitic test beam for use during collider operations has been developed. The beam makes use of two bent crystals, one for extraction and the other one for redirecting the beam in to the present Switchyard beam system. The beam requires only a few modifications in the A0 area and largely uses existing devices. It should be straight-forward to modify one or two beam lines in the fixed target experimental areas to work above 800 GeV. Possibilities for improvements to the design,to operate at higher fluxes are discussed.

  16. A Measurement of Neutrino Charged Current Interactions and a Search for Muon Neutrino Disappearance with the Fermilab Booster Neutrino Beam

    Energy Technology Data Exchange (ETDEWEB)

    Nakajima, Yasuhiro [Kyoto Univ. (Japan)

    2011-01-01

    In this thesis, we report on a measurement of muon neutrino inclusive charged current interactions on carbon in the few GeV region, using the Fermilab Booster Neutrino Beam. The all neutrino mode data collected in the SciBooNE experiment is used for this analysis. We collected high-statistics CC interaction sample at SciBooNE, and extracted energy dependent inclusive charged current interaction rates and cross sections for a wide energy range from 0.25 GeV to ~3 GeV. We measure the interaction rates with 6-15% precision, and the cross sections with 10-30% precision. We also made an energy integrated measurements, with the precisions of 3% for the rate, and 8% for the cross section measurements. This is the first measurement of the CC inclusive cross section on carbon around 1 GeV. This inclusive interaction measurement is nearly free from effects of hadron re-interactions in the nucleus. Hence, it is complementary to other exclusive cross section measurements, and essential to understand the neutrino interaction cross sections in the few GeV region, which is relevant to ongoing and future neutrino oscillation experiments. This analysis also provides the normalization for SciBooNE's previous cross section ratio measurements for charged current coherent pion production and neutral current neutral pion production. Then, a precise comparison between our previous measurements and the model predictions becomes possible. The result of the interaction rate measurement is used to constrain the product of the neutrino flux and the cross section at the other experiment on the Fermilab Booster Neutrino Beam: Mini-BooNE. We conducted a search for short-baseline muon neutrino disappearance using data both from SciBooNE and MiniBooNE, to test a possible neutrino oscillation with sterile neutrinos which is suggested by the LSND experiment. With this constraint by SciBooNE, we significantly reduced the flux and the cross section uncertainties at MiniBooNE, and achieved the

  17. Below-par performance hampers Fermilab quest for Higgs boson

    CERN Multimedia

    Brumfiel, Geoff

    2003-01-01

    "Physicists at the Tevatron particle accelerator near Chicago are steeling themselves for failure in their ambitious bid to detect the elusive Higgs boson. Researchers working on the machine, are searching for signs of the particle, thought to give other particles their mass, in the debris of high-energy particle collisions" (1 page)

  18. An Observation of a Transverse to Longitudinal Emittance Exchange at the Fermilab A0 Photoinjector

    Energy Technology Data Exchange (ETDEWEB)

    Koeth, Timothy W [State Univ. of New Jersey, New Brunswick, NJ (United States)

    2009-05-01

    An experimental program to perform a proof of principle of transverse to longitudinal emittance exchange (ϵxin ↔ ϵzout and ϵxin ↔ ϵzout) has been developed at the Fermilab A0 Photoinjector. A new beamline, including two magnetic dogleg channels and a TM110 deflecting mode radio frequency cavity, were constructed for the emittance exchange experiment. The first priority was a measurement of the Emittance Exchange beamline transport matrix. The method of difference orbits was used to measure the transport matrix. Through varying individual beam input vector elements, such as xin, x'in, yin, y'in, zin, or δin, and measuring the changes in all of the beam output vector's elements, xout, x'out, yout, y'out, zout, δout, the full 6 x 6 transport matrix was measured. The measured emittance exchange transport matrix was in overall good agreement with our calculated transport matrix. A direct observation of an emittance exchange was performed by measuring the electron beam's characteristics before and after the emittance exchange beamline. Operating with a 14.3 MeV, 250pC electron bunch, ϵzin of 21.1 ± 1.5 mm • mrad was observed to be exchanged with ϵxout of 20.8 ± 2.00 mm • mrad. Diagnostic limitations in the ϵzout measurement did not account for an energy-time correlation, thus potentially returning values larger than the actual longitudinal emittance. The ϵxin of 4.67 ± 0.22 mm • mrad was observed to be exchanged with ϵzout of 7.06 ± 0.43 mm • mrad. The apparent ϵzoutgrowth is consistent with calculated values in which the correlation term is neglected.

  19. Dilepton production by neutrinos in the Fermilab 15-foot bubble chamber

    Energy Technology Data Exchange (ETDEWEB)

    Ballagh, H.C.; Bingham, H.H.; Lawry, T.; Lynch, G.R.; Lys, J.; Orthel, J.; Sokoloff, M.D.; Stevenson, M.L.; Yost, G.P.; Gee, D.; Harigel, G.; Huson, F.R.; Schmidt, E.; Smart, W.; Treadwell, E.; Cence, R.J.; Harris, F.A.; Jones, M.D.; Parker, S.I.; Peters, M.W.; Peterson, V.Z.; Stenger, V.J.; Burnett, T.H.; Fluri, L.; Lubatti, H.J.; Moriyasu, K.; Rees, D.; Swider, G.M.; Yuldashev, B.S.; Wolin, E.; Camerini, U.; Fry, W.; Loveless, R.J.; McCabe, P.; Ngai, M.; Reeder, D.D.

    1981-07-01

    In an exposure of the Fermilab 15-foot neon-hydrogen bubble chamber to a quadrupole triplet neutrino beam, 49 ..mu../sup -/e/sup +/ and 14 ..mu../sup +/e/sup -/ events with e/sup + -/ momenta greater than 0.3 GeV/c have been observed, yielding ..mu..e rates per charged-current event of (0.73 +- 0.11)% and (1.1 +- 0.3)%, respectively. The ..mu../sup -/e/sup +/ rate shows no strong energy dependence in the range from 30 to 300 GeV. The 18 neutral strange particles observed in the 63 events contain 14 K/sup 0//sub S/, 2 ..lambda.., and 2 ..lambda../K/sup 0//sub S/ ambiguities, suggesting that the events are predominantly D-meson production and decay and that the ..lambda../sup +//sub c/..--> lambda..eX branching ratio is very small. The corrected numbers of neutral strange particles per ..mu../sup -/e/sup +/ and ..mu../sup +/e/sup -/ event are 1.2 +- 0.3 and 0.6/sup +0.6//sub -0.3/, respectively. Properties of the events, including strange-particle production, are compared to ..mu../sup - +/..mu../sup + -/ events in the same experiment and to a charm production and decay model, and good agreement is found, apart from a possible enhancement at approx.5--6 GeV/c/sup 2/ in the mass of the system recoiling against the ..mu../sup +/ in ..mu../sup +/e/sup -/ (and ..mu../sup +/..mu../sup -/) events. As reported previously, four events show short-lived-particle decays, and D-meson lifetime estimates are reevaluated using the final event sample. One ..mu../sup +/e/sup +/ and three ..mu../sup -/e/sup -/ events were observed. The ..mu../sup -/e/sup -/ events are consistent with background and lead to a ..mu../sup -/e/sup -//..mu../sup -/e/sup +/ ratio of less than 0.07 (90% confidence level) for e/sup + -/ momenta above 0.8 GeV/c. Five candidates for dilepton production by electron neutrinos and antineutrinos in the beam are consistent with approximately 1% rates. No good three-lepton candidates were found, and one, previously reported, four-lepton candidate was found.

  20. THE PROJECT-X INJECTOR EXPERIMENT: A NOVEL HIGH PERFORMANCE FRONT-END FOR A FUTURE HIGH POWER PROTON FACILITY AT FERMILAB

    Energy Technology Data Exchange (ETDEWEB)

    Nagaitsev, S.; et al,

    2013-09-25

    A multi-MW proton facility, Project X, has been proposed and is currently under development at Fermilab. We are carrying out a program of research and development aimed at integrated systems testing of critical components comprising the front end of Project X. This program, known as the Project X Injector Experiment (PXIE), is being undertaken as a key component of the larger Project X R&D program. The successful completion of this program will validate the concept for the Project X front end, thereby minimizing a primary technical risk element within Project X. PXIE is currently under construction at Fermilab and will be completed over the period FY12-17. PXIE will include an H* ion source, a CW 2.1-MeV RFQ and two superconductive RF (SRF) cryomodules providing up to 25 MeV energy gain at an average beam current of 1 mA (upgradable to 2 mA). Successful systems testing will also demonstrate the viability of novel front end technologies that are expected find applications beyond Project X.

  1. The Luminosity Measurement for the DZERO Experiment at Fermilab

    Energy Technology Data Exchange (ETDEWEB)

    Snow, Gregory R. [Univ. of Nebraska, Lincoln, NE (United States)

    2016-08-01

    Primary project objective: The addition of University of Nebraska-Lincoln (UNL) human resources supported by this grant helped ensure that Fermilab’s DZERO experiment had a reliable luminosity measurement through the end of Run II data taking and an easily-accessible repository of luminosity information for all collaborators performing physics analyses through the publication of its final physics results. Secondary project objective: The collaboration between the UNL Instrument Shop and Fermilab’s Scintillation Detector Development Center enhanced the University of Nebraska’s future role as a particle detector R&D and production facility for future high energy physics experiments. Overall project objective: This targeted project enhanced the University of Nebraska’s presence in both frontier high energy physics research in DZERO and particle detector development, and it thereby served the goals of the DOE Office of Science and the Experimental Program to Stimulate Competitive Research (EPSCoR) for the state of Nebraska.

  2. The Discovery of the b Quark at Fermilab in 1977: The Experiment Coordinator's Story

    Science.gov (United States)

    Yoh, J.

    1997-12-01

    I present the history of the discovery of the Upsilon ({Upsilon}) particle (the first member of the b-quark family to be observed) at Fermilab in 1977 by the CFS (Columbia-Fermilab-Stony Brook collaboration) E288 experiment headed by Leon Lederman. We found the first evidence of the {Upsilon} in November 1976 in an early phase of E288. The subsequent discovery in the spring of 1977 resulted from an upgraded E288 the {mu}{mu}II phase, optimized for dimuons, with about 100 times the sensitivity of the previous investigatory dimuon phase (which had been optimized for dielectrons). The events leading to the discovery, the planning of {mu}{mu}II and the running, including a misadventure (the infamous Shunt Fire of May 1977), are described. Some discussions of the aftermath, a summary, and an acknowledgement list end this brief historical note.

  3. The discovery of the b quark at Fermilab in 1977: The experiment coordinator`s story

    Energy Technology Data Exchange (ETDEWEB)

    Yoh, J.

    1997-12-01

    I present the history of the discovery of the Upsilon ({Upsilon}) particle (the first member of the b-quark family to be observed) at Fermilab in 1977 by the CFS (Columbia-Fermilab-Stony Brook collaboration) E288 experiment headed by Leon Lederman. We found the first evidence of the {Upsilon} in November 1976 in an early phase of E288. The subsequent discovery in the spring of 1977 resulted from an upgraded E288 the {mu}{mu}II phase, optimized for dimuons, with about 100 times the sensitivity of the previous investigatory dimuon phase (which had been optimized for dielectrons). The events leading to the discovery, the planning of {mu}{mu}II and the running, including a misadventure (the infamous Shunt Fire of May 1977), are described. Some discussions of the aftermath, a summary, and an acknowledgement list end this brief historical note.

  4. Electron Lens Construction for the Integrable Optics Test Accelerator at Fermilab

    Energy Technology Data Exchange (ETDEWEB)

    McGee, Mike [Fermilab; Carlson, Kermit [Fermilab; Nobrega, Lucy [Fermilab; Stancari, Giulio [Fermilab; Valishev, Alexander [Fermilab

    2016-06-01

    The Integrable Optics Test Accelerator (IOTA) is proposed for operation at Fermilab. The goal of IOTA is to create practical nonlinear accelerator focusing systems with a large frequency spread and stable particle motion. The IOTA is a 40 m circumference, 150 MeV (e-), 2.5 MeV (p⁺) diagnostic test ring. Construction of an electron lens for IOTA is necessary for both electron and proton operation. Components required for the Electron Lens design include; a 0.8 T conventional water-cooled main solenoid, and magnetic bending and focusing elements. The foundation of the design relies on repurposing the Fermilab Tevatron Electron Lens II (TELII) gun and collector under ultra-high vacuum (UHV) conditions.

  5. chi_{c1} and chi_{c2} decay angular distributions at the Fermilab Tevatron

    CERN Document Server

    Kniehl, Bernd A; Palisoc, C P

    2003-01-01

    We consider the hadroproduction of chi_{c1} and chi_{c2} mesons and their subsequent radiative decays to J/psi mesons and photons in the factorization formalism of nonrelativistic quantum chromodynamics, and study the decay angular distributions, by means of helicity density matrices, in view of their sensitivity to color-octet processes. We present numerical results appropriate for the Fermilab Tevatron.

  6. Synchrotron frequency spread independence of bunched-beam stochastic cooling at the Fermilab Recycler

    Directory of Open Access Journals (Sweden)

    D. Broemmelsiek

    2005-12-01

    Full Text Available It is generally accepted that longitudinal stochastic cooling of bunched beams is not possible without a synchrotron frequency spread. Experiments in the Fermilab Recycler storage ring demonstrate the opposite: with an antiproton bunch in a parabolic potential well (no synchrotron frequency spread, the cooling was almost as efficient as in a trapezoidal potential well (with a relative synchrotron frequency spread of ∼100%. A possible explanation is that, at Recycler parameters, diffusion processes are sufficient to provide particle mixing.

  7. Recent Progress in High Intensity Operation of the Fermilab Accelerator Complex

    Energy Technology Data Exchange (ETDEWEB)

    Convery, Mary E [Fermilab

    2016-10-05

    We report on the status of the Fermilab accelerator com-plex. Beam delivery to the neutrino experiments surpassed our goals for the past year. The Proton Improvement Plan is well underway with successful 15 Hz beam operation. Beam power of 700 kW to the NOvA experiment was demonstrated and will be routine in the next year. We are also preparing the Muon Campus to commission beam to the g-2 experiment.

