WorldWideScience

Sample records for features dust formation

  1. Featured Image: Making Dust in the Lab

    Science.gov (United States)

    Kohler, Susanna

    2017-12-01

    This remarkable photograph (which spans only 10 m across; click for a full view) reveals what happens when you form dust grains in a laboratory under conditions similar to those of interstellar space. The cosmic life cycle of dust grains is not well understood we know that in the interstellar medium (ISM), dust is destroyed at a higher rate than it is produced by stellar sources. Since the amount of dust in the ISM stays constant, however, there must be additional sources of dust production besides stars. A team of scientists led by Daniele Fulvio (Pontifical Catholic University of Rio de Janeiro and the Max Planck Institute for Astronomy at the Friedrich Schiller University Jena) have now studied formation mechanisms of dust grains in the lab by mimicking low-temperature ISM conditions and exploring how, under these conditions, carbonaceous materials condense from gas phase to form dust grains. To read more about their results and see additional images, check out the paper below.CitationDaniele Fulvio et al 2017 ApJS 233 14. doi:10.3847/1538-4365/aa9224

  2. Stochastic Models of Molecule Formation on Dust

    Science.gov (United States)

    Charnley, Steven; Wirstroem, Eva

    2011-01-01

    We will present new theoretical models for the formation of molecules on dust. The growth of ice mantles and their layered structure is accounted for and compared directly to observations through simulation of the expected ice absorption spectra

  3. Dust Evolution and the Formation of Planetesimals

    Science.gov (United States)

    Birnstiel, T.; Fang, M.; Johansen, A.

    2016-12-01

    The solid content of circumstellar disks is inherited from the interstellar medium: dust particles of at most a micrometer in size. Protoplanetary disks are the environment where these dust grains need to grow at least 13 orders of magnitude in size. Our understanding of this growth process is far from complete, with different physics seemingly posing obstacles to this growth at various stages. Yet, the ubiquity of planets in our galaxy suggests that planet formation is a robust mechanism. This chapter focuses on the earliest stages of planet formation, the growth of small dust grains towards the gravitationally bound "planetesimals", the building blocks of planets. We will introduce some of the key physics involved in the growth processes and discuss how they are expected to shape the global behavior of the solid content of disks. We will consider possible pathways towards the formation of larger bodies and conclude by reviewing some of the recent observational advances in the field.

  4. The chemistry of dust formation in red supergiants

    Science.gov (United States)

    Cherchneff, I.

    2013-05-01

    Massive stars in their late stages of evolution as Red Supergiants experience mass loss. The resulting winds show various degrees of dynamical and chemical complexity and produce molecules and dust grains. This review summarises our knowledge of the molecular and dust components of the wind of Red Supergiants, including VY CMa and Betelgeuse. We discuss the synthesis of dust as a non equilibrium process in stellar winds, and present the current knowledge of the chemistry involved in the formation of oxygen-rich dust such as silicates and metal oxides.

  5. Dust in Supernovae and Supernova Remnants I: Formation Scenarios

    Science.gov (United States)

    Sarangi, A.; Matsuura, M.; Micelotta, E. R.

    2018-04-01

    Supernovae are considered as prime sources of dust in space. Observations of local supernovae over the past couple of decades have detected the presence of dust in supernova ejecta. The reddening of the high redshift quasars also indicate the presence of large masses of dust in early galaxies. Considering the top heavy IMF in the early galaxies, supernovae are assumed to be the major contributor to these large amounts of dust. However, the composition and morphology of dust grains formed in a supernova ejecta is yet to be understood with clarity. Moreover, the dust masses inferred from observations in mid-infrared and submillimeter wavelength regimes differ by two orders of magnitude or more. Therefore, the mechanism responsible for the synthesis of molecules and dust in such environments plays a crucial role in studying the evolution of cosmic dust in galaxies. This review summarises our current knowledge of dust formation in supernova ejecta and tries to quantify the role of supernovae as dust producers in a galaxy.

  6. Regularities of dust formation during stone cutting for construction works

    Directory of Open Access Journals (Sweden)

    V.G. Lebedev

    2016-09-01

    Full Text Available When cutting stone, a large amount of dust release, which is a mixture of small, mostly sharp, mineral particles. Shallow dry dust with inhalation causes the pathological changes in organs that are a consequence of infiltration of acute and solids particles. Despite the importance of this problem, the questions of dust generation during the various working processes and its fractions distribution are practically not considered. This determines the time of dust standing in the air and its negative impact on a person. Aim: The aim of this research is to study the process of dusting during stones cutting and dust distribution on fractions regularities and quantification of dust formation process in order to improve the production equipment, staff individual and collective safety equipment. Materials and Methods: Many types of cutting can be divided into two types - a “dry” cutting and cutting with fluid. During “dry” cutting a dust represents a set of micro-chips which are cut off by the abrasive grains. The size of such chips very small: from a micrometer to a few micrometers fraction. Thus, the size of chips causes the possibility of creating dust slurry with low fall velocity, and which is located in the working space in large concentrations. Results: The following characteristic dependences were obtained as a result of research: dependence of the dust fall from the size of the dust particles, size of dust particles from minute feeding and grain range wheel, the specific amount of dust from the number of grit abrasive wheel and the temperature of the dust particles from the feeding at wheel turnover. It was shown that the distribution of chips (dust by size will request of a normal distribution low. Dimensions of chips during cut are in the range of 0.4...6 μm. Thus, dust slurry is formed with time of particles fall of several hours. This creates considerable minute dust concentration - within 0.28∙10^8...1.68∙10^8 units/m3.

  7. Implementing Dust Shielding as a Criteria for Star Formation

    Science.gov (United States)

    Byrne, Lindsey; Christensen, Charlotte

    2018-01-01

    Star formation is observed to occur in dense regions of molecular gas. Although the exact nature of the link between star formation and molecular hydrogen is still unclear, it has been suggested that dust shielding of dense gas is the key factor enabling the presence of both. We present a model in which star formation is linked explicitly to local dust shielding, rather than molecular hydrogen abundance, in smoothed particle hydrodynamics galaxy formation simulations. We used simulations of isolated Milky-Way-mass disk galaxies to develop a dust shielding model in which the radiative shielding length was based off of the Jeans length with a T=40 K temperature cap. Using this shielding model, we compare the effects of different star formation recipes, including recipes in which star formation is based on the amount of dust shielding or the local molecular hydrogen abundance. We test our star formation models on two sets of isolated disk galaxies with solar and sub-solar metallicities and on a cosmological dwarf galaxy simulation. We find that the shielding-based model can reproduce the observed transition from atomic to molecular hydrogen at realistic surface densities, exhibits periodic bursts of star formation, and allows for star formation at higher temperatures and lower densities than a model in which star formation is tied directly to H2 abundance.

  8. Polarization force-induced changes in the dust sheath formation

    Energy Technology Data Exchange (ETDEWEB)

    Mayout, Saliha; Bentabet, Karima; Tribeche, Mouloud [Plasma Physics Group (PPG), Theoretical Physics Laboratory (TPL), Faculty of Physics, University of Bab-Ezzouar, USTHB, BP 32, El Alia, Algiers 16111 (Algeria)

    2015-09-15

    The modifications arising in the dusty plasma sheath structure due to the presence of polarization forces acting on the dust grains are investigated. The corresponding appropriate Bohm criterion for sheath formation is obtained. It is found that the critical Mach number, beyond which the dusty plasma electrostatic sheath sets in, decreases whenever the polarization effects become important. In addition, when the polarization force dominates over the electrical one, the dust plasma sheath cannot set in. This happens whenever the dust grain size exceeds a critical threshold. Moreover, the sheath electrostatic potential-gradient becomes abruptly steep, and the sheath thickness becomes broader as the polarization force effects strengthen.

  9. Growth of Dust as the Initial Step Toward Planet Formation

    NARCIS (Netherlands)

    Dominik, C.; Blum, J.; Cuzzi, J.N.; Wurm, G.; Reipurth, V.B.; Jewitt, D.; Keil, K.

    2007-01-01

    We discuss the results of laboratory measurements and theoretical models concerning the aggregation of dust in protoplanetary disks as the initial step toward planet formation. Small particles easily stick when they collide and form aggregates with an open, often fractal structure, depending on the

  10. Carbon formation and metal dusting in advanced coal gasification processes

    Energy Technology Data Exchange (ETDEWEB)

    DeVan, J.H.; Tortorelli, P.F.; Judkins, R.R.; Wright, I.G.

    1997-02-01

    The product gases generated by coal gasification systems contain high concentrations of CO and, characteristically, have relatively high carbon activities. Accordingly, carbon deposition and metal dusting can potentially degrade the operation of such gasifier systems. Therefore, the product gas compositions of eight representative gasifier systems were examined with respect to the carbon activity of the gases at temperatures ranging from 480 to 1,090 C. Phase stability calculations indicated that Fe{sub 3}C is stable only under very limited thermodynamic conditions and with certain kinetic assumptions and that FeO and Fe{sub 0.877}S tend to form instead of the carbide. As formation of Fe{sub 3}C is a necessary step in the metal dusting of steels, there are numerous gasifier environments where this type of carbon-related degradation will not occur, particularly under conditions associated with higher oxygen and sulfur activities. These calculations also indicated that the removal of H{sub 2}S by a hot-gas cleanup system may have less effect on the formation of Fe{sub 3}C in air-blown gasifier environments, where the iron oxide phase can exist and is unaffected by the removal of sulfur, than in oxygen-blown systems, where iron sulfide provides the only potential barrier to Fe{sub 3}C formation. Use of carbon- and/or low-alloy steels dictates that the process gas composition be such that Fe{sub 3}C cannot form if the potential for metal dusting is to be eliminated. Alternatively, process modifications could include the reintroduction of hydrogen sulfide, cooling the gas to perhaps as low as 400 C and/or steam injection. If higher-alloy steels are used, a hydrogen sulfide-free gas may be processed without concern about carbon deposition and metal dusting.

  11. Dust formation and nucleosynthesis in the nova outburst

    International Nuclear Information System (INIS)

    Starrfield, S.; Gehrz, R. D.; Truran, J. W.

    1997-01-01

    The nova outburst is a consequence of the accretion of hydrogen-rich material onto a white dwarf (WD) in a close binary system. The strong degeneracy of the massive WD prevents the expansion of the gas and drives the temperatures in the nuclear burning region to values exceeding 10 8 K under all circumstances. As a result, a major fraction of the CNO nuclei in the envelope are transformed into β-decay nuclei. The energy released from the decay of these nuclei is responsible for ejecting 10 -5 M · to 10 -4 M · of gas at high velocities. A major fraction of novae in outburst are observed to form dust in the ejected matter and we review the infrared (IR) observations which reveal the onset and evolution of this dust formation phase. We discuss the characteristics of nova dust and show that it may be the most interesting dust produced by any astrophysical object. IR observations show, in addition, that novae appear capable of condensing dust with at least four different chemical and mineral compositions. We argue that the class of ONeMg novae may form dust grains that carry the Ne-E and 26 Mg anomalies observed in meteoritic grains. We also report on the results of new calculations of thermonuclear runaways on both carbon-oxygen and oxygen-neon-magnesium white dwarfs using our one-dimensional, fully implicit, hydrodynamic stellar evolution code that includes a large nuclear reaction network. We have updated both the nuclear reaction network and the nuclear reaction rates. Our results show that the changes in the reaction rates and opacities produce quantitative changes with respect to our earlier studies. The causes are (1) that the new opacities are larger than those we previously used, which results in less mass being accreted onto the white dwarf, and (2) that the protoncapture reaction rates for some of the intermediate mass nuclei near 26 Al have increased so that the evolution to higher mass nuclei is enhanced

  12. Laboratory Studies of the Formation of Interstellar Dust from Molecular Precursors

    Science.gov (United States)

    Contreras, Cesar S.; Salama, Farid

    2009-06-01

    The study of the formation and the destruction processes of cosmic dust is essential to understand and to quantify the budget of extraterrestrial organic molecules. Interstellar dust presents a continuous size distribution from large molecules, radicals and ions to nanometer-sized particles to micron-sized grains. The lower end of the carbonaceous dust size distribution is thought to be responsible for the ubiquitous spectral features that are seen in emission in the IR (UIBs) and in absorption in the visible (DIBs). The higher end of the dust-size distribution is thought to be responsible for the continuum emission plateau that is seen in the IR and for the strong absorption seen in the interstellar UV extinction curve. All these spectral signatures are characteristic of cosmic organic materials that are ubiquitous and present in various forms from gas-phase molecules to solid-state grains and all are expected to exhibit FIR spectral signatures. Space observations from the UV (HST) to the IR (ISO, Spitzer) help place size constraints on the molecular component of carbonaceous IS dust and its contribution to the IS features in the UV and in the IR. Studies of large molecular and nano-sized IS dust analogs formed from PAH precursors have been performed in our laboratory under conditions that simulate interstellar and circumstellar environments. The species (molecules, molecular fragments, ions, nanoparticles, etc...) formed in the pulsed discharge nozzle (PDN) plasma source are detected and characterized with a high-sensitivity cavity ringdown spectrometer (CRDS) coupled to a Reflectron time-of-flight mass spectrometer (ReTOF-MS). We will present new experimental results that indicate that nanoparticles are generated in the plasma. From these unique measurements, we derive information on the nature, the size and the structure of interstellar dust particles, the growth and the destruction processes of IS dust and the resulting budget of extraterrestrial organic

  13. Rapid formation of large dust grains in the luminous supernova 2010jl.

    Science.gov (United States)

    Gall, Christa; Hjorth, Jens; Watson, Darach; Dwek, Eli; Maund, Justyn R; Fox, Ori; Leloudas, Giorgos; Malesani, Daniele; Day-Jones, Avril C

    2014-07-17

    The origin of dust in galaxies is still a mystery. The majority of the refractory elements are produced in supernova explosions, but it is unclear how and where dust grains condense and grow, and how they avoid destruction in the harsh environments of star-forming galaxies. The recent detection of 0.1 to 0.5 solar masses of dust in nearby supernova remnants suggests in situ dust formation, while other observations reveal very little dust in supernovae in the first few years after explosion. Observations of the spectral evolution of the bright SN 2010jl have been interpreted as pre-existing dust, dust formation or no dust at all. Here we report the rapid (40 to 240 days) formation of dust in its dense circumstellar medium. The wavelength-dependent extinction of this dust reveals the presence of very large (exceeding one micrometre) grains, which resist destruction. At later times (500 to 900 days), the near-infrared thermal emission shows an accelerated growth in dust mass, marking the transition of the dust source from the circumstellar medium to the ejecta. This provides the link between the early and late dust mass evolution in supernovae with dense circumstellar media.

  14. The 90-110 mu m dust feature in low to intermediate mass protostars : Calcite?

    NARCIS (Netherlands)

    Chiavassa, A; Ceccarelli, C; Tielens, AGGM; Caux, E; Maret, S

    We present ISO spectra between 60 and 180 mum of 32 protostars of low to intermediate mass. About half of the spectra present a dust feature between similar to90 and similar to110 mum. We describe the observational characteristics of this feature, which seems to be due to one single carrier. In

  15. Quantifying dust plume formation and aerosol size distribution during the Saharan Mineral Dust Experiment in North Africa

    KAUST Repository

    Khan, Basit Ali

    2015-01-01

    Dust particles mixed in the free troposphere have longer lifetimes than airborne particles near the surface. Their cumulative radiative impact on earth’s meteorological processes and climate might be significant despite their relatively small contribution to total dust abundance. One example is the elevated dust--laden Saharan Air Layer (SAL) over the equatorial North Atlantic, which cools the sea surface and likely suppresses hurricane activity. To understand the formation mechanisms of SAL, we combine model simulations and dust observations collected during the first stage of the Saharan Mineral Dust Experiment (SAMUM--I), which sampled dust events that extended from Morocco to Portugal, and investigated the spatial distribution and the microphysical, optical, chemical, and radiative properties of Saharan mineral dust. We employed the Weather Research Forecast model coupled with the Chemistry/Aerosol module (WRF--Chem) to reproduce the meteorological environment and spatial and size distributions of dust. The experimental domain covers northwest Africa including the southern Sahara, Morocco and part of the Atlantic Ocean with 5 km horizontal grid spacing and 51 vertical layers. The experiments were run from 20 May to 9 June 2006, covering the period of most intensive dust outbreaks. Comparisons of model results with available airborne and ground--based observations show that WRF--Chem reproduces observed meteorological fields as well as aerosol distribution across the entire region and along the airplane’s tracks. We evaluated several aerosol uplift processes and found that orographic lifting, aerosol transport through the land/sea interface with steep gradients of meteorological characteristics, and interaction of sea breezes with the continental outflow are key mechanisms that form a surface--detached aerosol plume over the ocean. Comparisons of simulated dust size distributions with airplane and ground--based observations are generally good, but suggest

  16. Features of Formation of Ukrainian Education Policy

    Directory of Open Access Journals (Sweden)

    Olga Nezhyva

    2016-07-01

    Full Text Available The purpose of this paper is to show features of formation of Ukrainian education policy. According to the author, the formation of the national education policy in Ukraine, as the European Union in its time, must find the thin boundary i.e. the balance between unity and dissimilarity of two dif erent education systems such as Soviet education system, which was inherited after the collapse of the Soviet Union, and European education system, which was unified by requirements of the Bologna Declaration. The author examines the features of the formation and development of Soviet and European education systems. Each of them has certain advantages and disadvantages. The author also presents that major educational reforms, which were only started in Ukraine, took place in Central and Eastern Europe in the late twentieth century. This process was caused by the collapse of bipolar world and scores of countries, which were formed in Europe and sought to European values and democratic reforms. Poland, Hungary, Romania, Slovenia and many other new independent states, which paid in full for socialist regimes, began reforms in education, politics, economics and other areas of activity. We can confidently say that the education system in the new founding countries of Europe not only shifted from one model (Soviet model to another (European model, but rather to achieve high performance in their development. The author points out that it is necessary to require continuing professional development of all categories of people, from teachers to car drivers. This growth must be accompanied with the received diplomas at the reputable higher educational institutions not only in Ukraine, but also abroad. Through this paper the author also wants to suggest that the main provisions of national education policy Ukraine is based on Ukrainian national idea. This national idea sounds as «Ukraine is as keeper of harmony between Eastern and Western Europe».

  17. The Origin of Dust in the Early Universe: Probing the Star Formation History of Galaxies by Their Dust Content

    Science.gov (United States)

    Dwek, Eli; Cherchneff, Isabelle

    2010-01-01

    Two distinct scenarios for the origin of the approximately 4 x 10(exp 8) Solar Mass of dust observed in the high-redshift (z = 6.4) quasar J1148+5251 have been proposed. The first assumes that this galaxy is much younger than the age of the universe at that epoch so that only supernovae, could have produced this dust. The second scenario assumes a significantly older galactic age, so that the dust could have formed in lower-mass AGB stars. Presenting new integral solutions for the chemical evolution of metals and dust in galaxies, we offer a critical evaluation of these two scenarios. ^N;"(,, show that the AGB scenario is sensitive to the details of the galaxy's star formation history (SFH), which must consist of an early intense starburst followed by a period of low stellar activity. The presence or absence of massive amounts of dust in high-redshift galaxies can therefore be used to infer their SFH. However, a problem with the AGB scenario is that it produces a stellar mass that is significantly larger than the inferred dynamical mass of J1148+5251, an yet unresolved discrepancy. If this problem persists, then additional sites for the growth or formation of dust, such as molecular clouds or dense clouds around active galactic nuclei, must be considered.

  18. Dust plume formation in the free troposphere and aerosol size distribution during the Saharan Mineral Dust Experiment in North Africa

    KAUST Repository

    Khan, Basit Ali

    2015-11-27

    Dust particles mixed in the free troposphere have longer lifetimes than airborne particles near the surface. Their cumulative radiative impact on earth’s meteorological processes and climate might be significant despite their relatively small contribution to total dust abundance. One example is the elevated dust-laden Saharan Air Layer (SAL) over the tropical and subtropical North Atlantic, which cools the sea surface. To understand the formation mechanisms of a dust layer in the free troposphere, this study combines model simulations and dust observations collected during the first stage of the Saharan Mineral Dust Experiment (SAMUM-I), which sampled dust events that extended from Morocco to Portugal, and investigated the spatial distribution and the microphysical, optical, chemical, and radiative properties of Saharan mineral dust. The Weather Research Forecast model coupled with the Chemistry/Aerosol module (WRF-Chem) is employed to reproduce the meteorological environment and spatial and size distributions of dust. The model domain covers northwest Africa and adjacent water with 5 km horizontal grid spacing and 51 vertical layers. The experiments were run from 20 May to 9 June 2006, covering the period of the most intensive dust outbreaks. Comparisons of model results with available airborne and ground-based observations show that WRF-Chem reproduces observed meteorological fields as well as aerosol distribution across the entire region and along the airplane’s tracks. Several mechanisms that cause aerosol entrainment into the free troposphere are evaluated and it is found that orographic lifting, and interaction of sea breeze with the continental outflow are key mechanisms that form a surface-detached aerosol plume over the ocean. The model dust emission scheme is tuned to simultaneously fit the observed total optical depth and the ratio of aerosol optical depths generated by fine and coarse dust modes. Comparisons of simulated dust size distributions with

  19. Physics of interstellar dust

    CERN Document Server

    Krugel, Endrik

    2002-01-01

    The dielectric permeability; How to evaluate grain cross sections; Very small and very big particles; Case studies of Mie calculus; Particle statistics; The radiative transition probability; Structure and composition of dust; Dust radiation; Dust and its environment; Polarization; Grain alignment; PAHs and spectral features of dust; Radiative transport; Diffuse matter in the Milky Way; Stars and their formation; Emission from young stars. Appendices Mathematical formulae; List of symbols.

