WorldWideScience

Sample records for femtosecond coherent spectroscopy

  1. Femtosecond laser spectroscopy

    CERN Document Server

    Hannaford, Peter

    2005-01-01

    As concepts and methodologies have evolved over the past two decades, the realm of ultrafast science has become vast and exciting and has impacted many areas of chemistry, biology and physics, and other fields such as materials science, electrical engineering, and optical communication. The field has recently exploded with the announcement of a series of remarkable new developments and advances. This volume surveys this recent growth in eleven chapters written by leading international researchers in the field. It includes sections on femtosecond optical frequency combs, soft x-ray femtosecond laser sources, and attosecond laser sources. In addition, the contributors address real-time spectroscopy of molecular vibrations with sub-5-fs pulses and multidimensional femtosecond coherent spectroscopies for studying molecular and electron dynamics. Novel methods for measuring and characterizing ultrashort laser pulses and ultrashort pulses of light are also described. The topics covered are revolutionizing the field...

  2. Femtosecond spectroscopy in semiconductors: a key to coherences, correlations and quantum kinetics

    International Nuclear Information System (INIS)

    Axt, V M; Kuhn, T

    2004-01-01

    The application of femtosecond spectroscopy to the study of ultrafast dynamics in semiconductor materials and nanostructures is reviewed with particular emphasis on the physics that can be learned from it. Excitation with ultrashort optical pulses in general results in the creation of coherent superpositions and correlated many-particle states. The review comprises a discussion of the dynamics of this correlated many-body system during and after pulsed excitation as well as its analysis by means of refined measurements and advanced theories. After an introduction of basic concepts-such as coherence, correlation and quantum kinetics-a brief overview of the most important experimental techniques and theoretical approaches is given. The remainder of this paper is devoted to specific results selected in order to highlight how femtosecond spectroscopy gives access to the physics of coherences, correlations and quantum kinetics involving charge, spin and lattice degrees of freedom. First examples deal with the dynamics of basic laser-induced coherences that can be observed, e.g. in quantum beat spectroscopy, in coherent control measurements or in experiments using few-cycle pulses. The phenomena discussed here are basic in the sense that they can be understood to a large extent on the mean-field level of the theory. Nevertheless, already on this level it is found that semiconductors behave substantially differently from atomic systems. Subsequent sections report on the occurrence of coherences and correlations beyond the mean-field level that are mediated either by carrier-phonon or carrier-carrier interactions. The corresponding analysis gives deep insight into fundamental issues such as the energy-time uncertainty, pure dephasing in quantum dot structures, the role of two-pair or even higher correlations and the build-up of screening. Finally results are presented concerning the ultrafast dynamics of resonantly coupled excitations, where a combination of different

  3. Temperature Measurements in Reacting Flows Using Time-Resolved Femtosecond Coherent Anti-Stokes Raman Scattering (fs-CARS) Spectroscopy (Postprint)

    National Research Council Canada - National Science Library

    Roy, Sukesh; Kinnius, Paul J; Lucht, Robert P; Gord, James R

    2007-01-01

    Time-resolved femtosecond coherent anti-Stokes Raman scattering (fs-CARS) spectroscopy of the nitrogen molecule is used for the measurement of temperature in atmospheric-pressure, near-adiabatic, hydrogen-air diffusion flames...

  4. Femtosecond pulse laser notch shaping via fiber Bragg grating for the excitation source on the coherent anti-Stokes Raman spectroscopy

    Science.gov (United States)

    Oh, Seung Ryeol; Kwon, Won Sik; Kim, Jin Hwan; Kim, Kyung-Soo; Kim, Soohyun

    2015-03-01

    Single-pulse coherently controlled nonlinear Raman spectroscopy is the simplest method among the coherent anti-Stokes Raman spectroscopy systems. In recent research, it has been proven that notch-shaped femtosecond pulse laser can be used to collect the coherent anti-Stokes Raman signals. In this study, we applied a fiber Bragg grating to the notch filtering component on the femtosecond pulse lasers. The experiment was performed incorporating a titanium sapphire femtosecond pulse laser source with a 100 mm length of 780-HP fiber which is inscribed 30 mm of Bragg grating. The fiber Bragg grating has 785 nm Bragg wavelength with 0.9 nm bandwidth. We proved that if the pulse lasers have above a certain level of positive group delay dispersion, it is sufficient to propagate in the fiber Bragg grating without any spectral distortion. After passing through the fiber Bragg grating, the pulse laser is reflected on the chirped mirror for 40 times to make the transform-limited pulse. Finally, the pulse time duration was 37 fs, average power was 50mW, and showed an adequate notch shape. Furthermore, the simulation of third order polarization signal is performed using MATLAB tools and the simulation result shows that spectral characteristic and time duration of the pulse is sufficient to use as an excitation source for single-pulse coherent anti-Stokes Raman spectroscopy. In conclusion, the proposed method is more simple and cost-effective than the methods of previous research which use grating pairs and resonant photonic crystal slab.

  5. Femtosecond Coherent Anti-Stokes Raman Spectroscopy (CARS) As Next Generation Nonlinear LIDAR Spectroscopy and Microscopy

    International Nuclear Information System (INIS)

    Ooi, C. H. Raymond

    2009-01-01

    Nonlinear spectroscopy using coherent anti-Stokes Raman scattering and femtosecond laser pulses has been successfully developed as powerful tools for chemical analysis and biological imaging. Recent developments show promising possibilities of incorporating CARS into LIDAR system for remote detection of molecular species in airborne particles. The corresponding theory is being developed to describe nonlinear scattering of a mesoscopic particle composed of complex molecules by laser pulses with arbitrary shape and spectral content. Microscopic many-body transform theory is used to compute the third order susceptibility for CARS in molecules with known absorption spectrum and vibrational modes. The theory is combined with an integral scattering formula and Mie-Lorentz formulae, giving a rigorous formalism which provides powerful numerical experimentation of CARS spectra, particularly on the variations with the laser parameters and the direction of detection.

  6. Coherent Femtosecond Spectroscopy and Nonlinear Optical Imaging on the Nanoscale

    Science.gov (United States)

    Kravtsov, Vasily

    Optical properties of many materials and macroscopic systems are defined by ultrafast dynamics of electronic, vibrational, and spin excitations localized on the nanoscale. Harnessing these excitations for material engineering, optical computing, and control of chemical reactions has been a long-standing goal in science and technology. However, it is challenging due to the lack of spectroscopic techniques that can resolve processes simultaneously on the nanometer spatial and femtosecond temporal scales. This thesis describes the fundamental principles, implementation, and experimental demonstration of a novel type of ultrafast microscopy based on the concept of adiabatic plasmonic nanofocusing. Simultaneous spatio-temporal resolution on a nanometer-femtosecond scale is achieved by using a near-field nonlinear optical response induced by ultrafast surface plasmon polaritons nanofocused on a metal tip. First, we study the surface plasmon response in metallic structures and evaluate its prospects and limitations for ultrafast near-field microscopy. Through plasmon emission-based spectroscopy, we investigate dephasing times and interplay between radiative and non-radiative decay rates of localized plasmons and their modification due to coupling. We identify a new regime of quantum plasmonic coupling, which limits the achievable spatial resolution to several angstroms but at the same time provides a potential channel for generating ultrafast electron currents at optical frequencies. Next, we study propagation of femtosecond wavepackets of surface plasmon polaritons on a metal tip. In time-domain interferometric measurements we detect group delays that correspond to slowing of the plasmon polaritons down to 20% of the speed of light at the tip apex. This provides direct experimental verification of the plasmonic nanofocusing mechanism and suggests enhanced nonlinear optical interactions at the tip apex. We then measure a plasmon-generated third-order nonlinear optical

  7. Resolving fine spectral features in lattice vibrational modes using femtosecond coherent spectroscopy

    Directory of Open Access Journals (Sweden)

    A. Card

    2016-02-01

    Full Text Available We show resolution of fine spectral features within several Raman active vibrational modes in potassium titanyl phosphate (KTP crystal. Measurements are performed using a femtosecond time-domain coherent anti-Stokes Raman scattering spectroscopy technique that is capable of delivering equivalent spectral resolution of 0.1 cm−1. The Raman spectra retrieved from our measurements show several spectral components corresponding to vibrations of different symmetry with distinctly different damping rates. In particular, linewidths for unassigned optical phonon mode triplet centered at around 820 cm−1 are found to be 7.5 ± 0.2 cm−1, 9.1 ± 0.3 cm−1, and 11.2 ± 0.3 cm−1. Results of our experiments will ultimately help to design an all-solid-state source for sub-optical-wavelength waveform generation that is based on stimulated Raman scattering.

  8. A multi-channel THz and infrared spectrometer for femtosecond electron bunch diagnostics by single-shot spectroscopy of coherent radiation

    Energy Technology Data Exchange (ETDEWEB)

    Wesch, Stephan; Schmidt, Bernhard; Behrens, Christopher; Delsim-Hashemi, Hossein; Schmueser, Peter

    2011-08-15

    The high peak current required in free-electron lasers (FELs) is realized by longitudinal compression of the electron bunches to sub-picosecond length. In this paper, a frequency-domain diagnostic method is described that is capable of resolving structures in the femtosecond regime. A novel in-vacuum spectrometer has been developed for spectroscopy of coherent radiation in the THz and infrared range. The spectrometer is equipped with five consecutive dispersion gratings and 120 parallel readout channels; it can be operated either in short wavelength mode (5-44 {mu}m) or in long wavelength mode (45-430 {mu}m). Fast parallel readout permits the spectroscopy of coherent radiation from single electron bunches. Test measurements at the soft X-ray free-electron laser FLASH, using coherent transition radiation, demonstrate excellent performance of the spectrometer. The high sensitivity down to a few micrometers allows study of short bunch features caused for example by microbunching e ects in magnetic chicanes. The device is planned for use as an online bunch profile monitor during regular FEL operation. (orig.)

  9. A multi-channel THz and infrared spectrometer for femtosecond electron bunch diagnostics by single-shot spectroscopy of coherent radiation

    International Nuclear Information System (INIS)

    Wesch, Stephan; Schmidt, Bernhard; Behrens, Christopher; Delsim-Hashemi, Hossein; Schmueser, Peter

    2011-08-01

    The high peak current required in free-electron lasers (FELs) is realized by longitudinal compression of the electron bunches to sub-picosecond length. In this paper, a frequency-domain diagnostic method is described that is capable of resolving structures in the femtosecond regime. A novel in-vacuum spectrometer has been developed for spectroscopy of coherent radiation in the THz and infrared range. The spectrometer is equipped with five consecutive dispersion gratings and 120 parallel readout channels; it can be operated either in short wavelength mode (5-44 μm) or in long wavelength mode (45-430 μm). Fast parallel readout permits the spectroscopy of coherent radiation from single electron bunches. Test measurements at the soft X-ray free-electron laser FLASH, using coherent transition radiation, demonstrate excellent performance of the spectrometer. The high sensitivity down to a few micrometers allows study of short bunch features caused for example by microbunching e ects in magnetic chicanes. The device is planned for use as an online bunch profile monitor during regular FEL operation. (orig.)

  10. Coherent vs Incoherent Emission from Semiconductor Structures after Resonant Femtosecond Excitation

    Science.gov (United States)

    Gurioli, Massimo; Bogani, Franco; Ceccherini, Simone; Colocci, Marcello

    1997-04-01

    We show that an interferometric correlation measurement with fs time resolution provides an unambiguous discrimination between coherent and incoherent emission after resonant femtosecond excitation. The experiment directly probes the most important difference between the two emissions, that is, the phase correlation with the excitation pulse. The comparison with cw frequency resolved measurements demonstrates that the relationship between coherent and incoherent emission is similar under femtosecond and steady-state excitation.

  11. Femtosecond Broadband Stimulated Raman Spectroscopy

    International Nuclear Information System (INIS)

    Lee, Soo-Y; Yoon, Sagwoon; Mathies, Richard A

    2006-01-01

    Femtosecond broadband stimulated Raman spectroscopy (FSRS) is a new technique where a narrow bandwidth picosecond Raman pump pulse and a red-shifted broadband femtosecond Stokes probe pulse (with or without time delay between the pulses) act on a sample to produce a high resolution Raman gain spectrum with high efficiency and speed, free from fluorescence background interference. It can reveal vibrational structural information and dynamics of stationary or transient states. Here, the quantum picture for femtosecond broadband stimulated Raman spectroscopy (FSRS) is used to develop the semiclassical coupled wave theory of the phenomenon and to derive an expression for the measurable Raman gain in FSRS. The semiclassical theory is applied to study the dependence of lineshapes in FSRS on the pump-probe time delay and to deduce vibrational dephasing times in cyclohexane in the ground state

  12. Coherence and population dynamics of chlorophyll excitations in FCP complex: Two-dimensional spectroscopy study

    Energy Technology Data Exchange (ETDEWEB)

    Butkus, Vytautas; Gelzinis, Andrius; Valkunas, Leonas [Department of Theoretical Physics, Faculty of Physics, Vilnius University, Sauletekio Ave. 9-III, 10222 Vilnius (Lithuania); Center for Physical Sciences and Technology, Savanoriu Ave. 231, 02300 Vilnius (Lithuania); Augulis, Ramūnas [Center for Physical Sciences and Technology, Savanoriu Ave. 231, 02300 Vilnius (Lithuania); Gall, Andrew; Robert, Bruno [Institut de Biologie et Technologies de Saclay, Bât 532, Commissariat à l’Energie Atomique Saclay, 91191 Gif sur Yvette (France); Büchel, Claudia [Institut für Molekulare Biowissenschaften, Universität Frankfurt, Max-von-Laue-Straße 9, Frankfurt (Germany); Zigmantas, Donatas [Department of Chemical Physics, Lund University, P.O. Box 124, 22100 Lund (Sweden); Abramavicius, Darius, E-mail: darius.abramavicius@ff.vu.lt [Department of Theoretical Physics, Faculty of Physics, Vilnius University, Sauletekio Ave. 9-III, 10222 Vilnius (Lithuania)

    2015-06-07

    Energy transfer processes and coherent phenomena in the fucoxanthin–chlorophyll protein complex, which is responsible for the light harvesting function in marine algae diatoms, were investigated at 77 K by using two-dimensional electronic spectroscopy. Experiments performed on femtosecond and picosecond timescales led to separation of spectral dynamics, witnessing evolutions of coherence and population states of the system in the spectral region of Q{sub y} transitions of chlorophylls a and c. Analysis of the coherence dynamics allowed us to identify chlorophyll (Chl) a and fucoxanthin intramolecular vibrations dominating over the first few picoseconds. Closer inspection of the spectral region of the Q{sub y} transition of Chl c revealed previously not identified, mutually non-interacting chlorophyll c states participating in femtosecond or picosecond energy transfer to the Chl a molecules. Consideration of separated coherent and incoherent dynamics allowed us to hypothesize the vibrations-assisted coherent energy transfer between Chl c and Chl a and the overall spatial arrangement of chlorophyll molecules.

  13. Femtosecond pulse shaping using the geometric phase.

    Science.gov (United States)

    Gökce, Bilal; Li, Yanming; Escuti, Michael J; Gundogdu, Kenan

    2014-03-15

    We demonstrate a femtosecond pulse shaper that utilizes polarization gratings to manipulate the geometric phase of an optical pulse. This unique approach enables circular polarization-dependent shaping of femtosecond pulses. As a result, it is possible to create coherent pulse pairs with orthogonal polarizations in a 4f pulse shaper setup, something until now that, to our knowledge, was only achieved via much more complex configurations. This approach could be used to greatly simplify and enhance the functionality of multidimensional spectroscopy and coherent control experiments, in which multiple coherent pulses are used to manipulate quantum states in materials of interest.

  14. Femtosecond coherent emission from GaAs bulk microcavities

    Science.gov (United States)

    Gurioli, Massimo; Bogani, Franco; Ceccherini, Simone; Colocci, Marcello; Beltram, Fabio; Sorba, Lucia

    1999-02-01

    The emission from a λ/2 GaAs bulk microcavity resonantly excited by femtosecond pulses has been characterized by using an interferometric correlation technique. It is found that the emission is dominated by the coherent signal due to light elastically scattered by disorder, and that scattering is predominantly originated from the lower polariton branch.

  15. Multichannel Selective Femtosecond Coherent Control Based on Symmetry Properties

    International Nuclear Information System (INIS)

    Amitay, Zohar; Gandman, Andrey; Chuntonov, Lev; Rybak, Leonid

    2008-01-01

    We present and implement a new scheme for extended multichannel selective femtosecond coherent control based on symmetry properties of the excitation channels. Here, an atomic nonresonant two-photon absorption channel is coherently incorporated in a resonance-mediated (2+1) three-photon absorption channel. By proper pulse shaping, utilizing the invariance of the two-photon absorption to specific phase transformations of the pulse, the three-photon absorption is tuned independently over an order-of-magnitude yield range for any possible two-photon absorption yield. Noticeable is a set of ''two-photon dark pulses'' inducing widely tunable three-photon absorption

  16. Two-dimensional electronic femtosecond stimulated Raman spectroscopy

    Directory of Open Access Journals (Sweden)

    Ogilvie J.P.

    2013-03-01

    Full Text Available We report two-dimensional electronic spectroscopy with a femtosecond stimulated Raman scattering probe. The method reveals correlations between excitation energy and excited state vibrational structure following photoexcitation. We demonstrate the method in rhodamine 6G.

  17. Undulators to FELs: Nanometers, Femtoseconds, Coherence and Applications

    Energy Technology Data Exchange (ETDEWEB)

    Attwood, David [University of California Berkeley

    2011-11-30

    For scientists in many fields, from material science to the life sciences and archeology, synchrotron radiation, and in particular undulator radiation, has provide an intense source of x-rays which are tunable to the absorption edges of particular elements of interest, often permitting studies at high spatial and spectral resolution. Now a close cousin to the undulator, the x-ray free electron laser (XFEL) has emerged with improved spatial coherence and, perhaps more importantly, femtosecond pulse durations which permit dynamical studies. In the future attosecond x-ray capabilities are anticipated. In this colloqium we will describe some state of the art undulator studies, how undulators work, the evolution to FELs, their pulse and coherence properties, and the types of experiments envisioned.

  18. Femtosecond two-dimensional spectroscopy of molecular motion in liquids

    NARCIS (Netherlands)

    Steffen, T; Duppen, K.

    1996-01-01

    Intermolecular motion in CS2 and benzene is investigated by femtosecond nonresonant four- and six-wave mixing. Impulsive stimulated six-wave mixing yields new information on dephasing of coherent nuclear motion, not accessible from four-wave mixing experiments. The results cannot be modeled by two

  19. Dual-Comb Coherent Raman Spectroscopy with Lasers of 1-GHz Pulse Repetition Frequency

    OpenAIRE

    Mohler, Kathrin J.; Bohn, Bernhard J.; Yan, Ming; Hänsch, Theodor W.; Picqué, Nathalie

    2016-01-01

    We extend the technique of multiplex coherent Raman spectroscopy with two femtosecond mode-locked lasers to oscillators of a pulse repetition frequency of 1 GHz. We demonstrate spectra of liquids, which span 1100 cm$^{-1}$ of Raman shifts. At a resolution of 6 cm$^{-1}$, their measurement time may be as short as 5 microseconds for a refresh rate of 2 kHz. The waiting period between acquisitions is improved ten-fold compared to previous experiments with two lasers of 100-MHz repetition frequen...

  20. Clocking Femtosecond Collisional Dynamics via Resonant X-Ray Spectroscopy

    Science.gov (United States)

    van den Berg, Q. Y.; Fernandez-Tello, E. V.; Burian, T.; Chalupský, J.; Chung, H.-K.; Ciricosta, O.; Dakovski, G. L.; Hájková, V.; Hollebon, P.; Juha, L.; Krzywinski, J.; Lee, R. W.; Minitti, M. P.; Preston, T. R.; de la Varga, A. G.; Vozda, V.; Zastrau, U.; Wark, J. S.; Velarde, P.; Vinko, S. M.

    2018-02-01

    Electron-ion collisional dynamics is of fundamental importance in determining plasma transport properties, nonequilibrium plasma evolution, and electron damage in diffraction imaging applications using bright x-ray free-electron lasers (FELs). Here we describe the first experimental measurements of ultrafast electron impact collisional ionization dynamics using resonant core-hole spectroscopy in a solid-density magnesium plasma, created and diagnosed with the Linac Coherent Light Source x-ray FEL. By resonantly pumping the 1 s →2 p transition in highly charged ions within an optically thin plasma, we have measured how off-resonance charge states are populated via collisional processes on femtosecond time scales. We present a collisional cross section model that matches our results and demonstrates how the cross sections are enhanced by dense-plasma effects including continuum lowering. Nonlocal thermodynamic equilibrium collisional radiative simulations show excellent agreement with the experimental results and provide new insight on collisional ionization and three-body-recombination processes in the dense-plasma regime.

  1. Dual-comb coherent Raman spectroscopy with lasers of 1-GHz pulse repetition frequency.

    Science.gov (United States)

    Mohler, Kathrin J; Bohn, Bernhard J; Yan, Ming; Mélen, Gwénaëlle; Hänsch, Theodor W; Picqué, Nathalie

    2017-01-15

    We extend the technique of multiplex coherent Raman spectroscopy with two femtosecond mode-locked lasers to oscillators of a pulse repetition frequency of 1 GHz. We demonstrate a spectra of liquids, which span 1100  cm-1 of Raman shifts. At a resolution of 6  cm-1, their measurement time may be as short as 5 μs for a refresh rate of 2 kHz. The waiting period between acquisitions is improved 10-fold compared to previous experiments with two lasers of 100-MHz repetition frequencies.

  2. Clinical coherent anti-Stokes Raman scattering and multiphoton tomography of human skin with a femtosecond laser and photonic crystal fiber

    International Nuclear Information System (INIS)

    Breunig, Hans Georg; Weinigel, Martin; Bückle, Rainer; Kellner-Höfer, Marcel; König, Karsten; Lademann, Jürgen; Darvin, Maxim E; Sterry, Wolfram

    2013-01-01

    We report on in vivo coherent anti-Stokes Raman scattering spectroscopy (CARS), two-photon fluorescence and second-harmonic-generation imaging on human skin with a novel multimodal clinical CARS/multiphoton tomograph. CARS imaging is realized by a combination of femtosecond pulses with broadband continuum pulses generated by a photonic crystal fiber. The images reveal the microscopic distribution of (i) non-fluorescent lipids, (ii) endogenous fluorophores and (iii) the collagen network inside the human skin in vivo with subcellular resolution. Examples of healthy as well as cancer-affected skin are presented. (letter)

  3. Clinical coherent anti-Stokes Raman scattering and multiphoton tomography of human skin with a femtosecond laser and photonic crystal fiber

    Science.gov (United States)

    Breunig, Hans Georg; Weinigel, Martin; Bückle, Rainer; Kellner-Höfer, Marcel; Lademann, Jürgen; Darvin, Maxim E.; Sterry, Wolfram; König, Karsten

    2013-02-01

    We report on in vivo coherent anti-Stokes Raman scattering spectroscopy (CARS), two-photon fluorescence and second-harmonic-generation imaging on human skin with a novel multimodal clinical CARS/multiphoton tomograph. CARS imaging is realized by a combination of femtosecond pulses with broadband continuum pulses generated by a photonic crystal fiber. The images reveal the microscopic distribution of (i) non-fluorescent lipids, (ii) endogenous fluorophores and (iii) the collagen network inside the human skin in vivo with subcellular resolution. Examples of healthy as well as cancer-affected skin are presented.

  4. Development of Femtosecond Stimulated Raman Spectroscopy: Stimulated Raman Gain via Elimination of Cross Phase Modulation

    International Nuclear Information System (INIS)

    Jin, Seung Min; Lee, Young Jong; Yu, Jong Wan; Kim, Seong Keun

    2004-01-01

    We have developed a new femtosecond probe technique by using stimulated Raman spectroscopy. The cross phase modulation in femtosecond time scale associated with off-resonant interaction was shown to be eliminated by integrating the transient gain/loss signal over the time delay between the Raman pump pulse and the continuum pulse. The stimulated Raman gain of neat cyclohexane was obtained to demonstrate the feasibility of the technique. Spectral and temporal widths of stimulated Raman spectra were controlled by using a narrow band pass filter. Femtosecond stimulated Raman spectroscopy was proposed as a highly useful probe in time-resolved vibrational spectroscopy

  5. Femtosecond time-resolved impulsive stimulated Raman spectroscopy using sub-7-fs pulses: Apparatus and applications

    Energy Technology Data Exchange (ETDEWEB)

    Kuramochi, Hikaru [Molecular Spectroscopy Laboratory, RIKEN, 2-1 Hirosawa, Wako 351-0198 (Japan); Takeuchi, Satoshi; Tahara, Tahei, E-mail: tahei@riken.jp [Molecular Spectroscopy Laboratory, RIKEN, 2-1 Hirosawa, Wako 351-0198 (Japan); Ultrafast Spectroscopy Research Team, RIKEN Center for Advanced Photonics (RAP), 2-1 Hirosawa, Wako 351-0198 (Japan)

    2016-04-15

    We describe details of the setup for time-resolved impulsive stimulated Raman spectroscopy (TR-ISRS). In this method, snapshot molecular vibrational spectra of the photoreaction transients are captured via time-domain Raman probing using ultrashort pulses. Our instrument features transform-limited sub-7-fs pulses to impulsively excite and probe coherent nuclear wavepacket motions, allowing us to observe vibrational fingerprints of transient species from the terahertz to 3000-cm{sup −1} region with high sensitivity. Key optical components for the best spectroscopic performance are discussed. The TR-ISRS measurements for the excited states of diphenylacetylene in cyclohexane are demonstrated, highlighting the capability of our setup to track femtosecond dynamics of all the Raman-active fundamental molecular vibrations.

  6. Coherence Properties of Individual Femtosecond Pulses of an X-ray Free-Electron Laser

    Energy Technology Data Exchange (ETDEWEB)

    Vartanyants, I.A.; /DESY /Moscow Phys. Eng. Inst.; Singer, A.; Mancuso, A.P.; Yefanov, O.M.; /DESY; Sakdinawat, A.; Liu, Y.; Bang, E.; /UC, Berkeley; Williams, G.J.; /SLAC; Cadenazzi, G.; Abbey, B.; /Melbourne U.; Sinn, H.; /European XFEL, Hamburg; Attwood, D.; /UC, Berkeley; Nugent, K.A.; /Melbourne U.; Weckert, E.; /DESY; Wang, T.; Zhu, D.; Wu, B.; Graves, C.; Scherz, A.; Turner, J.J.; Schlotter, W.F.; /SLAC /LERMA, Ivry /Zurich, ETH /LBL, Berkeley /ANL, APS /Argonne /SLAC /LLNL, Livermore /Latrobe U. /SLAC /SLAC /European XFEL, Hamburg /SLAC /Hamburg U.

    2012-06-06

    Measurements of the spatial and temporal coherence of single, femtosecond x-ray pulses generated by the first hard x-ray free-electron laser, the Linac Coherent Light Source, are presented. Single-shot measurements were performed at 780 eV x-ray photon energy using apertures containing double pinholes in 'diffract-and-destroy' mode. We determined a coherence length of 17 {micro}m in the vertical direction, which is approximately the size of the focused Linac Coherent Light Source beam in the same direction. The analysis of the diffraction patterns produced by the pinholes with the largest separation yields an estimate of the temporal coherence time of 0.55 fs. We find that the total degree of transverse coherence is 56% and that the x-ray pulses are adequately described by two transverse coherent modes in each direction. This leads us to the conclusion that 78% of the total power is contained in the dominant mode.

  7. Rotational coherence spectroscopy at FLASH. Toward dynamic studies in nanosuperfluids

    Energy Technology Data Exchange (ETDEWEB)

    Kickermann, Andreas

    2013-07-15

    The field of molecular physics, which is focusing on molecular motion in the transition states of physical, chemical, and biological changes, is a wide-spread research area. It strives to reveal the structural and functional properties of molecules, the chemical bonds between atoms and the time evolution. Many processes occurring in nature upon electronic excitation proceed on the ultrafast femtosecond timescale and can be triggered by modern ultrashort femtosecond-laser sources under laboratory conditions. In the present thesis pump-probe studies were performed to follow molecular motion using ultrashort light pulses in the nanometer wavelength range provided by an XUV freeelectron laser (FEL). In detail, alignment of molecular species in space under field-free conditions was investigated. In the specific case of rotational wave packets in molecules the rotational dynamics shows characteristic temporal features, which contain a wealth of information on molecular structure and give insight into molecular coupling mechanisms, i.e. rotational constants and transition frequencies. Within this thesis, Rotational Coherence Spectroscopy (RCS) reveals wave-packet motion observed by subsequent Coulomb explosion of Raman excited carbon monoxide, which results in a time-dependent asymmetry of spatial fragmentation patterns. With the method presented here, the time resolution to elucidate the fast dynamics of strong couplings can be pushed toward a single rotational period even for the fastest rotors. This is due to large pump-probe delays with small subpicosecond step size. This kind of spectroscopy can also be expanded to molecular species, which are not accessible by other powerful spectroscopic methods, such as Fourier-transform microwave spectroscopy (FTMW). Furthermore, it allows to measure weak molecular couplings on a long timescale (large pump-probe delays), e.g. couplings of molecules in a solution or molecules dissolved in quantum fluids. This is valuable to

  8. Rotational coherence spectroscopy at FLASH. Toward dynamic studies in nanosuperfluids

    International Nuclear Information System (INIS)

    Kickermann, Andreas

    2013-07-01

    The field of molecular physics, which is focusing on molecular motion in the transition states of physical, chemical, and biological changes, is a wide-spread research area. It strives to reveal the structural and functional properties of molecules, the chemical bonds between atoms and the time evolution. Many processes occurring in nature upon electronic excitation proceed on the ultrafast femtosecond timescale and can be triggered by modern ultrashort femtosecond-laser sources under laboratory conditions. In the present thesis pump-probe studies were performed to follow molecular motion using ultrashort light pulses in the nanometer wavelength range provided by an XUV freeelectron laser (FEL). In detail, alignment of molecular species in space under field-free conditions was investigated. In the specific case of rotational wave packets in molecules the rotational dynamics shows characteristic temporal features, which contain a wealth of information on molecular structure and give insight into molecular coupling mechanisms, i.e. rotational constants and transition frequencies. Within this thesis, Rotational Coherence Spectroscopy (RCS) reveals wave-packet motion observed by subsequent Coulomb explosion of Raman excited carbon monoxide, which results in a time-dependent asymmetry of spatial fragmentation patterns. With the method presented here, the time resolution to elucidate the fast dynamics of strong couplings can be pushed toward a single rotational period even for the fastest rotors. This is due to large pump-probe delays with small subpicosecond step size. This kind of spectroscopy can also be expanded to molecular species, which are not accessible by other powerful spectroscopic methods, such as Fourier-transform microwave spectroscopy (FTMW). Furthermore, it allows to measure weak molecular couplings on a long timescale (large pump-probe delays), e.g. couplings of molecules in a solution or molecules dissolved in quantum fluids. This is valuable to

  9. Simultaneous Femtosecond X-ray Spectroscopy and Diffraction of Photosystem II at Room Temperature

    Science.gov (United States)

    Kern, Jan; Alonso-Mori, Roberto; Tran, Rosalie; Hattne, Johan; Gildea, Richard J.; Echols, Nathaniel; Glöckner, Carina; Hellmich, Julia; Laksmono, Hartawan; Sierra, Raymond G.; Lassalle-Kaiser, Benedikt; Koroidov, Sergey; Lampe, Alyssa; Han, Guangye; Gul, Sheraz; DiFiore, Dörte; Milathianaki, Despina; Fry, Alan R.; Miahnahri, Alan; Schafer, Donald W.; Messerschmidt, Marc; Seibert, M. Marvin; Koglin, Jason E.; Sokaras, Dimosthenis; Weng, Tsu-Chien; Sellberg, Jonas; Latimer, Matthew J.; Grosse-Kunstleve, Ralf W.; Zwart, Petrus H.; White, William E.; Glatzel, Pieter; Adams, Paul D.; Bogan, Michael J.; Williams, Garth J.; Boutet, Sébastien; Messinger, Johannes; Zouni, Athina; Sauter, Nicholas K.; Yachandra, Vittal K.; Bergmann, Uwe; Yano, Junko

    2013-01-01

    Intense femtosecond X-ray pulses produced at the Linac Coherent Light Source (LCLS) were used for simultaneous X-ray diffraction (XRD) and X-ray emission spectroscopy (XES) of microcrystals of Photosystem II (PS II) at room temperature. This method probes the overall protein structure and the electronic structure of the Mn4CaO5 cluster in the oxygen-evolving complex of PS II. XRD data are presented from both the dark state (S1) and the first illuminated state (S2) of PS II. Our simultaneous XRD/XES study shows that the PS II crystals are intact during our measurements at the LCLS, not only with respect to the structure of PS II, but also with regard to the electronic structure of the highly radiation sensitive Mn4CaO5 cluster, opening new directions for future dynamics studies. PMID:23413188

  10. Nonlinear optics in germanium mid-infrared fiber material: Detuning oscillations in femtosecond mid-infrared spectroscopy

    Directory of Open Access Journals (Sweden)

    M. Ordu

    2017-09-01

    Full Text Available Germanium optical fibers hold great promise in extending semiconductor photonics into the fundamentally important mid-infrared region of the electromagnetic spectrum. The demonstration of nonlinear response in fabricated Ge fiber samples is a key step in the development of mid-infrared fiber materials. Here we report the observation of detuning oscillations in a germanium fiber in the mid-infrared region using femtosecond dispersed pump-probe spectroscopy. Detuning oscillations are observed in the frequency-resolved response when mid-infrared pump and probe pulses are overlapped in a fiber segment. The oscillations arise from the nonlinear frequency resolved nonlinear (χ(3 response in the germanium semiconductor. Our work represents the first observation of coherent oscillations in the emerging field of germanium mid-infrared fiber optics.

  11. Ultrafast surface-enhanced Raman spectroscopy.

    Science.gov (United States)

    Keller, Emily L; Brandt, Nathaniel C; Cassabaum, Alyssa A; Frontiera, Renee R

    2015-08-07

    Ultrafast surface-enhanced Raman spectroscopy (SERS) with pico- and femtosecond time resolution has the ability to elucidate the mechanisms by which plasmons mediate chemical reactions. Here we review three important technological advances in these new methodologies, and discuss their prospects for applications in areas including plasmon-induced chemistry and sensing at very low limits of detection. Surface enhancement, arising from plasmonic materials, has been successfully incorporated with stimulated Raman techniques such as femtosecond stimulated Raman spectroscopy (FSRS) and coherent anti-Stokes Raman spectroscopy (CARS). These techniques are capable of time-resolved measurement on the femtosecond and picosecond time scale and can be used to follow the dynamics of molecules reacting near plasmonic surfaces. We discuss the potential application of ultrafast SERS techniques to probe plasmon-mediated processes, such as H2 dissociation and solar steam production. Additionally, we discuss the possibilities for high sensitivity SERS sensing using these stimulated Raman spectroscopies.

  12. Laser spectroscopy

    CERN Document Server

    Demtröder, Wolfgang

    2008-01-01

    Keeping abreast of the latest techniques and applications, this new edition of the standard reference and graduate text on laser spectroscopy has been completely revised and expanded. While the general concept is unchanged, the new edition features a broad array of new material, e.g., frequency doubling in external cavities, reliable cw-parametric oscillators, tunable narrow-band UV sources, more sensitive detection techniques, tunable femtosecond and sub-femtosecond lasers (X-ray region and the attosecond range), control of atomic and molecular excitations, frequency combs able to synchronize independent femtosecond lasers, coherent matter waves, and still more applications in chemical analysis, medical diagnostics, and engineering.

  13. Probing spin-vibronic dynamics using femtosecond X-ray spectroscopy

    DEFF Research Database (Denmark)

    Penfold, T. J.; Pápai, Mátyás Imre; Rozgonyi, T.

    2016-01-01

    Ultrafast pump-probe spectroscopy within the X-ray regime is now possible owing to the development of X-ray Free Electrons Lasers (X-FELs) and is opening new opportunities for the direct probing of femtosecond evolution of the nuclei, the electronic and spin degrees of freedom. In this contributi...

  14. Selective Coherent Excitation of Charged Density Waves

    NARCIS (Netherlands)

    Tsvetkov, A.A.; Sagar, D.M.; Loosdrecht, P.H.M. van; Marel, D. van der

    2003-01-01

    Real time femtosecond pump-probe spectroscopy is used to study collective and single particle excitations in the charge density wave state of the quasi-1D metal, blue bronze. Along with the previously observed collective amplitudon excitation, the spectra show several additional coherent features.

  15. Doping-controlled Coherent Electron-Phonon Coupling in Vanadium Dioxide

    Energy Technology Data Exchange (ETDEWEB)

    Appavoo, Kannatassen [Vanderbilt Univ., Nashville, TN (United States) Interdisciplinary Materials Science; Brookhaven National Lab. (BNL), Upton, NY (United States). Center for Functional Nanomaterials; Wang, Bin [Vanderbilt Univ., Nashville, TN (United States) Dept. of Physics and Astronomy; Nag, Joyeeta [Vanderbilt Univ., Nashville, TN (United States) Dept. of Physics and Astronomy; Sfeir, Matthew Y. [Brookhaven National Lab. (BNL), Upton, NY (United States). Center for Functional Nanomaterials; Pantelides, Sokrates T. [Vanderbilt Univ., Nashville, TN (United States) Dept. of Physics and Astronomy; Oak Ridge National Lab. (ORNL), Oak Ridge, TN (United States); Vanderbilt Univ., Nashville, TN (United States). Dept. of Electrical Engineering and Computer Science; Haglund, Richard F. [Vanderbilt Univ., Nashville, TN (United States) Interdisciplinary Materials Science and Dept. of Physics and Astronomy

    2015-05-10

    Broadband femtosecond transient spectroscopy and density functional calculations reveal that substitutional tungsten doping of a VO2 film changes the coherent phonon response compared to the undoped film due to altered electronic and structural dynamics.

  16. Laser spectroscopy

    CERN Document Server

    Demtröder, Wolfgang

    Keeping abreast of the latest techniques and applications, this new edition of the standard reference and graduate text on laser spectroscopy has been completely revised and expanded. While the general concept is unchanged, the new edition features a broad array of new material, e.g., ultrafast lasers (atto- and femto-second lasers) and parametric oscillators, coherent matter waves, Doppler-free Fourier spectroscopy with optical frequency combs, interference spectroscopy, quantum optics, the interferometric detection of gravitational waves and still more applications in chemical analysis, medical diagnostics, and engineering.

  17. Effects of moderate pump and Stokes chirp on chirped-probe pulse femtosecond coherent anti-Stokes Raman scattering thermometry

    KAUST Repository

    Gu, Mingming; Satija, Aman; Lucht, Robert P.

    2018-01-01

    The effects of moderate levels of chirp in the pump and Stokes pulses on chirped-probe-pulse femtosecond coherent anti-Stokes Raman scattering (CPP fs CARS) were investigated. The frequency chirp in the pump and Stokes pulses was introduced

  18. Coherent spectroscopies on ultrashort time and length scales

    Directory of Open Access Journals (Sweden)

    Schneider C.

    2013-03-01

    Full Text Available Three spectroscopic techniques are presented that provide simultaneous spatial and temporal resolution: modified confocal microscopy with heterodyne detection, space-time-resolved spectroscopy using coherent control concepts, and coherent two-dimensional nano-spectroscopy. Latest experimental results are discussed.

  19. Characterization and control of femtosecond electron and X-ray beams at free-electron lasers

    International Nuclear Information System (INIS)

    Behrens, Christopher

    2012-11-01

    X-ray free-electron lasers (FELs) open up new frontiers in photon science, and in order to take full advantage of these unique accelerator-based light sources, the characterization and control of the femtosecond electron and X-ray beams is essential. Within this cumulative thesis, recent results achieved within the active research field of femtosecond electron and X-ray beams at FELs are reported.The basic principles of X-ray FELs are described, and concepts of longitudinal electron beam diagnostics with femtosecond accuracy are covered. Experimental results obtained with a transverse deflecting structure (TDS) and spectroscopy of coherent terahertz radiation are presented, and the suppression of coherent optical radiation effects, required for diagnostics utilizing a TDS, is demonstrated. Control of the longitudinal phase space by using multiple radio frequencies for longitudinal electron beam tailoring is presented, and a new technique of reversible electron beam heating with two TDSs is described. For the characterization of femtosecond X-ray pulses, a novel method based on dedicated longitudinal phase space diagnostics for electron beams is introduced, and recent measurements with a streaking technique using external terahertz fields are presented.

  20. Characterization and control of femtosecond electron and X-ray beams at free-electron lasers

    Energy Technology Data Exchange (ETDEWEB)

    Behrens, Christopher

    2012-11-15

    X-ray free-electron lasers (FELs) open up new frontiers in photon science, and in order to take full advantage of these unique accelerator-based light sources, the characterization and control of the femtosecond electron and X-ray beams is essential. Within this cumulative thesis, recent results achieved within the active research field of femtosecond electron and X-ray beams at FELs are reported.The basic principles of X-ray FELs are described, and concepts of longitudinal electron beam diagnostics with femtosecond accuracy are covered. Experimental results obtained with a transverse deflecting structure (TDS) and spectroscopy of coherent terahertz radiation are presented, and the suppression of coherent optical radiation effects, required for diagnostics utilizing a TDS, is demonstrated. Control of the longitudinal phase space by using multiple radio frequencies for longitudinal electron beam tailoring is presented, and a new technique of reversible electron beam heating with two TDSs is described. For the characterization of femtosecond X-ray pulses, a novel method based on dedicated longitudinal phase space diagnostics for electron beams is introduced, and recent measurements with a streaking technique using external terahertz fields are presented.

  1. Optimization methods of pulse-to-pulse alignment using femtosecond pulse laser based on temporal coherence function for practical distance measurement

    Science.gov (United States)

    Liu, Yang; Yang, Linghui; Guo, Yin; Lin, Jiarui; Cui, Pengfei; Zhu, Jigui

    2018-02-01

    An interferometer technique based on temporal coherence function of femtosecond pulses is demonstrated for practical distance measurement. Here, the pulse-to-pulse alignment is analyzed for large delay distance measurement. Firstly, a temporal coherence function model between two femtosecond pulses is developed in the time domain for the dispersive unbalanced Michelson interferometer. Then, according to this model, the fringes analysis and the envelope extraction process are discussed. Meanwhile, optimization methods of pulse-to-pulse alignment for practical long distance measurement are presented. The order of the curve fitting and the selection of points for envelope extraction are analyzed. Furthermore, an averaging method based on the symmetry of the coherence function is demonstrated. Finally, the performance of the proposed methods is evaluated in the absolute distance measurement of 20 μ m with path length difference of 9 m. The improvement of standard deviation in experimental results shows that these approaches have the potential for practical distance measurement.

  2. Coherent electron - hole state and femtosecond cooperative emission in bulk GaAs

    International Nuclear Information System (INIS)

    Vasil'ev, Petr P; Kan, H; Ohta, H; Hiruma, T

    2002-01-01

    The conditions for obtaining a collective coherent electron - hole state in semiconductors are discussed. The results of the experimental study of the regime of cooperative recombination of high-density electrons and holes (more than 3 x 10 18 cm -3 ) in bulk GaAs at room temperature are presented. It is shown that the collective pairing of electrons and holes and their condensation cause the formation of a short-living coherent electron - hole BCS-like state, which exhibits radiative recombination in the form of high-power femtosecond optical pulses. It is experimentally demonstrated that almost all of the electrons and holes available are condensed at the very bottoms of the bands and are at the cooperative state. The average lifetime of this state is measured to be of about 300 fs. The dependences of the order parameter (the energy gap of the spectrum of electrons and holes) and the Fermi energy of the coherent BCS state on the electron - hole concentration are obtained. (special issue devoted to the 80th anniversary of academician n g basov's birth)

  3. Self-referenced coherent diffraction x-ray movie of Ångstrom- and femtosecond-scale atomic motion

    International Nuclear Information System (INIS)

    Glownia, J. M.; Natan, A.; Cryan, J. P.; Hartsock, R.; Kozina, M.

    2016-01-01

    Time-resolved femtosecond x-ray diffraction patterns from laser-excited molecular iodine are used to create a movie of intramolecular motion with a temporal and spatial resolution of 30 fs and 0.3 Å. This high fidelity is due to interference between the nonstationary excitation and the stationary initial charge distribution. The initial state is used as the local oscillator for heterodyne amplification of the excited charge distribution to retrieve real-space movies of atomic motion on ångstrom and femtosecond scales. This x-ray interference has not been employed to image internal motion in molecules before. In conclusion, coherent vibrational motion and dispersion, dissociation, and rotational dephasing are all clearly visible in the data, thereby demonstrating the stunning sensitivity of heterodyne methods.

  4. Ultrafast laser spectroscopy in complex solid state materials

    Energy Technology Data Exchange (ETDEWEB)

    Li, Tianqi [Iowa State Univ., Ames, IA (United States)

    2014-12-01

    This thesis summarizes my work on applying the ultrafast laser spectroscopy to the complex solid state materials. It shows that the ultrafast laser pulse can coherently control the material properties in the femtosecond time scale. And the ultrafast laser spectroscopy can be employed as a dynamical method for revealing the fundamental physical problems in the complex material systems.

  5. Optical spectroscopy using gas-phase femtosecond laser filamentation.

    Science.gov (United States)

    Odhner, Johanan; Levis, Robert

    2014-01-01

    Femtosecond laser filamentation occurs as a dynamic balance between the self-focusing and plasma defocusing of a laser pulse to produce ultrashort radiation as brief as a few optical cycles. This unique source has many properties that make it attractive as a nonlinear optical tool for spectroscopy, such as propagation at high intensities over extended distances, self-shortening, white-light generation, and the formation of an underdense plasma. The plasma channel that constitutes a single filament and whose position in space can be controlled by its input parameters can span meters-long distances, whereas multifilamentation of a laser beam can be sustained up to hundreds of meters in the atmosphere. In this review, we briefly summarize the current understanding and use of laser filaments for spectroscopic investigations of molecules. A theoretical framework of filamentation is presented, along with recent experimental evidence supporting the established understanding of filamentation. Investigations carried out on vibrational and rotational spectroscopy, filament-induced breakdown, fluorescence spectroscopy, and backward lasing are discussed.

  6. Wave-length-modulated femtosecond stimulated raman spectroscopy-approach towards automatic data processing

    NARCIS (Netherlands)

    Kloz, M.; van Grondelle, R.; Kennis, J.T.M.

    2011-01-01

    A new wavelength modulator based on a custom-made chopper blade and a slit placed in the Fourier plane of a pulse shaper was used to detect explicitly the first derivative of the time-resolved femtosecond stimulated Raman spectroscopy (FSRS) signals. This approach resulted in an unprecedented

  7. Ultrafast transmission electron microscopy using a laser-driven field emitter: Femtosecond resolution with a high coherence electron beam

    Energy Technology Data Exchange (ETDEWEB)

    Feist, Armin; Bach, Nora; Rubiano da Silva, Nara; Danz, Thomas; Möller, Marcel; Priebe, Katharina E.; Domröse, Till; Gatzmann, J. Gregor; Rost, Stefan; Schauss, Jakob; Strauch, Stefanie; Bormann, Reiner; Sivis, Murat; Schäfer, Sascha, E-mail: sascha.schaefer@phys.uni-goettingen.de; Ropers, Claus, E-mail: claus.ropers@uni-goettingen.de

    2017-05-15

    We present the development of the first ultrafast transmission electron microscope (UTEM) driven by localized photoemission from a field emitter cathode. We describe the implementation of the instrument, the photoemitter concept and the quantitative electron beam parameters achieved. Establishing a new source for ultrafast TEM, the Göttingen UTEM employs nano-localized linear photoemission from a Schottky emitter, which enables operation with freely tunable temporal structure, from continuous wave to femtosecond pulsed mode. Using this emission mechanism, we achieve record pulse properties in ultrafast electron microscopy of 9 Å focused beam diameter, 200 fs pulse duration and 0.6 eV energy width. We illustrate the possibility to conduct ultrafast imaging, diffraction, holography and spectroscopy with this instrument and also discuss opportunities to harness quantum coherent interactions between intense laser fields and free-electron beams. - Highlights: • First implementation of an ultrafast TEM employing a nanoscale photocathode. • Localized single photon-photoemission from nanoscopic field emitter yields low emittance ultrashort electron pulses. • Electron pulses focused down to ~9 Å, with a duration of 200 fs and an energy width of 0.6 eV are demonstrated. • Quantitative characterization of ultrafast electron gun emittance and brightness. • A range of applications of high coherence ultrashort electron pulses is shown.

  8. Structural Evolution in Photoactive Yellow Protein Studied by Femtosecond Stimulated Raman Spectroscopy

    Directory of Open Access Journals (Sweden)

    Yoshizawa M.

    2013-03-01

    Full Text Available Ultrafast structural evolution in photoactive yellow protein (PYP is studied by femtosecond stimulated Raman spectroscopy. A comparison between wild-type PYP and E46Q mutant reveals that the hydrogen-bonding network surrounding the chromophore of PYP is immediately rearranged in the electronic excited state.

  9. Femtosecond infrared spectroscopy: study, development and applications

    International Nuclear Information System (INIS)

    Bonvalet, Adeline

    1997-01-01

    This work has been devoted to the development and the applications of a new technique of infrared (5-20 μm) spectroscopy allowing a temporal resolution of 100 fs. This technique relies on a source of ultrashort infrared pulses obtained by frequency mixing in a nonlinear material. In particular, the optical rectification of 12-fs visible pulses in gallium arsenide has allowed us to obtain 40-fs infrared pulses with a spectrum extending from 5 pm up to 15 μm. Spectral resolution has been achieved by Fourier transform spectroscopy, using a novel device we have called Diffracting FTIR. These developments allow to study inter-subband transitions in quantum-well structures. The inter-subband relaxation time has been measured by a pump-probe experiment, in which the sample was excited with a visible pulse, and the variations of inter-subband absorption probed with an infrared pulse. Besides, we have developed a method of coherent emission spectroscopy allowing to monitor the electric field emitted by coherent charge oscillations in quantum wells. The decay of the oscillations due to the loss of coherence between excited levels yields a direct measurement of the dephasing time between these levels. Other applications include biological macromolecules like reaction centers of photosynthetic bacteria. We have shown that we were able to monitor variations of infrared absorption of about 10 -4 optical densities with a temporal resolution of 100 fs. This would constitute a relevant tool to study the role of molecular vibrations during the primary steps of biological processes. (author) [fr

  10. High-resolution coherent three-dimensional spectroscopy of Br2.

    Science.gov (United States)

    Chen, Peter C; Wells, Thresa A; Strangfeld, Benjamin R

    2013-07-25

    In the past, high-resolution spectroscopy has been limited to small, simple molecules that yield relatively uncongested spectra. Larger and more complex molecules have a higher density of peaks and are susceptible to complications (e.g., effects from conical intersections) that can obscure the patterns needed to resolve and assign peaks. Recently, high-resolution coherent two-dimensional (2D) spectroscopy has been used to resolve and sort peaks into easily identifiable patterns for molecules where pattern-recognition has been difficult. For very highly congested spectra, however, the ability to resolve peaks using coherent 2D spectroscopy is limited by the bandwidth of instrumentation. In this article, we introduce and investigate high-resolution coherent three-dimensional spectroscopy (HRC3D) as a method for dealing with heavily congested systems. The resulting patterns are unlike those in high-resolution coherent 2D spectra. Analysis of HRC3D spectra could provide a means for exploring the spectroscopy of large and complex molecules that have previously been considered too difficult to study.

  11. Femtosecond time-resolved studies of coherent vibrational Raman scattering in large gas-phase molecules

    International Nuclear Information System (INIS)

    Hayden, C.C.; Chandler, D.W.

    1995-01-01

    Results are presented from femtosecond time-resolved coherent Raman experiments in which we excite and monitor vibrational coherence in gas-phase samples of benzene and 1,3,5-hexatriene. Different physical mechanisms for coherence decay are seen in these two molecules. In benzene, where the Raman polarizability is largely isotropic, the Q branch of the vibrational Raman spectrum is the primary feature excited. Molecules in different rotational states have different Q-branch transition frequencies due to vibration--rotation interaction. Thus, the macroscopic polarization that is observed in these experiments decays because it has many frequency components from molecules in different rotational states, and these frequency components go out of phase with each other. In 1,3,5-hexatriene, the Raman excitation produces molecules in a coherent superposition of rotational states, through (O, P, R, and S branch) transitions that are strong due to the large anisotropy of the Raman polarizability. The coherent superposition of rotational states corresponds to initially spatially oriented, vibrationally excited, molecules that are freely rotating. The rotation of molecules away from the initial orientation is primarily responsible for the coherence decay in this case. These experiments produce large (∼10% efficiency) Raman shifted signals with modest excitation pulse energies (10 μJ) demonstrating the feasibility of this approach for a variety of gas phase studies. copyright 1995 American Institute of Physics

  12. Adaptive sampling dual terahertz comb spectroscopy using dual free-running femtosecond lasers.

    Science.gov (United States)

    Yasui, Takeshi; Ichikawa, Ryuji; Hsieh, Yi-Da; Hayashi, Kenta; Cahyadi, Harsono; Hindle, Francis; Sakaguchi, Yoshiyuki; Iwata, Tetsuo; Mizutani, Yasuhiro; Yamamoto, Hirotsugu; Minoshima, Kaoru; Inaba, Hajime

    2015-06-02

    Terahertz (THz) dual comb spectroscopy (DCS) is a promising method for high-accuracy, high-resolution, broadband THz spectroscopy because the mode-resolved THz comb spectrum includes both broadband THz radiation and narrow-line CW-THz radiation characteristics. In addition, all frequency modes of a THz comb can be phase-locked to a microwave frequency standard, providing excellent traceability. However, the need for stabilization of dual femtosecond lasers has often hindered its wide use. To overcome this limitation, here we have demonstrated adaptive-sampling THz-DCS, allowing the use of free-running femtosecond lasers. To correct the fluctuation of the time and frequency scales caused by the laser timing jitter, an adaptive sampling clock is generated by dual THz-comb-referenced spectrum analysers and is used for a timing clock signal in a data acquisition board. The results not only indicated the successful implementation of THz-DCS with free-running lasers but also showed that this configuration outperforms standard THz-DCS with stabilized lasers due to the slight jitter remained in the stabilized lasers.

  13. Coherent cavity-enhanced dual-comb spectroscopy

    OpenAIRE

    Fleisher, Adam J.; Long, David A.; Reed, Zachary D.; Hodges, Joseph T.; Plusquellic, David F.

    2016-01-01

    Dual-comb spectroscopy allows for the rapid, multiplexed acquisition of high-resolution spectra without the need for moving parts or low-resolution dispersive optics. This method of broadband spectroscopy is most often accomplished via tight phase locking of two mode-locked lasers or via sophisticated signal processing algorithms, and therefore, long integration times of phase coherent signals are difficult to achieve. Here we demonstrate an alternative approach to dual-comb spectroscopy usin...

  14. Observation of coherent optical phonons excited by femtosecond laser radiation in Sb films by ultrafast electron diffraction method

    Energy Technology Data Exchange (ETDEWEB)

    Mironov, B. N.; Kompanets, V. O.; Aseev, S. A., E-mail: isanfemto@yandex.ru [Russian Academy of Sciences, Institute of Spectroscopy (Russian Federation); Ischenko, A. A. [Moscow Technological University, Institute of High Chemical Technologies (Russian Federation); Kochikov, I. V. [Moscow State University (Russian Federation); Misochko, O. V. [Russian Academy of Sciences, Institute of Solid State Physics (Russian Federation); Chekalin, S. V.; Ryabov, E. A. [Russian Academy of Sciences, Institute of Spectroscopy (Russian Federation)

    2017-03-15

    The generation of coherent optical phonons in a polycrystalline antimony film sample has been investigated using femtosecond electron diffraction method. Phonon vibrations have been induced in the Sb sample by the main harmonic of a femtosecond Ti:Sa laser (λ = 800 nm) and probed by a pulsed ultrashort photoelectron beam synchronized with the pump laser. The diffraction patterns recorded at different times relative to the pump laser pulse display oscillations of electron diffraction intensity corresponding to the frequencies of vibrations of optical phonons: totally symmetric (A{sub 1g}) and twofold degenerate (E{sub g}) phonon modes. The frequencies that correspond to combinations of these phonon modes in the Sb sample have also been experimentally observed.

  15. Coherent control of bond making: the performance of rationally phase-shaped femtosecond laser pulses

    International Nuclear Information System (INIS)

    Levin, Liat; Amitay, Zohar; Skomorowski, Wojciech; Koch, Christiane P; Kosloff, Ronnie

    2015-01-01

    The first step in the coherent control of a photoinduced binary reaction is bond making or photoassociation. We have recently demonstrated coherent control of bond making in multi-photon femtosecond photoassociation of hot magnesium atoms, using linearly chirped pulses (Levin et al 2015 Phys. Rev. Lett. 114 233003). The detected yield of photoassociated magnesium dimers was enhanced by positively chirped pulses which is explained theoretically by a combination of purification and chirp-dependent Raman transitions. The yield could be further enhanced by pulse optimization resulting in pulses with an effective linear chirp and a sub-pulse structure, where the latter allows for exploiting vibrational coherences. Here, we systematically explore the efficiency of phase-shaped pulses for the coherent control of bond making, employing a parametrization of the spectral phases in the form of cosine functions. We find up to an order of magnitude enhancement of the yield compared to the unshaped transform-limited pulse. The highly performing pulses all display an overall temporally increasing instantaneous frequency and are composed of several overlapping sub-pulses. The time delay between the first two sub-pulses fits very well the vibrational frequency of the generated intermediate wavepacket. These findings are in agreement with chirp-dependent Raman transitions and exploitation of vibrational dynamics as underlying control mechanisms. (paper)

  16. Femtosecond and Subfemtosecond X-Ray Pulses from a SASE Based Free-Electron Laser

    Energy Technology Data Exchange (ETDEWEB)

    Emma, P

    2004-03-10

    We propose a novel method to generate femtosecond and sub-femtosecond photon pulses in a free electron laser by selectively spoiling the transverse emittance of the electron beam. Its merits are simplicity and ease of implementation. When the system is applied to the Linac Coherent Light Source, it can provide x-ray pulses the order of 1 femtosecond in duration containing about 1010 transversely coherent photons.

  17. Observation and control of coherent torsional dynamics in a quinquethiophene molecule.

    Science.gov (United States)

    Cirmi, Giovanni; Brida, Daniele; Gambetta, Alessio; Piacenza, Manuel; Della Sala, Fabio; Favaretto, Laura; Cerullo, Giulio; Lanzani, Guglielmo

    2010-07-28

    By applying femtosecond pump-probe spectroscopy to a substituted quinquethiophene molecule in solution, we observe in the time domain the coherent torsional dynamics that drives planarization of the excited state. Our interpretation is based on numerical modeling of the ground and excited state potential energy surfaces and simulation of wavepacket dynamics, which reveals two symmetric excited state deactivation pathways per oscillation period. We use the acquired knowledge on torsional dynamics to coherently control the excited state population with a pump-dump scheme, exploiting the non-stationary Franck-Condon overlap between ground and excited states.

  18. Electron transfer dynamics of triphenylamine dyes bound to TiO2 nanoparticles from femtosecond stimulated Raman spectroscopy

    KAUST Repository

    Hoffman, David P.; Lee, Olivia P.; Millstone, Jill E.; Chen, Mark S.; Su, Timothy A.; Creelman, Mark; Frechet, Jean; Mathies, Richard A.

    2013-01-01

    Interfacial electron transfer between sensitizers and semiconducting nanoparticles is a crucial yet poorly understood process. To address this problem, we have used transient absorption (TA) and femtosecond stimulated Raman spectroscopy (FSRS

  19. Spectroscopie résolue en temps par continuum femtoseconde Applications en neurobiologie

    Science.gov (United States)

    Ramstein, S.; Mottin, S.

    2003-06-01

    La spectroscopie résolue en temps utilisant un laser blanc femtoseconde est appliquée à la mesure in vivo des principaux absorbeurs du cerveau. Après génération adéquate du continuum de lumière blanche femtoseconde (50mW/[580-756nm] à 1Hz), cette source se propage dans la calvaria, les méninges et le cortex chez le rat anesthésié. La transmission est étudiée sur 7mm de distance entre l'impact laser et la fibre optique de collection. Le signal transmis est analysé dans la fenêtre 580-760nm, par un spectromètre couplé à une caméra à balayage de fente permettant la décorrélation de l'absorption et de la diffusion.

  20. Femtosecond pump–probe spectroscopy of graphene oxide in water

    International Nuclear Information System (INIS)

    Shang, Jingzhi; Ma, Lin; Li, Jiewei; Ai, Wei; Yu, Ting; Gurzadyan, Gagik G

    2014-01-01

    Transient absorption properties of aqueous graphene oxide (GO) have been studied by use of femtosecond pump–probe spectroscopy. Excited state absorption and photobleaching are observed in the wide spectral range. The observed fast three lifetime components are attributed to the absorption of upper excited states and localized states, which is confirmed by both laser induced absorption and transmission kinetics. The longest time component is assigned to the lowest excited state of GO, which mainly originates from the sp2 domains. With the increase of the excitation power, two-quantum absorption occurs, which results in an additional rise-time component of the observed transients. (paper)

  1. Femtosecond profiling of shaped x-ray pulses

    Science.gov (United States)

    Hoffmann, M. C.; Grguraš, I.; Behrens, C.; Bostedt, C.; Bozek, J.; Bromberger, H.; Coffee, R.; Costello, J. T.; DiMauro, L. F.; Ding, Y.; Doumy, G.; Helml, W.; Ilchen, M.; Kienberger, R.; Lee, S.; Maier, A. R.; Mazza, T.; Meyer, M.; Messerschmidt, M.; Schorb, S.; Schweinberger, W.; Zhang, K.; Cavalieri, A. L.

    2018-03-01

    Arbitrary manipulation of the temporal and spectral properties of x-ray pulses at free-electron lasers would revolutionize many experimental applications. At the Linac Coherent Light Source at Stanford National Accelerator Laboratory, the momentum phase-space of the free-electron laser driving electron bunch can be tuned to emit a pair of x-ray pulses with independently variable photon energy and femtosecond delay. However, while accelerator parameters can easily be adjusted to tune the electron bunch phase-space, the final impact of these actuators on the x-ray pulse cannot be predicted with sufficient precision. Furthermore, shot-to-shot instabilities that distort the pulse shape unpredictably cannot be fully suppressed. Therefore, the ability to directly characterize the x-rays is essential to ensure precise and consistent control. In this work, we have generated x-ray pulse pairs via electron bunch shaping and characterized them on a single-shot basis with femtosecond resolution through time-resolved photoelectron streaking spectroscopy. This achievement completes an important step toward future x-ray pulse shaping techniques.

  2. Femtosecond Nanofocusing with Full Optical Waveform Control

    International Nuclear Information System (INIS)

    Berweger, Samuel; Atkin, Joanna M.; Xu, Xiaoji G.; Olmon, Robert L.; Raschke, Markus Bernd

    2011-01-01

    The simultaneous nanometer spatial confinement and femtosecond temporal control of an optical excitation has been a long-standing challenge in optics. Previous approaches using surface plasmon polariton (SPP) resonant nanostructures or SPP waveguides have suffered from, for example, mode mismatch, or possible dependence on the phase of the driving laser field to achieve spatial localization. Here we take advantage of the intrinsic phase- and amplitude-independent nanofocusing ability of a conical noble metal tip with weak wavelength dependence over a broad bandwidth to achieve a 10 nm spatially and few-femtosecond temporally confined excitation. In combination with spectral pulse shaping and feedback on the second-harmonic response of the tip apex, we demonstrate deterministic arbitrary optical waveform control. In addition, the high efficiency of the nanofocusing tip provided by the continuous micro- to nanoscale mode transformation opens the door for spectroscopy of elementary optical excitations in matter on their natural length and time scales and enables applications from ultrafast nano-opto-electronics to single molecule quantum coherent control.

  3. Coherent infrared radiation from the ALS generated via femtosecond laser modulation of the electron beam

    International Nuclear Information System (INIS)

    Byrd, J.M.; Hao, Z.; Martin, M.C.; Robin, D.S.; Sannibale, F.; Schoenlein, R.W.; Venturini, M.; Zholents, A.A.; Zolotorev, M.S.

    2004-01-01

    Interaction of an electron beam with a femtosecond laser pulse co-propagating through a wiggler at the ALS produces large modulation of the electron energies within a short ∼100 fs slice of the electron bunch. Propagating around the storage ring, this bunch develops a longitudinal density perturbation due to the dispersion of electron trajectories. The length of the perturbation evolves with a distance from the wiggler but is much shorter than the electron bunch length. This perturbation causes the electron bunch to emit short pulses of temporally and spatially coherent infrared light which are automatically synchronized to the modulating laser. The intensity and spectra of the infrared light were measured in two storage ring locations for a nominal ALS lattice and for an experimental lattice with the higher momentum compaction factor. The onset of instability stimulated by laser e-beam interaction had been discovered. The infrared signal is now routinely used as a sensitive monitor for a fine tuning of the laser beam alignment during data accumulation in the experiments with femtosecond x-ray pulses

  4. Xanthines Studied via Femtosecond Fluorescence Spectroscopy

    Directory of Open Access Journals (Sweden)

    Pascale Changenet-Barret

    2016-12-01

    Full Text Available Xanthines represent a wide class of compounds closely related to the DNA bases adenine and guanine. Ubiquitous in the human body, they are capable of replacing natural bases in double helices and give rise to four-stranded structures. Although the use of their fluorescence for analytical purposes was proposed, their fluorescence properties have not been properly characterized so far. The present paper reports the first fluorescence study of xanthine solutions relying on femtosecond spectroscopy. Initially, we focus on 3-methylxanthine, showing that this compound exhibits non-exponential fluorescence decays with no significant dependence on the emission wavelength. The fluorescence quantum yield (3 × 10−4 and average decay time (0.9 ps are slightly larger than those found for the DNA bases. Subsequently, we compare the dynamical fluorescence properties of seven mono-, di- and tri-methylated derivatives. Both the fluorescence decays and fluorescence anisotropies vary only weakly with the site and the degree of methylation. These findings are in line with theoretical predictions suggesting the involvement of several conical intersections in the relaxation of the lowest singlet excited state.

  5. Femtosecond upconverted photocurrent spectroscopy of InAs quantum nanostructures

    Energy Technology Data Exchange (ETDEWEB)

    Yamada, Yasuhiro [Institute for Chemical Research, Kyoto University, Uji, Kyoto 611-0011 (Japan); Tex, David M.; Kanemitsu, Yoshihiko, E-mail: kanemitu@scl.kyoto-u.ac.jp [Institute for Chemical Research, Kyoto University, Uji, Kyoto 611-0011 (Japan); Japan Science and Technology Agency, CREST, Kyoto University, Uji, Kyoto 611-0011 (Japan); Kamiya, Itaru [Toyota Technological Institute, Nagoya, Aichi 468-8511 (Japan)

    2015-07-06

    The carrier upconversion dynamics in InAs quantum nanostructures are studied for intermediate-band solar-cell applications via ultrafast photoluminescence and photocurrent (PC) spectroscopy based on femtosecond excitation correlation (FEC) techniques. Strong upconverted PC-FEC signals are observed under resonant excitation of quantum well islands (QWIs), which are a few monolayer-thick InAs quantum nanostructures. The PC-FEC signal typically decays within a few hundred picoseconds at room temperature, which corresponds to the carrier lifetime in QWIs. The photoexcited electron and hole lifetimes in InAs QWIs are evaluated as functions of temperature and laser fluence. Our results provide solid evidence for electron–hole–hole Auger process, dominating the carrier upconversion in InAs QWIs at room temperature.

  6. Femtosecond spectroscopy on alkali-doped helium nanodroplets; Femtosekundenspektroskopie an alkalidotierten Helium-Nanotroepfchen

    Energy Technology Data Exchange (ETDEWEB)

    Claas, P.

    2006-01-15

    In the present thesis first studies on the short-time dynamics in alkali dimers and microclusters, which were bound on the surface of superfluid helium droplets, were presented. The experiments comprehended pump-probe measurements on the fs scale on the vibration dynamics on the dimers and on the fragmentation dynamics on the clusters. Generally by the studies it was shown that such extremely short slopes can also be observed on helium droplets by means of the femtosecond spectroscopy.

  7. Femtosecond X-ray Absorption Spectroscopy at a Hard X-ray Free Electron Laser

    DEFF Research Database (Denmark)

    Lemke, Henrik T.; Bressler, Christian; Chen, Lin X.

    2013-01-01

    X-ray free electron lasers (XFELs) deliver short (current (SASE based) XFELs, they can be used for measuring high......-quality X-ray absorption data and we report femtosecond time-resolved X-ray absorption near-edge spectroscopy (XANES) measurements of a spin-crossover system, iron(II) tris(2,2'-bipyridine) in water. The data indicate that the low-spin to high-spin transition can be modeled by single-exponential kinetics...

  8. Coherent cavity-enhanced dual-comb spectroscopy.

    Science.gov (United States)

    Fleisher, Adam J; Long, David A; Reed, Zachary D; Hodges, Joseph T; Plusquellic, David F

    2016-05-16

    Dual-comb spectroscopy allows for the rapid, multiplexed acquisition of high-resolution spectra without the need for moving parts or low-resolution dispersive optics. This method of broadband spectroscopy is most often accomplished via tight phase locking of two mode-locked lasers or via sophisticated signal processing algorithms, and therefore, long integration times of phase coherent signals are difficult to achieve. Here we demonstrate an alternative approach to dual-comb spectroscopy using two phase modulator combs originating from a single continuous-wave laser capable of > 2 hours of coherent real-time averaging. The dual combs were generated by driving the phase modulators with step-recovery diodes where each comb consisted of > 250 teeth with 203 MHz spacing and spanned > 50 GHz region in the near-infrared. The step-recovery diodes are passive devices that provide low-phase-noise harmonics for efficient coupling into an enhancement cavity at picowatt optical powers. With this approach, we demonstrate the sensitivity to simultaneously monitor ambient levels of CO2, CO, HDO, and H2O in a single spectral region at a maximum acquisition rate of 150 kHz. Robust, compact, low-cost and widely tunable dual-comb systems could enable a network of distributed multiplexed optical sensors.

  9. Femtosecond Pump-Push-Probe and Pump-Dump-Probe Spectroscopy of Conjugated Polymers: New Insight and Opportunities.

    Science.gov (United States)

    Kee, Tak W

    2014-09-18

    Conjugated polymers are an important class of soft materials that exhibit a wide range of applications. The excited states of conjugated polymers, often referred to as excitons, can either deactivate to yield the ground state or dissociate in the presence of an electron acceptor to form charge carriers. These interesting properties give rise to their luminescence and the photovoltaic effect. Femtosecond spectroscopy is a crucial tool for studying conjugated polymers. Recently, more elaborate experimental configurations utilizing three optical pulses, namely, pump-push-probe and pump-dump-probe, have been employed to investigate the properties of excitons and charge-transfer states of conjugated polymers. These studies have revealed new insight into femtosecond torsional relaxation and detrapping of bound charge pairs of conjugated polymers. This Perspective highlights (1) the recent achievements by several research groups in using pump-push-probe and pump-dump-probe spectroscopy to study conjugated polymers and (2) future opportunities and potential challenges of these techniques.

  10. Femtosecond nonlinear spectroscopy at surfaces: Second-harmonic probing of hole burning at the Si(111)7x7 surface and Fourier-transform sum-frequency vibrational spectroscopy

    International Nuclear Information System (INIS)

    McGuire, John Andrew

    2004-01-01

    The high temporal resolution and broad bandwidth of a femtosecond laser system are exploited in a pair of nonlinear optical studies of surfaces. The dephasing dynamics of resonances associated with the adatom dangling bonds of the Si(111)7 x 7 surface are explored by transient second-harmonic hole burning, a process that can be described as a fourth-order nonlinear optical process. Spectral holes produced by a 100 fs pump pulse at about 800 nm are probed by the second harmonic signal of a 100 fs pulse tunable around 800 nm. The measured spectral holes yield homogeneous dephasing times of a few tens of femtoseconds. Fits with a Lorentzian spectral hole centered at zero probe detuning show a linear dependence of the hole width on pump fluence, which suggests that charge carrier-carrier scattering dominates the dephasing dynamics at the measured excitation densities. Extrapolation of the deduced homogeneous dephasing times to zero excitation density yields an intrinsic dephasing time of ∼ 70 fs. The presence of a secondary spectral hole indicates that scattering of the surface electrons with surface optical phonons at 570 cm -1 occurs within the first 200 fs after excitation. The broad bandwidth of femtosecond IR pulses is used to perform IR-visible sum frequency vibrational spectroscopy. By implementing a Fourier-transform technique, we demonstrate the ability to obtain sub-laser-bandwidth spectral resolution. FT-SFG yields a greater signal when implemented with a stretched visible pulse than with a femtosecond visible pulse. However, when compared with multichannel spectroscopy using a femtosecond IR pulse but a narrowband visible pulse, Fourier-transform SFG is found to have an inferior signal-to-noise ratio. A mathematical analysis of the signal-to-noise ratio illustrates the constraints on the Fourier-transform approach

  11. Femtosecond nonlinear spectroscopy at surfaces: Second-harmonic probing of hole burning at the Si(111)7x7 surface and fourier-transform sum-frequency vibrational spectroscopy

    Energy Technology Data Exchange (ETDEWEB)

    McGuire, John Andrew [Univ. of California, Berkeley, CA (United States)

    2004-11-24

    The high temporal resolution and broad bandwidth of a femtosecond laser system are exploited in a pair of nonlinear optical studies of surfaces. The dephasing dynamics of resonances associated with the adatom dangling bonds of the Si(111)7 x 7 surface are explored by transient second-harmonic hole burning, a process that can be described as a fourth-order nonlinear optical process. Spectral holes produced by a 100 fs pump pulse at about 800 nm are probed by the second harmonic signal of a 100 fs pulse tunable around 800 nm. The measured spectral holes yield homogeneous dephasing times of a few tens of femtoseconds. Fits with a Lorentzian spectral hole centered at zero probe detuning show a linear dependence of the hole width on pump fluence, which suggests that charge carrier-carrier scattering dominates the dephasing dynamics at the measured excitation densities. Extrapolation of the deduced homogeneous dephasing times to zero excitation density yields an intrinsic dephasing time of {approx} 70 fs. The presence of a secondary spectral hole indicates that scattering of the surface electrons with surface optical phonons at 570 cm-1 occurs within the first 200 fs after excitation. The broad bandwidth of femtosecond IR pulses is used to perform IR-visible sum frequency vibrational spectroscopy. By implementing a Fourier-transform technique, we demonstrate the ability to obtain sub-laser-bandwidth spectral resolution. FT-SFG yields a greater signal when implemented with a stretched visible pulse than with a femtosecond visible pulse. However, when compared with multichannel spectroscopy using a femtosecond IR pulse but a narrowband visible pulse, Fourier-transform SFG is found to have an inferior signal-to-noise ratio. A mathematical analysis of the signal-to-noise ratio illustrates the constraints on the Fourier-transform approach.

  12. Time resolved infrared spectroscopy of femtosecond proton dynamics in the liquid phase

    International Nuclear Information System (INIS)

    Amir, W.

    2003-12-01

    This work of thesis aims to understand the strong mobility of protons in water. Water is fundamental to life and mediates many chemical and biological processes. However this liquid is poorly understood at the molecular level. The richness of interdisciplinary sciences allows us to study the properties which make it so unique. The technique used for this study was the femtosecond time resolved vibrational spectroscopy. Several experiments were carried out to characterize the femtosecond proton dynamics in water. The visualization of the rotation of water molecules obtained by anisotropy measurements will be presented. This experiment is carried out in isotopic water HDO/D 2 O for reasons of experimental and theoretical suitability. However this is not water. Pure water H 2 O was also studied without thermal effects across vibrations modes. An intermolecular energy resonant transfer was observed. Finally the localized structure of the proton in water (called Eigen form) was clearly experimentally observed. This molecule is implicated in the abnormal mobility of the proton in water (Grotthuss mechanism). (author)

  13. Femtosecond stimulated Raman spectroscopy as a tool to detect molecular vibrations in ground and excited electronic states

    Energy Technology Data Exchange (ETDEWEB)

    Gelin, Maxim F.; Domcke, Wolfgang [Department of Chemistry, Technische Universität München, D-85747 Garching (Germany); Rao, B. Jayachander [Departamento de Química and Centro de Química, Universidade de Coimbra, 3004-535 Coimbra (Portugal)

    2016-05-14

    We give a detailed theoretical analysis of the simplest variant of femtosecond stimulated Raman spectroscopy, where a picosecond Raman pump pulse and a femtosecond Raman probe pulse are applied resonantly to a chromophore in thermal equilibrium in the ground electronic state. We demonstrate that this technique is capable of the detection of dephasing-free Raman-like lines revealing vibrational modes not only in the electronic ground state but also in the excited electronic state of the chromophore. The analytical results obtained with simplifying assumptions for the shape of the laser pulses are substantiated by numerical simulations with realistic laser pulses, employing the equation-of-motion phase-matching approach.

  14. Coherent scatter-controlled phase-change grating structures in silicon using femtosecond laser pulses.

    Science.gov (United States)

    Fuentes-Edfuf, Yasser; Garcia-Lechuga, Mario; Puerto, Daniel; Florian, Camilo; Garcia-Leis, Adianez; Sanchez-Cortes, Santiago; Solis, Javier; Siegel, Jan

    2017-07-04

    Periodic structures of alternating amorphous-crystalline fringes have been fabricated in silicon using repetitive femtosecond laser exposure (800 nm wavelength and 120 fs duration). The method is based on the interference of the incident laser light with far- and near-field scattered light, leading to local melting at the interference maxima, as demonstrated by femtosecond microscopy. Exploiting this strategy, lines of highly regular amorphous fringes can be written. The fringes have been characterized in detail using optical microscopy combined modelling, which enables a determination of the three-dimensional shape of individual fringes. 2D micro-Raman spectroscopy reveals that the space between amorphous fringes remains crystalline. We demonstrate that the fringe period can be tuned over a range of 410 nm - 13 µm by changing the angle of incidence and inverting the beam scan direction. Fine control over the lateral dimensions, thickness, surface depression and optical contrast of the fringes is obtained via adjustment of pulse number, fluence and spot size. Large-area, highly homogeneous gratings composed of amorphous fringes with micrometer width and millimeter length can readily be fabricated. The here presented fabrication technique is expected to have applications in the fields of optics, nanoelectronics, and mechatronics and should be applicable to other materials.

  15. Optimally shaped narrowband picosecond pulses for femtosecond stimulated Raman spectroscopy.

    Science.gov (United States)

    Hoffman, David P; Valley, David; Ellis, Scott R; Creelman, Mark; Mathies, Richard A

    2013-09-09

    A comparison between a Fabry-Pérot etalon filter and a conventional grating filter for producing the picosecond (ps) Raman pump pulses for femtosecond stimulated Raman spectroscopy (FSRS) is presented. It is shown that for pulses of equal energy the etalon filter produces Raman signals twice as large as that of the grating filter while suppressing the electronically resonant background signal. The time asymmetric profile of the etalon-generated pulse is shown to be responsible for both of these observations. A theoretical discussion is presented which quantitatively supports this hypothesis. It is concluded that etalons are the ideal method for the generation of narrowband ps pulses for FSRS because of the optical simplicity, efficiency, improved FSRS intensity and reduced backgrounds.

  16. Laser Spectroscopy and Frequency Combs

    International Nuclear Information System (INIS)

    Hänsch, Theodor W; Picqué, Nathalie

    2013-01-01

    The spectrum of a frequency comb, commonly generated by a mode-locked femtosecond laser consists of several hundred thousand precisely evenly spaced spectral lines. Such laser frequency combs have revolutionized the art measuring the frequency of light, and they provide the long-missing clockwork for optical atomic clocks. The invention of the frequency comb technique has been motivated by precision laser spectroscopy of the simple hydrogen atom. The availability of commercial instruments is facilitating the evolution of new applications far beyond the original purpose. Laser combs are becoming powerful instruments for broadband molecular spectroscopy by dramatically improving the resolution and recording speed of Fourier spectrometers and by creating new opportunities for highly multiplexed nonlinear spectroscopy, such as two-photon spectroscopy or coherent Raman spectroscopy. Other emerging applications of frequency combs range from fundamental research in astronomy, chemistry, or attosecond science to telecommunications and satellite navigation

  17. A versatile setup for ultrafast broadband optical spectroscopy of coherent collective modes in strongly correlated quantum systems

    Directory of Open Access Journals (Sweden)

    Edoardo Baldini

    2016-11-01

    Full Text Available A femtosecond pump-probe setup is described that is optimised for broadband transient reflectivity experiments on solid samples over a wide temperature range. By combining high temporal resolution and a broad detection window, this apparatus can investigate the interplay between coherent collective modes and high-energy electronic excitations, which is a distinctive characteristic of correlated electron systems. Using a single-shot readout array detector at frame rates of 10 kHz allows resolving coherent oscillations with amplitudes <10−4. We demonstrate its operation on the charge-transfer insulator La2CuO4, revealing coherent phonons with frequencies up to 13 THz and providing access into their Raman matrix elements.

  18. Time resolved infrared spectroscopy of femtosecond proton dynamics in the liquid phase; Spectroscopie infrarouge resolue en temps pour l'etude de la dynamique femtoseconde du proton en phase liquide

    Energy Technology Data Exchange (ETDEWEB)

    Amir, W

    2003-12-15

    This work of thesis aims to understand the strong mobility of protons in water. Water is fundamental to life and mediates many chemical and biological processes. However this liquid is poorly understood at the molecular level. The richness of interdisciplinary sciences allows us to study the properties which make it so unique. The technique used for this study was the femtosecond time resolved vibrational spectroscopy. Several experiments were carried out to characterize the femtosecond proton dynamics in water. The visualization of the rotation of water molecules obtained by anisotropy measurements will be presented. This experiment is carried out in isotopic water HDO/D{sub 2}O for reasons of experimental and theoretical suitability. However this is not water. Pure water H{sub 2}O was also studied without thermal effects across vibrations modes. An intermolecular energy resonant transfer was observed. Finally the localized structure of the proton in water (called Eigen form) was clearly experimentally observed. This molecule is implicated in the abnormal mobility of the proton in water (Grotthuss mechanism). (author)

  19. Laser pulses for coherent xuv Raman excitation

    Science.gov (United States)

    Greenman, Loren; Koch, Christiane P.; Whaley, K. Birgitta

    2015-07-01

    We combine multichannel electronic structure theory with quantum optimal control to derive femtosecond-time-scale Raman pulse sequences that coherently populate a valence excited state. For a neon atom, Raman target populations of up to 13% are obtained. Superpositions of the ground and valence Raman states with a controllable relative phase are found to be reachable with up to 4.5% population and arbitrary phase control facilitated by the pump pulse carrier-envelope phase. Analysis of the optimized pulse structure reveals a sequential mechanism in which the valence excitation is reached via a fast (femtosecond) population transfer through an intermediate resonance state in the continuum rather than avoiding intermediate-state population with simultaneous or counterintuitive (stimulated Raman adiabatic passage) pulse sequences. Our results open a route to coupling valence excitations and core-hole excitations in molecules and aggregates that locally address specific atoms and represent an initial step towards realization of multidimensional spectroscopy in the xuv and x-ray regimes.

  20. Ultrafast pre-breakdown dynamics in Al₂O₃SiO₂ reflector by femtosecond UV laser spectroscopy.

    Science.gov (United States)

    Du, Juan; Li, Zehan; Xue, Bing; Kobayashi, Takayoshi; Han, Dongjia; Zhao, Yuanan; Leng, Yuxin

    2015-06-29

    Ultrafast carrier dynamics in Al2O3/SiO2 high reflectors has been investigated by UV femtosecond laser. It is identified by laser spectroscopy that, the carrier dynamics contributed from the front few layers of Al2O3 play a dominating role in the initial laser-induced damage of the UV reflector. Time-resolved reflection decrease after the UV excitation is observed, and conduction electrons is found to relaxed to a mid-gap defect state locating about one photon below the conduction band . To interpret the laser induced carrier dynamics further, a theoretical model including electrons relaxation to a mid-gap state is built, and agrees very well with the experimental results.. To the best of our knowledge, this is the first study on the pre-damage dynamics in UV high reflector induced by femtosecond UV laser.

  1. Direct measurement of exciton valley coherence in monolayer WSe2

    KAUST Repository

    Hao, Kai

    2016-02-29

    In crystals, energy band extrema in momentum space can be identified by a valley index. The internal quantum degree of freedom associated with valley pseudospin indices can act as a useful information carrier, analogous to electronic charge or spin. Interest in valleytronics has been revived in recent years following the discovery of atomically thin materials such as graphene and transition metal dichalcogenides. However, the valley coherence time—a crucial quantity for valley pseudospin manipulation—is difficult to directly probe. In this work, we use two-dimensional coherent spectroscopy to resonantly generate and detect valley coherence of excitons (Coulomb-bound electron–hole pairs) in monolayer WSe2 (refs ,). The imposed valley coherence persists for approximately one hundred femtoseconds. We propose that the electron–hole exchange interaction provides an important decoherence mechanism in addition to exciton population recombination. This work provides critical insight into the requirements and strategies for optical manipulation of the valley pseudospin for future valleytronics applications.

  2. Generation of Femtosecond Electron and Photon Pulses

    CERN Document Server

    Thongbai, Chitrlada; Kangrang, Nopadol; Kusoljariyakul, Keerati; Rhodes, Michael W; Rimjaem, Sakhorn; Saisut, Jatuporn; Vilaithong, Thiraphat; Wichaisirimongkol, Pathom; Wiedemann, Helmut

    2005-01-01

    Femtosecond electron and photon pulses become a tool of interesting important to study dynamics at molecular or atomic levels. Such short pulses can be generated from a system consisting of an RF-gun with a thermionic cathode, an alpha magnet as a magnetic bunch compressor, and a linear accelerator. The femtosecond electron pulses can be used directly or used as sources to produce electromagnetic radiation of equally short pulses by choosing certain kind of radiation pruduction processes. At the Fast Neutron Research Facility (Thailand), we are especially interested in production of radiation in Far-infrared and X-ray regime. In the far-infrared wavelengths which are longer than the femtosecond pulse length, the radiation is emitted coherently producing intense radiation. In the X-ray regime, development of femtosecond X-ray source is crucial for application in ultrafast science.

  3. Characterization of organic photovoltaic devices using femtosecond laser induced breakdown spectroscopy

    Science.gov (United States)

    Banerjee, S. P.; Sarnet, Thierry; Siozos, Panayiotis; Loulakis, Michalis; Anglos, Demetrios; Sentis, Marc

    2017-10-01

    The potential of laser induced breakdown spectroscopy (LIBS) as a non-contact probe, for characterizing organic photovoltaic devices during selective laser scribing, was investigated. Samples from organic solar cells were studied, which consisted of several layers of materials including a top electrode (Al, Mg or Mo), organic layer, bottom electrode (indium tin oxide), silicon nitride barrier layer and substrate layer situated from the top consecutively. The thickness of individual layers varies from 115 to 250 nm. LIBS measurements were performed by use of a 40 femtosecond Ti:Sapphire laser operated at very low pulse energy (solar cell structure, demonstrating the potential of LIBS for fast, non-contact characterization of organic photovoltaic coatings.

  4. Ionization and dissociation dynamics of vinyl bromide probed by femtosecond extreme ultraviolet transient absorption spectroscopy

    International Nuclear Information System (INIS)

    Lin, Ming-Fu; Neumark, Daniel M.; Gessner, Oliver; Leone, Stephen R.

    2014-01-01

    Strong-field induced ionization and dissociation dynamics of vinyl bromide, CH 2 =CHBr, are probed using femtosecond extreme ultraviolet (XUV) transient absorption spectroscopy. Strong-field ionization is initiated with an intense femtosecond, near infrared (NIR, 775 nm) laser field. Femtosecond XUV pulses covering the photon energy range of 50-72 eV probe the subsequent dynamics by measuring the time-dependent spectroscopic features associated with transitions of the Br (3d) inner-shell electrons to vacancies in molecular and atomic valence orbitals. Spectral signatures are observed for the depletion of neutral C 2 H 3 Br, the formation of C 2 H 3 Br + ions in their ground (X ~ ) and first excited (A ~ ) states, the production of C 2 H 3 Br ++ ions, and the appearance of neutral Br ( 2 P 3/2 ) atoms by dissociative ionization. The formation of free Br ( 2 P 3/2 ) atoms occurs on a timescale of 330 ± 150 fs. The ionic A ~ state exhibits a time-dependent XUV absorption energy shift of ∼0.4 eV within the time window of the atomic Br formation. The yield of Br atoms correlates with the yield of parent ions in the A ~ state as a function of NIR peak intensity. The observations suggest that a fraction of vibrationally excited C 2 H 3 Br + (A ~ ) ions undergoes intramolecular vibrational energy redistribution followed by the C–Br bond dissociation. The C 2 H 3 Br + (X ~ ) products and the majority of the C 2 H 3 Br ++ ions are relatively stable due to a deeper potential well and a high dissociation barrier, respectively. The results offer powerful new insights about orbital-specific electronic processes in high field ionization, coupled vibrational relaxation and dissociation dynamics, and the correlation of valence hole-state location and dissociation in polyatomic molecules, all probed simultaneously by ultrafast table-top XUV spectroscopy

  5. Temporal dependence of the enhancement of material removal in femtosecond-nanosecond dual-pulse laser-induced breakdown spectroscopy

    International Nuclear Information System (INIS)

    Scaffidi, Jon; Pearman, William; Carter, J. Chance; Colston, Bill W. Jr.; Angel, S. Michael

    2004-01-01

    Despite the large neutral atomic and ionic emission enhancements that have been noted in collinear and orthogonal dual-pulse laser-induced breakdown spectroscopy, the source or sources of these significant signal and signal-to-noise ratio improvements have yet to be explained. In the research reported herein, the combination of a femtosecond preablative air spark and a nanosecond ablative pulse yields eightfold and tenfold material removal improvement for brass and aluminum, respectively, but neutral atomic emission is enhanced by only a factor of 3-4. Additionally, temporal correlation between enhancement of material removal and of atomic emission is quite poor, suggesting that the atomic-emission enhancements noted in the femtosecond-nanosecond pulse configuration result in large part from some source other than simple improvement in material removal

  6. Analysis of copper contamination in transformer insulating material with nanosecond- and femtosecond-laser-induced breakdown spectroscopy

    Science.gov (United States)

    Aparna, N.; Vasa, N. J.; Sarathi, R.

    2018-06-01

    This work examines the oil-impregnated pressboard insulation of high-voltage power transformers, for the determination of copper contamination. Nanosecond- and femtosecond-laser-induced breakdown spectroscopy revealed atomic copper lines and molecular copper monoxide bands due to copper sulphide diffusion. X-ray diffraction studies also indicated the presence of CuO emission. Elemental and molecular mapping compared transformer insulating material ageing in different media—air, N2, He and vacuum.

  7. Ultra-short laser pulse ablation using shear-force feedback: Femtosecond laser induced breakdown spectroscopy feasibility study

    International Nuclear Information System (INIS)

    Samek, Ota; Kurowski, Andre; Kittel, Silke; Kukhlevsky, Sergei; Hergenroeder, Roland

    2005-01-01

    This work reports on a feasibility study of proximity ablation using femtosecond pulses. Ultra-short pulses were launched to a bare tapered optical fiber and delivered to the sample. The tip-sample distance was controlled by means of shear-force feedback. Consequently, ablation craters with submicrometer dimensions were obtained. Potential analytical applications for Laser Induced Breakdown Spectroscopy (LIBS) technique, such as e.g. inclusions in steel or bio cells, are suggested

  8. Communication: Coherences observed in vivo in photosynthetic bacteria using two-dimensional electronic spectroscopy

    International Nuclear Information System (INIS)

    Dahlberg, Peter D.; Norris, Graham J.; Wang, Cheng; Viswanathan, Subha; Singh, Ved P.; Engel, Gregory S.

    2015-01-01

    Energy transfer through large disordered antenna networks in photosynthetic organisms can occur with a quantum efficiency of nearly 100%. This energy transfer is facilitated by the electronic structure of the photosynthetic antennae as well as interactions between electronic states and the surrounding environment. Coherences in time-domain spectroscopy provide a fine probe of how a system interacts with its surroundings. In two-dimensional electronic spectroscopy, coherences can appear on both the ground and excited state surfaces revealing detailed information regarding electronic structure, system-bath coupling, energy transfer, and energetic coupling in complex chemical systems. Numerous studies have revealed coherences in isolated photosynthetic pigment-protein complexes, but these coherences have not been observed in vivo due to the small amplitude of these signals and the intense scatter from whole cells. Here, we present data acquired using ultrafast video-acquisition gradient-assisted photon echo spectroscopy to observe quantum beating signals from coherences in vivo. Experiments were conducted on isolated light harvesting complex II (LH2) from Rhodobacter sphaeroides, whole cells of R. sphaeroides, and whole cells of R. sphaeroides grown in 30% deuterated media. A vibronic coherence was observed following laser excitation at ambient temperature between the B850 and the B850 ∗ states of LH2 in each of the 3 samples with a lifetime of ∼40-60 fs

  9. Communication: Coherences observed in vivo in photosynthetic bacteria using two-dimensional electronic spectroscopy

    Energy Technology Data Exchange (ETDEWEB)

    Dahlberg, Peter D. [Graduate Program in the Biophysical Sciences, Institute for Biophysical Dynamics, and The James Franck Institute, The University of Chicago, Chicago, Illinois 60637 (United States); Norris, Graham J.; Wang, Cheng; Viswanathan, Subha; Singh, Ved P.; Engel, Gregory S., E-mail: gsengel@uchicago.edu [Department of Chemistry, Institute for Biophysical Dynamics, and The James Franck Institute, The University of Chicago, Chicago, Illinois 60637 (United States)

    2015-09-14

    Energy transfer through large disordered antenna networks in photosynthetic organisms can occur with a quantum efficiency of nearly 100%. This energy transfer is facilitated by the electronic structure of the photosynthetic antennae as well as interactions between electronic states and the surrounding environment. Coherences in time-domain spectroscopy provide a fine probe of how a system interacts with its surroundings. In two-dimensional electronic spectroscopy, coherences can appear on both the ground and excited state surfaces revealing detailed information regarding electronic structure, system-bath coupling, energy transfer, and energetic coupling in complex chemical systems. Numerous studies have revealed coherences in isolated photosynthetic pigment-protein complexes, but these coherences have not been observed in vivo due to the small amplitude of these signals and the intense scatter from whole cells. Here, we present data acquired using ultrafast video-acquisition gradient-assisted photon echo spectroscopy to observe quantum beating signals from coherences in vivo. Experiments were conducted on isolated light harvesting complex II (LH2) from Rhodobacter sphaeroides, whole cells of R. sphaeroides, and whole cells of R. sphaeroides grown in 30% deuterated media. A vibronic coherence was observed following laser excitation at ambient temperature between the B850 and the B850{sup ∗} states of LH2 in each of the 3 samples with a lifetime of ∼40-60 fs.

  10. Study of the Bulk Charge Carrier Dynamics in Anatase and Rutile TiO2 Single Crystals by Femtosecond Time Resolved Spectroscopy

    KAUST Repository

    Maity, Partha; Mohammed, Omar F.; Katsiev, Khabiboulakh; Idriss, Hicham

    2018-01-01

    as the best model for fundamental studies. Their ultrafast charge carrier dynamics especially on TiO2 anatase single crystal (the most active phase) are unresolved. Here femtosecond time resolved spectroscopy (TRS) was carried out to explore the dynamics

  11. Femtosecond tunneling response of surface plasmon polaritons

    DEFF Research Database (Denmark)

    Keil, Ulrich Dieter Felix; Ha, Taekjip; Jensen, Jacob Riis

    1998-01-01

    We obtain femtosecond (200 fs) time resolution using a scanning tunneling microscope on surface plasmon polaritons (SPPs) generated by two 100 fs laser beams in total internal reflection geometry. The tunneling gap dependence of the signal clearly indicates the tunneling origin of the signal...... and suggests that nanometer spatial resolution can be obtained together with femtosecond temporal resolution. This fast response, in contrast to the picosecond decay time of SPPs revealed by differential reflectivity measurements, can be attributed to a coherent superposition of SPPs rectified at the tunneling...

  12. Femtosecond spectroscopy of bacterial photosynthesis--towards an understanding of the most important energy conversion process on earth

    International Nuclear Information System (INIS)

    Zinth, W.; Hamm, P.; Arlt, T.; Wachtveitl, J.

    1996-01-01

    Reaction centers of bacterial photosynthesis are ideal systems to study photosynthetic energy conversion. Femtosecond spectroscopy has delivered extensive information on the molecular mechanisms of the primary electron transfer. The data show, that primary electron transfer is an ultrafast stepwise reaction, where the electron is transferred via closely spaced pigments with reaction times as fast as 0.9 ps and 3.5 ps. Experiments on mutated and modified reaction centers allow to determine the energetics of the various intermediates in the reaction center. Recently, femtosecond experiments with light pulses in the mid infrared have shown, that an additional fast process occurs on the 200 fs timescale in the initially excited special pair. Only afterwards the well established electron transfer reactions take place. This fast process may be of importance for the optimization of the primary reaction

  13. Extended ABCD matrix formalism for the description of femtosecond diffraction patterns; application to femtosecond digital in-line holography with anamorphic optical systems.

    Science.gov (United States)

    Brunel, Marc; Shen, Huanhuan; Coetmellec, Sebastien; Lebrun, Denis

    2012-03-10

    We present a new model to predict diffraction patterns of femtosecond pulses through complex optical systems. The model is based on the extension of an ABCD matrix formalism combined with generalized Huygens-Fresnel transforms (already used in the CW regime) to the femtosecond regime. The model is tested to describe femtosecond digital in-line holography experiments realized in situ through a cylindrical Plexiglas pipe. The model allows us to establish analytical relations that link the holographic reconstruction process to the experimental parameters of the pipe and of the incident beam itself. Simulations and experimental results are in good concordance. Femtosecond digital in-line holography is shown to allow significant coherent noise reduction, and this model will be particularly efficient to describe a wide range of optical geometries. More generally, the model developed can be easily used in any experiment where the knowledge of the precise evolution of femtosecond transverse patterns is required.

  14. Longitudinal profile monitors using Coherent Smith–Purcell radiation

    International Nuclear Information System (INIS)

    Andrews, H.L.; Bakkali Taheri, F.; Barros, J.; Bartolini, R.; Cassinari, L.; Clarke, C.; Le Corre, S.; Delerue, N.; Doucas, G.; Fuster-Martinez, N.; Konoplev, I.; Labat, M.; Perry, C.; Reichold, A.; Stevenson, S.; Vieille Grosjean, M.

    2014-01-01

    Coherent Smith–Purcell radiation has the potential of providing information on the longitudinal profile of an electron bunch. The E-203 experiment at the FACET User Facility measures bunch profiles from the SLAC linac in the hundreds of femtoseconds range and the SPESO collaboration at Synchrotron SOLEIL is planning to make an accurate 2D map of the Coherent Smith–Purcell Radiation emission. - Highlights: • Coherent Smith–Purcell radiation can be used to measure longitudinal profiles in the hundred femtoseconds range. • The current setup used by the E-203 collaboration require integration over several shots and gratings. • Reducing the integration over a single shot and a single grating still yields a meaning full result. • The SPESO experiment at SOLEIL will make a systematic study of Coherent Smith–Purcell radiation

  15. Polarization control of multi-photon absorption under intermediate femtosecond laser field

    International Nuclear Information System (INIS)

    Cheng Wenjing; Liang Guo; Wu Ping; Liu Pei; Jia Tianqing; Sun Zhenrong; Zhang Shian

    2017-01-01

    It has been shown that the femtosecond laser polarization modulation is a very simple and well-established method to control the multi-photon absorption process by the light–matter interaction. Previous studies mainly focused on the multi-photon absorption control in the weak field. In this paper, we further explore the polarization control behavior of multi-photon absorption process in the intermediate femtosecond laser field. In the weak femtosecond laser field, the second-order perturbation theory can well describe the non-resonant two-photon absorption process. However, the higher order nonlinear effect (e.g., four-photon absorption) can occur in the intermediate femtosecond laser field, and thus it is necessary to establish new theoretical model to describe the multi-photon absorption process, which includes the two-photon and four-photon transitions. Here, we construct a fourth-order perturbation theory to study the polarization control behavior of this multi-photon absorption under the intermediate femtosecond laser field excitation, and our theoretical results show that the two-photon and four-photon excitation pathways can induce a coherent interference, while the coherent interference is constructive or destructive that depends on the femtosecond laser center frequency. Moreover, the two-photon and four-photon transitions have the different polarization control efficiency, and the four-photon absorption can obtain the higher polarization control efficiency. Thus, the polarization control efficiency of the whole excitation process can be increased or decreased by properly designing the femtosecond laser field intensity and laser center frequency. These studies can provide a clear physical picture for understanding and controlling the multi-photon absorption process in the intermediate femtosecond laser field, and also can provide a theoretical guidance for the future experimental realization. (paper)

  16. Femtosecond laser pulses for fast 3-D surface profilometry of microelectronic step-structures.

    Science.gov (United States)

    Joo, Woo-Deok; Kim, Seungman; Park, Jiyong; Lee, Keunwoo; Lee, Joohyung; Kim, Seungchul; Kim, Young-Jin; Kim, Seung-Woo

    2013-07-01

    Fast, precise 3-D measurement of discontinuous step-structures fabricated on microelectronic products is essential for quality assurance of semiconductor chips, flat panel displays, and photovoltaic cells. Optical surface profilers of low-coherence interferometry have long been used for the purpose, but the vertical scanning range and speed are limited by the micro-actuators available today. Besides, the lateral field-of-view extendable for a single measurement is restricted by the low spatial coherence of broadband light sources. Here, we cope with the limitations of the conventional low-coherence interferometer by exploiting unique characteristics of femtosecond laser pulses, i.e., low temporal but high spatial coherence. By scanning the pulse repetition rate with direct reference to the Rb atomic clock, step heights of ~69.6 μm are determined with a repeatability of 10.3 nm. The spatial coherence of femtosecond pulses provides a large field-of-view with superior visibility, allowing for a high volume measurement rate of ~24,000 mm3/s.

  17. Terahertz Coherent Synchrotron Radiation from Femtosecond Laser Modulation of the Electron Beam at the Advanced Light Source

    CERN Document Server

    Byrd, John; Martin, Michael C; Robin, David; Sannibale, Fernando; Schönlein, Robert W; Zholents, Alexander; Zolotorev, Max S

    2005-01-01

    At the Advanced Light Source (ALS), the "femtoslicing" beamline is in operation since 1999 for the production of x-ray synchrotron radiation pulses with femtosecond duration. The mechanism used for generating the short x-ray pulses induces at the same time temporary structures in the electron bunch longitudinal distribution with very short characteristic length. Such structures emit intense coherent synchrotron radiation (CSR) in the terahertz frequency range. This CSR, whose measured intensity is routinely used as a diagnostics for the tune-up of the femtoslicing experiments, represents a potential source of terahertz radiation with very interesting features. Several measurements have been performed for its characterization and in this paper an updated description of the experimental results and of their interpretation is presented.

  18. Femtosecond Synchronization of Laser Systems for the LCLS

    International Nuclear Information System (INIS)

    Byrd, John; Doolittle, Lawrence; Huang, Gang; Staples, John; Wilcox, Russell; Arthur, John; Frisch, Josef; White, William

    2012-01-01

    The scientific potential of femtosecond x-ray pulses at linac-driven free-electron lasers such as the Linac Coherent Light Source is tremendous. Time-resolved pump-probe experiments require a measure of the relative arrival time of each x-ray pulse with respect to the experimental pump laser. An optical timing system based on stabilized fiber links has been developed for the LCLS to provide this synchronization. Preliminary results show synchronization of the installed stabilized links at the sub-20-femtosecond level. We present details of the implementation at LCLS and potential for future development.

  19. Nanoflow electrospinning serial femtosecond crystallography

    International Nuclear Information System (INIS)

    Sierra, Raymond G.; Laksmono, Hartawan; Kern, Jan; Tran, Rosalie; Hattne, Johan; Alonso-Mori, Roberto; Lassalle-Kaiser, Benedikt; Glöckner, Carina; Hellmich, Julia; Schafer, Donald W.; Echols, Nathaniel; Gildea, Richard J.; Grosse-Kunstleve, Ralf W.; Sellberg, Jonas; McQueen, Trevor A.; Fry, Alan R.; Messerschmidt, Marc M.; Miahnahri, Alan; Seibert, M. Marvin; Hampton, Christina Y.; Starodub, Dmitri; Loh, N. Duane; Sokaras, Dimosthenis; Weng, Tsu-Chien; Zwart, Petrus H.; Glatzel, Pieter; Milathianaki, Despina; White, William E.; Adams, Paul D.; Williams, Garth J.; Boutet, Sébastien; Zouni, Athina; Messinger, Johannes; Sauter, Nicholas K.; Bergmann, Uwe; Yano, Junko; Yachandra, Vittal K.; Bogan, Michael J.

    2012-01-01

    A low flow rate liquid microjet method for delivery of hydrated protein crystals to X-ray lasers is presented. Linac Coherent Light Source data demonstrates serial femtosecond protein crystallography with micrograms, a reduction of sample consumption by orders of magnitude. An electrospun liquid microjet has been developed that delivers protein microcrystal suspensions at flow rates of 0.14–3.1 µl min −1 to perform serial femtosecond crystallography (SFX) studies with X-ray lasers. Thermolysin microcrystals flowed at 0.17 µl min −1 and diffracted to beyond 4 Å resolution, producing 14 000 indexable diffraction patterns, or four per second, from 140 µg of protein. Nanoflow electrospinning extends SFX to biological samples that necessitate minimal sample consumption

  20. Nanoflow electrospinning serial femtosecond crystallography

    Energy Technology Data Exchange (ETDEWEB)

    Sierra, Raymond G.; Laksmono, Hartawan [SLAC National Accelerator Laboratory, Menlo Park, CA 94025 (United States); Kern, Jan [Lawrence Berkeley National Laboratory, Berkeley, CA 94720 (United States); SLAC National Accelerator Laboratory, Menlo Park, CA 94025 (United States); Tran, Rosalie; Hattne, Johan [Lawrence Berkeley National Laboratory, Berkeley, CA 94720 (United States); Alonso-Mori, Roberto [SLAC National Accelerator Laboratory, Menlo Park, CA 94025 (United States); Lassalle-Kaiser, Benedikt [Lawrence Berkeley National Laboratory, Berkeley, CA 94720 (United States); Glöckner, Carina; Hellmich, Julia [Technische Universität Berlin, Strasse des 17 Juni 135, 10623 Berlin (Germany); Schafer, Donald W. [SLAC National Accelerator Laboratory, Menlo Park, CA 94025 (United States); Echols, Nathaniel; Gildea, Richard J.; Grosse-Kunstleve, Ralf W. [Lawrence Berkeley National Laboratory, Berkeley, CA 94720 (United States); Sellberg, Jonas [SLAC National Accelerator Laboratory, Menlo Park, CA 94025 (United States); Stockholm University, S-106 91 Stockholm (Sweden); McQueen, Trevor A. [Stanford University, Stanford, CA 94025 (United States); Fry, Alan R.; Messerschmidt, Marc M.; Miahnahri, Alan; Seibert, M. Marvin; Hampton, Christina Y.; Starodub, Dmitri; Loh, N. Duane; Sokaras, Dimosthenis; Weng, Tsu-Chien [SLAC National Accelerator Laboratory, Menlo Park, CA 94025 (United States); Zwart, Petrus H. [Lawrence Berkeley National Laboratory, Berkeley, CA 94720 (United States); Glatzel, Pieter [European Synchrotron Radiation Facility, Grenoble (France); Milathianaki, Despina; White, William E. [SLAC National Accelerator Laboratory, Menlo Park, CA 94025 (United States); Adams, Paul D. [Lawrence Berkeley National Laboratory, Berkeley, CA 94720 (United States); Williams, Garth J.; Boutet, Sébastien [SLAC National Accelerator Laboratory, Menlo Park, CA 94025 (United States); Zouni, Athina [Technische Universität Berlin, Strasse des 17 Juni 135, 10623 Berlin (Germany); Messinger, Johannes [Umeå Universitet, Umeå (Sweden); Sauter, Nicholas K. [Lawrence Berkeley National Laboratory, Berkeley, CA 94720 (United States); Bergmann, Uwe [SLAC National Accelerator Laboratory, Menlo Park, CA 94025 (United States); Yano, Junko; Yachandra, Vittal K. [Lawrence Berkeley National Laboratory, Berkeley, CA 94720 (United States); Bogan, Michael J., E-mail: mbogan@slac.stanford.edu [SLAC National Accelerator Laboratory, Menlo Park, CA 94025 (United States); SLAC National Accelerator Laboratory, Menlo Park, CA 94025 (United States)

    2012-11-01

    A low flow rate liquid microjet method for delivery of hydrated protein crystals to X-ray lasers is presented. Linac Coherent Light Source data demonstrates serial femtosecond protein crystallography with micrograms, a reduction of sample consumption by orders of magnitude. An electrospun liquid microjet has been developed that delivers protein microcrystal suspensions at flow rates of 0.14–3.1 µl min{sup −1} to perform serial femtosecond crystallography (SFX) studies with X-ray lasers. Thermolysin microcrystals flowed at 0.17 µl min{sup −1} and diffracted to beyond 4 Å resolution, producing 14 000 indexable diffraction patterns, or four per second, from 140 µg of protein. Nanoflow electrospinning extends SFX to biological samples that necessitate minimal sample consumption.

  1. Investigation of the S1/ICT equilibrium in fucoxanthin by ultrafast pump-dump-probe and femtosecond stimulated Raman scattering spectroscopy.

    Science.gov (United States)

    Redeckas, Kipras; Voiciuk, Vladislava; Vengris, Mikas

    2016-05-01

    Time-resolved multi-pulse spectroscopic methods-pump-dump-probe (PDP) and femtosecond stimulated Raman spectroscopy-were used to investigate the excited state photodynamics of the carbonyl group containing carotenoid fucoxanthin (FX). PDP experiments show that S1 and ICT states in FX are strongly coupled and that the interstate equilibrium is rapidly (<5 ps) reestablished after one of the interacting states is deliberately depopulated. Femtosecond stimulated Raman scattering experiments indicate that S1 and ICT are vibrationally distinct species. Identification of the FSRS modes on the S1 and ICT potential energy surfaces allows us to predict a possible coupling channel for the state interaction.

  2. Laser excitation of SF6: spectroscopy and coherent pulse propagation effects

    International Nuclear Information System (INIS)

    Cantrell, C.D.; Makarov, A.A.; Louisell, W.H.

    1978-01-01

    Recent theoretical studies of coherent propagation effects in SF 6 and other polyatomic molecules are summarized beginning with an account of relevant aspects of the high-resolution spectroscopy of the ν 3 band of SF 6 . A laser pulse propagating in a molecular gas can acquire new frequencies which were not initially present in the pulse, and, in fact, a wave is coherently generated at the frequency of every molecular transition accessible from the initial molecular energy levels. The possible consequences of coherent generation of sidebands for the multiple-photon excitation of SF 6 and other polyatomic molecules are discussed

  3. Coherent Control of Multiphoton Transitions in the Gas and Condensed Phases with Shaped Ultrashort Pulses

    International Nuclear Information System (INIS)

    Dantus, Marcos

    2008-01-01

    Controlling laser-molecule interactions has become an integral part of developing devices and applications in spectroscopy, microscopy, optical switching, micromachining and photochemistry. Coherent control of multiphoton transitions could bring a significant improvement of these methods. In microscopy, multi-photon transitions are used to activate different contrast agents and suppress background fluorescence; coherent control could generate selective probe excitation. In photochemistry, different dissociative states are accessed through two, three, or more photon transitions; coherent control could be used to select the reaction pathway and therefore the yield-specific products. For micromachining and processing a wide variety of materials, femtosecond lasers are now used routinely. Understanding the interactions between the intense femtosecond pulse and the material could lead to technologically important advances. Pulse shaping could then be used to optimize the desired outcome. The scope of our research program is to develop robust and efficient strategies to control nonlinear laser-matter interactions using ultrashort shaped pulses in gas and condensed phases. Our systematic research has led to significant developments in a number of areas relevant to the AMO Physics group at DOE, among them: generation of ultrashort phase shaped pulses, coherent control and manipulation of quantum mechanical states in gas and condensed phases, behavior of isolated molecules under intense laser fields, behavior of condensed phase matter under intense laser field and implications on micromachining with ultrashort pulses, coherent control of nanoparticles their surface plasmon waves and their nonlinear optical behavior, and observation of coherent Coulomb explosion processes at 10 16 W/cm 2 . In all, the research has resulted in 36 publications (five journal covers) and nine invention disclosures, five of which have continued on to patenting

  4. Femtosecond laser ablation of bovine cortical bone

    Science.gov (United States)

    Cangueiro, Liliana T.; Vilar, Rui; Botelho do Rego, Ana M.; Muralha, Vania S. F.

    2012-12-01

    We study the surface topographical, structural, and compositional modifications induced in bovine cortical bone by femtosecond laser ablation. The tests are performed in air, with a Yb:KYW chirped-pulse-regenerative amplification laser system (500 fs, 1030 nm) at fluences ranging from 0.55 to 2.24 J/cm2. The ablation process is monitored by acoustic emission measurements. The topography of the laser-treated surfaces is studied by scanning electron microscopy, and their constitution is characterized by glancing incidence x-ray diffraction, x-ray photoelectron spectroscopy, Fourier transform infrared spectroscopy, and micro-Raman spectroscopy. The results show that femtosecond laser ablation allows removing bone without melting, carbonization, or cracking. The structure and composition of the remaining tissue are essentially preserved, the only constitutional changes observed being a reduction of the organic material content and a partial recrystallization of hydroxyapatite in the most superficial region of samples. The results suggest that, within this fluence range, ablation occurs by a combination of thermal and electrostatic mechanisms, with the first type of mechanism predominating at lower fluences. The associated thermal effects explain the constitutional changes observed. We show that femtosecond lasers are a promising tool for delicate orthopaedic surgeries, where small amounts of bone must be cut with negligible damage, thus minimizing surgical trauma.

  5. Versatile silicon-waveguide supercontinuum for coherent mid-infrared spectroscopy

    Science.gov (United States)

    Nader, Nima; Maser, Daniel L.; Cruz, Flavio C.; Kowligy, Abijith; Timmers, Henry; Chiles, Jeff; Fredrick, Connor; Westly, Daron A.; Nam, Sae Woo; Mirin, Richard P.; Shainline, Jeffrey M.; Diddams, Scott

    2018-03-01

    Laser frequency combs, with their unique combination of precisely defined spectral lines and broad bandwidth, are a powerful tool for basic and applied spectroscopy. Here, we report offset-free, mid-infrared frequency combs and dual-comb spectroscopy through supercontinuum generation in silicon-on-sapphire waveguides. We leverage robust fabrication and geometrical dispersion engineering of nanophotonic waveguides for multi-band, coherent frequency combs spanning 70 THz in the mid-infrared (2.5 μm-6.2 μm). Precise waveguide fabrication provides significant spectral broadening with engineered spectra targeted at specific mid-infrared bands. We characterize the relative-intensity-noise of different bands and show that the measured levels do not pose any limitation for spectroscopy applications. Additionally, we use the fabricated photonic devices to demonstrate dual-comb spectroscopy of a carbonyl sulfide gas sample at 5 μm. This work forms the technological basis for applications such as point sensors for fundamental spectroscopy, atmospheric chemistry, trace and hazardous gas detection, and biological microscopy.

  6. Versatile silicon-waveguide supercontinuum for coherent mid-infrared spectroscopy

    Directory of Open Access Journals (Sweden)

    Nima Nader

    2018-03-01

    Full Text Available Laser frequency combs, with their unique combination of precisely defined spectral lines and broad bandwidth, are a powerful tool for basic and applied spectroscopy. Here, we report offset-free, mid-infrared frequency combs and dual-comb spectroscopy through supercontinuum generation in silicon-on-sapphire waveguides. We leverage robust fabrication and geometrical dispersion engineering of nanophotonic waveguides for multi-band, coherent frequency combs spanning 70 THz in the mid-infrared (2.5 μm–6.2 μm. Precise waveguide fabrication provides significant spectral broadening with engineered spectra targeted at specific mid-infrared bands. We characterize the relative-intensity-noise of different bands and show that the measured levels do not pose any limitation for spectroscopy applications. Additionally, we use the fabricated photonic devices to demonstrate dual-comb spectroscopy of a carbonyl sulfide gas sample at 5 μm. This work forms the technological basis for applications such as point sensors for fundamental spectroscopy, atmospheric chemistry, trace and hazardous gas detection, and biological microscopy.

  7. Characterizing interstate vibrational coherent dynamics of surface adsorbed catalysts by fourth-order 3D SFG spectroscopy

    Science.gov (United States)

    Li, Yingmin; Wang, Jiaxi; Clark, Melissa L.; Kubiak, Clifford P.; Xiong, Wei

    2016-04-01

    We report the first fourth-order 3D SFG spectroscopy of a monolayer of the catalyst Re(diCN-bpy)(CO)3Cl on a gold surface. Besides measuring the vibrational coherences of single vibrational modes, the fourth-order 3D SFG spectrum also measures the dynamics of interstate coherences and vibrational coherences states between two vibrational modes. By comparing the 3D SFG to the corresponding 2D and third-order 3D IR spectroscopy of the same molecules in solution, we found that the interstate coherences exist in both liquid and surface systems, suggesting that the interstate coherence is not disrupted by surface interactions. However, by analyzing the 3D spectral lineshape, we found that the interstate coherences also experience non-negligible homogenous dephasing dynamics that originate from surface interactions. This unique ability of determining interstate vibrational coherence dynamics of the molecular monolayer can help in understanding of how energy flows within surface catalysts and other molecular monolayers.

  8. Femtosecond transient absorption spectroscopy of silanized silicon quantum dots

    Science.gov (United States)

    Kuntermann, Volker; Cimpean, Carla; Brehm, Georg; Sauer, Guido; Kryschi, Carola; Wiggers, Hartmut

    2008-03-01

    Excitonic properties of colloidal silicon quantum dots (Si qdots) with mean sizes of 4nm were examined using stationary and time-resolved optical spectroscopy. Chemically stable silicon oxide shells were prepared by controlled surface oxidation and silanization of HF-etched Si qdots. The ultrafast relaxation dynamics of photogenerated excitons in Si qdot colloids were studied on the picosecond time scale from 0.3psto2.3ns using femtosecond-resolved transient absorption spectroscopy. The time evolution of the transient absorption spectra of the Si qdots excited with a 150fs pump pulse at 390nm was observed to consist of decays of various absorption transitions of photoexcited electrons in the conduction band which overlap with both the photoluminescence and the photobleaching of the valence band population density. Gaussian deconvolution of the spectroscopic data allowed for disentangling various carrier relaxation processes involving electron-phonon and phonon-phonon scatterings or arising from surface-state trapping. The initial energy and momentum relaxation of hot carriers was observed to take place via scattering by optical phonons within 0.6ps . Exciton capturing by surface states forming shallow traps in the amorphous SiOx shell was found to occur with a time constant of 4ps , whereas deeper traps presumably localized in the Si-SiOx interface gave rise to exciton trapping processes with time constants of 110 and 180ps . Electron transfer from initially populated, higher-lying surface states to the conduction band of Si qdots (>2nm) was observed to take place within 400 or 700fs .

  9. Coherent photoluminescence excitation spectroscopy of semicrystalline polymeric semiconductors

    Science.gov (United States)

    Silva, Carlos; Grégoire, Pascal; Thouin, Félix

    In polymeric semiconductors, the competition between through-bond (intrachain) and through-space (interchain) electronic coupling determines two-dimensional spatial coherence of excitons. The balance of intra- and interchain excitonic coupling depends very sensitively on solid-state microstructure of the polymer film (polycrystalline, semicrystalline with amorphous domains, etc.). Regioregular poly(3-hexylthiophene) has emerged as a model material because its photoluminescence (PL) spectral lineshape reveals intricate information on the magnitude of excitonic coupling, the extent of energetic disorder, and on the extent to which the disordered energy landscape is correlated. I discuss implementation of coherent two-dimensional electronic spectroscopy. We identify cross peaks between 0-0 and 0-1 excitation peaks, and we measure their time evolution, which we interpret within the context of a hybrid HJ aggregate model. By measurement of the homogeneous linewidth in diverse polymer microstructures, we address the nature of optical transitions within such hynbrid aggregate model. These depend strongly on sample processing, and I discuss the relationship between microstructure, steady-state absorption and PL spectral lineshape, and 2D coherent PL excitation spectral lineshapes.

  10. New ultrafast X-ray sources and their applications. Coherent ultrashort X UV emission by harmonic generation

    International Nuclear Information System (INIS)

    Salieres, P.; Le deroff, L.; Hergott, J.F.; Merdji, H.; Carre, B.

    2000-01-01

    By focusing an intense short-pulse laser into a rare gas jet, high-order harmonics of the laser frequency are generated. Considerable progress have been made in the last few years, with the observation of harmonic orders higher that 200, extending the emission down to 3 nm. Besides its fundamental interest, this XUV emission represents a new source with unique properties of coherence and ultrashort (femtosecond) duration. A growing number of applications are reported, ranging from atomic and molecular spectroscopy to solid-state and plasma physics. (authors)

  11. Femtosecond induced transparency and absorption in the extreme ultraviolet by coherent coupling of the He 2s2p (1Po) and 2p2 (1Se) double excitation states with 800 nm light

    International Nuclear Information System (INIS)

    Loh, Z.-H.; Greene, C.H.; Leone, S.R.

    2007-01-01

    Femtosecond high-order harmonic transient absorption spectroscopy is used to observe electromagnetically induced transparency-like behavior as well as induced absorption in the extreme ultraviolet by laser dressing of the He 2s2p ( 1 P 0 ) and 2p 2 ( 1 S e ) double excitation states with an intense 800 nm field. Probing in the vicinity of the 1s 2 → 2s2p transition at 60.15 eV reveals the formation of an Autler-Townes doublet due to coherent coupling of the double excitation states. Qualitative agreement with the experimental spectra is obtained only when optical field ionization of both double excitation states into the N = 2 continuum is included in the theoretical model. Because the Fano q-parameter of the unperturbed probe transition is finite, the laser-dressed He atom exhibits both enhanced transparency and absorption at negative and positive probe energy detunings, respectively

  12. Two-Dimensional Resonance Raman Signatures of Vibronic Coherence Transfer in Chemical Reactions.

    Science.gov (United States)

    Guo, Zhenkun; Molesky, Brian P; Cheshire, Thomas P; Moran, Andrew M

    2017-11-02

    Two-dimensional resonance Raman (2DRR) spectroscopy has been developed for studies of photochemical reaction mechanisms and structural heterogeneity in condensed phase systems. 2DRR spectroscopy is motivated by knowledge of non-equilibrium effects that cannot be detected with traditional resonance Raman spectroscopy. For example, 2DRR spectra may reveal correlated distributions of reactant and product geometries in systems that undergo chemical reactions on the femtosecond time scale. Structural heterogeneity in an ensemble may also be reflected in the 2D spectroscopic line shapes of both reactive and non-reactive systems. In this chapter, these capabilities of 2DRR spectroscopy are discussed in the context of recent applications to the photodissociation reactions of triiodide. We show that signatures of "vibronic coherence transfer" in the photodissociation process can be targeted with particular 2DRR pulse sequences. Key differences between the signal generation mechanisms for 2DRR and off-resonant 2D Raman spectroscopy techniques are also addressed. Overall, recent experimental developments and applications of the 2DRR method suggest that it will be a valuable tool for elucidating ultrafast chemical reaction mechanisms.

  13. Real-time visualization of the vibrational wavepacket dynamics in electronically excited pyrimidine via femtosecond time-resolved photoelectron imaging

    Science.gov (United States)

    Li, Shuai; Long, Jinyou; Ling, Fengzi; Wang, Yanmei; Song, Xinli; Zhang, Song; Zhang, Bing

    2017-07-01

    The vibrational wavepacket dynamics at the very early stages of the S1-T1 intersystem crossing in photoexcited pyrimidine is visualized in real time by femtosecond time-resolved photoelectron imaging and time-resolved mass spectroscopy. A coherent superposition of the vibrational states is prepared by the femtosecond pump pulse at 315.3 nm, resulting in a vibrational wavepacket. The composition of the prepared wavepacket is directly identified by a sustained quantum beat superimposed on the parent-ion transient, possessing a frequency in accord with the energy separation between the 6a1 and 6b2 states. The dephasing time of the vibrational wavepacket is determined to be 82 ps. More importantly, the variable Franck-Condon factors between the wavepacket components and the dispersed cation vibrational levels are experimentally illustrated to identify the dark state and follow the energy-flow dynamics on the femtosecond time scale. The time-dependent intensities of the photoelectron peaks originated from the 6a1 vibrational state exhibit a clear quantum beating pattern with similar periodicity but a phase shift of π rad with respect to those from the 6b2 state, offering an unambiguous picture of the restricted intramolecular vibrational energy redistribution dynamics in the 6a1/6b2 Fermi resonance.

  14. Can Excited State Electronic Coherence Be Tuned via Molecular Structural Modification? A First-Principles Quantum Electronic Dynamics Study of Pyrazolate-Bridged Pt(II) Dimers

    Energy Technology Data Exchange (ETDEWEB)

    Lingerfelt, David B.; Lestrange, Patrick J.; Radler, Joseph J.; Brown-Xu, Samantha E.; Kim, Pyosang; Castellano, Felix N.; Chen, Lin X.; Li, Xiaosong

    2017-02-24

    Materials and molecular systems exhibiting long-lived electronic coherence can facilitate coherent transport, opening the door to efficient charge and energy transport beyond traditional methods. Recently, signatures of a possible coherent, recurrent electronic motion were identified in femtosecond pump-probe spectroscopy experiments on a binuclear platinum complex, where a persistent periodic beating in the transient absorption signal’s anisotropy was observed. In this study, we investigate the excitonic dynamics that underlie the suspected electronic coherence for a series of binuclear platinum complexes exhibiting a range of interplatinum distances. Results suggest that the long-lived coherence can only result when competitive electronic couplings are in balance. At longer Pt-Pt distances, the electronic couplings between the two halves of the binuclear system weaken, and exciton localization and recombination is favored on short time scales. For short Pt-Pt distances, electronic couplings between the states in the coherent superposition are stronger than the coupling with other excitonic states, leading to long-lived coherence.

  15. Linearity of Air-Biased Coherent Detection for Terahertz Time-Domain Spectroscopy

    DEFF Research Database (Denmark)

    Wang, Tianwu; Iwaszczuk, Krzysztof; Wrisberg, Emil Astrup

    2016-01-01

    The performance of air-biased coherent detection (ABCD) in a broadband two-color laser-induced air plasma system for terahertz time-domain spectroscopy (THz-TDS) has been investigated. Fundamental parameters of the ABCD detection, including signal-to-noise ratio (SNR), dynamic range (DR), and lin...

  16. Quantum Femtosecond Magnetism: Phase Transition in Step with Light in a Strongly Correlated Manganese Oxide

    Science.gov (United States)

    Wang, Jigang

    2014-03-01

    Research of non-equilibrium phase transitions of strongly correlated electrons is built around addressing an outstanding challenge: how to achieve ultrafast manipulation of competing magnetic/electronic phases and reveal thermodynamically hidden orders at highly non-thermal, femtosecond timescales? Recently we reveal a new paradigm called quantum femtosecond magnetism-photoinduced femtosecond magnetic phase transitions driven by quantum spin flip fluctuations correlated with laser-excited inter-atomic coherent bonding. We demonstrate an antiferromagnetic (AFM) to ferromagnetic (FM) switching during about 100 fs laser pulses in a colossal magneto-resistive manganese oxide. Our results show a huge photoinduced femtosecond spin generation, measured by magnetic circular dichroism, with photo-excitation threshold behavior absent in the picosecond dynamics. This reveals an initial quantum coherent regime of magnetism, while the optical polarization/coherence still interacts with the spins to initiate local FM correlations that compete with the surrounding AFM matrix. Our results thus provide a framework that explores quantum non-equilibrium kinetics to drive phase transitions between exotic ground states in strongly correlated elecrons, and raise fundamental questions regarding some accepted rules, such as free energy and adiabatic potential surface. This work is in collaboration with Tianqi Li, Aaron Patz, Leonidas Mouchliadis, Jiaqiang Yan, Thomas A. Lograsso, Ilias E. Perakis. This work was supported by the National Science Foundation (contract no. DMR-1055352). Material synthesis at the Ames Laboratory was supported by the US Department of Energy-Basic Energy Sciences (contract no. DE-AC02-7CH11358).

  17. Manipulation of Squeezed Two-Phonon Bound States using Femtosecond Laser Pulses

    Directory of Open Access Journals (Sweden)

    Nakamura Kazutaka G.

    2013-03-01

    Full Text Available Two-phonon bound states have been excited exclusively in ZnTe(110 via impulsive stimulated second-order Raman scattering, essentially being squeezed states due to phase coherent excitation of two identical components anticorrelated in the wave vector. By using coherent control technique with a pair of femtosecond laser pulses, the manipulation of squeezed states has been demonstrated in which both the amplitude and lifetime of coherent oscillations of squeezed states are modulated, indicating the feasibility to control the quantum noise and the quantum nature of phonon squeezed states, respectively.

  18. High-speed asynchronous optical sampling for high-sensitivity detection of coherent phonons

    International Nuclear Information System (INIS)

    Dekorsy, T; Taubert, R; Hudert, F; Schrenk, G; Bartels, A; Cerna, R; Kotaidis, V; Plech, A; Koehler, K; Schmitz, J; Wagner, J

    2007-01-01

    A new optical pump-probe technique is implemented for the investigation of coherent acoustic phonon dynamics in the GHz to THz frequency range which is based on two asynchronously linked femtosecond lasers. Asynchronous optical sampling (ASOPS) provides the performance of on all-optical oscilloscope and allows us to record optically induced lattice dynamics over nanosecond times with femtosecond resolution at scan rates of 10 kHz without any moving part in the set-up. Within 1 minute of data acquisition time signal-to-noise ratios better than 10 7 are achieved. We present examples of the high-sensitivity detection of coherent phonons in superlattices and of the coherent acoustic vibration of metallic nanoparticles

  19. Development of fiber lasers and devices for coherent Raman scattering microscopy

    Science.gov (United States)

    Lamb, Erin Stranford

    As ultrafast laser technology has found expanding application in machining, spectroscopy, microscopy, surgery, and numerous other areas, the desire for inexpensive and robust laser sources has grown. Until recently, nonlinear effects in fiber systems due to the tight confinement of the light in the core have limited their performance. However, with advances in managing nonlinearity through pulse propagation physics and the use of large core fibers, the performance of fiber lasers can compete with that of their solid-state counterparts. As specific applications, such as coherent Raman scattering microscopy, emerge that stand to benefit from fiber technology, new performance challenges in areas such as laser noise are anticipated. This thesis studies nonlinear pulse propagation in fiber lasers and fiber parametric devices. Applications of dissipative solitons and self-similar pulse propagation to low-repetition rate oscillators that have the potential to simplify short-pulse amplification schemes will be examined. The rest of this thesis focuses on topics relevant to fiber laser development for coherent Raman scattering microscopy sources. Coherent pulse division and recombination inside the laser cavity will be introduced as an energy-scaling mechanism and demonstrated for a fiber soliton laser. The relative intensity noise properties of mode-locked fiber lasers, with a particular emphasis on normal dispersion lasers, will be explored in simulation and experiment. A fiber optical parametric oscillator will be studied in detail for low noise frequency conversion of picosecond pulses, and its utility for coherent Raman imaging will be demonstrated. Spectral compression of femtosecond pulses is used to generate picosecond pulses to pump this device, and this technique provides a route to future noise reduction in the system. Furthermore, this device forms a multimodal source capable of providing the picosecond pulses for coherent Raman scattering microscopy and the

  20. Enhancement of coherent acoustic phonons in InGaN multiple quantum wells

    Science.gov (United States)

    Hafiz, Shopan D.; Zhang, Fan; Monavarian, Morteza; Avrutin, Vitaliy; Morkoç, Hadis; Özgür, Ümit

    2015-03-01

    Enhancement of coherent zone folded longitudinal acoustic phonon (ZFLAP) oscillations at terahertz frequencies was demonstrated in InGaN multiple quantum wells (MQWs) by using wavelength degenerate time resolved differential transmission spectroscopy. Screening of the piezoelectric field in InGaN MQWs by photogenerated carriers upon femtosecond pulse excitation gave rise to terahertz ZFLAPs, which were monitored at the Brillouin zone center in the transmission geometry. MQWs composed of 10 pairs InxGa1-xN wells and In0.03Ga0.97N barriers provided coherent phonon frequencies of 0.69-0.80 THz depending on the period of MQWs. Dependences of ZFLAP amplitude on excitation density and wavelength were also investigated. Possibility of achieving phonon cavity, incorporating a MQW placed between two AlN/GaN phonon mirrors designed to exhibit large acoustic gaps at the zone center, was also explored.

  1. Coherent radio-frequency detection for narrowband direct comb spectroscopy.

    Science.gov (United States)

    Anstie, James D; Perrella, Christopher; Light, Philip S; Luiten, Andre N

    2016-02-22

    We demonstrate a scheme for coherent narrowband direct optical frequency comb spectroscopy. An extended cavity diode laser is injection locked to a single mode of an optical frequency comb, frequency shifted, and used as a local oscillator to optically down-mix the interrogating comb on a fast photodetector. The high spectral coherence of the injection lock generates a microwave frequency comb at the output of the photodiode with very narrow features, enabling spectral information to be further down-mixed to RF frequencies, allowing optical transmittance and phase to be obtained using electronics commonly found in the lab. We demonstrate two methods for achieving this step: a serial mode-by-mode approach and a parallel dual-comb approach, with the Cs D1 transition at 894 nm as a test case.

  2. Femtosecond time-resolved vibrational SFG spectroscopy of CO/Ru( 0 0 1 )

    Science.gov (United States)

    Hess, Ch.; Wolf, M.; Roke, S.; Bonn, M.

    2002-04-01

    Vibrational sum-frequency generation (SFG) employing femtosecond infrared (IR) laser pulses is used to study the dynamics of the C-O stretch vibration on Ru(0 0 1). Time-resolved measurements of the free induction decay (FID) of the IR-polarization for 0.33 ML CO/Ru(0 0 1) exhibit single exponential decays over three decades corresponding to dephasing times of T2=1.94 ps at 95 K and T2=1.16 ps at 340 K. This is consistent with pure homogeneous broadening due to anharmonic coupling with the thermally activated low-frequency dephasing mode together with a contribution from saturation of the IR transition. In pump-probe SFG experiments using a strong visible (VIS) pump pulse the perturbation of the FID leads to transient line shifts even at negative delay times, i.e. when the IR-VIS SFG probe pair precedes the pump pulse. Based on an analysis of the time-dependent polarization we discuss the influence of the perturbed FID on time-resolved SFG spectra. We investigate how coherent effects affect the SFG spectra and we examine the time resolution in these experiments, in particular in dependence of the dephasing time.

  3. Femtosecond pump probe spectroscopy for the study of energy transfer of light-harvesting complexes from extractions of spinach leaves

    Directory of Open Access Journals (Sweden)

    L. van Rensburg

    2010-01-01

    Full Text Available Measurements of ultrafast transient processes, of temporal durations in the picosecond and femtosecond regime, are made possible by femtosecond pump probe transient absorption spectroscopy. Such an ultrafast pump probe transient absorption setup has been implemented at the CSIR National Laser Centre and has been applied to investigate energy transfer processes in different parts of photosynthetic systems. In this paper we report on our first results obtained with Malachite green as a benchmark. Malachite green was chosen because the lifetime of its excited state is well known. We also present experimental results of the ultrafast energy transfer of light-harvesting complexes in samples prepared from spinach leaves. Various pump wavelengths in the range 600–680 nm were used; the probe was a white light continuum spanning 420–700 nm. The experimental setup is described in detail in this paper. Results obtained with these samples are consistent with those expected and achieved by other researchers in this field.

  4. Photodissociation and charge transfer dynamics of negative ions studied with femtosecond photoelectron spectroscopy

    Energy Technology Data Exchange (ETDEWEB)

    Zanni, Martin Thomas [Univ. of California, Berkeley, CA (United States)

    1999-12-01

    This dissertation presents studies aimed at understanding the potential energy surfaces and dynamics of isolated negative ions, and the effects of solvent on each. Although negative ions play important roles in atmospheric and solution phase chemistry, to a large extent the ground and excited state potential energy surfaces of gas phase negative ions are poorly characterized, and solvent effects even less well understood. In an effort to fill this gap, the author's coworkers and the author have developed a new technique, anion femtosecond photoelectron spectroscopy, and applied it to gas phase photodissociation and charge transfer processes. Studies are presented that (1) characterize the ground and excited states of isolated and clustered anions, (2) monitor the photodissociation dynamics of isolated and clustered anions, and (3) explore the charge-transfer-to-solvent states of atomic iodide clustered with polar and non-polar solvents.

  5. Photodissociation and charge transfer dynamics of negative ions studied with femtosecond photoelectron spectroscopy

    International Nuclear Information System (INIS)

    Zanni, Martin T.

    1999-01-01

    This dissertation presents studies aimed at understanding the potential energy surfaces and dynamics of isolated negative ions, and the effects of solvent on each. Although negative ions play important roles in atmospheric and solution phase chemistry, to a large extent the ground and excited state potential energy surfaces of gas phase negative ions are poorly characterized, and solvent effects even less well understood. In an effort to fill this gap, the author's coworkers and the author have developed a new technique, anion femtosecond photoelectron spectroscopy, and applied it to gas phase photodissociation and charge transfer processes. Studies are presented that (1) characterize the ground and excited states of isolated and clustered anions, (2) monitor the photodissociation dynamics of isolated and clustered anions, and (3) explore the charge-transfer-to-solvent states of atomic iodide clustered with polar and non-polar solvents

  6. Conductivity peak, relaxation dynamics, and superconducting gap of YBa2Cu3O7 studied by terahertz and femtosecond optical spectroscopies

    International Nuclear Information System (INIS)

    Frenkel, A.; Gao, F.; Liu, Y.; Whitaker, J.F.; Uher, C.; Hou, S.Y.; Phillips, J.M.

    1996-01-01

    Recent measurements at microwave, terahertz (THz), and infrared frequencies have revealed a peak in σ 1 below T c . Based on our THz measurements, which were performed on high quality, single crystal films of YBCO (900 and 500 A), we have found that σ 1 features a peak which increases in amplitude and shifts to lower temperatures as frequency changes from 1.2 to 0.4 THz. Although the quasiparticle relaxation time extracted from these results using the two-fluid Drude model exhibits an enhancement below T c , the analysis may not be adequate to account for the strong frequency dependence of the conductivity peak by the competition between the drop in scattering rate and the decreasing normal fluid density with temperature. On the contrary, we were able to account for the frequency dependent σ 1 by fitting with Mattis-Bardeen theory (modified to include scattering) using a slower average rate of increase of the anisotropic gap than for the BCS case as temperature decreases below T c . This is consistent with the higher normal fluid density (higher than Gorter-Casimir values) from the two-fluid model interpretation of our THz results. Thus, we have found evidence of BCS coherence factors in a high-T c superconductor with a slower than BCS gap increase below T c . We have discussed the role of coherence factors to account for the presence of the conductivity peak and the absence of the peak in NMR relaxation rate. Furthermore, we have presented a model for the quasiparticle relaxation time measured by the femtosecond pump-probe spectroscopy. This model allowed us to find a fit to the temperature-dependent energy gap function which is also consistent with the slower gap increase below T c

  7. Third-harmonic generation and scattering in combustion flames using a femtosecond laser filament.

    Science.gov (United States)

    Zang, Hong-Wei; Li, He-Long; Su, Yue; Fu, Yao; Hou, Meng-Yao; Baltuška, Andrius; Yamanouchi, Kaoru; Xu, Huailiang

    2018-02-01

    Coherent radiation in the ultraviolent (UV) range has high potential applicability to the diagnosis of the formation processes of soot in combustion because of the high scattering efficiency in the UV wavelength region, even though the UV light is lost largely by the absorption within the combustion flames. We show that the third harmonic (TH) of a Ti:sapphire 800 nm femtosecond laser is generated in a laser-induced filament in a combustion flame and that the conversion efficiency of the TH varies sensitively by the ellipticity of the driver laser pulse but does not vary so much by the choice of alkanol species introduced as fuel for the combustion flames. We also find that the TH recorded from the side direction of the filament is the Rayleigh scattering of the TH by soot nanoparticles within the flame and that the intensity of the TH varies depending on the fuel species as well as on the position of the laser filament within the flame. Our results show that a remote and in situ measurement of distributions of soot nanoparticles in a combustion flame can be achieved by Rayleigh scattering spectroscopy of the TH generated by a femtosecond-laser-induced filament in the combustion flame.

  8. Spectroscopy and coherent manipulation of single and coupled flux qubits

    International Nuclear Information System (INIS)

    Wu Yu-Lin; Deng Hui; Huang Ke-Qiang; Tian Ye; Yu Hai-Feng; Xue Guang-Ming; Jin Yi-Rong; Li Jie; Zhao Shi-Ping; Zheng Dong-Ning

    2013-01-01

    Measurements of three-junction flux qubits, both single flux qubits and coupled flux qubits, using a coupled direct current superconducting quantum interference device (dc-SQUID) for readout are reported. The measurement procedure is described in detail. We performed spectroscopy measurements and coherent manipulations of the qubit states on a single flux qubit, demonstrating quantum energy levels and Rabi oscillations, with Rabi oscillation decay time T Rabi = 78 ns and energy relaxation time T 1 = 315 ns. We found that the value of T Rabi depends strongly on the mutual inductance between the qubit and the magnetic coil. We also performed spectroscopy measurements on inductively coupled flux qubits. (general)

  9. Quantum coherent control of the vibrational dynamics of a ...

    Indian Academy of Sciences (India)

    2014-02-12

    Feb 12, 2014 ... c Indian Academy of Sciences. Vol. 82, No ... Abstract. We simulate adaptive feedback control to coherently shape a femtosecond infrared laser ... it was shown that different coherent control schemes are unified on a fundamental level. ... A 150 fs pulse with a fluence of 600 J/m2 was used as an initial pulse.

  10. Coherent wavepackets in the Fenna-Matthews-Olson complex are robust to excitonic-structure perturbations caused by mutagenesis

    Science.gov (United States)

    Maiuri, Margherita; Ostroumov, Evgeny E.; Saer, Rafael G.; Blankenship, Robert E.; Scholes, Gregory D.

    2018-02-01

    Femtosecond pulsed excitation of light-harvesting complexes creates oscillatory features in their response. This phenomenon has inspired a large body of work aimed at uncovering the origin of the coherent beatings and possible implications for function. Here we exploit site-directed mutagenesis to change the excitonic level structure in Fenna-Matthews-Olson (FMO) complexes and compare the coherences using broadband pump-probe spectroscopy. Our experiments detect two oscillation frequencies with dephasing on a picosecond timescale—both at 77 K and at room temperature. By studying these coherences with selective excitation pump-probe experiments, where pump excitation is in resonance only with the lowest excitonic state, we show that the key contributions to these oscillations stem from ground-state vibrational wavepackets. These experiments explicitly show that the coherences—although in the ground electronic state—can be probed at the absorption resonances of other bacteriochlorophyll molecules because of delocalization of the electronic excitation over several chromophores.

  11. Surface-enhanced Raman spectroscopy with Au-nanoparticle substrate fabricated by using femtosecond pulse

    Science.gov (United States)

    Zhang, Wending; Li, Cheng; Gao, Kun; Lu, Fanfan; Liu, Min; Li, Xin; Zhang, Lu; Mao, Dong; Gao, Feng; Huang, Ligang; Mei, Ting; Zhao, Jianlin

    2018-05-01

    Au-nanoparticle (Au-NP) substrates for surface-enhanced Raman spectroscopy (SERS) were fabricated by grid-like scanning a Au-film using a femtosecond pulse. The Au-NPs were directly deposited on the Au-film surface due to the scanning process. The experimentally obtained Au-NPs presented local surface plasmon resonance effect in the visible spectral range, as verified by finite difference time domain simulations and measured reflection spectrum. The SERS experiment using the Au-NP substrates exhibited high activity and excellent substrate reproducibility and stability, and a clearly present Raman spectra of target analytes, e.g. Rhodamine-6G, Rhodamine-B and Malachite green, with concentrations down to 10‑9 M. This work presents an effective approach to producing Au-NP SERS substrates with advantages in activity, reproducibility and stability, which could be used in a wide variety of practical applications for trace amount detection.

  12. Coherent anti-Stokes Raman scattering microscopy with a photonic crystal fiber based light source

    DEFF Research Database (Denmark)

    Paulsen, H.N.; Hilligsøe, Karen Marie; Thøgersen, J.

    2003-01-01

    A coherent anti-Stokes Raman scattering microscope based on a Ti:sapphire femtosecond oscillator and a photonic crystal fiber is demonstrated. The nonlinear response of the fiber is used to generate the additional wavelength needed in the Raman process. The applicability of the setup is demonstra......A coherent anti-Stokes Raman scattering microscope based on a Ti:sapphire femtosecond oscillator and a photonic crystal fiber is demonstrated. The nonlinear response of the fiber is used to generate the additional wavelength needed in the Raman process. The applicability of the setup...

  13. Transient grating spectroscopy in photosynthetic purple bacteria Rhodobacter sphaeroides 2.4.1

    Energy Technology Data Exchange (ETDEWEB)

    Sugisaki, Mitsuru, E-mail: mitsuru@sci.osaka-cu.ac.j [CREST-JST and Graduate School of Science, Osaka City University, 3-3-138 Sugimoto, Sumiyoshi, Osaka 558-8585 (Japan); Fujiwara, Masazumi; Fujii, Ritsuko [CREST-JST and Graduate School of Science, Osaka City University, 3-3-138 Sugimoto, Sumiyoshi, Osaka 558-8585 (Japan); Nakagawa, Katsunori; Nango, Mamoru [CREST-JST and Graduate School of Engineering, Nagoya Institute of Technology, Gokiso, Showa, Nagoya 466-8555 (Japan); Cogdell, Richard J. [Glasgow Biomedical Research Centre, IBLS, University of Glasgow, 126 University Place, Glasgow G12 8TA, Scotland (United Kingdom); Hashimoto, Hideki [CREST-JST and Graduate School of Science, Osaka City University, 3-3-138 Sugimoto, Sumiyoshi, Osaka 558-8585 (Japan)

    2009-12-15

    The vibronic coherence of photosynthetic pigment-protein complexes has been investigated by means of transient grating spectroscopy using sub 20 fs optical pulses. In the present work, we focus our attention on the LH2 antenna complexes from Rhodobacter sphaeroides 2.4.1 because the information about their structure investigated by the electron and atomic force microscopy is available and the electric levels of pigments are well resolved, resulting in clear absorption spectrum. The vibronic coherent oscillations with a period of a few tens of femtoseconds have been clearly observed. We found that the temporal change of the coherent oscillations reflects the vibrational relaxation in the ground state. Calculations based on the Brownian oscillator model were performed under the impulsive excitation limit. The spectral density has been determined from the Raman measurement of spheroidene. Good agreement between the calculation and the experimental results has been achieved in the linear absorption spectrum and transient grating signal, which strongly supports the validity of our model.

  14. Toward Femtosecond X-ray Spectroscopy at the Advanced Light Source

    International Nuclear Information System (INIS)

    Chong, Henry Herng Wei

    2004-01-01

    The realization of tunable, ultrashort pulse x-ray sources promises to open new venues of science and to shed new light on long-standing problems in condensed matter physics and chemistry. Fundamentally new information can now be accessed. Used in a pump-probe spectroscopy, ultrashort x-ray pulses provide a means to monitor atomic rearrangement and changes in electronic structure in condensed-matter and chemical systems on the physically-limiting time-scales of atomic motion. This opens the way for the study of fast structural dynamics and the role they play in phase transitions, chemical reactions and the emergence of exotic properties in materials with strongly interacting degrees of freedom. The ultrashort pulse x-ray source developed at the Advanced Light Source at the Lawrence Berkeley Laboratory is based on electron slicing in storage rings, and generates ∼100 femtosecond pulses of synchrotron radiation spanning wavelengths from the far-infrared to the hard x-ray region of the electromagnetic spectrum. The tunability of the source allows for the adaptation of a broad range of static x-ray spectroscopies to useful pump-probe measurements. Initial experiments are attempted on transition metal complexes that exhibit relatively large structural changes upon photo-excitation and which have excited-state evolution determined by strongly interacting structural, electronic and magnetic degrees of freedom. Specifically, iron(II) complexes undergo a spin-crossover transition upon optical irradiation. The dynamics of the transition involve a metal-to-ligand charge transfer, a ΔS = 2 change in magnetic moment and 10% bond dilation in the first coordination shell of the iron. Studies of the electronic dynamics are studied with time-resolved optical absorption measurements. The current progress of time-resolved structural studies to complete the picture of the spin-crossover transition is presented

  15. Coherent Exciton Dynamics in GaAs-Based Semiconductor Structures

    Science.gov (United States)

    Colocci, M.; Bogani, F.; Ceccherini, S.; Gurioli, M.

    We show that a very powerful tool in the investigation of the coherent exciton dynamics in semiconductors is provided by the study of the emitted light after resonant excitation from pairs of phase-locked femtosecond pulses. Under these conditions, not only the full dynamics of the coherent transients (dephasing times, quantum beat periods, etc.) can be obtained from linear experiments, but it can also be obtained a straightforward discrimination between the coherent or incoherent character of the emission by means of spectral filtering.

  16. Dynamic cerebral autoregulation measured with coherent hemodynamics spectroscopy (CHS)

    Science.gov (United States)

    Kainerstorfer, Jana M.; Sassaroli, Angelo; Tgavalekos, Kristen T.; Fantini, Sergio

    2015-03-01

    Coherent Hemodynamics Spectroscopy (CHS) is a novel technique for non-invasive measurements of local microcirculation quantities such as the capillary blood transit times and dynamic autoregulation. The basis of CHS is to measure, for instance with near-infrared spectroscopy (NIRS), peripheral coherent hemodynamic changes that are induced by controlled perturbations in the systemic mean arterial pressure (MAP). In this study, the MAP perturbation was induced by the fast release of two pneumatic cuffs placed around the subject's thighs after they were kept inflated (at 200 mmHg) for two minutes. The resulting transient changes in cerebral oxy- (O) and deoxy- (D) hemoglobin concentrations measured with NIRS on the prefrontal cortex are then described by a novel hemodynamic model, from which quantifiable parameters such as the capillary blood transit time and a cutoff frequency for cerebral autoregulation are obtained. We present results on eleven healthy volunteers in a protocol involving measurements during normal breathing and during hyperventilation, which is known to cause a hypocapnia-induced increase in cerebral autoregulation. The measured capillary transit time was unaffected by hyperventilation (normal breathing: 1.1±0.1 s; hyperventilation: 1.1±0.1 s), whereas the cutoff frequency of autoregulation, which increases for higher autoregulation efficiency, was indeed found to be significantly greater during hyperventilation (normal breathing: 0.017±0.002 Hz; hyperventilation: 0.034±0.005 Hz). These results provide a validation of local cerebral autoregulation measurements with the new technique of CHS.

  17. Femtosecond carotenoid to retinal energy transfer in xanthorhodopsin

    Czech Academy of Sciences Publication Activity Database

    Polívka, Tomáš; Balashov, S.P.; Chábera, P.; Imasheva, E.S.; Yartsev, A.; Sundström, V.; Lanyi, J.K.

    2009-01-01

    Roč. 96, č. 6 (2009), s. 2268-2277 ISSN 0006-3495 R&D Projects: GA AV ČR IAA608170604 Institutional research plan: CEZ:AV0Z50510513 Keywords : energy transfer * carotenoids * femtosecond spectroscopy Subject RIV: BO - Biophysics Impact factor: 4.390, year: 2009

  18. Femtosecond laser irradiation-induced infrared absorption on silicon surfaces

    Directory of Open Access Journals (Sweden)

    Qinghua Zhu

    2015-04-01

    Full Text Available The near-infrared (NIR absorption below band gap energy of crystalline silicon is significantly increased after the silicon is irradiated with femtosecond laser pulses at a simple experimental condition. The absorption increase in the NIR range primarily depends on the femtosecond laser pulse energy, pulse number, and pulse duration. The Raman spectroscopy analysis shows that after the laser irradiation, the silicon surface consists of silicon nanostructure and amorphous silicon. The femtosecond laser irradiation leads to the formation of a composite of nanocrystalline, amorphous, and the crystal silicon substrate surface with microstructures. The composite has an optical absorption enhancement at visible wavelengths as well as at NIR wavelength. The composite may be useful for an NIR detector, for example, for gas sensing because of its large surface area.

  19. Achieving few-femtosecond time-sorting at hard X-ray free-electron lasers

    Science.gov (United States)

    Harmand, M.; Coffee, R.; Bionta, M. R.; Chollet, M.; French, D.; Zhu, D.; Fritz, D. M.; Lemke, H. T.; Medvedev, N.; Ziaja, B.; Toleikis, S.; Cammarata, M.

    2013-03-01

    Recently, few-femtosecond pulses have become available at hard X-ray free-electron lasers. Coupled with the available sub-10 fs optical pulses, investigations into few-femtosecond dynamics are not far off. However, achieving sufficient synchronization between optical lasers and X-ray pulses continues to be challenging. We report a `measure-and-sort' approach, which achieves sub-10 fs root-mean-squared (r.m.s.) error measurement at hard X-ray FELs, far beyond the 100-200 fs r.m.s. jitter limitations. This timing diagnostic, now routinely available at the Linac Coherent Light Source (LCLS), is based on ultrafast free-carrier generation in optically transparent materials. Correlation between two independent measurements enables unambiguous demonstration of ~6 fs r.m.s. error in reporting the optical/X-ray delay, with single shot error suggesting the possibility of reaching few-femtosecond resolution.

  20. Ultrafast S1 and ICT state dynamics of a marine carotenoid probed by femtosecond one- and two-photon pump-probe spectroscopy

    International Nuclear Information System (INIS)

    Kosumi, Daisuke; Kusumoto, Toshiyuki; Fujii, Ritsuko; Sugisaki, Mitsuru; Iinuma, Yoshiro; Oka, Naohiro; Takaesu, Yuki; Taira, Tomonori; Iha, Masahiko; Frank, Harry A.; Hashimoto, Hideki

    2011-01-01

    Ultrafast relaxation kinetics of fucoxanthin in polar and non-polar solvents have been studied by femtosecond pump-probe spectroscopy. Transient absorption associated with S 1 or intramolecular charge transfer (ICT) excited state has been observed following either one-photon excitation to the optically allowed S 2 state or two-photon excitation to the symmetry-forbidden S 1 state. The results suggest that the ICT state formed after excitation of fucoxanthin in a polar solvent is a distinct excited state from S 1 .

  1. Comparative study of femtosecond and nanosecond laser-induced breakdown spectroscopy of depleted uranium

    International Nuclear Information System (INIS)

    Emmert, Luke A.; Chinni, Rosemarie C.; Cremers, David A.; Jones, C. Randy; Rudolph, Wolfgang

    2011-01-01

    We present spectra of depleted uranium metal from laser plasmas generated by nanosecond Nd:YAG (1064 nm) and femtosecond Ti:sapphire (800 nm) laser pulses. The latter pulses produce short-lived and relatively cool plasmas in comparison to the longer pulses, and the spectra of neutral uranium atoms appear immediately after excitation. Evidence for nonequilibrium excitation with femtosecond pulses is found in the dependence of spectral line intensities on the pulse chirp.

  2. Femtosecond Soft X-ray Spectroscopy of Solvated Transition-Metal Complexes: Deciphering the Interplay of Electronic and Structural Dynamics

    Energy Technology Data Exchange (ETDEWEB)

    Huse, Nils; Cho, Hana; Hong, Kiryong; Jamula, Lindsey; de Groot, Frank M. F.; Kim, Tae Kyu; McCusker, James K.; Schoenlein, Robert W.

    2011-04-21

    We present the first implementation of femtosecond soft X-ray spectroscopy as an ultrafast direct probe of the excited-state valence orbitals in solution-phase molecules. This method is applied to photoinduced spin crossover of [Fe(tren(py)3)]2+, where the ultrafast spinstate conversion of the metal ion, initiated by metal-to-ligand charge-transfer excitation, is directly measured using the intrinsic spin-state selectivity of the soft X-ray L-edge transitions. Our results provide important experimental data concerning the mechanism of ultrafast spin-state conversion and subsequent electronic and structural dynamics, highlighting the potential of this technique to study ultrafast phenomena in the solution phase.

  3. Real-time dual-comb spectroscopy with a free-running bidirectionally mode-locked fiber laser

    Science.gov (United States)

    Mehravar, S.; Norwood, R. A.; Peyghambarian, N.; Kieu, K.

    2016-06-01

    Dual-comb technique has enabled exciting applications in high resolution spectroscopy, precision distance measurements, and 3D imaging. Major advantages over traditional methods can be achieved with dual-comb technique. For example, dual-comb spectroscopy provides orders of magnitude improvement in acquisition speed over standard Fourier-transform spectroscopy while still preserving the high resolution capability. Wider adoption of the technique has, however, been hindered by the need for complex and expensive ultrafast laser systems. Here, we present a simple and robust dual-comb system that employs a free-running bidirectionally mode-locked fiber laser operating at telecommunication wavelength. Two femtosecond frequency combs (with a small difference in repetition rates) are generated from a single laser cavity to ensure mutual coherent properties and common noise cancellation. As the result, we have achieved real-time absorption spectroscopy measurements without the need for complex servo locking with accurate frequency referencing, and relatively high signal-to-noise ratio.

  4. Nonadiabatic Dynamics May Be Probed through Electronic Coherence in Time-Resolved Photoelectron Spectroscopy.

    Science.gov (United States)

    Bennett, Kochise; Kowalewski, Markus; Mukamel, Shaul

    2016-02-09

    We present a hierarchy of Fermi golden rules (FGRs) that incorporate strongly coupled electronic/nuclear dynamics in time-resolved photoelectron spectroscopy (TRPES) signals at different levels of theory. Expansion in the joint electronic and nuclear eigenbasis yields the numerically most challenging exact FGR (eFGR). The quasistatic Fermi Golden Rule (qsFGR) neglects nuclear motion during the photoionization process but takes into account electronic coherences as well as populations initially present in the pumped matter as well as those generated internally by coupling between electronic surfaces. The standard semiclassical Fermi Golden Rule (scFGR) neglects the electronic coherences and the nuclear kinetic energy during the ionizing pulse altogether, yielding the classical Condon approximation. The coherence contributions depend on the phase-profile of the ionizing field, allowing coherent control of TRPES signals. The photoelectron spectrum from model systems is simulated using these three levels of theory. The eFGR and the qsFGR show temporal oscillations originating from the electronic or vibrational coherences generated as the nuclear wave packet traverses a conical intersection. These oscillations, which are missed by the scFGR, directly reveal the time-evolving splitting between electronic states of the neutral molecule in the curve-crossing regime.

  5. Generating femtosecond X-ray pulses using an emittance-spoiling foil in free-electron lasers

    Energy Technology Data Exchange (ETDEWEB)

    Ding, Y., E-mail: ding@slac.stanford.edu; Coffee, R.; Decker, F.-J.; Emma, P.; Field, C.; Huang, Z.; Krejcik, P.; Krzywinski, J.; Loos, H.; Lutman, A.; Marinelli, A.; Maxwell, T. J.; Turner, J. [SLAC National Accelerator Laboratory, Menlo Park, California 94025 (United States); Behrens, C. [Deutsches Elektronen-Synchrotron DESY, Notkestr. 85, 22607 Hamburg (Germany); Helml, W. [Technische Universität München, James-Franck-Straße 1, 85748 Garching (Germany)

    2015-11-09

    Generation of femtosecond to sub-femtosecond pulses is attracting much attention in X-ray free-electron laser user community. One method is to use a slotted, emittance-spoiling foil which was proposed before (P. Emma et al., Phys. Rev. Lett. 92, 074801 (2004)) and has been widely used at the Linac Coherent Light Source. Direct experimental characterization of the slotted-foil performance was previously unfeasible due to a lack of appropriate diagnostics. With a recently installed X-band radio-frequency transverse deflector, we are able to characterize the electron bunch spoiling effect and X-ray pulse when using the slotted foil. We show that few-femtosecond X-ray pulses are generated with flexible control of the single-pulse duration or double-pulse separation with comparison to the theoretical model.

  6. Femtosecond stimulated Raman spectroscopy by six-wave mixing

    Energy Technology Data Exchange (ETDEWEB)

    Molesky, Brian P.; Guo, Zhenkun; Moran, Andrew M., E-mail: ammoran@email.unc.edu [Department of Chemistry, University of North Carolina at Chapel Hill, Chapel Hill, North Carolina 27599 (United States)

    2015-06-07

    Femtosecond Stimulated Raman Spectroscopy (FSRS) is motivated by the knowledge of the molecular geometry changes that accompany sub-picosecond chemical reactions. The detection of vibrational resonances throughout the entire fingerprint region of the spectrum with sub-100-fs delay precision is fairly straightforward to accomplish with the FSRS technique. Despite its utility, FSRS must contend with substantial technical challenges that stem from a large background of residual laser light and lower-order nonlinearities when all laser pulses are electronically resonant with the equilibrium system. In this work, a geometry based on five incident laser beams is used to eliminate much of this undesired background in experiments conducted on metmyoglobin. Compared to a three-beam FSRS geometry with all electronically resonant laser pulses, the five-beam approach described here offers major improvements in the data acquisition rate, sensitivity, and background suppression. The susceptibility of the five-beam geometry to experimental artifacts is investigated using control experiments and model calculations. Of particular concern are undesired cascades of third-order nonlinearities, which are known to challenge FSRS measurements carried out on electronically off-resonant systems. It is generally understood that “forbidden” steps in the desired nonlinear optical processes are the origin of the problems encountered under off-resonant conditions. In contrast, the present experiments are carried out under electronically resonant conditions, where such unfortunate selection rules do not apply. Nonetheless, control experiments based on spectroscopic line shapes, signal phases, and sample concentrations are conducted to rule out significant contributions from cascades of third-order processes. Theoretical calculations are further used to estimate the relative intensities of the direct and cascaded responses. Overall, the control experiments and model calculations presented in

  7. Terahertz Coherent Synchrotron Radiation from Femtosecond Laser Modulation of the Electron Beam at the Advanced Light Source

    International Nuclear Information System (INIS)

    Byrd, John M.; Hao, Zhao; Martin, Michael C.; Robin, David S.; Sannibale, Fernando; Schoenlein, Robert W.; Zholents, Alexander A.; Zolotorev, Max S.

    2005-01-01

    At the Advanced Light Source (ALS), the ''femtoslicing'' beamline is in operation since 1999 for the production of x-ray synchrotron radiation pulses with femtosecond duration. The mechanism used for generating the short x-ray pulses induces at the same time temporary structures in the electron bunch longitudinal distribution with very short characteristic length. Such structures emit intense coherent synchrotron radiation (CSR) in the terahertz frequency range. These CSR pulses were first observed at the ALS, and the measurement of their intensity is now routinely used as a diagnostics for the tune-up of the femtoslicing x-ray experiments. At the same time, these CSR pulses synchronous with the modulating laser, represent a potential source of terahertz radiation with very interesting features. Several measurements have been performed for their characterization and in this paper we present an updated description of the experimental results and of their interpretation. In particular, we include more data on the interesting interaction, previously observed at the ALS, between the slicing and the microbunching instability (MBI), where under particular circumstances, the slicing seems to trigger the onset of the instability

  8. Femtosecond Timekeeping: Slip-Free Clockwork for Optical Timescales

    Science.gov (United States)

    Herman, D.; Droste, S.; Baumann, E.; Roslund, J.; Churin, D.; Cingoz, A.; Deschênes, J.-D.; Khader, I. H.; Swann, W. C.; Nelson, C.; Newbury, N. R.; Coddington, I.

    2018-04-01

    The generation of true optical time standards will require the conversion of the highly stable optical-frequency output of an optical atomic clock to a high-fidelity time output. We demonstrate a comb-based clockwork that phase-coherently integrates ˜7 ×1020 optical cycles of an input optical frequency to create a coherent time output. We verify the underlying stability of the optical timing system by comparing two comb-based clockworks with a common input optical frequency and show time drift over the 37-day measurement period. Both clockworks also generate traditional timing signals including an optical pulse per second and a 10-MHz rf reference. The optical pulse-per-second time outputs remain synchronized to 240 attoseconds (240 as) at 1000 s. The phase-coherent 10-MHz rf outputs are stable to near a part in 1019 . Fault-free timekeeping from an optical clock to femtosecond level over months is an important step in replacing the current microwave time standard by an optical standard.

  9. Femtosecond Optical Frequency Comb Technology Principle, Operation and Application

    CERN Document Server

    Ye, Jun

    2005-01-01

    Over the last few years, there has been a remarkable convergence among the fields of ultrafast optics, optical frequency metrology, and precision laser spectroscopy. This convergence has enabled unprecedented advances in control of the electric field of the pulses produced by femtosecond mode-locked lasers. The resulting spectrum consists of a comb of sharp spectral lines with well-defined frequencies. These new techniques and capabilities are generally known as "femtosecond comb technology." They have had dramatic impact on the diverse fields of precision measurement and extreme nonlinear optical physics. This book provides an introductory description of mode-locked lasers, the connection between time and frequency descriptions of their output and the physical origins of the electric field dynamics, together with an overview of applications of femtosecond comb technology. Individual chapters go into more detail on mode-locked laser development, spectral broadening in microstructure fiber, optical parametric ...

  10. Effects of emittance and space-charge in femtosecond bunch compression

    International Nuclear Information System (INIS)

    Kan, K.; Yang, J.; Kondoh, T.; Norizawa, K.; Yoshida, Y.

    2008-01-01

    Ultrashort electron bunches of the order of <100fs are essential for the study of ultrafast reactions and phenomena by means of time-resolved pump-probe experiments. In order to generate such an electron bunch, the effects of emittance, space-charge (SC) and coherent synchrotron radiation (CSR) on the bunch length in a femtosecond magnetic bunch compressor were studied theoretically. It was observed that the bunch length is dominated by the emittance, SC and CSR effects when the electron bunch is compressed into a femtosecond electron bunch. The increases in bunch length due to the transverse emittance, SC and CSR effects in the bunch compressor were 1.7 fs/mm mrad, 107 fs/nC and 72 fs/nC, respectively. Finally, the simulated bunch length was compared with the experimental results.

  11. Ultrafast S{sub 1} and ICT state dynamics of a marine carotenoid probed by femtosecond one- and two-photon pump-probe spectroscopy

    Energy Technology Data Exchange (ETDEWEB)

    Kosumi, Daisuke, E-mail: kosumi@sci.osaka-cu.ac.j [CREST/JST and Department of Physics, Graduate School of Science, Osaka City University, 3-3-138 Sugimoto, Sumiyoshi-ku, Osaka 558-8585 (Japan); Kusumoto, Toshiyuki [CREST/JST and Department of Physics, Graduate School of Science, Osaka City University, 3-3-138 Sugimoto, Sumiyoshi-ku, Osaka 558-8585 (Japan); Fujii, Ritsuko; Sugisaki, Mitsuru [CREST/JST and Department of Physics, Graduate School of Science, Osaka City University, 3-3-138 Sugimoto, Sumiyoshi-ku, Osaka 558-8585 (Japan); Osaka City University Advanced Research Institute for Natural Science and Technology (OCARINA), Osaka (Japan); Iinuma, Yoshiro; Oka, Naohiro; Takaesu, Yuki; Taira, Tomonori; Iha, Masahiko [South Product Co. Ltd., 12-75 Suzaki, Uruma-shi, Okinawa 904-2234 (Japan); Frank, Harry A. [Department of Chemistry, University of Connecticut, Storrs, CT 06269-3060 (United States); Hashimoto, Hideki, E-mail: hassy@sci.osaka-cu.ac.j [CREST/JST and Department of Physics, Graduate School of Science, Osaka City University, 3-3-138 Sugimoto, Sumiyoshi-ku, Osaka 558-8585 (Japan); Osaka City University Advanced Research Institute for Natural Science and Technology (OCARINA), Osaka (Japan)

    2011-03-15

    Ultrafast relaxation kinetics of fucoxanthin in polar and non-polar solvents have been studied by femtosecond pump-probe spectroscopy. Transient absorption associated with S{sub 1} or intramolecular charge transfer (ICT) excited state has been observed following either one-photon excitation to the optically allowed S{sub 2} state or two-photon excitation to the symmetry-forbidden S{sub 1} state. The results suggest that the ICT state formed after excitation of fucoxanthin in a polar solvent is a distinct excited state from S{sub 1}.

  12. XIX International Youth School on Coherent Optics and Optical Spectroscopy

    International Nuclear Information System (INIS)

    2016-01-01

    The XIX International Youth School on Coherent Optics and Optical Spectroscopy (COOS2015) was held in Kazan, Russia, from October 5 to October 7 at the Nikolai Lobachevsky Scientific Library of Kazan Federal University. The School follows the global tendency toward comprehensive studies of matter properties and its interaction with electromagnetic fields. Since 1997 more than 100 famous scientists from USA, Germany, Ukraine, Belarussia and Russia had plenary lecture presentations. This is the right place, where over 1000 young scientists had an opportunity to participate in hot discussions regarding the latest scientific news. Many young people have submitted interesting reports on photonics, quantum electronics, laser physics, quantum optics, traditional optical and laser spectroscopy, non-linear optics, material science and nanotechnology. Here we are publishing the full-size papers prepared from the most interesting lectures and reports selected by the Program Committee of the School. (paper)

  13. Measurements of coherent hemodynamics to enrich the physiological information provided by near-infrared spectroscopy (NIRS) and functional MRI

    Science.gov (United States)

    Sassaroli, Angelo; Tgavalekos, Kristen; Pham, Thao; Krishnamurthy, Nishanth; Fantini, Sergio

    2018-02-01

    Hemodynamic-based neuroimaging techniques such as functional magnetic resonance imaging (fMRI) and near-infrared spectroscopy (NIRS) sense hemoglobin concentration in cerebral tissue. The local concentration of hemoglobin, which is differentiated into oxy- and deoxy-hemoglobin by NIRS, features spontaneous oscillations over time scales of 10-100 s in response to a number of local and systemic physiological processes. If one of such processes becomes the dominant source of cerebral hemodynamics, there is a high coherence between this process and the associated hemodynamics. In this work, we report a method to identify such conditions of coherent hemodynamics, which may be exploited to study and quantify microvasculature and microcirculation properties. We discuss how a critical value of significant coherence may depend on the specific data collection scheme (for example, the total acquisition time) and the nature of the hemodynamic data (in particular, oxy- and deoxy-hemoglobin concentrations measured with NIRS show an intrinsic level of correlation that must be taken into account). A frequency-resolved study of coherent hemodynamics is the basis for the new technique of coherent hemodynamics spectroscopy (CHS), which aims to provide measures of cerebral blood flow and cerebral autoregulation. While these concepts apply in principle to both fMRI and NIRS data, in this article we focus on NIRS data.

  14. Femtosecond study of self-trapped vibrational excitons in crystalline acetanilide

    DEFF Research Database (Denmark)

    Edler, J.; Hamm, Peter; Scott, Alwyn C.

    2002-01-01

    Femtosecond IR spectroscopy of delocalized NH excitations of crystalline acetanilide confirms that self-trapping in hydrogen-bonded peptide units exists and does stabilize the excitation. Two phonons with frequencies of 48 and 76 cm(-1) are identified as the major degrees of freedom that mediate...

  15. Modern spectroscopy

    CERN Document Server

    Hollas, J Michael

    2013-01-01

    The latest edition of this highly acclaimed title introduces the reader to a wide range of spectroscopies, and includes both the background theory and applications to structure determination and chemical analysis.  It covers rotational, vibrational, electronic, photoelectron and Auger spectroscopy, as well as EXAFs and the theory of lasers and laser spectroscopy. A  revised and updated edition of a successful, clearly written book Includes the latest developments in modern laser techniques, such as cavity ring-down spectroscopy and femtosecond lasers Provides numerous worked examples, calculations and questions at the end of chapters.

  16. Coherent imaging using SACLA

    International Nuclear Information System (INIS)

    Nishino, Yoshinori; Kimura, Takashi; Suzuki, Akihiro; Joti, Yasumasa; Bessho, Yoshitaka

    2017-01-01

    X-ray free-electron lasers (XFELs) with femtosecond pulse duration offer an innovative solution to transcend the spatial resolution limitation in conventional X-ray imaging for biological samples and soft matters by clearing up the radiation damage problem using the “diffraction-before-destruction” strategy. Building on this strategy, the authors are developing a method to image solution sample under controlled environment, pulsed coherent X-ray solution scattering (PCXSS), using XFELs and phase retrieval algorithms in coherent diffractive imaging (CDI). This article describes the basics of PCXSS and examples of PCXSS measurement, for a living cell and self-assemblies of gold nanoparticles, performed by the authors using SACLA. An attempt toward the industrial application of PCXSS is also described. (author)

  17. Rapid-scan Fourier-transform coherent anti-Stokes Raman scattering spectroscopy with heterodyne detection.

    Science.gov (United States)

    Hiramatsu, Kotaro; Luo, Yizhi; Ideguchi, Takuro; Goda, Keisuke

    2017-11-01

    High-speed Raman spectroscopy has become increasingly important for analyzing chemical dynamics in real time. To address the need, rapid-scan Fourier-transform coherent anti-Stokes Raman scattering (FT-CARS) spectroscopy has been developed to realize broadband CARS measurements at a scan rate of more than 20,000 scans/s. However, the detection sensitivity of FT-CARS spectroscopy is inherently low due to the limited number of photons detected during each scan. In this Letter, we show our experimental demonstration of enhanced sensitivity in rapid-scan FT-CARS spectroscopy by heterodyne detection. Specifically, we implemented heterodyne detection by superposing the CARS electric field with an external local oscillator (LO) for their interference. The CARS signal was amplified by simply increasing the power of the LO without the need for increasing the incident power onto the sample. Consequently, we achieved enhancement in signal intensity and the signal-to-noise ratio by factors of 39 and 5, respectively, compared to FT-CARS spectroscopy with homodyne detection. The sensitivity-improved rapid-scan FT-CARS spectroscopy is expected to enable the sensitive real-time observation of chemical dynamics in a broad range of settings, such as combustion engines and live biological cells.

  18. Femtosecond electron bunches, source and characterization

    International Nuclear Information System (INIS)

    Thongbai, C.; Kusoljariyakul, K.; Rimjaem, S.; Rhodes, M.W.; Saisut, J.; Thamboon, P.; Wichaisirimongkol, P.; Vilaithong, T.

    2008-01-01

    A femtosecond electron source has been developed at the Fast Neutron Research Facility (FNRF), Chiang Mai University, Thailand. So far, it has produced electron bunches as short as σ z ∼180 fs with (1-6)x10 8 electrons per microbunch. The system consists of an RF-gun with a thermionic cathode, an alpha-magnet as a magnetic bunch compressor, and a linear accelerator as a post acceleration section. Coherent transition radiation emitted at wavelengths equal to and longer than the bunch length is used in a Michelson interferometer to determine the bunch length by autocorrelation technique. The experimental setup and results of the bunch length measurement are described

  19. Plasmon-enhanced terahertz emission in self-assembled quantum dots by femtosecond pulses

    Energy Technology Data Exchange (ETDEWEB)

    Carreño, F., E-mail: ferpo@fis.ucm.es; Antón, M. A., E-mail: antonm@fis.ucm.es; Melle, Sonia, E-mail: smelle@fis.ucm.es; Calderón, Oscar G., E-mail: oscargc@fis.ucm.es; Cabrera-Granado, E., E-mail: ecabrera@fis.ucm.es [Facultad de Óptica y Optometría, Universidad Complutense de Madrid, C/ Arcos de Jalón 118, 28037 Madrid (Spain); Cox, Joel, E-mail: jcox27@uwo.ca; Singh, Mahi R., E-mail: msingh@uwo.ca [Department of Physics and Astronomy, The University of Western Ontario, London N6A 3K7 (Canada); Egatz-Gómez, A., E-mail: Ana.Egatz-Gomez.1@nd.edu [Department of Chemical and Biomolecular Engineering, University of Notre Dame, South Bend, Indiana 46556 (United States)

    2014-02-14

    A scheme for terahertz (THz) generation from intraband transition in a self-assembled quantum dot (QD) molecule coupled to a metallic nanoparticle (MNP) is analyzed. The QD structure is described as a three-level atom-like system using the density matrix formalism. The MNP with spherical geometry is considered in the quasistatic approximation. A femtosecond laser pulse creates a coherent superposition of two subbands in the quantum dots and produces localized surface plasmons in the nanoparticle which act back upon the QD molecule via dipole-dipole interaction. As a result, coherent THz radiation with a frequency corresponding to the interlevel spacing can be obtained, which is strongly modified by the presence of the MNP. The peak value of the terahertz signal is analyzed as a function of nanoparticle's size, the MNP to QD distance, and the area of the applied laser field. In addition, we theoretically demonstrate that the terahertz pulse generation can be effectively controlled by making use of a train of femtosecond laser pulses. We show that by a proper choice of the parameters characterizing the pulse train a huge enhancement of the terahertz signal is obtained.

  20. Spectroscopic analysis of femtosecond laser-induced gas breakdown

    International Nuclear Information System (INIS)

    Hermann, J.; Bruneau, S.; Sentis, M.

    2004-01-01

    The plasma generated by the interaction of a femtosecond laser pulse with gas has been analyzed using time- and space-resolved emission spectroscopy. The laser beam has been focused with a microscope objective into different gases (air, Ar, He) at pressures ranging from 10 2 to 10 5 Pa. From the analysis of spectral line emission from ions and neutral atoms, the plasma parameters and the plasma composition have been determined as a function of time and space. Furthermore, the generation of fast electrons and/or VUV radiation by the femtosecond laser interaction with the gas was brought to the fore. From the time- and space-evolution of the plasma parameters, a rough estimation of initial values of electron density and refraction index in the focal volume has been performed. These results are compared to analysis of the laser beam transmitted by the plasma. The latter show that only a small fraction of the laser energy is absorbed by the plasma while the spatial distribution of the transmitted laser beam is strongly perturbed by the plasma, which acts like a defocusing lens. However, in ambient helium, the plasma defocusing is weak due to the high ionization potential of helium. The understanding of femtosecond laser-induced gas breakdown is useful for process optimization in femtosecond laser applications like micromachining or surface microanalysis, etc

  1. Debris of potassium–magnesium silicate glass generated by femtosecond laser-induced ablation in air: An analysis by near edge X-ray absorption spectroscopy, micro Raman and energy dispersive X-ray spectroscopy

    International Nuclear Information System (INIS)

    Grehn, M.; Seuthe, T.; Reinhardt, F.; Höfner, M.; Griga, N.; Eberstein, M.; Bonse, J.

    2014-01-01

    The redeposited material (debris) resulting from ablation of a potassium–magnesium silicate glass upon scanning femtosecond laser pulse irradiation (130 fs, 800 nm) in air environment is investigated by means of three complementary surface analytical methods. Changes in the electronic band structure of the glass constituent Magnesium (Mg) were identified by X-ray Absorption Near Edge Structure spectroscopy (XANES) using synchrotron radiation. An up-shift of ≈0.8 eV of a specific Magnesium K-edge absorption peak in the spectrum of the redeposited material along with a significant change in its leading edge position was detected. In contrast, the surface left after laser ablation exhibits a downshift of the peak position by ≈0.9 eV. Both observations may be related to a change of the Mg coordinative state of the laser modified/redeposited glass material. The presence of carbon in the debris is revealed by micro Raman spectroscopy (μ-RS) and was confirmed by energy dispersive X-ray spectroscopy (EDX). These observations are attributed to structural changes and chemical reactions taking place during the ablation process.

  2. Coherent atomic spectroscopy

    International Nuclear Information System (INIS)

    Garton, W.R.S.

    1988-01-01

    The Argonne Spectroscopy Laboratory, initiated and advanced over several decades by F.S. Tomkins and M. Fred, has been a major international facility. A range of collaborative work in atomic spectroscopy is selected to illustrate advances in experimental physics which have been made possible by combination of the talents of Tomkins and Fred with the unique facilities of the Argonne Laboratory. (orig.)

  3. State-Resolved Metal Nanoparticle Dynamics Viewed through the Combined Lenses of Ultrafast and Magneto-optical Spectroscopies.

    Science.gov (United States)

    Zhao, Tian; Herbert, Patrick J; Zheng, Hongjun; Knappenberger, Kenneth L

    2018-05-08

    Electronic carrier dynamics play pivotal roles in the functional properties of nanomaterials. For colloidal metals, the mechanisms and influences of these dynamics are structure dependent. The coherent carrier dynamics of collective plasmon modes for nanoparticles (approximately 2 nm and larger) determine optical amplification factors that are important to applied spectroscopy techniques. In the nanocluster domain (sub-2 nm), carrier coupling to vibrational modes affects photoluminescence yields. The performance of photocatalytic materials featuring both nanoparticles and nanoclusters also depends on the relaxation dynamics of nonequilibrium charge carriers. The challenges for developing comprehensive descriptions of carrier dynamics spanning both domains are multifold. Plasmon coherences are short-lived, persisting for only tens of femtoseconds. Nanoclusters exhibit discrete carrier dynamics that can persist for microseconds in some cases. On this time scale, many state-dependent processes, including vibrational relaxation, charge transfer, and spin conversion, affect carrier dynamics in ways that are nonscalable but, rather, structure specific. Hence, state-resolved spectroscopy methods are needed for understanding carrier dynamics in the nanocluster domain. Based on these considerations, a detailed understanding of structure-dependent carrier dynamics across length scales requires an appropriate combination of spectroscopic methods. Plasmon mode-specific dynamics can be obtained through ultrafast correlated light and electron microscopy (UCLEM), which pairs interferometric nonlinear optical (INLO) with electron imaging methods. INLO yields nanostructure spectral resonance responses, which capture the system's homogeneous line width and coherence dynamics. State-resolved nanocluster dynamics can be obtained by pairing ultrafast with magnetic-optical spectroscopy methods. In particular, variable-temperature variable-field (VTVH) spectroscopies allow quantification

  4. Optically controlled locking of the nuclear field via coherent dark-state spectroscopy.

    Science.gov (United States)

    Xu, Xiaodong; Yao, Wang; Sun, Bo; Steel, Duncan G; Bracker, Allan S; Gammon, Daniel; Sham, L J

    2009-06-25

    A single electron or hole spin trapped inside a semiconductor quantum dot forms the foundation for many proposed quantum logic devices. In group III-V materials, the resonance and coherence between two ground states of the single spin are inevitably affected by the lattice nuclear spins through the hyperfine interaction, while the dynamics of the single spin also influence the nuclear environment. Recent efforts have been made to protect the coherence of spins in quantum dots by suppressing the nuclear spin fluctuations. However, coherent control of a single spin in a single dot with simultaneous suppression of the nuclear fluctuations has yet to be achieved. Here we report the suppression of nuclear field fluctuations in a singly charged quantum dot to well below the thermal value, as shown by an enhancement of the single electron spin dephasing time T(2)*, which we measure using coherent dark-state spectroscopy. The suppression of nuclear fluctuations is found to result from a hole-spin assisted dynamic nuclear spin polarization feedback process, where the stable value of the nuclear field is determined only by the laser frequencies at fixed laser powers. This nuclear field locking is further demonstrated in a three-laser measurement, indicating a possible enhancement of the electron spin T(2)* by a factor of several hundred. This is a simple and powerful method of enhancing the electron spin coherence time without use of 'spin echo'-type techniques. We expect that our results will enable the reproducible preparation of the nuclear spin environment for repetitive control and measurement of a single spin with minimal statistical broadening.

  5. Electron Bunch Length Diagnostic With Coherent Smith-Purcell Radiation

    Energy Technology Data Exchange (ETDEWEB)

    Nguyen, D.C.

    1997-05-12

    The authors have designed a new technique for measuring subpicosecond electron bunch lengths using coherent Smith-Purcell radiation. This new diagnostic technique involves passing the electron beam in close proximity of a grating with a period comparable to the electron bunch length. The emitted Smith-Purcell radiation will have a coherent component whose angular position and distribution are directly related to the electron bunch length and longitudinal profile, respectively. This new diagnostic technique is inherently simple, inexpensive and non-intercepting. The authors show that the new technique is also scaleable to femtosecond regime.

  6. Electron Bunch Length Diagnostic With Coherent Smith-Purcell Radiation

    International Nuclear Information System (INIS)

    Nguyen, D.C.

    1997-01-01

    The authors have designed a new technique for measuring subpicosecond electron bunch lengths using coherent Smith-Purcell radiation. This new diagnostic technique involves passing the electron beam in close proximity of a grating with a period comparable to the electron bunch length. The emitted Smith-Purcell radiation will have a coherent component whose angular position and distribution are directly related to the electron bunch length and longitudinal profile, respectively. This new diagnostic technique is inherently simple, inexpensive and non-intercepting. The authors show that the new technique is also scaleable to femtosecond regime

  7. Visible to Infrared Diamond Photonics Enabled by Focused Femtosecond Laser Pulses

    Directory of Open Access Journals (Sweden)

    Belén Sotillo

    2017-02-01

    Full Text Available Diamond’s nitrogen-vacancy (NV centers show great promise in sensing applications and quantum computing due to their long electron spin coherence time and because they can be found, manipulated, and read out optically. An important step forward for diamond photonics would be connecting multiple diamond NVs together using optical waveguides. However, the inertness of diamond is a significant hurdle for the fabrication of integrated optics similar to those that revolutionized silicon photonics. In this work, we show the fabrication of optical waveguides in diamond, enabled by focused femtosecond high repetition rate laser pulses. By optimizing the geometry of the waveguide, we obtain single mode waveguides from the visible to the infrared. Additionally, we show the laser writing of individual NV centers within the bulk of diamond. We use µ-Raman spectroscopy to gain better insight on the stress and the refractive index profile of the optical waveguides. Using optically detected magnetic resonance and confocal photoluminescence characterization, high quality NV properties are observed in waveguides formed in various grades of diamond, making them promising for applications such as magnetometry, quantum information systems, and evanescent field sensors.

  8. Signatures of Förster and Dexter transfer processes in coupled nanostructures for linear and two-dimensional coherent optical spectroscopy

    Science.gov (United States)

    Specht, Judith F.; Richter, Marten

    2015-03-01

    In this manuscript, we study the impact of the two Coulomb induced resonance energy transfer processes, Förster and Dexter coupling, on the spectral signatures obtained by double quantum coherence spectroscopy. We show that the specific coupling characteristics allow us to identify the underlying excitation transfer mechanism by means of specific signatures in coherent spectroscopy. Therefore, we control the microscopic calculated coupling strength of spin preserving and spin flipping Förster transfer processes by varying the mutual orientation of the two quantum emitters. The calculated spectra reveal the optical selection rules altered by Förster and Dexter coupling between two semiconductor quantum dots. We show that Dexter coupling between bright and dark two-exciton states occurs.

  9. Pump pulse duration dependence of coherent phonon amplitudes in antimony

    Energy Technology Data Exchange (ETDEWEB)

    Misochko, O. V., E-mail: misochko@issp.ac.ru [Russian Academy of Sciences, Institute of Solid State Physics (Russian Federation)

    2016-08-15

    Coherent optical phonons of A{sub 1k} and E{sub k} symmetry in antimony have been studied using the femtosecond pump–probe technique. By varying the pump-pulse duration and keeping the probe duration constant, it was shown that the amplitude of coherent phonons of both symmetries exponentially decreases with increasing pulse width. It was found that the amplitude decay rate for the fully symmetric phonons with larger frequency is greater than that of the doubly degenerate phonons, whereas the frequency and lifetime for coherent phonons of both symmetries do not depend on the pump-pulse duration. Based on this data, the possibility of separation between dynamic and kinematic contributions to the generation mechanism of coherent phonons is discussed.

  10. Coherent combination of ultrafast fiber amplifiers

    International Nuclear Information System (INIS)

    Hanna, Marc; Guichard, Florent; Druon, Frédéric; Georges, Patrick; Zaouter, Yoann; Papadopoulos, Dimitris N

    2016-01-01

    We review recent progress in coherent combining of femtosecond pulses amplified in optical fibers as a way to scale the peak and average power of ultrafast sources. Different methods of achieving coherent pulse addition in space (beam combining) and time (divided pulse amplification) domains are described. These architectures can be widely classified into active methods, where the relative phases between pulses are subject to a servomechanism, and passive methods, where phase matching is inherent to the geometry. Other experiments that combine pulses with different spectral contents, pulses that have been nonlinearly broadened or successive pulses from a mode-locked laser oscillator, are then presented. All these techniques allow access to unprecedented parameter range for fiber ultrafast sources. (topical review)

  11. Surface State Dynamics of Topological Insulators Investigated by Femtosecond Time- and Angle-Resolved Photoemission Spectroscopy

    Directory of Open Access Journals (Sweden)

    Hamoon Hedayat

    2018-04-01

    Full Text Available Topological insulators (TI are known for striking quantum phenomena associated with their spin-polarized topological surface state (TSS. The latter in particular forms a Dirac cone that bridges the energy gap between valence and conduction bands, providing a unique opportunity for prospective device applications. In TI of the BixSb2−xTeySe3−y (BSTS family, stoichiometry determines the morphology and position of the Dirac cone with respect to the Fermi level. In order to engineer specific transport properties, a careful tuning of the TSS is highly desired. Therefore, we have systematically explored BSTS samples with different stoichiometries by time- and angle-resolved photoemission spectroscopy (TARPES. This technique provides snapshots of the electronic structure and discloses the carrier dynamics in surface and bulk states, providing crucial information for the design of electro-spin current devices. Our results reveal the central role of doping level on the Dirac cone structure and its femtosecond dynamics. In particular, an extraordinarily long TSS lifetime is observed when the the vertex of the Dirac cone lies at the Fermi level.

  12. Structural dynamics of a noncovalent charge transfer complex from femtosecond stimulated Raman spectroscopy.

    Science.gov (United States)

    Fujisawa, Tomotsumi; Creelman, Mark; Mathies, Richard A

    2012-09-06

    Femtosecond stimulated Raman spectroscopy is used to examine the structural dynamics of photoinduced charge transfer within a noncovalent electron acceptor/donor complex of pyromellitic dianhydride (PMDA, electron acceptor) and hexamethylbenzene (HMB, electron donor) in ethylacetate and acetonitrile. The evolution of the vibrational spectrum reveals the ultrafast structural changes that occur during the charge separation (Franck-Condon excited state complex → contact ion pair) and the subsequent charge recombination (contact ion pair → ground state complex). The Franck-Condon excited state is shown to have significant charge-separated character because its vibrational spectrum is similar to that of the ion pair. The charge separation rate (2.5 ps in ethylacetate and ∼0.5 ps in acetonitrile) is comparable to solvation dynamics and is unaffected by the perdeuteration of HMB, supporting the dominant role of solvent rearrangement in charge separation. On the other hand, the charge recombination slows by a factor of ∼1.4 when using perdeuterated HMB, indicating that methyl hydrogen motions of HMB mediate the charge recombination process. Resonance Raman enhancement of the HMB vibrations in the complex reveals that the ring stretches of HMB, and especially the C-CH(3) deformations are the primary acceptor modes promoting charge recombination.

  13. Femtosecond fluorescence upconversion spectroscopy of vapor-deposited tris(8-hydroxyquinoline) aluminum films.

    NARCIS (Netherlands)

    Humbs, W.; Zhang, H.; Glasbeek, M.

    2000-01-01

    Abstract Vapor-deposited Alq3 is used as the green emitting layer in a class of organic light-emitting diodes. In this paper, the time dependence of the fluorescence from thin Alq3 films has been studied by means of the femtosecond fluorescence upconversion technique. From the temporally resolved

  14. Experimental investigation on the spiral trepanning of K24 superalloy with femtosecond laser

    Science.gov (United States)

    Wang, Maolu; Yang, Lijun; Zhang, Shuai; Wang, Yang

    2018-05-01

    Film cooling holes are crucial for improving the performance of the aviation engine. In the paper, the processing of the film cooling holes on K24 superalloy by femtosecond laser is investigated. By comparing the three different drilling methods, the spiral trepanning method is chosen, and all the drilling experiments are carried out in this way. The experimental results show that the drilling of femtosecond laser pulses has distinct merits against that of the traditional long pulse laser, which can realize the "cold" processing with less recasting layer and less crack. The influence of each process parameter on roundness and taper, which are the important parameters to measure the quality of holes, is analyzed in detail, and the method to decrease it is proposed. To further reduce the recasting layer, the processing quality of the inner wall of the micro hole is investigated by scanning electron microscopy (SEM) equipped with energy disperse spectroscopy (EDS), the mechanism of the femtosecond laser interaction with K24 superalloy is further revealed. The investigation to the film hole machining by femtosecond laser has important practical significance.

  15. Chromophore dynamics in the PYP photocycle from femtosecond stimulated Raman spectroscopy.

    Science.gov (United States)

    Creelman, Mark; Kumauchi, Masato; Hoff, Wouter D; Mathies, Richard A

    2014-01-23

    Femtosecond stimulated Raman spectroscopy (FSRS) is used to examine the structural dynamics of the para-hydroxycinnamic acid (HCA) chromophore during the first 300 ps of the photoactive yellow protein (PYP) photocycle, as the system transitions from its vertically excited state to the early ground state cis intermediate, I0. A downshift in both the C7═C8 and C1═O stretches upon photoexcitation reveals that the chromophore has shifted to an increasingly quinonic form in the excited state, indicating a charge shift from the phenolate moiety toward the C9═O carbonyl, which continues to increase for 170 fs. In addition, there is a downshift in the C9═O carbonyl out-of-plane vibration on an 800 fs time scale as PYP transitions from its excited state to I0, indicating that weakening of the hydrogen bond with Cys69 and out-of-plane rotation of the C9═O carbonyl are key steps leading to photoproduct formation. HOOP intensity increases on a 3 ps time scale during the formation of I0, signifying distortion about the C7═C8 bond. Once on the I0 surface, the C7═C8 and C1═O stretches blue shift, indicating recovery of charge to the phenolate, while persistent intensity in the HOOP and carbonyl out-of-plane modes reveal HCA to be a cissoid structure with significant distortion about the C7═C8 bond and of C9═O out of the molecular plane.

  16. Femtosecond Time-Resolved Resonance-Enhanced CARS of Gaseous Iodine at Room Temperature

    International Nuclear Information System (INIS)

    He Ping; Fan Rong-Wei; Xia Yuan-Qin; Yu Xin; Chen De-Ying; Yao Yong

    2011-01-01

    Time-resolved resonance-enhanced coherent anti-Stokes Raman scattering (CARS) is applied to investigate molecular dynamics in gaseous iodine. 40 fs laser pulses are applied to create and monitor the high vibrational states of iodine at room temperature (corresponding to a vapor pressure as low as about 35 Pa) by femtosecond time-resolved CARS. Depending on the time delay between the probe pulse and the pump/Stokes pulse pairs, the high vibrational states both on the electronically ground states and the excited states can be detected as oscillations in the CARS transient signal. It is proved that the femtosecond time-resolved CARS technique is a promising candidate for investigating the molecular dynamics of a low concentration system and can be applied to environmental and atmospheric monitoring measurements. (condensed matter: electronic structure, electrical, magnetic, and optical properties)

  17. Ultraviolet-resonance femtosecond stimulated Raman study of the initial events in photoreceptor chromophore

    Directory of Open Access Journals (Sweden)

    Tahara T.

    2013-03-01

    Full Text Available Newly-developed ultraviolet-resonance femtosecond stimulated-Raman spectroscopy was utilized to study the initial structural evolution of photoactive yellow protein chromophore in solution. The obtained spectra changed drastically within 1 ps, demonstrating rapid in-plane deformations of the chromophore.

  18. Precision of coherence analysis to detect cerebral autoregulation by near-infrared spectroscopy in preterm infants

    DEFF Research Database (Denmark)

    Hahn, GH; Christensen, KB; Leung, TS

    2010-01-01

    Coherence between spontaneous fluctuations in arterial blood pressure (ABP) and the cerebral near-infrared spectroscopy signal can detect cerebral autoregulation. Because reliable measurement depends on signals with high signal-to-noise ratio, we hypothesized that coherence is more precisely...... determined when fluctuations in ABP are large rather than small. Therefore, we investigated whether adjusting for variability in ABP (variabilityABP) improves precision. We examined the impact of variabilityABP within the power spectrum in each measurement and between repeated measurements in preterm infants....... We also examined total monitoring time required to discriminate among infants with a simulation study. We studied 22 preterm infants (GAABP within the power spectrum did not improve the precision. However, adjusting...

  19. Manipulating femtosecond spin-orbit torques with laser pulse sequences to control magnetic memory states and ringing

    Science.gov (United States)

    Lingos, P. C.; Wang, J.; Perakis, I. E.

    2015-05-01

    Femtosecond (fs) coherent control of collective order parameters is important for nonequilibrium phase dynamics in correlated materials. Here, we propose such control of ferromagnetic order based on using nonadiabatic optical manipulation of electron-hole (e -h ) photoexcitations to create fs carrier-spin pulses with controllable direction and time profile. These spin pulses are generated due to the time-reversal symmetry breaking arising from nonperturbative spin-orbit and magnetic exchange couplings of coherent photocarriers. By tuning the nonthermal populations of exchange-split, spin-orbit-coupled semiconductor band states, we can excite fs spin-orbit torques that control complex magnetization pathways between multiple magnetic memory states. We calculate the laser-induced fs magnetic anisotropy in the time domain by using density matrix equations of motion rather than the quasiequilibrium free energy. By comparing to pump-probe experiments, we identify a "sudden" out-of-plane magnetization canting displaying fs magnetic hysteresis, which agrees with switchings measured by the static Hall magnetoresistivity. This fs transverse spin-canting switches direction with magnetic state and laser frequency, which distinguishes it from the longitudinal nonlinear optical and demagnetization effects. We propose that sequences of clockwise or counterclockwise fs spin-orbit torques, photoexcited by shaping two-color laser-pulse sequences analogous to multidimensional nuclear magnetic resonance (NMR) spectroscopy, can be used to timely suppress or enhance magnetic ringing and switching rotation in magnetic memories.

  20. Construction of coherent antistokes Raman spectroscopy (CARS)

    International Nuclear Information System (INIS)

    Zidan, M. D.; Jazmati, A.

    2007-01-01

    Coherent Antistokes Raman Spectroscopy (CARS) has been built. It consists of a Raman cell, which is filled with CO 2 gas at 5 atm pressure and a frequency doubled Nd-YAG laser pumped dye laser. The two beams are focused by means of a bi-convex lens into Raman cell. The Antistokes signals (CARS signals) are generated due to Four-wave mixing process. The antistokes signals were directed to monochrometer entrance slit by prism . The signals are detected by photomultiplier detector which is fixed on the exit slit and connected to data acquisition card located inside the computed case. The dye laser frequency has to be tuned to satisfy the energy difference between the ν 1 beam (Nd- YAG laser beam) and the ν 2 beam (the stokes beam or the dye laser beam) exactly corresponds to a vibrational - rotational Raman resonance (ν 2 - ν 1 = ν M ) in the 12 CO 2 or 13 CO 2 molecule, then the antistokes signals (ν 3 ) will be generated. The spectra of the CARS signals have been recorded to determine the isotope shift of 12 CO 2 , 13 CO 2 , which is 18.3 cm -1 . (author)

  1. Ultrafast lattice dynamics in photoexcited nanostructures. Femtosecond X-ray diffraction with optimized evaluation schemes

    International Nuclear Information System (INIS)

    Schick, Daniel

    2013-01-01

    Within the course of this thesis, I have investigated the complex interplay between electron and lattice dynamics in nanostructures of perovskite oxides. Femtosecond hard X-ray pulses were utilized to probe the evolution of atomic rearrangement directly, which is driven by ultrafast optical excitation of electrons. The physics of complex materials with a large number of degrees of freedom can be interpreted once the exact fingerprint of ultrafast lattice dynamics in time-resolved X-ray diffraction experiments for a simple model system is well known. The motion of atoms in a crystal can be probed directly and in real-time by femtosecond pulses of hard X-ray radiation in a pump-probe scheme. In order to provide such ultrashort X-ray pulses, I have built up a laser-driven plasma X-ray source. The setup was extended by a stable goniometer, a two-dimensional X-ray detector and a cryogen-free cryostat. The data acquisition routines of the diffractometer for these ultrafast X-ray diffraction experiments were further improved in terms of signal-to-noise ratio and angular resolution. The implementation of a high-speed reciprocal-space mapping technique allowed for a two-dimensional structural analysis with femtosecond temporal resolution. I have studied the ultrafast lattice dynamics, namely the excitation and propagation of coherent phonons, in photoexcited thin films and superlattice structures of the metallic perovskite SrRuO 3 . Due to the quasi-instantaneous coupling of the lattice to the optically excited electrons in this material a spatially and temporally well-defined thermal stress profile is generated in SrRuO 3 . This enables understanding the effect of the resulting coherent lattice dynamics in time-resolved X-ray diffraction data in great detail, e.g. the appearance of a transient Bragg peak splitting in both thin films and superlattice structures of SrRuO 3 . In addition, a comprehensive simulation toolbox to calculate the ultrafast lattice dynamics and the

  2. Observation and investigation of narrow optical transitions of 167Er3+ ions in femtosecond laser printed waveguides in 7LiYF4 crystal

    Science.gov (United States)

    Minnegaliev, M. M.; Dyakonov, I. V.; Gerasimov, K. I.; Kalinkin, A. A.; Kulik, S. P.; Moiseev, S. A.; Saygin, M. Yu; Urmancheev, R. V.

    2018-04-01

    We produced optical waveguides in the 167Er3+:7 LiYF4 crystal with diameters ranging from 30 to 100 μm by using the depressed-cladding approach with femtosecond laser. Stationary and coherent spectroscopy was performed on the 809 nm optical transitions between the hyperfine sublevels of 4I15/2 and 4I9/2 multiplets of 167Er3+ ions both inside and outside of waveguides. It was found that the spectra of 167Er3+ were slightly broadened and shifted inside the waveguides compared to the bulk crystal spectra. We managed to observe a two-pulse photon echo on this transition and determined phase relaxation times for each waveguide. The experimental results show that the created crystal waveguides doped by rare-earth ions can be used in optical quantum memory and integrated quantum schemes.

  3. On interaction of femtosecond laser pulses with cluster targets

    International Nuclear Information System (INIS)

    Skobelev, I.Yu.; Faenov, A.Ya.; Magunov, A.I.

    2002-01-01

    The clusters heating through the femtosecond laser pulses is theoretically and experimentally studied. Both the process of the cluster target formation and results of the cluster plasma experimental studies through the emission X-ray spectroscopy methods are considered. The numerical model of clusters formation in the supersonic gaseous jet is proposed. It is shown that detailed studies on the two-phase gas-dynamic processes in the nozzle, forming the jet, make it possible to obtain spatial distributions of all cluster parameters, necessary for correct calculations of the clusters. The simple physical model of the plasma formation through the femtosecond laser method is proposed. It is shown that comparison of the observed X-ray spectra with the results of the detailed ion kinetics calculations, make it possible to determine the basic parameters of the formed plasma [ru

  4. Spatially periodic structures, under femtosecond pulsed excitation of crystals

    International Nuclear Information System (INIS)

    Martynovitch, Evgueni F.; Petite, Guillaume; Dresvianski, Vladimir P.; Starchenko, Anton A.

    2004-01-01

    Measuring the luminescence intensity of specially prepared irradiation defects induced in crystals, we observe that the longitudinal structure of quasi-interferences induced by two orthogonally polarized femtosecond pulses propagating together with different velocities is insensitive to the spatial broadening due to velocity dispersion in the crystals. On the contrary, it does depend on the pulse duration when it is changed by varying the spectral width of the radiation. It thus allows a direct measurement of the coherence time of such pulses. Stability of the axial selectivity is a good sign, taking away a number of serious limitations concerning possible applications

  5. Editorial: Focus on X-ray Beams with High Coherence

    Science.gov (United States)

    Robinson, Ian; Gruebel, Gerhard; Mochrie, Simon

    2010-03-01

    This editorial serves as the preface to a special issue of New Journal of Physics, which collects together solicited papers on a common subject, x-ray beams with high coherence. We summarize the issue's content, and explain why there is so much current interest both in the sources themselves and in the applications to the study of the structure of matter and its fluctuations (both spontaneous and driven). As this collection demonstrates, the field brings together accelerator physics in the design of new sources, particle physics in the design of detectors, and chemical and materials scientists who make use of the coherent beams produced. Focus on X-ray Beams with High Coherence Contents Femtosecond pulse x-ray imaging with a large field of view B Pfau, C M Günther, S Schaffert, R Mitzner, B Siemer, S Roling, H Zacharias, O Kutz, I Rudolph, R Treusch and S Eisebitt The FERMI@Elettra free-electron-laser source for coherent x-ray physics: photon properties, beam transport system and applications E Allaria, C Callegari, D Cocco, W M Fawley, M Kiskinova, C Masciovecchio and F Parmigiani Beyond simple exponential correlation functions and equilibrium dynamics in x-ray photon correlation spectroscopy Anders Madsen, Robert L Leheny, Hongyu Guo, Michael Sprung and Orsolya Czakkel The Coherent X-ray Imaging (CXI) instrument at the Linac Coherent Light Source (LCLS) Sébastien Boutet and Garth J Williams Dynamics and rheology under continuous shear flow studied by x-ray photon correlation spectroscopy Andrei Fluerasu, Pawel Kwasniewski, Chiara Caronna, Fanny Destremaut, Jean-Baptiste Salmon and Anders Madsen Exploration of crystal strains using coherent x-ray diffraction Wonsuk Cha, Sanghoon Song, Nak Cheon Jeong, Ross Harder, Kyung Byung Yoon, Ian K Robinson and Hyunjung Kim Coherence properties of the European XFEL G Geloni, E Saldin, L Samoylova, E Schneidmiller, H Sinn, Th Tschentscher and M Yurkov Fresnel coherent diffractive imaging: treatment and analysis of data G J

  6. Study of high-temperature multiplex HCl coherent anti-Stokes Raman spectroscopy spectra.

    Science.gov (United States)

    Singh, J P; Yueh, F Y; Kao, W; Cook, R L

    1993-02-20

    A feasibility study of temperature measurement with multiplex HCl coherent anti-Stokes Raman spectroscopy (CARS) is investigated. The HCl CARS spectra of a 100% HCl gas sample are recorded in a quartz sample cell placed in a furnace at 1 atm pressure and at different temperatures. The nonlinear susceptibility of HCl (chi(nr)(HCl)), which is measured with the present CARS experimental setup, is reported. The experimental spectra are fit by using a library of simulated HCl CARS spectra with a least-squares-fitting program to infer the temperature. The inferred temperatures from HCl CARS spectra are in agreement with thermocouple temperatures.

  7. Femtosecond laser ablation of gold interdigitated electrodes for electronic tongues

    Science.gov (United States)

    Manzoli, Alexandra; de Almeida, Gustavo F. B.; Filho, José A.; Mattoso, Luiz H. C.; Riul, Antonio; Mendonca, Cleber R.; Correa, Daniel S.

    2015-06-01

    Electronic tongue (e-tongue) sensors based on impedance spectroscopy have emerged as a potential technology to evaluate the quality and chemical composition of food, beverages, and pharmaceuticals. E-tongues usually employ transducers based on metal interdigitated electrodes (IDEs) coated with a thin layer of an active material, which is capable of interacting chemically with several types of analytes. IDEs are usually produced by photolithographic methods, which are time-consuming and costly, therefore, new fabrication technologies are required to make it more affordable. Here, we employed femtosecond laser ablation with pulse duration of 50 fs to microfabricate gold IDEs having finger width from 2.3 μm up to 3.2 μm. The parameters used in the laser ablation technique, such as light intensity, scan speed and beam spot size have been optimized to achieve uniform IDEs, which were characterized by optical and scanning electron microscopy. The electrical properties of gold IDEs fabricated by laser ablation were evaluated by impedance spectroscopy, and compared to those produced by conventional photolithography. The results show that femtosecond laser ablation is a promising alternative to conventional photolithography for fabricating metal IDEs for e-tongue systems.

  8. Stationary and coherent spectroscopy of 167Er3+ in waveguides in 7LiYF4 crystal

    Directory of Open Access Journals (Sweden)

    Minnegaliev Mansur

    2017-01-01

    Full Text Available We have conducted a spectroscopic investigation of 167Er3+ ions in optical waveguides on an optical transition between the hyperfine sublevels of 4I15/2 and 4I9/2 multiplets. Waveguides with diameters ranging from 20 to 100 µm were produced in the crystal by a femtosecond laser using the depressed-cladding approach. The spectroscopy results of 167Er3+ ions inside the waveguides show additional broadening and an overall shifts of the spectra compared to the bulk spectrum of ions. The sign of the observed frequency shift depends on the diameter of the specific waveguide. We have also observed a two-pulse photon echo in several waveguides. The acquired results show the possibility for integrated quantum schemes in rare-earth ions doped crystals.

  9. Polarization Sensitive Coherent Raman Measurements of DCVJ

    Science.gov (United States)

    Anderson, Josiah; Cooper, Nathan; Lawhead, Carlos; Shiver, Tegan; Ujj, Laszlo

    2014-03-01

    Coherent Raman spectroscopy which recently developed into coherent Raman microscopy has been used to produce label free imaging of thin layers of material and find the spatial distributions of certain chemicals within samples, e.g. cancer cells.(1) Not all aspects of coherent scattering have been used for imaging. Among those for example are special polarization sensitive measurements. Therefore we have investigated the properties of polarization sensitive CARS spectra of a highly fluorescent molecule, DCVJ.(2) Spectra has been recorded by using parallel polarized and perpendicular polarized excitations. A special polarization arrangement was developed to suppress the non-resonant background scattering from the sample. These results can be used to improve the imaging properties of a coherent Raman microscope in the future. This is the first time coherent Raman polarization sensitive measurements have been used to characterize the vibrational modes of DCVJ. 1: K. I. Gutkowski, et al., ``Fluorescence of dicyanovinyl julolidine in a room temperature ionic liquid '' Chemical Physics Letters 426 (2006) 329 - 333 2: Fouad El-Diasty, ``Coherent anti-Stokes Raman scattering: Spectroscopy and microscopy'' Vibrational Spectroscopy 55 (2011) 1-37

  10. A passion for precision - from the ultrafast to the ultraslow

    International Nuclear Information System (INIS)

    Haensch, T.W.

    2005-01-01

    Full text: Femtosecond laser optical frequency comb synthesizers have become the established tool for measuring the frequency of light with extreme precision. By permitting phase-coherent comparisons of optical and microwave frequencies, they can serve as the clockwork for ultraprecise optical atomic clocks. Applications to laser spectroscopy of atomic hydrogen permit stringent tests of basic laws of quantum physics. Such experiments can yield accurate values of fundamental constants, and they may reveal slow changes of fundamental constants with the evolution of the universe. Laser frequency comb techniques can also control the light phase of femtosecond laser pulses, thus advancing the frontier of ultrafast science from the femtosecond to the attosecond regime. High harmonic generation with intense femtosecond pulses may extend frequency comb techniques to the extreme ultraviolet and soft x-ray regime, conquering new territory for precision laser spectroscopy and fundamental measurements. (author)

  11. CIRCE, the Coherent Infrared Center at the ALS

    International Nuclear Information System (INIS)

    Byrd, John M.; De Santis, Stefano; Jung, Jin-Young; Li, Derun; Martin, Michael C.; McKinney, W.; Munson, Dawn; Nishimura, Hiroshi; Robin, David S.; Sannibale, Fernando; Schlueter, Ross; Venturini, Marco; Wan, Weishi; Zolotorev, Max

    2004-01-01

    CIRCE (Coherent InfraRed CEnter) is a proposal for a new electron storage ring to be built at the Advanced Light Source (ALS) of the Lawrence Berkeley National Laboratory (LBNL). The ring design is optimized for the generation of coherent synchrotron radiation (CSR) in the terahertz frequency range. Among others, CIRCE operation includes three interesting CSR modes: ultra stable, femtosecond laser slicing and broadband bursting. CSR allows CIRCE to generate an extremely high flux in the terahertz frequency region. The many orders of magnitude increase in the intensity over that presently achievable by conventional sources, has the potential to enable new science experiments. The characteristics of CIRCE and of the different modes of operation are described in this paper

  12. Linear and Nonlinear Molecular Spectroscopy with Laser Frequency Combs

    Science.gov (United States)

    Picque, Nathalie

    2013-06-01

    The regular pulse train of a mode-locked femtosecond laser can give rise to a comb spectrum of millions of laser modes with a spacing precisely equal to the pulse repetition frequency. Laser frequency combs were conceived a decade ago as tools for the precision spectroscopy of atomic hydrogen. They are now becoming enabling tools for an increasing number of applications, including molecular spectroscopy. Recent experiments of multi-heterodyne frequency comb Fourier transform spectroscopy (also called dual-comb spectroscopy) have demonstrated that the precisely spaced spectral lines of a laser frequency comb can be harnessed for new techniques of linear absorption spectroscopy. The first proof-of-principle experiments have demonstrated a very exciting potential of dual-comb spectroscopy without moving parts for ultra-rapid and ultra-sensitive recording of complex broad spectral bandwidth molecular spectra. Compared to conventional Michelson-based Fourier transform spectroscopy, recording times could be shortened from seconds to microseconds, with intriguing prospects for spectroscopy of short lived transient species. The resolution improves proportionally to the measurement time. Therefore longer recordings allow high resolution spectroscopy of molecules with extreme precision, since the absolute frequency of each laser comb line can be known with the accuracy of an atomic clock. Moreover, since laser frequency combs involve intense ultrashort laser pulses, nonlinear interactions can be harnessed. Broad spectral bandwidth ultra-rapid nonlinear molecular spectroscopy and imaging with two laser frequency combs is demonstrated with coherent Raman effects and two-photon excitation. Real-time multiplex accessing of hyperspectral images may dramatically expand the range of applications of nonlinear microscopy. B. Bernhardt et al., Nature Photonics 4, 55-57 (2010); A. Schliesser et al. Nature Photonics 6, 440-449 (2012); T. Ideguchi et al. arXiv:1201.4177 (2012) T

  13. Femtosecond few-cycle mid-infrared laser pulses

    DEFF Research Database (Denmark)

    Liu, Xing

    The few-cycle pulses of mid-infrared (mid-IR, wavelength 2-10 microns) have attracted increasing attention owing to their great potentials for high order harmonic generation, time-resolved spectroscopy, precision of cutting and biomedical science.In this thesis, mid-IR frequency conversion.......2 - 5.5 μm with only one fixed pump wavelength, a feature absent in Kerr media. Finally, we experimentally observe supercontinuum generation spanning 1.5 octaves, generated in a 10 mm long silicon-rich nitride waveguide pumped by 100 pJ femtosecond pulses from an erbium fiber laser. The waveguide has...

  14. Single-shot femtosecond laser ablation of gold surface in air and isopropyl alcohol

    Science.gov (United States)

    Kudryashov, S. I.; Saraeva, I. N.; Lednev, V. N.; Pershin, S. M.; Rudenko, A. A.; Ionin, A. A.

    2018-05-01

    Single-shot IR femtosecond-laser ablation of gold surfaces in ambient air and liquid isopropyl alcohol was studied by scanning electron microscopy characterization of crater topographies and time-resolved optical emission spectroscopy of ablative plumes in regimes, typical for non-filamentary and non-fragmentation laser production of nanoparticle sols. Despite one order of magnitude shorter (few nanoseconds) lifetimes and almost two orders of magnitude lower intensities of the quenched ablative plume emission in the alcohol ambient at the same peak laser fluence, craters for the dry and wet conditions appeared with rather similar nanofoam-like spallative topographies and the same thresholds. These facts envision the underlying surface spallation as one of the basic ablation mechanisms relevant for both dry and wet advanced femtosecond laser surface nano/micro-machining and texturing, as well as for high-throughput femtosecond laser ablative production of colloidal nanoparticles by MHz laser-pulse trains via their direct nanoscale jetting from the nanofoam in air and fluid environments.

  15. Evolution of coherent collective modes through consecutive charge-density-wave transitions in the (PO2)4(WO3)12 monophosphate tungsten bronze

    Science.gov (United States)

    Stojchevska, L.; Borovšak, M.; Foury-Leylekian, P.; Pouget, J.-P.; Mertelj, T.; Mihailovic, D.

    2017-07-01

    All-optical femtosecond relaxation dynamics in a single crystal of monophosphate tungsten bronze (PO2)4(WO3)2m with alternate stacking m =6 of WO3 layers was studied through the three consequent charge-density-wave (CDW) transitions. Several transient coherent collective modes associated with the different CDW transitions were observed and analyzed in the framework of the time-dependent Ginzburg-Landau theory. Remarkably, the interference of the modes leads to an apparent rectification effect in the transient reflectivity response. A saturation of the coherent-mode amplitudes with increasing pump fluence well below the CDWs destruction threshold fluence indicates a decoupling of the electronic and lattice parts of the order parameter on the femtosecond timescale.

  16. Communication: The electronic structure of matter probed with a single femtosecond hard x-ray pulse

    Directory of Open Access Journals (Sweden)

    J. Szlachetko

    2014-03-01

    Full Text Available Physical, biological, and chemical transformations are initiated by changes in the electronic configuration of the species involved. These electronic changes occur on the timescales of attoseconds (10−18 s to femtoseconds (10−15 s and drive all subsequent electronic reorganization as the system moves to a new equilibrium or quasi-equilibrium state. The ability to detect the dynamics of these electronic changes is crucial for understanding the potential energy surfaces upon which chemical and biological reactions take place. Here, we report on the determination of the electronic structure of matter using a single self-seeded femtosecond x-ray pulse from the Linac Coherent Light Source hard x-ray free electron laser. By measuring the high energy resolution off-resonant spectrum (HEROS, we were able to obtain information about the electronic density of states with a single femtosecond x-ray pulse. We show that the unoccupied electronic states of the scattering atom may be determined on a shot-to-shot basis and that the measured spectral shape is independent of the large intensity fluctuations of the incoming x-ray beam. Moreover, we demonstrate the chemical sensitivity and single-shot capability and limitations of HEROS, which enables the technique to track the electronic structural dynamics in matter on femtosecond time scales, making it an ideal probe technique for time-resolved X-ray experiments.

  17. Coherent Smith-Purcell radiation as a diagnostic for sub-picosecond electron bunch length

    International Nuclear Information System (INIS)

    Nguyen, D.C.

    1996-01-01

    We suggest a novel technique of measuring sub-picosecond electron bunch length base on coherent Smith-Purcell radiation (SPR) emitted when electrons pass close to the surface of a metal grating. With electron bunch lengths comparable to the grating period, we predict that coherent SPR will be emitted at large angles with respect to direction of beam propagation. As the bunch length shortens, the coherent SPR will be enhanced over the incoherent component that is normally observed at small angles. Furthermore, the angular distribution of the coherent SPR will be shifted toward smaller angles as the bunch length becomes much smaller than the grating period. By measuring the angular distribution of the coherent SPR, one can determine the bunch length of sub-picosecond electron pulses. This new technique is easy to implement and appears capable of measuring femtosecond electron bunch lengths

  18. Ultrafast Dynamics in Light-Driven Molecular Rotary Motors Probed by Femtosecond Stimulated Raman Spectroscopy

    NARCIS (Netherlands)

    Hall, Christopher R.; Conyard, Jamie; Heisler, Ismael A.; Jones, Garth; Frost, James; Browne, Wesley R.; Feringa, Ben L.; Meech, Stephen R.

    2017-01-01

    Photochemical isomerization in sterically crowded chiral alkenes is the driving force for molecular rotary motors in nanoscale machines. Here the excited-state dynamics and structural evolution of the prototypical light-driven rotary motor are followed on the ultrafast time scale by femtosecond

  19. Metrological-grade tunable coherent source in the mid-infrared for molecular precision spectroscopy

    Science.gov (United States)

    Insero, G.; Clivati, C.; D'Ambrosio, D.; Cancio Pastor, P.; Verde, M.; Schunemann, P. G.; Zondy, J.-J.; Inguscio, M.; Calonico, D.; Levi, F.; De Natale, P.; Santambrogio, G.; Borri, S.

    2018-02-01

    We report on a metrological-grade mid-IR source with a 10-14 short-term instability for high-precision spectroscopy. Our source is based on the combination of a quantum cascade laser and a coherent radiation obtained by difference-frequency generation in an orientation-patterned gallium phosphide (OP-GaP) crystal. The pump and signal lasers are locked to an optical frequency comb referenced to the primary frequency standard via an optical fiber link. We demonstrate the robustness of the apparatus by measuring a vibrational transition around 6 μm on a metastable state of CO molecuels with 11 digits of precision.

  20. Effects of moderate pump and Stokes chirp on chirped-probe pulse femtosecond coherent anti-Stokes Raman scattering thermometry

    KAUST Repository

    Gu, Mingming

    2018-01-08

    The effects of moderate levels of chirp in the pump and Stokes pulses on chirped-probe-pulse femtosecond coherent anti-Stokes Raman scattering (CPP fs CARS) were investigated. The frequency chirp in the pump and Stokes pulses was introduced by placing SF11 glass disks with thicknesses of 10 mm or 20 mm in the optical path for these beams. The magnitude of the chirp in the probe beam was much greater and was induced by placing a 30-cm rod of SF10 glass in the beam path. The temperature measurements were performed in hydrogen/air non-premixed flames stabilized on a Hencken burner at equivalence ratios of 0.3, 0.5, 0.7, and 1.0. We performed measurements with no disks in pump and Stokes beam paths, and then with disks of 10 mm and 20 mm placed in both beam paths. The spectrum of the nonresonant background four-wave mixing signal narrowed considerably with increasing pump and Stokes chirp, while the resonant CARS signal was relatively unaffected. Consequently, the interference of the nonresonant background with the resonant CARS signal in the frequency-spread dephasing region of the spectrum was minimized. The increased rate of decay of the resonant CARS signal with increasing temperature was thus readily apparent. We have started to analyze the CPP fs CARS thermometry data and initial results indicate improved accuracy and precision are obtained due to moderate chirp in the pump and Stokes laser pulses.

  1. Sum-Frequency-Generation-Based Laser Sidebands for Tunable Femtosecond Raman Spectroscopy in the Ultraviolet

    Directory of Open Access Journals (Sweden)

    Liangdong Zhu

    2015-04-01

    Full Text Available Femtosecond stimulated Raman spectroscopy (FSRS is an emerging molecular structural dynamics technique for functional materials characterization typically in the visible to near-IR range. To expand its applications we have developed a versatile FSRS setup in the ultraviolet region. We use the combination of a narrowband, ~400 nm Raman pump from a home-built second harmonic bandwidth compressor and a tunable broadband probe pulse from sum-frequency-generation-based cascaded four-wave mixing (SFG-CFWM laser sidebands in a thin BBO crystal. The ground state Raman spectrum of a laser dye Quinolon 390 in methanol that strongly absorbs at ~355 nm is systematically studied as a standard sample to provide previously unavailable spectroscopic characterization in the vibrational domain. Both the Stokes and anti-Stokes Raman spectra can be collected by selecting different orders of SFG-CFWM sidebands as the probe pulse. The stimulated Raman gain with the 402 nm Raman pump is >21 times larger than that with the 550 nm Raman pump when measured at the 1317 cm−1 peak for the aromatic ring deformation and ring-H rocking mode of the dye molecule, demonstrating that pre-resonance enhancement is effectively achieved in the unique UV-FSRS setup. This added tunability in the versatile and compact optical setup enables FSRS to better capture transient conformational snapshots of photosensitive molecules that absorb in the UV range.

  2. One-, two- and three-photon spectroscopy of π-conjugated dendrimers: cooperative enhancement and coherent domains

    International Nuclear Information System (INIS)

    Drobizhev, M.; Rebane, A.; Suo, Z.; Spangler, C.W.

    2005-01-01

    We use wavelength tunable femtosecond pulses to measure intrinsic (simultaneous) two-photon absorption (2PA) and three-photon absorption (3PA) molecular cross section in two series of π-conjugated dendrimers built of identical 4,4'-bis(diphenylamino) stilbene (BDPAS) and 4,4'-bis(diphenylamino) distyrylbenzene (BDPADSB) repeat units. Record large 2PA cross sections, σ 2 =10 -46 cm 4 s are obtained for the largest second-generation BDPAS-based dendrimer, as well as zeroth-generation 4-arm BDPADSB-based dendrimer. In both series, maximum 2PA cross section increases nonlinearly with the number of π-electrons, whereas for higher generations this dependence turns to linear one. 3PA cross section also increases nonlinearly with the size of the system in the series of BDPAS-based molecules, amounting a record large value, σ 3 =10 -79 cm 6 s 2 , for the largest, second-generation dendrimer. We interpret these results in terms of direct inter-branch conjugation, which facilitates cooperative enhancement of the nonlinear-optical response. We propose a simple model which allows us to determine the effective size of coherent domains (extent of conjugation), which, in turn, determines the optimum dendrimer size for most efficient nonlinear response

  3. Coherent fiber supercontinuum laser for nonlinear biomedical imaging

    DEFF Research Database (Denmark)

    Tu, Haohua; Liu, Yuan; Liu, Xiaomin

    2012-01-01

    Nonlinear biomedical imaging has not benefited from the well-known techniques of fiber supercontinuum generation for reasons such as poor coherence (or high noise), insufficient controllability, low spectral power intensity, and inadequate portability. Fortunately, a few techniques involving...... nonlinear fiber optics and femtosecond fiber laser development have emerged to overcome these critical limitations. These techniques pave the way for conducting point-of-care nonlinear biomedical imaging by a low-maintenance cost-effective coherent fiber supercontinuum laser, which covers a broad emission...... wavelength of 350-1700 nm. A prototype of this laser has been demonstrated in label-free multimodal nonlinear imaging of cell and tissue samples.© (2012) COPYRIGHT Society of Photo-Optical Instrumentation Engineers (SPIE). Downloading of the abstract is permitted for personal use only....

  4. Control of phase transition dynamics in media with nanoscale nonuniformities by coherence loss spectroscopy

    International Nuclear Information System (INIS)

    Brodsky, Anatol M

    2010-01-01

    The optical nondestructive characterization of chemical transformation dynamics and diffusion kinetics, including phase transitions, in heterogeneous media with a random distribution of nanoparticles (nano-nonuniformities), is of great theoretical and practical importance. Such characterization, with the help of coherence loss spectroscopy, considered in this paper can be applied for the control of a number of industrial processes dynamics, environmental monitoring, and medical diagnostics and therapy. As a specific example, the growth of crystal nuclei (embrions) as a result of the diffusion to them of a substance from the surrounding supersaturated solution is considered

  5. Selective interaction between Xanthophylls and Chlorophylls in LHCII probed by femtosecond transient absoprtion spectroscopy

    NARCIS (Netherlands)

    Gradinaru, C.C.; Grondelle, van R.; Amerongen, van H.

    2003-01-01

    We have performed femtosecond transient absorption measurements on trimeric light-harvesting complex II from spinach. Either chlorophyll (Chl) a (675 nm) or Chl b (650 nm) was excited, and the spectral response was probed for wavelengths longer than 470 nm. Excitation of Chl b led to instantaneous

  6. Two-dimensional vibrational-electronic spectroscopy

    Science.gov (United States)

    Courtney, Trevor L.; Fox, Zachary W.; Slenkamp, Karla M.; Khalil, Munira

    2015-10-01

    Two-dimensional vibrational-electronic (2D VE) spectroscopy is a femtosecond Fourier transform (FT) third-order nonlinear technique that creates a link between existing 2D FT spectroscopies in the vibrational and electronic regions of the spectrum. 2D VE spectroscopy enables a direct measurement of infrared (IR) and electronic dipole moment cross terms by utilizing mid-IR pump and optical probe fields that are resonant with vibrational and electronic transitions, respectively, in a sample of interest. We detail this newly developed 2D VE spectroscopy experiment and outline the information contained in a 2D VE spectrum. We then use this technique and its single-pump counterpart (1D VE) to probe the vibrational-electronic couplings between high frequency cyanide stretching vibrations (νCN) and either a ligand-to-metal charge transfer transition ([FeIII(CN)6]3- dissolved in formamide) or a metal-to-metal charge transfer (MMCT) transition ([(CN)5FeIICNRuIII(NH3)5]- dissolved in formamide). The 2D VE spectra of both molecules reveal peaks resulting from coupled high- and low-frequency vibrational modes to the charge transfer transition. The time-evolving amplitudes and positions of the peaks in the 2D VE spectra report on coherent and incoherent vibrational energy transfer dynamics among the coupled vibrational modes and the charge transfer transition. The selectivity of 2D VE spectroscopy to vibronic processes is evidenced from the selective coupling of specific νCN modes to the MMCT transition in the mixed valence complex. The lineshapes in 2D VE spectra report on the correlation of the frequency fluctuations between the coupled vibrational and electronic frequencies in the mixed valence complex which has a time scale of 1 ps. The details and results of this study confirm the versatility of 2D VE spectroscopy and its applicability to probe how vibrations modulate charge and energy transfer in a wide range of complex molecular, material, and biological systems.

  7. Two-dimensional vibrational-electronic spectroscopy

    Energy Technology Data Exchange (ETDEWEB)

    Courtney, Trevor L.; Fox, Zachary W.; Slenkamp, Karla M.; Khalil, Munira, E-mail: mkhalil@uw.edu [Department of Chemistry, University of Washington, Box 351700, Seattle, Washington 98195 (United States)

    2015-10-21

    Two-dimensional vibrational-electronic (2D VE) spectroscopy is a femtosecond Fourier transform (FT) third-order nonlinear technique that creates a link between existing 2D FT spectroscopies in the vibrational and electronic regions of the spectrum. 2D VE spectroscopy enables a direct measurement of infrared (IR) and electronic dipole moment cross terms by utilizing mid-IR pump and optical probe fields that are resonant with vibrational and electronic transitions, respectively, in a sample of interest. We detail this newly developed 2D VE spectroscopy experiment and outline the information contained in a 2D VE spectrum. We then use this technique and its single-pump counterpart (1D VE) to probe the vibrational-electronic couplings between high frequency cyanide stretching vibrations (ν{sub CN}) and either a ligand-to-metal charge transfer transition ([Fe{sup III}(CN){sub 6}]{sup 3−} dissolved in formamide) or a metal-to-metal charge transfer (MMCT) transition ([(CN){sub 5}Fe{sup II}CNRu{sup III}(NH{sub 3}){sub 5}]{sup −} dissolved in formamide). The 2D VE spectra of both molecules reveal peaks resulting from coupled high- and low-frequency vibrational modes to the charge transfer transition. The time-evolving amplitudes and positions of the peaks in the 2D VE spectra report on coherent and incoherent vibrational energy transfer dynamics among the coupled vibrational modes and the charge transfer transition. The selectivity of 2D VE spectroscopy to vibronic processes is evidenced from the selective coupling of specific ν{sub CN} modes to the MMCT transition in the mixed valence complex. The lineshapes in 2D VE spectra report on the correlation of the frequency fluctuations between the coupled vibrational and electronic frequencies in the mixed valence complex which has a time scale of 1 ps. The details and results of this study confirm the versatility of 2D VE spectroscopy and its applicability to probe how vibrations modulate charge and energy transfer in a

  8. Femtosecond time-resolved optical and Raman spectroscopy of photoinduced spin crossover: temporal resolution of low-to-high spin optical switching.

    Science.gov (United States)

    Smeigh, Amanda L; Creelman, Mark; Mathies, Richard A; McCusker, James K

    2008-10-29

    A combination of femtosecond electronic absorption and stimulated Raman spectroscopies has been employed to determine the kinetics associated with low-spin to high-spin conversion following charge-transfer excitation of a FeII spin-crossover system in solution. A time constant of tau = 190 +/- 50 fs for the formation of the 5T2 ligand-field state was assigned based on the establishment of two isosbestic points in the ultraviolet in conjunction with changes in ligand stretching frequencies and Raman scattering amplitudes; additional dynamics observed in both the electronic and vibrational spectra further indicate that vibrational relaxation in the high-spin state occurs with a time constant of ca. 10 ps. The results set an important precedent for extremely rapid, formally forbidden (DeltaS = 2) nonradiative relaxation as well as defining the time scale for intramolecular optical switching between two electronic states possessing vastly different spectroscopic, geometric, and magnetic properties.

  9. Tunable femtosecond Cherenkov fiber laser

    DEFF Research Database (Denmark)

    Liu, Xiaomin; Svane, Ask Sebastian; Lægsgaard, Jesper

    2014-01-01

    We demonstrate electrically-tunable femtosecond Cherenkov fiber laser output at the visible range. Using an all-fiber, self-starting femtosecond Yb-doped fiber laser as the pump source and nonlinear photonic crystal fiber link as the wave-conversion medium, ultrafast, milliwatt-level, tunable...... and spectral isolated Cherenkov radiation at visible wavelengths are reported. Such a femtosecond Cherenkov laser source is promising for practical biophotonics applications....

  10. Femtosecond laser-induced breakdown spectroscopy of sea water

    International Nuclear Information System (INIS)

    Ilyin, Alexey A.; Golik, Sergey S.

    2013-01-01

    The composition of the line and band spectra of the plasma induced by a femtosecond laser pulse on the surface of sea water is determined. The temporal behaviors of the intensity of the continuum and the Ca II, Mg II and Na I lines are investigated. It is shown that the time dependence of the intensity of the Na I line is described by a monoexponential function. The characteristic decay times of the line intensities of Mg II and Na I were used to estimate the three-body recombination times. Using these values, we estimate the electron number density and the feasibility of Local Thermodynamic Equilibrium (LTE) criterion. A method involving excitation rate constants is proposed for the comparison of detection limits. For a plasma generated on a liquid surface, the following relation among detection limits will be obtained: LOD(Na) 2 were recorded. • Recombination determines characteristic decay time of line intensity. • Three-body recombination time was used to estimate electron density. • Excitation rate constants allow to determine relation of detection limits

  11. Selective ablation of dental enamel and dentin using femtosecond laser pulses

    International Nuclear Information System (INIS)

    Lizarelli, R F Z; Costa, M M; Carvalho-Filho, E; Bagnato, V S; Nunes, F D

    2008-01-01

    The study of the interaction of intense laser light with matter, as well as transient response of atoms and molecules is very appropriated because of the laser energy concentration in a femtosecond optical pulses. The fundamental problem to be solved is to find tools and techniques which allow us to observe and manipulate on a femtosecond time scale the photonics events on and into the matter. Six third human extracted molars were exposed to a femtosecond Ti:Sapphire Q-switched and mode locked laser (Libra-S, Coherent, Palo Alto, CA, USA), emitting pulses with 70 fs width, radiation wavelength of 801 nm, at a constant pulse repetition rate of 1 KHz. The laser was operated at different power levels (70 to 400 mW) with constant exposition time of 10 seconds, at focused and defocused mode. Enamel and dentin surfaces were evaluated concerned ablation rate and morphological aspects under scanning electron microscopic. The results in this present experiment suggest that at the focused mode and under higher average power, enamel tissues present microcavities with higher depth and very precise edges, but, while dentin shows a larger melt-flushing, lower depth and melting and solidification aspect. In conclusion, it is possible to choose hard or soft ablation, under lower and higher average power, respectively, revealing different aspects of dental enamel and dentin, depending on the average power, fluence and distance from the focal point of the ultra-short pulse laser on the tooth surface

  12. Electronic resonances in broadband stimulated Raman spectroscopy

    Science.gov (United States)

    Batignani, G.; Pontecorvo, E.; Giovannetti, G.; Ferrante, C.; Fumero, G.; Scopigno, T.

    2016-01-01

    Spontaneous Raman spectroscopy is a formidable tool to probe molecular vibrations. Under electronic resonance conditions, the cross section can be selectively enhanced enabling structural sensitivity to specific chromophores and reaction centers. The addition of an ultrashort, broadband femtosecond pulse to the excitation field allows for coherent stimulation of diverse molecular vibrations. Within such a scheme, vibrational spectra are engraved onto a highly directional field, and can be heterodyne detected overwhelming fluorescence and other incoherent signals. At variance with spontaneous resonance Raman, however, interpreting the spectral information is not straightforward, due to the manifold of field interactions concurring to the third order nonlinear response. Taking as an example vibrational spectra of heme proteins excited in the Soret band, we introduce a general approach to extract the stimulated Raman excitation profiles from complex spectral lineshapes. Specifically, by a quantum treatment of the matter through density matrix description of the third order nonlinear polarization, we identify the contributions which generate the Raman bands, by taking into account for the cross section of each process.

  13. Dicke coherent narrowing in two-photon and Raman spectroscopy of thin vapor cells

    International Nuclear Information System (INIS)

    Dutier, Gabriel; Todorov, Petko; Hamdi, Ismahene; Maurin, Isabelle; Saltiel, Solomon; Bloch, Daniel; Ducloy, Martial

    2005-01-01

    The principle of coherent Dicke narrowing in a thin vapor cell, in which sub-Doppler spectral line shapes are observed under a normal irradiation for a λ/2 thickness, is generalized to two-photon spectroscopy. Only the sum of the two wave vectors must be normal to the cell, making the two-photon scheme highly versatile. A comparison is provided between the Dicke narrowing with copropagating fields, and the residual Doppler broadening occurring with counterpropagating geometries. The experimental feasibility is discussed on the basis of a first observation of a two-photon resonance in a 300-nm-thick Cs cell. Extension to the Raman situation is finally considered

  14. Correction for the time dependent inner filter effect caused by transient absorption in femtosecond stimulated Raman experiment

    NARCIS (Netherlands)

    Kloz, M.; van Grondelle, R.; Kennis, J.T.M.

    2012-01-01

    Femtosecond stimulated Raman spectroscopy (FSRS) is a promising multiple-pulse ultrafast spectroscopic tool whose simplest form utilizes an actinic pump, a Raman pump and a continuum probe. Here, we report that the transient absorption generated by the actinic pulse modulates the overall magnitude

  15. Characterization of temporal coherence of hard X-ray free-electron laser pulses with single-shot interferograms

    Directory of Open Access Journals (Sweden)

    Taito Osaka

    2017-11-01

    Full Text Available Temporal coherence is one of the most fundamental characteristics of light, connecting to spectral information through the Fourier transform relationship between time and frequency. Interferometers with a variable path-length difference (PLD between the two branches have widely been employed to characterize temporal coherence properties for broad spectral regimes. Hard X-ray interferometers reported previously, however, have strict limitations in their operational photon energies, due to the specific optical layouts utilized to satisfy the stringent requirement for extreme stability of the PLD at sub-ångström scales. The work presented here characterizes the temporal coherence of hard X-ray free-electron laser (XFEL pulses by capturing single-shot interferograms. Since the stability requirement is drastically relieved with this approach, it was possible to build a versatile hard X-ray interferometer composed of six separate optical elements to cover a wide photon energy range from 6.5 to 11.5 keV while providing a large variable delay time of up to 47 ps at 10 keV. A high visibility of up to 0.55 was observed at a photon energy of 10 keV. The visibility measurement as a function of time delay reveals a mean coherence time of 5.9 ± 0.7 fs, which agrees with that expected from the single-shot spectral information. This is the first result of characterizing the temporal coherence of XFEL pulses in the hard X-ray regime and is an important milestone towards ultra-high energy resolutions at micro-electronvolt levels in time-domain X-ray spectroscopy, which will open up new opportunities for revealing dynamic properties in diverse systems on timescales from femtoseconds to nanoseconds, associated with fluctuations from ångström to nanometre spatial scales.

  16. Two-pulse atomic coherent control spectroscopy of Eley-Rideal reactions: An application of an atom laser

    International Nuclear Information System (INIS)

    Joergensen, Solvejg; Kosloff, Ronnie

    2003-01-01

    A spectroscopic application of the atom laser is suggested. The spectroscopy termed 2PACC (two-pulse atomic coherent control) employs the coherent properties of matter waves from a two-pulse atom laser. These waves are employed to control a gas-surface chemical recombination reaction. The method is demonstrated for an Eley-Rideal reaction of a hydrogen or alkali atom-laser pulse where the surface target is an adsorbed hydrogen atom. The reaction yields either a hydrogen or alkali hydride molecule. The desorbed gas-phase molecular yield and its internal state is shown to be controlled by the time and phase delay between two atom-laser pulses. The calculation is based on solving the time-dependent Schroedinger equation in a diabatic framework. The probability of desorption which is the predicted 2PACC signal has been calculated as a function of the pulse parameters

  17. Fast pulses and slow atoms: making microKelvin molecules using femtosecond lasers

    Science.gov (United States)

    Walmsley, Ian

    2008-05-01

    We discuss a general approach to the formation of ultracold ground state molecules by synthesis from pairs of cold atoms using shaped ultrashort optical pulses. This method combines an effective and widely applicable control technology to the problem of preparing molecules is the ground state of all their degrees of freedom. The broad bandwidth of femtosecond pulses provides and number of options for removing energy from a pair of colliding atoms, and binding them with little or no vibrational energy. We shall give examples of possible strategies, and report on experiments demonstrating photoassocation using coherent control, and measuring wavepacket dynamics by femtosecond pump probe molecular ionization. Prospects for stabilizing the molecules by protecting them from further collisions, and for increasing the range of internuclear separations that can be associated will be pointed out. This work is funded by the UK EPSRC, and has contributions from J. Petrovic, A. Wyatt, A. Dicks, D. McCabe, D. England, M. Friedman, H. Martay, T. Koehler, C. Foot and collaborations with F. Masnou-Seeuws and J. Mur-Petit.

  18. Estimating side-chain order in methyl-protonated, perdeuterated proteins via multiple-quantum relaxation violated coherence transfer NMR spectroscopy

    International Nuclear Information System (INIS)

    Sun Hechao; Godoy-Ruiz, Raquel; Tugarinov, Vitali

    2012-01-01

    Relaxation violated coherence transfer NMR spectroscopy (Tugarinov et al. in J Am Chem Soc 129:1743–1750, 2007) is an established experimental tool for quantitative estimation of the amplitudes of side-chain motions in methyl-protonated, highly deuterated proteins. Relaxation violated coherence transfer experiments monitor the build-up of methyl proton multiple-quantum coherences that can be created in magnetically equivalent spin-systems as long as their transverse magnetization components relax with substantially different rates. The rate of this build-up is a reporter of the methyl-bearing side-chain mobility. Although the build-up of multiple-quantum 1 H coherences is monitored in these experiments, the decay of the methyl signal during relaxation delays occurs when methyl proton magnetization is in a single-quantum state. We describe a relaxation violated coherence transfer approach where the relaxation of multiple-quantum 1 H– 13 C methyl coherences during the relaxation delay period is quantified. The NMR experiment and the associated fitting procedure that models the time-dependence of the signal build-up, are applicable to the characterization of side-chain order in [ 13 CH 3 ]-methyl-labeled, highly deuterated protein systems up to ∼100 kDa in molecular weight. The feasibility of extracting reliable measures of side-chain order is experimentally verified on methyl-protonated, perdeuterated samples of an 8.5-kDa ubiquitin at 10°C and an 82-kDa Malate Synthase G at 37°C.

  19. Electron transfer dynamics of triphenylamine dyes bound to TiO2 nanoparticles from femtosecond stimulated Raman spectroscopy

    KAUST Repository

    Hoffman, David P.

    2013-04-11

    Interfacial electron transfer between sensitizers and semiconducting nanoparticles is a crucial yet poorly understood process. To address this problem, we have used transient absorption (TA) and femtosecond stimulated Raman spectroscopy (FSRS) to investigate the photoexcited dynamics of a series of triphenylamine-coumarin dye/TiO2 conjugates. The TA decay is multiexponential, spanning time scales from 100 fs to 100 ps, while the characteristic transient Raman spectrum of the radical cation decays biexponentially with a dominant ∼3 ps component. To explain these observations, we propose a model in which the decay of the TA is due to hot electrons migrating from surface trap states to the conduction band of TiO 2 while the decay of the Raman signature is due to internal conversion of the dye molecule. Furthermore, the S1 Raman spectrum of TPAC3, a dye wherein a vinyl group separates the triphenylamine and coumarin moieties, is similar to the S1 Raman spectrum of trans-stilbene; we conclude that their S1 potential energy surfaces and reactivity are also similar. This correlation suggests that dyes containing vinyl linkers undergo photoisomerization that competes with electron injection. © 2013 American Chemical Society.

  20. Coherent transition radiation from a laser wakefield accelerator as an electron bunch diagnostic

    International Nuclear Information System (INIS)

    Tilborg, J. van; Geddes, C.G.R.; Toth, C.; Esarey, E.; Schroeder, C.B.; Martin, M.C.; Hao, Z.; Leemans, W.P.

    2004-01-01

    The observation and modeling of coherent transition radiation from femtosecond laser accelerated electron bunches is discussed. The coherent transition radiation, scaling quadratically with bunch charge, is generated as the electrons transit the plasma-vacuum boundary. Due to the limited transverse radius of the plasma boundary, diffraction effects will strongly modify the angular distribution and the total energy radiated is reduced compared to an infinite transverse boundary. The multi-nC electron bunches, concentrated in a length of a few plasma periods (several tens of microns), experience partial charge neutralization while propagating inside the plasma towards the boundary. This reduces the space-charge blowout of the beam, allowing for coherent radiation at relatively high frequencies (several THz). The charge distribution of the electron bunch at the plasma-vacuum boundary can be derived from Fourier analysis of the coherent part of the transition radiation spectrum. A Michelson interferometer was used to measure the coherent spectrum, and electron bunches with duration on the order of 50 fs (rms) were observed

  1. Characterization of Cs vapor cell coated with octadecyltrichlorosilane using coherent population trapping spectroscopy

    Energy Technology Data Exchange (ETDEWEB)

    Hafiz, Moustafa Abdel; Maurice, Vincent; Chutani, Ravinder; Passilly, Nicolas; Gorecki, Christophe; Boudot, Rodolphe [FEMTO-ST, CNRS, UFC, 26 Chemin de l' Epitaphe, 25030 Besançon Cedex (France); Guérandel, Stéphane; Clercq, Emeric de [LNE-SYRTE, Observatoire de Paris, CNRS, UPMC, 61 avenue de l' Observatoire, 75014 Paris (France)

    2015-05-14

    We report the realization and characterization using coherent population trapping (CPT) spectroscopy of an octadecyltrichlorosilane (OTS)-coated centimeter-scale Cs vapor cell. The dual-structure of the resonance lineshape, with presence of a narrow structure line at the top of a Doppler-broadened structure, is clearly observed. The linewidth of the narrow resonance is compared to the linewidth of an evacuated Cs cell and of a buffer gas Cs cell of similar size. The Cs-OTS adsorption energy is measured to be (0.42 ± 0.03) eV, leading to a clock frequency shift rate of 2.7 × 10{sup −9}/K in fractional unit. A hyperfine population lifetime, T{sub 1}, and a microwave coherence lifetime, T{sub 2}, of 1.6 and 0.5 ms are reported, corresponding to about 37 and 12 useful bounces, respectively. Atomic-motion induced Ramsey narrowing of dark resonances is observed in Cs-OTS cells by reducing the optical beam diameter. Ramsey CPT fringes are detected using a pulsed CPT interrogation scheme. Potential applications of the Cs-OTS cell to the development of a vapor cell atomic clock are discussed.

  2. Characterization of Cs vapor cell coated with octadecyltrichlorosilane using coherent population trapping spectroscopy

    International Nuclear Information System (INIS)

    Hafiz, Moustafa Abdel; Maurice, Vincent; Chutani, Ravinder; Passilly, Nicolas; Gorecki, Christophe; Boudot, Rodolphe; Guérandel, Stéphane; Clercq, Emeric de

    2015-01-01

    We report the realization and characterization using coherent population trapping (CPT) spectroscopy of an octadecyltrichlorosilane (OTS)-coated centimeter-scale Cs vapor cell. The dual-structure of the resonance lineshape, with presence of a narrow structure line at the top of a Doppler-broadened structure, is clearly observed. The linewidth of the narrow resonance is compared to the linewidth of an evacuated Cs cell and of a buffer gas Cs cell of similar size. The Cs-OTS adsorption energy is measured to be (0.42 ± 0.03) eV, leading to a clock frequency shift rate of 2.7 × 10 −9 /K in fractional unit. A hyperfine population lifetime, T 1 , and a microwave coherence lifetime, T 2 , of 1.6 and 0.5 ms are reported, corresponding to about 37 and 12 useful bounces, respectively. Atomic-motion induced Ramsey narrowing of dark resonances is observed in Cs-OTS cells by reducing the optical beam diameter. Ramsey CPT fringes are detected using a pulsed CPT interrogation scheme. Potential applications of the Cs-OTS cell to the development of a vapor cell atomic clock are discussed

  3. Control of the kerf size and microstructure in Inconel 738 superalloy by femtosecond laser beam cutting

    Energy Technology Data Exchange (ETDEWEB)

    Wei, J.; Ye, Y.; Sun, Z. [Department of Mechanical Engineering, Tsinghua University, Beijing (China); Liu, L., E-mail: liulei@tsinghua.edu.cn [The State Key Laboratory of Tribology, Tsinghua University, Beijing (China); Zou, G., E-mail: sunzhg@tsinghua.edu.cn [Department of Mechanical Engineering, Tsinghua University, Beijing (China)

    2016-05-01

    Highlights: • Effects of processing parameters on the kerf size in Inconel 738 are investigated. • Defocus is a key parameter affecting the kerf width due to the intensity clamping. • The internal surface microstructures with different scanning speed are presented. • The material removal mechanism contains normal vaporization and phase explosion. • Oxidation mechanism is attributed to the trapping effect of the dangling bonds. - Abstract: Femtosecond laser beam cutting is becoming widely used to meet demands for increasing accuracy in micro-machining. In this paper, the effects of processing parameters in femtosecond laser beam cutting on the kerf size and microstructure in Inconel 738 have been investigated. The defocus, pulse width and scanning speed were selected to study the controllability of the cutting process. Adjusting and matching the processing parameters was a basic enhancement method to acquire well defined kerf size and the high-quality ablation of microstructures, which has contributed to the intensity clamping effect. The morphology and chemical compositions of these microstructures on the cut surface have been characterized by a scanning electron microscopy equipped with an energy dispersive X-ray spectroscopy, X-ray diffraction and X-ray photoelectron spectroscopy. Additionally, the material removal mechanism and oxidation mechanism on the Inconel 738 cut surface have also been discussed on the basis of the femtosecond laser induced normal vaporization or phase explosion, and trapping effect of the dangling bonds.

  4. Coherent spectroscopy of a {Lambda} atomic system and its prospective application to tunable frequency offset locking

    Energy Technology Data Exchange (ETDEWEB)

    Kale, Y B [Laser and Plasma Technology Division, Bhabha Atomic Research Centre, Mumbai 400 085 (India); Ray, Ayan [Radioactive Ion Beam Group, Variable Energy Cyclotron Centre, Kolkata 700064 (India); Lawande, Q V [Theoretical Physics Division, Bhabha Atomic Research Centre, Mumbai 400 085 (India); Jagatap, B N, E-mail: yogeshwar84@rediffmail.com, E-mail: ayan_ray_in@rediffmail.com, E-mail: bnj@barc.gov.in [Atomic and Molecular Physics Division and Homi Bhabha National Institute, Bhabha Atomic Research Centre, Mumbai 400 085 (India)

    2011-09-15

    We investigate the coherent pump-probe spectroscopy of a three-level {Lambda} system, 6s{sub 1/2}F = 3,4{yields}6p{sub 3/2}F{sup '}= 4, in the hyperfine manifold of D{sub 2} transition (852 nm) of cesium with particular reference to the sub-Doppler linewidth resonance arising from Aulter-Townes (AT) splitting and the possibility of using it for realizing a scheme for tunable atomic frequency offset locking (AFOL). We discuss here the theoretical framework for a {Lambda} system interacting with a coherent pump and probe and use it to describe the process of modulation transfer in the AT and electromagnetically induced transparency regimes. We further employ an experimental scheme consisting of a strong pump and a pair of weak probes to resolve the sub-Doppler linewidth ({approx}8 MHz) AT resonance and study its dependence on pump intensity and detuning. In order to explore the possibility of using such a sub-Doppler linewidth resonance for AFOL, we use its first derivative signal as a frequency discriminator to stabilize the probe laser. The frequency stability of the probe is characterized by means of error signal analysis. This study reveals that while the frequency stability of the AT locked laser is limited by the pump laser, the tuning range of the offset frequency lock can cover the entire Doppler profile and its immediate neighbourhood, thereby providing a simple and cost effective alternative to the external modulator. The study described in this paper contributes to the discussion on the subtle link between dressed state spectroscopy and AFOL, which is relevant for developing a master-slave-type laser system in the domain of coherent photon-atom interaction.

  5. Resonant acoustic spectroscopy of soft tissues using embedded magnetomotive nanotransducers and optical coherence tomography

    International Nuclear Information System (INIS)

    Oldenburg, Amy L; Boppart, Stephen A

    2010-01-01

    We present a new method for performing dynamic elastography of soft tissue samples. By sensing nanoscale displacements with optical coherence tomography, a chirped, modulated force is applied to acquire the mechanical spectrum of a tissue sample within a few seconds. This modulated force is applied via magnetic nanoparticles, named 'nanotransducers', which are diffused into the tissue, and which contribute negligible inertia to the soft tissue mechanical system. Using this novel system, we observed that excised tissues exhibit mechanical resonance modes which are well described by a linear damped harmonic oscillator. Results are validated by using cylindrical tissue phantoms of agarose in which resonant frequencies (30-400 Hz) are consistent with longitudinal modes and the sample boundary conditions. We furthermore show that the Young's modulus can be computed from their measured resonance frequencies, analogous to resonant ultrasound spectroscopy for stiff material analysis. Using this new technique, named magnetomotive resonant acoustic spectroscopy (MRAS), we monitored the relative stiffening of an excised rat liver during a chemical fixation process.

  6. Analysis of organic pollutant degradation in pulsed plasma by coherent anti-Stokes Raman spectroscopy

    International Nuclear Information System (INIS)

    Bratescu, Maria Antoneta; Hieda, Junko; Umemura, Tomonari; Saito, Nagahiro; Takai, Osamu

    2011-01-01

    The degradation of p-benzoquinone (p-BQ) in water was investigated by the coherent anti-Stokes Raman spectroscopy (CARS) method, in which the change of the anti-Stokes signal intensity corresponding to the vibrational transitions of the molecule is monitored during and after solution plasma processing (SPP). In the beginning of SPP treatment, the CARS signal intensity of the ring vibrational molecular transitions at 1233 and 1660 cm -1 increases under the influence of the electric field of the plasma, depending on the delay time between the plasma pulse and the laser firing pulse. At the same time, the plasma contributes to the degradation of p-BQ molecules by generating hydrogen and hydroxyl radicals, which decompose p-BQ into different carboxylic acids. After SPP, the CARS signal intensity of the vibrational bands of p-BQ ceased and the degradation of p-BQ was confirmed by UV-visible absorption spectroscopy and liquid chromatography analysis.

  7. Optical technologies for extreme-ultraviolet and soft X-ray coherent sources

    International Nuclear Information System (INIS)

    Canova, Federico; Poletto, Luca

    2015-01-01

    The book reviews the most recent achievements in optical technologies for XUV and X-ray coherent sources. Particular attention is given to free-electron-laser facilities, but also to other sources available at present, such as synchrotrons, high-order laser harmonics and X-ray lasers. The optical technologies relevant to each type of source are discussed. In addition, the main technologies used for photon handling and conditioning, namely multilayer mirrors, adaptive optics, crystals and gratings are explained. Experiments using coherent light received during the last decades a lot of attention for the X-ray regime. Strong efforts were taken for the realization of almost fully coherent sources, e.g. the free-electron lasers, both as independent sources in the femtosecond and attosecond regimes and as seeding sources for free-electron-lasers and X-ray gas lasers. In parallel to the development of sources, optical technologies for photon handling and conditioning of such coherent and intense X-ray beams advanced. New problems were faced for the realization of optical components of beamlines demanding to manage coherent X-ray photons, e.g. the preservation of coherence and time structure of ultra short pulses.

  8. Femtosecond laser ablation of polymeric substrates for the fabrication of microfluidic channels

    International Nuclear Information System (INIS)

    Suriano, Raffaella; Kuznetsov, Arseniy; Eaton, Shane M.; Kiyan, Roman; Cerullo, Giulio; Osellame, Roberto; Chichkov, Boris N.; Levi, Marinella; Turri, Stefano

    2011-01-01

    This manuscript presents a study of physical and chemical properties of microchannels fabricated by femtosecond laser processing technology in thermoplastic polymeric materials, including poly(methyl methacrylate) (PMMA), polystyrene (PS) and cyclic olefin polymer (COP). By surface electron microscopy and optical profilometry, the dimensions of microchannels in the polymers were found to be easily tunable, with surface roughness values comparable to those obtained by standard prototyping techniques such as micromilling. Through colorimetric analysis and optical microscopy, PMMA was found to remain nearly transparent after ablation while COP and PS darkened significantly. Using infrared spectroscopy, the darkening in PS and COP was attributed to significant oxidation and dehydrogenation during laser ablation, unlike PMMA, which was found to degrade by a thermal depolymerization process. The more stable molecular structure of PMMA makes it the most viable thermoplastic polymer for femtosecond laser fabrication of microfluidic channels.

  9. Fabrication of polycrystalline diamond refractive X-ray lens by femtosecond laser processing

    Energy Technology Data Exchange (ETDEWEB)

    Kononenko, T.V.; Ralchenko, V.G.; Ashkinazi, E.E.; Konov, V.I. [General Physics Institute of Russian Academy of Sciences, Moscow (Russian Federation); National Research Nuclear University ' ' MEPhI' ' , Moscow (Russian Federation); Polikarpov, M.; Ershov, P. [Immanuel Kant Baltic Federal University, Functional Nanomaterials, Kaliningrad (Russian Federation); Kuznetsov, S.; Yunkin, V. [Institute of Microelectronics Technology RAS, Chernogolovka, Moscow region (Russian Federation); Snigireva, I. [European Synchrotron Radiation Facility, Grenoble (France)

    2016-03-15

    X-ray planar compound refractive lenses were fabricated from a polycrystalline diamond plate grown by chemical vapor deposition, by precise through cutting with femtosecond laser pulses. The lens geometry and the surface morphology were investigated with optical and scanning electron microscopy, while the material structure modification was analyzed by Raman spectroscopy. The results of the preliminary lens test at 9.25-keV X-rays are presented. (orig.)

  10. Fabrication of polycrystalline diamond refractive X-ray lens by femtosecond laser processing

    International Nuclear Information System (INIS)

    Kononenko, T.V.; Ralchenko, V.G.; Ashkinazi, E.E.; Konov, V.I.; Polikarpov, M.; Ershov, P.; Kuznetsov, S.; Yunkin, V.; Snigireva, I.

    2016-01-01

    X-ray planar compound refractive lenses were fabricated from a polycrystalline diamond plate grown by chemical vapor deposition, by precise through cutting with femtosecond laser pulses. The lens geometry and the surface morphology were investigated with optical and scanning electron microscopy, while the material structure modification was analyzed by Raman spectroscopy. The results of the preliminary lens test at 9.25-keV X-rays are presented. (orig.)

  11. Coherent control of interfering wave packets in dissociating HD+ molecules: the role of phase and delay time

    International Nuclear Information System (INIS)

    Qin, Chaochao; Zhang, Lili; Zhang, Xianzhou; Liu, Yufang; Qiu, Xuejun

    2016-01-01

    The coherent control of interference between dissociating wave packets of the HD + molecules generated by a pair of time-delayed and phase-locked femtosecond laser pulses is theoretically studied by using the time-dependent quantum wave packet method. The density function in both coordinate and momentum representation are presented and discussed. It is demonstrated that the interference pattern is observed in both coordinate and momentum density functions. The interference undergoes a π-phase shift when the delay time between the two phase-locked femtosecond laser pulses is changed by half an optical period. In particular, the number of interference fringes, the fringe spacing in the R-dependent density distribution |ψ(R)| 2 , and the modulation period of the energy-dependent distribution of the fragments P(E) can be tuned by two phase-locked femtosecond pulses. (paper)

  12. Femtosecond pulse shaping using plasmonic snowflake nanoantennas

    Energy Technology Data Exchange (ETDEWEB)

    Tok, Ruestue Umut; Sendur, Kuersat [Sabanci University, Orhanli-Tuzla, 34956, Istanbul (Turkey)

    2011-09-15

    We have theoretically demonstrated femtosecond pulse manipulation at the nanoscale using the plasmonic snowflake antenna's ability to localize light over a broad spectrum. To analyze the interaction of the incident femtosecond pulse with the plasmonic nanoantenna, we first decompose the diffraction limited incident femtosecond pulse into its spectral components. The interaction of each spectral component with the nanoantenna is analyzed using finite element technique. The time domain response of the plasmonic antenna is obtained using inverse Fourier transformation. It is shown that the rich spectral characteristics of the plasmonic snowflake nanoantenna allow manipulation of the femtosecond pulses over a wide spectrum. Light localization around the gap region of the nanoantenna is shown for femtosecond pulses. As the alignment of incident light polarization is varied, different antenna elements oscillate, which in turn creates a different spectrum and a distinct femtosecond response.

  13. International workshop on phase retrieval and coherent scattering. Coherence 2005

    International Nuclear Information System (INIS)

    Nugent, K.A.; Fienup, J.R.; Van Dyck, D.; Van Aert, S.; Weitkamp, T.; Diaz, A.; Pfeiffer, F.; Cloetens, P.; Stampanoni, M.; Bunk, O.; David, C.; Bronnikov, A.V.; Shen, Q.; Xiao, X.; Gureyev, T.E.; Nesterets, Ya.I.; Paganin, D.M.; Wilkins, S.W.; Mokso, R.; Cloetens, P.; Ludwig, W.; Hignette, O.; Maire, E.; Faulkner, H.M.L.; Rodenburg, J.M.; Wu, X.; Liu, H.; Grubel, G.; Ludwig, K.F.; Livet, F.; Bley, F.; Simon, J.P.; Caudron, R.; Le Bolloc'h, D.; Moussaid, A.; Gutt, C.; Sprung, M.; Madsen, A.; Tolan, M.; Sinha, S.K.; Scheffold, F.; Schurtenberger, P.; Robert, A.; Madsen, A.; Falus, P.; Borthwick, M.A.; Mochrie, S.G.J.; Livet, F.; Sutton, M.D.; Ehrburger-Dolle, F.; Bley, F.; Geissler, E.; Sikharulidze, I.; Jeu, W.H. de; Lurio, L.B.; Hu, X.; Jiao, X.; Jiang, Z.; Lurio, L.B.; Hu, X.; Jiao, X.; Jiang, Z.; Naryanan, S.; Sinha, S.K.; Lal, J.; Naryanan, S.; Sinha, S.K.; Lal, J.; Robinson, I.K.; Chapman, H.N.; Barty, A.; Beetz, T.; Cui, C.; Hajdu, J.; Hau-Riege, S.P.; He, H.; Stadler, L.M.; Sepiol, B.; Harder, R.; Robinson, I.K.; Zontone, F.; Vogl, G.; Howells, M.; London, R.; Marchesini, S.; Shapiro, D.; Spence, J.C.H.; Weierstall, U.; Eisebitt, S.; Shapiro, D.; Lima, E.; Elser, V.; Howells, M.R.; Huang, X.; Jacobsen, C.; Kirz, J.; Miao, H.; Neiman, A.; Sayre, D.; Thibault, P.; Vartanyants, I.A.; Robinson, I.K.; Onken, J.D.; Pfeifer, M.A.; Williams, G.J.; Pfeiffer, F.; Metzger, H.; Zhong, Z.; Bauer, G.; Nishino, Y.; Miao, J.; Kohmura, Y.; Yamamoto, M.; Takahashi, Y.; Koike, K.; Ebisuzaki, T.; Ishikawa, T.; Spence, J.C.H.; Doak, B.

    2005-01-01

    The contributions of the participants have been organized into 3 topics: 1) phase retrieval methods, 2) X-ray photon correlation spectroscopy, and 3) coherent diffraction imaging. This document gathers the abstracts of the presentations and of the posters

  14. International workshop on phase retrieval and coherent scattering. Coherence 2005

    Energy Technology Data Exchange (ETDEWEB)

    Nugent, K.A.; Fienup, J.R.; Van Dyck, D.; Van Aert, S.; Weitkamp, T.; Diaz, A.; Pfeiffer, F.; Cloetens, P.; Stampanoni, M.; Bunk, O.; David, C.; Bronnikov, A.V.; Shen, Q.; Xiao, X.; Gureyev, T.E.; Nesterets, Ya.I.; Paganin, D.M.; Wilkins, S.W.; Mokso, R.; Cloetens, P.; Ludwig, W.; Hignette, O.; Maire, E.; Faulkner, H.M.L.; Rodenburg, J.M.; Wu, X.; Liu, H.; Grubel, G.; Ludwig, K.F.; Livet, F.; Bley, F.; Simon, J.P.; Caudron, R.; Le Bolloc' h, D.; Moussaid, A.; Gutt, C.; Sprung, M.; Madsen, A.; Tolan, M.; Sinha, S.K.; Scheffold, F.; Schurtenberger, P.; Robert, A.; Madsen, A.; Falus, P.; Borthwick, M.A.; Mochrie, S.G.J.; Livet, F.; Sutton, M.D.; Ehrburger-Dolle, F.; Bley, F.; Geissler, E.; Sikharulidze, I.; Jeu, W.H. de; Lurio, L.B.; Hu, X.; Jiao, X.; Jiang, Z.; Lurio, L.B.; Hu, X.; Jiao, X.; Jiang, Z.; Naryanan, S.; Sinha, S.K.; Lal, J.; Naryanan, S.; Sinha, S.K.; Lal, J.; Robinson, I.K.; Chapman, H.N.; Barty, A.; Beetz, T.; Cui, C.; Hajdu, J.; Hau-Riege, S.P.; He, H.; Stadler, L.M.; Sepiol, B.; Harder, R.; Robinson, I.K.; Zontone, F.; Vogl, G.; Howells, M.; London, R.; Marchesini, S.; Shapiro, D.; Spence, J.C.H.; Weierstall, U.; Eisebitt, S.; Shapiro, D.; Lima, E.; Elser, V.; Howells, M.R.; Huang, X.; Jacobsen, C.; Kirz, J.; Miao, H.; Neiman, A.; Sayre, D.; Thibault, P.; Vartanyants, I.A.; Robinson, I.K.; Onken, J.D.; Pfeifer, M.A.; Williams, G.J.; Pfeiffer, F.; Metzger, H.; Zhong, Z.; Bauer, G.; Nishino, Y.; Miao, J.; Kohmura, Y.; Yamamoto, M.; Takahashi, Y.; Koike, K.; Ebisuzaki, T.; Ishikawa, T.; Spence, J.C.H.; Doak, B

    2005-07-01

    The contributions of the participants have been organized into 3 topics: 1) phase retrieval methods, 2) X-ray photon correlation spectroscopy, and 3) coherent diffraction imaging. This document gathers the abstracts of the presentations and of the posters.

  15. Ultrafast optical responses of {beta}-carotene and lycopene probed by sub-20-fs time-resolved coherent spectroscopy

    Energy Technology Data Exchange (ETDEWEB)

    Fujiwara, M.; Sugisaki, M. [CREST-JST and Department of Physics, Osaka City University, Osaka 558-8585 (Japan); Gall, A.; Robert, B. [CEA, Institut de Biologie et Technologies de Saclay, and CNRS, Gif-sur-Yvette F-91191 (France); Cogdell, R.J. [IBLS, Glasgow Biomedical Research Centre, University of Glasgow, Glasgow G12 8QQ, Scotland (United Kingdom); Hashimoto, H., E-mail: hassy@sci.osaka-cu.ac.j [CREST-JST and Department of Physics, Osaka City University, Osaka 558-8585 (Japan)

    2009-12-15

    We investigate how structural distortions in carotenoid cause decoherences of its high-frequency vibrational modes by applying the sub-20-fs time-resolved transient grating spectroscopy to {beta}-carotene and lycopene. The results indicate that the C=C central stretching mode shows significant loss of coherence under the effects of the steric hindrance between {beta}-ionone ring and polyene backbone, whereas the other high-frequency modes do not show such dependency on the structural distortions.

  16. Ultrafast optical responses of β-carotene and lycopene probed by sub-20-fs time-resolved coherent spectroscopy

    International Nuclear Information System (INIS)

    Fujiwara, M.; Sugisaki, M.; Gall, A.; Robert, B.; Cogdell, R.J.; Hashimoto, H.

    2009-01-01

    We investigate how structural distortions in carotenoid cause decoherences of its high-frequency vibrational modes by applying the sub-20-fs time-resolved transient grating spectroscopy to β-carotene and lycopene. The results indicate that the C=C central stretching mode shows significant loss of coherence under the effects of the steric hindrance between β-ionone ring and polyene backbone, whereas the other high-frequency modes do not show such dependency on the structural distortions.

  17. Generation of polyyne and methylpolyyne molecules from toluene by intense femtosecond laser pulse irradiation

    International Nuclear Information System (INIS)

    Ramadhan, Ali; Wesolowski, Michal; Duley, Walter; Sanderson, Joseph; Wakabayashi, Tomonari; Shiromaru, Haruo; Fujino, Tatsuya; Kodama, Takeshi

    2015-01-01

    Hydrogen-capped and methyl-capped carbon chains (polyynes) have been generated by intense femtosecond laser irradiation of pure liquid toluene. UV-Vis and Raman spectroscopy were used to confirm the presence of polyynes in the irradiated samples, and high performance liquid chromatography (HPLC) was used to separate polyynes up to C 18 H 2 and HC 13 CH 3 . (paper)

  18. Femtosecond Laser Filamentation

    CERN Document Server

    Chin, See Leang

    2010-01-01

    Femtosecond Laser Filamentation gives a comprehensive review of the physics of propagation of intense femtosecond laser pulses in optical media (principally air) and the applications and challenges of this new technique. This book presents the modern understanding of the physics of femtosecond laser pulse propagation, including unusual new effects such as the self-transformation of the pulse into a white light laser pulse, intensity clamping, the physics of multiple filamentation and competition, and how filaments’ ability to melt glass leads to wave guide writing. The potential applications of laser filamentation in atmospheric sensing and the generation of other electromagnetic pulses from the UV to the radio frequency are treated, together with possible future challenges in the excitation of super-excited states of molecules. Exciting new phenomena such as filament induced ultrafast birefringence and the excitation of molecular rotational wave packets and their multiple revivals in air (gases) will also ...

  19. Novel concepts for terahertz waveguide spectroscopy

    DEFF Research Database (Denmark)

    Jepsen, Peter Uhd

    2009-01-01

    . With such waveguides we demonstrate that it is possible to perform quantitative spectroscopy on very small volumes of sample material inside the PPWG. Using continuous-wave as well as femtosecond excitation we inject carriers into semiconductor material in the transparent PPWG, and perform static as well as transient...

  20. Photoinduced electron-transfer in perylenediimide triphenylamine-based dendrimers : single photon timing and femtosecond transient absorption spectroscopy

    NARCIS (Netherlands)

    Fron, Eduard; Pilot, Roberto; Schweitzer, Gerd; Qu, Jianqiang; Herrmann, Andreas; Müllen, Klaus; Hofkens, Johan; Auweraer, Mark Van der; Schryver, Frans C. De

    2008-01-01

    The excited state dynamics of two generations perylenediimide chromophores substituted in the bay area with dendritic branches bearing triphenylamine units as well as those of the respective reference compounds are investigated. Using single photon timing and multi-pulse femtosecond transient

  1. Novel techniques in VUV high-resolution spectroscopy

    NARCIS (Netherlands)

    Ubachs, W.M.G.; Salumbides, E.J.; Eikema, K.S.E.; de Oliveira, N.; Nahon, L.

    2014-01-01

    Novel VUV sources and techniques for VUV spectroscopy are reviewed. Laser-based VUV sources have been developed via non-linear upconversion of laser pulses in the nanosecond (ns), the picosecond (ps), and femtosecond (fs) domain, and are applied in high-resolution gas phase spectroscopic studies.

  2. Femtosecond versus nanosecond laser machining: comparison of induced stresses and structural changes in silicon wafers

    International Nuclear Information System (INIS)

    Amer, M.S.; El-Ashry, M.A.; Dosser, L.R.; Hix, K.E.; Maguire, J.F.; Irwin, Bryan

    2005-01-01

    Laser micromachining has proven to be a very successful tool for precision machining and microfabrication with applications in microelectronics, MEMS, medical device, aerospace, biomedical, and defense applications. Femtosecond (FS) laser micromachining is usually thought to be of minimal heat-affected zone (HAZ) local to the micromachined feature. The assumption of reduced HAZ is attributed to the absence of direct coupling of the laser energy into the thermal modes of the material during irradiation. However, a substantial HAZ is thought to exist when machining with lasers having pulse durations in the nanosecond (NS) regime. In this paper, we compare the results of micromachining a single crystal silicon wafer using a 150-femtosecond and a 30-nanosecond lasers. Induced stress and amorphization of the silicon single crystal were monitored using micro-Raman spectroscopy as a function of the fluence and pulse duration of the incident laser. The onset of average induced stress occurs at lower fluence when machining with the femtosecond pulse laser. Induced stresses were found to maximize at fluence of 44 J cm -2 and 8 J cm -2 for nanosecond and femtosecond pulsed lasers, respectively. In both laser pulse regimes, a maximum induced stress is observed at which point the induced stress begins to decrease as the fluence is increased. The maximum induced stress was comparable at 2.0 GPa and 1.5 GPa for the two lasers. For the nanosecond pulse laser, the induced amorphization reached a plateau of approximately 20% for fluence exceeding 22 J cm -2 . For the femtosecond pulse laser, however, induced amorphization was approximately 17% independent of the laser fluence within the experimental range. These two values can be considered nominally the same within experimental error. For femtosecond laser machining, some effect of the laser polarization on the amount of induced stress and amorphization was also observed

  3. Femtosecond spectral phase shaping for CARS spectroscopy and imaging

    NARCIS (Netherlands)

    Postma, S.; van Rhijn, A.C.W.; Korterik, Jeroen P.; Herek, Jennifer Lynn; Offerhaus, Herman L.; Corkum, P.; de Silvestri, S.; Nelson, K.A.; Riedle, E.; Schoenlein, R.W.

    2009-01-01

    Coherent Anti-Stokes Raman Scattering (CARS) is a third-order non-linear optical process that provides label-free, chemically selective microscopy by probing the internal vibrational structure of molecules. Due to the resonant enhancement of the CARS process, faster imaging is possible compared to

  4. Size-controllable synthesis of bare gold nanoparticles by femtosecond laser fragmentation in water

    International Nuclear Information System (INIS)

    Maximova, Ksenia; Aristov, Andrei; Sentis, Marc; Kabashin, Andrei V

    2015-01-01

    We report a size-controllable synthesis of stable aqueous solutions of ultrapure low-size-dispersed Au nanoparticles by methods of femtosecond laser fragmentation from preliminary formed colloids. Such approach makes possible the tuning of mean nanoparticle size between a few nm and several tens of nm under the size dispersion lower than 70% by varying the fluence of pumping radiation during the fragmentation procedure. The efficient size control is explained by 3D geometry of laser fragmentation by femtosecond laser-induced white light super-continuum and plasma-related phenomena. Despite the absence of any protective ligands, the nanoparticle solutions demonstrate exceptional stability due to electric repulsion effect associated with strong negative charging of formed nanoparticles. Stable aqueous solutions of bare gold nanoparticles present a unique object with a variety of potential applications in catalysis, surface-enhanced Raman spectroscopy, photovoltaics, biosensing and biomedicine. (paper)

  5. Spectral watermarking in femtosecond stimulated Raman spectroscopy: resolving the nature of the carotenoid S-star state

    NARCIS (Netherlands)

    Kloz, Miroslav; Weissenborn, J.; Polivka, T.; Frank, H.A.; Kennis, J.T.M.

    2016-01-01

    A new method for recording femtosecond stimulated Raman spectra was developed that dramatically improves and automatizes baseline problems. Instead of using a narrowband Raman source, the experiment is performed using shaping of a broadband source. This allows locking the signal into carefully

  6. Mercury Amalgam Diffusion in Human Teeth Probed Using Femtosecond LIBS.

    Science.gov (United States)

    Bello, Liciane Toledo; da Ana, Patricia Aparecida; Santos, Dário; Krug, Francisco José; Zezell, Denise Maria; Vieira, Nilson Dias; Samad, Ricardo Elgul

    2017-04-01

    In this work the diffusion of mercury and other elements from amalgam tooth restorations through the surrounding dental tissue (dentin) was evaluated using femtosecond laser-induced breakdown spectroscopy (fs-LIBS). To achieve this, seven deciduous and eight permanent extracted human molar teeth with occlusal amalgam restorations were half-sectioned and analyzed using pulses from a femtosecond laser. The measurements were performed from the amalgam restoration along the amalgam/dentin interface to the apical direction. It was possible to observe the presence of metallic elements (silver, mercury, copper and tin) emission lines, as well as dental constituent ones, providing fingerprints of each material and comparable data for checking the consistence of the results. It was also shown that the elements penetration depth values in each tooth are usually similar and consistent, for both deciduous and permanent teeth, indicating that all the metals diffuse into the dentin by the same mechanism. We propose that this diffusion mechanism is mainly through liquid dragging inside the dentin tubules. The mercury diffused further in permanent teeth than in deciduous teeth, probably due to the longer diffusion times due to the age of the restorations. It was possible to conclude that the proposed femtosecond-LIBS system can detect the presence of metals in the dental tissue, among the tooth constituent elements, and map the distribution of endogenous and exogenous chemical elements, with a spatial resolution that can be brought under 100 µm.

  7. Femtosecond laser ablation of single-wall carbon nanotube-based material

    International Nuclear Information System (INIS)

    Danilov, Pavel A; Ionin, Andrey A; Kudryashov, Sergey I; Makarov, Sergey V; Mel’nik, Nikolay N; Rudenko, Andrey A; Yurovskikh, Vladislav I; Zayarny, Dmitry V; Lednev, Vasily N; Obraztsova, Elena D; Pershin, Sergey M; Bunkin, Alexey F

    2014-01-01

    Single- and multi-shot femtosecond laser surface ablation of a single-wall carbon nanotube-based substrate at 515- and 1030 nm wavelengths was studied by scanning electron microscopy and micro-Raman spectroscopy. The laser ablation proceeds in two ways: as the low-fluence mesoscopic shallow disintegration of the surface nanotube packing, preserving the individual integrity and the semiconducting character of the nanotubes or as the high-fluence deep material removal apparently triggered by the strong intrinsic or impurity-mediated ablation of the individual carbon nanotubes on the substrate surface. (letter)

  8. Vibrational Spectroscopy of Laser Cooled CaH

    Science.gov (United States)

    2015-10-28

    commercially available titanium -sapphire laser without any modification as explained in detail in subsection 4.2. Because these are higher-order...Briefly, a diode laser operates by emitting photons when current is run through the active region of between a n-type and p-type cladding layers. This...address all the rotational levels. We use a mode-locked femtosecond Titanium -Sapphire (Ti:Sapph) laser . For our experiments, we used a Coherent Mira

  9. Multidimensional coherent spectroscopy made easy

    Energy Technology Data Exchange (ETDEWEB)

    Gundogdu, Kenan; Stone, Katherine W.; Turner, Daniel B. [Department of Chemistry, Massachusetts Institute of Technology, 77 Mass Ave. 6-026 Cambridge, MA 02139 (United States); Nelson, Keith A. [Department of Chemistry, Massachusetts Institute of Technology, 77 Mass Ave. 6-026 Cambridge, MA 02139 (United States)], E-mail: kanelson@mit.edu

    2007-11-15

    We have demonstrated a highly efficient fully coherent 2D spectrometer based on 2D pulse shaping and Fourier beam shaping. The versatility of the design allows one to measure different 2D spectral surfaces consecutively. Easy alignment, inherent phase stability, rotating wave frame detection, and arbitrary waveform generation in all of the beams are important features of this design. We have demonstrated the functionality of the 2D spectrometer by measuring a 2D spectral surface of a GaAs quantum well.

  10. Multidimensional coherent spectroscopy made easy

    International Nuclear Information System (INIS)

    Gundogdu, Kenan; Stone, Katherine W.; Turner, Daniel B.; Nelson, Keith A.

    2007-01-01

    We have demonstrated a highly efficient fully coherent 2D spectrometer based on 2D pulse shaping and Fourier beam shaping. The versatility of the design allows one to measure different 2D spectral surfaces consecutively. Easy alignment, inherent phase stability, rotating wave frame detection, and arbitrary waveform generation in all of the beams are important features of this design. We have demonstrated the functionality of the 2D spectrometer by measuring a 2D spectral surface of a GaAs quantum well

  11. Multi-modal approach using Raman spectroscopy and optical coherence tomography for the discrimination of colonic adenocarcinoma from normal colon

    Science.gov (United States)

    Ashok, Praveen C.; Praveen, Bavishna B.; Bellini, Nicola; Riches, Andrew; Dholakia, Kishan; Herrington, C. Simon

    2013-01-01

    We report a multimodal optical approach using both Raman spectroscopy and optical coherence tomography (OCT) in tandem to discriminate between colonic adenocarcinoma and normal colon. Although both of these non-invasive techniques are capable of discriminating between normal and tumour tissues, they are unable individually to provide both the high specificity and high sensitivity required for disease diagnosis. We combine the chemical information derived from Raman spectroscopy with the texture parameters extracted from OCT images. The sensitivity obtained using Raman spectroscopy and OCT individually was 89% and 78% respectively and the specificity was 77% and 74% respectively. Combining the information derived using the two techniques increased both sensitivity and specificity to 94% demonstrating that combining complementary optical information enhances diagnostic accuracy. These data demonstrate that multimodal optical analysis has the potential to achieve accurate non-invasive cancer diagnosis. PMID:24156073

  12. Traveling wave deflector design for femtosecond streak camera

    International Nuclear Information System (INIS)

    Pei, Chengquan; Wu, Shengli; Luo, Duan; Wen, Wenlong; Xu, Junkai; Tian, Jinshou; Zhang, Minrui; Chen, Pin; Chen, Jianzhong; Liu, Rong

    2017-01-01

    In this paper, a traveling wave deflection deflector (TWD) with a slow-wave property induced by a microstrip transmission line is proposed for femtosecond streak cameras. The pass width and dispersion properties were simulated. In addition, the dynamic temporal resolution of the femtosecond camera was simulated by CST software. The results showed that with the proposed TWD a femtosecond streak camera can achieve a dynamic temporal resolution of less than 600 fs. Experiments were done to test the femtosecond streak camera, and an 800 fs dynamic temporal resolution was obtained. Guidance is provided for optimizing a femtosecond streak camera to obtain higher temporal resolution.

  13. Traveling wave deflector design for femtosecond streak camera

    Energy Technology Data Exchange (ETDEWEB)

    Pei, Chengquan; Wu, Shengli [Key Laboratory for Physical Electronics and Devices of the Ministry of Education, Xi' an Jiaotong University, Xi’an 710049 (China); Luo, Duan [Xi’an Institute of Optics and Precision Mechanics, Chinese Academy of Sciences, Xi' an 710119 (China); University of Chinese Academy of Sciences, Beijing 100049 (China); Wen, Wenlong [Xi’an Institute of Optics and Precision Mechanics, Chinese Academy of Sciences, Xi' an 710119 (China); Xu, Junkai [Xi’an Institute of Optics and Precision Mechanics, Chinese Academy of Sciences, Xi' an 710119 (China); University of Chinese Academy of Sciences, Beijing 100049 (China); Tian, Jinshou, E-mail: tianjs@opt.ac.cn [Xi’an Institute of Optics and Precision Mechanics, Chinese Academy of Sciences, Xi' an 710119 (China); Collaborative Innovation Center of Extreme Optics, Shanxi University, Taiyuan, Shanxi 030006 (China); Zhang, Minrui; Chen, Pin [Xi’an Institute of Optics and Precision Mechanics, Chinese Academy of Sciences, Xi' an 710119 (China); University of Chinese Academy of Sciences, Beijing 100049 (China); Chen, Jianzhong [Key Laboratory for Physical Electronics and Devices of the Ministry of Education, Xi' an Jiaotong University, Xi’an 710049 (China); Liu, Rong [Xi' an Technological University, Xi' an 710021 (China)

    2017-05-21

    In this paper, a traveling wave deflection deflector (TWD) with a slow-wave property induced by a microstrip transmission line is proposed for femtosecond streak cameras. The pass width and dispersion properties were simulated. In addition, the dynamic temporal resolution of the femtosecond camera was simulated by CST software. The results showed that with the proposed TWD a femtosecond streak camera can achieve a dynamic temporal resolution of less than 600 fs. Experiments were done to test the femtosecond streak camera, and an 800 fs dynamic temporal resolution was obtained. Guidance is provided for optimizing a femtosecond streak camera to obtain higher temporal resolution.

  14. Vibrational motions associated with primary processes in bacteriorhodopsin studied by coherent infrared emission spectroscopy.

    Science.gov (United States)

    Groma, Géza I; Colonna, Anne; Martin, Jean-Louis; Vos, Marten H

    2011-03-16

    The primary energetic processes driving the functional proton pump of bacteriorhodopsin take place in the form of complex molecular dynamic events after excitation of the retinal chromophore into the Franck-Condon state. These early events include a strong electronic polarization, skeletal stretching, and all-trans-to-13-cis isomerization upon formation of the J intermediate. The effectiveness of the photoreaction is ensured by a conical intersection between the electronic excited and ground states, providing highly nonadiabatic coupling to nuclear motions. Here, we study real-time vibrational coherences associated with these motions by analyzing light-induced infrared emission from oriented purple membranes in the 750-1400 cm(-)(1) region. The experimental technique applied is based on second-order femtosecond difference frequency generation on macroscopically ordered samples that also yield information on phase and direction of the underlying motions. Concerted use of several analysis methods resulted in the isolation and characterization of seven different vibrational modes, assigned as C-C stretches, out-of-plane methyl rocks, and hydrogen out-of-plane wags, whereas no in-plane H rock was found. Based on their lifetimes and several other criteria, we deduce that the majority of the observed modes take place on the potential energy surface of the excited electronic state. In particular, the direction sensitivity provides experimental evidence for large intermediate distortions of the retinal plane during the excited-state isomerization process. Copyright © 2011 Biophysical Society. Published by Elsevier Inc. All rights reserved.

  15. From Femtosecond Dynamics to Breast Cancer Diagnosis by Raman Spectroscopy

    International Nuclear Information System (INIS)

    Abramczyk, H.; Placek, I.; Brozek-Pluska, B.; Kurczewski, K.; Morawiec, Z.; Tazbir, M.

    2007-01-01

    This paper presents new results based on Raman spectroscopy and demonstrates its utilisation as a diagnostic and development tool with the key advantage in breast cancer research. Applications of Raman spectroscopy in cancer research are in the early stages of development. However, research presented here as well as performed in a few other laboratories demonstrate the ability of Raman spectroscopy to accurately characterize cancer tissue and distinguish between normal, malignant and benign types. The main goals of bio-Raman spectroscopy at this stage are threefold. Firstly, the aim is to develop the diagnostic ability of Raman spectroscopy so it can be implemented in a clinical environment, producing accurate and rapid diagnoses. Secondly, the aim is to optimize the technique as a diagnostic tool for the non-invasive real time medical applications. Thirdly, the aim is to formulate some hypothesis based on Raman spectroscopy on the molecular mechanism which drives the transformation of normal human cells into highly malignant derivatives. To the best of our knowledge, this is the most statistically reliable report on Raman spectroscopy-based diagnosis of breast cancers among the world women population

  16. Optical Biopsy Using Tissue Spectroscopy and Optical Coherence Tomography

    Directory of Open Access Journals (Sweden)

    Norman S Nishioka

    2003-01-01

    Full Text Available ‘Optical biopsy’ or ‘optical diagnostics’ is a technique whereby light energy is used to obtain information about the structure and function of tissues without disrupting them. In fluorescence spectroscopy, light energy (usually provided by a laser is used to excite tissues and the resulting fluorescence provides information about the target tissue. Its major gastrointestinal application has been in the evaluation of colonic polyps, in which it can reliably distinguish malignant from benign lesions. Optical coherence tomography (OCT has been used in the investigation of Barrett’s epithelium (and dysplasia, although a variety of other applications are feasible. For example, OCT could assist in the identification and staging of mucosal and submucosal neoplasms, the grading of inflammation in the stomach and intestine, the diagnosis of biliary tumours and the assessment of villous architecture. OCT differs from endoscopic ultrasound, a complementary modality, in that it has a much higher resolution but lesser depth of penetration. The images correlate with the histopathological appearance of tissues, and the addition of Doppler methods may enable it to evaluate the vascularity of tumours and the amount of blood flow in varices. Refinements in these new optical techniques will likely make them valuable in clinical practice, although their specific roles have yet to be determined.

  17. Femtosecond lasers for countermeasure applications

    NARCIS (Netherlands)

    Franssen, G.C.; Schleijpen, H.M.A.; Heuvel, J.C. van den; Buersing, H.; Eberle, B.; Walter, D.

    2009-01-01

    In recent years, much advance in the field of high-power femtosecond laser technology has been made. The high pulse power of femtosecond laser systems leads to various interesting phenomena, such as a very high power density and the formation of a plasma in the propagation medium, which is usually

  18. Accelerating two-dimensional nuclear magnetic resonance correlation spectroscopy via selective coherence transfer

    Science.gov (United States)

    Ye, Qimiao; Chen, Lin; Qiu, Wenqi; Lin, Liangjie; Sun, Huijun; Cai, Shuhui; Wei, Zhiliang; Chen, Zhong

    2017-01-01

    Nuclear magnetic resonance (NMR) spectroscopy serves as an important tool for both qualitative and quantitative analyses of various systems in chemistry, biology, and medicine. However, applications of one-dimensional 1H NMR are often restrained by the presence of severe overlap among different resonances. The advent of two-dimensional (2D) 1H NMR constitutes a promising alternative by extending the crowded resonances into a plane and thereby alleviating the spectral congestions. However, the enhanced ability in discriminating resonances is achieved at the cost of extended experimental duration due to necessity of various scans with progressive delays to construct the indirect dimension. Therefore, in this study, we propose a selective coherence transfer (SECOT) method to accelerate acquisitions of 2D correlation spectroscopy by converting chemical shifts into spatial positions within the effective sample length and then performing an echo planar spectroscopic imaging module to record the spatial and spectral information, which generates 2D correlation spectrum after 2D Fourier transformation. The feasibility and effectiveness of SECOT have been verified by a set of experiments under both homogeneous and inhomogeneous magnetic fields. Moreover, evaluations of SECOT for quantitative analyses are carried out on samples with a series of different concentrations. Based on these experimental results, the SECOT may open important perspectives for fast, accurate, and stable investigations of various chemical systems both qualitatively and quantitatively.

  19. Ultrafast single-molecule photonics: Excited state dynamics in coherently coupled complexes

    International Nuclear Information System (INIS)

    Hernando, Jordi; Hoogenboom, Jacob; Dijk, Erik van; Garcia-Parajo, Maria; Hulst, Niek F. van

    2008-01-01

    We present a single-molecule study on femtosecond dynamics in multichromophoric systems, combining fs pump-probe, emission-spectra and fluorescence-lifetime analysis. The ultrafast fs approach gives direct information on the initial exciton dynamics after excitation. The lifetime data show superradiance, a direct measure for the extent of the coherent coupling and static disorder. The spectra finally reveal the role of exciton-phonon coupling. At the single-molecule level a wide range of exciton delocalization lengths and energy redistribution times is revealed

  20. Ultrafast single-molecule photonics: Excited state dynamics in coherently coupled complexes

    Energy Technology Data Exchange (ETDEWEB)

    Hernando, Jordi [Dept. de Quimica, Universitat Autonoma Barcelona, 08193 Cerdanyola del Valles (Spain); Hoogenboom, Jacob [ICFO-Institut de Ciencies Fotoniques, Mediterranean Technology Park, 08860 Castelldefels, Barcelona (Spain); Dijk, Erik van [Applied Optics Group, MESA Institute for Nanotechnology, University of Twente, 7500AE Enschede (Netherlands); Garcia-Parajo, Maria [IBEC-Institute of BioEngineering of Catalunya, 08028 Barcelona (Spain); ICREA-Institucio Catalana de Recerca i Estudis Avancats, 08015 Barcelona (Spain); Hulst, Niek F. van [ICFO-Institut de Ciencies Fotoniques, Mediterranean Technology Park, 08860 Castelldefels, Barcelona (Spain) and ICREA-Institucio Catalana de Recerca i Estudis Avancats, 08015 Barcelona (Spain)], E-mail: Niek.vanHulst@ICFO.es

    2008-05-15

    We present a single-molecule study on femtosecond dynamics in multichromophoric systems, combining fs pump-probe, emission-spectra and fluorescence-lifetime analysis. The ultrafast fs approach gives direct information on the initial exciton dynamics after excitation. The lifetime data show superradiance, a direct measure for the extent of the coherent coupling and static disorder. The spectra finally reveal the role of exciton-phonon coupling. At the single-molecule level a wide range of exciton delocalization lengths and energy redistribution times is revealed.

  1. Two-beam ultrabroadband coherent anti-Stokes Raman spectroscopy for high resolution gas-phase multiplex imaging

    International Nuclear Information System (INIS)

    Bohlin, Alexis; Kliewer, Christopher J.

    2014-01-01

    We propose and develop a method for wideband coherent anti-Stokes Raman spectroscopy (CARS) in the gas phase and demonstrate the single-shot measurement of N 2 , H 2 , CO 2 , O 2 , and CH 4 . Pure-rotational and vibrational O-, Q-, and S- branch spectra are collected simultaneously, with high spectral and spatial resolution, and within a single-laser-shot. The relative intensity of the rotational and vibrational signals can be tuned arbitrarily using polarization techniques. The ultrashort 7 fs pump and Stokes pulses are automatically overlapped temporally and spatially using a two-beam CARS technique, and the crossed probe beam allows for excellent spatial sectioning of the probed location

  2. Femtosecond lasers for microsurgery of cornea

    International Nuclear Information System (INIS)

    Vartapetov, Sergei K; Khudyakov, D V; Lapshin, Konstantin E; Obidin, Aleksei Z; Shcherbakov, Ivan A

    2012-01-01

    The review of femtosecond laser installations for medical applications is given and a new femtosecond ophthalmologic system for creation of a flap of corneal tissue during the LASIK operation is described. An all-fibre femtosecond laser emitting ∼400-fs pulses at 1067 nm is used. The pulse repetition rate can vary from 200 kHz up to 1 MHz. The output energy of the femtosecond system does not exceed 1 μJ. A specially developed objective with small spherical and chromatic aberrations is applied to focus laser radiation to an area of an eye cornea. The size of the focusing spot does not exceed 3 μm. To process the required area, scanning by a laser beam is applied with a speed no less than 5 m s -1 . At a stage of preliminary tests of the system, the Κ8 glass, organic PMMA glass and specially prepared agarose gels are used as a phantom of an eye. The femtosecond system is successfully clinically tested on a plenty of eyes of a pig and on several human eyes. The duration of the procedure of creation of a corneal flap does not exceed 20 s.

  3. Femtosecond lasers for microsurgery of cornea

    Energy Technology Data Exchange (ETDEWEB)

    Vartapetov, Sergei K; Khudyakov, D V; Lapshin, Konstantin E; Obidin, Aleksei Z; Shcherbakov, Ivan A

    2012-03-31

    The review of femtosecond laser installations for medical applications is given and a new femtosecond ophthalmologic system for creation of a flap of corneal tissue during the LASIK operation is described. An all-fibre femtosecond laser emitting {approx}400-fs pulses at 1067 nm is used. The pulse repetition rate can vary from 200 kHz up to 1 MHz. The output energy of the femtosecond system does not exceed 1 {mu}J. A specially developed objective with small spherical and chromatic aberrations is applied to focus laser radiation to an area of an eye cornea. The size of the focusing spot does not exceed 3 {mu}m. To process the required area, scanning by a laser beam is applied with a speed no less than 5 m s{sup -1}. At a stage of preliminary tests of the system, the {Kappa}8 glass, organic PMMA glass and specially prepared agarose gels are used as a phantom of an eye. The femtosecond system is successfully clinically tested on a plenty of eyes of a pig and on several human eyes. The duration of the procedure of creation of a corneal flap does not exceed 20 s.

  4. Thickness-dependent coherent phonon frequency in ultrathin FeSe/SrTiO3 films

    Energy Technology Data Exchange (ETDEWEB)

    Yang, Shuolong [SLAC National Accelerator Lab., Menlo Park, CA (United States); Stanford Univ., Stanford, CA (United States); Sobota, Jonathan A. [SLAC National Accelerator Lab., Menlo Park, CA (United States); Lawrence Berkeley National Lab. (LBNL), Berkeley, CA (United States); Leuenberger, Dominik [SLAC National Accelerator Lab., Menlo Park, CA (United States); Stanford Univ., Stanford, CA (United States); Kemper, Alexander F. [Lawrence Berkeley National Lab. (LBNL), Berkeley, CA (United States); Lee, James J. [SLAC National Accelerator Lab., Menlo Park, CA (United States); Stanford Univ., Stanford, CA (United States); Schmitt, Felix T. [SLAC National Accelerator Lab., Menlo Park, CA (United States); Stanford Univ., Stanford, CA (United States); Li, Wei [SLAC National Accelerator Lab., Menlo Park, CA (United States); Stanford Univ., Stanford, CA (United States); Moore, Rob G. [SLAC National Accelerator Lab., Menlo Park, CA (United States); Stanford Univ., Stanford, CA (United States); Kirchmann, Patrick S. [SLAC National Accelerator Lab., Menlo Park, CA (United States); Shen, Zhi -Xun [SLAC National Accelerator Lab., Menlo Park, CA (United States); Stanford Univ., Stanford, CA (United States)

    2015-06-01

    Ultrathin FeSe films grown on SrTiO3 substrates are a recent milestone in atomic material engineering due to their important role in understanding unconventional superconductivity in Fe-based materials. By using femtosecond time- and angle-resolved photoelectron spectroscopy, we study phonon frequencies in ultrathin FeSe/SrTiO3 films grown by molecular beam epitaxy. After optical excitation, we observe periodic modulations of the photoelectron spectrum as a function of pump–probe delay for 1-unit-cell, 3-unit-cell, and 60-unit-cell thick FeSe films. The frequencies of the coherent intensity oscillations increase from 5.00 ± 0.02 to 5.25 ± 0.02 THz with increasing film thickness. By comparing with previous works, we attribute this mode to the Se A1g phonon. The dominant mechanism for the phonon softening in 1-unit-cell thick FeSe films is a substrate-induced lattice strain. Results demonstrate an abrupt phonon renormalization due to a lattice mismatch between the ultrathin film and the substrate.

  5. Broadband pump-probe spectroscopy with sub-10-fs resolution for probing ultrafast internal conversion and coherent phonons in carotenoids

    International Nuclear Information System (INIS)

    Polli, D.; Antognazza, M.R.; Brida, D.; Lanzani, G.; Cerullo, G.; De Silvestri, S.

    2008-01-01

    We use pump-probe spectroscopy with broadband detection to study electronic energy relaxation and coherent vibrational dynamics in carotenoids. A fast optical multichannel analyzer combined with a non-collinear optical parametric amplifier allows simultaneous acquisition of the differential transmission dynamics on the 500-700 nm wavelength range with sub-10-fs temporal resolution. The broad spectral coverage enables on the one hand a detailed study of the ultrafast bright-to-dark state internal conversion process; on the other hand, the tracking of the motion of the vibrational wavepacket launched on the ground state multidimensional potential energy surface. We present results on all-trans β-carotene and on a long-chain polyene in solution. The developed experimental setup enables the straightforward acquisition and analysis of coherent vibrational dynamics, highlighting time-frequency domain features with extreme resolution

  6. Frontiers in Chemical Physics

    Energy Technology Data Exchange (ETDEWEB)

    Bowlan, Pamela Renee [Los Alamos National Lab. (LANL), Los Alamos, NM (United States)

    2016-05-02

    These are slides dealing with frontiers in chemical physics. The following topics are covered: Time resolving chemistry with ultrashort pulses in the 0.1-40 THz spectral range; Example: Mid-infrared absorption spectrum of the intermediate state CH2OO; Tracking reaction dynamics through changes in the spectra; Single-shot measurement of the mid-IR absorption dynamics; Applying 2D coherent mid-IR spectroscopy to learn more about transition states; Time resolving chemical reactions at a catalysis using mid-IR and THz pulses; Studying topological insulators requires a surface sensitive probe; Nonlinear phonon dynamics in Bi2Se3; THz-pump, SHG-probe as a surface sensitive coherent 2D spectroscopy; Nanometer and femtosecond spatiotemporal resolution mid-IR spectroscopy; Coherent two-dimensional THz/mid-IR spectroscopy with 10nm spatial resolution; Pervoskite oxides as catalysts; Functionalized graphene for catalysis; Single-shot spatiotemporal measurements; Spatiotemporal pulse measurement; Intense, broad-band THz/mid-IR generation with organic crystals.

  7. Spatially and temporally resolved diagnostics of dense sprays using gated, femtosecond, digital holography

    Science.gov (United States)

    Trolinger, James D.; Dioumaev, Andrei K.; Ziaee, Ali; Minniti, Marco; Dunn-Rankin, Derek

    2017-08-01

    This paper describes research that demonstrated gated, femtosecond, digital holography, enabling 3D microscopic viewing inside dense, almost opaque sprays, and providing a new and powerful diagnostics capability for viewing fuel atomization processes never seen before. The method works by exploiting the extremely short coherence and pulse length (approximately 30 micrometers in this implementation) provided by a femtosecond laser combined with digital holography to eliminate multiple and wide angle scattered light from particles surrounding the injection region, which normally obscures the image of interest. Photons that follow a path that differs in length by more than 30 micrometers from a straight path through the field to the sensor do not contribute to the holographic recording of photons that travel in a near straight path (ballistic and "snake" photons). To further enhance the method, off-axis digital holography was incorporated to enhance signal to noise ratio and image processing capability in reconstructed images by separating the conjugate images, which overlap and interfere in conventional in-line holography. This also enables digital holographic interferometry. Fundamental relationships and limitations were also examined. The project is a continuing collaboration between MetroLaser and the University of California, Irvine.

  8. Microstructure and chemical bond evolution of diamond-like carbon films machined by femtosecond laser

    Energy Technology Data Exchange (ETDEWEB)

    Wang, Jing; Wang, Chunhui [Science and Technology on Thermostructure Composite Materials Laboratory, Northwestern Polytechnical University, Xi’an 710072 (China); Liu, Yongsheng, E-mail: yongshengliu@nwpu.edu.cn [Science and Technology on Thermostructure Composite Materials Laboratory, Northwestern Polytechnical University, Xi’an 710072 (China); Cheng, Laifei [Science and Technology on Thermostructure Composite Materials Laboratory, Northwestern Polytechnical University, Xi’an 710072 (China); Li, Weinan [State Key Laboratory of Transient Optics and Photonics, Xi’an Institute of Optics and Precision Mechanics, Chinese Academy of Sciences, Xi’an 10068 (China); Zhang, Qing [Science and Technology on Thermostructure Composite Materials Laboratory, Northwestern Polytechnical University, Xi’an 710072 (China); Yang, Xiaojun [State Key Laboratory of Transient Optics and Photonics, Xi’an Institute of Optics and Precision Mechanics, Chinese Academy of Sciences, Xi’an 10068 (China)

    2015-06-15

    Highlights: • The machining depth was essentially proportional to the laser power. • The well patterned microgrooves and ripple structures with nanoparticles were formed distinctly in the channels. And the number of nanoparticles increased with the processing power as well. • It revealed a conversion from amorphous carbon to nanocrystalline graphite after laser treated with increasing laser power. • It showed that a great decrease of sp{sup 3}/sp{sup 2} after laser treatment. - Abstract: Femtosecond laser is of great interest for machining high melting point and hardness materials such as diamond-like carbon, SiC ceramic, et al. In present work, the microstructural and chemical bond evolution of diamond-like carbon films were investigated using electron microscopy and spectroscopy techniques after machined by diverse femtosecond laser power in air. The results showed the machining depth was essentially proportional to the laser power. The well patterned microgrooves and ripple structures with nanoparticles were formed distinctly in the channels. Considering the D and G Raman band parameters on the laser irradiation, it revealed a conversion from amorphous carbon to nanocrystalline graphite after laser treated with increasing laser power. X-ray photoelectron spectroscopy analysis showed a great decrease of sp{sup 3}/sp{sup 2} after laser treatment.

  9. Femtosecond Study of Self-Trapped Vibrational Excitons in Crystalline Acetanilide

    Science.gov (United States)

    Edler, J.; Hamm, P.; Scott, A. C.

    2002-02-01

    Femtosecond IR spectroscopy of delocalized NH excitations of crystalline acetanilide confirms that self-trapping in hydrogen-bonded peptide units exists and does stabilize the excitation. Two phonons with frequencies of 48 and 76 cm -1 are identified as the major degrees of freedom that mediate self-trapping. After selective excitation of the free exciton, self-trapping occurs within a few 100 fs. Excitation of the self-trapped states disappears from the spectral window of this investigation on a 1 ps time scale, followed by a slow ground state recovery of the hot ground state within 18 ps.

  10. Prospects of third-generation femtosecond laser technology in biological spectromicroscopy

    Science.gov (United States)

    Fattahi, Hanieh; Fattahi, Zohreh; Ghorbani, Asghar

    2018-05-01

    The next generation of biological imaging modalities will be a movement towards super-resolution, label-free approaches to realize subcellular images in a nonperturbative, non-invasive manner and towards new detection metrologies to reach a higher sensitivity and dynamic range. In this paper, we discuss how the third generation femtosecond laser technology in combination with the already existing concepts in time-resolved spectroscopy could fulfill the requirements of these exciting prospects. The expected enhanced specificity and sensitivity of the envisioned super-resolution microscope could lead us to a better understanding of the inter- and intra-cellular molecular transport and DNA-protein interaction.

  11. Generation of dual-wavelength, synchronized, tunable, high energy, femtosecond laser pulses with nearly perfect gaussian spatial profile

    Science.gov (United States)

    Wang, J.-K.; Siegal, Y.; Lü, C.; Mazur, E.

    1992-07-01

    We use self-phase modulation in a single-mode fiber to produce broadband femtosecond laser pulses. Subsequent amplification through two Bethune cells yields high-energy, tunable, pulses synchronized with the output of an amplified colliding-pulse-modelocked (CPM) laser. We routinely obtain tunable 200 μJ pulses of 42 fs (fwhm) duration with a nearly perfect gaussian spatial profile. Although self-phase modulation in a single-mode fiber is widely used in femtosecond laser systems, amplification of a fiber-generated supercontinuum in a Bethune cell amplifier is a new feature which maintains the high-quality spatial profile while providing high gain. This laser system is particularly well suited for high energy dual-wavelength pump=probe experiments and time-resolved four-wave mixing spectroscopy.

  12. Penetrating and Intrastromal Corneal Arcuate Incisions in Rabbit and Human Cadaver Eyes: Manual Diamond Blade and Femtosecond Laser-Created Incisions.

    Science.gov (United States)

    Gray, Brad; Binder, Perry S; Huang, Ling C; Hill, Jim; Salvador-Silva, Mercedes; Gwon, Arlene

    2016-07-01

    To compare morphologic differences between freehand diamond or femtosecond laser-assisted penetrating and intrastromal arcuate incisions. Freehand diamond blade, corneal arcuate incisions (180° apart, 60° arc lengths) and 150 kHz femtosecond laser (80% scheimpflug pachymetry depth corneal thickness) arcuate incisions were performed in rabbits. Intrastromal arcuate incisions (100 μm above Descemet's membrane, 100 μm below epithelium) were performed in rabbit corneas (energy 1.2 μJ, spot line separation 3 × 3 μm, 90° side cut angle). Eyes were examined by slit lamp and light microscopy up to 47 days post-procedure. Freehand diamond blade penetrating incisions, and femtosecond laser penetrating and intrastromal arcuate incisions (energy 1.8 μJ, spot line separation 2 × 2 μm) were performed in cadaver eyes. Optical coherence tomography was performed immediately after surgery and the corneas were fixed for light scanning and transmission electron microscopy. The rabbit model showed anterior stromal inflammation with epithelial hyperplasia in penetrating blade and laser penetrating wounds. The laser intrastromal and penetrating incisions showed localized constriction of the stromal layers of the cornea near the wound. In cadaver eyes, penetrating wound morphology was similar between blade and laser whereas intrastromal wounds did not affect the cornea above or below incisions. Penetrating femtosecond laser arcuate incisions have more predictable and controlled outcomes shown by less post-operative scarring than incisions performed with a diamond blade. Intrastromal incisions do not affect uncut corneal layers as demonstrated by histopathology. The femtosecond laser has significant advantages in its ability to make intrastromal incisions which are not achievable by traditional freehand or mechanical diamond blades.

  13. Multidimensional high harmonic spectroscopy

    International Nuclear Information System (INIS)

    Bruner, Barry D; Soifer, Hadas; Shafir, Dror; Dudovich, Nirit; Serbinenko, Valeria; Smirnova, Olga

    2015-01-01

    High harmonic generation (HHG) has opened up a new frontier in ultrafast science where attosecond time resolution and Angstrom spatial resolution are accessible in a single measurement. However, reconstructing the dynamics under study is limited by the multiple degrees of freedom involved in strong field interactions. In this paper we describe a new class of measurement schemes for resolving attosecond dynamics, integrating perturbative nonlinear optics with strong-field physics. These approaches serve as a basis for multidimensional high harmonic spectroscopy. Specifically, we show that multidimensional high harmonic spectroscopy can measure tunnel ionization dynamics with high precision, and resolves the interference between multiple ionization channels. In addition, we show how multidimensional HHG can function as a type of lock-in amplifier measurement. Similar to multi-dimensional approaches in nonlinear optical spectroscopy that have resolved correlated femtosecond dynamics, multi-dimensional high harmonic spectroscopy reveals the underlying complex dynamics behind attosecond scale phenomena. (paper)

  14. Recent advances in femtosecond laser-assisted cataract surgery

    Directory of Open Access Journals (Sweden)

    Zhao-Jie Chu

    2013-07-01

    Full Text Available Perfect vision and fewer complications is our goal in cataract surgery, femtosecond laser-assisted cataract surgery hold the promise. Applications of femtosecond laser technology for capsulotomy, nuclear fragmentation and corneal incision in cataract surgery bring a new level of accuracy, reproducibility and predictability over the current cataract surgery. The femtosecond laser produces capsulotomies that are more precise, accurate, reproducible, and stronger than those created with the conventional manual technique, and further helps maintain proper positioning of the IOL. Femtosecond laser in nuclear fragmentation lead to a lower effective phacoemulsification time, and the corneal incision is more stable. But currently there are some complications and a clear learning curve associated with the use of femtosecond lasers for cataract surgery. The long-term safety and visual outcomes still need further investigation.

  15. Theory of coherent Stark nonlinear spectroscopy in a three-level system

    International Nuclear Information System (INIS)

    Loiko, Yurii; Serrat, Carles

    2007-01-01

    Coherent Stark nonlinear spectroscopy (CSNS) is a spectroscopic tool based on the cancellation of the phase sensitivity at frequency 5ω in the ultrafast four-wave mixing (FWM) of two-color pulses with frequencies ω and 3ω. We develop a theory for CSNS in three-level V-type systems, and reveal that the mechanism for the phase sensitivity at 5ω is the quantum interference between the two primary paths in the FWM of the ω and 3ω fields. We find that the cancellation phenomenon occurs when the probability amplitude of one of these two primary pathways becomes equal to zero due to the competition effect between the two allowed transitions in the V-type system. The analytical expressions that describe the phase-sensitivity phenomenon and the conditions for its cancellation have been derived on the basis of perturbation theory, and are confirmed by numerical integration of the density matrix and Maxwell equations. We argue that CSNS can be utilized, in particular, for the investigation of optically dense media

  16. Visible/IR light and x-rays in femtosecond synchronism from an x-ray free-electron laser

    International Nuclear Information System (INIS)

    Adams, B. A.; Experimental Facilities Division

    2005-01-01

    A way is proposed to obtain pulses of visible/infrared light in femtosecond synchronism with x-rays from an x-ray free-electron laser (XFEL), using the recently proposed emittance-slicing technique. In an XFEL undulator, only the short section of an electron bunch whose emittance is left unchanged by the slicing will emit intense coherent x-rays in the XFEL undulator. At the same time, the bunch emits highly collimated transition undulator radiation (TUR) into a cone whose opening angle is the reciprocal relativisticity parameter gamma. Due to the variation of the transverse momentum induced by the emittance slicing, the effective number of charges contributing to the TUR varies along the bunch, and is higher in the sliced-out part that emits the coherent x-rays. As with coherent synchrotron radiation (CSR), the TUR is thus coherently enhanced (CTUR) at near-infrared wavelengths. Coming from the same part of the bunch the CTUR and the coherent x-rays are perfectly synchronized to each other. Because both types of radiation are generated in the long straight XFEL undulator, there are no dispersion effects that might induce a timing jitter. With typical XFEL parameters, the energy content of the single optical cycle of near-IR CTUR light is about 100 Nano-Joule, which is quite sufficient for most pump-probe experiments

  17. Femtosecond phacoemulsification: the business and the medicine.

    Science.gov (United States)

    Uy, Harvey S; Edwards, Keith; Curtis, Nick

    2012-01-01

    PURPOSE FOR REVIEW: Phacoemulsification is the preferred method for cataract surgery in the developed world. The number of phacoemulsification procedures performed annually is expected to increase as the population ages. Femtosecond cataract surgery offers several surgical advantages over conventional phacoemulsification and has already attained commercial application in some countries. The purpose of this review is to outline the benefits, risks and commercial issues of femtosecond lasers as applied to cataract surgery. Cataract surgeons are adopting femtosecond technology to perform laser capsulotomy, lens fragmentation, clear cornea incisions and limbal relaxing incisions. Femtosecond lasers clearly perform these surgical steps with greater precision and reproducibility. Further benefits such as improved postoperative refractive results and reduced complication rates are being investigated. Commercial issues have invariably arisen such as cost of installation and operation, value proposition and return on investment. Femtosecond cataract surgery is an evolving procedure that can potentially lead to better and safer surgical outcomes. This review presents the currently available scientific evidence and discusses some of the relevant financial issues concerning this technology.

  18. Two-beam ultrabroadband coherent anti-Stokes Raman spectroscopy for high resolution gas-phase multiplex imaging

    Energy Technology Data Exchange (ETDEWEB)

    Bohlin, Alexis; Kliewer, Christopher J., E-mail: cjkliew@sandia.gov [Combustion Research Facility, Sandia National Laboratories, Livermore, California 94550 (United States)

    2014-01-20

    We propose and develop a method for wideband coherent anti-Stokes Raman spectroscopy (CARS) in the gas phase and demonstrate the single-shot measurement of N{sub 2}, H{sub 2}, CO{sub 2}, O{sub 2}, and CH{sub 4}. Pure-rotational and vibrational O-, Q-, and S- branch spectra are collected simultaneously, with high spectral and spatial resolution, and within a single-laser-shot. The relative intensity of the rotational and vibrational signals can be tuned arbitrarily using polarization techniques. The ultrashort 7 fs pump and Stokes pulses are automatically overlapped temporally and spatially using a two-beam CARS technique, and the crossed probe beam allows for excellent spatial sectioning of the probed location.

  19. Primary processes of the electron-protic species coupling in pure aqueous phases: - femtosecond laser spectroscopy study; - quantum approach of the electron-water interaction

    International Nuclear Information System (INIS)

    Pommeret, Stanislas

    1991-01-01

    This thesis work deals with the coupling mechanisms between an electron, water molecules or protic species (hydronium ion, hydroxyl radical). Two complementary studies have been carry out in pure aqueous phases. The first one is concerned with the structural aspect of the hydrated electron which is studied via a semi-quantum approach Splitting Operator Method. The results indicates the importance of the second hydration shell in the localisation of an electron at 77 and 300 Kelvin. The second part of this work relates to the dynamic of the primary processes in light or heavy water at room temperature: the ion-molecule reaction, radical pair formation, geminate recombination of the hydrated electron with the hydronium ion and the hydroxyl radical. The dynamic of these reactions is studied by time resolved absorption spectroscopy from the near infrared to the near ultraviolet with a few tens femto-seconds temporal precision. The analysis of the primary processes takes into account the protic properties of water molecules. (author) [fr

  20. Dynamics of Charged Excitons and Biexcitons in CsPbBr3 Perovskite Nanocrystals Revealed by Femtosecond Transient-Absorption and Single-Dot Luminescence Spectroscopy.

    Science.gov (United States)

    Yarita, Naoki; Tahara, Hirokazu; Ihara, Toshiyuki; Kawawaki, Tokuhisa; Sato, Ryota; Saruyama, Masaki; Teranishi, Toshiharu; Kanemitsu, Yoshihiko

    2017-04-06

    Metal-halide perovskite nanocrystals (NCs) are promising photonic materials for use in solar cells, light-emitting diodes, and lasers. The optoelectronic properties of these devices are determined by the excitons and exciton complexes confined in their NCs. In this study, we determined the relaxation dynamics of charged excitons and biexcitons in CsPbBr 3 NCs using femtosecond transient-absorption (TA), time-resolved photoluminescence (PL), and single-dot second-order photon correlation spectroscopy. Decay times of ∼40 and ∼200 ps were obtained from the TA and PL decay curves for biexcitons and charged excitons, respectively, in NCs with an average edge length of 7.7 nm. The existence of charged excitons even under weak photoexcitation was confirmed by the second-order photon correlation measurements. We found that charged excitons play a dominant role in luminescence processes of CsPbBr 3 NCs. Combining different spectroscopic techniques enabled us to clarify the dynamical behaviors of excitons, charged excitons, and biexcitons.

  1. Femtosecond luminescence spectroscopy of core states in silicon nanocrystals

    Czech Academy of Sciences Publication Activity Database

    Žídek, K.; Trojánek, F.; Malý, P.; Ondič, Lukáš; Pelant, Ivan; Dohnalová, Kateřina; Šiller, L.; Little, R.; Horrocks, B.R.

    2010-01-01

    Roč. 18, č. 24 (2010), s. 25241-25249 ISSN 1094-4087 R&D Projects: GA AV ČR KAN400100701; GA AV ČR(CZ) IAA101120804; GA MŠk LC510 Institutional research plan: CEZ:AV0Z10100521 Keywords : silicon nanocrystals * ultrafast spectroscopy * photoluminescence spectroscopy Subject RIV: BM - Solid Matter Physics ; Magnetism Impact factor: 3.749, year: 2010 http://www.opticsinfobase.org/oe/abstract.cfm?URI=oe-18-24-25241

  2. On-chip nanostructuring and impedance trimming of transparent and flexible ITO electrodes by laser induced coherent sub-20 nm cuts

    Energy Technology Data Exchange (ETDEWEB)

    Afshar, Maziar, E-mail: m.afshar@lmm.uni-saarland.de [Lab for Micromechanics, Microfluidics, and Microactuators, Saarland University, Saarbrücken D-66123 (Germany); Leber, Moritz [Lab for Micromechanics, Microfluidics, and Microactuators, Saarland University, Saarbrücken D-66123 (Germany); Poppendieck, Wigand [Department of Medical Engineering & Neuroprosthetics, Fraunhofer Institute for Biomedical Engineering, St. Ingbert D-66386 (Germany); König, Karsten [Lab for Biophotonics and Laser Technology, Saarland University, Saarbrücken D-66123 (Germany); Seidel, Helmut; Feili, Dara [Lab for Micromechanics, Microfluidics, and Microactuators, Saarland University, Saarbrücken D-66123 (Germany)

    2016-01-01

    Graphical abstract: - Highlights: • A novel method to make sub-20 nm nanopatterning in ITO thin films by laser writing. • A novel way to functionalize ITO bio-electrodes to yield near-field polarizing feature. • A basic characterization of ITO electrodes was performed by impedance spectroscopy. • Presentation of simulations and possible theoretical approaches to explain the results. - Abstract: In this work, the effect of laser-induced nanostructuring of transparent indium tin oxide (ITO) electrodes on flexible glass is investigated. Multi-electrode arrays (MEA) for electrical and optical characterization of biological cells were fabricated using standard MEMS technologies. Optimal sputter parameters concerning oxygen flow, sputter power and ambient pressure for ITO layers with both good optical and electrical properties were determined. Afterwards, coherent sub-20 nm wide and 150 nm deep nanocuts of many micrometers in length were generated within the ITO electrodes by a sub-15 femtosecond (fs) pulsed laser. The influence of laser processing on the electrical and optical properties of electrodes was investigated. The electrochemical impedance of the manufactured electrodes was measured before and after laser modification using electrochemical impedance spectroscopy. A small reduction in electrode impedance was observed. These nanostructured electrodes show also polarizing effects by the visible spectrum.

  3. Coherent control through near-resonant Raman transitions

    International Nuclear Information System (INIS)

    Dai Xingcan; Lerch, Eliza-Beth W.; Leone, Stephen R.

    2006-01-01

    The phase of an electronic wave function is shown to play an important role in coherent control experiments. By using a pulse shaping system with a femtosecond laser, we explore the phase relationships among resonant and off-resonant Raman transitions in Li 2 by measuring the phases of the resulting wave packets, or quantum beats. Specific pixels in a liquid-crystal spatial light modulator are used to isolate the resonant and off-resonant portions of the Raman transitions in Li 2 . The off-resonant Raman transitions have an approximately 90 degree sign phase shift with respect to the resonant Raman transition, and there is an approximately 180 degree sign phase shift between the blue-detuned and the red-detuned off-resonant Raman transitions. Calculations using second-order time-dependent perturbation theory for the electronic transitions agree with the experimental results for the laser pulse intensities used here. Interferences between the off-resonant Raman transitions as a function of detuning are used to demonstrate coherent control of the Raman quantum wave packet

  4. Laser-Induced Damage with Femtosecond Pulses

    Science.gov (United States)

    Kafka, Kyle R. P.

    The strong electric fields of focused femtosecond laser pulses lead to non-equilibrium dynamics in materials, which, beyond a threshold intensity, causes laser-induced damage (LID). Such a strongly non-linear and non-perturbative process renders important LID observables like fluence and intensity thresholds and damage morphology (crater) extremely difficult to predict quantitatively. However, femtosecond LID carries a high degree of precision, which has been exploited in various micro/nano-machining and surface engineering applications, such as human eye surgery and super-hydrophobic surfaces. This dissertation presents an array of experimental studies which have measured the damage behavior of various materials under femtosecond irradiation. Precision experiments were performed to produce extreme spatio-temporal confinement of the femtosecond laser-solid damage interaction on monocrystalline Cu, which made possible the first successful direct-benchmarking of LID simulation with realistic damage craters. A technique was developed to produce laser-induced periodic surface structures (LIPSS) in a single pulse (typically a multi-pulse phenomenon), and was used to perform a pump-probe study which revealed asynchronous LIPSS formation on copper. Combined with 1-D calculations, this new experimental result suggests more drastic electron heating than expected. Few-cycle pulses were used to study the LID performance and morphology of commercial ultra-broadband optics, which had not been systematically studied before. With extensive surface analysis, various morphologies were observed, including LIPSS, swelling (blisters), simple craters, and even ring-shaped structures, which varied depending on the coating design, number of pulses, and air/vacuum test environment. Mechanisms leading to these morphologies are discussed, many of which are ultrafast in nature. The applied damage behavior of multi-layer dielectric mirrors was measured and compared between long pulse (150 ps

  5. Femtosecond time-resolved transient absorption spectroscopy of xanthophylls

    Czech Academy of Sciences Publication Activity Database

    Niedzwiedzki, D.; Sullivan, J.O.; Polívka, Tomáš; Birge, R.R.; Frank, H.A.

    2006-01-01

    Roč. 110, č. 45 (2006), s. 22872-22885 ISSN 1520-6106 Institutional research plan: CEZ:AV0Z50510513 Keywords : xanthophyll * spectroscopy study Subject RIV: BO - Biophysics Impact factor: 4.115, year: 2006

  6. Non-Markovian response of ultrafast coherent electronic ring currents in chiral aromatic molecules in a condensed phase

    International Nuclear Information System (INIS)

    Mineo, H.; Lin, S. H.; Fujimura, Y.; Xu, J.; Xu, R. X.; Yan, Y. J.

    2013-01-01

    Results of a theoretical study on non-Markov response for femtosecond laser-driven coherent ring currents in chiral aromatic molecules embedded in a condensed phase are presented. Coherent ring currents are generated by coherent excitation of a pair of quasi-degenerated π-electronic excited states. The coherent electronic dynamical behaviors are strongly influenced by interactions between the electronic system and phonon bath in a condensed phase. Here, the bath correlation time is not instantaneous but should be taken to be a finite time in ultrashort time-resolved experiments. In such a case, Markov approximation breaks down. A hierarchical master equation approach for an improved semiclassical Drude dissipation model was adopted to examine the non-Markov effects on ultrafast coherent electronic ring currents of (P)-2,2 ′ -biphenol in a condensed phase. Time evolution of the coherent ring current derived in the hierarchical master equation approach was calculated and compared with those in the Drude model in the Markov approximation and in the static limit. The results show how non-Markovian behaviors in quantum beat signals of ring currents depend on the Drude bath damping constant. Effects of temperatures on ultrafast coherent electronic ring currents are also clarified

  7. Observation of sum-frequency-generation-induced cascaded four-wave mixing using two crossing femtosecond laser pulses in a 0.1 mm beta-barium-borate crystal.

    Science.gov (United States)

    Liu, Weimin; Zhu, Liangdong; Fang, Chong

    2012-09-15

    We demonstrate the simultaneous generation of multicolor femtosecond laser pulses spanning the wavelength range from UV to near IR in a 0.1 mm Type I beta-barium borate crystal from 800 nm fundamental and weak IR super-continuum white light (SCWL) pulses. The multicolor broadband laser pulses observed are attributed to two concomitant cascaded four-wave mixing (CFWM) processes as corroborated by calculation: (1) directly from the two incident laser pulses; (2) by the sum-frequency generation (SFG) induced CFWM process (SFGFWM). The latter signal arises from the interaction between the frequency-doubled fundamental pulse (400 nm) and the SFG pulse generated in between the fundamental and IR-SCWL pulses. The versatility and simplicity of this spatially dispersed multicolor self-compressed laser pulse generation offer compact and attractive methods to conduct femtosecond stimulated Raman spectroscopy and time-resolved multicolor spectroscopy.

  8. Femtosecond quantum dynamics and laser-cooling in thermal molecular systems

    International Nuclear Information System (INIS)

    Warmuth, C.

    2000-01-01

    This work deals with coherent and incoherent vibrational phenomena in thermal systems, wave packet motion and laser-cooling. In the first part, the principle of COIN (Coherence Observation by Interference Noise) has been applied as a new approach to measuring wave packet motion. In the experiment pairs of phase-randomized femtosecond pulses with relative delay-time τ prepare interference fluctuations in the excited state population, so the variance of the correlated fluorescence intensity directly mimics the dynamics of the propagating wave packet. The scheme is demonstrated by measuring the vibrational coherence of wave packet-motion in the B-state of gaseous iodine. The COIN-interferograms obtained recover propagation, recurrences, spreading, and revivals as the typical signature of wave packets. Due to the disharmony of the B-state-potential, fractional revivals have also been found showing the potential of the COIN-technique in quantum-dynamical research. In the second part the fluorescence lifetime of trans-stilbene, isolated and in the presence of 1 atm of Ar gas, respectively, was measured as a function of the detuning of the excitation frequency from the frequency of the 0-0-transition ω 0 . The lifetime was found to decrease on both sides of ω 0 , but the dependence of the lifetime on detuning in the presence of Ar gas is much weaker than for the isolated molecule. Both observations corroborate previous theoretical predictions of laser-cooling of thermal trans-stilbene upon excitation at the ω 0 frequency. The experimental results are in good agreement with theoretical analysis. (author)

  9. Coherent anti-Stokes Raman scattering and spontaneous Raman scattering diagnostics of nonequilibrium plasmas and flows

    Science.gov (United States)

    Lempert, Walter R.; Adamovich, Igor V.

    2014-10-01

    The paper provides an overview of the use of coherent anti-Stokes Raman scattering (CARS) and spontaneous Raman scattering for diagnostics of low-temperature nonequilibrium plasmas and nonequilibrium high-enthalpy flows. A brief review of the theoretical background of CARS, four-wave mixing and Raman scattering, as well as a discussion of experimental techniques and data reduction, are included. The experimental results reviewed include measurements of vibrational level populations, rotational/translational temperature, electric fields in a quasi-steady-state and transient molecular plasmas and afterglow, in nonequilibrium expansion flows, and behind strong shock waves. Insight into the kinetics of vibrational energy transfer, energy thermalization mechanisms and dynamics of the pulse discharge development, provided by these experiments, is discussed. Availability of short pulse duration, high peak power lasers, as well as broadband dye lasers, makes possible the use of these diagnostics at relatively low pressures, potentially with a sub-nanosecond time resolution, as well as obtaining single laser shot, high signal-to-noise spectra at higher pressures. Possibilities for the development of single-shot 2D CARS imaging and spectroscopy, using picosecond and femtosecond lasers, as well as novel phase matching and detection techniques, are discussed.

  10. Femtosecond laser refractive surgery: small-incision lenticule extraction vs. femtosecond laser-assisted LASIK.

    Science.gov (United States)

    Lee, Jimmy K; Chuck, Roy S; Park, Choul Yong

    2015-07-01

    Small-incision lenticule extraction (SMILE) is a novel technique devised to correct refractive errors. SMILE circumvents excimer laser photoablation of cornea, as the stromal lenticule cut by femtosecond laser is removed manually. Smaller incisions and preservation of anterior corneal biomechanical strength have been suggested as some of the advantages of SMILE over femtosecond laser-assisted LASIK (FS-LASIK). In this review, we compared previous published results of SMILE and FS-LASIK. The advantage, efficacy and safety of SMILE are compared with FS-LASIK. SMILE achieved similar efficacy, predictability and safety as FS-LASIK. Greater preservations of corneal biomechanical strength and corneal nerves were observed in SMILE when compared with LASIK or PRK. Additionally, the incidence of postoperative dry eye syndrome was found to be less problematic in SMILE than in FS-LASIK. SMILE is a promising new surgery for refractive error correction. Prospective and retrospective studies of SMILE have shown that results of SMILE are similar to FS-LASIK. With advances in femtosecond laser technology, SMILE may gain greater acceptance in the future.

  11. Femtosecond electron bunches from an RF-gun

    International Nuclear Information System (INIS)

    Rimjaem, Sakhorn; Farias, Ruy; Thongbai, Chitrlada; Vilaithong, Thiraphat; Wiedemann, Helmut

    2004-01-01

    Sub-picosecond electron pulses become a tool of increasing importance to study dynamics at an atomic level. Such electron pulses can be used directly or be converted into intense coherent far infrared radiation or equally short X-ray pulses. In principle, sub-picosecond electron pulses can be obtained in large, high-energy electron linear accelerator systems by repeatedly applying an energy slew and magnetic compression. Another process is the production of short electron pulses at low energies from an RF-gun with a thermionic cathode together with a bunch compressing α-magnet. In this paper, we present a systematic analysis of capabilities and limits of sub-picosecond electron pulses from such a source. We discuss particular parameter choices as well as the impact of geometric and electric specifications on the 6-dimensional phase space electron distribution. Numerical beam simulations with the computer code PARMELA are performed including effects and limitations due to space charge forces. While the production of femtosecond electron bunches is of primary concern, we also consider the preservation of such short bunches along a beam transport line

  12. Femtosecond Non-Markovian Optical Dynamics in Solution

    NARCIS (Netherlands)

    Nibbering, Erik T.J.; Wiersma, Douwe A.; Duppen, Koos

    1991-01-01

    Femtosecond photon-echo experiments on sodium resorufin in dimethylsulfoxide at room temperature show that optical dephasing in solution is of non-Markovian character. A single Gauss-Markov stochastic modulation process is used to interpret both the femtosecond light-scattering results and the

  13. Femtosecond laser-induced herringbone patterns

    Science.gov (United States)

    Garcell, Erik M.; Lam, Billy; Guo, Chunlei

    2018-06-01

    Femtosecond laser-induced herringbone patterns are formed on copper (Cu). These novel periodic structures are created following s-polarized, large incident angle, femtosecond laser pulses. Forming as slanted and axially symmetric laser-induced periodic surface structures along the side walls of ablated channels, the result is a series of v-shaped structures that resemble a herringbone pattern. Fluence mapping, incident angle studies, as well as polarization studies have been conducted and provide a clear understanding of this new structure.

  14. Handbook of Coherent-Domain Optical Methods Biomedical Diagnostics, Environmental Monitoring, and Materials Science

    CERN Document Server

    2013-01-01

    This Handbook provides comprehensive coverage of laser and coherent-domain methods as applied to biomedicine, environmental monitoring, and materials science. Worldwide leaders in these fields describe the fundamentals of light interaction with random media and present an overview of basic research. The latest results on coherent and polarization properties of light scattered by random media, including tissues and blood, speckles formation in multiple scattering media, and other non-destructive interactions of coherent light with rough surfaces and tissues, allow the reader to understand the principles and applications of coherent diagnostic techniques. The expanded second edition has been thoroughly updated with particular emphasis on novel coherent-domain techniques and their applications in medicine and environmental science. Volume 1 describes state-of-the-art methods of coherent and polarization optical imaging, tomography and spectroscopy; diffusion wave spectroscopy; elastic, quasi-elastic and inelasti...

  15. Spin-resolved photoelectron spectroscopy using femtosecond extreme ultraviolet light pulses from high-order harmonic generation

    Energy Technology Data Exchange (ETDEWEB)

    Plötzing, M.; Adam, R., E-mail: r.adam@fz-juelich.de; Weier, C.; Plucinski, L.; Schneider, C. M. [Forschungszentrum Jülich GmbH, Peter Grünberg Institut (PGI-6), 52425 Jülich (Germany); Eich, S.; Emmerich, S.; Rollinger, M.; Aeschlimann, M. [University of Kaiserslautern and Research Center OPTIMAS, 67663 Kaiserslautern (Germany); Mathias, S. [Georg-August-Universität Göttingen, I. Physikalisches Institut, 37077 Göttingen (Germany)

    2016-04-15

    The fundamental mechanism responsible for optically induced magnetization dynamics in ferromagnetic thin films has been under intense debate since almost two decades. Currently, numerous competing theoretical models are in strong need for a decisive experimental confirmation such as monitoring the triggered changes in the spin-dependent band structure on ultrashort time scales. Our approach explores the possibility of observing femtosecond band structure dynamics by giving access to extended parts of the Brillouin zone in a simultaneously time-, energy- and spin-resolved photoemission experiment. For this purpose, our setup uses a state-of-the-art, highly efficient spin detector and ultrashort, extreme ultraviolet light pulses created by laser-based high-order harmonic generation. In this paper, we present the setup and first spin-resolved spectra obtained with our experiment within an acquisition time short enough to allow pump-probe studies. Further, we characterize the influence of the excitation with femtosecond extreme ultraviolet pulses by comparing the results with data acquired using a continuous wave light source with similar photon energy. In addition, changes in the spectra induced by vacuum space-charge effects due to both the extreme ultraviolet probe- and near-infrared pump-pulses are studied by analyzing the resulting spectral distortions. The combination of energy resolution and electron count rate achieved in our setup confirms its suitability for spin-resolved studies of the band structure on ultrashort time scales.

  16. Overall comparison of subpicosecond electron beam diagnostics by the polychromator, the interferometer and the femtosecond streak camera

    CERN Document Server

    Watanabe, T; Yoshimatsu, T; Sasaki, S; Sugiyama, Y; Ishi, K; Shibata, Y; Kondo, Y; Yoshii, K; Ueda, T; Uesaka, M

    2002-01-01

    Measurements of longitudinal bunch length of subpicosecond and picosecond electron beams have been performed by three methods with three radiation sources at the 35 MeV S-band twin liner accelerators at Nuclear Engineering Research Laboratory, University of Tokyo. The methods we adopt are the femtosecond streak camera with a nondispersive reflective optics, the coherent transition radiation (CTR) Michelson interferometer and the 10 ch polychromator that detects the spectrum of CTR and coherent diffraction radiation (CDR). The measurements by the two CTR methods were independently done with the streak camera and their results were consistent with one another. As a result, the reliability of the polychromator for the diagnostics of less than picosecond electron bunch and the usefulness of the diagnostics for the single shot measurement were verified. Furthermore, perfect nondestructive diagnostics for subpicosecond bunches was performed utilizing CDR interferometry. Then the good agreement between CDR interfero...

  17. Femtosecond laser induced phenomena in transparent solid materials

    DEFF Research Database (Denmark)

    Tan, D.Z.; Sharafudeen, K.N.; Yue, Yuanzheng

    2016-01-01

    solved, especially concerning the interaction of strong, ultra-short electromagnetic pulses with matter, and also because potential advanced technologies will emerge due to the impressive capability of the intense femtosecond laser to create new material structures and hence functionalities. When......The interaction of intense femtosecond laser pulses with transparent materials is a topic that has caused great interest of scientists over the past two decades. It will continue to be a fascinating field in the coming years. This is because many challenging fundamental problems have not been......–matter interaction, and fabricate various integrated micro-devices. In recent years we have witnessed exciting development in understanding and applying femtosecond laser induced phenomena in transparent materials. The interaction of femtosecond laser pulses with transparent materials relies on non...

  18. Effects of femtosecond laser radiation on the skin

    International Nuclear Information System (INIS)

    Rogov, P Yu; Bespalov, V G

    2016-01-01

    A mathematical model of linear and nonlinear processes is presented occurring under the influence of femtosecond laser radiation on the skin. There was held an analysis and the numerical solution of an equation system describing the dynamics of the electron and phonon subsystems were received. The results can be used to determine the maximum permissible levels of energy generated by femtosecond laser systems and the establishment of Russian laser safety standards for femtosecond laser systems. (paper)

  19. Tracking ultrafast relaxation dynamics of furan by femtosecond photoelectron imaging

    International Nuclear Information System (INIS)

    Liu, Yuzhu; Knopp, Gregor; Qin, Chaochao; Gerber, Thomas

    2015-01-01

    Graphical abstract: - Highlights: • Relaxation dynamics of furan are tracked by femtosecond photoelectron imaging. • The mechanism for ultrafast formation of α-carbene and β-carbene is proposed. • Ultrafast internal conversion from S 2 to S 1 is observed. • The transient characteristics of the fragment ions are obtained. • Single-color multi-photon ionization dynamics at 800 nm are also studied. - Abstract: Ultrafast internal conversion dynamics of furan has been studied by femtosecond photoelectron imaging (PEI) coupled with photofragmentation (PF) spectroscopy. Photoelectron imaging of single-color multi-photon ionization and two-color pump–probe ionization are obtained and analyzed. Photoelectron bands are assigned to the related states. The time evolution of the photoelectron signal by pump–probe ionization can be well described by a biexponential decay: two rapid relaxation pathways with time constants of ∼15 fs and 85 (±11) fs. The rapid relaxation is ascribed to the ultrafast internal conversion (IC) from the S 2 state to the vibrationally hot S 1 state. The second relaxation process is attributed to the redistributions and depopulation of secondarily populated high vibronic S 1 state and the formation of α-carbene and β-carbene by H immigration. Additionally, the transient characteristics of the fragment ions are also measured and discussed as a complementary understanding

  20. Recording of interference fringe structure by femtosecond laser pulses in samples of silver-containing porous glass and thick slabs of dichromated gelatin

    Science.gov (United States)

    Andreeva, Olga V.; Dement'ev, Dmitry A.; Chekalin, Sergey V.; Kompanets, V. O.; Matveets, Yu. A.; Serov, Oleg B.; Smolovich, Anatoly M.

    2002-05-01

    The recording geometry and recording media for the method of achromatic wavefront reconstruction are discussed. The femtosecond recording on the thick slabs of dichromated gelatin and the samples of silver-containing porous glass was obtained. The applications of the method to ultrafast laser spectroscopy and to phase conjugation were suggested.

  1. What are the intensities and line-shapes of the twenty four polarization terms in coherent anti-Stokes Raman spectroscopy?

    Science.gov (United States)

    Niu, Kai; Lee, Soo-Y.

    2015-12-01

    Coherent anti-Stokes Raman spectroscopy (CARS) is conventionally described by just one diagram/term where the three electric field interactions act on the ket side in a Feynman dual time-line diagram in a specific time order of pump, Stokes and probe pulses. In theory, however, any third-order nonlinear spectroscopy with three different electric fields interacting with a molecule can be described by forty eight diagrams/terms. They reduce to just 24 diagrams/terms if we treat the time ordering of the electric field interactions on the ket independently of those on the bra, i.e. the ket and bra wave packets evolve independently. The twenty four polarization terms can be calculated in the multidimensional, separable harmonic oscillator model to obtain the intensities and line-shapes. It is shown that in fs/ps CARS, for the two cases of off-resonance CARS in toluene and resonance CARS in rhodamine 6G, where we use a fs pump pulse, a fs Stokes pulse and a ps probe pulse, we obtain sharp vibrational lines in four of the polarization terms where the pump and Stokes pulses can create a vibrational coherence on the ground electronic state, while the spectral line-shapes of the other twenty terms are broad and featureless. The conventional CARS term with sharp vibrational lines is the dominant term, with intensity at least one order of magnitude larger than the other terms.

  2. What are the intensities and line-shapes of the twenty four polarization terms in coherent anti-Stokes Raman spectroscopy?

    International Nuclear Information System (INIS)

    Niu, Kai; Lee, Soo-Y.

    2015-01-01

    Coherent anti-Stokes Raman spectroscopy (CARS) is conventionally described by just one diagram/term where the three electric field interactions act on the ket side in a Feynman dual time-line diagram in a specific time order of pump, Stokes and probe pulses. In theory, however, any third-order nonlinear spectroscopy with three different electric fields interacting with a molecule can be described by forty eight diagrams/terms. They reduce to just 24 diagrams/terms if we treat the time ordering of the electric field interactions on the ket independently of those on the bra, i.e. the ket and bra wave packets evolve independently. The twenty four polarization terms can be calculated in the multidimensional, separable harmonic oscillator model to obtain the intensities and line-shapes. It is shown that in fs/ps CARS, for the two cases of off-resonance CARS in toluene and resonance CARS in rhodamine 6G, where we use a fs pump pulse, a fs Stokes pulse and a ps probe pulse, we obtain sharp vibrational lines in four of the polarization terms where the pump and Stokes pulses can create a vibrational coherence on the ground electronic state, while the spectral line-shapes of the other twenty terms are broad and featureless. The conventional CARS term with sharp vibrational lines is the dominant term, with intensity at least one order of magnitude larger than the other terms

  3. What are the intensities and line-shapes of the twenty four polarization terms in coherent anti-Stokes Raman spectroscopy?

    Energy Technology Data Exchange (ETDEWEB)

    Niu, Kai [School of Science, Tianjin University of Technology and Education, Tianjin, 300222 (China); Lee, Soo-Y., E-mail: sooying@ntu.edu.sg [Division of Physics & Applied Physics, and Division of Chemistry & Biological Chemistry, School of Physical & Mathematical Sciences, Nanyang Technological University, Singapore 637371 (Singapore)

    2015-12-15

    Coherent anti-Stokes Raman spectroscopy (CARS) is conventionally described by just one diagram/term where the three electric field interactions act on the ket side in a Feynman dual time-line diagram in a specific time order of pump, Stokes and probe pulses. In theory, however, any third-order nonlinear spectroscopy with three different electric fields interacting with a molecule can be described by forty eight diagrams/terms. They reduce to just 24 diagrams/terms if we treat the time ordering of the electric field interactions on the ket independently of those on the bra, i.e. the ket and bra wave packets evolve independently. The twenty four polarization terms can be calculated in the multidimensional, separable harmonic oscillator model to obtain the intensities and line-shapes. It is shown that in fs/ps CARS, for the two cases of off-resonance CARS in toluene and resonance CARS in rhodamine 6G, where we use a fs pump pulse, a fs Stokes pulse and a ps probe pulse, we obtain sharp vibrational lines in four of the polarization terms where the pump and Stokes pulses can create a vibrational coherence on the ground electronic state, while the spectral line-shapes of the other twenty terms are broad and featureless. The conventional CARS term with sharp vibrational lines is the dominant term, with intensity at least one order of magnitude larger than the other terms.

  4. Nonequilibrium Supersonic Freestream Studied Using Coherent Anti-Stokes Raman Spectroscopy

    Science.gov (United States)

    Cutler, Andrew D.; Cantu, Luca M.; Gallo, Emanuela C. A.; Baurle, Rob; Danehy, Paul M.; Rockwell, Robert; Goyne, Christopher; McDaniel, Jim

    2015-01-01

    Measurements were conducted at the University of Virginia Supersonic Combustion Facility of the flow in a constant-area duct downstream of a Mach 2 nozzle. The airflow was heated to approximately 1200 K in the facility heater upstream of the nozzle. Dual-pump coherent anti-Stokes Raman spectroscopy was used to measure the rotational and vibrational temperatures of N2 and O2 at two planes in the duct. The expectation was that the vibrational temperature would be in equilibrium, because most scramjet facilities are vitiated air facilities and are in vibrational equilibrium. However, with a flow of clean air, the vibrational temperature of N2 along a streamline remains approximately constant between the measurement plane and the facility heater, the vibrational temperature of O2 in the duct is about 1000 K, and the rotational temperature is consistent with the isentropic flow. The measurements of N2 vibrational temperature enabled cross-stream nonuniformities in the temperature exiting the facility heater to be documented. The measurements are in agreement with computational fluid dynamics models employing separate lumped vibrational and translational/rotational temperatures. Measurements and computations are also reported for a few percent steam addition to the air. The effect of the steam is to bring the flow to thermal equilibrium, also in agreement with the computational fluid dynamics.

  5. Femtosecond X-ray diffraction from two-dimensional protein crystals

    Directory of Open Access Journals (Sweden)

    Matthias Frank

    2014-03-01

    Full Text Available X-ray diffraction patterns from two-dimensional (2-D protein crystals obtained using femtosecond X-ray pulses from an X-ray free-electron laser (XFEL are presented. To date, it has not been possible to acquire transmission X-ray diffraction patterns from individual 2-D protein crystals due to radiation damage. However, the intense and ultrafast pulses generated by an XFEL permit a new method of collecting diffraction data before the sample is destroyed. Utilizing a diffract-before-destroy approach at the Linac Coherent Light Source, Bragg diffraction was acquired to better than 8.5 Å resolution for two different 2-D protein crystal samples each less than 10 nm thick and maintained at room temperature. These proof-of-principle results show promise for structural analysis of both soluble and membrane proteins arranged as 2-D crystals without requiring cryogenic conditions or the formation of three-dimensional crystals.

  6. Black Hole Spectroscopy with Coherent Mode Stacking.

    Science.gov (United States)

    Yang, Huan; Yagi, Kent; Blackman, Jonathan; Lehner, Luis; Paschalidis, Vasileios; Pretorius, Frans; Yunes, Nicolás

    2017-04-21

    The measurement of multiple ringdown modes in gravitational waves from binary black hole mergers will allow for testing the fundamental properties of black holes in general relativity and to constrain modified theories of gravity. To enhance the ability of Advanced LIGO/Virgo to perform such tasks, we propose a coherent mode stacking method to search for a chosen target mode within a collection of multiple merger events. We first rescale each signal so that the target mode in each of them has the same frequency and then sum the waveforms constructively. A crucial element to realize this coherent superposition is to make use of a priori information extracted from the inspiral-merger phase of each event. To illustrate the method, we perform a study with simulated events targeting the ℓ=m=3 ringdown mode of the remnant black holes. We show that this method can significantly boost the signal-to-noise ratio of the collective target mode compared to that of the single loudest event. Using current estimates of merger rates, we show that it is likely that advanced-era detectors can measure this collective ringdown mode with one year of coincident data gathered at design sensitivity.

  7. Femtosecond laser surface texturing of titanium as a method to reduce the adhesion of Staphylococcus aureus and biofilm formation

    Energy Technology Data Exchange (ETDEWEB)

    Cunha, Alexandre [Instituto Superior Técnico, Universidade de Lisboa, Av. Rovisco Pais 1, 1049-001 Lisboa (Portugal); Bordeaux University, Institute of Chemistry & Biology of Membranes & Nanoobjects (CBMN UMR 5248, CNRS), European Institute of Chemistry and Biology, 2 Rue Robert Escarpit, 33607 Pessac (France); Elie, Anne-Marie [Bordeaux University, CBMN UMR 5248, CNRS, Bordeaux Science Agro, 1 Rue du G. de Gaulle, 33170 Gradignan (France); Plawinski, Laurent [Bordeaux University, Institute of Chemistry & Biology of Membranes & Nanoobjects (CBMN UMR 5248, CNRS), European Institute of Chemistry and Biology, 2 Rue Robert Escarpit, 33607 Pessac (France); Serro, Ana Paula [Instituto Superior Técnico, Universidade de Lisboa, CQE-Centro de Química Estrutural, Av. Rovisco Pais 1, 1049-001 Lisbon (Portugal); Botelho do Rego, Ana Maria [Instituto Superior Técnico, Universidade de Lisboa, CQFM-Centro de Química-Física Molecular and Institute of Nanoscience and Nanotechnology - IN, Av. Rovisco Pais 1, 1049-001 Lisbon (Portugal); Almeida, Amélia [Instituto Superior Técnico, Universidade de Lisboa, Av. Rovisco Pais 1, 1049-001 Lisboa (Portugal); Urdaci, Maria C. [Bordeaux University, CBMN UMR 5248, CNRS, Bordeaux Science Agro, 1 Rue du G. de Gaulle, 33170 Gradignan (France); Durrieu, Marie-Christine [Bordeaux University, Institute of Chemistry & Biology of Membranes & Nanoobjects (CBMN UMR 5248, CNRS), European Institute of Chemistry and Biology, 2 Rue Robert Escarpit, 33607 Pessac (France); Vilar, Rui, E-mail: rui.vilar@tecnico.ulisboa.pt [Instituto Superior Técnico, Universidade de Lisboa, Av. Rovisco Pais 1, 1049-001 Lisboa (Portugal)

    2016-01-01

    Graphical abstract: - Highlights: • The short-term adhesion of Staphylococcus aureus onto femtosecond laser textured surfaces of titanium was investigated. • The laser textured surfaces consist of laser-induced periodic surface structures (LIPSS) and nanopillars. • The laser treatment enhances the hydrophilicity and the surface free energy of the material. • The laser treatment reduces significantly the adhesion of S. aureus and biofilm formation. • Femtosecond laser surface texturing of titanium is a simple and promising method for endowing dental and orthopedic implants with antibacterial properties. - Abstract: The aim of the present work was to investigate the possibility of using femtosecond laser surface texturing as a method to reduce the colonization of Grade 2 Titanium alloy surfaces by Staphylococcus aureus and the subsequent formation of biofilm. The laser treatments were carried out with a Yb:KYW chirped-pulse-regenerative amplification laser system with a central wavelength of 1030 nm and a pulse duration of 500 fs. Two types of surface textures, consisting of laser-induced periodic surface structures (LIPSS) and nanopillars, were produced. The topography, chemical composition and phase constitution of these surfaces were investigated by atomic force microscopy, scanning electron microscopy, X-ray photoelectron spectroscopy, micro-Raman spectroscopy, and X-ray diffraction. Surface wettability was assessed by the sessile drop method using water and diiodomethane as testing liquids. The response of S. aureus put into contact with the laser treated surfaces in controlled conditions was investigated by epifluorescence microscopy and scanning electron microscopy 48 h after cell seeding. The results achieved show that the laser treatment reduces significantly the bacterial adhesion to the surface as well as biofilm formation as compared to a reference polished surfaces and suggest that femtosecond laser texturing is a simple and promising method

  8. Femtosecond laser-ablated Fresnel zone plate fiber probe and sensing applications

    Science.gov (United States)

    Tan, Xiaoling; Geng, Youfu; Chen, Yan; Li, Shiguo; Wang, Xinzhong

    2018-02-01

    We investigate the Fresnel zone plate (FZP) inscribed on multimode fiber endface using femtosecond laser ablation and its application in sensing. The mode transmission through fiber tips with FZP is investigated both by the beam propagation method theoretically and by measuring the beam images with a charge-coupled device camera experimentally, which show a good agreement. Such devices are tested for surface-enhanced Raman scattering (SERS) using the aqueous solution of rhodamine 6G under a Raman spectroscopy. The experimental results demonstrate that the SERS signal is enhanced benefiting from focal ability of FZP, which is a promising method for the particular biochemical spectra sensing applications.

  9. The Development, Commercialization, and Impact of Optical Coherence Tomography.

    Science.gov (United States)

    Fujimoto, James; Swanson, Eric

    2016-07-01

    This review was written for the special issue of IOVS to describe the history of optical coherence tomography (OCT) and its evolution from a nonscientific, historic perspective. Optical coherence tomography has become a standard of care in ophthalmology, providing real-time information on structure and function - diagnosing disease, evaluating progression, and assessing response to therapy, as well as helping to understand disease pathogenesis and create new therapies. Optical coherence tomography also has applications in multiple clinical specialties, fundamental research, and manufacturing. We review the early history of OCT describing how research and development evolves and the important role of multidisciplinary collaboration and expertise. Optical coherence tomography had its origin in femtosecond optics, but used optical communications technologies and required advanced engineering for early OCT prototypes, clinical feasibility studies, entrepreneurship, and corporate development in order to achieve clinical acceptance and clinical impact. Critical advances were made by early career researchers, clinician scientists, engineering experts, and business leaders, which enabled OCT to have a worldwide impact on health care. We introduce the concept of an "ecosystem" consisting of research, government funding, collaboration and competition, clinical studies, innovation, entrepreneurship and industry, and impact - all of which must work synergistically. The process that we recount is long and challenging, but it is our hope that it might inspire early career professionals in science, engineering, and medicine, and that the clinical and research community will find this review of interest.

  10. The Development, Commercialization, and Impact of Optical Coherence Tomography

    Science.gov (United States)

    Fujimoto, James; Swanson, Eric

    2016-01-01

    This review was written for the special issue of IOVS to describe the history of optical coherence tomography (OCT) and its evolution from a nonscientific, historic perspective. Optical coherence tomography has become a standard of care in ophthalmology, providing real-time information on structure and function – diagnosing disease, evaluating progression, and assessing response to therapy, as well as helping to understand disease pathogenesis and create new therapies. Optical coherence tomography also has applications in multiple clinical specialties, fundamental research, and manufacturing. We review the early history of OCT describing how research and development evolves and the important role of multidisciplinary collaboration and expertise. Optical coherence tomography had its origin in femtosecond optics, but used optical communications technologies and required advanced engineering for early OCT prototypes, clinical feasibility studies, entrepreneurship, and corporate development in order to achieve clinical acceptance and clinical impact. Critical advances were made by early career researchers, clinician scientists, engineering experts, and business leaders, which enabled OCT to have a worldwide impact on health care. We introduce the concept of an “ecosystem” consisting of research, government funding, collaboration and competition, clinical studies, innovation, entrepreneurship and industry, and impact – all of which must work synergistically. The process that we recount is long and challenging, but it is our hope that it might inspire early career professionals in science, engineering, and medicine, and that the clinical and research community will find this review of interest. PMID:27409459

  11. Irregularity of the posterior corneal surface during applanation using a curved femtosecond laser interface and microkeratome cutting head.

    Science.gov (United States)

    Vetter, Jan M; Holtz, Carsten; Vossmerbaeumer, Urs; Pfeiffer, Norbert

    2012-03-01

    To evaluate the irregularity of the posterior corneal surface and intrastromal dissection during the preparation of donor tissue for Descemet stripping automated endothelial keratoplasty (DSAEK) using a curved interface femtosecond laser and microkeratome. Sixteen human donor corneas unsuitable for transplantation were divided into two groups: a femtosecond (FS) laser group (n=7) using the VisuMax femtosecond laser (Carl Zeiss Meditec) and a microkeratome group (n=9) using the Amadeus II microkeratome (Ziemer Ophthalmic Group). The corneas were fixed on artificial anterior chambers. Horizontal cross-sections were obtained using spectral-domain optical coherence tomography prior to applanation, during applanation, as well as during and after intrastromal dissection at 450-μm corneal depth. The posterior surface and the dissection line were evaluated for irregularity by fitting a second-order polynomial curve using regression analysis and obtaining the root-mean-square error (RMSE). Groups were compared using analysis of variance. The RMSE of the posterior surface prior to applanation was 9.7 ± 3.1 μm in the FS laser group and 10.2 ± 2.3 μm in the microkeratome group. The RMSE increased to 50.7 ± 9.4 μm and 20.9 ± 6.1 μm during applanation and decreased again to 10.6 ± 1.4 μm and 8.1 ± 1.8 μm after applanation in the FS laser and microkeratome groups, respectively. The RMSE of the intrastromal cut was 19.5 ± 5.7 μm in the FS laser group and 7.7 ± 3.0 μm in the microkeratome group (P<.001). Our results show significantly greater irregularity with the curved interface femtosecond laser-assisted cleavage compared to microkeratome-assisted corneal dissection, possibly due to applanation-derived deformation of the posterior cornea. Copyright 2012, SLACK Incorporated.

  12. Femtosecond Laser Fabricated Ag@Au and Cu@Au Alloy Nanoparticles for Surface Enhanced Raman Spectroscopy Based Trace Explosives Detection

    Directory of Open Access Journals (Sweden)

    Moram Sree Satya Bharati

    2018-03-01

    Full Text Available Herein we present results from our detailed studies on the fabrication of Ag@Au and Cu@Au alloy nanoparticles (NPs using the femtosecond laser ablation in liquid technique. The NPs were obtained by ablating the pure Ag, Cu targets (bulk in HAuCl4 (5 mM solution. The absorption properties of the obtained NPs colloids were characterized using UV-Visible absorption spectrometer and their size, shape, and crystallinity were investigated using the XRD, FESEM and TEM techniques. The fabricated NPs were utilized for sensing of explosive molecules such as 2,4,6-trinitrophenol (PA, 2,4-dinitrotoluene (DNT and a common dye methylene blue (MB using the surface enhanced Raman spectroscopy (SERS technique. The detection limit in terms of weight was as low as few nano-grams in the case of nitroaromatic explosive compounds (PA, DNT and few picograms in the case of a common dye molecule (MB. Typical enhancement factors achieved were estimated to be ~104, ~105, and ~107, respectively, for PA, DNT, and MB. The significance of the present work lies in exploring the performance of the prepared NPs being used as SERS substrates for explosives detection using a portable Raman instrument. Such capability enables one to carry the spectrometer to the point of interest in the field and evaluate any hazardous samples within a short period of time.

  13. Speckles generated by skewed, short-coherence light beams

    International Nuclear Information System (INIS)

    Brogioli, D; Salerno, D; Ziano, R; Mantegazza, F; Croccolo, F

    2011-01-01

    When a coherent laser beam impinges on a random sample (e.g. a colloidal suspension), the scattered light exhibits characteristic speckles. If the temporal coherence of the light source is too short, then the speckles disappear, along with the possibility of performing homodyne or heterodyne scattering detection or photon correlation spectroscopy. Here we investigate the scattering of a so-called ‘skewed coherence beam’, i.e. a short-coherence beam modified such that the field is coherent within slabs that are skewed with respect to the wave fronts. We show that such a beam generates speckles and can be used for heterodyne scattering detection, despite its short temporal coherence. Moreover, we show that the heterodyne signal is not affected by multiple scattering. We suggest that the phenomenon presented here can be used as a means of carrying out heterodyne scattering measurement with any short-coherence radiation, including x-rays. (paper)

  14. Pico-femtosecond image-tube photography in quantum electronics

    International Nuclear Information System (INIS)

    Schelev, M Ya

    2001-01-01

    The possibility of experimental achievement of the time resolution of image-converter tubes (ICTs) corresponding to the theoretical limit of 10 fs is considered as applied to quantum electronics problems. A new generation of ICTs with a temporal resolution of 200 - 500 fs has been developed for recording femtosecond laser radiation. The entirely new devices based on time-analysing ICTs such as femtosecond photoelectronic diffractometers, have been created for studying the dynamics of phase transitions in substances using diffrac-tion of electrons with energies ranging from 20 to 40 keV. (femtosecond technologies)

  15. Imaging femtosecond laser-induced electronic excitation in glass

    International Nuclear Information System (INIS)

    Mao Xianglei; Mao, Samuel S.; Russo, Richard E.

    2003-01-01

    While substantial progress has been achieved in understanding laser ablation on the nanosecond and picosecond time scales, it remains a considerable challenge to elucidate the underlying mechanisms during femtosecond laser material interactions. We present experimental observations of electronic excitation inside a wide band gap glass during single femtosecond laser pulse (100 fs, 800 nm) irradiation. Using a femtosecond time-resolved imaging technique, we measured the evolution of a laser-induced electronic plasma inside the glass and calculated the electron number density to be on the order of 10 19 cm -3

  16. Improvement of aluminum drilling efficiency and precision by shaped femtosecond laser

    International Nuclear Information System (INIS)

    Qi, Ying; Qi, Hongxia; Chen, Anmin; Hu, Zhan

    2014-01-01

    Highlights: • The ablation accuracy can be improved by the shaped femtosecond laser pulse. • The ablation rate can be improved by the shaped femtosecond laser pulse with higher laser fluence. • The results can be used to optimize femtosecond micromachining metal. - Abstract: Shaped femtosecond laser pulses with the plain phase (transform-limited pulse) and sine phase (A = 1.2566, T = 30, T = 10, and T = 5) were used to drill Al sheet in vacuum. Using different phase, the number of pulses required to drill through the sheet was different. With lower laser pulse energy, the ablation rate was the highest when plain phase (corresponding to transform limited pulse) was used. With higher laser energy, the optimized ablation rate can be achieved by increasing the time separation between the subpulses of pulse train produced from the sine phase function. And, with the shaped femtosecond laser, the diameter of ablation holes produced was smaller, the ablation precision was also improved. The results showed that shaped femtosecond laser pulse has great advantages in the context of femtosecond laser drilling

  17. Femtosecond laser three-dimensional micro- and nanofabrication

    Energy Technology Data Exchange (ETDEWEB)

    Sugioka, Koji, E-mail: ksugioka@riken.jp [RIKEN Center for Advanced Photonics, Hirosawa 2-1, Wako, Saitama 351-0198 (Japan); Cheng, Ya, E-mail: ya.cheng@siom.ac.cn [Shanghai Institute of Optics and Fine Mechanics, Chinese Academy of Sciences, P.O. Box 800-211, Shanghai 201800 (China)

    2014-12-15

    The rapid development of the femtosecond laser has revolutionized materials processing due to its unique characteristics of ultrashort pulse width and extremely high peak intensity. The short pulse width suppresses the formation of a heat-affected zone, which is vital for ultrahigh precision fabrication, whereas the high peak intensity allows nonlinear interactions such as multiphoton absorption and tunneling ionization to be induced in transparent materials, which provides versatility in terms of the materials that can be processed. More interestingly, irradiation with tightly focused femtosecond laser pulses inside transparent materials makes three-dimensional (3D) micro- and nanofabrication available due to efficient confinement of the nonlinear interactions within the focal volume. Additive manufacturing (stereolithography) based on multiphoton absorption (two-photon polymerization) enables the fabrication of 3D polymer micro- and nanostructures for photonic devices, micro- and nanomachines, and microfluidic devices, and has applications for biomedical and tissue engineering. Subtractive manufacturing based on internal modification and fabrication can realize the direct fabrication of 3D microfluidics, micromechanics, microelectronics, and photonic microcomponents in glass. These microcomponents can be easily integrated in a single glass microchip by a simple procedure using a femtosecond laser to realize more functional microdevices, such as optofluidics and integrated photonic microdevices. The highly localized multiphoton absorption of a tightly focused femtosecond laser in glass can also induce strong absorption only at the interface of two closely stacked glass substrates. Consequently, glass bonding can be performed based on fusion welding with femtosecond laser irradiation, which provides the potential for applications in electronics, optics, microelectromechanical systems, medical devices, microfluidic devices, and small satellites. This review paper

  18. Femtosecond Photon-Counting Receiver

    Science.gov (United States)

    Krainak, Michael A.; Rambo, Timothy M.; Yang, Guangning; Lu, Wei; Numata, Kenji

    2016-01-01

    An optical correlation receiver is described that provides ultra-precise distance and/or time/pulse-width measurements even for weak (single photons) and short (femtosecond) optical signals. A new type of optical correlation receiver uses a fourth-order (intensity) interferometer to provide micron distance measurements even for weak (single photons) and short (femtosecond) optical signals. The optical correlator uses a low-noise-integrating detector that can resolve photon number. The correlation (range as a function of path delay) is calculated from the variance of the photon number of the difference of the optical signals on the two detectors. Our preliminary proof-of principle data (using a short-pulse diode laser transmitter) demonstrates tens of microns precision.

  19. Femtosecond photoelectron spectroscopy: a new tool for the study of anion dynamics

    Energy Technology Data Exchange (ETDEWEB)

    Greenblatt, Benjamin J. [Univ. of California, Berkeley, CA (United States)

    1999-02-01

    A new experimental technique for the time-resolved study of anion reactions is presented. Using femtosecond laser pulses, which provide extremely fast (~100 fs) time resolution, in conjunction with photoelectron spectroscopy, which reveals differences between anion and neutral potential energy surfaces, a complex anion reaction can be followed from its inception through the formation of asymptotic products. Experimental data can be modeled quantitatively using established theoretical approaches, allowing for the refinement of potential energy surfaces as well as dynamical models. After a brief overview, a detailed account of the construction of the experimental apparatus is presented. Documentation of the data acquisition program is contained in the Appendix. The first experimental demonstration of the technique is then presented for I2- photodissociation, modeled using a simulation program which is also detailed in the Appendix. The investigation of I2- photodissociation in several size-selected I2-(Ar)n (n = 6-20) and I2-(CO2)n (n = 4-16) clusters forms the heart of the dissertation. In a series of chapters, the numerous effects of solvation on this fundamental bond-breaking reaction are explored, the most notable of which is the recombination of I2- on the ground $\\tilde{X}$(2Σu+) state in sufficiently large clusters. Recombination and trapping of I2- on the excited $\\tilde{A}$(2π3/2,g) state is also observed in both types of clusters. The studies have revealed electronic state transitions, the first step in recombination, on a ~500 fs to ~10 ps timescale. Accompanying the changes in electronic state is solvent reorganization, which occurs on a similar timescale. Over longer periods (~1 ps to >200 ps), energy is transferred from vibrationally

  20. Terahertz Spectroscopy and Imaging

    CERN Document Server

    Zeitler, Axel; Kuwata-Gonokami, Makoto

    2013-01-01

    "This book presents the current state of knowledge in the field of terahertz spectroscopy, providing a comprehensive source of information for beginners and experienced researchers alike whose interests lie in this area. The book aims to explain the fundamental physics that underpins terahertz  technology and to describe its key applications. Highlights of scientific research in the field of terahertz science are also outlined in some chapters, providing an overview as well as giving an insight into future directions for research.  Over the past decade terahertz spectroscopy has developed into one of the most rapidly growing areas of its kind, gaining an important impact across a wide range of scientific disciplines. Due to substantial advances in femtosecond laser technology, terahertz time-domain spectroscopy (THz-TDS) has established itself as the dominant spectroscopic technique for experimental scientists interested in measurements at this frequency range. In solids and liquids THz radiation is in reso...

  1. Mid-infrared frequency comb via coherent dispersive wave generation in silicon nitride nanophotonic waveguides

    Science.gov (United States)

    Guo, Hairun; Herkommer, Clemens; Billat, Adrien; Grassani, Davide; Zhang, Chuankun; Pfeiffer, Martin H. P.; Weng, Wenle; Brès, Camille-Sophie; Kippenberg, Tobias J.

    2018-06-01

    Mid-infrared optical frequency combs are of significant interest for molecular spectroscopy due to the large absorption of molecular vibrational modes on the one hand, and the ability to implement superior comb-based spectroscopic modalities with increased speed, sensitivity and precision on the other hand. Here, we demonstrate a simple, yet effective, method for the direct generation of mid-infrared optical frequency combs in the region from 2.5 to 4.0 μm (that is, 2,500-4,000 cm-1), covering a large fraction of the functional group region, from a conventional and compact erbium-fibre-based femtosecond laser in the telecommunication band (that is, 1.55 μm). The wavelength conversion is based on dispersive wave generation within the supercontinuum process in an unprecedented large-cross-section silicon nitride (Si3N4) waveguide with the dispersion lithographically engineered. The long-wavelength dispersive wave can perform as a mid-infrared frequency comb, whose coherence is demonstrated via optical heterodyne measurements. Such an approach can be considered as an alternative option to mid-infrared frequency comb generation. Moreover, it has the potential to realize compact dual-comb spectrometers. The generated combs also have a fine teeth-spacing, making them suitable for gas-phase analysis.

  2. Coherent active polarization control without loss

    Science.gov (United States)

    Ye, Yuqian; Hay, Darrick; Shi, Zhimin

    2017-11-01

    We propose a lossless active polarization control mechanism utilizing an anisotropic dielectric medium with two coherent inputs. Using scattering matrix analysis, we derive analytically the required optical properties of the anisotropic medium that can behave as a switchable polarizing beam splitter. We also show that such a designed anisotropic medium can produce linearly polarized light at any azimuthal direction through coherent control of two inputs with a specific polarization state. Furthermore, we present a straightforward design-on-demand procedure of a subwavelength-thick metastructure that can possess the desired optical anisotropy at a flexible working wavelength. Our lossless coherent polarization control technique may lead to fast, broadband and integrated polarization control elements for applications in imaging, spectroscopy, and telecommunication.

  3. Femtosecond Laser-Induced Formation of Gold-Rich Nanoalloys from the Aqueous Mixture of Gold-Silver Ions

    Directory of Open Access Journals (Sweden)

    Yuliati Herbani

    2010-01-01

    Full Text Available The synthesis of gold-silver (AuAg nanoalloys of various compositions has been performed by direct irradiation of highly intense femtosecond laser pulse in the presence of polyvinylpyrrolidone (PVP. The mixture of Au and Ag ions of low concentration was simply introduced into a glass vial and subjected to femtosecond laser pulses for several minutes. The AuAg nanoalloys of 2-3 nm with reasonably narrow size distribution were formed, and the position of the surface plasmon resonance (SPR increased monotonically with an increase in the gold molar fraction in the ion solutions. The high resolution transmission electron microscope (HRTEM images exhibited the absence of core-shell structures, and the energy dispersive X-ray spectroscopy (EDX analysis confirmed that the particles were Au-rich alloys even for the samples with large fraction of Ag+ ions fed in the solution mixture. The formation mechanism of the alloy nanoparticles in the high intensity optical field was also discussed.

  4. Coherent control of atto-second emission from aligned molecules

    Energy Technology Data Exchange (ETDEWEB)

    Boutu, W; Haessler, S; Merdji, H; Breger, P; Monchicourt, P; Carre, B; Salieres, P [CEA Saclay, DSM, Serv Photons Atomes Mol, F-91191 Gif Sur Yvette, (France); Waters, G [Univ Reading, JJ Thomson Phys Lab, Reading RG6 6AF, Berks, (United Kingdom); Stankiewicz, M [Jagiellonian Univ, Inst Phys, PL-30059 Krakow, (Poland); Frasinski, L J [Univ London Imperial Coll Sci Technol and Med, Blackett Lab, London SW7 2BW, (United Kingdom); Taieb, R; Caillat, J; Maquet, A [Univ Paris 06, UMR 7614, Lab Chim Phys Matiere Rayonnement, F-75231 Paris 05, (France); Taieb, R; Caillat, J; Maquet, A [LCPMR, UMR 7614, CNRS, F-75005 Paris, (France)

    2008-07-01

    Controlling atto-second electron wave packets and soft X-ray pulses represents a formidable challenge of general implication to many areas of science. A strong laser field interacting with atoms or molecules drives ultrafast intra-atomic/molecular electron wave packets on a sub femtosecond timescale, resulting in the emission of atto-second bursts of extreme-ultraviolet light. Controlling the intra-atomic/molecular electron dynamics enables steering of the atto-second emission. Here, we carry out a coherent control in linear molecules, where the interaction of the laser-driven electron wave packet with the core leads to quantum interferences. We demonstrate that these interferences can be finely controlled by turning the molecular axis relative to the laser polarization, that is, changing the electron re-collision angle. The wave-packet coulombic distortion modifies the spectral phase jump measured in the extreme-ultraviolet emission. Our atto-second control of the interference results in atto-second pulse shaping, useful for future applications in ultrafast coherent control of atomic and molecular processes. (authors)

  5. Annual Scientific Report for DE-FG03-02NA00063 Coherent imaging of laser-plasma interactions using XUV high harmonic radiation

    International Nuclear Information System (INIS)

    Henry C. Kapteyn

    2005-01-01

    In this project, we use coherent short-wavelength light generated using high-order harmonic generation as a probe of laser-plasma dynamics and phase transitions on femtosecond time-scales. The interaction of ultrashort laser pulses with materials and plasmas is relevant to stockpile stewardship, to understanding the equation of state of matter at high pressures and temperatures, and to plasma concepts such as the fast-ignitor ICF fusion concept and laser-based particle acceleration. Femtosecond laser technology makes it possible to use a small-scale setup to generate 20fs pulses with average power >10W at multiple kHz repetition rates, that can be focused to intensities in excess of 1017W/cm2. These lasers can be used either to rapidly heat materials to initiate phase transitions, or to create laser plasmas over a wide parameter space. These lasers can also be used to generate fully spatially coherent XUV beams with which to probe these materials and plasma systems. We are in process of implementing imaging studies of plasma hydrodynamics and warm, dense matter. The data will be compared with simulation codes of laser-plasma interactions, making it possible to refine and validate these codes

  6. Preliminary observation of refractive cataract surgery assisted by femtosecond laser

    Directory of Open Access Journals (Sweden)

    Xiao-Li Wang

    2015-12-01

    Full Text Available AIM:To compare the differences of visual acuity and corneal astigmatism postoperatively between conventional refractive cataract surgery and that assisted by femtosecond laser.METHODS:Sixty patients(60 eyeswith age-related cataract and cornea astigmatism were divided into femtosecond group and conventional group randomly or voluntarily. The flat shaft, steep shaft and diopter of corneal astigmatism in patients in femtosecond group were inputted into the online vector calculators to get the location and width of the incision. Then femtosecond laser was used to make corneal releasing incision, the main and auxiliary incision. Phacoemulsification and aspheric multifocal intraocular lens implantation were undergone. Patients in conventional group received full-thickness relaxing incision by cornea paracentesis knife at the steepest meridian axis during phacoemulsification. Then aspheric multifocal intraocular lenses were implanted. Uncorrected distance visual acuity(UCDVA, uncorrected near visual acuity(UCNVAand cornea astigmatism were observed at 1d,1wk and 1mo postoperative. RESULTS:UCVA of patients in both groups was improved after the surgeries. UCDVA and UCNVA of femtosecond group were higher than those of conventional group, while the cornea astigmatism of femtosecond group was lower than that of conventional group.CONCLUSION:Refractile cataract surgery assisted by femtosecond laser canoffer better visual quality than conventional refractive cataract surgery because of lower cornea astigmatism and better visual acuity.

  7. Evaluation of microfluidic channels with optical coherence tomography

    KAUST Repository

    Czajkowski, J.; Prykä ri, T.; Alarousu, E.; Lauri, J.; Myllylä , R.

    2010-01-01

    Application of time domain, ultra high resolution optical coherence tomography (UHR-OCT) in evaluation of microfluidic channels is demonstrated. Presented study was done using experimental UHR-OCT device based on a Kerr-lens mode locked Ti:sapphire femtosecond laser, a photonic crystal fibre and modified, free-space Michelson interferometer. To show potential of the technique, microfluidic chip fabricated by VTT Center for Printed Intelligence (Oulu, Finland) was measured. Ability for full volumetric reconstruction in non-contact manner enabled complete characterization of closed entity of a microfluidic channel without contamination and harm for the sample. Measurement, occurring problems, and methods of postprocessing for raw data are described. Results present completely resolved physical structure of the channel, its spatial dimensions, draft angles and evaluation of lamination quality.

  8. Evaluation of microfluidic channels with optical coherence tomography

    KAUST Repository

    Czajkowski, J.

    2010-06-25

    Application of time domain, ultra high resolution optical coherence tomography (UHR-OCT) in evaluation of microfluidic channels is demonstrated. Presented study was done using experimental UHR-OCT device based on a Kerr-lens mode locked Ti:sapphire femtosecond laser, a photonic crystal fibre and modified, free-space Michelson interferometer. To show potential of the technique, microfluidic chip fabricated by VTT Center for Printed Intelligence (Oulu, Finland) was measured. Ability for full volumetric reconstruction in non-contact manner enabled complete characterization of closed entity of a microfluidic channel without contamination and harm for the sample. Measurement, occurring problems, and methods of postprocessing for raw data are described. Results present completely resolved physical structure of the channel, its spatial dimensions, draft angles and evaluation of lamination quality.

  9. Evaluation of microfluidic channels with optical coherence tomography

    Science.gov (United States)

    Czajkowski, J.; Prykäri, T.; Alarousu, E.; Lauri, J.; Myllylä, R.

    2010-11-01

    Application of time domain, ultra high resolution optical coherence tomography (UHR-OCT) in evaluation of microfluidic channels is demonstrated. Presented study was done using experimental UHR-OCT device based on a Kerr-lens mode locked Ti:sapphire femtosecond laser, a photonic crystal fibre and modified, free-space Michelson interferometer. To show potential of the technique, microfluidic chip fabricated by VTT Center for Printed Intelligence (Oulu, Finland) was measured. Ability for full volumetric reconstruction in non-contact manner enabled complete characterization of closed entity of a microfluidic channel without contamination and harm for the sample. Measurement, occurring problems, and methods of postprocessing for raw data are described. Results present completely resolved physical structure of the channel, its spatial dimensions, draft angles and evaluation of lamination quality.

  10. Narrow titanium oxide nanowires induced by femtosecond laser pulses on a titanium surface

    Energy Technology Data Exchange (ETDEWEB)

    Li, Hui; Li, Xian-Feng [Laboratory of Nanophotonic Functional Materials and Devices, School of Information and Optoelectronic Science and Engineering, South China Normal University, Guangzhou 510006 (China); Zhang, Cheng-Yun [School of Physics and Electronic Engineering, Guangzhou University, Guangzhou 510006 (China); Tie, Shao-Long [School of Chemistry and Environment, South China Normal University, Guangzhou 510006 (China); Lan, Sheng, E-mail: slan@scnu.edu.cn [Laboratory of Nanophotonic Functional Materials and Devices, School of Information and Optoelectronic Science and Engineering, South China Normal University, Guangzhou 510006 (China)

    2017-02-28

    Highlights: • Titanium oxide nanowires with a feature width as narrow as ∼20 nm were induced on a titanium surface by using femtosecond laser pulses at 400 nm. • An evolution of the surface structure from a high spatial frequency laser-induced periodic structure parallel to the laser polarization to a low spatial frequency one perpendicular to the laser polarization was observed with increasing irradiation pulse number. • The formation of the titanium oxide nanowires was confirmed by the energy dispersive spectroscopy measurements and the evolution of the surface structure was successfully interpreted by using the efficacy factor theory. - Abstract: The evolution of the nanostructure induced on a titanium (Ti) surface with increasing irradiation pulse number by using a 400-nm femtosecond laser was examined by using scanning electron microscopy. High spatial frequency periodic structures of TiO{sub 2} parallel to the laser polarization were initially observed because of the laser-induced oxidation of the Ti surface and the larger efficacy factor of TiO{sub 2} in this direction. Periodically aligned TiO{sub 2} nanowires with featured width as small as 20 nm were obtained. With increasing pulse number, however, low spatial frequency periodic structures of Ti perpendicular to the laser polarization became dominant because Ti possesses a larger efficacy factor in this direction. The competition between the high- and low-spatial frequency periodic structures is in good agreement with the prediction of the efficacy factor theory and it should also be observed in the femtosecond laser ablation of other metals which are easily oxidized in air.

  11. Dissociation dynamics of 3- and 4-nitrotoluene radical cations: Coherently driven C-NO2 bond homolysis

    Science.gov (United States)

    Ampadu Boateng, Derrick; Gutsev, Gennady L.; Jena, Puru; Tibbetts, Katharine Moore

    2018-04-01

    Monosubstituted nitrotoluenes serve as important model compounds for nitroaromatic energetic molecules such as trinitrotoluene. This work investigates the ultrafast nuclear dynamics of 3- and 4-nitrotoluene radical cations using femtosecond pump-probe measurements and the results of density functional theory calculations. Strong-field adiabatic ionization of 3- and 4-nitrotoluene using 1500 nm, 18 fs pulses produces radical cations in the ground electronic state with distinct coherent vibrational excitations. In both nitrotoluene isomers, a one-photon excitation with the probe pulse results in NO2 loss to form C7H7+, which exhibits out-of-phase oscillations in yield with the parent molecular ion. The oscillations in 4-nitrotoluene with a period of 470 fs are attributed to the torsional motion of the NO2 group based on theoretical results showing that the dominant relaxation pathway in 4-nitrotoluene radical cations involves the rotation of the NO2 group away from the planar geometry. The distinctly faster oscillation period of 216 fs in 3-nitrotoluene is attributed to an in-plane bending motion of the NO2 and CH3 moieties based on analysis of the normal modes. These results demonstrate that coherent nuclear motions determine the probability of C-NO2 homolysis in the nitrotoluene radical cations upon optical excitation within several hundred femtoseconds of the initial ionization event.

  12. Design and analysis of X-band femtosecond linac

    Energy Technology Data Exchange (ETDEWEB)

    Uesaka, M; Kozawa, T; Takeshita, A; Kobayashi, T; Ueda, T; Miya, K [Tokyo Univ., Tokai, Ibaraki (Japan). Nuclear Engineering Research Lab.

    1997-03-01

    Femtosecond quantum phenomena research project is proposed at Nuclear Engineering Research Laboratory, University of Tokyo. The research facility consists of an X-band (11.424GHz) femtosecond electron linac, a femtosecond wavelength tunable laser, two S-band (2.856GHz) picosecond electron linacs and measuring equipments. Especially, we aim to generate a 100 fs (FWHM) electron single bunch with more than 1 nC at the X-band femtosecond linac. Ultrafast processes in radiation physics, chemistry, material science and microscopic electromagnetic phenomena are going to be analyzed there. Here the design and analysis of an X-band femtosecond linac is presented. The simulation of electron dynamics is carried out including magnetic pulse compression by using PARMELA and SUPERFISH. It is found by the simulation that the 600 ps (tail-to-tail) electron emission from a 200 kV thermionic gun can be bunched and compressed to 110 fs (FWHM) with the charge of 0.8 nC which gives 7.3 kA. We plan to use one high power X-band klystron which can supply 60 MW with more than 200 ns pulse duration. The flatness of plateau of the pulse should be 0.2% for stable ultrashort bunch generation. (author)

  13. Dye lasers in atomic spectroscopy

    International Nuclear Information System (INIS)

    Lange, W.; Luther, J.; Steudel, A.

    1974-01-01

    The properties of dye lasers which are relevant to atomic spectroscopy are discussed. Several experiments made possible by tunable dye lasers are discussed. Applications of high spectral density dye lasers are covered in areas such as absorption spectroscopy, fluorescence spectroscopy, photoionization and photodetachment, and two- and multi-photon processes. Applications which take advantage of the narrow bandwidth of tunable dye lasers are discussed, including saturation spectroscopy, fluorescence line narrowing, classic absorption and fluorescence spectroscopy, nonoptical detection of optical resonances, heterodyne spectroscopy, and nonlinear coherent resonant phenomena. (26 figures, 180 references) (U.S.)

  14. Long-lived coherence in carotenoids

    Energy Technology Data Exchange (ETDEWEB)

    Davis, J A; Cannon, E; Van Dao, L; Hannaford, P [ARC Centre of Excellence for Coherent X-ray Science, Centre for Atom Optics and Ultrafast Spectroscopy, Swinburne University of Technology, Victoria 3122 (Australia); Quiney, H M; Nugent, K A, E-mail: jdavis@swin.edu.a [ARC Centre of Excellence for Coherent X-ray Science, School of Physics, University of Melbourne, Victoria 3010 (Australia)

    2010-08-15

    We use two-colour vibronic coherence spectroscopy to observe long-lived vibrational coherences in the ground electronic state of carotenoid molecules, with decoherence times in excess of 1 ps. Lycopene and spheroidene were studied isolated in solution, and within the LH2 light-harvesting complex extracted from purple bacteria. The vibrational coherence time is shown to increase significantly for the carotenoid in the complex, providing further support to previous assertions that long-lived electronic coherences in light-harvesting complexes are facilitated by in-phase motion of the chromophores and surrounding proteins. Using this technique, we are also able to follow the evolution of excited state coherences and find that for carotenoids in the light-harvesting complex the (S{sub 2}|S{sub 0}) superposition remains coherent for more than 70 fs. In addition to the implications of this long electronic decoherence time, the extended coherence allows us to observe the evolution of the excited state wavepacket. These experiments reveal an enhancement of the vibronic coupling to the first vibrational level of the C-C stretching mode and/or methyl-rocking mode in the ground electronic state 70 fs after the initial excitation. These observations open the door to future experiments and modelling that may be able to resolve the relaxation dynamics of carotenoids in solution and in natural light-harvesting systems.

  15. Long-lived coherence in carotenoids

    International Nuclear Information System (INIS)

    Davis, J A; Cannon, E; Van Dao, L; Hannaford, P; Quiney, H M; Nugent, K A

    2010-01-01

    We use two-colour vibronic coherence spectroscopy to observe long-lived vibrational coherences in the ground electronic state of carotenoid molecules, with decoherence times in excess of 1 ps. Lycopene and spheroidene were studied isolated in solution, and within the LH2 light-harvesting complex extracted from purple bacteria. The vibrational coherence time is shown to increase significantly for the carotenoid in the complex, providing further support to previous assertions that long-lived electronic coherences in light-harvesting complexes are facilitated by in-phase motion of the chromophores and surrounding proteins. Using this technique, we are also able to follow the evolution of excited state coherences and find that for carotenoids in the light-harvesting complex the (S 2 |S 0 ) superposition remains coherent for more than 70 fs. In addition to the implications of this long electronic decoherence time, the extended coherence allows us to observe the evolution of the excited state wavepacket. These experiments reveal an enhancement of the vibronic coupling to the first vibrational level of the C-C stretching mode and/or methyl-rocking mode in the ground electronic state 70 fs after the initial excitation. These observations open the door to future experiments and modelling that may be able to resolve the relaxation dynamics of carotenoids in solution and in natural light-harvesting systems.

  16. Tracking ultrafast relaxation dynamics of furan by femtosecond photoelectron imaging

    Energy Technology Data Exchange (ETDEWEB)

    Liu, Yuzhu, E-mail: yuzhu.liu@gmail.com [School of Physics and Optoelectronic Engineering, Nanjing University of Information Science and Technology, Nanjing 210044 (China); Knopp, Gregor [Paul Scherrer Institute, Villigen 5232 (Switzerland); Qin, Chaochao [Department of Physics, Henan Normal University, Xinxiang 453007 (China); Gerber, Thomas [Paul Scherrer Institute, Villigen 5232 (Switzerland)

    2015-01-13

    Graphical abstract: - Highlights: • Relaxation dynamics of furan are tracked by femtosecond photoelectron imaging. • The mechanism for ultrafast formation of α-carbene and β-carbene is proposed. • Ultrafast internal conversion from S{sub 2} to S{sub 1} is observed. • The transient characteristics of the fragment ions are obtained. • Single-color multi-photon ionization dynamics at 800 nm are also studied. - Abstract: Ultrafast internal conversion dynamics of furan has been studied by femtosecond photoelectron imaging (PEI) coupled with photofragmentation (PF) spectroscopy. Photoelectron imaging of single-color multi-photon ionization and two-color pump–probe ionization are obtained and analyzed. Photoelectron bands are assigned to the related states. The time evolution of the photoelectron signal by pump–probe ionization can be well described by a biexponential decay: two rapid relaxation pathways with time constants of ∼15 fs and 85 (±11) fs. The rapid relaxation is ascribed to the ultrafast internal conversion (IC) from the S{sub 2} state to the vibrationally hot S{sub 1} state. The second relaxation process is attributed to the redistributions and depopulation of secondarily populated high vibronic S{sub 1} state and the formation of α-carbene and β-carbene by H immigration. Additionally, the transient characteristics of the fragment ions are also measured and discussed as a complementary understanding.

  17. Nanosecond and femtosecond mass spectroscopic analysis of a molecular beam produced by the spray-jet technique

    International Nuclear Information System (INIS)

    Yamada, Toshiki; Shinohara, Hidenori; Kamikado, Toshiya; Okuno, Yoshishige; Suzuki, Hitoshi; Mashiko, Shinro; Yokoyama, Shiyoshi

    2008-01-01

    The spray-jet molecular beam apparatus enabled us to produce a molecular beam of non-volatile molecules under high vacuum from a sprayed mist of sample solutions. The apparatus has been used in spectroscopic studies and as a means of molecular beam deposition. We analyzed the molecular beam, consisting of non-volatile, solvent, and carrier-gas molecules, by using femtosecond- and nanosecond- laser mass spectroscopy. The information thus obtained provided insight into the molecular beam produced by the spray-jet technique

  18. Development of an X-ray delay unit for correlation spectroscopy and pump-probe experiments

    Energy Technology Data Exchange (ETDEWEB)

    Roseker, Wojciech

    2008-07-15

    Probing condensed matter on time scales ranging from femtoseconds to nanoseconds will be one of the key topics for future X-ray Free Electron Laser (XFEL) sources. The accessible time windows are, however, compromised by the intrinsic time structure of the sources. One way to overcome this limitation is the usage of a time delay unit. A prototype device capable of splitting an X-ray pulse into two adjustable fractions, delaying one of them with the aim to perform X-ray Photon Correlation Spectroscopy and pump-probe type studies was designed and manufactured. The device utilizes eight perfect crystals in vertical 90 scattering geometry. Its performance has been verified with 8.39 keV and 12.4 keV Xrays at various synchrotron sources. The measured throughput of the device with a Si(333) monochromator at 8.39 keV under ambient conditions is 0.6%. The stability was verified at 12.4 keV and operation without realignment and feedback was possible for more than 30 minutes. Time delays up to 2.95 ns have been achieved. The highest resolution achieved in an experiment was 15.4 ps, a value entirely determined by the diagnostics system. The influence of the delay unit optics on the coherence properties of the beam was investigated by means of Fraunhofer diffraction and static speckle analysis. The obtained high fringe visibility and contrast values larger than 23% indicate the feasibility of performing coherence based experiments with the delay line. (orig.)

  19. Influence of the partial temporal coherence of short FEL pulses on two-colour photoionization and photoinduced Auger decay of atoms

    International Nuclear Information System (INIS)

    Kazansky, A K; Sazhina, I P; Kabachnik, N M

    2013-01-01

    The influence of the partial temporal coherence of free electron laser (FEL) radiation on the sidebands arising in the electron spectra of laser-assisted photoionization and photoinduced Auger decay of atoms is theoretically analysed. A simple model is developed which describes the inner-shell photoionization by a short (femtosecond) FEL pulse and the following Auger decay in a strong field of an infrared laser. The model is based on the time-dependent approach and uses the strong field approximation for both photo- and Auger electrons. Particular calculations have been carried out for Ne 1s photoionization and KLL Auger emission. We demonstrate that the temporal coherence of FEL pulses influences the line widths in the photoelectron spectrum. For a small coherence time the sidebands in this spectrum cannot be resolved. On the other hand, our calculations show that in the Auger electron spectrum the sidebands are practically independent of the coherence time of the ionizing pulse.

  20. Characteristics and Applications of Spatiotemporally Focused Femtosecond Laser Pulses

    Directory of Open Access Journals (Sweden)

    Chenrui Jing

    2016-12-01

    Full Text Available Simultaneous spatial and temporal focusing (SSTF of femtosecond laser pulses gives rise to strong suppression of nonlinear self-focusing during the propagation of the femtosecond laser beam. In this paper, we begin with an introduction of the principle of SSTF, followed by a review of our recent experimental results on the characterization and application of the spatiotemporally focused pulses for femtosecond laser micromachining. Finally, we summarize all of the results and give a future perspective of this technique.

  1. Spectral and spatial resolving of photoelectric property of femtosecond laser drilled holes of GaSb(1-x)Bi(x).

    Science.gov (United States)

    Pan, C B; Zha, F X; Song, Y X; Shao, J; Dai, Y; Chen, X R; Ye, J Y; Wang, S M

    2015-07-15

    Femtosecond laser drilled holes of GaSbBi were characterized by the joint measurements of photoconductivity (PC) spectroscopy and laser-beam-induced current (LBIC) mapping. The excitation light in PC was focused down to 60 μm presenting the spectral information of local electronic property of individual holes. A redshift of energy band edge of about 6-8 meV was observed by the PC measurement when the excitation light irradiated on the laser drilled holes. The spatial resolving of photoelectric property was achieved by the LBIC mapping which shows "pseudo-holes" with much larger dimensions than the geometric sizes of the holes. The reduced LBIC current with the pseudo-holes is associated with the redshift effect indicating that the electronic property of the rim areas of the holes is modified by the femtosecond laser drilling.

  2. Visualization of femtosecond laser pulse-induced microincisions inside crystalline lens tissue.

    Science.gov (United States)

    Stachs, Oliver; Schumacher, Silvia; Hovakimyan, Marine; Fromm, Michael; Heisterkamp, Alexander; Lubatschowski, Holger; Guthoff, Rudolf

    2009-11-01

    To evaluate a new method for visualizing femtosecond laser pulse-induced microincisions inside crystalline lens tissue. Laser Zentrum Hannover e.V., Hannover, Germany. Lenses removed from porcine eyes were modified ex vivo by femtosecond laser pulses (wavelength 1040 nm, pulse duration 306 femtoseconds, pulse energy 1.0 to 2.5 microJ, repetition rate 100 kHz) to create defined planes at which lens fibers separate. The femtosecond laser pulses were delivered by a 3-dimension (3-D) scanning unit and transmitted by focusing optics (numerical aperture 0.18) into the lens tissue. Lens fiber orientation and femtosecond laser-induced microincisions were examined using a confocal laser scanning microscope (CLSM) based on a Rostock Cornea Module attached to a Heidelberg Retina Tomograph II. Optical sections were analyzed in 3-D using Amira software (version 4.1.1). Normal lens fibers showed a parallel pattern with diameters between 3 microm and 9 microm, depending on scanning location. Microincision visualization showed different cutting effects depending on pulse energy of the femtosecond laser. The effects ranged from altered tissue-scattering properties with all fibers intact to definite fiber separation by a wide gap. Pulse energies that were too high or overlapped too tightly produced an incomplete cutting plane due to extensive microbubble generation. The 3-D CLSM method permitted visualization and analysis of femtosecond laser pulse-induced microincisions inside crystalline lens tissue. Thus, 3-D CLSM may help optimize femtosecond laser-based procedures in the treatment of presbyopia.

  3. Coupled wave equations theory of surface-enhanced femtosecond stimulated Raman scattering.

    Science.gov (United States)

    McAnally, Michael O; McMahon, Jeffrey M; Van Duyne, Richard P; Schatz, George C

    2016-09-07

    We present a coupled wave semiclassical theory to describe plasmonic enhancement effects in surface-enhanced femtosecond stimulated Raman scattering (SE-FSRS). A key result is that the plasmon enhanced fields which drive the vibrational equation of motion for each normal mode results in dispersive lineshapes in the SE-FSRS spectrum. This result, which reproduces experimental lineshapes, demonstrates that plasmon-enhanced stimulated Raman methods provide unique sensitivity to a plasmonic response. Our derived SE-FSRS theory shows a plasmonic enhancement of |gpu|(2)ImχR(ω)gst (2)/ImχR(ω), where |gpu|(2) is the absolute square of the plasmonic enhancement from the Raman pump, χR(ω) is the Raman susceptibility, and gst is the plasmonic enhancement of the Stokes field in SE-FSRS. We conclude with a discussion on potential future experimental and theoretical directions for the field of plasmonically enhanced coherent Raman scattering.

  4. High incidence of rainbow glare after femtosecond laser assisted-LASIK using the upgraded FS200 femtosecond laser.

    Science.gov (United States)

    Zhang, Yu; Chen, Yue-Guo

    2018-03-05

    To compare the incidence of rainbow glare (RG) after femtosecond laser assisted-LASIK (FS-LASIK) using the upgraded FS200 femtosecond laser with different flap cut parameter settings. A consecutive series of 129 patients (255 eyes) who underwent FS-LASIK for correcting myopia and/or astigmatism using upgraded WaveLight FS200 femtosecond laser with the original settings was included in group A. Another consecutive series of 129 patients (255 eyes) who underwent FS-LASIK using upgraded WaveLight FS200 femtosecond laser with flap cut parameter settings changed (decreased pulse energy, spot and line separation) was included in group B. The incidence and fading time of RG, confocal microscopic image and postoperative clinical results were compared between the two groups. There were no differences between the two groups in age, baseline refraction, excimer laser ablation depth, postoperative uncorrected visual acuity and refraction. The incidence rate of RG in group A (35/255, 13.73%) was significantly higher than that in group B (4/255, 1.57%) (P  0.05).The confocal microscopic images showed wider laser spot spacing in group A than group B. The incidence of RG was significantly correlated with age and grouping (P laser with original flap cut parameter settings could increase the incidence of RG. The narrower grating size and lower pulse energy could ameliorate this side effect.

  5. Femtosecond coherent control of absorption and free induction decay in a GaAs multiple quantum well

    CERN Document Server

    Yee, D S

    2000-01-01

    Excitonic polarizations are coherently excited using two phase-locked pulses. By probing the linear propagation of the pulses through a GaAs/AlGaAs multiple quantum well sample, we directly demonstrate the intriguing interaction between the coherent exciton polarizations and the controlling pulses. It is shown that the second pulse can be either strongly amplified by taking up energy gained from the destruction of the exciton polarization or drastically decreased by giving up all its energy to excitons. The temporal signatures of the transmitted pulse shapes agree well with model calculations.

  6. Localized vibrations in superconducting YB a2C u3O7 revealed by ultrafast optical coherent spectroscopy

    Science.gov (United States)

    Novelli, Fabio; Giovannetti, Gianluca; Avella, Adolfo; Cilento, Federico; Patthey, Luc; Radovic, Milan; Capone, Massimo; Parmigiani, Fulvio; Fausti, Daniele

    2017-05-01

    The interaction between phonons and high-energy excitations of electronic origin in cuprates and their role in the superconducting mechanisms is still controversial. Here we use coherent vibrational time-domain spectroscopy together with density functional and dynamical mean-field theory calculations to establish a direct link between the c -axis phonon modes and the in-plane electronic charge excitations in optimally doped YB a2C u3O7 . The nonequilibrium Raman tensor is measured by means of the broadband "coherent-phonon" response in pump-probe experiments and is qualitatively described by our model using density functional theory in the frozen-phonon approximation plus single-band dynamical mean-field theory to account for the electronic correlations. The major outcome of our experimental and theoretical study is to establish the link between out-of-plane copper ion displacements and the in-plane electronic correlations, and to estimate at a few unit cells the correlation length of the associated phonon mode. The approach introduced here could help in revealing the complex interplay between fluctuations of different nature and spatial correlation in several strongly correlated materials.

  7. Coherent active polarization control without loss

    Directory of Open Access Journals (Sweden)

    Yuqian Ye

    2017-11-01

    Full Text Available We propose a lossless active polarization control mechanism utilizing an anisotropic dielectric medium with two coherent inputs. Using scattering matrix analysis, we derive analytically the required optical properties of the anisotropic medium that can behave as a switchable polarizing beam splitter. We also show that such a designed anisotropic medium can produce linearly polarized light at any azimuthal direction through coherent control of two inputs with a specific polarization state. Furthermore, we present a straightforward design-on-demand procedure of a subwavelength-thick metastructure that can possess the desired optical anisotropy at a flexible working wavelength. Our lossless coherent polarization control technique may lead to fast, broadband and integrated polarization control elements for applications in imaging, spectroscopy, and telecommunication.

  8. In-Situ Probing Plasmonic Energy Transfer in Cu(In, Ga)Se2 Solar Cells by Ultrabroadband Femtosecond Pump-Probe Spectroscopy.

    Science.gov (United States)

    Chen, Shih-Chen; Wu, Kaung-Hsiung; Li, Jia-Xing; Yabushita, Atsushi; Tang, Shih-Han; Luo, Chih Wei; Juang, Jenh-Yih; Kuo, Hao-Chung; Chueh, Yu-Lun

    2015-12-18

    In this work, we demonstrated a viable experimental scheme for in-situ probing the effects of Au nanoparticles (NPs) incorporation on plasmonic energy transfer in Cu(In, Ga)Se2 (CIGS) solar cells by elaborately analyzing the lifetimes and zero moment for hot carrier relaxation with ultrabroadband femtosecond pump-probe spectroscopy. The signals of enhanced photobleach (PB) and waned photoinduced absorption (PIA) attributable to surface plasmon resonance (SPR) of Au NPs were in-situ probed in transient differential absorption spectra. The results suggested that substantial carriers can be excited from ground state to lower excitation energy levels, which can reach thermalization much faster with the existence of SPR. Thus, direct electron transfer (DET) could be implemented to enhance the photocurrent of CIGS solar cells. Furthermore, based on the extracted hot carrier lifetimes, it was confirmed that the improved electrical transport might have been resulted primarily from the reduction in the surface recombination of photoinduced carriers through enhanced local electromagnetic field (LEMF). Finally, theoretical calculation for resonant energy transfer (RET)-induced enhancement in the probability of exciting electron-hole pairs was conducted and the results agreed well with the enhanced PB peak of transient differential absorption in plasmonic CIGS film. These results indicate that plasmonic energy transfer is a viable approach to boost high-efficiency CIGS solar cells.

  9. Femtosecond laser micromachining of polylactic acid/graphene composites for designing interdigitated microelectrodes for sensor applications

    Science.gov (United States)

    Paula, Kelly T.; Gaál, Gabriel; Almeida, G. F. B.; Andrade, M. B.; Facure, Murilo H. M.; Correa, Daniel S.; Riul, Antonio; Rodrigues, Varlei; Mendonça, Cleber R.

    2018-05-01

    There is an increasing interest in the last years towards electronic applications of graphene-based materials and devices fabricated from patterning techniques, with the ultimate goal of high performance and temporal resolution. Laser micromachining using femtosecond pulses is an attractive methodology to integrate graphene-based materials into functional devices as it allows changes to the focal volume with a submicrometer spatial resolution due to the efficient nonlinear nature of the absorption, yielding rapid prototyping for innovative applications. We present here the patterning of PLA-graphene films spin-coated on a glass substrate using a fs-laser at moderate pulse energies to fabricate interdigitated electrodes having a minimum spatial resolution of 5 μm. Raman spectroscopy of the PLA-graphene films indicated the presence of multilayered graphene fibers. Subsequently, the PLA-graphene films were micromachined using a femtosecond laser oscillator delivering 50-fs pulses and 800 nm, where the pulse energy and scanning speed was varied in order to determine the optimum irradiation parameters (16 nJ and 100 μm/s) to the fabrication of microstructures. The micromachined patterns were characterized by optical microscopy and submitted to electrical measurements in liquid samples, clearly distinguishing all tastes tested. Our results confirm the femtosecond laser micromachining technique as an interesting approach to efficiently pattern PLA-graphene filaments with high precision and minimal mechanical defects, allowing the easy fabrication of interdigitated structures and an alternative method to those produced by conventional photolithography.

  10. Precise Control of Molecular Dynamics with a Femtosecond Frequency Comb - A Weak Field Route to Strong Field Coherent Control

    OpenAIRE

    Pe'er, Avi; Shapiro, Evgeny A.; Stowe, Matthew C.; Shapiro, Moshe; Ye, Jun

    2006-01-01

    We present a general and highly efficient scheme for performing narrow-band Raman transitions between molecular vibrational levels using a coherent train of weak pump-dump pairs of shaped ultrashort pulses. The use of weak pulses permits an analytic description within the framework of coherent control in the perturbative regime, while coherent accumulation of many pulse pairs enables near unity transfer efficiency with a high spectral selectivity, thus forming a powerful combination of pump-d...

  11. Determination of ablation threshold for composite resins and amalgam irradiated with femtosecond laser pulses

    International Nuclear Information System (INIS)

    Freitas, A Z; Samad, R E; Zezell, D M; Vieira Jr, N D; Freschi, L R; Gouw-Soares, S C

    2010-01-01

    The use of laser for caries removal and cavity preparation is already a reality in the dental clinic. The objective of the present study was to consider the viability of ultrashort laser pulses for restorative material selective removal, by determining the ablation threshold fluence for composite resins and amalgam irradiated with femtosecond laser pulses. Lasers pulses centered at 830 nm with 50 fs of duration and 1 kHz of repetition rate, with energies in the range of 300 to 770 μJ were used to irradiate the samples. The samples were irradiated using two different geometrical methods for ablation threshold fluence determinations and the volume ablation was measured by optical coherence tomography. The shape of the ablated surfaces were analyzed by optical microscopy and scanning electron microscopy. The determined ablation threshold fluence is 0.35 J/cm 2 for the composite resins Z-100 and Z-350, and 0.25 J/cm 2 for the amalgam. These values are half of the value for enamel in this temporal regime. Thermal damages were not observed in the samples. Using the OCT technique (optical coherence tomography) was possible to determine the ablated volume and the total mass removed

  12. Femto-second pulses of synchrotron radiation

    International Nuclear Information System (INIS)

    Zholents, A.A.; Zolotorev, M.S.

    1995-07-01

    A method capable of producing femto-second pulses of synchrotron radiation is proposed. It is based on the interaction of femto-second light pulses with electrons in a storage ring. The application of the method to the generation of ultra-short x-ray pulses at the Advance Light Source of Lawrence Berkeley National Laboratory has been considered. The same method can also be used for extraction of electrons from a storage ring in ultra-short series of microbunches spaced by the periodicity of light wavelength

  13. Ultrafast control and monitoring of material properties using terahertz pulses

    Energy Technology Data Exchange (ETDEWEB)

    Bowlan, Pamela Renee [Los Alamos National Lab. (LANL), Los Alamos, NM (United States). Lab. for Ultrafast Materials Optical Science (LUMOS)

    2016-05-02

    These are a set of slides on ultrafast control and monitoring of material properties using terahertz pulses. A few of the topics covered in these slides are: How fast is a femtosecond (fs), Different frequencies probe different properties of molecules or solids, What can a THz pulse do to a material, Ultrafast spectroscopy, Generating and measuring ultrashort THz pulses, Tracking ultrafast spin dynamics in antiferromagnets through spin wave resonances, Coherent two-dimensional THz spectroscopy, and Probing vibrational dynamics at a surface. Conclusions are: Coherent two-dimensional THz spectroscopy: a powerful approach for studying coherence and dynamics of low energy resonances. Applying this to graphene we investigated the very strong THz light mater interaction which dominates over scattering. Useful for studying coupled excitations in multiferroics and monitoring chemical reactions. Also, THz-pump, SHG-probe spectoscopy: an ultrafast, surface sensitive probe of atomic-scale symmetry changes and nonlinear phonon dymanics. We are using this in Bi2Se3 to investigate the nonlinear surface phonon dynamics. This is potentially very useful for studying catalysis.

  14. Interaction of femtosecond X-ray pulses with periodical multilayer structures

    International Nuclear Information System (INIS)

    Ksenzov, Dmitry

    2010-01-01

    The VUV Free Electron Laser FLASH operates in soft X-ray range and produces high-intensive pulse trains with few tens femtoseconds duration. The transversely fully coherent beam will open new experiments in solid state physics which can not be studied with present radiation sources. The study of the time dependent response of the multilayer to the X-ray pulse can provide insights into the process of interaction of highly intense FEL radiation with matter. To test the influence of electron excitation on the optical properties of boron carbide, the refractive index of B 4 C was measured near B K-edge by energy-resolved photon-in-photon-out method probing a Bragg reflection from periodical multilayers. The measured data clearly show that the variation of the fine structure of the Kabsorption edges due to the chemical nature of the absorber element. The knowledge obtained from experiments with continuous radiation was used to design the respective experiments with pulse from the FEL. In my thesis, it is proposed that the geometrical setup, where the incident pulse arrives from the FEL under the angle close to the 1st order ML Bragg peak, provides the most valuable information. Preliminary simulation considering form factors of neutral and ionized boron showed that due to ionization, pronounced changes in the reflectivity curve are expected. The proposed scheme can be the powerful tool to study the various processes within the electronic subsystem of the FEL pulse interaction with matter. This type of investigations gives a deep understanding of the nature of the electronic excitation and the recombination at the femtosecond scale. (orig.)

  15. Interaction of femtosecond X-ray pulses with periodical multilayer structures

    Energy Technology Data Exchange (ETDEWEB)

    Ksenzov, Dmitry

    2010-07-01

    The VUV Free Electron Laser FLASH operates in soft X-ray range and produces high-intensive pulse trains with few tens femtoseconds duration. The transversely fully coherent beam will open new experiments in solid state physics which can not be studied with present radiation sources. The study of the time dependent response of the multilayer to the X-ray pulse can provide insights into the process of interaction of highly intense FEL radiation with matter. To test the influence of electron excitation on the optical properties of boron carbide, the refractive index of B{sub 4}C was measured near B K-edge by energy-resolved photon-in-photon-out method probing a Bragg reflection from periodical multilayers. The measured data clearly show that the variation of the fine structure of the Kabsorption edges due to the chemical nature of the absorber element. The knowledge obtained from experiments with continuous radiation was used to design the respective experiments with pulse from the FEL. In my thesis, it is proposed that the geometrical setup, where the incident pulse arrives from the FEL under the angle close to the 1st order ML Bragg peak, provides the most valuable information. Preliminary simulation considering form factors of neutral and ionized boron showed that due to ionization, pronounced changes in the reflectivity curve are expected. The proposed scheme can be the powerful tool to study the various processes within the electronic subsystem of the FEL pulse interaction with matter. This type of investigations gives a deep understanding of the nature of the electronic excitation and the recombination at the femtosecond scale. (orig.)

  16. Ultrafast photoluminescence spectroscopy of H- and O-terminated nanocrystalline diamond films

    Czech Academy of Sciences Publication Activity Database

    Dzurňák, B.; Trojánek, F.; Preclíková, J.; Kromka, Alexander; Rezek, Bohuslav; Malý, P.

    2011-01-01

    Roč. 20, č. 8 (2011), 1155-1159 ISSN 0925-9635 R&D Projects: GA AV ČR KAN400100701; GA ČR GD202/09/H041 Institutional research plan: CEZ:AV0Z10100521 Keywords : diamond * femtosecond photoluminescence spectroscopy * CVD Subject RIV: BM - Solid Matter Physics ; Magnetism Impact factor: 1.913, year: 2011

  17. Femtosecond lasers as novel tool in dental surgery

    Science.gov (United States)

    Serbin, J.; Bauer, T.; Fallnich, C.; Kasenbacher, A.; Arnold, W. H.

    2002-09-01

    There is a proven potential of femtosecond lasers for medical applications like cornea shaping [1], ear surgery or dental surgery [2]. Minimal invasive treatment of carious tissue has become an increasingly important aspect in modern dentistry. State of the art methods like grinding using turbine-driven drills or ablation by Er:YAG lasers [3] generate mechanical and thermal stress, thus generating micro cracks of several tens of microns in the enamel [4]. These cracks are starting points for new carious attacks and have to be avoided for long term success of the dental treatment. By using femtosecond lasers (1 fs=10 -15 s) for ablating dental tissue, these drawbacks can be overcome. We have demonstrated that femtosecond laser ablation offers a tool for crack-free generation of cavities in dental tissue. Furthermore, spectral analysis of the laser induced plasma has been used to indicate carious oral tissue. Our latest results on femtosecond laser dentistry will be presented, demonstrating the great potential of this kind of laser technology in medicine.

  18. Influence of the Chemical Design on the Coherent Photoisomerization of Biomimetic Molecular Switches

    Directory of Open Access Journals (Sweden)

    Olivucci Massimo

    2013-03-01

    Full Text Available Ultrafast transient absorption spectroscopy reveals the effect of chemical substitutions on the photoreaction kinetics of biomimetic photoswitches displaying coherent dynamics. Ground state vibrational coherences are no longer observed when the excited state lifetime exceeds 300fs.

  19. High level harmonic radiation: atto-second impulse generation, application to coherent radiation

    International Nuclear Information System (INIS)

    Kovacev, Milutin

    2003-01-01

    The work presented in this thesis is dedicated to the characterization and optimization of the unique properties of high order harmonic generation in a rare gas: high brilliance, short pulse duration (femtosecond to atto-second, 1 as = 10"-"1"8 s and good mutual coherence. In the first part of this work, we concentrate on the exploitation of a scaling law using a high-energy laser loosely focused inside an extended gaseous medium. For the first time, the generated harmonic energy exceeds the 1 μJ level per laser pulse using the fifteenth harmonic order at a wavelength of 53 nm. The conversion efficiency reaches 4.10"-"5, which results from the combination of a strong dipolar response and a good phase matching within a generating volume that is extended by self guiding of the generating laser pulse. In the second part, our interest is devoted to the temporal profile of the harmonic emission and its atto-second structure. We first demonstrate the feasibility of a spatial/spectral selection of the contributions associated to the two main electronic trajectories, allowing thereby the generation of regular atto-second pulse trains. We then characterize such a pulse train by the measurement of the relative phases of consecutive harmonics. Finally, we describe an original technique for the temporal confinement of the harmonic emission by manipulating the ellipticity of the generating laser beam. In the third part, our interest is dedicated to the mutual coherence properties of the harmonic emission. We first demonstrate the precise control of the relative phase of the harmonic pulses by multiple beam interference in the XUV. This frequency-domain interferometry using four phase-locked temporally separated pulses shows an extreme sensitivity to the relative phase of the pulses on an atto-second time scale. We then measure the first order autocorrelation trace of the harmonic beam thanks to the generation of two harmonic sources mutually coherent and spatially separated

  20. Noise study of all-normal dispersion supercontinuum sources for potential application in optical coherence tomography

    DEFF Research Database (Denmark)

    Bravo Gonzalo, Ivan; Engelsholm, Rasmus Dybbro; Bang, Ole

    2017-01-01

    bandwidths, such sources are characterized by large intensity fluctuations, limiting their performance for applications in imaging such as optical coherence tomography (OCT). An approach to eliminate the influence of noise sensitive effects is to use a so-called all-normal dispersion (ANDi) fiber, in which...... the dispersion is normal for all the wavelengths of interest. Pumping these types of fibers with short enough femtosecond pulses allows to suppress stimulated Raman scattering (SRS), which is known to be as noisy process as modulation instability (MI), and coherent SC is generated through self-phase modulation...... (SPM) and optical wave breaking (OWB). In this study, we show the importance of the pump laser and fiber parameters in the design of low-noise ANDi based SC sources, for application in OCT. We numerically investigate the pulse-to-pulse fluctuations of the SC, calculating the relative intensity noise...

  1. How exciton-vibrational coherences control charge separation in the photosystem II reaction center

    NARCIS (Netherlands)

    Novoderezhkin, V.I.; Romero Mesa, E.; van Grondelle, R.

    2015-01-01

    In photosynthesis absorbed sun light produces collective excitations (excitons) that form a coherent superposition of electronic and vibrational states of the individual pigments. Two-dimensional (2D) electronic spectroscopy allows a visualization of how these coherences are involved in the primary

  2. Femtosecond laser generated gold nanoparticles and their plasmonic properties

    International Nuclear Information System (INIS)

    Das, Rupali; Navas, M. P.; Soni, R. K.

    2016-01-01

    The pulsed laser ablation in liquid medium is now commonly used to generate stable colloidal nanoparticles (NPs) in absence of any chemical additives or stabilizer with diverse applications. In this paper, we report generation of gold NPs (Au NPs) by ultra-short laser pulses. Femtosecond (fs) laser radiation (λ = 800 nm) has been used to ablate a gold target in pure de-ionized water to produce gold colloids with smallsize distribution. The average size of the particles can be further controlled by subjecting to laser-induced post-irradiation providing a versatile physical method of size-selected gold nanoparticles. The optical extinction and morphological dimensions were investigated with UV-Vis spectroscopy and Transmission Electron Microscopy measurements, respectively. Finite difference time domain (FDTD) method is employed to calculate localized surface plasmon (LSPR) wavelength and the near-field generated by Au NPs and their hybrids.

  3. Coherent anti-Stokes Raman spectroscopy temperature measurements in an internal combustion engine

    Science.gov (United States)

    Ball, Don; Driver, H. Steve T.; Hutcheon, Richard J.; Lockett, Russel J.; Robertson, Gerald N.

    1994-09-01

    Part of a project to investigate the physics and chemistry of alternative fuels in internal combustion engines is reported. Coherent anti-Stokes Raman spectroscopy (CARS) is used to probe the fuel-air mixture in the cylinder of a Richardo E6 variable compression ratio research engine. The laser system comprises a passively Q- switched single-longitudinal-mode frequency-doubled Nd:YAG laser and a broadband dye laser, both with a pulse length of 15 ns. A crankshaft encoder and electronic delay are used to fire the lasers at specified times during the engine cycle, and CARS spectra are acquired using a 0.75 m spectrometer and a 1024 optical multichannel analyzer. Because of the uncertainties associated with collisional narrowing in the theoretical modeling of high-pressure CARS spectra, temperatures are determined by comparing the engine spectra with a library of experimental CARS spectra from a calibrated high-pressure, high- temperature cell. This purely experimental technique is shown to be superior to two theoretical models under the considered conditions, giving temperatures during the compression stroke of the engine with standard deviations of typically 10 K and a possible systematic error of 15 K. Together with pressure records, this information is used as input data for chemical kinetic modeling of the combustion process.

  4. Native sulfur/chlorine SAD phasing for serial femtosecond crystallography

    International Nuclear Information System (INIS)

    Nakane, Takanori; Song, Changyong; Suzuki, Mamoru; Nango, Eriko; Kobayashi, Jun; Masuda, Tetsuya; Inoue, Shigeyuki; Mizohata, Eiichi; Nakatsu, Toru; Tanaka, Tomoyuki; Tanaka, Rie; Shimamura, Tatsuro; Tono, Kensuke; Joti, Yasumasa; Kameshima, Takashi; Hatsui, Takaki; Yabashi, Makina; Nureki, Osamu; Iwata, So; Sugahara, Michihiro

    2015-01-01

    Sulfur SAD phasing facilitates the structure determination of diverse native proteins using femtosecond X-rays from free-electron lasers via serial femtosecond crystallography. Serial femtosecond crystallography (SFX) allows structures to be determined with minimal radiation damage. However, phasing native crystals in SFX is not very common. Here, the structure determination of native lysozyme from single-wavelength anomalous diffraction (SAD) by utilizing the anomalous signal of sulfur and chlorine at a wavelength of 1.77 Å is successfully demonstrated. This sulfur SAD method can be applied to a wide range of proteins, which will improve the determination of native crystal structures

  5. Femtosecond laser ablation of dentin

    International Nuclear Information System (INIS)

    Alves, S; Vilar, R; Oliveira, V

    2012-01-01

    The surface morphology, structure and composition of human dentin treated with a femtosecond infrared laser (pulse duration 500 fs, wavelength 1030 nm, fluences ranging from 1 to 3 J cm -2 ) was studied by scanning electron microscopy, x-ray diffraction, x-ray photoelectron spectroscopy and Fourier transform infrared spectroscopy. The average dentin ablation threshold under these conditions was 0.6 ± 0.2 J cm -2 and the ablation rate achieved in the range 1 to 2 µm/pulse for an average fluence of 3 J cm -2 . The ablation surfaces present an irregular and rugged appearance, with no significant traces of melting, deformation, cracking or carbonization. The smear layer was entirely removed by the laser treatment. For fluences only slightly higher than the ablation threshold the morphology of the laser-treated surfaces was very similar to the dentin fracture surfaces and the dentinal tubules remained open. For higher fluences, the surface was more porous and the dentin structure was partially concealed by ablation debris and a few resolidified droplets. Independently on the laser processing parameters and laser processing method used no sub-superficial cracking was observed. The dentin constitution and chemical composition was not significantly modified by the laser treatment in the processing parameter range used. In particular, the organic matter is not preferentially removed from the surface and no traces of high temperature phosphates, such as the β-tricalcium phosphate, were observed. The achieved results are compatible with an electrostatic ablation mechanism. In conclusion, the high beam quality and short pulse duration of the ultrafast laser used should allow the accurate preparation of cavities, with negligible damage of the underlying material. (paper)

  6. Comparative study of ornamental granite cleaning using femtosecond and nanosecond pulsed lasers

    Energy Technology Data Exchange (ETDEWEB)

    Rivas, T., E-mail: trivas@uvigo.es [Dpto. Ingeniería de los Recursos Naturales y Medioambiente. E.T.S. Ingeniería de Minas, Universidad de Vigo, 36200 Vigo Spain (Spain); Lopez, A.J.; Ramil, A. [Centro de Investigaciones Tecnológicas. Campus de Esteiro. Universidad de A Coruña 15403 Ferrol Spain (Spain); Pozo, S. [Dpto. Ingeniería de los Recursos Naturales y Medioambiente. E.T.S. Ingeniería de Minas, Universidad de Vigo, 36200 Vigo Spain (Spain); Fiorucci, M.P. [Centro de Investigaciones Tecnológicas. Campus de Esteiro. Universidad de A Coruña 15403 Ferrol Spain (Spain); Silanes, M.E. López de [Dpto. Ingeniería de los Recursos Naturales y Medioambiente. E.I. Forestales. Universidad de Vigo, Campus Pontevedra. 36005 Pontevedra Spain (Spain); García, A.; Aldana, J. R. Vazquez de; Romero, C.; Moreno, P. [Grupo de Investigación en Microprocesado de Materiales con Laser. Facultad de Ciencias, Universidad de Salamanca, 37008 Salamanca Spain (Spain)

    2013-08-01

    Granite has been widely used as a structural and ornamental element in public works and buildings. In damp climates it is almost permanently humid and its exterior surfaces are consequently biologically colonized and blackened We describe a comparative analysis of the performance of two different laser sources in removing biological crusts from granite surfaces: nanosecond Nd:YVO{sub 4} laser (355 nm) and femtosecond Ti:Sapphire laser at its fundamental wavelength (790 nm) and second harmonic (395 nm). The granite surface was analyzed using scanning electron microscopy, attenuated total reflection – Fourier transform infrared spectroscopy and profilometry, in order to assess the degree of cleaning and to characterize possible morphological and chemical changes caused by the laser sources.

  7. Comparative study of ornamental granite cleaning using femtosecond and nanosecond pulsed lasers

    International Nuclear Information System (INIS)

    Rivas, T.; Lopez, A.J.; Ramil, A.; Pozo, S.; Fiorucci, M.P.; Silanes, M.E. López de; García, A.; Aldana, J. R. Vazquez de; Romero, C.; Moreno, P.

    2013-01-01

    Granite has been widely used as a structural and ornamental element in public works and buildings. In damp climates it is almost permanently humid and its exterior surfaces are consequently biologically colonized and blackened We describe a comparative analysis of the performance of two different laser sources in removing biological crusts from granite surfaces: nanosecond Nd:YVO 4 laser (355 nm) and femtosecond Ti:Sapphire laser at its fundamental wavelength (790 nm) and second harmonic (395 nm). The granite surface was analyzed using scanning electron microscopy, attenuated total reflection – Fourier transform infrared spectroscopy and profilometry, in order to assess the degree of cleaning and to characterize possible morphological and chemical changes caused by the laser sources.

  8. Coherence and relaxation in energy transfer processes in condensed phases

    International Nuclear Information System (INIS)

    Shelby, R.M.

    1978-03-01

    Investigations of electronic triplet and vibrational energy transfer dynamics and relaxation processes are presented. Emphasis is placed on understanding the role of coherence and interactions which tend to destroy the coherence. In the case of triplet excitons at low temperatures, the importance of coherence in energy migration can be established, and the average coherence parameters can be experimentally determined. In the case of vibrational excitations, both picosecond spectroscopic studies of vibrational relaxation and spontaneous Raman spectroscopy are used to characterize the dynamics and give increased insight into the nature of the mechanisms responsible for vibrational dephasing. The design and operation of the picosecond apparatus used in these experiments is also described

  9. Femtosecond laser cataract surgery: technology and clinical practice.

    Science.gov (United States)

    Roberts, Timothy V; Lawless, Michael; Chan, Colin Ck; Jacobs, Mark; Ng, David; Bali, Shveta J; Hodge, Chris; Sutton, Gerard

    2013-03-01

    The recent introduction of femtosecond lasers to cataract surgery has generated much interest among ophthalmologists around the world. Laser cataract surgery integrates high-resolution anterior segment imaging systems with a femtosecond laser, allowing key steps of the procedure, including the primary and side-port corneal incisions, the anterior capsulotomy and fragmentation of the lens nucleus, to be performed with computer-guided laser precision. There is emerging evidence of reduced phacoemulsification time, better wound architecture and a more stable refractive result with femtosecond cataract surgery, as well as reports documenting an initial learning curve. This article will review the current state of technology and discuss our clinical experience. © 2012 The Authors. Clinical and Experimental Ophthalmology © 2012 Royal Australian and New Zealand College of Ophthalmologists.

  10. Construction of a femtosecond laser microsurgery system.

    Science.gov (United States)

    Steinmeyer, Joseph D; Gilleland, Cody L; Pardo-Martin, Carlos; Angel, Matthew; Rohde, Christopher B; Scott, Mark A; Yanik, Mehmet Fatih

    2010-03-01

    Femtosecond laser microsurgery is a powerful method for studying cellular function, neural circuits, neuronal injury and neuronal regeneration because of its capability to selectively ablate sub-micron targets in vitro and in vivo with minimal damage to the surrounding tissue. Here, we present a step-by-step protocol for constructing a femtosecond laser microsurgery setup for use with a widely available compound fluorescence microscope. The protocol begins with the assembly and alignment of beam-conditioning optics at the output of a femtosecond laser. Then a dichroic mount is assembled and installed to direct the laser beam into the objective lens of a standard inverted microscope. Finally, the laser is focused on the image plane of the microscope to allow simultaneous surgery and fluorescence imaging. We illustrate the use of this setup by presenting axotomy in Caenorhabditis elegans as an example. This protocol can be completed in 2 d.

  11. Resolving molecular vibronic structure using high-sensitivity two-dimensional electronic spectroscopy

    Energy Technology Data Exchange (ETDEWEB)

    Bizimana, Laurie A.; Brazard, Johanna; Carbery, William P.; Gellen, Tobias; Turner, Daniel B., E-mail: dturner@nyu.edu [Department of Chemistry, New York University, 100 Washington Square East, New York, New York 10003 (United States)

    2015-10-28

    Coherent multidimensional optical spectroscopy is an emerging technique for resolving structure and ultrafast dynamics of molecules, proteins, semiconductors, and other materials. A current challenge is the quality of kinetics that are examined as a function of waiting time. Inspired by noise-suppression methods of transient absorption, here we incorporate shot-by-shot acquisitions and balanced detection into coherent multidimensional optical spectroscopy. We demonstrate that implementing noise-suppression methods in two-dimensional electronic spectroscopy not only improves the quality of features in individual spectra but also increases the sensitivity to ultrafast time-dependent changes in the spectral features. Measurements on cresyl violet perchlorate are consistent with the vibronic pattern predicted by theoretical models of a highly displaced harmonic oscillator. The noise-suppression methods should benefit research into coherent electronic dynamics, and they can be adapted to multidimensional spectroscopies across the infrared and ultraviolet frequency ranges.

  12. Femtosecond laser materials processing

    International Nuclear Information System (INIS)

    Stuart, B.C.

    1997-01-01

    The use femtosecond pulses for materials processing results in very precise cutting and drilling with high efficiency. Energy deposited in the electrons is not coupled into the bulk during the pulse, resulting in negligible shock or thermal loading to adjacent areas

  13. The Israeli EA-FEL Upgrade Towards Long Pulse Operation for Ultra-High Resolution Single Pulse Coherent Spectroscopy

    CERN Document Server

    Gover, A; Kanter, M; Kapilevich, B; Litvak, B; Peleg, S; Socol, Y; Volshonok, M

    2005-01-01

    The Israeli Electrostatic Accelerator FEL (EA-FEL) is now being upgraded towards long pulse (1005s) operation and ultra-high resolution (10(-6)) single pulse coherent spectroscopy. We present quantitative estimations regarding the applications of controlled radiation chirp for spectroscopic applications with pulse-time Fourier Transform limited spectral resolution. Additionally, we describe a novel extraction-efficiency-improving scheme based on increase of accelerating voltage (boosting) after saturation is achieved. The efficiency of the proposed scheme is confirmed by theoretical and numerical calculations. The latter are performed using software, based on 3D space-frequency domain model. The presentation provides an overview of the upgrade status: the high-voltage terminal is being reconfigured to accept the accelerating voltage boost system; a new broad band low-loss resonator is being manufactured; multi-stage depressed collector is assembled.

  14. Ultrafast Degenerate Transient Lens Spectroscopy in Semiconductor Nanosctructures

    Directory of Open Access Journals (Sweden)

    Leontyev A.V.

    2015-01-01

    Full Text Available We report the non-resonant excitation and probing of the nonlinear refractive index change in bulk semiconductors and semiconductor quantum dots through degenerate transient lens spectroscopy. The signal oscillates at the center laser field frequency, and the envelope of the former in quantum dots is distinctly different from the one in bulk sample. We discuss the applicability of this technique for polarization state probing in semiconductor media with femtosecond temporal resolution.

  15. Time-resolved Femtosecond Photon Echo Probes Bimodal Solvent Dynamics

    NARCIS (Netherlands)

    Pshenichnikov, M.S; Duppen, K.; Wiersma, D. A.

    1995-01-01

    We report on time-resolved femtosecond photon echo experiments of a dye molecule in a polar solution. The photon echo is time resolved by mixing the echo with a femtosecond gate pulse in a nonlinear crystal. It is shown that the temporal profile of the photon echo allows separation of the

  16. Structural Changes Induced in Grapevine (Vitis vinifera L. DNA by Femtosecond IR Laser Pulses: A Surface-Enhanced Raman Spectroscopic Study

    Directory of Open Access Journals (Sweden)

    Nicoleta E. Dina

    2016-05-01

    Full Text Available In this work, surface-enhanced Raman spectra of ten genomic DNAs extracted from leaf tissues of different grapevine (Vitis vinifera L. varieties, respectively, are analyzed in the wavenumber range 300–1800 cm−1. Furthermore, structural changes induced in grapevine genomic nucleic acids upon femtosecond (170 fs infrared (IR laser pulse irradiation (λ = 1100 nm are discussed in detail for seven genomic DNAs, respectively. Surface-enhanced Raman spectroscopy (SERS signatures, vibrational band assignments and structural characterization of genomic DNAs are reported for each case. As a general observation, the wavenumber range between 1500 and 1660 cm−1 of the spectra seems to be modified upon laser treatment. This finding could reflect changes in the base-stacking interactions in DNA. Spectral shifts are mainly attributed to purines (dA, dG and deoxyribose. Pyrimidine residues seem to be less affected by IR femtosecond laser pulse irradiation. Furthermore, changes in the conformational properties of nucleic acid segments are observed after laser treatment. We have found that DNA isolated from Feteasca Neagra grapevine leaf tissues is the most structurally-responsive system to the femtosecond IR laser irradiation process. In addition, using unbiased computational resources by means of principal component analysis (PCA, eight different grapevine varieties were discriminated.

  17. Sequencing of Isotope-Labeled Small RNA Using Femtosecond Laser Ablation Time-of-Flight Mass Spectrometry

    Science.gov (United States)

    Kurata-Nishimura, Mizuki; Ando, Yoshinari; Kobayashi, Tohru; Matsuo, Yukari; Suzuki, Harukazu; Hayashizaki, Yoshihide; Kawai, Jun

    2010-04-01

    A novel method for the analysis of sequences of small RNAs using nucleotide triphosphates labeled with stable isotopes has been developed using time-of-flight mass spectroscopy combined with femtosecond laser ablation (fsLA-TOF-MS). Small RNAs synthesized with nucleotides enriched in 13C and 15N were efficiently atomized and ionized by single-shot fsLA and the isotope ratios 13C/12C and 15N/14N were evaluated using the TOF-MS method. By comparing the isotope ratios among four different configurations, the number of nucleotide contents of the control RNA sample were successfully reproduced.

  18. Femtosecond laser 3D micromachining for microfluidic and optofluidic applications

    CERN Document Server

    Sugioka, Koji

    2013-01-01

    Femtosecond lasers opened up new avenue in materials processing due to its unique features of ultrashort pulse width and extremely high peak intensity. One of the most important features of femtosecond laser processing is that strong absorption can be induced even by materials which are transparent to the femtosecond laser beam due to nonlinear multiphoton absorption. The multiphoton absorption allows us to perform not only surface but also three-dimensionally internal microfabrication of transparent materials such as glass. This capability makes it possible to directly fabricate three-dimensi

  19. Electron acceleration by femtosecond laser interaction with micro-structured plasmas

    Science.gov (United States)

    Goers, Andy James

    Laser-driven accelerators are a promising and compact alternative to RF accelerator technology for generating relativistic electron bunches for medical, scientific, and security applications. This dissertation presents three experiments using structured plasmas designed to advance the state of the art in laser-based electron accelerators, with the goal of reducing the energy of the drive laser pulse and enabling higher repetition rate operation with current laser technology. First, electron acceleration by intense femtosecond laser pulses in He-like nitrogen plasma waveguides is demonstrated. Second, significant progress toward a proof of concept realization of quasi-phasematched direct acceleration (QPM-DLA) is presented. Finally, a laser wakefield accelerator at very high plasma density is studied, enabling relativistic electron beam generation with ˜10 mJ pulse energies. Major results from these experiments include: • Acceleration of electrons up to 120 MeV from an ionization injected wakefield accelerator driven in a 1.5 mm long He-like nitrogen plasma waveguide • Guiding of an intense, quasi-radially polarized femtosecond laser pulse in a 1 cm plasma waveguide. This pulse provides a strong drive field for the QPM-DLA concept. • Wakefield acceleration of electrons up to ˜10 MeV with sub-terawatt, ˜10 mJ pulses interacting with a thin (˜200 mum), high density (>1020 cm-3) plasma. • Observation of an intense, coherent, broadband wave breaking radiation flash from a high plasma density laser wakefield accelerator. The flash radiates > 1% of the drive laser pulse energy in a bandwidth consistent with half-cycle (˜1 fs) emission from violent unidirectional acceleration of electron bunches from rest. These results open the way to high repetition rate (>˜kHz) laser-driven generation of relativistic electron beams with existing laser technology.

  20. Femtosecond pump-probe studies of phonons and carriers in bismuth under high pressure

    International Nuclear Information System (INIS)

    Kasami, M.; Ogino, T.; Mishina, T.; Yamamoto, S.; Nakahara, J.

    2006-01-01

    We investigate the high-pressure phase of Bi under hydrostatic pressure using pump-probe spectroscopy at pressures up to 3.0 GPa, and we observe coherent phonons signal and relaxation signal of photo-excited carriers at Bi(II) and Bi(III) phases. The pressure dependence of the coherent phonons shows that the amplitude of coherent phonons is extremely small and the frequency of coherent phonons changes at high-pressure phases. As results from our experiment, we obtain its frequencies are 2.5 and 2.2 THz at Bi(II) and Bi(III), respectively. Furthermore, photo-excited carrier relaxation indicates drastic changes near 2.5 GPa. Bismuth transforms from semimetal to semiconductor near 2.5 GPa, and band-overlapping between at L-point and at T-point disappears. We consider that the drastic changes of the photo-excited carrier relaxation are strongly correlated with the band-overlapping disappearing

  1. Ultra-high resolution optical coherence tomography for encapsulation quality inspection

    KAUST Repository

    Czajkowski, Jakub

    2011-08-28

    We present the application of ultra-high resolution optical coherence tomography (UHR-OCT) in evaluation of thin, protective films used in printed electronics. Two types of sample were investigated: microscopy glass and organic field effect transistor (OFET) structure. Samples were coated with thin (1-3 μm) layer of parylene C polymer. Measurements were done using experimental UHR-OCT device based on a Kerr-lens mode locked Ti: sapphire femtosecond laser, photonic crystal fibre and modified, free-space Michelson interferometer. Submicron resolution offered by the UHR-OCT system applied in the study enables registration of both interfaces of the thin encapsulation layer. Complete, volumetric characterisation of protective layers is presented, demonstrating possibility to use OCT for encapsulation quality inspection. © Springer-Verlag 2011.

  2. Coherent dynamics in semiconductors

    DEFF Research Database (Denmark)

    Hvam, Jørn Märcher

    1998-01-01

    enhanced in quantum confined lower-dimensional systems, where exciton and biexciton effects dominate the spectra even at room temperature. The coherent dynamics of excitons are at modest densities well described by the optical Bloch equations and a number of the dynamical effects known from atomic......Ultrafast nonlinear optical spectroscopy is used to study the coherent dynamics of optically excited electron-hole pairs in semiconductors. Coulomb interaction implies that the optical inter-band transitions are dominated, at least at low temperatures, by excitonic effects. They are further...... and molecular systems are found and studied in the exciton-biexciton system of semiconductors. At densities where strong exciton interactions, or many-body effects, become dominant, the semiconductor Bloch equations present a more rigorous treatment of the phenomena Ultrafast degenerate four-wave mixing is used...

  3. Femtosecond laser surface texturing of titanium as a method to reduce the adhesion of Staphylococcus aureus and biofilm formation

    Science.gov (United States)

    Cunha, Alexandre; Elie, Anne-Marie; Plawinski, Laurent; Serro, Ana Paula; Botelho do Rego, Ana Maria; Almeida, Amélia; Urdaci, Maria C.; Durrieu, Marie-Christine; Vilar, Rui

    2016-01-01

    The aim of the present work was to investigate the possibility of using femtosecond laser surface texturing as a method to reduce the colonization of Grade 2 Titanium alloy surfaces by Staphylococcus aureus and the subsequent formation of biofilm. The laser treatments were carried out with a Yb:KYW chirped-pulse-regenerative amplification laser system with a central wavelength of 1030 nm and a pulse duration of 500 fs. Two types of surface textures, consisting of laser-induced periodic surface structures (LIPSS) and nanopillars, were produced. The topography, chemical composition and phase constitution of these surfaces were investigated by atomic force microscopy, scanning electron microscopy, X-ray photoelectron spectroscopy, micro-Raman spectroscopy, and X-ray diffraction. Surface wettability was assessed by the sessile drop method using water and diiodomethane as testing liquids. The response of S. aureus put into contact with the laser treated surfaces in controlled conditions was investigated by epifluorescence microscopy and scanning electron microscopy 48 h after cell seeding. The results achieved show that the laser treatment reduces significantly the bacterial adhesion to the surface as well as biofilm formation as compared to a reference polished surfaces and suggest that femtosecond laser texturing is a simple and promising method for endowing dental and orthopedic titanium implants with antibacterial properties, reducing the risk of implant-associated infections without requiring immobilized antibacterial substances, nanoparticles or coatings.

  4. Coherent phonon dynamics in micro- and nanocrystalline diamond

    Czech Academy of Sciences Publication Activity Database

    Kozák, M.; Trojánek, F.; Galář, P.; Varga, Marián; Kromka, Alexander; Malý, P.

    2013-01-01

    Roč. 21, č. 25 (2013), s. 31521-31529 ISSN 1094-4087 R&D Projects: GA ČR(CZ) GAP108/11/0794; GA ČR GA13-12386S Institutional support: RVO:68378271 Keywords : optical nonlinearities of condensed matter * spectroscopy * coherent anti-Stokes Raman scattering * ultrafast spectroscopy * nanomaterials Subject RIV: BH - Optics, Masers, Lasers Impact factor: 3.525, year: 2013 http://www.opticsinfobase.org/oe/abstract.cfm?URI=oe-21-25-31521

  5. Amorphization of silicon by femtosecond laser pulses

    International Nuclear Information System (INIS)

    Jia, Jimmy; Li Ming; Thompson, Carl V.

    2004-01-01

    We have used femtosecond laser pulses to drill submicron holes in single crystal silicon films in silicon-on-insulator structures. Cross-sectional transmission electron microscopy and energy dispersive x-ray analysis of material adjacent to the ablated holes indicates the formation of a layer of amorphous Si. This demonstrates that even when material is ablated using femtosecond pulses near the single pulse ablation threshold, sufficient heating of the surrounding material occurs to create a molten zone which solidifies so rapidly that crystallization is bypassed

  6. Study and realisation of a femtosecond dye laser operating at different wavelengths. Ultrashort pulses compression and amplification

    International Nuclear Information System (INIS)

    Georges, Patrick

    1989-01-01

    We present the study and the realization of a passively mode-locked dye laser producing pulses shorter than 100 femto-seconds (10 -13 s). In a ring cavity with an amplifier medium (Rhodamine 60) and a saturable absorber (DODCI), a sequence of four prisms controls the group velocity dispersion and allows the generation of very short pulses. Then we have studied the production of femtosecond pulses at other wavelengths directly from the femtosecond dye laser. For the first rime, 60 fs pulses at 685 nm and pulses shorter than 50 fs between 775 nm and 800 nm have been produced by passive mode locking. These near infrared pulses have been used to study the absorption saturation kinetics in semiconductors multiple quantum wells GaAs/GaAlAs. We have observed a singular behavior of the laser operating at 685 nm and analyzed the produced pulses in terms of optical solitons. To perform time resolved spectroscopy with shortest pulses, we have studied a pulse compressor and a multipass amplifier to increase the pulses energy. Pulses of 20 fs and 10 micro-joules (peak power: 0.5 GW) have been obtained at low repetition rate (10 Hz) and pulses of 16 fs and 0.6 micro-joules pulses have been generated at high repetition rate (11 kHz) using a copper vapor laser. These pulses have been used to study the absorption saturation kinetics of an organic dye (the Malachite Green). (author) [fr

  7. High-resolution x-ray spectroscopy of coherent bremsstrahlung fine structure

    International Nuclear Information System (INIS)

    Lund, M.W.

    1989-01-01

    The aim of this research was to provide experimental evidence for fine structure due to umklapp by distinct reciprocal lattice vectors in coherent bremsstrahlung spectra. The spontaneous emission of photons by relativistic electrons transversing thin crystals is made possible by recoil of the crystal, which absorbs momentum in multiples of ℎG where G is a reciprocal lattice vector. Previous work in the MeV-GeV beam energy range used detectors whose energy resolution was greater than 10%. By fitting a Johann wavelength dispersive spectrometer to a transmission electron microscope the author obtained coherent bremsstrahlung spectra of very high quality with energy resolution of 1%. Important to this result were also the fine angular collimation, small energy width of the electron beam in the microscope, and the accurate control of crystal orientation possible in a modern goniometer stage. The theory of the design of bent crystal x-ray spectrometers is extended to include effects of defocus and aberrations. The theory for diffraction from a stationary three dimensional grating due to a dipole radiator moving at relativistic speeds is derived as well as several other broadening mechanisms stemming from experimental variables. This dissertation provides the first experimental observations and corresponding theoretical background for the fine structure of coherent bremsstrahlung due to umklapp by different G-vectors in the same reciprocal lattice plane

  8. Femtosecond excitations in metallic nanostructures. From ultrafast light confinement to a local electron source

    Energy Technology Data Exchange (ETDEWEB)

    Ropers, C.

    2007-07-11

    This thesis contributes to the understanding of optical excitations in metallic nanostructures. In experiments on selected model structures, the dynamics of these excitations and their electromagnetic spatial modes are investigated with femtosecond temporal and nanometer spatial resolution, respectively. Angle- and time-resolved transmission experiments on metallic thin film gratings demonstrate the dominant role resonant surface plasmon polaritons (SPPs) play in the optical properties of such structures. The lifetimes of these excitations are determined, and it is shown that coherent couplings among SPP-resonances result in drastic lifetime modifications. Near the visible part of the spectrum, subradiant SPP lifetimes of up to 200 femtoseconds are observed, which is considerably longer than previously expected for these structures. The spatial SPP mode profiles are imaged using a custom-built near-field optical microscope. The experiments reveal a direct correlation between the spatial mode structure and the dynamics of different SPP resonances. Coupling-induced SPP band gaps are identified as splittings into symmetric and antisymmetric surface modes. These findings allow for an interpretation of the near-field optical image contrast in terms of the contributions of different vectorial components of the electromagnetic near-field. A selective imaging of different electric and magnetic field components is demonstrated for various types of near-field probes. Furthermore, the excitation of SPPs in periodic structures is employed in a novel type of near-field tip. The resonant excitation of SPPs in a nanofabricated grating on the shaft of a sharp metallic tip results in their concentration at the tip apex. The final part of the thesis highlights the importance of optical field enhancements for the local generation of nonlinear optical signals at the apex of sharp metallic tips. Specifically, the observation of intense multiphoton electron emission after femtosecond

  9. Optimization of a coherent synchrotron radiation source in the Tera-hertz range for high-resolution spectroscopy of molecules of astrophysical interest

    International Nuclear Information System (INIS)

    Barros, J.

    2012-01-01

    Fourier Transform spectroscopy is the most used multiplex tool for high-resolution measurements in the infrared range. Its extension to the Tera-hertz domain is of great interest for spectroscopic studies of interstellar molecules. This application is however hampered by the lack of dedicated, broadband sources with a sufficient intensity and stability. In this work, Coherent Synchrotron Radiation (CSR) was used as a source for molecular spectroscopy at high resolution on the AILES infrared and Tera-hertz beamline of SOLEIL synchrotron. The beamline being optimized for far-infrared, we could characterize the properties of CSR and compare them to the incoherent synchrotron radiation. A double detection system allowed to correct the effect of the source-related instabilities, hence to significantly increase the signal-to-noise ratio. Pure rotational spectra were measured using these developments. The case of the propynal molecule, for which a refined set of rotational and centrifugal distortion constants was calculated, proves the complementarity between CSR and the classical microwave or infrared sources. (author)

  10. Femtosecond Carrier Dynamics and Modelocking in Monolithic CPM Lasers. [SB1

    DEFF Research Database (Denmark)

    Brorson, S.D.; Bischoff, Svend; MØrk, J.

    1996-01-01

    Femtosecond pump-probe measurements of the dynamics in both forward- and reverse-biased semiconductor optical waveguides arepresented. Slow (nanosecond) as well as ultrafast (femtosecond) dynamics are observed in both kinds of structures....

  11. PiC code KARAT simulations of Coherent THz Smith-Purcell Radiation from diffraction gratings of various profiles

    International Nuclear Information System (INIS)

    Artyomov, K P; Ryzhov, V V; Potylitsyn, A P; Sukhikh, L G

    2017-01-01

    Generation of coherent THz Smith-Purcell radiation by single electron bunch or multi-bunched electron beam was simulated for lamellar, sinusoidal and echelette gratings. The dependences of the CSPR intensity of the corrugation gratings depth were investigated. The angular and spectral characteristics of the CSPR for different profiles of diffraction gratings were obtained. It is shown that in the case of femtosecond multi-bunched electron beam with 10 MeV energy sinusoidal grating with period 292 μm and groove depth 60 μm has the uniform angular distribution with high radiation intensity. (paper)

  12. Avant-garde femtosecond laser writing

    OpenAIRE

    Kazansky, Peter G.; Beresna, Martynas; Shimotsuma, Yasuhiko; Hirao, Kazuyuki; Svirko, Yuri P.; Aktürk, Selcuk

    2010-01-01

    Recently discovered phenomena of quill and non-reciprocal femtosecond laser writing in glasses and crystals are reviewed. Common beliefs that laser writing does not change when reversing beam scan or propagation direction are challenged.

  13. Quantum control of a chiral molecular motor driven by femtosecond laser pulses: Mechanisms of regular and reverse rotations

    International Nuclear Information System (INIS)

    Yamaki, M.; Hoki, K.; Kono, H.; Fujimura, Y.

    2008-01-01

    Rotational mechanisms of a chiral molecular motor driven by femtosecond laser pulses were investigated on the basis of results of a quantum control simulation. A chiral molecule, (R)-2-methyl-cyclopenta-2,4-dienecarboaldehyde, was treated as a molecular motor within a one-dimensional model. It was assumed that the motor is fixed on a surface and driven in the low temperature limit. Electric fields of femtosecond laser pulses driving both regular rotation of the molecular motor with a plus angular momentum and reverse rotation with a minus one were designed by using a global control method. The mechanism of the regular rotation is similar to that obtained by a conventional pump-dump pulse method: the direction of rotation is the same as that of the initial wave packet propagation on the potential surface of the first singlet (nπ*) excited state S 1 . A new control mechanism has been proposed for the reverse rotation that cannot be driven by a simple pump-dump pulse method. In this mechanism, a coherent Stokes pulse creates a wave packet localized on the ground state potential surface in the right hand side. The wave packet has a negative angular momentum to drive reverse rotation at an early time

  14. Milligram-per-second femtosecond laser production of Se nanoparticle inks and ink-jet printing of nanophotonic 2D-patterns

    Science.gov (United States)

    Ionin, Andrey; Ivanova, Anastasia; Khmel'nitskii, Roman; Klevkov, Yury; Kudryashov, Sergey; Mel'nik, Nikolay; Nastulyavichus, Alena; Rudenko, Andrey; Saraeva, Irina; Smirnov, Nikita; Zayarny, Dmitry; Baranov, Anatoly; Kirilenko, Demid; Brunkov, Pavel; Shakhmin, Alexander

    2018-04-01

    Milligram-per-second production of selenium nanoparticles in water sols was realized through 7-W, 2 MHz-rate femtosecond laser ablation of a crystalline trigonal selenium pellet. High-yield particle formation mechanism and ultimate mass-removal yield were elucidated by optical profilometry and scanning electron microscopy characterization of the corresponding crater depths and topographies. Deposited selenium particles were inspected by scanning and transmission electron microscopy, while their hydrosols (nanoinks) were characterized by optical transmission, Raman and dynamic light scattering spectroscopy. 2D patterns and coatings were ink-jet printed on thin supported silver films and their bare silica glass substrates, as well as on IR-transparent CaF2 substrates, and characterized by electron microscopy, energy-dispersive x-ray spectroscopy, and broadband (vis-mid IR) transmission spectroscopy, exhibiting crystalline selenium nanoparticles with high refractive index as promising all-dielectric sensing building nanoblocks in nanophotonics.

  15. Femtosecond time-resolved hot carrier energy distributions of photoexcited semiconductor quantum dots

    International Nuclear Information System (INIS)

    Chuang, Chi-Hung; Burda, Clemens; Chen, Xiaobo

    2013-01-01

    Using femtosecond transient absorption spectroscopy, we investigated hot carrier distributions in semiconductor cadmium selenide quantum dots. The relaxation processes represent the behavior of an ensemble of QDs. This concept is applied for analysis with the Fermi-Dirac distribution and relaxation processes among different electron-hole pair states. By extracting the experimental hot carrier distribution and fitting with the Fermi-Dirac function, we resolved the rapid thermalization processes, such as carrier-carrier and carrier-phonon interactions was resolved within one picosecond upon photoexcitation. The analysis, using the Fermi-Dirac distribution modulated by the density of states, provides a general route to understanding the carrier cooling and heat dissipation processes in quantum dot-based systems. (copyright 2012 by WILEY-VCH Verlag GmbH and Co. KGaA, Weinheim)

  16. Two-photon transitions driven by a combination of diode and femtosecond lasers.

    Science.gov (United States)

    Moreno, Marco P; Nogueira, Giovana T; Felinto, Daniel; Vianna, Sandra S

    2012-10-15

    We report on the combined action of a cw diode laser and a train of ultrashort pulses when each of them drives one step of the 5S-5P-5D two-photon transition in rubidium vapor. The fluorescence from the 6P(3/2) state is detected for a fixed repetition rate of the femtosecond laser while the cw-laser frequency is scanned over the rubidium D(2) lines. This scheme allows for a velocity selective spectroscopy in a large spectral range including the 5D(3/2) and 5D(5/2) states. The results are well described in a simplified frequency domain picture, considering the interaction of each velocity group with the cw laser and a single mode of the frequency comb.

  17. Ultrafast chiroptical spectroscopy: Monitoring optical activity in quick time

    Directory of Open Access Journals (Sweden)

    Hanju Rhee

    2011-12-01

    Full Text Available Optical activity spectroscopy provides rich structural information of biologically important molecules in condensed phases. However, a few intrinsic problems of conventional method based on electric field intensity measurement scheme prohibited its extension to time domain technique. We have recently developed new types of optical activity spectroscopic methods capable of measuring chiroptical signals with femtosecond pulses. It is believed that these novel approaches will be applied to a variety of ultrafast chiroptical studies.

  18. Pulse radiolysis based on a femtosecond electron beam and a femtosecond laser light with double-pulse injection technique

    International Nuclear Information System (INIS)

    Yang Jinfeng; Kondoh, Takafumi; Kozawa, Takahiro; Yoshida, Youichi; Tagawa, Seiichi

    2006-01-01

    A new pulse radiolysis system based on a femtosecond electron beam and a femtosecond laser light with oblique double-pulse injection was developed for studying ultrafast chemical kinetics and primary processes of radiation chemistry. The time resolution of 5.2 ps was obtained by measuring transient absorption kinetics of hydrated electrons in water. The optical density of hydrated electrons was measured as a function of the electron charge. The data indicate that the double-laser-pulse injection technique was a powerful tool for observing the transient absorptions with a good signal to noise ratio in pulse radiolysis

  19. Proton radiography using highpower femtosecond laser

    International Nuclear Information System (INIS)

    Choi, Chang Il

    2010-08-01

    A femtosecond laser emits pulses whose width is between few and few hundreds femtoseconds (10 -15 s). The production mechanism of the high energy protons generated by the femtosecond laser is not clear so far, but the technologies have been improving. The applications using the generated protons are the proton therapy, proton radiography, nuclear physics, security inspection, and so on. Especially in the radiography, the laser-generated protons are very useful to obtain high quality images of thin objects, because protons are able to penetrate an object following an almost straight path and give a depth distribution information of various elements in a subject. Since the laser-driven protons require lower cost and smaller facility than accelerator-based protons, the radiography using laser-driven protons have been of interest. In this research, we have performed the radiography experiments by using protons generated by the 100 TW titanium sapphire femtosecond laser facility of Advanced Photonics Research Institute (APRI) of Gwangju Institute of Science Technology (GIST). A CR-39 Solid State Nuclear Track Detector (SSNTD) has been used as radiography screen. The radiography digital images have been obtained by using an optical microscope and a CCD camera. Modulation Transfer Function (MTF) has been derived from analyzing the obtained images, and the spatial resolution of the images have been evaluated. And, we have performed the radiography experiments of monoenergetic proton from the Tandem Van de Graaff accelerator of Korea Institute of Geoscience and Mineral Resources (KIGAM). We have obtained and compared the radiography images from other proton production methods which are the laser and the accelerator, respectively. And also, we have found out the optimized chemical etching condition, in order to improve the spatial resolution of the radiography images. Finally, the evaluated maximum spatial resolution of the images are 2.09 μm

  20. Coherent atomic and molecular spectroscopy in the far infrared

    International Nuclear Information System (INIS)

    Inguscio, M.

    1988-01-01

    Recent advances in far infrared spectroscopy of atoms (fine structure transitions) and molecules (rotational transitions) are reviewed. Results obtained by means of Laser Magnetic Resonance, using fixed frequency lasers, and Tunable Far Infrared spectrometers are illustrated. The importance of far infrared spectroscopy for several fields, including astrophysics, atmospheric physics, atomic structure and metology, is discussed. (orig.)

  1. Fast femtosecond laser ablation for efficient cutting of sintered alumina substrates

    Science.gov (United States)

    Oosterbeek, Reece N.; Ward, Thomas; Ashforth, Simon; Bodley, Owen; Rodda, Andrew E.; Simpson, M. Cather

    2016-09-01

    Fast, accurate cutting of technical ceramics is a significant technological challenge because of these materials' typical high mechanical strength and thermal resistance. Femtosecond pulsed lasers offer significant promise for meeting this challenge. Femtosecond pulses can machine nearly any material with small kerf and little to no collateral damage to the surrounding material. The main drawback to femtosecond laser machining of ceramics is slow processing speed. In this work we report on the improvement of femtosecond laser cutting of sintered alumina substrates through optimisation of laser processing parameters. The femtosecond laser ablation thresholds for sintered alumina were measured using the diagonal scan method. Incubation effects were found to fit a defect accumulation model, with Fth,1=6.0 J/cm2 (±0.3) and Fth,∞=2.5 J/cm2 (±0.2). The focal length and depth, laser power, number of passes, and material translation speed were optimised for ablation speed and high quality. Optimal conditions of 500 mW power, 100 mm focal length, 2000 μm/s material translation speed, with 14 passes, produced complete cutting of the alumina substrate at an overall processing speed of 143 μm/s - more than 4 times faster than the maximum reported overall processing speed previously achieved by Wang et al. [1]. This process significantly increases processing speeds of alumina substrates, thereby reducing costs, making femtosecond laser machining a more viable option for industrial users.

  2. Ultrafast optical generation of squeezed magnon states and long lifetime coherent LO phonons

    Science.gov (United States)

    Zhao, Jimin

    2005-12-01

    Ultrafast optical pulses have been used to generate, probe, and control low-energy elementary excitations in crystals. In particular, we report the first experimental demonstration of the generation of quantum squeezed states of magnons (collective spin-wave excitations) in a magnetic material, and new progress in experimental investigation of anharmonic interactions in a semiconductor. The mechanism for the magnon squeezing is two-magnon impulsive stimulated Raman scattering (ISRS). Femtosecond laser pulses have been used to coherently correlate degenerate counter-propagating magnons in the antiferromagnetic insulator MnF2. In the squeezed state, fluctuations of the magnetization of a crystallographic unit cell vary periodically in time and are reduced below that of the ground-state quantum noise. Similar experiments were also performed in another antiferromagnetic insulator, FeF2, for which the squeezing effect is one order of magnitude larger. We have also investigated the anharmonic interaction of the low-frequency E2 phonon in ZnO through ISRS. Temperature dependence of the linewidth and frequency indicates that the two-phonon up-conversion process is the dominant decay channel and isotopic disorder may be the main limit on the lifetime at low temperature. We have observed the longest lifetime of an optical phonon mode in a solid (211 ps at 5 K). And we have found that pump-probe experiments, compared with spontaneous Raman spectroscopy, have extremely high accuracy in determining the frequency of a low-lying excitation.

  3. Terahertz-Radiation-Enhanced Emission of Fluorescence from Gas Plasma

    International Nuclear Information System (INIS)

    Liu Jingle; Zhang, X.-C.

    2009-01-01

    We report the study of femtosecond laser-induced air plasma fluorescence under the illumination of terahertz (THz) pulses. Semiclassical modeling and experimental verification indicate that time-resolved THz radiation-enhanced emission of fluorescence is dominated by the electron kinetics and the electron-impact excitation of gas molecules or ions. We demonstrate that the temporal waveform of the THz field could be retrieved from the transient enhanced fluorescence, making omnidirectional, coherent detection available for THz time-domain spectroscopy.

  4. Photodisruption in biological tissues using femtosecond laser pulses

    Science.gov (United States)

    Shen, Nan

    Transparent materials do not ordinarily absorb visible or near-infrared light. However, the intensity of a tightly focused femtosecond laser pulse is great enough that nonlinear absorption of the laser energy takes place in transparent materials, leading to optical breakdown and permanent material modification. Because the absorption process is nonlinear, absorption and material modification are confined to the extremely small focal volume. Optical breakdown in transparent or semi-transparent biological tissues depends on intensity rather than energy. As a result, focused femtosecond pulses induce optical breakdown with significantly less pulse energy than is required with longer pulses. The use of femtosecond pulses therefore minimizes the amount of energy deposited into the targeted region of the sample, minimizing mechanical and thermal effects that lead to collateral damage in adjacent tissues. We demonstrate photodisruptive surgery in animal skin tissue and single cells using 100-fs laser pulses. In mouse skin, we create surface incisions and subsurface cavities with much less collateral damage to the surrounding tissue than is produced with picosecond pulses. Using pulses with only a few nanojoules of energy obtained from an unamplified femtosecond oscillator, we destroy single mitochondria in live cells without affecting cell viability, providing insights into the structure of the mitochondrial network. An apparatus is constructed to perform subcellular surgery and multiphoton 3D laser scanning imaging simultaneously with a single laser and objective lens.

  5. Lattice dynamics of femtosecond laser-excited antimony

    Energy Technology Data Exchange (ETDEWEB)

    Abdel-Fattah, Mahmoud Hanafy [Applied Research Center, Old Dominion University, Newport News, VA 23606 (United States); Department of Electrical and Computer Engineering, Old Dominion University, Norfolk, VA 23529 (United States); Bugayev, Aleksey [Applied Research Center, Old Dominion University, Newport News, VA 23606 (United States); Elsayed-Ali, Hani E., E-mail: helsayed@odu.edu [Applied Research Center, Old Dominion University, Newport News, VA 23606 (United States); Department of Electrical and Computer Engineering, Old Dominion University, Norfolk, VA 23529 (United States)

    2016-07-01

    Ultrafast electron diffraction is used to probe the lattice dynamics of femtosecond laser-excited antimony thin film. The temporal hierarchies of the intensity and position of diffraction orders are monitored. The femtosecond laser excitation of antimony film was found to lead to initial compression after the laser pulse, which gives way to tension vibrating at new equilibrium displacement. A damped harmonic oscillator model, in which the hot electron-blast force contributes to the driving force of oscillations in lattice spacing, is used to interpret the data. The electron–phonon energy-exchange rate and the electronic Grüneisen parameter were obtained.

  6. Uncharted Frontiers in the Spectroscopy of Highly Charged Ions

    CERN Document Server

    Beiersdorfer, P; Crespo, J; Kim, S H; Neill, P; Utter, S; Widmann, K

    2000-01-01

    The development of novel techniques is critical for maintaining a state-of-the-art core competency in atomic physics and readiness for evolving programmatic needs. We have carried out a three-year effort to develop novel spectroscopic instrumentation that added new dimensions to our capabilities for measuring energy levels, radiative transition probabilities, and electron-ion excitation processes. The new capabilities created were in areas that heretofore had been inaccessible to scientific scrutiny and included high-resolution spectroscopy of hard x rays, femtosecond lifetime measurements, measurements of transition probabilities of long-lived metastable levels, polarization spectroscopy, ultra-precise determinations of energy levels, and the establishment of absolute wavelength standards in x-ray spectroscopy. Instrumentation developed during the period included a transmission-type crystal spectrometer, a flat-field EUV spectrometer, and the development and deployment of absolutely calibrated monolithic cry...

  7. Observing Femtosecond Fragmentation Using Ultrafast X-ray-Induced Auger Spectra

    Directory of Open Access Journals (Sweden)

    Thomas J. A. Wolf

    2017-07-01

    Full Text Available Molecules often fragment after photoionization in the gas phase. Usually, this process can only be investigated spectroscopically as long as there exists electron correlation between the photofragments. Important parameters, like their kinetic energy after separation, cannot be investigated. We are reporting on a femtosecond time-resolved Auger electron spectroscopy study concerning the photofragmentation dynamics of thymine. We observe the appearance of clearly distinguishable signatures from thymine′s neutral photofragment isocyanic acid. Furthermore, we observe a time-dependent shift of its spectrum, which we can attribute to the influence of the charged fragment on the Auger electron. This allows us to map our time-dependent dataset onto the fragmentation coordinate. The time dependence of the shift supports efficient transformation of the excess energy gained from photoionization into kinetic energy of the fragments. Our method is broadly applicable to the investigation of photofragmentation processes.

  8. In Situ Monitoring of Chemical Reactions at a Solid-Water Interface by Femtosecond Acoustics.

    Science.gov (United States)

    Shen, Chih-Chiang; Weng, Meng-Yu; Sheu, Jinn-Kong; Yao, Yi-Ting; Sun, Chi-Kuang

    2017-11-02

    Chemical reactions at a solid-liquid interface are of fundamental importance. Interfacial chemical reactions occur not only at the very interface but also in the subsurface area, while existing monitoring techniques either provide limited spatial resolution or are applicable only for the outmost atomic layer. Here, with the aid of the time-domain analysis with femtosecond acoustics, we demonstrate a subatomic-level-resolution technique to longitudinally monitor chemical reactions at solid-water interfaces, capable of in situ monitoring even the subsurface area under atmospheric conditions. Our work was proven by monitoring the already-known anode oxidation process occurring during photoelectrochemical water splitting. Furthermore, whenever the oxide layer thickness equals an integer  number of the effective atomic layer thickness, the measured acoustic echo will show higher signal-to-noise ratios with reduced speckle noise, indicating the quantum-like behavior of this coherent-phonon-based technique.

  9. Pump-probe studies of travelling coherent longitudinal acoustic phonon oscillations in GaAs

    Energy Technology Data Exchange (ETDEWEB)

    Xu, Y.; Qi, J.; Tolk, Norman [Department of Physics and Astronomy, Vanderbilt University, Nashville, TN, 37235 (United States); Miller, J. [Naval air Warfare Center Weapons Division, China Lake, CA 93555 (United States); Cho, Y.J.; Liu, X.; Furdyna, J.K. [Department of Physics, University of Notre Dame, Notre Dame, IN 46556 (United States); Shahbazyan, T.V. [Department of Physics, Jackson State University, MS 39217 (United States)

    2008-07-01

    We report comprehensive studies of long-lived oscillations in femtosecond optical pump-probe measurements on GaAs based systems. The oscillations arise from a photo-generated coherent longitudinal acoustic phonon wave at the sample surface, which subsequently travels from the surface into the GaAs substrate, thus providing information on the optical properties of the material as a function of time/depth. Wavelength-dependent studies of the oscillations near the bandgap of GaAs indicate strong correlations to the optical properties of GaAs. We also use the coherent longitudinal acoustic phonon waves to probe a thin buried Ga{sub 0.1}In{sub 0.9}As layers non-invasively. The observed phonon oscillations experience a reduction in amplitude and a phase change at wavelengths near the bandgap of the GaAs, when it passes through the thin Ga{sub x}In{sub 1-x}As layer. The layer depth and thicknesses can be extracted from the oscillation responses. A model has been developed that satisfactorily characterizes the experimental results. (copyright 2008 WILEY-VCH Verlag GmbH and Co. KGaA, Weinheim) (orig.)

  10. Density and temperature measurement using CARS spectroscopy

    International Nuclear Information System (INIS)

    Hirth, A.; Vollrath, K.

    1979-01-01

    Coherent Anti Stokes Raman Scattering (CARS) a technique derived from nonlinear optics offers two major advantages compared with the spontaneous Raman method: improved scattering efficiency and spatial coherence of the scattered signal. The theory of the coherent mixing in resonant media serves as a quantitative background of the CARS technique. A review of several applications on plasma physics and gasdynamics is given, which permits to consider the CARS spectroscopy as a potential method for nonintrusive measurement of local concentration and temperature in gas flows and reactive media. (Auth.)

  11. Linear photophysics, two-photon absorption and femtosecond transient absorption spectroscopy of styryl dye bases

    Energy Technology Data Exchange (ETDEWEB)

    Shaydyuk, Ye.O. [Institute of Physics, Prospect Nauki, 46, Kyiv-28 03028 Ukraine (Ukraine); Levchenko, S.M. [Institute of Molecular Biology and Genetics, 150, Akademika Zabolotnoho Str., Kyiv 036803 (Ukraine); Kurhuzenkau, S.A. [Department of Chemistry, University of Parma, Parco Area delle Scienze 17/A, Parma 43124 (Italy); Anderson, D. [NanoScienece Technology Center, University of Central Florida, 12424 Research Parkway, PAV400, Orlando, FL 32826 (United States); Department of Chemistry, University of Central Florida, 4111 Libra Drive, PSB225, Orlando, FL 32816 (United States); Masunov, A.E. [NanoScienece Technology Center, University of Central Florida, 12424 Research Parkway, PAV400, Orlando, FL 32826 (United States); Department of Chemistry, University of Central Florida, 4111 Libra Drive, PSB225, Orlando, FL 32816 (United States); South Ural State University, Lenin pr. 76, Chelyabinsk 454080 (Russian Federation); Department of Condensed Matter Physics, National Research Nuclear University MEPhI, Kashirskoye shosse 31, Moscow 115409 (Russian Federation); Photochemistry Center RAS, ul. Novatorov 7a, Moscow 119421 (Russian Federation); Kachkovsky, O.D.; Slominsky, Yu.L.; Bricks, J.L. [Insitute of Organic Chemistry, Murmanskaya Street, 5, Kyiv 03094 (Ukraine); Belfield, K.D. [College of Science and Liberal Arts, New Jersey Institute of Technology, University Heights, Newark, NJ 07102 (United States); School of Chemistry and Chemical Engineering, Shaanxi Normal University, Xi’an, 710062 (China); Bondar, M.V., E-mail: mbondar@mail.ucf.edu [Institute of Physics, Prospect Nauki, 46, Kyiv-28 03028 Ukraine (Ukraine)

    2017-03-15

    The steady-state and time-resolved linear spectral properties, two-photon absorption spectra and fast relaxation processes in the excited states of styryl base-type derivatives were investigated. The nature of linear absorption, fluorescence and excitation anisotropy spectra were analyzed in solvents of different polarity at room temperature and specific dependence of the solvatochromic behavior on the donor-acceptor strength of the terminal substituents was shown. Two-photon absorption (2PA) efficiency of styryl dye bases was determined in a broad spectral range using two-photon induced fluorescence technique, and cross-sections maxima of ~ 100 GM were found. The excited state absorption (ESA) and fast relaxation processes in the molecular structures were investigated by transient absorption femtosecond pump-probe methodology. The role of twisted intramolecular charge transfer (TICT) effect in the excited state of styryl dye base with dimethylamino substituent was shown. The experimental spectroscopic data were also verified by quantum chemical calculations at the Time Dependent Density Functional Theory level, combined with a polarizable continuum model.

  12. Fixed target matrix for femtosecond time-resolved and in situ serial micro-crystallography

    Directory of Open Access Journals (Sweden)

    C. Mueller

    2015-09-01

    Full Text Available We present a crystallography chip enabling in situ room temperature crystallography at microfocus synchrotron beamlines and X-ray free-electron laser (X-FEL sources. Compared to other in situ approaches, we observe extremely low background and high diffraction data quality. The chip design is robust and allows fast and efficient loading of thousands of small crystals. The ability to load a large number of protein crystals, at room temperature and with high efficiency, into prescribed positions enables high throughput automated serial crystallography with microfocus synchrotron beamlines. In addition, we demonstrate the application of this chip for femtosecond time-resolved serial crystallography at the Linac Coherent Light Source (LCLS, Menlo Park, California, USA. The chip concept enables multiple images to be acquired from each crystal, allowing differential detection of changes in diffraction intensities in order to obtain high signal-to-noise and fully exploit the time resolution capabilities of XFELs.

  13. Femtosecond Single-Shot Imaging of Nanoscale Ferromagnetic Order in Co/Pd Multilayers using Resonant X-ray Holography

    Energy Technology Data Exchange (ETDEWEB)

    Wang, Tianhan; Zhu, Diling; Benny Wu,; Graves, Catherine; Schaffert, Stefan; Rander, Torbjorn; Muller, leonard; Vodungbo, Boris; Baumier, Cedric; Bernstein, David P.; Brauer, Bjorn; Cros, Vincent; Jong, Sanne de; Delaunay, Renaud; Fognini, Andreas; Kukreja, Roopali; Lee, Sooheyong; Lopez-Flores, Victor; Mohanty, Jyoti; Pfau, Bastian; Popescu, 5 Horia

    2012-05-15

    We present the first single-shot images of ferromagnetic, nanoscale spin order taken with femtosecond x-ray pulses. X-ray-induced electron and spin dynamics can be outrun with pulses shorter than 80 fs in the investigated fluence regime, and no permanent aftereffects in the samples are observed below a fluence of 25 mJ/cm{sup 2}. Employing resonant spatially-muliplexed x-ray holography results in a low imaging threshold of 5 mJ/cm{sup 2}. Our results open new ways to combine ultrafast laser spectroscopy with sequential snapshot imaging on a single sample, generating a movie of excited state dynamics.

  14. Influence of dispersion of nonlinearity on coherent supercontinuum generation bandwidth in photonic crystal fibers pumped at 2 μm

    DEFF Research Database (Denmark)

    Klimczak, Mariusz; Siwicki, Bartlomiej; Zhou, Binbin

    2017-01-01

    Sources of spectrally broadband and coherent light are necessary for frequency metrology and ultrashort pulse generation. Near-infrared (NIR) wavelengths are practical for such devices because of the emergence of robust and reasonably priced femtosecond lasers operating in this part of spectrum...... lasers as pump sources, exceeding the 2400 nm barrier has proved a challenge. ANDi SC requires strong nonlinear response of the optical material, since self-phase modulation (SPM) and optical wave breaking (OWB) mediated four-wave mixing (FWM) are almost exclusively shaping the ANDi SC pulses. Flatness...

  15. A higher-order-mode fiber delivery for Ti:Sapphire femtosecond lasers

    DEFF Research Database (Denmark)

    Jespersen, Kim Giessmann; Le, Tuan; Grüner-Nielsen, Lars Erik

    2010-01-01

    We report the first higher-order-mode fiber with anomalous dispersion at 800nm and demonstrate its potential in femtosecond pulse delivery for Ti:Sapphire femtosecond lasers. We obtain 125fs pulses after propagating a distance of 3.6 meters in solid-silica fiber. The pulses could be further...... compressed in a quartz rod to nearly chirp-free 110fs pulses. Femtosecond pulse delivery is achieved by launching the laser output directly into the delivery fiber without any pre-chirping of the input pulse. The demonstrated pulse delivery scheme suggests scaling to >20meters for pulse delivery in harsh...

  16. Femtosecond laser surface structuring of molybdenum thin films

    Energy Technology Data Exchange (ETDEWEB)

    Kotsedi, L., E-mail: Kotsedi@tlabs.ac.za [UNESCO-UNISA Africa Chair in Nanosciences-Nanotechnology, College of Graduate Studies, University of South Africa, Muckleneuk ridge, PO Box 392, Pretoria (South Africa); Nanosciences African Network (NANOAFNET), iThemba LABS-National Research Foundation, 1 Old Faure Road, Somerset West 7129, PO Box 722, Somerset West, Western Cape Province (South Africa); Mthunzi, P. [Council for Scientific and Industrial Research (CSIR), Biophotonics Lab: National Laser Centre Pretoria, 0001 (South Africa); Nuru, Z.Y. [UNESCO-UNISA Africa Chair in Nanosciences-Nanotechnology, College of Graduate Studies, University of South Africa, Muckleneuk ridge, PO Box 392, Pretoria (South Africa); Nanosciences African Network (NANOAFNET), iThemba LABS-National Research Foundation, 1 Old Faure Road, Somerset West 7129, PO Box 722, Somerset West, Western Cape Province (South Africa); Eaton, S.M. [Physics Department, Politecnico di Milano, Piazza Leonardo Da Vinci, 32, 20133 Milano (Italy); Center for Nano Science and Technology, Istituto Italiano di Tecnologia, Via Pascoli 70/3, 20133 Milano, Itala (Italy); Sechoghela, P.; Mongwaketsi, N. [UNESCO-UNISA Africa Chair in Nanosciences-Nanotechnology, College of Graduate Studies, University of South Africa, Muckleneuk ridge, PO Box 392, Pretoria (South Africa); Nanosciences African Network (NANOAFNET), iThemba LABS-National Research Foundation, 1 Old Faure Road, Somerset West 7129, PO Box 722, Somerset West, Western Cape Province (South Africa); Ramponi, R. [Institute for Photonics and Nanotechnologies (IFN)–CNR, Piazza Leanardo Da Vinci, 32, 20133 Milano (Italy); Maaza, M. [UNESCO-UNISA Africa Chair in Nanosciences-Nanotechnology, College of Graduate Studies, University of South Africa, Muckleneuk ridge, PO Box 392, Pretoria (South Africa); Nanosciences African Network (NANOAFNET), iThemba LABS-National Research Foundation, 1 Old Faure Road, Somerset West 7129, PO Box 722, Somerset West, Western Cape Province (South Africa)

    2015-10-30

    Highlights: • Color change of the molybdenum thin film from shinny to violet–yellowish color after laser irradiation at various laser powers. • Formation of the molybdenum dioxide coating after laser exposure, as confirmed by the X-ray diffraction spectrometry. • Selective solar absorbing nature of the laser exposed films. • Study of the binding energies is presented in this contribution using the XPS spectrometry. - Abstract: This contribution reports on the femtosecond surface structuring of molybdenum thin coatings deposited by electron beam evaporation onto Corning glass substrates. The 1-D type periodic grating lines created by such an ablation showed that the widths of the shallow grooves followed a logarithmic dependence with the laser energy incident on the molybdenum film. The electronic valence “x” of the created oxide surface layer MoO{sub x} was found to be incident laser power dependent via Rutherford backscattering spectrometry, X-ray photoelectron spectroscopy and X-ray diffraction investigations. Such a photo-induced MoO{sub x}–Mo nanocomposite exhibited effective selective solar absorption in the UV–vis–IR spectral range.

  17. Femtosecond electron diffraction. Next generation electron sources for atomically resolved dynamics

    Energy Technology Data Exchange (ETDEWEB)

    Hirscht, Julian

    2015-08-15

    Three instruments for femtosecond electron diffraction (FED) experiments were erected, partially commissioned and used for first diffraction experiments. The Relativistic Electron Gun for Atomic Exploration (REGAE) was completed by beamline elements including supports, a specimen chamber and dark current or electron beam collimating elements such that the commissioning process, including first diffraction experiments in this context, could be started. The temporal resolution of this machine is simulated to be 25 fs (fwhm) short, while a transverse coherence length of 30 nm (fwhm) is feasible to resolve proteins on this scale. Whether this machine is capable of meeting these predictions or whether the dynamics of the electron beam will stay limited by accelerator components, is not finally determined by the end of this work, because commissioning and improvement of accelerator components is ongoing. Simultaneously, a compact DC electron diffraction apparatus, the E-Gun 300, designed for solid and liquid specimens and a target electron energy of 300 keV, was built. Fundamental design issues of the high potential carrying and beam generating components occurred and are limiting the maximum potential and electron energy to 120 keV. Furthermore, this is limiting the range of possible applications and consequently the design and construction of a brand new instrument began. The Femtosecond Electron Diffraction CAmera for Molecular Movies (FED-CAMM) bridges the performance problems of very high electric potentials and provides optimal operational conditions for all applied electron energies up to 300 keV. The variability of gap spacings and optimized manufacturing of the high voltage electrodes lead to the best possible electron pulse durations obtainable with a compact DC setup, that does not comprise of rf-structures. This third apparatus possesses pulse durations just a few tenth femtoseconds apart from the design limit of the highly relativistic REGAE and combines the

  18. Femtosecond electron diffraction. Next generation electron sources for atomically resolved dynamics

    International Nuclear Information System (INIS)

    Hirscht, Julian

    2015-08-01

    Three instruments for femtosecond electron diffraction (FED) experiments were erected, partially commissioned and used for first diffraction experiments. The Relativistic Electron Gun for Atomic Exploration (REGAE) was completed by beamline elements including supports, a specimen chamber and dark current or electron beam collimating elements such that the commissioning process, including first diffraction experiments in this context, could be started. The temporal resolution of this machine is simulated to be 25 fs (fwhm) short, while a transverse coherence length of 30 nm (fwhm) is feasible to resolve proteins on this scale. Whether this machine is capable of meeting these predictions or whether the dynamics of the electron beam will stay limited by accelerator components, is not finally determined by the end of this work, because commissioning and improvement of accelerator components is ongoing. Simultaneously, a compact DC electron diffraction apparatus, the E-Gun 300, designed for solid and liquid specimens and a target electron energy of 300 keV, was built. Fundamental design issues of the high potential carrying and beam generating components occurred and are limiting the maximum potential and electron energy to 120 keV. Furthermore, this is limiting the range of possible applications and consequently the design and construction of a brand new instrument began. The Femtosecond Electron Diffraction CAmera for Molecular Movies (FED-CAMM) bridges the performance problems of very high electric potentials and provides optimal operational conditions for all applied electron energies up to 300 keV. The variability of gap spacings and optimized manufacturing of the high voltage electrodes lead to the best possible electron pulse durations obtainable with a compact DC setup, that does not comprise of rf-structures. This third apparatus possesses pulse durations just a few tenth femtoseconds apart from the design limit of the highly relativistic REGAE and combines the

  19. IL 6: 2D-IR spectroscopy: chemistry and biophysics in real time

    International Nuclear Information System (INIS)

    Bredenbeck, Jens

    2010-01-01

    Pulsed multidimensional experiments, daily business in the field of NMR spectroscopy, have been demonstrated only relatively recently in IR spectroscopy. Similar as nuclear spins in multidimensional NMR, molecular vibrations are employed in multidimensional IR experiments as probes of molecular structure and dynamics, albeit with femtosecond time resolution. Different types of multidimensional IR experiments have been implemented, resembling basic NMR experiments such as NOESY, COSY and EXSY. In contrast to one-dimensional linear spectroscopy, such multidimensional experiments reveal couplings and correlations of vibrations, which are closely linked to molecular structure and its change in time. The use of mixed IR/VIS pulse sequences further extends the potential of multidimensional IR spectroscopy, enabling studies of ultrafast non-equilibrium processes as well as surface specific, highly sensitive experiments. A UV/VIS pulse preceding the IR pulse sequence can be used to prepare the system under study in a non-equilibrium state. 2D-IR snapshots of the evolving non-equilibrium system are then taken, for example during a photochemical reaction or during the photo-cycle of a light sensitive protein. Preparing the system in a non-equilibrium state by UV/Vis excitation during the IR pulse sequence allows for correlating states of reactant and product of the light triggered process via their 2D-IR cross peaks - a technique that has been used to map the connectivity between different binding sites of a ligand as it migrates through a protein. Introduction of a non-resonant VIS pulse at the end of the IR part of the experiment allows to selectively up-convert the infrared signal of interfacial molecules to the visible spectral range by sum frequency generation. In this way, femtosecond interfacial 2D-IR spectroscopy can be implemented, achieving sub-monolayer sensitivity. (author)

  20. Femtosecond laser ablation of enamel

    Science.gov (United States)

    Le, Quang-Tri; Bertrand, Caroline; Vilar, Rui

    2016-06-01

    The surface topographical, compositional, and structural modifications induced in human enamel by femtosecond laser ablation is studied. The laser treatments were performed using a Yb:KYW chirped-pulse-regenerative amplification laser system (560 fs and 1030 nm) and fluences up to 14 J/cm2. The ablation surfaces were studied by scanning electron microscopy, grazing incidence x-ray diffraction, and micro-Raman spectroscopy. Regardless of the fluence, the ablation surfaces were covered by a layer of resolidified material, indicating that ablation is accompanied by melting of hydroxyapatite. This layer presented pores and exploded gas bubbles, created by the release of gaseous decomposition products of hydroxyapatite (CO2 and H2O) within the liquid phase. In the specimen treated with 1-kHz repetition frequency and 14 J/cm2, thickness of the resolidified material is in the range of 300 to 900 nm. The micro-Raman analysis revealed that the resolidified material contains amorphous calcium phosphate, while grazing incidence x-ray diffraction analysis allowed detecting traces of a calcium phosphate other than hydroxyapatite, probably β-tricalcium phosphate Ca3), at the surface of this specimen. The present results show that the ablation of enamel involves melting of enamel's hydroxyapatite, but the thickness of the altered layer is very small and thermal damage of the remaining material is negligible.

  1. Study and realisation of a femtosecond dye laser operating at different wavelengths. Ultrashort pulses compression and amplification; Etude et realisation d'un laser a colorant femtoseconde fonctionnant a differentes longueurs d'onde. Compression et amplification d'impulsions ultrabreves

    Energy Technology Data Exchange (ETDEWEB)

    Georges, Patrick

    1989-12-21

    We present the study and the realization of a passively mode-locked dye laser producing pulses shorter than 100 femto-seconds (10{sup -13} s). In a ring cavity with an amplifier medium (Rhodamine 60) and a saturable absorber (DODCI), a sequence of four prisms controls the group velocity dispersion and allows the generation of very short pulses. Then we have studied the production of femtosecond pulses at other wavelengths directly from the femtosecond dye laser. For the first rime, 60 fs pulses at 685 nm and pulses shorter than 50 fs between 775 nm and 800 nm have been produced by passive mode locking. These near infrared pulses have been used to study the absorption saturation kinetics in semiconductors multiple quantum wells GaAs/GaAlAs. We have observed a singular behavior of the laser operating at 685 nm and analyzed the produced pulses in terms of optical solitons. To perform time resolved spectroscopy with shortest pulses, we have studied a pulse compressor and a multipass amplifier to increase the pulses energy. Pulses of 20 fs and 10 micro-joules (peak power: 0.5 GW) have been obtained at low repetition rate (10 Hz) and pulses of 16 fs and 0.6 micro-joules pulses have been generated at high repetition rate (11 kHz) using a copper vapor laser. These pulses have been used to study the absorption saturation kinetics of an organic dye (the Malachite Green). (author) [French] Ce memoire presente l'etude et la realisation d'un laser a colorant a verrouillage de modes passif produisant des impulsions de 100 femtosecondes (10- 13 s). Dans une cavite en anneau contenant un milieu amplificateur (Rhodamine 60) et un absorbant saturable (DODCI), un systeme de prismes permettant de controler la dispersion de vitesse de groupe realise une mise en phase de toutes les frequences du spectre des impulsions. Nous avons ensuite etudie la possibilite de produire des impulsions femtosecondes a d'autres longueurs d'onde directement avec l'oscillateur. Des impulsions de 60 fs a

  2. High-resolution narrowband CARS spectroscopy in the spectral fingerprint region

    NARCIS (Netherlands)

    Chimento, P.F.; Jurna, M.; Bouwmans, H.S.P.; Garbacik, E.T.; Garbacik, E.T.; Hartsuiker, Liesbeth; Otto, Cornelis; Herek, Jennifer Lynn; Offerhaus, Herman L.

    2010-01-01

    Coherent anti-Stokes Raman scattering (CARS) spectroscopy is an important technique for spectroscopy and chemically selective microscopy, but wider implementation requires dedicated versatile tunable sources. We describe an optical parametric oscillator (OPO) based on a magnesium oxide-doped

  3. Quantum coherent optical phase modulation in an ultrafast transmission electron microscope.

    Science.gov (United States)

    Feist, Armin; Echternkamp, Katharina E; Schauss, Jakob; Yalunin, Sergey V; Schäfer, Sascha; Ropers, Claus

    2015-05-14

    Coherent manipulation of quantum systems with light is expected to be a cornerstone of future information and communication technology, including quantum computation and cryptography. The transfer of an optical phase onto a quantum wavefunction is a defining aspect of coherent interactions and forms the basis of quantum state preparation, synchronization and metrology. Light-phase-modulated electron states near atoms and molecules are essential for the techniques of attosecond science, including the generation of extreme-ultraviolet pulses and orbital tomography. In contrast, the quantum-coherent phase-modulation of energetic free-electron beams has not been demonstrated, although it promises direct access to ultrafast imaging and spectroscopy with tailored electron pulses on the attosecond scale. Here we demonstrate the coherent quantum state manipulation of free-electron populations in an electron microscope beam. We employ the interaction of ultrashort electron pulses with optical near-fields to induce Rabi oscillations in the populations of electron momentum states, observed as a function of the optical driving field. Excellent agreement with the scaling of an equal-Rabi multilevel quantum ladder is obtained, representing the observation of a light-driven 'quantum walk' coherently reshaping electron density in momentum space. We note that, after the interaction, the optically generated superposition of momentum states evolves into a train of attosecond electron pulses. Our results reveal the potential of quantum control for the precision structuring of electron densities, with possible applications ranging from ultrafast electron spectroscopy and microscopy to accelerator science and free-electron lasers.

  4. 2012 ELECTRONIC SPECTROSCOPY & DYNAMICS GORDON RESEARCH CONFERENCE, JULY 22-27, 2012

    Energy Technology Data Exchange (ETDEWEB)

    Kohler, Bern

    2012-07-27

    Topics covered in this GRC include high-resolution spectroscopy, coherent electronic energy transport in biology, excited state theory and dynamics, excitonics, electronic spectroscopy of cold and ultracold molecules, and the spectroscopy of nanostructures. Several sessions will highlight innovative techniques such as time-resolved x-ray spectroscopy, frequency combs, and liquid microjet photoelectron spectroscopy that have forged stimulating new connections between gas-phase and condensed-phase work.

  5. Porcine cadaver iris model for iris heating during corneal surgery with a femtosecond laser

    Science.gov (United States)

    Sun, Hui; Fan, Zhongwei; Wang, Jiang; Yan, Ying; Juhasz, Tibor; Kurtz, Ron

    2015-03-01

    Multiple femtosecond lasers have now been cleared for use for ophthalmic surgery, including for creation of corneal flaps in LASIK surgery. Preliminary study indicated that during typical surgical use, laser energy may pass beyond the cornea with potential effects on the iris. As a model for laser exposure of the iris during femtosecond corneal surgery, we simulated the temperature rise in porcine cadaver iris during direct illumination by the femtosecond laser. Additionally, ex-vivo iris heating due to femtosecond laser irradiation was measured with an infrared thermal camera (Fluke corp. Everett, WA) as a validation of the simulation.

  6. Timescales of Coherent Dynamics in the Light Harvesting Complex 2 (LH2) of Rhodobacter sphaeroides.

    Science.gov (United States)

    Fidler, Andrew F; Singh, Ved P; Long, Phillip D; Dahlberg, Peter D; Engel, Gregory S

    2013-05-02

    The initial dynamics of energy transfer in the light harvesting complex 2 from Rhodobacter sphaeroides were investigated with polarization controlled two-dimensional spectroscopy. This method allows only the coherent electronic motions to be observed revealing the timescale of dephasing among the excited states. We observe persistent coherence among all states and assign ensemble dephasing rates for the various coherences. A simple model is utilized to connect the spectroscopic transitions to the molecular structure, allowing us to distinguish coherences between the two rings of chromophores and coherences within the rings. We also compare dephasing rates between excited states to dephasing rates between the ground and excited states, revealing that the coherences between excited states dephase on a slower timescale than coherences between the ground and excited states.

  7. Coherent control of plasma dynamics

    Science.gov (United States)

    He, Zhaohan

    2014-10-01

    The concept of coherent control - precise measurement or determination of a process through control of the phase of an applied oscillating field - has been applied to numerous systems with great success. Here, we demonstrate the use of coherent control on plasma dynamics in a laser wakefield electron acceleration experiment. A tightly focused femtosecond laser pulse (10 mJ, 35 fs) was used to generate electron beams by plasma wakefield acceleration in the density down ramp. The technique is based on optimization of the electron beam using a deformable mirror adaptive optical system with an iterative evolutionary genetic algorithm. The image of the electrons on a scintillator screen was processed and used in a fitness function as direct feedback for the optimization algorithm. This coherent manipulation of the laser wavefront leads to orders of magnitude improvement to the electron beam properties such as the peak charge and beam divergence. The laser beam optimized to generate the best electron beam was not the one with the ``best'' focal spot. When a particular wavefront of laser light interacts with plasma, it can affect the plasma wave structures and trapping conditions of the electrons in a complex way. For example, Raman forward scattering, envelope self-modulation, relativistic self-focusing, and relativistic self-phase modulation and many other nonlinear interactions modify both the pulse envelope and phase as the pulse propagates, in a way that cannot be easily predicted and that subsequently dictates the formation of plasma waves. The optimal wavefront could be successfully determined via the heuristic search under laser-plasma conditions that were not known a priori. Control and shaping of the electron energy distribution was found to be less effective, but was still possible. Particle-in-cell simulations were performed to show that the mode structure of the laser beam can affect the plasma wave structure and trapping conditions of electrons, which

  8. Ultrafast Laser-Based Spectroscopy and Sensing: Applications in LIBS, CARS, and THz Spectroscopy

    Science.gov (United States)

    Leahy-Hoppa, Megan R.; Miragliotta, Joseph; Osiander, Robert; Burnett, Jennifer; Dikmelik, Yamac; McEnnis, Caroline; Spicer, James B.

    2010-01-01

    Ultrafast pulsed lasers find application in a range of spectroscopy and sensing techniques including laser induced breakdown spectroscopy (LIBS), coherent Raman spectroscopy, and terahertz (THz) spectroscopy. Whether based on absorption or emission processes, the characteristics of these techniques are heavily influenced by the use of ultrafast pulses in the signal generation process. Depending on the energy of the pulses used, the essential laser interaction process can primarily involve lattice vibrations, molecular rotations, or a combination of excited states produced by laser heating. While some of these techniques are currently confined to sensing at close ranges, others can be implemented for remote spectroscopic sensing owing principally to the laser pulse duration. We present a review of ultrafast laser-based spectroscopy techniques and discuss the use of these techniques to current and potential chemical and environmental sensing applications. PMID:22399883

  9. Ultrafast Laser-Based Spectroscopy and Sensing: Applications in LIBS, CARS, and THz Spectroscopy

    Directory of Open Access Journals (Sweden)

    Megan R. Leahy-Hoppa

    2010-04-01

    Full Text Available Ultrafast pulsed lasers find application in a range of spectroscopy and sensing techniques including laser induced breakdown spectroscopy (LIBS, coherent Raman spectroscopy, and terahertz (THz spectroscopy. Whether based on absorption or emission processes, the characteristics of these techniques are heavily influenced by the use of ultrafast pulses in the signal generation process. Depending on the energy of the pulses used, the essential laser interaction process can primarily involve lattice vibrations, molecular rotations, or a combination of excited states produced by laser heating. While some of these techniques are currently confined to sensing at close ranges, others can be implemented for remote spectroscopic sensing owing principally to the laser pulse duration. We present a review of ultrafast laser-based spectroscopy techniques and discuss the use of these techniques to current and potential chemical and environmental sensing applications.

  10. Inhibition of Escherichia coli respiratory enzymes by short visible femtosecond laser irradiation

    International Nuclear Information System (INIS)

    Lu, Chieh-Han; Hsu, Yung-Yuan; Lin, Kung-Hsuan; Tsen, Kong-Thon; Kuan, Yung-Shu

    2014-01-01

    A visible femtosecond laser is shown to be capable of selectively inactivating a wide spectrum of microorganisms in a wavelength and pulse width dependent manner. However, the mechanism of how a visible femtosecond laser affects the viability of different microorganisms is still elusive. In this paper, the cellular surface properties, membrane integrity and metabolic rate of Escherichia coli (E. coli) irradiated by a visible femtosecond laser (λ = 415 nm, pulse width = 100 fs) with different exposure times were investigated. Our results showed that femtosecond laser treatment for 60 min led to cytoplasmic leakage, protein aggregation and alternation of the physical properties of the E. coli cell membrane. In comparison, a 10 min exposure of bacteria to femtosecond laser irradiation induced an immediate reduction of 75% in the glucose-dependent respiratory rate, while the cytoplasmic leakage was not detected. Results from enzymatic assays showed that oxidases and dehydrogenases involved in the E. coli respiratory chain exhibited divergent susceptibility after laser irradiation. This early commencement of respiratory inhibition after a short irradiation is presumed to have a dominant effect on the early stage of bacteria inactivation. (paper)

  11. The art of femtosecond laser writing

    OpenAIRE

    Kazansky, Peter G.; Yang, Weijia; Shimotsuma, Yasuhiko; Hirao, Kazuyuki; Arai, Alan; Svirko, Yuri P.

    2009-01-01

    Common beliefs that laser writing does not change when reversing beam scan or propagation direction are challenged. Recently discovered phenomena of quill and non-reciprocal femtosecond laser writing in glasses and crystals are reviewed

  12. Cutting NiTi with Femtosecond Laser

    Directory of Open Access Journals (Sweden)

    L. Quintino

    2013-01-01

    Full Text Available Superelastic shape memory alloys are difficult to machine by thermal processes due to the facility for Ti oxidation and by mechanical processes due to their superelastic behavior. In this study, femtosecond lasers were tested to analyze the potential for machining NiTi since femtosecond lasers allow nonthermal processing of materials by ablation. The effect of processing parameters on machining depth was studied, and material removal rates were computed. Surfaces produced were analyzed under SEM which shows a resolidified thin layer with minimal heat affected zones. However, for high cutting speeds, that is, for short interaction times, this layer was not observed. A depletion of Ni was seen which may be beneficial in biomedical applications since Ni is known to produce human tissue reactions in biophysical environments.

  13. Progress in Cherenkov femtosecond fiber lasers

    DEFF Research Database (Denmark)

    Liu, Xiaomin; Svane, Ask Sebastian; Lægsgaard, Jesper

    2016-01-01

    systems are highlighted—dependent on the realization scheme, the Cherenkov lasers can generate the femtosecond output tunable across the entire visible and even the UV range, and for certain designs more than 40% conversion efficiency from the pump to Cherenkov signal can be achieved. The femtosecond......We review the recent developments in the field of ultrafast Cherenkov fiber lasers. Two essential properties of such laser systems—broad wavelength tunability and high efficiency of Cherenkov radiation wavelength conversion are discussed. The exceptional performance of the Cherenkov fiber laser...... Cherenkov laser with all-fiber architecture is presented and discussed. Operating in the visible range, it delivers 100–200 fs wavelength-tunable pulses with multimilliwatt output power and exceptionally low noise figure an order of magnitude lower than the traditional wavelength tunable supercontinuumbased...

  14. Tracking the ultrafast motion of a single molecule by femtosecond orbital imaging

    Science.gov (United States)

    Cocker, Tyler L.; Peller, Dominik; Yu, Ping; Repp, Jascha; Huber, Rupert

    2016-11-01

    Watching a single molecule move on its intrinsic timescale has been one of the central goals of modern nanoscience, and calls for measurements that combine ultrafast temporal resolution with atomic spatial resolution. Steady-state experiments access the requisite spatial scales, as illustrated by direct imaging of individual molecular orbitals using scanning tunnelling microscopy or the acquisition of tip-enhanced Raman and luminescence spectra with sub-molecular resolution. But tracking the intrinsic dynamics of a single molecule directly in the time domain faces the challenge that interactions with the molecule must be confined to a femtosecond time window. For individual nanoparticles, such ultrafast temporal confinement has been demonstrated by combining scanning tunnelling microscopy with so-called lightwave electronics, which uses the oscillating carrier wave of tailored light pulses to directly manipulate electronic motion on timescales faster even than a single cycle of light. Here we build on ultrafast terahertz scanning tunnelling microscopy to access a state-selective tunnelling regime, where the peak of a terahertz electric-field waveform transiently opens an otherwise forbidden tunnelling channel through a single molecular state. It thereby removes a single electron from an individual pentacene molecule’s highest occupied molecular orbital within a time window shorter than one oscillation cycle of the terahertz wave. We exploit this effect to record approximately 100-femtosecond snapshot images of the orbital structure with sub-ångström spatial resolution, and to reveal, through pump/probe measurements, coherent molecular vibrations at terahertz frequencies directly in the time domain. We anticipate that the combination of lightwave electronics and the atomic resolution of our approach will open the door to visualizing ultrafast photochemistry and the operation of molecular electronics on the single-orbital scale.

  15. Study of the Bulk Charge Carrier Dynamics in Anatase and Rutile TiO2 Single Crystals by Femtosecond Time Resolved Spectroscopy

    KAUST Repository

    Maity, Partha

    2018-04-02

    Understanding of the fundamentals behind charge carriers of photo-catalytic materials are still illusive hindering progress in our quest for renewable energy. TiO2 anatase and rutile are the most understood phases in photo-catalysis and serve as the best model for fundamental studies. Their ultrafast charge carrier dynamics especially on TiO2 anatase single crystal (the most active phase) are unresolved. Here femtosecond time resolved spectroscopy (TRS) was carried out to explore the dynamics of photo-excited charge carriers’ recombination in anatase single crystal, for the first time using pump fluence effects, and compares it to that of the rutile single crystal. A significant difference in charge carrier recombination rates between both crystals is observed. We found that the time constants for carrier recombination are two orders of magnitude slower for anatase (101) when compared to those of rutile (110). Moreover, bulk defects introduced by reduction of the samples via annealing in ultra-high vacuum resulted in faster recombination rates for both polymorphs. Both states (fresh and reduced) probed by pump fluence dependence measurements revealed that the major recombination channel in fresh and reduced anatase and reduced rutile is the first-order Shockley–Reed mediated. However, for fresh rutile, third-body Auger recombination was observed, attributed to the presence of higher density of intrinsic charge carriers. At all excitation wavelengths and fluence investigated, anatase (101) single crystal show longer charge carrier lifetime when compared to rutile (110) single. This may explain the superiority of the anatase phase for the electron transfer H+ reduction to molecular hydrogen.

  16. Workshop on scientific applications of short wavelength coherent light sources

    International Nuclear Information System (INIS)

    Spicer, W.; Arthur, J.; Winick, H.

    1993-02-01

    This report contains paper on the following topics: A 2 to 4nm High Power FEL On the SLAC Linac; Atomic Physics with an X-ray Laser; High Resolution, Three Dimensional Soft X-ray Imaging; The Role of X-ray Induced Damage in Biological Micro-imaging; Prospects for X-ray Microscopy in Biology; Femtosecond Optical Pulses?; Research in Chemical Physics Surface Science, and Materials Science, with a Linear Accelerator Coherent Light Source; Application of 10 GeV Electron Driven X-ray Laser in Gamma-ray Laser Research; Non-Linear Optics, Fluorescence, Spectromicroscopy, Stimulated Desorption: We Need LCLS' Brightness and Time Scale; Application of High Intensity X-rays to Materials Synthesis and Processing; LCLS Optics: Selected Technological Issues and Scientific Opportunities; Possible Applications of an FEL for Materials Studies in the 60 eV to 200 eV Spectral Region

  17. Infrared single shot diagnostics for the longitudinal profile of the electron bunches at FLASH

    International Nuclear Information System (INIS)

    Delsim-Hashemi, Hossein

    2008-09-01

    The longitudinal profile of electron bunches plays an important role in the design of single-pass free electron lasers and future linear e + e - colliders. For the free electron laser FLASH in Hamburg, a longitudinal compression scheme is used which results in an asymmetric longitudinal bunch profile with a 'spike'. This 'spike', which has a very high peak current, is used in a high-gain SASE-FEL process to produce high intensity (about 70 μJ) femtosecond photon pulses in the XUV wavelength range. The required high peak current of the electron bunch is realized by confining a large number of electrons in a width, measured in time units, of few tens of femtosecond, making the diagnostics of such bunches a challenge. Furthermore, the operation of facilities such as FLASH shows that single-shot diagnostics is indispensable. It is intuitive to use a time domain method to measure the electron bunch length. However, when the structures present in the bunch profile fall in the femtoseconds range, this is beyond the resolution of time-resolved methods developed so far. In this thesis, a wavelength-domain technique is described that can fulfill both requirements of single shot and high resolution reaching to the femtoseconds range. The amount of charge that is confined in a typical length of several femtoseconds (FWHM of the spike) can be determined by a novel single-shot spectrometer that resolves the coherent radiation (e.g. coherent transition radiation) in the far-infrared and mid-infrared range. Furthermore the extension of this single-shot spectroscopy to shorter wavelengths reaching the near-infrared, makes it possible to investigate the presence of structures in the bunch profile that might correlate or anti-correlate to the SASE intensity. (orig.)

  18. Infrared single shot diagnostics for the longitudinal profile of the electron bunches at FLASH

    Energy Technology Data Exchange (ETDEWEB)

    Delsim-Hashemi, Hossein

    2008-09-15

    The longitudinal profile of electron bunches plays an important role in the design of single-pass free electron lasers and future linear e{sup +}e{sup -} colliders. For the free electron laser FLASH in Hamburg, a longitudinal compression scheme is used which results in an asymmetric longitudinal bunch profile with a 'spike'. This 'spike', which has a very high peak current, is used in a high-gain SASE-FEL process to produce high intensity (about 70 {mu}J) femtosecond photon pulses in the XUV wavelength range. The required high peak current of the electron bunch is realized by confining a large number of electrons in a width, measured in time units, of few tens of femtosecond, making the diagnostics of such bunches a challenge. Furthermore, the operation of facilities such as FLASH shows that single-shot diagnostics is indispensable. It is intuitive to use a time domain method to measure the electron bunch length. However, when the structures present in the bunch profile fall in the femtoseconds range, this is beyond the resolution of time-resolved methods developed so far. In this thesis, a wavelength-domain technique is described that can fulfill both requirements of single shot and high resolution reaching to the femtoseconds range. The amount of charge that is confined in a typical length of several femtoseconds (FWHM of the spike) can be determined by a novel single-shot spectrometer that resolves the coherent radiation (e.g. coherent transition radiation) in the far-infrared and mid-infrared range. Furthermore the extension of this single-shot spectroscopy to shorter wavelengths reaching the near-infrared, makes it possible to investigate the presence of structures in the bunch profile that might correlate or anti-correlate to the SASE intensity. (orig.)

  19. Human cadaver retina model for retinal heating during corneal surgery with a femtosecond laser

    Science.gov (United States)

    Sun, Hui; Fan, Zhongwei; Yun, Jin; Zhao, Tianzhuo; Yan, Ying; Kurtz, Ron M.; Juhasz, Tibor

    2014-02-01

    Femtosecond lasers are widely used in everyday clinical procedures to perform minimally invasive corneal refractive surgery. The intralase femtosecond laser (AMO Corp. Santa Ana, CA) is a common example of such a laser. In the present study a numerical simulation was developed to quantify the temperature rise in the retina during femtosecond intracorneal surgery. Also, ex-vivo retinal heating due to laser irradiation was measured with an infrared thermal camera (Fluke Corp. Everett, WA) as a validation of the simulation. A computer simulation was developed using Comsol Multiphysics to calculate the temperature rise in the cadaver retina during femtosecond laser corneal surgery. The simulation showed a temperature rise of less than 0.3 degrees for realistic pulse energies for the various repetition rates. Human cadaver retinas were irradiated with a 150 kHz Intralase femtosecond laser and the temperature rise was measured withan infrared thermal camera. Thermal camera measurements are in agreement with the simulation. During routine femtosecond laser corneal surgery with normal clinical parameters, the temperature rise is well beneath the threshold for retina damage. The simulation predictions are in agreement with thermal measurements providing a level of experimental validation.

  20. Picometer-resolution dual-comb spectroscopy with a free-running fiber laser.

    Science.gov (United States)

    Zhao, Xin; Hu, Guoqing; Zhao, Bofeng; Li, Cui; Pan, Yingling; Liu, Ya; Yasui, Takeshi; Zheng, Zheng

    2016-09-19

    Dual-comb spectroscopy holds the promise as real-time, high-resolution spectroscopy tools. However, in its conventional schemes, the stringent requirement on the coherence between two lasers requires sophisticated control systems. By replacing control electronics with an all-optical dual-comb lasing scheme, a simplified dual-comb spectroscopy scheme is demonstrated using one dual-wavelength, passively mode-locked fiber laser. Pulses with a intracavity-dispersion-determined repetition-frequency difference are shown to have good mutual coherence and stability. Capability to resolve the comb teeth and a picometer-wide optical spectral resolution are demonstrated using a simple data acquisition system. Energy-efficient, free-running fiber lasers with a small comb-tooth-spacing could enable low-cost dual-comb systems.

  1. Structural changes in femtosecond laser modified regions inside fused silica

    International Nuclear Information System (INIS)

    Juodkazis, Saulius; Kohara, Shinji; Ohishi, Yasuo; Hirao, Norihisa; Vailionis, Arturas; Mizeikis, Vygantas; Saito, Akira; Rode, Andrei

    2010-01-01

    Structural characterization of photomodified microvolumes formed by tightly focused femtosecond laser pulses inside silica glass was carried out using synchrotron x-ray diffraction. The observed distinct separation between the O–O and Si–Si pair correlation peaks can be interpreted as a phase separation induced by microexplosions at the focal volume. The mechanisms of structural transitions induced by femtosecond laser pulses inside dielectrics are discussed

  2. Long distance measurement with a femtosecond laser based frequency comb

    Science.gov (United States)

    Bhattacharya, N.; Cui, M.; Zeitouny, M. G.; Urbach, H. P.; van den Berg, S. A.

    2017-11-01

    Recent advances in the field of ultra-short pulse lasers have led to the development of reliable sources of carrier envelope phase stabilized femtosecond pulses. The pulse train generated by such a source has a frequency spectrum that consists of discrete, regularly spaced lines known as a frequency comb. In this case both the frequency repetition and the carrier-envelope-offset frequency are referenced to a frequency standard, like an atomic clock. As a result the accuracy of the frequency standard is transferred to the optical domain, with the frequency comb as transfer oscillator. These unique properties allow the frequency comb to be applied as a versatile tool, not only for time and frequency metrology, but also in fundamental physics, high-precision spectroscopy, and laser noise characterization. The pulse-to-pulse phase relationship of the light emitted by the frequency comb has opened up new directions for long range highly accurate distance measurement.

  3. Femtosecond laser ablation and cutting technology on PMP foam

    International Nuclear Information System (INIS)

    Song Chengwei; Li Guo; Huang Yanhua; Du Kai; Yang Liang

    2013-01-01

    The femtosecond laser ablation results of PMP foam (density of 90 mg/cm 3 ) were analyzed. The laser pulses used for the study were 800 nm in wavelength, 50 fs in pulse duration and the repetition rate was 1000 Hz. The ablation threshold of the foam was 0.91 J/cm 2 when it was shot by 100 laser pulses. The impacts of laser power, the pulse number and the numerical aperture of the focusing objective on the crater diameter were obtained. In the same femtosecond laser machining system, comparing with the ablation shape into copper foil, the important factor causing the irregular shape of the ablation region was verified that there were many different sizes and randomly distributed pores inside PMP foam. The carbonation phenomenon was observed on the edge of the ablated areas when the sample was ablated using high laser power or/and more laser pulses. Thermal effect was considered to be the causes of the carbonation. A new method based on coupling laser beam to cut thickness greater than 1 mm film-foam with femtosecond laser was proposed. Using this method, the femtosecond laser cutting thickness was greater than 1.5 mm, the angle between the cutting side wall and the laser beam optical axis might be less than 5°, and the cutting surface was clean. (authors)

  4. Enhancement of peak intensity in a filament core with spatiotemporally focused femtosecond laser pulses

    Energy Technology Data Exchange (ETDEWEB)

    Zeng Bin; Chu Wei; Li Guihua; Zhang Haisu; Ni Jielei [State Key Laboratory of High Field Laser Physics, Shanghai Institute of Optics and Fine Mechanics, Chinese Academy of Sciences, Shanghai 201800 (China); Graduate School of Chinese Academy of Sciences, Beijing 100080 (China); Gao Hui; Liu Weiwei [Institute of Modern Optics, Nankai University, Tianjin, 300071 (China); Yao Jinping; Cheng Ya; Xu Zhizhan [State Key Laboratory of High Field Laser Physics, Shanghai Institute of Optics and Fine Mechanics, Chinese Academy of Sciences, Shanghai 201800 (China); Chin, See Leang [Center for Optics, Photonics and Laser (COPL) and Department of Physics, Engineering Physics and Optics, Universite Laval, Quebec City, QC, G1V 0A6 (Canada)

    2011-12-15

    We demonstrate that the peak intensity in the filament core, which is inherently limited by the intensity clamping effect during femtosecond laser filamentation, can be significantly enhanced using spatiotemporally focused femtosecond laser pulses. In addition, the filament length obtained by spatiotemporally focused femtosecond laser pulses is {approx}25 times shorter than that obtained by a conventional focusing scheme, resulting in improved high spatial resolution.

  5. A high-resolution two-pulse coherent anti-Stokes Raman scattering spectrum using a spectral amplitude modulation

    International Nuclear Information System (INIS)

    Lu, Chenhui; Zhang, Shian; Wu, Meizhen; Jia, Tianqing; Sun, Zhenrong; Qiu, Jianrong

    2013-01-01

    Femtosecond coherent anti-Stokes Raman scattering (CARS) spectra suffer from low spectral resolution because of the broadband laser spectrum. In this paper, we propose a feasible scheme to achieve a high-resolution two-pulse CARS spectrum by shaping both the pump and probe pulses using rectangular amplitude modulation. We show that a narrowband hole in the CARS spectrum can be created by the amplitude-shaped laser pulse, the position of which is correlated with the Raman resonant frequency of the molecule. Thus, by observing holes in the CARS spectrum, we are able to obtain a high-resolution CARS spectrum and the energy-level diagram of the molecule. (paper)

  6. NATO Advanced Study Institute on Frontiers of Optical Spectroscopy

    CERN Document Server

    Bartolo, Baldassare

    2005-01-01

    Advanced spectroscopic techniques allow the probing of very small systems and very fast phenomena, conditions that can be considered "extreme" at the present status of our experimentation and knowledge. Quantum dots, nanocrystals and single molecules are examples of the former and events on the femtosecond scale examples of the latter. The purpose of this book is to examine the realm of phenomena of such extreme type and the techniques that permit their investigations. Each author has developed a coherent section of the program starting at a somewhat fundamental level and ultimately reaching the frontier of knowledge in the field in a systematic and didactic fashion. The formal lectures are complemented by additional seminars.

  7. Femtosecond X-ray Pulses from a Spatially Chirped Electron Bunch in a SASE FEL

    Energy Technology Data Exchange (ETDEWEB)

    Emma, P.

    2003-01-14

    We propose a simple method to produce short x-ray pulses using a spatially chirped electron bunch in a SASE FEL. The spatial chirp is generated using an rf deflector which produces a transverse offset (in y and/or y') correlated with the longitudinal bunch position. Since the FEL gain is very sensitive to an initial offset in the transverse phase space at the entrance of the undulator, only a small portion of the electron bunch with relatively small transverse offset will interact significantly with the radiation, resulting in an x-ray pulse length much shorter than the electron bunch length. The x-ray pulse is also naturally phase locked to the rf deflector and so allows high precision timing synchronization. We discuss the generation and transport of such a spatially chirped electron beam and show that tens of femtosecond long pulse can be generated for the linac coherent light source (LCLS).

  8. Key kinematic parameters in a low-loss power splitter written by femtosecond laser micromachining

    Science.gov (United States)

    Peyton, R.; Guarepi, V.; Videla, F.; Torchia, G. A.

    2018-05-01

    In this work we design, fabricate and characterize a 1  ×  2 Y-branch power splitter based on simplified coherent coupling. This device was constructed by type II waveguide structures inscribed by a direct femtosecond laser writing technique in x-cut lithium niobate crystal. First of all, a theoretical study that links the kinematic and writing fluence of the process is developed, which allows us to establish the design trade-off and justify the best geometry chosen. Then, the design was optimized and tested by using commercial software, resulting in a compact and low-loss photonic circuit. The efficiency of the proposed device is compared with two others: a curved and a straight splitter. Finally, the experimental results were compared with simulations and then a statistical analysis of multiple comparisons was also conducted, obtaining 3.7 dB  ±  0.1 dB insertion losses and 4.5% of the unbalanced coupling ratio.

  9. Structural features of silver-doped phosphate glasses in zone of femtosecond laser-induced modification

    Science.gov (United States)

    Vasileva, A. A.; Nazarov, I. A.; Olshin, P. K.; Povolotskiy, A. V.; Sokolov, I. A.; Manshina, A. A.

    2015-10-01

    Femtosecond (fs) laser writing of two-dimensional microstructures (waveguides) is demonstrated in bulk phosphate glasses doped with silver ions. Silver-content phosphate and silver-content niobium-phosphate glasses with high concentration of silver oxide 55 mol% were used as samples for fs laser writing. The chemical network structure of the synthesized samples is analyzed through Raman spectroscopy and was found to be strongly sensitive to Nb incorporation. It was found that the direct laser writing process enables not only reorganization of glass network, but also formation of color centers and silver nanoparticles that are revealed in appearance of luminescence signal and plasmon absorption. The process of NPs' formation is more efficient for Nb-phosphate glass, while color centers are preferably formed in phosphate glass.

  10. Filament-induced remote surface ablation for long range laser-induced breakdown spectroscopy operation

    International Nuclear Information System (INIS)

    Rohwetter, Ph.; Stelmaszczyk, K.; Woeste, L.; Ackermann, R.; Mejean, G.; Salmon, E.; Kasparian, J.; Yu, J.; Wolf, J.-P.

    2005-01-01

    We demonstrate laser induced ablation and plasma line emission from a metallic target at distances up to 180 m from the laser, using filaments (self-guided propagation structures ∼ 100 μm in diameter and ∼ 5 x 10 13 W/cm 2 in intensity) appearing as femtosecond and terawatt laser pulses propagating in air. The remarkable property of filaments to propagate over a long distance independently of the diffraction limit opens the frontier to long range operation of the laser-induced breakdown spectroscopy technique. We call this special configuration of remote laser-induced breakdown spectroscopy 'remote filament-induced breakdown spectroscopy'. Our results show main features of filament-induced ablation on the surface of a metallic sample and associated plasma emission. Our experimental data allow us to estimate requirements for the detection system needed for kilometer-range remote filament-induced breakdown spectroscopy experiment

  11. Femtosecond, two-photon laser-induced-fluorescence imaging of atomic oxygen in an atmospheric-pressure plasma jet

    Science.gov (United States)

    Schmidt, Jacob B.; Sands, Brian L.; Kulatilaka, Waruna D.; Roy, Sukesh; Scofield, James; Gord, James R.

    2015-06-01

    Femtosecond, two-photon-absorption laser-induced-fluorescence (fs-TALIF) spectroscopy is employed to measure space- and time-resolved atomic-oxygen distributions in a nanosecond, repetitively pulsed, externally grounded, atmospheric-pressure plasma jet flowing helium with a variable oxygen admixture. The high-peak-intensity, low-average-energy femtosecond pulses result in increased TALIF signal with reduced photolytic inferences. This allows 2D imaging of absolute atomic-oxygen number densities ranging from 5.8   ×   1015 to 2.0   ×   1012cm-3 using a cooled CCD with an external intensifier. Xenon is used for signal and imaging-system calibrations to quantify the atomic-oxygen fluorescence signal. Initial results highlight a transition in discharge morphology from annular to filamentary, corresponding with a change in plasma chemistry from ozone to atomic oxygen production, as the concentration of oxygen in the feed gas is changed at a fixed voltage-pulse-repetition rate. In this configuration, significant concentrations of reactive oxygen species may be remotely generated by sustaining an active discharge beyond the confines of the dielectric capillary, which may benefit applications that require large concentrations of reactive oxygen species such as material processing or biomedical devices.

  12. Interpreting coherent anti-Stokes Raman spectra measured with multimode Nd:YAG pump lasers

    International Nuclear Information System (INIS)

    Farrow, R.L.; Rahn, L.A.

    1985-01-01

    We report comparisons of coherent anti-Stokes Raman spectroscopy (CARS) measurements using single-axial-and multiaxial-mode Nd:YAG lasers. Our results demonstrate the validity of a recently proposed convolution expression for unresolved CARS spectra. The results also support the use of a relative delay of several coherence lengths between pump-beam paths for reducing the effects of pump-field statistics on the CARS spectral profile

  13. INTERACTION OF FEMTOSECOND LASER RADIATION WITH SKIN: MATHEMATICAL MODEL

    Directory of Open Access Journals (Sweden)

    Pavel Yu. Rogov

    2017-03-01

    Full Text Available The features of human skin response to the impact of femtosecond laser radiation were researched. The Monte–Carlo method was used for estimation of the radiation penetration depth into the skin cover. We used prevalent wavelength equal to 800 nm (for Ti: sapphire laser femtosecond systems. A mathematical model of heat transfer process was introduced based on the analytical solution of the system of equations describing the dynamics of the electron and phonon subsystems. An experiment was carried out to determine the threshold energy of biological tissue injury (chicken skin was used as a test object. The value of electronic subsystem relaxation time was determined from the experiment and is in keeping with literature data. The results of this work can be used to assess the maximum permissible exposure of laser radiation of different lengths that cause the damage of biological tissues, as well as for the formation of safe operation standards for femtosecond laser systems.

  14. Spectroscopie de Fourier par peignes de fréquences femtosecondes

    OpenAIRE

    Mandon , Julien

    2009-01-01

    This work presents results towards the development of a novel frequency-comb based Fourier transform spectroscopy (FTS). Since 1970, due to its exceptional qualities, FTS has offered a simple way for spectral analysis and has assumed a position of dominance for the measurement of broadband well-resolved accurate spectra. However, FTS doesn't satisfy the new requirements in molecular physics. Acquisition time at the limit, extreme resolution, broad spectral extension, high sensitivity, and acc...

  15. Development and characterization of femtosecond laser driven soft x-ray lasers

    International Nuclear Information System (INIS)

    Bettaibi, I.

    2005-06-01

    Coherent soft x-ray sources have an important potential for scientific, medical and industrial applications. The development of high intensity laser systems allowed the realization of new coherent and fast soft x-ray sources like high order harmonic generation and soft x-ray lasers. These sources are compact, cheaper than traditional sources such as synchrotrons, and are thus interesting. This thesis presents the study of a new soft x-ray laser pumped by a femto-second laser beam working at 10 Hz. The circularly polarized ultra intense laser is longitudinally focused in a cell filled with xenon or krypton, to obtain the amplification of two lasing lines at 41.8 nm and 32.8 nm in Pd-like xenon and Ni-like krypton respectively. We carry out an experimental and numerical study of the source to understand the importance of different parameters such as the laser intensity and polarization, the gas pressure and the cell length. We have also spatially and temporally characterized the soft x-ray laser beam. To compensate the refraction of the driving laser we have investigated guiding techniques consisting in creating a plasma channel by electric discharge or using the multiple reflections of the driving laser on the internal walls of the dielectric tubes of sapphire or glass. A spectacular improvement of the source performances has been observed in both cases. Finally, we present a preliminary study on a different x-ray scheme: the inner shell photo pumping of neutral atoms. We have developed an optical system, which should create the appropriate conditions for the realisation of short wavelength x-ray amplifier. (author)

  16. Femtosecond laser control of chemical reactions

    CSIR Research Space (South Africa)

    Du Plessis, A

    2010-08-31

    Full Text Available Femtosecond laser control of chemical reactions is made possible through the use of pulse-shaping techniques coupled to a learning algorithm feedback loop – teaching the laser pulse to control the chemical reaction. This can result in controllable...

  17. Development of a new picosecond pulse radiolysis system by using a femtosecond laser synchronized with a picosecond linac. A step to femtosecond pulse radiolysis

    Energy Technology Data Exchange (ETDEWEB)

    Yoshida, Yoichi; Yamamoto, Tamotsu; Miki, Miyako; Seki, Shu; Okuda, Shuichi; Honda, Yoshihide; Kimura, Norio; Tagawa, Seiichi [Osaka Univ., Ibaraki (Japan). Inst. of Scientific and Industrial Research; Ushida, Kiminori

    1997-03-01

    A new picosecond pulse radiolysis system by using a Ti sapphire femtosecond laser synchronized with a 20 ps electron pulse from the 38 MeV L-band linac has been developed for the research of the ultra fast reactions in primary processes of radiation chemistry. The timing jitter in the synchronization of the laser pulse with the electron pulse is less than several picosecond. The technique can be used in the next femtosecond pulse radiolysis. (author)

  18. Raman spectroscopy of femtosecond multipulse irradiation of vitreous silica: Experiment and simulation

    Science.gov (United States)

    Shcheblanov, N. S.; Povarnitsyn, M. E.; Mishchik, K. N.; Tanguy, A.

    2018-02-01

    We report an experimental and numerical study of femtosecond multipulse laser-induced densification in vitreous silica (v -SiO2 ) and its signature in Raman spectra. We compare the experimental findings to the recently developed molecular dynamics (MD) approach accounting for bond breaking due to laser irradiation, together with a dynamical matrix approach and bond polarizability model based on first-principles calculations for the estimation of Raman spectra. We observe two stages of the laser-induced densification and Raman spectrum evolution: growth during several hundreds of pulses followed by further saturation. At the medium range, the network connectivity change in v -SiO2 is expressed in reduction of the major ring fractions leading to more compacted structure. With the help of the Sen and Thorpe model, we also study the short-range order transformation and derive the interbonding Si-O-Si angle change from the Raman measurements. Experimental findings are in excellent agreement with our MD simulations and hence support a bond-breaking mechanism of laser-induced densification. Thus, our modeling explains well the laser-induced changes both in the short-range order caused by the appearance of Si coordination defects and medium-range order connected to evolution of the ring distribution. Finally, our findings disclose similarities between sheared, permanently densified, and laser-induced glass and suggest interesting future experiments in order to clarify the impact of the thermomechanical history on glasses under shear, cold and hot compression, and laser-induced densification.

  19. Laser parameters, focusing optics, and side effects in femtosecond laser corneal surgery

    Science.gov (United States)

    Plamann, Karsten; Nuzzo, Valeria; Peyrot, Donald A.; Deloison, Florent; Savoldelli, Michèle; Legeais, Jean-Marc

    2008-02-01

    Nowadays, femtosecond lasers are routinely used in refractive eye surgery. Until recently, commercialised clinical systems were exclusively based on ytterbium or neodymium-doped solid state lasers emitting sub-picosecond pulses at a wavelength of about 1 μm and repetition rates of a few 10 kHz. These systems use pulse energies in the μJ range and focussing optics of NA = 0.3 to 0.5. Recent developments have provided a variety of alternative and equally viable approaches: systems are now available using nJ pulses at high numerical apertures and MHz repetition rates - an approach so far only used for femtosecond cell surgery - and fibre laser technology is now being used for femtosecond laser corneal surgery. Recent research has also provided more insight in side effects occurring in present systems: self focusing phenomena and so far unexplained periodical structures have been observed even at high numerical apertures (NA >> 0.5) and moderate pulse energies. The interaction of femtosecond laser pulses with strongly scattering tissue has been studied in view of extending the application of femtosecond lasers to keratoplasty for opaque corneas and to glaucoma surgery. The use of new laser wavelengths and adaptive optics has been proposed. Despite the reputation of femtosecond surgical systems for their precision, repeatability and the absence of secondary effects or complications, a closer examination reveals the presence of subtle phenomena which merit further investigation. We present three of these phenomena: the influence of optical aberration on the quality of the incision, the occurrence of filamentation effects, and the deposit of microscopic glass fragments when performing penetrating incisions.

  20. Differentiation of bacterial versus viral otitis media using a combined Raman scattering spectroscopy and low coherence interferometry probe (Conference Presentation)

    Science.gov (United States)

    Zhao, Youbo; Shelton, Ryan L.; Tu, Haohua; Nolan, Ryan M.; Monroy, Guillermo L.; Chaney, Eric J.; Boppart, Stephen A.

    2016-02-01

    Otitis media (OM) is a highly prevalent disease that can be caused by either a bacterial or viral infection. Because antibiotics are only effective against bacterial infections, blind use of antibiotics without definitive knowledge of the infectious agent, though commonly practiced, can lead to the problems of potential harmful side effects, wasteful misuse of medical resources, and the development of antimicrobial resistance. In this work, we investigate the feasibility of using a combined Raman scattering spectroscopy and low coherence interferometry (LCI) device to differentiate OM infections caused by viruses and bacteria and improve our diagnostic ability of OM. Raman spectroscopy, an established tool for molecular analysis of biological tissue, has been shown capable of identifying different bacterial species, although mostly based on fixed or dried sample cultures. LCI has been demonstrated recently as a promising tool for determining tympanic membrane (TM) thickness and the presence and thickness of middle-ear biofilm located behind the TM. We have developed a fiber-based ear insert that incorporates spatially-aligned Raman and LCI probes for point-of-care diagnosis of OM. As shown in human studies, the Raman probe provides molecular signatures of bacterial- and viral-infected OM and normal middle-ear cavities, and LCI helps to identify depth-resolved structural information as well as guide and monitor positioning of the Raman spectroscopy beam for relatively longer signal acquisition time. Differentiation of OM infections is determined by correlating in vivo Raman data collected from human subjects with the Raman features of different bacterial and viral species obtained from cultured samples.

  1. Coherent radiation from high-current electron beams of linear accelerators and its applications

    International Nuclear Information System (INIS)

    Okuda, Shuichi; Takanaka, Makoto; Nakamura, Mitsumi; Kato, Ryukou; Takahashi, Toshiharu; Nam, Soon-Kwon; Taniguchi, Ryouichi; Kojima, Takao

    2006-01-01

    The characteristics of the far-infrared light source using the coherent radiation emitted from a high-energy short electron bunch have been investigated. The coherent radiation has a continuous spectrum in a submillimeter to millimeter wavelength range and the brightness is relatively high. The spectrum of the radiation is determined by the longitudinal form factor of the electron bunch. The operational conditions of a high-current linear accelerator have been optimized using an electron bunch shape monitor. The coherent transition radiation light source has been applied to absorption spectroscopy for liquid water and to an imaging experiment for a leaf of rose

  2. Time-resolved photoelectron spectroscopy of nitrobenzene and its aldehydes

    Science.gov (United States)

    Schalk, Oliver; Townsend, Dave; Wolf, Thomas J. A.; Holland, David M. P.; Boguslavskiy, Andrey E.; Szöri, Milan; Stolow, Albert

    2018-01-01

    We report the first femtosecond time-resolved photoelectron spectroscopy study of 2-, 3- and 4-nitrobenzaldehyde (NBA) and nitrobenzene (NBE) in the gas phase upon excitation at 200 nm. In 3- and 4-NBA, the dynamics follow fast intersystem crossing within 1-2 picoseconds. In 2-NBA and NBE, the dynamics are faster (∼ 0.5 ps). 2-NBA undergoes hydrogen transfer similar to solution phase dynamics. NBE either releases NO2 in the excited state or converts internally back to the ground state. We discuss why these channels are suppressed in the other nitrobenzaldehydes.

  3. Preliminary Design of a Femtosecond Oscilloscope

    CERN Document Server

    Gazazyan, Edmond D; Kalantaryan, Davit K; Laziev, Edouard; Margaryan, Amour

    2005-01-01

    The calculations on motion of electrons in a finite length electromagnetic field of linearly and circularly polarized laser beams have shown that one can use the transversal deflection of electrons on a screen at a certain distance after the interaction region for the measurement of the length and longitudinal particle distribution of femtosecond bunches. In this work the construction and preliminary parameters of various parts of a device that may be called femtosecond oscilloscope are considered. The influence of various factors, such as the energy spread and size of the electron bunches, are taken into account. For CO2 laser intensity 1016 W/cm2 and field free drift length 1m the deflection is 5.3 and 0.06 cm, while the few centimeters long interaction length between 2 mirrors requires assembling accuracy 6 mm and 1.3 micron for 20 MeV to 50 keV, respectively.

  4. Determination of the antiproton-to-electron mass ratio by precision laser spectroscopy of $\\overline{p}He^{+}$

    CERN Document Server

    Hori, M; Eades, John; Gomikawa, K; Hayano, R S; Ono, N; Pirkl, Werner; Widmann, E; Torii, H A; Juhász, B; Barna, D; Horváth, D

    2006-01-01

    A femtosecond optical frequency comb and continuous-wave pulse- amplified laser were used to measure 12 transition frequencies of antiprotonic helium to fractional precisions of (9-16) 10/sup -9lifetimes hitherto unaccessible to our precision laser spectroscopy method. Comparisons with three-body QED calculations yielded an antiproton-to-electron mass ratio of M/sub pmacron//m/sub e/=1836.152 674(5).

  5. Few femtosecond, few kilo-ampere electron bunch produced by a laser-plasma accelerator

    International Nuclear Information System (INIS)

    Lundh, O.; Lim, J.; Rechatin, C.; Ammoura, L.; Goddet, J.P.; Malka, V.; Faure, J.; Ben-Ismail, A.; Davoine, X.; Lefebvre, E.; Gallot, G.

    2011-01-01

    Particle accelerators driven by the interaction of ultra-intense and ultrashort laser pulses with a plasma can generate accelerating electric fields of several hundred giga-volts per meter and deliver high-quality electron beams with low energy spread, low emittance and up to 1 GeV peak energy. Moreover, it is expected they may soon be able to produce bursts of electrons shorter than those produced by conventional particle accelerators, down to femtosecond durations and less. Here we present wide-band spectral measurements of coherent transition radiation which we use for temporal characterization. Our analysis shows that the electron beam, produced using controlled optical injection, contains a temporal feature that can be identified as a 15 pC, 1.4-1.8 fs electron bunch (root mean square) leading to a peak current of 3-4 kA depending on the bunch shape. We anticipate that these results will have a strong impact on emerging applications such as short-pulse and short-wavelength radiation sources, and will benefit the realization of laboratory-scale free-electron lasers. (authors)

  6. Programmable femtosecond laser pulses in the ultraviolet

    International Nuclear Information System (INIS)

    Hacker, M.; Feurer, T.; Sauerbrey, R.; Lucza, T.; Szabo, G.

    2001-01-01

    Using a combination of a zero-dispersion compressor and spectrally compensated sum-frequency generation, we have produced amplitude-modulated femtosecond pulses in the UV at 200 nm. [copyright] 2001 Optical Society of America

  7. Ultrafast photo-induced nuclear relaxation of a conformationally disordered conjugated polymer probed with transient absorption and femtosecond stimulated Raman spectroscopies

    Energy Technology Data Exchange (ETDEWEB)

    Yu, Wenjian; Donohoo-Vallett, Paul J.; Zhou, Jiawang; Bragg, Arthur E., E-mail: artbragg@jhu.edu [Department of Chemistry, Johns Hopkins University, 3400 N. Charles St., Baltimore, Maryland 21218 (United States)

    2014-07-28

    A combination of transient absorption (TAS) and femtosecond stimulated Raman (FSRS) spectroscopies were used to interrogate the photo-induced nuclear relaxation dynamics of poly(3-cyclohexyl,4-methylthiophene) (PCMT). The large difference in inter-ring dihedral angles of ground and excited-state PCMT make it an ideal candidate for studying large-amplitude vibrational relaxation associated with exciton trapping. Spectral shifting in the S{sub 1} TA spectra on sub-ps timescales (110 ± 20 and 800 ± 100 fs) is similar to spectroscopic signatures of excited-state relaxation observed with related photoexcited conjugated polymers and which have been attributed to exciton localization and a combination of resonant energy transfer and torsional relaxation, respectively. Measurements made with both techniques reveal fast PCMT S{sub 1} decay and triplet formation (τ{sub S1} = 25–32 ps), which is similar to the excited-state dynamics of short oligothiophenes and highly twisted polyconjugated molecules. On ultrafast timescales FSRS of S{sub 1} PCMT offers a new perspective on the nuclear dynamics that underlie localization of excitons in photoexcited conjugated polymers: Spectral dynamics in the C=C stretching region (1400–1600 cm{sup −1}) include a red-shift of the in-phase C=C stretching frequency, as well as a change in the relative intensity of in-phase and out-of-phase stretch intensities on a timescale of ∼100 fs. Both changes indicate an ultrafast vibrational distortion that increases the conjugation length in the region of the localized excitation and are consistent with exciton self-localization or trapping. Wavelength-dependent excited-state FSRS measurements further demonstrate that the C=C stretching frequency provides a useful spectroscopic handle for interrogating the degree of delocalization in excited conjugated polymers given the selectivity achieved via resonance enhancement.

  8. High precision patterning of ITO using femtosecond laser annealing process

    International Nuclear Information System (INIS)

    Cheng, Chung-Wei; Lin, Cen-Ying

    2014-01-01

    Highlights: • We have reported a process of fabrication of crystalline indium tin oxide (c-ITO) patterns using femtosecond laser-induced crystallization with a Gaussian beam profile followed by chemical etching. • The experimental results have demonstrated that the ablation and crystallization threshold fluences of a-ITO thin film are well-defined, the line width of the c-ITO patterns is controllable. • Fast fabrication of the two parallel sub-micro (∼0.5 μm) c-ITO line patterns using a single femtosecond laser beam and a single scanning path can be achieved. • A long-length sub-micro c-ITO line pattern is fabricated, and the feasibility of fabricating c-ITO patterns is confirmed, which are expected to be used in micro-electronics devices. - Abstract: High precision patterning of crystalline indium tin oxide (c-ITO) patterns on amorphous ITO (a-ITO) thin films by femtosecond laser-induced crystallization with a Gaussian beam profile followed by chemical etching is demonstrated. In the proposed approach, the a-ITO thin film is selectively transformed into a c-ITO structure via a low heat affect zone and the well-defined thresholds (ablation and crystallization) supplied by the femtosecond laser pulse. The experimental results show that by careful control of the laser fluence above the crystallization threshold, c-ITO patterns with controllable line widths and ridge-free characteristics can be accomplished. By careful control of the laser fluence above the ablation threshold, fast fabrication of the two parallel sub-micro c-ITO line patterns using a single femtosecond laser beam and single scanning path can be achieved. Along-length sub-micro c-ITO line pattern is fabricated, and the feasibility of fabricating c-ITO patterns is confirmed, which are expected to be used in micro-electronics devices

  9. Fabrication of a reinforced polymer microstructure using femtosecond laser material processing

    International Nuclear Information System (INIS)

    Alubaidy, M; Venkatakrishnan, K; Tan, B

    2010-01-01

    This paper presents a new method for the formation of microfeatures with reinforced polymer using femtosecond laser material processing. The femtosecond laser was used for the generation of a three-dimensional interweaved nanofiber and the construction of microfeatures, such as microchannels and voxels, through two-photon polymerization of a nanofiber-dispersed polymer resin. This new method has the potential of direct fabrication of reinforced micro/nanostructures.

  10. Phase-Sensitive Control Of Molecular Dissociation Through Attosecond Pump/Strong-Field Mid-IR Probe Spectroscopy

    Science.gov (United States)

    2016-04-15

    splitter (consisting of a thin, uncoated, silicon plate at brewsters angle) and the beams were focused onto the OPA crystal. For this work two...experiments in the future. These technologies include • Two-color driven (EUV/mid-IR) ion spectroscopy: we designed an interferometer combining EUV...isolated single-femtosecond EUV pulse generation: combining the use of low ionization threshold gas, an annual near-IR drive beam , polarization

  11. Elucidation of reactive wavepackets by two-dimensional resonance Raman spectroscopy

    Energy Technology Data Exchange (ETDEWEB)

    Guo, Zhenkun; Molesky, Brian P.; Cheshire, Thomas P.; Moran, Andrew M., E-mail: ammoran@email.unc.edu [Department of Chemistry, University of North Carolina at Chapel Hill, Chapel Hill, North Carolina 27599 (United States)

    2015-09-28

    Traditional second-order kinetic theories fail to describe sub-picosecond photochemical reactions when solvation and vibrational dephasing undermine the assumption of equilibrium initial conditions. Four-wave mixing spectroscopies may reveal insights into such non-equilibrium processes but are limited by the single “population time” available in these types of experiments. Here, we use two-dimensional resonance Raman (2DRR) spectroscopy to expose correlations between coherent nuclear motions of the reactant and product in the photodissociation reaction of triiodide. It is shown that the transition of a nuclear wavepacket from the reactant (triiodide) to product (diiodide) states gives rise to a unique pattern of 2DRR resonances. Peaks associated with this coherent reaction mechanism are readily assigned, because they are isolated in particular quadrants of the 2DRR spectrum. A theoretical model in which the chemical reaction is treated as a vibronic coherence transfer transition from triiodide to diiodide reproduces the patterns of 2DRR resonances detected in experiments. These signal components reveal correlation between the nonequilibrium geometry of triiodide and the vibrational coherence frequency of diiodide. The 2DRR signatures of coherent reaction mechanisms established in this work may generalize to studies of ultrafast energy and charge transfer processes.

  12. Inverse cutting of posterior lamellar corneal grafts by a femtosecond laser.

    Science.gov (United States)

    Hjortdal, Jesper; Nielsen, Esben; Vestergaard, Anders; Søndergaard, Anders

    2012-01-01

    Posterior lamellar grafting of the cornea has become the preferred technique for treatment of corneal endothelial dysfunction. Posterior lamellar grafts are usually cut by a micro-keratome or a femto-second laser after the epithelial side of the donor cornea has been applanated. This approach often results in variable central graft thickness in different grafts and an increase in graft thickness towards the periphery in every graft. The purpose of this study was to evaluate if posterior lamellar grafts can be prepared from the endothelial side by a femto-second laser, resulting in reproducible, thin grafts of even thickness. A CZM 500 kHz Visumax femto-second laser was used. Organ cultured donor grafts were mounted in an artifical anterior chamber with the endothelial side up and out. Posterior grafts of 7.8 mm diameter and 130 micron thickness were prepared by femto-second laser cutting. A standard DSAEK procedure was performed in 10 patients with Fuchs endothelial dystrophy. Patients were followed-up regularly and evaluated by measurement of complications, visual acuity, corneal thickness (Pentacam HR), and endothelial cell density. Femto-laser cutting of grafts and surgery was uncomplicated. Rebubbling was necessary in 5 of 10 cases (normally only in 1 of 20 cases). All grafts were attached and cleared up during the first few weeks. After six months, the average visual acuity was 0.30 (range: 0.16 to 0.50), corneal thickness was 0.58 mm (range 0.51 to 0.63), and endothelial cell density was 1.570 per sq. mm (range: 1.400 to 2.000 cells per sq. mm). The grafts were of uniform thickness, but substantial interface haze was present in most grafts. Posterior lamellar corneal grafts can be prepared from the endothelial side using a femto-second laser. All grafts were clear after 6 months with satisfying endothelial cell counts. Poor visual acuity caused by interface scatter was observed in most patients. Femto-second laser cutting parameters needs to be optimised to

  13. Moving picture recording and observation of femtosecond light pulse propagation using a rewritable holographic material

    Energy Technology Data Exchange (ETDEWEB)

    Yamamoto, Seiji; Takimoto, Tetsuya; Tosa, Kazuya; Kakue, Takashi [Graduate School of Science and Technology, Kyoto Institute of Technology, Matsugasaki, Sakyo, Kyoto 606-8585 (Japan); Awatsuji, Yasuhiro, E-mail: awatsuji@kit.ac.jp [Graduate School of Science and Technology, Kyoto Institute of Technology, Matsugasaki, Sakyo, Kyoto 606-8585 (Japan); Nishio, Kenzo [Advanced Technology Center, Kyoto Institute of Technology, Matsugasaki, Sakyo, Kyoto 606-8585 (Japan); Ura, Shogo [Graduate School of Science and Technology, Kyoto Institute of Technology, Matsugasaki, Sakyo, Kyoto 606-8585 (Japan); Kubota, Toshihiro [Kubota Holography Laboratory, Corporation, Nishihata 34-1-609, Ogura, Uji 611-0042 (Japan)

    2011-08-01

    We succeeded in recording and observing femtosecond light pulse propagation as a form of moving picture by means of light-in-flight recording by holography using a rewritable holographic material, for the first time. We used a femtosecond pulsed laser whose center wavelength and duration were 800 nm and {approx}120 fs, respectively. A photo-conductor plastic hologram was used as a rewritable holographic material. The femtosecond light pulse was collimated and obliquely incident to the diffuser plate. The behavior of the cross-section between the collimated femtosecond light pulse and the diffuser plate was recorded on the photo-conductor plastic hologram. We experimentally obtained a spatially and temporally continuous moving picture of the femtosecond light pulse propagation for 58.3 ps. Meanwhile, we also investigated the rewritable performance of the photo-conductor plastic hologram. As a result, we confirmed that ten-time rewriting was possible for a photo-conductor plastic hologram.

  14. Resolution enhancement in MR spectroscopy of red bone marrow fat via intermolecular double-quantum coherences

    Science.gov (United States)

    Bao, Jianfeng; Cui, Xiaohong; Huang, Yuqing; Zhong, Jianhui; Chen, Zhong

    2015-08-01

    High-resolution 1H magnetic resonance spectroscopy (MRS) is generally inaccessible in red bone marrow (RBM) tissues using conventional MRS techniques. This is because signal from these tissues suffers from severe inhomogeneity in the main static B0 field originated from the intrinsic honeycomb structures in trabecular bone. One way to reduce effects of B0 field inhomogeneity is by using the intermolecular double quantum coherence (iDQC) technique, which has been shown in other systems to obtain signals insensitive to B0 field inhomogeneity. In the present study, we employed an iDQC approach to enhance the spectral resolution of RBM. The feasibility and performance of this method for achieving high resolution MRS was verified by experiments on phantoms and pig vertebral bone samples. Unsaturated fatty acid peaks which overlap in the conventional MRS were well resolved and identified in the iDQC spectrum. Quantitative comparison of fractions of three types of fatty acids was performed between iDQC spectra on the in situ RMB and conventional MRS on the extracted fat from the same RBM. Observations of unsaturated fatty acids with iDQC MRS may provide valuable information and may hold potential in diagnosis of diseases such as obesity, diabetes, and leukemia.

  15. Unraveling the nature of coherent beatings in chlorosomes

    Energy Technology Data Exchange (ETDEWEB)

    Dostál, Jakub [Department of Chemical Physics, Lund University, P.O. Box 124, SE-22100 Lund (Sweden); Faculty of Mathematics and Physics, Charles University in Prague, Ke Karlovu 3, 121 16 Prague (Czech Republic); Mančal, Tomáš; Pšenčík, Jakub [Faculty of Mathematics and Physics, Charles University in Prague, Ke Karlovu 3, 121 16 Prague (Czech Republic); Vácha, František [Faculty of Science, University of South Bohemia, Branišovská 31, 370 05 České Budějovice (Czech Republic); Zigmantas, Donatas, E-mail: donatas.zigmantas@chemphys.lu.se [Department of Chemical Physics, Lund University, P.O. Box 124, SE-22100 Lund (Sweden)

    2014-03-21

    Coherent two-dimensional (2D) spectroscopy at 80 K was used to study chlorosomes isolated from green sulfur bacterium Chlorobaculum tepidum. Two distinct processes in the evolution of the 2D spectrum are observed. The first being exciton diffusion, seen in the change of the spectral shape occurring on a 100-fs timescale, and the second being vibrational coherences, realized through coherent beatings with frequencies of 91 and 145 cm{sup −1} that are dephased during the first 1.2 ps. The distribution of the oscillation amplitude in the 2D spectra is independent of the evolution of the 2D spectral shape. This implies that the diffusion energy transfer process does not transfer coherences within the chlorosome. Remarkably, the oscillatory pattern observed in the negative regions of the 2D spectrum (dominated by the excited state absorption) is a mirror image of the oscillations found in the positive part (originating from the stimulated emission and ground state bleach). This observation is surprising since it is expected that coherences in the electronic ground and excited states are generated with the same probability and the latter dephase faster in the presence of fast diffusion. Moreover, the relative amplitude of coherent beatings is rather high compared to non-oscillatory signal despite the reported low values of the Huang-Rhys factors. The origin of these effects is discussed in terms of the vibronic and Herzberg-Teller couplings.

  16. Femtosecond laser surface structuring and oxidation of chromium thin coatings: Black chromium

    Energy Technology Data Exchange (ETDEWEB)

    Kotsedi, L., E-mail: Kotsedi@tlabs.ac.za [UNESCO-UNISA Africa Chair in Nanosciences-Nanotechnology, College of Graduate Studies, University of South Africa, Muckleneuk Ridge, P.O. Box 392, Pretoria (South Africa); Nanosciences African Network (NANOAFNET), iThemba LABS-National Research Foundation, 1 Old Faure Road, Somerset West 7129, P.O. Box 722, Somerset West, Western Cape (South Africa); Nuru, Z.Y. [UNESCO-UNISA Africa Chair in Nanosciences-Nanotechnology, College of Graduate Studies, University of South Africa, Muckleneuk Ridge, P.O. Box 392, Pretoria (South Africa); Nanosciences African Network (NANOAFNET), iThemba LABS-National Research Foundation, 1 Old Faure Road, Somerset West 7129, P.O. Box 722, Somerset West, Western Cape (South Africa); Mthunzi, P. [National Laser Centre, Council for Scientific and Industrial Research, 0001 Pretoria (South Africa); Muller, T.F.G. [University of the Western Cape, Physics Department, Bellville, 7535 Cape Town (South Africa); Eaton, S.M. [Physics Department, Politecnico di Milano, Piazza Leonardo Da Vinci, 32, 20133 Milano (Italy); Julies, B. [University of the Western Cape, Physics Department, Bellville, 7535 Cape Town (South Africa); Manikandan, E. [UNESCO-UNISA Africa Chair in Nanosciences-Nanotechnology, College of Graduate Studies, University of South Africa, Muckleneuk Ridge, P.O. Box 392, Pretoria (South Africa); Nanosciences African Network (NANOAFNET), iThemba LABS-National Research Foundation, 1 Old Faure Road, Somerset West 7129, P.O. Box 722, Somerset West, Western Cape (South Africa); Ramponi, R. [Physics Department, Politecnico di Milano, Piazza Leonardo Da Vinci, 32, 20133 Milano (Italy); Maaza, M. [UNESCO-UNISA Africa Chair in Nanosciences-Nanotechnology, College of Graduate Studies, University of South Africa, Muckleneuk Ridge, P.O. Box 392, Pretoria (South Africa); Nanosciences African Network (NANOAFNET), iThemba LABS-National Research Foundation, 1 Old Faure Road, Somerset West 7129, P.O. Box 722, Somerset West, Western Cape (South Africa)

    2014-12-01

    Highlights: • Oxidation of the chromium thin film to chromium oxide by femtosecond laser with a fundamental wavelength of 1064 nm. • Solar absorber from chromium oxide that low percentage reflectance. • Femtosecond laser oxidation, with a de-focused laser. • Chromium oxide formation by femtosecond laser in normal ambient. - Abstract: In view of their potential applications as selective solar absorbers, chromium coatings on float glass substrates were nano/micro structured by femtosecond laser in air. Raman and X-rays diffraction investigations confirmed the formation of an ultra-porous α-Cr{sub 2}O{sub 3} layer at the surface; higher is the input laser power, enhanced is the crystallinity of the α-Cr{sub 2}O{sub 3} layer. The α-Cr{sub 2}O{sub 3} layer with the Cr underneath it in addition to the photo-induced porosity acted as a classical ceramic–metal nano-composite making the reflectance to decrease significantly within the spectral range of 190–1100 nm. The average reflectance decreased from 70 to 2%.

  17. High-energy coherent terahertz radiation emitted by wide-angle electron beams from a laser-wakefield accelerator

    Science.gov (United States)

    Yang, Xue; Brunetti, Enrico; Jaroszynski, Dino A.

    2018-04-01

    High-charge electron beams produced by laser-wakefield accelerators are potentially novel, scalable sources of high-power terahertz radiation suitable for applications requiring high-intensity fields. When an intense laser pulse propagates in underdense plasma, it can generate femtosecond duration, self-injected picocoulomb electron bunches that accelerate on-axis to energies from 10s of MeV to several GeV, depending on laser intensity and plasma density. The process leading to the formation of the accelerating structure also generates non-injected, sub-picosecond duration, 1–2 MeV nanocoulomb electron beams emitted obliquely into a hollow cone around the laser propagation axis. These wide-angle beams are stable and depend weakly on laser and plasma parameters. Here we perform simulations to characterise the coherent transition radiation emitted by these beams if passed through a thin metal foil, or directly at the plasma–vacuum interface, showing that coherent terahertz radiation with 10s μJ to mJ-level energy can be produced with an optical to terahertz conversion efficiency up to 10‑4–10‑3.

  18. Simultaneous atomization and ionization of large organic molecules using femtosecond laser ablation

    International Nuclear Information System (INIS)

    Kurata-Nishimura, Mizuki; Tokanai, Fuyuki; Matsuo, Yukari; Kobayashi, Tohru; Kawai, Jun; Kumagai, Hiroshi; Midorikawa, Katsumi; Tanihata, Isao; Hayashizaki, Yoshihide

    2002-01-01

    We have experimentally demonstrated femtosecond laser ablation for simultaneous atomization and ionization (fs-SAI) of organic molecules on solid substrates. We find most of the constituent atoms of organic molecules are atomized and ionized non-resonantly by femtosecond laser ablation. This observation is in contrast with that for the photoionization of cyclic aromatic hydrocarbons by femtosecond laser in the gas phase where little fragmentation has been observed. Crucial contribution of ablation plasma of solid sample to fs-SAI process is suggested. The ratio of natural abundance of stable isotopes contained in sample molecules is well reproduced, which confirms fs-SAI can be applied to the quantitative chemical analysis of isotope-labeled large organic molecules

  19. Ultra-Broadband Two-Dimensional Electronic Spectroscopy and Pump-Probe Microscopy of Molecular Systems

    Science.gov (United States)

    Spokoyny, Boris M.

    Ultrafast spectroscopy offers an unprecedented view on the dynamic nature of chemical reactions. From charge transfer in semiconductors to folding and isomerization of proteins, these all important processes can now be monitored and in some instances even controlled on real, physical timescales. One of the biggest challenges of ultrafast science is the incredible energetic complexity of most systems. It is not uncommon to encounter macromolecules or materials with absorption spectra spanning significant portions of the visible spectrum. Monitoring a multitude of electronic and vibrational transitions, all dynamically interacting with each other on femtosecond timescales poses a truly daunting experimental task. The first part of this thesis deals with the development of a novel Two-Dimensional Electronic Spectroscopy (2DES) and its associated, advanced detection methodologies. Owing to its ultra-broadband implementation, this technique enables us to monitor femtosecond chemical dynamics that span the energetic landscape of the entire visible spectrum. In order to demonstrate the utility of our method, we apply it to two laser dye molecules, IR-144 and Cresyl Violet. Variation of photophysical properties on a microscopic scale in either man-made or naturally occurring systems can have profound implications on how we understand their macroscopic properties. Recently, inorganic hybrid perovskites have been tapped as the next generation solar energy harvesting materials. Their remarkable properties include low exciton binding energy, low exciton recombination rates and long carrier diffusion lengths. Nevertheless, considerable variability in device properties made with nearly identical preparation methods has puzzled the community. In the second part of this thesis we use non-linear pump probe microscopy to study the heterogeneous nature of femtosecond carrier dynamics in thin film perovskites. We show that the local morphology of the perovskite thin films has a

  20. One-step synthesis of nitrogen-doped carbon nanodots for ratiometric pH sensing by femtosecond laser ablation method

    International Nuclear Information System (INIS)

    Xu, Huanhuan; Yan, Lihe; Nguyen, Vanthan; Yu, Yang; Xu, Yanmin

    2017-01-01

    Highlights: • Nitrogen-containing carbon nanodots (CDs) are synthesize using pulsed laser ablation in liquid. • The CDs show a strong fluorescence consisting of a dual-band luminescence peak. • The as prepared CDs can offer a ratiometric sensing platform for the detection the pH values. - Abstract: Nitrogen-doped carbon nanodots (CDs) are synthesized by one-step femtosecond laser ablation of graphite powder in aminotoluene at room temperature. The as-prepared CDs have the average diameter of 2.87 nm and possess an excitation-independent emission covering nearly the whole visible light region at a single excitation wavelength. The X-ray photoelectron spectroscopy (XPS) and Fourier transform infrared spectroscopy (FTIR) analysis indicate that there are a huge number of multiple oxygen groups and amine groups on the surface of the CDs. As their different fluorescence peaks originated from different emission surface groups on the nanodots show different pH dependence, these CDs can be used for ratiometric pH sensing.

  1. One-step synthesis of nitrogen-doped carbon nanodots for ratiometric pH sensing by femtosecond laser ablation method

    Energy Technology Data Exchange (ETDEWEB)

    Xu, Huanhuan [Key Laboratory for Physical Electronics and Devices of the Ministry of Education and Shaanxi Key Lab. of Information Photonic Technique, School of Electronics and Information Engineering, Xi’an Jiaotong University, Xi’an 710049 (China); Yan, Lihe, E-mail: liheyan@mail.xjtu.edu.cn [Key Laboratory for Physical Electronics and Devices of the Ministry of Education and Shaanxi Key Lab. of Information Photonic Technique, School of Electronics and Information Engineering, Xi’an Jiaotong University, Xi’an 710049 (China); Nguyen, Vanthan [Key Laboratory for Physical Electronics and Devices of the Ministry of Education and Shaanxi Key Lab. of Information Photonic Technique, School of Electronics and Information Engineering, Xi’an Jiaotong University, Xi’an 710049 (China); Le Quy Don Technical University, Hanoi 122314 (Viet Nam); Yu, Yang; Xu, Yanmin [Key Laboratory for Physical Electronics and Devices of the Ministry of Education and Shaanxi Key Lab. of Information Photonic Technique, School of Electronics and Information Engineering, Xi’an Jiaotong University, Xi’an 710049 (China)

    2017-08-31

    Highlights: • Nitrogen-containing carbon nanodots (CDs) are synthesize using pulsed laser ablation in liquid. • The CDs show a strong fluorescence consisting of a dual-band luminescence peak. • The as prepared CDs can offer a ratiometric sensing platform for the detection the pH values. - Abstract: Nitrogen-doped carbon nanodots (CDs) are synthesized by one-step femtosecond laser ablation of graphite powder in aminotoluene at room temperature. The as-prepared CDs have the average diameter of 2.87 nm and possess an excitation-independent emission covering nearly the whole visible light region at a single excitation wavelength. The X-ray photoelectron spectroscopy (XPS) and Fourier transform infrared spectroscopy (FTIR) analysis indicate that there are a huge number of multiple oxygen groups and amine groups on the surface of the CDs. As their different fluorescence peaks originated from different emission surface groups on the nanodots show different pH dependence, these CDs can be used for ratiometric pH sensing.

  2. Femtosecond optical parametric oscillators toward real-time dual-comb spectroscopy

    Science.gov (United States)

    Jin, Yuwei; Cristescu, Simona M.; Harren, Frans J. M.; Mandon, Julien

    2015-04-01

    We demonstrate mid-infrared dual-comb spectroscopy with an optical parametric oscillator (OPO) toward real-time field measurement. A singly resonant OPO based on a MgO-doped periodically poled lithium niobate (PPLN) crystal is demonstrated. Chirped mirrors are used to compensate the dispersion caused by the optical cavity and the crystal. A low threshold of 17 mW has been achieved. The OPO source generates a tunable idler frequency comb between 2.7 and 4.7 μm. Dual-comb spectroscopy is achieved by coupling two identical Yb-fiber mode-locked lasers to this OPO with slightly different repetition frequencies. A measured absorption spectrum of methane is presented with a spectral bandwidth of , giving an instrumental resolution of . In addition, a second OPO containing two MgO-doped PPLN crystals in a singly resonant ring cavity is demonstrated. As such, this OPO generates two idler combs (average power up to 220 mW), covering a wavelength range between 2.7 and 4.2 μm, from which a mid-infrared dual-comb Fourier transform spectrometer is constructed. By detecting the heterodyned signal between the two idler combs, broadband spectra of molecular gases can be observed over a spectral bandwidth of more than . This special cavity design allows the spectral resolution to be improved to without locking the OPO cavity, indicating that this OPO represents an ideal high-power broadband mid-infrared source for real-time gas sensing.

  3. Optics for coherent X-ray applications

    Energy Technology Data Exchange (ETDEWEB)

    Yabashi, Makina, E-mail: yabashi@spring8.or.jp [RIKEN SPring-8 Center, Kouto 1-1-1, Sayo, Hyogo 679-5148 (Japan); Tono, Kensuke [Japan Synchrotron Radiation Research Institute (JASRI), Kouto 1-1-1, Sayo, Hyogo 679-5198 (Japan); Mimura, Hidekazu [The University of Tokyo, Hongo 7-3-1, Bunkyo-ku, Tokyo 113-8656 (Japan); Matsuyama, Satoshi; Yamauchi, Kazuto [Osaka University, 2-1 Yamada-oka, Suita, Osaka 565-0871 (Japan); Tanaka, Takashi; Tanaka, Hitoshi; Tamasaku, Kenji [RIKEN SPring-8 Center, Kouto 1-1-1, Sayo, Hyogo 679-5148 (Japan); Ohashi, Haruhiko; Goto, Shunji [Japan Synchrotron Radiation Research Institute (JASRI), Kouto 1-1-1, Sayo, Hyogo 679-5198 (Japan); Ishikawa, Tetsuya [RIKEN SPring-8 Center, Kouto 1-1-1, Sayo, Hyogo 679-5148 (Japan)

    2014-08-27

    Developments of optics for coherent X-ray applications and their role in diffraction-limited storage rings are described. Developments of X-ray optics for full utilization of diffraction-limited storage rings (DLSRs) are presented. The expected performance of DLSRs is introduced using the design parameters of SPring-8 II. To develop optical elements applicable to manipulation of coherent X-rays, advanced technologies on precise processing and metrology were invented. With propagation-based coherent X-rays at the 1 km beamline of SPring-8, a beryllium window fabricated with the physical-vapour-deposition method was found to have ideal speckle-free properties. The elastic emission machining method was utilized for developing reflective mirrors without distortion of the wavefronts. The method was further applied to production of diffraction-limited focusing mirrors generating the smallest spot size in the sub-10 nm regime. To enable production of ultra-intense nanobeams at DLSRs, a low-vibration cooling system for a high-heat-load monochromator and advanced diagnostic systems to characterize X-ray beam properties precisely were developed. Finally, new experimental schemes for combinative nano-analysis and spectroscopy realised with novel X-ray optics are discussed.

  4. Femtosecond structural dynamics on the atomic length scale

    International Nuclear Information System (INIS)

    Zhang, Dongfang

    2014-03-01

    This thesis reports on the development and application of two different but complementary ultrafast electron diffraction setups built at the Max Planck Research Department for Structural Dynamics. One is an ultra-compact femtosecond electron diffraction (FED) setup (Egun300), which is currently operational (with a maximum electron energy of 150 keV) and provides ultrashort (∝300 fs) and bright (∝10 e/μm 2 ) electron bunches. The other one, named as Relativistic Electron Gun for Atomic Exploration (REGAE) is a radio frequency driven 2 to 5 MeV FED setup built in collaboration with different groups from DESY. REGAE was developed as a facility that will provide high quality diffraction with sufficient coherence to even address structural protein dynamics and with electron pulses as short as 20 fs (FWHM). As one of the first students in Prof. R.J. Dwayne Miller's group, I led the femtosecond (fs) laser sub-group at REGAE being responsible for the construction of different key optical elements required to drive both of aforementioned FED systems. A third harmonic generation (THG) and a nonlinear optical parametric amplifier (NOPA) have been used for the photo-generation of ultrashort electron bursts as well as sample laser excitation. Different diagnostic tools have been constructed to monitor the performance of the fs optical system. A fast autocorrelator was developed to provide on the fly pulse duration correction. A transient-grating frequency-resolved optical gating (TG-FROG) was built to obtain detail information about the characteristics of fs optical pulse, i.e. phase and amplitude of its spectral components. In addition to these optical setups, I developed a fs optical pump-probe system, which supports broadband probe pulses. This setup was successfully applied to investigate the semiconductor-to-metal photoinduced phase transition in VO 2 and the ultrafast photo-reduction mechanism of graphene oxide. In regard to FED setups, I have been deeply involved in

  5. Coherent spin-rotational dynamics of oxygen superrotors

    Science.gov (United States)

    Milner, Alexander A.; Korobenko, Aleksey; Milner, Valery

    2014-09-01

    We use state- and time-resolved coherent Raman spectroscopy to study the rotational dynamics of oxygen molecules in ultra-high rotational states. While it is possible to reach rotational quantum numbers up to N≈ 50 by increasing the gas temperature to 1500 K, low population levels and gas densities result in correspondingly weak optical response. By spinning {{O}2} molecules with an optical centrifuge, we efficiently excite extreme rotational states with N≤slant 109 in high-density room temperature ensembles. Fast molecular rotation results in the enhanced robustness of the created rotational wave packets against collisions, enabling us to observe the effects of weak spin-rotation coupling in the coherent rotational dynamics of oxygen. The decay rate of spin-rotational coherence due to collisions is measured as a function of the molecular angular momentum and its dependence on the collisional adiabaticity parameter is discussed. We find that at high values of N, the rotational decoherence of oxygen is much faster than that of the previously studied non-magnetic nitrogen molecules, pointing at the effects of spin relaxation in paramagnetic gases.

  6. Femtosecond few- to single-electron point-projection microscopy for nanoscale dynamic imaging

    Directory of Open Access Journals (Sweden)

    A. R. Bainbridge

    2016-03-01

    Full Text Available Femtosecond electron microscopy produces real-space images of matter in a series of ultrafast snapshots. Pulses of electrons self-disperse under space-charge broadening, so without compression, the ideal operation mode is a single electron per pulse. Here, we demonstrate femtosecond single-electron point projection microscopy (fs-ePPM in a laser-pump fs-e-probe configuration. The electrons have an energy of only 150 eV and take tens of picoseconds to propagate to the object under study. Nonetheless, we achieve a temporal resolution with a standard deviation of 114 fs (equivalent to a full-width at half-maximum of 269 ± 40 fs combined with a spatial resolution of 100 nm, applied to a localized region of charge at the apex of a nanoscale metal tip induced by 30 fs 800 nm laser pulses at 50 kHz. These observations demonstrate real-space imaging of reversible processes, such as tracking charge distributions, is feasible whilst maintaining femtosecond resolution. Our findings could find application as a characterization method, which, depending on geometry, could resolve tens of femtoseconds and tens of nanometres. Dynamically imaging electric and magnetic fields and charge distributions on sub-micron length scales opens new avenues of ultrafast dynamics. Furthermore, through the use of active compression, such pulses are an ideal seed for few-femtosecond to attosecond imaging applications which will access sub-optical cycle processes in nanoplasmonics.

  7. Femtosecond Two-Photon Absorption Spectroscopy of Poly(fluorene Derivatives Containing Benzoselenadiazole and Benzothiadiazole

    Directory of Open Access Journals (Sweden)

    Marcelo Gonçalves Vivas

    2017-05-01

    Full Text Available We have investigated the molecular structure and two-photon absorption (2PA properties relationship of two push–pull poly(fluorene derivatives containing benzoselenadiazole and benzothiadiazole units. For that, we have used the femtosecond wavelength-tunable Z-scan technique with a low repetition rate (1 kHz and an energy per pulse on the order of nJ. Our results show that both 2PA spectra present a strong 2PA (around 600 GM (1 GM = 1 × 10−50 cm4·s·photon−1 band at around 720 nm (transition energy 3.45 eV ascribed to the strongly 2PA-allowed 1Ag-like → mAg-like transition, characteristic of poly(fluorene derivatives. Another 2PA band related to the intramolecular charge transfer was also observed at around 900 nm (transition energy 2.75 eV. In both 2PA bands, we found higher 2PA cross-section values for the poly(fluorene containing benzothiadiazole unit. This outcome was explained through the higher charge redistribution at the excited state caused by the benzothiadiazole group as compared to the benzoselenadiazole and confirmed by means of solvatochromic Stokes shift measurements. To shed more light on these results, we employed the sum-over-states approach within the two-energy level model to estimate the maximum permanent dipole moment change related to the intramolecular charge transfer transition.

  8. Optical frequency comb Faraday rotation spectroscopy

    Science.gov (United States)

    Johansson, Alexandra C.; Westberg, Jonas; Wysocki, Gerard; Foltynowicz, Aleksandra

    2018-05-01

    We demonstrate optical frequency comb Faraday rotation spectroscopy (OFC-FRS) for broadband interference-free detection of paramagnetic species. The system is based on a femtosecond doubly resonant optical parametric oscillator and a fast-scanning Fourier transform spectrometer (FTS). The sample is placed in a DC magnetic field parallel to the light propagation. Efficient background suppression is implemented via switching the direction of the field on consecutive FTS scans and subtracting the consecutive spectra, which enables long-term averaging. In this first demonstration, we measure the entire Q- and R-branches of the fundamental band of nitric oxide in the 5.2-5.4 µm range and achieve good agreement with a theoretical model.

  9. Differences in energy expenditure for conventional and femtosecond-assisted cataract surgery using 2 different phacoemulsification systems.

    Science.gov (United States)

    Yesilirmak, Nilufer; Diakonis, Vasilios F; Sise, Adam; Waren, Daniel P; Yoo, Sonia H; Donaldson, Kendall E

    2017-01-01

    To compare the mean cumulative dissipated energy (CDE) in patients having femtosecond laser-assisted or conventional phacoemulsification cataract surgery using 2 different phacoemulsification platforms. Bascom Palmer Eye Institute, Miami, Florida, USA. Prospective comparative nonrandomized clinical study. Consecutive patients were scheduled to have femtosecond laser-assisted cataract surgery with the Lensx laser or conventional phacoemulsification using an active-fluidics torsional platform (Centurion) or torsional platform (Infiniti). The mean CDE and cataract grade were recorded. The study comprised 570 eyes (570 patients). There was no statistically significant difference in mean age (P = .41, femtosecond group; P = .33, conventional group) or cataract grade (P = .78 and P = .45, respectively) between the active-fluidics and gravity-fluidics platforms. In femtosecond cases (145 eyes), the mean CDE (percent-seconds) was 5.18 ± 4.58 (SD) with active fluidics and 7.00 ± 6.85 with gravity fluidics; in conventional cases (425 eyes), the mean CDE was 7.77 ± 6.97 and 11.43 ± 9.12, respectively. In both femtosecond cases and conventional cases, the CDE was lower with the active-fluidics platform than with the gravity-fluidics platform (P = .029, femtosecond group; P < .001 conventional group). With both fluidics platforms, the mean CDE was significantly lower in the femtosecond group than in the conventional group (both P < .001). The active-fluidics phacoemulsification platform achieved lower CDE values than the gravity-fluidics platform for conventional cataract extraction. Femtosecond laser pretreatment with the active-fluidics platform further reduced CDE. Copyright © 2017 ASCRS and ESCRS. Published by Elsevier Inc. All rights reserved.

  10. Anterior chamber gas bubble emergence pattern during femtosecond LASIK-flap creation.

    Science.gov (United States)

    Robert, Marie-Claude; Khreim, Nour; Todani, Amit; Melki, Samir A

    2015-09-01

    To characterise the emergence pattern of cavitation bubbles into the anterior chamber (AC) following femtosecond laser-assisted in situ keratomileusis (LASIK)-flap creation Retrospective review of patients undergoing femtosecond LASIK surgery at Boston Laser, a private refractive surgery practice in Boston, Massachusetts, between December 2008 and February 2014. Patient charts were reviewed to identify all cases with gas bubble migration into the AC. Surgical videos were examined and the location of bubble entry was recorded separately for right and left eyes. Five thousand one hundred and fifty-eight patients underwent femtosecond LASIK surgery. Air bubble migration into the AC, presumably via the Schlemm's canal and trabecular meshwork, occurred in 1% of cases. Patients with AC bubbles had an average age of 33±8 years with a measured LASIK flap thickness of 96±21 μm. The occurrence of gas bubbles impaired iris registration in 64% of cases. Gas bubbles appeared preferentially in the nasal or inferior quadrants for right (92% of cases) and left (100% of cases) eyes. This bubble emergence pattern is significantly different from that expected with a random distribution (p<0.0001) and did not seem associated with decentration of the femtosecond laser docking system. The migration of gas bubbles into the AC is a rare occurrence during femtosecond laser flap creation. The preferential emergence of gas bubbles into the nasal and inferior quadrants of the AC may indicate a distinctive anatomy of the nasal Schlemm's canal. Published by the BMJ Publishing Group Limited. For permission to use (where not already granted under a licence) please go to http://group.bmj.com/group/rights-licensing/permissions.

  11. Bending diamonds by femtosecond laser ablation

    DEFF Research Database (Denmark)

    Balling, Peter; Esberg, Jakob; Kirsebom, Kim

    2009-01-01

    We present a new method based on femtosecond laser ablation for the fabrication of statically bent diamond crystals. Using this method, curvature radii of 1 m can easily be achieved, and the curvature obtained is very uniform. Since diamond is extremely tolerant to high radiation doses, partly due...

  12. Towards laser spectroscopy of antihydrogen

    NARCIS (Netherlands)

    Walz, J.; Pahl, A.; Eikema, K.S.E.; Hansch, T.W.

    2000-01-01

    The development of the first continuous coherent source at 121.56 nm is described. Radiation at this wavelength of Lyman-alpha can be used for laser-cooling of antihydrogen on the strong 1S-2P transition. It also opens up a possibility for precision spectroscopy that requires just a few antihydrogen

  13. Ultrashort Generation Regimes in the All-Fiber Kerr Mode-Locked Erbium-Doped Fiber Ring Laser for Terahertz Pulsed Spectroscopy

    Directory of Open Access Journals (Sweden)

    V. S. Voropaev

    2015-01-01

    Full Text Available Many femtosecond engineering applications require for a stable generation of ultrashort pulses. Thus, in the terahertz pulsed spectroscopy a measurement error in the refractive index is strongly dependent on the pulse duration stability with allowable variation of few femtoseconds. The aim of this work is to study the ultrashort pulses (USP regimes stability in the all – fiber erbium doped ring laser with Kerr mode-locking. The study was conducted at several different values of the total resonator intra-cavity dispersion. Three laser schemes with the intra-cavity dispersion values from -1.232 ps2 to +0.008 ps2 have been studied. In the experiment there were two regimes of generation observed: the stretched pulse generation and ordinary soliton generation. Main attention is focused on the stability of regimes under study. The most stable regime was that of the stretched pulse generation with a spectrum form of sech2 , possible pulse duration of 490 fs at least, repetition rate of 2.9 MHz, and average output power of 17 mW. It is worth noting, that obtained regimes had characteristics suitable for the successful use in the terahertz pulsed spectroscopy. The results may be useful in the following areas of science and technology: a high-precision spectroscopy, optical frequency standards, super-continuum generation, and terahertz pulsed spectroscopy. The future system development is expected to stabilize duration and repetition rate of the obtained regime of ultra-short pulse generation.

  14. The Atomic, Molecular and Optical Science instrument at the Linac Coherent Light Source

    Energy Technology Data Exchange (ETDEWEB)

    Ferguson, Ken R. [Linac Coherent Light Source, SLAC National Accelerator Laboratory, 2575 Sand Hill Road, Menlo Park, CA 94025 (United States); Department of Applied Physics, Stanford University, 348 Via Pueblo, Stanford, CA 94305 (United States); Bucher, Maximilian; Bozek, John D.; Carron, Sebastian; Castagna, Jean-Charles [Linac Coherent Light Source, SLAC National Accelerator Laboratory, 2575 Sand Hill Road, Menlo Park, CA 94025 (United States); Coffee, Ryan [Linac Coherent Light Source, SLAC National Accelerator Laboratory, 2575 Sand Hill Road, Menlo Park, CA 94025 (United States); Pulse Institute, Stanford University and SLAC National Accelerator Laboratory, 2575 Sand Hill Road, Menlo Park, CA 94025 (United States); Curiel, G. Ivan; Holmes, Michael; Krzywinski, Jacek; Messerschmidt, Marc; Minitti, Michael; Mitra, Ankush; Moeller, Stefan; Noonan, Peter; Osipov, Timur; Schorb, Sebastian; Swiggers, Michele; Wallace, Alexander; Yin, Jing [Linac Coherent Light Source, SLAC National Accelerator Laboratory, 2575 Sand Hill Road, Menlo Park, CA 94025 (United States); Bostedt, Christoph, E-mail: bostedt@slac.stanford.edu [Linac Coherent Light Source, SLAC National Accelerator Laboratory, 2575 Sand Hill Road, Menlo Park, CA 94025 (United States); Pulse Institute, Stanford University and SLAC National Accelerator Laboratory, 2575 Sand Hill Road, Menlo Park, CA 94025 (United States)

    2015-04-17

    A description of the Atomic, Molecular and Optical Sciences (AMO) instrument at the Linac Coherent Light Source is presented. Recent scientific highlights illustrate the imaging, time-resolved spectroscopy and high-power density capabilities of the AMO instrument. The Atomic, Molecular and Optical Science (AMO) instrument at the Linac Coherent Light Source (LCLS) provides a tight soft X-ray focus into one of three experimental endstations. The flexible instrument design is optimized for studying a wide variety of phenomena requiring peak intensity. There is a suite of spectrometers and two photon area detectors available. An optional mirror-based split-and-delay unit can be used for X-ray pump–probe experiments. Recent scientific highlights illustrate the imaging, time-resolved spectroscopy and high-power density capabilities of the AMO instrument.

  15. Theoretical femtosecond physics atoms and molecules in strong laser fields

    CERN Document Server

    Grossmann, Frank

    2018-01-01

    This textbook extends from the basics of femtosecond physics all the way to some of the latest developments in the field. In this updated edition, the chapter on laser-driven atoms is augmented by the discussion of two-electron atoms interacting with strong and short laser pulses, as well as by a review of ATI rings and low energy structures in photo-electron spectra. In the chapter on laser-driven molecules a discussion of 2D infrared spectroscopy is incorporated. Theoretical investigations of atoms and molecules interacting with pulsed lasers up to atomic field strengths on the order of 10^16 W/cm² are leading to an understanding of many challenging experimental discoveries. The presentation starts with a brief introduction to pulsed laser physics. The basis for the non-perturbative treatment of laser-matter interaction in the book is the time-dependent Schrödinger equation. Its analytical as well as numerical solution are laid out in some detail. The light field is treated classically and different possi...

  16. Use of the Femtosecond Lasers in Ophthalmology

    Directory of Open Access Journals (Sweden)

    Roszkowska Anna M

    2018-01-01

    Full Text Available Femtosecond laser (FSL is an infrared laser with a wavelength of 1053 nm. FS laser works producing photodisruption or photoionization of the optically transparent tissue such as cornea. Currently FS lasers have a wide range of applications in ophthalmic surgery. They are used above all in corneal surgery in refractive procedures and keratoplasty, and recently in cataract surgery. The use of the FSL in corneal refractive surgery includes LASIK flap creation, astigmatic keratotomy, Femtosecond Lenticule Extraction (FLEx, Small Incision Lenticule Extraction (SMILE and channels creation for implantation of the intrastromal corneal rings. As to the corneal grafting, the FS lasers are used in laser-assisted anterior and posterior lamellar keratoplasty and customized trephination in the penetrating keratoplasty. FS Laser Assisted Cataract Surgery (FLACS includes capsulorrhexis and nuclear fragmentation that enhance safety and efficacy of the procedure.

  17. Current status of femtosecond triplet Linacs 2000

    International Nuclear Information System (INIS)

    Uesaka, M.; Watanabe, T.; Kobayashi, T.

    2000-01-01

    Femtosecond Ultrafast Quantum Phenomenon Research Facility has been commissioned in 2000. It consists the femtosecond linac-laser synchronization system, the 12 TW 50 fs laser system and the analyzing system. Laser photocathode RF gun produced l kA = 7 nC / 7 ps for 250 μJ 267 nm laser irradiation, synchronization of 300 fs (rms) for minutes and l.9 ps (rms) for hours was established. Efforts to avoid such long-term drift are under way. This system is applied to subpico- and picosecond pulseradiolysis for radiation chemistry of water and supercritical water. Laser plasma linac works are under way to generate 20 MeV 10 fs electron bunch and ps ion beam using the 12 TW 50 fs laser. Further, the time-resolved X-ray diffraction is close to dynamic visualization of atomic motions. (author)

  18. Use of the Femtosecond Lasers in Ophthalmology

    Science.gov (United States)

    Roszkowska, Anna M.; Urso, Mario; Signorino, Alberto; Aragona, Pasquale

    2018-01-01

    Femtosecond laser (FSL) is an infrared laser with a wavelength of 1053 nm. FS laser works producing photodisruption or photoionization of the optically transparent tissue such as cornea. Currently FS lasers have a wide range of applications in ophthalmic surgery. They are used above all in corneal surgery in refractive procedures and keratoplasty, and recently in cataract surgery. The use of the FSL in corneal refractive surgery includes LASIK flap creation, astigmatic keratotomy, Femtosecond Lenticule Extraction (FLEx), Small Incision Lenticule Extraction (SMILE) and channels creation for implantation of the intrastromal corneal rings. As to the corneal grafting, the FS lasers are used in laser-assisted anterior and posterior lamellar keratoplasty and customized trephination in the penetrating keratoplasty. FS Laser Assisted Cataract Surgery (FLACS) includes capsulorrhexis and nuclear fragmentation that enhance safety and efficacy of the procedure.

  19. Three-dimensional calibration targets for optical coherence tomography

    Science.gov (United States)

    Gabriele Sandrian, Michelle; Tomlins, Pete; Woolliams, Peter; Rasakanthan, Janarthanan; Lee, Graham C.; Yang, Anna; Považay, Boris; Alex, Aneesh; Sugden, Kate; Drexler, Wolfgang

    2012-03-01

    The recent expansion of clinical applications for optical coherence tomography (OCT) is driving the development of approaches for consistent image acquisition. There is a simultaneous need for time-stable, easy-to-use imaging targets for calibration and standardization of OCT devices. We present calibration targets consisting of three-dimensional structures etched into nanoparticle-embedded resin. Spherical iron oxide nanoparticles with a predominant particle diameter of 400 nm were homogeneously dispersed in a two part polyurethane resin and allowed to harden overnight. These samples were then etched using a precision micromachining femtosecond laser with a center wavelength of 1026 nm, 100kHz repetition rate and 450 fs pulse duration. A series of lines in depth were etched, varying the percentage of inscription energy and speed of the translation stage moving the target with respect to the laser. Samples were imaged with a dual wavelength spectral-domain OCT system (λ=800nm, ▵λ~180nm, and λ=1325nm, ▵λ~100nm) and point-spread function of nanoparticles within the target was measured.

  20. Femtosecond-laser assisted cell reprogramming

    Science.gov (United States)

    Breunig, Hans Georg; Uchugonova, Aisada; Batista, Ana; König, Karsten

    2017-02-01

    Femtosecond-laser pulses can assist to transfect cells by creating transient holes in the cell membrane, thus making them temporarily permeable for extraneous genetic material. This procedure offers the advantage of being completely "virus free" since no viruses are used for the delivery and integration of gene factors into the host genome and, thereby, avoiding serious side effects which so far prevent clinical application. Unfortunately, focusing of the laser radiation onto individual cell membranes is quite elaborate and time consuming. Regarding these obstacles, we briefly review two optical setups for fast, efficient and high throughput laser-assisted cell transfection based on femtosecond laser pulse excitation. The first setup aims at assisting the transfection of adherent cells. It comprises of a modified laser-scanning microscope with beamshaping optics as well as home-made software to automate the detection, targeting and laser-irradiation process. The second setup aims at laser-assisted transfection of non-adherent cells in suspension which move in a continuous flow through the laser focus region. The setup allows to address a large number of cells, however, with much lower transfection efficiency than the individual-cell targeting approach.