  8. The calorimeter system of the new muon g-2 experiment at Fermilab

    Energy Technology Data Exchange (ETDEWEB)

    Alonzi, L.P. [University of Washington, Box 351560, Seattle, WA 98195 (United States); Anastasi, A. [Laboratori Nazionali Frascati dell' INFN, Frascati (Italy); Dipartimento di Fisica e di Scienze della Terra dell' Università di Messina, Messina (Italy); Bjorkquist, R. [Cornell University, Ithaca, NY 14850 (United States); Cauz, D. [INFN, Sezione di Trieste e G.C. di Udine, Trieste (Italy); Università di Udine, Udine (Italy); Cantatore, G. [Università di Trieste, Trieste (Italy); INFN, Sezione di Trieste e G.C. di Udine, Trieste (Italy); Dabagov, S. [Laboratori Nazionali Frascati dell' INFN, Frascati (Italy); Sciascio, G. Di [INFN Sezione di Roma Tor Vergata, Roma (Italy); Di Stefano, R. [INFN, Sezione di Napoli, Napoli (Italy); Universitá di Cassino, Cassino (Italy); Fatemi, R. [University of Kentucky, Lexington, KY 40506 (United States); Ferrari, C. [Laboratori Nazionali Frascati dell' INFN, Frascati (Italy); Istituto Nazionale di Ottica del C.N.R., UOS Pisa, Pisa (Italy); Fienberg, A.T. [University of Washington, Box 351560, Seattle, WA 98195 (United States); Fioretti, A. [Laboratori Nazionali Frascati dell' INFN, Frascati (Italy); Istituto Nazionale di Ottica del C.N.R., UOS Pisa, Pisa (Italy); Frankenthal, A. [Cornell University, Ithaca, NY 14850 (United States); Gabbanini, C. [Laboratori Nazionali Frascati dell' INFN, Frascati (Italy); Istituto Nazionale di Ottica del C.N.R., UOS Pisa, Pisa (Italy); Gibbons, L.K. [Cornell University, Ithaca, NY 14850 (United States); Giovanetti, K. [James Madison University, Harrisonburg, VA 22807 (United States); Goadhouse, S.D. [University of Virginia, Charlottesville, VA 22904 (United States); Gohn, W.P.; Gorringe, T.P. [University of Kentucky, Lexington, KY 40506 (United States); Hampai, D. [Laboratori Nazionali Frascati dell' INFN, Frascati (Italy); and others

    2016-07-11

    The electromagnetic calorimeter for the new muon (g−2) experiment at Fermilab will consist of arrays of PbF{sub 2} Čerenkov crystals read out by large-area silicon photo-multiplier (SiPM) sensors. We report here the requirements for this system, the achieved solution and the results obtained from a test beam using 2.0–4.5 GeV electrons with a 28-element prototype array.

  9. FERMILAB ACCELERATOR R&D PROGRAM TOWARDS INTENSITY FRONTIER ACCELERATORS : STATUS AND PROGRESS

    Energy Technology Data Exchange (ETDEWEB)

    Shiltsev, Vladimir [Fermilab

    2016-11-15

    The 2014 P5 report indicated the accelerator-based neutrino and rare decay physics research as a centrepiece of the US domestic HEP program at Fermilab. Operation, upgrade and development of the accelerators for the near- term and longer-term particle physics program at the Intensity Frontier face formidable challenges. Here we discuss key elements of the accelerator physics and technology R&D program toward future multi-MW proton accelerators and present its status and progress. INTENSITY FRONTIER ACCELERATORS

  10. GammeV: Fermilab axion-like particle photon regeneration results

    Energy Technology Data Exchange (ETDEWEB)

    Wester, William; /Fermilab

    2008-09-01

    GammeV is an axion-like particle photon regeneration experiment conducted at Fermilab that employs the light shining through a wall technique. They obtain limits on the coupling of a photon to an axion-like particle that extend previous limits for both scalar and pseudoscalar axion-like particles in the milli-eV mass range. They are able to exclude the axion-like particle interpretation of the anomalous PVLAS 2006 result by more than 5 standard deviations.

  11. Investigation of thermal acoustic effects on SRF cavities within CM1 at Fermilab

    CERN Document Server

    McGee, M W; Klebaner, A; Leibfritz, J; Martinez, A; Pischalnikov, Y; Schappert, W

    2016-01-01

    Radio Frequency (RF) power studies are in progress following the cryogenic commissioning of Cryomodule #1 (CM1) at Fermilab's Superconducting Radio Frequency (SRF) Accelerator Test Facility. These studies are complemented by the characterization of thermal acoustic effects on cavity microphonics manifested by apparent noisy boiling of helium involving vapor bubble and liquid vibration. The thermal acoustic measurements also consider pressure and temperature spikes which drive the phenomenon at low and high frequencies.

  12. Cosmo-Particle Searches for Supersymmetry at the Collider Detector at Fermilab

    CERN Document Server

    Toback, D

    2009-01-01

    Some theories of particle physics are so compelling that it is worth doing a comprehensive and systematic set of experimental searches to see if they are realized in nature. Supersymmetry is one such theory. This review focuses on the motivation for a broad set of cosmology-inspired search strategies at the Tevatron and on their implementation and results at the Collider Detector at Fermilab (CDF) with the first few fb$^{-1}$ of integrated luminosity of data.

  13. Uniform longitudinal beam profiles in the Fermilab Recycler using adaptive rf correction

    Energy Technology Data Exchange (ETDEWEB)

    Hu, Martin; Broemmelsiek, Daniel Robert; Chase, Brian; Crisp, James L.; Eddy, Nathan; Joireman, Paul W.; Ng, King Yuen; /Fermilab

    2007-06-01

    The Fermilab Recycler Ring is a permanent magnet based 8 GeV anti-proton storage ring. A wideband RF system, driven with ARB's (ARBitrary waveform generators), allows the system to produce programmable barrier waveforms. Beam current profile distortion was observed, its origin verified both experimentally and theoretically, and an FPGA-based correction system was designed, tested and implemented to level the bunch profile.

  14. New directions for QA in basic research: The Fermilab/DOE-CH experience

    Energy Technology Data Exchange (ETDEWEB)

    Bodnarczuk, M.

    1989-09-01

    This paper addresses the underlying problems involved in developing institution-wide QA programs at DOE funded basic research facilities, and suggests concrete ways in which QA professionals and basic researchers can find common ground in describing and analyzing those activities to the satisfaction of both communities. The paper is designed to be a springboard into workshop discussions which can define a path for developing institution-wide QA programs based on the experience gained with DOE-CH and Fermilab.

  15. Investigation of Thermal Acoustic Effects on SRF Cavities within CM1 at Fermilab

    Energy Technology Data Exchange (ETDEWEB)

    McGee, Mike [Fermilab; Harms, Elvin [Fermilab; Klebaner, Arkadiy [Fermilab; Leibfritz, Jerry [Fermilab; Martinez, Alex [Fermilab; Pischalnikov, Yuriy [Fermilab; Schappert, Warren [Fermilab

    2016-06-01

    Two TESLA-style 8-cavity cryomodules have been operated at Fermilab Accelerator Science and Technology (FAST), formerly the Superconducting Radio Frequency (SRF) Accelerator Test Facility. Operational instabilities were revealed during Radio Frequency (RF) power studies. These observations were complemented by the characterization of thermal acoustic effects on cavity microphonics manifested by apparent noisy boiling of helium involving vapor bubble and liquid vibration. The thermal acoustic measurements also consider pressure and temperature spikes which drive the phenomenon at low and high frequencies.

  16. Bunch length measurement at the Fermilab A0 photoinjector using a Martin-Puplett interferometer

    Energy Technology Data Exchange (ETDEWEB)

    Thurman-Keup, Randy; Fliller, Raymond Patrick; Kazakevich, Grigory; /Fermilab

    2008-05-01

    We present preliminary measurements of the electron bunch lengths at the Fermilab A0 Photoinjector using a Martin-Puplett interferometer on loan from DESY. The photoinjector provides a relatively wide range of bunch lengths through laser pulse width adjustment and compression of the beam using a magnetic chicane. We present comparisons of data with simulations that account for diffraction distortions in the signal and discuss future plans for improving the measurement.

  17. Diffractive Higgs boson production at the Fermilab Tevatron and the CERN Large Hadron Collider.

    Science.gov (United States)

    Enberg, R; Ingelman, G; Kissavos, A; Tîmneanu, N

    2002-08-19

    Improved possibilities to find the Higgs boson in diffractive events, having less hadronic activity, depend on whether the cross section is large enough. Based on the soft color interaction models that successfully describe diffractive hard scattering at DESY HERA and the Fermilab Tevatron, we find that only a few diffractive Higgs events may be produced at the Tevatron, but we predict a substantial rate at the CERN Large Hadron Collider.

  18. A detector to search for antiproton decay at the Fermilab antiproton accumulator

    Energy Technology Data Exchange (ETDEWEB)

    Armstrong, T. [Pennsylvania State Univ., University Park, PA (United States); Buchanan, C.; Corbin, B.; Lindgren, M.; Muller, T.; Scott, A. [University of California at Los Angeles, Los Angeles, CA 90024 (United States); Geer, S.; Marriner, J.; Martens, M.; Ray, R.; Streets, J.; Wester, W. [Fermi National Accelerator Laboratory, Batavia, IL 60510 (United States); Gustafson, R. [University of Michigan, Ann Arbor, MI 48109 (United States); Hu, M.; Snow, G.R. [University of Nebraska-Lincoln, Lincoln, NE (United States); APEX Collaboration

    1998-07-11

    We describe the experimental apparatus used by the APEX experiment (Experiment 868) at the Fermilab antiproton accumulator. The experiment is designed to search for decays of 8.9 GeV/c antiprotons as they traverse a 3.7 m long evacuated decay tank inserted in a straight section of the antiproton accumulator ring. The detector components in the experimental set-up are discussed individually, and the performance of the experiment during data-taking is described. (orig.)

  19. Space Charge Simulations in the Fermilab Recycler for PIP-II

    Energy Technology Data Exchange (ETDEWEB)

    Ainsworth, Robert [Fermilab; Adamson, Philip [Fermilab; Kourbanis, Ioanis [Fermilab; Stern, Eric [Fermilab

    2016-06-01

    Proton Improvement Plan-II (PIP-II) is Fermilab's plan for providing powerful, high-intensity proton beams to the laboratory's experiments. Upgrades are foreseen for the recycler which will cope with bunches containing fifty percent more beam. Of particular concern is large space charge tune shifts caused by the intensity increase. Simulations performed using Synergia are detailed focusing on the space charge footprint.

  20. Coherent production of pions and rho mesons in neutrino charged current interactions on neon nuclei at the Fermilab Tevatron

    Energy Technology Data Exchange (ETDEWEB)

    Willocq, S.

    1992-05-01

    The coherent production of single pions and and {rho} mesons in charged current interactions of neutrinos and antineutrinos on neon nuclei has been studied. The data were obtained using the Fermilab 15-foot Bubble Chamber, filled with a heavy Ne-H{sub 2} mixture and exposed to the Quadrupole Triplet neutrino beam produced by 800 GeV protons from the Tevatron. The average beam energy was 86 GeV. In a sample of 330000 frames, 1032 two-prong {nu}{sub {mu}} + {bar {nu}}{sub {mu}} charged current interactions were selected. The goal of this study was to investigate the low Q{sup 2} high {nu} region where the hadron dominance model can be tested. In this model, the vector and axial-vector parts of the weak hadronic current are dominated by the {rho} and a{sub 1} mesons respectively. Moreover, the Partially Conserved Axial Current (PCAC) hypothesis can be tested by studying the coherent production of single pions.

  1. Performance of the KTeV high-energy neutral kaon beam at Fermilab

    Energy Technology Data Exchange (ETDEWEB)

    Bocean, V.

    1998-06-01

    The performance of the primary and secondary beams for the KTeV experiments E832 and E799-II is reviewed. The beam was commissioned in the summer of 1996 and initially operated for approximately one year. The report includes results on the primary beam, target station including primary beam dump and muon sweeping system, neutral beam collimation system, and alignment.

  2. Low-cost hadron colliders at Fermilab: A discussion paper

    Energy Technology Data Exchange (ETDEWEB)

    Foster, G.W.; Malamud, E.

    1996-06-21

    New more economic approaches are required to continue the dramatic exponential rise in collider energies as represented by the well known Livingston plot. The old idea of low cost, low field iron dominated magnets in a small diameter pipe may become feasible in the next decade with dramatic recent advances in technology: (1) advanced tunneling technologies for small diameter, non human accessible tunnels, (2) accurate remote guidance systems for tunnel survey and boring machine steering, (3) high T{sub c} superconductors operating at liquid N{sub 2} or liquid H{sub 2} temperatures, (4) industrial applications of remote manipulation and robotics, (5) digitally multiplexed electronics to minimize cables, (6) achievement of high luminosities in p-p and p-{anti P} colliders. The goal of this paper is to stimulate continuing discussions on approaches to this new collider and to identify critical areas needing calculations, construction of models, proof of principle experiments, and full scale prototypes in order to determine feasibility and arrive at cost estimates.

  3. Energy

    CERN Document Server

    Foland, Andrew Dean

    2007-01-01

    Energy is the central concept of physics. Unable to be created or destroyed but transformable from one form to another, energy ultimately determines what is and isn''t possible in our universe. This book gives readers an appreciation for the limits of energy and the quantities of energy in the world around them. This fascinating book explores the major forms of energy: kinetic, potential, electrical, chemical, thermal, and nuclear.

  4. Measurements and calculations of air activation in the NuMI neutrino production facility at Fermilab with the 120-GeV proton beam on target

    Energy Technology Data Exchange (ETDEWEB)

    Rakhno, I. L. [Fermilab; Hylen, J. [Fermilab; Kasper, P. [Fermilab; Mokhov, N. V. [Fermilab; Quinn, M. [Fermilab; Striganov, S. I. [Fermilab; Vaziri, K. [Fermilab

    2017-09-18

    Measurements and calculations of the air activation at a high-energy proton accelerator are described. The quantity of radionuclides released outdoors depends on operation scenarios including details of the air exchange inside the facility. To improve the prediction of the air activation levels, the MARS15 Monte Carlo code radionuclide production model was modified to be used for these studies. Measurements were done to benchmark the new model and verify its use in optimization studies for the new DUNE experiment at the Long Baseline Neutrino Facility (LBNF) at Fermilab. The measured production rates for the most important radionuclides – 11C, 13N, 15O and 41Ar – are in a good agreement with those calculated with the improved MARS15 code.

  5. [Experimental and theoretical high energy physics program

    Energy Technology Data Exchange (ETDEWEB)

    Finley, J.; Gaidos, J.A.; Loeffler, F.J.; McIlwain, R.L.; Miller, D.H.; Palfrey, T.R.; Shibata, E.I.; Shipsey, I.P.

    1993-04-01

    Experimental and theoretical high-energy physics research at Purdue is summarized in a number of reports. Subjects treated include the following: the CLEO experiment for the study of heavy flavor physics; gas microstrip detectors; particle astrophysics; affine Kac{endash}Moody algebra; nonperturbative mass bounds on scalar and fermion systems due to triviality and vacuum stability constraints; resonance neutrino oscillations; e{sup +}e{sup {minus}} collisions at CERN; {bar p}{endash}p collisions at FNAL; accelerator physics at Fermilab; development work for the SDC detector at SSC; TOPAZ; D-zero physics; physics beyond the standard model; and the Collider Detector at Fermilab. (RWR)

  6. Archiving Scientific Data Outside of the Traditional HEP Domain, Using the Archive Facilities at Fermilab

    Science.gov (United States)

    Norman, A.; Diesbug, M.; Gheith, M.; Illingworth, R.; Mengel, M.

    2015-12-01

    Many experiments in the HEP and Astrophysics communities generate large extremely valuable datasets, which need to be efficiently cataloged and recorded to archival storage. These datasets, both new and legacy, are often structured in a manner that is not conducive to storage and cataloging with modern data handling systems and large file archive facilities. In this paper we discuss in detail how we have created a robust toolset and simple portal into the Fermilab archive facilities, which allows for scientific data to be quickly imported, organized and retrieved from the multi-petabyte facility. In particular we discuss how the data from the Sudbury Neutrino Observatory (SNO) for the COUPP dark matter detector was aggregated, cataloged, archived and re-organized to permit it to be retrieved and analyzed using modern distributed computing resources both at Fermilab and on the Open Science Grid. We pay particular attention to the methods that were employed to uniquify the namespaces for the data, derive metadata for the over 460,000 image series taken by the COUP experiment and what was required to map that information into coherent datasets that could be stored and retrieved using the large scale archives systems. We describe the data transfer and cataloging engines that are used for data importation and how these engines have been setup to import data from the data acquisition systems of ongoing experiments at non-Fermilab remote sites including the Laboratori Nazionali del Gran Sasso and the Ash River Laboratory in Orr, Minnesota. We also describe how large University computing sites around the world are using the system to store and retrieve large volumes of simulation and experiment data for physics analysis.

  7. Abraham Pais Prize for History of Physics Lecture: Big, Bigger, Too Big? From Los Alamos to Fermilab and the SSC

    Science.gov (United States)

    Hoddeson, Lillian

    2012-03-01

    The modern era of big science emerged during World War II. Oppenheimer's Los Alamos laboratory offered the quintessential model of a government-funded, mission-oriented facility directed by a strong charismatic leader. The postwar beneficiaries of this model included the increasingly ambitious large laboratories that participated in particle physics--in particular, Brookhaven, SLAC, and Fermilab. They carried the big science they practiced into a new realm where experiments eventually became as large and costly as entire laboratories had been. Meanwhile the available funding grew more limited causing the physics research to be concentrated into fewer and bigger experiments that appeared never to end. The next phase in American high-energy physics was the Superconducting Super Collider, the most costly pure physics project ever attempted. The SSC's termination was a tragedy for American science, but for historians it offers an opportunity to understand what made the success of earlier large high-energy physics laboratories possible, and what made the continuation of the SSC impossible. The most obvious reason for the SSC's failure was its enormous and escalating budget, which Congress would no longer support. Other factors need to be recognized however: no leader could be found with directing skills as strong as those of Wilson, Panofsky, Lederman, or Richter; the scale of the project subjected it to uncomfortable public and Congressional scrutiny; and the DOE's enforcement of management procedures of the military-industrial complex that clashed with those typical of the scientific community led to the alienation and withdrawal of many of the most creative scientists, and to the perception and the reality of poor management. These factors, exacerbated by negative pressure from scientists in other fields and a post-Cold War climate in which physicists had little of their earlier cultural prestige, discouraged efforts to gain international support. They made the SSC

  8. Measurement of B(t --> Wb)/B(t--> Wq) at the collider detector at fermilab.

    Science.gov (United States)

    Acosta, D; Adelman, J; Affolder, T; Akimoto, T; Albrow, M G; Ambrose, D; Amerio, S; Amidei, D; Anastassov, A; Anikeev, K; Annovi, A; Antos, J; Aoki, M; Apollinari, G; Arisawa, T; Arguin, J-F; Artikov, A; Ashmanskas, W; Attal, A; Azfar, F; Azzi-Bacchetta, P; Bacchetta, N; Bachacou, H; Badgett, W; Barbaro-Galtieri, A; Barker, G J; Barnes, V E; Barnett, B A; Baroiant, S; Bauer, G; Bedeschi, F; Behari, S; Belforte, S; Bellettini, G; Bellinger, J; Belloni, A; Ben-Haim, E; Benjamin, D; Beretvas, A; Berry, T; Bhatti, A; Binkley, M; Bisello, D; Bishai, M; Blair, R E; Blocker, C; Bloom, K; Blumenfeld, B; Bocci, A; Bodek, A; Bolla, G; Bolshov, A; Bortoletto, D; Boudreau, J; Bourov, S; Brau, B; Bromberg, C; Brubaker, E; Budagov, J; Budd, H S; Burkett, K; Busetto, G; Bussey, P; Byrum, K L; Cabrera, S; Campanelli, M; Campbell, M; Canelli, F; Canepa, A; Casarsa, M; Carlsmith, D; Carosi, R; Carron, S; Cavalli-Sforza, M; Castro, A; Catastini, P; Cauz, D; Cerri, A; Cerrito, L; Chapman, J; Chen, Y C; Chertok, M; Chiarelli, G; Chlachidze, G; Chlebana, F; Cho, I; Cho, K; Chokheli, D; Chou, J P; Chuang, S; Chung, K; Chung, W-H; Chung, Y S; Cijliak, M; Ciobanu, C I; Ciocci, M A; Clark, A G; Clark, D; Coca, M; Connolly, A; Convery, M; Conway, J; Cooper, B; Copic, K; Cordelli, M; Cortiana, G; Cranshaw, J; Cuevas, J; Cruz, A; Culbertson, R; Currat, C; Cyr, D; Dagenhart, D; Da Ronco, S; D'Auria, S; de Barbaro, P; De Cecco, S; Deisher, A; De Lentdecker, G; Dell'Orso, M; Demers, S; Demortier, L; Deninno, M; de Pedis, D; Derwent, P F; Dionisi, C; Dittmann, J R; DiTuro, P; Dörr, C; Dominguez, A; Donati, S; Donega, M; Donini, J; D'Onofrio, M; Dorigo, T; Ebina, K; Efron, J; Ehlers, J; Erbacher, R; Erdmann, M; Errede, D; Errede, S; Eusebi, R; Fang, H-C; Farrington, S; Fedorko, I; Fedorko, W T; Feild, R G; Feindt, M; Fernandez, J P; Field, R D; Flanagan, G; Flores-Castillo, L R; Foland, A; Forrester, S; Foster, G W; Franklin, M; Freeman, J C; Fujii, Y; Furic, I; Gajjar, A; Gallinaro, M; Galyardt, J; Garcia-Sciveres, M; Garfinkel, A F; Gay, C; Gerberich, H; Gerdes, D W; Gerchtein, E; Giagu, S; Giannetti, P; Gibson, A; Gibson, K; Ginsburg, C; Giolo, K; Giordani, M; Giunta, M; Giurgiu, G; Glagolev, V; Glenzinski, D; Gold, M; Goldschmidt, N; Goldstein, D; Goldstein, J; Gomez, G; Gomez-Ceballos, G; Goncharov, M; González, O; Gorelov, I; Goshaw, A T; Gotra, Y; Goulianos, K; Gresele, A; Griffiths, M; Grosso-Pilcher, C; Grundler, U; da Costa, J Guimaraes; Haber, C; Hahn, K; Hahn, S R; Halkiadakis, E; Hamilton, A; Han, B-Y; Handler, R; Happacher, F; Hara, K; Hare, M; Harr, R F; Harris, R M; Hartmann, F; Hatakeyama, K; Hauser, J; Hays, C; Hayward, H; Heinemann, B; Heinrich, J; Hennecke, M; Herndon, M; Hill, C; Hirschbuehl, D; Hocker, A; Hoffman, K D; Holloway, A; Hou, S; Houlden, M A; Huffman, B T; Huang, Y; Hughes, R E; Huston, J; Ikado, K; Incandela, J; Introzzi, G; Iori, M; Ishizawa, Y; Issever, C; Ivanov, A; Iwata, Y; Iyutin, B; James, E; Jang, D; Jayatilaka, B; Jeans, D; Jensen, H; Jeon, E J; Jones, M; Joo, K K; Jun, S Y; Junk, T; Kamon, T; Kang, J; Unel, M Karagoz; Karchin, P E; Kato, Y; Kemp, Y; Kephart, R; Kerzel, U; Khotilovich, V; Kilminster, B; Kim, D H; Kim, H S; Kim, J E; Kim, M J; Kim, M S; Kim, S B; Kim, S H; Kim, Y K; Kirby, M; Kirsch, L; Klimenko, S; Klute, M; Knuteson, B; Ko, B R; Kobayashi, H; Kong, D J; Kondo, K; Konigsberg, J; Kordas, K; Korn, A; Korytov, A; Kotwal, A V; Kovalev, A; Kraus, J; Kravchenko, I; Kreymer, A; Kroll, J; Kruse, M; Krutelyov, V; Kuhlmann, S E; Kwang, S; Laasanen, A T; Lai, S; Lami, S; Lammel, S; Lancaster, M; Lander, R; Lannon, K; Lath, A; Latino, G; Lazzizzera, I; Lecci, C; Lecompte, T; Lee, J; Lee, J; Lee, S W; Lefèvre, R; Leonardo, N; Leone, S; Levy, S; Lewis, J D; Li, K; Lin, C; Lin, C S; Lindgren, M; Lipeles, E; Liss, T M; Lister, A; Litvintsev, D O; Liu, T; Liu, Y; Lockyer, N S; Loginov, A; Loreti, M; Loverre, P; Lu, R-S; Lucchesi, D; Lujan, P; Lukens, P; Lungu, G; Lyons, L; Lys, J; Lysak, R; Lytken, E; MacQueen, D; Madrak, R; Maeshima, K; Maksimovic, P; Manca, G; Margaroli, F; Marginean, R; Marino, C; Martin, A; Martin, M; Martin, V; Martínez, M; Maruyama, T; Matsunaga, H; Mattson, M; Mazzanti, P; McFarland, K S; McGivern, D; McIntyre, P M; McNamara, P; McNulty, R; Mehta, A; Menzemer, S; Menzione, A; Merkel, P; Mesropian, C; Messina, A; Miao, T; Miladinovic, N; Miles, J; Miller, L; Miller, R; Miller, J S; Mills, C; Miquel, R; Miscetti, S; Mitselmakher, G; Miyamoto, A; Moggi, N; Mohr, B; Moore, R; Morello, M; Fernandez, P A Movilla; Muelmenstaedt, J; Mukherjee, A; Mulhearn, M; Muller, T; Mumford, R; Munar, A; Murat, P; Nachtman, J; Nahn, S; Nakano, I; Napier, A; Napora, R; Naumov, D; Necula, V; Nelson, T; Neu, C; Neubauer, M S; Nielsen, J; Nigmanov, T; Nodulman, L; Norniella, O; Ogawa, T; Oh, S H; Oh, Y D; Ohsugi, T; Okusawa, T; Oldeman, R; Orava, R; Orejudos, W; Osterberg, K; Pagliarone, C; Palencia, E

    2005-09-01

    We present a measurement of the ratio of top-quark branching fractions R = B(t --> Wb)/B(t --> Wq), where q can be a b, s, or a d quark, using lepton-plus-jets and dilepton data sets with an integrated luminosity of approximately 162 pb(-1) collected with the Collider Detector at Fermilab during Run II of the Tevatron. The measurement is derived from the relative numbers of tt events with different multiplicity of identified secondary vertices. We set a lower limit of R > 0.61 at 95% confidence level.

  9. Controls, LLRF, and instrumentation systems for ILC test facilities at Fermilab

    Energy Technology Data Exchange (ETDEWEB)

    Chase, B.; Votava, M.; Wendt, M.; /Fermilab

    2007-06-01

    The major controls and instrumentation systems for the ILC test areas and the NML test accelerator at Fermilab are discussed. The test areas include 3 separate areas for Vertical Superconducting RF Cavity Testing, Horizontal Cavity Testing, and NML RF and beam test area. A common control infrastructure for the test areas including a controls framework, electronic logbook and cavity database will be provided, while supporting components supplied by collaborators with diverse areas of expertise (EPICS, DOOCS, LabVIEW, and Matlab). The discussions on the instrumentation systems are focused on overview and requirements.

  10. Operating Procedure Changes to Improve Antiproton Production at the Fermilab Tevatron Collider

    Energy Technology Data Exchange (ETDEWEB)

    Drendel, B.; Morgan, J.P.; Vander Meulen, D.; /Fermilab

    2009-04-01

    Since the start of Fermilab Collider Run II in 2001, the maximum weekly antiproton accumulation rate has increased from 400 x 10{sup 10} Pbars/week to approximately 3,700 x 10{sup 10} Pbars/week. There are many factors contributing to this increase, one of which involves changes to operational procedures that have streamlined and automated Antiproton Source production. Automation has been added to the beam line orbit control, stochastic cooling power level management, and RF settings. In addition, daily tuning efforts have been streamlined by implementing sequencer driven tuning software.

  11. Development of the 11 T $Nb_{3}Sn$ dipole model at Fermilab

    CERN Document Server

    Ambrosio, G; Arkan, T T; Barzi, E; Caspi, S; Chichili, D R; Chow, K; Kashikhin, V V; Limon, P J; Makarov, A A; Ozelis, J P; Terechkine, Yu; Tompkins, J C; Wake, M; Yadav, S; Yamada, R; Yarba, V A; Zlobin, A V

    2000-01-01

    A one meter long Nb/sub 3/Sn dipole model with 11 T nominal magnetic field in a 43.5 mm bore is being developed at Fermilab in collaboration with LBNL and KEK as part of the R&D efforts for a future Very Large Hadron Collider. This paper describes the magnet design and fabrication procedure as well as summarizes the results of magnetic, mechanical and quench protection analyses. The main parameters of superconducting strand and cable are also reported. (12 refs).

  12. Superconductor and cable R&D for high field accelerator magnets at Fermilab

    CERN Document Server

    Barzi, E; Andreev, N; Bauer, P; Chichili, D R; Fratini, M; Elementi, L; Hoffman, J; Limon, P J; Mattafirri, S; Rey, J M; Yamada, R; Zlobin, A V

    2002-01-01

    This paper presents past results and future goals of the Nb/sub 3/Sn strand and cable R&D being performed within the High Field Magnet program at Fermilab. Research tools include a reaction site for Nb /sub 3/Sn, a Short Sample Test Facility, a Scanning Electron Microscope, and a 28-strand cabling machine. Strands of various designs and diameters produced with the Internal Tin, Modified Jelly Roll, and Powder-in-Tube methods, and several Rutherford-type cables were studied. (18 refs).

  13. Fabrication of the shell-type $Nb_{3}$ Sn dipole magnet at Fermilab

    CERN Document Server

    Chichili, D R; Andreev, N; Barzi, E; Caspi, S; Kashikhin, V V; Limon, P J; Scanlan, R M; Terechkine, Yu; Tompkins, J; Wake, M; Yadav, S; Yamada, R; Yarba, V A; Zlobin, A V

    2001-01-01

    A 43.5 mm aperture dipole magnet with a nominal field of 11 T is being fabricated at Fermilab. The design is based on a two-layer shell-type coil structure made of Rutherford-type Nb/sub 3/Sn cable with wind and react technology. The mechanical support structure consists of vertically split iron yoke locked by two aluminum clamps and a 8 mm thick stainless steel skin. This paper summarizes the fabrication details of the first dipole model and test results from a 2110 mm long mechanical model. (9 refs).

  14. Quenching behaviour of quadrupole model magnets for the LHC inner triplets at Fermilab

    CERN Document Server

    Andreev, N; Bauer, P; Bossert, R; Brandt, J; Chichili, D R; Carson, J; Di Marco, J; Fehér, S; Glass, H; Kerby, J S; Lamm, M J; Makarov, A A; Nobrega, A; Novitski, I; Ogitsu, T; Orris, D; Ozelis, J P; Rabehl, Roger Jon; Robotham, W; Sabbi, G L; Schlabach, P; Sylvester, C D; Strait, J B; Tartaglia, M; Tompkins, J C; Yadav, S; Zlobin, A V; Caspi, S; McInturff, A D; Scanlan, R M; Ghosh, A

    2000-01-01

    The US-LHC Accelerator Project is responsible for the design and production of inner triplet high gradient quadrupoles for installation in the LHC Interaction Region. The quadrupoles are required to deliver a nominal field gradient of 215 T/m in a 70 mm bore, and operate in superfluid helium. As part of the magnet development program, a series of 2 m model magnets have been built and tested at Fermilab, with each magnet being tested over several thermal cycles. This paper summarizes the quench performance and analysis of the model magnets tested, including quench training, and the ramp rate and temperature of the magnet quench current. (7 refs).

  15. Accurate simulation of the electron cloud in the Fermilab Main Injector with VORPAL

    Energy Technology Data Exchange (ETDEWEB)

    Lebrun, Paul L.G.; Spentzouris, Panagiotis; /Fermilab; Cary, John R.; Stoltz, Peter; Veitzer, Seth A.; /Tech-X, Boulder

    2010-05-01

    Precision simulations of the electron cloud at the Fermilab Main Injector have been studied using the plasma simulation code VORPAL. Fully 3D and self consistent solutions that includes E.M. field maps generated by the cloud and the proton bunches have been obtained, as well detailed distributions of the electron's 6D phase space. We plan to include such maps in the ongoing simulation of the space charge effects in the Main Injector. Simulations of the response of beam position monitors, retarding field analyzers and microwave transmission experiments are ongoing.

  16. Transatlantic Transport of Fermilab 3.9 GHZ Cryomodule to DESY

    Energy Technology Data Exchange (ETDEWEB)

    McGee, M.W.; Grimm, C.; Olis, D.; Schappert, Warren; /Fermilab

    2009-05-01

    In an exchange of technology agreement, Fermilab has built and delivered a 3.9 GHz (3rd harmonic) cryomodule to Deutsches Elektron-Synchrotron (DESY) Laboratory to be installed in the TTF/FLASH beamline. Transport to Hamburg, Germany was completed via a combination of flatbed air ride truck and commercial aircraft, while minimizing transition or handling points. Initially, destructive testing of fragile components, transport and corresponding alignment stability studies were performed in order to assess the risk associated with transatlantic travel of a fully assembled cryomodule. Data logged triaxial acceleration results of the transport with a comparison to the transport study predicted values are presented.

  17. GammeV: A gamma to milli-eV particle search at Fermilab

    Energy Technology Data Exchange (ETDEWEB)

    Wester, William Carl, III; /Fermilab

    2008-10-01

    GammeV is an experiment conducted at Fermilab that employs the light shining through a wall technique to search for axion-like particles and employs a particle in a jar technique to search for dilaton-like chameleon particles. We obtain limits on the coupling of photons to an axion-like particle that extend previous limits for both scalars and pseudoscalars in the milli-eV mass range. We are able to exclude the axion-like particle interpretation of the anomalous PVLAS 2006 result by more than 5 standard deviations. We also present results on a search for chameleons and set limits on their possible coupling to photons.

  18. The calibration system of the new g-2 experiment at Fermilab

    Science.gov (United States)

    Anastasi, A.; Babusci, D.; Cantatore, G.; Cauz, D.; Corradi, G.; Dabagov, S.; Di Meo, P.; Di Sciascio, G.; Di Stefano, R.; Ferrari, C.; Fienberg, A. T.; Fioretti, A.; Gabbanini, C.; Hampai, D.; Hertzog, D. W.; Iacovacci, M.; Karuza, M.; Kaspar, J.; Marignetti, F.; Mastroianni, S.; Moricciani, D.; Pauletta, G.; Santi, L.; Venanzoni, G.

    2016-07-01

    The muon anomaly (g - 2) μ / 2 has been measured to 0.54 parts per million by E821 experiment at Brookhaven National Laboratory, and at present there is a 3-4 standard-deviation difference between the Standard Model prediction and the experimental value. A new muon g-2 experiment, E989, is being prepared at Fermilab that will improve the experimental error by a factor of four to clarify this difference. A central component to reach this fourfold improvement in accuracy is the high-precision laser calibration system which should monitor the gain fluctuations of the calorimeter photodetectors at 0.04% accuracy.

  19. Start-to-end simulations for the proposed Fermilab high intensity proton source

    Energy Technology Data Exchange (ETDEWEB)

    Carneiro, Jean-Paul; Johnson, D.E.; Webber, R.C.; /Fermilab

    2007-06-01

    A High Intensity Proton Source consisting in an 8 GeV superconducting H-minus linac and transfer line to the Main Injector has been proposed. The primary mission is to increase the intensity of the Fermilab Main Injector for the production of neutrino superbeams. Start-to-end simulations from the RFQ to the stripping foil using the simulation code TRACK (ANL) is presented in this paper. In particular, we will study the impact of jitter errors on the H-minus phase space at the stripping foil.

  20. Precise measurement of the W-boson mass with the Collider Detector at Fermilab

    Science.gov (United States)

    Aaltonen, T.; Amerio, S.; Amidei, D.; Anastassov, A.; Annovi, A.; Antos, J.; Apollinari, G.; Appel, J. A.; Arisawa, T.; Artikov, A.; Asaadi, J.; Ashmanskas, W.; Auerbach, B.; Aurisano, A.; Azfar, F.; Badgett, W.; Bae, T.; Barbaro-Galtieri, A.; Barnes, V. E.; Barnett, B. A.; Guimaraes da Costa, J.; Barria, P.; Bartos, P.; Bauce, M.; Bedeschi, F.; Beecher, D.; Behari, S.; Bellettini, G.; Bellinger, J.; Benjamin, D.; Beretvas, A.; Bhatti, A.; Binkley, M.; Bizjak, I.; Bland, K. R.; Blumenfeld, B.; Bocci, A.; Bodek, A.; Bortoletto, D.; Boudreau, J.; Boveia, A.; Brigliadori, L.; Bromberg, C.; Brucken, E.; Budagov, J.; Budd, H. S.; Burkett, K.; Busetto, G.; Bussey, P.; Butti, P.; Buzatu, A.; Calamba, A.; Camarda, S.; Campanelli, M.; Canelli, F.; Carls, B.; Carlsmith, D.; Carosi, R.; Carrillo, S.; Casal, B.; Casarsa, M.; Castro, A.; Catastini, P.; Cauz, D.; Cavaliere, V.; Cavalli-Sforza, M.; Cerri, A.; Cerrito, L.; Chen, Y. C.; Chertok, M.; Chiarelli, G.; Chlachidze, G.; Cho, K.; Chokheli, D.; Clark, A.; Clarke, C.; Convery, M. E.; Conway, J.; Corbo, M.; Cordelli, M.; Cox, C. A.; Cox, D. J.; Cremonesi, M.; Cruz, D.; Cuevas, J.; Culbertson, R.; d'Ascenzo, N.; Datta, M.; de Barbaro, P.; Demortier, L.; Deninno, M.; D'Errico, M.; Devoto, F.; Di Canto, A.; Di Ruzza, B.; Dittmann, J. R.; Donati, S.; D'Onofrio, M.; Dorigo, M.; Driutti, A.; Ebina, K.; Edgar, R.; Elagin, A.; Erbacher, R.; Errede, S.; Esham, B.; Eusebi, R.; Farrington, S.; Fernández Ramos, J. P.; Field, R.; Flanagan, G.; Forrest, R.; Franklin, M.; Freeman, J. C.; Frisch, H.; Funakoshi, Y.; Galloni, C.; Garfinkel, A. F.; Garosi, P.; Gerberich, H.; Gerchtein, E.; Giagu, S.; Giakoumopoulou, V.; Gibson, K.; Ginsburg, C. M.; Giokaris, N.; Giromini, P.; Giurgiu, G.; Glagolev, V.; Glenzinski, D.; Gold, M.; Goldin, D.; Golossanov, A.; Gomez, G.; Gomez-Ceballos, G.; Goncharov, M.; González López, O.; Gorelov, I.; Goshaw, A. T.; Goulianos, K.; Gramellini, E.; Grinstein, S.; Grosso-Pilcher, C.; Group, R. C.; Hahn, S. R.; Han, J. Y.; Happacher, F.; Hara, K.; Hare, M.; Harr, R. F.; Harrington-Taber, T.; Hatakeyama, K.; Hays, C.; Heinrich, J.; Herndon, M.; Hocker, A.; Hong, Z.; Hopkins, W.; Hou, S.; Hughes, R. E.; Husemann, U.; Hussein, M.; Huston, J.; Introzzi, G.; Iori, M.; Ivanov, A.; James, E.; Jang, D.; Jayatilaka, B.; Jeon, E. J.; Jindariani, S.; Jones, M.; Joo, K. K.; Jun, S. Y.; Junk, T. R.; Kambeitz, M.; Kamon, T.; Karchin, P. E.; Kasmi, A.; Kato, Y.; Ketchum, W.; Keung, J.; Kilminster, B.; Kim, D. H.; Kim, H. S.; Kim, J. E.; Kim, M. J.; Kim, S. H.; Kim, S. B.; Kim, Y. J.; Kim, Y. K.; Kimura, N.; Kirby, M.; Knoepfel, K.; Kondo, K.; Kong, D. J.; Konigsberg, J.; Kotwal, A. V.; Kreps, M.; Kroll, J.; Kruse, M.; Kuhr, T.; Kurata, M.; Laasanen, A. T.; Lammel, S.; Lancaster, M.; Lannon, K.; Latino, G.; Lee, H. S.; Lee, J. S.; Leo, S.; Leone, S.; Lewis, J. D.; Limosani, A.; Lipeles, E.; Lister, A.; Liu, H.; Liu, Q.; Liu, T.; Lockwitz, S.; Loginov, A.; Lucchesi, D.; Lucà, A.; Lueck, J.; Lujan, P.; Lukens, P.; Lungu, G.; Lys, J.; Lysak, R.; Madrak, R.; Maestro, P.; Malik, S.; Manca, G.; Manousakis-Katsikakis, A.; Marchese, L.; Margaroli, F.; Marino, P.; Martínez, M.; Matera, K.; Mattson, M. E.; Mazzacane, A.; Mazzanti, P.; McNulty, R.; Mehta, A.; Mehtala, P.; Mesropian, C.; Miao, T.; Mietlicki, D.; Mitra, A.; Miyake, H.; Moed, S.; Moggi, N.; Moon, C. S.; Moore, R.; Morello, M. J.; Mukherjee, A.; Muller, Th.; Murat, P.; Mussini, M.; Nachtman, J.; Nagai, Y.; Naganoma, J.; Nakano, I.; Napier, A.; Nett, J.; Neu, C.; Nigmanov, T.; Nodulman, L.; Noh, S. Y.; Norniella, O.; Nurse, E.; Oakes, L.; Oh, S. H.; Oh, Y. D.; Oksuzian, I.; Okusawa, T.; Orava, R.; Ortolan, L.; Pagliarone, C.; Palencia, E.; Palni, P.; Papadimitriou, V.; Parker, W.; Pauletta, G.; Paulini, M.; Paus, C.; Phillips, T. J.; Piacentino, G.; Pianori, E.; Pilot, J.; Pitts, K.; Plager, C.; Pondrom, L.; Poprocki, S.; Potamianos, K.; Pranko, A.; Prokoshin, F.; Ptohos, F.; Punzi, G.; Ranjan, N.; Redondo Fernández, I.; Renton, P.; Rescigno, M.; Riddick, T.; Rimondi, F.; Ristori, L.; Robson, A.; Rodriguez, T.; Rolli, S.; Ronzani, M.; Roser, R.; Rosner, J. L.; Ruffini, F.; Ruiz, A.; Russ, J.; Rusu, V.; Sakumoto, W. K.; Sakurai, Y.; Santi, L.; Sato, K.; Saveliev, V.; Savoy-Navarro, A.; Schlabach, P.; Schmidt, E. E.; Schwarz, T.; Scodellaro, L.; Scuri, F.; Seidel, S.; Seiya, Y.; Semenov, A.; Sforza, F.; Shalhout, S. Z.; Shears, T.; Shekhar, R.; Shepard, P. F.; Shimojima, M.; Shochet, M.; Simonenko, A.; Sliwa, K.; Smith, J. R.; Snider, F. D.; Song, H.; Sorin, V.; St. Denis, R.; Stancari, M.; Stelzer-Chilton, O.; Stentz, D.; Strologas, J.; Sudo, Y.; Sukhanov, A.; Sun, S.; Suslov, I.; Takemasa, K.; Takeuchi, Y.; Tang, J.; Tecchio, M.; Shreyber-Tecker, I.; Teng, P. K.; Thom, J.; Thomson, E.; Thukral, V.; Toback, D.; Tokar, S.; Tollefson, K.; Tomura, T.; Tonelli, D.; Torre, S.; Torretta, D.; Totaro, P.; Trovato, M.; Ukegawa, F.; Uozumi, S.; Vázquez, F.; Velev, G.; Vellidis, C.; Vernieri, C.; Vidal, M.; Vilar, R.; Vizán, J.; Vogel, M.; Volpi, G.; Wagner, P.; Wallny, R.; Wang, S. M.; Waters, D.; Wester, W. C., III; Whiteson, D.; Wicklund, A. B.; Wilbur, S.; Williams, H. H.; Wilson, J. S.; Wilson, P.; Winer, B. L.; Wittich, P.; Wolbers, S.; Wolfe, H.; Wright, T.; Wu, X.; Wu, Z.; Yamamoto, K.; Yamato, D.; Yang, T.; Yang, U. K.; Yang, Y. C.; Yao, W.-M.; Yeh, G. P.; Yi, K.; Yoh, J.; Yorita, K.; Yoshida, T.; Yu, G. B.; Yu, I.; Zanetti, A. M.; Zeng, Y.; Zhou, C.; Zucchelli, S.; CDF Collaboration

    2014-04-01

    We present a measurement of the W-boson mass, MW, using data corresponding to 2.2 fb-1 of integrated luminosity collected in pp ¯ collisions at √s =1.96 TeV with the CDF II detector at the Fermilab Tevatron. The selected sample of 470 126 W→eν candidates and 624 708 W→μν candidates yields the measurement MW=80387±12(stat)±15(syst)=80387±19 MeV /c2. This is the most precise single measurement of the W-boson mass to date.

  1. B-Physics at Fermilab D{phi} experiment : present and prospects

    Energy Technology Data Exchange (ETDEWEB)

    Alves, G.A. [Centro Brasileiro de Pesquisas Fisicas (CBPF), Rio de Janeiro, RJ (Brazil). Lab. de Fisica Experimental de Altas Energias e Cosmologia

    1997-12-31

    We present the first B-Physics results from the 1992/93 collider run at Fermilab, using the D{phi} detector. Results are given for the b-quark production cross section using inclusive single muons and J/{psi} to tag the heavy flavor production. Preliminary results on B{sup O} - anti B{sup O} Mixing are also presented. We compare the results with theoretical predictions where appropriated and present the prospects for future runs. (author) 10 refs., 8 figs.

  2. Search for Space-Time Correlations from the Planck Scale with the Fermilab Holometer

    CERN Document Server

    Chou, Aaron S; Hogan, Craig; Kamai, Brittany; Kwon, Ohkyung; Lanza, Robert; McCuller, Lee; Meyer, Stephan S; Richardson, Jonathan; Stoughton, Chris; Tomlin, Raymond; Waldman, Samuel; Weiss, Rainer

    2015-01-01

    Measurements are reported of high frequency cross-spectra of signals from the Fermilab Holometer, a pair of co-located 39 m, high power Michelson interferometers. The instrument obtains differential position sensitivity to cross-correlated signals far exceeding any previous measurement in a broad frequency band extending to the 3.8 MHz inverse light crossing time of the apparatus. A model of universal exotic spatial shear correlations that matches the Planck scale holographic information bound of space-time position states is excluded to 4.6{\\sigma} significance.

  3. Simulation of Cascaded Longitudinal-Space-Charge Amplifier at the Fermilab Accelerator Science & Technology (Fast) Facility

    Energy Technology Data Exchange (ETDEWEB)

    Halavanau, A. [Northern Illinois U.; Piot, P. [Northern Illinois U.

    2015-12-01

    Cascaded Longitudinal Space Charge Amplifiers (LSCA) have been proposed as a mechanism to generate density modulation over a board spectral range. The scheme has been recently demonstrated in the optical regime and has confirmed the production of broadband optical radiation. In this paper we investigate, via numerical simulations, the performance of a cascaded LSCA beamline at the Fermilab Accelerator Science & Technology (FAST) facility to produce broadband ultraviolet radiation. Our studies are carried out using elegant with included tree-based grid-less space charge algorithm.

  4. Measurement of B(t->Wb)/B(t->Wq) at the Collider Detector at Fermilab

    CERN Document Server

    Acosta, D; Affolder, T; Akimoto, T; Albrow, M G; Ambrose, D; Amerio, S; Amidei, D; Anastassov, A; Anikeev, K; Annovi, A; Antos, J; Aoki, M; Apollinari, G; Arisawa, T; Arguin, J F; Artikov, A; Ashmanskas, W; Attal, A; Azfar, F; Azzi-Bacchetta, P; Bacchetta, N; Bachacou, H; Badgett, W; Barbaro-Galtieri, A; Barker, G J; Barnes, V E; Barnett, B A; Baroiant, S; Bauer, G; Bedeschi, F; Behari, S; Belforte, S; Bellettini, G; Bellinger, J; Belloni, A; Ben-Haim, E; Benjamin, D; Beretvas, A; Berry, T; Bhatti, A A; Binkley, M; Bisello, D; Bishai, M; Blair, R E; Blocker, C; Bloom, K; Blumenfeld, B; Bocci, A; Bodek, A; Bölla, G; Bolshov, A; Bortoletto, D; Boudreau, J; Bourov, S; Brau, B; Bromberg, C; Brubaker, E; Budagov, Yu A; Budd, H S; Burkett, K; Busetto, G; Bussey, P; Byrum, K L; Cabrera, S; Campanelli, M; Campbell, M; Canelli, F; Canepa, A; Casarsa, M; Carlsmith, D; Carosi, R; Carron, S; Cavalli-Sforza, M; Castro, A; Catastini, P; Cauz, D; Cerri, A; Cerrito, L; Chapman, J; Chen, Y C; Chertok, M; Chiarelli, G; Chlachidze, G; Chlebana, F; Cho, I; Cho, K; Chokheli, D; Chou, J P; Chuang, S; Chung, K; Chung, W H; Chung, Y S; Cijliak, M; Ciobanu, C I; Ciocci, M A; Clark, A G; Clark, D; Coca, M; Connolly, A; Convery, M; Conway, J; Cooper, B; Copic, K; Cordelli, M; Cortiana, G; Cranshaw, J; Cuevas-Maestro, J; Cruz, A; Culbertson, R; Currat, C; Cyr, D; Dagenhart, D; Da Ronco, S; D'Auria, S; De Barbaro, P; De Cecco, S; Deisher, A; De Lentdecker, G; Dell'Orso, Mauro; Demers, S; Demortier, L; Deninno, M; De Pedis, D; Derwent, P F; Dionisi, C; Dittmann, J R; Di Turo, P; Dorr, C; Dominguez, A; Donati, S; Donega, M; Donini, J; D'Onofrio, M; Dorigo, T; Ebina, K; Efron, J; Ehlers, J; Erbacher, R; Erdmann, M; Errede, D; Errede, S; Eusebi, R; Fang, H C; Farrington, S; Fedorko, I; Fedorko, W T; Feild, R G; Feindt, M; Fernández, J P; Field, R D; Flanagan, G; Flores-Castillo, L R; Foland, A; Forrester, S; Foster, G W; Franklin, M; Freeman, J C; Fujii, Y; Furic, I; Gajjar, A; Gallinaro, M; Galyardt, J; García-Sciveres, M; Garfinkel, A F; Gay, C; Gerberich, H; Gerdes, D W; Gerchtein, E; Giagu, S; Giannetti, P; Gibson, A; Gibson, K; Ginsburg, C; Giolo, K; Giordani, M; Giunta, M; Giurgiu, G; Glagolev, V; Glenzinski, D A; Gold, M; Goldschmidt, N; Goldstein, D; Goldstein, J; Gómez, G; Gómez-Ceballos, G; Goncharov, M; González, O; Gorelov, I; Goshaw, A T; Gotra, Yu; Goulianos, K; Gresele, A; Griffiths, M; Grosso-Pilcher, C; Grundler, U; Guimarães da Costa, J; Haber, C; Hahn, K; Hahn, S R; Halkiadakis, E; Hamilton, A; Han, B Y; Handler, R; Happacher, F; Hara, K; Hare, M; Harr, R F; Harris, R M; Hartmann, F; Hatakeyama, K; Hauser, J; Hays, C; Hayward, H; Heinemann, B; Heinrich, J; Hennecke, M; Herndon, M; Hill, C; Hirschbuehl, D; Höcker, A; Hoffman, K D; Holloway, A; Hou, S; Houlden, M A; Huffman, B T; Huang, Y; Hughes, R E; Huston, J; Ikado, K; Incandela, J R; Introzzi, G; Iori, M; Ishizawa, Y; Issever, C; Ivanov, A; Iwata, Y; Iyutin, B; James, E; Jang, D; Jayatilaka, B; Jeans, D; Jensen, H; Jeon, E J; Jones, M; Joo, K K; Jun, S Y; Junk, T R; Kamon, T; Kang, J; Karagoz-Unel, M; Karchin, P E; Kato, Y; Kemp, Y; Kephart, R; Kerzel, U; Khotilovich, V; Kilminster, B; Kim, D H; Kim, H S; Kim, J E; Kim, M J; Kim, M S; Kim, S B; Kim, S H; Kim, Y K; Kirby, M; Kirsch, L; Klimenko, S; Klute, M; Knuteson, B; Ko, B R; Kobayashi, H; Kong, D J; Kondo, K; Konigsberg, J; Kordas, K; Korn, A; Korytov, A; Kotwal, A V; Kovalev, A; Kraus, J; Kravchenko, I; Kreymer, A; Kroll, J; Kruse, M; Krutelyov, V; Kuhlmann, S E; Kwang, S; Laasanen, A T; Lai, S; Lami, S; Lammel, S; Lancaster, M; Lander, R; Lannon, K; Lath, A; Latino, G; Lazzizzera, I; Lecci, C; LeCompte, T; Lee, J; Lee, S W; Lefèvre, R; Leonardo, N; Leone, S; Levy, S; Lewis, J D; Li, K; Lin, C; Lin, C S; Lindgren, M; Lipeles, E; Liss, T M; Lister, A; Litvintsev, D O; Liu, T; Liu, Y; Lockyer, N S; Loginov, A; Loreti, M; Loverre, P F; Lu, R S; Lucchesi, D; Lujan, P; Lukens, P; Lungu, G; Lyons, L; Lys, J; Lysak, R; Lytken, E; MacQueen, D; Madrak, R; Maeshima, K; Maksimovic, P; Manca, G; Margaroli, F; Marginean, R; Marino, C; Martin, A; Martin, M; Martin, V; Martínez, M; Maruyama, T; Matsunaga, H; Mattson, M; Mazzanti, P; McFarland, K S; McGivern, D; McIntyre, P M; McNamara, P; McNulty; Mehta, A; Menzemer, S; Menzione, A; Merkel, P; Mesropian, C; Messina, A; Miao, T; Miladinovic, N; Miles, J; Miller, L; Miller, R; Miller, J S; Mills, C; Miquel, R; Miscetti, S; Mitselmakher, G; Miyamoto, A; Moggi, N; Mohr, B; Moore, R; Morello, M; Movilla-Fernández, P A; Mülmenstädt, J; Mukherjee, A; Mulhearn, M; Müller, T; Mumford, R; Munar, A; Murat, P; Nachtman, J; Nahn, S; Nakano, I; Napier, A; Napora, R; Naumov, D; Necula, V; Nelson, T; Neu, C; Neubauer, M S; Nielsen, J; Nigmanov, T; Nodulman, L; Norniella, O; Ogawa, T; Oh, S H; Oh, Y D; Ohsugi, T; Okusawa, T; Oldeman, R; Orava, R; Orejudos, W; Österberg, K; Pagliarone, C; Palencia, E; Paoletti, R; Papadimitriou, V; Paramonov, A A; Pashapour, S; Patrick, J; Pauletta, G; Paulini, M; Paus, C; Pellett, D; Penzo, Aldo L; Phillips, T J; Piacentino, G; Piedra, J; Pitts, K T; Plager, C; Pondrom, L; Pope, G; Portell, X; Poukhov, O; Pounder, N; Prakoshyn, F; Pronko, A; Proudfoot, J; Ptohos, F; Punzi, G; Rademacker, J; Rahaman, M A; Rakitine, A; Rappoccio, S; Ratnikov, F; Ray, H; Reisert, B; Rekovic, V; Renton, P B; Rescigno, M; Rimondi, F; Rinnert, K; Ristori, L; Robertson, W J; Robson, A; Rodrigo, T; Rolli, S; Roser, R; Rossin, R; Rott, C; Russ, J; Rusu, V; Ruiz, A; Ryan, D; Saarikko, H; Sabik, S; Safonov, A; Saint-Denis, R; Sakumoto, W K; Salamanna, G; Saltzberg, D; Sánchez, C; Santi, L; Sarkar, S; Sato, K; Savard, P; Savoy-Navarro, A; Schlabach, P; Schmidt, E E; Schmidt, M P; Schmitt, M; Schwarz, T; Scodellaro, L; Scott, A L; Scribano, A; Scuri, F; Sedov, A; Seidel, S; Seiya, Y; Semenov, A; Semeria, F; Sexton-Kennedy, L; Sfiligoi, I; Shapiro, M D; Shears, T G; Shepard, P F; Sherman, D; Shimojima, M; Shochet, M; Shon, Y; Shreyber, I; Sidoti, A; Sill, A; Sinervo, P; Sisakian, A; Sjölin, J; Skiba, A; Slaughter, A J; Sliwa, K; Smirnov, D; Smith, J R; Snider, F D; Snihur, R; Söderberg, M; Soha, A; Somalwar, S V; Spalding, J; Spezziga, M; Spinella, F; Squillacioti, P; Stadie, H; Stanitzki, M; Stelzer, B; Stelzer-Chilton, O; Stentz, D; Strologas, J; Stuart, D; Suh, J S; Sukhanov, A; Sumorok, K; Sun, H; Suzuki, T; Taffard, A; Tafirout, R; Takano, H; Takashima, R; Takeuchi, Y; Takikawa, K; Tanaka, M; Tanaka, R; Tanimoto, N; Tecchio, M; Teng, P K; Terashi, K; Tesarek, R J; Tether, S; Thom, J; Thompson, A S; Thomson, E; Tipton, P; Tiwari, V; Tkaczyk, S; Toback, D; Tollefson, K; Tomura, T; Tonelli, D; Tonnesmann, M; Torre, S; Torretta, D; Tourneur, S; Trischuk, W; Tsuchiya, R; Tsuno, S; Tsybychev, D; Turini, N; Ukegawa, F; Unverhau, T; Uozumi, S; Usynin, D; Vacavant, L; Vaiciulis, A W; Varganov, A; Vejcik, S; Velev, G; Veszpremi, V; Veramendi, G; Vickey, T; Vidal, R; Vila, I; Vilar, R; Vollrath, I; Volobuev, I P; Von der Mey, M; Wagner, P; Wagner, R G; Wagner, R L; Wagner, W; Wallny, R; Walter, T; Wan, Z; Wang, M J; Wang, S M; Warburton, A; Ward, B; Waschke, S; Waters, D; Watts, T; Weber, M; Wester, W C; Whitehouse, B; Whiteson, D; Wicklund, A B; Wicklund, E; Williams, H H; Wilson, P; Winer, B L; Wittich, P; Wolbers, S; Wolfe, C; Wolter, M; Worcester, M; Worm, S; Wright, T; Wu, X; Würthwein, F; Wyatt, A; Yagil, A; Yamashita, T; Yamamoto, K; Yamaoka, J; Yang, C; Yang, U K; Yao, W; Yeh, G P; Yoh, J; Yorita, K; Yoshida, T; Yu, I; Yu, S; Yun, J C; Zanello, L; Zanetti, A; Zaw, I; Zetti, F; Zhou, J; Zucchelli, S

    2005-01-01

    We present a measurement of the ratio of top-quark branching fractions R= B(t -> Wb)/B(t -> Wq) using lepton-plus-jets and dilepton data sets with integrated luminosity of ~162 pb^{-1} collected with the Collider Detector at Fermilab during Run II of the Tevatron. The measurement is derived from the relative numbers of t-tbar events with different multiplicity of identified secondary vertices. We set a lower limit of R > 0.61 at 95% confidence level.

  5. A dynamic dispersion insert in the Fermilab Main Injector for momentum collimation

    Energy Technology Data Exchange (ETDEWEB)

    Johnson, D.E.; /Fermilab

    2007-06-01

    The Fermilab Main Injector (MI) accelerator is designed as a FODO lattice with zero dispersion straight sections. A scheme will be presented that can dynamically alter the dispersion of one of the long straight sections to create a non-zero dispersion straight section suitable for momentum collimation. During the process of slip stacking DC beam is generated which is lost during the first few milliseconds of the ramp. A stationary massive primary collimator/absorber with optional secondary masks could be utilized to isolate beam loss due to uncaptured beam.

  6. The Main Injector Particle Physics Experiment (MIPP FNAL E-907) at Fermilab - status and plans

    CERN Document Server

    Raja, R

    2006-01-01

    We describe the status of the Main Injector particle production Experiment (MIPP) at Fermilab which has to date acquired 18 million events of particle interactions using (5 GeV/c-120 GeV/c) $\\pi^\\pm, K^\\pm$ and $p^\\pm$ beams on various targets. We describe plans to upgrade the data acquisition speed of MIPP to make it run 100 times faster which will enable us to obtain particle production data of unprecdented quality and statistics on a wide variety of nuclear targets including nitrogen which is of importance to cosmic ray physics.

  7. The Fermilab Large Cold Blackbody Test Stand for CMB R&D

    Energy Technology Data Exchange (ETDEWEB)

    Kubik, Donna [Fermilab; Butler, D. [Fermilab; DeJongh, F. [Fermilab; Korienek, J. [Fermilab; Lindenmeyer, C. [Fermilab; Montes, J. [Fermilab; Nguyen, H. [Fermilab; Wilson, J. [Fermilab

    2012-03-18

    The Fermilab Large Cold Blackbody Test Stand can be used to expose a microwave receiver and horn assembly to a large blackbody at cryogenic temperatures (as low as 20 K). The temperature of the blackbody can be varied while keeping the receiver temperature constant, facilitating Y-factor measurements of the receiver noise temperature and gain. The test stand has recently been used for studying a QUIET-I receiver module. The test stand will be used to measure both QUIET-I and prototype QUIET-II modules.

  8. RF and data acquisition systems for Fermilab's ILC SRF cavity vertical test stand

    Energy Technology Data Exchange (ETDEWEB)

    Ozelis, Joseph P.; Nehring, Roger; /Fermilab; Grenoble, Christiana; Powers, Thomas J.; /Jefferson Lab

    2007-06-01

    Fermilab is developing a facility for vertical testing of SRF cavities as part of its ILC program. The RF system for this facility is based on the proven production cavity test systems used at Jefferson Lab for CEBAF and SNS cavity testing. The design approach is modular in nature, using commercial-off-the-shelf (COTS) components. This yields a system that can be easily debugged and modified, and with ready availability of spares. Comprehensive data acquisition and control is provided by a PXI-based hardware platform in conjunction with software developed in the LabView programming environment.

  9. LLRF design for the HINS-SRF test facility at Fermilab

    Energy Technology Data Exchange (ETDEWEB)

    Branlanrd, J.; Chase, B.; Cullerton, E.; Joireman, P.; Tupikov, V.; /Fermilab

    2010-09-01

    The High Intensity Neutrino Source (HINS) R&D program requires super conducting single spoke resonators operating at 325 MHz (SSR1). After coupler installation, these cavities are tested at the HINS-SRF facility at Fermilab. The LLRF requirements for these tests include support for continuous wave and pulsed mode operations, with the ability to track the resonance frequency of the tested cavity. Real-time measurement of the cavity loaded Q and Q{sub 0} are implemented using gradient decay techniques, allowing for Q{sub 0} versus E{sub acc} plots. A real time cavity simulator was also developed to test the LLRF system and verify its functionality.

  10. Longitudinal bunch monitoring at the Fermilab Tevatron and Main Injector synchrotrons

    CERN Document Server

    Thurman-Keup, R; Blokland, W; Crisp, J; Eddy, N; Fellenz, B; Flora, R; Hahn, A; Hansen, S; Kiper, T; Para, A; Pordes, S; Tollestrup, A V

    2011-01-01

    The measurement of the longitudinal behavior of the accelerated particle beams at Fermilab is crucial to the optimization and control of the beam and the maximizing of the integrated luminosity for the particle physics experiments. Longitudinal measurements in the Tevatron and Main Injector synchrotrons are based on the analysis of signals from resistive wall current monitors. This article describes the signal processing performed by a 2 GHz-bandwidth oscilloscope together with a computer running a LabVIEW program which calculates the longitudinal beam parameters.

  11. MeV-scale sterile neutrino decays at the Fermilab Short-Baseline Neutrino program

    CERN Document Server

    Ballett, Peter; Ross-Lonergan, Mark

    2016-01-01

    Nearly-sterile neutrinos with masses in the MeV range and below would be produced in the beam of the Short-Baseline Neutrino (SBN) program at Fermilab. In this article, we study the potential for SBN to discover these particles through their subsequent decays in its detectors. We discuss the decays which will be visible at SBN in a minimal and non-minimal extension of the Standard Model, and perform simulations to compute the parameter space constraints which could be placed in the absence of a signal. We demonstrate that the SBN program can extend existing bounds on well constrained channels such as $N \\rightarrow \

  12. Development of high data readout rate pixel module and detector hybridization at Fermilab

    Energy Technology Data Exchange (ETDEWEB)

    Sergio Zimmermann et al.

    2001-03-20

    This paper describes the baseline design and a variation of the pixel module to handle the data rate required for the BTeV experiment at Fermilab. The present prototype has shown good electrical performance characteristics. Indium bump bonding is proven to be capable of successful fabrication at 50 micron pitch on real detectors. For solder bumps at 50 micron pitch, much better results have been obtained with the fluxless PADS processed detectors. The results are adequate for our needs and our tests have validated it as a viable technology.

  13. Test Results of the 3.9 GHz Cavity at Fermilab

    CERN Document Server

    Solyak, N

    2004-01-01

    Fermilab is developing two types of 3.9 GHz superconducting cavities to improve performances of A0 and TTF photoinjectors. In frame of this project we have built and tested two nine-cell copper models and one 3-cell niobium accelertating cavity and series of deflecting cavities. Properties of the high order modes were carefully studied in a chain of two copper cavities at room temperature. High gradient performance were tested at helium temperature. Achieved gradients and surface resistances are exceed goal parameters. In paper we discuss results of cold tests of the 3-cell accelerating and deflecting cavities.

  14. Fermilab 500 GeV main accelerator rf cavity 128 MHz mode damper

    Energy Technology Data Exchange (ETDEWEB)

    Kerns, Q.A.; Miller, H.W.

    1977-01-01

    The Fermilab 500-GeV main accelerating system has been operating for a year now with the aid of 128-MHz mode dampers. Such dampers proved to be necessary to achieve stable operation and a reasonably smooth slow spill at intensities of approximately 2 x 10/sup 13/ protons per pulse, and furthermore are low-cost and reliable. The approach used to identify troublesome modes, the observed beam blow-up without dampers, and the steps taken to design and install suitable dampers on eighteen main ring cavities are discussed. Spectrum analyzer pictures help illustrate the performance.

  15. Discovery and measurement of excited b hadrons at the Collider Detector at Fermilab

    Energy Technology Data Exchange (ETDEWEB)

    Pursley, Jennifer Marie [Johns Hopkins Univ., Baltimore, MD (United States)

    2007-08-01

    This thesis presents evidence for the B**0 and Σ$(*)±\\atop{b}$ hadrons in proton-antiproton collisions at a center of mass energy of 1.96 TeV, using data collected by the Collider Detector at Fermilab. In the search for B**0 → B± π, two B± decays modes are reconstructed: B± → J/ΨK±, where J/Ψ → μ+μ-, and B± → $\\bar{D}$0π±, where $\\bar{D}$0 → K± π±. Both modes are reconstructed using 370 ± 20 pb-1 of data. Combining the B± meson with a charged pion to reconstruct B**0 led to the observation and measurement of the masses of the two narrow B**0 states, B$1\\atop{0}$ and B$*0\\atop{2}$, of m(B$1\\atop{0}$) = 5734 ± 3(stat.) ± 2(syst.) MeV/c2; m(B$*0\\atop{2}$) = 5738 ± 5(stat.) ± 1(syst.) MeV/c{sup 2}. In the search for Σ$(*)±\\atop{b}$ → Λ$0\\atop{b}$π±, the Λ$0\\atop{b}$ is reconstructed in the decay mode Λ$0\\atop{b}$ → Λ$+\\atop{c}$π-, where Λ$+\\atop{c}$→ pK- π+, using 1070 ± 60 pb-1 of data. Upon combining the Λ$0\\atop{b}$ candidate with a charged pion, all four of the Σ$(*)±\\atop{b}$ states are observed and their masses measured to be: m(Σ$+\\atop{b}$) = 5807.8$+2.0\\atop{-2.2}$(stat.) ± 1.7(syst.) MeV/c2; m(Σ$+\\atop{b}$) = 5815.2 ± 1.0(stat.) ± 1.7(syst.) MeV/c2; m(Σ$*+\\atop{b}$) = 5829.0$+1.6\\atop{-1.8}$(stat.)$+1.7\\atop{-1.8}$(syst.) MeV/c 2; M(Σ$*-±\\atop{b}$) - 5836.4 ± 2.0(stat.)$+1.8\\atop{-1.7}$(syst.) MeV/c2. This is the first observation of Σ$(*)±\\atop{b}$ baryons.

  16. High-Energy Physics: Exit America?

    CERN Multimedia

    Seife, Charles

    2005-01-01

    Budget cuts and cancellations threaten to end U.S. exploration of the particle frontier. Fermilab's Tevatron, due to shut down around 200, could be the last large particle accelerator in the United States; the Large Hadron Collider in Geneva should ensure European dominance of high-energy physics (3 pages)

  17. Physics with a High Intensity Proton Source at Fermilab: Project X Golden Book

    Energy Technology Data Exchange (ETDEWEB)

    Appel, Jeffrey; /Fermilab; Asner, David; /Carleton U.; Bigi, Ikaros; /Notre Dame U.; Bryman, Douglas; /British Columbia U.; Buras, Andrzej; /Munich, Tech. U.; Carena, Marcela /Fermilab; Carosi, Roberto; /INFN, Pisa; Christian, Dave; /Fermilab; Conrad, Janet; /Columbia U.; Diwan, Milind; /Brookhaven; Dukes, Craig; /Virginia U. /Fermilab

    2008-02-03

    Within the next ten years the Standard Model will likely have to be modified to encompass a wide range of newly discovered phenomena, new elementary particles, new symmetries, and new dynamics. These phenomena will be revealed through experiment with high energy particle accelerators, mainly the LHC. This will represent a revolution in our understanding of nature, and will either bring us closer to an understanding of all phenomena, through existing ideas such as supersymmetry to superstrings, or will cause us to scramble to find new ideas and a new sense of direction. We are thus entering a dramatic and important time in the quest to understand the fundamental laws of nature and their role in shaping the universe. The energy scales now probed by the Tevatron, of order hundreds of GeV, will soon be subsumed by the LHC and extended up to a few TeV. We expect the unknown structure of the mysterious symmetry breaking of the Standard Model to be revealed. We will then learn the answer to a question that has a fundamental bearing upon our own existence: 'What is the origin of mass?' All modern theories of 'electroweak symmetry breaking' involve many new particles, mainly to provide a 'naturalness' rationale for the weak scale. Supersymmetry (SUSY) represents extra (fermionic) dimensions of space, leading to a doubling of the number of known elementary particles and ushering in many additional new particles and phenomena associated with the various symmetry breaking sectors. The possibility of additional bosonic dimensions of space would likewise usher in an even greater multitude of new states and new phenomena. Alternatively, any new spectroscopy may indicate new principles we have not yet anticipated, and we may see new strong forces and/or a dynamical origin of mass. The wealth of new particles, parameters, CP-phases, and other phenomena carries important implications for precision quark flavor physics experiments that are uniquely

  18. Energy

    CERN Document Server

    Robertson, William C

    2002-01-01

    Confounded by kinetic energy? Suspect that teaching about simple machines isn t really so simple? Exasperated by electricity? If you fear the study of energy is beyond you, this entertaining book will do more than introduce you to the topic. It will help you actually understand it. At the book s heart are easy-to-grasp explanations of energy basics work, kinetic energy, potential energy, and the transformation of energy and energy as it relates to simple machines, heat energy, temperature, and heat transfer. Irreverent author Bill Robertson suggests activities that bring the basic concepts of energy to life with common household objects. Each chapter ends with a summary and an applications section that uses practical examples such as roller coasters and home heating systems to explain energy transformations and convection cells. The final chapter brings together key concepts in an easy-to-grasp explanation of how electricity is generated. Energy is the second book in the Stop Faking It! series published by NS...

  19. For Information: CERN-Fermilab2006 Hadron Collider Physics Summer School

    CERN Multimedia

    2006-01-01

    Applications are Now Open for the CERN-Fermilab2006 Hadron Collider Physics Summer School August 9-18, 2006 Please go to the school web site http://hcpss.fnal.gov/ and follow the links to the Application process. The APPLICATION DEADLINE IS APRIL 8, 2006. Successful applicants and support awards will be announced shortly thereafter. Also available on the web is the tentative academic program of the school. The main goal of the CERN-Fermilab Hadron Collider Physics Summer Schools is to offer students and young researchers a broad picture of both the theoretical and experimental aspects of hadron collider physics. The emphasis of the first school will be on the physics potential of the first years of data taking at the LHC, and on the experimental and theoretical tools needed to exploit that potential. A series of lectures and informal discussions will include an introduction to the theoretical and phenomenological framework of hadron collisions, and current theoretical models of frontier physics, as...

  20. Early Beam Injection Scheme for the Fermilab Booster: A Path for Intensity Upgrade

    CERN Document Server

    Bhat, C M

    2015-01-01

    Over the past decade, Fermilab has focused efforts on the intensity frontier physics and is committed to increase the average beam power delivered to the neutrino and muon programs substantially. Many upgrades to the existing injector accelerators, namely, the current 400 MeV LINAC and the Booster, are in progress under the Proton Improvement Plan (PIP). Proton Improvement Plan-II (PIP-II) proposes to replace the existing 400 MeV LINAC by a new 800 MeV LINAC, as an injector to the Booster which will increase Booster output power by nearly a factor of two from the PIP design value by the end of its completion. In any case, the Fermilab Booster is going to play a very significant role for nearly next two decades. In this context, I have developed and investigated a new beam injection scheme called "early injection scheme" (EIS) for the Booster with the goal to significantly increase the beam intensity output from the Booster thereby increasing the beam power to the HEP experiments even before PIP-II era. The sc...

  1. R & D on Beam Injection and Bunching Schemes in the Fermilab Booster

    Energy Technology Data Exchange (ETDEWEB)

    Bhat, C. M. [Fermilab

    2016-01-01

    Fermilab is committed to upgrade its accelerator complex to support HEP experiments at the intensity frontier. The ongoing Proton Improvement Plan (PIP) enables us to reach 700 kW beam power on the NuMI neutrino targets. By the end of the next decade, the current 400 MeV normal conducting LINAC will be replaced by an 800 MeV superconducting LINAC (PIP-II) with an increased beam power >50% of the PIP design goal. Both in PIP and PIP-II era, the existing Booster is going to play a very significant role, at least for next two decades. In the meanwhile, we have recently developed an innovative beam injection and bunching scheme for the Booster called "early injection scheme" that continues to use the existing 400 MeV LINAC and implemented into operation. This scheme has the potential to increase the Booster beam intensity by >40% from the PIP design goal. Some benefits from the scheme have already been seen. In this paper, I will describe the basic principle of the scheme, results from recent beam experiments, our experience with the new scheme in operation, current status, issues and future plans. This scheme fits well with the current and future intensity upgrade programs at Fermilab.

  2. Early Beam Injection Scheme for the Fermilab Booster: A Path for Intensity Upgrade

    Energy Technology Data Exchange (ETDEWEB)

    Bhat, C. M. [Fermi National Accelerator Lab. (FNAL), Batavia, IL (United States)

    2015-10-28

    Over the past decade, Fermilab has focused efforts on the intensity frontier physics and is committed to increase the average beam power delivered to the neutrino and muon programs substantially. Many upgrades to the existing injector accelerators, namely, the current 400 MeV LINAC and the Booster, are in progress under the Proton Improvement Plan (PIP). Proton Improvement Plan-II (PIP-II) proposes to replace the existing 400 MeV LINAC by a new 800 MeV LINAC, as an injector to the Booster which will increase Booster output power by nearly a factor of two from the PIP design value by the end of its completion. In any case, the Fermilab Booster is going to play a very significant role for nearly next two decades. In this context, I have developed and investigated a new beam injection scheme called "early injection scheme" (EIS) for the Booster with the goal to significantly increase the beam intensity output from the Booster thereby increasing the beam power to the HEP experiments even before PIP-II era. The scheme, if implemented, will also help improve the slip-stacking efficiency in the MI/RR. Here I present results from recent simulations, beam studies, current status and future plans for the new scheme.

  3. Search for (W/Z → jets) + γ Events in Proton-Antiproton Collisions at the Fermilab Tevatron

    Energy Technology Data Exchange (ETDEWEB)

    Bocci, Andrea [Rockefeller Univ., New York, NY (United States)

    2005-01-01

    We present a study of the p¯p → W(Z)γ → γq¯q process at the center-of-mass energy √s = 1.96 TeV using data collected by the Collider Detector at Fermilab. The analysis is based on the selection of low transverse momentum photons produced in association with at least two jets. A modification of an existing photon trigger was studied and implemented in the data acquisition system to enhance the sensitivity of this analysis. The data presented are from approximately 184 pb-1 of integrated luminosity collected by this new trigger. A preliminary event sample is obtained requiring a central photon with ET > 12 GeV and two jets with ET > 15 GeV. The corresponding efficiency is studied using a Monte Carlo simulation of the W(Z)γ → γq¯q based on Standard Model predictions. Monte Carlo estimation of the background is not necessary as it is measured from the data. A more advanced selection based on a Neural Network method improves the signal-to-noise ratio from 1/333 to 1/71, and further optimization of the dijet mass search region increases the ratio to its final value of 1/41. No evidence of a W/Z → q¯q peak in the dijet mass distribution is visible when the background contribution is subtracted. Using a fully Bayesian approach, the 95% confidence level upper limit on σ(p¯p → Wγ) x Β(W → q¯q) + σ(p¯p → Zγ) x Β(Z → q¯q) is calculated to be 54 pb, which is consistent with the Standard Model prediction of 20.5 pb.

  4. Measurement of the $B \\to J/\\psi X$ inclusive cross-section at the collider detector at Fermilab

    Energy Technology Data Exchange (ETDEWEB)

    Waschke, Simon [Univ. of Glasgow, Scotland (United Kingdom)

    2004-01-01

    The Collider Detector at Fermilab (CDF) is a multi-purpose detector designed to study proton-antiproton collisions at center-of-mass energies of 1.96 TeV/c2. One of the most importatn components of CDF is the silicon tracking detector. A detailed description of the testing and construction of the CDF silicon tracker is presented. Measurements of the tracking efficiency of the completed detector are also provided. Using 36 pb-1 of the J/Ψ data sample collected by CDF between February and October 2002, the inclusive B → J/Ψ X cross-section is measured in p$\\bar{p}$ interactions at √s = 1.96 TeV/c2. The fraction of J/Ψ events arising from the decay of b hadrons is extracted using an unbinned maximum likelihood fit to the decay length of the J/Ψ candidates. The pT dependent differential cross section for inclusive B → J/Ψ X events with rapidity |y| < 0.6 is obtained by combining the B-fraction result with a measurement of the J/Ψ differential cross-section. For 2.0 < pT(J/Ψ) < 17.0 GeV/c, the integrated B → J/Ψ X cross-section is measured to be σ(J/Ψ, B) • β(J/Ψ → μμ) = 16.02 ± 0.24(stat)$+2.26\\atop{-2.20}$(syst) nb.

  5. High energy physics program: Task A, Experiment and theory; Task B, Numerical simulation. Progress report, July 1, 1988--June 30, 1993

    Energy Technology Data Exchange (ETDEWEB)

    1993-08-01

    This report discusses research in High Energy Physics at Florida State University. Contained in this paper are: highlights of activities during the past few years; five year summary; fixed target experiments; collider experiments; SSC preparation, detector development and detector construction; computing, networking and VAX upgrade to ALPHA; and particle theory programs.

  6. Search for Muon Neutrino Disappearance in the Booster Neutrino Beam of Fermilab; Busqueda de Desaparicion de Neutrinos del Muon en el Haz de Neutrinos del Booster de Fermilab

    Energy Technology Data Exchange (ETDEWEB)

    Mendez Mendez, Diana Patricia [Univ. Nacional Autonoma de Mexico (UNAM), Mexico City (Mexico)

    2015-01-01

    In this work we carried out the disappearance analysis of muon neutrinos produced in the Fermilab Booster Neutrino Beam, using the data released to the public by the collaborations of the MiniBooNE and SciBooNE experiments. The calculations were made with programs in C and C++, implementing the ROOT libraries. From the analysis, using both the classical Pearson method and the Feldman and Cousins frequentist corrections, we obtained the 90\\% C.L. limit for the oscillation parameters sin22θ and Δm2 in the region 0.1 ≤ Δm2 ≤ 10 eV2 using a two neutrino model. The result presented in this work is consistent with the official one, with small deviations ascribed to round-off errors in the format of the used data, as well as statistical fluctuations in the generation of fake experiments used in the Feldman and Cousins method. As the official one, our result is consistent with the null oscillation hypothesis. This work was carried out independently to the MiniBooNE and SciBooNE collaborations and its results are not official.

  7. Energy

    Science.gov (United States)

    2003-01-01

    Canada, Britain, and Spain. We found that the energy industry is not in crisis ; however, U.S. government policies, laws, dollars, and even public...CEIMAT (Centro de Investagaciones Energeticas , Medioambeintales y Tecnologicas) Research and development Page 3 of 28ENERGY 8/10/04http://www.ndu.edu...meet an emerging national crisis (war), emergency (natural disaster), or major impact event (Y2K). Certain resources are generally critical to the

  8. Effect of transverse electron velocities on the longitudinal cooling force in the Fermilab electron cooler

    CERN Document Server

    Khilkevich, Andrei; Shemyakin, Alexander V

    2012-01-01

    In Fermilab's electron cooler, a 0.1A, 4.3MeV DC electron beam propagates through the 20 m cooling section, which is immersed in a weak longitudinal magnetic field. A proper adjustment of 200 dipole coils, installed in the cooling section for correction of the magnetic field imperfections, can create a helix-like trajectory with the wavelength of 1-10 m. The longitudinal cooling force is measured in the presence of such helixes at different wavelengths and amplitudes. The results are compared with a model calculating the cooling force as a sum of collisions with small impact parameters, where the helical nature of the coherent angle is ignored, and far collisions, where the effect of the coherent motion is neglected. A qualitative agreement is found.

  9. FIFE-Jobsub: a grid submission system for intensity frontier experiments at Fermilab

    Science.gov (United States)

    Box, Dennis

    2014-06-01

    The Fermilab Intensity Frontier Experiments use an integrated submission system known as FIFE-jobsub, part of the FIFE (Fabric for Frontier Experiments) initiative, to submit batch jobs to the Open Science Grid. FIFE-jobsub eases the burden on experimenters by integrating data transfer and site selection details in an easy to use and well-documented format. FIFE-jobsub automates tedious details of maintaining grid proxies for the lifetime of the grid job. Data transfer is handled using the Intensity Frontier Data Handling Client (IFDHC) [1] tool suite, which facilitates selecting the appropriate data transfer method from many possibilities while protecting shared resources from overload. Chaining of job dependencies into Directed Acyclic Graphs (Condor DAGS) is well supported and made easier through the use of input flags and parameters.

  10. Search for rare and forbidden charm meson decays at Fermilab E791

    Energy Technology Data Exchange (ETDEWEB)

    Donald J. Summers et al.

    2000-09-29

    The authors report the results of a blind search for flavor-changing neutral current, lepton-flavor violating, and lepton-number violating decays of D{sup +}, D{sub s}{sup +}, and D{sup 0} mesons (and their antiparticles) into modes containing muons and electrons. Using data from Fermilab charm hadroproduction experiment E791, they examine the {pi}{ell}{ell} and K{ell}{ell} decay modes of D{sup +} and D{sub s}{sup +} and the {ell}{sup +}{ell}{sup {minus}} decay modes of D{sup 0}. No evidence for any of these decays is found. Therefore, they present branching-fraction upper limits at 90% confidence level for the 24 decay modes examined. Eight of these modes have no previously reported limits, and fourteen are reported with significant improvements over previously published results.

  11. Lattice QCD Data and Metadata Archives at Fermilab and the International Lattice Data Grid

    CERN Document Server

    Neilsen, E H; Simone, James

    2005-01-01

    The lattice gauge theory community produces large volumes of data. Because the data produced by completed computations form the basis for future work, the maintenance of archives of existing data and metadata describing the provenance, generation parameters, and derived characteristics of that data is essential not only as a reference, but also as a basis for future work. Development of these archives according to uniform standards both in the data and metadata formats provided and in the software interfaces to the component services could greatly simplify collaborations between institutions and enable the dissemination of meaningful results. This paper describes the progress made in the development of a set of such archives at the Fermilab lattice QCD facility. We are coordinating the development of the interfaces to these facilities and the formats of the data and metadata they provide with the efforts of the international lattice data grid (ILDG) metadata and middleware working groups, whose goals are to d...

  12. Study of Kapton insulated superconducting coils manufactured for the LHC inner triplet model magnets at Fermilab

    CERN Document Server

    Andreev, N; Bossert, R; Brandt, J; Chichili, D R; Kerby, J S; Nobrega, A; Novitski, I; Ozelis, J P; Yadav, S; Zlobin, A V

    2000-01-01

    Fermilab has constructed a number of 2 m model quadrupoles as part of an ongoing program to develop and optimize the design of quadrupoles for the LHC Interaction Region inner triplets. The quadrupole design is based upon a two layer shell type coil of multi-filament NbTi strands in Rutherford cable, insulated with Kapton film. As such, the coil size and mechanical properties are critical in achieving the desired prestress and field quality targets for the agent. Throughout the model magnet program, different design and manufacturing techniques have been studied to obtain coils with the required mechanical properties. This paper summarizes the structural material and coil mechanical properties, coil design optimization results and production experience accumulated in the model R&D program. (5 refs).

  13. Electron lenses and cooling for the Fermilab Integrable Optics Test Accelerator

    CERN Document Server

    Stancari, G; Lebedev, V; Nagaitsev, S; Prebys, E; Valishev, A

    2015-01-01

    Recently, the study of integrable Hamiltonian systems has led to nonlinear accelerator lattices with one or two transverse invariants and wide stable tune spreads. These lattices may drastically improve the performance of high-intensity machines, providing Landau damping to protect the beam from instabilities, while preserving dynamic aperture. The Integrable Optics Test Accelerator (IOTA) is being built at Fermilab to study these concepts with 150-MeV pencil electron beams (single-particle dynamics) and 2.5-MeV protons (dynamics with self fields). One way to obtain a nonlinear integrable lattice is by using the fields generated by a magnetically confined electron beam (electron lens) overlapping with the circulating beam. The required parameters are similar to the ones of existing devices. In addition, the electron lens will be used in cooling mode to control the brightness of the proton beam and to measure transverse profiles through recombination. More generally, it is of great interest to investigate whet...

  14. Superconducting Focusing Lenses for the SSR1 Cryomodule of PXIE Test Stand at Fermilab

    Energy Technology Data Exchange (ETDEWEB)

    DiMarco, J. [Fermilab; Tartaglia, M. [Fermilab; Terechkine, I. [Fermilab

    2016-01-01

    Five solenoid-based focusing lenses designed for use inside the SSR1 cryomodule of the PXIE test stand at Fermilab have been fabricated and tested. In addition to a focusing solenoid, each lens is equipped with a set of windings that generate magnetic field in the transverse plane and can be used in the steering dipole mode or as a skew quadrupole corrector. The lenses will be installed between superconducting cavities in the cryomodule, so getting sufficiently low fringe magnetic field was one of the main design requirements. Beam dynamics simulations indicated a need for high accuracy positioning of the lenses in the cryomodule, which triggered a study towards understanding uncertainties of the magnetic axis position relative to the geometric features of the lens. This report summarizes the efforts towards certification of the lenses, including results of performance tests, fringe field data, and uncertainty of the magnetic axis position.

  15. Quench performance of Fermilab model magnets for the LHC inner triplet quadrupoles

    CERN Document Server

    Andreev, N; Bauer, P; Bossert, R; Brandt, J; Carson, J; Caspi, S; Chichili, D R; Chiesa, L; Di Marco, J; Fehér, S; Ghosh, A; Glass, H; Kerby, J S; Lamm, M J; Makarov, A; McInturff, A D; Nobrega, A; Novitski, I; Ogitsu, T; Orris, D; Ozelis, J P; Peterson, T; Rabehl, Roger Jon; Robotham, W; Scanlan, R M; Schlabach, P; Sylvester, C D; Strait, J B; Tartaglia, M; Tompkins, J C; Velev, G V; Yadev, S; Zlobin, A V

    2001-01-01

    As part of the US LHC program to develop high gradient superconducting quadrupoles for the LHC interaction regions, a series of 2 meter long model magnets has been built and tested at Fermilab. This R&D program was used to refine the mechanical and magnetic design, optimize fabrication and assembly tooling and ensure adequate quench performance. The final design, fabrication, and assembly procedures developed in this program have produced magnets which meet the LHC requirements of operating at 215 T/m with excellent magnetic field harmonics. This paper summarizes the test results of the last five model magnets, including quench tests over several thermal cycles, and excitation current ramp rate and temperature dependence studies. (8 refs).

  16. Beam studies for the Proton Improvement Plan (PIP) -- reducing beam loss at the Fermilab Booster

    CERN Document Server

    Seiya, K; Johnson, D E; Kapin, V V; Pellico, W A; Tan, C Y; Tesarek, R J

    2015-01-01

    The Fermilab Booster is being upgraded under the Proton Improvement Plan (PIP) to be capable of providing a proton flux of $2.25^{17}$ protons per hour. The intensity per cycle will remain at the present operational $4.3^{12}$ protons per pulse, however the Booster beam cycle rate is going to be increased from 7.5 Hz to 15 Hz. One of the biggest challenges is to maintain the present beam loss power while the doubling the beam flux. Under PIP, there has been a large effort in beam studies and simulations to better understand the mechanisms of the beam loss. The goal is to reduce it by half by correcting and controlling the beam dynamics and by improving operational systems through hardware upgrades. This paper is going to present the recent beam study results and status of the Booster operations.

  17. Nuevos aspectos en el estudio de la particula D en el experimento FOCUS de Fermilab

    Energy Technology Data Exchange (ETDEWEB)

    Quinones Gonzalez, Jose A.; /Puerto Rico U., Mayaguez

    2005-01-01

    The purpose of this work is to improve the reconstruction techniques of the decays of the particles that contain charm in the quark composition using the information of the Target Silicon Detector of the experiment E831 (FOCUS). That experiment runs during 1997 to 1998 in Fermilab National Laboratory. The objective of the experiment was improving the understanding of the particles that contain charm. Adding the Target Silicon Detector information in the reconstruction process of the primary vertex the position error. This reduction produces an improvement in the mass signal and the knowledge of the charm particles properties. This ad to the possibility's that in other analysis will use the techniques developed in this work.

  18. Test Results of the AC Field Measurements of Fermilab Booster Corrector Magnets

    Energy Technology Data Exchange (ETDEWEB)

    DiMarco, E.Joseph; Harding, D.J.; Kashikhin, V.S.; Kotelnikov, S.K.; Lamm, M.J.; Makulski, A.; Nehring, R.; Orris, D.F.; Schlabach, P.; Sylvester, C.; Tartaglia, Michael Albert; /Fermilab

    2008-06-25

    Multi-element corrector magnets are being produced at Fermilab that enable correction of orbits and tunes through the entire cycle of the Booster, not just at injection. The corrector package includes six different corrector elements--normal and skew orientations of dipole, quadrupole, and sextupole--each independently powered. The magnets have been tested during typical AC ramping cycles at 15Hz using a fixed coil system to measure the dynamic field strength and field quality. The fixed coil is comprised of an array of inductive pick-up coils around the perimeter of a cylinder which are sampled simultaneously at 100 kHz with 24-bit ADC's. The performance of the measurement system and a summary of the field results are presented and discussed.

  19. An Investigation of low beta triplet vibrational issues at Fermilab's Collider Detector

    Energy Technology Data Exchange (ETDEWEB)

    Michael W. McGee

    2004-06-08

    The vibrational aspects of recent disturbances at the low beta focusing quadrupoles, which caused proton beam loss at the Collider Detector at Fermilab (CDF), are discussed. Two low beta focusing quadrupoles are supported by a girder, which is extended over the CDF collision hall pit on each side. The low beta girder has a ledge mount support at an alcove's face and two Invar rods near the opposite end. Forced response measurements were taken on the low beta girder, where the power spectral density (PSD) function was used to obtain RMS displacement. The effects of local excitation due to operating equipment and near-field excitation due to ambient ground motion caused by local traffic are examined. The discussion explores dynamic response characteristics of the low beta quadrupoles and supporting girder using beam loss as the vibrational stability criteria. This paper also presents practical problem-solving approaches for similar accelerator components.

  20. nuSTORM - Neutrinos from STORed Muons: Proposal to the Fermilab PAC

    CERN Document Server

    Adey, D.; Ankenbrandt, C.M.; Asfandiyarov, R.; Back, J.J.; Barker, G.; Baussan, E.; Bayes, R.; Bhadra, S.; Blackmore, V.; Blondel, A.; Bogacz, S.A.; Booth, C.; Boyd, S.B.; Bravar, A.; Brice, S.J.; Bross, A.D.; Cadoux, F.; Cease, H.; Cervera, A.; Cobb, J.; Colling, D.; Coloma, P.; Coney, L.; Dobbs, A.; Dobson, J.; Donini, A.; Dornan, P.; Dracos, M.; Dufour, F.; Edgecock, R.; Evans, J.; Geelhoed, M.; George, M.A.; Ghosh, T.; Gomez-Cadenas, J.J.; de Gouvea, A.; Haesler, A.; Hanson, G.; Harrison, P.F.; Hartz, M.; Hernandez, P.; Hernando Morata, J.A.; Hodgson, P.; Huber, P.; Izmaylov, A.; Karadzhov, Y.; Kobilarcik, T.; Kopp, J.; Kormos, L.; Korzenev, A.; Kuno, Y.; Kurup, A.; Kyberd, P.; Lagrange, J.B.; Laing, A.; Liu, A.; Link, J.M.; Long, K.; Mahn, K.; Mariani, C.; Martin, C.; Martin, J.; McCauley, N.; McDonald, K.T.; Mena, O.; Mishra, S.R.; Mokhov, N.; Morfin, J.; Mori, Y.; Murray, W.; Neuffer, D.; Nichol, R.; Noah, E.; Parke, S.; Palmer, M.A.; Pascoli, S.; Pasternak, J.; Popovic, M.; Ratoff, P.; Ravonel, M.; Rayner, M.; Ricciardi, S.; Rogers, C.; Rubinov, P.; Santos, E.; Sato, A.; Sen, T.; Scantamburlo, E.; Sedgbeer, J.K.; Smith, D.R.; Smith, P.J.; Sobczyk, J.T.; Soby, L.; Soler, F.J.P.; Soldner-Rembold, S.; Sorel, M.; Snopok, P.; Stamoulis, P.; Stanco, L.; Striganov, S.; Tanaka, H.A.; Taylor, I.J.; Touramanis, C.; Tunnell, C.D.; Uchida, Y.; Vassilopoulos, N.; Wascko, M.O.; Weber, A.; Wilking, M.J.; Wildner, E.; Winter, W.; Yang, U.K.

    2013-01-01

    The nuSTORM facility has been designed to deliver beams of electron neutrinos and muon neutrinos (and their anti-particles) from the decay of a stored muon beam with a central momentum of 3.8 GeV/c and a momentum acceptance of 10%. The facility is unique in that it will: 1. Allow searches for sterile neutrinos of exquisite sensitivity to be carried out; 2. Serve future long- and short-baseline neutrino-oscillation programs by providing definitive measurements of electron neutrino and muon neutrino scattering cross sections off nuclei with percent-level precision; and 3. Constitutes the crucial first step in the development of muon accelerators as a powerful new technique for particle physics. The document describes the facility in detail and demonstrates its physics capabilities. This document was submitted to the Fermilab Physics Advisory Committee in consideration for Stage I approval.