  20. House Dust Mites Confer a Distinct Immunological Feature among Dermatitis.

    Science.gov (United States)

    Baris, Safa; Ozen, Ahmet; Akdeniz, Tuba; Karakoc-Aydiner, Elif; Aydin, Ovgu; Ercan, Hulya; Ogulur, Ismail; Camcioglu, Yildiz; Cengizlier, Reha; Demirkesen, Cuyan; Yucelten, Deniz; Demirel, Gulderen; Barlan, Isil B

    2016-08-01

    Atopic dermatitis (AD) is a heterogeneous disease with regard to clinical phenotype and natural history. We investigated T cell subtypes and cytokine responses in peripheral blood and skin lesions of AD patients with various sensitivities. Immunological studies were performed in 27 subjects: 9 house dust mite (HDM)-sensitized; 6 subjects with sensitizations other than HDM; 7 non-allergic AD patients and 5 healthy controls. Among those, skin biopsy samples of 13 subjects were evaluated for immunohistochemical analyses, as well. The mean age was 8.93±5.17 years. HDM-allergic AD emerged as a distinct immunologic phenotype, with higher production of interleukin (IL)-4, -5, -2 both at rest and when stimulated by Der p1 or SEB along with higher Th17. As for TH17 cell percentage, it was increased in all AD groups compared to healthy controls, while HDM-allergic group was distinguished with a significantly lower production of IL-17. Patients with sensitizations other than HDM were mostly similar to non-allergic AD, with increased Th17 and CD4+CD69+interferon-gamma (IFN-γ)+ T cells percentage. The biopsy of lesional skin showed that HDM-allergic AD had lower IFN-γ and IFN-γ co-expressing CD8+ T cells compared to patients with other sensitizations (p=0.03 and p=0.04, respectively). Among the HDM allergic patients, pairwise comparison of lesional versus non-lesional skin revealed higher CD4+ T cells numbers, expression of forkhead box P3 (Foxp3) and T-cell-specific transcription factor (T-bet) (p=0.018, p=0.018, p=0.018, respectively). HDM-allergic AD is a distinct subtype with a predominant skewing in Th2 and higher Th17 cell percentage along with a blunted Th1 response in the skin, all of which may have therapeutic implications.

  1. Gas and dust in regions of recent star formation

    International Nuclear Information System (INIS)

    Cardelli, J.A.

    1985-01-01

    A variety of observations of gas and dust were obtained in two regions of recent star formation for the purpose of determining basic physical properties. The analyses center on extinction and scattering in the Orion complex and extinction and atomic and molecular absorption near the center of rho Oph molecular cloud. In Orion, the visual extinction towards theta/sup 1,2/Ori indicates that, for the grains responsible for the visual extinction, the average size has increased on the order of 20 to 30%. The subsequent increase in absolute visual extinction has resulted in an apparent lowering of the uv extinction via normalization in the visual. Analysis of small-angle scattering in NGC 1999 in the uv indicates that the phase function (g) changes from about 0.60 near lambda 4000 A to about 0.25 near lambda 1400 A. This seems to imply that the observed continua of H-H 1 and 2 cannot be the result of small angle scattering from imbedded T Tauri stars. For four lines of sight near the center of the rho Oph molecular cloud, the determined column densities of CH extend the relation N(CH) α N(H 2 ) to densities as large as log N(H 2 ) approximately greater than or equal to 21. For CN, the relation N(CN) α N(H 2 ) 3 is extended to log N(H 2 ) approx. = 21

  2. Embedded star formation in S4G galaxy dust lanes

    International Nuclear Information System (INIS)

    Elmegreen, Debra M.; Teich, Yaron; Popinchalk, Mark; Elmegreen, Bruce G.; Erroz-Ferrer, Santiago; Knapen, Johan H.; Athanassoula, E.; Bosma, Albert; Comerón, Sébastien; Laine, Jarkko; Laurikainen, Eija; Efremov, Yuri N.; Gadotti, Dimitri A.; Kim, Taehyun; De Paz, Armando Gil; Hinz, Joannah L.; Ho, Luis C.; Holwerda, Benne; Menéndez-Delmestre, Karín; Mizusawa, Trisha

    2014-01-01

    Star-forming regions that are visible at 3.6 μm and Hα but not in the u, g, r, i, z bands of the Sloan Digital Sky Survey are measured in five nearby spiral galaxies to find extinctions averaging ∼3.8 mag and stellar masses averaging ∼5 × 10 4 M ☉ . These regions are apparently young star complexes embedded in dark filamentary shock fronts connected with spiral arms. The associated cloud masses are ∼10 7 M ☉ . The conditions required to make such complexes are explored, including gravitational instabilities in spiral-shocked gas and compression of incident clouds. We find that instabilities are too slow for a complete collapse of the observed spiral filaments, but they could lead to star formation in the denser parts. Compression of incident clouds can produce a faster collapse but has difficulty explaining the semi-regular spacing of some regions along the arms. If gravitational instabilities are involved, then the condensations have the local Jeans mass. Also in this case, the near-simultaneous appearance of equally spaced complexes suggests that the dust lanes, and perhaps the arms too, are relatively young.

  3. Star Formation History, Dust Attenuation, and Extragalactic Background Light

    Science.gov (United States)

    Khaire, Vikram; Srianand, Raghunathan

    2015-05-01

    At any given epoch, the extragalactic background light (EBL) carries imprints of integrated star formation activities in the universe until that epoch. On the other hand, in order to estimate the EBL when direct observations are not possible, one requires an accurate estimation of the star formation rate density (SFRD) and the dust attenuation ({{A}ν }) in galaxies. Here, we present a “progressive fitting method” that determines the global average SFRD(z) and {{A}ν }(z) for any given extinction curve by using the available multiwavelength, multiepoch galaxy luminosity function measurements. Using the available observations, we determine the best-fit combinations of SFRD(z) and {{A}ν }(z), in a simple fitting form, up to z∼ 8 for five well-known extinction curves. We find, irrespective of the extinction curve used, the z at which the SFRD(z) peaks is higher than the z above which {{A}ν }(z) begins to decline. For each case, we compute the EBL from ultraviolet to the far-infrared regime and the optical depth ({{τ }γ }) encountered by the high-energy γ-rays due to pair production upon collisions with these EBL photons. We compare these with measurements of the local EBL, γ-ray horizon, and {{τ }γ } measurements using Fermi-Large Area Telescope. All these and the comparison of independent SFRD(z) and {{A}ν }(z) measurements from the literature with our predictions favor an extinction curve similar to that of the Large Magellanic Cloud Supershell.

  4. Influence of Dust Composition on Cloud Droplet Formation

    Energy Technology Data Exchange (ETDEWEB)

    Kelly, J T; Chuang, C C; Wexler, A S

    2006-08-21

    Previous studies suggest that interactions between dust particles and clouds are significant; yet the conditions where dust particles can serve as cloud condensation nuclei (CCN) are uncertain. Since major dust components are insoluble, the CCN activity of dust strongly depends on the presence of minor components. However, many minor components measured in dust particles are overlooked in cloud modeling studies. Some of these compounds are believed to be products of heterogeneous reactions involving carbonates. In this study, we calculate Kohler curves (modified for slightly soluble substances) for dust particles containing small amounts of K{sup +}, Mg{sup 2+}, or Ca{sup 2+} compounds to estimate the conditions where reacted and unreacted dust can activate. We also use an adiabatic parcel model to evaluate the influence of dust particles on cloud properties via water competition. Based on their bulk solubilities, K{sup +} compounds, MgSO{sub 4} x 7H{sub 2}O, Mg(NO{sub 3}){sub 2} x 6H{sub 2}O, and Ca(NO{sub 3}){sub 2} x 4H{sub 2}O are classified as highly soluble substances, which enable activation of fine dust. Slightly soluble gypsum and MgSO{sub 3} x 6H{sub 2}O, which may form via heterogeneous reactions involving carbonates, enable activation of particles with diameters between about 0.6 and 2 mm under some conditions. Dust particles > 2 mm often activate regardless of their composition. Only under very specialized conditions does the addition of a dust distribution into a rising parcel containing fine (NH{sub 4}){sub 2}SO{sub 4} particles significantly reduce the total number of activated particles via water competition. Effects of dust on cloud saturation and droplet number via water competition are generally smaller than those reported previously for sea salt. Large numbers of fine dust CCN can significantly enhance the number of activated particles under certain conditions. Improved representations of dust mineralogy and reactions in global aerosol models

  5. Water formation on bare grains : When the chemistry on dust impacts interstellar gas

    NARCIS (Netherlands)

    Cazaux, S.; Cobut, V.; Marseille, M.; Spaans, M.; Caselli, P.

    2010-01-01

    Context. Water and O(2) are important gas phase ingredients for cooling dense gas when forming stars. On dust grains, H(2)O is an important constituent of the icy mantle in which a complex chemistry is taking place, as revealed by hot core observations. The formation of water can occur on dust grain

  6. Investigation of sulfate and nitrate formation on mineral dust particles by receptor modeling

    Energy Technology Data Exchange (ETDEWEB)

    Hien, P.D.; Bac, V.T.; Thinh, N.T.H. [Vietnam Atomic Energy Commission, Hanoi (Vietnam)

    2005-12-01

    The formation of sulfate and nitrate by heterogeneous reactions of gaseous precursors on mineral dust particles was investigated using positive matrix factorization (PMF) of coarse PM10 (particulate diameters from 2.2 to 10 {mu} m) collected at urban (Hanoi) and rural (Lucnam) sites in northern Vietnam. Air samples were analyzed for ionic and elemental components using ion chromatography and proton induced X-ray emission methods. PMF revealed six similar sources/types of coarse PM10 at the two sites, namely soil dust containing nitrate and sulfate, coal fly ash from distant and local sources, soil dust containing organic matter and ammonium sulfate and marine aerosol. Traffic (road) dust was found only at the urban site. From the PMF factor models, the yields of NO{sub 3}{sup -}, SO{sub 4}{sup 2-} and NH{sub 4}{sup +} can be estimated and their possible chemical forms in different particulate types can be suggested. The yields of nitrate and sulfate formation on mineral dust particles increase with the (Ca)/(Si) ratio, which is greater in soil dust than in coal fly ash. Nitrate is bound to Ca-richest soil dust particles. Ammonium was found in dust particles containing soil organic matter, which also hold the largest amount of sulfate. The comparison of urban and rural receptor models provided synergy for the source identification and insights into the properties of mineral dust particles relevant to their interactions with acidic gases in ambient air.

  7. Dust Formation, Evolution, and Obscuration Effects in the Very High-Redshift Universe

    Science.gov (United States)

    Dwek, Eli; Staguhn, Johannes; Arendt, Richard G.; Kovacs, Attila; Su, Ting; Benford, Dominic J.

    2014-01-01

    The evolution of dust at redshifts z > or approx. 9, and consequently the dust properties, differs greatly from that in the local universe. In contrast to the local universe, core collapse supernovae (CCSNe) are the only source of thermally-condensed dust. Because of the low initial dust-to-gas mass ratio, grain destruction rates are low, so that CCSNe are net producers of interstellar dust. Galaxies with large initial gas mass or high mass infall rate will therefore have a more rapid net rate of dust production comported to galaxies with lower gas mass, even at the same star formation rate. The dust composition is dominated by silicates, which exhibit a strong rise in the UV opacity near the Lyman break. This "silicate-UV break" may be confused with the Lyman break, resulting in a misidentification of a galaxies' photometric redshift. In this paper we demonstrate these effects by analyzing the spectral energy distribution (SED) of MACS1149-JD, a lensed galaxy at z = 9.6. A potential 2mm counterpart of MACS1149-JD has been identified with GISMO. While additional observations are required to corroborate this identification, we use this possible association to illustrate the physical processes and the observational effects of dust in the very high redshift universe. Subject headings: galaxies: high-redshift - galaxies: evolution - galaxies: individual (MACS1149- JD) - Interstellar medium (ISM), nebulae: dust, extinction - physical data and processes: nuclear reactions, nucleosynthesis, abundances.

  8. Laboratory Studies of the Formation of Carbonaceous Cosmic Dust from PAH Precursors

    Science.gov (United States)

    Salama, Farid; Contreras, C. S.

    2012-05-01

    The study of the formation and destruction processes of cosmic dust is essential to understand and to quantify the budget of extraterrestrial organic molecules. Although dust with all its components plays an important role in the evolution of interstellar chemistry and in the formation of organic molecules, little is known on the formation and destruction processes of carbonaceous dust. PAHs are important chemical building blocks of interstellar dust. They are detected in interplanetary dust particles and in meteoritic samples and are an important, ubiquitous component of the interstellar medium. The formation of PAHs from smaller molecules has not been extensively studied. Therefore, it is imperative that laboratory experiments be conducted to study the dynamic processes of carbon grain formation from PAH precursors. Studies of interstellar dust analogs formed from a variety of PAH and hydrocarbon precursors as well as species that include O, N, and S, have recently been performed using the COSmIC facility in our laboratory under conditions that simulate interstellar and circumstellar environments. The species formed in the pulsed discharge nozzle (PDN) plasma source are detected and characterized with high-sensitivity cavity ringdown spectroscopy coupled to a Reflectron time-of-flight mass spectrometer (ReTOF-MS), thus providing both spectroscopic and ion mass information in-situ. We report the measurements obtained in these experiments. Studies with hydrocarbon precursors show the feasibility of specific molecules to form PAHs, while studies with carbon ring systems (benzene and derivatives, PAHs) precursors provide information on pathways toward larger carbonaceous molecules. From these unique measurements, we derive information on the size and the structure of interstellar dust grain particles, the growth and the destruction processes of interstellar dust and the resulting budget of extraterrestrial organic molecules. Acknowledgements: This research is

  9. Dust emission features in 3-micron spectra of Herbig Ae/Be stars

    Science.gov (United States)

    Brooke, T. Y.; Tokunaga, A. T.; Strom, S. E.

    1993-01-01

    Attention is given to low- and medium-resolution spectra in the 3-micron region of 24 Herbig Ae/Be stars obtained in a search for organic features from the dust around young stars. The 3.29-micron emission feature from aromatic hydrocarbons was detected in three objects: Lk H-alpha 25, XY Per, and AS 310. Two other stars, HD 245185 and HK Ori, may have weak features. About 20 percent of the Herbig Ae/Be surveyed to date have firmly detected 3.29-micron features. The available data indicate that the 3.29-micron feature is more extended around Herbig Ae/Be stars of earlier spectral type, possibly due to dehydrogenization or destruction of the aromatics near these stars. It is suggested that the total number of aromatics excited by the stars is also greater around the earlier-type objects.

  10. DUST FORMATION, EVOLUTION, AND OBSCURATION EFFECTS IN THE VERY HIGH-REDSHIFT UNIVERSE

    Energy Technology Data Exchange (ETDEWEB)

    Dwek, Eli; Benford, Dominic J. [Observational Cosmology Lab., Code 665, NASA at Goddard Space Flight Center, Greenbelt, MD 20771 (United States); Staguhn, Johannes; Su, Ting [Also at Department of Physics and Astronomy, Johns Hopkins University, Baltimore, MD 21218, USA. (United States); Arendt, Richard G. [Also at CRESST, University of Maryland Baltimore County, Baltimore, MD 21250, USA. (United States); Kovacks, Attila, E-mail: eli.dwek@nasa.gov [Also at Astronomy Department, CalTech, Pasadena, CA 90025, USA. (United States)

    2014-06-20

    The evolution of dust at redshifts z ≳ 9, and consequently the dust properties, differs greatly from that in the local universe. In contrast to the local universe, core collapse supernovae (CCSNe) are the only source of thermally condensed dust. Because of the low initial dust-to-gas mass ratio, grain destruction rates are low, so that CCSNe are net producers of interstellar dust. Galaxies with large initial gas mass or high mass infall rate will therefore have a more rapid net rate of dust production compared to galaxies with lower gas mass, even at the same star formation rate. The dust composition is dominated by silicates, which exhibit a strong rise in the UV opacity near the Lyman break. This ''silicate-UV break'' may be confused with the Lyman break, resulting in a misidentification of a galaxy's photometric redshift. In this Letter we demonstrate these effects by analyzing the spectral energy distribution of MACS1149-JD, a lensed galaxy at z = 9.6. A potential 2 mm counterpart of MACS1149-JD has been identified with GISMO. While additional observations are required to corroborate this identification, we use this possible association to illustrate the physical processes and the observational effects of dust in the very high-redshift universe.

  11. A Model Connecting Galaxy Masses, Star Formation Rates, and Dust Temperatures across Cosmic Time

    Science.gov (United States)

    Imara, Nia; Loeb, Abraham; Johnson, Benjamin D.; Conroy, Charlie; Behroozi, Peter

    2018-02-01

    We investigate the evolution of dust content in galaxies from redshifts z = 0 to z = 9.5. Using empirically motivated prescriptions, we model galactic-scale properties—including halo mass, stellar mass, star formation rate, gas mass, and metallicity—to make predictions for the galactic evolution of dust mass and dust temperature in main-sequence galaxies. Our simple analytic model, which predicts that galaxies in the early universe had greater quantities of dust than their low-redshift counterparts, does a good job of reproducing observed trends between galaxy dust and stellar mass out to z ≈ 6. We find that for fixed galaxy stellar mass, the dust temperature increases from z = 0 to z = 6. Our model forecasts a population of low-mass, high-redshift galaxies with interstellar dust as hot as, or hotter than, their more massive counterparts; but this prediction needs to be constrained by observations. Finally, we make predictions for observing 1.1 mm flux density arising from interstellar dust emission with the Atacama Large Millimeter Array.

  12. THE OBSERVED RELATION BETWEEN STELLAR MASS, DUST EXTINCTION, AND STAR FORMATION RATE IN LOCAL GALAXIES

    Energy Technology Data Exchange (ETDEWEB)

    Zahid, H. J.; Kewley, L. J.; Kudritzki, R. P. [Institute for Astronomy, University of Hawaii at Manoa, 2680 Woodlawn Dr., Honolulu, HI 96822 (United States); Yates, R. M. [Max-Planck-Institute for Astrophysics, Karl-Schwarzschild-Str. 1, D-85741 Garching (Germany)

    2013-02-15

    In this study, we investigate the relation between stellar mass, dust extinction, and star formation rate (SFR) using {approx}150,000 star-forming galaxies from SDSS DR7. We show that the relation between dust extinction and SFR changes with stellar mass. For galaxies at the same stellar mass, dust extinction is anti-correlated with the SFR at stellar masses <10{sup 10} M {sub Sun }. There is a sharp transition in the relation at a stellar mass of 10{sup 10} M {sub Sun }. At larger stellar masses, dust extinction is positively correlated with the SFR for galaxies at the same stellar mass. The observed relation between stellar mass, dust extinction, and SFR presented in this study helps to confirm similar trends observed in the relation between stellar mass, metallicity, and SFR. The relation reported in this study provides important new constraints on the physical processes governing the chemical evolution of galaxies. The correlation between SFR and dust extinction for galaxies with stellar masses >10{sup 10} M {sub Sun} is shown to extend to the population of quiescent galaxies suggesting that the physical processes responsible for the observed relation between stellar mass, dust extinction, and SFR may be related to the processes leading to the shutdown of star formation in galaxies.

  13. THE OBSERVED RELATION BETWEEN STELLAR MASS, DUST EXTINCTION, AND STAR FORMATION RATE IN LOCAL GALAXIES

    International Nuclear Information System (INIS)

    Zahid, H. J.; Kewley, L. J.; Kudritzki, R. P.; Yates, R. M.

    2013-01-01

    In this study, we investigate the relation between stellar mass, dust extinction, and star formation rate (SFR) using ∼150,000 star-forming galaxies from SDSS DR7. We show that the relation between dust extinction and SFR changes with stellar mass. For galaxies at the same stellar mass, dust extinction is anti-correlated with the SFR at stellar masses 10 M ☉ . There is a sharp transition in the relation at a stellar mass of 10 10 M ☉ . At larger stellar masses, dust extinction is positively correlated with the SFR for galaxies at the same stellar mass. The observed relation between stellar mass, dust extinction, and SFR presented in this study helps to confirm similar trends observed in the relation between stellar mass, metallicity, and SFR. The relation reported in this study provides important new constraints on the physical processes governing the chemical evolution of galaxies. The correlation between SFR and dust extinction for galaxies with stellar masses >10 10 M ☉ is shown to extend to the population of quiescent galaxies suggesting that the physical processes responsible for the observed relation between stellar mass, dust extinction, and SFR may be related to the processes leading to the shutdown of star formation in galaxies.

  14. Dust formation in the oxygen-rich AGB star IK Tauri

    Science.gov (United States)

    Gobrecht, D.; Cherchneff, I.; Sarangi, A.; Plane, J. M. C.; Bromley, S. T.

    2016-01-01

    Aims: We model the synthesis of molecules and dust in the inner wind of the oxygen-rich Mira-type star IK Tau by considering the effects of periodic shocks induced by the stellar pulsation on the gas and by following the non-equilibrium chemistry in the shocked gas layers between 1 R⋆ and 10 R⋆. We consider a very complete set of molecules and dust clusters, and combine the nucleation phase of dust formation with the condensation of these clusters into dust grains. We also test the impact of increasing the local gas density. Our derived molecular abundances and dust properties are compared to the most recent observational data. Methods: A semi-analytical formalism based on parameterised fluid equations is used to describe the gas density, velocity, and temperature in the inner wind. The chemistry is described by using a chemical kinetic network of reactions and the condensation mechanism is described by a Brownian formalism. A set of stiff, ordinary, coupled differential equations is solved, and molecular abundances, dust cluster abundances, grain size distributions and dust masses are derived. Results: The shocks drive an active non-equilibrium chemistry in the dust formation zone of IK Tau where the collision destruction of CO in the post-shock gas triggers the formation of C-bearing species such as HCN and CS. Most of the modelled molecular abundances agree well with the latest values derived from Herschel data, except for SO2 and NH3, whose formation may not occur in the inner wind. Clusters of alumina, Al2O3, are produced within 2 R⋆ and lead to a population of alumina grains close to the stellar surface. Clusters of silicates (Mg2SiO4) form at larger radii (r> 3R⋆), where their nucleation is triggered by the formation of HSiO and H2SiO. They efficiently condense and reach their final grain size distribution between ~6 R⋆ and 8 R⋆ with a major population of medium size grains peaking at ~200 Å. This two dust-shell configuration agrees with recent

  15. Star Formation in High Pressure, High Energy Density Environments: Laboratory Experiments of ISM Dust Analogs

    International Nuclear Information System (INIS)

    Breugel, W. van; Bajt, S.; Bradley, J.; Bringa, E.; Dai, Z.; Felter, T.; Graham, G.; Kucheyev, S.; Torres, D.; Tielens, A.; Baragiola, R.; Dukes, C.; Loeffler, M.

    2005-01-01

    Dust grains control the chemistry and cooling, and thus the gravitational collapse of interstellar clouds. Energetic particles, shocks and ionizing radiation can have a profound influence on the structure, lifetime and chemical reactivity of the dust, and therefore on the star formation efficiency. This would be especially important in forming galaxies, which exhibit powerful starburst (supernovae) and AGN (active galactic nucleus) activity. How dust properties are affected in such environments may be crucial for a proper understanding of galaxy formation and evolution. The authors present the results of experiments at LLNL which show that irradiation of the interstellar medium (ISM) dust analog forsterite (Mg 2 SiO 4 ) with swift heavy ions (10 MeV Xe) and a large electronic energy deposition amorphizes its crystalline structure, without changing its chemical composition. From the data they predict that silicate grains in the ISM, even in dense and cold giant molecular clouds, can be amorphized by heavy cosmic rays (CR's). This might provide an explanation for the observed absence of crystalline dust in the ISM clouds of the Milky Way galaxy. This processing of dust by CR's would be even more important in forming galaxies and galaxies with active black holes

  16. Dust formation and wind acceleration around the aluminum oxide-rich AGB star W Hydrae

    Science.gov (United States)

    Takigawa, Aki; Kamizuka, Takafumi; Tachibana, Shogo; Yamamura, Issei

    2017-11-01

    Dust grains, formed around asymptotic giant branch (AGB) stars, are accelerated by stellar radiation to drive stellar winds, which supply freshly synthesized nuclides to the Galaxy. Silicate is the dominant dust species in space, but 40% of oxygen-rich AGB stars are thought to have comparable amounts of aluminum oxide dust. Dust formation and the wind-driving mechanism around these oxygen-rich stars, however, are poorly understood. We report on the spatial distributions of AlO and 29SiO molecules around an aluminum oxide-rich M-type AGB star, W Hydrae, based on observations obtained with the Atacama Large Millimeter/submillimeter Array. AlO molecules were only observed within three stellar radii (Rstar), whereas 29SiO was distributed in the accelerated wind beyond 5 Rstar without significant depletion. This strongly suggests that condensed aluminum oxide dust plays a key role in accelerating the stellar wind and in preventing the efficient formation of silicate dust around W Hydrae.

  17. Gas, dust, stars, star formation, and their evolution in M 33 at giant molecular cloud scales

    Science.gov (United States)

    Komugi, Shinya; Miura, Rie E.; Kuno, Nario; Tosaki, Tomoka

    2018-04-01

    We report on a multi-parameter analysis of giant molecular clouds (GMCs) in the nearby spiral galaxy M 33. A catalog of GMCs identifed in 12CO(J = 3-2) was used to compile associated 12CO(J = 1-0), dust, stellar mass, and star formation rate. Each of the 58 GMCs are categorized by their evolutionary stage. Applying the principal component analysis on these parameters, we construct two principal components, PC1 and PC2, which retain 75% of the information from the original data set. PC1 is interpreted as expressing the total interstellar matter content, and PC2 as the total activity of star formation. Young (clouds. Comparison of average cloud properties in different evolutionary stages imply that GMCs may be heated or grow denser and more massive via aggregation of diffuse material in their first ˜ 10 Myr. The PCA also objectively identified a set of tight relations between ISM and star formation. The ratio of the two CO lines is nearly constant, but weakly modulated by massive star formation. Dust is more strongly correlated with the star formation rate than the CO lines, supporting recent findings that dust may trace molecular gas better than CO. Stellar mass contributes weakly to the star formation rate, reminiscent of an extended form of the Schmidt-Kennicutt relation with the molecular gas term substituted by dust.

  18. Investigating Sensitivity to Saharan Dust in Tropical Cyclone Formation Using Nasa's Adjoint Model

    Science.gov (United States)

    Holdaway, Daniel

    2015-01-01

    As tropical cyclones develop from easterly waves coming of the coast of Africa they interact with dust from the Sahara desert. There is a long standing debate over whether this dust inhibits or advances the developing storm and how much influence it has. Dust can surround the storm and absorb incoming solar radiation, cooling the air below. As a result an energy source for the system is potentially diminished, inhibiting growth of the storm. Alternatively dust may interact with clouds through micro-physical processes, for example by causing more moisture to condense, potentially increasing the strength. As a result of climate change, concentrations and amount of dust in the atmosphere will likely change. It it is important to properly understand its effect on tropical storm formation. The adjoint of an atmospheric general circulation model provides a very powerful tool for investigating sensitivity to initial conditions. The National Aeronautics and Space Administration (NASA) has recently developed an adjoint version of the Goddard Earth Observing System version 5 (GEOS-5) dynamical core, convection scheme, cloud model and radiation schemes. This is extended so that the interaction between dust and radiation is also accounted for in the adjoint model. This provides a framework for examining the sensitivity to dust in the initial conditions. Specifically the set up allows for an investigation into the extent to which dust affects cyclone strength through absorption of radiation. In this work we investigate the validity of using an adjoint model for examining sensitivity to dust in hurricane formation. We present sensitivity results for a number of systems that developed during the Atlantic hurricane season of 2006. During this period there was a significant outbreak of Saharan dust and it is has been argued that this outbreak was responsible for the relatively calm season. This period was also covered by an extensive observation campaign. It is shown that the

  19. Direct Measurement of Dust Attenuation in z approx. 1.5 Star-Forming Galaxies from 3D-HST: Implications for Dust Geometry and Star Formation Rates

    Science.gov (United States)

    Price, Sedona H.; Kriek, Mariska; Brammer, Gabriel B; Conroy, Charlie; Schreiber, Natascha M. Foerster; Franx, Marijn; Fumagalli, Mattia; Lundren, Britt; Momcheva, Ivelina; Nelson, Erica J.; hide

    2013-01-01

    The nature of dust in distant galaxies is not well understood, and until recently few direct dust measurements have been possible. We investigate dust in distant star-forming galaxies using near-infrared grism spectra of the 3D-HST survey combined with archival multi-wavelength photometry. These data allow us to make a direct comparison between dust towards star-forming regions (measured using Balmer decrements) and the integrated dust properties (derived by comparing spectral energy distributions [SEDs] with stellar population and dust models) for a statistically significant sample of distant galaxies. We select a sample of 163 galaxies between 1.36 or = 5 and measure Balmer decrements from stacked spectra. First, we stack spectra in bins of integrated stellar dust attenuation, and find that there is extra dust extinction towards star-forming regions (AV,HII is 1.81 times the integrated AV, star), though slightly lower than found for low-redshift starburst galaxies. Next, we stack spectra in bins of specific star formation rate (log sSFR), star formation rate (log SFR), and stellar mass (logM*). We find that on average AV,HII increases with SFR and mass, but decreases with increasing sSFR. The amount of extra extinction also decreases with increasing sSFR and decreasing stellar mass. Our results are consistent with the two-phase dust model - in which galaxies contain both a diffuse and a stellar birth cloud dust component - as the extra extinction will increase once older stars outside the star-forming regions become more dominant. Finally, using our Balmer decrements we derive dust-corrected H(alpha) SFRs, and find evidence that SED fitting produces incorrect SFRs if very rapidly declining SFHs are included in the explored parameter space. Subject headings: dust, extinction- galaxies: evolution- galaxies: high-redshift

  20. Comet Dust: The Story of Planet Formation as Told by the Tiniest of Particles

    Science.gov (United States)

    Wooden, D. H.

    2005-01-01

    Our planetary system formed out of a gas-rich disk-shaped nebula with the early Sun at its center. Many small icy bodies were consumed by the formation of the giant planets. However, many km-size icy bodies were tossed out of the giant-planet region to the cold, distant reaches of our solar system. Comets remained in their places of cold storage until perturbed into orbits that carry them into the inner solar system where they pass relatively close to the Sun. Comets are warmed by the Sun and shed material from their outer layers. The ices and gases shed by comets reveal simple and complex organic molecules were present at the time and in the region of the formation of the giant planets. Where the Earth was forming was too hot and had too intense sunlight for many of these ices and molecules to survive. The dust shed by comets tells us that some stardust survived unaltered but much of the dust was heated and crystallized before becoming part of the comet. Therefore, comet dust grains tell of large radial migrations from the cold outer reaches near Neptune into the hot regions near the forming Sun, and then back out to the cold regions where icy comets were accreting and forming. On 2005 July 4, the NASA Deep Impact Mission hit a comet and ejected primitive materials fiom its interior. These materials were not released into the comet s coma during normal activity. Despite the many passages of this comet close to the Sun, these primitive volatile gases and dust grains survived in its interior. Comet dust grains show that cold and hot materials were mixed into the same tiny particle very early in the formation of the solar system, and these aggregate dust grains never saw high temperatures again. The survival of primitive materials in comet nuclei suggests comets could have delivered organic molecules and primitive dust grains to early Earth.

  1. Features of formation of competitive advantages: a strategic dimension

    OpenAIRE

    O.Р. Pashchenko

    2015-01-01

    The article examines the features of formation of competitive advantages, the depth of theoretical and methodological basis for the formation of competitive advantages at an enterprise. The author has reviewed the approaches to the formation of stable and long-term competitive advantages. The author has also overviewed the requirements which are to be met by competitive advantages of a company and the factors that affect the possibility of competitive advantages. The author develops her ow...

  2. Dust formation in Nova Oph 2017 (TCP J17394608-2457555)

    Science.gov (United States)

    Joshi, Vishal; Banerjee, D. P. K.; Srivastava, Mudit

    2017-06-01

    Ongoing NIR observations of Nova Oph 2017 indicate the possible onset of dust formation in Nova Oph 2017. Monitoring in the JHKs bands shows a steady rise in the J-K color from around 1.4 on 5 June 2017 to 2.0 on 13 June 2017.

  3. SOFIA Observations of SN 2010jl: Another Non-Detection of the 9.7 Micrometer Silicate Dust Feature

    Science.gov (United States)

    Williams, Brian J.; Fox, Ori D.

    2015-01-01

    We present photometric observations from the Stratospheric Observatory for Infrared Astronomy (SOFIA) at 11.1 micrometers of the Type IIn supernova (SN IIn) 2010jl. The SN is undetected by SOFIA, but the upper limits obtained, combined with new and archival detections from Spitzer at 3.6 and 4.5 micrometers, allow us to characterize the composition of the dust present. Dust in other SN IIn has been shown in previous works to reside in a circumstellar shell of material ejected by the progenitor system in the few millennia prior to explosion. Our model fits show that the dust in the system shows no evidence for the strong, ubiquitous 9.7 micrometer feature from silicate dust, suggesting the presence of carbonaceous grains. The observations are best fit with 0.01-0.05 solar mass of carbonaceous dust radiating at a temperature of approximately 550-620 degrees Kelvin. The dust composition may reveal clues concerning the nature of the progenitor system, which remains ambiguous for this subclass. Most of the single star progenitor systems proposed for SNe IIn, such as luminous blue variables, red supergiants, yellow hypergiants, and B[e] stars, all clearly show silicate dust in their pre-SN outflows. However, this post-SN result is consistent with the small sample of SNe IIn with mid-infrared observations, none of which show signs of emission from silicate dust in their infrared spectra.

  4. Carbon dust formation in a cold plasma from cathode sputtering

    International Nuclear Information System (INIS)

    Arnas, C.; Mouberi, A.; Hassouni, K.; Michau, A.; Lombardi, G.; Bonnin, X.; Benedic, F.; Pegourie, B.

    2009-01-01

    Nanoparticles are produced in argon glow plasmas where carbon is introduced by sputtering of a graphite cathode. A scaling law of growth is reported on as a function of the discharge time. Two successive stages of growth of concomitant agglomeration and carbon deposition are observed, followed by a final stage of growth by carbon deposition. A model of formation of molecular precursors by coagulation of neutral clusters on the one hand and of neutral-negative clusters on the other hand is presented, based on formation enthalpy and cluster geometry.

  5. Carbon dust formation in a cold plasma from cathode sputtering

    Science.gov (United States)

    Arnas, C.; Mouberi, A.; Hassouni, K.; Michau, A.; Lombardi, G.; Bonnin, X.; Bénédic, F.; Pégourié, B.

    2009-06-01

    Nanoparticles are produced in argon glow plasmas where carbon is introduced by sputtering of a graphite cathode. A scaling law of growth is reported on as a function of the discharge time. Two successive stages of growth of concomitant agglomeration and carbon deposition are observed, followed by a final stage of growth by carbon deposition. A model of formation of molecular precursors by coagulation of neutral clusters on the one hand and of neutral-negative clusters on the other hand is presented, based on formation enthalpy and cluster geometry.

  6. General principles for the formation of dust self-organizing structures. Dust collective attraction and plasma crystal formation

    International Nuclear Information System (INIS)

    Tsytovich, V.N.

    2005-01-01

    It is demonstrated that a homogeneous dusty plasma is universally unstable to form structures. The effect of collective grain attraction is a basic phenomenon for the proposed new paradigm (general principles) for the plasma crystal formation

  7. A SOFIA / FORCAST Picture of Shock-Induced Dust Formation and Evolution in the Classical Nova V5668 Sgr

    Science.gov (United States)

    Helton, L. Andrew; Calvén, Emilia; Sankrit, Ravi; Gehrz, Robert D.; Woodward, Charles E.; Wagner, R. Mark

    2017-06-01

    Conditions in the ejecta of classical novae are often suitable for the production of copious amounts of dust. Evidence for dust condensation is typically revealed by an inflection in the light curve due to obscuration of the central source by dust that can result in up to 6-8 magnitudes of extinction. The dust condensation timescale is quite brief with the transition from the onset of formation to maximum extinction taking only a few days. In many nova systems, there is evidence for simultaneous production of both carbonaceous and oxygen-rich dust species in the ejecta. Recent theoretical work by Derdzinki et al. (2017 MNRAS, submitted) suggests that the observational evidence for both rapid dust condensation and mixed chemistry can potentially be explained by shocks in the ejecta outflow.The classical nova V5668 Sgr (Nova Sagittarii 2015 No. 2) was discovered on 2015 March 15.6 UT. Carbon monoxide, typically a harbinger of dust formation in novae, was detected in the system only 12 days later (Banerjee et al. 2015) with dust in evidence shortly thereafter. Here we present spectra of V5668 Sgr obtained with the FORCAST mid-infrared instrument on-board the Stratospheric Observatory For Infrared Astronomy (SOFIA) and the Near-Infrared Camera/Spectrograph (NICS) on the 1.2-m Mt. Abu Infrared Observatory. These data include observations from the very start of dust condensation, from the epoch of maximum extinction, and from two epochs at the late stages of evolution as the ejecta were dispersed. We identify the mixed chemistry dust species in the ejecta, assess the conditions in the ejecta giving rise to the dust, and analyze the abundances in the ejecta to understand the processes of dust formation and evolution in the context of the shock-induced dust formation model.

  8. FORMULATION OF NON-STEADY-STATE DUST FORMATION PROCESS IN ASTROPHYSICAL ENVIRONMENTS

    International Nuclear Information System (INIS)

    Nozawa, Takaya; Kozasa, Takashi

    2013-01-01

    The non-steady-state formation of small clusters and the growth of grains accompanied by chemical reactions are formulated under the consideration that the collision of key gas species (key molecule) controls the kinetics of dust formation process. The formula allows us to evaluate the size distribution and condensation efficiency of dust formed in astrophysical environments. We apply the formulation to the formation of C and MgSiO 3 grains in the ejecta of supernovae, as an example, to investigate how the non-steady effect influences the formation process, condensation efficiency f con, ∞ , and average radius a ave, ∞ of newly formed grains in comparison with the results calculated with the steady-state nucleation rate. We show that the steady-state nucleation rate is a good approximation if the collision timescale of key molecule τ coll is much smaller than the timescale τ sat with which the supersaturation ratio increases; otherwise the effect of the non-steady state becomes remarkable, leading to a lower f con, ∞ and a larger a ave, ∞ . Examining the results of calculations, we reveal that the steady-state nucleation rate is applicable if the cooling gas satisfies Λ ≡ τ sat /τ coll ∼> 30 during the formation of dust, and find that f con, ∞ and a ave, ∞ are uniquely determined by Λ on at the onset time t on of dust formation. The approximation formulae for f con, ∞ and a ave, ∞ as a function of Λ on could be useful in estimating the mass and typical size of newly formed grains from observed or model-predicted physical properties not only in supernova ejecta but also in mass-loss winds from evolved stars

  9. Effects of Ore dust pollution on the physical and chemical features ...

    African Journals Online (AJOL)

    The presence of ore dust also greatly increased the rate of heating and cooling of beach sand. Further, ore dust, although of negligible solubility, was found to inhibit the action of aerobic bacteria. This is thought to be due to iron and manganese forming oxidation-reduction combinations in the sand. Ore dust appeared ...

  10. Field observation on secondary organic aerosols during Asian dust storm periods: Formation mechanism of oxalic acid and related compounds on dust surface

    Science.gov (United States)

    Wang, Gehui; Cheng, Chunlei; Meng, Jingjing; Huang, Yao; Li, Jianjun; Ren, Yanqin

    2015-07-01

    Chemical evolution of East Asian dust during transpacific transport has been given much attention for inorganic species such as sulfate, nitrate and ammonium. However, the role of organic species during the transport has almost entirely been ignored. To understand the formation mechanism of secondary organic aerosols (SOA) on dust surfaces, this study investigated the concentrations and compositions of dicarboxylic acids, keto-carboxylic acids, α-dicarbonyls and inorganic ions in size-segregated aerosols (9-stages) collected in Xi'an, central China during the two dust storm episodes in the springs of 2009 and 2011 and compared with those in nondust storm periods. During the events the ambient particulate dicarboxylic acids were 932-2240 ng m-3, which are comparable and even higher than those in nondust periods. Molecular compositions of the above SOA are similar to those in nondust periods with oxalic acid being the leading species. In the presence of the dust storms, all the above mentioned SOA species in Xi'an were predominantly enriched on the coarse particles (>2.1 μm), and oxalic acid well correlated with NO3- (R2 = 0.72, p fine mode and a strong correlation of oxalic acid with SO42-. We propose a formation pathway to explain these observations, in which nitric acid and/or nitrogen oxides react with dust to produce Ca(NO3)2 and form a liquid phase on the surface of dust aerosols via water vapor-absorption of Ca(NO3)2, followed by a partitioning of the gas-phase water-soluble organic precursors (e.g.,glyoxal and methylglyoxal) into the aqueous-phase and a subsequent oxidation into oxalic acid. To the best of our knowledge, we found for the first time the enrichment of glyoxal and methylglyoxal on dust surface. Our data suggest an important role of nitrate in the heterogeneous formation process of SOA on the surface of dust.

  11. Formation and Evolution of Interstellar Dust - Bridging Astronomy and Laboratory Astrophysics.

    Science.gov (United States)

    Contreras, Cesar; Ricketts, C. L.; Salama, F.

    2010-05-01

    The study of the formation and the destruction processes of cosmic dust are essential to understand and to quantify the budget of extraterrestrial organic molecules. PAHs are important chemical building blocks of interstellar (IS) dust. They are detected in Interplanetary dust particles (IDPs) and in meteoritic samples. Additionally, observational, laboratory, and theoretical studies have shown that PAHs, in their neutral and ionized forms, are an important, ubiquitous component of the interstellar medium. Carbonaceous materials extracts from mixtures of hydrocarbons (C2H2, C2H4, and benzene) contain a high variety of polycyclic aromatic hydrocarbons (PAHs). (From Jager et al. Carbon 45 (2007) 2981-2994). Studies of large molecular and nano-sized interstellar dust analogs formed from PAH precursors have been performed in our laboratory under conditions that simulate interstellar and circumstellar environments. The species (molecules, molecular fragments, ions, nanoparticles, etc...) formed in the pulsed discharge nozzle (PDN) plasma source are detected and characterized with a high-sensitivity cavity ringdown spectrometer (CRDS) coupled to a Reflectron time-of-flight mass spectrometer (ReTOF-MS), thus providing both spectroscopic and ion mass information in-situ. We will present new experimental results that indicate that nanoparticles are generated in the plasma. From these unique measurements, we derive information on the nature, the size and the structure of interstellar dust particles, the growth and the destruction processes of IS dust and the resulting budget of extraterrestrial organic molecules. Acknowledgments: This research is supported by NASA APRA (Laboratory Astrophysics Program). C. S. C. & C. L. R. acknowledge the support of the NASA Postdoctoral Program.

  12. An opinion formation based binary optimization approach for feature selection

    Science.gov (United States)

    Hamedmoghadam, Homayoun; Jalili, Mahdi; Yu, Xinghuo

    2018-02-01

    This paper proposed a novel optimization method based on opinion formation in complex network systems. The proposed optimization technique mimics human-human interaction mechanism based on a mathematical model derived from social sciences. Our method encodes a subset of selected features to the opinion of an artificial agent and simulates the opinion formation process among a population of agents to solve the feature selection problem. The agents interact using an underlying interaction network structure and get into consensus in their opinions, while finding better solutions to the problem. A number of mechanisms are employed to avoid getting trapped in local minima. We compare the performance of the proposed method with a number of classical population-based optimization methods and a state-of-the-art opinion formation based method. Our experiments on a number of high dimensional datasets reveal outperformance of the proposed algorithm over others.

  13. Planetesimal Formation in the Warm, Inner Disk: Experiments with Tempered Dust

    Energy Technology Data Exchange (ETDEWEB)

    De Beule, Caroline; Landers, Joachim; Salamon, Soma; Wende, Heiko; Wurm, Gerhard, E-mail: gerhard.wurm@uni-due.de [Faculty of Physics, University of Duisburg-Essen, Lotharstr. 1, D-47057 Duisburg (Germany)

    2017-03-01

    It is an open question how elevated temperatures in the inner parts of protoplanetary disks influence the formation of planetesimals. We approach this problem here by studying the tensile strength of granular beds with dust samples tempered at different temperatures. We find via laboratory experiments that tempering at increasing temperatures is correlated with an increase in cohesive forces. We studied dust samples of palagonite (JSC Mars-1a) which were tempered for up to 200 hr at temperatures between 600 and 1200 K, and measured the relative tensile strengths of highly porous dust layers once the samples cooled to room temperature. Tempering increases the tensile strength from 800 K upwards. This change is accompanied by mineral transformations, the formation of iron oxide crystallites as analyzed by Mössbauer spectroscopy, changes in the number size distribution, and the morphology of the surface visible as cracks in larger grains. These results suggest a difference in the collisional evolution toward larger bodies with increasing temperature as collisional growth is fundamentally based on cohesion. While high temperatures might also increase sticking (not studied here), compositional evolution will already enhance the cohesion and the possibility of growing larger aggregates on the way toward planetesimals. This might lead to a preferred in situ formation of inner planets and explain the observed presence of dense inner planetary systems.

  14. The formation of molecular hydrogen on silicate dust analogs: The rotational distribution

    International Nuclear Information System (INIS)

    Gavilan, L.; Lemaire, J. L.; Vidali, G.; Sabri, T.; Jæger, C.

    2014-01-01

    Our laboratory experiments continue to explore how the formation of molecular hydrogen is influenced by dust and how dust thereby affects hydrogen molecules adsorbed on its surface. In Sabri et al., we present the preparation of nanometer-sized silicate grain analogs via laser ablation. These analogs illustrate extremes in structure (fully crystalline or fully amorphous grains), and stoichiometry (the forsterite and fayalite end-members of the olivine family). These were inserted in FORMOLISM, an ultra-high vacuum setup where they can be cooled down to ∼5 K. Atomic beams are directed at these surfaces and the formation of new molecules is studied via REMPI(2+1) spectroscopy. We explored the rotational distribution (0 ≤ J'' ≤ 5) of v'' = 0 of the ground electronic state of H 2 . The results of these measurements are reported here. Surprisingly, molecules formed and ejected from crystalline silicates have a cold (T rot ∼ 120 K) rotational energy distribution, while for molecules formed on and ejected from amorphous silicate films, the rotational temperature is ∼310 K. These results are compared to previous experiments on metallic surfaces and theoretical simulations. Solid-state surface analysis suggests that flatter grains could hinder the 'cartwheel' rotation mode. A search for hot hydrogen, predicted as a result of H 2 formation, hints at its production. For the first time, the rotational distribution of hydrogen molecules formed on silicate dust is reported. These results are essential to understanding the chemistry of astrophysical media containing bare dust grains.

  15. Gravitational lensing reveals extreme dust-obscured star formation in quasar host galaxies

    Science.gov (United States)

    Stacey, H. R.; McKean, J. P.; Robertson, N. C.; Ivison, R. J.; Isaak, K. G.; Schleicher, D. R. G.; van der Werf, P. P.; Baan, W. A.; Alba, A. Berciano; Garrett, M. A.; Loenen, A. F.

    2018-02-01

    We have observed 104 gravitationally-lensed quasars at z ˜ 1-4 with Herschel/SPIRE, the largest such sample ever studied. By targeting gravitational lenses, we probe intrinsic far-infrared (FIR) luminosities and star formation rates (SFRs) more typical of the population than the extremely luminous sources that are otherwise accessible. We detect 72 objects with Herschel/SPIRE and find 66 percent (69 sources) of the sample have spectral energy distributions (SEDs) characteristic of dust emission. For 53 objects with sufficiently constrained SEDs, we find a median effective dust temperature of 38^{+12}_{-5} K. By applying the radio-infrared correlation, we find no evidence for an FIR excess which is consistent with star-formation-heated dust. We derive a median magnification-corrected FIR luminosity of 3.6^{+4.8}_{-2.4} × 10^{11} L_{⊙} and median SFR of 120^{+160}_{-80} M_{⊙} yr^{-1} for 94 quasars with redshifts. We find ˜10 percent of our sample have FIR properties similar to typical dusty star-forming galaxies at z ˜ 2-3 and a range of SFRs statistically-significant difference in the FIR luminosities of quasars in our sample with a radio excess relative to the radio-infrared correlation. Synchrotron emission is found to dominate at FIR wavelengths for <15 percent of those sources classified as powerful radio galaxies.

  16. SN 2011ja: A Case of Circumsteller Interaction and Early Dust Formation

    Science.gov (United States)

    Krafton, Kelsie; Andrews, J. E.; Clayton, G. C.; Sugerman, B.; Montiel, E. J.

    2014-01-01

    We have found evidence for early dust formation and circumstellar interaction in the normal Type II supernova SN 2011ja using Gemini/GMOS, Spitzer/IRAC, and NTT/SOFI optical and infrared imaging and spectroscopy. Between March and April 2012, roughly 100-125 days past explosion, double-peaked, flat topped hydrogen emission lines appeared, in which the red-wing was noticeably attenuated. At the same time, mid- and near- IR fluxes indicate the existence of warm dust, likely due to a combination of newly-formed and pre-existing dust, heated by the initial flash into an IR echo. Further, detection of s-process elements like Sc, Ca, and Ba combined with massive amounts of pre-supernova mass loss could reveal the progenitor of SN 2011ja to be BSG. SN 2011ja is another example of a normal Type IIP SN which has quickly transitioned to a Type IIn-like object, due to the mass-loss history of the progenitor.

  17. Dust Evolution in Protoplanetary Discs and the Formation of Planetesimals. What Have We Learned from Laboratory Experiments?

    Science.gov (United States)

    Blum, Jürgen

    2018-03-01

    After 25 years of laboratory research on protoplanetary dust agglomeration, a consistent picture of the various processes that involve colliding dust aggregates has emerged. Besides sticking, bouncing and fragmentation, other effects, like, e.g., erosion or mass transfer, have now been extensively studied. Coagulation simulations consistently show that μm-sized dust grains can grow to mm- to cm-sized aggregates before they encounter the bouncing barrier, whereas sub-μm-sized water-ice particles can directly grow to planetesimal sizes. For siliceous materials, other processes have to be responsible for turning the dust aggregates into planetesimals. In this article, these processes are discussed, the physical properties of the emerging dusty or icy planetesimals are presented and compared to empirical evidence from within and without the Solar System. In conclusion, the formation of planetesimals by a gravitational collapse of dust "pebbles" seems the most likely.

  18. Star formation at high redshift and the importance of dust obscuration

    DEFF Research Database (Denmark)

    Michalowski, Michal

    One of the aspects of the understanding of the Universe evolution is its star formation history. In order to gain a complete picture of the Universe evolution it is important to know when the stars we see today were formed. One of the method to study this problem is to use far-infrared and radio...... of a galaxy taking into account the evolution of stars as well as dust reprocessing in both molecular clouds and diffuse interstellar medium. Using SEDmodelling I explain the seeming discrepancy between long- and short-wavelength properties of the only four GRB hosts that were detected in the submillimeter...

  19. Carbon Formation and Metal Dusting in Hot-Gas Cleanup Systems of Coal Gasifiers

    Energy Technology Data Exchange (ETDEWEB)

    Tortorelli, Peter F.; Judkins, Roddie R.; DeVan, Jackson H.; Wright, Ian G.

    1995-12-31

    There are several possible materials/systems degradation modes that result from gasification environments with appreciable carbon activities. These processes, which are not necessarily mutually exclusive, include carbon deposition, carburization, metal dusting, and CO disintegration of refractories. Carbon formation on solid surfaces occurs by deposition from gases in which the carbon activity (a sub C) exceeds unity. The presence of a carbon layer CO can directly affect gasifier performance by restricting gas flow, particularly in the hot gas filter, creating debris (that may be deposited elsewhere in the system or that may cause erosive damage of downstream components), and/or changing the catalytic activity of surfaces.

  20. FEATURES OF FORMATION SCENARIOS OF THE FOOD INDUSTRY

    Directory of Open Access Journals (Sweden)

    Serhiy Nozhenko

    2016-03-01

    Full Text Available The article is devoted to the topic – the invention of approaches to enterprise development oil and fat industry. The goal – to identify features of formation scenarios for the food industry. The chosen methodology allowed to analyze and evaluate the functioning of state enterprises. Results are discovering the benefits of scenario planning to find ways of business development. Novelty – a rationale for the use of scenario planning for enterprise development oil and fat industry, developing a set of scenarios. The practical significance – providing specific scenarios for enterprises of oil and fat industry. Keywords: scenario planning, scenario development, enterprise, oil and fat industry outlook. JEL: L 66

  1. Systematic Blueshift of Line Profiles in the Type IIn Supernova 2010jl: Evidence for Post-shock Dust Formation?

    Science.gov (United States)

    Smith, Nathan; Silverman, Jeffrey M.; Filippenko, Alexei V.; Cooper, Michael C.; Matheson, Thomas; Bian, Fuyan; Weiner, Benjamin J.; Comerford, Julia M.

    2012-01-01

    Type IIn supernovae (SNe) show spectral evidence for strong interaction between their blast wave and dense circumstellar material (CSM) around the progenitor star. SN 2010jl was the brightest core-collapse supernova in 2010, and it was a Type IIn explosion with strong CSM interaction. Andrews et al. recently reported evidence for an infrared (IR) excess in SN 2010jl, indicating either new dust formation or the heating of CSM dust in an IR echo. Here we report multi-epoch spectra of SN 2010jl that reveal the tell-tale signature of new dust formation: emission-line profiles becoming systematically more blueshifted as the red side of the line is blocked by increasing extinction. The effect is seen clearly in the intermediate-width (400-4000 km s-1) component of Hα beginning roughly 30 days after explosion. Moreover, we present near-IR spectra demonstrating that the asymmetry in the hydrogen-line profiles is wavelength dependent, appearing more pronounced at shorter wavelengths. This evidence suggests that new dust grains had formed quickly in the post-shock shell of SN 2010jl arising from CSM interaction. Since the observed dust temperature has been attributed to an IR echo and not to new dust, either (1) IR excess emission at λ sensitive tracer of new dust formation in SNe, or (2) some assumptions about expected dust temperatures might require further study. Lastly, we discuss one possible mechanism other than dust that might lead to increasingly blueshifted line profiles in SNe IIn, although the wavelength dependence of the asymmetry argues against this hypothesis in the case of SN 2010jl.

  2. Structure of Cometary and Interplanetary Dust, a Clue to the Formation and Early Evolution of Dust Particles in the Solar System

    Science.gov (United States)

    Levasseur-Regourd, A. C.; Lasue, J.; Hadamcik, E.; Botet, R.

    2007-10-01

    Cometary dust particles have been suspected to be fragile since the Giotto and Vega missions to comet Halley. More recently, numerous observations of the solar light scattered by dust particles in comet Hale-Bopp coma, together with versatile numerical simulations, have allowed us to suggest that these particles are likely to be built of both very fluffy aggregates and of more compact grains, with (to the first order) equivalent proportions in mass of absorbing material and transparent silicates [1,2]. The same approach, used to fit zodiacal light observations, indicates that a significant proportion of fluffy absorbing particles is found in the interplanetary dust cloud [3]. Laboratory simulations also lead to similar results, with e.g. polarimetric phase curves obtained for agglomerates of magnesio-ferrosilica comparable to those observed for cometary dust [4]. These estimations are now confirmed by the analysis of Stardust samples, with, e.g. evidence for both dense grains and aggregates with low bulk density within the coma of comet Wild 2 [5]. The relevance of such a structure for the formation and early evolution of dust particles in the solar system will be discussed. [1] Lasue & Levasseur-Regourd, JQSRT 100, 220-236, 2006. [2] Levasseur-Regourd, Mukai, Lasue, Okada, PSS, 55, 1010-1020, 2007. [3] Lasue, Levasseur-Regourd, Fray, Cottin, A&A, in press, 2007 [4] Hadamcik, Renard, Rietmeijer, Levasseur-Regourd et al., Icarus, in press, 2007 [5] Hoerz, Bastien, Borg, Bradley et al., Science 314, 1716 - 1719, 2006

  3. The fine nebula dust component: A key to chondrule formation by lightning

    Science.gov (United States)

    Wasson, J. T.; Rasmussen, K. L.

    1994-01-01

    Our assessment indicates that chondrule formation by lightning is indeed possible in the solar nebula. Previously the overriding objection to the lightning process of chondrule formation has been that low nebula pressures prevented the buildup of large potential differences. The breakdown potential is controlled by the mean free live distance of an electron. We calculate the mean free live distance in pure H2 gas at 2 AU to be approximately 500 m. A fine dust load constituting 4 wt% of the dust in the dusty midplane region leads to a reduced mean free live distance of only 7 m. Very conservatively we estimate the breakdown potential to be at least 10, 1.8, and 0.7 V/cm at 1, 2, and 3 AU respectively. We set the radius of the lightning bolt equal to the kinetic mean free path of the gas. Our calculations based on electron drift velocities in a fully ionized H2 gas show that first strike durations are 0.96, 3.4, and 7.0 ms at 1, 2, and 3 AU respectively, in much better accordance with the meteoritic evidence than previous estimates of 10-100 s.

  4. The formation and early evolution of stars from dust to stars and planets

    CERN Document Server

    Schulz, Norbert S

    2012-01-01

    Starburst regions in nearby and distant galaxies have a profound impact on our understanding of the early universe. This new, substantially updated and extended edition of Norbert Schulz’s unique book "From Dust to Stars" describes complex physical processes involved in the creation and early evolution of stars. It illustrates how these processes reveal themselves from radio wavelengths to high energy X-rays and gamma–rays, with special reference towards high energy signatures. Several sections devoted to key analysis techniques demonstrate how modern research in this field is pursued and new chapters are introduced on massive star formation, proto-planetary disks and observations of young exoplanets. Recent advances and contemporary research on the theory of star formation are explained, as are new observations, specifically from the three great observatories of the Spitzer Space Telescope, the Hubble Space Telescope and the Chandra X-Ray Observatory which all now operate at the same time and make high r...

  5. Texture formation features of Bi(Pb)2223-Ag tapes

    International Nuclear Information System (INIS)

    Aksenova, T.D.; Bratukhin, P.V.; Shavkin, S.V.; Antipova, E.V.

    1993-01-01

    The powder-in-tube technique has proven to be the most successful method of fabrication long lengths of conductor utilizing ceramic high temperature superconductors. There have been numerous successful demonstrations that silver-clad Bi-Sr-Ca-Cu-O superconducting composites are able to overcome weak-link effects and carry high currents through formation of crystallographic texture. The thermomechanical process that has produced the best 2212-based conductors is fundamentally different from that used to produce the best (Pb)2223-based conductors. The 2212-based conductors with high J c have been produced with a partial-melt heat treatment while high-J c (Pb)2223-based conductors have been formed with repetitive deformation and annealing. For Bi2212-Ag composites we have proposed a new model of texture formation during partial melt process. The model is based on anisotropic Bi2212 crystalline growth from melt in quasi-two-dimensional volume and explains a wide set of experimental data. In this paper some features of texture formation in Bi(Pb)2223-Ag tapes are discussed. (orig.)

  6. Features of formation of competitive advantages: a strategic dimension

    Directory of Open Access Journals (Sweden)

    O.Р. Pashchenko

    2015-09-01

    Full Text Available The article examines the features of formation of competitive advantages, the depth of theoretical and methodological basis for the formation of competitive advantages at an enterprise. The author has reviewed the approaches to the formation of stable and long-term competitive advantages. The author has also overviewed the requirements which are to be met by competitive advantages of a company and the factors that affect the possibility of competitive advantages. The author develops her own approach to the definition of «competitive enterprise strategy», suggests to understand the concept as the perspective of company development, the way of achieving the goals a company sets for itself guided by its policy, using internal and external competitive advantages. The author implements the model of strategic management of enterprise development based on competitive advantage creating. The suggested model will take into account the maximum possible factors that impact on the development and implementation of strategies. Due to the model risks will also be reduced. The paper determines that the important stage of enterprise development strategic management based on competitive advantage creating is the management of changes and the management of resistance to changes caused by the influence of factors of external and internal environment.

  7. A Model of Dust-like Spherically Symmetric Gravitational Collapse without Event Horizon Formation

    Directory of Open Access Journals (Sweden)

    Piñol M.

    2015-10-01

    Full Text Available Some dynamical aspects of gravitational collapse are explored in this paper. A time- dependent spherically symmetric metric is proposed and the corresponding Einstein field equations are derived. An ultrarelativistic dust-like stress-momentum tensor is considered to obtain analytical solutions of these equations, with the perfect fluid con- sisting of two purely radial fluxes — the inwards flux of collapsing matter and the outwards flux of thermally emitted radiation. Thermal emission is calculated by means of a simplistic but illustrative model of uninteracting collapsing shells. Our results show an asymptotic approach to a maximal space-time deformation without the formation of event horizons. The size of the body is slightly larger than the Schwarzschild radius during most of its lifetime, so that there is no contradiction with either observations or previous theorems on black holes. The relation of the latter with our results is scruti- nized in detail.

  8. The large scale gas and dust distribution in the galaxy: Implications for star formation

    Science.gov (United States)

    Sodroski, T. J.; Dwek, E.; Hauser, M. G.; Kerr, F. J.

    1987-01-01

    Infrared Astronomy Observations are presented for the diffuse infrared (IR) emissions from the galactic plane at wavelengths of 60 and 100 microns and the total far infrared intensity and its longitudinal variations in the disk were derived. Using available CO, 5 GHz radio-continuum, and HI data, the IR luminosity per hydrogen mass and the ingrared excess (IRE) ratio in the Galaxy were derived. The longitudinal profiles of the 60 and 100 micron emission were linearly decomposed into three components that are associated with molecular (H2), neutral (HI), and ionized (HII) phases in the interstellar medium (ISM), and the relevant dust properties were derived in each phase. Implications of the findings for various models of the diffuse IR emisison and for star formation in the galactic disk are discussed.

  9. Star and Dust Formation Activities in AzTEC-3: A Starburst Galaxy at z equals 5.3

    Science.gov (United States)

    Dwek, Eliahu

    2011-01-01

    Analyses of of high-redshift ultraluminous infrared (IR) galaxies traditionally use the observed optical to submillimeter spectral energy distribution (SED) and estimates of the dynamical mass as observational constraints to derive the star formation rate (SFR), the stellar mass, and age of these objects. In this lecture we add this constraint to the analysis of AzTEC-3, a starburst galaxy at z=5.3. We construct different stellar and chemical evolutionary scenarios, constrained to produce the inferred dust mass and observed luminosity before the associated stellar mass exceeds the observational limit. A robust result of our models is that all scenarios require most of the radiating dust mass to have been accreted in molecular clouds. Our new procedure highlights the importance of a multi wavelength approach, and of the use of dust evolution models in constraining the age and the star formation activity and history in galaxies.

  10. Star Dust Formation Activities in AzTEC-3: A Starburst Galaxy at z=5.3

    Science.gov (United States)

    Dwek, Eliahu

    2011-01-01

    Analyses of of high-redshift ultraluminous infrared OR) galaxies traditionally use the observed optical to submillimeter spectral energy distribution (SED) and estimates of the dynamical mass as observational constraints to derive the star formation rate (SFR), the stellar mass, and age of these objects. In this lecture we add this constraint to the analysis of AzTEC-3, a starburst galaxy at z=5.3. We construct different stellar and chemical evolutionary scenarios, constrained to produce the inferred dust mass and observed luminosity before the associated stellar mass exceeds the observational limit. A robust result of our models is that all scenarios require most of the radiating dust mass to have been accreted in molecular clouds. Our new procedure highlights the importance of a multi wavelength approach, and of the use of dust evolution models in constraining the age and the star formation activity and history in galaxies.

  11. Star and Dust Formation Activities in AzTEC-3: A Starburst Galaxy at z=5.3

    Science.gov (United States)

    Dwek, Eliahu

    2011-01-01

    Analyses of of high-redshift ultraluminous infrared (IR) galaxies traditionally use the observed optical to submillimeter spectral energy distribution (SED) and estimates of the dynamical mass as observational constraints to derive the star formation rate (SFR), the stellar mass, and age of these objects. In this lecture we add this constraint to the analysis of AzTEC-3, a starburst galaxy at z=5.3. We construct different stellar and chemical evolutionary scenarios, constrained to produce the inferred dust mass and observed luminosity before the associated stellar mass exceeds the observational limit. A robust result of our models is that all scenarios require most of the radiating dust mass to have been accreted in molecular clouds. Our new procedure highlights the importance of a multiwavelength approach, and of the use of dust evolution models in constraining the age and the star formation activity and history in galaxies.

  12. The Early Stages of Star Formation in Infrared Dark Clouds : Characterizing the Core Dust Properties

    NARCIS (Netherlands)

    Rathborne, J. M.; Jackson, J. M.; Chambers, E. T.; Stojimirovic, I.; Simon, R.; Shipman, R.; Frieswijk, W.

    2010-01-01

    Identified as extinction features against the bright Galactic mid-infrared background, infrared dark clouds (IRDCs) are thought to harbor the very earliest stages of star and cluster formation. In order to better characterize the properties of their embedded cores, we have obtained new 24 mu m,

  13. The formation and dust lifting processes associated with a large Saharan meso-scale convective system (MCS)

    Science.gov (United States)

    Roberts, Alex; Knippertz, Peter

    2013-04-01

    This work focusses on the meteorology that produced a large Mesoscale Convective System (MCS) and the dynamics of its associated cold pool. The case occurred between 8th-10th June 2010 and was initiated over the Hoggar and Aïr Mountains in southern Algeria and northern Niger respectively. The dust plume created covered parts of Algeria, Mali and Mauritania and was later deformed the by background flow and transported over the Atlantic and Mediterranean. This study is based on: standard surface observations (where available), ERA-Interim reanalysis, Meteosat imagery, MODIS imagery, Tropical Rainfall Measuring Mission (TRMM) rainfall estimates, Cloud Aerosol Lidar and Infrared Pathfinder Satellite Observation (CALIPSO), CloudSat and a high resolution (3.3km) limited area simulation using the Weather Research and Forecasting (WRF) model. A variety of different processes appear to be important for the generation of this MCS and the spreading of the associated dusty cold pool. These include: the presence of a trough on the subtropical jet, the production of a tropical cloud plume, disruption to the structure of the Saharan heat low and the production of a Libyan high. These features produced moistening of the boundary layer and a convergence zone over the region of MCS initiation. Another important factor appears to have been the production of a smaller MCS and cold pool on the evening of the 7th June. This elevated low-level moisture and encouraged convective initiation the following day. Once triggered on the 8th June some cells grew and merged into a single large system that propagated south westward and produced a large cold pool that emanated from its northern edge. The cells on the northern edge of the system over the Hoggar grew and collapsed producing a haboob that spread over a large area. Cells further south continued to develop into the MCS and actively produce a cold pool over the system's lifetime. This undercut the dusty air from the earlier cold pool and

  14. A spectroscopic study of absorption and emission features of interstellar dust components

    International Nuclear Information System (INIS)

    Zwet, G.P. van der.

    1986-01-01

    The spectroscopic properties of silicate interstellar dust grains are the subject of this thesis. The process of accretion and photolysis is simulated in the laboratory by condensing mixtures of gases onto a cold substrate (T ∼ 12 K) in a vacuum chamber and photolyzing these mixtures with a vacuum ultraviolet source. Alternatively, the gas mixtures may be passed through a microwave discharge first, before deposition. The spectroscopic properties of the ices are investigated using ultraviolet, visible and infrared spectroscopy. (Auth.)

  15. Simulation of the Processes of Formation of a Dust Cloud in a Vacuum and in the Absence of Gravitation

    Science.gov (United States)

    Avdeev, A. V.; Boreisho, A. S.; Ivakin, S. V.; Moiseev, A. A.; Savin, A. V.; Sokolov, E. I.; Smirnov, P. G.

    2018-01-01

    This article is devoted to the simulation of the processes of formation of dust clouds in the absence of gravitation, which is necessary for understanding the processes proceeding in dust clusters in outer space, upper planetary atmosphere, and on the surface of space objects, as well as for evaluating the possibilities of creating disperse structures with given properties. The chief aim of the simulation is to determine the general laws of the dynamics of the dust cloud at the initial stage of its formation. With the use of the original approach based on the particle-in-cell method that permits investigating the mechanics of large ensembles of particles on contemporary computational platforms, we consider the mechanics of a dusty medium in the process of its excitation in a closed container due to the vibration of the walls, and then in the process of particle scattering when the container opens in outer space. The main formation mechanisms of a dust formation have been elucidated, and the possibilities of mathematical simulation for predicting spatial and time characteristics of disperse structures have been shown.

  16. Tracing the Evolution of Dust Obscured Star Formation and Accretion Back to the Reionisation Epoch with SPICA

    NARCIS (Netherlands)

    Gruppioni, C.; Ciesla, L.; Hatziminaoglou, E.; Pozzi, F.; Rodighiero, G.; Santini, P.; Armus, L.; Baes, M.; Braine, J.; Charmandaris, V.; Clements, D. L.; Christopher, N.; Dannerbauer, H.; Efstathiou, A.; Egami, E.; Fernández-Ontiveros, J. A.; Fontanot, F.; Franceschini, A.; González-Alfonso, E.; Griffin, M.; Kaneda, H.; Marchetti, L.; Monaco, P.; Nakagawa, T.; Onaka, T.; Papadopoulos, A.; Pearson, C.; Pérez-Fournon, I.; Peréz-González, P.; Roelfsema, P.; Scott, D.; Serjeant, S.; Spinoglio, L.; Vaccari, M.; van der Tak, F.; Vignali, C.; Wang, L.; Wada, T.

    2017-01-01

    Our current knowledge of star formation and accretion luminosity at high redshift (z > 3-4), as well as the possible connections between them, relies mostly on observations in the rest-frame ultraviolet, which are strongly affected by dust obscuration. Due to the lack of sensitivity of past and

  17. Spatially Resolved Dust, Gas, and Star Formation in the Dwarf Magellanic Irregular NGC 4449

    Science.gov (United States)

    Calzetti, D.; Wilson, G. W.; Draine, B. T.; Roussel, H.; Johnson, K. E.; Heyer, M. H.; Wall, W. F.; Grasha, K.; Battisti, A.; Andrews, J. E.; Kirkpatrick, A.; Rosa González, D.; Vega, O.; Puschnig, J.; Yun, M.; Östlin, G.; Evans, A. S.; Tang, Y.; Lowenthal, J.; Sánchez-Arguelles, D.

    2018-01-01

    We investigate the relation between gas and star formation in subgalactic regions, ∼360 pc to ∼1.5 kpc in size, within the nearby starburst dwarf NGC 4449, in order to separate the underlying relation from the effects of sampling at varying spatial scales. Dust and gas mass surface densities are derived by combining new observations at 1.1 mm, obtained with the AzTEC instrument on the Large Millimeter Telescope, with archival infrared images in the range 8–500 μm from the Spitzer Space Telescope and the Herschel Space Observatory. We extend the dynamic range of our millimeter (and dust) maps at the faint end, using a correlation between the far-infrared/millimeter colors F(70)/F(1100) (and F(160)/F(1100)) and the mid-infrared color F(8)/F(24) that we establish for the first time for this and other galaxies. Supplementing our data with maps of the extinction-corrected star formation rate (SFR) surface density, we measure both the SFR–molecular gas and the SFR–total gas relations in NGC 4449. We find that the SFR–molecular gas relation is described by a power law with an exponent that decreases from ∼1.5 to ∼1.2 for increasing region size, while the exponent of the SFR–total gas relation remains constant with a value of ∼1.5 independent of region size. We attribute the molecular law behavior to the increasingly better sampling of the molecular cloud mass function at larger region sizes; conversely, the total gas law behavior likely results from the balance between the atomic and molecular gas phases achieved in regions of active star formation. Our results indicate a nonlinear relation between SFR and gas surface density in NGC 4449, similar to what is observed for galaxy samples. Based on observations obtained with the Large Millimeter Telescope Alfonso Serrano—a binational collaboration between INAOE (Mexico) and the University of Massachusetts–Amherst (USA).

  18. Laboratory investigations of the impact of mineral dust aerosol on cold cloud formation

    OpenAIRE

    K. A. Koehler; S. M. Kreidenweis; P. J. DeMott; M. D. Petters; A. J. Prenni; O. Möhler

    2010-01-01

    Dust particles represent a dominant source of particulate matter (by mass) to the atmosphere, and their emission from some source regions has been shown to be transported on regional and hemispherical scales. Dust particles' potential to interact with water vapor in the atmosphere can lead to important radiative impacts on the climate system, both direct and indirect. We have investigated this interaction for several types of dust aerosol, collected from the Southwestern Uni...

  19. Investigations of the impact of natural dust aerosol on cold cloud formation

    OpenAIRE

    K. A. Koehler; S. M. Kreidenweis; P. J. DeMott; M. D. Petters; A. J. Prenni; O. Möhler

    2010-01-01

    Dust particles represent a dominant source of particulate matter (by mass) to the atmosphere, and their emission from some source regions has been shown to be transported on regional and hemispherical scales. Dust particles' potential to interact with water vapor in the atmosphere can lead to important radiative impacts on the climate system, both direct and indirect. We have investigated this interaction for several types of dust aerosol, collected from the Southwestern United States and the...

  20. Formation and alteration of complex amino acid precursors in cosmic dusts and their relevance to origins of life

    Science.gov (United States)

    Kobayashi, Kensei; Kaneko, Takeo; Mita, Hajime; Obayashi, Yumiko; Kawamoto, Yukinori; Kanda, Kazuhiro; Takayama, Ken; Shibata, Hiromi

    A wide variety of organic compounds including many kinds of amino acids have been detected in carbonaceous chondrites. It has been known that comets also bring complex organic compounds. The relevance of extraterrestrial organics to the origin of life is extensively discussed. There have been many scenarios of the origin of amino acids found in meteorites or comets, including the Strecker synthesis in the parent bodies of meteorites, the Fischer-Tropsch type reaction in the solar nebula and reactions in cosmic dusts. We examined possible formation of amino acids or their precursors in interstellar dust environments. When possible interstellar media (a mixture of carbon monoxide, ammonia and water) was irradiated with high energy protons, complex organic compounds whose molecular weights are thousands were formed [1], which gave amino acids after acid hydrolysis: Hereafter we will refer them simulated interstellar organics. It was suggested that complex amino acid precursors could be formed in ice mantles of interstellar dust particles in prior to the formation of the solar system. We are planning to irradiate simulated interstellar ices with high-energy heavy ions from the Digital Accelerator (KEK) to confirm the scenario. The simulated interstellar oraganics were so hydrophilic that they were easy to dissolve in water. Complex organics found in meteorites are generally so hydrophobic and are insoluble to water. Organics found in cometary dusts sampled by the Stardust Mission contains organics with various hydrophobicity. We irradiated the simulated interstellar organics with UV and/or soft X-rays. Soft X-rays irradiation of the simulated interstellar organics resulted in the formation of more hydrophobic compounds as seen in some of cometary dusts. It was suggested that organics of interstellar origin on dusts were altered when the solar system was being formed with soft X-rays from the young Sun in prior to the incorporation to planetesimals or comets. Dusts have

  1. Formation of fine dust on Saturn's rings as suggested by the presence of spokes

    Science.gov (United States)

    Smoluchowski, R.

    1983-01-01

    The common interpretation of spokes on the B ring of Saturn is that they are the result of light scattered by electrostatically levitated micrometer- and submicrometer-size dust particles. The origin of this dust in terms of radiation-induced thermal fatigue and collisions between the particles of the ring as well as meteoritic bombardment is investigated.

  2. Saharan Dust Event Impacts on Cloud Formation and Radiation over Western Europe

    Science.gov (United States)

    Bangert, M.; Nenes, A.; Vogel, B.; Vogel, H.; Barahona, D.; Karydis, V. A.; Kumar, P.; Kottmeier, C.; Blahak, U.

    2013-01-01

    We investigated the impact of mineral dust particles on clouds, radiation and atmospheric state during a strong Saharan dust event over Europe in May 2008, applying a comprehensive online-coupled regional model framework that explicitly treats particle-microphysics and chemical composition. Sophisticated parameterizations for aerosol activation and ice nucleation, together with two-moment cloud microphysics are used to calculate the interaction of the different particles with clouds depending on their physical and chemical properties. The impact of dust on cloud droplet number concentration was found to be low, with just a slight increase in cloud droplet number concentration for both uncoated and coated dust. For temperatures lower than the level of homogeneous freezing, no significant impact of dust on the number and mass concentration of ice crystals was found, though the concentration of frozen dust particles reached up to 100 l-1 during the ice nucleation events. Mineral dust particles were found to have the largest impact on clouds in a temperature range between freezing level and the level of homogeneous freezing, where they determined the number concentration of ice crystals due to efficient heterogeneous freezing of the dust particles and modified the glaciation of mixed phase clouds. Our simulations show that during the dust events, ice crystals concentrations were increased twofold in this temperature range (compared to if dust interactions are neglected). This had a significant impact on the cloud optical properties, causing a reduction in the incoming short-wave radiation at the surface up to -75Wm-2. Including the direct interaction of dust with radiation caused an additional reduction in the incoming short-wave radiation by 40 to 80Wm-2, and the incoming long-wave radiation at the surface was increased significantly in the order of +10Wm-2. The strong radiative forcings associated with dust caused a reduction in surface temperature in the order of -0

  3. Identification of Dust and Ice Cloud Formation from A-Train Datasets

    Science.gov (United States)

    Russell, D. S.; Liou, K. N.

    2014-12-01

    Dust aerosols are effective ice nuclei for clouds and instances of nucleation have been well studied in laboratory experiments. We used CALIOP/CALIPSO, MODIS/Aqua, and CloudSat on the A-Train to find collocated instances of clouds characterized as water by MODIS, but contain ice water as indicated by CloudSat. The vertical profiles of CALIPSO detect the presence of dust and polluted dust near clouds. This study concentrates on high dust aerosol areas including the regions surrounding the Sahara Desert as well as South Asia including the Tibetan Plateau. These cases display the effects of dust acting as ice nuclei in the time frame between MODIS overpass and CloudSat overpass (~45 seconds). Utilizing available datasets, we then carried out radiative transfer calculations to understand spectral radiative forcing differences between water and ice clouds, particularly over snow surfaces at the Tibetan Plateau.

  4. Formation of dust maximums in aerosol stream in a dispersion medium

    International Nuclear Information System (INIS)

    Neklyudov, I.M.; Ledenev, O.P.; Fedorova, L.I.; Poltinin, P.Ya.

    2010-01-01

    Spatial-temporal distribution of the fine dust coal fraction accumulated in the process of air-dust intermixture aerosol flow through the horizontally positioned air filter consisting of the big granules of absorber is researched. Aerodynamic resistance of the horizontally positioned air filters at long term dust trust happens to be significantly lower in comparison with the vertically positioned air filters in industrial applications at NPP's over the years. It is assumed that this phenomena appears, because the directions of the dust masses capture force in airflow and the gravitation force are orthogonal, hence the fine dust coal particles are dislocated by the gravitation force from the volume of main air stream localization within the filter.

  5. Cometary Dust

    Science.gov (United States)

    Levasseur-Regourd, Anny-Chantal; Agarwal, Jessica; Cottin, Hervé; Engrand, Cécile; Flynn, George; Fulle, Marco; Gombosi, Tamas; Langevin, Yves; Lasue, Jérémie; Mannel, Thurid; Merouane, Sihane; Poch, Olivier; Thomas, Nicolas; Westphal, Andrew

    2018-04-01

    This review presents our understanding of cometary dust at the end of 2017. For decades, insight about the dust ejected by nuclei of comets had stemmed from remote observations from Earth or Earth's orbit, and from flybys, including the samples of dust returned to Earth for laboratory studies by the Stardust return capsule. The long-duration Rosetta mission has recently provided a huge and unique amount of data, obtained using numerous instruments, including innovative dust instruments, over a wide range of distances from the Sun and from the nucleus. The diverse approaches available to study dust in comets, together with the related theoretical and experimental studies, provide evidence of the composition and physical properties of dust particles, e.g., the presence of a large fraction of carbon in macromolecules, and of aggregates on a wide range of scales. The results have opened vivid discussions on the variety of dust-release processes and on the diversity of dust properties in comets, as well as on the formation of cometary dust, and on its presence in the near-Earth interplanetary medium. These discussions stress the significance of future explorations as a way to decipher the formation and evolution of our Solar System.

  6. Primary particles and their agglomerate formation as modifying risk factors of nonfibrous nanosized dust.

    Science.gov (United States)

    Schneider, J; Walter, D; Brückel, B; Rödelsperger, K

    2013-01-01

    The incidence of certain cancers correlates with the number of dust particles in the air. Nanosized particles differ from coarser particles by their increasing tendency to form agglomerates. The dissociation of biodurable agglomerates after deposition in the alveolar region resulted in a higher toxic potential. Biodurable dusts in the urban and workplace environment were analyzed to determine an effect-relevant exposure parameter. The characterization of the dusts relating to their number of primary particles (P(p)) and agglomerates and aggregates (A + A) was performed by electron microscopy. Diesel soot, toner material, and seven further dust samples in the workplace environment are composed of high numbers of nanosized primary particles (agglomerates. Primary particles of rock, kaoline, and seven further dusts sampled in the workplace are not nanosized. In a multivariate analysis that predicted lung tumor risk, the mass, volume, and numbers of A + A and P(p) per milligram dust were shown to be relevant parameters. Dose-response relationships revealed an increased tumor risk in rats with higher numbers of P(p) in nanosized dust, which occurs unintentionally in the environment.

  7. House dust mite allergen causes certain features of steroid resistant asthma in high fat fed obese mice.

    Science.gov (United States)

    Singh, Vijay Pal; Mabalirajan, Ulaganathan; Pratap, Kunal; Bahal, Devika; Maheswari, Deepanshu; Gheware, Atish; Bajaj, Aabha; Panda, Lipsa; Jaiswal, Ashish; Ram, Arjun; Agrawal, Anurag

    2018-02-01

    Obesity is a high risk factor for diseases such as cardiovascular, metabolic syndrome and asthma. Obese-asthma is another emerging phenotype in asthma which is typically refractive to steroid treatment due to its non-classical features such as non-eosinophilic cellular inflammation. The overall increased morbidity, mortality and economical burden in asthma is mainly due to steroid resistant asthma. In the present study, we used high fat diet induced obese mice which when sensitized with house dust mite (HDM) showed steroid resistant features. While the steroid, dexamethasone (DEX), treatment to high fat fed naïve mice could not reduce the airway hyperresponsiveness (AHR) induced by high fat, DEX treatment to high fat fed allergic mice could not reduce the HDM allergen induced airway remodeling features though it reduced airway inflammation. Further, these HDM induced high fat fed mice with or without DEX treatment had shown the increased activity and expression of arginase as well as the inducible nitric oxide synthase (iNOS) expression. However, DEX treatment had reduced the expressions of high iNOS and arginase I in control chow diet fed mice. Thus, we speculate that the steroid resistance seen in human obese asthmatics could be stemming from altered NO metabolism and its induced airway remodeling and with further investigations, it would encourage new treatments specific to obese-asthma phenotype. Copyright © 2017 Elsevier B.V. All rights reserved.

  8. Coupling Mars' Dust and Water Cycles: Effects on Dust Lifting Vigor, Spatial Extent and Seasonality

    Science.gov (United States)

    Kahre, M. A.; Hollingsworth, J. L.; Haberle, R. M.; Montmessin, F.

    2012-01-01

    The dust cycle is an important component of Mars' current climate system. Airborne dust affects the radiative balance of the atmosphere, thus greatly influencing the thermal and dynamical state of the atmosphere. Dust raising events on Mars occur at spatial scales ranging from meters to planet-wide. Although the occurrence and season of large regional and global dust storms are highly variable from one year to the next, there are many features of the dust cycle that occur year after year. Generally, a low-level dust haze is maintained during northern spring and summer, while elevated levels of atmospheric dust occur during northern autumn and winter. During years without global-scale dust storms, two peaks in total dust loading were observed by MGS/TES: one peak occurred before northern winter solstice at Ls 200-240, and one peak occurred after northern winter solstice at L(sub s) 305-340. These maxima in dust loading are thought to be associated with transient eddy activity in the northern hemisphere, which has been observed to maximize pre- and post-solstice. Interactive dust cycle studies with Mars General Circulation Models (MGCMs) have included the lifting, transport, and sedimentation of radiatively active dust. Although the predicted global dust loadings from these simulations capture some aspects of the observed dust cycle, there are marked differences between the simulated and observed dust cycles. Most notably, the maximum dust loading is robustly predicted by models to occur near northern winter solstice and is due to dust lifting associated with down slope flows on the flanks of the Hellas basin. Thus far, models have had difficulty simulating the observed pre- and post- solstice peaks in dust loading. Interactive dust cycle studies typically have not included the formation of water ice clouds or their radiative effects. Water ice clouds can influence the dust cycle by scavenging dust from atmosphere and by interacting with solar and infrared radiation

  9. Evidence of formation of lithium compounds on FTU tiles and dust

    Science.gov (United States)

    Ghezzi, F.; Laguardia, L.; Apicella, M. L.; Bressan, C.; Caniello, R.; Cippo, E. Perelli; Conti, C.; De Angeli, M.; Maddaluno, G.; Mazzitelli, G.

    2018-01-01

    Since 2006 lithium as an advanced plasma facing material has been tested on the Frascati Tokamak Upgrade (FTU). Lithium in the liquid phase acts both as plasma facing component, i.e. limiter, and plays also a role in plasma operation because by depositing a lithium film on the walls (lithization) oxygen is gettered. As in all deposition processes, even for the lithization, the presence of impurities in plasma phase strongly affects the properties of the deposited film. During the 2008 campaigns of FTU it was observed a strong release of carbon dioxide (during disruptions), resulting in successive serious difficulty of operation. In order to find the possible reactions occurred, we have analyzed the surface of two tiles of the toroidal limiter close to the Liquid Lithium Limiter (LLL). The presence of molybdenum oxides and carbides suggested that the surface temperatures could have exceeded 1000 K, likely during disruptions. lithium oxides and hydroxides have been found on the tiles and in the dust collected in the vessel, confirming the presence of LiO and LiOH and a not negligible concentration of Li2CO3 especially at the LLL location. On the basis of the above results, we propose here a simple rationale, based on a two reactions mechanism, which can explain the formation of Li2CO3 and its subsequent decomposition during disruption with release of CO2 in the vessel. Admitting surface temperatures above 1000 K during a disruption, relatively high partial pressures of CO2 are also predicted by the equilibrium constant for Li2CO3 decomposition.

  10. [Diagnosis of predisposition to chronic cor pulmonale formation in occupational lung diseases caused by dust].

    Science.gov (United States)

    Panev, N I; Korotenko, O Iu; Zakharenkov, V V; Korchagina, Iu S; Gafarov, N I

    2014-01-01

    Study covered 426 miners aged 40-54 years with previously diagnosed occupational respiratory diseases due to dust (246 patients with chronic occupational obstructive bronchitis, 98 with anthracosilicosis and 82 with chronic dust nonobstructive bronchitis). 315 (73.9%) examinees out of 426 with lung diseases due to dust demonstrated chronic cor pulnmonale. Considering high share of this complication, the authors used Bayes method to create a method to diagnose predisposition towards chronic cor pulmonale in patients with dust lung diseases through respiratory failure, concomitant coronary heart disease and arterial hypertension, blood groups ABO, MN and P, some structural and functional parameters of heart: myocardium weight index, relative wall thickness index and left ventricle sphericity index, average lung artery pressure. Increasing number of analyzed factors that directly influence chronic cor pulmonale development and selecting additional markers help to improve forecasting of the complication.

  11. The main features of self-consistent pressure profile formation

    NARCIS (Netherlands)

    Razumova, K. A.; Andreev, V. F.; Dnestrovskij, A. Y.; Kislov, A. Y.; Kirneva, N. A.; Lysenko, S. E.; Pavlov, Y. D.; Poznyak, V. I.; Shafranov, T. V.; Trukhina, E. V.; Zhuravlev, V. A.; Donne, A. J. H.; Hogeweij, G. M. D.

    2008-01-01

    The self-organization of a tokamak plasma is a fundamental turbulent plasma phenomenon, which leads to the formation of a self-consistent pressure profile. This phenomenon has been investigated in the T-10 tokamak in different experiments, excluding profiles with pronounced transport barriers. It

  12. Simulating Mars' Dust Cycle with a Mars General Circulation Model: Effects of Water Ice Cloud Formation on Dust Lifting Strength and Seasonality

    Science.gov (United States)

    Kahre, Melinda A.; Haberle, Robert; Hollingsworth, Jeffery L.

    2012-01-01

    The dust cycle is critically important for the current climate of Mars. The radiative effects of dust impact the thermal and dynamical state of the atmosphere [1,2,3]. Although dust is present in the Martian atmosphere throughout the year, the level of dustiness varies with season. The atmosphere is generally the dustiest during northern fall and winter and the least dusty during northern spring and summer [4]. Dust particles are lifted into the atmosphere by dust storms that range in size from meters to thousands of kilometers across [5]. Regional storm activity is enhanced before northern winter solstice (Ls200 degrees - 240 degrees), and after northern solstice (Ls305 degrees - 340 degrees ), which produces elevated atmospheric dust loadings during these periods [5,6,7]. These pre- and post- solstice increases in dust loading are thought to be associated with transient eddy activity in the northern hemisphere with cross-equatorial transport of dust leading to enhanced dust lifting in the southern hemisphere [6]. Interactive dust cycle studies with Mars General Circulation Models (MGCMs) have included the lifting, transport, and sedimentation of radiatively active dust. Although the predicted global dust loadings from these simulations capture some aspects of the observed dust cycle, there are marked differences between the simulated and observed dust cycles [8,9,10]. Most notably, the maximum dust loading is robustly predicted by models to occur near northern winter solstice and is due to dust lifting associated with down slope flows on the flanks of the Hellas basin. Thus far, models have had difficulty simulating the observed pre- and post- solstice peaks in dust loading.

  13. FORMATING SPECIAL FINANCIAL FEATURES RESOURCES OFAGRICULTURAL ENTERPRISES IN MODERN CONDITIONS

    Directory of Open Access Journals (Sweden)

    Bodnar O.

    2018-01-01

    Full Text Available The essence of financial resources of enterprises of agrarian sphere, peculiarities of their formation are considered. Theoretical views of scholars-economists on the definition of “financial resources” are systematized, their nature, forms and meaning have been investigated to ensure the expanded reproduction of agricultural enterprises. The interrelation of sources of formation of financial resources of agricultural enterprises with their financial and economic activities were analyzed. The classification of sources of formation of financial resources is proposed and its detailed analysis of the types of financial (cash relations which arise in the agricultural enterprises are established. A number of characteristics of agriculture, which affects its functioning in conditions of market economy, was identified. The factors influencing financial security of agricultural enterprises are established and categorized. The organizational and legal forms of agribusiness have been determined and the advantages and disadvantages of the formation of enterprises of different ownership forms have been analyzed. There are several organizational forms of entrepreneurial activities in agriculture: an individual, partnership, corporate. The peculiarities of formation of financial resources in the world practice are considered, and a number of financial instruments that may use the agricultural enterprises of Ukraine are offered. There is one of the most effective tool for attracting enterprises with large amounts of financial resources was offered and its importance to the agricultural private enterprises was substantiated. Attention to the impact of modern globalization processes with the financial support of the enterprises of agrarian sphere was drawn. The state programs of financial support of agricultural complex were analyzed and the main directions of further development of the system of state support of the financial mechanism in agriculture of

  14. The albedo of martian dunes: Insights into aeolian activity and dust devil formation

    Science.gov (United States)

    Bennett, K. A.; Fenton, L.; Bell, J. F.

    2017-06-01

    Wind is the primary geologic process currently active on the surface of Mars. Albedo variations at eight dune fields were tested based on the hypothesis that a dune's ripple migration rate is correlated to its albedo. On Mars, where the atmospheric pressure is low, dust is removed from the surface of a dune by saltating sand. Therefore, more active dunes should remove dust more efficiently than less active dunes. A dune's albedo was found to be low in the first half of the Mars year (Ls = 0-180°) and high in the second half (Ls = 180-360°) during the dusty season. Both dunes with fast- and slow-moving ripples exhibit low albedos, whereas dunes with ripples that migrate at intermediate speeds exhibit high albedos. A dune's minimum albedo does not have a simple correlation with its ripple migration rate. Instead, we propose that dust devils remove dust on slow-moving and immobile dunes, whereas saltating sand caused by strong winds removes dust on faster dunes. Albedo should not be used as a proxy for migration rate of ripples or dune activity, as it may be difficult to distinguish between fast- and slow-moving ripples on dunes that have the same albedo. The presence of dust devil tracks on a dune could indicate the dune and/or its ripples are either immobile or migrating slowly. We also propose that albedo variations on individual dune fields can reveal insight into the local wind regime.

  15. Tracing the Evolution of Dust Obscured Star Formation and Accretion Back to the Reionisation Epoch with SPICA

    Science.gov (United States)

    Gruppioni, C.; Ciesla, L.; Hatziminaoglou, E.; Pozzi, F.; Rodighiero, G.; Santini, P.; Armus, L.; Baes, M.; Braine, J.; Charmandaris, V.; Clements, D. L.; Christopher, N.; Dannerbauer, H.; Efstathiou, A.; Egami, E.; Fernández-Ontiveros, J. A.; Fontanot, F.; Franceschini, A.; González-Alfonso, E.; Griffin, M.; Kaneda, H.; Marchetti, L.; Monaco, P.; Nakagawa, T.; Onaka, T.; Papadopoulos, A.; Pearson, C.; Pérez-Fournon, I.; Peréz-González, P.; Roelfsema, P.; Scott, D.; Serjeant, S.; Spinoglio, L.; Vaccari, M.; van der Tak, F.; Vignali, C.; Wang, L.; Wada, T.

    2017-11-01

    Our current knowledge of star formation and accretion luminosity at high redshift (z > 3-4), as well as the possible connections between them, relies mostly on observations in the rest-frame ultraviolet, which are strongly affected by dust obscuration. Due to the lack of sensitivity of past and current infrared instrumentation, so far it has not been possible to get a glimpse into the early phases of the dust-obscured Universe. Among the next generation of infrared observatories, SPICA, observing in the 12-350 µm range, will be the only facility that can enable us to trace the evolution of the obscured star-formation rate and black-hole accretion rate densities over cosmic time, from the peak of their activity back to the reionisation epoch (i.e., 3 z ≲ 6-7), where its predecessors had severe limitations. Here, we discuss the potential of photometric surveys performed with the SPICA mid-infrared instrument, enabled by the very low level of impact of dust obscuration in a band centred at 34 µm. These unique unbiased photometric surveys that SPICA will perform will fully characterise the evolution of AGNs and star-forming galaxies after reionisation.

  16. Research Gender Features of Formation of Student Life Scenarios

    Directory of Open Access Journals (Sweden)

    Vadym Zavatskyi

    2017-06-01

    Full Text Available The article provides an analysis of the impact on gender identity formation of student life scenarios. It is shown that socio-economic and political changes are factors which change perceptions of themselves and the general picture of the world youth, and is a catalyst for the process of finding one’s own life script or harmonious way of life. The authors established that the individual life path or script must meet the abilities and capabilities of the young man and also be a means of self-realization in life. The paper stated that under current conditions the process of personal and professional self-education related to a number of difficulties, that is why the problem of forming life script personality in adolescence is becoming increasingly important. Based on the scientific approaches the problem of forming life scenarios identity and gender identity problem. We characterize the sample studied, which was caused by the objectives and purpose of the study. The article provided a description of methods by which we conducted the diagnosis of gender identity influence on the formation of individual life scenarios in adolescence. We used the results of correlation analysis.

  17. Features of formation of personal physical education of students

    Directory of Open Access Journals (Sweden)

    V.A. Sutula

    2013-08-01

    Full Text Available The peculiarities of formation of personal physical training of students from various universities. The experiment was attended by 748 students. It is shown that the most significant factor in personal physical training of students is to conduct a healthy physically active lifestyle and relationship to the body as a value. It is confirmed that for students of physical culture the main motivational factors for physical culture and sports activities is the desire to improve physical fitness, achieve sporting success. For students of non-core specialties - to optimize the weight and improve the shape. It is proved that the main obstacle to employment physical and sports activities of the students is the lack of free time. It is shown that only 21.2% of students believe their non-core specialties: motor sufficient for normal life and preservation of health.

  18. Imposed, ordered dust structures and other plasma features in a strongly magnetized plasma

    Science.gov (United States)

    Thomas, Edward; Leblanc, Spencer; Lynch, Brian; Konopka, Uwe; Merlino, Robert; Rosenberg, Marlene

    2015-11-01

    The Magnetized Dusty Plasma Experiment (MDPX) device has been in operation for just over one year. In that time, the MDPX device has been operating using a uniform magnetic field configuration up to 3.0 Tesla and has successfully produced plasmas and dusty plasmas at high magnetic fields. In these experimental studies, we have made observations of a new type of imposed, ordered structure in a dusty plasma at magnetic fields above 1 T. These dusty plasma structures are shown to scale inversely with neutral pressure and are shown to reflect the spatial structure of a wire mesh placed in the plasma. Additionally, recent measurements have been made that give insights into the effective potential that establishes the ordered structures in the plasma. In this presentation, we report on details of the imposed, ordered dusty plasma structure as well as filamentary features that also appear in the plasma and modify the confinement of the dusty plasma. This work is supported with funding from the NSF and Department of Energy.

  19. GAMA/G10-COSMOS/3D-HST: the 0 < z < 5 cosmic star formation history, stellar-mass, and dust-mass densities

    Science.gov (United States)

    Driver, Simon P.; Andrews, Stephen K.; da Cunha, Elisabete; Davies, Luke J.; Lagos, Claudia; Robotham, Aaron S. G.; Vinsen, Kevin; Wright, Angus H.; Alpaslan, Mehmet; Bland-Hawthorn, Joss; Bourne, Nathan; Brough, Sarah; Bremer, Malcolm N.; Cluver, Michelle; Colless, Matthew; Conselice, Christopher J.; Dunne, Loretta; Eales, Steve A.; Gomez, Haley; Holwerda, Benne; Hopkins, Andrew M.; Kafle, Prajwal R.; Kelvin, Lee S.; Loveday, Jon; Liske, Jochen; Maddox, Steve J.; Phillipps, Steven; Pimbblet, Kevin; Rowlands, Kate; Sansom, Anne E.; Taylor, Edward; Wang, Lingyu; Wilkins, Stephen M.

    2018-04-01

    We use the energy-balance code MAGPHYS to determine stellar and dust masses, and dust corrected star formation rates for over 200 000 GAMA galaxies, 170 000 G10-COSMOS galaxies, and 200 000 3D-HST galaxies. Our values agree well with previously reported measurements and constitute a representative and homogeneous data set spanning a broad range in stellar-mass (108-1012 M⊙), dust-mass (106-109 M⊙), and star formation rates (0.01-100 M⊙yr-1), and over a broad redshift range (0.0 measure the cosmic star formation history (CSFH), the stellar-mass density (SMD), and the dust-mass density (DMD) over a 12 Gyr timeline. The data mostly agree with previous estimates, where they exist, and provide a quasi-homogeneous data set using consistent mass and star formation estimators with consistent underlying assumptions over the full time range. As a consequence our formal errors are significantly reduced when compared to the historic literature. Integrating our CSFH we precisely reproduce the SMD with an interstellar medium replenishment factor of 0.50 ± 0.07, consistent with our choice of Chabrier initial mass function plus some modest amount of stripped stellar mass. Exploring the cosmic dust density evolution, we find a gradual increase in dust density with lookback time. We build a simple phenomenological model from the CSFH to account for the dust-mass evolution, and infer two key conclusions: (1) For every unit of stellar mass which is formed 0.0065-0.004 units of dust mass is also formed. (2) Over the history of the Universe approximately 90-95 per cent of all dust formed has been destroyed and/or ejected.

  20. Palaeopedogenic features and their palaeoclimatological significance for the nevremont formation (Lower Givetian), the Northern Ardennes, Belgium

    NARCIS (Netherlands)

    Molenaar, N.

    1984-01-01

    The lower member of the Nèvremont Formation is characterized by the frequent occurrence of pedogenic features, which suggest intermittent exposure of the fluvial depositional environment. The evidence for pedogenesis comprises horizons of calcite glaebules and nodular calcrete, haematite

  1. Carbon formation and metal dusting in hot-gas cleanup systems of coal gasifiers

    Energy Technology Data Exchange (ETDEWEB)

    Judkins, R.R.; Tortorelli, P.F.; Judkins, R.R.; DeVan, J.H.; Wright, I.G. [Oak Ridge National Lab., TN (United States). Metals and Ceramics Div.

    1995-11-01

    The product gas resulting from the partial oxidation of Carboniferous materials in a gasifier is typically characterized by high carbon and sulfur, but low oxygen, activities and, consequently, severe degradation of the structural and functional materials can occur. The objective of this task was to establish the potential risks of carbon deposition and metal dusting in advanced coal gasification processes by examining the current state of knowledge regarding these phenomena, making appropriate thermochemical calculations for representative coal gasifiers, and addressing possible mitigation methods. The paper discusses carbon activities, iron-based phase stabilities, steam injection, conditions that influence kinetics of carbon deposition, and influence of system operating parameters on carbon deposition and metal dusting.

  2. Saharan dust nutrients promote Vibrio bloom formation in marine surface waters

    Science.gov (United States)

    Westrich, Jason R.; Ebling, Alina M.; Landing, William M.; Joyner, Jessica L.; Kemp, Keri M.; Griffin, Dale W.; Lipp, Erin K.

    2016-01-01

    Vibrio is a ubiquitous genus of marine bacteria, typically comprising a small fraction of the total microbial community in surface waters, but capable of becoming a dominant taxon in response to poorly characterized factors. Iron (Fe), often restricted by limited bioavailability and low external supply, is an essential micronutrient that can limit Vibrio growth. Vibrio species have robust metabolic capabilities and an array of Fe-acquisition mechanisms, and are able to respond rapidly to nutrient influx, yet Vibrio response to environmental pulses of Fe remains uncharacterized. Here we examined the population growth of Vibrioafter natural and simulated pulses of atmospherically transported Saharan dust, an important and episodic source of Fe to tropical marine waters. As a model for opportunistic bacterial heterotrophs, we demonstrated that Vibrio proliferate in response to a broad range of dust-Fe additions at rapid timescales. Within 24 h of exposure, strains of Vibrio cholerae and Vibrio alginolyticus were able to directly use Saharan dust–Fe to support rapid growth. These findings were also confirmed with in situ field studies; arrival of Saharan dust in the Caribbean and subtropical Atlantic coincided with high levels of dissolved Fe, followed by up to a 30-fold increase of culturable Vibrio over background levels within 24 h. The relative abundance of Vibrio increased from ∼1 to ∼20% of the total microbial community. This study, to our knowledge, is the first to describe Vibrio response to Saharan dust nutrients, having implications at the intersection of marine ecology, Fe biogeochemistry, and both human and environmental health.

  3. Planet Formation in AB Aurigae: Imaging of the Inner Gaseous Spirals Observed inside the Dust Cavity

    Energy Technology Data Exchange (ETDEWEB)

    Tang, Ya-Wen; Gu, Pin-Gao; Ho, Paul T. P. [Academia Sinica, Institute of Astronomy and Astrophysics, Taipei, Taiwan (China); Guilloteau, Stephane; Dutrey, Anne; Chapillon, Edwige; Folco, Emmanuel di [Laboratoire d’astrophysique de Bordeaux, Univ. Bordeaux, CNRS, B18N, alle Geoffroy Saint-Hilaire, F-33615 Pessac (France); Muto, Takayuki [Department of Physics, National Taiwan University, Taiwan (China); Shen, Bo-Ting [Division of Liberal Arts, Kogakuin University, 1-24-2 Nishi-Shinjuku, Shinjuku-ku, Tokyo 163-8677 (Japan); Inutsuka, Shu-ichiro [Department of Physics, Graduate School of Science, Nagoya University, Furo-cho, Chikusa-ku, Nagoya 464-8602 (Japan); Momose, Munetake [College of Science, Ibaraki University, 2-1-1 Bunkyo, Mito, Ibaraki 310-8512 (Japan); Pietu, Vincent [IRAM, 300 rue de la Piscine, Domaine Universitaire, F-38406 Saint-Martin-d’Hères (France); Fukagawa, Misato [Division of Particle and Astrophysical Science, Graduate School of Science, Nagoya University, Furo-cho, Chikusa-ku, Nagoya, Aichi 464-8602 (Japan); Corder, Stuartt [National Radio Astronomy Observatory, 520 Edgemont Road, Charlottesville, VA 22903 (United States); Ohashi, Nagayoshi [Subaru Telescope, National Astronomical Observatory of Japan, 650 North Aohoku Place, Hilo, HI 96720 (United States); Hashimoto, Jun, E-mail: ywtang@asiaa.sinica.edu.tw [Astrobiology Center of NINS 2-21-1, Osawa, Mitaka, Tokyo, 181-8588 (Japan)

    2017-05-01

    We report the results of ALMA observations of a protoplanetary disk surrounding the Herbig Ae star AB Aurigae. We obtained high-resolution (0.″1; 14 au) images in {sup 12}CO J = 2 − 1 emission and in the dust continuum at the wavelength of 1.3 mm. The continuum emission is detected at the center and at the ring with a radius ( r ) of ∼120 au. The CO emission is dominated by two prominent spirals within the dust ring. These spirals are trailing and appear to be about 4 times brighter than their surrounding medium. Their kinematics is consistent with Keplerian rotation at an inclination of 23°. The apparent two-arm-spiral pattern is best explained by tidal disturbances created by an unseen companion located at r of 60–80 au, with dust confined in the pressure bumps created outside this companion orbit. An additional companion at r of 30 au, coinciding with the peak CO brightness and a large pitch angle of the spiral, would help to explain the overall emptiness of the cavity. Alternative mechanisms to excite the spirals are discussed. The origin of the large pitch angle detected here remains puzzling.

  4. Fomalhaut b as a cloud of dust: Testing aspects of planet formation theory

    Energy Technology Data Exchange (ETDEWEB)

    Kenyon, Scott J. [Smithsonian Astrophysical Observatory, 60 Garden Street, Cambridge, MA 02138 (United States); Currie, Thayne [Department of Astronomy and Astrophysics, University of Toronto, 50 St. George Street, Toronto, ON M5S 1A1 (Canada); Bromley, Benjamin C., E-mail: skenyon@cfa.harvard.edu, E-mail: currie@astro.utoronto.ca, E-mail: bromley@physics.utah.edu [Department of Physics, University of Utah, 201 JFB, Salt Lake City, UT 84112 (United States)

    2014-05-01

    We consider the ability of three models—impacts, captures, and collisional cascades—to account for a bright cloud of dust in Fomalhaut b. Our analysis is based on a novel approach to the power-law size distribution of solid particles central to each model. When impacts produce debris with (1) little material in the largest remnant and (2) a steep size distribution, the debris has enough cross-sectional area to match observations of Fomalhaut b. However, published numerical experiments of impacts between 100 km objects suggest this outcome is unlikely. If collisional processes maintain a steep size distribution over a broad range of particle sizes (300 μm to 10 km), Earth-mass planets can capture enough material over 1-100 Myr to produce a detectable cloud of dust. Otherwise, capture fails. When young planets are surrounded by massive clouds or disks of satellites, a collisional cascade is the simplest mechanism for dust production in Fomalhaut b. Several tests using Hubble Space Telescope or James Webb Space Telescope data—including measuring the expansion/elongation of Fomalhaut b, looking for trails of small particles along Fomalhaut b's orbit, and obtaining low resolution spectroscopy—can discriminate among these models.

  5. Fomalhaut b as a cloud of dust: Testing aspects of planet formation theory

    International Nuclear Information System (INIS)

    Kenyon, Scott J.; Currie, Thayne; Bromley, Benjamin C.

    2014-01-01

    We consider the ability of three models—impacts, captures, and collisional cascades—to account for a bright cloud of dust in Fomalhaut b. Our analysis is based on a novel approach to the power-law size distribution of solid particles central to each model. When impacts produce debris with (1) little material in the largest remnant and (2) a steep size distribution, the debris has enough cross-sectional area to match observations of Fomalhaut b. However, published numerical experiments of impacts between 100 km objects suggest this outcome is unlikely. If collisional processes maintain a steep size distribution over a broad range of particle sizes (300 μm to 10 km), Earth-mass planets can capture enough material over 1-100 Myr to produce a detectable cloud of dust. Otherwise, capture fails. When young planets are surrounded by massive clouds or disks of satellites, a collisional cascade is the simplest mechanism for dust production in Fomalhaut b. Several tests using Hubble Space Telescope or James Webb Space Telescope data—including measuring the expansion/elongation of Fomalhaut b, looking for trails of small particles along Fomalhaut b's orbit, and obtaining low resolution spectroscopy—can discriminate among these models.

  6. Laser gas assisted texturing and formation of nitride and oxynitride compounds on alumina surface: Surface response to environmental dust

    Science.gov (United States)

    Yilbas, B. S.; Ali, H.; Al-Sharafi, A.; Al-Aqeeli, N.

    2018-03-01

    Laser gas assisted texturing of alumina surface is carried out, and formation of nitride and oxynitride compounds in the surface vicinity is examined. The laser parameters are selected to create the surface topology consisting of micro/nano pillars with minimum defect sites including micro-cracks, voids and large size cavities. Morphological and hydrophobic characteristics of the textured surface are examined using the analytical tools. The characteristics of the environmental dust and its influence on the laser textured surface are studied while mimicking the local humid air ambient. Adhesion of the dry mud on the laser textured surface is assessed through the measurement of the tangential force, which is required to remove the dry mud from the surface. It is found that laser texturing gives rise to micro/nano pillars topology and the formation of AlN and AlON compounds in the surface vicinity. This, in turn, lowers the free energy of the textured surface and enhances the hydrophobicity of the surface. The liquid solution resulted from the dissolution of alkaline and alkaline earth metals of the dust particles in water condensate forms locally scattered liquid islands at the interface of mud and textured surface. The dried liquid solution at the interface increases the dry mud adhesion on the textured surface. Some dry mud residues remain on the textured surface after the dry mud is removed by a pressurized desalinated water jet.

  7. THREE-DIMENSIONAL DUST MAPPING REVEALS THAT ORION FORMS PART OF A LARGE RING OF DUST

    International Nuclear Information System (INIS)

    Schlafly, E. F.; Rix, H.-W.; Martin, N. F.; Green, G.; Finkbeiner, D. P.; Burgett, W. S.; Chambers, K. C.; Kaiser, N.; Morgan, J. S.; Tonry, J. L.; Wainscoat, R. J.; Waters, C.; Draper, P. W.; Metcalfe, N.; Price, P. A.

    2015-01-01

    The Orion Molecular Complex is the nearest site of ongoing high-mass star formation, making it one of the most extensively studied molecular complexes in the Galaxy. We have developed a new technique for mapping the three-dimensional distribution of dust in the Galaxy using Pan-STARRS1 photometry. We isolate the dust at the distance to Orion using this technique, revealing a large (100 pc, 14° diameter), previously unrecognized ring of dust, which we term the ''Orion dust ring''. The ring includes Orion A and B, and is not coincident with current Hα features. The circular morphology suggests formation as an ancient bubble in the interstellar medium, though we have not been able to conclusively identify the source of the bubble. This hint at the history of Orion may have important consequences for models of high-mass star formation and triggered star formation

  8. THREE-DIMENSIONAL DUST MAPPING REVEALS THAT ORION FORMS PART OF A LARGE RING OF DUST

    Energy Technology Data Exchange (ETDEWEB)

    Schlafly, E. F.; Rix, H.-W.; Martin, N. F. [Max Planck Institute for Astronomy, Königstuhl 17, D-69117 Heidelberg (Germany); Green, G.; Finkbeiner, D. P. [Harvard-Smithsonian Center for Astrophysics, 60 Garden Street, Cambridge, MA 02138 (United States); Burgett, W. S.; Chambers, K. C.; Kaiser, N.; Morgan, J. S.; Tonry, J. L.; Wainscoat, R. J.; Waters, C. [Institute for Astronomy, University of Hawaii, 2680 Woodlawn Drive, Honolulu HI 96822 (United States); Draper, P. W.; Metcalfe, N. [Department of Physics, Durham University, South Road, Durham DH1 3LE (United Kingdom); Price, P. A. [Department of Astrophysical Sciences, Princeton University, Princeton, NJ 08544 (United States)

    2015-02-01

    The Orion Molecular Complex is the nearest site of ongoing high-mass star formation, making it one of the most extensively studied molecular complexes in the Galaxy. We have developed a new technique for mapping the three-dimensional distribution of dust in the Galaxy using Pan-STARRS1 photometry. We isolate the dust at the distance to Orion using this technique, revealing a large (100 pc, 14° diameter), previously unrecognized ring of dust, which we term the ''Orion dust ring''. The ring includes Orion A and B, and is not coincident with current Hα features. The circular morphology suggests formation as an ancient bubble in the interstellar medium, though we have not been able to conclusively identify the source of the bubble. This hint at the history of Orion may have important consequences for models of high-mass star formation and triggered star formation.

  9. 3D Dust Mapping Reveals that Orion Forms Part of a Large Ring of Dust

    Science.gov (United States)

    Ford Schlafly, Edward; Green, Gregory; Finkbeiner, Douglas P.; Rix, Hans-Walter

    2015-01-01

    The Orion Molecular Complex is the nearest site of ongoing high-mass star formation, making it one of the most extensively studied molecular complexes in the Galaxy. We have developed a new technique for mapping the 3D distribution of dust in the Galaxy using Pan-STARRS1 photometry. We isolate the dust at the distance to Orion using this technique, revealing a large (100 pc, 14° diameter), previously unrecognized ring of dust, which we term the "Orion dust ring." The ring includes Orion A and B, and is not coincident with current Hα features. The circular morphology suggests formation as an ancient bubble in the interstellar medium, though we have not been able to conclusively identify the source of the bubble. This hint at the history of Orion may have important consequences for models of high-mass star formation and triggered star formation.

  10. Field Observation of Heterogeneous Formation of Dicarboxylic acids, Keto-carboxylic acids, α-Dicarbonyls and Nitrate in Xi'an, China during Asian dust storm periods

    Science.gov (United States)

    Wang, G.; Wang, J.; Ren, Y.; Li, J.

    2015-12-01

    To understand the formation mechanism of secondary organic aerosols (SOA) on dust surfaces, this study investigated the concentrations and compositions of dicarboxylic acids (C2-C11), keto-carboxylic acids (C3-C7), α-dicarbonyls and inorganic ions in size-segregated aerosols (9-stages) collected in Xi'an, China during the nondust storm and dust storm periods of 2009 and 2011. During the events the ambient particulate dicarboxylic acids were 932-2240 ng m-3, which are comparable and even higher than those in nondust periods. Molecular compositions of the above SOA are similar to those in nondust periods with oxalic acid being the leading species. In the presence of the dust storms, all the above mentioned SOA species in Xi'an were predominantly enriched on the coarse particles (>2.1μm), and oxalic acid well correlated with NO3- (R2=0.72, pfine particles and a strong correlation of oxalic acid with SO42-. Our results further demonstrate that NO3- in the dust periods in Xi'an was mostly derived from secondary oxidation, whereas SO42- during the events was largely derived from surface soil of Gobi deserts. We propose a formation pathway to explain these observations, in which nitric acid and/or nitrogen oxides react with dust to produce Ca(NO3)2 and form a liquid phase on the surface of dust aerosols via water vapor-absorption of Ca(NO3)2, followed by a partitioning of the gas-phase water-soluble organic precursors (e.g.,glyoxal and methylglyoxal) into the aqueous-phase and a subsequent oxidation into oxalic acid. To the best of our knowledge, we found for the first time the enrichment of glyoxal and methylglyoxal on dust surface. Our data suggest an important role of nitrate in the heterogeneous formation process of SOA on the surface of Asian dust.

  11. THE FORMATION OF THE PRIMITIVE STAR SDSS J102915+172927: EFFECT OF THE DUST MASS AND THE GRAIN-SIZE DISTRIBUTION

    Energy Technology Data Exchange (ETDEWEB)

    Bovino, S.; Banerjee, R. [Hamburger Sternwarte, Universität Hamburg, Gojenbergsweg 112, D-21029 Hamburg (Germany); Grassi, T. [Niels Bohr Institute and Centre for Star and Planet Formation, Øster Voldgade 5-7, DK-1350 Copenhagen (Denmark); Schleicher, D. R. G., E-mail: stefano.bovino@uni-hamburg.de [Departamento de Astronomía, Facultad Ciencias Físicas y Matemáticas, Universidad de Concepción, Av. Esteban Iturra s/n Barrio Universitario, Casilla 160, Concepción (Chile)

    2016-12-01

    Understanding the formation of the extremely metal-poor star SDSS J102915+172927 is of fundamental importance to improve our knowledge on the transition between the first and second generation of stars in the universe. In this paper, we perform three-dimensional cosmological hydrodynamical simulations of dust-enriched halos during the early stages of the collapse process including a detailed treatment of the dust physics. We employ the astrochemistry package krome coupled with the hydrodynamical code enzo assuming grain-size distributions produced by the explosion of core-collapse supernovae (SNe) of 20 and 35 M {sub ⊙} primordial stars, which are suitable to reproduce the chemical pattern of the SDSS J102915+172927 star. We find that the dust mass yield produced from Population III SNe explosions is the most important factor that drives the thermal evolution and the dynamical properties of the halos. Hence, for the specific distributions relevant in this context, the composition, the dust optical properties, and the size range have only minor effects on the results due to similar cooling functions. We also show that the critical dust mass to enable fragmentation provided by semi-analytical models should be revised, as we obtain values one order of magnitude larger. This determines the transition from disk fragmentation to a more filamentary fragmentation mode, and suggests that likely more than one single SN event or efficient dust growth should be invoked to get such high dust content.

  12. Interstellar Dust - A Review

    Science.gov (United States)

    Salama, Farid

    2012-01-01

    The study of the formation and the destruction processes of cosmic dust is essential to understand and to quantify the budget of extraterrestrial organic materials. Although dust with all its components plays an important role in the evolution of interstellar physics and chemistry and in the formation of organic materials, little is known on the formation and destruction processes of carbonaceous dust. Laboratory experiments that are performed under conditions that simulate interstellar and circumstellar environments to provide information on the nature, the size and the structure of interstellar dust particles, the growth and the destruction processes of interstellar dust and the resulting budget of extraterrestrial organic molecules. A review of the properties of dust and of the laboratory experiments that are conducted to study the formation processes of dust grains from molecular precursors will be given.

  13. Consistent simulations of substellar atmospheres and non-equilibrium dust-cloud formation

    OpenAIRE

    Helling, Christiane; Dehn, Matthias; Woitke, Peter; Hauschildt, Peter H.

    2008-01-01

    We aim to understand cloud formation in substellar objects. We combined the non-equilibrium, stationary cloud model of Helling, Woitke & Thi (2008; seed formation, growth, evaporation, gravitational settling, element conservation) with the general-purpose model atmosphere code PHOENIX (radiative transfer, hydrostatic equilibrium, mixing length theory, chemical equilibrium) in order to consistently calculate cloud formation and radiative transfer with their feedback on convection and gas phase...

  14. Dust Filaments and Star Formation in OMC-2 and OMC-3

    Science.gov (United States)

    Chini, R.; Reipurth, Bo; Ward-Thompson, D.; Bally, J.; Nyman, L.-Å.; Sievers, A.; Billawala, Y.

    1997-01-01

    We have mapped the 1300 μm dust emission of a 6' × 16' field in the OMC-2 and -3 region and detected an extended filamentary structure with at least 11 embedded condensations in OMC-2 and 10 in OMC-3. Six have been observed previously at 1300 μm, and two were also detected by IRAS. We observed eight of the new sources at six wave bands from 350 to 2000 μm and derived upper limits for their far-infrared (FIR) emission from the IRAS raw data. The millimeter/submillimeter emission originates from cold dust (Td ~ 20 K), and the individual components have gas masses of 5 Msolar objects. Condensations in the OMC-2 region have Lbol/Lsmm effect from north to south. We report the discovery of a highly collimated bipolar CO outflow, most likely driven by the source OMC-3 MMS 8. The flow is over 5' (0.7 pc) long and less than 1' (0.15 pc) wide and is oriented nearly east-west. Less prominent outflows are associated with OMC-2 FIR 2/3 and OMC-3 MMS 6. The 1300 μm continuum emission is confined to a ridge less than 1' wide while the emission in J = 2-1 13CO, C18O, and CS is between 5' and 10' wide. The continuum emission is displaced toward the eastern side of the molecular ridge that contains it. Most 1300 μm sources lie in or close to line emission peaks. However, not all line emission peaks contain prominent 1300 μm continuum sources. The curved filamentary structure of the large-scale dust and molecular emission is likely the result of compression by the superbubble centered ~25-70 pc further north, plus the impact of energy from the younger 1c subgroup of the Orion OB association, which lies 10-50 pc in front of our mapped region, and by the very recent expansion of the NGC 1977 and M42 H II regions. Based on observations collected at IRAM, Pico Veleta, Spain, at ESO, La Silla, Chile, and at JCMT, Mauna Kea, Hawaii.

  15. Dust Attenuation and H(alpha) Star Formation Rates of Z Approx. 0.5 Galaxies

    Science.gov (United States)

    Ly, Chun; Malkan, Matthew A.; Kashikawa, Nobunari; Ota, Kazuaki; Shimasaku, Kazuhiro; Iye, Masanori; Currie, Thayne

    2012-01-01

    Using deep narrow-band and broad-band imaging, we identify 401 z approximately 0.40 and 249 z approximately 0.49 H-alpha line-emitting galaxies in the Subaru Deep Field. Compared to other H-alpha surveys at similar redshifts, our samples are unique since they probe lower H-alpha luminosities, are augmented with multi-wavelength (rest-frame 1000AA--1.5 microns) coverage, and a large fraction (20%) of our samples has already been spectroscopically confirmed. Our spectra allow us to measure the Balmer decrement for nearly 60 galaxies with H-beta detected above 5-sigma. The Balmer decrements indicate an average extinction of A(H-alpha)=0.7(uparrow){+1.4}_{-0.7} mag. We find that the Balmer decrement systematically increases with higher H-alpha luminosities and with larger stellar masses, in agreement with previous studies with sparser samples. We find that the SFRs estimated from modeling the spectral energy distribution (SED) is reliable---we derived an "intrinsic" H-alpha luminosity which is then reddened assuming the color excess from SED modeling. The SED-predicted H-alpha luminosity agrees with H-alpha narrow-band measurements over 3 dex (rms of 0.25 dex). We then use the SED SFRs to test different statistically-based dust corrections for H-alpha and find that adopting one magnitude of extinction is inappropriate: galaxies with lower luminosities are less reddened. We find that the luminosity-dependent dust correction of Hopkins et al. yields consistent results over 3 dex (rms of 0.3 dex). Our comparisons are only possible by assuming that stellar reddening is roughly half of nebular reddening. The strong correspondence argue that with SED modeling, we can derive reliable intrinsic SFRs even in the absence of H-alpha measurements at z approximately 0.5.

  16. H2 formation on interstellar dust grains: The viewpoints of theory, experiments, models and observations

    Science.gov (United States)

    Wakelam, Valentine; Bron, Emeric; Cazaux, Stephanie; Dulieu, Francois; Gry, Cécile; Guillard, Pierre; Habart, Emilie; Hornekær, Liv; Morisset, Sabine; Nyman, Gunnar; Pirronello, Valerio; Price, Stephen D.; Valdivia, Valeska; Vidali, Gianfranco; Watanabe, Naoki

    2017-12-01

    Molecular hydrogen is the most abundant molecule in the universe. It is the first one to form and survive photo-dissociation in tenuous environments. Its formation involves catalytic reactions on the surface of interstellar grains. The micro-physics of the formation process has been investigated intensively in the last 20 years, in parallel of new astrophysical observational and modeling progresses. In the perspectives of the probable revolution brought by the future satellite JWST, this article has been written to present what we think we know about the H2 formation in a variety of interstellar environments.

  17. Star formation in a high-pressure environment: an SMA view of the Galactic Centre dust ridge

    Science.gov (United States)

    Walker, D. L.; Longmore, S. N.; Zhang, Q.; Battersby, C.; Keto, E.; Kruijssen, J. M. D.; Ginsburg, A.; Lu, X.; Henshaw, J. D.; Kauffmann, J.; Pillai, T.; Mills, E. A. C.; Walsh, A. J.; Bally, J.; Ho, L. C.; Immer, K.; Johnston, K. G.

    2018-02-01

    The star formation rate in the Central Molecular Zone (CMZ) is an order of magnitude lower than predicted according to star formation relations that have been calibrated in the disc of our own and nearby galaxies. Understanding how and why star formation appears to be different in this region is crucial if we are to understand the environmental dependence of the star formation process. Here, we present the detection of a sample of high-mass cores in the CMZ's `dust ridge' that have been discovered with the Submillimeter Array. These cores range in mass from ˜50-2150 M⊙ within radii of 0.1-0.25 pc. All appear to be young (pre-UCHII), meaning that they are prime candidates for representing the initial conditions of high-mass stars and sub-clusters. We report that at least two of these cores (`c1' and `e1') contain young, high-mass protostars. We compare all of the detected cores with high-mass cores and clouds in the Galactic disc and find that they are broadly similar in terms of their masses and sizes, despite being subjected to external pressures that are several orders of magnitude greater, ˜108 K cm-3, as opposed to ˜105 K cm-3. The fact that >80 per cent of these cores do not show any signs of star-forming activity in such a high-pressure environment leads us to conclude that this is further evidence for an increased critical density threshold for star formation in the CMZ due to turbulence.

  18. SVGenes: a library for rendering genomic features in scalable vector graphic format.

    Science.gov (United States)

    Etherington, Graham J; MacLean, Daniel

    2013-08-01

    Drawing genomic features in attractive and informative ways is a key task in visualization of genomics data. Scalable Vector Graphics (SVG) format is a modern and flexible open standard that provides advanced features including modular graphic design, advanced web interactivity and animation within a suitable client. SVGs do not suffer from loss of image quality on re-scaling and provide the ability to edit individual elements of a graphic on the whole object level independent of the whole image. These features make SVG a potentially useful format for the preparation of publication quality figures including genomic objects such as genes or sequencing coverage and for web applications that require rich user-interaction with the graphical elements. SVGenes is a Ruby-language library that uses SVG primitives to render typical genomic glyphs through a simple and flexible Ruby interface. The library implements a simple Page object that spaces and contains horizontal Track objects that in turn style, colour and positions features within them. Tracks are the level at which visual information is supplied providing the full styling capability of the SVG standard. Genomic entities like genes, transcripts and histograms are modelled in Glyph objects that are attached to a track and take advantage of SVG primitives to render the genomic features in a track as any of a selection of defined glyphs. The feature model within SVGenes is simple but flexible and not dependent on particular existing gene feature formats meaning graphics for any existing datasets can easily be created without need for conversion. The library is provided as a Ruby Gem from https://rubygems.org/gems/bio-svgenes under the MIT license, and open source code is available at https://github.com/danmaclean/bioruby-svgenes also under the MIT License. dan.maclean@tsl.ac.uk.

  19. Enhanced H2O formation through dust grain chemistry in X-ray exposed environments

    NARCIS (Netherlands)

    Meijerink, R.; Cazaux, S.; Spaans, M.

    Context. The ultraluminous infrared galaxy Mrk 231, which shows signs of both black hole accretion and star formation, exhibits very strong water rotational lines between lambda = 200-670 mu m, comparable to the strength of the CO rotational lines. High-redshift quasars also show similar CO and H2O

  20. Experimental evidence of formation of transparent exopolymer particles (TEP) and POC export provoked by dust addition under current and high pCO2 conditions.

    Science.gov (United States)

    Louis, Justine; Pedrotti, Maria Luiza; Gazeau, Frédéric; Guieu, Cécile

    2017-01-01

    The evolution of organic carbon export to the deep ocean, under anthropogenic forcing such as ocean warming and acidification, needs to be investigated in order to evaluate potential positive or negative feedbacks on atmospheric CO2 concentrations, and therefore on climate. As such, modifications of aggregation processes driven by transparent exopolymer particles (TEP) formation have the potential to affect carbon export. The objectives of this study were to experimentally assess the dynamics of organic matter, after the simulation of a Saharan dust deposition event, through the measurement over one week of TEP abundance and size, and to evaluate the effects of ocean acidification on TEP formation and carbon export following a dust deposition event. Three experiments were performed in the laboratory using 300 L tanks filled with filtered seawater collected in the Mediterranean Sea, during two 'no bloom' periods (spring at the start of the stratification period and autumn at the end of this stratification period) and during the winter bloom period. For each experiment, one of the two tanks was acidified to reach pH conditions slightly below values projected for 2100 (~ 7.6-7.8). In both tanks, a dust deposition event of 10 g m-2 was simulated at the surface. Our results suggest that Saharan dust deposition triggered the abiotic formation of TEP, leading to the formation of organic-mineral aggregates. The amount of particulate organic carbon (POC) exported was proportional to the flux of lithogenic particles to the sediment traps. Depending on the season, the POC flux following artificial dust deposition ranged between 38 and 90 mg m-2 over six experimental days. Such variability is likely linked to the seasonal differences in the quality and quantity of TEP-precursors initially present in seawater. Finally, these export fluxes were not significantly different at the completion of the three experiments between the two pH conditions.

  1. Agglomeration processes sustained by dust density waves in Ar/C2H2 plasma: From C2H2 injection to the formation of an organized structure

    International Nuclear Information System (INIS)

    Dap, Simon; Hugon, Robert; Poucques, Ludovic de; Briancon, Jean-Luc; Bougdira, Jamal; Lacroix, David

    2013-01-01

    In this paper, an experimental investigation of dust particle agglomeration in a capacitively coupled RF discharge is reported. Carbonaceous particles are produced in an argon plasma using acetylene. As soon as the particle density becomes sufficient, dust density waves (DDWs) are spontaneously excited within the cathode sheath. Recently, it was proven that DDWs can significantly enhance the agglomeration rate between particles by transferring them a significant kinetic energy. Thus, it helps them to overcome Coulomb repulsion. The influence of this mechanism is studied from acetylene injection to the formation of very large agglomerates forming an organized structure after a few dozens of seconds. For this purpose, three diagnostic tools are used: extinction measurements to probe nanometer-sized particles, fast imaging for large agglomerates and a dust extraction technique developed for ex-situ analysis.

  2. Outstanding diversity of heritage features in large geological bodies: The Gachsaran Formation in southwest Iran

    Science.gov (United States)

    Habibi, Tahereh; Ruban, Dmitry A.

    2017-09-01

    The ideas of geological heritage and geological diversity have become very popular in the modern science. These are usually applied to geological domains or countries, provinces, districts, etc. Additionally, it appears to be sensible to assess heritage value of geological bodies. The review of the available knowledge and the field investigation of the Gachsaran Formation (lower Miocene) in southwest Iran permit to assign its features and the relevant phenomena to as much as 10 geological heritage types, namely stratigraphical, sedimentary, palaeontological, palaeogeographical, geomorphological, hydrogeological, engineering, structural, economical, and geohistorical types. The outstanding diversity of the features of this formation determines its high heritage value and the national rank. The geological heritage of the Gachsaran Formation is important to scientists, educators, and tourists. The Papoon and Abolhaiat sections of this formation are potential geological heritage sites, although these do not represent all above-mentioned types. The large territory, where the Gachsaran Formation outcrop, has a significant geoconservation and geotourism potential, and further inventory of geosites on this territory is necessary. Similar studies of geological bodies in North Africa and the Middle East can facilitate better understanding of the geological heritage of this vast territory.

  3. The mineralogy of newly formed dust in active galactic nuclei

    Science.gov (United States)

    Srinivasan, Sundar; Kemper, F.; Zhou, Yeyan; Hao, Lei; Gallagher, Sarah C.; Shangguan, Jinyi; Ho, Luis C.; Xie, Yanxia; Scicluna, Peter; Foucaud, Sebastien; Peng, Rita H. T.

    2017-12-01

    The tori around active galactic nuclei (AGN) are potential formation sites for large amounts of dust, and they may help resolve the so-called dust budget crisis at high redshift. We investigate the dust composition in 53 of the 87 Palomar Green (PG) quasars showing the 9.7 μm silicate feature in emission. By simultaneously fitting the mid-infrared spectroscopic features and the underlying continuum, we estimate the mass fraction in various amorphous and crystalline dust species. We find that the dust consists predominantly of alumina and amorphous silicates, with a small fraction in crystalline form. The mean crystallinity is 8 ±6%, with more than half of the crystallinities greater than 5%, well above the upper limit determined for the Galaxy. Higher values of crystallinity are found for higher oxide fractions and for more luminous sources.

  4. Changes in the Silicate Dust Features of the Symbiotic Star R Aquarii Prior to the Upcoming 2022 Eclipse and Periastron Events

    Science.gov (United States)

    Omelian, Eric; Sankrit, Ravi; Helton, Andrew; Gorti, Uma; Wagner, R. Mark

    2018-01-01

    The symbiotic star, R Aquarii (R Aqr) consists of a dusty, pulsating Mira (period 387 days) and a hot white dwarf (WD) that orbit each other with a period of about 44 years. Based on the light curve from ca. 1890 CE onwards, and associated nebular and jet activity, it has been established (with a high degree of confidence) that the WD eclipses the Mira around the time of the periastron passage. One of the phenomena associated with this phase in the orbit is enhanced accretion onto the WD, which in turn energizes the jet outflow. The next eclipse is imminent, and it is estimated that periastron will occur in 2022. Infrared observations of R Aqr have established that the emission consists of a thermal spectrum with an effective temperature of about 2500 K with superposed silicate dust features. These silicate features are known to vary with time, and UKIRT spectra taken within a single Mira phase have shown that some of the variation is correlated with the pulsation of the dust envelope of the AGB star.We have used the FORCAST instrument on SOFIA to observe R Aqr during Cycles 4 and 5 as part of an ongoing monitoring of the system as it goes through eclipse and periastron. Photometry between 6 and 37 μm, and spectra covering the 10 and 18 μm silicate features have shown significant changes in the spectrum compared with earlier data in the same wavelength range obtained by ISO at an epoch closer to apastron. We present our data along with archival data from other IR observatories and use them to characterize the changes in the silicate emission. These data are presented along with model calculations using DUSTY and RADMC-3D that we have used to explore the changes in dust properties that are necessary to explain the differences in the emission profiles. We also present our plans for continued monitoring of R Aqr through the upcoming eclipse, which is required in order to separate the effects of pulsation from the longer-term orbital effects on the dust profiles.

  5. GOODS-HERSCHEL: STAR FORMATION, DUST ATTENUATION, AND THE FIR–RADIO CORRELATION ON THE MAIN SEQUENCE OF STAR-FORMING GALAXIES UP TO z ≃ 4

    Energy Technology Data Exchange (ETDEWEB)

    Pannella, M.; Elbaz, D.; Daddi, E.; Hwang, H. S.; Schreiber, C.; Strazzullo, V.; Aussel, H.; Bethermin, M.; Cibinel, A.; Juneau, S.; Floc’h, E. Le; Leiton, R. [Laboratoire AIM-Paris-Saclay, CEA/DSM/Irfu—CNRS—Université Paris Diderot, CEA-Saclay, F-91191 Gif-sur-Yvette (France); Dickinson, M. [National Optical Astronomy Observatory, 950 North Cherry Avenue, Tucson, AZ 85719 (United States); Buat, V. [Aix-Marseille Université, CNRS, LAM (Laboratoire d’Astrophysique de Marseille) UMR7326, F-13388, Marseille (France); Charmandaris, V.; Magdis, G. [Institute for Astronomy, Astrophysics, Space Applications and Remote Sensing, National Observatory of Athens, 15236, Penteli (Greece); Ivison, R. J. [European Southern Observatory, Karl-Schwarzschild-Strasse 2, D-85748 Garching (Germany); Borgne, D. Le [Institut d’Astrophysique de Paris, UMR 7095, CNRS, 98bis boulevard Arago, F-75005 Paris (France); Lin, L. [Institute of Astronomy and Astrophysics, Academia Sinica, Taipei 106, Taiwan (China); Morrison, G. E. [Institute for Astronomy, University of Hawaii, Honolulu, Hawaii, HI-96822 (United States); and others

    2015-07-10

    We use deep panchromatic data sets in the GOODS-N field, from GALEX to the deepest Herschel far-infrared (FIR) and VLA radio continuum imaging, to explore the evolution of star-formation activity and dust attenuation properties of star-forming galaxies to z ≃ 4, using mass-complete samples. Our main results can be summarized as follows: (i) the slope of the star-formation rate–M{sub *} correlation is consistent with being constant ≃0.8 up to z ≃ 1.5, while its normalization keeps increasing with redshift; (ii) for the first time we are able to explore the FIR–radio correlation for a mass-selected sample of star-forming galaxies: the correlation does not evolve up to z ≃ 4; (iii) we confirm that galaxy stellar mass is a robust proxy for UV dust attenuation in star-forming galaxies, with more massive galaxies being more dust attenuated. Strikingly, we find that this attenuation relation evolves very weakly with redshift, with the amount of dust attenuation increasing by less than 0.3 mag over the redshift range [0.5–4] for a fixed stellar mass; (iv) the correlation between dust attenuation and the UV spectral slope evolves with redshift, with the median UV slope becoming bluer with redshift. By z ≃ 3, typical UV slopes are inconsistent, given the measured dust attenuations, with the predictions of commonly used empirical laws. (v) Finally, building on existing results, we show that gas reddening is marginally larger (by a factor of around 1.3) than the stellar reddening at all redshifts probed. Our results support a scenario where the ISM conditions of typical star-forming galaxies evolve with redshift, such that at z ≥ 1.5 Main Sequence galaxies have ISM conditions moving closer to those of local starbursts.

  6. Prominent features in isotopic, chemical and dust stratigraphies from coastal East Antarctic ice sheet (Eastern Wilkes Land).

    Science.gov (United States)

    Caiazzo, L; Baccolo, G; Barbante, C; Becagli, S; Bertò, M; Ciardini, V; Crotti, I; Delmonte, B; Dreossi, G; Frezzotti, M; Gabrieli, J; Giardi, F; Han, Y; Hong, S-B; Hur, S D; Hwang, H; Kang, J-H; Narcisi, B; Proposito, M; Scarchilli, C; Selmo, E; Severi, M; Spolaor, A; Stenni, B; Traversi, R; Udisti, R

    2017-06-01

    In this work we present the isotopic, chemical and dust stratigraphies of two snow pits sampled in 2013/14 at GV7 (coastal East Antarctica: 70°41' S - 158°51' E, 1950 m a.s.l.). A large number of chemical species are measured aiming to study their potentiality as environmental changes markers. Seasonal cluster backward trajectories analysis was performed and compared with chemical marker stratigraphies. Sea spray aerosol is delivered to the sampling site together with snow precipitation especially in autumn-winter by air masses arising from Western Pacific Ocean sector. Dust show maximum concentration in spring when the air masses arising from Ross Sea sector mobilize mineral dust from ice-free areas of the Transantarctic mountains. The clear seasonal pattern of sulfur oxidized compounds allows the dating of the snow-pit and the calculation of the mean accumulation rate, which is 242 ± 71 mm w.e. for the period 2008-2013. Methanesulfonic acid and NO 3 - do not show any concentration decreasing trend as depth increases, also considering a 12 m firn core record. Therefore these two compounds are not affected by post-depositional processes at this site and can be considered reliable markers for past environmental changes reconstruction. The rBC snow-pit record shows the highest values in summer 2012 likely related to large biomass burning even occurred in Australia in this summer. The undisturbed accumulation rate for this site is demonstrated by the agreement between the chemical stratigraphies and the annual accumulation rate of the two snow-pits analysed in Italian and Korean laboratories. Copyright © 2017 Elsevier Ltd. All rights reserved.

  7. On the Spatially Resolved Star Formation History in M51. I. Hybrid UV+IR Star Formation Laws and IR Emission from Dust Heated by Old Stars

    Science.gov (United States)

    Eufrasio, R. T.; Lehmer, B. D.; Zezas, A.; Dwek, E.; Arendt, R. G.; Basu-Zych, A.; Wiklind, T.; Yukita, M.; Fragos, T.; Hornschemeier, A. E.; Markwardt, L.; Ptak, A.; Tzanavaris, P.

    2017-12-01

    We present LIGHTNING, a new spectral energy distribution fitting procedure, capable of quickly and reliably recovering star formation history (SFH) and extinction parameters. The SFH is modeled as discrete steps in time. In this work, we assumed lookback times of 0-10 Myr, 10-100 Myr, 0.1-1 Gyr, 1-5 Gyr, and 5-13.6 Gyr. LIGHTNING consists of a fully vectorized inversion algorithm to determine SFH step intensities and combines this with a grid-based approach to determine three extinction parameters. We apply our procedure to the extensive far-UV-to-far-IR photometric data of M51, convolved to a common spatial resolution and pixel scale, and make the resulting maps publicly available. We recover, for M51a, a peak star formation rate (SFR) between 0.1 and 5 Gyr ago, with much lower star formation activity over the past 100 Myr. For M51b, we find a declining SFR toward the present day. In the outskirt regions of M51a, which includes regions between M51a and M51b, we recover an SFR peak between 0.1 and 1 Gyr ago, which corresponds to the effects of the interaction between M51a and M51b. We utilize our results to (1) illustrate how UV+IR hybrid SFR laws vary across M51 and (2) provide first-order estimates for how the IR luminosity per unit stellar mass varies as a function of the stellar age. From the latter result, we find that IR emission from dust heated by stars is not always associated with young stars and that the IR emission from M51b is primarily powered by stars older than 5 Gyr.

  8. When the dust settles: stable xenon isotope constraints on the formation of nuclear fallout.

    Science.gov (United States)

    Cassata, W S; Prussin, S G; Knight, K B; Hutcheon, I D; Isselhardt, B H; Renne, P R

    2014-11-01

    Nuclear weapons represent one of the most immediate threats of mass destruction. In the event that a procured or developed nuclear weapon is detonated in a populated metropolitan area, timely and accurate nuclear forensic analysis and fallout modeling would be needed to support attribution efforts and hazard assessments. Here we demonstrate that fissiogenic xenon isotopes retained in radioactive fallout generated by a nuclear explosion provide unique constraints on (1) the timescale of fallout formation, (2) chemical fractionation that occurs when fission products and nuclear fuel are incorporated into fallout, and (3) the speciation of fission products in the fireball. Our data suggest that, in near surface nuclear tests, the presence of a significant quantity of metal in a device assembly, combined with a short time allowed for mixing with the ambient atmosphere (seconds), may prevent complete oxidation of fission products prior to their incorporation into fallout. Xenon isotopes thus provide a window into the chemical composition of the fireball in the seconds that follow a nuclear explosion, thereby improving our understanding of the physical and thermo-chemical conditions under which fallout forms. Copyright © 2014 Elsevier Ltd. All rights reserved.

  9. Features of destruction of solids by laser radiation in process of formation of multiply charged ions

    International Nuclear Information System (INIS)

    Bedilov, R.M.; Bedilov, M.R.; Sabitov, M.M.; Matnazarov, A.; Niyozov, B.

    2004-01-01

    Full text: It is known, under interaction of laser radiation with solid surface a power density q > 0.01 W/cm 2 are observed destruction of a solid and issue of electrons, ions, neutrals, neutrons, plasmas, and also radiation in a wide ranges of a spectra. Despite of a plenty of works, devoted to study of processes of interaction, the studies of feature of destruction of solids by laser beam in process of formation multiply charged ions are insufficiently investigated. The results of study feature of destruction of solids by laser radiation in process of formation multiply charged ions are given in this work. In our experiments, we used the mass spectrometer with single-channel laser radiation. The laser installation had the following parameters: a power density of laser radiation q=(0.1-50) GW/cm 2 ; the angle of incidence a=18 deg. to the target surface Al, (W). It was obtained experimentally dynamics of morphology of destruction and also mass - charge and energy spectra of multiply charged ions formed under interaction of laser radiation with Al (W) in the intensity range q=(0.1-50) GW/cm 2 . These studies showed features of destruction Al(W) by laser radiation, i.e. invariable of value evaporation mass from a surface of a solid increase as the laser intensity q. But thus temperature a pair increases in accordance with increase of flow density of a laser radiation. Increase of temperature the pair gives in formation of multiply charged plasma. It is typical that, as q of the laser increases the maximum charge number of ions in laser plasma considerably increase and their energy spectra extend toward higher energies. For example, under q=0.1 GW/cm 2 and 50 GW/cm 2 the maximum charge number of ions Al (W) are equal to Z max = 1 and 7, respectively. From the experimental data obtained, we can conclude that, the formed multiply charged plasma practically completely absorption laser radiation and 'shielding' a target surface for various metals at power densities

  10. Stellar Absorption Line Analysis of Local Star-forming Galaxies: The Relation between Stellar Mass, Metallicity, Dust Attenuation, and Star Formation Rate

    International Nuclear Information System (INIS)

    Jabran Zahid, H.; Kudritzki, Rolf-Peter; Ho, I-Ting; Conroy, Charlie; Andrews, Brett

    2017-01-01

    We analyze the optical continuum of star-forming galaxies in the Sloan Digital Sky Survey by fitting stacked spectra with stellar population synthesis models to investigate the relation between stellar mass, stellar metallicity, dust attenuation, and star formation rate. We fit models calculated with star formation and chemical evolution histories that are derived empirically from multi-epoch observations of the stellar mass–star formation rate and the stellar mass–gas-phase metallicity relations, respectively. We also fit linear combinations of single-burst models with a range of metallicities and ages. Star formation and chemical evolution histories are unconstrained for these models. The stellar mass–stellar metallicity relations obtained from the two methods agree with the relation measured from individual supergiant stars in nearby galaxies. These relations are also consistent with the relation obtained from emission-line analysis of gas-phase metallicity after accounting for systematic offsets in the gas-phase metallicity. We measure dust attenuation of the stellar continuum and show that its dependence on stellar mass and star formation rate is consistent with previously reported results derived from nebular emission lines. However, stellar continuum attenuation is smaller than nebular emission line attenuation. The continuum-to-nebular attenuation ratio depends on stellar mass and is smaller in more massive galaxies. Our consistent analysis of stellar continuum and nebular emission lines paves the way for a comprehensive investigation of stellar metallicities of star-forming and quiescent galaxies.

  11. A PUBLIC CATALOG OF STELLAR MASSES, STAR FORMATION AND METALLICITY HISTORIES, AND DUST CONTENT FROM THE SLOAN DIGITAL SKY SURVEY USING VESPA

    International Nuclear Information System (INIS)

    Tojeiro, Rita; Wilkins, Stephen; Heavens, Alan F.; Panter, Ben; Jimenez, Raul

    2009-01-01

    We applied the VESPA algorithm to the Sloan Digital Sky Survey final data release of the Main Galaxies and Luminous Red Galaxies samples. The result is a catalog of stellar masses, detailed star formation and metallicity histories and dust content of nearly 800,000 galaxies. We make the catalog public via a T-SQL database, which is described in detail in this paper. We present the results using a range of stellar population and dust models, and will continue to update the catalog as new and improved models are made public. We also present a brief exploration of the catalog, and show that the quantities derived are robust: luminous red galaxies can be described by one to three populations, whereas a main galaxy sample galaxy needs on average two to five; red galaxies are older and less dusty; the dust values we recover are well correlated with measured Balmer decrements and star formation rates are also in agreement with previous measurements. We find that whereas some derived quantities are robust to the choice of modelling, many are still not.

  12. Analysis of the formation of the Lop Nur Ear feature using multisource satellite imagery

    Science.gov (United States)

    Gao, Zhihong; Gong, Huaze; Shao, Yun; Wang, Longfei

    2014-01-01

    Lop Nur, as the center of China and Eurasia, has a special position in geoscience research. The objective of this paper is to give a comprehensive and reasonable explanation of how the unique Lop Nur Ear feature formed. Because of the severe natural environment, the extensive area, and the difficult field work conditions, remote sensing data are highly suitable for the study of the Lop Nur lake basin. Three types of multisource remote sensing data are applied in this study. Combined with field investigations and laboratory measurements, the causes of the "Ear" feature are explored from different points of view. The results indicate that surface roughness is the most direct cause, while the salinity and depth of the subsurface dry medium layer are the root causes, and topography is an important environmental factor for the formation of the Lop Nur Ear feature. The results of this study help to solve a geological mystery and also provide a new insight into climate change and the demise of ancient civilizations.

  13. Probing the Cold Dust Emission in the AB Aur Disk: A Dust Trap in a Decaying Vortex?

    Energy Technology Data Exchange (ETDEWEB)

    Fuente, Asunción; Bachiller, Rafael [Observatorio Astronómico Nacional (OAN, IGN), Apdo 112, E-28803 Alcalá de Henares (Spain); Baruteau, Clément; Carmona, Andrés; Berné, Olivier [IRAP, Université de Toulouse, CNRS, UPS, Toulouse (France); Neri, Roberto [Institut de Radioastronomie Millimétrique (IRAM), 300 rue de la Piscine, F-38406 Saint Martin d’Hères (France); Agúndez, Marcelino; Goicoechea, Javier R.; Cernicharo, José, E-mail: a.fuente@oan.es [Instituto de Ciencia de Materiales de Madrid (ICMM-CSIC), E-28049 Cantoblanco, Madrid (Spain)

    2017-09-01

    One serious challenge for planet formation is the rapid inward drift of pebble-sized dust particles in protoplanetary disks. Dust trapping at local maxima in the disk gas pressure has received much theoretical attention but still lacks observational support. The cold dust emission in the AB Aur disk forms an asymmetric ring at a radius of about 120 au, which is suggestive of dust trapping in a gas vortex. We present high spatial resolution (0.″58 × 0.″78 ≈ 80 × 110 au) NOEMA observations of the 1.12 mm and 2.22 mm dust continuum emission from the AB Aur disk. Significant azimuthal variations of the flux ratio at both wavelengths indicate a size segregation of the large dust particles along the ring. Our continuum images also show that the intensity variations along the ring are smaller at 2.22 mm than at 1.12 mm, contrary to what dust trapping models with a gas vortex have predicted. Our two-fluid (gas+dust) hydrodynamical simulations demonstrate that this feature is well explained if the gas vortex has started to decay due to turbulent diffusion, and dust particles are thus losing the azimuthal trapping on different timescales depending on their size. The comparison between our observations and simulations allows us to constrain the size distribution and the total mass of solid particles in the ring, which we find to be of the order of 30 Earth masses, enough to form future rocky planets.

  14. Features of austenite formation in low-carbon steel upon heating in the intercritical temperature range

    Science.gov (United States)

    Panov, D. O.; Smirnov, A. I.

    2017-11-01

    The features of austenite formation upon continuous heating of low-carbon steel at the rates of 90-0.15 K/s in the intercritical temperature range (ICTR) have been studied. It has been found that, in the initially high-tempered, initially quenched, and initially cold-deformed steel, the α → γ transition in the ICTR consists of three stages. The thermokinetic diagrams of the austenite formation with the indication of the positions of the critical points Ac 1 and Ac 3 and also of the temperature ranges of the development of each identified stage of the α → γ transformation have been constructed. A complex of structural studies has been carried out, and a scheme of the austenite formation upon continuous heating at a rate of 90 K/s in the ICTR for the initially high-tempered steel, initially quenched steel, and initially cold-deformed low-carbon steel has been suggested, which reflects all stages of this process.

  15. A population of massive, luminous galaxies hosting heavily dust-obscured gamma-ray bursts: Implications for the use of GRBs as tracers of cosmic star formation

    Energy Technology Data Exchange (ETDEWEB)

    Perley, D. A. [Department of Astronomy, California Institute of Technology, MC 249-17, 1200 East California Blvd., Pasadena, CA 91125 (United States); Levan, A. J. [Department of Physics, University of Warwick, Coventry CV4 7AL (United Kingdom); Tanvir, N. R. [Department of Physics and Astronomy, University of Leicester, Leicester LE1 7RH (United Kingdom); Cenko, S. B.; Bloom, J. S.; Filippenko, A. V.; Morgan, A. N. [Department of Astronomy, University of California, Berkeley, CA 94720-3411 (United States); Hjorth, J.; Krühler, T.; Fynbo, J. P. U.; Milvang-Jensen, B. [Dark Cosmology Centre, Niels Bohr Institute, Copenhagen (Denmark); Fruchter, A.; Kalirai, J. [Space Telescope Science Institute, Baltimore, MD 21218 (United States); Jakobsson, P. [Centre for Astrophysics and Cosmology, Science Institute, University of Iceland, Dunhagi 5, 107 Reykjavík (Iceland); Prochaska, J. X. [Department of Astronomy and Astrophysics, UCO/Lick Observatory, University of California, Santa Cruz, CA 95064 (United States); Silverman, J. M., E-mail: dperley@astro.caltech.edu [Department of Astronomy, University of Texas, Austin, TX 78712 (United States)

    2013-12-01

    We present observations and analysis of the host galaxies of 23 heavily dust-obscured gamma-ray bursts (GRBs) observed by the Swift satellite during the years 2005-2009, representing all GRBs with an unambiguous host-frame extinction of A{sub V} > 1 mag from this period. Deep observations with Keck, