WorldWideScience

Sample records for femoris muscle function

  1. A functional-anatomical approach to the spine-pelvis mechanism: interaction between the biceps femoris muscle and the sacrotuberous ligament.

    van Wingerden, J P; Vleeming, A; Snijders, C J; Stoeckart, R

    1993-10-01

    Summary. Sacroiliac joint dysfunction is often overlooked as a possible cause of low back pain. This is due to the use of reductionistic anatomical models. From a kinematic point of view, topographic anatomical models are generally inadequate since they categorize pelvis, lower vertebral column and legs as distinct entities. This functional-anatomical study focuses on the question whether anatomical connections between the biceps femoris muscle and the sacrotuberous ligament are kinematically useful. Forces applied to the tendon of the biceps femoris muscle, simulating biceps femoris muscle force, were shown to influence sacrotuberous ligament tension. Since sacrotuberous ligament tension influences sacroiliac joint kinematics, hamstring training could influence the sacroiliac joint and thus low back kinematics. The clinical implications with respect to 'short' hamstrings, pelvic instability and walking are discussed.

  2. Biceps femoris and semitendinosus—teammates or competitors? New insights into hamstring injury mechanisms in male football players: a muscle functional MRI study

    Schuermans, Joke; Van Tiggelen, Damien; Danneels, Lieven; Witvrouw, Erik

    2014-01-01

    Background The hamstring injury mechanism was assessed by investigating the exercise-related metabolic activity characteristics of the hamstring muscles using a muscle functional MRI (mfMRI) protocol. Methods 27 healthy male football players and 27 football players with a history of hamstring injuries (recovered and playing fully) underwent standardised mfMR Imaging. The mfMRI protocol consisted of a resting scan, a strenuous bilateral eccentric hamstring exercise and a postexercise scan. The exercise-related T2 increase or the signal intensity shift between both scans was used to detect differences in metabolic activation characteristics (1) between the different hamstring muscle bellies and (2) between the injury group and the control group. Results A more symmetrical muscle recruitment pattern corresponding to a less economic hamstring muscle activation was demonstrated in the formerly injured group (phamstring exercise. Conclusions These findings suggest that the vulnerability of the hamstring muscles to football-related injury is related to the complexity and close coherence in the synergistic muscle recruitment of the biceps femoris and the semitendinosus. Discrete differences in neuromuscular coordination and activity distribution, with the biceps femoris partly having to compensate for the lack of endurance capacity of the semitendinosus, probably increase the hamstring injury risk. PMID:25388959

  3. Biceps femoris and semitendinosus--teammates or competitors? New insights into hamstring injury mechanisms in male football players: a muscle functional MRI study.

    Schuermans, Joke; Van Tiggelen, Damien; Danneels, Lieven; Witvrouw, Erik

    2014-12-01

    The hamstring injury mechanism was assessed by investigating the exercise-related metabolic activity characteristics of the hamstring muscles using a muscle functional MRI (mfMRI) protocol. 27 healthy male football players and 27 football players with a history of hamstring injuries (recovered and playing fully) underwent standardised mfMR Imaging. The mfMRI protocol consisted of a resting scan, a strenuous bilateral eccentric hamstring exercise and a postexercise scan. The exercise-related T2 increase or the signal intensity shift between both scans was used to detect differences in metabolic activation characteristics (1) between the different hamstring muscle bellies and (2) between the injury group and the control group. A more symmetrical muscle recruitment pattern corresponding to a less economic hamstring muscle activation was demonstrated in the formerly injured group (phamstring exercise. These findings suggest that the vulnerability of the hamstring muscles to football-related injury is related to the complexity and close coherence in the synergistic muscle recruitment of the biceps femoris and the semitendinosus. Discrete differences in neuromuscular coordination and activity distribution, with the biceps femoris partly having to compensate for the lack of endurance capacity of the semitendinosus, probably increase the hamstring injury risk. Published by the BMJ Publishing Group Limited. For permission to use (where not already granted under a licence) please go to http://group.bmj.com/group/rights-licensing/permissions.

  4. Reliability of biceps femoris and semitendinosus muscle architecture measurements obtained with ultrasonography

    Viviane Bastos de Oliveira

    Full Text Available Introduction Currently, little attention is given to the muscle architecture reliability studies of the hamstring using a robust statistical. Our purpose was to determine the reliability of ultrasound measurements of muscle thickness, fascicle length and pennation angle of the biceps femoris and semitendinosus muscles, including heteroskedasticity and internal consistency analyses. Methods Two images of biceps femoris and semitendinosus at 50% of the thigh length were acquired from 21 volunteers, in two visits. The parameters were measured three times in each image, and for each muscle. The reliability was analyzed by the intraclass correlation coefficient (ICC and Cronbach’s alpha (αCronbach. The relative standard error of the measurements (%SEM were calculated and Bland-Altman plots were generated. Results All parameters presented excellent ICC for the three repeated measurements (ICC from 0.93 ‒ 0.99 and moderate to excellent reliability intraday (ICC from 0.70 ‒ 0.95 for both muscles. The present study indicates that ultrasound is a reliable tool to estimate the biceps femoris fascicle length (ICC = 0.97, αCronbach = 0.98, %SEM = 7.86 and semitendinosus (ICC = 0.90, αCronbach = 0.95, %SEM = 7.55, as well as the biceps femoris muscle thickness (ICC = 0.89, αCronbach = 0.94, %SEM = 10.23 and semitendinosus muscle thickness (ICC = 0.87, αCronbach = 0.93, %SEM = 1.35. At last, biceps femoris pennation angle (ICC = 0.93, αCronbach = 0.96 and %SEM = 4.36 and semitendinosus (ICC = 0.96, αCronbach = 0.98 and %SEM = 4.25 also had good repeatability. Conclusion Ultrasonography show good repeatability in estimating of muscle architecture parameters.

  5. Treatment of ischial pressure sores with both profunda femoris artery perforator flaps and muscle flaps.

    Kim, Chae Min; Yun, In Sik; Lee, Dong Won; Lew, Dae Hyun; Rah, Dong Kyun; Lee, Won Jai

    2014-07-01

    Reconstruction of ischial pressure sore defects is challenging due to extensive bursas and high recurrence rates. In this study, we simultaneously applied a muscle flap that covered the exposed ischium and large bursa with sufficient muscular volume and a profunda femoris artery perforator fasciocutaneous flap for the management of ischial pressure sores. We retrospectively analyzed data from 14 patients (16 ischial sores) whose ischial defects had been reconstructed using both a profunda femoris artery perforator flap and a muscle flap between January 2006 and February 2014. We compared patient characteristics, operative procedure, and clinical course. All flaps survived the entire follow-up period. Seven patients (50%) had a history of surgery at the site of the ischial pressure sore. The mean age of the patients included was 52.8 years (range, 18-85 years). The mean follow-up period was 27.9 months (range, 3-57 months). In two patients, a biceps femoris muscle flap was used, while a gracilis muscle flap was used in the remaining patients. In four cases (25%), wound dehiscence occurred, but healed without further complication after resuturing. Additionally, congestion occurred in one case (6%), but resolved with conservative treatment. Among 16 cases, there was only one (6%) recurrence at 34 months. The combination of a profunda femoris artery perforator fasciocutaneous flap and muscle flap for the treatment of ischial pressure sores provided pliability, adequate bulkiness and few long-term complications. Therefore, this may be used as an alternative treatment method for ischial pressure sores.

  6. The effects of onabotulinum toxin A injection into rectus femoris muscle in hemiplegic stroke patients with stiff-knee gait: a placebo-controlled, nonrandomized trial.

    Tok, Fatih; Balaban, Birol; Yaşar, Evren; Alaca, Rdvan; Tan, Arif Kenan

    2012-04-01

    This study aimed to compare the efficacy of onabotulinum toxin A (onabot) injection into the rectus femoris muscle with that of placebo in the treatment of hemiplegic stroke patients presenting with stiff-knee gait. Twenty-five chronic hemiparetic stroke patients presenting with a stiff-knee gait were included in this study. Fifteen patients received 100-125 U of onabot, and 10 patients received placebo into the rectus femoris muscle. Three-dimensional gait analysis, energy expenditure, 10-m and 6-min walk tests, and spasticity level of the rectus femoris were evaluated at baseline and 2 mos posttreatment. The mean age of patients who received onabot was 53.86 ± 14.74 yrs and of those who received placebo was 59.00 ± 8.11 yrs. At study onset, groups were similar with respect to all parameters (P > 0.05). We observed significant improvement in knee flexion (7 degrees average) during swing and a reduction in energy cost of 0.8-J/kg per meter response to injection of 100-125 U of onabot into the rectus femoris muscle. Onabot treatment significantly reduced muscle tone and improved knee kinematics, energy expenditure during walking, and functional assessments at 2 mos (P application of onabot into the rectus femoris muscle in stroke patients who presented with stiff-knee gait may be a treatment option to provide independent, safe, and less tiring ambulation.

  7. Treatment of Ischial Pressure Sores with Both Profunda Femoris Artery Perforator Flaps and Muscle Flaps

    Chae Min Kim

    2014-07-01

    Full Text Available Background Reconstruction of ischial pressure sore defects is challenging due to extensive bursas and high recurrence rates. In this study, we simultaneously applied a muscle flap that covered the exposed ischium and large bursa with sufficient muscular volume and a profunda femoris artery perforator fasciocutaneous flap for the management of ischial pressure sores. Methods We retrospectively analyzed data from 14 patients (16 ischial sores whose ischial defects had been reconstructed using both a profunda femoris artery perforator flap and a muscle flap between January 2006 and February 2014. We compared patient characteristics, operative procedure, and clinical course. Results All flaps survived the entire follow-up period. Seven patients (50% had a history of surgery at the site of the ischial pressure sore. The mean age of the patients included was 52.8 years (range, 18-85 years. The mean follow-up period was 27.9 months (range, 3-57 months. In two patients, a biceps femoris muscle flap was used, while a gracilis muscle flap was used in the remaining patients. In four cases (25%, wound dehiscence occurred, but healed without further complication after resuturing. Additionally, congestion occurred in one case (6%, but resolved with conservative treatment. Among 16 cases, there was only one (6% recurrence at 34 months. Conclusions The combination of a profunda femoris artery perforator fasciocutaneous flap and muscle flap for the treatment of ischial pressure sores provided pliability, adequate bulkiness and few long-term complications. Therefore, this may be used as an alternative treatment method for ischial pressure sores.

  8. Effect of eccentric exercise with reduced muscle glycogen on plasma interleukin-6 and neuromuscular responses of musculus quadriceps femoris.

    Gavin, James P; Myers, Stephen D; Willems, Mark E T

    2016-07-01

    Eccentric exercise can result in muscle damage and interleukin-6 (IL-6) secretion. Glycogen availability is a potent stimulator of IL-6 secretion. We examined effects of eccentric exercise in a low-glycogen state on neuromuscular function and plasma IL-6 secretion. Twelve active men (23 ± 4 yr, 179 ± 5 cm, 77 ± 10 kg, means ± SD) completed two downhill treadmill runs (gradient, -12%, 5 × 8 min; speed, 12.1 ± 1.1 km/h) with normal (NG) and reduced muscle glycogen (RG) in randomized order and at least 6 wk apart. Muscle glycogen was reduced using an established cycling protocol until exhaustion and dietary manipulation the evening before the morning run. Physiological responses were measured up to 48 h after the downhill runs. During recovery, force deficits of musculus quadriceps femoris by maximal isometric contractions were similar. Changes in low-frequency fatigue were larger with RG. Voluntary activation and plasma IL-6 levels were similar in recovery between conditions. It is concluded that unaccustomed, damaging eccentric exercise with low muscle glycogen of the m. quadriceps femoris 1) exacerbated low-frequency fatigue but 2) had no additional effect on IL-6 secretion. Neuromuscular impairment after eccentric exercise with low muscle glycogen appears to have a greater peripheral component in early recovery. Copyright © 2016 the American Physiological Society.

  9. Closed reduction, internal fixation with quadratus femoris muscle pedicle bone grafting in displaced femoral neck fracture

    Chaudhuri Sibaji

    2008-01-01

    Full Text Available Background: Management of femoral neck fracture is still considered as an unsolved problem. It is more evident in displaced fractures where this fracture is considered as some sort of vascular insult to the head of the femur. We have used closed reduction, internal fixation and quadratus femoris muscle pedicle bone grafting in fresh displaced femoral neck fractures. Materials and Methods: From April 1996 to December 2004 we operated 73 consecutive patients of displaced femoral neck fracture in the age group of 24 to 81 years, mean age being 54.6 years. The patients were operated within one week of injury, the mean delay being 3.6 days. Closed reduction internal fixation along with quadratus femoris muscle pedicle bone grafting was done in all cases. They were followed up for an average period of 5.6 years (range 2-11 years. Results: Results were assessed according to modified Harris Hip Scoring system and found to be excellent in 53, good in 12, fair in six and poor in two patients. Bony union occurred in 68 cases, no patient developed avascular necrosis (AVN till date. Conclusion: For fresh displaced femoral neck fracture in physiologically active patients closed reduction, internal fixation and quadratus femoris muscle pedicle bone grafting is a suitable option to secure union and prevent development of AVN.

  10. Physical principles demonstrate that the biceps femoris muscle relative to the other hamstring muscles exerts the most force: implications for hamstring muscle strain injuries.

    Dolman, Bronwyn; Verrall, Geoffrey; Reid, Iain

    2014-07-01

    Of the hamstring muscle group the biceps femoris muscle is the most commonly injured muscle in sports requiring interval sprinting. The reason for this observation is unknown. The objective of this study was to calculate the forces of all three hamstring muscles, relative to each other, during a lengthening contraction to assess for any differences that may help explain the biceps femoris predilection for injury during interval sprinting. To calculate the displacement of each individual hamstring muscle previously performed studies on cadaveric anatomical data and hamstring kinematics during sprinting were used. From these displacement calculations for each individual hamstring muscle physical principles were then used to deduce the proportion of force exerted by each individual hamstring muscle during a lengthening muscle contraction. These deductions demonstrate that the biceps femoris muscle is required to exert proportionally more force in a lengthening muscle contraction relative to the semimembranosus and semitendinosus muscles primarily as a consequence of having to lengthen over a greater distance within the same time frame. It is hypothesized that this property maybe a factor in the known observation of the increased susceptibility of the biceps femoris muscle to injury during repeated sprints where recurrent higher force is required.

  11. Persistent sciatica induced by quadratus femoris muscle tear and treated by surgical decompression: a case report

    Tzanakakis George

    2010-08-01

    Full Text Available Abstract Introduction Quadratus femoris tear is an uncommon injury, which is only rarely reported in the literature. In the majority of cases the correct diagnosis is delayed due to non-specific symptoms and signs. A magnetic resonance imaging scan is crucial in the differential diagnosis since injuries to contiguous soft tissues may present with similar symptoms. Presentation with sciatica is not reported in the few cases existing in the English literature and the reported treatment has always been conservative. Case presentation We report here on a case of quadratus femoris tear in a 22-year-old Greek woman who presented with persistent sciatica. She was unresponsive to conservative measures and so was treated with surgical decompression. Conclusion The correct diagnosis of quadratus muscle tear is a challenge for physicians. The treatment is usually conservative, but in cases of persistent sciatica surgical decompression is an alternative option.

  12. Proteome profiles of longissimus and biceps femoris porcine muscles related to exercise and resting

    F.W.Te Pas, Marinus; Keuning, Els; Van der Wiel, Dick J.M.

    2011-01-01

    Exercise affects muscle metabolism and composition in the untrained muscles. The proteome of muscle tissue will be affected by exercise and resting. This is of economic importance for pork quality where transportation relates to exercise of untrained muscles. Rest reverses exercise effects....... The objective of this research was to develop potential protein biomarkers that predict the optimal resting time after exercise related to optimal pork quality. Ten litters of four female pigs were within litter allocated to the four treatment groups: exercise by running on a treadmill for 27 minutes followed...... by rest for 0, 1, or 3 h; control pigs without exercise. Proteome profiles and biochemical traits measuring energy metabolism and meat quality traits expected to be related to exercise were determined in the Longissimus and the Biceps femoris of the pigs. The results indicated associations between protein...

  13. [Simultaneous Traumatic Rupture of Patellar Ligament and Contralateral Rupture of Quadriceps Femoris Muscle].

    Hladký, V; Havlas, V

    2017-01-01

    Our paper presents a unique case of a 64-year-old patient after a fall, treated with oral antidiabetic drugs for type II diabetes mellitus. Following a series of examinations, a bilateral injury was diagnosed - patellar ligament tear on the right side and rupture of quadriceps femoris muscle on the left side. It is a rare injury, complicated by simultaneous involvement of both knee joints. The used therapy consisted of a bilateral surgery followed by gradual verticalisation, first with the support of a walking frame and later with the use of forearm crutches. During the final examination, the patient demonstrated full flexion at both knees, while an extension deficit of approx. 5 degrees was still present on the left side. The right knee X-ray showed a proper position of the patella after the removal of temporary tension band wire. Although the clinical results of operative treatment of both the patellar ligament rupture and rupture of quadriceps femoris muscle are in most cases good, early operative treatment, proper technique and post-operative rehabilitation are a prerequisite for success. Key words: knee injuries, patellar ligament, quadriceps muscle, rupture.

  14. Rectus femoris muscle flap based on proximal insertion mobilization to cover a groin infected vascular graft.

    Silvestre, Luís; Pedro, Luís Mendes; Fernandes e Fernandes, Ruy; Silva, Emanuel; Fernandes e Fernandes, José

    2015-10-01

    The rectus femoris (RF) muscle flap, which is widely used to cover groin infected vascular grafts, is usually harvested through distal tendon division and an extensive muscle elevation and transposition into the groin wound defect. A case of a vascular prosthetic graft infection in the groin was successfully controlled after coverage with an RF flap that was harvested based on proximal portion mobilization instead of the conventional distal one. This case suggests that the RF muscle flap based on proximal insertion mobilization is a feasible, effective, technically simpler, and less invasive alternative to cover infected vascular grafts in the groin. Copyright © 2015 Society for Vascular Surgery. Published by Elsevier Inc. All rights reserved.

  15. Short-latency crossed responses in the human biceps femoris muscle

    Stevenson, Andrew J T; Kamavuako, Ernest N; Geertsen, Svend Sparre

    2015-01-01

    Interlimb reflexes contribute to the central neural coordination between different limbs in both humans and animals. Although commissural interneurons have only been directly identified in animals, spinally mediated interlimb reflexes have been discovered in a number of human lower limb muscles......, indicating their existence in humans. The aim of the present study was to investigate whether short-latency crossed-spinal reflexes are present in the contralateral biceps femoris (cBF) muscle following ipsilateral knee (iKnee) joint rotations during a sitting task, where participants maintained a slight pre...... pathways (likely involving commissural interneurons) from ipsilateral afferents to common motoneurons in the contralateral leg can likely explain the perturbation direction-dependent reversal in the sign of the short-latency cBF reflex. This article is protected by copyright. All rights reserved....

  16. Variable effect of steam injection level on beef muscles: semitendinosus and biceps femoris cooked in convection-steam oven.

    Zając, Marzena; Kącik, Sławomir; Palka, Krystyna; Widurek, Paweł

    2015-01-01

    Combi ovens are used very often in restaurants to heat up food. According to the producers the equipment allows to cook meat portions which are more tender and flavoursome comparing to conventional cooking techniques. Beef steaks from muscles semitendinosus and biceps femoris were cooked in convection-steam oven at three humidity levels: 10, 60 and 100%. Chemical composition, including total and insoluble collagen content and cook losses were analysed along with the texture and colour parameters. M. biceps femoris was the hardest and the most chewy at 100% steam saturation level and hardness measured for m. semitendinosus was the lowest at 10% of vapour injection. Changing the steam conditions in the oven chamber did not affect the detectable colour differences of m. biceps femoris, but it was significant for m. semitendinosus. Applying 100% steam saturation caused higher cook losses and the increase of insoluble collagen fractions in both analysed muscles. The results are beneficial for caterers using steam-convection ovens in terms of providing evidence that the heating conditions should be applied individually depending on the muscle used. The tenderness of m. semitendinosus muscle cooked at 10% steam saturation level was comparable to the tenderness obtained for the same muscle aged for 10 days and cooked with 100% steam saturation. Steaks from m. biceps femoris muscle should be cooked with maximum 60% saturation level to obtain higher tenderness.

  17. Volume measurements of individual muscles in human quadriceps femoris using atlas-based segmentation approaches.

    Le Troter, Arnaud; Fouré, Alexandre; Guye, Maxime; Confort-Gouny, Sylviane; Mattei, Jean-Pierre; Gondin, Julien; Salort-Campana, Emmanuelle; Bendahan, David

    2016-04-01

    Atlas-based segmentation is a powerful method for automatic structural segmentation of several sub-structures in many organs. However, such an approach has been very scarcely used in the context of muscle segmentation, and so far no study has assessed such a method for the automatic delineation of individual muscles of the quadriceps femoris (QF). In the present study, we have evaluated a fully automated multi-atlas method and a semi-automated single-atlas method for the segmentation and volume quantification of the four muscles of the QF and for the QF as a whole. The study was conducted in 32 young healthy males, using high-resolution magnetic resonance images (MRI) of the thigh. The multi-atlas-based segmentation method was conducted in 25 subjects. Different non-linear registration approaches based on free-form deformable (FFD) and symmetric diffeomorphic normalization algorithms (SyN) were assessed. Optimal parameters of two fusion methods, i.e., STAPLE and STEPS, were determined on the basis of the highest Dice similarity index (DSI) considering manual segmentation (MSeg) as the ground truth. Validation and reproducibility of this pipeline were determined using another MRI dataset recorded in seven healthy male subjects on the basis of additional metrics such as the muscle volume similarity values, intraclass coefficient, and coefficient of variation. Both non-linear registration methods (FFD and SyN) were also evaluated as part of a single-atlas strategy in order to assess longitudinal muscle volume measurements. The multi- and the single-atlas approaches were compared for the segmentation and the volume quantification of the four muscles of the QF and for the QF as a whole. Considering each muscle of the QF, the DSI of the multi-atlas-based approach was high 0.87 ± 0.11 and the best results were obtained with the combination of two deformation fields resulting from the SyN registration method and the STEPS fusion algorithm. The optimal variables for FFD

  18. 99mTc-sestamibi muscle scintigraphy to assess the response to neuromuscular electrical stimulation of normal quadriceps femoris muscle

    Pekindil, Y.; Sarikaya, A.; Birtane, M.; Pekindil, G.; Salan, A.

    2001-01-01

    Neuromuscular electrical stimulation (NMES) is widely used for improving muscle strength by simultaneous contraction in the prevention of muscle atrophy. Although there exist many clinical methods for evaluating the therapeutic response of muscles, 99m Tc-sestamibi which is a skeletal muscle perfusion and metabolism agent has not previously been used for this purpose. The aim of our work was to ascertain whether 99m Tc-sestamibi muscle scintigraphy is useful in the monitoring of therapeutic response to NMES in healthy women. The study included 16 women aged between 21 and 45, with a mean age of 32.7±6.4. Both quadriceps femoris muscles (QFM) of each patient were studied. After randomization to remove the effect of the dominant side, one QFM of each patient was subjected to the NMES procedure for a period of 20 days. NMES was performed with an alternating biphasic rectangular current, from a computed electrical stimulator daily for 23 minutes. After measurement of skinfold thickness over the thigh, pre- and post-NMES girth measurements were assessed in centimeters. Sixty minutes after injections of 555 MBq 99m Tc-sestamibi, static images of the thigh were obtained for 5 minutes. The thigh-to-knee uptake ratio was calculated by semiquantitative analysis and normalized to body surface area (NUR=normalized uptake ratio). The difference between the pre and post NMES NUR values was significant (1.76±0.31 versus 2.25±0.38, p=0.0000). The percentage (%) increase in NUR values also well correlated with the % increase in thigh girth measurements (r=0.89, p=0.0000). These results indicated that 99m Tc-sestamibi muscle scintigraphy as a new tool may be useful in evaluating therapeutic response to NMES. (author)

  19. Rheological behavior of pork Biceps femoris muscle influenced by injection-tumbling process and brine type

    Livia PĂTRAŞCU

    2014-12-01

    Full Text Available The effect of tumbling time (1-9 h, injection rate (20, 30, 40, and 50 % and k-carrageenan addition (0, 0.25, and 0.5 % on the rheological characteristics of pork Biceps femoris muscle were assessed. The results of the creep-recovery tests were analyzed using Burger’s equation. Increasing tumbling time up to 9 h along with injection rate also increased compliance values and decreased viscosity. K-carrageenan addition showed the occurrence of a more gel-like structure of the brine-meat system, causing further increase of the compliance and strain values. Samples injected with brine were more elastic compared to those containing k-carrageenan. A longer mechanical treatment provided a softer like matrix. Mathematical modeling of creep-compliance data showed a decreasing tendency for viscosity values with k-carrageenan addition. Discrete retarded elastic compliance values increased when adding k-carrageenan to meat-brine system. Addition of k-carrageenan did not affect the equilibrium compliance values.

  20. Association between leg strength and muscle cross-sectional area of the quadriceps femoris with the physical activity level in octogenarians.

    Latorre-Román, Pedro Á; Arévalo-Arévalo, Juan Manuel; García-Pinillos, Felipe

    2016-06-03

    Aging is a complex physiological process whose main feature is the progressive loss of functionality, which may be delayed or attenuated by improving physical fitness.  To determine the association between leg strength and the muscle cross-sectional area of the quadriceps femoris in relation to physical activity level in the elderly.  Thirty-two functionally autonomous people over 80 years (men: 82.80±2.09 years; women: 83.77±4.09 years) participated in this study. The Barthel Index, the Yale Physical Activity Survey and the Chair Stand Test were the instruments used.  There were significant differences between sexes in muscle area (pmen. The muscle area and the Chair Stand Test correlated significantly with the walk index (r=0.445, pactivity index (r=0.430, pactivity index, muscle area and the Chair Stand Test, only the latter behaved as a predictor variable.  Muscle strength and muscle mass of quadriceps showed a significant association with the physical activity level in older people. Leg muscle strength was useful to reveal muscle mass and physical activity level in older people, which is relevant as a clinical practice indicator.

  1. Reliability and validity of the ultrasound technique to measure the rectus femoris muscle diameter in older CAD-patients

    Thomaes Tom

    2012-04-01

    Full Text Available Abstract Background The increasing age of coronary artery disease (CAD patients and the occurrence of sarcopenia in the elderly population accompanied by 'fear of moving' and hospitalization in these patients often results in a substantial loss of skeletal muscle mass and muscle strength. Cardiac rehabilitation can improve exercise tolerance and muscle strength in CAD patients but less data describe eventual morphological muscular changes possibly by more difficult access to imaging techniques. Therefore the aim of this study is to assess and quantify the reliability and validity of an easy applicable method, the ultrasound (US technique, to measure the diameter of rectus femoris muscle in comparison to the muscle dimensions measured with CT scans. Methods 45 older CAD patients without cardiac event during the last 9 months were included in this study. 25 patients were tested twice with ultrasound with a two day interval to assess test-retest reliability and 20 patients were tested twice (once with US and once with CT on the same day to assess the validity of the US technique compared to CT as the gold standard. Isometric and isokinetic muscle testing was performed to test potential zero-order correlations between muscle diameter, muscle volume and muscle force. Results An intraclass correlation coefficient (ICC of 0.97 ((95%CL: 0.92 - 0.99 was found for the test-retest reliability of US and the ICC computed between US and CT was 0.92 (95%CL: 0.81 - 0.97. The absolute difference between both techniques was 0.01 ± 0.12 cm (p = 0.66 resulting in a typical percentage error of 4.4%. Significant zero-order correlations were found between local muscle volume and muscle diameter assessed with CT (r = 0.67, p = 0.001 and assessed with US (r = 0.49, p Conclusions Ultrasound imaging can be used as a valid and reliable measurement tool to assess the rectus femoris muscle diameter in older CAD patients.

  2. Proteome Profiles of Longissimus and Biceps femoris Porcine Muscles Related to Exercise and Resting

    Pas, te M.F.W.; Keuning, E.; Wiel, van de D.F.M.; Young, J.F.; Oksbjerg, N.; Kruijt, L.

    2011-01-01

    Exercise affects muscle metabolism and composition in the untrained muscles. The proteome of muscle tissue will be affected by exercise and resting. This is of economic importance for pork quality where transportation relates to exercise of untrained muscles. Rest reverses exercise effects. The

  3. Inter- and intramuscular differences in training-induced hypertrophy of the quadriceps femoris: association with muscle activation during the first training session.

    Wakahara, Taku; Ema, Ryoichi; Miyamoto, Naokazu; Kawakami, Yasuo

    2017-07-01

    The purpose of this study was to examine whether inter- and intramuscular differences in hypertrophy induced by resistance training correspond to differences in muscle activation during the first training session. Eleven young men completed 12 weeks of training intervention for knee extension. Before and after the intervention, T1-weighted magnetic resonance (MR) images were recorded to determine the volume and anatomical cross-sectional area (CSA) along the length of the individual muscles of the quadriceps femoris. The T2-weighted MR images were also acquired before and immediately after the first training session. The T2 was calculated for each pixel within the quadriceps femoris, from which the muscle activation was evaluated as %activated volume and area. The results showed that the %activated volume after the first training session was significantly higher in the vastus intermedius than the vastus medialis. However, the relative change in muscle volume after the training intervention was significantly greater in the rectus femoris than the vasti muscles (vastus lateralis, intermedius and medialis). Within the rectus femoris, both the %activated area and relative increase in CSA were significantly greater in the distal region than the proximal region. In contrast, the %activated area and relative increase in CSA of the vasti were nearly uniform along each muscle. These results suggest that the muscle activation during the first training session is associated with the intramuscular difference in hypertrophy induced by training intervention, but not with the intermuscular difference. © 2015 Scandinavian Society of Clinical Physiology and Nuclear Medicine. Published by John Wiley & Sons Ltd.

  4. Proteome Changes in biceps femoris Muscle of Iranian One-Humped Camel and Their Effect on Meat Quality Traits

    Mohammad-Javad Varidi

    2016-01-01

    Full Text Available In this study physicochemical and quality traits of biceps femoris and longissimus thoracis muscles of male and female Iranian one-humped camel were determined during 14 days of refrigeration storage. Analysis of variance of the results showed that only shear force and temperature were affected by the gender (p<0.05. Anatomical location of the muscle influenced the meat properties except for drip loss (p<0.05. Also, except for cooking loss, ageing influenced the physicochemical and quality properties of meat; during 14 days of storage, proteolysis resulted in an increase of L* and b* values, drip loss and myofibrillar fragmentation index, and the decrease of a* value, expressed juice, shear force and sarcomere length. Proteome changes (myofi brillar proteins during storage were investigated. Gel analysis revealed that 19 protein spots were signifi cantly changed during 24, 72 and 168 h post-mortem. Fifteen spots were identified by MALDI-TOF/TOF mass spectrometer. Correlation analysis revealed significant correlations of actin, troponin T, capping protein, heat shock proteins (HSP and desmin with physicochemical and quality properties of meat (p<0.05. Actin might be a potential protein marker for colour, tenderness and water-holding capacity, and HSP27 and desmin are good candidate markers for colour and tenderness, respectively.

  5. Quantitative motor unit action potential analysis of supraspinatus, infraspinatus, deltoideus and biceps femoris muscles in adult Royal Dutch sport horses.

    Jose-Cunilleras, E; Wijnberg, I D

    2016-03-01

    Reference values for quantitative electromyography (QEMG) in shoulder and hindlimb muscles of horses are limited. To determine normative data on QEMG analysis of supraspinatus (SS), infraspinatus (IS), deltoideus (DT) and biceps femoris (BF) muscles. Experimental observational study and retrospective case series. Seven adult healthy Royal Dutch sport horses underwent quantitative motor unit action potential analysis of each muscle using commercial electromyography equipment. Measurements were made according to published methods. One-way ANOVA was used to compare quantitative motor unit action potential variables between muscles, with post hoc testing according to Bonferroni, with significance set at Paction potential were 8.7-10.4 ms, 651-867 μV, 3.2-3.7, 3.7-4.7, 1054-1457 μV·ms and 1.1-1.5 for SS, 9.6-11.0 ms, 779-1082 μV, 3.3-3.7, 3.8-4.7, 1349-2204 μV·ms and 1.4-1.9 for IS, 6.0-9.1 ms, 370-691 μV, 2.9-3.7, 2.8-4.5, 380-1374 μV·ms and 0.3-1.3 for DT and 5.7-7.8 ms, 265-385 μV, 2.7-3.2, 2.6-3.1, 296-484 μV·ms and 0.2-0.5 for BF, respectively. Mean duration, amplitude, number of phases and turns, area and size index were significantly (P15% polyphasic motor unit action potentials in SS and IS muscles. Differences between muscles should be taken into account when performing QEMG in order to be able to distinguish normal horses from horses with suspected neurogenic or myogenic disorders. These normal data provide the basis for objective QEMG assessment of shoulder and hindlimb muscles. Quantitative electromyography appears to be helpful in diagnosing neuropathies and discriminating these from myopathies. © 2015 EVJ Ltd.

  6. Sports Mass Age Therapy on the Reduction of Delayed Onset Muscle Soreness of the Quadriceps Femoris

    Boguszewski Dariusz

    2014-12-01

    Full Text Available Purpose. Massage therapy is one of most commonly applied treatments during athletic training. The aim of this study was to assess the effectiveness of sports massage therapy on reducing post-exercise quadriceps muscle soreness. Methods. A sample of 29 women aged 24-26 years was divided into an experimental group (n = 15 receiving classic sports massage therapy and a control group (n = 14 given no treatment. An exercise session consisting of five sets of deep squat jumps was administered after which lower limb power as assessed via the vertical jump test. Muscle soreness was assessed using the visual analogue scale (VAS and exercise intensity with the Borg Rating of Perceived Exertion Scale. Subsequent measurements of lower limb power and muscle soreness were performed 24, 48, 72 and 96 h after the exercise session. Differences between the measurements were assessed by the Friedman and least significant difference tests while between-group comparisons involved the Mann-Whitney U test. Results. The largest decrease in lower limb power was observed between the first measurement after the exercise session and 24 h later (p < 0.01. The smallest decrease in power was observed in the massage group. The highest levels of muscle soreness were noted 24 h post-exercise in the massage group and 48 h post-exercise in the control group. The experimental group showed a decrease in muscle soreness in each subsequent measurement, with the results close to zero on the VAS 96 h postexercise. Conclusions. Massage therapy quickened recovery and improved muscle efficiency post-exercise and may serve as an effective treatment of muscle soreness. The analgesic effect of massage suggests it should be widely applied in sport, physical therapy and rehabilitation.

  7. The Effect of Local Anesthetic Volume Within the Adductor Canal on Quadriceps Femoris Function Evaluated by Electromyography

    Grevstad, Ulrik; Jæger, Pia; Kløvgaard, Johan

    2016-01-01

    BACKGROUND: Single-injection adductor canal block (ACB) provides analgesia after knee surgery. Which nerves that are blocked by an ACB and what influence-if any-local anesthetic volume has on the effects remain undetermined. We hypothesized that effects on the nerve to the vastus medialis muscle......, they received a femoral nerve block and a placebo ACB. The effect on the vastus medialis (primary endpoint) and the vastus lateralis was evaluated using noninvasive electromyography (EMG). Quadriceps femoris muscle strength was evaluated using a dynamometer. RESULTS: There was a statistically significant......L was used (P = 0.0001). No statistically significant differences were found between volume and effect on the vastus lateralis (P = 0.81) or in muscle strength (P = 0.15). CONCLUSIONS: For ACB, there is a positive correlation between local anesthetic volume and effect on the vastus medialis muscle. Despite...

  8. The Isolated Effect of Adductor Canal Block on Quadriceps Femoris Muscle Strength After Total Knee Arthroplasty

    Sørensen, Johan Kløvgaard; Jæger, Pia; Dahl, Jørgen Berg

    2016-01-01

    TKA. METHODS: We included 64 patients on the first postoperative day. Group A received an ACB with 30 mL ropivacaine 0.75% at t0 and with 30 mL saline 60 minutes later (t60). Group B received the treatment in the opposite order. The primary end point was the difference between groups in MVIC at t60......, expressed as a percentage of postoperative preblock values. In this manner, the effect of the ACB could be isolated from the detrimental effect on muscle strength caused by the surgery. Secondary end points were differences between groups in mobility and pain scores. We planned a subgroup analysis dividing...

  9. Karakteristik Kimia dan Mikrostruktur Otot Longissimus Dorsi dan Biceps Femoris dari Sapi Glonggong (Chemical Characteristics and Microstructure of Longissimus Dorsi and Biceps Femoris Muscle of Glonggong Beef Cattle

    Amrih Prasetyo

    2012-02-01

    Full Text Available The study was conducted to evaluate chemical and microstructure characteristics of glonggong (excessive drink meat compared with the normal meat. The meat samples were taken from Boyolali Regency, came from five glonggong male Ongole grade cattle, and from five normal cattle with the average life weight of 250–300 kg. The chemical data were analyzed by using analysis of variance of 2x2 factorial patterns. The microstructure characteristics were also analyzed descriptively. The water content of glonggong meat was higher compared with that of normal meat on BF and LD muscle, average water content was 80.64% and 80.14% vs 78.60% and 74.57%, respectively. The protein contents of BF (15.98% and LD (16.17% was lower than the protein contents normal meat of BF (21.08% and LD (21.07%, respectively. The Result of statistical analyzed shows significant pengglonggongan of cattle before slaughtered (P<0.05 to meat fat value at every muscle. The meat lactic acid value of glonggong meat of LD muscle was lower than that of normal meat of LD muscle (2815.891 vs 6827.77 ppm. There was a damage of glonggong meat microstructure of LD, BF muscle and also of liver organ. In conclusion, glonggong meat had a lower chemical characteristics compared with the normal meat. (Key words: Chemical, Microstructure, Meat, Glonggong

  10. Lower extremity muscle functions during full squats.

    Robertson, D G E; Wilson, Jean-Marie J; St Pierre, Taunya A

    2008-11-01

    The purpose of this research was to determine the functions of the gluteus maximus, biceps femoris, semitendinosus, rectus femoris, vastus lateralis, soleus, gastrocnemius, and tibialis anterior muscles about their associated joints during full (deep-knee) squats. Muscle function was determined from joint kinematics, inverse dynamics, electromyography, and muscle length changes. The subjects were six experienced, male weight lifters. Analyses revealed that the prime movers during ascent were the monoarticular gluteus maximus and vasti muscles (as exemplified by vastus lateralis) and to a lesser extent the soleus muscles. The biarticular muscles functioned mainly as stabilizers of the ankle, knee, and hip joints by working eccentrically to control descent or transferring energy among the segments during scent. During the ascent phase, the hip extensor moments of force produced the largest powers followed by the ankle plantar flexors and then the knee extensors. The hip and knee extensors provided the initial bursts of power during ascent with the ankle extensors and especially a second burst from the hip extensors adding power during the latter half of the ascent.

  11. {sup 99m}Tc-sestamibi muscle scintigraphy to assess the response to neuromuscular electrical stimulation of normal quadriceps femoris muscle

    Pekindil, Y.; Sarikaya, A.; Birtane, M.; Pekindil, G.; Salan, A. [Trakya Univ., Edirne (Turkey). Hospital

    2001-08-01

    Neuromuscular electrical stimulation (NMES) is widely used for improving muscle strength by simultaneous contraction in the prevention of muscle atrophy. Although there exist many clinical methods for evaluating the therapeutic response of muscles, {sup 99m}Tc-sestamibi which is a skeletal muscle perfusion and metabolism agent has not previously been used for this purpose. The aim of our work was to ascertain whether {sup 99m}Tc-sestamibi muscle scintigraphy is useful in the monitoring of therapeutic response to NMES in healthy women. The study included 16 women aged between 21 and 45, with a mean age of 32.7{+-}6.4. Both quadriceps femoris muscles (QFM) of each patient were studied. After randomization to remove the effect of the dominant side, one QFM of each patient was subjected to the NMES procedure for a period of 20 days. NMES was performed with an alternating biphasic rectangular current, from a computed electrical stimulator daily for 23 minutes. After measurement of skinfold thickness over the thigh, pre- and post-NMES girth measurements were assessed in centimeters. Sixty minutes after injections of 555 MBq {sup 99m}Tc-sestamibi, static images of the thigh were obtained for 5 minutes. The thigh-to-knee uptake ratio was calculated by semiquantitative analysis and normalized to body surface area (NUR=normalized uptake ratio). The difference between the pre and post NMES NUR values was significant (1.76{+-}0.31 versus 2.25{+-}0.38, p=0.0000). The percentage (%) increase in NUR values also well correlated with the % increase in thigh girth measurements (r=0.89, p=0.0000). These results indicated that {sup 99m}Tc-sestamibi muscle scintigraphy as a new tool may be useful in evaluating therapeutic response to NMES. (author)

  12. Effect of tumbling time, injection rate and k-carrageenan addition on processing, textural and color characteristics of pork Biceps femoris muscle

    Livia PATRAŞCU

    2013-08-01

    Full Text Available The effect of tumbling time (0-9 hours, injection rate (20-50% and k carrageenan addition (0.25 - 0.5% on quality characteristics of cooked pork Biceps femoris muscle have been studied. Properties of injected and tumbled meat samples were determined by measuring processing characteristics (tumbling yield, cooking yield and expressible moisture, color (L*, a*, b*, Hue angle and Chroma and texture (firmness, toughness, adhesiveness, work of adhesion and fracturability. Increasing tumbling time up to 9 h led to better hydration properties and increased the cooking yield for all samples, both with 0.25% and 0.5% of k-carrageenan addition. It also decreased the firmness and toughness of the evaluated samples. Biceps femoris samples containing a higher level of k-carrageenan were tenderer than those containing less polysaccharide. Neither injection rate nor tumbling time affected the color components of the analyzed samples.

  13. Extraocular muscle function testing

    ... medlineplus.gov/ency/article/003397.htm Extraocular muscle function testing To use the sharing features on this page, please enable JavaScript. Extraocular muscle function testing examines the function of the eye muscles. ...

  14. The effect of whole-body vibration and resistance training on muscle strength in a 13-year-old boy with m. biceps femoris lesion and posttraumatic calcification

    Pantović Milan

    2015-01-01

    Full Text Available Introduction. Skeletal muscle atrophy is a common adaptation after major muscle lesion of m. biceps femoris that results in numerous health-sport related complications. Resistance strength training and whole-body vibration (WBV have been recognized as an effective tool, which attenuates atrophy and evokes hypertrophy. Case report. We presented a 13-year-old boy with a lesion of m. biceps femoris and posttraumatic calcification sustained in soccer training session 6 month prior participation in this study. The patient underwent training 3 times a week for 7 weeks, including unilateral progressive WBV + resistance training (RT of the right hamstrings muscle group using WBV and weights. Hamstrings muscle strength was measured using a Cybex isokinetic dynamometer. At the end of week 4, the patient peak torque value of the involved leg increased from 39% body weight (BW to 72% BW and bilateral deficit decreased from -64% to -35%; at the end of week 7 the participant’s peak torque value of the involved leg increased from 72% BW to 98% BW and bilateral deficit decreased from -35% to -3%, respectively. Conclusion. Unilateral WBV + RT protocol evokes strength increase in the hamstrings muscle group. This case study suggests that adding WBV, as well as the RT program have to be considered in the total management of strength disbalance. Further studies are needed to verify the efficiency of WBV + RT protocol over the classic physical therapy exercise program.

  15. The effect of dynamic knee-extension exercise on patellar tendon and quadriceps femoris muscle glucose uptake in humans studied by positron emission tomography

    Kalliokoski, Kari K; Langberg, Henning; Ryberg, Ann Kathrine

    2005-01-01

    Both tendon and peritendinous tissue show evidence of metabolic activity, but the effect of acute exercise on substrate turnover is unknown. We therefore examined the influence of acute exercise on glucose uptake in the patellar and quadriceps tendons during dynamic exercise in humans. Glucose...... that tendon glucose uptake is increased during exercise. However, the increase in tendon glucose uptake is less pronounced than in muscle and the increases are uncorrelated. Thus tendon glucose uptake is likely to be regulated by mechanisms independently of those regulating skeletal muscle glucose uptake....... uptake was measured in five healthy men in the patellar and quadriceps tendons and the quadriceps femoris muscle at rest and during dynamic knee-extension exercise (25 W) using positron emission tomography and [18F]-2-fluoro-2-deoxy-D-glucose ([18F]FDG). Glucose uptake index was calculated by dividing...

  16. [Repair of pressure sores over ischial tuberosity with long head of biceps femoris muscle flap combined with semi-V posterior thigh fasciocutaneous flap].

    Hai, Heng-lin; Shen, Chuan-an; Chai, Jia-ke; Li, Hua-tao

    2012-02-01

    To explore the clinical effect of transplantation of the long head of biceps femoris muscle flap in combination with semi-V posterior thigh fasciocutaneous flap for repair of pressure sores over ischial tuberosity. Eight patients with 10 deep pressure sores over ischial tuberosity were admitted to the First Affiliated Hospital to the PLA General Hospital and the 98th Hospital of PLA from April 2004 to June 2010. The wounds measured from 2 cm × 2 cm to 6 cm × 4 cm were covered with the long head of biceps femoris muscle flap and semi-V posterior thigh fasciocutaneous flap (ranged from 10 cm × 6 cm to 13 cm × 8 cm). The condition of flaps was observed and followed up for a long time. All flaps survived. Nine wounds healed by first intention. Subcutaneous accumulation of fluids occurred in one wound with formation of a sinus at drainage site, and it healed after dressing change for 25 days. Patients were followed up for 7 to 34 months. Sore recurred in one patient 9 months after surgery, and it was successfully repaired with the same flap for the second time. Flaps in the other 7 patients appeared satisfactory with soft texture and without ulceration. This combined flap is easy in formation and transfer, and it causes little side injury with good resistance against pressure. It is a new method for repair of pressure sore over sacral region.

  17. Group Ia afferents likely contribute to short-latency interlimb reflexes in the human biceps femoris muscle

    Stevenson, Andrew James Thomas; Kamavuako, Ernest Nlandu; Geertsen, Svend Sparre

    2017-01-01

    amplitudes (4 vs. 8°) at the same 150°/s velocity (p’s > 0.08). Conclusion: Because fast conducting group Ia muscle spindle afferents are sensitive to changes in muscle stretch velocity, while group II spindle afferents are sensitive to changes in amplitude (Grey et al., JPhysiol., 2001; Matthews, Trends...... Neurosci., 1991), group Ia velocity sensitive muscle spindle afferents likely contribute to the short-latency crossed spinal reflexes in the cBF muscle following iKnee joint rotations. This supports the findings for the short-latency crossed responses in the human soleus muscle (Stubbs & Mrachacz...... neurons in humans, with primary contributions from group Ia muscle spindle afferents....

  18. Imaging of rectus femoris proximal tendinopathies

    Pesquer, Lionel; Poussange, Nicolas; Meyer, Philippe; Dallaudiere, Benjamin; Feldis, Matthieu; Sonnery-Cottet, Bertrand; Graveleau, Nicolas

    2016-01-01

    The rectus femoris is the most commonly injured muscle of the anterior thigh among athletes, especially soccer players. Although the injury pattern of the muscle belly is well documented, less is known about the anatomy and specific lesions of the proximal tendons. For each head, three distinctive patterns may be encountered according to the location of the injury, which can be at the enthesis, within the tendon, or at the musculotendinous junction. In children, injuries correspond most commonly to avulsion of the anteroinferior iliac spine from the direct head and can lead to subspine impingement. Calcific tendinitis and traumatic tears may be encountered in adults. Recent studies have shown that traumatic injuries of the indirect head may be underdiagnosed and that injuries of both heads may have a surgical issue. Finally, in the case of tears, functional outcome and treatment may vary if the rupture involves one or both tendons and if the tear is partial or complete. Thus, it is mandatory for the radiologist to know the different ultrasound and magnetic resonance imaging (MRI) patterns of these lesions in order to provide accurate diagnosis and treatment. The purpose of this article is to recall the anatomy of the two heads of rectus femoris, describe a reliable method of assessment with ultrasound and MRI and know the main injury patterns, through our own experience and literature review. (orig.)

  19. Imaging of rectus femoris proximal tendinopathies

    Pesquer, Lionel; Poussange, Nicolas; Meyer, Philippe; Dallaudiere, Benjamin; Feldis, Matthieu [Clinique du Sport de Bordeaux, Centre d' Imagerie Osteo-articulaire, Merignac (France); Sonnery-Cottet, Bertrand [Groupe Ramsay Generale de Sante - Hopital Prive Jean Mermoz, Centre Orthopedique Santy, Lyon (France); Graveleau, Nicolas [Clinique du Sport de Bordeaux, Centre de Chirurgie Orthopedique et Sportive, Merignac (France)

    2016-07-15

    The rectus femoris is the most commonly injured muscle of the anterior thigh among athletes, especially soccer players. Although the injury pattern of the muscle belly is well documented, less is known about the anatomy and specific lesions of the proximal tendons. For each head, three distinctive patterns may be encountered according to the location of the injury, which can be at the enthesis, within the tendon, or at the musculotendinous junction. In children, injuries correspond most commonly to avulsion of the anteroinferior iliac spine from the direct head and can lead to subspine impingement. Calcific tendinitis and traumatic tears may be encountered in adults. Recent studies have shown that traumatic injuries of the indirect head may be underdiagnosed and that injuries of both heads may have a surgical issue. Finally, in the case of tears, functional outcome and treatment may vary if the rupture involves one or both tendons and if the tear is partial or complete. Thus, it is mandatory for the radiologist to know the different ultrasound and magnetic resonance imaging (MRI) patterns of these lesions in order to provide accurate diagnosis and treatment. The purpose of this article is to recall the anatomy of the two heads of rectus femoris, describe a reliable method of assessment with ultrasound and MRI and know the main injury patterns, through our own experience and literature review. (orig.)

  20. Functionality of the contralateral biceps femoris reflex response during human walking

    Stevenson, Andrew James Thomas; Geertsen, Svend Sparre; Sinkjaer, Thomas

    2014-01-01

    of the body in order to maintain dynamic equilibrium during walking. Therefore, we hypothesized that if we suddenly slowed the treadmill participants were walking on, the cBF reflex would be inhibited because the necessity to break the forward progression of the body would be decreased. Conversely, if we...... the treadmill velocity was altered concurrently or 50 ms after knee perturbation onset. These results, together with the finding that the cBF reflex response is under some cortical control [1], strongly suggest a functional role for the cBF reflex during walking that is adaptable to the environmental situation....

  1. Cross-sectional area measurements versus volumetric assessment of the quadriceps femoris muscle in patients with anterior cruciate ligament reconstructions

    Marcon, Magda [University Hospital Zurich, Department of Radiology, Zurich (Switzerland); University Hospital Udine, Department of Radiology, Udine (Italy); Ciritsis, Bernhard; Laux, Christoph [University Hospital Zurich, Department of Traumatology, Zurich (Switzerland); Nanz, Daniel; Nguyen-Kim, Thi Dan Linh; Fischer, Michael A.; Andreisek, Gustav; Ulbrich, Erika J. [University Hospital Zurich, Department of Radiology, Zurich (Switzerland)

    2014-10-31

    Our aim was to validate the use of cross-sectional area (CSA) measurements at multiple quadriceps muscle levels for estimating the total muscle volume (TMV), and to define the best correlating measurement level. Prospective institutional review board (IRB)-approved study with written informed patient consent. Thighs of thirty-four consecutive patients with ACL-reconstructions (men, 22; women, 12) were imaged at 1.5-T using three-dimensional (3D) spoiled dual gradient-echo sequences. CSA was measured at three levels: 15, 20, and 25 cm above the knee joint line. TMV was determined using dedicated volumetry software with semiautomatic segmentation. Pearson's correlation and regression analysis (including standard error of the estimate, SEE) was used to compare CSA and TMV. The mean ± standard deviation (SD) for the CSA was 60.6 ± 12.8 cm{sup 2} (range, 35.6-93.4 cm{sup 2}), 71.1 ± 15.1 cm{sup 2} (range, 42.5-108.9 cm{sup 2}) and 74.2 ± 17.1 cm{sup 2} (range, 40.9-115.9 cm{sup 2}) for CSA-15, CSA-20 and CSA-25, respectively. The mean ± SD quadriceps' TMV was 1949 ± 533.7 cm{sup 3} (range, 964.0-3283.0 cm{sup 3}). Pearson correlation coefficient was r = 0.835 (p < 0.01), r = 0.906 (p < 0.01), and r = 0.956 (p < 0.01) for CSA-15, CSA-20 and CSA-25, respectively. Corresponding SEE, expressed as percentage of the TMV, were 15.2 %, 11.6 % and 8.1 %, respectively. The best correlation coefficient between quadriceps CSA and TMV was found for CSA-25, but its clinical application to estimate the TMV is limited by a relatively large SEE. (orig.)

  2. Surgical treatment of rectus femoris injury in soccer playing athletes: report of two cases.

    Shimba, Leandro Girardi; Latorre, Gabriel Carmona; Pochini, Alberto de Castro; Astur, Diego Costa; Andreoli, Carlos Vicente

    2017-01-01

    Muscle injury is the most common injury during sport practice. It represents 31% of all lesions in soccer, 16% in track and field, 10.4% in rugby, 17.7% in basketball, and between 22% and 46% in American football. The cicatrization with the formation of fibrotic tissue can compromise the muscle function, resulting in a challenging problem for orthopedics. Although conservative treatment presents adequate functional results in the majority of the athletes who have muscle injury, the consequences of treatment failure can be dramatic, possibly compromising the return to sport practice. The biarticular muscles with prevalence of type II muscle fibers, which are submitted to excentric contraction, present higher lesion risk. The quadriceps femoris is one example. The femoris rectus is the quadriceps femoris muscle most frequently involved in stretching injuries. The rupture occurs in the acceleration phase of running, jump, ball kicking, or in contraction against resistance. Although the conservative treatment shows good results, it is common that the patient has lower muscle strength, difficulty in return to sports, and a permanent and visible gap. Surgical treatment can be an option for a more efficient return to sports.

  3. Surgical treatment of rectus femoris injury in soccer playing athletes: report of two cases

    Leandro Girardi Shimba

    Full Text Available ABSTRACT Muscle injury is the most common injury during sport practice. It represents 31% of all lesions in soccer, 16% in track and field, 10.4% in rugby, 17.7% in basketball, and between 22% and 46% in American football. The cicatrization with the formation of fibrotic tissue can compromise the muscle function, resulting in a challenging problem for orthopedics. Although conservative treatment presents adequate functional results in the majority of the athletes who have muscle injury, the consequences of treatment failure can be dramatic, possibly compromising the return to sport practice. The biarticular muscles with prevalence of type II muscle fibers, which are submitted to excentric contraction, present higher lesion risk. The quadriceps femoris is one example. The femoris rectus is the quadriceps femoris muscle most frequently involved in stretching injuries. The rupture occurs in the acceleration phase of running, jump, ball kicking, or in contraction against resistance. Although the conservative treatment shows good results, it is common that the patient has lower muscle strength, difficulty in return to sports, and a permanent and visible gap. Surgical treatment can be an option for a more efficient return to sports.

  4. The neuromechanical functional contractile properties of the thigh muscles measured using tensiomyography in male athletes and non-athletes

    Toskić Lazar

    2016-01-01

    Full Text Available Involuntary neuromechanical muscle contractile properties, especially of the extensor muscles and knee joint flexors as the largest muscle groups of the caudal part of the body, play an important role in both everyday movement and sport. Based on these data we can obtain important information on the functional properties of muscles. The basic means of evaluation of the functional involuntary neuromechanical muscles contractile properties is the non-invasive tensiomyographic method (TMG. The aim of this study was to determine the differences between the involuntary neuromechanical contractile properties of the thigh muscles measured using the TMG method on a sample of male athletes and non-athletes. The sample of participants was made up of 17 athletes and 10 non-athletes. By applying the multivariate analysis of variance (MANOVA and the t-test, we achieved results which indicate that of the overall 30 variables, a difference was determined among 13 of them. Most of the differences were determined for the extensor muscles of the right knee, especially of the rectus femoris muscle. It was also shown that in addition to the main knee joint extensor muscle (rectus femoris the main knee joint flexor muscle (biceps femoris also takes part in the definition of the difference between athletes and non-athletes. The results have shown that the following variables: contraction time (Tc and delay contraction time (Td are the functional parameters for which the highest difference between athletes and non-athletes were determined (from t = -2.284, p < 0.05 for the vastus lateralis of the right leg to t = -4.018, p < 0.01 for the rectus femoris of the left leg. These results have shown that it is possible to determine the differences in the functional involuntary neuromechanical contractile properties of the thigh muscles among trained and untrained individuals using the tensiomyographic method, but at the same time indicated that these differences were very

  5. Electrically induced contraction levels of the quadriceps femoris muscles in healthy men: the effects of three patterns of burst-modulated alternating current and volitional muscle fatigue.

    Parker, Michael G; Broughton, Alex J; Larsen, Ben R; Dinius, Josh W; Cimbura, Mac J; Davis, Matthew

    2011-12-01

    The purpose of this study was to compare electrically induced contraction levels produced by three patterns of alternating current in fatigued and nonfatigued skeletal muscles. Eighteen male volunteers without health conditions, with a mean (SD) age of 24.9 (3.4) yrs were randomly exposed to a fatiguing volitional isometric quadriceps contraction and one of three patterns of 2.5-KHz alternating current; two were modulated at 50 bursts per second (10% burst duty cycle with five cycles per burst and 90% burst duty cycle with 45 cycles per burst), and one pattern was modulated at 100 bursts per second (10% burst duty cycle with 2.5 cycles per burst). The electrically induced contraction levels produced by the three patterns of electrical stimulation were compared before and after the fatiguing contraction. The 10% burst duty cycles produced 42.9% (95% confidence interval, 29.1%-56.7%) and 32.1% (95% confidence interval, 18.2%-45.9%) more muscle force (P stronger muscle contractions. Furthermore, the stimulation patterns had no influence on the difference in muscle force before and after the fatiguing quadriceps contraction. Consequently, for clinical applications in which high forces are desired, the patterns using the 10% burst duty cycle may be helpful.

  6. MUSCLE ACTIVITY RESPONSE TO EXTERNAL MOMENT DURING SINGLE-LEG DROP LANDING IN YOUNG BASKETBALL PLAYERS: THE IMPORTANCE OF BICEPS FEMORIS IN REDUCING INTERNAL ROTATION OF KNEE DURING LANDING

    Meguru Fujii

    2012-06-01

    Full Text Available Internal tibial rotation with the knee close to full extension combined with valgus collapse during drop landing generally results in non-contact anterior cruciate ligament (ACL injury. The purpose of this study was to investigate the relationship between internal rotation of the knee and muscle activity from internal and external rotator muscles, and between the internal rotation of knee and externally applied loads on the knee during landing in collegiate basketball players. Our hypothesis was that the activity of biceps femoris muscle would be an important factor reducing internal knee rotation during landing. The subjects were 10 collegiate basketball students: 5 females and 5 males. The subjects performed a single-leg drop landing from a 25-cm height. Femoral and tibial kinematics were measured using a 3D optoelectronic tracking system during the drop landings, and then the knee angular motions were determined. Ground reaction forces and muscle activation patterns (lateral hamstring and medial hamstring were simultaneously measured and computed. Results indicated that lower peak internal tibial rotation angle at the time of landing was associated with greater lateral hamstring activity (r = -0.623, p < 0.001. When gender was considered, the statistically significant correlation remained only in females. There was no association between the peak internal tibial rotation angle and the knee internal rotation moment. Control of muscle activity in the lateral to medial hamstring would be an important factor in generating sufficient force to inhibit excessive internal rotation during landing. Strengthening the biceps femoris might mitigate the higher incidence of non-contact ACL injury in female athletes

  7. Muscle function loss

    ... or head are damaged, you may have difficulty chewing and swallowing or closing your eyes. In these ... Medical Professional Muscle paralysis always requires immediate medical attention. If you notice gradual weakening or problems with ...

  8. Effect of pre-rigor stretch and various constant temperatures on the rate of post-mortem pH fall, rigor mortis and some quality traits of excised porcine biceps femoris muscle strips.

    Vada-Kovács, M

    1996-01-01

    Porcine biceps femoris strips of 10 cm original length were stretched by 50% and fixed within 1 hr post mortem then subjected to temperatures of 4 °, 15 ° or 36 °C until they attained their ultimate pH. Unrestrained control muscle strips, which were left to shorten freely, were similarly treated. Post-mortem metabolism (pH, R-value) and shortening were recorded; thereafter ultimate meat quality traits (pH, lightness, extraction and swelling of myofibrils) were determined. The rate of pH fall at 36 °C, as well as ATP breakdown at 36 and 4 °C, were significantly reduced by pre-rigor stretch. The relationship between R-value and pH indicated cold shortening at 4 °C. Myofibrils isolated from pre-rigor stretched muscle strips kept at 36 °C showed the most severe reduction of hydration capacity, while paleness remained below extreme values. However, pre-rigor stretched myofibrils - when stored at 4 °C - proved to be superior to shortened ones in their extractability and swelling.

  9. Effects of strength training, detraining and retraining in muscle strength, hypertrophy and functional tasks in older female adults.

    Correa, Cleiton S; Cunha, Giovani; Marques, Nise; Oliveira-Reischak, Ãlvaro; Pinto, Ronei

    2016-07-01

    Previous studies presented different results regarding the maintenance time of muscular adaptations after strength training and the ability to resume the gains on muscular performance after resumption of the training programme. This study aimed to verify the effect of strength training on knee extensors and elbow flexor muscle strength, rectus femoris muscle volume and functional performance in older female adults after 12 weeks of strength training, 1 year of detraining and followed by 12 weeks of retraining. Twelve sedentary older women performed 12 weeks of strength training, 1 year of detraining and 12 weeks of retraining. The strength training was performed twice a week, and the assessment was made four times: at the baseline, after the strength training, after the detraining and after the retraining. The knee extensor and elbow flexor strength, rectus femoris muscle volume and functional task were assessed. Strength of knee extensor and elbow flexor muscles, rectus femoris muscle volume and 30-s sit-to-stand increased from baseline to post-training (respectively, 40%, 70%, 38% and 46%), decreased after detraining (respectively, -36%, -64%, -35% and -43%) and increased again these parameters after retraining (35%, 68%, 36% and 42%). Strength training induces gains on strength and hypertrophy, also increased the performance on functional tasks after the strength training. The stoppage of the strength caused strength loss and reduction of functional performance. The resumption of the strength training promoted the same gains of muscular performance in older female adults. © 2015 Scandinavian Society of Clinical Physiology and Nuclear Medicine. Published by John Wiley & Sons Ltd.

  10. 3D false color computed tomography for diagnosis and follow-up of permanent denervated human muscles submitted to home-based Functional Electrical Stimulation

    Ugo Carraro

    2015-03-01

    Full Text Available This report outlines the use of a customized false-color 3D computed tomography (CT protocol for the imaging of the rectus femoris of spinal cord injury (SCI patients suffering from complete and permanent denervation, as characterized by complete Conus and Cauda Equina syndrome. This muscle imaging method elicits the progression of the syndrome from initial atrophy to eventual degeneration, as well as the extent to which patients' quadriceps could be recovered during four years of home-based functional electrical stimulation (h-b FES. Patients were pre-selected from several European hospitals and functionally tested by, and enrolled in the EU Commission Shared Cost Project RISE (Contract n. QLG5-CT-2001-02191 at the Department of Physical Medicine, Wilhelminenspital, Vienna, Austria. Denervated muscles were electrically stimulated using a custom-designed stimulator, large surface electrodes, and customized progressive stimulation settings. Spiral CT images and specialized computational tools were used to isolate the rectus femoris muscle and produce 3D and 2D reconstructions of the denervated muscles. The cross sections of the muscles were determined by 2D Color CT, while muscle volumes were reconstructed by 3D Color CT. Shape, volume, and density changes were measured over the entirety of each rectus femoris muscle. Changes in tissue composition within the muscle were visualized by associating different colors to specified Hounsfield unit (HU values for fat, (yellow: [-200; -10], loose connective tissue or atrophic muscle, (cyan: [-9; 40], and normal muscle, fascia and tendons included, (red: [41; 200]. The results from this analysis are presented as the average HU values within the rectus femoris muscle reconstruction, as well as the percentage of these tissues with respect to the total muscle volume. Results from this study demonstrate that h-b FES induces a compliance-dependent recovery of muscle volume and size of muscle fibers, as

  11. 3D False Color Computed Tomography for Diagnosis and Follow-Up of Permanent Denervated Human Muscles Submitted to Home-Based Functional Electrical Stimulation.

    Carraro, Ugo; Edmunds, Kyle J; Gargiulo, Paolo

    2015-03-11

    This report outlines the use of a customized false-color 3D computed tomography (CT) protocol for the imaging of the rectus femoris of spinal cord injury (SCI) patients suffering from complete and permanent denervation, as characterized by complete Conus and Cauda Equina syndrome. This muscle imaging method elicits the progression of the syndrome from initial atrophy to eventual degeneration, as well as the extent to which patients' quadriceps could be recovered during four years of home-based functional electrical stimulation (h-b FES). Patients were pre-selected from several European hospitals and functionally tested by, and enrolled in the EU Commission Shared Cost Project RISE (Contract n. QLG5-CT-2001-02191) at the Department of Physical Medicine, Wilhelminenspital, Vienna, Austria. Denervated muscles were electrically stimulated using a custom-designed stimulator, large surface electrodes, and customized progressive stimulation settings. Spiral CT images and specialized computational tools were used to isolate the rectus femoris muscle and produce 3D and 2D reconstructions of the denervated muscles. The cross sections of the muscles were determined by 2D Color CT, while muscle volumes were reconstructed by 3D Color CT. Shape, volume, and density changes were measured over the entirety of each rectus femoris muscle. Changes in tissue composition within the muscle were visualized by associating different colors to specified Hounsfield unit (HU) values for fat, (yellow: [-200; -10]), loose connective tissue or atrophic muscle, (cyan: [-9; 40]), and normal muscle, fascia and tendons included, (red: [41; 200]). The results from this analysis are presented as the average HU values within the rectus femoris muscle reconstruction, as well as the percentage of these tissues with respect to the total muscle volume. Results from this study demonstrate that h-b FES induces a compliance-dependent recovery of muscle volume and size of muscle fibers, as evidenced by the

  12. 38 CFR 4.78 - Muscle function.

    2010-07-01

    ... 38 Pensions, Bonuses, and Veterans' Relief 1 2010-07-01 2010-07-01 false Muscle function. 4.78... DISABILITIES Disability Ratings The Organs of Special Sense § 4.78 Muscle function. (a) Examination of muscle function. The examiner must use a Goldmann perimeter chart that identifies the four major quadrants (upward...

  13. Skeletal Muscle Ultrasonography in Nutrition and Functional Outcome Assessment of Critically Ill Children: Experience and Insights From Pediatric Disease and Adult Critical Care Studies [Formula: see text].

    Ong, Chengsi; Lee, Jan Hau; Leow, Melvin K S; Puthucheary, Zudin A

    2017-09-01

    Evidence suggests that critically ill children develop muscle wasting, which could affect outcomes. Muscle ultrasound has been used to track muscle wasting and association with outcomes in critically ill adults but not children. This review aims to summarize methodological considerations of muscle ultrasound, structural findings, and possibilities for its application in the assessment of nutrition and functional outcomes in critically ill children. Medline, Embase, and CINAHL databases were searched up until April 2016. Articles describing skeletal muscle ultrasound in children and critically ill adults were analyzed qualitatively for details on techniques and findings. Thickness and cross-sectional area of various upper and lower body muscles have been studied to quantify muscle mass and detect muscle changes. The quadriceps femoris muscle is one of the most commonly measured muscles due to its relation to mobility and is sensitive to changes over time. However, the margin of error for quadriceps thickness is too wide to reliably detect muscle changes in critically ill children. Muscle size and its correlation with strength and function also have not yet been studied in critically ill children. Echogenicity, used to detect compromised muscle structure in neuromuscular disease, may be another property worth studying in critically ill children. Muscle ultrasound may be useful in detecting muscle wasting in critically ill children but has not been shown to be sufficiently reliable in this population. Further study of the reliability and correlation with functional outcomes and nutrition intake is required before muscle ultrasound is routinely employed in critically ill children.

  14. The functional significance of hamstrings composition: is it really a "fast" muscle group?

    Evangelidis, Pavlos E; Massey, Garry J; Ferguson, Richard A; Wheeler, Patrick C; Pain, Matthew T G; Folland, Jonathan P

    2017-11-01

    Hamstrings muscle fiber composition may be predominantly fast-twitch and could explain the high incidence of hamstrings strain injuries. However, hamstrings muscle composition in vivo, and its influence on knee flexor muscle function, remains unknown. We investigated biceps femoris long head (BFlh) myosin heavy chain (MHC) composition from biopsy samples, and the association of hamstrings composition and hamstrings muscle volume (using MRI) with knee flexor maximal and explosive strength. Thirty-one young men performed maximal (concentric, eccentric, isometric) and explosive (isometric) contractions. BFlh exhibited a balanced MHC distribution [mean ± SD (min-max); 47.1 ± 9.1% (32.6-71.0%) MHC-I, 35.5 ± 8.5% (21.5-60.0%) MHC-IIA, 17.4 ± 9.1% (0.0-30.9%) MHC-IIX]. Muscle volume was correlated with knee flexor maximal strength at all velocities and contraction modes (r = 0.62-0.76, P hamstrings strain injury. Hamstrings muscle volume explained 38-58% of the inter-individual differences in knee flexor maximum strength at a range of velocities and contraction modes, while BFlh muscle composition was not associated with maximal or explosive strength. © 2016 John Wiley & Sons A/S. Published by John Wiley & Sons Ltd.

  15. Striated Muscle Function, Regeneration, and Repair

    Shadrin, I.Y.; Khodabukus, A.; Bursac, N.

    2016-01-01

    As the only striated muscle tissues in the body, skeletal and cardiac muscle share numerous structural and functional characteristics, while exhibiting vastly different size and regenerative potential. Healthy skeletal muscle harbors a robust regenerative response that becomes inadequate after large muscle loss or in degenerative pathologies and aging. In contrast, the mammalian heart loses its regenerative capacity shortly after birth, leaving it susceptible to permanent damage by acute injury or chronic disease. In this review, we compare and contrast the physiology and regenerative potential of native skeletal and cardiac muscles, mechanisms underlying striated muscle dysfunction, and bioengineering strategies to treat muscle disorders. We focus on different sources for cellular therapy, biomaterials to augment the endogenous regenerative response, and progress in engineering and application of mature striated muscle tissues in vitro and in vivo. Finally, we discuss the challenges and perspectives in translating muscle bioengineering strategies to clinical practice. PMID:27271751

  16. Mechanical modeling of skeletal muscle functioning

    van der Linden, B.J.J.J.

    1998-01-01

    For movement of body or body segments is combined effort needed of the central nervous system and the muscular-skeletal system. This thesis deals with the mechanical functioning of skeletal muscle. That muscles come in a large variety of geometries, suggest the existence of a relation between muscle

  17. Muscle reaction function of individuals with intellectual disabilities may be improved through therapeutic use of a horse.

    Giagazoglou, Paraskevi; Arabatzi, Fotini; Kellis, Eleftherios; Liga, Maria; Karra, Chrisanthi; Amiridis, Ioannis

    2013-09-01

    Reaction time and muscle activation deficits might limit the individual's autonomy in activities of daily living and in participating in recreational activities. The aim of the present study was to assess the effects of a 14-week hippotherapy exercise program on movement reaction time and muscle activation in adolescents with intellectual disability (ID). Nineteen adolescents with moderate ID were assigned either to an experimental group (n=10) or a control group (n=9). The experimental group attended a hippotherapy exercise program, consisting of two 30-min sessions per week for 14 weeks. Reaction time, time of maximum muscle activity and electromyographic activity (EMG) of rectus femoris and biceps femoris when standing up from a chair under three conditions: in response to audio, visual and audio with closed eyes stimuli were measured. Analysis of variance designs showed that hippotherapy intervention program resulted in significant improvements in reaction time and a reduction in time to maximum muscle activity of the intervention group comparing to the control group in all 3 three conditions that were examined (phippotherapy training. Hippotherapy probably creates a changing environment with a variety of stimuli that enhance deep proprioception as well as other sensory inputs. In conclusion, this study provides evidence that hippotherapy can improve functional task performance by enhancing reaction time. Copyright © 2013 Elsevier Ltd. All rights reserved.

  18. Collagen XII myopathy with rectus femoris atrophy and collagen XII retention in fibroblasts

    Witting, Nanna; Krag, Thomas; Werlauff, Ulla

    2018-01-01

    INTRODUCTION: Mutation in the collagen XII gene (COL12A1) was recently reported to induce Bethlem myopathy. We describe a family affected by collagen XII-related myopathy in 3 generations. METHODS: Systematic interview, clinical examination, skin biopsies, and MRI of muscle were used. RESULTS...... affection and abnormal collagen XII retention in fibroblasts. MRI disclosed a selective wasting of the rectus femoris muscle. DISCUSSION: COL12A1 mutations should be considered in patients with a mild Bethlem phenotype who present with selective wasting of the rectus femoris, absence of the outside......-in phenomenon on MRI, and abnormal collagen XII retention in fibroblasts. Muscle Nerve, 2018....

  19. Phase reversal of biomechanical functions and muscle activity in backward pedaling.

    Ting, L H; Kautz, S A; Brown, D A; Zajac, F E

    1999-02-01

    Computer simulations of pedaling have shown that a wide range of pedaling tasks can be performed if each limb has the capability of executing six biomechanical functions, which are arranged into three pairs of alternating antagonistic functions. An Ext/Flex pair accelerates the limb into extension or flexion, a Plant/Dorsi pair accelerates the foot into plantarflexion or dorsiflexion, and an Ant/Post pair accelerates the foot anteriorly or posteriorly relative to the pelvis. Because each biomechanical function (i.e., Ext, Flex, Plant, Dorsi, Ant, or Post) contributes to crank propulsion during a specific region in the cycle, phasing of a muscle is hypothesized to be a consequence of its ability to contribute to one or more of the biomechanical functions. Analysis of electromyogram (EMG) patterns has shown that this biomechanical framework assists in the interpretation of muscle activity in healthy and hemiparetic subjects during forward pedaling. Simulations show that backward pedaling can be produced with a phase shift of 180 degrees in the Ant/Post pair. No phase shifts in the Ext/Flex and Plant/Dorsi pairs are then necessary. To further test whether this simple yet biomechanically viable strategy may be used by the nervous system, EMGs from 7 muscles in 16 subjects were measured during backward as well as forward pedaling. As predicted, phasing in vastus medialis (VM), tibialis anterior (TA), medial gastrocnemius (MG), and soleus (SL) were unaffected by pedaling direction, with VM and SL contributing to Ext, MG to Plant, and TA to Dorsi. In contrast, phasing in biceps femoris (BF) and semimembranosus (SM) were affected by pedaling direction, as predicted, compatible with their contribution to the directionally sensitive Post function. Phasing of rectus femoris (RF) was also affected by pedaling direction; however, its ability to contribute to the directionally sensitive Ant function may only be expressed in forward pedaling. RF also contributed significantly to

  20. AMPK in skeletal muscle function and metabolism

    Kjøbsted, Rasmus; Hingst, Janne Rasmuss; Fentz, Joachim

    2018-01-01

    Skeletal muscle possesses a remarkable ability to adapt to various physiologic conditions. AMPK is a sensor of intracellular energy status that maintains energy stores by fine-tuning anabolic and catabolic pathways. AMPK's role as an energy sensor is particularly critical in tissues displaying...... highly changeable energy turnover. Due to the drastic changes in energy demand that occur between the resting and exercising state, skeletal muscle is one such tissue. Here, we review the complex regulation of AMPK in skeletal muscle and its consequences on metabolism (e.g., substrate uptake, oxidation......, and storage as well as mitochondrial function of skeletal muscle fibers). We focus on the role of AMPK in skeletal muscle during exercise and in exercise recovery. We also address adaptations to exercise training, including skeletal muscle plasticity, highlighting novel concepts and future perspectives...

  1. Vitamin D and muscle function.

    Dawson-Hughes, Bess

    2017-10-01

    Muscle weakness is a hallmark of severe vitamin D deficiency, but the effect of milder vitamin D deficiency or insufficiency on muscle mass and performance and risk of falling is uncertain. In this presentation, I review the evidence that vitamin D influences muscle mass and performance, balance, and risk of falling in older adults. Special consideration is given to the impact of both the starting 25-hydroxyvitamin D [25(OH)D] level and the dose administered on the clinical response to supplemental vitamin D in older men and women. Based on available evidence, older adults with serum 25(OH)D levels vitamin D dose range of 800-1000 IU per day has been effective in many studies; lower doses have generally been ineffective and several doses above this range have increased the risk of falls. In conclusion, older adults with serum 25(OH)D levels vitamin D. Copyright © 2017 Elsevier Ltd. All rights reserved.

  2. Skeletal muscle magnetic resonance biomarkers correlate with function and sentinel events in Duchenne muscular dystrophy.

    Barnard, Alison M; Willcocks, Rebecca J; Finanger, Erika L; Daniels, Michael J; Triplett, William T; Rooney, William D; Lott, Donovan J; Forbes, Sean C; Wang, Dah-Jyuu; Senesac, Claudia R; Harrington, Ann T; Finkel, Richard S; Russman, Barry S; Byrne, Barry J; Tennekoon, Gihan I; Walter, Glenn A; Sweeney, H Lee; Vandenborne, Krista

    2018-01-01

    To provide evidence for quantitative magnetic resonance (qMR) biomarkers in Duchenne muscular dystrophy by investigating the relationship between qMR measures of lower extremity muscle pathology and functional endpoints in a large ambulatory cohort using a multicenter study design. MR spectroscopy and quantitative imaging were implemented to measure intramuscular fat fraction and the transverse magnetization relaxation time constant (T2) in lower extremity muscles of 136 participants with Duchenne muscular dystrophy. Measures were collected at 554 visits over 48 months at one of three imaging sites. Fat fraction was measured in the soleus and vastus lateralis using MR spectroscopy, while T2 was assessed using MRI in eight lower extremity muscles. Ambulatory function was measured using the 10m walk/run, climb four stairs, supine to stand, and six minute walk tests. Significant correlations were found between all qMR and functional measures. Vastus lateralis qMR measures correlated most strongly to functional endpoints (|ρ| = 0.68-0.78), although measures in other rapidly progressing muscles including the biceps femoris (|ρ| = 0.63-0.73) and peroneals (|ρ| = 0.59-0.72) also showed strong correlations. Quantitative MR biomarkers were excellent indicators of loss of functional ability and correlated with qualitative measures of function. A VL FF of 0.40 was an approximate lower threshold of muscle pathology associated with loss of ambulation. Lower extremity qMR biomarkers have a robust relationship to clinically meaningful measures of ambulatory function in Duchenne muscular dystrophy. These results provide strong supporting evidence for qMR biomarkers and set the stage for their potential use as surrogate outcomes in clinical trials.

  3. Individual Muscle use in Hamstring Exercises by Soccer Players Assessed using Functional MRI.

    Fernandez-Gonzalo, R; Tesch, P A; Linnehan, R M; Kreider, R B; Di Salvo, V; Suarez-Arrones, L; Alomar, X; Mendez-Villanueva, A; Rodas, G

    2016-06-01

    This study used functional magnetic resonance imaging (fMRI) to compare individual muscle use in exercises aimed at preventing hamstring injuries. Thirty-six professional soccer players were randomized into 4 groups, each performing either Nordic hamstring, flywheel leg curl, Russian belt or conic-pulley exercise. MRIs were performed before and immediately after a bout of 4 sets of 8 repetitions. Pre-post exercise differences in contrast shift (T2) were analyzed for the long (BFLh) and short head (BFSh) of biceps femoris, semitendinosus (ST), semimembranosus (SM) and gracilis (GR) muscles. Flywheel leg curl increased (Phamstring, GR (39%), ST (16%) and BFSh (14%) showed increased T2 (Phamstring and GR muscle use. However, no single exercise executed was able to increase T2 of all hamstring and synergist muscles analyzed. It is therefore suggested that multiple exercises must be carried out to bring in, and fully activate all knee flexors and hip extensors. © Georg Thieme Verlag KG Stuttgart · New York.

  4. Testosterone Replacement, Muscle Strength, and Physical Function

    You-Seon Nam

    2018-05-01

    Full Text Available Muscle strength and physical function decrease in older men, as do testosterone levels. Nonetheless, the effects of testosterone replacement therapy on muscle strength and physical function remain inconclusive and equivocal. We conducted a rapid systematic review, the results of which showed that testosterone replacement does not affect muscle strength (measured by hand grip strength and leg muscle strength, although it may increase physical function (measured by the 6-minute walk test, Physical Activity Scale for the Elderly score, and other physical performance tests. However, most of the studies were conducted in the United States or Europe and did not include participants from Asian or other ethnic backgrounds; therefore, further studies are needed to evaluate the effects of testosterone replacement in a broader population.

  5. Effect of statins on skeletal muscle function.

    Parker, Beth A; Capizzi, Jeffrey A; Grimaldi, Adam S; Clarkson, Priscilla M; Cole, Stephanie M; Keadle, Justin; Chipkin, Stuart; Pescatello, Linda S; Simpson, Kathleen; White, C Michael; Thompson, Paul D

    2013-01-01

    Many clinicians believe that statins cause muscle pain, but this has not been observed in clinical trials, and the effect of statins on muscle performance has not been carefully studied. The Effect of Statins on Skeletal Muscle Function and Performance (STOMP) study assessed symptoms and measured creatine kinase, exercise capacity, and muscle strength before and after atorvastatin 80 mg or placebo was administered for 6 months to 420 healthy, statin-naive subjects. No individual creatine kinase value exceeded 10 times normal, but average creatine kinase increased 20.8±141.1 U/L (Pmuscle strength or exercise capacity with atorvastatin, but more atorvastatin than placebo subjects developed myalgia (19 versus 10; P=0.05). Myalgic subjects on atorvastatin or placebo had decreased muscle strength in 5 of 14 and 4 of 14 variables, respectively (P=0.69). These results indicate that high-dose atorvastatin for 6 months does not decrease average muscle strength or exercise performance in healthy, previously untreated subjects. Nevertheless, this blinded, controlled trial confirms the undocumented impression that statins increase muscle complaints. Atorvastatin also increased average creatine kinase, suggesting that statins produce mild muscle injury even among asymptomatic subjects. This increase in creatine kinase should prompt studies examining the effects of more prolonged, high-dose statin treatment on muscular performance. URL: http://www.clinicaltrials.gov. Unique identifier: NCT00609063.

  6. Abdominal muscle function and incisional hernia

    Jensen, K K; Kjaer, M; Jorgensen, L N

    2014-01-01

    PURPOSE: Although ventral incisional hernia (VIH) repair in patients is often evaluated in terms of hernia recurrence rate and health-related quality of life, there is no clear consensus regarding optimal operative treatment based on these parameters. It was proposed that health-related quality...... of life depends largely on abdominal muscle function (AMF), and the present review thus evaluates to what extent AMF is influenced by VIH and surgical repair. METHODS: The PubMed and EMBASE databases were searched for articles following a systematic strategy for inclusion. RESULTS: A total of seven...... studies described AMF in relation to VIH. Five studies examined AMF using objective isokinetic dynamometers to determine muscle strength, and two studies examined AMF by clinical examination-based muscle tests. CONCLUSION: Both equipment-related and functional muscle tests exist for use in patients...

  7. 3D Modelling and monitoring of denervated muscle under Functional Electrical Stimulation treatment and associated bone structural changes

    Paolo Gargiulo

    2011-03-01

    Full Text Available A novel clinical rehabilitation method for patients who have permanent and non recoverable muscle denervation in the legs was developed in the frame of the European Project RISE. The technique is based on FES and the project results shows, in these severely disabled patients, restoration of muscle tissue and function. This study propose novel methods based on image processing technique and medical modelling to monitor growth in denervated muscle treated with FES. Geometrical and structural changes in muscle and bone are studied and modelled. Secondary effects on the bone mineral density produced by the stimulation treatment and due the elicited muscle contraction are also investigated. The restoration process in DDM is an important object of discussion since there isn’t yet a complete understanding of the mechanisms regulating growth in denervated muscle. This study approaches the problem from a macroscopic point of view, developing 3-dimensional models of the whole stimulated muscles and following changes in volume, geometry and density very accurately. The method is based on the acquisition of high resolution Spiral CT scans from patients who have long-term flaccid paraplegia and the use of special image processing tools allowing tissue discriminations and muscle segmentation. Three patients were measured at different points of time during 4 years of electrical stimulation treatment. In this study is quantitatively demonstrated the influences of FES treatment on the different quadriceps bellies. The rectus femoris muscle is positioned in the middle of the quadriceps and responds (in general better to stimulation. In a patient with abundant adipose tissue surrounding the quadriceps, rectus femoris almost doubled the volume during the FES treatment while in the other bellies the changes measured were minimal. The analysis of the density shows clearly a restoration of the muscular structure in the growing muscle. The remarkable increase of

  8. M. biceps femoris - A wolf in sheep's clothing: The downside of a lower limb injury prevention training.

    Ertelt, Thomas; Gronwald, Thomas

    2017-11-01

    Both, hamstring and ACL injuries are among the most typical injuries, particularly in change of direction and high speed running sports. They're also difficult to treat. Therefore, in the past few years, sports medicine practitioners and exercise scientists have mainly been focusing on the development and implementation of preventive programs in order to reduce the number of lower limb injuries, mainly by improving knee alignment. A number of studies have been able to prove the success of these training interventions, which are mainly addressing sensorimotor abilities and plyometric activities. The number of non-contact hamstring injuries has nevertheless been on the rise, particularly in sports like soccer and football. Therefore, the purpose of the following article is to introduce the hypothesis that the above-mentioned training interventions have a massive influence on the activation patterns on the targeted muscle group, and on the M. biceps femoris in particular. Muscle function and the resulting internal load are directly related to muscle architecture at the insertion. Training induced adaptations in hamstring activation patterns can thus lead to an increased injury susceptibility. In this case, a simulation model that directly relates to an acute deceleration maneuver provides valuable insights into the function of the biceps femoris muscle, especially when the rate of activity and the muscle geometry at the insertion area are taken into consideration. We conclude that there needs to be a greater individualization of prevention programs, especially in regards to anatomical requirements, in order to further reduce injury rates in elite sports. Moreover, it would also seem reasonable to apply a similar approach to aspects of chronic pain such as chronic non-specific low back pain. Copyright © 2017 Elsevier Ltd. All rights reserved.

  9. Change in muscle thickness under contracting conditions following return to sports after a hamstring muscle strain injury—A pilot study

    Yasuharu Nagano

    2015-04-01

    Full Text Available The purpose of this study was to measure the change in hamstring muscle thickness between contracting and relaxing conditions following a return to sports after a hamstring muscle strain and thereby evaluate muscle function. Six male track and field sprinters participated in this study. All had experienced a prior hamstring strain injury that required a minimum of 2 weeks away from sport participation. Transverse plane scans were performed at the following four points on the affected and unaffected sides under contracting and relaxing conditions: proximal biceps femoris long head, proximal semitendinosus, middle biceps femoris long head, and middle semitendinosus. The results demonstrated an increase in the thickness of the middle biceps femoris long head and middle semitendinosus regions on the unaffected side with contraction, whereas the affected side did not show a significant increase. The proximal semitendinosus muscle thickness was increased with contraction on both the unaffected and the affected sides. By contrast, the proximal biceps femoris muscle thickness did not show a significant increase on both sides. The results of this study show that evaluation of muscle thickness during contraction may be useful for assessing the change in muscle function after a hamstring muscle strain injury.

  10. Anatomy and function of the hypothenar muscles.

    Pasquella, John A; Levine, Pam

    2012-02-01

    The hypothenar eminence is the thick soft tissue mass located on the ulnar side of the palm. Understanding its location and contents is important for understanding certain aspects of hand function. Variation in motor nerve distribution of the hypothenar muscles makes surgery of the ulnar side of the palm more challenging. To avoid injury to nerve branches, knowledge of these differences is imperative. This article discusses the muscular anatomy and function, vascular anatomy, and nerve anatomy and innervation of the hypothenar muscles. Copyright © 2012 Elsevier Inc. All rights reserved.

  11. Mechanomyogram for muscle function assessment: a review.

    Md Anamul Islam

    Full Text Available Mechanomyography (MMG has been extensively applied in clinical and experimental practice to examine muscle characteristics including muscle function (MF, prosthesis and/or switch control, signal processing, physiological exercise, and medical rehabilitation. Despite several existing MMG studies of MF, there has not yet been a review of these. This study aimed to determine the current status on the use of MMG in measuring the conditions of MFs.Five electronic databases were extensively searched for potentially eligible studies published between 2003 and 2012. Two authors independently assessed selected articles using an MS-Word based form created for this review. Several domains (name of muscle, study type, sensor type, subject's types, muscle contraction, measured parameters, frequency range, hardware and software, signal processing and statistical analysis, results, applications, authors' conclusions and recommendations for future work were extracted for further analysis. From a total of 2184 citations 119 were selected for full-text evaluation and 36 studies of MFs were identified. The systematic results find sufficient evidence that MMG may be used for assessing muscle fatigue, strength, and balance. This review also provides reason to believe that MMG may be used to examine muscle actions during movements and for monitoring muscle activities under various types of exercise paradigms.Overall judging from the increasing number of articles in recent years, this review reports sufficient evidence that MMG is increasingly being used in different aspects of MF. Thus, MMG may be applied as a useful tool to examine diverse conditions of muscle activity. However, the existing studies which examined MMG for MFs were confined to a small sample size of healthy population. Therefore, future work is needed to investigate MMG, in examining MFs between a sufficient number of healthy subjects and neuromuscular patients.

  12. Injection of marinade with actinidin increases tenderness of porcine M. biceps femoris and affects myofibrils and connective tissue

    Christensen, M.; Torngren, M. A.; Gunvig, A.

    2009-01-01

    BACKGROUND: Marination of beef muscles with brine solutions containing proteolytic enzymes from fruit extracts has been shown to tenderize meat. However, the effect of marination with actinidin on tenderness of pork muscles has not been investigated. Tenderness and eating quality of porcine M. bi...... indicate that actinidin tenderizes pork M. biceps femoris by affecting both the myofibrils and connective tissue....

  13. Structure-function relationship of skeletal muscle provides inspiration for design of new artificial muscle

    Gao, Yingxin; Zhang, Chi

    2015-03-01

    A variety of actuator technologies have been developed to mimic biological skeletal muscle that generates force in a controlled manner. Force generation process of skeletal muscle involves complicated biophysical and biochemical mechanisms; therefore, it is impossible to replace biological muscle. In biological skeletal muscle tissue, the force generation of a muscle depends not only on the force generation capacity of the muscle fiber, but also on many other important factors, including muscle fiber type, motor unit recruitment, architecture, structure and morphology of skeletal muscle, all of which have significant impact on the force generation of the whole muscle or force transmission from muscle fibers to the tendon. Such factors have often been overlooked, but can be incorporated in artificial muscle design, especially with the discovery of new smart materials and the development of innovative fabrication and manufacturing technologies. A better understanding of the physiology and structure-function relationship of skeletal muscle will therefore benefit the artificial muscle design. In this paper, factors that affect muscle force generation are reviewed. Mathematical models used to model the structure-function relationship of skeletal muscle are reviewed and discussed. We hope the review will provide inspiration for the design of a new generation of artificial muscle by incorporating the structure-function relationship of skeletal muscle into the design of artificial muscle.

  14. Structure–function relationship of skeletal muscle provides inspiration for design of new artificial muscle

    Gao, Yingxin; Zhang, Chi

    2015-01-01

    A variety of actuator technologies have been developed to mimic biological skeletal muscle that generates force in a controlled manner. Force generation process of skeletal muscle involves complicated biophysical and biochemical mechanisms; therefore, it is impossible to replace biological muscle. In biological skeletal muscle tissue, the force generation of a muscle depends not only on the force generation capacity of the muscle fiber, but also on many other important factors, including muscle fiber type, motor unit recruitment, architecture, structure and morphology of skeletal muscle, all of which have significant impact on the force generation of the whole muscle or force transmission from muscle fibers to the tendon. Such factors have often been overlooked, but can be incorporated in artificial muscle design, especially with the discovery of new smart materials and the development of innovative fabrication and manufacturing technologies. A better understanding of the physiology and structure–function relationship of skeletal muscle will therefore benefit the artificial muscle design. In this paper, factors that affect muscle force generation are reviewed. Mathematical models used to model the structure–function relationship of skeletal muscle are reviewed and discussed. We hope the review will provide inspiration for the design of a new generation of artificial muscle by incorporating the structure–function relationship of skeletal muscle into the design of artificial muscle. (topical review)

  15. Lower abdominal wall reconstructions with pedicled rectus femoris flaps

    Arashiro, Ken; Nishizeki, Osamu; Ishida, Kunihiro

    2003-01-01

    During the past 10 years, seven pedicled rectus femoris muscle or musculocutaneous flaps were used to repair lower abdominal defects; three recalcitrant incisional hernias with previous radiotherapy, two long-standing wound infections after synthetic mesh reconstruction, one posttraumatic wall defect and one metastatic tumor. There were two flap complications, one skin paddle necrosis and one wound infection. There was no significant disability of the donor limb encountered. During the two-year and seven month average follow-up, there was no recurrence of the problems except for one minor fascial dehiscence in the patient with metastatic abdominal wall tumor. Easy approach, rapid harvest, relatively large and reliable overlying fascia lata, a single dominant neurovascular pedicle, easy primary closure of the donor site, and minimal donor site morbidity all make the rectus femoris flap a good alternative flap for lower abdominal wall reconstruction. It is especially useful in a condition where synthetic mesh would be unsuitable for defects with infection or recurrent incisional hernia after radiotherapy. (author)

  16. Characteristic MR image finding of squatting exercise-induced rhabdomyolysis of the thigh muscles.

    Yeon, Eung K; Ryu, Kyung N; Kang, Hye J; Yoon, So H; Park, So Y; Park, Ji S; Jin, Wook

    2017-04-01

    To describe the characteristic MRI appearance of squatting-induced rhabdomyolysis involving the thigh muscles. This study consisted of 10 cases obtained at 3 institutions from 2005 to 2015. A retrospective review was performed to obtain clinical information and MR scans for rhabdomyolysis of the thigh muscles. MRI was analyzed according to the distribution and degree of muscle involvement; the degree was assessed and graded as normal, mild or prominent. The mean patient age was 20.2 years (range, 15-24 years), and 7 of the 10 patients were male. All patients had history of excessive squatting action, suffered clinically from bilateral thigh pain and were confirmed to have rhabdomyolysis through analysis of serum creatine kinase (CK) levels. All of the patients (10/10) exhibited diffuse mild to prominent degree involvement of the anterior thigh muscles according to fluid-sensitive MR sequences. Among the anterior thigh muscles, the rectus femoris was spared in 8 patients (8/10) and mild degree involved in 2 patients (2/10). Thus, no cases exhibited prominent degree involvement of the rectus femoris muscle. Preservation of the rectus femoris muscle on MRI in squatting-induced rhabdomyolysis may be useful for differentiating rhabdomyolysis from other aetiologies. Advances in knowledge: Preservation of rectus femoris on MRI is distinguishable finding in squatting-induced rhabdomyolysis and reflects the functional anatomy of anterior thigh muscles.

  17. Hip adductor muscle function in forward skating.

    Chang, Ryan; Turcotte, Rene; Pearsall, David

    2009-09-01

    Adductor strain injuries are prevalent in ice hockey. It has long been speculated that adductor muscular strains may be caused by repeated eccentric contractions which decelerate the leg during a stride. The purpose of this study was to investigate the relationship of skating speed with muscle activity and lower limb kinematics, with a particular focus on the role of the hip adductors. Seven collegiate ice hockey players consented to participate. Surface electromyography (EMG) and kinematics of the lower extremities were measured at three skating velocities 3.33 m/s (slow), 5.00 m/s (medium) and 6.66 m/s (fast). The adductor magnus muscle exhibited disproportionately larger increases in peak muscle activation and significantly prolonged activation with increased speed. Stride rate and stride length also increased significantly with skating velocity, in contrast, hip, knee and ankle total ranges of motion did not. To accommodate for the increased stride rate with higher skating speeds, the rate of hip abduction increased significantly in concert with activations of adductor magnus indicating a substantial eccentric contraction. In conclusion, these findings highlight the functional importance of the adductor muscle group and hip abduction-adduction in skating performance as well as indirectly support the notion that groin strain injury potential increases with skating speed.

  18. Muscle enzyme release does not predict muscle function impairment after triathlon.

    Margaritis, I; Tessier, F; Verdera, F; Bermon, S; Marconnet, P

    1999-06-01

    We sought to determine the effects of a long distance triathlon (4 km swim, 120 km bike-ride, and 30 km run) on the four-day kinetics of the biochemical markers of muscle damage, and whether they were quantitatively linked with muscle function impairment and soreness. Data were collected from 2 days before until 4 days after the completion of the race. Twelve triathletes performed the triathlon and five did not. Maximal voluntary contraction (MVC), muscle soreness (DOMS) and total serum CK, CK-MB, LDH, AST and ALT activities were assessed. Significant changes after triathlon completion were found for all muscle damage indirect markers over time (p triathlon. Long distance triathlon race caused muscle damage, but extent, as well as muscle recovery cannot be evaluated by the magnitude of changes in serum enzyme activities. Muscle enzyme release cannot be used to predict the magnitude of the muscle function impairment caused by muscle damage.

  19. Bone marrow mesenchymal cells improve muscle function in a skeletal muscle re-injury model.

    Bruno M Andrade

    Full Text Available Skeletal muscle injury is the most common problem in orthopedic and sports medicine, and severe injury leads to fibrosis and muscle dysfunction. Conventional treatment for successive muscle injury is currently controversial, although new therapies, like cell therapy, seem to be promise. We developed a model of successive injuries in rat to evaluate the therapeutic potential of bone marrow mesenchymal cells (BMMC injected directly into the injured muscle. Functional and histological assays were performed 14 and 28 days after the injury protocol by isometric tension recording and picrosirius/Hematoxilin & Eosin staining, respectively. We also evaluated the presence and the fate of BMMC on treated muscles; and muscle fiber regeneration. BMMC treatment increased maximal skeletal muscle contraction 14 and 28 days after muscle injury compared to non-treated group (4.5 ± 1.7 vs 2.5 ± 0.98 N/cm2, p<0.05 and 8.4 ± 2.3 vs. 5.7 ± 1.3 N/cm2, p<0.05 respectively. Furthermore, BMMC treatment increased muscle fiber cross-sectional area and the presence of mature muscle fiber 28 days after muscle injury. However, there was no difference in collagen deposition between groups. Immunoassays for cytoskeleton markers of skeletal and smooth muscle cells revealed an apparent integration of the BMMC within the muscle. These data suggest that BMMC transplantation accelerates and improves muscle function recovery in our extensive muscle re-injury model.

  20. Muscle type-specific responses to NAD+ salvage biosynthesis promote muscle function in Caenorhabditis elegans.

    Vrablik, Tracy L; Wang, Wenqing; Upadhyay, Awani; Hanna-Rose, Wendy

    2011-01-15

    Salvage biosynthesis of nicotinamide adenine dinucleotide (NAD(+)) from nicotinamide (NAM) lowers NAM levels and replenishes the critical molecule NAD(+) after it is hydrolyzed. This pathway is emerging as a regulator of multiple biological processes. Here we probe the contribution of the NAM-NAD(+) salvage pathway to muscle development and function using Caenorhabditis elegans. C. elegans males with mutations in the nicotinamidase pnc-1, which catalyzes the first step of this NAD(+) salvage pathway, cannot mate due to a spicule muscle defect. Multiple muscle types are impaired in the hermaphrodites, including body wall muscles, pharyngeal muscles and vulval muscles. An active NAD(+) salvage pathway is required for optimal function of each muscle cell type. However, we found surprising muscle-cell-type specificity in terms of both the timing and relative sensitivity to perturbation of NAD(+) production or NAM levels. Active NAD(+) biosynthesis during development is critical for function of the male spicule protractor muscles during adulthood, but these muscles can surprisingly do without salvage biosynthesis in adulthood under the conditions examined. The body wall muscles require ongoing NAD(+) salvage biosynthesis both during development and adulthood for maximum function. The vulval muscles do not function in the presence of elevated NAM concentrations, but NAM supplementation is only slightly deleterious to body wall muscles during development or upon acute application in adults. Thus, the pathway plays distinct roles in different tissues. As NAM-NAD(+) biosynthesis also impacts muscle differentiation in vertebrates, we propose that similar complexities may be found among vertebrate muscle cell types. Copyright © 2010 Elsevier Inc. All rights reserved.

  1. Physical Rehabilitation Improves Muscle Function Following Volumetric Muscle Loss Injury

    2014-12-19

    synergistic effect of treadmill running on stem -cell transplantation to heal injured skeletal muscle. Tissue Eng Part A 2010, 16(3):839–849. 20. Brutsaert...U:::-’ 0:: 0 Uninjured Injured Figure 7 c E 14 w cu12 • SED * (/) Cll < 10 ~ ~ 8 c 6 Cll Cl 4 z ..!!! ::> 0 2 0::: u 0 Uninjured Injured

  2. Stem Cell Antigen-1 in Skeletal Muscle Function

    Bernstein, Harold S.; Samad, Tahmina; Cholsiripunlert, Sompob; Khalifian, Saami; Gong, Wenhui; Ritner, Carissa; Aurigui, Julian; Ling, Vivian; Wilschut, Karlijn J.; Bennett, Stephen; Hoffman, Julien; Oishi, Peter

    2013-01-01

    Stem cell antigen-1 (Sca-1) is a member of the Ly-6 multigene family encoding highly homologous, glycosyl-phosphatidylinositol-anchored membrane proteins. Sca-1 is expressed on muscle-derived stem cells and myogenic precursors recruited to sites of muscle injury. We previously reported that inhibition of Sca-1 expression stimulated myoblast proliferation in vitro and regulated the tempo of muscle repair in vivo. Despite its function in myoblast expansion during muscle repair, a role for Sca-1...

  3. Effects of Acupuncture Therapy on the EMG Activity of the Rectus Femoris and Tibialis Anterior during Maximal Voluntary Isometric Contraction in College Students

    Se In Jang

    2017-12-01

    Full Text Available Acupuncture has been increasingly used in the treatment of muscle damage associated with sports activities. However, studies on the immediate effects of one-time acupuncture on the muscles of athletes are clearly lacking. Thus, this study aimed to examine the effects of acupuncture therapy on the maximal voluntary isometric contraction (MVIC electromyography (EMG of the rectus femoris and tibialis anterior muscles. This study was conducted among 20 healthy male college students who had no musculoskeletal disease. The participants were subjected to 3 different experimental conditions and subsequently grouped based on these conditions: real acupuncture, sham acupuncture, and control. A 7-day washout period was implemented to avoid any transient effects on the physiological and psychological conditions of the participants. Subsequently, an electromyogram patch was attached on the most developed area in the middle of the origin and insertion of the rectus femoris and tibialis anterior muscles. The percent MVIC, which was used to standardize the signal from the electromyogram, was determined, and the maximal value from the MVIC of the rectus femoris and tibialis anterior muscles was measured. The MVIC EMG activities of both femoris (F = 6.633, p = 0.003 and tibialis anterior (F = 5.216, p = 0.008 muscles were significantly different among all groups. Accordingly, the results of a posthoc test showed that the real acupuncture group had higher MVIC EMG activities in the femoris (p = 0.002 and tibialis anterior (p = 0.006 muscles compared with the control group. These results suggest that treatment with real acupuncture resulted in significantly higher MVIC EMG activities of the rectus femoris and tibialis anterior muscles than the other treatments. Hence, acupuncture may be helpful in the improvement of muscle strength among athletes in the physical fitness field.

  4. Skeletal muscle aging: stem cell function and tissue homeostasis

    Victor, Pedro Sousa

    2012-01-01

    Muscle aging, in particular, is characterized by the reduction of tissue mass and function, which are particularly prominent in geriatric individuals undergoing sarcopenia. The age-associated muscle wasting is also associated with a decline in regenerative ability and a reduction in resident muscle stem cell (satellite cell) number and function. Although sarcopenia is one of the major contributors to the general loss of physiological function, the mechanisms involved in age-related loss of mu...

  5. Susceptibility to Hamstring Injuries in Soccer: A Prospective Study Using Muscle Functional Magnetic Resonance Imaging.

    Schuermans, Joke; Van Tiggelen, Damien; Danneels, Lieven; Witvrouw, Erik

    2016-05-01

    Running-related hamstring strain injuries remain a delicate issue in several sports such as soccer. Their unremittingly high incidence and recurrence rates indicate that the underlying risk has not yet been fully identified. Among other factors, the importance of neuromuscular coordination and the quality of interplay between the different hamstring muscle bellies is thought to be a key determinant within the intrinsic injury risk. Muscle functional magnetic resonance imaging (mfMRI) is one of the tools that has been proven to be valid for evaluating intermuscular coordination. To investigate the risk of sustaining an index or recurring soccer-related hamstring injury by exploring metabolic muscle characteristics using mfMRI. Cohort study; Level of evidence, 2. A total of 27 healthy male soccer players and 27 soccer players with a history of hamstring injuries underwent standardized mfMRI. The mfMRI protocol consisted of a resting scan, a strenuous bilateral eccentric hamstring exercise, and a postexercise scan. The exercise-related T2 change, or the signal intensity shift between both scans, was used to detect differences in metabolic characteristics between (1) the different hamstring muscle bellies and (2) the prospective cohorts based on the (re)occurrence of hamstring injuries during a follow-up period of 18 months. The risk of sustaining a first hamstring injury was associated with alterations in the intermuscular hierarchy in terms of the magnitude of the metabolic response after a heavy eccentric effort, with the dominant role of the semitendinosus set aside for a higher contribution of the biceps femoris (P = .017). Receiver operating characteristic (ROC) curve analysis demonstrated that this variable was significantly able to predict the occurrence of index injuries with a sensitivity of 100% and a specificity of 70% when the metabolic activity of the biceps femoris exceeded 10%. The risk of sustaining a reinjury was associated with a substantial deficit

  6. Effects of preoperative neuromuscular electrical stimulation on quadriceps strength and functional recovery in total knee arthroplasty. A pilot study.

    Walls, Raymond J

    2010-01-01

    Supervised preoperative muscle strengthening programmes (prehabilitation) can improve recovery after total joint arthroplasty but are considered resource intensive. Neuromuscular electrical stimulation (NMES) has been shown to improve quadriceps femoris muscle (QFM) strength and clinical function in subjects with knee osteoarthritis (OA) however it has not been previously investigated as a prehabilitation modality.

  7. Muscle satellite cells are functionally impaired in myasthenia gravis: consequences on muscle regeneration.

    Attia, Mohamed; Maurer, Marie; Robinet, Marieke; Le Grand, Fabien; Fadel, Elie; Le Panse, Rozen; Butler-Browne, Gillian; Berrih-Aknin, Sonia

    2017-12-01

    Myasthenia gravis (MG) is a neuromuscular disease caused in most cases by anti-acetyl-choline receptor (AChR) autoantibodies that impair neuromuscular signal transmission and affect skeletal muscle homeostasis. Myogenesis is carried out by muscle stem cells called satellite cells (SCs). However, myogenesis in MG had never been explored. The aim of this study was to characterise the functional properties of myasthenic SCs as well as their abilities in muscle regeneration. SCs were isolated from muscle biopsies of MG patients and age-matched controls. We first showed that the number of Pax7+ SCs was increased in muscle sections from MG and its experimental autoimmune myasthenia gravis (EAMG) mouse model. Myoblasts isolated from MG muscles proliferate and differentiate more actively than myoblasts from control muscles. MyoD and MyoG were expressed at a higher level in MG myoblasts as well as in MG muscle biopsies compared to controls. We found that treatment of control myoblasts with MG sera or monoclonal anti-AChR antibodies increased the differentiation and MyoG mRNA expression compared to control sera. To investigate the functional ability of SCs from MG muscle to regenerate, we induced muscle regeneration using acute cardiotoxin injury in the EAMG mouse model. We observed a delay in maturation evidenced by a decrease in fibre size and MyoG mRNA expression as well as an increase in fibre number and embryonic myosin heavy-chain mRNA expression. These findings demonstrate for the first time the altered function of SCs from MG compared to control muscles. These alterations could be due to the anti-AChR antibodies via the modulation of myogenic markers resulting in muscle regeneration impairment. In conclusion, the autoimmune attack in MG appears to have unsuspected pathogenic effects on SCs and muscle regeneration, with potential consequences on myogenic signalling pathways, and subsequently on clinical outcome, especially in the case of muscle stress.

  8. Neuromuscular function of the quadriceps muscle during isometric maximal, submaximal and submaximal fatiguing voluntary contractions in knee osteoarthrosis patients.

    Anett Mau-Moeller

    Full Text Available Knee osteoarthrosis (KOA is commonly associated with a dysfunction of the quadriceps muscle which contributes to alterations in motor performance. The underlying neuromuscular mechanisms of muscle dysfunction are not fully understood. The main objective of this study was to analyze how KOA affects neuromuscular function of the quadriceps muscle during different contraction intensities.The following parameters were assessed in 20 patients and 20 healthy controls: (i joint position sense, i.e. position control (mean absolute error, MAE at 30° and 50° of knee flexion, (ii simple reaction time task performance, (iii isometric maximal voluntary torque (IMVT and root mean square of the EMG signal (RMS-EMG, (iv torque control, i.e. accuracy (MAE, absolute fluctuation (standard deviation, SD, relative fluctuation (coefficient of variation, CV and periodicity (mean frequency, MNF of the torque signal at 20%, 40% and 60% IMVT, (v EMG-torque relationship at 20%, 40% and 60% IMVT and (vi performance fatigability, i.e. time to task failure (TTF at 40% IMVT.Compared to the control group, the KOA group displayed: (i significantly higher MAE of the angle signal at 30° (99.3%; P = 0.027 and 50° (147.9%; P < 0.001, (ii no significant differences in reaction time, (iii significantly lower IMVT (-41.6%; P = 0.001 and tendentially lower RMS-EMG of the rectus femoris (-33.7%; P = 0.054, (iv tendentially higher MAE of the torque signal at 20% IMVT (65.9%; P = 0.068, significantly lower SD of the torque signal at all three torque levels and greater MNF at 60% IMVT (44.8%; P = 0.018, (v significantly increased RMS-EMG of the vastus lateralis at 20% (70.8%; P = 0.003 and 40% IMVT (33.3%; P = 0.034, significantly lower RMS-EMG of the biceps femoris at 20% (-63.6%; P = 0.044 and 40% IMVT (-41.3%; P = 0.028 and tendentially lower at 60% IMVT (-24.3%; P = 0.075 and (vi significantly shorter TTF (-51.1%; P = 0.049.KOA is not only associated with a deterioration of IMVT

  9. L-acetylcarnitine enhances functional muscle re-innervation.

    Pettorossi, V E; Brunetti, O; Carobi, C; Della Torre, G; Grassi, S

    1991-01-01

    The efficacy of L-acetylcarnitine and L-carnitine treatment on motor re-innervation was analyzed by evaluating different muscular parameters describing functional muscle recovery after denervation and re-innervation. The results show that L-acetylcarnitine markedly enhances functional muscle re-innervation, which on the contrary is unaffected by L-carnitine. The medial gastrocnemius muscle was denervated by cutting the nerve at the muscle entry point. After 20 days the sectioned nerve was resutured into the medial gastrocnemius muscle, and the extent of re-innervation was monitored 45 days later. L-acetylcarnitine-treated animals show significantly higher twitch and tetanic tensions of re-innervated muscle. Furthermore the results, obtained by analysing the twitch time to peak and tetanic contraction-relaxation times, suggest that L-acetylcarnitine mostly affects the functional re-innervation of slow motor units. The possible mechanisms by which L-acetylcarnitine facilitates such motor and nerve recovery are discussed.

  10. Stem cell antigen-1 in skeletal muscle function.

    Bernstein, Harold S; Samad, Tahmina; Cholsiripunlert, Sompob; Khalifian, Saami; Gong, Wenhui; Ritner, Carissa; Aurigui, Julian; Ling, Vivian; Wilschut, Karlijn J; Bennett, Stephen; Hoffman, Julien; Oishi, Peter

    2013-08-15

    Stem cell antigen-1 (Sca-1) is a member of the Ly-6 multigene family encoding highly homologous, glycosyl-phosphatidylinositol-anchored membrane proteins. Sca-1 is expressed on muscle-derived stem cells and myogenic precursors recruited to sites of muscle injury. We previously reported that inhibition of Sca-1 expression stimulated myoblast proliferation in vitro and regulated the tempo of muscle repair in vivo. Despite its function in myoblast expansion during muscle repair, a role for Sca-1 in normal, post-natal muscle has not been thoroughly investigated. We systematically compared Sca-1-/- (KO) and Sca-1+/+ (WT) mice and hindlimb muscles to elucidate the tissue, contractile, and functional effects of Sca-1 in young and aging animals. Comparison of muscle volume, fibrosis, myofiber cross-sectional area, and Pax7+ myoblast number showed little differences between ages or genotypes. Exercise protocols, however, demonstrated decreased stamina in KO versus WT mice, with young KO mice achieving results similar to aging WT animals. In addition, KO mice did not improve with practice, while WT animals demonstrated conditioning over time. Surprisingly, myomechanical analysis of isolated muscles showed that KO young muscle generated more force and experienced less fatigue. However, KO muscle also demonstrated incomplete relaxation with fatigue. These findings suggest that Sca-1 is necessary for muscle conditioning with exercise, and that deficient conditioning in Sca-1 KO animals becomes more pronounced with age.

  11. Function of the epaxial muscles during trotting.

    Schilling, Nadja; Carrier, David R

    2009-04-01

    In mammals, the epaxial muscles are believed to stabilize the trunk during walking and trotting because the timing of their activity is not appropriate to produce bending of the trunk. To test whether this is indeed the case, we recorded the activity of the m. multifidus lumborum and the m. longissimus thoracis et lumborum at three different sites along the trunk (T13, L3, L6) as we manipulated the moments acting on the trunk and the pelvis in dogs trotting on a treadmill. Confirming results of previous studies, both muscles exhibited a biphasic and bilateral activity. The higher burst was associated with the second half of ipsilateral hindlimb stance phase, the smaller burst occurred during the second half of ipsilateral hindlimb swing phase. The asymmetry was noticeably larger in the m. longissimus thoracis et lumborum than in the m. multifidus lumborum. Although our manipulations of the inertia of the trunk produced results that are consistent with previous studies indicating that the epaxial muscles stabilize the trunk against accelerations in the sagittal plane, the responses of the epaxial muscles to manipulations of trunk inertia were small compared with their responses when moments produced by the extrinsic muscles of the hindlimb were manipulated. Our results indicate that the multifidus and longissimus muscles primarily stabilize the pelvis against (1) vertical components of hindlimb retractor muscles and (2) horizontal components of the hindlimb protractor and retractor muscles. Consistent with this, stronger effects of the manipulations were observed in the posterior sampling sites.

  12. Neuropathic Pain-like Alterations in Muscle Nociceptor Function Associated with Vibration-induced Muscle Pain

    Chen, Xiaojie; Green, Paul G.; Levine, Jon D.

    2010-01-01

    We recently developed a rodent model of the painful muscle disorders induced by occupational exposure to vibration. In the present study we used this model to evaluate the function of sensory neurons innervating the vibration-exposed gastrocnemius muscle. Activity of 74 vibration-exposed and 40 control nociceptors, with mechanical receptive fields in the gastrocnemius muscle, were recorded. In vibration-exposed rats ~15% of nociceptors demonstrated an intense and long-lasting barrage of actio...

  13. Evaluating Swallowing Muscles Essential for Hyolaryngeal Elevation by Using Muscle Functional Magnetic Resonance Imaging

    Pearson, William G.; Hindson, David F.; Langmore, Susan E.; Zumwalt, Ann C.

    2013-01-01

    Purpose: Reduced hyolaryngeal elevation, a critical event in swallowing, is associated with radiation therapy. Two muscle groups that suspend the hyoid, larynx, and pharynx have been proposed to elevate the hyolaryngeal complex: the suprahyoid and longitudinal pharyngeal muscles. Thought to assist both groups is the thyrohyoid, a muscle intrinsic to the hyolaryngeal complex. Intensity modulated radiation therapy guidelines designed to preserve structures important to swallowing currently exclude the suprahyoid and thyrohyoid muscles. This study used muscle functional magnetic resonance imaging (mfMRI) in normal healthy adults to determine whether both muscle groups are active in swallowing and to test therapeutic exercises thought to be specific to hyolaryngeal elevation. Methods and Materials: mfMRI data were acquired from 11 healthy subjects before and after normal swallowing and after swallowing exercise regimens (the Mendelsohn maneuver and effortful pitch glide). Whole-muscle transverse relaxation time (T2 signal, measured in milliseconds) profiles of 7 test muscles were used to evaluate the physiologic response of each muscle to each condition. Changes in effect size (using the Cohen d measure) of whole-muscle T2 profiles were used to determine which muscles underlie swallowing and swallowing exercises. Results: Post-swallowing effect size changes (where a d value of >0.20 indicates significant activity during swallowing) for the T2 signal profile of the thyrohyoid was a d value of 0.09; a d value of 0.40 for the mylohyoid, 0.80 for the geniohyoid, 0.04 for the anterior digastric, and 0.25 for the posterior digastric-stylohyoid in the suprahyoid muscle group; and d values of 0.47 for the palatopharyngeus and 0.28 for the stylopharyngeus muscles in the longitudinal pharyngeal muscle group. The Mendelsohn maneuver and effortful pitch glide swallowing exercises showed significant effect size changes for all muscles tested, except for the thyrohyoid. Conclusions

  14. Evaluating Swallowing Muscles Essential for Hyolaryngeal Elevation by Using Muscle Functional Magnetic Resonance Imaging

    Pearson, William G., E-mail: bp1@bu.edu [Department of Anatomy and Neurobiology, Boston University School of Medicine, Boston, Massachusetts (United States); Hindson, David F. [Department of Radiology, Boston Medical Center, Boston, Massachusetts (United States); Langmore, Susan E. [Department of Otolaryngology, Boston Medical Center, Boston, Massachusetts (United States); Speech and Hearing Sciences, Boston University, Boston, Massachusetts (United States); Zumwalt, Ann C. [Department of Anatomy and Neurobiology, Boston University School of Medicine, Boston, Massachusetts (United States)

    2013-03-01

    Purpose: Reduced hyolaryngeal elevation, a critical event in swallowing, is associated with radiation therapy. Two muscle groups that suspend the hyoid, larynx, and pharynx have been proposed to elevate the hyolaryngeal complex: the suprahyoid and longitudinal pharyngeal muscles. Thought to assist both groups is the thyrohyoid, a muscle intrinsic to the hyolaryngeal complex. Intensity modulated radiation therapy guidelines designed to preserve structures important to swallowing currently exclude the suprahyoid and thyrohyoid muscles. This study used muscle functional magnetic resonance imaging (mfMRI) in normal healthy adults to determine whether both muscle groups are active in swallowing and to test therapeutic exercises thought to be specific to hyolaryngeal elevation. Methods and Materials: mfMRI data were acquired from 11 healthy subjects before and after normal swallowing and after swallowing exercise regimens (the Mendelsohn maneuver and effortful pitch glide). Whole-muscle transverse relaxation time (T2 signal, measured in milliseconds) profiles of 7 test muscles were used to evaluate the physiologic response of each muscle to each condition. Changes in effect size (using the Cohen d measure) of whole-muscle T2 profiles were used to determine which muscles underlie swallowing and swallowing exercises. Results: Post-swallowing effect size changes (where a d value of >0.20 indicates significant activity during swallowing) for the T2 signal profile of the thyrohyoid was a d value of 0.09; a d value of 0.40 for the mylohyoid, 0.80 for the geniohyoid, 0.04 for the anterior digastric, and 0.25 for the posterior digastric-stylohyoid in the suprahyoid muscle group; and d values of 0.47 for the palatopharyngeus and 0.28 for the stylopharyngeus muscles in the longitudinal pharyngeal muscle group. The Mendelsohn maneuver and effortful pitch glide swallowing exercises showed significant effect size changes for all muscles tested, except for the thyrohyoid. Conclusions

  15. Adiposity, muscle mass and muscle strength in relation to functional decline in older persons.

    Schaap, L.A.; Koster, A.; Visser, M.

    2013-01-01

    Aging is associated with changes in body composition and muscle strength. This review aimed to determine the relation between different body composition measures and muscle strength measures and functional decline in older men and women. By use of relevant databases (PubMed, Embase, and CINAHL) and

  16. Functional morphology of the radialis muscle in shark tails.

    Flammang, Brooke E

    2010-03-01

    The functional morphology of intrinsic caudal musculature in sharks has not been studied previously, though the kinematics and function of body musculature have been the focus of a great deal of research. In the tail, ventral to the axial myomeres, there is a thin strip of red muscle with fibers angled dorsoposteriorly, known as the radialis. This research gives the first anatomical description of the radialis muscle in sharks, and addresses the hypothesis that the radialis muscle provides postural stiffening in the tail of live swimming sharks. The radialis muscle fibers insert onto the deepest layers of the stratum compactum, the more superior layers of which are orthogonally arrayed and connect to the epidermis. The two deepest layers of the stratum compactum insert onto the proximal ends of the ceratotrichia of the caudal fin. This anatomical arrangement exists in sharks and is modified in rays, but was not found in skates or chimaeras. Electromyography of the caudal muscles of dogfish swimming steadily at 0.25 and 0.5 body lengths per second (Ls(-1)) exhibited a pattern of anterior to posterior activation of the radialis muscle, followed by activation of red axial muscle in the more anteriorly located ipsilateral myomeres of the caudal peduncle; at 0.75 L s(-1), only the anterior portion of the radialis and white axial muscle of the contralateral peduncular myomeres were active. Activity of the radialis muscle occurred during periods of the greatest drag incurred by the tail during the tail beat and preceded the activity of more anteriorly located axial myomeres. This nonconformity to the typical anterior to posterior wave of muscle activation in fish swimming, in combination with anatomical positioning of the radialis muscles and stratum compactum, suggests that radialis activity may have a postural function to stiffen the fin, and does not function as a typical myotomal muscle.

  17. Calcium ion in skeletal muscle: its crucial role for muscle function, plasticity, and disease

    Berchtold, M W; Brinkmeier, H; Müntener, M

    2000-01-01

    in the sarcoplasmic reticulum. In addition, a multitude of Ca(2+)-binding proteins is present in muscle tissue including parvalbumin, calmodulin, S100 proteins, annexins, sorcin, myosin light chains, beta-actinin, calcineurin, and calpain. These Ca(2+)-binding proteins may either exert an important role in Ca(2......Mammalian skeletal muscle shows an enormous variability in its functional features such as rate of force production, resistance to fatigue, and energy metabolism, with a wide spectrum from slow aerobic to fast anaerobic physiology. In addition, skeletal muscle exhibits high plasticity that is based...... on the potential of the muscle fibers to undergo changes of their cytoarchitecture and composition of specific muscle protein isoforms. Adaptive changes of the muscle fibers occur in response to a variety of stimuli such as, e.g., growth and differentition factors, hormones, nerve signals, or exercise...

  18. Spot light on skeletal muscles: optogenetic stimulation to understand and restore skeletal muscle function.

    van Bremen, Tobias; Send, Thorsten; Sasse, Philipp; Bruegmann, Tobias

    2017-08-01

    Damage of peripheral nerves results in paralysis of skeletal muscle. Currently, the only treatment option to restore proper function is electrical stimulation of the innervating nerve or of the skeletal muscles directly. However this approach has low spatial and temporal precision leading to co-activation of antagonistic muscles and lacks cell-type selectivity resulting in pain or discomfort by stimulation of sensible nerves. In contrast to electrical stimulation, optogenetic methods enable spatially confined and cell-type selective stimulation of cells expressing the light sensitive channel Channelrhodopsin-2 with precise temporal control over the membrane potential. Herein we summarize the current knowledge about the use of this technology to control skeletal muscle function with the focus on the direct, non-neuronal stimulation of muscle fibers. The high temporal flexibility of using light pulses allows new stimulation patterns to investigate skeletal muscle physiology. Furthermore, the high spatial precision of focused illumination was shown to be beneficial for selective stimulation of distinct nearby muscle groups. Finally, the cell-type specific expression of the light-sensitive effector proteins in muscle fibers will allow pain-free stimulation and open new options for clinical treatments. Therefore, we believe that direct optogenetic stimulation of skeletal muscles is a very potent method for basic scientists that also harbors several distinct advantages over electrical stimulation to be considered for clinical use in the future.

  19. Function of skeletal muscle tissue formed after myoblast transplantation into irradiated mouse muscles.

    Wernig, A; Zweyer, M; Irintchev, A

    2000-01-15

    1. Pretreatment of muscles with ionising radiation enhances tissue formation by transplanted myoblasts but little is known about the effects on muscle function. We implanted myoblasts from an expanded, male-donor-derived, culture (i28) into X-ray irradiated (16 Gy) or irradiated and damaged soleus muscles of female syngeneic mice (Balb/c). Three to 6 months later the isometric contractile properties of the muscles were studied in vitro, and donor nuclei were visualised in muscle sections with a Y chromosome-specific DNA probe. 2. Irradiated sham-injected muscles had smaller masses than untreated solei and produced less twitch and tetanic force (all by about 18 %). Injection of 106 myoblasts abolished these deficiencies and innervation appeared normal. 3. Cryodamage of irradiated solei produced muscle remnants with few (1-50) or no fibres. Additional myoblast implantation led to formation of large muscles (25 % above normal) containing numerous small-diameter fibres. Upon direct electrical stimulation, these muscles produced considerable twitch (53 % of normal) and tetanic forces (35 % of normal) but innervation was insufficient as indicated by weak nerve-evoked contractions and elevated ACh sensitivity. 4. In control experiments on irradiated muscles, reinnervation was found to be less complete after botulinum toxin paralysis than after nerve crush indicating that proliferative arrest of irradiated Schwann cells may account for the observed innervation deficits. 5. Irradiation appears to be an effective pretreatment for improving myoblast transplantation. The injected cells can even produce organised contractile tissue replacing whole muscle. However, impaired nerve regeneration limits the functional performance of the new muscle.

  20. Effect of pelvic floor muscle exercises on pulmonary function

    Han, DongWook; Ha, Misook

    2015-01-01

    [Purpose] This study aimed to determine the correlation between pelvic floor muscle strength and pulmonary function. In particular, we examined whether pelvic floor muscle exercises can improve pulmonary function. [Subjects] Thirty female college students aged 19?21 with no history of nervous or musculoskeletal system injury were randomly divided into experimental and control groups. [Methods] For the pulmonary function test, spirometry items included forced vital capacity and maximal volunta...

  1. Cryopreservation of human skeletal muscle impairs mitochondrial function

    Larsen, Steen; Wright-Paradis, C; Gnaiger, E

    2012-01-01

    functionality after long term cryopreservation (1 year). Skeletal muscle samples were preserved in dimethyl sulfoxide (DMSO) for later analysis. Human skeletal muscle fibres were thawed and permeabilised with saponin, and mitochondrial respiration was measured by high-resolution respirometry. The capacity...

  2. Pelvic floor muscle function in women with pelvic floor dysfunction

    Tibaek, Sigrid; Dehlendorff, Christian

    2014-01-01

    The objectives of this study were to investigate the level of pelvic floor muscle (PFM) function in women with pelvic floor dysfunction (PFD) referred by gynaecologists and urologists for in-hospital pelvic floor muscle training (PFMT), and to identity associated factors for a low level of PFM...

  3. Muscle function and origin of pain in fibromyalgia

    Bennett, R M; Jacobsen, Søren

    1994-01-01

    It may be concluded that both peripheral and central mechanisms may operate in the pathophysiology of both impaired muscle function and pain in FM. These mechanisms may in part be attributable to physical deconditioning and disuse of muscle secondary to the characteristic pain and fatigue so ofte...

  4. Communication between functional and denervated muscles using radiofrequency.

    Jacob, Doreen K; Stefko, Susan Tonya; Hackworth, Steven A; Lovell, Michael R; Mickle, Marlin H

    2006-05-01

    This article focuses on establishing communication between a functional muscle and a denervated muscle using a radiofrequency communications link. The ultimate objective of the project is to restore the eye blink in patients with facial nerve paralysis. Two sets of experiments were conducted using the gastrocnemius leg muscles of Sprague-Dawley rats. In the initial tests, varying magnitudes of voltages ranging from 0.85 to 2.5 V were applied directly to a denervated muscle to determine the voltage required to produce visible contraction. The second set of experiments was then conducted to determine the voltage output from an in vivo muscle contraction that could be sensed and used to coordinate a signal for actuation of a muscle in a separate limb. After designing the appropriate external communication circuitry, a third experiment was performed to verify that a signal between a functional and a denervated muscle can be generated and used as a stimulus. Voltages below 2 V at a 10-millisecond pulse width elicited a gentle, controlled contraction of the denervated muscle in vivo. It was also observed that with longer pulse widths, higher stimulation voltages were required to produce sufficient contractions. It is possible to detect contraction of a muscle, use this to generate a signal to an external base station, and subsequently cause a separate, denervated muscle to contract in response to the signal. This demonstration in vivo of a signaling system for pacing of electrical stimulation of 1 muscle to spontaneous contraction of another, separate muscle, using radiofrequency communication without direct connection, may be used in numerous ways to overcome nerve damage.

  5. Textile Electrodes Embedded in Clothing: A Practical Alternative to Traditional Surface Electromyography when Assessing Muscle Excitation during Functional Movements

    Steffi L. Colyer, Polly M. McGuigan

    2018-03-01

    Full Text Available Textile electromyography (EMG electrodes embedded in clothing allow muscle excitation to be recorded in previously inaccessible settings; however, their ability to accurately and reliably measure EMG during dynamic tasks remains largely unexplored. To quantify the validity and reliability of textile electrodes, 16 recreationally active males completed two identical testing sessions, within which three functional movements (run, cycle and squat were performed twice: once wearing EMG shorts (measuring quadriceps, hamstrings and gluteals myoelectric activity and once with surface EMG electrodes attached to the vastus lateralis, biceps femoris and gluteus maximus. EMG signals were identically processed to provide average rectified EMG (normalized to walking and excitation length. Results were compared across measurement systems and demonstrated good agreement between the magnitude of muscle excitation when EMG activity was lower, but agreement was poorer when excitation was higher. The length of excitation bursts was consistently longer when measured using textile vs. surface EMG electrodes. Comparable between-session (day-to-day repeatability was found for average rectified EMG (mean coefficient of variation, CV: 42.6 and 41.2% and excitation length (CV: 12.9 and 9.8% when using textile and surface EMG, respectively. Additionally, similar within-session repeatability (CV was recorded for average rectified EMG (13.8 and 14.1% and excitation length (13.0 and 12.7% for textile and surface electrodes, respectively. Generally, textile EMG electrodes appear to be capable of providing comparable muscle excitation information and reproducibility to surface EMG during dynamic tasks. Textile EMG shorts could therefore be a practical alternative to traditional laboratory-based methods allowing muscle excitation information to be collected in more externally-valid training environments.

  6. Pelvic floor muscle strength and sexual function in women

    Cinara Sacomori

    Full Text Available Abstract Introduction : Pelvic floor (PF muscles react to sexual stimuli with increased local blood circulation and involuntary contractions during orgasm. The training of the PF musculature helps in the improvement of the female sexual function. Objective : To verify the association between PF muscle strength and sexual function in women, controlling age and parity. Method : Cross-sectional study based on associations. The study included women who attended a reference center in Florianópolis, Santa Catarina, for a uterine cancer smear test. The Functional Evaluation of the Pelvic Floor and the Female Sexual Function Index questionnaire were used. Statistical procedures included Mann-Whitney U tests, Spearman correlation and Poisson Regression Analysis, with p < .05. Results : The mean age of the women (n = 177 was 39.05 years (SD = 13.3. Regarding PF function, 53.7% of participants presented weak or not palpable PF muscle function. Women with "good" muscle function (able to maintain contraction under examiner's resistance had significantly better indexes of sexual desire, excitement, lubrication and orgasm than women with weak/poor function. We identified that 52.5% of the women presented sexual dysfunction. Women with "poor" PF function and aged over 50 years had, respectively, 1.36 (CI95% 1.01 - 1.82 and 1.77 (CI95% 1.41 - 2.23 higher prevalence of sexual dysfunction than women with "good" PF function. Conclusions : Adult women with better PF muscle function also presented better sexual function.

  7. Effects of Eight Months of Whole-Body Vibration Training on the Muscle Mass and Functional Capacity of Elderly Women.

    Santin-Medeiros, Fernanda; Rey-López, Juan P; Santos-Lozano, Alejandro; Cristi-Montero, Carlos S; Garatachea Vallejo, Nuria

    2015-07-01

    Few intervention studies have used whole-body vibration (WBV) training in the elderly, and there is inconclusive evidence about its health benefits. We examined the effect of 8 months of WBV training on muscle mass and functional capacity in elderly women. A total of 37 women (aged 82.4 ± 5.7 years) voluntarily participated in this study. Subjects were randomly assigned to a vibration group (n = 19) or a control group (n = 18). The vibration group trained on a vertical vibration platform twice a week. The control group was requested not to change their habitual lifestyle. The quadriceps femoris muscle cross-sectional area was determined by magnetic resonance imaging. All participants were evaluated by a battery of tests (Senior Fitness Test) to determine their functional capacity, as well as handgrip strength and balance/gait. General linear repeated-measure analysis of variance (group by time) was performed to examine the effect of the intervention on the outcomes variables. After 8 months, nonstatistically significant differences in the quadriceps CSA (pre-training: 8,516.16 ± 1,271.78 mm² and post-training: 8,671.63 ± 1,389.03 mm²) (p > 0.05) were found in the WBV group (Cohen's d: -0.12), whereas the CON group significantly decreased muscle mass (pre-training: 9,756.18 ± 1,420.07 mm² and post-training: 9,326.82 ± 1,577.53 mm²), with moderate effect size evident (Cohen's d: 0.29). In both groups, no changes were observed in the functional capacity, handgrip strength and balance/gait. The WBV training could prevent the loss of quadriceps CSA in elderly women.

  8. Muscle Functions and Functional Performance among Older Persons with and without Low Back Pain

    Nor Azizah Ishak

    2016-01-01

    Full Text Available This study aims to compare muscle functions and functional performances between older persons with and without low back pain (LBP and to determine the association between muscle functions and functional performances. This is a cross-sectional study, involving 95 older persons (age = 70.27±7.26 years. Anthropometric characteristics, muscle functions, and functional performances were measured. Data were analyzed using ANOVA, Pearson’s correlation, and multiple linear regression. The functional performances showed no significant differences (females LBP versus non-LBP, males LBP versus non-LBP (p<0.05. For muscle functions, significant differences were found (females LBP versus non-LBP for abdominal muscle strength (p=0.006 and back muscle strength (p=0.07. In the LBP group, significant correlations were found between back and abdominal muscle strength and hand grip strength (r=0.377 and r=0.396, resp., multifidus control and lower limb function (r=0.363 in females, and back muscle strength and lower limb function (r=0.393 in males (all p<0.05. Regression analysis showed that abdominal and back muscle strengths were significant predictors of hand grip strength (p=0.041 and p=0.049, resp., and multifidus control was a significant predictor of lower limb function in females (p=0.047. This study demonstrates that older women with LBP exhibit poorer muscle functions compared to older women without LBP.

  9. Growth factors, muscle function, and doping.

    Goldspink, Geoffrey; Wessner, Barbara; Tschan, Harald; Bachl, Norbert

    2010-03-01

    This article discusses the inevitable use of growth factors for enhancing muscle strength and athletic performance. Much effort has been expended on developing a treatment of muscle wasting associated with a range of diseases and aging. Frailty in the aging population is a major socioeconomic and medical problem. Emerging molecular techniques have made it possible to gain a better understanding of the growth factor genes and how they are activated by physical activity. The ways that misuse of growth factors may be detected and verified in athletes and future challenges for detecting manipulation of signaling pathways are discussed. Copyright 2010. Published by Elsevier Inc.

  10. Muscle glycogen and cell function--Location, location, location.

    Ørtenblad, N; Nielsen, J

    2015-12-01

    The importance of glycogen, as a fuel during exercise, is a fundamental concept in exercise physiology. The use of electron microscopy has revealed that glycogen is not evenly distributed in skeletal muscle fibers, but rather localized in distinct pools. In this review, we present the available evidence regarding the subcellular localization of glycogen in skeletal muscle and discuss this from the perspective of skeletal muscle fiber function. The distribution of glycogen in the defined pools within the skeletal muscle varies depending on exercise intensity, fiber phenotype, training status, and immobilization. Furthermore, these defined pools may serve specific functions in the cell. Specifically, reduced levels of these pools of glycogen are associated with reduced SR Ca(2+) release, muscle relaxation rate, and membrane excitability. Collectively, the available literature strongly demonstrates that the subcellular localization of glycogen has to be considered to fully understand the role of glycogen metabolism and signaling in skeletal muscle function. Here, we propose that the effect of low muscle glycogen on excitation-contraction coupling may serve as a built-in mechanism, which links the energetic state of the muscle fiber to energy utilization. © 2015 John Wiley & Sons A/S. Published by John Wiley & Sons Ltd.

  11. Muscle glycogen and cell function - Location, location, location

    Ørtenblad, N; Nielsen, Joachim

    2015-01-01

    The importance of glycogen, as a fuel during exercise, is a fundamental concept in exercise physiology. The use of electron microscopy has revealed that glycogen is not evenly distributed in skeletal muscle fibers, but rather localized in distinct pools. In this review, we present the available...... evidence regarding the subcellular localization of glycogen in skeletal muscle and discuss this from the perspective of skeletal muscle fiber function. The distribution of glycogen in the defined pools within the skeletal muscle varies depending on exercise intensity, fiber phenotype, training status......, and immobilization. Furthermore, these defined pools may serve specific functions in the cell. Specifically, reduced levels of these pools of glycogen are associated with reduced SR Ca(2+) release, muscle relaxation rate, and membrane excitability. Collectively, the available literature strongly demonstrates...

  12. Functional Echomyography of the human denervated muscle: first results

    Riccardo Zanato

    2011-03-01

    . The very high energy needed to stimulate the denervated muscles according to the Vienna home-based Functional Electrical Stimulation (h-b FES strategy demonstrates that the explored muscles are denervated. This pilot study confirms the usefulness of Functional EchoMyography in the follow-up and the positive effects of h-b FES of denervated/reinnervating muscles.

  13. Transient impairments in single muscle fibre contractile function after prolonged cycling in elite endurance athletes

    Hvid, L G; Gejl, Kasper Degn; Bech, R D

    2013-01-01

    Prolonged muscle activity impairs whole-muscle performance and function. However, little is known about the effects of prolonged muscle activity on the contractile function of human single muscle fibres. The purpose of this study was to investigate the effects of prolonged exercise and subsequent...... recovery on the contractile function of single muscle fibres obtained from elite athletes....

  14. MR imaging of rectus femoris origin injuries

    Ouellette, Hugue; Thomas, Bijoy J.; Nelson, Erik; Torriani, Martin

    2006-01-01

    To describe the MR imaging findings of acute and chronic rectus femoris origin (RFO) injuries. A retrospective review of pelvic and hip MR imaging procedures was performed over a 4-year period for detection of cases with injuries to the RFO. Subjects were classified as having either acute or chronic symptoms. MR imaging studies, radiographs, CT scans, radiology reports, medical records, and operative notes were reviewed. Imaging analysis was directed to assess injuries affecting the direct and indirect heads of the RFO. Concurrent osseous, cartilaginous and musculotendinous injuries were tabulated. The incidence of RFO injuries on MR imaging was 0.5% (17/3160). With the exception of one case of anterior inferior iliac spine apophysis avulsion and partial tear of the direct head of RFO, all subjects had indirect head of RFO injuries (acute injury 8/9, chronic injury 8/8). Partial tear of the direct head of RFO was less frequently seen (acute injury 3/9, chronic injury 2/8). Partial tears of the conjoint tendon were least frequent (acute 1/9, chronic 2/8). No full-thickness tears of the RFO were noted. Associated labral tears were seen in only one case, with no other concomitant abnormality of the articular cartilage or surrounding soft tissues. All RFO injuries were treated non-operatively. Injuries of the RFO are uncommon on MR examinations of pelvis/hips and may occur in a sequence progressing from indirect head injury to involvement of direct head and conjoint tendon in more severe cases. (orig.)

  15. Fragility fracture risk and skeletal muscle function.

    Pérez-López, F R; Ara, I

    2016-01-01

    Low-intensity fractures are closely related with age-related musculoskeletal disorders, including osteoporosis, muscle dysfunction and sarcopenia, age-related chronic diseases, and pharmacological treatments. During the last years, a huge amount of information and recommendations has been released in relation to bone metabolism and mineral content. Muscle dysfunction and sarcopenia are highly prevalent during the second half of life, especially in older subjects. The development of sarcopenia may be slowed through healthy lifestyle changes, which include adequate dietary protein, vitamin D and mineral intakes, and regular physical activity. Prevention of falls should be integral, including correction in major involved factors in order to reduce fragility fracture, improve quality of life and appropriately focus clinical and economic resources. Therefore, to obtain better results a global approach is needed to prevent age-related fractures in frail patients that is not only centered on bone metabolism and antiresorptive drugs.

  16. Lower limb asymmetry in mechanical muscle function

    Jordan, M J; Aagaard, Per; Herzog, W

    2015-01-01

    .05), and the final phase of the SJ (P AI in the CMJ concentric phase (r = 0.57, P Future research is required to assess the role of the CMJ and SJ phase-specific kinetic impulse AI......-R). Elite alpine skiers with ACL-R (n = 9; 26.2 ± 11.8 months post-op) and uninjured skiers (n = 9) participated in neuromuscular screening. Vertical ground reaction force during the CMJ and SJ was assessed using dual force plate methodology to obtain phase-specific bilateral asymmetry indices (AIs......) for kinetic impulse (CMJ and SJ phase-specific kinetic impulse AI). Dual x-ray absorptiometry scanning was used to assess asymmetry in lower body muscle mass. Compared with controls, ACL-R skiers had increased AI in muscle mass (P AI in the CMJ concentric phase (P 

  17. Physical function and muscle strength in sporadic inclusion body myositis

    Jørgensen, Anders N; Aagaard, Per; Nielsen, Jakob L

    2017-01-01

    INTRODUCTION: In this study, self-reported physical function, functional capacity, and isolated muscle function were investigated in sporadic inclusion body myositis (sIBM) patients. METHODS: The 36-item Short Form (SF-36) Health Survey and 2-min walk test (2MWT), timed up & go test (TUG), and 30-s...

  18. TAK1 regulates skeletal muscle mass and mitochondrial function

    Hindi, Sajedah M.; Sato, Shuichi; Xiong, Guangyan; Bohnert, Kyle R.; Gibb, Andrew A.; Gallot, Yann S.; McMillan, Joseph D.; Hill, Bradford G.

    2018-01-01

    Skeletal muscle mass is regulated by a complex array of signaling pathways. TGF-β–activated kinase 1 (TAK1) is an important signaling protein, which regulates context-dependent activation of multiple intracellular pathways. However, the role of TAK1 in the regulation of skeletal muscle mass remains unknown. Here, we report that inducible inactivation of TAK1 causes severe muscle wasting, leading to kyphosis, in both young and adult mice.. Inactivation of TAK1 inhibits protein synthesis and induces proteolysis, potentially through upregulating the activity of the ubiquitin-proteasome system and autophagy. Phosphorylation and enzymatic activity of AMPK are increased, whereas levels of phosphorylated mTOR and p38 MAPK are diminished upon inducible inactivation of TAK1 in skeletal muscle. In addition, targeted inactivation of TAK1 leads to the accumulation of dysfunctional mitochondria and oxidative stress in skeletal muscle of adult mice. Inhibition of TAK1 does not attenuate denervation-induced muscle wasting in adult mice. Finally, TAK1 activity is highly upregulated during overload-induced skeletal muscle growth, and inactivation of TAK1 prevents myofiber hypertrophy in response to functional overload. Overall, our study demonstrates that TAK1 is a key regulator of skeletal muscle mass and oxidative metabolism. PMID:29415881

  19. The Effect of Statins on Skeletal Muscle Function

    Parker, Beth A.; Capizzi, Jeffrey A.; Grimaldi, Adam S.; Clarkson, Priscilla M.; Cole, Stephanie M.; Keadle, Justin; Chipkin, Stuart; Pescatello, Linda S.; Simpson, Kathleen; White, C. Michael; Thompson, Paul D.

    2015-01-01

    Background Many clinicians believe that statins cause muscle pain, but this has not been observed in clinical trials and the effect of statins on muscle performance has not been carefully studied. Methods and Results The Effect of STatins On Skeletal Muscle Function and Performance (STOMP) study assessed symptoms and measured creatine kinase (CK), exercise capacity, and muscle strength before and after atorvastatin 80 mg or placebo were administered for 6 months to 420 healthy, statin-naive subjects. No individual CK value exceeded 10 times normal, but average CK increased 20.8 ± 141.1 U/L (pmuscle strength or exercise capacity with atorvastatin, but more atorvastatin than placebo subjects developed myalgia (19 vs 10; p = 0.05). Myalgic subjects on atorvastatin or placebo decreased muscle strength in 5 of 14 and 4 of 14 variables respectively (p = 0.69). Conclusions These results indicate that high-dose atorvastatin for 6 months does not decrease average muscle strength or exercise performance in healthy, previously untreated subjects. Nevertheless, this blinded, controlled trial confirms the undocumented impression that statins increase muscle complaints. Atorvastatin also increased average CK suggesting that statins produce mild muscle injury even among asymptomatic subjects. This increase in CK should prompt studies examining the effects of more prolonged, high-dose statin treatment on muscular performance. Clinical Trial Registration Information: www.clinicaltrials.gov; Identifier: NCT00609063. PMID:23183941

  20. Resistance training, insulin sensitivity and muscle function in the elderly

    Dela, Flemming; Kjaer, Michael

    2006-01-01

    Ageing is associated with a loss in both muscle mass and in the metabolic quality of skeletal muscle. This leads to sarcopenia and reduced daily function, as well as to an increased risk for development of insulin resistance and type 2 diabetes. A major part, but not all, of these changes......, and likewise to improve muscle strength in both elderly healthy individuals and in elderly individuals with chronic disease. The increased strength is coupled to improved function and a decreased risk for fall injuries and fractures. Elderly individuals have preserved the capacity to improve muscle strength...... are associated with an age-related decrease in the physical activity level and can be counteracted by increased physical activity of a resistive nature. Strength training has been shown to improve insulin-stimulated glucose uptake in both healthy elderly individuals and patients with manifest diabetes...

  1. A three-dimensional muscle activity imaging technique for assessing pelvic muscle function

    Zhang, Yingchun; Wang, Dan; Timm, Gerald W.

    2010-11-01

    A novel multi-channel surface electromyography (EMG)-based three-dimensional muscle activity imaging (MAI) technique has been developed by combining the bioelectrical source reconstruction approach and subject-specific finite element modeling approach. Internal muscle activities are modeled by a current density distribution and estimated from the intra-vaginal surface EMG signals with the aid of a weighted minimum norm estimation algorithm. The MAI technique was employed to minimally invasively reconstruct electrical activity in the pelvic floor muscles and urethral sphincter from multi-channel intra-vaginal surface EMG recordings. A series of computer simulations were conducted to evaluate the performance of the present MAI technique. With appropriate numerical modeling and inverse estimation techniques, we have demonstrated the capability of the MAI technique to accurately reconstruct internal muscle activities from surface EMG recordings. This MAI technique combined with traditional EMG signal analysis techniques is being used to study etiologic factors associated with stress urinary incontinence in women by correlating functional status of muscles characterized from the intra-vaginal surface EMG measurements with the specific pelvic muscle groups that generated these signals. The developed MAI technique described herein holds promise for eliminating the need to place needle electrodes into muscles to obtain accurate EMG recordings in some clinical applications.

  2. Sex steroids do not affect muscle weight, oxidative metabolism or cytosolic androgen reception binding of functionally overloaded rat Plantaris muscles

    Max, S. R.; Rance, N.

    1983-01-01

    The effects of sex steroids on muscle weight and oxidative capacity of rat planaris muscles subjected to functional overload by removal of synergistic muscles were investigated. Ten weeks after bilateral synergist removal, plantaris muscles were significantly hypertrophic compared with unoperated controls. After this period, the ability of the muscles to oxide three substrates of oxidative metabolism was assessed. Experimental procedures are discussed and results are presented herein. Results suggest a lack of beneficial effect of sex hormone status on the process of hypertrophy and on biochemical changes in overloaded muscle. Such findings are not consistent with the idea of synergistic effects of sex steroids and muscle usage.

  3. Vardenafil inhibiting parasympathetic function of tracheal smooth muscle.

    Lee, Fei-Peng; Chao, Pin-Zhir; Wang, Hsing-Won

    2018-07-01

    Levitra, a phosphodiesterase-5 (PDE5) inhibitor, is the trade name of vardenafil. Nowadays, it is applied to treatment of erectile dysfunction. PDE5 inhibitors are employed to induce dilatation of the vascular smooth muscle. The effect of Levitra on impotency is well known; however, its effect on the tracheal smooth muscle has rarely been explored. When administered for sexual symptoms via oral intake or inhalation, Levitra might affect the trachea. This study assessed the effects of Levitra on isolated rat tracheal smooth muscle by examining its effect on resting tension of tracheal smooth muscle, contraction caused by 10 -6  M methacholine as a parasympathetic mimetic, and electrically induced tracheal smooth muscle contractions. The results showed that adding methacholine to the incubation medium caused the trachea to contract in a dose-dependent manner. Addition of Levitra at doses of 10 -5  M or above elicited a significant relaxation response to 10 -6  M methacholine-induced contraction. Levitra could inhibit electrical field stimulation-induced spike contraction. It alone had minimal effect on the basal tension of the trachea as the concentration increased. High concentrations of Levitra could inhibit parasympathetic function of the trachea. Levitra when administered via oral intake might reduce asthma attacks in impotent patients because it might inhibit parasympathetic function and reduce methacholine-induced contraction of the tracheal smooth muscle. Copyright © 2018. Published by Elsevier Taiwan LLC.

  4. Muscle MRI and functional outcome measures in Becker muscular dystrophy.

    Barp, Andrea; Bello, Luca; Caumo, Luca; Campadello, Paola; Semplicini, Claudio; Lazzarotto, Annalisa; Sorarù, Gianni; Calore, Chiara; Rampado, Alessandro; Motta, Raffaella; Stramare, Roberto; Pegoraro, Elena

    2017-11-22

    Becker muscular dystrophy (BMD) is a neuromuscular disorder allelic to Duchenne muscular dystrophy (DMD), caused by in-frame mutations in the dystrophin gene, and characterized by a clinical progression that is both milder and more heterogeneous than DMD. Muscle magnetic resonance imaging (MRI) has been proposed as biomarker of disease progression in dystrophinopathies. Correlation with clinically meaningful outcome measures such as North Star Ambulatory Assessment (NSAA) and 6 minute walk test (6MWT) is paramount for biomarker qualification. In this study, 51 molecularly confirmed BMD patients (aged 7-69 years) underwent muscle MRI and were evaluated with functional measures (NSAA and 6MWT) at the time of the MRI, and subsequently after one year. We confirmed a pattern of fatty substitution involving mainly the hip extensors and most thigh muscles. Severity of muscle fatty substitution was significantly correlated with specific DMD mutations: in particular, patients with an isolated deletion of exon 48, or deletions bordering exon 51, showed milder involvement. Fat infiltration scores correlated with baseline functional measures, and predicted changes after 1 year. We conclude that in BMD, skeletal muscle MRI not only strongly correlates with motor function, but also helps in predicting functional deterioration within a 12-month time frame.

  5. Relationship of Lower Extremity Muscle Strength with Balance and Lower Extremity Functions in Elderly Women

    Ferdi Başkurt

    2018-03-01

    Conclusions: Functional score, mobility and balance are related to lower extremity muscle strength in elderly women. Increasing muscle strength will reduce the risk of falls and increase independence.

  6. Neuropathic pain-like alterations in muscle nociceptor function associated with vibration-induced muscle pain.

    Chen, Xiaojie; Green, Paul G; Levine, Jon D

    2010-11-01

    We recently developed a rodent model of the painful muscle disorders induced by occupational exposure to vibration. In the present study we used this model to evaluate the function of sensory neurons innervating the vibration-exposed gastrocnemius muscle. Activity of 74 vibration-exposed and 40 control nociceptors, with mechanical receptive fields in the gastrocnemius muscle, were recorded. In vibration-exposed rats ∼15% of nociceptors demonstrated an intense and long-lasting barrage of action potentials in response to sustained suprathreshold mechanical stimulation (average of 2635 action potentials with frequency of ∼44Hz during a 1min suprathreshold stimulus) much greater than that has been reported to be produced even by potent inflammatory mediators. While these high-firing nociceptors had lower mechanical thresholds than the remaining nociceptors, exposure to vibration had no effect on conduction velocity and did not induce spontaneous activity. Hyperactivity was not observed in any of 19 neurons from vibration-exposed rats pretreated with intrathecal antisense for the IL-6 receptor subunit gp130. Since vibration can injure peripheral nerves and IL-6 has been implicated in painful peripheral neuropathies, we suggest that the dramatic change in sensory neuron function and development of muscles pain, induced by exposure to vibration, reflects a neuropathic muscle pain syndrome. Copyright © 2010 International Association for the Study of Pain. Published by Elsevier B.V. All rights reserved.

  7. Magnetic resonance imaging findings after rectus femoris transfer surgery

    Gold, Garry E.; Asakawa, Deanna S.; Blemker, Silvia S.; Delp, Scott L.

    2004-01-01

    We describe the magnetic resonance (MR) imaging appearance of the knee flexor and extensor tendons after bilateral rectus femoris transfer and hamstring lengthening surgery in five patients (10 limbs) with cerebral palsy. Three-dimensional models of the path of the transferred tendon were constructed in all cases. MR images of the transferred and lengthened tendons were examined and compared with images from ten non-surgical subjects. The models showed that the path of the transferred rectus femoris tendon had a marked angular deviation near the transfer site in all cases. MR imaging demonstrated irregular areas of low signal intensity near the transferred rectus femoris and around the hamstrings in all subjects. Eight of the ten post-surgical limbs showed evidence of fluid near or around the transferred or lengthened tendons. This was not observed in the non-surgical subjects. Thus, MR imaging of patients with cerebral palsy after rectus femoris transfer and hamstring-lengthening surgery shows evidence of signal intensity and contour changes, even several years after surgery. (orig.)

  8. The Promotion of a Functional Fibrosis in Skeletal Muscle with Volumetric Muscle Loss Injury Following the Transplantation of Muscle-ECM

    2013-02-04

    Zou K, Boppart MD. Eccentric exercise facil- itates mesenchymal stem cell appearance in skeletal muscle. PLoS One 2012; 7:e29760. [40] Matziolis G...remaining muscle mass leading to additional improvements in functional capacity; how- ever, no study has explicitly studied these effects . The purpose of...muscles were isolated from donor Lewis rats. The tendon and fascia were removed and TA muscle decellularization was performed using an enzymatic and

  9. Architectural differences between the hamstring muscles.

    Kellis, Eleftherios; Galanis, Nikiforos; Kapetanos, George; Natsis, Konstantinos

    2012-08-01

    The purpose of this study was to understand the detailed architectural properties of the human hamstring muscles. The long (BFlh) and short (BFsh) head of biceps femoris, semimembranosus (SM) and semitendinosus (ST) muscles were dissected and removed from their origins in eight cadaveric specimens (age 67.8±4.3 years). Mean fiber length, sarcomere length, physiological cross-section area and pennation angle were measured. These data were then used to calculate a similarity index (δ) between pairs of muscles. The results indicated moderate similarity between BFlh and BFsh (δ=0.54) and between BFlh and SM (δ=0.35). In contrast, similarity was low between SM and ST (δ=0.98) and between BFlh and SM (δ=1.17). The fascicle length/muscle length ratio was higher for the ST (0.58) and BFsh (0.50) compared with the BFlh (0.27) and SM (0.22). There were, however, high inter-correlations between individual muscle architecture values, especially for muscle thickness and fascicle length data sets. Prediction of the whole hamstring architecture was achieved by combining data from all four muscles. These data show different designs of the hamstring muscles, especially between the SM and ST (medial) and BFlh and BFsh (lateral) muscles. Modeling the hamstrings as one muscle group by assuming uniform inter-muscular architecture yields less accurate representation of human hamstring muscle function. Copyright © 2012 Elsevier Ltd. All rights reserved.

  10. Association between preterm labour and pelvic floor muscle function.

    Aran, Turhan; Pekgöz, Ipek; Bozkaya, Hasan; Osmanagaoglu, Mehmet A

    2018-03-23

    We hypothesised that the pressure on the cervix increases with advancing gestation and it may lead to a cervical shortening and cause preterm labour in women with weak pelvic floor muscles. The aim of this prospective study was to measure vaginal resting pressure and pelvic floor muscle strength in the first trimester of pregnancy and to investigate their effects on labour. A study was conducted on the pregnant women with a low risk for preterm birth. The pelvic floor muscle strength and vaginal resting pressure were assessed in 320 pregnant women at their first trimester with a vaginal pressure measurement device. Fifty-two pregnant women were hospitalised for tocolytic therapy because of spontaneous preterm labour. Thirty-two of them (10.2%) had a preterm delivery despite the tocolytic therapy. Both the vaginal resting pressure (p = .009, 95%CI: 0.8; 5.9) and the pelvic floor muscle strength (p = .01, 95%CI: 3.5; 13.1) were significantly lower in the women with a preterm labour. Impact statement What is already known on this subject? The pelvic floor muscles have an essential role in continence and provide support to the pelvic organs. They also have an impact on labour. The pelvic floor muscles should distend to allow the passage of the foetus during labour. The rotation and flexion of the foetal head is due to the pelvic floor resistance. The effect of a vaginal birth on the pelvic floor's function is readily understood. On the other hand, the effect of the pelvic floor muscle function on labour is still controversial. What do the results of this study add? This prospective study showed that there is a negative association between the pelvic floor muscle strength and preterm labour. This is the first clinical study indicating that weak pelvic floor muscles may cause a preterm labour. What are the implications of these findings for clinical practice and/or further research? Pelvic floor physical therapy may be an alternative preventive strategy to reduce

  11. Profunda Femoris Artery Perforator Propeller Flap: A Valid Method to Cover Complicated Ischiatic Pressure Sores.

    Scalise, Alessandro; Tartaglione, Caterina; Bolletta, Elisa; Pierangeli, Marina; Di Benedetto, Giovanni

    2015-08-01

    We report the case of a 50-year-old paraplegic man with a complicated grade III/IV ischiatic pressure sore treated with a propeller flap based on the first perforator of the profunda femoris artery. Our aim was to surgically reconstruct an ischiatic pressure sore in a patient with ankylosis using a fasciocutaneous perforator propeller flap obtained from the posterior region of the thigh. Our decision to perform a profunda femoris artery perforator propeller flap reconstruction was mainly due to the anatomical contiguity of the flap with the site of the lesion and the good quality of the skin harvested from the posterior region of the thigh. The use of the perforator fasciocutaneous flap represents a muscle-sparing technique, providing a better long-term result in surgical reconstruction. The choice of the 180-degree propeller flap was due to its ability to provide a good repair of the pressure ulcer and to pass over the ischiatic prominence in the patient in the forced decubitus position. The operatory course did not present any kind of complication. Using this reconstructive treatment, we have obtained complete coverage of the ischiatic pressure sore.

  12. Use of Ultrasound to Monitor Biceps Femoris Mechanical Adaptations after Injury in a Professional Soccer Player

    Eleftherios Kellis, Nikiforos Galanis, Chrysanthos Chrysanthou, Nikolaos Kofotolis

    2016-03-01

    Full Text Available This study examined the use of ultrasound to monitor changes in the long head of the biceps femoris (BF architecture of aprofessional soccer player with acute first-time hamstring strain. The player followed a 14 session physiotherapy treatment until return to sport. The pennation angle and aponeurosis strain of the long head of the biceps femoris (BF were monitored at 6 occasions (up until 1 year after injury. The size of the scar / hematoma was reduced by 63.56% (length and 67.9% (width after the intervention and it was almost non-traceable one year after injury. The pennation angle of the fascicles underneath the scar showed a decline of 51.4% at the end of the intervention while an increase of 109.2% of the fascicles which were closer to deep aponeurosis was observed. In contrast, pennation angle of fascicles located away from the injury site were relatively unaffected. The treatment intervention resulted in a 57.9% to 77.3% decline of maximum strain per unit of MVC moment and remained similar one year after the intervention. This study provided an example of the potential use of ultrasound-based parameters to link the mechanical adaptations of the injured muscle to specific therapeutic intervention.

  13. The effectiveness of two novel techniques in establishing the mechanical and contractile responses of biceps femoris

    Ditroilo, Massimiliano; De Vito, Giuseppe; Hunter, Angus M; Haslam, Samuel

    2011-01-01

    Portable tensiomyography (TMG) and myotonometry (MMT) devices have been developed to measure mechanical and contractile properties of skeletal muscle. The aim of this study was to explore the sensitivity of the aforementioned techniques in detecting a change in passive mechanical properties of the biceps femoris (BF) muscle as a result of change in knee joint angle (i.e. muscle length). BF responses were assessed in 16 young participants (23.4 ± 4.9 years), at three knee joint angles (0°, 45° and 90°), for maximal isometric torque (MIT) along with myo-electrical activity. Contractile and mechanical properties were measured in a relaxed state. Inter-day reliability of the TMG and MMT was also assessed. MIT changed significantly (p < 0.01) across the three angles, so did stiffness and other parameters measured with MMT (p < 0.01). Conversely, TMG could detect changes only at two knee angles (0° and 45°, p < 0.01), when there is enough tension in the muscle. Reliability was overall insufficient for TMG whilst absolute reliability was excellent (coefficient of variation < 5%) for MMT. The ability of MMT more than TMG to detect an inherent change in stiffness can be conceivably exploited in a number of clinical/therapeutic applications that have to do with unnatural changes in passive muscle stiffness

  14. Muscle Contraction Velocity: A Suitable Approach to Analyze the Functional Adaptations in Elite Soccer Players

    Irineu Loturco, Lucas A. Pereira, Ronaldo Kobal, Katia Kitamura, Rodrigo Ramírez-Campillo, Vinicius Zanetti, Cesar C. Cal Abad, Fabio Y. Nakamura

    2016-09-01

    Full Text Available Tensiomyography (TMG has been used as a simple and non-invasive tool to assess the mechanical properties of skeletal muscles. The TMG-derived velocity of contraction (Vc, which can be calculated from the ratio between maximal radial displacement and the sum of contraction time and delay time, has been proposed for evaluating athletes. However, its sensitivity to training effects and possible relation with changes in soccer players’ neuromuscular performance have not yet been addressed. To test this possibility, twenty-two male Brazilian elite soccer players were assessed using TMG-derived Vc, unloaded squat jump, countermovement jump and drop jump at 45 cm, loaded jump squat and linear (20 m and change of direction (COD sprint tests, prior to and after an 8-week period, between two consecutive official tournaments, during which the concurrency between endurance and strength-power training commonly impairs neuromuscular capacities. Magnitude-based inference was used to detect meaningful training effects. From pre- to post-tests, it was observed likely to almost certainly improvements in all modes of jumping tests. In addition, we could verify decrements in the 20-m and COD sprint performances, which were rated as very likely and almost certainly, respectively. Finally, both rectus femoris and biceps femoris muscles presented a likely reduction in Vc. Therefore, chronic decreases in sprinting speed are possibly accompanied by a reduced TMG-derived Vc. From a practical standpoint, the TMG-derived Vc can be used to monitor negative specific-soccer training effects related to potential impairments in maximum speed.

  15. Change in skeletal muscle stiffness after running competition is dependent on both running distance and recovery time: a pilot study

    Seyedali Sadeghi

    2018-03-01

    Full Text Available Long-distance running competitions impose a large amount of mechanical loading and strain leading to muscle edema and delayed onset muscle soreness (DOMS. Damage to various muscle fibers, metabolic impairments and fatigue have been linked to explain how DOMS impairs muscle function. Disruptions of muscle fiber during DOMS exacerbated by exercise have been shown to change muscle mechanical properties. The objective of this study is to quantify changes in mechanical properties of different muscles in the thigh and lower leg as function of running distance and time after competition. A custom implementation of Focused Comb-Push Ultrasound Shear Elastography (F-CUSE method was used to evaluate shear modulus in runners before and after a race. Twenty-two healthy individuals (age: 23 ± 5 years were recruited using convenience sampling and split into three race categories: short distance (nine subjects, 3–5 miles, middle distance (10 subjects, 10–13 miles, and long distance (three subjects, 26+ miles. Shear Wave Elastography (SWE measurements were taken on both legs of each subject on the rectus femoris (RF, vastus lateralis (VL, vastus medialis (VM, soleus, lateral gastrocnemius (LG, medial gastrocnemius (MG, biceps femoris (BF and semitendinosus (ST muscles. For statistical analyses, a linear mixed model was used, with recovery time and running distance as fixed variables, while shear modulus was used as the dependent variable. Recovery time had a significant effect on the soleus (p = 0.05, while running distance had considerable effect on the biceps femoris (p = 0.02, vastus lateralis (p < 0.01 and semitendinosus muscles (p = 0.02. Sixty-seven percent of muscles exhibited a decreasing stiffness trend from before competition to immediately after competition. The preliminary results suggest that SWE could potentially be used to quantify changes of muscle mechanical properties as a way for measuring recovery procedures for runners.

  16. Dynamic restraint capacity of the hamstring muscles has important functional implications after anterior cruciate ligament injury and anterior cruciate ligament reconstruction.

    Bryant, Adam L; Creaby, Mark W; Newton, Robert U; Steele, Julie R

    2008-12-01

    The purpose of this study was to investigate the relation between knee functionality of anterior cruciate ligament deficient (ACLD) and anterior cruciate ligament reconstruction (ACLR) patients and hamstring antagonist torque generated during resisted knee extension. Cross-sectional. Laboratory based. Male ACLD subjects (n=10) (18-35 y) and 27 matched males who had undergone ACLR (14 patella tendon [PT] grafts and 13 combined semitendinosus/gracilis tendon grafts). Not applicable. Knee functionality was rated (0- to 100-point scale) by using the Cincinnati Knee Rating System. Using electromyography data from the semitendinosus (ST) and biceps femoris muscles, we created a mathematical model to estimate the opposing torque generated by the hamstrings during isokinetic knee extension in 10 degrees intervals from 80 degrees to 10 degrees knee flexion. Pearson product-moment correlations revealed that more functional ACLD subjects generated significantly (Phamstring antagonist torque throughout knee extension. In contrast, more functional PT subjects produced significantly lower hamstring antagonist torque at 80 degrees to 70 degrees knee flexion, whereas no significant associations were found between hamstring antagonist torque and knee functionality for the ST/gracilis tendon subjects. An increased hamstring antagonist torque generated by the more functional ACLD subjects, reflective of increased hamstring contractile force, is thought to represent a protective mechanism to compensate for mechanical instability. The restoration of anterior knee stability through ACLR negates the need for augmented hamstring antagonist torque.

  17. Effects of muscle composition and architecture on specific strength in obese older women.

    Rastelli, F; Capodaglio, P; Orgiu, S; Santovito, C; Caramenti, M; Cadioli, M; Falini, A; Rizzo, G; Lafortuna, C L

    2015-10-01

    What is the central question of this study? Do obesity-specific factors affect skeletal muscle performance in older individuals? What is the main finding and its importance? Older obese women have a larger quadriceps femoris size but develop lower tension per unit of skeletal muscle than their normal-weight counterparts. Muscle impairment and excess body mass are very common among older people. Given that the effect of obesity on strength production has scarcely been studied in older individuals, we analysed functional and structural characteristics of quadriceps femoris (QF) in obese (OB) and normal-weight (NW) older women with comparable habitual physical activity. In five OB (body mass index 36.8 ± 1.9 kg m(-2), age 72.4 ± 2.3 years) and six NW well-functioning older women (body mass index 24.3 ± 1.8 kg m(-2), age 72.7 ± 1.9 years), peak knee-extension torque (KET) was measured in isometric (90 deg knee flexion) and isokinetic conditions (240, 180, 120 and 60 deg s(-1)). Mid-thigh QF cross-sectional area (CSA) and muscle tissue fat content (MF%) were determined with magnetic resonance imaging (Dixon sequence). Muscle fascicle length and pennation angle (PA) were assessed with ultrasonography for each muscle belly of the QF (vastus lateralis, vastus intermedius, rectus femoris and vastus intermedius). Despite similar values of KET, CSA was 17.0% larger in OB than in NW women (P Muscle composition and architecture seem to be important determinants of KET/CSA in elderly women. In fact, owing to the effect of obesity overload, OB women have a larger QF size than NW women, but unfavourable muscle composition and architecture. The higher MF% and steeper PA observed in OB women are associated with reduced levels of muscle specific strength. © 2015 The Authors. Experimental Physiology © 2015 The Physiological Society.

  18. Abdominal muscle function and incisional hernia: a systematic review.

    Jensen, K K; Kjaer, M; Jorgensen, L N

    2014-08-01

    Although ventral incisional hernia (VIH) repair in patients is often evaluated in terms of hernia recurrence rate and health-related quality of life, there is no clear consensus regarding optimal operative treatment based on these parameters. It was proposed that health-related quality of life depends largely on abdominal muscle function (AMF), and the present review thus evaluates to what extent AMF is influenced by VIH and surgical repair. The PubMed and EMBASE databases were searched for articles following a systematic strategy for inclusion. A total of seven studies described AMF in relation to VIH. Five studies examined AMF using objective isokinetic dynamometers to determine muscle strength, and two studies examined AMF by clinical examination-based muscle tests. Both equipment-related and functional muscle tests exist for use in patients with VIH, but very few studies have evaluated AMF in VIH. There are no randomized controlled studies to describe the impact of VIH repair on AMF, and no optimal surgical treatment in relation to AMF after VIH repair can be advocated for at this time.

  19. Effects of aging on muscle mechanical function and muscle fiber morphology during short-term immobilization and subsequent retraining

    Hvid, Lars; Aagaard, Per; Justesen, Lene

    2010-01-01

    Very little attention has been given to the combined effects of aging and disuse as separate factors causing deterioration in muscle mechanical function. Thus the purpose of this study was to investigate the effects of 2 wk of immobilization followed by 4 wk of retraining on knee extensor muscle...... to the deleterious effects of short-term muscle disuse on muscle fiber size and rapid force capacity than YM. Furthermore, OM seems to require longer time to recover and regain rapid muscle force capacity, which may lead to a larger risk of falling in aged individuals after periods of short-term disuse....

  20. Caspase-12 ablation preserves muscle function in the mdx mouse

    Moorwood, Catherine; Barton, Elisabeth R.

    2014-01-01

    Duchenne muscular dystrophy (DMD) is a devastating muscle wasting disease caused by mutations in dystrophin. Several downstream consequences of dystrophin deficiency are triggers of endoplasmic reticulum (ER) stress, including loss of calcium homeostasis, hypoxia and oxidative stress. During ER stress, misfolded proteins accumulate in the ER lumen and the unfolded protein response (UPR) is triggered, leading to adaptation or apoptosis. We hypothesized that ER stress is heightened in dystrophic muscles and contributes to the pathology of DMD. We observed increases in the ER stress markers BiP and cleaved caspase-4 in DMD patient biopsies, compared with controls, and an increase in multiple UPR pathways in muscles of the dystrophin-deficient mdx mouse. We then crossed mdx mice with mice null for caspase-12, the murine equivalent of human caspase-4, which are resistant to ER stress. We found that deleting caspase-12 preserved mdx muscle function, resulting in a 75% recovery of both specific force generation and resistance to eccentric contractions. The compensatory hypertrophy normally found in mdx muscles was normalized in the absence of caspase-12; this was found to be due to decreased fibre sizes, and not to a fibre type shift or a decrease in fibrosis. Fibre central nucleation was not significantly altered in the absence of caspase-12, but muscle fibre degeneration found in the mdx mouse was reduced almost to wild-type levels. In conclusion, we have identified heightened ER stress and abnormal UPR signalling as novel contributors to the dystrophic phenotype. Caspase-4 is therefore a potential therapeutic target for DMD. PMID:24879640

  1. Kinesiophobia, Pain, Muscle Functions, and Functional Performances among Older Persons with Low Back Pain

    Nor Azizah Ishak

    2017-01-01

    Full Text Available Objectives. This study aims (1 to determine the association between kinesiophobia and pain, muscle functions, and functional performances and (2 to determine whether kinesiophobia predicts pain, muscle functions, and functional performance among older persons with low back pain (LBP. Methods. This is a correlational study, involving 63 institutionalized older persons (age = 70.98±7.90 years diagnosed with LBP. Anthropometric characteristics (BMI and functional performances (lower limb function, balance and mobility, and hand grip strength were measured. Muscle strength (abdominal and back muscle strength was assessed using the Baseline® Mechanical Push/Pull Dynamometer, while muscle control (transverse abdominus and multifidus was measured by using the Pressure Biofeedback Unit. The pain intensity and the level of kinesiophobia were measured using Numerical Rating Scale and Tampa Scale of Kinesiophobia, respectively. Data were analyzed using Pearson’s correlation coefficients and multivariate linear regressions. Results. No significant correlations were found between kinesiophobia and pain and muscle functions (all p>0.05. Kinesiophobia was significantly correlated with mobility and balance (p=0.038, r=0.263. Regressions analysis showed that kinesiophobia was a significant predictor of mobility and balance (p=0.038. Conclusion. We can conclude that kinesiophobia predicted mobility and balance in older persons with LBP. Kinesiophobia should be continuously assessed in clinical settings to recognize the obstacles that may affect patient’s compliance towards a rehabilitation program in older persons with LBP.

  2. Peripheral Nerve Function and Lower Extremity Muscle Power in Older Men

    Ward, Rachel E; Caserotti, Paolo; Faulkner, Kimberly

    2014-01-01

    To assess whether sensorimotor peripheral nerve function is associated with muscle power in community-dwelling older men.......To assess whether sensorimotor peripheral nerve function is associated with muscle power in community-dwelling older men....

  3. Skeletal Muscle Mitochondrial Function in Polycystic Ovarian Syndrome

    Rabøl, Rasmus; Svendsen, Pernille Maj; Skovbro, Mette

    2011-01-01

    Hyperinsulinemic euglycemic clamps (40 mU/min/m2) and muscle biopsies were performed on 23 women with PCOS (9 lean (body mass index (BMI) 25 kg/m2)) and 17 age- and weight-matched controls (6 lean and 11 obese). Western blotting and high-resolution respirometry was used to determine mitochondrial function. Results......Objective Polycystic ovarian syndrome (PCOS) is associated with skeletal muscle insulin resistance, which has been linked to decreased mitochondrial function. We measured mitochondrial respiration in lean and obese women with and without PCOS using high-resolution respirometry. Methods...... Insulin sensitivity decreased with PCOS and increasing body weight. Mitochondrial respiration with substrates for complex I and complex I+II were similar in all groups, and PCOS was not associated with a decrease in mitochondrial content as measured by mtDNA/genomicDNA. We found no correlation between...

  4. Experimental quadriceps muscle pain impairs knee joint control during walking

    Henriksen, Marius; Alkjaer, Tine; Lund, Hans

    2007-01-01

    Pain is a cardinal symptom in musculoskeletal diseases involving the knee joint, and aberrant movement patterns and motor control strategies are often present in these patients. However, the underlying neuromuscular mechanisms linking pain to movement and motor control are unclear. To investigate...... the functional significance of muscle pain on knee joint control during walking, three-dimensional gait analyses were performed before, during, and after experimentally induced muscle pain by means of intramuscular injections of hypertonic saline (5.8%) into vastus medialis (VM) muscle of 20 healthy subjects....... Isotonic saline (0.9%) was used as control. Surface electromyography (EMG) recordings of VM, vastus lateralis (VL), biceps femoris, and semitendinosus muscles were synchronized with the gait analyses. During experimental muscle pain, the loading response phase peak knee extensor moments were attenuated...

  5. Functional Effects of Hyperthyroidism on Cardiac Papillary Muscle in Rats

    Fabricio Furtado Vieira

    Full Text Available Abstract Background: Hyperthyroidism is currently recognized to affect the cardiovascular system, leading to a series of molecular and functional changes. However, little is known about the functional influence of hyperthyroidism in the regulation of cytoplasmic calcium and on the sodium/calcium exchanger (NCX in the cardiac muscle. Objectives: To evaluate the functional changes in papillary muscles isolated from animals with induced hyperthyroidism. Methods: We divided 36 Wistar rats into a group of controls and another of animals with hyperthyroidism induced by intraperitoneal T3 injection. We measured in the animals' papillary muscles the maximum contraction force, speed of contraction (+df/dt and relaxation (-df/dt, contraction and relaxation time, contraction force at different concentrations of extracellular sodium, post-rest potentiation (PRP, and contraction force induced by caffeine. Results: In hyperthyroid animals, we observed decreased PRP at all rest times (p < 0.05, increased +df/dt and -df/dt (p < 0.001, low positive inotropic response to decreased concentration of extracellular sodium (p < 0.001, reduction of the maximum force in caffeine-induced contraction (p < 0.003, and decreased total contraction time (p < 0.001. The maximal contraction force did not differ significantly between groups (p = 0.973. Conclusion: We hypothesize that the changes observed are likely due to a decrease in calcium content in the sarcoplasmic reticulum, caused by calcium leakage, decreased expression of NCX, and increased expression of a-MHC and SERCA2.

  6. Functional Effects of Hyperthyroidism on Cardiac Papillary Muscle in Rats.

    Vieira, Fabricio Furtado; Olivoto, Robson Ruiz; Silva, Priscyla Oliveira da; Francisco, Julio Cesar; Fogaça, Rosalvo Tadeu Hochmuller

    2016-12-01

    Hyperthyroidism is currently recognized to affect the cardiovascular system, leading to a series of molecular and functional changes. However, little is known about the functional influence of hyperthyroidism in the regulation of cytoplasmic calcium and on the sodium/calcium exchanger (NCX) in the cardiac muscle. To evaluate the functional changes in papillary muscles isolated from animals with induced hyperthyroidism. We divided 36 Wistar rats into a group of controls and another of animals with hyperthyroidism induced by intraperitoneal T3 injection. We measured in the animals' papillary muscles the maximum contraction force, speed of contraction (+df/dt) and relaxation (-df/dt), contraction and relaxation time, contraction force at different concentrations of extracellular sodium, post-rest potentiation (PRP), and contraction force induced by caffeine. In hyperthyroid animals, we observed decreased PRP at all rest times (p < 0.05), increased +df/dt and -df/dt (p < 0.001), low positive inotropic response to decreased concentration of extracellular sodium (p < 0.001), reduction of the maximum force in caffeine-induced contraction (p < 0.003), and decreased total contraction time (p < 0.001). The maximal contraction force did not differ significantly between groups (p = 0.973). We hypothesize that the changes observed are likely due to a decrease in calcium content in the sarcoplasmic reticulum, caused by calcium leakage, decreased expression of NCX, and increased expression of a-MHC and SERCA2.

  7. Alfacalcidol improves muscle power, muscle function and balance in elderly patients with reduced bone mass.

    Schacht, E; Ringe, Johann D

    2012-01-01

    We investigated the effect of daily therapy with 1 mcg alfacalcidol (Doss(®)-TEVA/AWD-pharma) on muscle power, muscle function, balance performance and fear of falls in an open, multi-centered, uncontrolled, prospective study on a cohort of patients with reduced bone mass. Among the 2,097 participants, 87.1% were post-menopausal women and 12.9% were men. Mean age was 74.8 years and mean body mass index (BMI) 26.3 kg/m². A total of 75.3% of the study population had osteoporosis, 81% a diagnosis of "increased risk of falls" and 70.1% had a creatinine clearance (CrCl) of power tests at onset and after 3 and 6 months: the timed up and go test (TUG) and the chair rising test (CRT). At baseline and after 6 months, participants performed the tandem gait test (TGT) and filled out a questionnaire evaluating fear of falling. Successful performance in the muscle tests is associated with a significantly lower risk of falls and non-vertebral fractures in elderly patients (successful test performance: TUG ≤ 10 s (sec), CRT ≤ 10 s, TGT ≥ 8 steps). A significant improvement in the performance of the two muscle tests was proved already after 3 months of treatment with alfacalcidol and further increased by the end of the therapeutic intervention. There were significant increases in the number of participants able to successfully perform the tests: 24.6% at baseline and 46.3% at the end of trial for the TUG (P balance test (TGT) increased from 36.0% at onset to 58.6% at the end of the trial (P power, muscle function and balance and reduces fear of falls. The significant improvement in the three muscle and balance tests and fear of falls may have a preventative effect on falls and fractures. We suggest that the quantitative risk tests used in this study could be reliable surrogate parameters for the risk of falls and fractures in elderly patients.

  8. Effects of acupuncture on symptoms and muscle function in delayed-onset muscle soreness.

    Hübscher, Markus; Vogt, Lutz; Bernhörster, Marcus; Rosenhagen, Andreas; Banzer, Winfried

    2008-10-01

    This study was done to investigate the effects of a standardized acupuncture treatment on symptoms and muscle function in exercise-induced delayed-onset muscle soreness (DOMS). A prospective, randomized, controlled, observer and subject-blinded trial was undertaken. Twenty-two (22) healthy subjects (22-30 years; 10 males and 12 females) were randomly assigned to three treatment groups: real acupuncture (deep needling at classic acupuncture points and tender points; n = 7), sham-acupuncture (superficial needling at nonacupuncture points; n = 8), and control (no needling; n = 7). DOMS of the nondominant elbow-flexors was experimentally induced through eccentric contractions until exhaustion. The outcome measures were pain perception (visual analogue scale; VAS; range: 0-10 cm), mechanical pain threshold (MPT; pressure algometer), and maximum isometric voluntary force (MIVF; force transducer). Treatment was applied immediately, 24 and 48 hours after DOMS induction. Measurements of MPT and MIVF were made prior to DOMS induction as well as before and after every treatment session. VAS data were acquired after DOMS induction as well as pre- and post-treatment. Final pain, MPT, and MIVF measurements were performed 72 hours after DOMS induction. Following nonparametric testing, there were no significant differences between groups in outcome measures at baseline. After 72 hours, pain perception (VAS) was significantly lower in the acupuncture group compared to the sham acupuncture and control subjects. However, the mean MPT and MIVF scores were not significantly different between groups. Although acupuncture seemed to have no effects on mechanical pain threshold and muscle function, it proved to reduce perceived pain arising from exercise-induced muscle soreness.

  9. Timing of muscle response to a sudden leg perturbation: comparison between adolescents and adults with Down syndrome.

    Maria Stella Valle

    Full Text Available Movement disturbances associated with Down syndrome reduce mechanical stability, worsening the execution of important tasks such as walking and upright standing. To compensate these deficits, persons with Down syndrome increase joint stability modulating the level of activation of single muscles or producing an agonist-antagonist co-activation. Such activations are also observed when a relaxed, extended leg is suddenly released and left to oscillate passively under the influence of gravity (Wartenberg test. In this case, the Rectus femoris of adults with Down syndrome displayed peaks of activation after the onset of the first leg flexion. With the aim to verify if these muscular reactions were acquired during the development time and to find evidences useful to give them a functional explanation, we used the Wartenberg test to compare the knee joint kinematics and the surface electromyography of the Rectus femoris and Biceps femoris caput longus between adolescents and adults with Down syndrome. During the first leg flexion, adolescents and adults showed single Rectus femoris activations while, a restricted number of participants exhibited agonist-antagonist co-activations. However, regardless the pattern of activation, adults initiated the muscle activity significantly later than adolescents. Although most of the mechanical parameters and the total movement variability were similar in the two groups, the onset of the Rectus femoris activation was well correlated with the time of the minimum acceleration variability. Thus, in adolescents the maximum mechanical stability occurred short after the onset of the leg fall, while adults reached their best joint stability late during the first flexion. These results suggest that between the adolescence and adulthood, persons with Down syndrome explore a temporal window to select an appropriate timing of muscle activation to overcome their inherent mechanical instability.

  10. Effects of aging on muscle mechanical function and muscle fiber morphology during short-term immobilization and subsequent retraining

    Hvid, Lars; Aagaard, Per; Justesen, Lene

    2010-01-01

    to the deleterious effects of short-term muscle disuse on muscle fiber size and rapid force capacity than YM. Furthermore, OM seems to require longer time to recover and regain rapid muscle force capacity, which may lead to a larger risk of falling in aged individuals after periods of short-term disuse.......Very little attention has been given to the combined effects of aging and disuse as separate factors causing deterioration in muscle mechanical function. Thus the purpose of this study was to investigate the effects of 2 wk of immobilization followed by 4 wk of retraining on knee extensor muscle...... mechanical function (e.g., maximal strength and rapid force capacity) and muscle fiber morphology in 9 old (OM: 67.3 ± 1.3 yr) and 11 young healthy men (YM: 24.4 ± 0.5 yr) with comparable levels of physical activity. Following immobilization, OM demonstrated markedly larger decreases in rapid force capacity...

  11. New function of the myostatin/activin type I receptor (ALK4) as a mediator of muscle atrophy and muscle regeneration.

    Pasteuning-Vuhman, S.; Boertje-van der Meulen, J.; van Putten, M.; Overzier, M.; ten Dijke, P; Kiełbasa, S.M.; Arindrarto, W.; Wolterbeek, R.; Lezhnina, K.V.; Ozerov, I.V.; Aliper, A.M.; Hoogaars, W.; Aartsma-Rus, A; Loomans, C.J.

    Skeletal muscle fibrosis and impaired muscle regeneration are major contributors to muscle wasting in Duchenne muscular dystrophy (DMD). Muscle growth is negatively regulated by myostatin (MSTN) and activins. Blockage of these pathways may improve muscle quality and function in DMD. Antisense

  12. Effect of ageing time in vacuum package on veal longissimus dorsi and biceps femoris physical and sensory traits

    G. Baldi

    2015-09-01

    Full Text Available Study evaluated the effects of vacuum ageing (2, 4, 6, 8, 10, 12, 16 days on veal loin (longissimus dorsi; LD and silverside (biceps femoris; BF physical and sensory characteristics. Ageing did not affect cooking loss, increased LD pH and L*, a* and b* in both muscles. Shear force (SF decreased until day 6 in LD and day 10 in BF. Aroma, flavor and taste were not affected, while texturetraits were improved. SF was negative correlated with tenderness and juiciness and positive correlated with BF fibrousness and stringy sensation. Ageing improved texture properties withoutaltering other sensory traits.

  13. Change in skeletal muscle stiffness after running competition is dependent on both running distance and recovery time: a pilot study.

    Sadeghi, Seyedali; Newman, Cassidy; Cortes, Daniel H

    2018-01-01

    Long-distance running competitions impose a large amount of mechanical loading and strain leading to muscle edema and delayed onset muscle soreness (DOMS). Damage to various muscle fibers, metabolic impairments and fatigue have been linked to explain how DOMS impairs muscle function. Disruptions of muscle fiber during DOMS exacerbated by exercise have been shown to change muscle mechanical properties. The objective of this study is to quantify changes in mechanical properties of different muscles in the thigh and lower leg as function of running distance and time after competition. A custom implementation of Focused Comb-Push Ultrasound Shear Elastography (F-CUSE) method was used to evaluate shear modulus in runners before and after a race. Twenty-two healthy individuals (age: 23 ± 5 years) were recruited using convenience sampling and split into three race categories: short distance (nine subjects, 3-5 miles), middle distance (10 subjects, 10-13 miles), and long distance (three subjects, 26+ miles). Shear Wave Elastography (SWE) measurements were taken on both legs of each subject on the rectus femoris (RF), vastus lateralis (VL), vastus medialis (VM), soleus, lateral gastrocnemius (LG), medial gastrocnemius (MG), biceps femoris (BF) and semitendinosus (ST) muscles. For statistical analyses, a linear mixed model was used, with recovery time and running distance as fixed variables, while shear modulus was used as the dependent variable. Recovery time had a significant effect on the soleus ( p  = 0.05), while running distance had considerable effect on the biceps femoris ( p  = 0.02), vastus lateralis ( p  trend from before competition to immediately after competition. The preliminary results suggest that SWE could potentially be used to quantify changes of muscle mechanical properties as a way for measuring recovery procedures for runners.

  14. Structural, biochemical, cellular, and functional changes in skeletal muscle extracellular matrix with aging

    Kragstrup, T W; Kjaer, M; Mackey, A L

    2011-01-01

    The extracellular matrix (ECM) of skeletal muscle is critical for force transmission and for the passive elastic response of skeletal muscle. Structural, biochemical, cellular, and functional changes in skeletal muscle ECM contribute to the deterioration in muscle mechanical properties with aging....... Structural changes include an increase in the collagen concentration, a change in the elastic fiber system, and an increase in fat infiltration of skeletal muscle. Biochemical changes include a decreased turnover of collagen with potential accumulation of enzymatically mediated collagen cross...

  15. Relationship between Muscle Function, Muscle Typology and Postural Performance According to Different Postural Conditions in Young and Older Adults.

    Paillard, Thierry

    2017-01-01

    Although motor output of the postural function clearly influences postural performance in young and older subjects, no relationship has been formally established between them. However, the relationship between lower-extremity muscle strength/power and postural performance is often pointed out, especially in older subjects. In fact, the influence of motor output may vary according to the postural condition considered (e.g., static, dynamic, challenging, disturbing). In static postural condition, there may be a relationship between lower-extremity muscle strength and postural performance when the value of muscle strength is below a certain threshold in older subjects. Above this threshold of muscle strength, this relationship may disappear. In dynamic postural condition, lower-extremity muscle power could facilitate compensatory postural actions, limiting induced body imbalance likely to generate falls in older subjects. In young subjects, there could be a relationship between very early rapid torque of the leg extensor muscles and postural performance. In the case of postural reaction to (external) perturbations, a high percentage of type II muscle fibers could be associated with the ability to react quickly to postural perturbations in young subjects, while it may enable a reduction in the risk of falls in older subjects. In practice, in older subjects, muscle strength and/or power training contributes to reducing the risk of falls, as well as slowing down the involution of muscle typology regarding type II muscle fibers.

  16. Muscular Activity and Fatigue in Lower-Limb and Trunk Muscles during Different Sit-To-Stand Tests.

    Cristina Roldán-Jiménez

    Full Text Available Sit-to-stand (STS tests measure the ability to get up from a chair, reproducing an important component of daily living activity. As this functional task is essential for human independence, STS performance has been studied in the past decades using several methods, including electromyography. The aim of this study was to measure muscular activity and fatigue during different repetitions and speeds of STS tasks using surface electromyography in lower-limb and trunk muscles. This cross-sectional study recruited 30 healthy young adults. Average muscle activation, percentage of maximum voluntary contraction, muscle involvement in motion and fatigue were measured using surface electrodes placed on the medial gastrocnemius (MG, biceps femoris (BF, vastus medialis of the quadriceps (QM, the abdominal rectus (AR, erector spinae (ES, rectus femoris (RF, soleus (SO and the tibialis anterior (TA. Five-repetition STS, 10-repetition STS and 30-second STS variants were performed. MG, BF, QM, ES and RF muscles showed differences in muscle activation, while QM, AR and ES muscles showed significant differences in MVC percentage. Also, significant differences in fatigue were found in QM muscle between different STS tests. There was no statistically significant fatigue in the BF, MG and SO muscles of the leg although there appeared to be a trend of increasing fatigue. These results could be useful in describing the functional movements of the STS test used in rehabilitation programs, notwithstanding that they were measured in healthy young subjects.

  17. Muscular Activity and Fatigue in Lower-Limb and Trunk Muscles during Different Sit-To-Stand Tests.

    Roldán-Jiménez, Cristina; Bennett, Paul; Cuesta-Vargas, Antonio I

    2015-01-01

    Sit-to-stand (STS) tests measure the ability to get up from a chair, reproducing an important component of daily living activity. As this functional task is essential for human independence, STS performance has been studied in the past decades using several methods, including electromyography. The aim of this study was to measure muscular activity and fatigue during different repetitions and speeds of STS tasks using surface electromyography in lower-limb and trunk muscles. This cross-sectional study recruited 30 healthy young adults. Average muscle activation, percentage of maximum voluntary contraction, muscle involvement in motion and fatigue were measured using surface electrodes placed on the medial gastrocnemius (MG), biceps femoris (BF), vastus medialis of the quadriceps (QM), the abdominal rectus (AR), erector spinae (ES), rectus femoris (RF), soleus (SO) and the tibialis anterior (TA). Five-repetition STS, 10-repetition STS and 30-second STS variants were performed. MG, BF, QM, ES and RF muscles showed differences in muscle activation, while QM, AR and ES muscles showed significant differences in MVC percentage. Also, significant differences in fatigue were found in QM muscle between different STS tests. There was no statistically significant fatigue in the BF, MG and SO muscles of the leg although there appeared to be a trend of increasing fatigue. These results could be useful in describing the functional movements of the STS test used in rehabilitation programs, notwithstanding that they were measured in healthy young subjects.

  18. Self-organization of muscle cell structure and function.

    Anna Grosberg

    2011-02-01

    Full Text Available The organization of muscle is the product of functional adaptation over several length scales spanning from the sarcomere to the muscle bundle. One possible strategy for solving this multiscale coupling problem is to physically constrain the muscle cells in microenvironments that potentiate the organization of their intracellular space. We hypothesized that boundary conditions in the extracellular space potentiate the organization of cytoskeletal scaffolds for directed sarcomeregenesis. We developed a quantitative model of how the cytoskeleton of neonatal rat ventricular myocytes organizes with respect to geometric cues in the extracellular matrix. Numerical results and in vitro assays to control myocyte shape indicated that distinct cytoskeletal architectures arise from two temporally-ordered, organizational processes: the interaction between actin fibers, premyofibrils and focal adhesions, as well as cooperative alignment and parallel bundling of nascent myofibrils. Our results suggest that a hierarchy of mechanisms regulate the self-organization of the contractile cytoskeleton and that a positive feedback loop is responsible for initiating the break in symmetry, potentiated by extracellular boundary conditions, is required to polarize the contractile cytoskeleton.

  19. Self-organization of muscle cell structure and function.

    Grosberg, Anna; Kuo, Po-Ling; Guo, Chin-Lin; Geisse, Nicholas A; Bray, Mark-Anthony; Adams, William J; Sheehy, Sean P; Parker, Kevin Kit

    2011-02-01

    The organization of muscle is the product of functional adaptation over several length scales spanning from the sarcomere to the muscle bundle. One possible strategy for solving this multiscale coupling problem is to physically constrain the muscle cells in microenvironments that potentiate the organization of their intracellular space. We hypothesized that boundary conditions in the extracellular space potentiate the organization of cytoskeletal scaffolds for directed sarcomeregenesis. We developed a quantitative model of how the cytoskeleton of neonatal rat ventricular myocytes organizes with respect to geometric cues in the extracellular matrix. Numerical results and in vitro assays to control myocyte shape indicated that distinct cytoskeletal architectures arise from two temporally-ordered, organizational processes: the interaction between actin fibers, premyofibrils and focal adhesions, as well as cooperative alignment and parallel bundling of nascent myofibrils. Our results suggest that a hierarchy of mechanisms regulate the self-organization of the contractile cytoskeleton and that a positive feedback loop is responsible for initiating the break in symmetry, potentiated by extracellular boundary conditions, is required to polarize the contractile cytoskeleton.

  20. Fish axial muscle : structure-function relationships on a micro-level

    Spierts, I.L.Y.

    2000-01-01

    This paper discusses some examples of strong correlations between functions and structures in axial fish muscle on a micro-level. Muscle tissue needs a certain elasticity to cope with the diverse functional requirements necessary for swimming. During fast-starts of carp, muscles can be stretched up

  1. A three-dimensional study of the musculotendinous and neurovascular architecture of the gracilis muscle: application to functional muscle transfer.

    Fattah, A Y; Ravichandiran, K; Zuker, R M; Agur, A M R

    2013-09-01

    Muscle transfer is used to restore function typically using a single vector of contraction. Although its use with two independently functional muscular units has been employed, in order to refine this concept we endeavoured to detail the intramuscular anatomy of gracilis, a muscle commonly used for transfer. A novel method to capture intramuscular fibre bundle and neurovascular arrangement was used to create a three-dimensional (3D) digital model that allowed for accurate representation of the relationships between all the intramuscular structures to facilitate flap planning. Twenty gracilis muscles were harvested from 15 cadavers. All components of the muscle were digitised using a Microscribe G2 Digitiser. The data were exported to the 3D animation software Autodesk(®) Maya(®) 2012 whereupon it was rendered into a 3D model that can be exported as static images or videos. Neurovascular anatomy and muscle architecture were analysed from these models, and fibre bundle length, pennation angle and physiological cross-sectional area were calculated from digitised data. The muscle is composed of a variable number of distinct longitudinal segments with muscle fibres spiralling onto the tendon. The main artery to the muscle has three main intramuscular patterns of distribution. The venae comitantes drain discrete zones without intramuscular macroscopic anastomoses. The minor pedicles form an anastomotic chain along the anterior border of the muscle and all vessels were biased to the deep surface. The nerve is related to the vessels in a variable manner and both run between longitudinal muscular compartments. The digitisation technique may be used to advance knowledge of intramuscular architecture and it demonstrated that the gracilis muscle is comprised of four to seven muscular compartments, each representing a functional unit that may theoretically be differentially activated and could be harnessed for more sophisticated muscle transfers. Copyright © 2013 British

  2. Effects of protein supplements on muscle damage, soreness and recovery of muscle function and physical performance: a systematic review.

    Pasiakos, Stefan M; Lieberman, Harris R; McLellan, Tom M

    2014-05-01

    Protein supplements are frequently consumed by athletes and recreationally-active individuals, although the decision to purchase and consume protein supplements is often based on marketing claims rather than evidence-based research. To provide a systematic and comprehensive analysis of literature examining the hypothesis that protein supplements enhance recovery of muscle function and physical performance by attenuating muscle damage and soreness following a previous bout of exercise. English language articles were searched with PubMed and Google Scholar using protein and supplements together with performance, exercise, competition and muscle, alone or in combination as keywords. Inclusion criteria required studies to recruit healthy adults less than 50 years of age and to evaluate the effects of protein supplements alone or in combination with carbohydrate on performance metrics including time-to-exhaustion, time-trial or isometric or isokinetic muscle strength and markers of muscle damage and soreness. Twenty-seven articles were identified of which 18 dealt exclusively with ingestion of protein supplements to reduce muscle damage and soreness and improve recovery of muscle function following exercise, whereas the remaining 9 articles assessed muscle damage as well as performance metrics during single or repeat bouts of exercise. Papers were evaluated based on experimental design and examined for confounders that explain discrepancies between studies such as dietary control, training state of participants, sample size, direct or surrogate measures of muscle damage, and sensitivity of the performance metric. High quality and consistent data demonstrated there is no apparent relationship between recovery of muscle function and ratings of muscle soreness and surrogate markers of muscle damage when protein supplements are consumed prior to, during or after a bout of endurance or resistance exercise. There also appears to be insufficient experimental data

  3. Muscle Functional Morphology in Paleobiology: The Past, Present, and Future of "Paleomyology".

    Perry, Jonathan M G; Prufrock, Kristen A

    2018-03-01

    Our knowledge of muscle anatomy and physiology in vertebrates has increased dramatically over the last two-hundred years. Today, much is understood about how muscles contract and about the functional meaning of muscular variation at multiple scales. Progress in muscle anatomy has profited from the availability of broad comparative samples, advances in microscopy have permitted comparisons at increasingly finer scales, and progress in muscle physiology has profited from many carefully designed and executed experiments. Several avenues of future work are promising. In particular, muscle ontogeny (growth and development) is poorly understood for many vertebrate groups. We consider which types of advances in muscle functional morphology are of use to paleobiologists. These are only a modest subset for muscle anatomy and a very small subset for muscle physiology. The relationship between muscle and bone - spatially and mechanically-is critical to any future advances in "paleomyology". Anat Rec, 301:538-555, 2018. © 2018 Wiley Periodicals, Inc. © 2018 Wiley Periodicals, Inc.

  4. Functional compartmentalization of the human superficial masseter muscle.

    Rodrigo A Guzmán-Venegas

    Full Text Available Some muscles have demonstrated a differential recruitment of their motor units in relation to their location and the nature of the motor task performed; this involves functional compartmentalization. There is little evidence that demonstrates the presence of a compartmentalization of the superficial masseter muscle during biting. The aim of this study was to describe the topographic distribution of the activity of the superficial masseter (SM muscle's motor units using high-density surface electromyography (EMGs at different bite force levels. Twenty healthy natural dentate participants (men: 4; women: 16; age 20±2 years; mass: 60±12 kg, height: 163±7 cm were selected from 316 volunteers and included in this study. Using a gnathodynamometer, bites from 20 to 100% maximum voluntary bite force (MVBF were randomly requested. Using a two-dimensional grid (four columns, six electrodes located on the dominant SM, EMGs in the anterior, middle-anterior, middle-posterior and posterior portions were simultaneously recorded. In bite ranges from 20 to 60% MVBF, the EMG activity was higher in the anterior than in the posterior portion (p-value = 0.001.The center of mass of the EMG activity was displaced towards the posterior part when bite force increased (p-value = 0.001. The topographic distribution of EMGs was more homogeneous at high levels of MVBF (p-value = 0.001. The results of this study show that the superficial masseter is organized into three functional compartments: an anterior, a middle and a posterior compartment. However, this compartmentalization is only seen at low levels of bite force (20-60% MVBF.

  5. Activation of biceps femoris long head reduces tibiofemoral anterior shear force and tibial internal rotation torque in healthy subjects.

    Azmi, Nur Liyana; Ding, Ziyun; Xu, Rui; Bull, Anthony M J

    2018-01-01

    The anterior cruciate ligament (ACL) provides resistance to tibial internal rotation torque and anterior shear at the knee. ACL deficiency results in knee instability. Optimisation of muscle contraction through functional electrical stimulation (FES) offers the prospect of mitigating the destabilising effects of ACL deficiency. The hypothesis of this study is that activation of the biceps femoris long head (BFLH) reduces the tibial internal rotation torque and the anterior shear force at the knee. Gait data of twelve healthy subjects were measured with and without the application of FES and taken as inputs to a computational musculoskeletal model. The model was used to investigate the optimum levels of BFLH activation during FES gait in reducing the anterior shear force to zero. This study found that FES significantly reduced the tibial internal rotation torque at the knee during the stance phase of gait (p = 0.0322) and the computational musculoskeletal modelling revealed that a mean BFLH activation of 20.8% (±8.4%) could reduce the anterior shear force to zero. At the time frame when the anterior shear force was zero, the internal rotation torque was reduced by 0.023 ± 0.0167 Nm/BW, with a mean 188% reduction across subjects (p = 0.0002). In conclusion, activation of the BFLH is able to reduce the tibial internal rotation torque and the anterior shear force at the knee in healthy control subjects. This should be tested on ACL deficient subject to consider its effect in mitigating instability due to ligament deficiency. In future clinical practice, activating the BFLH may be used to protect ACL reconstructions during post-operative rehabilitation, assist with residual instabilities post reconstruction, and reduce the need for ACL reconstruction surgery in some cases.

  6. Functional coordination of muscles underlying changes in behavioural dynamics.

    Vernooij, Carlijn A; Rao, Guillaume; Perdikis, Dionysios; Huys, Raoul; Jirsa, Viktor K; Temprado, Jean-Jacques

    2016-06-10

    The dynamical systems approach addresses Bernstein's degrees of freedom problem by assuming that the neuro-musculo-skeletal system transiently assembles and dismantles its components into functional units (or synergies) to meet task demands. Strikingly, little is known from a dynamical point of view about the functioning of the muscular sub-system in this process. To investigate the interaction between the dynamical organisation at muscular and behavioural levels, we searched for specific signatures of a phase transition in muscular coordination when a transition is displayed at the behavioural level. Our results provide evidence that, during Fitts' task when behaviour switches to a different dynamical regime, muscular activation displays typical signatures of a phase transition; a reorganisation in muscular coordination patterns accompanied by a peak in the variability of muscle activation. This suggests that consistent changes occur in coordination processes across the different levels of description (i.e., behaviour and muscles). Specifically, in Fitts' task, target size acts as a control parameter that induces a destabilisation and a reorganisation of coordination patterns at different levels of the neuro-musculo-skeletal system.

  7. Functional electrical stimulation on paraplegic patients

    Helmut Kern

    2014-07-01

    Full Text Available We report on clinical and physiological effects of 8 months Functional Electrical Stimulation (FES of quadriceps femoris muscle on 16 paraplegic patients. Each patient had muscle biopsies, CT-muscle diameter measurements, knee extension strength testing carried out before and after 8 months FES training. Skin perfusion was documented through infrared telethermography and xenon clearance, muscle perfusion was recorded through thallium scintigraphy. After 8 months FES training baseline skin perfusion showed 86 % increase, muscle perfusion was augmented by 87 %. Muscle fiber diameters showed an average increase of 59 % after 8 months FES training. Muscles in patients with spastic paresis as well as in patients with denervation showed an increase in aerob and anaerob muscle enzymes up to the normal range. Even without axonal neurotropic substances FES was able to demonstrate fiberhypertrophy, enzyme adaptation and intracellular structural benefits in denervated muscles. The increment in muscle area as visible on CT-scans of quadriceps femoris was 30 % in spastic paraplegia and 10 % in denervated patients respectively. FES induced changes were less in areas not directly underneath the surface electrodes. We strongly recommend the use of Kern`s current for FES in denervated muscles to induce tetanic muscle contractions as we formed a very critical opinion of conventional exponential current. In patients with conus-cauda-lesions FES must be integrated into modern rehabilitation to prevent extreme muscle degeneration and decubital ulcers. Using FES we are able to improve metabolism and induce positive trophic changes in our patients lower extremities. In spastic paraplegics the functions „rising and walking“ achieved through FES are much better training than FES ergometers. Larger muscle masses are activated and an increased heart rate is measured, therefore the impact on cardiovascular fitness and metabolism is much greater. This effectively

  8. The Changes of Muscle Strength and Functional Activities During Aging in Male and Female Populations

    Shih-Jung Cheng

    2014-12-01

    Conclusion: We noted that the muscle strength and functional activities were decreased earlier in female than male individuals. The decrease of functional activities during the aging process seems to be earlier than the decrease of muscle strength. It is important to implement functional activities training in addition to strengthening exercise to maintain functional levels of the geriatric population.

  9. Relationship between muscle strength and motor function in Duchenne muscular dystrophy

    Milene F. Nunes

    2016-07-01

    Full Text Available ABSTRACT Measuring muscle strength and motor function is part of Duchenne muscular dystrophy (DMD assessment. However, the relationship between these variables is controversial. Objective To investigate the relationship between muscle strength and motor function and between these variables and age. Method Muscle strength was measured by Medical Research Council (MRC scale and motor function, by Motor Function Measure (MFM, in 40 non-ambulatory patients. Spearman tests investigated the relationships between muscle strength, motor function and age. Results Total MRC and MFM scores were strongly related to each other (r = 0.94; p 0.05. Strong and moderate relationships between partial muscle strength and motor function scores were found. Higher correlation coefficients were found between total scores and Dimensions 2 (axial/ proximal control and 3 (distal control of MFM. Conclusion Muscle strength and motor function are strongly correlated and seem to decrease proportionally in DMD.

  10. Sensory nerve cross-anastomosis and electrical muscle stimulation synergistically enhance functional recovery of chronically denervated muscle.

    Willand, Michael P; Holmes, Michael; Bain, James R; de Bruin, Hubert; Fahnestock, Margaret

    2014-11-01

    Long-term muscle denervation leads to severe and irreversible atrophy coupled with loss of force and motor function. These factors contribute to poor functional recovery following delayed reinnervation. The authors' previous work demonstrated that temporarily suturing a sensory nerve to the distal motor stump (called sensory protection) significantly reduces muscle atrophy and improves function following reinnervation. The authors have also shown that 1 month of electrical stimulation of denervated muscle significantly improves function and reduces atrophy. In this study, the authors tested whether a combination of sensory protection and electrical stimulation would enhance functional recovery more than either treatment alone. Rat gastrocnemius muscles were denervated by cutting the tibial nerve. The peroneal nerve was then sutured to the distal tibial stump following 3 months of treatment (i.e., electrical stimulation, sensory protection, or both). Three months after peroneal repair, functional and histologic measurements were taken. All treatment groups had significantly higher muscle weight (pstimulation or sensory protection alone. The combined treatment also produced motor unit counts significantly greater than sensory protection alone (p<0.05). The combination treatment synergistically reduces atrophy and improves reinnervation and functional measures following delayed nerve repair, suggesting that these approaches work through different mechanisms. The authors' research supports the clinical use of both modalities together following peripheral nerve injury.

  11. Could a functional artificial skeletal muscle be useful in muscle wasting?

    Fuoco, Claudia; Cannata, Stefano; Gargioli, Cesare

    2016-05-01

    Regardless of the underlying cause, skeletal muscle wasting is detrimental for a person's life quality, leading to impaired strength, locomotion, and physiological activity. Here, we propose a series of studies presenting tissue engineering-based approaches to reconstruct artificial muscle in vitro and in vivo. Skeletal muscle tissue engineering is attracting more and more attention from scientists, clinicians, patients, and media, thanks to the promising results obtained in the last decade with animal models of muscle wasting. The use of novel and refined biomimetic scaffolds mimicking three-dimensional muscle environment, thus supporting cell survival and differentiation, in combination with well characterized myogenic stem/progenitor cells, revealed the noteworthy potential of these technologies for creating artificial skeletal muscle tissue. In vitro, the production of three-dimensional muscle structures offer the possibility to generate a drug-screening platform for patient-specific pharmacological treatment, opening new frontiers in the development of new compounds with specific therapeutic actions. In vivo, three-dimensional artificial muscle biomimetic constructs offer the possibility to replace, in part or entirely, wasted muscle by means of straight reconstruction and/or by enhancing endogenous regeneration. Reports of tissue engineering approaches for artificial muscle building appeared in large numbers in the specialized press lately, advocating the suitability of this technology for human application upon scaling up and a near future applicability for medical care of muscle wasting. http://links.lww.com/COCN/A9

  12. Cortical motor representation of the rectus femoris does not differ between the left and right hemisphere.

    Ward, Sarah; Bryant, Adam L; Pietrosimone, Brian; Bennell, Kim L; Clark, Ross; Pearce, Alan J

    2016-06-01

    Transcranial magnetic stimulation (TMS) involves non-invasive magnetic stimulation of the brain, and can be used to explore the corticomotor excitability and motor representations of skeletal muscles. However there is a lack of motor mapping studies in the lower limb and few conducted in healthy cohorts. The cortical motor representations of muscles can vary between individuals in terms of center position and area despite having a general localized region within the motor cortex. It is important to characterize the normal range for these variables in healthy cohorts to be able to evaluate changes in clinical populations. TMS was used in this cross-sectional study to assess the active motor threshold (AMT) and cortical representation area for rectus femoris in 15 healthy individuals (11M/4F 27.3±5.9years). No differences were found between hemispheres (Left vs. Right P=0.130) for AMT. In terms of y-axis center position no differences were found between hemispheres (Left vs. Right P=0.539), or for the x-axis center position (Left vs. Right P=0.076). Similarly, no differences in calculated area of the motor representation were found (Left vs. Right P=0.699) indicating symmetry between hemispheres. Copyright © 2016 Elsevier Ltd. All rights reserved.

  13. Muscle fibre types of fishes : structural and functional specialization

    Akster, H.A.

    1984-01-01

    Muscles of fishes are active in a variety of movements that differ in velocity, duration and excursion length. To investigate how muscles meet the, often conflicting, demands imposed upon them by these movements, the fibre type composition of several muscles was determined. The ultrastructural and

  14. IL-6 signaling blockade increases inflammation but does not affect muscle function in the mdx mouse

    Kostek Matthew C

    2012-06-01

    Full Text Available Abstract Background IL-6 is a pleiotropic cytokine that modulates inflammatory responses and plays critical roles in muscle maintenance and remodeling. In the mouse model (mdx of Duchenne Muscular Dystrophy, IL-6 and muscle inflammation are elevated, which is believed to contribute to the chronic inflammation and failure of muscle regeneration in DMD. The purpose of the current study was to examine the effect of blocking IL-6 signaling on the muscle phenotype including muscle weakness and pathology in the mdx mouse. Methods A monoclonal antibody against the IL-6 receptor (IL-6r mAb that blocks local and systemic IL-6 signaling was administered to mdx and BL-10 mice for 5 weeks and muscle function, histology, and inflammation were examined. Results IL-6r mAb treatment increased mdx muscle inflammation including total inflammation score and ICAM-1 positive lumens in muscles. There was no significant improvement in muscle strength nor muscle pathology due to IL-6r mAb treatment in mdx mice. Conclusions These results showed that instead of reducing inflammation, IL-6 signaling blockade for 5 weeks caused an increase in muscle inflammation, with no significant change in indices related to muscle regeneration and muscle function. The results suggest a potential anti-inflammatory instead of the original hypothesized pro-inflammatory role of IL-6 signaling in the mdx mice.

  15. Systemic Inflammation in Duchenne Muscular Dystrophy: Association with Muscle Function and Nutritional Status

    Oriana del Rocío Cruz-Guzmán; Maricela Rodríguez-Cruz; Rosa Elena Escobar Cedillo

    2015-01-01

    Inflammation described in patients with Duchenne muscular dystrophy (DMD) may be related to loss of muscle function or to obesity. It is unknown if circulating proinflammatory cytokines (IL-6, IL-1, and TNF-α) levels are associated with muscle function. The purpose was to evaluate whether an association exists between systemic inflammation with muscle function and nutritional status in DMD patients. In 66 DMD patients without corticosteroid treatment, the following were evaluated in serum: cy...

  16. Phosphodiesterases regulate airway smooth muscle function in health and disease.

    Krymskaya, Vera P; Panettieri, Reynold A

    2007-01-01

    On the basis of structure, regulation, and kinetic properties, phosphodiesterases (PDEs) represent a superfamily of enzymes divided into 11 subfamilies that catalyze cytosolic levels of 3',5'-cyclic adenosine monophosphate (cAMP) or 3',5'-cyclic guanosine monophosphate (cGMP) to 5'-AMP or 5'-GMP, respectively. PDE4 represents the major PDE expressed in inflammatory cells as well as airway smooth muscle (ASM), and selective PDE4 inhibitors provide a broad spectrum of anti-inflammatory effects such as abrogating cytokine and chemokine release from inflammatory cells and inhibiting inflammatory cell trafficking. Due to cell- and tissue-specific gene expression and regulation, PDEs modulate unique organ-based functions. New tools or compounds that selectively inhibit PDE subfamilies and genetically engineered mice deficient in selective isoforms have greatly enhanced our understanding of PDE function in airway inflammation and resident cell function. This chapter will focus on recent advances in our understanding of the role of PDE in regulating ASM function.

  17. Bursitis with severe tendom and muscle necrosis on the lateral stifle area in cattle

    Nuss, K.; Muggli, E.; Hässig, M.; Räber, M.; Sydler, T.; Guscetti, F.

    2011-01-01

    In 21 animals, chronic swelling on the lateral aspect of the stifle also known as perigonitis, stable-syndrome or bursitis bicipitalis femoris were evaluated. Ultrasonography showed increased fluid in the distal subtendinous bursa of the biceps femoris muscle and structural changes in the tendons, muscles, subcutis and fasciae. Soft tissue swelling and an irregular contour of the lateral tibial condyle were typical signs on radiographs. Macroscopic changes were found at the insertion of the biceps femoris muscle, the distal subtendinous bursa of the biceps femoris muscle, the lateral collateral ligament of the stifle, the origin of muscles on the lateral femoral condyle and the lateral tibial condyle. They mainly consisted of tendon and muscle tissue necrosis with granulation tissue. Histology revealed areas of coagulation necrosis in tendons and ligaments, in which occasionally Onchocerca spp. were seen. The severity of lesions correlated well with the clinical signs, which were associated with a poor prognosis in advanced cases

  18. Muscle activation patterns in the Nordic hamstring exercise: Impact of prior strain injury.

    Bourne, M N; Opar, D A; Williams, M D; Al Najjar, A; Shield, A J

    2016-06-01

    This study aimed to determine: (a) the spatial patterns of hamstring activation during the Nordic hamstring exercise (NHE); (b) whether previously injured hamstrings display activation deficits during the NHE; and (c) whether previously injured hamstrings exhibit altered cross-sectional area (CSA). Ten healthy, recreationally active men with a history of unilateral hamstring strain injury underwent functional magnetic resonance imaging of their thighs before and after six sets of 10 repetitions of the NHE. Transverse (T2) relaxation times of all hamstring muscles [biceps femoris long head (BFlh); biceps femoris short head (BFsh); semitendinosus (ST); semimembranosus (SM)] were measured at rest and immediately after the NHE and CSA was measured at rest. For the uninjured limb, the ST's percentage increase in T2 with exercise was 16.8%, 15.8%, and 20.2% greater than the increases exhibited by the BFlh, BFsh, and SM, respectively (P hamstring muscles (n = 10) displayed significantly smaller increases in T2 post-exercise than the homonymous muscles in the uninjured contralateral limb (mean difference -7.2%, P = 0.001). No muscles displayed significant between-limb differences in CSA. During the NHE, the ST is preferentially activated and previously injured hamstring muscles display chronic activation deficits compared with uninjured contralateral muscles. © 2015 John Wiley & Sons A/S. Published by John Wiley & Sons Ltd.

  19. Bioactive peptides from meat muscle and by-products: generation, functionality and application as functional ingredients.

    Lafarga, Tomas; Hayes, Maria

    2014-10-01

    Bioactive peptides are sequences of between 2-30 amino acids in length that impart a positive health effect to the consumer when ingested. They have been identified from a range of foods, including milk and muscle sources including beef, chicken, pork and marine muscles. The myriad of peptides identified from these sources have known antihypertensive, opioid, antioxidant, antithrombotic and other bioactivities. Indeed, bioactive peptides could play a role in the prevention of diseases associated with the development of metabolic syndrome and mental health diseases. The aim of this work is to present an overview of the bioactive peptides identified in muscle proteins and by-products generated during the processing of meat. The paper looks at the isolation, enrichment and characterisation strategies that have been employed to date to generate bioactive peptides and the potential future applications of these peptides in functional foods for the prevention of heart and mental health problems and obesity. Copyright © 2014 Elsevier Ltd. All rights reserved.

  20. Systemic down-regulation of delta-9 desaturase promotes muscle oxidative metabolism and accelerates muscle function recovery following nerve injury.

    Ghulam Hussain

    Full Text Available The progressive deterioration of the neuromuscular axis is typically observed in degenerative conditions of the lower motor neurons, such as amyotrophic lateral sclerosis (ALS. Neurodegeneration in this disease is associated with systemic metabolic perturbations, including hypermetabolism and dyslipidemia. Our previous gene profiling studies on ALS muscle revealed down-regulation of delta-9 desaturase, or SCD1, which is the rate-limiting enzyme in the synthesis of monounsaturated fatty acids. Interestingly, knocking out SCD1 gene is known to induce hypermetabolism and stimulate fatty acid beta-oxidation. Here we investigated whether SCD1 deficiency can affect muscle function and its restoration in response to injury. The genetic ablation of SCD1 was not detrimental per se to muscle function. On the contrary, muscles in SCD1 knockout mice shifted toward a more oxidative metabolism, and enhanced the expression of synaptic genes. Repressing SCD1 expression or reducing SCD-dependent enzymatic activity accelerated the recovery of muscle function after inducing sciatic nerve crush. Overall, these findings provide evidence for a new role of SCD1 in modulating the restorative potential of skeletal muscles.

  1. Effect of strength training on muscle function in elderly hospitalized patients

    Suetta, C; Magnusson, S P; Beyer, N

    2007-01-01

    Immobilization due to hospitalization and major surgery leads to an increased risk of morbidity, disability and a decline in muscle function especially in frail elderly individuals. In fact, many elderly patients fail to regain their level of function and self-care before admission to hospital....... Given that reduced lower limb muscle strength and loss of skeletal muscle mass (i.e. sarcopenia) have been associated with functional impairments and disability with aging, attempts to counteract this process seem highly relevant. In recent years, strength training has emerged as an effective method...... to induce muscle hypertrophy and increase muscle strength and functional performance in frail elderly individuals. Furthermore, there is increasing evidence that strength training is an effective method to restore muscle function in post-operative patients and in patients with chronic diseases. Despite this...

  2. Engineered matrices for skeletal muscle satellite cell engraftment and function.

    Han, Woojin M; Jang, Young C; García, Andrés J

    2017-07-01

    Regeneration of traumatically injured skeletal muscles is severely limited. Moreover, the regenerative capacity of skeletal muscle declines with aging, further exacerbating the problem. Recent evidence supports that delivery of muscle satellite cells to the injured muscles enhances muscle regeneration and reverses features of aging, including reduction in muscle mass and regenerative capacity. However, direct delivery of satellite cells presents a challenge at a translational level due to inflammation and donor cell death, motivating the need to develop engineered matrices for muscle satellite cell delivery. This review will highlight important aspects of satellite cell and their niche biology in the context of muscle regeneration, and examine recent progresses in the development of engineered cell delivery matrices designed for skeletal muscle regeneration. Understanding the interactions of muscle satellite cells and their niche in both native and engineered systems is crucial to developing muscle pathology-specific cell- and biomaterial-based therapies. Copyright © 2016 International Society of Matrix Biology. Published by Elsevier B.V. All rights reserved.

  3. Comparative anatomy and muscle architecture of selected hind limb muscles in the Quarter Horse and Arab.

    Crook, T C; Cruickshank, S E; McGowan, C M; Stubbs, N; Wakeling, J M; Wilson, A M; Payne, R C

    2008-02-01

    The Quarter Horse (bred for acceleration) and the Arab (bred for endurance) are situated at either end of the equine athletic spectrum. Studies into the form and function of the leg muscles in human sprint and endurance runners have demonstrated that differences exist in their muscle architecture. It is not known whether similar differences exist in the horse. Six Quarter Horse and six Arab fresh hind limb cadavers were dissected to gain information on the muscle mass and architecture of the following muscles: gluteus medius; biceps femoris; semitendinosus; vastus lateralis; gastrocnemius; tibialis cranialis and extensor digitorum longus. Specifically, muscle mass, fascicle length and pennation angle were quantified and physiological cross-sectional area (PCSA) and maximum isometric force were estimated. The hind limb muscles of the Quarter Horse were of a significantly greater mass, but had similar fascicle lengths and pennation angles when compared with those of the Arab; this resulted in the Quarter Horse hind limb muscles having greater PCSAs and hence greater isometric force potential. This study suggests that Quarter Horses as a breed inherently possess large strong hind limb muscles, with the potential to accelerate their body mass more rapidly than those of the Arab.

  4. Characteristics of acute groin injuries in the hip flexor muscles - a detailed MRI study in athletes

    Serner, A; Weir, A; Tol, J L

    2018-01-01

    acute hip flexor muscle injury were included. A total of 156 athletes presented with acute groin pain of which 33 athletes were included, median age 26 years (range 18-35). There were 16 rectus femoris, 12 iliacus, 7 psoas major, 4 sartorius, and 1 tensor fascia latae injury. Rectus femoris injuries...

  5. Respiratory Muscle Training and Cognitive Function Exercising at Altitude.

    Quackenbush, Joseph; Duquin, Aubrey; Helfer, Samuel; Pendergast, David R

    2016-01-01

    Hiking and trekking often occur at altitudes up to 12,000 ft altitude. The hypoxia-induced hyperventilation at altitude paradoxically reduces arterial CO2 (Paco2). A reduction in Paco2 results in vasoconstriction of the blood vessels of the brain and thus in local hypoxia. The local hypoxia likely affects cognitive function, which may result in reduced performance and altitude accidents. Recent publications have demonstrated that voluntary isocapnic hyperventilatory training of the respiratory muscles (VIHT) can markedly enhance exercise endurance as it is associated with reduced ventilation and its energy cost. VIHT may be useful in blunting the altitude-induced hyperventilation leading to higher Paco2 and improved cognitive function. This study examined the effects of VIHT, compared to control (C) and placebo (PVIHT) groups, on selected measures of executive functioning, including working memory and processing speed (i.e., Stroop Test, Symbol Digit Modalities Test, and Digit Span Forward) at simulated altitude up to 12,000 ft. Associated physiological parameters were also measured. The Digit Span Forward Test did not show improvements after VIHT in any group. The VIHT group, but not C or PVIHT groups, improved significantly (17-30%) on the Stroop Test. Similarly the VIHT group, but not the C and PVIHT groups, improved correct responses (26%) and number of attempts (24%) on the Symbol Digit Modalities Test. In addition, reaction time was also improved (16%). VIHT improved processing speed and working memory during exercise at altitude.

  6. Functional heterogeneity of side population cells in skeletal muscle

    Uezumi, Akiyoshi; Ojima, Koichi; Fukada, So-ichiro; Ikemoto, Madoka; Masuda, Satoru; Miyagoe-Suzuki, Yuko; Takeda, Shin'ichi

    2006-01-01

    Skeletal muscle regeneration has been exclusively attributed to myogenic precursors, satellite cells. A stem cell-rich fraction referred to as side population (SP) cells also resides in skeletal muscle, but its roles in muscle regeneration remain unclear. We found that muscle SP cells could be subdivided into three sub-fractions using CD31 and CD45 markers. The majority of SP cells in normal non-regenerating muscle expressed CD31 and had endothelial characteristics. However, CD31 - CD45 - SP cells, which are a minor subpopulation in normal muscle, actively proliferated upon muscle injury and expressed not only several regulatory genes for muscle regeneration but also some mesenchymal lineage markers. CD31 - CD45 - SP cells showed the greatest myogenic potential among three SP sub-fractions, but indeed revealed mesenchymal potentials in vitro. These SP cells preferentially differentiated into myofibers after intramuscular transplantation in vivo. Our results revealed the heterogeneity of muscle SP cells and suggest that CD31 - CD45 - SP cells participate in muscle regeneration

  7. Normal values for inspiratory muscle function in children

    Mellies, Uwe; Stehling, Florian; Dohna-Schwake, Christian

    2014-01-01

    Assessment of inspiratory muscle function (IMF) is limited in children with neuromuscular disorders, because respiratory muscle tests are poorly standardized and valid normative data are unavailable. We investigated maximum inspiratory pressure after exhalation to residual volume (MIP), mouth occlusion pressure (P0.1) and time of inspiration during quiet breathing and derived inspiratory muscle load (P0.1/MIP), and tension time index (TTI) in 301 healthy schoolchildren 6–16 years old. Gender-specific and age-dependent percentile curves for MIP were drawn with the median, 5%, 10%, 25%, 75% and 95% percentile. P0.1 was equal in boys and girls (0.23  ±  0.11 kPa), while MIP was significantly higher in boys (6.8  ±  2.2 versus 5.8  ±  2.4 kPa). Consequently, P0.1/MIP (4.8% ± 3.2% versus 4.0% ± 3.1%) and TTI (0.2  ±  0.14 versus 0.16  ±  0.14) were significantly higher in girls. MIP was 2.90 + 0.36 × age (kPa) and 3.19 + 0.24 × age (kPa) in boys and girls, respectively. The 95% confidence intervals for boys and girls, respectively, were MIP, 6.3–7.3 kPA and 5.4–6.2 kPa; P0.1/MIP, 3.5%–4.5% and 4.3%–5.3%; TTI, 0.14–0.18 and 0.18–0.22; and P0.1, 0.20–0.24 kPa for both. IMF in children has a wide interindividual variability; however percentile curves facilitate a longitudinal assessment of individual patients. Furthermore, narrow confidence intervals allow for comparisons of study populations, making IMF an appropriate endpoint for clinical trials. (paper)

  8. Suboptimal Muscle Synergy Activation Patterns Generalize their Motor Function across Postures.

    Sohn, M Hongchul; Ting, Lena H

    2016-01-01

    We used a musculoskeletal model to investigate the possible biomechanical and neural bases of using consistent muscle synergy patterns to produce functional motor outputs across different biomechanical conditions, which we define as generalizability. Experimental studies in cats demonstrate that the same muscle synergies are used during reactive postural responses at widely varying configurations, producing similarly-oriented endpoint force vectors with respect to the limb axis. However, whether generalizability across postures arises due to similar biomechanical properties or to neural selection of a particular muscle activation pattern has not been explicitly tested. Here, we used a detailed cat hindlimb model to explore the set of feasible muscle activation patterns that produce experimental synergy force vectors at a target posture, and tested their generalizability by applying them to different test postures. We used three methods to select candidate muscle activation patterns: (1) randomly-selected feasible muscle activation patterns, (2) optimal muscle activation patterns minimizing muscle effort at a given posture, and (3) generalizable muscle activation patterns that explicitly minimized deviations from experimentally-identified synergy force vectors across all postures. Generalizability was measured by the deviation between the simulated force direction of the candidate muscle activation pattern and the experimental synergy force vectors at the test postures. Force angle deviations were the greatest for the randomly selected feasible muscle activation patterns (e.g., >100°), intermediate for effort-wise optimal muscle activation patterns (e.g., ~20°), and smallest for generalizable muscle activation patterns (e.g., synergy force vector was reduced by ~45% when generalizability requirements were imposed. Muscles recruited in the generalizable muscle activation patterns had less sensitive torque-producing characteristics to changes in postures. We

  9. Structure and function of masticatory muscles in a case of muscular dystrophy

    Bakke, M; Kirkeby, S; Jensen, B L

    1990-01-01

    Histologic examination of muscle biopsies and functional examination comprising electromyography and force measurements in a 19-yr-old boy with muscular dystrophy showed different wasting patterns of mandibular elevator and depressor muscles. Pronounced histopathologic changes were present...... depressor strength corresponded more to reference values. This difference of muscular wasting might be caused by protective enzymes in the digastric muscle and/or functionally induced damage of the masseter. As affection from muscular dystrophy may vary greatly between the masticatory muscles, structural...... in the masseter muscle, whereas pathologic findings in the anterior digastric muscle were limited to increased number of cells in slightly enlarged interfiber connective tissue. The masticatory pattern was distorted, and strength of mandibular elevator muscles was less than one third of the norm, whereas...

  10. Influence of temperature on muscle recruitment and muscle function in vivo.

    Rome, L C

    1990-08-01

    Temperature has a large influence on the maximum velocity of shortening (Vmax) and maximum power output of muscle (Q10 = 1.5-3). In some animals, maximum performance and maximum sustainable performance show large temperature sensitivities, because these parameters are dependent solely on mechanical power output of the muscles. The mechanics of locomotion (sarcomere length excursions and muscle-shortening velocities, V) at a given speed, however, are precisely the same at all temperatures. Animals compensate for the diminished power output of their muscles at low temperatures by compressing their recruitment order into a narrower range of locomotor speeds, that is, recruiting more muscle fibers and faster fiber types at a given speed. By examining V/Vmax, I calculate that fish at 10 degrees C must recruit 1.53-fold greater fiber cross section than at 20 degrees C. V/Vmax also appears to be an important design constraint in muscle. It sets the lowest V and the highest V over which a muscle can be used effectively. Because the Vmax of carp slow red muscle has a Q10 of 1.6 between 10 and 20 degrees C, the slow aerobic fibers can be used over a 1.6-fold greater range of swim speeds at the warmer temperature. In some species of fish, Vmax can be increased during thermal acclimation, enabling animals to swim at higher speeds.

  11. Functional connectivity between core and shoulder muscles increases during isometric endurance contractions in judo competitors

    Kawczyński, Adam; Samani, Afshin; Mroczek, Dariusz

    2015-01-01

    endurance contraction consisting of bilateral arm abduction at 90°. The normalized mutual information (NMI) was computed between muscle pairs as an index indicating functional connectivity. Results: The NMIs increased significantly during endurance test for 10 of the 15 muscle pairs (P ... : We concluded that the increases in NMIs highlighted functional changes in the interplay between core and shoulder muscles during an endurance contraction in elite judokas....

  12. Muscle activation patterns during walking from transtibial amputees recorded within the residual limb-prosthetic interface

    Huang Stephanie

    2012-08-01

    Full Text Available Abstract Background Powered lower limb prostheses could be more functional if they had access to feedforward control signals from the user’s nervous system. Myoelectric signals are one potential control source. The purpose of this study was to determine if muscle activation signals could be recorded from residual lower limb muscles within the prosthetic socket-limb interface during walking. Methods We recorded surface electromyography from three lower leg muscles (tibilias anterior, gastrocnemius medial head, gastrocnemius lateral head and four upper leg muscles (vastus lateralis, rectus femoris, biceps femoris, and gluteus medius of 12 unilateral transtibial amputee subjects and 12 non-amputee subjects during treadmill walking at 0.7, 1.0, 1.3, and 1.6 m/s. Muscle signals were recorded from the amputated leg of amputee subjects and the right leg of control subjects. For amputee subjects, lower leg muscle signals were recorded from within the limb-socket interface and from muscles above the knee. We quantified differences in the muscle activation profile between amputee and control groups during treadmill walking using cross-correlation analyses. We also assessed the step-to-step inter-subject variability of these profiles by calculating variance-to-signal ratios. Results We found that amputee subjects demonstrated reliable muscle recruitment signals from residual lower leg muscles recorded within the prosthetic socket during walking, which were locked to particular phases of the gait cycle. However, muscle activation profile variability was higher for amputee subjects than for control subjects. Conclusion Robotic lower limb prostheses could use myoelectric signals recorded from surface electrodes within the socket-limb interface to derive feedforward commands from the amputee’s nervous system.

  13. Differences in muscle activation patterns during step recovery in elderly women with and without a history of falls.

    Ochi, Akira; Yokoyama, Shinya; Abe, Tomokazu; Yamada, Kazumasa; Tateuchi, Hiroshige; Ichihashi, Noriaki

    2014-04-01

    This study aimed at comparing the patterns of muscle activation used in stepping to regain balance during a forward fall between subjects with and without a history of falling and at identifying the causes of functional deficits in recovery stepping. Elderly women with and without a history of falling (fallers: n = 12, mean age ± SD = 82.8 ± 4.5 years; non-fallers: n = 17, age = 81.4 ± 3.4 years) participated in the study. The subjects were suspended in a forward-leaning position by a lean-control cable with a load of 15 % of body weight and instructed to regain standing balance upon release by taking a single step forward. Electromyography (EMG) data were obtained from five lower extremity muscles on the stepping side, and the muscle activation patterns were compared between fallers and non-fallers. Fallers had a shorter step length and slower step velocity than non-fallers. The EMG time-to-peak for the gastrocnemius muscle, which provides push-off prior to foot lift-off, was slower for fallers than for non-fallers, whereas the EMG onset times of the biceps femoris and gastrocnemius muscles were similar between the groups. The fallers exhibited significantly delayed muscle deactivation of the upper leg and increased co-contraction between the rectus femoris and biceps femoris during the stepping phase than did the non-fallers. These findings suggest that the muscle activation pattern during the regain balance may reflect an inability to step forward rapidly in elderly women with a history of falls.

  14. Muscle biopsies from human muscle diseases with myopathic pathology reveal common alterations in mitochondrial function.

    Sunitha, Balaraju; Gayathri, Narayanappa; Kumar, Manish; Keshava Prasad, Thottethodi Subrahmanya; Nalini, Atchayaram; Padmanabhan, Balasundaram; Srinivas Bharath, Muchukunte Mukunda

    2016-07-01

    Muscle diseases are clinically and genetically heterogeneous and manifest as dystrophic, inflammatory and myopathic pathologies, among others. Our previous study on the cardiotoxin mouse model of myodegeneration and inflammation linked muscle pathology with mitochondrial damage and oxidative stress. In this study, we investigated whether human muscle diseases display mitochondrial changes. Muscle biopsies from muscle disease patients, represented by dysferlinopathy (dysfy) (dystrophic pathology; n = 43), polymyositis (PM) (inflammatory pathology; n = 24), and distal myopathy with rimmed vacuoles (DMRV) (distal myopathy; n = 31) were analyzed. Mitochondrial damage (ragged blue and COX-deficient fibers) was revealed in dysfy, PM, and DMRV cases by enzyme histochemistry (SDH and COX-SDH), electron microscopy (vacuolation and altered cristae) and biochemical assays (significantly increased ADP/ATP ratio). Proteomic analysis of muscle mitochondria from all three muscle diseases by isobaric tag for relative and absolute quantitation labeling and liquid chromatography-tandem mass spectrometry (LC-MS/MS) analysis demonstrated down-regulation of electron transport chain (ETC) complex subunits, assembly factors and Krebs cycle enzymes. Interestingly, 80 of the under-expressed proteins were common among the three pathologies. Assay of ETC and Krebs cycle enzyme activities validated the MS data. Mitochondrial proteins from muscle pathologies also displayed higher tryptophan (Trp) oxidation and the same was corroborated in the cardiotoxin model. Molecular modeling predicted Trp oxidation to alter the local structure of mitochondrial proteins. Our data highlight mitochondrial alterations in muscle pathologies, represented by morphological changes, altered mitochondrial proteome and protein oxidation, thereby establishing the role of mitochondrial damage in human muscle diseases. We investigated whether human muscle diseases display mitochondrial changes. Muscle biopsies

  15. Linear correlation between fractal dimension of surface EMG signal from Rectus Femoris and height of vertical jump

    Ancillao, Andrea; Galli, Manuela; Rigoldi, Chiara; Albertini, Giorgio

    2014-01-01

    Fractal dimension was demonstrated to be able to characterize the complexity of biological signals. The EMG time series are well known to have a complex behavior and some other studies already tried to characterize these signals by their fractal dimension. This paper is aimed at studying the correlation between the fractal dimension of surface EMG signal recorded over Rectus Femoris muscles during a vertical jump and the height reached in that jump. Healthy subjects performed vertical jumps at different heights. Surface EMG from Rectus Femoris was recorded and the height of each jump was measured by an optoelectronic motion capture system. Fractal dimension of sEMG was computed and the correlation between fractal dimension and eight of the jump was studied. Linear regression analysis showed a very high correlation coefficient between the fractal dimension and the height of the jump for all the subjects. The results of this study show that the fractal dimension is able to characterize the EMG signal and it can be related to the performance of the jump. Fractal dimension is therefore an useful tool for EMG interpretation

  16. Functional ability and muscle force in healthy children and ambulant Duchenne muscular dystrophy patients

    Beenakker, EAC; Maurits, NM; Fock, JM; Brouwer, OF; van der Hoeven, JH

    2005-01-01

    Neuromuscular disorders are characterised by progressive muscle weakness, which in time causes functional impairment. To quantify the extent of disease progression, muscle force and functional ability can be measured. Which of these parameters changes most depends on the disease stage. In a previous

  17. The morphology and functions of the muscles around the hip joint after a unilateral transfemoral amputation

    Jaegers, Sonja Maria Héléne José

    1993-01-01

    This dissertation is concerned with the consequences of a transfemoral amputation for the morphology and functions of the muscles around the hip joint. Knowledge about and insight into the changes appearing in the morphology and functions of the hip muscles of transfemoral amputees are important to

  18. Contribution of elastic tissues to the mechanics and energetics of muscle function during movement.

    Roberts, Thomas J

    2016-01-01

    Muscle force production occurs within an environment of tissues that exhibit spring-like behavior, and this elasticity is a critical determinant of muscle performance during locomotion. Muscle force and power output both depend on the speed of contraction, as described by the isotonic force-velocity curve. By influencing the speed of contractile elements, elastic structures can have a profound effect on muscle force, power and work. In very rapid movements, elastic mechanisms can amplify muscle power by storing the work of muscle contraction slowly and releasing it rapidly. When energy must be dissipated rapidly, such as in landing from a jump, energy stored rapidly in elastic elements can be released more slowly to stretch muscle contractile elements, reducing the power input to muscle and possibly protecting it from damage. Elastic mechanisms identified so far rely primarily on in-series tendons, but many structures within muscles exhibit spring-like properties. Actomyosin cross-bridges, actin and myosin filaments, titin, and the connective tissue scaffolding of the extracellular matrix all have the potential to store and recover elastic energy during muscle contraction. The potential contribution of these elements can be assessed from their stiffness and estimates of the strain they undergo during muscle function. Such calculations provide boundaries for the possible roles these springs might play in locomotion, and may help to direct future studies of the uses of elastic elements in muscle. © 2016. Published by The Company of Biologists Ltd.

  19. Instrumental evaluation of colour changes in broiler breast and thigh muscles after irradiation treatment

    Zabielski, J.; Jaworska-Piasecka, A.; Stangierski, J.

    2004-01-01

    Colour changes in Biceps femoris, Rectus femoris and Pectoralis major broiler chicken muscles were determined with a reflectance colorimeter after irradiation with gamma 60Co rays. The muscles were irradiated with doses of 2, 3, 5, 7 and 10 kGy. The colour parameters L*, a* and b* were measured after 2, 5, 7 and 9 days of refrigerated storage of muscles at 1 deg C using a MINOLTA CR-200b reflectance colorimeter. The saturation of colour C* was also calculated and the significance of redness and yellowness effect on saturation was estimated by a linear regression analysis. Only in the Biceps femoris muscle were all the examined colour parameters found to be dependent both on storage time and irradiation treatment, however, the relationship between the dose and the measured effect demonstrated no linear characteristics. It was noted that the difference between the irradiated and control Biceps femoris muscles resulted from different trends of L*, b* and C* changes during storage

  20. Effect of transcutaneous electrical muscle stimulation on postoperative muscle mass and protein synthesis

    Vinge, O; Edvardsen, L; Jensen, F

    1996-01-01

    In an experimental study, 13 patients undergoing major elective abdominal surgery were given postoperative transcutaneous electrical muscle stimulation (TEMS) to the quadriceps femoris muscle on one leg; the opposite leg served as control. Changes in cross-sectional area (CSA) and muscle protein ...... protein synthesis and muscle mass after abdominal surgery and should be evaluated in other catabolic states with muscle wasting.......In an experimental study, 13 patients undergoing major elective abdominal surgery were given postoperative transcutaneous electrical muscle stimulation (TEMS) to the quadriceps femoris muscle on one leg; the opposite leg served as control. Changes in cross-sectional area (CSA) and muscle protein...... synthesis were assessed by computed tomography and ribosome analysis of percutaneous muscle biopsies before surgery and on the sixth postoperative day. The percentage of polyribosomes in the ribosome suspension decreased significantly (P

  1. Skeletal muscle function and hypertrophy are diminished in old age.

    Degens, H.; Alway, S.E.

    2003-01-01

    Muscle loss occurs during aging. To investigate whether the hypertrophic response is attenuated at old age, we used male Fischer 344 (26 months old; n = 5) and Fischer 344 x Brown Norway rats (6, 9, and 33 months old; n = 8, 10, and 6, respectively). Hypertrophy of the left plantaris muscle was

  2. Histochemical and functional fibre typing of the rabbit masseter muscle

    Bredman, J. J.; Weijs, W. A.; Moorman, A. F.; Brugman, P.

    1990-01-01

    The fibre-type distribution of the masseter muscle of the rabbit was studied by means of the myosin-ATPase and succinate dehydrogenase reactions. Six different fibre types were found and these were unequally distributed between and within the anatomical compartments of the muscle. Most of the

  3. Comparison of muscle/lean mass measurement methods: correlation with functional and biochemical testing.

    Buehring, B; Siglinsky, E; Krueger, D; Evans, W; Hellerstein, M; Yamada, Y; Binkley, N

    2018-03-01

    DXA-measured lean mass is often used to assess muscle mass but has limitations. Thus, we compared DXA lean mass with two novel methods-bioelectric impedance spectroscopy and creatine (methyl-d3) dilution. The examined methodologies did not measure lean mass similarly and the correlation with muscle biomarkers/function varied. Muscle function tests predict adverse health outcomes better than lean mass measurement. This may reflect limitations of current mass measurement methods. Newer approaches, e.g., bioelectric impedance spectroscopy (BIS) and creatine (methyl-d3) dilution (D3-C), may more accurately assess muscle mass. We hypothesized that BIS and D3-C measured muscle mass would better correlate with function and bone/muscle biomarkers than DXA measured lean mass. Evaluations of muscle/lean mass, function, and serum biomarkers were obtained in older community-dwelling adults. Mass was assessed by DXA, BIS, and orally administered D3-C. Grip strength, timed up and go, and jump power were examined. Potential muscle/bone serum biomarkers were measured. Mass measurements were compared with functional and serum data using regression analyses; differences between techniques were determined by paired t tests. Mean (SD) age of the 112 (89F/23M) participants was 80.6 (6.0) years. The lean/muscle mass assessments were correlated (.57-.88) but differed (p Lean mass measures were unrelated to the serum biomarkers measured. These three methodologies do not similarly measure muscle/lean mass and should not be viewed as being equivalent. Functional tests assessing maximal muscle strength/power (grip strength and jump power) correlated with all mass measures whereas gait speed was not. None of the selected serum measures correlated with mass. Efforts to optimize muscle mass assessment and identify their relationships with health outcomes are needed.

  4. Relationships of Muscle Function and Subjective Knee Function in Patients After ACL Reconstruction.

    Bodkin, Stephan; Goetschius, John; Hertel, Jay; Hart, Joe

    2017-07-01

    After anterior cruciate ligament reconstruction (ACLR), relationships between objective measures of muscle function and patient-reported outcomes may change over time. Examining these measures at different time frames after surgery may help develop individualized approaches to improve post-ALCR analysis. To examine the associations between subjective knee function and lower-extremity muscle function in individual patients at various time points after ACLR. Descriptive laboratory study. Fifty-one participants who underwent primary, unilateral ACLR (15 males, 36 females; mean age, 22.9 ± 4.5 years; mean height, 172.4 ± 10.1 cm; mean weight, 68.7 ± 13.1 kg) were separated into 3 groups depending on time since surgery (early, 5 years). Subjective knee function was quantified using the International Knee Documentation Committee (IKDC) subjective knee form and the Knee injury and Osteoarthritis Outcome Score (KOOS). Isometric knee extension and flexion strength were collected at 90 deg/s. Single-leg hop performance was measured using the single hop, triple hop, cross-over hop, and 6-m timed hop. Coefficient correlations were calculated between subjective knee function and objective measures of muscle function for each group. The early group demonstrated moderate correlations between the KOOS and unilateral measures of flexion peak torque ( r = 0.514, P = .035) and flexion power ( r = 0.54, P = .027). The middle group demonstrated the strongest correlations between the KOOS and symmetry measures of the single hop ( r = 0.69, P = .002) and extension work ( r = 0.71, P = .002) as well as unilateral measures of the triple hop ( r = 0.52, P = .034) and extension work ( r = 0.66, P = .004). The late group demonstrated strong correlations between the 6-m timed hop symmetry and the IKDC ( r = 0.716, P = .001) and KOOS ( r = 0.71, P = .001). Patients with a post-ACLR status of less than 2 years exhibited stronger relationships with unilateral strength measures to subjective

  5. Assessment of muscle function using hybrid PET/MRI

    Haddock, Bryan; Holm, Søren; Poulsen, Jákup M.

    2017-01-01

    -FDG while activating the quadriceps of one leg with repeated knee extension exercises followed by hand-grip exercises for one arm. Immediately following the exercises, the subjects were scanned simultaneously with 18F-FDG PET/MRI and muscle groups were evaluated for increases in 18F-FDG uptake and MRI T2......Purpose: The aim of this study was to determine the relationship between relative glucose uptake and MRI T2 changes in skeletal muscles following resistance exercise using simultaneous PET/MRI scans. Methods: Ten young healthy recreationally active men (age 21 – 28 years) were injected with 18F...... values. Results: A significant linear correlation between 18F-FDG uptake and changes in muscle T2 (R2 = 0.71) was found. for both small and large muscles and in voxel to voxel comparisons. Despite large intersubject differences in muscle recruitment, the linear correlation between 18F-FDG uptake...

  6. Epidemiological investigation of muscle-strengthening activities and cognitive function among older adults.

    Loprinzi, Paul D

    2016-06-01

    Limited research has examined the association of muscle-strengthening activities and executive cognitive function among older adults, which was this study's purpose. Data from the 1999-2002 NHANES were employed (N = 2157; 60-85 years). Muscle-strengthening activities were assessed via self-report, with cognitive function assessed using the digit symbol substitution test. After adjusting for age, age-squared, gender, race-ethnicity, poverty level, body mass index, C-reactive protein, smoking, comorbid illness and physical activity, muscle-strengthening activities were significantly associated with cognitive function (βadjusted = 3.4; 95% CI: 1.7-5.1; P cognitive function score. In conclusion, muscle-strengthening activities are associated with executive cognitive function among older U.S. adults, underscoring the importance of promoting both aerobic exercise and muscle-strengthening activities to older adults. © The Author(s) 2016.

  7. Differential activation of an identified motor neuron and neuromodulation provide Aplysia's retractor muscle an additional function.

    McManus, Jeffrey M; Lu, Hui; Cullins, Miranda J; Chiel, Hillel J

    2014-08-15

    To survive, animals must use the same peripheral structures to perform a variety of tasks. How does a nervous system employ one muscle to perform multiple functions? We addressed this question through work on the I3 jaw muscle of the marine mollusk Aplysia californica's feeding system. This muscle mediates retraction of Aplysia's food grasper in multiple feeding responses and is innervated by a pool of identified neurons that activate different muscle regions. One I3 motor neuron, B38, is active in the protraction phase, rather than the retraction phase, suggesting the muscle has an additional function. We used intracellular, extracellular, and muscle force recordings in several in vitro preparations as well as recordings of nerve and muscle activity from intact, behaving animals to characterize B38's activation of the muscle and its activity in different behavior types. We show that B38 specifically activates the anterior region of I3 and is specifically recruited during one behavior, swallowing. The function of this protraction-phase jaw muscle contraction is to hold food; thus the I3 muscle has an additional function beyond mediating retraction. We additionally show that B38's typical activity during in vivo swallowing is insufficient to generate force in an unmodulated muscle and that intrinsic and extrinsic modulation shift the force-frequency relationship to allow contraction. Using methods that traverse levels from individual neuron to muscle to intact animal, we show how regional muscle activation, differential motor neuron recruitment, and neuromodulation are key components in Aplysia's generation of multifunctionality. Copyright © 2014 the American Physiological Society.

  8. Structural, biochemical, cellular, and functional changes in skeletal muscle extracellular matrix with aging

    Kragstrup, Tue Wenzel; Kjaer, M; Mackey, A L

    2011-01-01

    The extracellular matrix (ECM) of skeletal muscle is critical for force transmission and for the passive elastic response of skeletal muscle. Structural, biochemical, cellular, and functional changes in skeletal muscle ECM contribute to the deterioration in muscle mechanical properties with aging......-links and a buildup of advanced glycation end-product cross-links. Altered mechanotransduction, poorer activation of satellite cells, poorer chemotactic and delayed inflammatory responses, and a change in modulators of the ECM are important cellular changes. It is possible that the structural and biochemical changes...... in skeletal muscle ECM contribute to the increased stiffness and impairment in force generated by the contracting muscle fibers seen with aging. The cellular interactions provide and potentially coordinate an adaptation to mechanical loading and ensure successful regeneration after muscle injury. Some...

  9. Whole-muscle reimplantation with microneurovascular anastomoses. A functional and histological study.

    Prendergast, F. J.; McGeachie, J. K.; Edis, R. H.; Allbrook, D.

    1977-01-01

    Whole tibialis anterior muscles were removed from a number of dogs and were then reimplanted in the original sites. Microsurgical anastomoses of the major nerve, artery, and vein were performed. Biopsy revealed some minor regenerative changes in the muscle a few weeks after the operation. Electromyographic recordings 6-9 months after implantation showed near-complete functional recovery of the muscles. This was confirmed histologically. The study demonstrates not only that whole-muscle reimplantation is technically feasible but that a functionally satisfactory result may be expected. Images Fig. 1 Fig. 2 Fig. 3 Fig. 4 Fig. 5 Fig. 6 Fig. 7 Fig. 8 Fig. 9 Fig. 10 Fig. 11 PMID:900796

  10. Impaired Arterial Smooth Muscle Cell Vasodilatory Function In Methamphetamine Users

    Ghaemeh Nabaei

    2017-02-01

    Full Text Available Objectives: Methamphetamine use is a strong risk factor for stroke. This study was designed to evaluate arterial function and structure in methamphetamine users ultrasonographically. Methods: In a cross-sectional study, 20 methamphetamine users and 21 controls, aged between 20 and 40years, were enrolled. Common carotid artery intima-media thickness (CCA-IMT marker of early atherogenesis, flow-mediated dilatation (FMD determinants of endothelium-dependent vasodilation, and nitroglycerine-mediated dilatation (NMD independent marker of vasodilation were measured in two groups. Results: There were no significant differences between the two groups regarding demographic and metabolic characteristics. The mean (±SD CCA-IMT in methamphetamine users was 0.58±0.09mm, versus 0.59±0.07mm in the controls (p=0.84. Likewise, FMD% was not significantly different between the two groups [7.6±6.1% in methamphetamine users vs. 8.2±5.1% in the controls; p=0.72], nor were peak flow and shear rate after hyperemia. However, NMD% was considerably decreased in the methamphetamine users [8.5±7.8% in methamphetamine users vs. 13.4±6.2% in controls; p=0.03]. Conclusion: According to our results, NMD is reduced among otherwise healthy methamphetamine users, which represents smooth muscle dysfunction in this group. This may contribute to the high risk of stroke among methamphetamine users.

  11. A study on the relationship between muscle function, functional mobility and level of physical activity in community-dwelling elderly.

    Garcia, Patrícia A; Dias, João M D; Dias, Rosângela C; Santos, Priscilla; Zampa, Camila C

    2011-01-01

    to evaluate the relationship between lower extremity muscle function, calf circumference (CC), handgrip strength (HG), functional mobility and level of physical activity among age groups (65-69, 70-79, 80+) of older adults (men and women) and to identify the best parameter for screening muscle function loss in the elderly. 81 community-dwelling elderly (42 women and 39 men) participated. Walking speed (Multisprint Kit), HG (Jamar dynamometer), hip, knee and ankle muscle function (Biodex isokinetic dynamometer), level of physical activity (Human Activity Profile) and CC (tape measure) were evaluated. ANOVA, Pearson correlation and ROC curves were used for statistical analysis. Dominant CC (34.9±3 vs 37.7±3.6), habitual (1.1±0.2 vs 1.2±0.2) and fast (1.4±0.3 vs 1.7±0.3) walking speed, HG (23.8±7.5 vs 31.8±10.3), average peak torque and average hip, knee and ankle power (pphysical activity level among age groups. Moderate significant correlations were found between muscle function parameters, walking speed and HG; a fair degree of relationship was found between muscle function parameters, CC and level of physical activity (pwomen (p=0.03). This study demonstrated an association between muscle function, HG and fast walking speed, a decrease in these parameters with age and the possibility of using HG to screen for muscle function of the lower extremities.

  12. Respiratory muscle function and exercise limitation in patients with chronic obstructive pulmonary disease: a review.

    Charususin, Noppawan; Dacha, Sauwaluk; Gosselink, Rik; Decramer, Marc; Von Leupoldt, Andreas; Reijnders, Thomas; Louvaris, Zafeiris; Langer, Daniel

    2018-01-01

    Respiratory muscle dysfunction is common and contributes to dyspnea and exercise limitation in patients with chronic obstructive pulmonary disease (COPD). Improving dynamic function of respiratory muscles during exercise might help to reduce symptoms and improve exercise capacity. Areas covered: The aims of this review are to 1) summarize physiological mechanisms linking respiratory muscle dysfunction to dyspnea and exercise limitation; 2) provide an overview of available therapeutic approaches to better maintain load-capacity balance of respiratory muscles during exercise; and 3) to summarize current knowledge on potential mechanisms explaining effects of interventions aimed at optimizing dynamic respiratory muscle function with a special focus on inspiratory muscle training. Expert commentary: Several mechanisms which are potentially linking improvements in dynamic respiratory muscle function to symptomatic and functional benefits have not been studied so far in COPD patients. Examples of underexplored areas include the study of neural processes related to the relief of acute dyspnea and the competition between respiratory and peripheral muscles for limited energy supplies during exercise. Novel methodologies are available to non-invasively study these mechanisms. Better insights into the consequences of dynamic respiratory muscle dysfunction will hopefully contribute to further refine and individualize therapeutic approaches in patients with COPD.

  13. Functional muscle ischemia in Duchenne and Becker muscular dystrophy

    Thomas, Gail D.

    2013-01-01

    Duchenne and Becker muscular dystrophy (DMD/BMD) comprise a spectrum of devastating X-linked muscle wasting disease for which there is no treatment. DMD/BMD is caused by mutations in the gene encoding dystrophin, a cytoskeletal protein that stabilizes the muscle membrane and also targets other proteins to the sarcolemma. Among these is the muscle-specific isoform of neuronal nitric oxide synthase (nNOSµ) which binds spectrin-like repeats within dystrophin’s rod domain and the adaptor pro...

  14. Phosphorylation and function of DGAT1 in skeletal muscle cells

    Yu, Jinhai; Li, Yiran; Zou, Fei; Xu, Shimeng; Liu, Pingsheng

    2015-01-01

    Aberrant intramuscular triacylglycerol (TAG) storage in human skeletal muscle is closely related to insulin insensitivity. Excessive lipid storage can induce insulin resistance of skeletal muscle, and under severe conditions, lead to type 2 diabetes. The balance of interconversion between diacylglycerol and TAG greatly influences lipid storage and utilization. Diacylglycerol O-acyltransferase 1 (DGAT1) plays a key role in this process, but its activation and phosphorylation requires further d...

  15. Vitamin D and muscle function in the elderly: the elixir of youth?

    Girgis, Christian M

    2014-11-01

    Circumstantial evidence suggests that vitamin D deficiency may contribute to age-related changes in skeletal muscle. This review discusses recent clinical trials examining effects of vitamin D on muscle function in the elderly, and poses the important question: can vitamin D reverse muscle ageing? Observational studies report an association between vitamin D and muscle atrophy/weakness in elderly subjects. Interventional studies suggest that frail, elderly subjects may benefit from vitamin D supplementation by displaying reduced falls, improved muscle function and increased muscle fibre size. However, meta-analyses do not report convincing effects of vitamin D in the elderly. This may be because of multiple factors including lack of standardized endpoints for muscle function, variable study design and different doses of vitamin D supplementation amongst these studies. The evidence base is therefore inconsistent. Vitamin D deficiency may exacerbate ageing of skeletal muscle. However, current evidence that vitamin D supplementation reverses age-related muscle dysfunction is equivocal and does not justify stringent vitamin D targets in the elderly. Until these issues are clarified, the safest option is to aim for conservative vitamin D targets that are sufficient for normal calcium homeostasis.

  16. The influence of stimulus phase duration on discomfort and electrically induced torque of quadriceps femoris

    Richard E. Liebano

    2013-10-01

    Full Text Available BACKGROUND: Although a number of studies have compared the influence of different electrical pulse parameters on maximum electrically induced torque (MEIT and discomfort, the role of phase duration has been poorly investigated. OBJECTIVE: To examine the variation in muscle torque and discomfort produced when electrically stimulating quadriceps femoris using pulsed current with three different phase durations in order to establish whether there are any advantages or disadvantages in varying the phase duration over the range examined. METHOD: This is a two repeated-measures, within-subject study conducted in a research laboratory. The study was divided into 2 parts with 19 healthy young adults in each part.In part 1, MEIT was determined for each phase duration (400, 700, and 1000 µs, using a biphasic pulsed current at a frequency of 50 Hz. In part 2, stimulus amplitude was increased until the contractions reached 40% of maximum voluntary isometric contraction (MVIC and the associated discomfort produced by each phase duration was measured. RESULTS: In part 1 of the study, we found that the average MEITs generated with each phase duration (400, 700, and 1000 µs were 55.0, 56.3, and 58.0% of MVIC respectively, but the differences were not statistically significant (p=.45. In part 2, we found a statistically significant increase in discomfort over the same range of phase durations. The results indicate that, for a given level of torque production, discomfort increases with increasing phase duration (p=.008. CONCLUSIONS: Greater muscle torque cannot be produced by increasing the stimulus phase duration over the range examined. Greater discomfort is produced by increasing the stimulus phase duration.

  17. Muscle power is an important measure to detect deficits in muscle function in hip osteoarthritis: a cross-sectional study.

    Bieler, Theresa; Magnusson, Stig Peter; Christensen, Helle Elisabeth; Kjaer, Michael; Beyer, Nina

    2017-07-01

    To investigate between-leg differences in hip and thigh muscle strength and leg extensor power in patients with unilateral hip osteoarthritis. Further, to compare between-leg differences in knee extensor strength and leg extensor power between patients and healthy peers. Seventy-two patients (60-87 years) with radiographic and symptomatic hip osteoarthritis not awaiting hip replacement and 35 healthy peers (63-82 years) were included. Hip and thigh muscle strength and leg extensor power were measured in patients and knee extensor strength and leg extensor power in healthy. The symptomatic extremity in patients was significantly (p hip muscles (8-17%), knee extensors (11%) and leg extensor power (19%). Healthy older adults had asymmetry in knee extensor strength (6%, p hip osteoarthritis. Implications for Rehabilitation Even in patients with mild symptoms not awaiting hip replacement a generalized muscle weakening of the symptomatic lower extremity seems to be present. Between-leg differences in leg extensor power (force × velocity) appears to be relatively large (19%) in patients with unilateral hip osteoarthritis in contrast to healthy peers who show no asymmetry. Compared to muscle strength the relationship between functional performance and leg extensor power seems to be stronger, and more strongly related to power of the symptomatic lower extremity. Our results indicate that exercise interventions focusing on improving leg extensor power of the symptomatic lower extremity and reducing asymmetry may be beneficial for patients with mild symptoms not awaiting hip replacement.

  18. Optimizing the Distribution of Leg Muscles for Vertical Jumping.

    Jeremy D Wong

    Full Text Available A goal of biomechanics and motor control is to understand the design of the human musculoskeletal system. Here we investigated human functional morphology by making predictions about the muscle volume distribution that is optimal for a specific motor task. We examined a well-studied and relatively simple human movement, vertical jumping. We investigated how high a human could jump if muscle volume were optimized for jumping, and determined how the optimal parameters improve performance. We used a four-link inverted pendulum model of human vertical jumping actuated by Hill-type muscles, that well-approximates skilled human performance. We optimized muscle volume by allowing the cross-sectional area and muscle fiber optimum length to be changed for each muscle, while maintaining constant total muscle volume. We observed, perhaps surprisingly, that the reference model, based on human anthropometric data, is relatively good for vertical jumping; it achieves 90% of the jump height predicted by a model with muscles designed specifically for jumping. Alteration of cross-sectional areas-which determine the maximum force deliverable by the muscles-constitutes the majority of improvement to jump height. The optimal distribution results in large vastus, gastrocnemius and hamstrings muscles that deliver more work, while producing a kinematic pattern essentially identical to the reference model. Work output is increased by removing muscle from rectus femoris, which cannot do work on the skeleton given its moment arm at the hip and the joint excursions during push-off. The gluteus composes a disproportionate amount of muscle volume and jump height is improved by moving it to other muscles. This approach represents a way to test hypotheses about optimal human functional morphology. Future studies may extend this approach to address other morphological questions in ethological tasks such as locomotion, and feature other sets of parameters such as properties of

  19. Tenderization effect of soy sauce on beef M. biceps femoris.

    Kim, Hyun-Wook; Choi, Yun-Sang; Choi, Ji-Hun; Kim, Hack-Youn; Lee, Mi-Ai; Hwang, Ko-Eun; Song, Dong-Heon; Lim, Yun-Bin; Kim, Cheon-Jei

    2013-08-15

    This study was conducted to evaluate the tenderization effect of soy sauce on beef M. biceps femoris (BF). Five marinades were prepared with 4% (w/v) sodium chloride and 25% (w/v) soy sauce solutions (4% salt concentration) and mixed with the ratios of 100:0 (S0, pH 6.52), 75:25 (S25, 5.40) 50:50 (S50, 5.24), 25:75 (S75, 5.05), and 0:100 (S100, 4.85), respectively. The BF samples which were obtained from Hanwoo cows at 48 h postmortem (n=24) were marinated with five marinades for 72 h at 4°C (1:4 w/w), and the effects of soy sauce on tenderness were evaluated. Soy sauce marination resulted in a decrease in the pH value of the BF sample. However, there were no significant differences in the water holding capacity (Psauce may attribute various mechanisms such as increased collagen solubility or proteolysis which depend on soy sauce level in marinade. Copyright © 2013 Elsevier Ltd. All rights reserved.

  20. Hip flexor muscle size, strength and recruitment pattern in patients with acetabular labral tears compared to healthy controls.

    Mendis, M Dilani; Wilson, Stephen J; Hayes, David A; Watts, Mark C; Hides, Julie A

    2014-10-01

    Acetabular labral tears are a source of hip pain and are considered to be a precursor to hip osteoarthritis. Hip flexor muscles contribute to hip joint stability and function but it is unknown if their size and function is altered in the presence of labral pathology. This study aimed to investigate hip flexor muscle size, strength and recruitment pattern in patients with hip labral pathology compared to control subjects. 12 subjects diagnosed with an unilateral acetabular labral tear were compared to 12 control subjects matched for age and gender. All subjects underwent magnetic resonance imaging (MRI) of their lumbo-pelvic region. Average muscle cross-sectional area (CSA) of the iliacus, psoas, iliopsoas, sartorius, tensor fascia latae and rectus femoris muscles were measured. Hip flexion strength was measured by an externally fixed dynamometer. Individual muscle recruitment pattern during a resisted hip flexion exercise task was measured by muscle functional MRI. Hip flexor muscle strength was found to be decreased in patients with labral pathology compared to control subjects (p muscle size (all p > 0.17) and recruitment pattern (all p > 0.53). Decreased hip flexor muscle strength may affect physical function in patients with hip labral pathology by contributing to altered gait patterns and functional tasks. Clinical rehabilitation of these patients may need to include strengthening exercises for the hip flexor muscles. Copyright © 2014 Elsevier Ltd. All rights reserved.

  1. Effects of Barbell Deadlift Training on Submaximal Motor Unit Firing Rates for the Vastus Lateralis and Rectus Femoris

    Stock, Matt S.; Thompson, Brennan J.

    2014-01-01

    Previous investigations that have studied motor unit firing rates following strength training have been limited to small muscles, isometric training, or interventions involving exercise machines. We examined the effects of ten weeks of supervised barbell deadlift training on motor unit firing rates for the vastus lateralis and rectus femoris during a 50% maximum voluntary contraction (MVC) assessment. Twenty-four previously untrained men (mean age  = 24 years) were randomly assigned to training (n = 15) or control (n = 9) groups. Before and following the intervention, the subjects performed isometric testing of the right knee extensors while bipolar surface electromyographic signals were detected from the two muscles. The signals were decomposed into their constituent motor unit action potential trains, and motor units that demonstrated accuracy levels less than 92.0% were not considered for analysis. One thousand eight hundred ninety-two and 2,013 motor units were examined for the vastus lateralis and rectus femoris, respectively. Regression analyses were used to determine the linear slope coefficients (pulses per second [pps]/% MVC) and y-intercepts (pps) of the mean firing rate and firing rate at recruitment versus recruitment threshold relationships. Deadlift training significantly improved knee extensor MVC force (Cohen's d = .70), but did not influence force steadiness. Training had no influence on the slopes and y-intercepts for the mean firing rate and firing rate at recruitment versus recruitment threshold relationships. In agreement with previous cross-sectional comparisons and randomized control trials, our findings do not support the notion that strength training affects the submaximal control of motor units. PMID:25531294

  2. Effects of barbell deadlift training on submaximal motor unit firing rates for the vastus lateralis and rectus femoris.

    Matt S Stock

    Full Text Available Previous investigations that have studied motor unit firing rates following strength training have been limited to small muscles, isometric training, or interventions involving exercise machines. We examined the effects of ten weeks of supervised barbell deadlift training on motor unit firing rates for the vastus lateralis and rectus femoris during a 50% maximum voluntary contraction (MVC assessment. Twenty-four previously untrained men (mean age  = 24 years were randomly assigned to training (n = 15 or control (n = 9 groups. Before and following the intervention, the subjects performed isometric testing of the right knee extensors while bipolar surface electromyographic signals were detected from the two muscles. The signals were decomposed into their constituent motor unit action potential trains, and motor units that demonstrated accuracy levels less than 92.0% were not considered for analysis. One thousand eight hundred ninety-two and 2,013 motor units were examined for the vastus lateralis and rectus femoris, respectively. Regression analyses were used to determine the linear slope coefficients (pulses per second [pps]/% MVC and y-intercepts (pps of the mean firing rate and firing rate at recruitment versus recruitment threshold relationships. Deadlift training significantly improved knee extensor MVC force (Cohen's d = .70, but did not influence force steadiness. Training had no influence on the slopes and y-intercepts for the mean firing rate and firing rate at recruitment versus recruitment threshold relationships. In agreement with previous cross-sectional comparisons and randomized control trials, our findings do not support the notion that strength training affects the submaximal control of motor units.

  3. Effects of barbell deadlift training on submaximal motor unit firing rates for the vastus lateralis and rectus femoris.

    Stock, Matt S; Thompson, Brennan J

    2014-01-01

    Previous investigations that have studied motor unit firing rates following strength training have been limited to small muscles, isometric training, or interventions involving exercise machines. We examined the effects of ten weeks of supervised barbell deadlift training on motor unit firing rates for the vastus lateralis and rectus femoris during a 50% maximum voluntary contraction (MVC) assessment. Twenty-four previously untrained men (mean age  = 24 years) were randomly assigned to training (n = 15) or control (n = 9) groups. Before and following the intervention, the subjects performed isometric testing of the right knee extensors while bipolar surface electromyographic signals were detected from the two muscles. The signals were decomposed into their constituent motor unit action potential trains, and motor units that demonstrated accuracy levels less than 92.0% were not considered for analysis. One thousand eight hundred ninety-two and 2,013 motor units were examined for the vastus lateralis and rectus femoris, respectively. Regression analyses were used to determine the linear slope coefficients (pulses per second [pps]/% MVC) and y-intercepts (pps) of the mean firing rate and firing rate at recruitment versus recruitment threshold relationships. Deadlift training significantly improved knee extensor MVC force (Cohen's d = .70), but did not influence force steadiness. Training had no influence on the slopes and y-intercepts for the mean firing rate and firing rate at recruitment versus recruitment threshold relationships. In agreement with previous cross-sectional comparisons and randomized control trials, our findings do not support the notion that strength training affects the submaximal control of motor units.

  4. AMPKγ3 is dispensable for skeletal muscle hypertrophy induced by functional overload.

    Riedl, Isabelle; Osler, Megan E; Björnholm, Marie; Egan, Brendan; Nader, Gustavo A; Chibalin, Alexander V; Zierath, Juleen R

    2016-03-15

    Mechanisms regulating skeletal muscle growth involve a balance between the activity of serine/threonine protein kinases, including the mammalian target of rapamycin (mTOR) and 5'-AMP-activated protein kinase (AMPK). The contribution of different AMPK subunits to the regulation of cell growth size remains inadequately characterized. Using AMPKγ3 mutant-overexpressing transgenic Tg-Prkag3(225Q) and AMPKγ3-knockout (Prkag3(-/-)) mice, we investigated the requirement for the AMPKγ3 isoform in functional overload-induced muscle hypertrophy. Although the genetic disruption of the γ3 isoform did not impair muscle growth, control sham-operated AMPKγ3-transgenic mice displayed heavier plantaris muscles in response to overload hypertrophy and underwent smaller mass gain and lower Igf1 expression compared with wild-type littermates. The mTOR signaling pathway was upregulated with functional overload but unchanged between genetically modified animals and wild-type littermates. Differences in AMPK-related signaling pathways between transgenic, knockout, and wild-type mice did not impact muscle hypertrophy. Glycogen content was increased following overload in wild-type mice. In conclusion, our functional, transcriptional, and signaling data provide evidence against the involvement of the AMPKγ3 isoform in the regulation of skeletal muscle hypertrophy. Thus, the AMPKγ3 isoform is dispensable for functional overload-induced muscle growth. Mechanical loading can override signaling pathways that act as negative effectors of mTOR signaling and consequently promote skeletal muscle hypertrophy. Copyright © 2016 the American Physiological Society.

  5. Musculoskeletal Geometry, Muscle Architecture and Functional Specialisations of the Mouse Hindlimb (Open Access)

    2016-04-26

    example, studies in cats [18], guinea pigs [16] and rabbits [19] have shown that the hamstring muscles, a bi-articular group of muscles which act around...energy in compliant tendons [20, 21], whereas others, such as the hamstrings (hip extensors and knee flexors), function to produce fast contractions

  6. An education program about pelvic floor muscles improved women's knowledge but not pelvic floor muscle function, urinary incontinence or sexual function: a randomised trial.

    de Andrade, Roberta Leopoldino; Bø, Kari; Antonio, Flavia Ignácio; Driusso, Patricia; Mateus-Vasconcelos, Elaine Cristine Lemes; Ramos, Salvador; Julio, Monica Pitanguy; Ferreira, Cristine Homsi Jorge

    2018-04-01

    Does an educational program with instructions for performing 'the Knack' improve voluntary contraction of the pelvic floor muscles, reduce reports of urinary incontinence, improve sexual function, and promote women's knowledge of the pelvic floor muscles? Randomised, controlled trial with concealed allocation, intention-to-treat analysis and blinded assessors. Ninety-nine women from the local community. The experimental group (n=50) received one lecture per week for 4 weeks, and instructions for performing 'the Knack'. The control group (n=49) received no intervention. The primary outcome was maximum voluntary contraction of the pelvic floor muscles measured using manometry. Secondary outcomes were: ability to contract the pelvic floor muscles measured using vaginal palpation; severity of urinary incontinence measured by the International Consultation on Incontinence Questionnaire-Short Form (ICIQ-SF) scored from 0 to 21; self-reported sexual function; and knowledge related to the pelvic floor. Outcomes were measured at baseline and after 4 weeks. The intervention did not significantly improve: maximum voluntary contraction (MD 2.7 cmH 2 O higher in the experimental group, 95% CI -0.5 to 5.9); ability to contract the pelvic floor muscles (RR 2.18, 95% CI 0.49 to 9.65); or self-reported severity of urinary incontinence (MD 1 point greater reduction in the experimental group, 95% CI -3 to 1). Sexual function did not significantly differ between groups, but very few of the women engaged in sexual activity during the study period. The educational program did, however, significantly increase women's knowledge related to the location, functions and dysfunctions of the pelvic floor muscles, and treatment options. Education and teaching women to perform 'the Knack' had no significant effect on voluntary contraction of the pelvic floor muscles, urinary incontinence or sexual function, but it promoted women's knowledge about the pelvic floor. Brazilian Registry of Clinical

  7. An education program about pelvic floor muscles improved women’s knowledge but not pelvic floor muscle function, urinary incontinence or sexual function: a randomised trial

    Roberta Leopoldino de Andrade

    2018-04-01

    Full Text Available Question: Does an educational program with instructions for performing ‘the Knack’ improve voluntary contraction of the pelvic floor muscles, reduce reports of urinary incontinence, improve sexual function, and promote women’s knowledge of the pelvic floor muscles? Design: Randomised, controlled trial with concealed allocation, intention-to-treat analysis and blinded assessors. Participants: Ninety-nine women from the local community. Intervention: The experimental group (n = 50 received one lecture per week for 4 weeks, and instructions for performing ‘the Knack’. The control group (n = 49 received no intervention. Outcome measures: The primary outcome was maximum voluntary contraction of the pelvic floor muscles measured using manometry. Secondary outcomes were: ability to contract the pelvic floor muscles measured using vaginal palpation; severity of urinary incontinence measured by the International Consultation on Incontinence Questionnaire-Short Form (ICIQ-SF scored from 0 to 21; self-reported sexual function; and knowledge related to the pelvic floor. Outcomes were measured at baseline and after 4 weeks. Results: The intervention did not significantly improve: maximum voluntary contraction (MD 2.7 cmH2O higher in the experimental group, 95% CI –0.5 to 5.9; ability to contract the pelvic floor muscles (RR 2.18, 95% CI 0.49 to 9.65; or self-reported severity of urinary incontinence (MD 1 point greater reduction in the experimental group, 95% CI –3 to 1. Sexual function did not significantly differ between groups, but very few of the women engaged in sexual activity during the study period. The educational program did, however, significantly increase women’s knowledge related to the location, functions and dysfunctions of the pelvic floor muscles, and treatment options. Conclusion: Education and teaching women to perform ‘the Knack’ had no significant effect on voluntary contraction of the pelvic floor muscles

  8. Effects of 2 ankle destabilization devices on electromyography measures during functional exercises in individuals with chronic ankle instability.

    Donovan, Luke; Hart, Joseph M; Hertel, Jay

    2015-03-01

    Randomized crossover laboratory study. To determine the effects of ankle destabilization devices on surface electromyography (sEMG) measures of selected lower extremity muscles during functional exercises in participants with chronic ankle instability. Ankle destabilization devices are rehabilitation tools that can be worn as a boot or sandal to increase lower extremity muscle activation during walking in healthy individuals. However, they have not been tested in a population with pathology. Fifteen adults with chronic ankle instability participated. Surface electromyography electrodes were located over the anterior tibialis, fibularis longus, lateral gastrocnemius, rectus femoris, biceps femoris, and gluteus medius. The activity level of these muscles was recorded in a single testing session during unipedal stance with eyes closed, the Star Excursion Balance Test, lateral hops, and treadmill walking. Each task was performed under 3 conditions: shod, ankle destabilization boot, and ankle destabilization sandal. Surface electromyography signal amplitudes were measured for each muscle during each exercise for all 3 conditions. Participants demonstrated a significant increase, with moderate to large effect sizes, in sEMG signal amplitude of the fibularis longus in the ankle destabilization boot and ankle destabilization sandal conditions during the unipedal eyes-closed balance test, the Star Excursion Balance Test in the anterior and posteromedial directions, lateral hops, and walking, when compared to the shod condition. Both devices also resulted in an increase in sEMG signal amplitudes, with large effect sizes of the lateral gastrocnemius, rectus femoris, biceps femoris, and gluteus medius during the unipedal-stance-with-eyes-closed test, compared to the shod condition. Wearing ankle destabilization devices caused greater muscle activation during functional exercises in individuals with chronic ankle instability. Based on the magnitude of the effect, there were

  9. Physical activity as intervention for age-related loss of muscle mass and function

    Eriksen, Christian Skou; Garde, Ellen; Reislev, Nina Linde

    2016-01-01

    insights into training-induced promotion of functional ability and independency after retirement and will help to formulate national recommendations regarding physical activity schemes for the growing population of older individuals in western societies. Results will be published in scientific peer......INTRODUCTION: Physical and cognitive function decline with age, accelerating during the 6th decade. Loss of muscle power (force×velocity product) is a dominant physical determinant for loss of functional ability, especially if the lower extremities are affected. Muscle strength training is known...... to maintain or even improve muscle power as well as physical function in older adults, but the optimal type of training for beneficial long-term training effects over several years is unknown. Moreover, the impact of muscle strength training on cognitive function and brain structure remains speculative...

  10. Hsp72 preserves muscle function and slows progression of severe muscular dystrophy.

    Gehrig, Stefan M; van der Poel, Chris; Sayer, Timothy A; Schertzer, Jonathan D; Henstridge, Darren C; Church, Jarrod E; Lamon, Severine; Russell, Aaron P; Davies, Kay E; Febbraio, Mark A; Lynch, Gordon S

    2012-04-04

    Duchenne muscular dystrophy (DMD) is a severe and progressive muscle wasting disorder caused by mutations in the dystrophin gene that result in the absence of the membrane-stabilizing protein dystrophin. Dystrophin-deficient muscle fibres are fragile and susceptible to an influx of Ca(2+), which activates inflammatory and muscle degenerative pathways. At present there is no cure for DMD, and existing therapies are ineffective. Here we show that increasing the expression of intramuscular heat shock protein 72 (Hsp72) preserves muscle strength and ameliorates the dystrophic pathology in two mouse models of muscular dystrophy. Treatment with BGP-15 (a pharmacological inducer of Hsp72 currently in clinical trials for diabetes) improved muscle architecture, strength and contractile function in severely affected diaphragm muscles in mdx dystrophic mice. In dko mice, a phenocopy of DMD that results in severe spinal curvature (kyphosis), muscle weakness and premature death, BGP-15 decreased kyphosis, improved the dystrophic pathophysiology in limb and diaphragm muscles and extended lifespan. We found that the sarcoplasmic/endoplasmic reticulum Ca(2+)-ATPase (SERCA, the main protein responsible for the removal of intracellular Ca(2+)) is dysfunctional in severely affected muscles of mdx and dko mice, and that Hsp72 interacts with SERCA to preserve its function under conditions of stress, ultimately contributing to the decreased muscle degeneration seen with Hsp72 upregulation. Treatment with BGP-15 similarly increased SERCA activity in dystrophic skeletal muscles. Our results provide evidence that increasing the expression of Hsp72 in muscle (through the administration of BGP-15) has significant therapeutic potential for DMD and related conditions, either as a self-contained therapy or as an adjuvant with other potential treatments, including gene, cell and pharmacological therapies.

  11. Lack of Glycogenin Causes Glycogen Accumulation and Muscle Function Impairment.

    Testoni, Giorgia; Duran, Jordi; García-Rocha, Mar; Vilaplana, Francisco; Serrano, Antonio L; Sebastián, David; López-Soldado, Iliana; Sullivan, Mitchell A; Slebe, Felipe; Vilaseca, Marta; Muñoz-Cánoves, Pura; Guinovart, Joan J

    2017-07-05

    Glycogenin is considered essential for glycogen synthesis, as it acts as a primer for the initiation of the polysaccharide chain. Against expectations, glycogenin-deficient mice (Gyg KO) accumulate high amounts of glycogen in striated muscle. Furthermore, this glycogen contains no covalently bound protein, thereby demonstrating that a protein primer is not strictly necessary for the synthesis of the polysaccharide in vivo. Strikingly, in spite of the higher glycogen content, Gyg KO mice showed lower resting energy expenditure and less resistance than control animals when subjected to endurance exercise. These observations can be attributed to a switch of oxidative myofibers toward glycolytic metabolism. Mice overexpressing glycogen synthase in the muscle showed similar alterations, thus indicating that this switch is caused by the excess of glycogen. These results may explain the muscular defects of GSD XV patients, who lack glycogenin-1 and show high glycogen accumulation in muscle. Copyright © 2017 Elsevier Inc. All rights reserved.

  12. A physiologically based, multi-scale model of skeletal muscle structure and function

    Oliver eRöhrle

    2012-09-01

    Full Text Available Models of skeletal muscle can be classified as phenomenological or biophysical. Phenomenological models predict the muscle's response to a specified input based on experimental measurements. Prominent phenomenological models are the Hill-type muscle models, which have been incorporated into rigid-body modelling frameworks, and three-dimensional continuum-mechanical models. Biophysically based models attempt to predict the muscle's response as emerging from the underlying physiology of the system. In this contribution, the conventional biophysically based modelling methodology is extended to include several structural and functional characteristics of skeletal muscle. The result is a physiologically based, multi-scale skeletal muscle finite element model that is capable of representing detailed, geometrical descriptions of skeletal muscle fibres and their grouping. Together with a well-established model of motor unit recruitment, the electro-physiological behaviour of single muscle fibres within motor units is computed and linked to a continuum-mechanical constitutive law. The bridging between the cellular level and the organ level has been achieved via a multi-scale constitutive law and homogenisation. The effect of homogenisation has been investigated by varying the number of embedded skeletal muscle fibres and/or motor units and computing the resulting exerted muscle forces while applying the same excitatory input. All simulations were conducted using an anatomically realistic finite element model of the Tibialis Anterior muscle. Given the fact that the underlying electro-physiological cellular muscle model is capable of modelling metabolic fatigue effects such as potassium accumulation in the T-tubular space and inorganic phosphate build-up, the proposed framework provides a novel simulation-based way to investigate muscle behaviour ranging from motor unit recruitment to force generation and fatigue.

  13. Current concepts in MRI of rectus femoris musculotendinous (myotendinous) and myofascial injuries in elite athletes

    Kassarjian, A., E-mail: Kassarjian@mac.com [Consultant Radiologist, Corades, S. L., Calle Galeon 2, 28220 Majadahonda, Madrid (Spain); Rodrigo, R.M., E-mail: rmrodrigo@resonanciamagneticabilbao.com [Resonancia Magnetica Bilbao, Hospital San Francisco Javier, Gordoniz 12, 40010 Bilbao, Vizcaya, Basque Country (Spain); Santisteban, J.M., E-mail: j.santisteban@athletic-club.net [Medical Services, Athletic Club Bilbao, Basurto Medical Institute, Faculty of Medicine and Odontology, University of the Basque Country, Barrio de Garaioltza 147, 48197 Lezama, Vizcaya, Basque Country (Spain)

    2012-12-15

    Rectus femoris injuries are extremely common in athletes, particularly in soccer players, rugby player, and sprinters. Magnetic resonance imaging (MRI) plays a key role in diagnosis, prognosis, and rehabilitation of these injuries. The current article discusses current concepts in the diagnosis and treatment of rectus femoris injuries in elite athletes, including a discussion of the less well known myofascial injuries and key prognostic factors as seen at MR imaging.

  14. Current concepts in MRI of rectus femoris musculotendinous (myotendinous) and myofascial injuries in elite athletes

    Kassarjian, A.; Rodrigo, R.M.; Santisteban, J.M.

    2012-01-01

    Rectus femoris injuries are extremely common in athletes, particularly in soccer players, rugby player, and sprinters. Magnetic resonance imaging (MRI) plays a key role in diagnosis, prognosis, and rehabilitation of these injuries. The current article discusses current concepts in the diagnosis and treatment of rectus femoris injuries in elite athletes, including a discussion of the less well known myofascial injuries and key prognostic factors as seen at MR imaging.

  15. Effects of isokinetic calf muscle exercise program on muscle strength and venous function in patients with chronic venous insufficiency.

    Ercan, Sabriye; Çetin, Cem; Yavuz, Turhan; Demir, Hilmi M; Atalay, Yurdagül B

    2018-05-01

    Objective The aim of this study was to observe the change of the ankle joint range of motion, the muscle strength values measured with an isokinetic dynamometer, pain scores, quality of life scale, and venous return time in chronic venous insufficiency diagnosed patients by prospective follow-up after 12-week exercise program including isokinetic exercises. Methods The patient group of this study comprised 27 patients (23 female, 4 male) who were diagnosed with chronic venous insufficiency. An exercise program including isokinetic exercise for the calf muscle was given to patients three days per week for 12 weeks. At the end of 12 weeks, five of the patients left the study due to inadequate compliance with the exercise program. As a result, control data of 22 patients were included. Ankle joint range of active motion, isokinetic muscle strength, pain, quality of life, and photoplethysmography measurements were assessed before starting and after the exercise program. Results Evaluating changes of the starting and control data depending on time showed that all isokinetic muscle strength measurement parameters, range of motion, and overall quality of life values of patients improved. Venous return time values have also increased significantly ( p < 0.05). Conclusion In conclusion, increase in muscle strength has been provided with exercise therapy in patients with chronic venous insufficiency. It has been determined that the increase in muscle strength affected the venous pump and this ensured improvement in venous function and range of motion of the ankle. In addition, it has been detected that pain reduced and quality of life improved after the exercise program.

  16. Changes in the Muscle strength and functional performance of healthy women with aging

    Roghayeh Mousavikhatir

    2012-08-01

    Full Text Available Abstract Background: Lower limbs antigravity muscles weakness and decreased functional ability have significant role in falling. The aim of this study was to find the effects of aging on muscle strength and functional ability, determining the range of decreasing strength and functional ability and relationship between them in healthy women. Methods: Across-section study was performed on 101 healthy women aged 21-80 years. The participants were divided into six age groups. The maximum isometric strength of four muscle groups was measured using a hand-held dynamometer bilaterally. The functional ability was measured with functional reach (FR, timed get up and go (TGUG, single leg stance (SLS, and stairs walking (SW tests. Results: Muscle strength changes were not significant between 21-40 years of age, but decreased significantly thereafter. Also, there was a significant relationship between muscle strength and functional ability in age groups. Conclusion: Both muscle strength and functional ability is reduced as a result of aging, but the decrease in functional ability can be detected earlier.

  17. The Link between Dietary Protein Intake, Skeletal Muscle Function and Health in Older Adults

    Jamie I. Baum

    2015-07-01

    Full Text Available Skeletal muscle mass and function are progressively lost with age, a condition referred to as sarcopenia. By the age of 60, many older adults begin to be affected by muscle loss. There is a link between decreased muscle mass and strength and adverse health outcomes such as obesity, diabetes and cardiovascular disease. Data suggest that increasing dietary protein intake at meals may counterbalance muscle loss in older individuals due to the increased availability of amino acids, which stimulate muscle protein synthesis by activating the mammalian target of rapamycin (mTORC1. Increased muscle protein synthesis can lead to increased muscle mass, strength and function over time. This review aims to address the current recommended dietary allowance (RDA for protein and whether or not this value meets the needs for older adults based upon current scientific evidence. The current RDA for protein is 0.8 g/kg body weight/day. However, literature suggests that consuming protein in amounts greater than the RDA can improve muscle mass, strength and function in older adults.

  18. [Correlations Between Joint Proprioception, Muscle Strength, and Functional Ability in Patients with Knee Osteoarthritis].

    Chen, Yoa; Yu, Yong; He, Cheng-qi

    2015-11-01

    To establish correlations between joint proprioception, muscle flexion and extension peak torque, and functional ability in patients with knee osteoarthritis (OA). Fifty-six patients with symptomatic knee OA were recruited in this study. Both proprioceptive acuity and muscle strength were measured using the isomed-2000 isokinetic dynamometer. Proprioceptive acuity was evaluated by establishing the joint motion detection threshold (JMDT). Muscle strength was evaluated by Max torque (Nm) and Max torque/weight (Nm/ kg). Functional ability was assessed by the Western Ontario and McMaster Universities Osteoarthritis Index physical function (WOMAC-PF) questionnaire. Correlational analyses were performed between proprioception, muscle strength, and functional ability. A multiple stepwise regression model was established, with WOMAC-PF as dependent variable and patient age, body mass index (BMI), visual analogue scale (VAS)-score, mean grade for Kellgren-Lawrance of both knees, mean strength for quadriceps and hamstring muscles of both knees, and mean JMDT of both knees as independent variables. Poor proprioception (high JMDT) was negatively correlated with muscle strength (Pcoefficient (B) = 0.385, P<0.50 and high VAS-scale score (B=0.347, P<0.05) were significant predictors of WOMAC-PF score. Patients with poor proprioception is associated with poor muscle strength and limitation in functional ability. Patients with symptomatic OA of knees commonly endure with moderate to considerable dysfunction, which is associated with poor proprioception (high JMDT) and high VAS-scale score.

  19. Cavin4b/Murcb Is Required for Skeletal Muscle Development and Function in Zebrafish.

    Housley, Michael P; Njaine, Brian; Ricciardi, Filomena; Stone, Oliver A; Hölper, Soraya; Krüger, Marcus; Kostin, Sawa; Stainier, Didier Y R

    2016-06-01

    Skeletal muscles provide metazoans with the ability to feed, reproduce and avoid predators. In humans, a heterogeneous group of genetic diseases, termed muscular dystrophies (MD), lead to skeletal muscle dysfunction. Mutations in the gene encoding Caveolin-3, a principal component of the membrane micro-domains known as caveolae, cause defects in muscle maintenance and function; however it remains unclear how caveolae dysfunction underlies MD pathology. The Cavin family of caveolar proteins can form membrane remodeling oligomers and thus may also impact skeletal muscle function. Changes in the distribution and function of Cavin4/Murc, which is predominantly expressed in striated muscles, have been reported to alter caveolae structure through interaction with Caveolin-3. Here, we report the generation and phenotypic analysis of murcb mutant zebrafish, which display impaired swimming capacity, skeletal muscle fibrosis and T-tubule abnormalities during development. To understand the mechanistic importance of Murc loss of function, we assessed Caveolin-1 and 3 localization and found it to be abnormal. We further identified an in vivo function for Murc in Erk signaling. These data link Murc with developmental defects in T-tubule formation and progressive muscle dysfunction, thereby providing a new candidate for the etiology of muscular dystrophy.

  20. Cavin4b/Murcb Is Required for Skeletal Muscle Development and Function in Zebrafish.

    Michael P Housley

    2016-06-01

    Full Text Available Skeletal muscles provide metazoans with the ability to feed, reproduce and avoid predators. In humans, a heterogeneous group of genetic diseases, termed muscular dystrophies (MD, lead to skeletal muscle dysfunction. Mutations in the gene encoding Caveolin-3, a principal component of the membrane micro-domains known as caveolae, cause defects in muscle maintenance and function; however it remains unclear how caveolae dysfunction underlies MD pathology. The Cavin family of caveolar proteins can form membrane remodeling oligomers and thus may also impact skeletal muscle function. Changes in the distribution and function of Cavin4/Murc, which is predominantly expressed in striated muscles, have been reported to alter caveolae structure through interaction with Caveolin-3. Here, we report the generation and phenotypic analysis of murcb mutant zebrafish, which display impaired swimming capacity, skeletal muscle fibrosis and T-tubule abnormalities during development. To understand the mechanistic importance of Murc loss of function, we assessed Caveolin-1 and 3 localization and found it to be abnormal. We further identified an in vivo function for Murc in Erk signaling. These data link Murc with developmental defects in T-tubule formation and progressive muscle dysfunction, thereby providing a new candidate for the etiology of muscular dystrophy.

  1. Expression and functional characterization of Smyd1a in myofibril organization of skeletal muscles.

    Gao, Jie; Li, Junling; Li, Bao-Jun; Yagil, Ezra; Zhang, Jianshe; Du, Shao Jun

    2014-01-01

    Smyd1, the founding member of the Smyd family including Smyd-1, 2, 3, 4 and 5, is a SET and MYND domain containing protein that plays a key role in myofibril assembly in skeletal and cardiac muscles. Bioinformatic analysis revealed that zebrafish genome contains two highly related smyd1 genes, smyd1a and smyd1b. Although Smyd1b function is well characterized in skeletal and cardiac muscles, the function of Smyd1a is, however, unknown. To investigate the function of Smyd1a in muscle development, we isolated smyd1a from zebrafish, and characterized its expression and function during muscle development via gene knockdown and transgenic expression approaches. The results showed that smyd1a was strongly expressed in skeletal muscles of zebrafish embryos. Functional analysis revealed that knockdown of smyd1a alone had no significant effect on myofibril assembly in zebrafish skeletal muscles. However, knockdown of smyd1a and smyd1b together resulted in a complete disruption of myofibril organization in skeletal muscles, a phenotype stronger than knockdown of smyd1a or smyd1b alone. Moreover, ectopic expression of zebrafish smyd1a or mouse Smyd1 transgene could rescue the myofibril defects from the smyd1b knockdown in zebrafish embryos. Collectively, these data indicate that Smyd1a and Smyd1b share similar biological activity in myofibril assembly in zebrafish embryos. However, Smyd1b appears to play a major role in this process.

  2. Optimizing the Distribution of Leg Muscles for Vertical Jumping

    Wong, Jeremy D.; Bobbert, Maarten F.; van Soest, Arthur J.; Gribble, Paul L.; Kistemaker, Dinant A.

    2016-01-01

    A goal of biomechanics and motor control is to understand the design of the human musculoskeletal system. Here we investigated human functional morphology by making predictions about the muscle volume distribution that is optimal for a specific motor task. We examined a well-studied and relatively simple human movement, vertical jumping. We investigated how high a human could jump if muscle volume were optimized for jumping, and determined how the optimal parameters improve performance. We used a four-link inverted pendulum model of human vertical jumping actuated by Hill-type muscles, that well-approximates skilled human performance. We optimized muscle volume by allowing the cross-sectional area and muscle fiber optimum length to be changed for each muscle, while maintaining constant total muscle volume. We observed, perhaps surprisingly, that the reference model, based on human anthropometric data, is relatively good for vertical jumping; it achieves 90% of the jump height predicted by a model with muscles designed specifically for jumping. Alteration of cross-sectional areas—which determine the maximum force deliverable by the muscles—constitutes the majority of improvement to jump height. The optimal distribution results in large vastus, gastrocnemius and hamstrings muscles that deliver more work, while producing a kinematic pattern essentially identical to the reference model. Work output is increased by removing muscle from rectus femoris, which cannot do work on the skeleton given its moment arm at the hip and the joint excursions during push-off. The gluteus composes a disproportionate amount of muscle volume and jump height is improved by moving it to other muscles. This approach represents a way to test hypotheses about optimal human functional morphology. Future studies may extend this approach to address other morphological questions in ethological tasks such as locomotion, and feature other sets of parameters such as properties of the skeletal

  3. Vascular and Skeletal Muscle Function in Gulf War Veterans Illness

    2017-07-01

    DNA, RNA, and protein from muscle tissue samples. Prepare cDNA from RNA samples. 4-28 Pending Complete qPCR and Western Blot to assess genes and...Lab from cDNA samples 24-30 Pending Interpret results and identify candidate genes related to Gulf War Illness 24-30 Pending Milestone: Complete

  4. Functional and morphological variety in trunk muscles of Urodela.

    Omura, Ayano; Anzai, Wataru; Endo, Hideki

    2014-03-01

    Trunk musculature in Urodela species varies by habitat. In this study, trunk musculature was examined in five species of adult salamanders representing three different habitats: aquatic species, Amphiuma tridactylum and Necturus maculosus; semi-aquatic species, Cynops pyrrhogaster; terrestrial species, Hynobius nigrescens and Ambystoma tigrinum. More terrestrial species have heavier dorsal and ventral trunk muscles than more aquatic forms. By contrast, the lateral hypaxial musculature was stronger in more aquatic species. The number of layers of lateral hypaxial musculature varied among Urodela species and did not clearly correlate with their habitats. The M. rectus abdominis was separated from the lateral hypaxial musculature in both terrestrial and semi-aquatic species. In aquatic species, M. rectus abdominis was not separated from lateral hypaxial musculature. Lateral hypaxial musculature differed in thickness among species and was relatively thinner in terrestrial species. In more terrestrial species, dorsal muscles may be used for stabilization and ventral flexing against gravity. Ventral muscle may be used in preventing dorsally concave curvature of the trunk by dorsal muscles and by weight. The lengthy trunk supported by limbs needs muscular forces along the ventral contour line in more terrestrial species. And, the locomotion on well-developed limbs seems to lead to a decrease of the lateral hypaxial musculature.

  5. Thigh muscle volume predicted by anthropometric measurements and correlated with physical function in the older adults.

    Chen, B B; Shih, T T F; Hsu, C Y; Yu, C W; Wei, S Y; Chen, C Y; Wu, C H; Chen, C Y

    2011-06-01

    (1) to correlate thigh muscle volume measured by magnetic resonance image (MRI) with anthropometric measurements and physical function in elderly subjects; (2) to predict MRI-measured thigh muscle volume using anthropometric measurements and physical functional status in elderly subjects. Cross-sectional, nonrandomized study. Outpatient clinic in Taiwan. Sixty-nine elderly subjects (33 men and 36 women) aged 65 and older. The anthropometric data (including body height, body weight, waist size, and thigh circumference), physical activity and function (including grip strength, bilateral quadriceps muscle power, the up and go test, chair rise, and five meters walk time) and bioelectrical impedance analysis data (including total body fat mass, fat-free mass, and predictive muscle size) were measured. MRI-measured muscle volume of both thighs was used as the reference standard. The MRI-measured thigh volume was positively correlated with all anthropometric data, quadriceps muscle power and the up and go test as well as fat-free mass and predictive muscle mass, whereas it was negatively associated with age and walk time. In predicting thigh muscle volume, the variables of age, gender, body weight, and thigh circumference were significant predictors in the linear regression model: Muscle volume (cm3) =4226.3-42.5 × Age (year)-955.7 × gender (male=1, female=2) + 45.9 × body weight(kg) + 60.0 × thigh circumference (cm) (r2 = 0.745, P estimate = 581.6 cm3). The current work provides evidence of a strong relationship between thigh muscle volume and physical function in the elderly. We also developed a prediction equation model using anthropometric measurements. This model is a simple and noninvasive method for everyday clinical practice and follow-up.

  6. Mitochondrial function in human skeletal muscle following high-altitude exposure

    Jacobs, Robert A; Boushel, Robert; Wright-Paradis, Cynthia

    2013-01-01

    Studies regarding mitochondrial modifications in human skeletal muscle following acclimatization to high altitude are conflicting, and these inconsistencies may be due to the prevalence of representing mitochondrial function through static and isolated measurements of specific mitochondrial...... characteristics. The aim of this study, therefore, was to investigate mitochondrial function in response to high-altitude acclimatization through measurements of respiratory control in the vastus lateralis muscle. Skeletal muscle biopsies were obtained from 10 lowland natives prior to and again after a total of 9......-11 days of exposure to 4559 m. High-resolution respirometry was performed on the muscle samples to compare respiratory chain function and respiratory capacities. Respirometric analysis revealed that mitochondrial function was largely unaffected, because high-altitude exposure did not affect the capacity...

  7. Impaired physical function, loss of muscle mass and assessment of biomechanical properties in critical ill patients

    Poulsen, Jesper Brøndum

    2012-01-01

    Intensive care unit (ICU) admission is associated with muscle weakness and ICU survivors report sustained limitation of physical capacity for years after discharge. Limited information is available on the underlying biomechanical properties responsible for this muscle function impairment. A plaus......Intensive care unit (ICU) admission is associated with muscle weakness and ICU survivors report sustained limitation of physical capacity for years after discharge. Limited information is available on the underlying biomechanical properties responsible for this muscle function impairment....... A plausible contributor to the accentuated catabolic drive in ICU patients is a synergistic response to inflammation and inactivity leading to loss of muscle mass. As these entities are predominantly present in the early phase of ICU stay, interventions employed during this time frame may exhibit the greatest...... potential to counteract loss of muscle mass. Despite the obvious clinical significance of muscle atrophy for the functional impairment observed in ICU survivors, no preventive therapies have been identified as yet. The overall aim of the present dissertation is to characterize aspects of physical function...

  8. The effect of the inspiratory muscle training on functional ability in stroke patients.

    Jung, Nam-Jin; Na, Sang-Su; Kim, Seung-Kyu; Hwangbo, Gak

    2017-11-01

    [Purpose] This study was to find out an inspiratory muscle training (IMT) program therapeutic effects on stroke patients' functional ability. [Subjects and Methods] Twenty stroke patients were assigned to one of two groups: inspiratory muscle training (n=10), and control (n=10), randomization. The inspiratory muscle training participants undertook an exercise program for 30 minute per times, 5 times a week for 6 weeks. The investigator measured the patients' trunk impairment scale (TIS) and 6 minute walking test (6MW) for functional ability before and after IMT. [Results] The TIS appeared some significant differences in both groups before and after the training. The 6MW test showed some significant differences in the inspiratory muscle training group, but didn't show any significant difference in the control group. And the differences in both groups after depending the inspiratory muscle training were significantly found in the tests of TIS and 6MW test [Conclusion] The results showed that the inspiratory muscle training in stroke patients are correlated with the trunk stability and locomotion ability, suggesting that physical therapist must take into consideration the inspiratory muscle training, as well as functional training to improve physical function in stroke patients.

  9. Traditional versus functional strength training: Effects on muscle strength and power in the elderly

    Seiler, Hilde Lohne; Torstveit, Monica Klungland; Anderssen, Sigmund A.

    2013-01-01

    Published versiom of an article in the journal:Journal of Aging and Physical Activity. Also available from Human Kinetics: http://http://journals.humankinetics.com/japa-back-issues/japa-volume-21-issue-1-january/traditional-versus-functional-strength-training-effects-on-muscle-strength-and-power-in-the-elderly The aim was to determine whether strength training with machines vs. functional strength training at 80% of one-repetition maximum improves muscle strength and power among the elderl...

  10. Joint proprioception, muscle strength, and functional ability in patients with osteoarthritis of the knee.

    van der Esch, M; Steultjens, M; Harlaar, J; Knol, D; Lems, W; Dekker, J

    2007-06-15

    To test the hypotheses that poor knee joint proprioception is related to limitations in functional ability, and poor proprioception aggravates the impact of muscle weakness on limitations in functional ability in osteoarthritis (OA) of the knee. Sixty-three patients with symptomatic OA of the knee were tested. Proprioceptive acuity was assessed by establishing the joint motion detection threshold (JMDT) in the anteroposterior direction. Muscle strength was measured using a computer-driven isokinetic dynamometer. Functional ability was assessed by the 100-meter walking test, the Get Up and Go (GUG) test, and the Western Ontario and McMaster Universities Osteoarthritis Index physical function (WOMAC-PF) questionnaire. Correlation analyses were performed to assess the relationship between proprioception, muscle strength, and functional ability. Regression analyses were performed to assess the impact of proprioception on the relationship between muscle strength and functional ability. Poor proprioception (high JMDT) was related to more limitation in functional ability (walking time r = 0.30, P < 0.05; GUG time r = 0.30, P < 0.05; WOMAC-PF r = 0.26, P <0.05). In regression analyses, the interaction between proprioception and muscle strength was significantly related to functional ability (walking time, P < 0.001 and GUG time, P < 0.001) but not to WOMAC-PF score (P = 0.625). In patients with poor proprioception, reduction of muscle strength was associated with more severe deterioration of functional ability than in patients with accurate proprioception. Patients with poor proprioception show more limitation in functional ability, but this relationship is rather weak. In patients with poor proprioception, muscle weakness has a stronger impact on limitations in functional ability than in patients with accurate proprioception.

  11. Impact of Functional Appliances on Muscle Activity: A Surface Electromyography Study in Children

    Woźniak, Krzysztof; Piątkowska, Dagmara; Szyszka-Sommerfeld, Liliana; Buczkowska-Radlińska, Jadwiga

    2015-01-01

    Background Electromyography (EMG) is the most objective tool for assessing changes in the electrical activity of the masticatory muscles. The purpose of the study was to evaluate the tone of the masseter and anterior temporalis muscles in growing children before and after 6 months of treatment with functional removable orthodontic appliances. Material/Methods The sample conisted of 51 patients with a mean age 10.7 years with Class II malocclusion. EMG recordings were performed by using a DAB-Bluetooth instrument (Zebris Medical GmbH, Germany). Recordings were performed in mandibular rest position, during maximum voluntary contraction (MVC), and during maximum effort. Results The results of the study indicated that the electrical activity of the muscles in each of the clinical situations was the same in the group of girls and boys. The factor that determined the activity of the muscles was their type. In mandibular rest position and in MVC, the activity of the temporalis muscles was significantly higher that that of the masseter muscels. The maximum effort test indicated a higher fatigue in masseter than in temporalis muscles. Conclusions Surface electromyography is a useful tool for monitoring muscle activity. A 6-month period of functional therapy resulted in changes in the activity of the masticatory muscles. PMID:25600247

  12. Association between selenium plasma levels and muscle function in hemodialysis patients

    Milena B Stockler-Pinto

    2012-06-01

    Full Text Available Selenium (Se is a well-known antioxidant with a critical role in the proper functioning of nervous and muscle functions. In the last decade, many authors have suggested that Se may be a potent protective agent for neurons and myocytes through selenoprotein expression in the brain, as well as in skeletal and cardiac muscles. Low Se status has been associated with reduced coordination, motor speed and muscle strength. Reduced muscle function is common in hemodialysis (HD patients; however, no study evaluated the association between muscle function and Se levels in HD patients. The objective of this study was to correlate muscle function with Se plasma levels in HD patients. Twenty HD patients (12 men, 54.5±15.2 yr; 81.7±52.8 months on HD from RenalCor Clinic at Rio de Janeiro, Brazil were studied. Blood samples were collected during fasting, before a regular HD session. The Se plasma levels were determined by atomic absorption spectrophotometry with hydride generation (Hitachi, Z-500 and handgrip strength (HGS was measured three times with a mechanical dynamometer (Jamar after HD sessions in the non-fistula side and the highest value was used for analysis. HGS values less than the 10th percentile of an age-, gender- and regional specific reference were considered as muscle function loss. Plasma Se levels (31.9±14.8 μg/L were below the normal range (60-120 μg/L and all patients were Se deficient. HGS values were significantly greater in males (31.0±11.5 kg vs 14.0±6.8 kg for females (p=0.001 and the muscle function loss was observed in 50% of patients and, those with muscle function loss presented low Se levels (26.5±12.1 μg/L when compared to patients with preserved muscle function (39.12±14.5 μg/L (p=0.05. These data suggest that Se can have an important role on muscle function in HD patients. However, more research is needed to better understand this possible relationship in CKD patients.

  13. Development of estimation system of knee extension strength using image features in ultrasound images of rectus femoris

    Murakami, Hiroki; Watanabe, Tsuneo; Fukuoka, Daisuke; Terabayashi, Nobuo; Hara, Takeshi; Muramatsu, Chisako; Fujita, Hiroshi

    2016-04-01

    The word "Locomotive syndrome" has been proposed to describe the state of requiring care by musculoskeletal disorders and its high-risk condition. Reduction of the knee extension strength is cited as one of the risk factors, and the accurate measurement of the strength is needed for the evaluation. The measurement of knee extension strength using a dynamometer is one of the most direct and quantitative methods. This study aims to develop a system for measuring the knee extension strength using the ultrasound images of the rectus femoris muscles obtained with non-invasive ultrasonic diagnostic equipment. First, we extract the muscle area from the ultrasound images and determine the image features, such as the thickness of the muscle. We combine these features and physical features, such as the patient's height, and build a regression model of the knee extension strength from training data. We have developed a system for estimating the knee extension strength by applying the regression model to the features obtained from test data. Using the test data of 168 cases, correlation coefficient value between the measured values and estimated values was 0.82. This result suggests that this system can estimate knee extension strength with high accuracy.

  14. Asymmetry and Thigh Muscle Coactivity in Fatigued Anterior Cruciate Ligament-Reconstructed Elite Skiers

    Jordan, Matthew J; Aagaard, Per; Herzog, Walter

    2017-01-01

    PURPOSE: The acute effects of fatigue on functional interlimb asymmetry and quadriceps/hamstring muscle activity levels, including preparatory coactivation during squat jump takeoff and landing, were evaluated in elite alpine ski racers with/without anterior cruciate ligament reconstruction (ACLR......). METHODS: Twenty-two elite ski racers (ACLR, n = 11; control, n = 11) performed an 80-s repeated squat jump test (jump test) on a dual force plate system with simultaneous EMG recordings in vastus lateralis, vastus medialis, semitendinosus, and biceps femoris. Asymmetry index (AI) and jump height of body...

  15. Synaptic and functional linkages between spinal premotor interneurons and hand-muscle activity during precision grip

    Tomohiko eTakei

    2013-04-01

    Full Text Available Grasping is a highly complex movement that requires the coordination of a number of hand joints and muscles. Previous studies showed that spinal premotor interneurons (PreM-INs in the primate cervical spinal cord have divergent synaptic effects on hand motoneurons and that they might contribute to hand-muscle synergies. However, the extent to which these PreM-IN synaptic connections functionally contribute to modulating hand-muscle activity is not clear. In this paper, we explored the contribution of spinal PreM-INs to hand-muscle activation by quantifying the synaptic linkage (SL and functional linkage (FL of the PreM-INs with hand-muscle activities. The activity of 23 PreM-INs was recorded from the cervical spinal cord (C6–T1, with EMG signals measured simultaneously from hand and arm muscles in two macaque monkeys performing a precision grip task. Spike-triggered averages (STAs of rectified EMGs were compiled for 456 neuron–muscle pairs; 63 pairs showed significant post-spike effects (i.e., SL. Conversely, 231 of 456 pairs showed significant cross-correlations between the IN firing rate and rectified EMG (i.e., FL. Importantly, a greater proportion of the neuron–muscle pairs with SL showed FL (43/63 pairs, 68% compared with the pairs without SL (203/393, 52%, and the presence of SL was significantly associated with that of FL. However, a significant number of pairs had SL without FL (SL∩!FL, n = 20 or FL without SL (!SL∩FL, n = 203, and the proportions of these incongruities exceeded the number expected by chance. These results suggested that spinal PreM-INs function to significantly modulate hand-muscle activity during precision grip, but the contribution of other neural structures is also needed to recruit an adequate combination of hand-muscle motoneurons.

  16. Impact of Resistance Training on Skeletal Muscle Mitochondrial Biogenesis, Content, and Function

    Thomas Groennebaek

    2017-09-01

    Full Text Available Skeletal muscle metabolic and contractile properties are reliant on muscle mitochondrial and myofibrillar protein turnover. The turnover of these specific protein pools is compromised during disease, aging, and inactivity. Oppositely, exercise can accentuate muscle protein turnover, thereby counteracting decay in muscle function. According to a traditional consensus, endurance exercise is required to drive mitochondrial adaptations, while resistance exercise is required to drive myofibrillar adaptations. However, concurrent practice of traditional endurance exercise and resistance exercise regimens to achieve both types of muscle adaptations is time-consuming, motivationally demanding, and contended to entail practice at intensity levels, that may not comply with clinical settings. It is therefore of principle interest to identify effective, yet feasible, exercise strategies that may positively affect both mitochondrial and myofibrillar protein turnover. Recently, reports indicate that traditional high-load resistance exercise can stimulate muscle mitochondrial biogenesis and mitochondrial respiratory function. Moreover, fatiguing low-load resistance exercise has been shown capable of promoting muscle hypertrophy and expectedly entails greater metabolic stress to potentially enhance mitochondrial adaptations. Consequently, fatiguing low-load resistance exercise regimens may possess the ability to stimulate muscle mitochondrial adaptations without compromising muscle myofibrillar accretion. However, the exact ability of resistance exercise to drive mitochondrial adaptations is debatable, not least due to some methodological challenges. The current review therefore aims to address the evidence on the effects of resistance exercise on skeletal muscle mitochondrial biogenesis, content and function. In prolongation, a perspective is taken on the specific potential of low-load resistance exercise on promoting mitochondrial adaptations.

  17. Effectiveness of the Wavelet Transform on the Surface EMG to Understand the Muscle Fatigue During Walk

    Hussain, M. S.; Mamun, Md.

    2012-01-01

    Muscle fatigue is the decline in ability of a muscle to create force. Electromyography (EMG) is a medical technique for measuring muscle response to nervous stimulation. During a sustained muscle contraction, the power spectrum of the EMG shifts towards lower frequencies. These effects are due to muscle fatigue. Muscle fatigue is often a result of unhealthy work practice. In this research, the effectiveness of the wavelet transform applied to the surface EMG (SEMG) signal as a means of understanding muscle fatigue during walk is presented. Power spectrum and bispectrum analysis on the EMG signal getting from right rectus femoris muscle is executed utilizing various wavelet functions (WFs). It is possible to recognize muscle fatigue appreciably with the proper choice of the WF. The outcome proves that the most momentous changes in the EMG power spectrum are symbolized by WF Daubechies45. Moreover, this research has compared bispectrum properties to the other WFs. To determine muscle fatigue during gait, Daubechies45 is used in this research to analyze the SEMG signal.

  18. Insulin resistance and mitochondrial function in skeletal muscle

    Dela, Flemming; Helge, Jørn Wulff

    2013-01-01

    are used in the attempt to resolve the mechanisms of insulin resistance. In this context, a dysfunction of mitochondria in the skeletal muscle has been suggested to play a pivotal role. It has been postulated that a decrease in the content of mitochondria in the skeletal muscle can explain the insulin...... resistance. Complementary to this also specific defects of components in the respiratory chain in the mitochondria have been suggested to play a role in insulin resistance. A key element in these mechanistic suggestions is inability to handle substrate fluxes and subsequently an accumulation of ectopic...... intramyocellular lipids, interfering with insulin signaling. In this review we will present the prevailing view-points and argue for the unlikelihood of this scenario being instrumental in human insulin resistance. This article is part of a Directed Issue entitled: Bioenergetic dysfunction....

  19. Epigenetic regulation of vascular smooth muscle cell function in atherosclerosis.

    Findeisen, Hannes M; Kahles, Florian K; Bruemmer, Dennis

    2013-04-01

    Epigenetics involve heritable and acquired changes in gene transcription that occur independently of the DNA sequence. Epigenetic mechanisms constitute a hierarchic upper-level of transcriptional control through complex modifications of chromosomal components and nuclear structures. These modifications include, for example, DNA methylation or post-translational modifications of core histones; they are mediated by various chromatin-modifying enzymes; and ultimately they define the accessibility of a transcriptional complex to its target DNA. Integrating epigenetic mechanisms into the pathophysiologic concept of complex and multifactorial diseases such as atherosclerosis may significantly enhance our understanding of related mechanisms and provide promising therapeutic approaches. Although still in its infancy, intriguing scientific progress has begun to elucidate the role of epigenetic mechanisms in vascular biology, particularly in the control of smooth muscle cell phenotypes. In this review, we will summarize epigenetic pathways in smooth muscle cells, focusing on mechanisms involved in the regulation of vascular remodeling.

  20. Eicosahexanoic Acid (EPA and Docosahexanoic Acid (DHA in Muscle Damage and Function

    Eisuke Ochi

    2018-04-01

    Full Text Available Nutritional supplementation not only helps in improving and maintaining performance in sports and exercise, but also contributes in reducing exercise fatigue and in recovery from exhaustion. Fish oil contains large amounts of omega-3 fatty acids, eicosapentaenoic acid (EPA; 20:5 n-3 and docosahexaenoic acid (DHA; 22:6 n-3. It is widely known that omega-3 fatty acids are effective for improving cardiac function, depression, cognitive function, and blood as well as lowering blood pressure. In the relationship between omega-3 fatty acids and exercise performance, previous studies have been predicted improved endurance performance, antioxidant and anti-inflammatory responses, and effectivity against delayed-onset muscle soreness. However, the optimal dose, duration, and timing remain unclear. This review focuses on the effects of omega-3 fatty acid on muscle damage and function as evaluated by human and animal studies and summarizes its effects on muscle and nerve damage, and muscle mass and strength.

  1. Effects of Functional Training Program in Core Muscles in Women with Fibromyalgia

    Iván Darío Pinzón-Ríos

    2015-01-01

    Full Text Available Abstract: Objective: To evaluate the effects of a program of functional muscles core training targeting women with fibromyalgia. Materials and methods: A quasi-experimental type trial was conducted, before and after an intervention, for 20 days, often three days/week, 60 minutes each session. In a single-group of eight women, changes in muscle strength, pain, quality of life related to health and physical activity were evaluated. Results: An increase in repetitions of the test trunk flexion, time on the left and right bridge testing lateral and prone bridge the test were found. All features of pain decreased, and, according to the S-FIQ, a decrease in morning fatigue, stiffness and anxiety was reported. Also Met’s/minute-weeks increased after intervention. Conclusion: These data suggest that functional program core muscle training is effective in increasing muscle strength, pain modulation, functional performance optimization, and increased levels of physical activity in women with fibromyalgia.

  2. Functional alteration of breast muscle fatty acid profile by ...

    Breast muscle fatty acid (FA) profile was studied in broiler chickens fed at different levels of n-6:n-3 polyunsaturated fatty acid (PUFA) ratios in 4 treatment groups; very high level of n-6:n-3 ratios (VH), high level of n-6:n-3 ratios (H), low level of n-6:n-3 ratios (L), very low level of n-6:n-3 ratios (VL) and control, respectively.

  3. Architectural design of the pelvic floor is consistent with muscle functional subspecialization.

    Tuttle, Lori J; Nguyen, Olivia T; Cook, Mark S; Alperin, Marianna; Shah, Sameer B; Ward, Samuel R; Lieber, Richard L

    2014-02-01

    Skeletal muscle architecture is the strongest predictor of a muscle's functional capacity. The purpose of this study was to define the architectural properties of the deep muscles of the female pelvic floor (PFMs) to elucidate their structure-function relationships. PFMs coccygeus (C), iliococcygeus (IC), and pubovisceral (PV) were harvested en bloc from ten fixed human cadavers (mean age 85 years, range 55-102). Fundamental architectural parameters of skeletal muscles [physiological cross-sectional area (PCSA), normalized fiber length, and sarcomere length (L(s))] were determined using validated methods. PCSA predicts muscle-force production, and normalized fiber length is related to muscle excursion. These parameters were compared using repeated measures analysis of variance (ANOVA) with post hoc t tests, as appropriate. Significance was set to α = 0.05. PFMs were thinner than expected based on data reported from imaging studies and in vivo palpation. Significant differences in fiber length were observed across PFMs: C = 5.29 ± 0.32 cm, IC = 7.55 ± 0.46 cm, PV = 10.45 ± 0.67 cm (p design shows individual muscles demonstrating differential architecture, corresponding to specialized function in the pelvic floor.

  4. Predicting muscle forces of individuals with hemiparesis following stroke

    Maladen Ryan

    2008-02-01

    Full Text Available Abstract Background Functional electrical stimulation (FES has been used to improve function in individuals with hemiparesis following stroke. An ideal functional electrical stimulation (FES system needs an accurate mathematical model capable of designing subject and task-specific stimulation patterns. Such a model was previously developed in our laboratory and shown to predict the isometric forces produced by the quadriceps femoris muscles of able-bodied individuals and individuals with spinal cord injury in response to a wide range of clinically relevant stimulation frequencies and patterns. The aim of this study was to test our isometric muscle force model on the quadriceps femoris, ankle dorsiflexor, and ankle plantar-flexor muscles of individuals with post-stroke hemiparesis. Methods Subjects were seated on a force dynamometer and isometric forces were measured in response to a range of stimulation frequencies (10 to 80-Hz and 3 different patterns. Subject-specific model parameter values were obtained by fitting the measured force responses from 2 stimulation trains. The model parameters thus obtained were then used to obtain predicted forces for a range of frequencies and patterns. Predicted and measured forces were compared using intra-class correlation coefficients, r2 values, and model error relative to the physiological error (variability of measured forces. Results Results showed excellent agreement between measured and predicted force-time responses (r2 >0.80, peak forces (ICCs>0.84, and force-time integrals (ICCs>0.82 for the quadriceps, dorsiflexor, and plantar-fexor muscles. The model error was within or below the +95% confidence interval of the physiological error for >88% comparisons between measured and predicted forces. Conclusion Our results show that the model has potential to be incorporated as a feed-forward controller for predicting subject-specific stimulation patterns during FES.

  5. Quadriceps muscle use in the flywheel and barbell squat.

    Norrbrand, Lena; Tous-Fajardo, Julio; Vargas, Roberto; Tesch, Per A

    2011-01-01

    Resistance exercise has been proposed as an aid to counteract quadriceps muscle atrophy in astronauts during extended missions in orbit. While space authorities have advocated the squat exercise should be prescribed, no exercise system suitable for in-flight use has been validated with regard to quadriceps muscle use. We compared muscle involvement in the terrestrial "gold standard" squat using free weights and a nongravity dependent flywheel resistance exercise device designed for use in space. The subjects were 10 strength-trained men who performed 5 sets of 10 repetitions using the barbell squat (BS; 10 repetition maximum) or flywheel squat (FS; each repetition maximal), respectively. Functional magnetic resonance imaging (MRI) and surface electromyography (EMG) techniques assessed quadriceps muscle use. Exercise-induced contrast shift of MR images was measured by means of transverse relaxation time (T2). EMG root mean square (RMS) was measured during concentric (CON) and eccentric (ECC) actions and normalized to EMG RMS determined during maximal voluntary contraction. The quadriceps muscle group showed greater exercise-induced T2 increase following FS compared with BS. Among individual muscles, the rectus femoris displayed greater T2 increase with FS (+24 +/- 14%) than BS (+8 +/- 4%). Normalized quadriceps EMG showed no difference across exercise modes. Collectively, the results of this study suggest that quadriceps muscle use in the squat is comparable, if not greater, with flywheel compared with free weight resistance exercise. Data appear to provide support for use of flywheel squat resistance exercise as a countermeasures adjunct during spaceflight.

  6. Muscle Co-activation: Definitions, Mechanisms, and Functions.

    Latash, Mark L

    2018-03-28

    The phenomenon of agonist-antagonist muscle co-activation is discussed with respect to its consequences for movement mechanics (such as increasing joint apparent stiffness, facilitating faster movements, and effects on action stability), implication for movement optimization, and involvement of different neurophysiological structures. Effects of co-activation on movement stability are ambiguous and depend on the effector representing a kinematic chain with a fixed origin or free origin. Further, co-activation is discussed within the framework of the equilibrium-point hypothesis and the idea of hierarchical control with spatial referent coordinates. Relations of muscle co-activation to changes in one of the basic commands, the c-command, are discussed and illustrated. A hypothesis is suggested that agonist-antagonist co-activation reflects a deliberate neural control strategy to preserve effector-level control and avoid making it degenerate and facing the necessity to control at the level of signals to individual muscles. This strategy, in particular, allows stabilizing motor actions by co-varied adjustments in spaces of control variables. This hypothesis is able to account for higher levels of co-activation in young healthy persons performing challenging tasks and across various populations with movement impairments.

  7. Two functionally different muscle fibre types in some salps?

    Q. Bone

    1998-12-01

    Full Text Available This paper describes the structure and operation of the fibres in the locomotor muscle bands of several salp species. In many species, for example Thalia democratica or Pegea confoederata, all the muscle fibres of the locomotor muscle bands are similar in width and structure. In others, for example Salpa fusiformis and S. maxima, although fibre structure is similar, the marginal fibres edging the bands may be some 3-4 times the width of those in the centre of the band. In Ihlea punctata, not only is there a more striking difference in width between the marginal and central fibres of the bands, but also the two differ in structure. The marginal fibres are up to 10 times the width of the central fibres and the two differ in myofibrillar and mitochondrial content. Intracellular recordings from the fibres show that the normally compound spike potentials do not overshoot resting potentials (up to -70 mV, and are decremental. The two types of fibre may be separately activated. It is suggested that in Ihlea punctata, the wide marginal fibres may be involved in slow swimming, the central narrow fibres in `escape´ swimming.

  8. Postoperative Recovery of Mechanical Muscle Function in Hip Replacement Patients

    Jensen, Carsten; Aagaard, Per; Overgaard, Søren

    2011-01-01

    the posterior-lateral approach. Prior to surgery no training program was initiated but the patients were encouraged to live as usual. Post surgery all patients were allowed fully weight-bearing and they were instructed to follow a conventional home-based rehabilitation, but were otherwise not engaged in any......-test for between group comparisons while ANOVA was used for repeated measures for comparisons over time (α=0.05)   RESULTS The results were calculated as deficits in percentages of the unaffected side (A-NA/NA)*100)) in order to evaluate degree of asymmetry. Our overall side-to-side deficits for peak torque ranged...... from 32.6 to 0.4% and hip flexion deficit being significantly more impacted then the other muscle groups (32.6%).  At baseline all muscle groups showed a significant torque deficit. At 8 weeks post surgery that asymmetry had increased for 4 out of 6 muscle groups. At 26 weeks the hip adduction and hip...

  9. Muscle power is an important measure to detect deficits in muscle function in hip osteoarthritis

    Bieler, Theresa; Magnusson, Stig Peter; Christensen, Helle Elisabeth

    2017-01-01

    that exercise interventions focusing on improving leg extensor power of the symptomatic lower extremity and reducing asymmetry may be beneficial for patients with hip osteoarthritis. Implications for Rehabilitation Even in patients with mild symptoms not awaiting hip replacement a generalized muscle weakening......: The symptomatic extremity in patients was significantly (p asymmetry in knee extensor strength (6%, p ... in patients, but had no asymmetry in leg extensor power. CONCLUSIONS: Patients had generalized weakening of the affected lower extremity and numerically the largest asymmetry was evident for leg extensor power. In contrast, healthy peers had no asymmetry in leg extensor power. These results indicate...

  10. Effects of functional exercise training on performance and muscle strength after meniscectomy

    Ericsson, Y B; Dahlberg, L E; Roos, E M

    2008-01-01

    Muscular deficits and functional limitations have been found years after meniscectomy of the knee. The purpose of this randomized controlled trial was to examine the effect of functional exercise training on functional performance and isokinetic thigh muscle strength in middle-aged patients...... subsequent to meniscectomy for a degenerative tear. Four years after meniscectomy, 45 patients (29 men, 16 women) were randomized to functional exercise training, supervised by a physical therapist, three times weekly for 4 months or to no intervention. The exercise program comprised of postural stability...... training and functional strength and endurance exercises for leg and trunk muscles. Outcomes were three functional performance tests and isokinetic muscle strength. Thirty patients (16 exercisers/14 controls) completed the study. Compared with control patients, the exercise group showed significant...

  11. Prevalence of skeletal muscle mass loss and its association with swallowing function after cardiovascular surgery.

    Wakabayashi, Hidetaka; Takahashi, Rimiko; Watanabe, Naoko; Oritsu, Hideyuki; Shimizu, Yoshitaka

    2017-06-01

    The aim of this study was to assess the prevalence of skeletal muscle mass loss and its association with swallowing function in patients with dysphagia after cardiovascular surgery. A retrospective cohort study was performed in 65 consecutive patients with dysphagia after cardiovascular surgery who were prescribed speech therapy. Skeletal muscle index (SMI) was calculated as total psoas muscle area assessed via abdominal computed tomography divided by height squared. Cutoff values were 6.36 cm 2 /m 2 for men and 3.92 cm 2 /m 2 for women. The Food Intake Level Scale (FILS) was used to assess the swallowing function. Univariate and ordered logistic regression analyses were applied to examine the associations between skeletal muscle mass loss and dysphagia. The study included 50 men and 15 women (mean age 73 ± 8 y). The mean SMI was 4.72 ± 1.37 cm 2 /m 2 in men and 3.33 ± 1.42 cm 2 /m 2 in women. Skeletal muscle mass loss was found in 53 (82%) patients. Twelve had tracheostomy cannula. Thirteen were non-oral feeding (FILS levels 1-3), 5 were oral food intake and alternative nutrition (levels 4-6), and 47 were oral food intake alone (levels 7-9) at discharge. The FILS at discharge was significantly lower in patients with skeletal muscle mass loss. Ordered logistic regression analysis of swallowing function showed that skeletal muscle mass loss and tracheostomy cannula were associated independently with the FILS at discharge. The prevalence of skeletal muscle mass loss is very high, and skeletal muscle mass loss is associated with swallowing function. Copyright © 2017 Elsevier Inc. All rights reserved.

  12. Enzymatically modified isoquercitrin supplementation intensifies plantaris muscle fiber hypertrophy in functionally overloaded mice.

    Kohara, Akiko; Machida, Masanao; Setoguchi, Yuko; Ito, Ryouichi; Sugitani, Masanori; Maruki-Uchida, Hiroko; Inagaki, Hiroyuki; Ito, Tatsuhiko; Omi, Naomi; Takemasa, Tohru

    2017-01-01

    Enzymatically modified isoquercitrin (EMIQ) is produced from rutin using enzymatic hydrolysis followed by treatment with glycosyltransferase in the presence of dextrin to add glucose residues. EMIQ is absorbed in the same way as quercetin, a powerful antioxidant reported to prevent disused muscle atrophy by targeting mitochondria and to have ergogenic effects. The present study investigated the effect of EMIQ on skeletal muscle hypertrophy induced by functional overload. In Study 1, 6-week-old ICR male mice were divided into 4 groups: sham-operated control, sham-operated EMIQ, overload-operated control, and overload-operated EMIQ groups. In Study 2, mice were divided into 3 groups: overload-operated whey control, overload-operated whey/EMIQ (low dose), and overload-operated whey/EMIQ (high dose) groups. The functional overload of the plantaris muscle was induced by ablation of the synergist (gastrocnemius and soleus) muscles. EMIQ and whey protein were administered with food. Three weeks after the operation, the cross-sectional area and minimal fiber diameter of the plantaris muscle fibers were measured. In Study 1, functional overload increased the cross-sectional area and minimal fiber diameter of the plantaris muscle. EMIQ supplementation significantly increased the cross-sectional area and minimal fiber diameter of the plantaris muscle in both the sham-operated and overload-operated groups. In Study 2, EMIQ supplementation combined with whey protein administration significantly increased the cross-sectional area and minimal fiber diameter of the plantaris muscle. EMIQ, even when administered as an addition to whey protein supplementation, significantly intensified the fiber hypertrophy of the plantaris muscle in functionally overloaded mice. EMIQ supplementation also induced fiber hypertrophy of the plantaris in sham-operated mice.

  13. Human lung mast cells modulate the functions of airway smooth muscle cells in asthma.

    Alkhouri, H; Hollins, F; Moir, L M; Brightling, C E; Armour, C L; Hughes, J M

    2011-09-01

    Activated mast cell densities are increased on the airway smooth muscle in asthma where they may modulate muscle functions and thus contribute to airway inflammation, remodelling and airflow obstruction. To determine the effects of human lung mast cells on the secretory and proliferative functions of airway smooth muscle cells from donors with and without asthma. Freshly isolated human lung mast cells were stimulated with IgE/anti-IgE. Culture supernatants were collected after 2 and 24 h and the mast cells lysed. The supernatants/lysates were added to serum-deprived, subconfluent airway smooth muscle cells for up to 48 h. Released chemokines and extracellular matrix were measured by ELISA, proliferation was quantified by [(3) H]-thymidine incorporation and cell counting, and intracellular signalling by phospho-arrays. Mast cell 2-h supernatants reduced CCL11 and increased CXCL8 and fibronectin production from both asthmatic and nonasthmatic muscle cells. Leupeptin reversed these effects. Mast cell 24-h supernatants and lysates reduced CCL11 release from both muscle cell types but increased CXCL8 release by nonasthmatic cells. The 24-h supernatants also reduced asthmatic, but not nonasthmatic, muscle cell DNA synthesis and asthmatic cell numbers over 5 days through inhibiting extracellular signal-regulated kinase (ERK) and phosphatidylinositol (PI3)-kinase pathways. However, prostaglandins, thromboxanes, IL-4 and IL-13 were not involved in reducing the proliferation. Mast cell proteases and newly synthesized products differentially modulated the secretory and proliferative functions of airway smooth muscle cells from donors with and without asthma. Thus, mast cells may modulate their own recruitment and airway smooth muscle functions locally in asthma. © 2011 John Wiley & Sons A/S.

  14. Cold water immersion enhances recovery of submaximal muscle function after resistance exercise.

    Roberts, Llion A; Nosaka, Kazunori; Coombes, Jeff S; Peake, Jonathan M

    2014-10-15

    We investigated the effect of cold water immersion (CWI) on the recovery of muscle function and physiological responses after high-intensity resistance exercise. Using a randomized, cross-over design, 10 physically active men performed high-intensity resistance exercise followed by one of two recovery interventions: 1) 10 min of CWI at 10°C or 2) 10 min of active recovery (low-intensity cycling). After the recovery interventions, maximal muscle function was assessed after 2 and 4 h by measuring jump height and isometric squat strength. Submaximal muscle function was assessed after 6 h by measuring the average load lifted during 6 sets of 10 squats at 80% of 1 repetition maximum. Intramuscular temperature (1 cm) was also recorded, and venous blood samples were analyzed for markers of metabolism, vasoconstriction, and muscle damage. CWI did not enhance recovery of maximal muscle function. However, during the final three sets of the submaximal muscle function test, participants lifted a greater load (P work during subsequent training sessions, which could enhance long-term training adaptations. Copyright © 2014 the American Physiological Society.

  15. Neck muscle function in violinists/violists with and without neck pain.

    Steinmetz, Anke; Claus, Andrew; Hodges, Paul W; Jull, Gwendolen A

    2016-04-01

    Neck pain is associated with changes in neuromuscular control of cervical muscles. Violin and viola playing requires good function of the flexor muscles to stabilize the instrument. This study investigated the flexor muscle behaviour in violin/viola players with and without neck pain using the craniocervical flexion test (CCFT). In total, 12 violin/viola players with neck pain, 21 violin/viola players without neck pain in the preceding 12 weeks and 21 pain-free non-musicians were included. Activity of the sternocleidomastoid muscles (SCM) was measured with surface electromyography (EMG) during the CCFT. Violin/viola players with neck pain displayed greater normalised SCM EMG amplitudes during CCFT than the pain-free musicians and non-musicians (P neck pain in violinists/violists is associated with altered behaviour of the superficial neck flexor muscles consistent with neck pain, despite the specific use of the deep and superficial neck flexors during violin playing.

  16. Effect of generalized joint hypermobility on knee function and muscle activation in children and adults

    Jensen, Bente Rona; Olesen, Annesofie T.; Pedersen, Mogens Theisen

    2013-01-01

    Introduction: We investigated muscle activation strategy and performance of knee extensor and flexor muscles in children and adults with generalized joint hypermobility (GJH) and compared them with controls. Methods: Muscle activation, torque steadiness, electromechanical delay, and muscle strength...... were evaluated in 39 children and 36 adults during isometric knee extension and flexion. Subjects performed isometric maximum contractions, submaximal contractions at 25% maximum voluntary contraction (MVC), and explosive contractions. Results: Agonist activation was reduced, and coactivation ratio...... was greater in GJH during knee flexion compared with controls. Torque steadiness was impaired in adults with GJH during knee flexion. No effect of GJH was found on muscle strength or electromechanical delay. Correlation analysis revealed an association between GJH severity and function in adults. Conclusions...

  17. VARIATIONAL ANATOMY OF PROFUNDA FEMORIS ARTERY AND ITS BRANCHES: A CADAVERIC STUDY

    Tapan Kumar

    2015-09-01

    Full Text Available BACKGROUND: Accurate knowledge of anatomical variations regarding origins of the profunda femoris, medial and lateral femoral circumflex femoral arteries are important for clinicians in the present modern era of interventional radiology. Our aim of this study was to observe and identify the variations in origin of the Profunda femoris artery and its circumflex br anches. MATERIALS & METHODS: 66 femoral triangles were dissected on 33 cadavers (Both sides. The profunda femoris vessel and its medial and lateral circumflex arteries were dissected and identified. The distance of the site of origin of Profunda Femoris A rtery was measured from mid - inguinal point (MIP in centimetres with scale, thread, and digital callipers. The sites of origin of Medial Circumflex Femoral Artery and Lateral Circumflex Femoral Artery were also studied and the distances of origin of each of them were measured from the origin of the Profunda Femoris Artery and from the mid - inguinal point. All the data were interpreted in tables. RESULTS : The data from the study was analyzed using statistical methods and analyzed by using the statistical pa ckage SPSS (Statistical Package for Social Sciences version 16.0 for windows in present study for analyzing the data contingency table were created first and then analyzed by using the Pearson’s chi - square test. The present study encountered that, in appr oximately 50% cases the profunda femoris artery originated from the lateral aspect of the common femoral artery. The lateral and medial circumflex femoral artery commonly originated from the profunda femoris nearly close to its origin from common femoral a rtery. CONCLUSION: This knowledge of variation and position would be very useful in preventing the iatrogenic injury to these vessels during surgical procedures of the femoral triangle. So, this study would be useful for the clinician for surgical and therapeutic interventi on.

  18. A Physiologically Based, Multi-Scale Model of Skeletal Muscle Structure and Function

    Röhrle, O.; Davidson, J. B.; Pullan, A. J.

    2012-01-01

    Models of skeletal muscle can be classified as phenomenological or biophysical. Phenomenological models predict the muscle’s response to a specified input based on experimental measurements. Prominent phenomenological models are the Hill-type muscle models, which have been incorporated into rigid-body modeling frameworks, and three-dimensional continuum-mechanical models. Biophysically based models attempt to predict the muscle’s response as emerging from the underlying physiology of the system. In this contribution, the conventional biophysically based modeling methodology is extended to include several structural and functional characteristics of skeletal muscle. The result is a physiologically based, multi-scale skeletal muscle finite element model that is capable of representing detailed, geometrical descriptions of skeletal muscle fibers and their grouping. Together with a well-established model of motor-unit recruitment, the electro-physiological behavior of single muscle fibers within motor units is computed and linked to a continuum-mechanical constitutive law. The bridging between the cellular level and the organ level has been achieved via a multi-scale constitutive law and homogenization. The effect of homogenization has been investigated by varying the number of embedded skeletal muscle fibers and/or motor units and computing the resulting exerted muscle forces while applying the same excitatory input. All simulations were conducted using an anatomically realistic finite element model of the tibialis anterior muscle. Given the fact that the underlying electro-physiological cellular muscle model is capable of modeling metabolic fatigue effects such as potassium accumulation in the T-tubular space and inorganic phosphate build-up, the proposed framework provides a novel simulation-based way to investigate muscle behavior ranging from motor-unit recruitment to force generation and fatigue. PMID:22993509

  19. Common Peroneal Nerve Palsy with Multiple-Ligament Knee Injury and Distal Avulsion of the Biceps Femoris Tendon

    Takeshi Oshima

    2015-01-01

    Full Text Available A multiple-ligament knee injury that includes posterolateral corner (PLC disruption often causes palsy of the common peroneal nerve (CPN, which occurs in 44% of cases with PLC injury and biceps femoris tendon rupture or avulsion of the fibular head. Approximately half of these cases do not show functional recovery. This case report aims to present a criteria-based approach to the operation and postoperative management of CPN palsy that resulted from a multiple-ligament knee injury in a 22-year-old man that occurred during judo. We performed a two-staged surgery. The first stage was to repair the injuries to the PLC and biceps femoris. The second stage involved anterior cruciate ligament reconstruction. The outcomes were excellent, with a stable knee, excellent range of motion, and improvement in the palsy. The patient was able to return to judo competition 27 weeks after the injury. To the best of our knowledge, this is the first case report describing a return to sports following CPN palsy with multiple-ligament knee injury.

  20. Functional Segregation within the Muscles of Aquatic Propulsion in the Asiatic Water Monitor (Varanus salvator

    Bruce Arthur Young

    2016-09-01

    Full Text Available Water monitor lizards (Varanus salvator swim using sinusoidal oscillations generated at the base of their long (50% of total body length tail. In an effort to determine which level of the structural/organizational hierarchy of muscle is associated with functional segregation between the muscles of the tail base, an array of muscle features — myosin heavy chain profiles, enzymatic fiber types, twitch and tetanic force production, rates of fatigue, muscle compliance, and electrical activity patterns — were quantitated. The two examined axial muscles, longissimus and iliocaudalis, were generally similar at the molecular, biochemical, and physiological levels, but differed at the biomechanics level and in their activation pattern. The appendicular muscle examined, caudofemoralis, differed from the axial muscles particularly at the molecular and physiological levels, and it exhibited a unique compliance profile and pattern of electrical activation. There were some apparent contradictions between the different structural/organizational levels examined. These contradictions, coupled with a unique myosin heavy chain profile, lead to the hypothesis that there are previously un-described molecular/biochemical specializations within varanid skeletal muscles.

  1. Targeting deregulated AMPK/mTORC1 pathways improves muscle function in myotonic dystrophy type I.

    Brockhoff, Marielle; Rion, Nathalie; Chojnowska, Kathrin; Wiktorowicz, Tatiana; Eickhorst, Christopher; Erne, Beat; Frank, Stephan; Angelini, Corrado; Furling, Denis; Rüegg, Markus A; Sinnreich, Michael; Castets, Perrine

    2017-02-01

    Myotonic dystrophy type I (DM1) is a disabling multisystemic disease that predominantly affects skeletal muscle. It is caused by expanded CTG repeats in the 3'-UTR of the dystrophia myotonica protein kinase (DMPK) gene. RNA hairpins formed by elongated DMPK transcripts sequester RNA-binding proteins, leading to mis-splicing of numerous pre-mRNAs. Here, we have investigated whether DM1-associated muscle pathology is related to deregulation of central metabolic pathways, which may identify potential therapeutic targets for the disease. In a well-characterized mouse model for DM1 (HSALR mice), activation of AMPK signaling in muscle was impaired under starved conditions, while mTORC1 signaling remained active. In parallel, autophagic flux was perturbed in HSALR muscle and in cultured human DM1 myotubes. Pharmacological approaches targeting AMPK/mTORC1 signaling greatly ameliorated muscle function in HSALR mice. AICAR, an AMPK activator, led to a strong reduction of myotonia, which was accompanied by partial correction of misregulated alternative splicing. Rapamycin, an mTORC1 inhibitor, improved muscle relaxation and increased muscle force in HSALR mice without affecting splicing. These findings highlight the involvement of AMPK/mTORC1 deregulation in DM1 muscle pathophysiology and may open potential avenues for the treatment of this disease.

  2. Extrapulmonary features of bronchiectasis: muscle function, exercise capacity, fatigue, and health status

    Ozalp Ozge

    2012-06-01

    Full Text Available Abstract Background There are limited number of studies investigating extrapulmonary manifestations of bronchiectasis. The purpose of this study was to compare peripheral muscle function, exercise capacity, fatigue, and health status between patients with bronchiectasis and healthy subjects in order to provide documented differences in these characteristics for individuals with and without bronchiectasis. Methods Twenty patients with bronchiectasis (43.5 ± 14.1 years and 20 healthy subjects (43.0 ± 10.9 years participated in the study. Pulmonary function, respiratory muscle strength (maximal expiratory pressure – MIP - and maximal expiratory pressure - MEP, and dyspnea perception using the Modified Medical Research Council Dyspnea Scale (MMRC were determined. A six-minute walk test (6MWT was performed. Quadriceps muscle, shoulder abductor, and hand grip strength (QMS, SAS, and HGS, respectively using a hand held dynamometer and peripheral muscle endurance by a squat test were measured. Fatigue perception and health status were determined using the Fatigue Severity Scale (FSS and the Leicester Cough Questionnaire (LCQ, respectively. Results Number of squats, 6MWT distance, and LCQ scores as well as lung function testing values and respiratory muscle strength were significantly lower and MMRC and FSS scores were significantly higher in patients with bronchiectasis than those of healthy subjects (p p p p p  Conclusions Peripheral muscle endurance, exercise capacity, fatigue and health status were adversely affected by the presence of bronchiectasis. Fatigue was associated with dyspnea and health status. Respiratory muscle strength was related to peripheral muscle strength and health status, but not to fatigue, peripheral muscle endurance or exercise capacity. These findings may provide insight for outcome measures for pulmonary rehabilitation programs for patients with bronchiectasis.

  3. Rbfox-regulated alternative splicing is critical for zebrafish cardiac and skeletal muscle function

    Gallagher, Thomas L.; Arribere, Joshua A.; Geurts, Paul A.; Exner, Cameron R. T.; McDonald, Kent L.; Dill, Kariena K.; Marr, Henry L.; Adkar, Shaunak S.; Garnett, Aaron T.; Amacher, Sharon L.; Conboy, John G.

    2012-01-01

    Rbfox RNA binding proteins are implicated as regulators of phylogenetically-conserved alternative splicing events important for muscle function. To investigate the function of rbfox genes, we used morpholino-mediated knockdown of muscle-expressed rbfox1l and rbfox2 in zebrafish embryos. Single and double morphant embryos exhibited changes in splicing of overlapping sets of bioinformatically-predicted rbfox target exons, many of which exhibit a muscle-enriched splicing pattern that is conserved in vertebrates. Thus, conservation of intronic Rbfox binding motifs is a good predictor of Rbfox-regulated alternative splicing. Morphology and development of single morphant embryos was strikingly normal; however, muscle development in double morphants was severely disrupted. Defects in cardiac muscle were marked by reduced heart rate and in skeletal muscle by complete paralysis. The predominance of wavy myofibers and abnormal thick and thin filaments in skeletal muscle revealed that myofibril assembly is defective and disorganized in double morphants. Ultra-structural analysis revealed that although sarcomeres with electron dense M- and Z-bands are present in muscle fibers of rbfox1l/rbox2 morphants, they are substantially reduced in number and alignment. Importantly, splicing changes and morphological defects were rescued by expression of morpholino-resistant rbfox cDNA. Additionally, a target-blocking MO complementary to a single UGCAUG motif adjacent to an rbfox target exon of fxr1 inhibited inclusion in a similar manner to rbfox knockdown, providing evidence that Rbfox regulates the splicing of target exons via direct binding to intronic regulatory motifs. We conclude that Rbfox proteins regulate an alternative splicing program essential for vertebrate heart and skeletal muscle function. PMID:21925157

  4. Rbfox-regulated alternative splicing is critical for zebrafish cardiac and skeletal muscle functions.

    Gallagher, Thomas L; Arribere, Joshua A; Geurts, Paul A; Exner, Cameron R T; McDonald, Kent L; Dill, Kariena K; Marr, Henry L; Adkar, Shaunak S; Garnett, Aaron T; Amacher, Sharon L; Conboy, John G

    2011-11-15

    Rbfox RNA binding proteins are implicated as regulators of phylogenetically-conserved alternative splicing events important for muscle function. To investigate the function of rbfox genes, we used morpholino-mediated knockdown of muscle-expressed rbfox1l and rbfox2 in zebrafish embryos. Single and double morphant embryos exhibited changes in splicing of overlapping sets of bioinformatically-predicted rbfox target exons, many of which exhibit a muscle-enriched splicing pattern that is conserved in vertebrates. Thus, conservation of intronic Rbfox binding motifs is a good predictor of Rbfox-regulated alternative splicing. Morphology and development of single morphant embryos were strikingly normal; however, muscle development in double morphants was severely disrupted. Defects in cardiac muscle were marked by reduced heart rate and in skeletal muscle by complete paralysis. The predominance of wavy myofibers and abnormal thick and thin filaments in skeletal muscle revealed that myofibril assembly is defective and disorganized in double morphants. Ultra-structural analysis revealed that although sarcomeres with electron dense M- and Z-bands are present in muscle fibers of rbfox1l/rbox2 morphants, they are substantially reduced in number and alignment. Importantly, splicing changes and morphological defects were rescued by expression of morpholino-resistant rbfox cDNA. Additionally, a target-blocking MO complementary to a single UGCAUG motif adjacent to an rbfox target exon of fxr1 inhibited inclusion in a similar manner to rbfox knockdown, providing evidence that Rbfox regulates the splicing of target exons via direct binding to intronic regulatory motifs. We conclude that Rbfox proteins regulate an alternative splicing program essential for vertebrate heart and skeletal muscle functions. Published by Elsevier Inc.

  5. Effects of inspiratory muscle training on pulmonary function, respiratory muscle strength and functional capacity in patients with atrial fibrillation: a randomized controlled trial.

    Zeren, Melih; Demir, Rengin; Yigit, Zerrin; Gurses, Hulya N

    2016-12-01

    To investigate the effects of inspiratory muscle training on pulmonary function, respiratory muscle strength and functional capacity in patients with atrial fibrillation. Prospective randomized controlled single-blind study. Cardiology department of a university hospital. A total of 38 patients with permanent atrial fibrillation were randomly allocated to either a treatment group (n = 19; age 66.2 years (8.8)) or a control group (n = 19; age 67.1 years (6.4)). The training group received inspiratory muscle training at 30% of maximal inspiratory pressure for 15 minutes twice a day, 7 days a week, for 12 weeks alongside the standard medical treatment. The control group received standard medical treatment only. Spirometry, maximal inspiratory and expiratory pressures and 6-minute walking distance was measured at the beginning and end of the study. There was a significant increase in maximal inspiratory pressure (27.94 cmH 2 O (8.90)), maximal expiratory pressure (24.53 cmH 2 O (10.34)), forced vital capacity (10.29% (8.18) predicted), forced expiratory volume in one second (13.88% (13.42) predicted), forced expiratory flow 25%-75% (14.82% (12.44) predicted), peak expiratory flow (19.82% (15.62) predicted) and 6-minute walking distance (55.53 m (14.13)) in the training group (p  0.05). Inspiratory muscle training can improve pulmonary function, respiratory muscle strength and functional capacity in patients with atrial fibrillation. © The Author(s) 2016.

  6. Functional electrical stimulation of intrinsic laryngeal muscles under varying loads in exercising horses.

    Jon Cheetham

    Full Text Available Bilateral vocal fold paralysis (BVCP is a life threatening condition and appears to be a good candidate for therapy using functional electrical stimulation (FES. Developing a working FES system has been technically difficult due to the inaccessible location and small size of the sole arytenoid abductor, the posterior cricoarytenoid (PCA muscle. A naturally-occurring disease in horses shares many functional and etiological features with BVCP. In this study, the feasibility of FES for equine vocal fold paralysis was explored by testing arytenoid abduction evoked by electrical stimulation of the PCA muscle. Rheobase and chronaxie were determined for innervated PCA muscle. We then tested the hypothesis that direct muscle stimulation can maintain airway patency during strenuous exercise in horses with induced transient conduction block of the laryngeal motor nerve. Six adult horses were instrumented with a single bipolar intra-muscular electrode in the left PCA muscle. Rheobase and chronaxie were within the normal range for innervated muscle at 0.55±0.38 v and 0.38±0.19 ms respectively. Intramuscular stimulation of the PCA muscle significantly improved arytenoid abduction at all levels of exercise intensity and there was no significant difference between the level of abduction achieved with stimulation and control values under moderate loads. The equine larynx may provide a useful model for the study of bilateral fold paralysis.

  7. Functional deltoid muscle reconstruction following an extensive squamous cell carcinoma resection

    Tang Weng Jun

    2016-07-01

    Full Text Available Squamous cell carcinoma frequently occurs in an individual with albinism. In this case, the growth of the squamous cell carcinoma was aggressive that it invaded the deltoid muscle. After an oncologic resection, there was a huge defect which required near total resection of the deltoid muscle. Loss of deltoid muscle will lead to the loss of abduction and anterior flexion at the shoulder. This could be debilitating in a person’s normal daily life and activities. Restoration of the shoulder abduction and flexion function with a pedicle bipolar latissimus dorsi flap transfer was chosen in this case due to the versatility and reliability of the flap.

  8. [Progress in isokinetic technology in testing and training for assessment of muscle function].

    Huang, Ting-Ting; Fan, Li-Hua; Gao, Dong; Xia, Qing; Zhang, Min

    2013-02-01

    Isokinetic technology in testing and training is the most advanced practical technique in the evaluation of muscle function. This method is a continuous dynamic test in the full range of the joint motion which has strong pertinence at the aspect of assessing muscle strength, and is an objective and quantitative method for reflecting each point's muscle strength in the range of the joint motion. This article reviews the key concepts, brief history of development and influencing factors of isokinetic technology in testing and training, introduces the progress in the field of rehabilitation medicine and sport science, etc., and discusses the future exploration in forensic science.

  9. Venous muscle pump function during pregnancy. Assessment by ambulatory strain-gauge plethysmography

    Struckmann, J R; Meiland, H; Bagi, P

    1990-01-01

    The venous muscle pump function was quantitatively assessed through pregnancy weeks 16, 30, 38 and 3 months (week 53) following delivery, in 24 pregnant women who completed a normal pregnancy. A statistically significant increase was found in the mean venous reflux (P less than 0.01), which was r...... primarily by mechanical obstruction, or hormonal influence other than that of estradiol, estriol or progesterone. 17% (4.7-37%) of the women with a normal pregnancy developed a pathological venous muscle pump function....... virtually disappeared post partum, corresponding to the muscle pump normalization. No statistical correlation was found between venous muscle pump values and changes in hormone concentrations of estradiol, estriol and progesterone. It is suggested that venous insufficiency development in pregnancy is caused...

  10. Decreased Respiratory Muscle Function Is Associated with Impaired Trunk Balance among Chronic Stroke Patients: A Cross-sectional Study.

    Lee, Kyeongbong; Cho, Ji-Eun; Hwang, Dal-Yeon; Lee, WanHee

    2018-06-01

    The abdominal muscles play a role in trunk balance. Abdominal muscle thickness is asymmetrical in stroke survivors, who also have decreased respiratory muscle function. We compared the thickness of the abdominal muscles between the affected and less affected sides in stroke survivors. In addition, the relationship between respiratory muscle function and trunk balance was evaluated. Chronic stroke patients (18 men, 15 women; mean age, 58.94 ± 12.30 years; Mini-Mental Status Examination score ≥ 24) who could sit without assist were enrolled. Abdominal muscle thickness during rest and contraction was measured with ultrasonography, and the thickening ratio was calculated. Respiratory muscle function assessment included maximum respiratory pressure, peak flow, and air volume. Trunk function was evaluated using the Trunk Impairment Scale, and trunk balance was estimated based on the center of pressure velocity and path length within the limit of stability in sitting posture. Abdominal muscles were significantly thinner on the affected side, and the thickening ratio was lower in the affected side (P respiratory muscle function was significantly correlated with higher level of trunk function and balance in stroke patients (P respiratory muscle function has positive correlation with trunk function and balance. We propose that respiratory muscle training should be included as part of trunk balance training in chronic stroke patients.

  11. Muscle function-dependent sarcopenia and cut-off values of possible predictors in community-dwelling Turkish elderly: calf circumference, midarm muscle circumference and walking speed.

    Akın, S; Mucuk, S; Öztürk, A; Mazıcıoğlu, M; Göçer, Ş; Arguvanlı, S; Şafak, E D

    2015-10-01

    The aim of this study was to determine the prevalence of muscle strength-based sarcopenia and to determine possible predictors. This is a cross-sectional population-based study in the community-dwelling Turkish elderly. Anthropometric measurements, namely body height, weight, triceps skin fold (TSF), mid upper arm circumference (MUAC), waist circumference (WC) and calf circumference (CC), were noted. The midarm muscle circumference (MAMC) was calculated by using MUAC and TSF measurement. Sarcopenia was assessed, adjusted for body mass index (BMI) and gender, according to muscle strength. Physical performance was determined by 4 m walking speed (WS; m/s). The receiver operating curve analysis was performed to determine cut-offs of CC, MAMC and 4 m WS. A total of 879 elderly subjects, 50.1% of whom were female, were recruited. The mean handgrip strength (HGS) and s.d. was 24.2 (8.8) kg [17.9 (4.8) female, 30.6 (7.1) male]. The muscle function-dependent sarcopenia was 63.4% (female 73.5%, male 53.2%). The muscle mass-dependent sarcopenia for CC (sarcopenia. An adequate muscle mass may not mean a reliable muscle function. Muscle function may describe sarcopenia better compared with muscle mass. The CC, MAMC and 4 m WS cut-offs may be used to assess sarcopenia in certain age groups.

  12. Lactate dehydrogenase regulation in aged skeletal muscle: Regulation by anabolic steroids and functional overload.

    Washington, Tyrone A; Healey, Julie M; Thompson, Raymond W; Lowe, Larry L; Carson, James A

    2014-09-01

    Aging alters the skeletal muscle response to overload-induced growth. The onset of functional overload is characterized by increased myoblast proliferation and an altered muscle metabolic profile. The onset of functional overload is associated with increased energy demands that are met through the interconversion of lactate and pyruvate via the activity of lactate dehydrogenase (LDH). Testosterone targets many of the processes activated at the onset of functional overload. However, the effect of aging on this metabolic plasticity at the onset of functional overload and how anabolic steroid administration modulates this response is not well understood. The purpose of this study was to determine if aging would alter overload-induced LDH activity and expression at the onset of functional overload and whether anabolic steroid administration would modulate this response. Five-month and 25-month male Fischer 344xF1 BRN were given nandrolone decanoate (ND) or sham injections for 14days and then the plantaris was functionally overloaded (OV) for 3days by synergist ablation. Aging reduced muscle LDH-A & LDH-B activity 70% (pyoung muscle. Our study provides evidence that aging alters aspects of skeletal muscle metabolic plasticity normally induced by overload and anabolic steroid administration. Copyright © 2014 Elsevier Inc. All rights reserved.

  13. Effectiveness of water-based Liuzijue exercise on respiratory muscle strength and peripheral skeletal muscle function in patients with COPD

    Wu W

    2018-05-01

    beneficial effects on COPD patients’ respiratory muscle strength and peripheral skeletal muscle function, and additional benefits may exist in endurance of upper limbs and strength and endurance of lower limbs when compared with land-based Liuzijue exercise. Keywords: COPD, Liuzijue exercise, water-based exercise, respiratory muscle strength, isokinetic muscle strength, quantitative assessment

  14. Volumetric Muscle Loss: Persistent Functional Deficits Beyond Frank Loss of Tissue

    2014-09-18

    and fascia covering the tibialis anterior (TA) muscle were bluntly separated from the musculature. The tissue covering all aspects of the middle...testing system.5 Peak TA muscle isometric torque was determined with the ankle at a right angle 0˚ and 20˚ of dorsi- or plantar flexion, assuming a moment...of plantar and dorsiflexion). At all joint angles, VML resulted in a significant functional deficit, although a greater torque deficit was observed

  15. Muscle activity during functional coordination training: implications for strength gain and rehabilitation

    Jørgensen, Marie Birk; Andersen, Lars Louis; Kirk, Niels

    2010-01-01

    The purpose of this study was to evaluate if different types, body positions, and levels of progression of functional coordination exercises can provide sufficiently high levels of muscle activity to improve strength of the neck, shoulder, and trunk muscles. Nine untrained women were familiarized...... to the maximal EMG activity during maximal voluntary contractions, and a p value 60% of maximal EMG activity). Type of exercise played a significant role...

  16. Musculoskeletal Geometry, Muscle Architecture and Functional Specialisations of the Mouse Hindlimb.

    James P Charles

    Full Text Available Mice are one of the most commonly used laboratory animals, with an extensive array of disease models in existence, including for many neuromuscular diseases. The hindlimb is of particular interest due to several close muscle analogues/homologues to humans and other species. A detailed anatomical study describing the adult morphology is lacking, however. This study describes in detail the musculoskeletal geometry and skeletal muscle architecture of the mouse hindlimb and pelvis, determining the extent to which the muscles are adapted for their function, as inferred from their architecture. Using I2KI enhanced microCT scanning and digital segmentation, it was possible to identify 39 distinct muscles of the hindlimb and pelvis belonging to nine functional groups. The architecture of each of these muscles was determined through microdissections, revealing strong architectural specialisations between the functional groups. The hip extensors and hip adductors showed significantly stronger adaptations towards high contraction velocities and joint control relative to the distal functional groups, which exhibited larger physiological cross sectional areas and longer tendons, adaptations for high force output and elastic energy savings. These results suggest that a proximo-distal gradient in muscle architecture exists in the mouse hindlimb. Such a gradient has been purported to function in aiding locomotor stability and efficiency. The data presented here will be especially valuable to any research with a focus on the architecture or gross anatomy of the mouse hindlimb and pelvis musculature, but also of use to anyone interested in the functional significance of muscle design in relation to quadrupedal locomotion.

  17. Increasing Muscle Mass Improves Vascular Function in Obese (db/db) Mice

    Qiu, Shuiqing; Mintz, James D.; Salet, Christina D.; Han, Weihong; Giannis, Athanassios; Chen, Feng; Yu, Yanfang; Su, Yunchao; Fulton, David J.; Stepp, David W.

    2014-01-01

    Background A sedentary lifestyle is an independent risk factor for cardiovascular disease and exercise has been shown to ameliorate this risk. Inactivity is associated with a loss of muscle mass, which is also reversed with isometric exercise training. The relationship between muscle mass and vascular function is poorly defined. The aims of the current study were to determine whether increasing muscle mass by genetic deletion of myostatin, a negative regulator of muscle growth, can influence vascular function in mesenteric arteries from obese db/db mice. Methods and Results Myostatin expression was elevated in skeletal muscle of obese mice and associated with reduced muscle mass (30% to 50%). Myostatin deletion increased muscle mass in lean (40% to 60%) and obese (80% to 115%) mice through increased muscle fiber size (PMyostatin deletion decreased adipose tissue in lean mice, but not obese mice. Markers of insulin resistance and glucose tolerance were improved in obese myostatin knockout mice. Obese mice demonstrated an impaired endothelial vasodilation, compared to lean mice. This impairment was improved by superoxide dismutase mimic Tempol. Deletion of myostatin improved endothelial vasodilation in mesenteric arteries in obese, but not in lean, mice. This improvement was blunted by nitric oxide (NO) synthase inhibitor l‐NG‐nitroarginine methyl ester (l‐NAME). Prostacyclin (PGI2)‐ and endothelium‐derived hyperpolarizing factor (EDHF)‐mediated vasodilation were preserved in obese mice and unaffected by myostatin deletion. Reactive oxygen species) was elevated in the mesenteric endothelium of obese mice and down‐regulated by deletion of myostatin in obese mice. Impaired vasodilation in obese mice was improved by NADPH oxidase inhibitor (GKT136901). Treatment with sepiapterin, which increases levels of tetrahydrobiopterin, improved vasodilation in obese mice, an improvement blocked by l‐NAME. Conclusions Increasing muscle mass by genetic deletion of

  18. Effects of anabolic hormones on structural, metabolic and functional aspects of skeletal muscle

    Flávio de Oliveira Pires

    2009-01-01

    Full Text Available http://dx.doi.org/10.5007/1980-0037.2009v11n3p350   This study reviewed information regarding the effects of anabolic hormones on strength gain and muscle hypertrophy, emphasizing the physiological mechanisms that may increase muscle strength. Structural, metabolic and functional aspects were analyzed and special attention was paid to the dose-response relationship. The Pubmed database was searched and studies were selected according to relevance and date of publication (last 15 years. The administration of high testosterone doses (~600 mg/week potentiates the effects of strength training, increasing lean body mass, muscle fiber type IIA and IIB cross-sectional area, and the number of myonuclei. There is no evidence of conversion between MHC isoforms. The interaction between testosterone administration and strength training seems to modify some metabolic pathways, increasing protein synthesis, glycogen and ATP-CP muscle stores and improving fat mobilization. Changes in 17-estradiol concentration or in the ACTH-cortisol and insulin-glucagon ratios seem to be associated with these metabolic alterations. Regarding performance, testosterone administration may improve muscle strength by 5-20% depending on the dose used. On the other hand, the effects of growth hormone on the structural and functional aspects of skeletal muscle are not evident, with this hormone more affecting metabolic aspects. However, strictly controlled human studies are necessary to establish the extent of the effects of anabolic hormones on structural, metabolic and functional aspects.

  19. Effects of anabolic hormones on structural, metabolic and functional aspects of skeletal muscle

    Flávio de Oliveira Pires

    2009-06-01

    Full Text Available This study reviewed information regarding the effects of anabolic hormones on strength gain and muscle hypertrophy, emphasizing the physiological mechanisms that may increase muscle strength. Structural, metabolic and functional aspects were analyzed and special attention was paid to the dose-response relationship. The Pubmed database was searched and studies were selected according to relevance and date of publication (last 15 years. The administration of high testosterone doses (~600 mg/week potentiates the effects of strength training, increasing lean body mass, muscle fiber type IIA and IIB cross-sectional area, and the number of myonuclei. There is no evidence of conversion between MHC isoforms. The interaction between testosterone administration and strength training seems to modify some metabolic pathways, increasing protein synthesis, glycogen and ATP-CP muscle stores and improving fat mobilization. Changes in 17-estradiol concentration or in the ACTH-cortisol and insulin-glucagon ratios seem to be associated with these metabolic alterations. Regarding performance, testosterone administration may improve muscle strength by 5-20% depending on the dose used. On the other hand, the effects of growth hormone on the structural and functional aspects of skeletal muscle are not evident, with this hormone more affecting metabolic aspects. However, strictly controlled human studies are necessary to establish the extent of the effects of anabolic hormones on structural, metabolic and functional aspects.

  20. Optogenetic probing of nerve and muscle function after facial nerve lesion in the mouse whisker system

    Bandi, Akhil; Vajtay, Thomas J.; Upadhyay, Aman; Yiantsos, S. Olga; Lee, Christian R.; Margolis, David J.

    2018-02-01

    Optogenetic modulation of neural circuits has opened new avenues into neuroscience research, allowing the control of cellular activity of genetically specified cell types. Optogenetics is still underdeveloped in the peripheral nervous system, yet there are many applications related to sensorimotor function, pain and nerve injury that would be of great benefit. We recently established a method for non-invasive, transdermal optogenetic stimulation of the facial muscles that control whisker movements in mice (Park et al., 2016, eLife, e14140)1. Here we present results comparing the effects of optogenetic stimulation of whisker movements in mice that express channelrhodopsin-2 (ChR2) selectively in either the facial motor nerve (ChAT-ChR2 mice) or muscle (Emx1-ChR2 or ACTA1-ChR2 mice). We tracked changes in nerve and muscle function before and up to 14 days after nerve transection. Optogenetic 460 nm transdermal stimulation of the distal cut nerve showed that nerve degeneration progresses rapidly over 24 hours. In contrast, the whisker movements evoked by optogenetic muscle stimulation were up-regulated after denervation, including increased maximum protraction amplitude, increased sensitivity to low-intensity stimuli, and more sustained muscle contractions (reduced adaptation). Our results indicate that peripheral optogenetic stimulation is a promising technique for probing the timecourse of functional changes of both nerve and muscle, and holds potential for restoring movement after paralysis induced by nerve damage or motoneuron degeneration.

  1. Functional recovery of denervated skeletal muscle with sensory or mixed nerve protection: a pilot study.

    Qing Tian Li

    Full Text Available Functional recovery is usually poor following peripheral nerve injury when reinnervation is delayed. Early innervation by sensory nerve has been indicated to prevent atrophy of the denervated muscle. It is hypothesized that early protection with sensory axons is adequate to improve functional recovery of skeletal muscle following prolonged denervation of mixed nerve injury. In this study, four groups of rats received surgical denervation of the tibial nerve. The proximal and distal stumps of the tibial nerve were ligated in all animals except for those in the immediate repair group. The experimental groups underwent denervation with nerve protection of peroneal nerve (mixed protection or sural nerve (sensory protection. The experimental and unprotected groups had a stage II surgery in which the trimmed proximal and distal tibial nerve stumps were sutured together. After 3 months of recovery, electrophysiological, histological and morphometric parameters were assessed. It was detected that the significant muscle atrophy and a good preserved structure of the muscle were observed in the unprotected and protective experimental groups, respectively. Significantly fewer numbers of regenerated myelinated axons were observed in the sensory-protected group. Enhanced recovery in the mixed protection group was indicated by the results of the muscle contraction force tests, regenerated myelinated fiber, and the results of the histological analysis. Our results suggest that early axons protection by mixed nerve may complement sensory axons which are required for promoting functional recovery of the denervated muscle natively innervated by mixed nerve.

  2. Muscle function and body composition profile in adolescents with restrictive anorexia nervosa: does resistance training help?

    Fernández-del-Valle, Maria; Larumbe-Zabala, Eneko; Morande-Lavin, Gonzalo; Perez Ruiz, Margarita

    2016-01-01

    The aim of this study was to analyze the effects of short-term resistance training on the body composition profile and muscle function in a group of Anorexia Nervosa restricting type (AN-R) patients. The sample consisted of AN-R female adolescents (12.8 ± 0.6 years) allocated into the control and intervention groups (n = 18 each). Body composition and relative strength were assessed at baseline, after 8 weeks and 4 weeks following the intervention. Body mass index (BMI) increased throughout the study (p = 0.011). Significant skeletal muscle mass (SMM) gains were found in the intervention group (p = 0.045, d = 0.6) that correlated to the change in BMI (r = 0.51, p  0.60) with change in BMI in both the groups. Significant relative strength increases (p Anorexia Nervosa Restricting Type (AN-R) AN-R is a psychiatric disorder that has a major impact on muscle mass content and function. However, little or no attention has been paid to muscle recovery. High intensity resistance training is safe for AN-R after hospitalization and enhances the force generating capacity as well as muscle mass gains. Skeletal muscle mass content and muscular function improvements are partially maintained for a short period of time when the exercise program ceases.

  3. Upper Extremity Muscle Volumes and Functional Strength After Resistance Training in Older Adults

    Daly, Melissa; Vidt, Meghan E.; Eggebeen, Joel D.; Simpson, W. Greg; Miller, Michael E.; Marsh, Anthony P.; Saul, Katherine R.

    2014-01-01

    Aging leads to a decline in strength and an associated loss of independence. The authors examined changes in muscle volume, maximum isometric joint moment, functional strength, and 1-repetition maximum (1RM) after resistance training (RT) in the upper extremity of older adults. They evaluated isometric joint moment and muscle volume as predictors of functional strength. Sixteen healthy older adults (average age 75 ± 4.3 yr) were randomized to a 6-wk upper extremity RT program or control group. The RT group increased 1RM significantly (p strength (p = .003), isometric shoulder-adduction moment (p = .041), elbow-flexor volume (p = .017), and shoulder-adductor volume (p = .009). Shoulder-muscle volumes and isometric moments were good predictors of functional strength. The authors conclude that shoulder strength is an important factor for performing functional reaching and pulling tasks and a key target for upper extremity RT interventions. PMID:22952203

  4. Sensitivity of different types of fibres in rabbit skeletal muscle to pneumatic compression by tourniquet and to ischaemia.

    Fridén, J; Pedowitz, R A; Thornell, L E

    1994-06-01

    Morphometric properties (distribution of types of fibre and fibre areas) in the non-necrotic regions of four different rabbit muscles (superficial portions of semimembranosus, biceps femoris, tibialis anterior, and soleus muscles) were measured 48 hours after a tourniquet had been applied around the thigh for two hours at either 125 or 350 mmHg. There was an considerable increase of the relative numbers of both large and small fibres as well as changes in the proportions of the types of fibre. The most dramatic percentage change in type of fibre was in the semimembranosus when compressed at 350 mmHg, which showed an increase of the relative frequency of fibres with type 2AB staining characteristics from 10.2% to 18.0% (p < 0.001). Extreme changes in fibre area were found exclusively in semimembranosus and biceps femoris. Most fibres of abnormal size were of type 2, type 2B fibre areas being the most affected. This study shows that morphometry is a valuable tool in the assessment of the more subtle indications of injury. Compression and ischaemia together have a more dramatic effect on muscle morphology and morphometric properties in the non-necrotic regions than ischaemia alone. These data also show that muscles are differentially sensitive to compression and ischaemia. This information may be useful into the understanding of more complex functional deficits observed after the use of tourniquet.

  5. Is the relationship between increased knee muscle strength and improved physical function following exercise dependent on baseline physical function status?

    Hall, Michelle; Hinman, Rana S; van der Esch, Martin; van der Leeden, Marike; Kasza, Jessica; Wrigley, Tim V; Metcalf, Ben R; Dobson, Fiona; Bennell, Kim L

    2017-12-08

    Clinical guidelines recommend knee muscle strengthening exercises to improve physical function. However, the amount of knee muscle strength increase needed for clinically relevant improvements in physical function is unclear. Understanding how much increase in knee muscle strength is associated with improved physical function could assist clinicians in providing appropriate strength gain targets for their patients in order to optimise outcomes from exercise. The aim of this study was to investigate whether an increase in knee muscle strength is associated with improved self-reported physical function following exercise; and whether the relationship differs according to physical function status at baseline. Data from 100 participants with medial knee osteoarthritis enrolled in a 12-week randomised controlled trial comparing neuromuscular exercise to quadriceps strengthening exercise were pooled. Participants were categorised as having mild, moderate or severe physical dysfunction at baseline using the Western Ontario and McMaster Universities Osteoarthritis Index (WOMAC). Associations between 12-week changes in physical function (dependent variable) and peak isometric knee extensor and flexor strength (independent variables) were evaluated with and without accounting for baseline physical function status and covariates using linear regression models. In covariate-adjusted models without accounting for baseline physical function, every 1-unit (Nm/kg) increase in knee extensor strength was associated with physical function improvement of 17 WOMAC units (95% confidence interval (CI) -29 to -5). When accounting for baseline severity of physical function, every 1-unit increase in knee extensor strength was associated with physical function improvement of 24 WOMAC units (95% CI -42 to -7) in participants with severe physical dysfunction. There were no associations between change in strength and change in physical function in participants with mild or moderate physical

  6. Impaired exercise performance and skeletal muscle mitochondrial function in rats with secondary carnitine deficiency

    Jamal BOUITBIR

    2016-08-01

    Full Text Available Purpose: The effects of carnitine depletion upon exercise performance and skeletal muscle mitochondrial function remain largely unexplored. We therefore investigated the effect of N-trimethyl-hydrazine-3-propionate (THP, a carnitine analogue inhibiting carnitine biosynthesis and renal carnitine reabsorption, on physical performance and skeletal muscle mitochondrial function in rats.Methods: Male Sprague Dawley rats were treated daily with water (control rats; n=12 or with 20 mg/100 g body weight THP (n=12 via oral gavage for 3 weeks. Following treatment, half of the animals of each group performed an exercise test until exhaustion.Results: Distance covered and exercise performance were lower in THP-treated compared to control rats. In the oxidative soleus muscle, carnitine depletion caused atrophy (-24% and impaired function of complex II and IV of the mitochondrial electron transport chain. The free radical leak (ROS production relative to oxygen consumption was increased and the cellular glutathione pool decreased. Moreover, mRNA expression of markers of mitochondrial biogenesis and mitochondrial DNA were decreased in THP-treated compared to control rats. In comparison, in the glycolytic gastrocnemius muscle, carnitine depletion was associated with impaired function of complex IV and increased free radical leak, whilst muscle weight and cellular glutathione pool were maintained. Markers of mitochondrial proliferation and mitochondrial DNA were unaffected.Conclusions: Carnitine deficiency is associated with impaired exercise capacity in rats treated with THP. THP-induced carnitine deficiency is associated with impaired function of the electron transport chain in oxidative and glycolytic muscle as well as with atrophy and decreased mitochondrial DNA in oxidative muscle.

  7. Expression and functional characterization of Smyd1a in myofibril organization of skeletal muscles.

    Jie Gao

    Full Text Available BACKGROUND: Smyd1, the founding member of the Smyd family including Smyd-1, 2, 3, 4 and 5, is a SET and MYND domain containing protein that plays a key role in myofibril assembly in skeletal and cardiac muscles. Bioinformatic analysis revealed that zebrafish genome contains two highly related smyd1 genes, smyd1a and smyd1b. Although Smyd1b function is well characterized in skeletal and cardiac muscles, the function of Smyd1a is, however, unknown. METHODOLOGY/PRINCIPAL FINDINGS: To investigate the function of Smyd1a in muscle development, we isolated smyd1a from zebrafish, and characterized its expression and function during muscle development via gene knockdown and transgenic expression approaches. The results showed that smyd1a was strongly expressed in skeletal muscles of zebrafish embryos. Functional analysis revealed that knockdown of smyd1a alone had no significant effect on myofibril assembly in zebrafish skeletal muscles. However, knockdown of smyd1a and smyd1b together resulted in a complete disruption of myofibril organization in skeletal muscles, a phenotype stronger than knockdown of smyd1a or smyd1b alone. Moreover, ectopic expression of zebrafish smyd1a or mouse Smyd1 transgene could rescue the myofibril defects from the smyd1b knockdown in zebrafish embryos. CONCLUSION/SIGNIFICANCE: Collectively, these data indicate that Smyd1a and Smyd1b share similar biological activity in myofibril assembly in zebrafish embryos. However, Smyd1b appears to play a major role in this process.

  8. Adjustment of muscle function to flight in bats; Komori no kinkino no hiko eno tekio

    Yamashita, M. [Institute of the Space and Astronautical Science,Tokyo (Japan); Choi, I.H.

    1999-12-05

    This paper outlines the muscle of bats that generates a motive force for flight. The weight of the muscle is less compared with that of birds. The energy required for flight is twice as much as that for running. Conversely, in view of metabolic cost (transporting cost) for moving a unit mass for a unit distance, the transporting cost of bats for flying is one fifth. The acquisition of this flight ability through evolution can be inferred from the fossils of reptiles. Bats, having a stream-lined body shape and a small body mass, are capable of efficient flight. A fast durable flight is possible by having the pectoral muscle constituted of speed muscles of oxidation/glycolysis muscle fiber, a well-developed oxygen transporting system, the arrangement around the capillary of mitochondria and fat grains that are cell organs for producing energy, and a high-density contact between the capillary and the muscle fiber. The muscle functions at low body temperature and imparts adaptability to hibernation with the body temperature lowered. The flight is controlled by the cycle and synchronized with this biological clock, optical cycle and change in temperature. (NEDO)

  9. Volume of the ligamentum capitis femoris in osteoarthritic hip joints of adult dogs

    J.D. Mande

    2003-06-01

    Full Text Available Ventrodorsal pelvic radiographs were made of 32 adult dogs under general anaesthesia. The hip joints were evaluated according to the severity of osteoarthritic changes graded as 0, 1, 2 or 3. The dogs were euthanased, the hip joints opened and the ligamentum capitis femoris dissected out in toto. The volume of each ligament was determined using a water displacement technique and the mean volume compared to the four radiographic grades of osteoarthritis. There was an inverse correlation (r = -0.75 between the mean volume of the ligamentum capitis femoris and the increasing severity of osteoarthritis as assessed by radiography. The results confirmed the crucial role of radiography in the clinical evaluation of hip dysplasia and osteoarthritis in the adult dog. Assessment of the volume of the ligamentum capitis femoris revealed that it is an important tool for research in canine hip dysplasia and osteoarthritis.

  10. Volume of the ligamentum capitis femoris in osteoartritic hip joints of adult dogs

    Mande, J.D.; Mbithi, P.M.F.; Mbugua, S.W.; Buoro, I.B.J.; Gathumbi, P.K.

    2003-01-01

    Ventrodorsal pelvic radiographs were made of 32 adult dogs under general anaesthesia. The hip joints were evaluated according to the severity of osteoarthritic changes graded as 0, 1, 2 or 3. The dogs were euthanased, the hip joints opened and the ligamentum capitis femoris dissected out in toto. The volume of each ligament was determined using a water displacement technique and the mean volume compared to the four radiographic grades of osteoarthritis. There was an inverse correlation (r = -0.75) between the mean volume of the ligamentum capitis femoris and the increasing severity of osteoarthritis as assessed by radiography. The results confirmed the crucial role of radiography in the clinical evaluation of hip dysplasia and osteoarthritis in the adult dog. Assessment of the volume of the ligamentum capitis femoris revealed that it is an important tool for research in canine hip dysplasia and osteoarthritis

  11. The effect of neuromuscular electrical stimulation on muscle strength, functional capacity and body composition in haemodialysis patients

    Vicent Esteve

    2017-01-01

    Conclusions: (1 NMES improved muscle strength, functional capacity and quadriceps muscle composition in our patients. (2 Based on the results obtained, NMES could be a new therapeutic alternative to prevent muscle atrophy and progressive physical deterioration. (3 However, future studies are necessary to establish the potential beneficial effects of NMES in HD patients.

  12. Fatigue-related changes in motor-unit synchronization of quadriceps muscles within and across legs

    Boonstra, T.W.; Daffertshofer, A.; van Ditshuizen, J.C.; van den Heuvel, M.R.C.; Hofman, C.; Willigenburg, N.W.; Beek, P.J.

    2008-01-01

    Two experiments were conducted to examine effects of muscle fatigue on motor-unit synchronization of quadriceps muscles (rectus femoris, vastus medialis, vastus lateralis) within and between legs. We expected muscle fatigue to result in an increased common drive to different motor units of

  13. In vivo generation of a mature and functional artificial skeletal muscle.

    Fuoco, Claudia; Rizzi, Roberto; Biondo, Antonella; Longa, Emanuela; Mascaro, Anna; Shapira-Schweitzer, Keren; Kossovar, Olga; Benedetti, Sara; Salvatori, Maria L; Santoleri, Sabrina; Testa, Stefano; Bernardini, Sergio; Bottinelli, Roberto; Bearzi, Claudia; Cannata, Stefano M; Seliktar, Dror; Cossu, Giulio; Gargioli, Cesare

    2015-04-01

    Extensive loss of skeletal muscle tissue results in mutilations and severe loss of function. In vitro-generated artificial muscles undergo necrosis when transplanted in vivo before host angiogenesis may provide oxygen for fibre survival. Here, we report a novel strategy based upon the use of mouse or human mesoangioblasts encapsulated inside PEG-fibrinogen hydrogel. Once engineered to express placental-derived growth factor, mesoangioblasts attract host vessels and nerves, contributing to in vivo survival and maturation of newly formed myofibres. When the graft was implanted underneath the skin on the surface of the tibialis anterior, mature and aligned myofibres formed within several weeks as a complete and functional extra muscle. Moreover, replacing the ablated tibialis anterior with PEG-fibrinogen-embedded mesoangioblasts also resulted in an artificial muscle very similar to a normal tibialis anterior. This strategy opens the possibility for patient-specific muscle creation for a large number of pathological conditions involving muscle tissue wasting. © 2015 The Authors. Published under the terms of the CC BY 4.0 license.

  14. Acute effects of inspiratory muscle warm-up on pulmonary function in healthy subjects.

    Özdal, Mustafa

    2016-06-15

    The acute effects of inspiratory muscle warm-up on pulmonary functions were examined in 26 healthy male subjects using the pulmonary function test (PFT) in three different trials. The control trial (CON) did not involve inspiratory muscle warm-up, while the placebo (IMWp) and experimental (IMW) trials involved inspiratory muscle warm-up. There were no significant changes between the IMWp and CON trials (p>0.05). All the PFT measurements, including slow vital capacity, inspiratory vital capacity, forced vital capacity, forced expiratory volume in one second, maximal voluntary ventilation, and maximal inspiratory pressure were significantly increased by 3.55%, 12.52%, 5.00%, 2.75%, 2.66%, and 7.03% respectively, in the subjects in the IMW trial than those in the CON trial (pcooperation of the upper thorax, neck, and respiratory muscles, and increased level of reactive O2 species in muscle tissue, and potentially improvement of muscle O2 delivery-to-utilization. However, further investigation is required to determine the precise mechanisms responsible from among these candidates. Copyright © 2016 Elsevier B.V. All rights reserved.

  15. Exercise induced effects on muscle function and range of motion in patients with hip osteoarthritis

    Bieler, Theresa; Siersma, Volkert; Magnusson, S Peter

    2018-01-01

    BACKGROUND AND PURPOSE: Patients with hip osteoarthritis have impairments in muscle function (muscle strength and power) and hip range of motion (ROM), and it is commonly believed that effective clinical management of osteoarthritis should address these impairments to reduce pain and disability......-two patients were randomized to either 4 months of physiotherapist-supervised, moderate, progressive, strength training (n = 50), physiotherapist-supervised NW (n = 50), or unsupervised HBE (n = 52). Maximal isometric hip and thigh muscle strength and leg extensor power and active hip ROM were assessed...... at baseline 2, 4, and 12 months. RESULTS: Intention-to-treat-analyses did not show any significant between-group differences for improvements in muscle strength and power or ROM at any time points. Short-term significant (p

  16. Vascular Function and Regulation of Blood Flow in Resting and Contracting Skeletal Muscle

    Nyberg, Michael Permin

    importance. The present work provides new insight in to vasodilator interactions important for exercise hyperemia and sheds light on mechanisms important for vascular function and regulation of skeletal muscle blood flow in essential hypertension (high blood pressure) and aging and identifies mechanisms......The precise matching of blood flow, oxygen delivery and metabolism is essential as it ensures that any increase in muscle work is precisely matched by increases in oxygen delivery. Therefore, understanding the control mechanisms of skeletal muscle blood flow regulation is of great biological...... in the regulation of exercise hyperemia. Furthermore, blood flow to contracting leg skeletal muscles is reduced both in essential hypertension and with aging. The potential difference in vasoactive system(s) responsible for the reduction in blood flow in the two conditions is in agreement with the suggestion...

  17. The application of functional MRI in evaluating ischemic injuries of lower limb skeletal muscle

    Xia Caifeng; Gu Jianping

    2011-01-01

    The ischemic injury of lower limb skeletal muscle is caused by various reasons that lead to limb arterial blood flow insufficiency and subsequent muscle tissue hypoxia. Exact and correct evaluation of the ischemic degree of the skeletal muscle is very important for the physicians to guide the clinical treatment, to assess the therapeutic effect and to judge the prognosis. With the development and updating of scanning hardware and software, together with the use of diffusion-weighted imaging (DWI), diffusion tensor imaging (DTI), perfusion-weighted imaging (PWI), blood oxygen level dependent (BOLD) imaging and magnetic resonance spectroscopy (MRS), etc. the application of MRI has been dramatically expanded both in clinical practice and scientific researches. Nowadays, functional MRI can accurately reflect the physiological structures and pathologic changes in detail. This article aims mainly to make a comprehensive review about the application of these techniques in assessing the ischemic injuries of lower limb skeletal muscle. (authors)

  18. Live imaging of muscles in Drosophila metamorphosis: Towards high-throughput gene identification and function analysis.

    Puah, Wee Choo; Wasser, Martin

    2016-03-01

    Time-lapse microscopy in developmental biology is an emerging tool for functional genomics. Phenotypic effects of gene perturbations can be studied non-invasively at multiple time points in chronological order. During metamorphosis of Drosophila melanogaster, time-lapse microscopy using fluorescent reporters allows visualization of alternative fates of larval muscles, which are a model for the study of genes related to muscle wasting. While doomed muscles enter hormone-induced programmed cell death, a smaller population of persistent muscles survives to adulthood and undergoes morphological remodeling that involves atrophy in early, and hypertrophy in late pupation. We developed a method that combines in vivo imaging, targeted gene perturbation and image analysis to identify and characterize genes involved in muscle development. Macrozoom microscopy helps to screen for interesting muscle phenotypes, while confocal microscopy in multiple locations over 4-5 days produces time-lapse images that are used to quantify changes in cell morphology. Performing a similar investigation using fixed pupal tissues would be too time-consuming and therefore impractical. We describe three applications of our pipeline. First, we show how quantitative microscopy can track and measure morphological changes of muscle throughout metamorphosis and analyze genes involved in atrophy. Second, our assay can help to identify genes that either promote or prevent histolysis of abdominal muscles. Third, we apply our approach to test new fluorescent proteins as live markers for muscle development. We describe mKO2 tagged Cysteine proteinase 1 (Cp1) and Troponin-I (TnI) as examples of proteins showing developmental changes in subcellular localization. Finally, we discuss strategies to improve throughput of our pipeline to permit genome-wide screens in the future. Copyright © 2015 The Authors. Published by Elsevier Inc. All rights reserved.

  19. Development of a functional food or drug against unloading-mediated muscle atrophy

    Nikawa, Takeshi; Nakao, Reiko; Kagawa, Sachiko; Yamada, Chiharu; Abe, Manami; Tamura, Seiko; Kohno, Shohei; Sukeno, Akiko; Hirasaka, Katsuya; Okumura, Yuushi; Ishidoh, Kazumi

    The ubiquitin-proteasome pathway is a primary regulator of muscle protein turnover, providing a mechanism for selective degradation of regulatory and structural proteins. This pathway is constitutively active in muscle fibers and mediates both intracellular signaling events and normal muscle protein turnover. However, conditions of decreased muscle use, so called unloading, remarkably stimulate activity of this pathway, resulting in loss of muscle protein. In fact, we previously reported that expression of several ubiquitin ligase genes, such as MuRF-1, Cbl-b, and Siah-1A, which are rate-limiting enzymes of the ubiquitin-proteasome proteolytic pathway, are significantly up-regulated in rat skeletal muscle during spaceflight. Moreover, we found that Cbl-b-mediated ubiquitination and degradation of IRS-1, an important intermediates of IGF-1 signal transduction, contributes to muscle atrophy during unloading. Therefore, we hypothesized that inhibition of Cbl-b-mediated ubiquitination and degradation of IRS-1 leads to prevention of muscle atrophy during unloading. In this study, we aimed to evaluate oligopeptide as an inhibitor against ubiquitination of IRS-1 by Cbl-b. We synthesized various oligopeptides that may competitively inhibit the binding of Cbl-b to IRS-1 on the basis of their structures and screened inhibitory effects of these synthesized oligopeptides on Cbl-b-mediated ubiquitination of IRS-1 using in vitro ubiquitination systems. We found that two synthetic oligopeptides with specific amino acid sequences effectively inhibited interaction with Cbl-b and IRS-1, resulting in decreased ubiquitination and degradation of IRS-1 (Patent pending). In contrast, we also found inhibitory activity against Cbl-b-mediated ubiquitination of IRS-1 in soy protein-derived oligopeptides, whereas their inhibitory effects were weaker than those of synthetic oligopeptides. Our results suggest that specific oligopeptides may be available as a functional food against the muscle

  20. Functional Task Test: 3. Skeletal Muscle Performance Adaptations to Space Flight

    Ryder, Jeffrey W.; Wickwire, P. J.; Buxton, R. E.; Bloomberg, J. J.; Ploutz-Snyder, L.

    2011-01-01

    The functional task test is a multi-disciplinary study investigating how space-flight induced changes to physiological systems impacts functional task performance. Impairment of neuromuscular function would be expected to negatively affect functional performance of crewmembers following exposure to microgravity. This presentation reports the results for muscle performance testing in crewmembers. Functional task performance will be presented in the abstract "Functional Task Test 1: sensory motor adaptations associated with postflight alternations in astronaut functional task performance." METHODS: Muscle performance measures were obtained in crewmembers before and after short-duration space flight aboard the Space Shuttle and long-duration International Space Station (ISS) missions. The battery of muscle performance tests included leg press and bench press measures of isometric force, isotonic power and total work. Knee extension was used for the measurement of central activation and maximal isometric force. Upper and lower body force steadiness control were measured on the bench press and knee extension machine, respectively. Tests were implemented 60 and 30 days before launch, on landing day (Shuttle crew only), and 6, 10 and 30 days after landing. Seven Space Shuttle crew and four ISS crew have completed the muscle performance testing to date. RESULTS: Preliminary results for Space Shuttle crew reveal significant reductions in the leg press performance metrics of maximal isometric force, power and total work on R+0 (pperformance metrics were observed in returning Shuttle crew and these adaptations are likely contributors to impaired functional tasks that are ambulatory in nature (See abstract Functional Task Test: 1). Interestingly, no significant changes in central activation capacity were detected. Therefore, impairments in muscle function in response to short-duration space flight are likely myocellular rather than neuromotor in nature.

  1. Resistance training improves muscle strength and functional capacity in multiple sclerosis

    Dalgas, U; Stenager, E; Jakobsen, J

    2009-01-01

    strength and functional capacity in patients with multiple sclerosis, the effects persisting after 12 weeks of self-guided physical activity. Level of evidence: The present study provides level III evidence supporting the hypothesis that lower extremity progressive resistance training can improve muscle......OBJECTIVE: To test the hypothesis that lower extremity progressive resistance training (PRT) can improve muscle strength and functional capacity in patients with multiple sclerosis (MS) and to evaluate whether the improvements are maintained after the trial. METHODS: The present study was a 2-arm...... and was afterward encouraged to continue training. After the trial, the control group completed the PRT intervention. Both groups were tested before and after 12 weeks of the trial and at 24 weeks (follow-up), where isometric muscle strength of the knee extensors (KE MVC) and functional capacity (FS; combined score...

  2. Age-related functional changes and susceptibility to eccentric contraction-induced damage in skeletal muscle cell.

    Choi, Seung-Jun

    2016-09-01

    Depending upon external loading conditions, skeletal muscles can either shorten, lengthen, or remain at a fixed length as they produce force. Fixed-end or isometric contractions stabilize joints and allow muscles to act as active struts during locomotion. Active muscles dissipate energy when they are lengthened by an external force that exceeds their current force producing capacity. These unaccustomed eccentric activities often lead to muscle weakness, soreness, and inflammation. During aging, the ability to produce force under these conditions is reduced and appears to be due to not only reductions in muscle mass but also to alterations in the basic mechanisms of contraction. These alterations include impairments in the excitation-contraction process, and the action of the cross-bridges. Also, it is well known that age-related skeletal muscle atrophy is characterized by a preferential atrophy of fast fibers, and increased susceptibility to fast muscle fiber when aged muscles are exposed to eccentric contraction followed by the impaired recovery process has been reported. Taken together, the selective loss of fast muscle fiber in aged muscle could be affected by eccentric-induced muscle damage, which has significant implication to identify the etiology of the age-related functional changes. Therefore, in this review the alteration of age-related muscle function and its impact to/of eccentric induced muscle damage and recovery will be addressed in detail.

  3. Age-related functional changes and susceptibility to eccentric contraction-induced damage in skeletal muscle cell

    Seung-Jun Choi

    2016-09-01

    Full Text Available Depending upon external loading conditions, skeletal muscles can either shorten, lengthen, or remain at a fixed length as they produce force. Fixed-end or isometric contractions stabilize joints and allow muscles to act as active struts during locomotion. Active muscles dissipate energy when they are lengthened by an external force that exceeds their current force producing capacity. These unaccustomed eccentric activities often lead to muscle weakness, soreness, and inflammation. During aging, the ability to produce force under these conditions is reduced and appears to be due to not only reductions in muscle mass but also to alterations in the basic mechanisms of contraction. These alterations include impairments in the excitation–contraction process, and the action of the cross-bridges. Also, it is well known that age-related skeletal muscle atrophy is characterized by a preferential atrophy of fast fibers, and increased susceptibility to fast muscle fiber when aged muscles are exposed to eccentric contraction followed by the impaired recovery process has been reported. Taken together, the selective loss of fast muscle fiber in aged muscle could be affected by eccentric-induced muscle damage, which has significant implication to identify the etiology of the age-related functional changes. Therefore, in this review the alteration of age-related muscle function and its impact to/of eccentric induced muscle damage and recovery will be addressed in detail.

  4. Premature loss of muscle mass and function in type 2 diabetes.

    Guerrero, N; Bunout, D; Hirsch, S; Barrera, G; Leiva, L; Henríquez, S; De la Maza, M P

    2016-07-01

    Muscle mass and function are among the most relevant factors that contribute to an optimal quality of life, and are strong predictors of mortality in the elderly. Loss of lean tissues and deterioration of muscle function have been described as one of the many complications of type 2 diabetes mellitus (DM2), but most studies do not isolate age as an intervening factor. To study whether adult DM2 patients up to 60years of age have decreased muscle mass and function compared with healthy non-diabetic (ND) subjects of similar age. Appendicular fat-free mass (ApFFM) by dual X-ray absorptiometry (DEXA), handgrip strength (HS), quadriceps strength (QS), 12 min walking capacity (12MW) and the Timed Up and Go test (TUG) were measured in 100 DM2 patients and 39 ND controls. Muscle quality, or the ratio between lean mass and muscle strength of upper and lower limbs, and the functional limitations associated with pain and stiffness assessed according to the Western Ontario and McMaster Universities Arthrosis Index (WOMAC) were also recorded. Specific tests were performed to rule out microvascular diabetic complications (retinal and peripheral nerves), metabolic control, kidney function and vitamin D status and examine their association with ApFFM and function. ApFFM was significantly higher among DM2 female patients and lower among diabetic men. However opposite results were obtained when individual values were corrected for body mass index (BMI), specifically among women, who were more likely to be obese. As for muscle strength and global functionality tests, significantly better performances in TUG, 12MW, QS and HS were observed among ND subjects of both sexes. These differences prevailed even after excluding diabetic patients with microvascular complications as well as those with more than 10years of diabetes. Muscle quality was also significantly better among ND women. Higher scores of pain and stiffness in the WOMAC scale correlated with 12MW and TUG in both groups but

  5. Regulation and functions of the lms homeobox gene during development of embryonic lateral transverse muscles and direct flight muscles in Drosophila.

    Dominik Müller

    Full Text Available BACKGROUND: Patterning and differentiation of developing musculatures require elaborate networks of transcriptional regulation. In Drosophila, significant progress has been made into identifying the regulators of muscle development and defining their interactive networks. One major family of transcription factors involved in these processes consists of homeodomain proteins. In flies, several members of this family serve as muscle identity genes to specify the fates of individual muscles, or groups thereof, during embryonic and/or adult muscle development. Herein, we report on the expression and function of a new Drosophila homeobox gene during both embryonic and adult muscle development. METHODOLOGY/PRINCIPAL FINDINGS: The newly described homeobox gene, termed lateral muscles scarcer (lms, which has yet uncharacterized orthologs in other invertebrates and primitive chordates but not in vertebrates, is expressed exclusively in subsets of developing muscle tissues. In embryos, lms is expressed specifically in the four lateral transverse (LT muscles and their founder cells in each hemisegment, whereas in larval wing imaginal discs, it is expressed in myoblasts that develop into direct flight muscles (DFMs, which are important for proper wing positioning. We have analyzed the regulatory inputs of various other muscle identity genes with overlapping or complementary expression patterns towards the cell type specific regulation of lms expression. Further we demonstrate that lms null mutants exhibit reduced numbers of embryonic LT muscles, and null mutant adults feature held-out-wing phenotypes. We provide a detailed description of the pattern and morphology of the direct flight muscles in the wild type and lms mutant flies by using the recently-developed ultramicroscopy and show that, in the mutants, all DFMs are present and present normal morphologies. CONCLUSIONS/SIGNIFICANCE: We have identified the homeobox gene lms as a new muscle identity gene

  6. Virtual Agonist-antagonist Mechanisms Produce Biological Muscle-like Functions: An Application for Robot Joint Control

    Xiong, Xiaofeng; Wörgötter, Florentin; Manoonpong, Poramate

    2014-01-01

    Purpose – Biological muscles of animals have a surprising variety of functions, i.e., struts, springs, and brakes. According to this, the purpose of this paper is to apply virtual agonist-antagonist mechanisms to robot joint control allowing for muscle-like functions and variably compliant joint......, variably compliant joint motions can be produced without mechanically bulky and complex mechanisms or complex force/toque sensing at each joint. Moreover, through tuning the damping coefficient of the VAAM, the functions of the VAAM are comparable to biological muscles. Originality/value – The model (i.......e., VAAM) provides a way forward to emulate muscle-like functions that are comparable to those found in physiological experiments of biological muscles. Based on these muscle-like functions, the robotic joints can easily achieve variable compliance that does not require complex physical components...

  7. Poloxamer [corrected] 188 has a deleterious effect on dystrophic skeletal muscle function.

    Rebecca L Terry

    Full Text Available Duchenne muscular dystrophy (DMD is an X-linked, fatal muscle wasting disease for which there is currently no cure and limited palliative treatments. Poloxomer 188 (P188 is a tri-block copolymer that has been proposed as a potential treatment for cardiomyopathy in DMD patients. Despite the reported beneficial effects of P188 on dystrophic cardiac muscle function, the effects of P188 on dystrophic skeletal muscle function are relatively unknown. Mdx mice were injected intraperitoneally with 460 mg/kg or 30 mg/kg P188 dissolved in saline, or saline alone (control. The effect of single-dose and 2-week daily treatment was assessed using a muscle function test on the Tibialis Anterior (TA muscle in situ in anaesthetised mice. The test comprises a warm up, measurement of the force-frequency relationship and a series of eccentric contractions with a 10% stretch that have previously been shown to cause a drop in maximum force in mdx mice. After 2 weeks of P188 treatment at either 30 or 460 mg/kg/day the drop in maximum force produced following eccentric contractions was significantly greater than that seen in saline treated control mice (P = 0.0001. Two week P188 treatment at either dose did not significantly change the force-frequency relationship or maximum isometric specific force produced by the TA muscle. In conclusion P188 treatment increases susceptibility to contraction-induced injury following eccentric contractions in dystrophic skeletal muscle and hence its suitability as a potential therapeutic for DMD should be reconsidered.

  8. PDE5 inhibition alleviates functional muscle ischemia in boys with Duchenne muscular dystrophy.

    Nelson, Michael D; Rader, Florian; Tang, Xiu; Tavyev, Jane; Nelson, Stanley F; Miceli, M Carrie; Elashoff, Robert M; Sweeney, H Lee; Victor, Ronald G

    2014-06-10

    To determine whether phosphodiesterase type 5 (PDE5) inhibition can alleviate exercise-induced skeletal muscle ischemia in boys with Duchenne muscular dystrophy (DMD). In 10 boys with DMD and 10 healthy age-matched male controls, we assessed exercise-induced attenuation of reflex sympathetic vasoconstriction, i.e., functional sympatholysis, a protective mechanism that matches oxygen delivery to metabolic demand. Reflex vasoconstriction was induced by simulated orthostatic stress, measured as the decrease in forearm muscle oxygenation with near-infrared spectroscopy, and performed when the forearm muscles were rested or lightly exercised with rhythmic handgrip exercise. Then, the patients underwent an open-label, dose-escalation, crossover trial with single oral doses of tadalafil or sildenafil. The major new findings are 2-fold: first, sympatholysis is impaired in boys with DMD-producing functional muscle ischemia-despite contemporary background therapy with corticosteroids alone or in combination with cardioprotective medication. Second, PDE5 inhibition with standard clinical doses of either tadalafil or sildenafil alleviates this ischemia in a dose-dependent manner. Furthermore, PDE5 inhibition also normalizes the exercise-induced increase in skeletal muscle blood flow (measured by Doppler ultrasound), which is markedly blunted in boys with DMD. These data provide in-human proof of concept for PDE5 inhibition as a putative new therapeutic strategy for DMD. This study provides Class IV evidence that in patients with DMD, PDE5 inhibition restores functional sympatholysis. © 2014 American Academy of Neurology.

  9. Response of mitochondrial function to hypothyroidism in normal and regenerated rat skeletal muscle.

    Zoll, J; Ventura-Clapier, R; Serrurier, B; Bigard, A X

    2001-01-01

    Although thyroid hormones induce a well known decrease in muscle oxidative capacity, nothing is known concerning their effects on mitochondrial function and regulation in situ. Similarly, the influence of regeneration process is not completely understood. We investigated the effects of hypothyroidism on mitochondrial function in fast gastrocnemius (GS) and slow soleus (SOL) muscles either intact or having undergone a cycle of degeneration/regeneration (Rg SOL) following a local injection of myotoxin. Thyroid hormone deficiency was induced by thyroidectomy and propylthiouracyl via drinking water. Respiration was measured in muscle fibres permeabilised by saponin in order to assess the oxidative capacity of the muscles and the regulation of mitochondria in situ. Oxidative capacities were 8.9 in SOL, 8.5 in Rg SOL and 5.9 micromol O2/min/g dry weight in GS and decreased by 52, 42 and 39% respectively (P hypothyroid rats. Moreover, the Km of mitochondrial respiration for the phosphate acceptor ADP exhibited a two-fold decrease in Rg SOL and intact SOL by hypothyroidism (P hypothyroidism markedly altered the sensitivity of mitochondrial respiration to ADP but not to creatine in SOL muscles, suggesting that mitochondrial regulation could be partially controlled by thyroid hormones. On the other hand, mitochondrial function completely recovered following regeneration/degeneration, suggesting that thyroid hormones are not involved in the regeneration process per se.

  10. Initial intramuscular perfusion pressure predicts early skeletal muscle function following isolated tibial fractures

    Haas Norbert P

    2008-04-01

    Full Text Available Abstract Background The severity of associated soft tissue trauma in complex injuries of the extremities guides fracture treatment and decisively determines patient's prognosis. Trauma-induced microvascular dysfunction and increased tissue pressure is known to trigger secondary soft tissue damage and seems to adversely affect skeletal muscle function. Methods 20 patients with isolated tibial fractures were included. Blood pressure and compartment pressure (anterior and deep posterior compartment were measured continuously up to 24 hours. Corresponding perfusion pressure was calculated. After 4 and 12 weeks isokinetic muscle peak torque and mean power of the ankle joint in dorsal and plantar flexion were measured using a Biodex dynamometer. Results A significant inverse correlation between the anterior perfusion pressure at 24 hours and deficit in dorsiflexion at 4 weeks was found for both, the peak torque (R = -0.83; p Conclusion The functional relationship between the decrease in intramuscular perfusion pressures and muscle performance in the early rehabilitation period indicate a causative and prognostic role of early posttraumatic microcirculatory derangements and skeletal muscle function. Therapeutic concepts aimed at effective muscle recovery, early rehabilitation, and decreased secondary tissue damage, should consider the maintenance of an adequate intramuscular perfusion pressure.

  11. Target genes of myostatin loss-of-function in muscles of late bovine fetuses

    Hocquette Jean-François

    2007-03-01

    Full Text Available Abstract Background Myostatin, a muscle-specific member of the Transforming Growth Factor beta family, negatively regulates muscle development. Double-muscled (DM cattle have a loss-of-function mutation in their myostatin gene responsible for the hypermuscular phenotype. Thus, these animals are a good model for understanding the mechanisms underpinning muscular hypertrophy. In order to identify individual genes or networks that may be myostatin targets, we looked for genes that were differentially expressed between DM and normal (NM animals (n = 3 per group in the semitendinosus muscle (hypertrophied in DM animals at 260 days of fetal development (when the biochemical differentiation of muscle is intensive. A heterologous microarray (human and murine oligonucleotide sequences of around 6,000 genes expressed in muscle was used. Results Many genes were found to be differentially expressed according to genetic type (some with a more than 5-fold change, and according to the presence of one or two functional myostatin allele(s. They belonged to various functional categories. The genes down-regulated in DM fetuses were mainly those encoding extracellular matrix proteins, slow contractile proteins and ribosomal proteins. The genes up-regulated in DM fetuses were mainly involved in the regulation of transcription, cell cycle/apoptosis, translation or DNA metabolism. These data highlight features indicating that DM muscle is shifted towards a more glycolytic metabolism, and has an altered extracellular matrix composition (e.g. down-regulation of COL1A1 and COL1A2, and up-regulation of COL4A2 and decreased adipocyte differentiation (down-regulation of C1QTNF3. The altered gene expression in the three major muscle compartments (fibers, connective tissue and intramuscular adipose tissue is consistent with the well-known characteristics of DM cattle. In addition, novel potential targets of the myostatin gene were identified (MB, PLN, troponins, ZFHX1B

  12. Characterization of the equine skeletal muscle transcriptome identifies novel functional responses to exercise training.

    McGivney, Beatrice A

    2010-01-01

    BACKGROUND: Digital gene expression profiling was used to characterize the assembly of genes expressed in equine skeletal muscle and to identify the subset of genes that were differentially expressed following a ten-month period of exercise training. The study cohort comprised seven Thoroughbred racehorses from a single training yard. Skeletal muscle biopsies were collected at rest from the gluteus medius at two time points: T(1) - untrained, (9 +\\/- 0.5 months old) and T(2) - trained (20 +\\/- 0.7 months old). RESULTS: The most abundant mRNA transcripts in the muscle transcriptome were those involved in muscle contraction, aerobic respiration and mitochondrial function. A previously unreported over-representation of genes related to RNA processing, the stress response and proteolysis was observed. Following training 92 tags were differentially expressed of which 74 were annotated. Sixteen genes showed increased expression, including the mitochondrial genes ACADVL, MRPS21 and SLC25A29 encoded by the nuclear genome. Among the 58 genes with decreased expression, MSTN, a negative regulator of muscle growth, had the greatest decrease.Functional analysis of all expressed genes using FatiScan revealed an asymmetric distribution of 482 Gene Ontology (GO) groups and 18 KEGG pathways. Functional groups displaying highly significant (P < 0.0001) increased expression included mitochondrion, oxidative phosphorylation and fatty acid metabolism while functional groups with decreased expression were mainly associated with structural genes and included the sarcoplasm, laminin complex and cytoskeleton. CONCLUSION: Exercise training in Thoroughbred racehorses results in coordinate changes in the gene expression of functional groups of genes related to metabolism, oxidative phosphorylation and muscle structure.

  13. Muscle function and fatigability of trunk flexors in males and females.

    Deering, Rita E; Senefeld, Jonathon W; Pashibin, Tatyana; Neumann, Donald A; Hunter, Sandra K

    2017-01-01

    Optimal function of the abdominal muscles is necessary for several life functions including lifting and carrying tasks. Sex differences in strength and fatigability are established for many limb muscles and back extensor muscles, but it is unknown if sex differences exist for the abdominal muscles despite their functional importance. Eighteen females (24.3 ± 4.8 years) and 15 males (24.1 ± 6.6 years) performed (1) isometric trunk flexion maximal voluntary contractions (MVCs) in a range of trunk positions to establish a torque-angle curve and (2) submaximal (50% MVC), intermittent isometric contraction (6 s on, 4 s off) until task failure to determine fatigability of the trunk flexor muscles. Dual X-ray absorptiometry quantified body fat and lean mass. Physical activity levels were quantified with a questionnaire. Torque-angle curves, electromyography (EMG), MVC torque, and torque steadiness were compared with repeated measures ANOVA with sex as a between-subjects factor. For the torque-angle curve, MVC torque was reduced as the trunk angle increased toward flexion ( p    0.05). Time-to-task failure for the submaximal fatigability task in upright sitting was similar between males and females (12.4 ± 7 vs 10.5 ± 6 min). Time-to-task failure was positively associated with strength ( r  = 0.473, p  = 0.005) and self-reported physical activity ( r  = 0.456, p  = 0.030). Lean mass in the trunk was positively associated with trunk flexor strength ( r  = 0.378, p  = 0.011) and self-reported physical activity ( r  = 0.486, p  = 0.007). Finally, torque steadiness [coefficient of variation of torque (CV)] during submaximal isometric contractions decreased with contraction intensity and was similar for males and females across all intensities. Unlike many limb muscle groups, males and females had similar fatigability and torque steadiness of the trunk flexor muscles during isometric contractions. Stronger individuals

  14. Molecules in motion: influences of diffusion on metabolic structure and function in skeletal muscle.

    Kinsey, Stephen T; Locke, Bruce R; Dillaman, Richard M

    2011-01-15

    Metabolic processes are often represented as a group of metabolites that interact through enzymatic reactions, thus forming a network of linked biochemical pathways. Implicit in this view is that diffusion of metabolites to and from enzymes is very fast compared with reaction rates, and metabolic fluxes are therefore almost exclusively dictated by catalytic properties. However, diffusion may exert greater control over the rates of reactions through: (1) an increase in reaction rates; (2) an increase in diffusion distances; or (3) a decrease in the relevant diffusion coefficients. It is therefore not surprising that skeletal muscle fibers have long been the focus of reaction-diffusion analyses because they have high and variable rates of ATP turnover, long diffusion distances, and hindered metabolite diffusion due to an abundance of intracellular barriers. Examination of the diversity of skeletal muscle fiber designs found in animals provides insights into the role that diffusion plays in governing both rates of metabolic fluxes and cellular organization. Experimental measurements of metabolic fluxes, diffusion distances and diffusion coefficients, coupled with reaction-diffusion mathematical models in a range of muscle types has started to reveal some general principles guiding muscle structure and metabolic function. Foremost among these is that metabolic processes in muscles do, in fact, appear to be largely reaction controlled and are not greatly limited by diffusion. However, the influence of diffusion is apparent in patterns of fiber growth and metabolic organization that appear to result from selective pressure to maintain reaction control of metabolism in muscle.

  15. Renin-angiotensin system: an old player with novel functions in skeletal muscle.

    Cabello-Verrugio, Claudio; Morales, María Gabriela; Rivera, Juan Carlos; Cabrera, Daniel; Simon, Felipe

    2015-05-01

    Skeletal muscle is a tissue that shows the most plasticity in the body; it can change in response to physiological and pathological stimuli. Among the diseases that affect skeletal muscle are myopathy-associated fibrosis, insulin resistance, and muscle atrophy. A common factor in these pathologies is the participation of the renin-angiotensin system (RAS). This system can be functionally separated into the classical and nonclassical RAS axis. The main components of the classical RAS pathway are angiotensin-converting enzyme (ACE), angiotensin II (Ang-II), and Ang-II receptors (AT receptors), whereas the nonclassical axis is composed of ACE2, angiotensin 1-7 [Ang (1-7)], and the Mas receptor. Hyperactivity of the classical axis in skeletal muscle has been associated with insulin resistance, atrophy, and fibrosis. In contrast, current evidence supports the action of the nonclassical RAS as a counter-regulator axis of the classical RAS pathway in skeletal muscle. In this review, we describe the mechanisms involved in the pathological effects of the classical RAS, advances in the use of pharmacological molecules to inhibit this axis, and the beneficial effects of stimulation of the nonclassical RAS pathway on insulin resistance, atrophy, and fibrosis in skeletal muscle. © 2015 Wiley Periodicals, Inc.

  16. Overexpression of IGF-1 attenuates skeletal muscle damage and accelerates muscle regeneration and functional recovery after disuse

    Ye, Fan; Mathur, Sunita; Liu, Min; Borst, Stephen E.; Walter, Glenn A.; Sweeney, H. Lee; Vandenborne, Krista

    2014-01-01

    Skeletal muscle is a highly dynamic tissue that responds to endogenous and external stimuli, including alterations in mechanical loading and growth factors. In particular, the antigravity soleus muscle experiences significant muscle atrophy during disuse and extensive muscle damage upon reloading. Since insulin-like growth factor-1 (IGF-1) has been implicated as a central regulator of muscle repair and modulation of muscle size, we examined the effect of viral mediated overexpression of IGF-1 on the soleus muscle following hindlimb cast immobilization and upon reloading. Recombinant IGF-1 cDNA virus was injected into one of the posterior hindlimbs of the mice, while the contralateral limb was injected with saline (control). At 20 weeks of age, both hindlimbs were immobilized for two weeks to induce muscle atrophy in the soleus and ankle plantar flexor muscle group. Subsequently, the mice were allowed to reambulate and muscle damage and recovery was monitored over a period of 2 to 21 days. The primary finding of this study was that IGF-1 overexpression attenuated reloading-induced muscle damage in the soleus muscle, and accelerated muscle regeneration and force recovery. Muscle T2 assessed by MRI, a nonspecific marker of muscle damage, was significantly lower in IGF-1 injected, compared to contralateral soleus muscles at 2 and 5 days reambulation (P<0.05). The reduced prevalence of muscle damage in IGF-1 injected soleus muscles was confirmed on histology, with a lower fraction area of abnormal muscle tissue in IGF-I injected muscles at 2 days reambulation (33.2±3.3%vs 54.1±3.6%, P<0.05). Evidence of the effect of IGF-1 on muscle regeneration included timely increases in the number of central nuclei (21% at 5 days reambulation), paired-box transcription factor 7 (36% at 5 days), embryonic myosin (37% at 10 days), and elevated MyoD mRNA (7-fold at 2 days) in IGF-1 injected limbs (P<0.05). These findings demonstrate a potential role of IGF-1 in protecting unloaded

  17. Evaluation of jaw and neck muscle activities while chewing using EMG-EMG transfer function and EMG-EMG coherence function analyses in healthy subjects.

    Ishii, Tomohiro; Narita, Noriyuki; Endo, Hiroshi

    2016-06-01

    This study aims to quantitatively clarify the physiological features in rhythmically coordinated jaw and neck muscle EMG activities while chewing gum using EMG-EMG transfer function and EMG-EMG coherence function analyses in 20 healthy subjects. The chewing side masseter muscle EMG signal was used as the reference signal, while the other jaw (non-chewing side masseter muscle, bilateral anterior temporal muscles, and bilateral anterior digastric muscles) and neck muscle (bilateral sternocleidomastoid muscles) EMG signals were used as the examined signals in EMG-EMG transfer function and EMG-EMG coherence function analyses. Chewing-related jaw and neck muscle activities were aggregated in the first peak of the power spectrum in rhythmic chewing. The gain in the peak frequency represented the power relationships between jaw and neck muscle activities during rhythmic chewing. The phase in the peak frequency represented the temporal relationships between the jaw and neck muscle activities, while the non-chewing side neck muscle presented a broad range of distributions across jaw closing and opening phases. Coherence in the peak frequency represented the synergistic features in bilateral jaw closing muscles and chewing side neck muscle activities. The coherence and phase in non-chewing side neck muscle activities exhibited a significant negative correlation. From above, the bilateral coordination between the jaw and neck muscle activities is estimated while chewing when the non-chewing side neck muscle is synchronously activated with the jaw closing muscles, while the unilateral coordination is estimated when the non-chewing side neck muscle is irregularly activated in the jaw opening phase. Thus, the occurrence of bilateral or unilateral coordinated features in the jaw and neck muscle activities may correspond to the phase characteristics in the non-chewing side neck muscle activities during rhythmical chewing. Considering these novel findings in healthy subjects, EMG

  18. Aging impairs the recovery in mechanical muscle function following 4 days of disuse

    Hvid, L G; Suetta, C; Nielsen, J H

    2014-01-01

    As aged individuals are frequently exposed to short-term disuse caused by disease or musculoskeletal injury, it is important to understand how short-term disuse and subsequent retraining affect lower limb mechanical muscle function. The purpose of the present study was, therefore, to investigate...... the effect of 4 days of lower limb disuse followed by 7 days of active recovery on mechanical muscle function of the knee extensors in young (24.3±0.9 years, n=11) and old (67.2±1.0 years, n=11) recreationally active healthy males. Slow and moderate dynamic muscle strength were assessed using isokinetic...... to disuse, marked age-related differences (p

  19. Resistance training for activity limitations in older adults with skeletal muscle function deficits: a systematic review

    Papa EV

    2017-06-01

    Full Text Available Evan V Papa,1 Xiaoyang Dong,2 Mahdi Hassan1 1Department of Rehabilitation Medicine, The First Affiliated Hospital of Nanchang University, Nanchang, Jiangxi Province, People’s Republic of China; 2Department of Physical Therapy, University of North Texas Health Science Center, Fort Worth, TX, USA Abstract: Human aging results in a variety of changes to skeletal muscle. Sarcopenia is the age-associated loss of muscle mass and is one of the main contributors to musculoskeletal impairments in the elderly. Previous research has demonstrated that resistance training can attenuate skeletal muscle function deficits in older adults, however few articles have focused on the effects of resistance training on functional mobility. The purpose of this systematic review was to 1 present the current state of literature regarding the effects of resistance training on functional mobility outcomes for older adults with skeletal muscle function deficits and 2 provide clinicians with practical guidelines that can be used with seniors during resistance training, or to encourage exercise. We set forth evidence that resistance training can attenuate age-related changes in functional mobility, including improvements in gait speed, static and dynamic balance, and fall risk reduction. Older adults should be encouraged to participate in progressive resistance training activities, and should be admonished to move along a continuum of exercise from immobility, toward the recommended daily amounts of activity. Keywords: aging, strength training, sarcopenia, mobility, balance

  20. Identification of Histone Deacetylase 2 as a Functional Gene for Skeletal Muscle Development in Chickens

    Md. Shahjahan

    2016-04-01

    Full Text Available A previous genome-wide association study (GWAS exposed histone deacetylase 2 (HDAC2 as a possible candidate gene for breast muscle weight in chickens. The present research has examined the possible role of HDAC2 in skeletal muscle development in chickens. Gene expression was measured by quantitative polymerase chain reaction in breast and thigh muscles during both embryonic (four ages and post-hatch (five ages development and in cultures of primary myoblasts during both proliferation and differentiation. The expression of HDAC2 increased significantly across embryonic days (ED in breast (ED 14, 16, 18, and 21 and thigh (ED 14 and 18, and ED 14 and 21 muscles suggesting that it possibly plays a role in myoblast hyperplasia in both breast and thigh muscles. Transcript abundance of HDAC2 identified significantly higher in fast growing muscle than slow growing in chickens at d 90 of age. Expression of HDAC2 during myoblast proliferation in vitro declined between 24 h and 48 h when expression of the marker gene paired box 7 (PAX7 increased and cell numbers increased throughout 72 h of culture. During induced differentiation of myoblasts to myotubes, the abundance of HDAC2 and the marker gene myogenic differentiation 1 (MYOD1, both increased significantly. Taken together, it is suggested that HDAC2 is most likely involved in a suppressive fashion in myoblast proliferation and may play a positive role in myoblast differentiation. The present results confirm the suggestion that HDAC2 is a functional gene for pre-hatch and post-hatch (fast growing muscle development of chicken skeletal muscle.

  1. ALTERATION OF MUSCLE FUNCTION AFTER ELECTRICAL STIMULATION BOUT OF KNEE EXTENSORS AND FLEXORS

    Marc Vanderthommen

    2012-12-01

    Full Text Available The purpose was to study the effects on muscle function of an electrical stimulation bout applied unilaterally on thigh muscles in healthy male volunteers. One group (ES group, n = 10 received consecutively 100 isometric contractions of quadriceps and 100 isometric contractions of hamstrings (on-off ratio 6-6 s induced by neuromuscular electrical stimulations (NMES. Changes in muscle torque, muscle soreness (0-10 VAS, muscle stiffness and serum creatine kinase (CK activity were assessed before the NMES exercise (pre-ex as well as 24h (d+1, 48h (d+2 and 120h (d+5 after the bout. A second group (control group, n = 10 were submitted to the same test battery than the ES group and with the same time-frame. The between-group comparison indicated a significant increase in VAS scores and in serum levels of CK only in the ES group. In the ES group, changes were more pronounced in hamstrings than in quadriceps and peaked at d+2 (quadriceps VAS scores = 2.20 ± 1.55 a.u. (0 at pre-ex; hamstrings VAS scores = 3.15 ± 2.14 a.u. (0 at pre-ex; hip flexion angle = 62 ± 5° (75 ± 6° at pre-ex; CK activity = 3021 ± 2693 IU·l-1 (136 ± 50 IU·l-1 at pre-ex. The results of the present study suggested the occurrence of muscle damage that could have been induced by the peculiar muscle recruitment in NMES and the resulting overrated mechanical stress. The sensitivity to the damaging effects of NMES appeared higher in the hamstrings than in quadriceps muscles

  2. Changes in skeletal muscle and tendon structure and function following genetic inactivation of myostatin in rats

    Mendias, Christopher L; Lynch, Evan B; Gumucio, Jonathan P; Flood, Michael D; Rittman, Danielle S; Van Pelt, Douglas W; Roche, Stuart M; Davis, Carol S

    2015-01-01

    Myostatin is a negative regulator of skeletal muscle and tendon mass. Myostatin deficiency has been well studied in mice, but limited data are available on how myostatin regulates the structure and function of muscles and tendons of larger animals. We hypothesized that, in comparison to wild-type (MSTN+/+) rats, rats in which zinc finger nucleases were used to genetically inactivate myostatin (MSTNΔ/Δ) would exhibit an increase in muscle mass and total force production, a reduction in specific force, an accumulation of type II fibres and a decrease and stiffening of connective tissue. Overall, the muscle and tendon phenotype of myostatin-deficient rats was markedly different from that of myostatin-deficient mice, which have impaired contractility and pathological changes to fibres and their extracellular matrix. Extensor digitorum longus and soleus muscles of MSTNΔ/Δ rats demonstrated 20–33% increases in mass, 35–45% increases in fibre number, 20–57% increases in isometric force and no differences in specific force. The insulin-like growth factor-1 pathway was activated to a greater extent in MSTNΔ/Δ muscles, but no substantial differences in atrophy-related genes were observed. Tendons of MSTNΔ/Δ rats had a 20% reduction in peak strain, with no differences in mass, peak stress or stiffness. The general morphology and gene expression patterns were similar between tendons of both genotypes. This large rodent model of myostatin deficiency did not have the negative consequences to muscle fibres and extracellular matrix observed in mouse models, and suggests that the greatest impact of myostatin in the regulation of muscle mass may not be to induce atrophy directly, but rather to block hypertrophy signalling. PMID:25640143

  3. Plasticity of human skeletal muscle: gene expression to in vivo function.

    Harridge, Stephen D R

    2007-09-01

    Human skeletal muscle is a highly heterogeneous tissue, able to adapt to the different challenges that may be placed upon it. When overloaded, a muscle adapts by increasing its size and strength through satellite-cell-mediated mechanisms, whereby protein synthesis is increased and new nuclei are added to maintain the myonuclear domain. This process is regulated by an array of mechanical, hormonal and nutritional signals. Growth factors, such as insulin-like growth factor I (IGF-I) and testosterone, are potent anabolic agents, whilst myostatin acts as a negative regulator of muscle mass. Insulin-like growth factor I is unique in being able to stimulate both the proliferation and the differentiation of satellite cells and works as part of an important local repair and adaptive mechanism. Speed of movement, as characterized by maximal velocity of shortening (V(max)), is regulated primarily by the isoform of myosin heavy chain (MHC) contained within a muscle fibre. Human fibres can express three MHCs: MHC-I, -IIa and -IIx, in order of increasing V(max) and maximal power output. Training studies suggest that there is a subtle interplay between the MHC-IIa and -IIx isoforms, with the latter being downregulated by activity and upregulated by inactivity. However, switching between the two main isoforms appears to require significant challenges to a muscle. Upregulation of fast gene programs is caused by prolonged disuse, whilst upregulation of slow gene programs appears to require significant and prolonged activity. The potential mechanisms by which alterations in muscle composition are mediated are discussed. The implications in terms of contractile function of altering muscle phenotype are discussed from the single fibre to the whole muscle level.

  4. Coordination of intrinsic and extrinsic hand muscle activity as a function of wrist joint angle during two-digit grasping.

    Johnston, Jamie A; Bobich, Lisa R; Santello, Marco

    2010-04-26

    Fingertip forces result from the activation of muscles that cross the wrist and muscles whose origins and insertions reside within the hand (extrinsic and intrinsic hand muscles, respectively). Thus, tasks that involve changes in wrist angle affect the moment arm and length, hence the force-producing capabilities, of extrinsic muscles only. If a grasping task requires the exertion of constant fingertip forces, the Central Nervous System (CNS) may respond to changes in wrist angle by modulating the neural drive to extrinsic or intrinsic muscles only or by co-activating both sets of muscles. To distinguish between these scenarios, we recorded electromyographic (EMG) activity of intrinsic and extrinsic muscles of the thumb and index finger as a function of wrist angle during a two-digit object hold task. We hypothesized that changes in wrist angle would elicit EMG amplitude modulation of the extrinsic and intrinsic hand muscles. In one experimental condition we asked subjects to exert the same digit forces at each wrist angle, whereas in a second condition subjects could choose digit forces for holding the object. EMG activity was significantly modulated in both extrinsic and intrinsic muscles as a function of wrist angle (both pextrinsic and intrinsic muscles as a muscle synergy. These findings are discussed within the theoretical frameworks of synergies and common neural input across motor nuclei of hand muscles. Copyright 2010 Elsevier Ireland Ltd. All rights reserved.

  5. Two weeks of muscle immobilization impairs functional sympatholysis but increases exercise hyperemia and the vasodilatory responsiveness to infused ATP

    Mortensen, Stefan P; Mørkeberg, Jakob S; Thaning, Pia

    2012-01-01

    During exercise, contracting muscles can override sympathetic vasoconstrictor activity (functional sympatholysis). ATP and adenosine have been proposed to play a role in skeletal muscle blood flow regulation. However, little is known about the role of muscle training status on functional sympatho......During exercise, contracting muscles can override sympathetic vasoconstrictor activity (functional sympatholysis). ATP and adenosine have been proposed to play a role in skeletal muscle blood flow regulation. However, little is known about the role of muscle training status on functional....../min; P higher in the immobilized leg (2.9 ± 0.2 l/min; P .... Mean arterial pressure was lower during exercise with the trained leg compared with the immobilized leg (P higher after immobilization (3.9 ± 0.3 and 4.5 ± 0.6 l/min in the control and immobilized leg...

  6. Quantification of Na+,K+ pumps and their transport rate in skeletal muscle: Functional significance

    2013-01-01

    During excitation, muscle cells gain Na+ and lose K+, leading to a rise in extracellular K+ ([K+]o), depolarization, and loss of excitability. Recent studies support the idea that these events are important causes of muscle fatigue and that full use of the Na+,K+-ATPase (also known as the Na+,K+ pump) is often essential for adequate clearance of extracellular K+. As a result of their electrogenic action, Na+,K+ pumps also help reverse depolarization arising during excitation, hyperkalemia, and anoxia, or from cell damage resulting from exercise, rhabdomyolysis, or muscle diseases. The ability to evaluate Na+,K+-pump function and the capacity of the Na+,K+ pumps to fill these needs require quantification of the total content of Na+,K+ pumps in skeletal muscle. Inhibition of Na+,K+-pump activity, or a decrease in their content, reduces muscle contractility. Conversely, stimulation of the Na+,K+-pump transport rate or increasing the content of Na+,K+ pumps enhances muscle excitability and contractility. Measurements of [3H]ouabain binding to skeletal muscle in vivo or in vitro have enabled the reproducible quantification of the total content of Na+,K+ pumps in molar units in various animal species, and in both healthy people and individuals with various diseases. In contrast, measurements of 3-O-methylfluorescein phosphatase activity associated with the Na+,K+-ATPase may show inconsistent results. Measurements of Na+ and K+ fluxes in intact isolated muscles show that, after Na+ loading or intense excitation, all the Na+,K+ pumps are functional, allowing calculation of the maximum Na+,K+-pumping capacity, expressed in molar units/g muscle/min. The activity and content of Na+,K+ pumps are regulated by exercise, inactivity, K+ deficiency, fasting, age, and several hormones and pharmaceuticals. Studies on the α-subunit isoforms of the Na+,K+-ATPase have detected a relative increase in their number in response to exercise and the glucocorticoid dexamethasone but have not

  7. Quantification of Na+,K+ pumps and their transport rate in skeletal muscle: functional significance.

    Clausen, Torben

    2013-10-01

    During excitation, muscle cells gain Na(+) and lose K(+), leading to a rise in extracellular K(+) ([K(+)]o), depolarization, and loss of excitability. Recent studies support the idea that these events are important causes of muscle fatigue and that full use of the Na(+),K(+)-ATPase (also known as the Na(+),K(+) pump) is often essential for adequate clearance of extracellular K(+). As a result of their electrogenic action, Na(+),K(+) pumps also help reverse depolarization arising during excitation, hyperkalemia, and anoxia, or from cell damage resulting from exercise, rhabdomyolysis, or muscle diseases. The ability to evaluate Na(+),K(+)-pump function and the capacity of the Na(+),K(+) pumps to fill these needs require quantification of the total content of Na(+),K(+) pumps in skeletal muscle. Inhibition of Na(+),K(+)-pump activity, or a decrease in their content, reduces muscle contractility. Conversely, stimulation of the Na(+),K(+)-pump transport rate or increasing the content of Na(+),K(+) pumps enhances muscle excitability and contractility. Measurements of [(3)H]ouabain binding to skeletal muscle in vivo or in vitro have enabled the reproducible quantification of the total content of Na(+),K(+) pumps in molar units in various animal species, and in both healthy people and individuals with various diseases. In contrast, measurements of 3-O-methylfluorescein phosphatase activity associated with the Na(+),K(+)-ATPase may show inconsistent results. Measurements of Na(+) and K(+) fluxes in intact isolated muscles show that, after Na(+) loading or intense excitation, all the Na(+),K(+) pumps are functional, allowing calculation of the maximum Na(+),K(+)-pumping capacity, expressed in molar units/g muscle/min. The activity and content of Na(+),K(+) pumps are regulated by exercise, inactivity, K(+) deficiency, fasting, age, and several hormones and pharmaceuticals. Studies on the α-subunit isoforms of the Na(+),K(+)-ATPase have detected a relative increase in their

  8. Chronic dietary supplementation with soy protein improves muscle function in rats.

    Ramzi J Khairallah

    Full Text Available Athletes as well as elderly or hospitalized patients use dietary protein supplementation to maintain or grow skeletal muscle. It is recognized that high quality protein is needed for muscle accretion, and can be obtained from both animal and plant-based sources. There is interest to understand whether these sources differ in their ability to maintain or stimulate muscle growth and function. In this study, baseline muscle performance was assessed in 50 adult Sprague-Dawley rats after which they were assigned to one of five semi-purified "Western" diets (n = 10/group differing only in protein source, namely 19 kcal% protein from either milk protein isolate (MPI, whey protein isolate (WPI, soy protein isolate (SPI, soy protein concentrate (SPC or enzyme-treated soy protein (SPE. The diets were fed for 8 weeks at which point muscle performance testing was repeated and tissues were collected for analysis. There was no significant difference in food consumption or body weights over time between the diet groups nor were there differences in terminal organ and muscle weights or in serum lipids, creatinine or myostatin. Compared with MPI-fed rats, rats fed WPI and SPC displayed a greater maximum rate of contraction using the in vivo measure of muscle performance (p<0.05 with increases ranging from 13.3-27.5% and 22.8-29.5%, respectively at 60, 80, 100 and 150 Hz. When the maximum force was normalized to body weight, SPC-fed rats displayed increased force compared to MPI (p<0.05, whereas when normalized to gastrocnemius weight, WPI-fed rats displayed increased force compared to MPI (p<0.05. There was no difference between groups using in situ muscle performance. In conclusion, soy protein consumption, in high-fat diet, resulted in muscle function comparable to whey protein and improved compared to milk protein. The benefits seen with soy or whey protein were independent of changes in muscle mass or fiber cross-sectional area.

  9. Effects of protein-calorie restriction on mechanical function of hypertrophied cardiac muscle

    Antônio Carlos Cicogna

    1999-04-01

    Full Text Available OBJECTIVE: To assess the effect of food restriction (FR on hypertrophied cardiac muscle in spontaneously hypertensive rats (SHR. METHODS: Isolated papillary muscle preparations of the left ventricle (LV of 60-day-old SHR and of normotensive Wistar-Kyoto (WKY rats were studied. The rats were fed either an unrestricted diet or FR diet (50% of the intake of the control diet for 30 days. The mechanical function of the muscles was evaluated through monitoring isometric and isotonic contractions. RESULTS: FR caused: 1 reduction in the body weight and LV weight of SHR and WKY rats; 2 increase in the time to peak shortening and the time to peak developed tension (DT in the hypertrophied myocardium of the SHR; 3 diverging changes in the mechanical function of the normal cardiac muscles of WKY rats with reduction in maximum velocity of isotonic shortening and of the time for DT to decrease 50% of its maximum value, and increase of the resting tension and of the rate of tension decline. CONCLUSION: Short-term FR causes prolongation of the contraction time of hypertrophied muscles and paradoxal changes in mechanical performance of normal cardiac fibers, with worsening of the shortening indices and of the resting tension, and improvement of the isometric relaxation.

  10. A review: Functional near infrared spectroscopy evaluation in muscle tissues using Monte Carlo simulation

    Halim, A. A. A.; Laili, M. H.; Salikin, M. S.; Rusop, M.

    2018-05-01

    Monte Carlo Simulation has advanced their quantification based on number of the photon counting to solve the propagation of light inside the tissues including the absorption, scattering coefficient and act as preliminary study for functional near infrared application. The goal of this paper is to identify the optical properties using Monte Carlo simulation for non-invasive functional near infrared spectroscopy (fNIRS) evaluation of penetration depth in human muscle. This paper will describe the NIRS principle and the basis for its proposed used in Monte Carlo simulation which focused on several important parameters include ATP, ADP and relate with blow flow and oxygen content at certain exercise intensity. This will cover the advantages and limitation of such application upon this simulation. This result may help us to prove that our human muscle is transparent to this near infrared region and could deliver a lot of information regarding to the oxygenation level in human muscle. Thus, this might be useful for non-invasive technique for detecting oxygen status in muscle from living people either athletes or working people and allowing a lots of investigation muscle physiology in future.

  11. Immunological studies on the structure and function of the nicotinic acetylcholine receptor in mammalian muscle

    Gu, Y.

    1989-01-01

    The specificity of the antibodies in the serum of a patient with myasthenia gravis for a the {alpha}-bungarotoxin binding sites of the acetylcholine receptor (AChR) was examined using AChRs in the C2 mouse muscle cell line as a model. The antibodies were shown to be specific for one of the two toxin-binding sites. The effect of the antibodies in this myasthenic serum on the functional response of the receptor to cholinergic agonists was also examined using carbamylcholine-induced {sup 22}Na uptake into C2 myotubes as a measured of the receptor function. Antibodies specific for the {gamma}, {delta}, and {epsilon} subunit, respectively, of mammalian muscle AChRs were developed using subunit-specific synthetic peptides as antigens. Using these antibodies and monoclonal antibodies for other subunits as probes, I have identified four ({alpha}, {beta}, {gamma}, and {delta}) subunits of mammalian muscle AChRs on immunoblots. When AChRs from embryonic, neonatal, normal and denervated adult muscles were compared on immunoblots, the {alpha}, {beta}, and {delta} subunits were identical in all four receptor preparations, with or without endoglycosidase digestion. The spatial and temporal distribution of the {gamma}- and {epsilon}- AChRs in developing and in denervated muscles corresponds to the distribution of AChRs with slow and fast channels, respectively, and that the development changes in the channel properties of the receptor arise from a change in the subunit composition of the receptor, in which the {gamma} is replaced by {epsilon}.

  12. Immunological studies on the structure and function of the nicotinic acetylcholine receptor in mammalian muscle

    Gu, Y.

    1989-01-01

    The specificity of the antibodies in the serum of a patient with myasthenia gravis for a the α-bungarotoxin binding sites of the acetylcholine receptor (AChR) was examined using AChRs in the C2 mouse muscle cell line as a model. The antibodies were shown to be specific for one of the two toxin-binding sites. The effect of the antibodies in this myasthenic serum on the functional response of the receptor to cholinergic agonists was also examined using carbamylcholine-induced 22 Na uptake into C2 myotubes as a measured of the receptor function. Antibodies specific for the γ, δ, and ε subunit, respectively, of mammalian muscle AChRs were developed using subunit-specific synthetic peptides as antigens. Using these antibodies and monoclonal antibodies for other subunits as probes, I have identified four (α, β, γ, and δ) subunits of mammalian muscle AChRs on immunoblots. When AChRs from embryonic, neonatal, normal and denervated adult muscles were compared on immunoblots, the α, β, and δ subunits were identical in all four receptor preparations, with or without endoglycosidase digestion. The spatial and temporal distribution of the γ- and ε- AChRs in developing and in denervated muscles corresponds to the distribution of AChRs with slow and fast channels, respectively, and that the development changes in the channel properties of the receptor arise from a change in the subunit composition of the receptor, in which the γ is replaced by ε

  13. Anatomy, function, and evolution of jaw and hyobranchial muscles in cryptobranchoid salamander larvae.

    Kleinteich, Thomas; Herzen, Julia; Beckmann, Felix; Matsui, Masafumi; Haas, Alexander

    2014-02-01

    Larval salamanders (Lissamphibia: Caudata) are known to be effective suction feeders in their aquatic environments, although they will eventually transform into terrestrial tongue feeding adults during metamorphosis. Early tetrapods may have had a similar biphasic life cycle and this makes larval salamanders a particularly interesting model to study the anatomy, function, development, and evolution of the feeding apparatus in terrestrial vertebrates. Here, we provide a description of the muscles that are involved in the feeding strike in salamander larvae of the Hynobiidae and compare them to larvae of the paedomorphic Cryptobranchidae. We provide a functional and evolutionary interpretation for the observed muscle characters. The cranial muscles in larvae from species of the Hynobiidae and Cryptobranchidae are generally very similar. Most notable are the differences in the presence of the m. hyomandibularis, a muscle that connects the hyobranchial apparatus with the lower jaw. We found this muscle only in Onychodactylus japonicus (Hynobiidae) but not in other hynobiid or cryptobranchid salamanders. Interestingly, the m. hyomandibularis in O. japonicus originates from the ceratobranchial I and not the ceratohyal, and thus exhibits what was previously assumed to be the derived condition. Finally, we applied a biomechanical model to simulate suction feeding in larval salamanders. We provide evidence that a flattened shape of the hyobranchial apparatus in its resting position is beneficial for a fast and successful suction feeding strike. Copyright © 2013 Wiley Periodicals, Inc.

  14. Effects of experimental muscle pain on muscle activity and co-ordination during static and dynamic motor function.

    Graven-Nielsen, T; Svensson, P; Arendt-Nielsen, L

    1997-04-01

    The relation between muscle pain, muscle activity, and muscle co-ordination is still controversial. The present human study investigates the influence of experimental muscle pain on resting, static, and dynamic muscle activity. In the resting and static experiments, the electromyography (EMG) activity and the contraction force of m. tibialis anterior were assessed before and after injection of 0.5 ml hypertonic saline (5%) into the same muscle. In the dynamic experiment, injections of 0.5 ml hypertonic saline (5%) were performed into either m. tibialis anterior (TA) or m. gastrocnemius (GA) and the muscle activity and co-ordination were investigated during gait on a treadmill by EMG recordings from m. TA and m. GA. At rest no evidence of EMG hyperactivity was found during muscle pain. The maximal voluntary contraction (MVC) during muscle pain was significantly lower than the control condition (P Fibromyalgia and Myofascial Pain. Elsevier, Amsterdam, 1993, pp. 311-327.) which predicts increased activity of antagonistic muscle and decreased activity of agonistic muscle during experimental and clinical muscle pain.

  15. Utility and reliability of non-invasive muscle function tests in high-fat-fed mice.

    Martinez-Huenchullan, Sergio F; McLennan, Susan V; Ban, Linda A; Morsch, Marco; Twigg, Stephen M; Tam, Charmaine S

    2017-07-01

    What is the central question of this study? Non-invasive muscle function tests have not been validated for use in the study of muscle performance in high-fat-fed mice. What is the main finding and its importance? This study shows that grip strength, hang wire and four-limb hanging tests are able to discriminate the muscle performance between chow-fed and high-fat-fed mice at different time points, with grip strength being reliable after 5, 10 and 20 weeks of dietary intervention. Non-invasive tests are commonly used for assessing muscle function in animal models. The value of these tests in obesity, a condition where muscle strength is reduced, is unclear. We investigated the utility of three non-invasive muscle function tests, namely grip strength (GS), hang wire (HW) and four-limb hanging (FLH), in C57BL/6 mice fed chow (chow group, n = 48) or a high-fat diet (HFD group, n = 48) for 20 weeks. Muscle function tests were performed at 5, 10 and 20 weeks. After 10 and 20 weeks, HFD mice had significantly reduced GS (in newtons; mean ± SD: 10 weeks chow, 1.89 ± 0.1 and HFD, 1.79 ± 0.1; 20 weeks chow, 1.99 ± 0.1 and HFD, 1.75 ± 0.1), FLH [in seconds per gram body weight; median (interquartile range): 10 weeks chow, 2552 (1337-4964) and HFD, 1230 (749-1994); 20 weeks chow, 2048 (765-3864) and HFD, 1036 (717-1855)] and HW reaches [n; median (interquartile range): 10 weeks chow, 4 (2-5) and HFD, 2 (1-3); 20 weeks chow, 3 (1-5) and HFD, 1 (0-2)] and higher falls [n; median (interquartile range): 10 weeks chow, 0 (0-2) and HFD, 3 (1-7); 20 weeks chow, 1 (0-4) and HFD, 8 (5-10)]. Grip strength was reliable in both dietary groups [intraclass correlation coefficient (ICC) = 0.5-0.8; P tests are valuable and reliable tools for assessment of muscle strength and function in high-fat-fed mice. © 2017 The Authors. Experimental Physiology © 2017 The Physiological Society.

  16. Anatomical study of the proximal origin of hamstring muscles.

    Sato, Kengo; Nimura, Akimoto; Yamaguchi, Kumiko; Akita, Keiichi

    2012-09-01

    It is relatively well accepted that the long head of the biceps femoris and the semitendinosus both originate from the ischial tuberosity as a common tendon. However, it is also widely known that the biceps femoris is consistently injured more than the semitendinosus. The purpose of this study was to examine the origins of the hamstring muscles, to find an anatomic basis for diagnosis and treatment of injuries of the posterior thigh regions. Twenty-eight hips of fourteen adult Japanese cadavers were used in this study. In twenty hips of ten cadavers, the positional relationships among the origins on the ischial tuberosity were examined. In eight hips of four cadavers, histological examination of the origins of the hamstrings was also performed. The origin of the long head of the biceps femoris adjoined that of the semitendinosus. In the proximal regions of these muscles, the long head consisted of the tendinous part; however, the semitendinosus mainly consisted of the muscular part. Some of the fibers of the biceps tendon extended to fuse with the sacrotuberous ligament. The semimembranosus muscle broadly originated from the lateral surface of the ischial tuberosity. The origins of the long head of the biceps femoris and the semitendinosus are found to be almost independent, and the tendon of the long head is partly fused with the sacrotuberous ligament. The high incidence of injuries to the long head of the biceps femoris could be explained by these anatomical configurations.

  17. A study of the masticatory muscles morphology and function on asymmetric prognathism

    Kondoh, Hirotoshi

    1991-01-01

    Each case was measured to analyze the cross sectional area of muscle and mandibular malposition amount using Computed Tomography (CT) photos and P-A cephalogram. At the same time, the relation of morphology and function between the cross sectional area of muscle and mandibular malposition amount was analyzed to examine the function of masseter using electromyography. To determine the relation between morphology and function of masseter in asymmetric prognathism, 23 cases were chosen for the study from among 11 male and 12 female patients who were diagnosed as asymmetric prognathism. In asymmetric prognathism, both morphology and function in the mandibular malposition side were recognized to be larger than that in the cross sectional area of muscle side, on the examination of the cross sectional area of muscle and the activity of masseter. A highly significant and positive correlation was recognized in the left and right difference between the masseteric and medial pterygoid section areas and the CT mandibular malposition amount which were examined by the CT photos. In the left and right difference between the masseteric and medial pterygoid section areas and in the left and right difference of the activity of masseter, there was also a highly positive and significant correlation. (author) 58 refs

  18. ASSESSMENT OF IN VIVO MECHANICAL MUSCLE FUNCTION IN PATIENTS WITH OSTEOARTHRITIS (OA) OF THE HIP; RELIABILITY

    Jensen, Carsten; Overgaard, Søren; Aagaard, Per

    2009-01-01

    INTRODUCTION Muscle function in patients with hip OA is not well-studied. We established a new setup of tests in order to monitor patients before and after surgery with total hip arthroplasty (THA). A test-retest protocol was designed to evaluate the reproducibility of single- and multi-joint str...

  19. Effects of ageing on single muscle fibre contractile function following short-term immobilisation

    Hvid, Lars G; Ørtenblad, Niels; Aagaard, Per

    2011-01-01

    Very little attention has been given to the combined effect of healthy ageing and short-term disuse on the contractile function of human single muscle fibres. Therefore, the present study investigated the effects of 2 weeks of lower limb cast immobilisation (i.e. disuse) on selected contractile...

  20. An investigation into the bilateral functional differences of the lower limb muscles in standing and walking

    Shengyun Liang

    2016-08-01

    Full Text Available To date, most studies use surface electromyographic (sEMG signals as the control source on active rehabilitation robots, and unilateral data are collected based on the gait symmetry hypothesis, which has caused much controversy. The purpose of this study is to quantitatively evaluate the sEMG activity asymmetry of bilateral muscles in lower extremities during functional tasks. Nine participants were instructed to perform static and dynamic steady state tests. sEMG signals from the tibialis anterior, soleus, medial gastrocnemius and lateral gastrocnemius muscles of bilateral lower extremities were recorded in the experiments. Muscle activities are quantified in terms of sEMG amplitude. We investigated whether characteristics of left limb and the one of the right limb have the same statistical characteristics during functional tasks using The Wilcoxon rank-sum test, and studied dynamic signal irregularity degree for sEMG activities via sample entropy. The total of muscle activities showed significant differences between left limb and right limb during the static steady state (p = 0.000. For dynamic steady states, there were significant differences for most muscle activities between left limb and right limb at different speeds (p = 0.000. Nevertheless, there was no difference between the lateral gastrocnemius for bilateral limb at 2.0 kilometers per hour (p = 0.060. For medial gastrocnemius, differences were not found between left limb and right limb at 1.0 and 3.0 kilometers per hours (p = 0.390 and p = 0.085, respectively. Similarly, there was no difference for soleus at 3.0 kilometers per hour (p = 0.115. The importance of the differences in muscle activities between left limb and right limb were found. These results can potentially be used for evaluating lower limb extremity function of special populations (elderly people or stroke patients in an objective and simple method.

  1. Smooth Muscle Endothelin B Receptors Regulate Blood Pressure but Not Vascular Function or Neointimal Remodeling.

    Miller, Eileen; Czopek, Alicja; Duthie, Karolina M; Kirkby, Nicholas S; van de Putte, Elisabeth E Fransen; Christen, Sibylle; Kimmitt, Robert A; Moorhouse, Rebecca; Castellan, Raphael F P; Kotelevtsev, Yuri V; Kuc, Rhoda E; Davenport, Anthony P; Dhaun, Neeraj; Webb, David J; Hadoke, Patrick W F

    2017-02-01

    The role of smooth muscle endothelin B (ET B ) receptors in regulating vascular function, blood pressure (BP), and neointimal remodeling has not been established. Selective knockout mice were generated to address the hypothesis that loss of smooth muscle ET B receptors would reduce BP, alter vascular contractility, and inhibit neointimal remodeling. ET B receptors were selectively deleted from smooth muscle by crossing floxed ET B mice with those expressing cre-recombinase controlled by the transgelin promoter. Functional consequences of ET B deletion were assessed using myography. BP was measured by telemetry, and neointimal lesion formation induced by femoral artery injury. Lesion size and composition (day 28) were analyzed using optical projection tomography, histology, and immunohistochemistry. Selective deletion of ET B was confirmed by genotyping, autoradiography, polymerase chain reaction, and immunohistochemistry. ET B -mediated contraction was reduced in trachea, but abolished from mesenteric veins, of knockout mice. Induction of ET B -mediated contraction in mesenteric arteries was also abolished in these mice. Femoral artery function was unaltered, and baseline BP modestly elevated in smooth muscle ET B knockout compared with controls (+4.2±0.2 mm Hg; P<0.0001), but salt-induced and ET B blockade-mediated hypertension were unaltered. Circulating endothelin-1 was not altered in knockout mice. ET B -mediated contraction was not induced in femoral arteries by incubation in culture medium or lesion formation, and lesion size was not altered in smooth muscle ET B knockout mice. In the absence of other pathology, ET B receptors in vascular smooth muscle make a small but significant contribution to ET B -dependent regulation of BP. These ET B receptors have no effect on vascular contraction or neointimal remodeling. © 2016 The Authors.

  2. Influence of genotype on contractile protein differentiation in different bovine muscles during foetal life

    Gagnière , Hélène; Ménissier , François; Geay , Yves; Picard , Brigitte

    2000-01-01

    International audience; The purpose of this work was to compare muscle fibre differentiation in two genetic types: "normal charolais" and double-muscled (DM) "INRA 95" cattles displaying muscle hypertrophy. Six muscles with different contractile and metabolic characteristics in adult animal: Masseter, Diaphragma (Di), Biceps femoris (BF), Longissimus thoracis, Semitendinosus and Cutaneus trunci (CT) were excised from 60 to 260-day-old fœtuses of both genotypes. These muscles present different...

  3. Vitamin D Status and Muscle Function Among Adolescent and Young Swimmers

    Geiker, Nina Rica Wium; Larsen, Rikke; Hansen, Mette

    2017-01-01

    Impaired muscle function has been coupled to vitamin D insufficiency in young women and in elderly men and women. Those living at Northern latitudes are at risk of vitamin D insufficiency due to low sun exposure which may be more pronounced among elite swimmers because of their indoor training...... schedules. We aimed to examine vitamin D status among young elite swimmers and evaluate the association between vitamin D status and muscle strength. Twenty-nine swimmers, 12 female and 17 male (16-24 years) residing at latitude 55-56°N were studied in March and April. Blood samples were analysed for serum...

  4. The role of PGC-1alpha on mitochondrial function and apoptotic susceptibility in muscle

    Adhihetty, Peter J; Uguccioni, Giulia; Leick, Lotte

    2009-01-01

    Mitochondria are critical for cellular bioenergetics, and they mediate apoptosis within cells. We used whole body peroxisome proliferator-activated receptor-gamma coactivator-1alpha (PGC-1alpha) knockout (KO) animals to investigate its role on organelle function, apoptotic signaling, and cytochrome......-c oxidase activity, an indicator of mitochondrial content, in muscle and other tissues (brain, liver, and pancreas). Lack of PGC-1alpha reduced mitochondrial content in all muscles (17-44%; P liver, and pancreas. However, the tissue expression of proteins involved...

  5. Inefficient functional sympatholysis is an overlooked cause of malperfusion in contracting skeletal muscle

    Saltin, Bengt; Mortensen, Stefan P

    2012-01-01

    Contracting skeletal muscle can overcome sympathetic vasoconstrictor activity (functional sympatholysis), which allows for a blood supply that matches the metabolic demand. This ability is thought to be mediated by locally released substances that modulate the effect of noradrenaline (NA) on the α...... sympatholysis and muscle blood flow are impaired compared to young men, but regular physical activity can prevent these age related impairments. In young subjects, two weeks of leg immobilization causes a reduced ability for functional sympatholysis, whereas the trained leg maintained this function. Patients...... with essential hypertension have impaired functional sympatholysis in the forearm, and reduced exercise hyperaemia in the leg, but this can be normalized by aerobic exercise training. The effect of physical activity on the local mechanisms that modulate sympathetic vasoconstriction is clear, but it remains...

  6. Functional Capacity in Adults With Cerebral Palsy: Lower Limb Muscle Strength Matters.

    Gillett, Jarred G; Lichtwark, Glen A; Boyd, Roslyn N; Barber, Lee A

    2018-05-01

    To investigate the relation between lower limb muscle strength, passive muscle properties, and functional capacity outcomes in adults with cerebral palsy (CP). Cross-sectional study. Tertiary institution biomechanics laboratory. Adults with spastic-type CP (N=33; mean age, 25y; range, 15-51y; mean body mass, 70.15±21.35kg) who were either Gross Motor Function Classification System (GMFCS) level I (n=20) or level II (n=13). Not applicable. Six-minute walk test (6MWT) distance (m), lateral step-up (LSU) test performance (total repetitions), timed up-stairs (TUS) performance (s), maximum voluntary isometric strength of plantar flexors (PF) and dorsiflexors (DF) (Nm.kg -1 ), and passive ankle joint and muscle stiffness. Maximum isometric PF strength independently explained 61% of variance in 6MWT performance, 57% of variance in LSU test performance, and 50% of variance in TUS test performance. GMFCS level was significantly and independently related to all 3 functional capacity outcomes, and age was retained as a significant independent predictor of LSU and TUS test performance. Passive medial gastrocnemius muscle fascicle stiffness and ankle joint stiffness were not significantly related to functional capacity measures in any of the multiple regression models. Low isometric PF strength was the most important independent variable related to distance walked on the 6MWT, fewer repetitions on the LSU test, and slower TUS test performance. These findings suggest lower isometric muscle strength contributes to the decline in functional capacity in adults with CP. Copyright © 2018 American Congress of Rehabilitation Medicine. Published by Elsevier Inc. All rights reserved.

  7. Pelvic Belt Effects on Health Outcomes and Functional Parameters of Patients with Sacroiliac Joint Pain

    Hammer, Niels; Möbius, Robert; Schleifenbaum, Stefan; Hammer, Karl-Heinz; Klima, Stefan; Lange, Justin S.; Soisson, Odette; Winkler, Dirk; Milani, Thomas L.

    2015-01-01

    Introduction The sacroiliac joint (SIJ) is a common source of low back pain. However, clinical and functional signs and symptoms correlating with SIJ pain are widely unknown. Pelvic belts are routinely applied to treat SIJ pain but without sound evidence of their pain-relieving effects. This case-control study compares clinical and functional data of SIJ patients and healthy control subjects and evaluates belt effects on SIJ pain. Methods 17 SIJ patients and 17 healthy controls were included in this prospective study. The short-form 36 survey and the numerical rating scale were used to characterize health-related quality of life in patients in a six-week follow-up and the pain-reducing effects of pelvic belts. Electromyography data were obtained from the gluteus maximus, biceps femoris, rectus femoris and medial vastus. Alterations of muscle activity, variability and gait patterns were compared in patients and controls along with the belts’ effects in a dynamic setting when walking. Results Significant improvements were observed in the short-form 36 survey of the SIJ patients, especially in the physical health subscores. Minor declines were also observed in the numerical rating scale on pain. Belt-related changes of muscle activity and variability were similar in patients and controls with one exception: the rectus femoris activity decreased significantly in patients with belt application when walking. Further belt effects include improved cadence and gait velocity in patients and controls. Conclusions Pelvic belts improve health-related quality of life and are potentially attributed to decreased SIJ-related pain. Belt effects include decreased rectus femoris activity in patients and improved postural steadiness during locomotion. Pelvic belts may therefore be considered as a cost-effective and low-risk treatment of SIJ pain. Trial Registration ClinicalTrials.gov NCT02027038 PMID:26305790

  8. Functional Echomyography: thickness, ecogenicity, contraction and perfusion of the LMN denervated human muscle before and during h-bFES

    Riccardo Zanato

    2010-03-01

    Full Text Available Permanent denervated muscles were evaluated by ultrasound to monitor changes in morphology, thickness, contraction-relaxation kinetics and perfusion due to the electrical stimulation program of the Rise2-Italy project. In a case of monolateral lesion, morphology and ultrasonographic structure of the denervated muscles changed during the period of stimulation from a pattern typical of complete denervation-induced muscle atrophy to a pattern which might be considered “normal” when detected in an old patient. Thickness improved significantly more in the middle third of the denervated muscle, reaching the same value as the contralateral innervated muscle. Contraction-relaxation kinetics, measured by recording the muscle movements during electrical stimulation, showed an abnormal behavior of the chronically denervated muscle during the relaxation phase, which resulted to be significantly longer than in normal muscle. The long-term denervated muscles analyzed with Echo Doppler showed at rest a low resistance arterial flow that became pulsed during and after electrical stimulation. As expected, the ultra sound measured electrical stimulation-induced hyperemia lasted longer than the stimulation period. The higher than normal energy of the delivered electrical stimuli of the Vienna home-based Functional Electrical Stimulation strategy (h-b FES demonstrate that the explored muscles were still almost completely denervated during the one-year of training. In conclusion, this pilot study confirms the usefulness of Functional Echomyography in the follow-up and the positive effects of h-b FES of denervated muscles.

  9. The Effect of Pedaling and Fatigue on Changes of Knee Muscles Co-contraction During Running in Triathletes

    Mehrdad Anbarian

    2015-09-01

    Full Text Available Objective: The purpose of this study was to determine the effect of cycling fatigue on co-activation of knee muscles during running in novice triathletes. Methods: Twelve novice male triathletes aged 23.7±2.1 years participated in this quasi experimental study. Surface electromyographic activity from gastrocnemius, rectus femoris, vastus medialis, vastus lateralis, biceps femoris and semitendinosus were recorded during support and non-support phases of running before and after cycling fatigue protocol. General and directed co-activation of the knee muscles were calculated. Paired t-test was used to analyze the data(p<0.05. Results: General co-activation was significantly reduced in propulsion sub-phase, total support and non-support phases after fatigue (p=0.001, but there were not any differences in heel contact and midstance sub-phases. Fatigue only altered directed co-activation of medial and lateral knee muscles during heel contact sub-phase (p=0.034. Extensor and flexor directed co-activation during non-support phase of running significantly decreased after fatigue (p=0.011. Conclusion: Changes in the co-activation during running after cycling fatigue can alter running pattern and reduce the knee function consequently, causing injuries to the lower limbs in novice triathletes.

  10. Effect of physical training on function of chronically painful muscles: A randomized controlled trial

    Andersen, Lars L; Andersen, Christoffer H; Zebis, Mette K

    2008-01-01

    .01-0.05). While EMG activity of the unaffected deltoid remained unchanged during the maximal contractions, an increase in EMG amplitude (42-86%, Ppower frequency (19%, Ppainful trapezius muscle. Correspondingly, torque increased 18-53% (P...Purpose: Pain and tenderness of the upper trapezius muscle is frequent in several occupational groups. The objective of this study is to investigate the effect of three contrasting interventions on muscle function and pain in women with trapezius myalgia. Methods: A group of employed women (n=42...... and electromyography (EMG) were recorded during maximal shoulder abductions in an isokinetic dynamometer at -60, 60, 0 and 180 degrees (.)s(-1). Further, a submaximal reference contraction with only the load of the arms was performed. Results: Significant changes were observed only in SST. Pain decreased 42-49% (P

  11. Localization and function of ATP-sensitive potassium channels in human skeletal muscle

    Nielsen, Jens Jung; Kristensen, Michael; Hellsten, Ylva

    2003-01-01

    The present study investigated the localization of ATP-sensitive K+ (KATP) channels in human skeletal muscle and the functional importance of these channels for human muscle K+ distribution at rest and during muscle activity. Membrane fractionation based on the giant vesicle technique...... or the sucrose-gradient technique in combination with Western blotting demonstrated that the KATP channels are mainly located in the sarcolemma. This localization was confirmed by immunohistochemical measurements. With the microdialysis technique, it was demonstrated that local application of the KATP channel...... to in vitro conditions, the present study demonstrated that under in vivo conditions the KATP channels are active at rest and contribute to the accumulation of interstitial K+....

  12. Fast-twitch glycolytic skeletal muscle is predisposed to age-induced impairments in mitochondrial function

    Jacobs, Robert A; Díaz, Víctor; Soldini, Lavinia

    2013-01-01

    The etiology of mammalian senescence is suggested to involve the progressive impairment of mitochondrial function; however, direct observations of age-induced alterations in actual respiratory chain function are lacking. Accordingly, we assessed mitochondrial function via high-resolution respirom......The etiology of mammalian senescence is suggested to involve the progressive impairment of mitochondrial function; however, direct observations of age-induced alterations in actual respiratory chain function are lacking. Accordingly, we assessed mitochondrial function via high......-resolution respirometry and mitochondrial protein expression in soleus, quadricep, and lateral gastrocnemius skeletal muscles, which represent type 1 slow-twitch oxidative muscle (soleus) and type 2 fast-twitch glycolytic muscle (quadricep and gastrocnemius), respectively, in young (10-12 weeks) and mature (74-76 weeks......) mice. Electron transport through mitochondrial complexes I and III increases with age in quadricep and gastrocnemius, which is not observed in soleus. Mitochondrial coupling efficiency during respiration through complex I also deteriorates with age in gastrocnemius and shows a tendency (p = .085...

  13. Targeting artificial transcription factors to the utrophin A promoter: effects on dystrophic pathology and muscle function.

    Lu, Yifan; Tian, Chai; Danialou, Gawiyou; Gilbert, Rénald; Petrof, Basil J; Karpati, George; Nalbantoglu, Josephine

    2008-12-12

    Duchenne muscular dystrophy is caused by a genetic defect in the dystrophin gene. The absence of dystrophin results in muscle fiber necrosis and regeneration, leading to progressive muscle fiber loss. Utrophin is a close analogue of dystrophin. A substantial, ectopic expression of utrophin in the extrasynaptic sarcolemma of dystrophin-deficient muscle fibers can prevent deleterious effects of dystrophin deficiency. An alternative approach for the extrasynaptic up-regulation of utrophin involves the augmentation of utrophin transcription via the endogenous utrophin A promoter using custom-designed transcriptional activator proteins with zinc finger (ZFP) motifs. We tested a panel of custom-designed ZFP for their ability to activate the utrophin A promoter. Expression of one such ZFP efficiently increased, in a time-dependent manner, utrophin transcript and protein levels both in vitro and in vivo. In dystrophic mouse (mdx) muscles, administration of adenoviral vectors expressing this ZFP led to significant enhancement of muscle function with decreased necrosis, restoration of the dystrophin-associated proteins, and improved resistance to eccentric contractions. These studies provide evidence that specifically designed ZFPs can act as strong transcriptional activators of the utrophin A promoter. These may thus serve as attractive therapeutic agents for dystrophin deficiency states such as Duchenne muscular dystrophy.

  14. Functional and morphological adaptations to aging in knee extensor muscles of physically active men.

    Baroni, Bruno Manfredini; Geremia, Jeam Marcel; Rodrigues, Rodrigo; Borges, Marcelo Krás; Jinha, Azim; Herzog, Walter; Vaz, Marco Aurélio

    2013-10-01

    It is not known if a physically active lifestyle, without systematic training, is sufficient to combat age-related muscle and strength loss. Therefore, the purpose of this study was to evaluate if the maintenance of a physically active lifestyle prevents muscle impairments due to aging. To address this issue, we evaluated 33 healthy men with similar physical activity levels (IPAQ = 2) across a large range of ages. Functional (torque-angle and torque-velocity relations) and morphological (vastus lateralis muscle architecture) properties of the knee extensor muscles were assessed and compared between three age groups: young adults (30 ± 6 y), middle-aged subjects (50 ± 7 y) and elderly subjects (69 ± 5 y). Isometric peak torques were significantly lower (30% to 36%) in elderly group subjects compared with the young adults. Concentric peak torques were significantly lower in the middle aged (18% to 32%) and elderly group (40% to 53%) compared with the young adults. Vastus lateralis thickness and fascicles lengths were significantly smaller in the elderly group subjects (15.8 ± 3.9 mm; 99.1 ± 25.8 mm) compared with the young adults (19.8 ± 3.6 mm; 152.1 ± 42.0 mm). These findings suggest that a physically active lifestyle, without systematic training, is not sufficient to avoid loss of strength and muscle mass with aging.

  15. Sarcoplasmic reticulum function in slow- and fast-twitch skeletal muscles from mdx mice.

    Divet, Alexandra; Huchet-Cadiou, Corinne

    2002-08-01

    The aim of the present study was to establish whether alterations in sarcoplasmic reticulum function are involved in the abnormal Ca(2+) homeostasis of skeletal muscle in mice with muscular dystrophy ( mdx). The properties of the sarcoplasmic reticulum and contractile proteins of fast- and slow-twitch muscles were therefore investigated in chemically skinned fibres isolated from the extensor digitorum longus (EDL) and soleus muscles of normal (C57BL/10) and mdx mice at 4 and 11 weeks of development. Sarcoplasmic reticulum Ca(2+) uptake, estimated by the Ca(2+) release following exposure to caffeine, was significantly slower in mdx mice, while the maximal Ca(2+) quantity did not differ in either type of skeletal muscle at either stage of development. In 4-week-old mice spontaneous sarcoplasmic reticulum Ca(2+) leakage was observed in EDL and soleus fibres and this was more pronounced in mdx mice. In addition, the maximal Ca(2+)-activated tension was smaller in mdx than in normal fibres, while the Ca(2+) sensitivity of the contractile apparatus was not significantly different. These results indicate that mdx hindlimb muscles are affected differently by the disease process and suggest that a reduced ability of the Ca(2+)-ATPase to load Ca(2+) and a leaky sarcoplasmic reticulum membrane may be involved in the altered intracellular Ca(2+) homeostasis.

  16. In vivo functional and morphological characterization of bone and striated muscle microcirculation in NSG mice.

    Haider Mussawy

    Full Text Available Organ-specific microcirculation plays a central role in tumor growth, tumor cell homing, tissue engineering, and wound healing. Mouse models are widely used to study these processes; however, these mouse strains often possess unique microhemodynamic parameters, making it difficult to directly compare experiments. The full functional characterization of bone and striated muscle microcirculatory parameters in non-obese diabetic-severe combined immunodeficiency/y-chain; NOD-Prkds IL2rg (NSG mice has not yet been reported. Here, we established either a dorsal skinfold chamber or femur window in NSG mice (n = 23, allowing direct analysis of microcirculatory parameters in vivo by intravital fluorescence microscopy at 7, 14, 21, and 28 days after chamber preparation. Organ-specific differences were observed. Bone had a significantly lower vessel density but a higher vessel diameter than striated muscle. Bone also showed higher effective vascular permeability than striated muscle. The centerline velocity values were similar in the femur window and dorsal skinfold chamber, with a higher volumetric blood flow in bone. Interestingly, bone and striated muscle showed similar tissue perfusion rates. Knowledge of physiological microhemodynamic values of bone and striated muscle in NSG mice makes it possible to analyze pathophysiological processes at these anatomic sites, such as tumor growth, tumor metastasis, and tumor microcirculation, as well as the response to therapeutic agents.

  17. Sport-specific endurance plank test for evaluation of global core muscle function.

    Tong, Tom K; Wu, Shing; Nie, Jinlei

    2014-02-01

    To examine the validity and reliability of a sports-specific endurance plank test for the evaluation of global core muscle function. Repeated-measures study. Laboratory environment. Twenty-eight male and eight female young athletes. Surface electromyography (sEMG) of selected trunk flexors and extensors, and an intervention of pre-fatigue core workout were applied for test validation. Intraclass correlation coefficient (ICC), coefficient of variation (CV), and the measurement bias ratio */÷ ratio limits of agreement (LOA) were calculated to assess reliability and measurement error. Test validity was shown by the sEMG of selected core muscles, which indicated >50% increase in muscle activation during the test; and the definite discrimination of the ∼30% reduction in global core muscle endurance subsequent to a pre-fatigue core workout. For test-retest reliability, when the first attempt of three repeated trials was considered as familiarisation, the ICC was 0.99 (95% CI: 0.98-0.99), CV was 2.0 ± 1.56% and the measurement bias ratio */÷ ratio LOA was 0.99 */÷ 1.07. The findings suggest that the sport-specific endurance plank test is a valid, reliable and practical method for assessing global core muscle endurance in athletes given that at least one familiarisation trial takes place prior to measurement. Copyright © 2013 Elsevier Ltd. All rights reserved.

  18. A 1D pulse wave propagation model of the hemodynamics of calf muscle pump function.

    Keijsers, J M T; Leguy, C A D; Huberts, W; Narracott, A J; Rittweger, J; van de Vosse, F N

    2015-07-01

    The calf muscle pump is a mechanism which increases venous return and thereby compensates for the fluid shift towards the lower body during standing. During a muscle contraction, the embedded deep veins collapse and venous return increases. In the subsequent relaxation phase, muscle perfusion increases due to increased perfusion pressure, as the proximal venous valves temporarily reduce the distal venous pressure (shielding). The superficial and deep veins are connected via perforators, which contain valves allowing flow in the superficial-to-deep direction. The aim of this study is to investigate and quantify the physiological mechanisms of the calf muscle pump, including the effect of venous valves, hydrostatic pressure, and the superficial venous system. Using a one-dimensional pulse wave propagation model, a muscle contraction is simulated by increasing the extravascular pressure in the deep venous segments. The hemodynamics are studied in three different configurations: a single artery-vein configuration with and without valves and a more detailed configuration including a superficial vein. Proximal venous valves increase effective venous return by 53% by preventing reflux. Furthermore, the proximal valves shielding function increases perfusion following contraction. Finally, the superficial system aids in maintaining the perfusion during the contraction phase and reduces the refilling time by 37%. © 2015 The Authors. International Journal for Numerical Methods in Biomedical Engineering published by John Wiley & Sons Ltd.

  19. Function and structure of the deep cervical extensor muscles in patients with neck pain.

    Schomacher, Jochen; Falla, Deborah

    2013-10-01

    The deep cervical extensors are anatomically able to control segmental movements of the cervical spine in concert with the deep cervical flexors. Several investigations have confirmed changes in cervical flexor muscle control in patients with neck pain and as a result, effective evidence-based therapeutic exercises have been developed to address such dysfunctions. However, knowledge on how the deep extensor muscles behave in patients with neck pain disorders is scare. Structural changes such as higher concentration of fat within the muscle, variable cross-sectional area and higher proportions of type II fibres have been observed in the deep cervical extensors of patients with neck pain compared to healthy controls. These findings suggest that the behaviour of the deep extensors may be altered in patients with neck pain. Consistent with this hypothesis, a recent series of studies confirm that patients display reduced activation of the deep cervical extensors as well as less defined activation patterns. This article provides an overview of the various different structural and functional changes in the deep neck extensor muscles documented in patients with neck pain. Relevant recommendations for the management of muscle dysfunction in patients with neck pain are presented. Copyright © 2013 Elsevier Ltd. All rights reserved.

  20. Respiratory muscle stretch gymnastics in patients with post coronary artery bypass grafting pain : Impact on respiratory muscle function, activity, mood and exercise capacity

    會田, 信子; 渋谷, 優子; 吉野, 克樹; Komoda, Masaji; 井上, 智子

    2002-01-01

    A new rehabilitation (New-RH) program including respiratory muscle stretch gymnastics (RMSG) was developed to alleviate post-coronary artery bypass grafting pain (PCP). Effects on respiratory muscle function, pain, activities of daily living (ADL), mood and exercise capacity were investigated. Subjects were 16 consecutive patients undergoing median full sternotomy coronary artery bypass grafting (CABG), and were randomly divided into equal New-RH (S-group) and conventional therapy (C-group) g...

  1. Translating golden retriever muscular dystrophy microarray findings to novel biomarkers for cardiac/skeletal muscle function in Duchenne muscular dystrophy.

    Galindo, Cristi L; Soslow, Jonathan H; Brinkmeyer-Langford, Candice L; Gupte, Manisha; Smith, Holly M; Sengsayadeth, Seng; Sawyer, Douglas B; Benson, D Woodrow; Kornegay, Joe N; Markham, Larry W

    2016-04-01

    In Duchenne muscular dystrophy (DMD), abnormal cardiac function is typically preceded by a decade of skeletal muscle disease. Molecular reasons for differences in onset and progression of these muscle groups are unknown. Human biomarkers are lacking. We analyzed cardiac and skeletal muscle microarrays from normal and golden retriever muscular dystrophy (GRMD) dogs (ages 6, 12, or 47+ mo) to gain insight into muscle dysfunction and to identify putative DMD biomarkers. These biomarkers were then measured using human DMD blood samples. We identified GRMD candidate genes that might contribute to the disparity between cardiac and skeletal muscle disease, focusing on brain-derived neurotropic factor (BDNF) and osteopontin (OPN/SPP1, hereafter indicated as SPP1). BDNF was elevated in cardiac muscle of younger GRMD but was unaltered in skeletal muscle, while SPP1 was increased only in GRMD skeletal muscle. In human DMD, circulating levels of BDNF were inversely correlated with ventricular function and fibrosis, while SPP1 levels correlated with skeletal muscle function. These results highlight gene expression patterns that could account for differences in cardiac and skeletal disease in GRMD. Most notably, animal model-derived data were translated to DMD and support use of BDNF and SPP1 as biomarkers for cardiac and skeletal muscle involvement, respectively.

  2. NAD+ repletion improves muscle function in muscular dystrophy and counters global PARylation.

    Ryu, Dongryeol; Zhang, Hongbo; Ropelle, Eduardo R; Sorrentino, Vincenzo; Mázala, Davi A G; Mouchiroud, Laurent; Marshall, Philip L; Campbell, Matthew D; Ali, Amir Safi; Knowels, Gary M; Bellemin, Stéphanie; Iyer, Shama R; Wang, Xu; Gariani, Karim; Sauve, Anthony A; Cantó, Carles; Conley, Kevin E; Walter, Ludivine; Lovering, Richard M; Chin, Eva R; Jasmin, Bernard J; Marcinek, David J; Menzies, Keir J; Auwerx, Johan

    2016-10-19

    Neuromuscular diseases are often caused by inherited mutations that lead to progressive skeletal muscle weakness and degeneration. In diverse populations of normal healthy mice, we observed correlations between the abundance of mRNA transcripts related to mitochondrial biogenesis, the dystrophin-sarcoglycan complex, and nicotinamide adenine dinucleotide (NAD + ) synthesis, consistent with a potential role for the essential cofactor NAD + in protecting muscle from metabolic and structural degeneration. Furthermore, the skeletal muscle transcriptomes of patients with Duchene's muscular dystrophy (DMD) and other muscle diseases were enriched for various poly[adenosine 5'-diphosphate (ADP)-ribose] polymerases (PARPs) and for nicotinamide N-methyltransferase (NNMT), enzymes that are major consumers of NAD + and are involved in pleiotropic events, including inflammation. In the mdx mouse model of DMD, we observed significant reductions in muscle NAD + levels, concurrent increases in PARP activity, and reduced expression of nicotinamide phosphoribosyltransferase (NAMPT), the rate-limiting enzyme for NAD + biosynthesis. Replenishing NAD + stores with dietary nicotinamide riboside supplementation improved muscle function and heart pathology in mdx and mdx/Utr -/- mice and reversed pathology in Caenorhabditis elegans models of DMD. The effects of NAD + repletion in mdx mice relied on the improvement in mitochondrial function and structural protein expression (α-dystrobrevin and δ-sarcoglycan) and on the reductions in general poly(ADP)-ribosylation, inflammation, and fibrosis. In combination, these studies suggest that the replenishment of NAD + may benefit patients with muscular dystrophies or other neuromuscular degenerative conditions characterized by the PARP/NNMT gene expression signatures. Copyright © 2016, American Association for the Advancement of Science.

  3. Serum levo-carnitine levels and skeletal muscle functions in type 2 diabetes mellitus in rodents

    Aleem, S.B.; Hussain, M.M.; Farooq, Y.

    2013-01-01

    Objective: To study serum levo-carnitine (l-carnitine) levels and isometric contraction, force frequency relationship and fatigue of rodent skeletal muscles in type 2 diabetes mellitus. Study Design: Randomized controlled trial. Place and Duration of Study: Physiology Department, Army Medical College, Rawalpindi, from January 2009 to January 2010. Methodology: Sixty Sprague-Dawley rats were randomly divided into two groups; group I (control), fed on normal diet ad libitum and Group II (diabetic), fed on high fat diet and administered streptozocin to induce type 2 diabetes mellitus (T2DM). At 21st day, plasma glucose and TG/HDL ratio were measured to confirm the development of T2DM in group II. At 28th day, blood was drawn by intracardiac puncture to estimate serum levo-carnitine levels. Contractile functions of skeletal muscles were assessed by using iWorx AHK/214 physiological data acquisition unit. Simple muscle twitches, maximum isometric twitch tension (MITT), time-to-peak twitch tension (TPTT) and time-to-relax to 50% of the peak twitch tension (1/2RT) of extensor digitorum muscles were recorded. Muscles were stimulated at higher frequencies to determine maximum fused tetanic tension (MFTT), maximum fused tetanic tension after fatigue protocol (TTFP) and recovery from fatigue (RF). Results: Serum levo-carnitine level decreased significantly in the diabetic group. Both groups had similar MITT, TPTT and 1/2RT but decline in MFTT, TTFP and RF was significant in the diabetic rats. Conclusion: T2DM adversely affected serum levo-carnitine levels and the contractile functions of rodent skeletal muscle at high frequency stimulation. (author)

  4. Muscle activation patterns when passively stretching spastic lower limb muscles of children with cerebral palsy.

    Lynn Bar-On

    Full Text Available The definition of spasticity as a velocity-dependent activation of the tonic stretch reflex during a stretch to a passive muscle is the most widely accepted. However, other mechanisms are also thought to contribute to pathological muscle activity and, in patients post-stroke and spinal cord injury can result in different activation patterns. In the lower-limbs of children with spastic cerebral palsy (CP these distinct activation patterns have not yet been thoroughly explored. The aim of the study was to apply an instrumented assessment to quantify different muscle activation patterns in four lower-limb muscles of children with CP. Fifty-four children with CP were included (males/females n = 35/19; 10.8 ± 3.8 yrs; bilateral/unilateral involvement n =  32/22; Gross Motor Functional Classification Score I-IV of whom ten were retested to evaluate intra-rater reliability. With the subject relaxed, single-joint, sagittal-plane movements of the hip, knee, and ankle were performed to stretch the lower-limb muscles at three increasing velocities. Muscle activity and joint motion were synchronously recorded using inertial sensors and electromyography (EMG from the adductors, medial hamstrings, rectus femoris, and gastrocnemius. Muscles were visually categorised into activation patterns using average, normalized root mean square EMG (RMS-EMG compared across increasing position zones and velocities. Based on the visual categorisation, quantitative parameters were defined using stretch-reflex thresholds and normalized RMS-EMG. These parameters were compared between muscles with different activation patterns. All patterns were dominated by high velocity-dependent muscle activation, but in more than half, low velocity-dependent activation was also observed. Muscle activation patterns were found to be both muscle- and subject-specific (p<0.01. The intra-rater reliability of all quantitative parameters was moderate to good. Comparing RMS-EMG between

  5. Effect of Feedback Corrective Exercise on Knee Valgus and Electromyographic Activity of Lower Limb Muscles in Single Leg Squat

    Negar Koorosh-fard

    2015-07-01

    Full Text Available Objective: The aim of this study was assessing the effect of feedback correcting exercise in front of mirror during running on frontal plane knee and pelvic kinematic and electromyography activity of some lower extremity muscles in single leg squat (SLS. Materials & Methods: This study was quasi experimental. 23 active female subjects participated in two experimental and control groups with mean age (21.86± 2.43 years .experimental group contains subjects with knee valgus and pelvic drop angle more than a mean plus one standard deviation of the population in functional SLS. Muscular activity (RMS of gluteus maximus, Gluteus medius, rectus femoris, vastus medialis, vastus lateralis, biceps femoris and semitendinosus, angle of knee valgus and pelvic drop were register in end of SLS Pre and post of 8 training sessions. Comparing Variable has done with independent t statistical test between 2 groups and pair sample t test within each groups with significant level of 0.05. Results: Statistical analysis Before training showed no significant differences in pelvic drop between two groups (P&ge0.05, but knee valgus angle was significantly more than control group (P&le0.05. In spit that most muscle activities (% MVC except biceps femoris (P&le0.05, were greater in experimental group, no significant difference (P&ge0.05 has seen in two groups. Comparing pre and post test has showed no significant difference in knee valgus of experimental group, however it decreased around 2 degrees and although %MVC decreased in all muscles, just rectuse femoris has shown significant difference (P&le0.05. No significant difference has seen in control group in all variables (P&ge0.05. Conclusion: Findings showed poor neuromuscular control in experimental group which improved to some extent after training because lower muscle activity and energy consumption in specific movement with similar kinematic indicate improvement of motor control or cause learning. It seems that

  6. The Structural and Functional Coordination of Glycolytic Enzymes in Muscle: Evidence of a Metabolon?

    Lynda Menard

    2014-09-01

    Full Text Available Metabolism sustains life through enzyme-catalyzed chemical reactions within the cells of all organisms. The coupling of catalytic function to the structural organization of enzymes contributes to the kinetic optimization important to tissue-specific and whole-body function. This coupling is of paramount importance in the role that muscle plays in the success of Animalia. The structure and function of glycolytic enzyme complexes in anaerobic metabolism have long been regarded as a major regulatory element necessary for muscle activity and whole-body homeostasis. While the details of this complex remain to be elucidated through in vivo studies, this review will touch on recent studies that suggest the existence of such a complex and its structure. A potential model for glycolytic complexes and related subcomplexes is introduced.

  7. EMGD-FE: an open source graphical user interface for estimating isometric muscle forces in the lower limb using an EMG-driven model.

    Menegaldo, Luciano Luporini; de Oliveira, Liliam Fernandes; Minato, Kin K

    2014-04-04

    This paper describes the "EMG Driven Force Estimator (EMGD-FE)", a Matlab® graphical user interface (GUI) application that estimates skeletal muscle forces from electromyography (EMG) signals. Muscle forces are obtained by numerically integrating a system of ordinary differential equations (ODEs) that simulates Hill-type muscle dynamics and that utilises EMG signals as input. In the current version, the GUI can estimate the forces of lower limb muscles executing isometric contractions. Muscles from other parts of the body can be tested as well, although no default values for model parameters are provided. To achieve accurate evaluations, EMG collection is performed simultaneously with torque measurement from a dynamometer. The computer application guides the user, step-by-step, to pre-process the raw EMG signals, create inputs for the muscle model, numerically integrate the ODEs and analyse the results. An example of the application's functions is presented using the quadriceps femoris muscle. Individual muscle force estimations for the four components as well the knee isometric torque are shown. The proposed GUI can estimate individual muscle forces from EMG signals of skeletal muscles. The estimation accuracy depends on several factors, including signal collection and modelling hypothesis issues.

  8. IGF-I treatment improves the functional properties of fast- and slow-twitch skeletal muscles from dystrophic mice.

    Lynch, G S; Cuffe, S A; Plant, D R; Gregorevic, P

    2001-04-01

    Although insulin-like growth factor-I (IGF-I) has been proposed for use by patients suffering from muscle wasting conditions, few studies have investigated the functional properties of dystrophic skeletal muscle following IGF-I treatment. 129P1 ReJ-Lama2(dy) (129 ReJ dy/dy) dystrophic mice suffer from a deficiency in the structural protein, laminin, and exhibit severe muscle wasting and weakness. We tested the hypothesis that 4 weeks of IGF-I treatment ( approximately 2 mg/kg body mass, 50 g/h via mini-osmotic pump, subcutaneously) would increase the mass and force producing capacity of skeletal muscles from dystrophic mice. IGF-I treatment increased the mass of the extensor digitorum longus (EDL) and soleus muscles of dystrophic mice by 20 and 29%, respectively, compared with untreated dystrophic mice (administered saline-vehicle only). Absolute maximum force (P(o)) of the EDL and soleus muscle was increased by 40 and 32%, respectively, following IGF-I treatment. Specific P(o) (sP(o)) was increased by 23% in the EDL muscles of treated compared with untreated mice, but in the soleus muscle sP(o) was unchanged. IGF-I treatment increased the proportion of type IIB and type IIA fibres and decreased the proportion of type I fibres in the EDL muscles of dystrophic mice. In the soleus muscles of dystrophic mice, IGF-I treatment increased the proportion of type IIA fibres and decreased the proportion of type I fibres. Average fibre cross-sectional area was increased in the EDL and soleus muscles of treated compared with untreated mice. We conclude that IGF-I treatment ameliorates muscle wasting and improves the functional properties of skeletal muscles of dystrophic mice. The findings have important implications for the role of IGF-I in ameliorating muscle wasting associated with the muscular dystrophies.

  9. Nondestructive Estimation of Muscle Contributions to STS Training with Different Loadings Based on Wearable Sensor System.

    Liu, Kun; Liu, Yong; Yan, Jianchao; Sun, Zhenyuan

    2018-03-25

    Partial body weight support or loading sit-to-stand (STS) rehabilitation can be useful for persons with lower limb dysfunction to achieve movement again based on the internal residual muscle force and external assistance. To explicate how the muscles contribute to the kinetics and kinematics of STS performance by non-invasive in vitro detection and to nondestructively estimate the muscle contributions to STS training with different loadings, a wearable sensor system was developed with ground reaction force (GRF) platforms, motion capture inertial sensors and electromyography (EMG) sensors. To estimate the internal moments of hip, knee and ankle joints and quantify the contributions of individual muscle and gravity to STS movement, the inverse dynamics analysis on a simplified STS biomechanical model with external loading is proposed. The functional roles of the lower limb individual muscles (rectus femoris (RF), gluteus maximus (GM), vastus lateralis (VL), tibialis anterior (TA) and gastrocnemius (GAST)) during STS motion and the mechanism of the muscles' synergies to perform STS-specific subtasks were analyzed. The muscle contributions to the biomechanical STS subtasks of vertical propulsion, anteroposterior (AP) braking and propulsion for body balance in the sagittal plane were quantified by experimental studies with EMG, kinematic and kinetic data.

  10. Joint laxity and the relationship between muscle strength and functional ability in patients with osteoarthritis of the knee.

    van der Esch, M; Steultjens, M; Knol, D L; Dinant, H; Dekker, J

    2006-12-15

    To establish the impact of knee joint laxity on the relationship between muscle strength and functional ability in osteoarthritis (OA) of the knee. A cross-sectional study of 86 patients with OA of the knee was conducted. Tests were performed to determine varus-valgus laxity, muscle strength, and functional ability. Laxity was assessed using a device that measures the angular deviation of the knee in the frontal plane. Muscle strength was measured using a computer-driven isokinetic dynamometer. Functional ability was assessed by observation (100-meter walking test) and self report (Western Ontario and McMaster Universities Osteoarthritis Index [WOMAC]). Regression analyses were performed to assess the impact of joint laxity on the relationship between muscle strength and functional ability. In regression analyses, the interaction between muscle strength and joint laxity contributed to the variance in both walking time (P = 0.002) and WOMAC score (P = 0.080). The slope of the regression lines indicated that the relationship between muscle strength and functional ability (walking time, WOMAC) was stronger in patients with high knee joint laxity. Patients with knee OA and high knee joint laxity show a stronger relationship between muscle strength and functional ability than patients with OA and low knee joint laxity. Patients with OA, high knee joint laxity, and low muscle strength are most at risk of being disabled.

  11. Quadriceps muscle function after rehabilitation with cryotherapy in patients with anterior cruciate ligament reconstruction.

    Hart, Joseph M; Kuenze, Christopher M; Diduch, David R; Ingersoll, Christopher D

    2014-01-01

    Persistent muscle weakness after anterior cruciate ligament (ACL) reconstruction may be due to underlying activation failure and arthrogenic muscle inhibition (AMI). Knee-joint cryotherapy has been shown to improve quadriceps function transiently in those with AMI, thereby providing an opportunity to improve quadriceps muscle activation and strength in patients with a reconstructed ACL. To compare quadriceps muscle function in patients with a reconstructed ACL who completed a 2-week intervention including daily cryotherapy (ice bag), daily exercises, or both. Cross-sectional study. Laboratory. A total of 30 patients with reconstructed ACLs who were at least 6 months post-index surgery and had measurable quadriceps AMI. The patients attended 4 supervised visits over a 2-week period. They were randomly assigned to receive 20 minutes of knee-joint cryotherapy, 1 hour of therapeutic rehabilitation exercises, or cryotherapy followed by exercises. We measured quadriceps Hoffmann reflex, normalized maximal voluntary isometric contraction torque, central activation ratio using the superimposed-burst technique, and patient-reported outcomes before and after the intervention period. After the 2-week intervention period, patients who performed rehabilitation exercises immediately after cryotherapy had higher normalized maximal voluntary isometric contraction torques (P = .002, Cohen d effect size = 1.4) compared with those who received cryotherapy alone (P = .16, d = 0.58) or performed exercise alone (P = .16, d = 0.30). After ACL reconstruction, patients with AMI who performed rehabilitation exercises immediately after cryotherapy experienced greater strength gains than those who performed cryotherapy or exercises alone.

  12. Analysis of isokinetic muscle function and postural control in individuals with intermittent claudication

    Morgan Lanzarin

    2016-02-01

    Full Text Available BACKGROUND: Intermittent claudication (IC is a debilitating condition that mostly affects elderly people. IC is manifested by a decrease in ambulatory function. Individuals with IC present with motor and sensory nerve dysfunction in the lower extremities, which may lead to deficits in balance. OBJECTIVE: This study aimed to measure postural control and isokinetic muscle function in individuals with intermittent claudication. METHOD: The study included 32 participants of both genders, 16 IC participants (mean age: 64 years, SD=6 and 16 healthy controls (mean age: 67 years, SD=5, which were allocated into two groups: intermittent claudication group (ICG and control group (CG. Postural control was assessed using the displacement and velocity of the center of pressure (COP during the sensory organization test (SOT and the motor control test (MCT. Muscle function of the flexor and extensor muscles of the knee and ankle was measured by an isokinetic dynamometer. Independent t tests were used to calculate the between-group differences. RESULTS: The ICG presented greater displacement (p =0.027 and speed (p =0.033 of the COP in the anteroposterior direction (COPap during the MCT, as well as longer latency (p =0.004. There were no between-group differences during the SOT. The ICG showed decreased muscle strength and power in the plantar flexors compared to the CG. CONCLUSION: Subjects with IC have lower values of strength and muscle power of plantiflexores, as well as changes in postural control in dynamic conditions. These individuals may be more vulnerable to falls than healthy subjects.

  13. Impaired skeletal muscle mitochondrial function in morbidly obese patients is normalized one year after bariatric surgery.

    Vijgen, Guy H E J; Bouvy, Nicole D; Hoeks, Joris; Wijers, Sander; Schrauwen, Patrick; van Marken Lichtenbelt, Wouter D

    2013-01-01

    Obesity and type 2 diabetes are associated with impaired skeletal muscle mitochondrial metabolism. As an intrinsic characteristic of an individual, skeletal muscle mitochondrial dysfunction could be a risk factor for weight gain and obesity-associated co-morbidities, such as type 2 diabetes. On the other hand, impaired skeletal muscle metabolism could be a consequence of obesity. We hypothesize that marked weight loss after bariatric surgery recovers skeletal muscle mitochondrial function. Skeletal muscle mitochondrial function as assessed by high-resolution respirometry was measured in 8 morbidly obese patients (body mass index [BMI], 41.3±4.7 kg/m(2); body fat, 48.3%±5.2%) before and 1 year after bariatric surgery (mean weight loss: 35.0±8.6 kg). The results were compared with a lean (BMI 22.8±1.1 kg/m(2); body fat, 15.6%±4.7%) and obese (BMI 33.5±4.2 kg/m(2); body fat, 34.1%±6.3%) control group. Before surgery, adenosine diphosphate (ADP)-stimulated (state 3) respiration on glutamate/succinate was decreased compared with lean patients (9.5±2.4 versus 15.6±4.4 O2 flux/mtDNA; Psurgery, mitochondrial function was comparable to that of lean controls (after weight loss, 12.3±5.5; lean, 15.6±4.4 O2 flux/mtDNA). In addition, we observed an increased state 3 respiration on a lipid substrate after weight loss (10.0±3.2 versus 14.0±6.6 O2 flux/mtDNA; Pweight loss. Copyright © 2013 American Society for Bariatric Surgery. Published by Elsevier Inc. All rights reserved.

  14. VARIATIONS IN NEUROMUSCULAR ACTIVITY OF THIGH MUSCLES DURING WHOLE-BODY VIBRATION IN CONSIDERATION OF DIFFERENT BIOMECHANICAL VARIABLES

    Dennis Perchthaler

    2013-09-01

    Full Text Available The intention of this study was to systematically analyze the impact of biomechanical variables in terms of different vibration frequencies, amplitudes and knee angles on quadriceps femoris and hamstring activity during exposure to whole-body vibration (WBV. 51 healthy men and women (age 55 ± 8 years voluntary participated in the study and were randomly allocated to five different vibration-frequency groups. Each subject performed 9 static squat positions (3 amplitudes x 3 knee angles on a side alternating vibration platform. Surface electromyography (EMG was used to record the neuromuscular activity of the quadriceps femoris and hamstring muscles. Maximal voluntary contractions (MVCs were performed prior to the measurements to normalize the EMG signals. A three-way mixed ANOVA was performed to analyze the different effects of the biomechanical variables on muscle activity. Depending on the biomechanical variables, EMG muscle activity ranged between 18.2 and 74.1 % MVC in the quadriceps femoris and between 5.2 and 27. 3 % MVC in the hamstrings during WBV. The highest levels of muscle activation were found at high frequencies and large amplitudes. Especially in the quadriceps femoris muscle, a WBV frequency of 30 Hz led to a significant increase in muscle activity compared to the other tested frequencies. However, it seems that knee angle is only relevant for the quadriceps femoris muscle. The results of this study should give more information for developing individual training protocols for WBV treatment in different practical applications

  15. Lumbar muscle structure and function in chronic versus recurrent low back pain: a cross-sectional study.

    Goubert, Dorien; De Pauw, Robby; Meeus, Mira; Willems, Tine; Cagnie, Barbara; Schouppe, Stijn; Van Oosterwijck, Jessica; Dhondt, Evy; Danneels, Lieven

    2017-09-01

    Heterogeneity exists within the low back pain (LBP) population. Some patients recover after every pain episode, whereas others suffer daily from LBP complaints. Until now, studies rarely make a distinction between recurrent low back pain (RLBP) and chronic low back pain (CLBP), although both are characterized by a different clinical picture. Clinical experiences also indicate that heterogeneity exists within the CLBP population. Muscle degeneration, like atrophy, fat infiltration, alterations in muscle fiber type, and altered muscle activity, compromises proper biomechanics and motion of the spinal units in LBP patients. The amount of alterations in muscle structure and muscle function of the paraspinal muscles might be related to the recurrence or chronicity of LBP. The aim of this experimental study is to evaluate differences in muscle structure (cross-sectional area and lean muscle fat index) and muscle activity of the multifidus (MF) and erector spinae (ES) during trunk extension, in patients with RLBP, non-continuous CLBP, and continuous CLBP. This cross-sectional study took place in the university hospital of Ghent, Belgium. Muscle structure characteristics and muscle activity were assessed by magnetic resonance imaging (MRI). Fifty-five adults with non-specific LBP (24 RLBP in remission, 15 non-continuous CLBP, 16 continuous CLBP) participated in this study. Total cross-sectional area, muscle cross-sectional area, fat cross-sectional area, lean muscle fat index, T2-rest and T2-shift were assessed. A T1-weighted Dixon MRI scan was used to evaluate spinal muscle cross-sectional area and fat infiltration in the lumbar MF and ES. Muscle functional MRI was used to evaluate the muscle activity of the lumbar MF and ES during a lumbar extension exercise. Before and after the exercise, a pain assessment was performed. This study was supported by grants from the Special Research Fund of Ghent University (DEF12/AOP/022) without potential conflict of interest

  16. Regulation and dysregulation of esophageal peristalsis by the integrated function of circular and longitudinal muscle layers in health and disease.

    Mittal, Ravinder K

    2016-09-01

    Muscularis propria throughout the entire gastrointestinal tract including the esophagus is comprised of circular and longitudinal muscle layers. Based on the studies conducted in the colon and the small intestine, for more than a century, it has been debated whether the two muscle layers contract synchronously or reciprocally during the ascending contraction and descending relaxation of the peristaltic reflex. Recent studies in the esophagus and colon prove that the two muscle layers indeed contract and relax together in almost perfect synchrony during ascending contraction and descending relaxation of the peristaltic reflex, respectively. Studies in patients with various types of esophageal motor disorders reveal temporal disassociation between the circular and longitudinal muscle layers. We suggest that the discoordination between the two muscle layers plays a role in the genesis of esophageal symptoms, i.e., dysphagia and esophageal pain. Certain pathologies may selectively target one and not the other muscle layer, e.g., in eosinophilic esophagitis there is a selective dysfunction of the longitudinal muscle layer. In achalasia esophagus, swallows are accompanied by the strong contraction of the longitudinal muscle without circular muscle contraction. The possibility that the discoordination between two muscle layers plays a role in the genesis of esophageal symptoms, i.e., dysphagia and esophageal pain are discussed. The purpose of this review is to summarize the regulation and dysregulation of peristalsis by the coordinated and discoordinated function of circular and longitudinal muscle layers in health and diseased states.

  17. Muscle function recovery in golden retriever muscular dystrophy after AAV1-U7 exon skipping.

    Vulin, Adeline; Barthélémy, Inès; Goyenvalle, Aurélie; Thibaud, Jean-Laurent; Beley, Cyriaque; Griffith, Graziella; Benchaouir, Rachid; le Hir, Maëva; Unterfinger, Yves; Lorain, Stéphanie; Dreyfus, Patrick; Voit, Thomas; Carlier, Pierre; Blot, Stéphane; Garcia, Luis

    2012-11-01

    Duchenne muscular dystrophy (DMD) is an X-linked recessive disorder resulting from lesions of the gene encoding dystrophin. These usually consist of large genomic deletions, the extents of which are not correlated with the severity of the phenotype. Out-of-frame deletions give rise to dystrophin deficiency and severe DMD phenotypes, while internal deletions that produce in-frame mRNAs encoding truncated proteins can lead to a milder myopathy known as Becker muscular dystrophy (BMD). Widespread restoration of dystrophin expression via adeno-associated virus (AAV)-mediated exon skipping has been successfully demonstrated in the mdx mouse model and in cardiac muscle after percutaneous transendocardial delivery in the golden retriever muscular dystrophy dog (GRMD) model. Here, a set of optimized U7snRNAs carrying antisense sequences designed to rescue dystrophin were delivered into GRMD skeletal muscles by AAV1 gene transfer using intramuscular injection or forelimb perfusion. We show sustained correction of the dystrophic phenotype in extended muscle areas and partial recovery of muscle strength. Muscle architecture was improved and fibers displayed the hallmarks of mature and functional units. A 5-year follow-up ruled out immune rejection drawbacks but showed a progressive decline in the number of corrected muscle fibers, likely due to the persistence of a mild dystrophic process such as occurs in BMD phenotypes. Although AAV-mediated exon skipping was shown safe and efficient to rescue a truncated dystrophin, it appears that recurrent treatments would be required to maintain therapeutic benefit ahead of the progression of the disease.

  18. Functional Magnetic Stimulation of Inspiratory and Expiratory Muscles in Subjects With Tetraplegia.

    Zhang, Xiaoming; Plow, Ela; Ranganthan, Vinoth; Huang, Honglian; Schmitt, Melissa; Nemunaitis, Gregory; Kelly, Clay; Frost, Frederick; Lin, Vernon

    2016-07-01

    Respiratory complications are major causes of morbidity and mortality in persons with a spinal cord injury, partly because of respiratory muscle paralysis. Earlier investigation has demonstrated that functional magnetic stimulation (FMS) can be used as a noninvasive technology for activating expiratory muscles, thus producing useful expiratory functions (simulated cough) in subjects with spinal cord injury. To evaluate the effectiveness of FMS for conditioning inspiratory and expiratory muscles in persons with tetraplegia. A prospective before and after trial. FMS Laboratory, Louis Stokes Cleveland VA Medical Center, Cleveland, OH. Six persons with tetraplegia. Each subject participated in a 6-week FMS protocol for conditioning the inspiratory and expiratory muscles. A magnetic stimulator was used with the center of a magnetic coil placed at the C7-T1 and T9-T10 spinous processes, respectively. Pulmonary function tests were performed before, during, and after the protocol. Respiratory variables included maximal inspiratory pressure (MIP), inspiratory reserve volume (IRV), peak inspiratory flow (PIF), maximal expiratory pressure (MEP), expiratory reserve volume (ERV), and peak expiratory flow (PEF). After 6 weeks of conditioning, the main outcome measurements (mean ± standard error) were as follows: MIP, 89.6 ± 7.3 cm H2O; IRV, 1.90 ± 0.34 L; PIF, 302.4 ± 36.3 L/min; MEP, 67.4 ± 11.1 cm H2O; ERV, 0.40 ± 0.06 L; and PEF, 372.4 ± 31.9 L/min. These values corresponded to 117%, 107%, 136%, 109%, 130%, and 124% of pre-FMS conditioning values, respectively. Significant improvements were observed in MIP (P = .022), PIF (P = .0001), and PEF (P = .0006), respectively. When FMS was discontinued for 4 weeks, these values showed decreases from their values at the end of the conditioning protocol, which suggests that continual FMS may be necessary to maintain improved respiratory functions. FMS conditioning of the inspiratory and expiratory muscles improved

  19. Effects of balance training by knee joint motions on muscle activity in adult men with functional ankle instability.

    Nam, Seung-Min; Kim, Won-Bok; Yun, Chang-Kyo

    2016-05-01

    [Purpose] This study examined the effects of balance training by applying knee joint movements on muscle activity in male adults with functional ankle instability. [Subjects and Methods] 28 adults with functional ankle instability, divided randomly into an experimental group, which performed balance training by applying knee joint movements for 20 minutes and ankle joint exercises for 10 minutes, and a control group, which performed ankle joint exercise for 30 minutes. Exercises were completed three times a week for 8 weeks. Electromyographic values of the tibialis anterior, peroneus longus, peroneus brevis, and the lateral gastrocnemius muscles were obtained to compare and analyze muscle activity before and after the experiments in each group. [Results] The experimental group had significant increases in muscle activity in the tibialis anterior, peroneus longus, and lateral gastrocnemius muscles, while muscle activity in the peroneus brevis increased without significance. The control group had significant increases in muscle activity in the tibialis anterior and peroneus longus, while muscle activity in the peroneus brevis and lateral gastrocnemius muscles increased without significance. [Conclusion] In conclusion, balance training by applying knee joint movements can be recommended as a treatment method for patients with functional ankle instability.

  20. Inefficient skeletal muscle oxidative function flanks impaired motor neuron recruitment in Amyotrophic Lateral Sclerosis during exercise.

    Lanfranconi, F; Ferri, A; Corna, G; Bonazzi, R; Lunetta, C; Silani, V; Riva, N; Rigamonti, A; Maggiani, A; Ferrarese, C; Tremolizzo, L

    2017-06-07

    This study aimed to evaluate muscle oxidative function during exercise in amyotrophic lateral sclerosis patients (pALS) with non-invasive methods in order to assess if determinants of reduced exercise tolerance might match ALS clinical heterogeneity. 17 pALS, who were followed for 4 months, were compared with 13 healthy controls (CTRL). Exercise tolerance was assessed by an incremental exercise test on cycle ergometer measuring peak O 2 uptake ([Formula: see text]O 2peak ), vastus lateralis oxidative function by near infrared spectroscopy (NIRS) and breathing pattern ([Formula: see text]E peak ). pALS displayed: (1) 44% lower [Formula: see text]O 2peak vs. CTRL (p motor units recruitment, is a major determinant of pALS clinical heterogeneity and working capacity exercise tolerance. CPET and NIRS are useful tools for detecting early stages of oxidative deficiency in skeletal muscles, disclosing individual impairments in the O 2 transport and utilization chain.

  1. Muscle function is associated with future patient-reported outcomes in young adults with ACL injury

    Flosadottir, Vala; Roos, Ewa M; Ageberg, Eva

    2016-01-01

    performance and worse postural orientation were associated with worse KOOS scores 2 years later (rsp≥0.280, p≤0.045). Worse muscle power was associated with lower future ARS scores (rsp=0.281, p=0.044). CONCLUSIONS: The moderate associations suggest that improving muscle function during rehabilitation could...... and postural orientation 3 years (SD 0.85) after ACL injury. PROs at 3 and 5 years after injury included Knee Injury and Osteoarthritis Outcome Score (KOOS) subscales Function in sport and recreation (KOOS Sport/rec) and Knee-related Quality of life (KOOS QoL), KOOS item Q3 (KOOS Q3), Tegner Activity Scale...... improve present and future PROs....

  2. Comparative data from young men and women on masseter muscle fibres, function and facial morphology

    Tuxen, A.; Bakke, M.; Pinholt, E. M.

    1999-01-01

    The primary aim was to relate information about masseter muscle fibres and function to aspects of facial morphology in a group of healthy young men. The secondary aim was to investigate possible sex differences using data previously obtained from a comparable group of age-matched, healthy women......, and the tissue examined for myosin ATPase activity. Further, the cross-sectional areas of the different fibre types were measured. In spite of using age-matched healthy men and women with a full complement of teeth, statistically significant sex differences were found among measures related to muscle function...... and some measures of facial morphology. Thus data from men and women should not be pooled uncritically. The greater bite force in men than women corresponded with the greater diameter and cross-sectional area of type II fibres. Further, the males had more anteriorly inclined mandibles and shorter anterior...

  3. Control of thumb force using surface functional electrical stimulation and muscle load sharing

    2013-01-01

    Background Stroke survivors often have difficulties in manipulating objects with their affected hand. Thumb control plays an important role in object manipulation. Surface functional electrical stimulation (FES) can assist movement. We aim to control the 2D thumb force by predicting the sum of individual muscle forces, described by a sigmoidal muscle recruitment curve and a single force direction. Methods Five able bodied subjects and five stroke subjects were strapped in a custom built setup. The forces perpendicular to the thumb in response to FES applied to three thumb muscles were measured. We evaluated the feasibility of using recruitment curve based force vector maps in predicting output forces. In addition, we developed a closed loop force controller. Load sharing between the three muscles was used to solve the redundancy problem having three actuators to control forces in two dimensions. The thumb force was controlled towards target forces of 0.5 N and 1.0 N in multiple directions within the individual’s thumb work space. Hereby, the possibilities to use these force vector maps and the load sharing approach in feed forward and feedback force control were explored. Results The force vector prediction of the obtained model had small RMS errors with respect to the actual measured force vectors (0.22±0.17 N for the healthy subjects; 0.17±0.13 N for the stroke subjects). The stroke subjects showed a limited work range due to limited force production of the individual muscles. Performance of feed forward control without feedback, was better in healthy subjects than in stroke subjects. However, when feedback control was added performances were similar between the two groups. Feedback force control lead, especially for the stroke subjects, to a reduction in stationary errors, which improved performance. Conclusions Thumb muscle responses to FES can be described by a single force direction and a sigmoidal recruitment curve. Force in desired direction can be

  4. Advanced Magnetic Resonance Imaging techniques to probe muscle structure and function

    Malis, Vadim

    Structural and functional Magnetic Resonance Imaging (MRI) studies of skeletal muscle allow the elucidation of muscle physiology under normal and pathological conditions. Continuing on the efforts of the Muscle Imaging and Modeling laboratory, the focus of the thesis is to (i) extend and refine two challenging imaging modalities: structural imaging using Diffusion Tensor Imaging (DTI) and functional imaging based on Velocity Encoded Phase Contrast Imaging (VE-PC) and (ii) apply these methods to explore age related structure and functional differences of the gastrocnemius muscle. Diffusion Tensor Imaging allows the study of tissue microstructure as well as muscle fiber architecture. The images, based on an ultrafast single shot Echo Planar Imaging (EPI) sequence, suffer from geometric distortions and low signal to noise ratio. A processing pipeline was developed to correct for distortions and to improve image Signal to Noise Ratio (SNR). DTI acquired on a senior and young cohort of subjects were processed through the pipeline and differences in DTI derived indices and fiber architecture between the two cohorts were explored. The DTI indices indicated that at the microstructural level, fiber atrophy was accompanied with a reduction in fiber volume fraction. At the fiber architecture level, fiber length and pennation angles decreased with age that potentially contribute to the loss of muscle force with age. Velocity Encoded Phase Contrast imaging provides tissue (e.g. muscle) velocity at each voxel which allows the study of strain and Strain Rate (SR) under dynamic conditions. The focus of the thesis was to extract 2D strain rate tensor maps from the velocity images and apply the method to study age related differences. The tensor mapping can potentially provide unique information on the extracellular matrix and lateral transmission the role of these two elements has recently emerged as important determinants of force loss with age. In the cross sectional study on

  5. Muscle Force-Velocity Relationships Observed in Four Different Functional Tests.

    Zivkovic, Milena Z; Djuric, Sasa; Cuk, Ivan; Suzovic, Dejan; Jaric, Slobodan

    2017-02-01

    The aims of the present study were to investigate the shape and strength of the force-velocity relationships observed in different functional movement tests and explore the parameters depicting force, velocity and power producing capacities of the tested muscles. Twelve subjects were tested on maximum performance in vertical jumps, cycling, bench press throws, and bench pulls performed against different loads. Thereafter, both the averaged and maximum force and velocity variables recorded from individual trials were used for force-velocity relationship modeling. The observed individual force-velocity relationships were exceptionally strong (median correlation coefficients ranged from r = 0.930 to r = 0.995) and approximately linear independently of the test and variable type. Most of the relationship parameters observed from the averaged and maximum force and velocity variable types were strongly related in all tests (r = 0.789-0.991), except for those in vertical jumps (r = 0.485-0.930). However, the generalizability of the force-velocity relationship parameters depicting maximum force, velocity and power of the tested muscles across different tests was inconsistent and on average moderate. We concluded that the linear force-velocity relationship model based on either maximum or averaged force-velocity data could provide the outcomes depicting force, velocity and power generating capacity of the tested muscles, although such outcomes can only be partially generalized across different muscles.

  6. Regulation of muscle stem cell functions: a focus on the p38 MAPK signaling pathway

    Jessica Segales

    2016-08-01

    Full Text Available Formation of skeletal muscle fibers (myogenesis during development and after tissue injury in the adult constitutes an excellent paradigm to investigate the mechanisms whereby environmental cues control gene expression programs in muscle stem cells (satellite cells by acting on transcriptional and epigenetic effectors. Here we will review the molecular mechanisms implicated in the transition of satellite cells throughout the distinct myogenic stages (i.e., activation from quiescence, proliferation, differentiation and self-renewal. We will also discuss recent findings on the causes underlying satellite cell functional decline with aging. In particular, our review will focus on the epigenetic changes underlying fate decisions and on how the p38 MAPK signaling pathway integrates the environmental signals at the chromatin to build up satellite cell adaptive responses during the process of muscle regeneration, and how these responses are altered in aging. A better comprehension of the signaling pathways connecting external and intrinsic factors will illuminate the path for improving muscle regeneration in the aged.

  7. Functional dysregulation of stem cells during aging: a focus on skeletal muscle stem cells.

    García-Prat, Laura; Sousa-Victor, Pedro; Muñoz-Cánoves, Pura

    2013-09-01

    Aging of an organism is associated with the functional decline of tissues and organs, as well as a sharp decline in the regenerative capacity of stem cells. A prevailing view holds that the aging rate of an individual depends on the ratio of tissue attrition to tissue regeneration. Therefore, manipulations that favor the balance towards regeneration may prevent or delay aging. Skeletal muscle is a specialized tissue composed of postmitotic myofibers that contract to generate force. Satellite cells are the adult stem cells responsible for skeletal muscle regeneration. Recent studies on the biology of skeletal muscle and satellite cells in aging have uncovered the critical impact of systemic and niche factors on stem cell functionality and demonstrated the capacity of aged satellite cells to rejuvenate and increase their regenerative potential when exposed to a youthful environment. Here we review the current literature on the coordinated relationship between cell extrinsic and intrinsic factors that regulate the function of satellite cells, and ultimately determine tissue homeostasis and repair during aging, and which encourage the search for new anti-aging strategies. © 2013 The Authors Journal compilation © 2013 FEBS.

  8. Effects of inspiratory muscle training on respiratory function and repetitive sprint performance in wheelchair basketball players.

    Goosey-Tolfrey, V; Foden, E; Perret, C; Degens, H

    2010-07-01

    There is considerable evidence that respiratory muscle training improves pulmonary function, quality of life and exercise performance in healthy athletic populations. The benefits for wheelchair athletes are less well understood. Therefore, in the present study, influence of inspiratory muscle training (IMT) on respiratory function and repetitive propulsive sprint performance in wheelchair basketball players was examined. Using a placebo-controlled design, 16 wheelchair athletes were divided to an experimental (IMT; n=8) or placebo (sham-IMT; n=8) group based on selective grouping criteria. 30 dynamic breaths were performed by the IMT group twice daily at a resistance equivalent to 50% maximum inspiratory pressure (MIP), and 60 slow breaths were performed by the sham-IMT group once a day at 15% MIP for a period of 6 weeks. In the IMT group, both MIP and maximum expiratory pressure (17% and 23%, respectively; ptraining device suggested "less breathlessness" and "less tightness in the chest during the training". Although there was no improvement in sprint performance, an improved respiratory muscle function and quality of life were reported by participants in both the IMT and sham-IMT groups.

  9. Brain Functional Connectivity is Different during VoluntaryConcentric and Eccentric Muscle Contraction

    Wan X Yao

    2016-11-01

    Full Text Available Previous studies report greater activation in the cortical motor network in controlling eccentric contraction (EC than concentric contraction (CC of human skeletal muscles despite lower activation level of the muscle associated with EC. It is unknown, however, whether the strength of functional coupling between the primary motor cortex (M1 and other involved areas in the brain differs as voluntary movements are controlled by a network of regions in the primary, secondary and association cortices. Examining fMRI-based functional connectivity (FC offers an opportunity to measure strength of such coupling. To address the question, we examined functional MRI (fMRI data acquired during EC and CC (20 contractions each with similar movement distance and speed of the right first dorsal interosseous (FDI muscle in 11 young (20-32 years and healthy individuals and estimated FC between the M1 and a number of cortical regions in the motor control network. The major findings from the behavioral and fMRI-based FC analysis were that (1 no significant differences were seen in movement distance, speed and stability between the EC and CC; (2 significantly stronger mean FC was found for CC than EC. Our finding provides novel insights for a better understanding of the control mechanisms underlying voluntary movements produced by EC and CC. The finding is potentially helpful for guiding the development of targeted sport training and/or therapeutic programs for performance enhancement and injury prevention.

  10. Body composition of 80-years old men and women and its relation to muscle strength, physical activity and functional ability

    Pedersen, Agnes Nadelmann; Ovesen, L.; Schroll, M.

    2002-01-01

    , and physical activity and functional ability. BMI was related to body fat mass, and FFM was related to muscle strength. Muscle strength was related to mobility and PPT. Mobility and PPT were mutually related and were related to physical activity. CONCLUSION: Our cross sectional study did not support newly...

  11. Influence of Nordic Walking Training on Muscle Strength and the Electromyographic Activity of the Lower Body in Women With Low Bone Mass

    Ossowski Zbigniew

    2016-06-01

    Full Text Available Introduction. Osteoporosis and osteopenia are related to changes in the quantity and quality of skeletal muscle and contribute to a decreased level of muscle strength. The purpose of this study was to evaluate the impact of Nordic walking training on muscle strength and the electromyographic (EMG activity of the lower body in women with low bone mass. Material and methods. The participants of the study were 27 women with low bone mass. The sample was randomly divided into two groups: a control group and an experimental group. Women from the experimental group participated in 12 weeks of regular Nordic walking training. Functional strength was assessed with a 30-second chair stand test. The EMG activities of the gluteus maximus (GMax, rectus femoris (RF, biceps femoris (BF, soleus (SOL, and lumbar (LB muscles were measured using a surface electromyogram. Results. Nordic walking training induced a significant increase in the functional strength (p = 0.006 of the lower body and activity of GMax (p = 0.013 and a decrease in body mass (p = 0.006 in women with reduced bone mass. There was no statistically significant increase in the EMG activities of the RF, BF, SOL, or LB muscles. The study did not indicate any significant changes in functional muscle strength, the EMG activity of the lower body, or anthropometry in women from the control group. Conclusions. Nordic walking training induces positive changes in lower body strength and the electromyographic activity of the gluteus maximus as well as a decrease in body mass in women with low bone mass.

  12. Tear function and ocular surface after Muller muscle-conjunctival resection.

    Uğurbaş, Suat Hayri; Alpay, Atilla; Bahadır, Burak; Uğurbaş, Sılay Cantürk

    2014-05-01

    Muller muscle-conjunctival resection (MCR) is a surgical technique to correct mild and moderate ptosis. In this study, tear function tests and ocular surface are evaluated in patients who underwent unilateral surgery. Sixteen patients with normal preoperative tear function who underwent unilateral MCR were evaluated prospectively. The fellow eyes of the patients were taken as the control group. A dry eye assessment questionnaire, Schirmer testing, tear film break-up time, fluorescein stain, Rose-Bengal stain, and conjunctival impression cytology were used to assess the tear film functions and ocular surface changes in the operated and non-operated eyes. There was no statistically significant difference in the tear function tests and goblet cell densities between the operated and non-operated eyes. The results indicate that an MCR procedure has no apparent effect on tear function tests and goblet cell density in patients with normal preoperative tear function.

  13. Evaluation of Functional Correlation of Task-Specific Muscle Synergies with Motor Performance in Patients Poststroke

    Si Li

    2017-07-01

    Full Text Available The central nervous system produces movements by activating specifically programmed muscle synergies that are also altered with injuries in the brain, such as stroke. In this study, we hypothesize that there exists a positive correlation between task-specific muscle synergy and motor functions at joint and task levels in patients following stroke. The purpose here is to define and evaluate neurophysiological metrics based on task-specific muscle synergy for assessing motor functions in patients. A patient group of 10 subjects suffering from stroke and a control group of nine age-matched healthy subjects were recruited to participate in this study. Electromyography (EMG signals and movement kinematics were recorded in patients and control subjects while performing arm reaching tasks. Muscle synergies of individual patients were extracted off-line from EMG records of each patient, and a baseline pattern of muscle synergy was obtained from the pooled EMG data of all nine control subjects. Peak velocities and movement durations of each reaching movement were computed from measured kinematics. Similarity indices of matching components to those of the baseline synergy were defined by synergy vectors and time profiles, respectively, as well as by a combined similarity of vector and time profile. Results showed that pathological synergies of patients were altered from the characteristics of baseline synergy with missing components, or varied vector patterns and time profiles. The kinematic performance measured by peak velocities and movement durations was significantly poorer for the patient group than the control group. In patients, all three similarity indices were found to correlate significantly to the kinematics of movements for the reaching tasks. The correlation to the Fugl-Meyer score of arm was the highest with the vector index, the lowest with the time profile index, and in between with the combined index. These findings illustrate that the

  14. Evoked EMG versus Muscle Torque during Fatiguing Functional Electrical Stimulation-Evoked Muscle Contractions and Short-Term Recovery in Individuals with Spinal Cord Injury

    Estigoni, Eduardo H.; Fornusek, Che; Hamzaid, Nur Azah; Hasnan, Nazirah; Smith, Richard M.; Davis, Glen M.

    2014-01-01

    This study investigated whether the relationship between muscle torque and m-waves remained constant after short recovery periods, between repeated intervals of isometric muscle contractions induced by functional electrical stimulation (FES). Eight subjects with spinal cord injury (SCI) were recruited for the study. All subjects had their quadriceps muscles group stimulated during three sessions of isometric contractions separated by 5 min of recovery. The evoked-electromyographic (eEMG) signals, as well as the produced torque, were synchronously acquired during the contractions and during short FES bursts applied during the recovery intervals. All analysed m-wave variables changed progressively throughout the three contractions, even though the same muscle torque was generated. The peak to peak amplitude (PtpA), and the m-wave area (Area) were significantly increased, while the time between the stimulus artefact and the positive peak (PosT) were substantially reduced when the muscles became fatigued. In addition, all m-wave variables recovered faster and to a greater extent than did torque after the recovery intervals. We concluded that rapid recovery intervals between FES-evoked exercise sessions can radically interfere in the use of m-waves as a proxy for torque estimation in individuals with SCI. This needs to be further investigated, in addition to seeking a better understanding of the mechanisms of muscle fatigue and recovery. PMID:25479324

  15. The effect of local skin cooling before a sustained, submaximal isometric contraction on fatigue and isometric quadriceps femoris performance: A randomized controlled trial.

    Hohenauer, Erich; Cescon, Corrado; Deliens, Tom; Clarys, Peter; Clijsen, Ron

    2017-04-01

    The central- and peripheral mechanisms by which heat strain limits physical performance are not fully elucidated. Nevertheless, pre-cooling is often used in an attempt to improve subsequent performance. This study compared the effects of pre-cooling vs. a pre-thermoneutral application on central- and peripheral fatigue during 60% of isometric maximum voluntary contraction (MVC) of the right quadriceps femoris muscle. Furthermore, the effects between a pre-cooling and a pre-thermoneutral application on isometric MVC of the right quadriceps femoris muscle and subjective ratings of perceived exertion (RPE) were investigated. In this randomized controlled trial, 18 healthy adults voluntarily participated. The participants received either a cold (experimental) application (+8°C) or a thermoneutral (control) application (+32°C) for 20min on their right thigh (one cuff). After the application, central (fractal dimension - FD) and peripheral (muscle fiber conduction velocity - CV) fatigue was estimated using sEMG parameters during 60% of isometric MVC. Surface EMG signals were detected from the vastus medialis and lateralis using bidimensional arrays. Immediately after the submaximal contraction, isometric MVC and RPE were assessed. Participants receiving the cold application were able to maintain a 60% isometric MVC significantly longer when compared to the thermoneutral group (mean time: 78 vs. 46s; p=0.04). The thermoneutral application had no significant impact on central fatigue (p>0.05) compared to the cold application (p=0.03). However, signs of peripheral fatigue were significantly higher in the cold group compared to the thermoneutral group (p=0.008). Pre-cooling had no effect on isometric MVC of the right quadriceps muscle and ratings of perceived exertion. Pre-cooling attenuated central fatigue and led to significantly longer submaximal contraction times compared to the pre-thermoneutral application. These findings support the use of pre-cooling procedures

  16. Bion 11 Spaceflight Project: Effect of Weightlessness on Single Muscle Fiber Function in Rhesus Monkeys

    Fitts, Robert H.; Romatowski, Janell G.; Widrick, Jeffrey J.; DeLaCruz, Lourdes

    1999-01-01

    Although it is well known that microgravity induces considerable limb muscle atrophy, little is known about how weightlessness alters cell function. In this study, we investigated how weightlessness altered the functional properties of single fast and slow striated muscle fibers. Physiological studies were carried out to test the hypothesis that microgravity causes fiber atrophy, a decreased peak force (Newtons), tension (Newtons/cross-sectional area) and power, an elevated peak rate of tension development (dp/dt), and an increased maximal shortening velocity (V(sub o)) in the slow type I fiber, while changes in the fast-twitch fiber are restricted to atrophy and a reduced peak force. For each fiber, we determined the peak force (P(sub o)), V(sub o), dp/dt, the force-velocity relationship, peak power, the power-force relationship, the force-pCa relationship, and fiber stiffness. Biochemical studies were carried out to assess the effects of weightlessness on the enzyme and substrate profile of the fast- and slow-twitch fibers. We predicted that microgravity would increase resting muscle glycogen and glycolytic metabolism in the slow fiber type, while the fast-twitch fiber enzyme profile would be unaltered. The increased muscle glycogen would in part result from an elevated hexokinase and glycogen synthase. The enzymes selected for study represent markers for mitochondrial function (citrate synthase and 0-hydroxyacyl-CoA dehydrogenase), glycolysis (Phosphofructokinase and lactate dehydrogenase), and fatty acid transport (Carnitine acetyl transferase). The substrates analyzed will include glycogen, lactate, adenosine triphosphate, and phosphocreatine.

  17. Respiratory muscle function in infants with spinal muscular atrophy type I.

    Finkel, Richard S; Weiner, Daniel J; Mayer, Oscar H; McDonough, Joseph M; Panitch, Howard B

    2014-12-01

    To determine the feasibility and safety of respiratory muscle function testing in weak infants with a progressive neuromuscular disorder. Respiratory insufficiency is the major cause of morbidity and mortality in infants with spinal muscular atrophy type I (SMA-I). Tests of respiratory muscle strength, endurance, and breathing patterns can be performed safely in SMA-I infants. Useful data can be collected which parallels the clinical course of pulmonary function in SMA-I. An exploratory study of respiratory muscle function testing and breathing patterns in seven infants with SMA-I seen in our neuromuscular clinic. Measurements were made at initial study visit and, where possible, longitudinally over time. We measured maximal inspiratory (MIP) and transdiaphragmatic pressures, mean transdiaphragmatic pressure, airway occlusion pressure at 100 msec of inspiration, inspiratory and total respiratory cycle time, and aspects of relative thoracoabdominal motion using respiratory inductive plethysmography (RIP). The tension time index of the diaphragm and of the respiratory muscles, phase angle (Φ), phase relation during the total breath, and labored breathing index were calculated. Age at baseline study was 54-237 (median 131) days. Reliable data were obtained safely for MIP, phase angle, labored breathing index, and the invasive and non-invasive tension time indices, even in very weak infants. Data obtained corresponded to the clinical estimate of severity and predicted the need for respiratory support. The testing employed was both safe and feasible. Measurements of MIP and RIP are easily performed tests that are well tolerated and provide clinically useful information for infants with SMA-I. © 2014 Wiley Periodicals, Inc.

  18. Parameters and functional analysis of the deep epaxial muscles in the thoracic, lumbar and sacral regions of the equine spine.

    García Liñeiro, J A; Graziotti, G H; Rodríguez Menéndez, J M; Ríos, C M; Affricano, N O; Victorica, C L

    2018-04-30

    The epaxial muscles produce intervertebral rotation in the transverse, vertical and axial axes. These muscles also counteract the movements induced by gravitational and inertial forces and movements produced by antagonistic muscles and the intrinsic muscles of the pelvic limb. Their fascicles are innervated by the dorsal branch of the spinal nerve, which corresponds to the metamere of its cranial insertion in the spinous process. The structure allows the function of the muscles to be predicted: those with long and parallel fibres have a shortening function, whereas the muscles with short and oblique fibres have an antigravity action. In the horse, the multifidus muscle of the thoracolumbar region extends in multiple segments of two to eight vertebral motion segments (VMS). Functionally, the multifidus muscle is considered a spine stabiliser, maintaining VMS neutrality during spine rotations. However, there is evidence of the structural and functional heterogeneity of the equine thoracolumbar multifidus muscle, depending on the VMS considered, related to the complex control of the required neuromuscular activity. Osteoarticular lesions of the spine have been directly related to asymmetries of the multifidus muscle. The lateral (LDSM) and medial (MDSM) dorsal sacrocaudal muscles may be included in the multifidus complex, the function of which is also unclear in the lumbosacral region. The functional parameters of maximum force (F max ), maximum velocity of contraction (V max ) and joint moment (M) of the multifidus muscles inserted in the 4th, 9th, 12th and 17th thoracic and 3rd and 4th lumbar vertebrae of six horses were studied postmortem (for example: 4MT4 indicates the multifidus muscle that crosses four metameres with cranial insertion in the T4 vertebra). Furthermore, the structural and functional characteristics of LDSM and MDSM were determined. Data were analysed by analysis of variance (anova) in a randomised complete block design (P ≤ 0.05). For some

  19. Effects of a deep-water running program on muscle function and functionality in elderly women community dwelling

    Daisy Alberti

    2017-12-01

    Full Text Available Abstract AIMS The aim of the study was to determine the effects of deep-water running on muscle function and functionality in community dwelling old women. METHODS Older women (n=19 were randomly assigned to one of the two groups: deep-water running (DWR: n=09, 64.33±4.24 years, 75.15±12.53 kg, 160.45±7.52 cm; or control group CG: n=10, 64.40±4.22 years, 74.46±12.39 kg, 158.88±5.48 cm. The DWR group carried out 18 weeks of deep-water running, twice/week 50 min sessions. Dynamic isokinetic strength for the lower limb and functionality was assessed before and after intervention. RESULTS DWR group increased peak torque, total work and average power of the knee and hip flexors and extensors. Additionally showed better performance on gait speed, timed up and go test, five-times-sit-to-stand-test repetitions from a chair as well as the six-minute walk test. CONCLUSION The deep-water running program was effective to improve muscle function and functionality.

  20. Exposure to Gulf War Illness chemicals induces functional muscarinic receptor maladaptations in muscle nociceptors.

    Cooper, B Y; Johnson, R D; Nutter, T J

    2016-05-01

    Chronic pain is a component of the multisymptom disease known as Gulf War Illness (GWI). There is evidence that pain symptoms could have been a consequence of prolonged and/or excessive exposure to anticholinesterases and other GW chemicals. We previously reported that rats exposed, for 8 weeks, to a mixture of anticholinesterases (pyridostigmine bromide, chlorpyrifos) and a Nav (voltage activated Na(+) channel) deactivation-inhibiting pyrethroid, permethrin, exhibited a behavior pattern that was consistent with a delayed myalgia. This myalgia-like behavior was accompanied by persistent changes to Kv (voltage activated K(+)) channel physiology in muscle nociceptors (Kv7, KDR). In the present study, we examined how exposure to the above agents altered the reactivity of Kv channels to a muscarinic receptor (mAChR) agonist (oxotremorine-M). Comparisons between muscle nociceptors harvested from vehicle and GW chemical-exposed rats revealed that mAChR suppression of Kv7 activity was enhanced in exposed rats. Yet in these same muscle nociceptors, a Stromatoxin-insensitive component of the KDR (voltage activated delayed rectifier K(+) channel) exhibited decreased sensitivity to activation of mAChR. We have previously shown that a unique mAChR-induced depolarization and burst discharge (MDBD) was exaggerated in muscle nociceptors of rats exposed to GW chemicals. We now provide evidence that both muscle and vascular nociceptors of naïve rats exhibit MDBD. Examination of the molecular basis of the MDBD in naïve animals revealed that while the mAChR depolarization was independent of Kv7, the action potential burst was modulated by Kv7 status. mAChR depolarizations were shown to be dependent, in part, on TRPA1. We argue that dysfunction of the MDBD could be a functional convergence point for maladapted ion channels and receptors consequent to exposure to GW chemicals. Copyright © 2016 Elsevier Inc. All rights reserved.

  1. Creatine Loading, Resistance Exercise Performance, and Muscle Mechanics.

    Stevenson, Scott W.; Dudley, Gary A.

    2001-01-01

    Examined whether creatine (CR) monohydrate loading would alter resistance exercise performance, isometric strength, or in vivo contractile properties of the quadriceps femoris muscle compared with placebo loading in resistance-trained athletes. Overall, CR loading did not provide an ergogenic benefit for the unilateral dynamic knee extension…

  2. Increasing taurine intake and taurine synthesis improves skeletal muscle function in the mdx mouse model for Duchenne muscular dystrophy.

    Terrill, Jessica R; Pinniger, Gavin J; Graves, Jamie A; Grounds, Miranda D; Arthur, Peter G

    2016-06-01

    Duchenne muscular dystrophy (DMD) is a fatal muscle wasting disease associated with increased inflammation, oxidative stress and myofibre necrosis. Cysteine precursor antioxidants such as N-acetyl cysteine (NAC) and l-2-oxothiazolidine-4-carboxylate (OTC) reduce dystropathology in the mdx mouse model for DMD, and we propose this is via increased synthesis of the amino acid taurine. We compared the capacity of OTC and taurine treatment to increase taurine content of mdx muscle, as well as effects on in vivo and ex vivo muscle function, inflammation and oxidative stress. Both treatments increased taurine in muscles, and improved many aspects of muscle function and reduced inflammation. Taurine treatment also reduced protein thiol oxidation and was overall more effective, as OTC treatment reduced body and muscle weight, suggesting some adverse effects of this drug. These data suggest that increasing dietary taurine is a better candidate for a therapeutic intervention for DMD. Duchenne muscular dystrophy (DMD) is a fatal muscle wasting disease for which there is no widely available cure. Whilst the mechanism of loss of muscle function in DMD and the mdx mouse model are not fully understood, disruptions in intracellular calcium homeostasis, inflammation and oxidative stress are implicated. We have shown that protein thiol oxidation is increased in mdx muscle, and that the indirect thiol antioxidant l-2-oxothiazolidine-4-carboxylate (OTC), which increases cysteine availability, decreases pathology and increases in vivo strength. We propose that the protective effects of OTC are a consequence of conversion of cysteine to taurine, which has itself been shown to be beneficial to mdx pathology. This study compares the efficacy of taurine with OTC in decreasing dystropathology in mdx mice by measuring in vivo and ex vivo contractile function and measurements of inflammation and protein thiol oxidation. Increasing the taurine content of mdx muscle improved both in vivo and ex

  3. Selective and graded recruitment of cat hamstring muscles with intrafascicular stimulation.

    Dowden, Brett R; Wilder, Andrew M; Hiatt, Scott D; Normann, Richard A; Brown, Nicholas A T; Clark, Gregory A

    2009-12-01

    The muscles of the hamstring group can produce different combinations of hip and knee torque. Thus, the ability to activate the different hamstring muscles selectively is of particular importance in eliciting functional movements such as stance and gait in a person with spinal cord injury. We investigated the ability of intrafascicular stimulation of the muscular branch of the sciatic nerve to recruit the feline hamstring muscles in a selective and graded fashion. A Utah Slanted Electrode Array, consisting of 100 penetrating microelectrodes, was implanted into the muscular branch of the sciatic nerve in six cats. Muscle twitches were evoked in the three compartments of biceps femoris (anterior, middle, and posterior), as well as semitendinosus and semimembranosus, using pulse-width modulated constant-voltage pulses. The resultant compound muscle action potentials were recorded using intramuscular fine-wire electrodes. 74% of the electrodes per implant were able to evoke a threshold response in these muscles, and these electrodes were evenly distributed among the instrumented muscles. Of the five muscles instrumented, on average 2.5 could be selectively activated to 90% of maximum EMG, and 3.5 could be selectively activated to 50% of maximum EMG. The muscles were recruited selectively with a mean stimulus dynamic range of 4.14 +/- 5.05 dB between threshold and either spillover to another muscle or a plateau in the response. This selective and graded activation afforded by intrafascicular stimulation of the muscular branch of the sciatic nerve suggests that it is a potentially useful stimulation paradigm for eliciting distinct forces in the hamstring muscle group in motor neuroprosthetic applications.

  4. Association between muscle function, cognitive state, depression symptoms and quality of life of older people: evidence from clinical practice.

    Gariballa, Salah; Alessa, Awad

    2018-04-01

    Although low muscle function/strength is an important predictor of poor clinical outcome in older patients, information on its impact on mental health in clinical practice is still lacking. The aim of this report is to measure the impact of low muscle function measured by handgrip strength on mental health of older people during both acute illness and recovery. Four hundred and thirty-two randomly selected hospitalized older patients had their baseline demographic and clinical characteristics assessed within 72 h of admission, at 6 weeks and at 6 months. Low muscle strength-handgrip was defined using the European Working Group criteria. Mental health outcome measures including cognitive state, depression symptoms and quality of life were also measured. Among the 432 patients recruited, 308 (79%) had low muscle strength at baseline. Corresponding figures at 6 weeks and at 6 months were 140 (73%) and 158 (75%). Patients with poor muscle strength were significantly older with increased disability and poor nutritional status compared with those with normal muscle strength. After adjustment for age, gender, disability, comorbidity including severity of acute illness and body mass index patients with low muscle strength had worse cognitive function, quality of life and higher depression symptoms compared with those with normal muscle strength over a 6-month period (p older people is associated with poor cognitive state and quality of life and increased depression symptoms during both acute illness and recovery.

  5. [Muscle and function management by the physiotherapist in orthodontic and orthodonto-surgical treatment. Oral myofunctional rehabilitation].

    Girard, Marion; Leroux, Claire

    2015-03-01

    Can we hope to dispense with muscle and function management in orthodontic and orthodonto-surgical treatment plans? How can the specialized physiotherapist assist, facilitate and stabilize the work done by the orthodontist and maxillo-facial surgeon and help avoid relapses? Treatment aims to achieve dental alignment and occlusal balance in direct association with balance of the tongue muscles, cutaneous muscles, masticatory and postural muscles and functions in the orofacial region. Restoration of balance between agonist and antagonist muscles is achieved by relaxing contracted muscles and by gradually building up weak muscle tone. If effective and lasting treatment results are to be obtained, active patient participation is mandatory during rehabilitation of oro-maxillo-facial disorders and must encompass the tongue, lips, cheeks, masticatory system, ventilation and general posture as well as management of the parafunctions. These procedures are essential in dentofacial orthopedic treatment of both children and adults. Practical cases will be used to demonstrate the contribution that myofunctional rehabilitation can make. Regarding natural functions, very satisfactory results are obtained provided patients do daily muscle exercises and day-long training in the correct postures and practical drills they have been taught over a period of at least six months and under the supervision of the physiotherapist. © EDP Sciences, SFODF, 2015.

  6. Genetic and Environmental Influences on Pulmonary Function and Muscle Strength: The Chinese Twin Study of Aging

    Tian, Xiaocao; Xu, Chunsheng; Wu, Yili

    2017-01-01

    Genetic and environmental influences on predictors of decline in daily functioning, including forced expiratory volume in 1 s (FEV1), forced vital capacity (FVC), handgrip, and five-times-sit-to-stand test (FTSST), have not been addressed in the aging Chinese population. We performed classical twin...... was moderate for FEV1, handgrip, and FTSST (55-60%) but insignificant for FVC. Only FVC showed moderate control, with shared environmental factors accounting for about 50% of the total variance. In contrast, all measures of pulmonary function and muscle strength showed modest influences from the unique...

  7. Overexpression of functional TrkA receptors after internalisation in human airway smooth muscle cells.

    Freund-Michel, Véronique; Frossard, Nelly

    2008-10-01

    Trafficking of the TrkA receptor after stimulation by NGF is of emerging importance in structural cells in the context of airway inflammatory diseases. We have recently reported the expression of functional TrkA receptors in human airway smooth muscle cells (HASMC). We have here studied the TrkA trafficking mechanisms in these cells. TrkA disappearance from the cell membrane was induced within 5 min of NGF (3pM) stimulation. Co-immunoprecipitation of clathrin-TrkA was revealed, and TrkA internalisation inhibited either by clathrin inhibitors or by siRNA inducing downregulation of endogenous clathrin. TrkA internalised receptors were totally degraded in lysosomes, with no recycling phenomenon. Newly synthesized TrkA receptors were thereafter re-expressed at the cell membrane within 10 h. TrkA re-synthesis was inhibited by blockade of clathrin-dependent internalisation, but not of TrkA receptors lysosomal degradation. Finally, we observed that NGF multiple stimulations progressively increased TrkA expression in HASMC, which was associated with an increase in NGF/TrkA-dependent proliferation. In conclusion, we show here the occurrence of clathrin-dependent TrkA internalisation and lysosomal degradation in the airway smooth muscle, followed by upregulated re-synthesis of functional TrkA receptors and increased proliferative effect in the human airway smooth muscle. This may have pathophysiological consequences in airway inflammatory diseases.

  8. Analysis of Skeletal Muscle Metrics as Predictors of Functional Task Performance

    Ryder, Jeffrey W.; Buxton, Roxanne E.; Redd, Elizabeth; Scott-Pandorf, Melissa; Hackney, Kyle J.; Fiedler, James; Ploutz-Snyder, Robert J.; Bloomberg, Jacob J.; Ploutz-Snyder, Lori L.

    2010-01-01

    PURPOSE: The ability to predict task performance using physiological performance metrics is vital to ensure that astronauts can execute their jobs safely and effectively. This investigation used a weighted suit to evaluate task performance at various ratios of strength, power, and endurance to body weight. METHODS: Twenty subjects completed muscle performance tests and functional tasks representative of those that would be required of astronauts during planetary exploration (see table for specific tests/tasks). Subjects performed functional tasks while wearing a weighted suit with additional loads ranging from 0-120% of initial body weight. Performance metrics were time to completion for all tasks except hatch opening, which consisted of total work. Task performance metrics were plotted against muscle metrics normalized to "body weight" (subject weight + external load; BW) for each trial. Fractional polynomial regression was used to model the relationship between muscle and task performance. CONCLUSION: LPMIF/BW is the best predictor of performance for predominantly lower-body tasks that are ambulatory and of short duration. LPMIF/BW is a very practical predictor of occupational task performance as it is quick and relatively safe to perform. Accordingly, bench press work best predicts hatch-opening work performance.

  9. Architecture and functional ecology of the human gastrocnemius muscle-tendon unit.

    Butler, Erin E; Dominy, Nathaniel J

    2016-04-01

    The gastrocnemius muscle-tendon unit (MTU) is central to human locomotion. Structural variation in the human gastrocnemius MTU is predicted to affect the efficiency of locomotion, a concept most often explored in the context of performance activities. For example, stiffness of the Achilles tendon varies among individuals with different histories of competitive running. Such a finding highlights the functional variation of individuals and raises the possibility of similar variation between populations, perhaps in response to specific ecological or environmental demands. Researchers often assume minimal variation in human populations, or that industrialized populations represent the human species as well as any other. Yet rainforest hunter-gatherers, which often express the human pygmy phenotype, contradict such assumptions. Indeed, the human pygmy phenotype is a potential model system for exploring the range of ecomorphological variation in the architecture of human hindlimb muscles, a concept we review here. © 2015 Anatomical Society.

  10. High-intensity strength training improves function of chronically painful muscles

    Andersen, Lars L; Andersen, Christoffer H; Skotte, Jørgen H

    2014-01-01

    AIM: This study investigates consequences of chronic neck pain on muscle function and the rehabilitating effects of contrasting interventions. METHODS: Women with trapezius myalgia (MYA, n = 42) and healthy controls (CON, n = 20) participated in a case-control study. Subsequently MYA were...... randomized to 10 weeks of specific strength training (SST, n = 18), general fitness training (GFT, n = 16), or a reference group without physical training (REF, n = 8). Participants performed tests of 100 consecutive cycles of 2 s isometric maximal voluntary contractions (MVC) of shoulder elevation followed...... MYA and CON. In the intervention study, SST improved all force parameters significantly more than the two other groups, to levels comparable to that of CON. This was seen along with muscle fiber hypertrophy and increased capillarization. CONCLUSION: Women with trapezius myalgia have lower strength...

  11. Effects of ageing on single muscle fibre contractile function following short-term immobilisation

    Hvid, Lars G; Ortenblad, Niels; Aagaard, Per

    2011-01-01

    Very little attention has been given to the combined effects of healthy ageing and short-term disuse on the contractile function of human single muscle fibres. Therefore, the present study investigated the effects of 2 weeks of lower limb cast immobilisation (i.e. disuse) on selected contractile...... IIa: young 18% and old 25%; P selective decrease in Ca(2+) sensitivity in MHC IIa fibres of young (P ....05), respectively. In conclusion, 2 weeks of lower limb immobilisation caused greater impairments in single muscle fibre force and specific force in MHC IIa than MHC I fibres independently of age. In contrast, immobilisation-induced changes in Ca(2+) sensitivity that were dependent on age and MHC isoform....

  12. Effects of proprioceptive circuit exercise on knee joint pain and muscle function in patients with knee osteoarthritis.

    Ju, Sung-Bum; Park, Gi Duck; Kim, Sang-Soo

    2015-08-01

    [Purpose] This study applied proprioceptive circuit exercise to patients with degenerative knee osteoarthritis and examined its effects on knee joint muscle function and the level of pain. [Subjects] In this study, 14 patients with knee osteoarthritis in two groups, a proprioceptive circuit exercise group (n = 7) and control group (n = 7), were examined. [Methods] IsoMed 2000 (D&R Ferstl GmbH, Hemau, Germany) was used to assess knee joint muscle function, and a Visual Analog Scale was used to measure pain level. [Results] In the proprioceptive circuit exercise group, knee joint muscle function and pain levels improved significantly, whereas in the control group, no significant improvement was observed. [Conclusion] A proprioceptive circuit exercise may be an effective way to strengthen knee joint muscle function and reduce pain in patients with knee osteoarthritis.

  13. Curvilinear bodies are associated with adverse effects on muscle function but not with hydroxychloroquine dosing.

    Khoo, Thomas; Otto, Sophia; Smith, Caroline; Koszyca, Barbara; Lester, Sue; Blumbergs, Peter; Limaye, Vidya

    2017-03-01

    The clinical significance of curvilinear bodies (CB) seen in association with hydroxychloroquine (HCQ) therapy is uncertain. Patients with CB on muscle biopsy performed between 2006 and the present were identified, and their clinical features including body mass index and cumulative HCQ dose were recorded. A control group of 16 patients with idiopathic inflammatory myositis (IIM) on HCQ at time of biopsy but without evidence of CB was identified. Nineteen patients with CB were identified; details were available for 18. Among patients with CB, 7/18 also had IIM. Seven out of ten patients with CB who did not have IIM or MHCI/II expression had proximal weakness; 7/11 had raised serum creatinine kinase (CK) levels. There was no difference in body weight (p = 0.47), body mass index (p = 0.93), cumulative HCQ dose (p = 0.52) or cumulative dose adjusted for body weight (p = 0.39) or body mass index (p = 0.32) between patients with CB and controls. Patients with CB had lower median CK levels than controls (p = 0.034). Weakness was present in 12/17 patients and 12/16 controls (p = 1.0). Concurrent proton-pump inhibitors were co-prescribed in 12/18 (67 %) patients with CB and in 6/16 (38 %) controls (p = 0.17). Development of CB does not appear to be related to cumulative HCQ dose or body weight. Patients with CB frequently have muscle weakness in the absence of MHC1 expression suggesting a role for non-immune mechanisms of muscle injury. A high proportion of patients with CB are co-prescribed proton-pump inhibitors raising the possibility that co-prescription of both agents may disrupt lysosomal function and adversely affect muscle function.

  14. Reliability and Measurement Error of Tensiomyography to Assess Mechanical Muscle Function: A Systematic Review.

    Martín-Rodríguez, Saúl; Loturco, Irineu; Hunter, Angus M; Rodríguez-Ruiz, David; Munguia-Izquierdo, Diego

    2017-12-01

    Martín-Rodríguez, S, Loturco, I, Hunter, AM, Rodríguez-Ruiz, D, and Munguia-Izquierdo, D. Reliability and measurement error of tensiomyography to assess mechanical muscle function: A systematic review. J Strength Cond Res 31(12): 3524-3536, 2017-Interest in studying mechanical skeletal muscle function through tensiomyography (TMG) has increased in recent years. This systematic review aimed to (a) report the reliability and measurement error of all TMG parameters (i.e., maximum radial displacement of the muscle belly [Dm], contraction time [Tc], delay time [Td], half-relaxation time [½ Tr], and sustained contraction time [Ts]) and (b) to provide critical reflection on how to perform accurate and appropriate measurements for informing clinicians, exercise professionals, and researchers. A comprehensive literature search was performed of the Pubmed, Scopus, Science Direct, and Cochrane databases up to July 2017. Eight studies were included in this systematic review. Meta-analysis could not be performed because of the low quality of the evidence of some studies evaluated. Overall, the review of the 9 studies involving 158 participants revealed high relative reliability (intraclass correlation coefficient [ICC]) for Dm (0.91-0.99); moderate-to-high ICC for Ts (0.80-0.96), Tc (0.70-0.98), and ½ Tr (0.77-0.93); and low-to-high ICC for Td (0.60-0.98), independently of the evaluated muscles. In addition, absolute reliability (coefficient of variation [CV]) was low for all TMG parameters except for ½ Tr (CV = >20%), whereas measurement error indexes were high for this parameter. In conclusion, this study indicates that 3 of the TMG parameters (Dm, Td, and Tc) are highly reliable, whereas ½ Tr demonstrate insufficient reliability, and thus should not be used in future studies.

  15. Comparative functional anatomy of hindlimb muscles and bones with reference to aquatic adaptation of the sea otter.

    Mori, Kent; Suzuki, Satoshi; Koyabu, Daisuke; Kimura, Junpei; Han, Sung-Yong; Endo, Hideki

    2015-05-01

    Although the sea otter (Enhydra lutris) is a complete aquatic species, spending its entire life in the ocean, it has been considered morphologically to be a semi-aquatic animal. This study aimed to clarify the unique hindlimb morphology and functional adaptations of E. lutris in comparison to other Mustelidae species. We compared muscle mass and bone measurements of five Mustelidae species: the sea otter, Eurasian river otter (Lutra lutra), American mink (Neovison vison), Japanese weasel (Mustela itatsi) and Siberian weasel (M. sibirica). In comparison with the other 4 species, E. lutris possessed significantly larger gluteus, popliteus and peroneus muscles, but smaller adductor and ischiopubic muscles. The popliteus muscle may act as a medial rotator of the crus, and the peroneus muscle may act as an abductor of the fifth toe and/or the pronator of the foot. The bundles of the gluteus superficialis muscle of E. lutris were fused with those of the tensor fasciae latae muscle and gluteofemoralis muscles, and they may play a role in femur abduction. These results suggest that E. lutris uses the abducted femur, medially rotated crus, eversion of the ankle and abducted fifth digit or extended interdigital web as a powerful propulsion generator. Therefore, we conclude that E. lutris is a complete aquatic animal, possessing differences in the proportions of the hindlimb muscles compared with those in other semi-aquatic and terrestrial mustelids.

  16. Functional evaluation of artificial skeletal muscle tissue constructs fabricated by a magnetic force-based tissue engineering technique.

    Yamamoto, Yasunori; Ito, Akira; Fujita, Hideaki; Nagamori, Eiji; Kawabe, Yoshinori; Kamihira, Masamichi

    2011-01-01

    Skeletal muscle tissue engineering is currently applied in a variety of research fields, including regenerative medicine, drug screening, and bioactuator development, all of which require the fabrication of biomimic and functional skeletal muscle tissues. In the present study, magnetite cationic liposomes were used to magnetically label C2C12 myoblast cells for the construction of three-dimensional artificial skeletal muscle tissues by an applied magnetic force. Skeletal muscle functions, such as biochemical and contractile properties, were evaluated for the artificial tissue constructs. Histological studies revealed that elongated and multinucleated myotubes were observed within the tissue. Expression of muscle-specific markers, such as myogenin, myosin heavy chain and tropomyosin, were detected in the tissue constructs by western blot analysis. Further, creatine kinase activity increased during differentiation. In response to electric pulses, the artificial tissue constructs contracted to generate a physical force (the maximum twitch force, 33.2 μN [1.06 mN/mm2]). Rheobase and chronaxie of the tissue were determined as 4.45 V and 0.72 ms, respectively. These results indicate that the artificial skeletal muscle tissue constructs fabricated in this study were physiologically functional and the data obtained for the evaluation of their functional properties may provide useful information for future skeletal muscle tissue engineering studies.

  17. Genes Whose Gain or Loss-Of-Function Increases Skeletal Muscle Mass in Mice: A Systematic Literature Review

    Sander A. J. Verbrugge

    2018-05-01

    Full Text Available Skeletal muscle mass differs greatly in mice and humans and this is partially inherited. To identify muscle hypertrophy candidate genes we conducted a systematic review to identify genes whose experimental loss or gain-of-function results in significant skeletal muscle hypertrophy in mice. We found 47 genes that meet our search criteria and cause muscle hypertrophy after gene manipulation. They are from high to small effect size: Ski, Fst, Acvr2b, Akt1, Mstn, Klf10, Rheb, Igf1, Pappa, Ppard, Ikbkb, Fstl3, Atgr1a, Ucn3, Mcu, Junb, Ncor1, Gprasp1, Grb10, Mmp9, Dgkz, Ppargc1a (specifically the Ppargc1a4 isoform, Smad4, Ltbp4, Bmpr1a, Crtc2, Xiap, Dgat1, Thra, Adrb2, Asb15, Cast, Eif2b5, Bdkrb2, Tpt1, Nr3c1, Nr4a1, Gnas, Pld1, Crym, Camkk1, Yap1, Inhba, Tp53inp2, Inhbb, Nol3, Esr1. Knock out, knock down, overexpression or a higher activity of these genes causes overall muscle hypertrophy as measured by an increased muscle weight or cross sectional area. The mean effect sizes range from 5 to 345% depending on the manipulated gene as well as the muscle size variable and muscle investigated. Bioinformatical analyses reveal that Asb15, Klf10, Tpt1 are most highly expressed hypertrophy genes in human skeletal muscle when compared to other tissues. Many of the muscle hypertrophy-regulating genes are involved in transcription and ubiquitination. Especially genes belonging to three signaling pathways are able to induce hypertrophy: (a Igf1-Akt-mTOR pathway, (b myostatin-Smad signaling, and (c the angiotensin-bradykinin signaling pathway. The expression of several muscle hypertrophy-inducing genes and the phosphorylation of their protein products changes after human resistance and high intensity exercise, in maximally stimulated mouse muscle or in overloaded mouse plantaris.

  18. [Relation between physical activity, muscle function and IGF-1, testosterone and DHEAS concentrations in the elderly].

    Bonnefoy, M; Patricot, M C; Lacour, J R; Rahmani, A; Berthouze, S; Kostka, T

    2002-10-01

    Lower amounts of circulating anabolic hormones are thought to accelerate the age related decline in muscle mass and function. Replacement therapies are promising interventions but there are problems with these therapies. Thus alternative strategies should be developed. The age related changes in hormonal status may be probably influenced by exercise. The purpose of this study was: a) to confirm with other methods, more adapted for elderly people, the results of a previous study that has shown relationship between physical activity (PA) and quadriceps muscle function with dehydroepiandrosterone sulphate (DHEAS), insulin like growth factor-1 (IGF-1). Quadriceps muscle power (Pmax) is measured in this new work with a recently developed leg extensor machine and, b) to complete the results of the first study examining simultaneously the relationship between PA, Pmax and cardiorespiratory fitness (VO2max) with DHEAS, IGF-1 and testosterone in a group of healthy elderly people. Fifty independent, community dwelling elderly subjects (25 mens and 25 womens) aged from 66 to 84 volunteered to participate in the study. PA was evaluated by the questionnaire and expressed using two activity indices: mean habitual daily energy expenditure (MHDEE) and the daily energy expenditure corresponding to leisure time sports activities (Sports Activity). Pmax and optimal shortening velocity (vopt) were measured on a Ergopower dynamometer. The Pmax was expressed relative to body mass, Pmax/kg (W kg-1), and relative to the mass of the two quadriceps muscles, Pmax/Quadr (W.kgQuadr-1). VO2max has been measured during a maximal treadmill exercise. In women, IGF-1 correlated significantly with MHDEE (r = 0.54, P = 0.004), Pmax/kg (r = 0.54, P = 0.004) and Pmax/Quadr (r = 0.46, P = 0.02), whereas DHEAS with MHDEE (r = 0.54, P = 0.004), Sports Activity (r = 0.65, P < 0.001), VO2max (r = 0.46, P = 0.02), Pmax/kg (r = 0.46, P = 0.02) and Pmax/Quadr (r = 0.55, P = 0.004). No such correlation was

  19. Unsteady locomotion: integrating muscle function with whole body dynamics and neuromuscular control

    Biewener, Andrew A.; Daley, Monica A.

    2009-01-01

    Summary By integrating studies of muscle function with analysis of whole body and limb dynamics, broader appreciation of neuromuscular function can be achieved. Ultimately, such studies need to address non-steady locomotor behaviors relevant to animals in their natural environments. When animals move slowly they likely rely on voluntary coordination of movement involving higher brain centers. However, when moving fast, their movements depend more strongly on responses controlled at more local levels. Our focus here is on control of fast-running locomotion. A key observation emerging from studies of steady level locomotion is that simple spring-mass dynamics, which help to economize energy expenditure, also apply to stabilization of unsteady running. Spring-mass dynamics apply to conditions that involve lateral impulsive perturbations, sudden changes in terrain height, and sudden changes in substrate stiffness or damping. Experimental investigation of unsteady locomotion is challenging, however, due to the variability inherent in such behaviors. Another emerging principle is that initial conditions associated with postural changes following a perturbation define different context-dependent stabilization responses. Distinct stabilization modes following a perturbation likely result from proximo-distal differences in limb muscle architecture, function and control strategy. Proximal muscles may be less sensitive to sudden perturbations and appear to operate, in such circumstances, under feed-forward control. In contrast, multiarticular distal muscles operate, via their tendons, to distribute energy among limb joints in a manner that also depends on the initial conditions of limb contact with the ground. Intrinsic properties of these distal muscle–tendon elements, in combination with limb and body dynamics, appear to provide rapid initial stabilizing mechanisms that are often consistent with spring-mass dynamics. These intrinsic mechanisms likely help to simplify the

  20. Masticatory biomechanics of the Laotian rock rat, Laonastes aenigmamus, and the function of the zygomaticomandibularis muscle

    Philip G. Cox

    2013-09-01

    Full Text Available The Laotian rock rat, Laonastes aenigmamus, is one of the most recently discovered species of rodent, and displays a cranial morphology that is highly specialised. The rostrum of L. aenigmamus is exceptionally elongate and bears a large attachment site for the infraorbital portion of the zygomaticomandibularis muscle (IOZM, which is particularly well-developed in this species. In this study, we used finite element analysis to investigate the biomechanical performance of the Laotian rock rat cranium and to elucidate the function of the IOZM. A finite element model of the skull of L. aenigmamus was constructed and solved for biting on each of the teeth (incisors, premolar and molars. Further load cases were created and solved in which the origin of the IOZM had been moved anteriorly and posteriorly along the rostrum. Finally, a set of load cases were produced in which the IOZM was removed entirely, and its force was redistributed between the remaining masticatory muscles. The analysis showed that, during biting, the most stressed areas of the skull were the zygomatic and orbital regions. Compared to other rodents, L. aenigmamus is highly efficient at incisor gnawing, but less efficient at molar chewing. However, a relatively constant bite force across the molar tooth row may be an adaptation to folivory. Movement of the origin of the IOZM had little on the patterns of von Mises stresses, or the overall stress experienced by the cranium. However, removal of the IOZM had a substantial effect on the total deformation experienced by the skull. In addition, the positioning and presence of the IOZM had large impact on bite force. Moving the IOZM origin to the anterior tip of the rostrum led to a substantially reduced bite force at all teeth. This was hypothesised to be a result of the increasing horizontal component to the pull of this muscle as it is moved anteriorly along the rostrum. Removal of the IOZM also resulted in reduced bite force, even when

  1. Whey Proteins Are More Efficient than Casein in the Recovery of Muscle Functional Properties following a Casting Induced Muscle Atrophy

    Martin, Vincent; Ratel, Sébastien; Siracusa, Julien; Le Ruyet, Pascale; Savary-Auzeloux, Isabelle; Combaret, Lydie; Guillet, Christelle; Dardevet, Dominique

    2013-01-01

    The purpose of this study was to investigate the effect of whey supplementation, as compared to the standard casein diet, on the recovery of muscle functional properties after a casting-induced immobilization period. After an initial (I0) evaluation of the contractile properties of the plantarflexors (isometric torque-frequency relationship, concentric power-velocity relationship and a fatigability test), the ankle of 20 male adult rats was immobilized by casting for 8 days. During this period, rats were fed a standard diet with 13% of casein (CAS). After cast removal, rats received either the same diet or a diet with 13% of whey proteins (WHEY). A control group (n = 10), non-immobilized but pair-fed to the two other experimental groups, was also studied and fed with the CAS diet. During the recovery period, contractile properties were evaluated 7 (R7), 21 (R21) and 42 days (R42) after cast removal. The immobilization procedure induced a homogeneous depression of average isometric force at R7 (CAS: − 19.0±8.2%; WHEY: − 21.7±8.4%; P<0.001) and concentric power (CAS: − 26.8±16.4%, P<0.001; WHEY: − 13.5±21.8%, P<0.05) as compared to I0. Conversely, no significant alteration of fatigability was observed. At R21, isometric force had fully recovered in WHEY, especially for frequencies above 50 Hz, whereas it was still significantly depressed in CAS, where complete recovery occurred only at R42. Similarly, recovery of concentric power was faster at R21 in the 500−700°/s range in the WHEY group. These results suggest that recovery kinetics varied between diets, the diet with the whey proteins promoting a faster recovery of isometric force and concentric power output as compared to the casein diet. These effects were more specifically observed at force level and movement velocities that are relevant for functional abilities, and thus natural locomotion. PMID:24069411

  2. Validation of Skeletal Muscle cis-Regulatory Module Predictions Reveals Nucleotide Composition Bias in Functional Enhancers

    Kwon, Andrew T.; Chou, Alice Yi; Arenillas, David J.; Wasserman, Wyeth W.

    2011-01-01

    We performed a genome-wide scan for muscle-specific cis-regulatory modules (CRMs) using three computational prediction programs. Based on the predictions, 339 candidate CRMs were tested in cell culture with NIH3T3 fibroblasts and C2C12 myoblasts for capacity to direct selective reporter gene expression to differentiated C2C12 myotubes. A subset of 19 CRMs validated as functional in the assay. The rate of predictive success reveals striking limitations of computational regulatory sequence analysis methods for CRM discovery. Motif-based methods performed no better than predictions based only on sequence conservation. Analysis of the properties of the functional sequences relative to inactive sequences identifies nucleotide sequence composition can be an important characteristic to incorporate in future methods for improved predictive specificity. Muscle-related TFBSs predicted within the functional sequences display greater sequence conservation than non-TFBS flanking regions. Comparison with recent MyoD and histone modification ChIP-Seq data supports the validity of the functional regions. PMID:22144875

  3. Validation of skeletal muscle cis-regulatory module predictions reveals nucleotide composition bias in functional enhancers.

    Andrew T Kwon

    2011-12-01

    Full Text Available We performed a genome-wide scan for muscle-specific cis-regulatory modules (CRMs using three computational prediction programs. Based on the predictions, 339 candidate CRMs were tested in cell culture with NIH3T3 fibroblasts and C2C12 myoblasts for capacity to direct selective reporter gene expression to differentiated C2C12 myotubes. A subset of 19 CRMs validated as functional in the assay. The rate of predictive success reveals striking limitations of computational regulatory sequence analysis methods for CRM discovery. Motif-based methods performed no better than predictions based only on sequence conservation. Analysis of the properties of the functional sequences relative to inactive sequences identifies nucleotide sequence composition can be an important characteristic to incorporate in future methods for improved predictive specificity. Muscle-related TFBSs predicted within the functional sequences display greater sequence conservation than non-TFBS flanking regions. Comparison with recent MyoD and histone modification ChIP-Seq data supports the validity of the functional regions.

  4. Overactive pelvic floor muscles (OPFM): improving diagnostic accuracy with clinical examination and functional studies.

    Aw, Hau Choong; Ranasinghe, Weranja; Tan, Philip Huang Min; O'Connell, Helen E

    2017-07-01

    To identify the functional correlation of overactive pelvic floor muscles (OPFM) with cystoscopic and fluoroscopic urodynamic studies (FUDS), including urethral pressure measurements. Patients refractory to conservative therapy including bladder retraining, medications and pelvic muscle exercises for a variety of gamut of storage and voiding disorders were evaluated. Prospective data for 201 patients across both genders who underwent flexible cystoscopy and urodynamics for lower urinary tract symptoms (LUTS) refractory to conservative management between 01 Jan 2014 and 01 Jan 2016 was collected. Factors studied included history of LUTS, voiding patterns, physical examination, cystoscopic findings and functional studies, with maximum urethral closing pressure (MUCP). A total of 201 were patients recruited. The 85 were diagnosed with OPFM based on clinical presentation and presence of pelvic floor tenderness on examination. Significant differences were noted on functional studies with FUDS and urethral pressure measurement. Subjects with pelvic floor tenderness were found to have a higher (MUCP) at 93.1 cm H2O compared to 80.6 cm H2O (P=0.015). There are distinct characteristics of OPFM on clinical examination and functional studies, in particular MUCP. In patients refractory to conservative treatments, specific urodynamics tests are useful in sub-categorising patients. When OPFM is diagnosed, the impact on patient management is significant, and targeted intervention with pelvic floor physiotherapy is central in the multimodal approach of this complex condition.

  5. Cytokine-induced differentiation of multipotent adult progenitor cells into functional smooth muscle cells.

    Ross, Jeffrey J; Hong, Zhigang; Willenbring, Ben; Zeng, Lepeng; Isenberg, Brett; Lee, Eu Han; Reyes, Morayma; Keirstead, Susan A; Weir, E Kenneth; Tranquillo, Robert T; Verfaillie, Catherine M

    2006-12-01

    Smooth muscle formation and function are critical in development and postnatal life. Hence, studies aimed at better understanding SMC differentiation are of great importance. Here, we report that multipotent adult progenitor cells (MAPCs) isolated from rat, murine, porcine, and human bone marrow demonstrate the potential to differentiate into cells with an SMC-like phenotype and function. TGF-beta1 alone or combined with PDGF-BB in serum-free medium induces a temporally correct expression of transcripts and proteins consistent with smooth muscle development. Furthermore, SMCs derived from MAPCs (MAPC-SMCs) demonstrated functional L-type calcium channels. MAPC-SMCs entrapped in fibrin vascular molds became circumferentially aligned and generated force in response to KCl, the L-type channel opener FPL64176, or the SMC agonists 5-HT and ET-1, and exhibited complete relaxation in response to the Rho-kinase inhibitor Y-27632. Cyclic distention (5% circumferential strain) for 3 weeks increased responses by 2- to 3-fold, consistent with what occurred in neonatal SMCs. These results provide evidence that MAPC-SMCs are phenotypically and functionally similar to neonatal SMCs and that the in vitro MAPC-SMC differentiation system may be an ideal model for the study of SMC development. Moreover, MAPC-SMCs may lend themselves to tissue engineering applications.

  6. The effects of denervation, reinnervation, and muscle imbalance on functional muscle length and elbow flexion contracture following neonatal brachial plexus injury.

    Weekley, Holly; Nikolaou, Sia; Hu, Liangjun; Eismann, Emily; Wylie, Christopher; Cornwall, Roger

    2012-08-01

    The pathophysiology of paradoxical elbow flexion contractures following neonatal brachial plexus injury (NBPI) is incompletely understood. The current study tests the hypothesis that this contracture occurs by denervation-induced impairment of elbow flexor muscle growth. Unilateral forelimb paralysis was created in mice in four neonatal (5-day-old) BPI groups (C5-6 excision, C5-6 neurotomy, C5-6 neurotomy/repair, and C5-T1 global excision), one non-neonatal BPI group (28-day-old C5-6 excision), and two neonatal muscle imbalance groups (triceps tenotomy ± C5-6 excision). Four weeks post-operatively, motor function, elbow range of motion, and biceps/brachialis functional lengths were assessed. Musculocutaneous nerve (MCN) denervation and reinnervation were assessed immunohistochemically. Elbow flexion motor recovery and elbow flexion contractures varied inversely among the neonatal BPI groups. Contracture severity correlated with biceps/brachialis shortening and MCN denervation (relative axon loss), with no contractures occurring in mice with MCN reinnervation (presence of growth cones). No contractures or biceps/brachialis shortening occurred following non-neonatal BPI, regardless of denervation or reinnervation. Neonatal triceps tenotomy did not cause contractures or biceps/brachialis shortening, nor did it worsen those following neonatal C5-6 excision. Denervation-induced functional shortening of elbow flexor muscles leads to variable elbow flexion contractures depending on the degree, permanence, and timing of denervation, independent of muscle imbalance. Copyright © 2012 Orthopaedic Research Society.

  7. Functional improvement of dystrophic muscle by repression of utrophin: let-7c interaction.

    Manoj K Mishra

    Full Text Available Duchenne muscular dystrophy (DMD is a fatal genetic disease caused by an absence of the 427kD muscle-specific dystrophin isoform. Utrophin is the autosomal homolog of dystrophin and when overexpressed, can compensate for the absence of dystrophin and rescue the dystrophic phenotype of the mdx mouse model of DMD. Utrophin is subject to miRNA mediated repression by several miRNAs including let-7c. Inhibition of utrophin: let-7c interaction is predicted to 'repress the repression' and increase utrophin expression. We developed and tested the ability of an oligonucleotide, composed of 2'-O-methyl modified bases on a phosphorothioate backbone, to anneal to the utrophin 3'UTR and prevent let-7c miRNA binding, thereby upregulating utrophin expression and improving the dystrophic phenotype in vivo. Suppression of utrophin: let-7c interaction using bi-weekly intraperitoneal injections of let7 site blocking oligonucleotides (SBOs for 1 month in the mdx mouse model for DMD, led to increased utrophin expression along with improved muscle histology, decreased fibrosis and increased specific force. The functional improvement of dystrophic muscle achieved using let7-SBOs suggests a novel utrophin upregulation-based therapeutic strategy for DMD.

  8. The Popeye Domain Containing Genes and Their Function in Striated Muscle

    Schindler, Roland F. R.; Scotton, Chiara; French, Vanessa; Ferlini, Alessandra; Brand, Thomas

    2016-01-01

    The Popeye domain containing (POPDC) genes encode a novel class of cAMP effector proteins, which are abundantly expressed in heart and skeletal muscle. Here, we will review their role in striated muscle as deduced from work in cell and animal models and the recent analysis of patients carrying a missense mutation in POPDC1. Evidence suggests that POPDC proteins control membrane trafficking of interacting proteins. Furthermore, we will discuss the current catalogue of established protein-protein interactions. In recent years, the number of POPDC-interacting proteins has been rising and currently includes ion channels (TREK-1), sarcolemma-associated proteins serving functions in mechanical stability (dystrophin), compartmentalization (caveolin 3), scaffolding (ZO-1), trafficking (NDRG4, VAMP2/3) and repair (dysferlin) or acting as a guanine nucleotide exchange factor for Rho-family GTPases (GEFT). Recent evidence suggests that POPDC proteins might also control the cellular level of the nuclear proto-oncoprotein c-Myc. These data suggest that this family of cAMP-binding proteins probably serves multiple roles in striated muscle. PMID:27347491

  9. Test-retest reliability of maximal leg muscle power and functional performance measures in patients with severe osteoarthritis (OA)

    Villadsen, Allan; Roos, Ewa M.; Overgaard, Søren

    Abstract : Purpose To evaluate the reliability of single-joint and multi-joint maximal leg muscle power and functional performance measures in patients with severe OA. Background Muscle power, taking both strength and velocity into account, is a more functional measure of lower extremity muscle...... and scheduled for unilateral total hip (n=9) or knee (n=11) replacement. Patients underwent a test battery on two occasions separated by approximately one week (range 7 to 11 days). Muscle power was measured using: 1. A linear encoder, unilateral lower limb isolated single-joint dynamic movement, e.g. knee...... flexion 2. A leg extension press, unilateral multi-joint knee and hip extension Functional performance was measured using: 1. 20 m walk usual pace 2. 20 m walk maximal pace 3. 5 times chair stands 4. Maximal number of knee bends/30sec Pain was measured on a VAS prior to and after conducting the entire...

  10. Acute effects of whole-body vibration on the motor function of patients with stroke: a randomized clinical trial.

    Silva, Adriana Teresa; Dias, Miqueline Pivoto Faria; Calixto, Ruanito; Carone, Antonio Luis; Martinez, Beatriz Bertolaccini; Silva, Andreia Maria; Honorato, Donizeti Cesar

    2014-04-01

    The aim of this study was to investigate the acute effects of whole-body vibration on the motor function of patients with stroke. The present investigation was a randomized clinical trial studying 43 individuals with hemiparesis after stroke, with 33 subjects allocated to the intervention group and 10 subjects allocated to the control group. The intervention group was subjected to one session of vibration therapy (frequency of 50 Hz and amplitude of 2 mm) comprising four 1-min series with 1-min rest intervals between series in three body positions: bipedal stances with the knees flexed to 30 degrees and 90 degrees and a unipedal stance on the paretic limb. The analytical tests were as follows: simultaneous electromyography of the affected and unaffected tibialis anterior and rectus femoris muscles bilaterally in voluntary isometric contraction; the Six-Minute Walk Test; the Stair-Climb Test; and the Timed Get-Up-and-Go Test. The data were analyzed by independent and paired t tests and by analysis of covariance. There was no evidence of effects on the group and time interaction relative to variables affected side rectus femoris, unaffected side rectus femoris, affected side tibialis anterior, unaffected side tibialis anterior, and the Stair-Climb Test (P > 0.05). There was evidence of effects on the group interaction relative to variables Six-Minute Walk Test and Timed Get-Up-and-Go Test (P < 0.05). Whole-body vibration contributed little to improve the functional levels of stroke patients.

  11. Advanced quantitative methods in correlating sarcopenic muscle degeneration with lower extremity function biometrics and comorbidities.

    Edmunds, Kyle; Gíslason, Magnús; Sigurðsson, Sigurður; Guðnason, Vilmundur; Harris, Tamara; Carraro, Ugo; Gargiulo, Paolo

    2018-01-01

    Sarcopenic muscular degeneration has been consistently identified as an independent risk factor for mortality in aging populations. Recent investigations have realized the quantitative potential of computed tomography (CT) image analysis to describe skeletal muscle volume and composition; however, the optimum approach to assessing these data remains debated. Current literature reports average Hounsfield unit (HU) values and/or segmented soft tissue cross-sectional areas to investigate muscle quality. However, standardized methods for CT analyses and their utility as a comorbidity index remain undefined, and no existing studies compare these methods to the assessment of entire radiodensitometric distributions. The primary aim of this study was to present a comparison of nonlinear trimodal regression analysis (NTRA) parameters of entire radiodensitometric muscle distributions against extant CT metrics and their correlation with lower extremity function (LEF) biometrics (normal/fast gait speed, timed up-and-go, and isometric leg strength) and biochemical and nutritional parameters, such as total solubilized cholesterol (SCHOL) and body mass index (BMI). Data were obtained from 3,162 subjects, aged 66-96 years, from the population-based AGES-Reykjavik Study. 1-D k-means clustering was employed to discretize each biometric and comorbidity dataset into twelve subpopulations, in accordance with Sturges' Formula for Class Selection. Dataset linear regressions were performed against eleven NTRA distribution parameters and standard CT analyses (fat/muscle cross-sectional area and average HU value). Parameters from NTRA and CT standards were analogously assembled by age and sex. Analysis of specific NTRA parameters with standard CT results showed linear correlation coefficients greater than 0.85, but multiple regression analysis of correlative NTRA parameters yielded a correlation coefficient of 0.99 (Pbiometrics, SCHOL, and BMI, and particularly highlight the value of the

  12. Relationships between Isometric Muscle Strength, Gait Parameters, and Gross Motor Function Measure in Patients with Cerebral Palsy.

    Shin, Hyung Ik; Sung, Ki Hyuk; Chung, Chin Youb; Lee, Kyoung Min; Lee, Seung Yeol; Lee, In Hyeok; Park, Moon Seok

    2016-01-01

    This study investigated the correlation between isometric muscle strength, gross motor function, and gait parameters in patients with spastic cerebral palsy and to find which muscle groups play an important role for gait pattern in a flexed knee gait. Twenty-four ambulatory patients (mean age, 10.0 years) with spastic cerebral palsy who were scheduled for single event multilevel surgery, including distal hamstring lengthening, were included. Preoperatively, peak isometric muscle strength was measured for the hip flexor, hip extensor, knee flexor, and knee extensor muscle groups using a handheld dynamometer, and three-dimensional (3D) gait analysis and gross motor function measure (GMFM) scoring were also performed. Correlations between peak isometric strength and GMFM, gait kinematics, and gait kinetics were analyzed. Peak isometric muscle strength of all muscle groups was not related to the GMFM score and the gross motor function classification system level. Peak isometric strength of the hip extensor and knee extensor was significantly correlated with the mean pelvic tilt (r=-0.588, p=0.003 and r=-0.436, p=0.033) and maximum pelvic obliquity (r=-0.450, p=0.031 and r=-0.419, p=0.041). There were significant correlations between peak isometric strength of the knee extensor and peak knee extensor moment in early stance (r=0.467, p=0.021) and in terminal stance (r=0.416, p=0.043). There is no correlation between muscle strength and gross motor function. However, this study showed that muscle strength, especially of the extensor muscle group of the hip and knee joints, might play a critical role in gait by stabilizing pelvic motion and decreasing energy consumption in a flexed knee gait.

  13. Aerobic exercise training induces skeletal muscle hypertrophy and age-dependent adaptations in myofiber function in young and older men

    Konopka, Adam R.; Undem, Miranda K.; Hinkley, James M.; Minchev, Kiril; Kaminsky, Leonard A.; Trappe, Todd A.; Trappe, Scott

    2012-01-01

    To examine potential age-specific adaptations in skeletal muscle size and myofiber contractile physiology in response to aerobic exercise, seven young (YM; 20 ± 1 yr) and six older men (OM; 74 ± 3 yr) performed 12 wk of cycle ergometer training. Muscle biopsies were obtained from the vastus lateralis to determine size and contractile properties of isolated slow [myosin heavy chain (MHC) I] and fast (MHC IIa) myofibers, MHC composition, and muscle protein concentration. Aerobic capacity was higher (P 0.05) with training. Training reduced (P aerobic capacity are similar between YM and OM, while adaptations in myofiber contractile function showed a general improvement in OM. Training-related increases in MHC I and MHC IIa peak power reveal that skeletal muscle of OM is responsive to aerobic exercise training and further support the use of aerobic exercise for improving cardiovascular and skeletal muscle health in older individuals. PMID:22984247

  14. Immediate effect of manual therapy on respiratory functions and inspiratory muscle strength in patients with COPD

    Yilmaz Yelvar GD

    2016-06-01

    Full Text Available Gul Deniz Yilmaz Yelvar,1 Yasemin Çirak,2 Yasemin Parlak Demir,3 Murat Dalkilinç,1 Bülent Bozkurt4 1Department of Musculoskeletal Physiotherapy, 2Department of Cardiopulmonary Physiotherapy, 3Department of Neurological Rehabilitation, School of Physiotherapy and Rehabilitation, 4Department of Respiratory Medicine, Faculty of Medicine, Turgut Özal University, Ankara, Turkey Objective: The objective of this study was to investigate the immediate effect of manual therapy (MT on respiratory functions and inspiratory muscle strength in patients with COPD.Participants and methods: Thirty patients with severe COPD (eight females and 22 males; mean age 62.4±6.8 years referred to pulmonary physiotherapy were included in this study. The patients participated in a single session of MT to measure the short-term effects. The lung function was measured using a portable spirometer. An electronic pressure transducer was used to measure respiratory muscle strength. Heart rate, breathing frequency, and oxygen saturation were measured with a pulse oximeter. For fatigue and dyspnea perception, the modified Borg rating of perceived exertion scale was used. All measurements were taken before and immediately after the first MT session. The ease-of-breathing visual analog scale was used for rating patients’ symptoms subjectively during the MT session.Results: There was a significant improvement in the forced expiratory volume in the first second, forced vital capacity, and vital capacity values (P<0.05. The maximal inspiratory pressure and maximal expiratory pressure values increased significantly after MT, compared to the pre-MT session (P<0.05. There was a significant decrease in heart rate, respiratory rate (P<0.05, and dyspnea and fatigue perception (P<0.05.Conclusion: A single MT session immediately improved pulmonary function, inspiratory muscle strength, and oxygen saturation and reduced dyspnea, fatigue, and heart and respiratory rates in patients with

  15. Muscle function and body composition profile in adolescents with restrictive anorexia nervosa: Does resistance training help?

    Fernández del Valle, María; Larumbe Zabala, Eneko; Morandé Lavín, Gonzalo; Pérez Ruiz, Margarita

    2016-01-01

    The aim of this study was to analyze the effects of short-term resistance training on the body composition profile and muscle function in a group of Anorexia Nervosa restricting type (AN-R) patients. The sample consisted of AN-R female adolescents (12.8 ± 0.6 years) allocated into the control and intervention groups (n¼18 each). Body composition and relative strength were assessed at baseline, after 8 weeks and 4 weeks following the intervention. Body mass index (BMI) increased throughout...

  16. Muscle function of the pelvic floor in healthy, puerperal women with pelvic floor dysfunction.

    Castro-Pardiñas, M A; Torres-Lacomba, M; Navarro-Brazález, B

    2017-05-01

    To understand the function of the pelvic floor muscles (PFM) at different ages in healthy women and in puerperal women with pelvic floor dysfunctions (PFD) and to ascertain whether there are differences among them. A descriptive cross-sectional study was conducted between June 2014 and September 2016 and included 177 women, 70 of whom had no symptoms of PFD, 53 primiparous mothers in late postpartum and 54 with PFD. The function of the PFM was measured through vaginal palpation (quality of the contraction); manometry (force); dynamometer (tone, strength, and response to stretching), and surface electromyography (neuromuscular activity and resistance). The healthy women showed superior values for PFM tone, maximum strength, neuromuscular activity and resistance than the puerperal mothers and the women with PFD (P.05). The muscle function of the healthy women did not vary significantly with age, except in the case of tone, which was lower in the women older than 46 years (P=.004). Age and births decrease the baseline tone of the PFM in healthy women. Therefore, lower strength, resistance and neuromuscular activity appear to be the main difference between the PFM of women with PFD and the PFM of healthy women. Copyright © 2016 AEU. Publicado por Elsevier España, S.L.U. All rights reserved.

  17. Muscle area of knee O.A

    Suzuki, Nobuharu; Onozawa, Toshihiro; Shibata, Minoru; Yamasita, Izumi; Kitsunai, Isamu; Asano, Akira

    1983-01-01

    The cross sectional area of the thigh muscles were studied by means of C.T. scan. Twelve normal knees, twelve primary knee O.A. knees, and six R.A. knees were examined. The cross sectional area of the Quadriceps femoris decreased significantly in the patient of the knee O.A. although flexors did not decrease. We discussed the etiology of the knee O.A. from this result. (author)

  18. Effects of Nandrolone in the Counteraction of Skeletal Muscle Atrophy in a Mouse Model of Muscle Disuse: Molecular Biology and Functional Evaluation.

    Giulia Maria Camerino

    Full Text Available Muscle disuse produces severe atrophy and a slow-to-fast phenotype transition in the postural Soleus (Sol muscle of rodents. Antioxidants, amino-acids and growth factors were ineffective to ameliorate muscle atrophy. Here we evaluate the effects of nandrolone (ND, an anabolic steroid, on mouse skeletal muscle atrophy induced by hindlimb unloading (HU. Mice were pre-treated for 2-weeks before HU and during the 2-weeks of HU. Muscle weight and total protein content were reduced in HU mice and a restoration of these parameters was found in ND-treated HU mice. The analysis of gene expression by real-time PCR demonstrates an increase of MuRF-1 during HU but minor involvement of other catabolic pathways. However, ND did not affect MuRF-1 expression. The evaluation of anabolic pathways showed no change in mTOR and eIF2-kinase mRNA expression, but the protein expression of the eukaryotic initiation factor eIF2 was reduced during HU and restored by ND. Moreover we found an involvement of regenerative pathways, since the increase of MyoD observed after HU suggests the promotion of myogenic stem cell differentiation in response to atrophy. At the same time, Notch-1 expression was down-regulated. Interestingly, the ND treatment prevented changes in MyoD and Notch-1 expression. On the contrary, there was no evidence for an effect of ND on the change of muscle phenotype induced by HU, since no effect of treatment was observed on the resting gCl, restCa and contractile properties in Sol muscle. Accordingly, PGC1α and myosin heavy chain expression, indexes of the phenotype transition, were not restored in ND-treated HU mice. We hypothesize that ND is unable to directly affect the phenotype transition when the specialized motor unit firing pattern of stimulation is lacking. Nevertheless, through stimulation of protein synthesis, ND preserves protein content and muscle weight, which may result advantageous to the affected skeletal muscle for functional recovery.

  19. Soy Glycinin Contains a Functional Inhibitory Sequence against Muscle-Atrophy-Associated Ubiquitin Ligase Cbl-b

    Tomoki Abe

    2013-01-01

    Full Text Available Background. Unloading stress induces skeletal muscle atrophy. We have reported that Cbl-b ubiquitin ligase is a master regulator of unloading-associated muscle atrophy. The present study was designed to elucidate whether dietary soy glycinin protein prevents denervation-mediated muscle atrophy, based on the presence of inhibitory peptides against Cbl-b ubiquitin ligase in soy glycinin protein. Methods. Mice were fed either 20% casein diet, 20% soy protein isolate diet, 10% glycinin diet containing 10% casein, or 20% glycinin diet. One week later, the right sciatic nerve was cut. The wet weight, cross sectional area (CSA, IGF-1 signaling, and atrogene expression in hindlimb muscles were examined at 1, 3, 3.5, or 4 days after denervation. Results. 20% soy glycinin diet significantly prevented denervation-induced decreases in muscle wet weight and myofiber CSA. Furthermore, dietary soy protein inhibited denervation-induced ubiquitination and degradation of IRS-1 in tibialis anterior muscle. Dietary soy glycinin partially suppressed the denervation-mediated expression of atrogenes, such as MAFbx/atrogin-1 and MuRF-1, through the protection of IGF-1 signaling estimated by phosphorylation of Akt-1. Conclusions. Soy glycinin contains a functional inhibitory sequence against muscle-atrophy-associated ubiquitin ligase Cbl-b. Dietary soy glycinin protein significantly prevented muscle atrophy after denervation in mice.

  20. Improved muscle function and quality after diet intervention with leucine-enriched whey and antioxidants in antioxidant deficient aged mice.

    van Dijk, Miriam; Dijk, Francina J; Bunschoten, Annelies; van Dartel, Dorien A M; van Norren, Klaske; Walrand, Stephane; Jourdan, Marion; Verlaan, Sjors; Luiking, Yvette

    2016-04-05

    Antioxidant (AOX) deficiencies are commonly observed in older adults and oxidative stress has been suggested to contribute to sarcopenia. Here we investigate if 1) low levels of dietary antioxidants had a negative impact on parameters of muscle mass, function and quality, and 2) to study if nutritional interventions with AOX and/or leucine-enriched whey protein could improve these muscle parameters in aged mice. 18-months-old mice were fed a casein-based antioxidant-deficient (lowox) diet or a casein-based control-diet (CTRL) for 7 months. During the last 3 months, lowox-mice were subjected to either: a) continued lowox, b) supplementation with vitamin A/E, Selenium and Zinc (AOX), c) substitution of casein with leucine-enriched whey protein (PROT) or d) a combination of both AOX and PROT (TOTAL). After 7 months lowox-mice displayed lower muscle strength and more muscle fatigue compared to CTRL. Compared to lowox-mice, PROT-mice showed improved muscle power, grip strength and less muscle fatigue. AOX-mice showed improved oxidative status, less muscle fatigue, improved grip strength and mitochondrial dynamics compared to lowox-mice. The TOTAL-mice showed the combined effects of both interventions compared to lowox-mice. In conclusion, nutritional intervention with AOX and/or leucine-enriched whey protein can play a role in improving muscle health in a AOX-deficient mouse model.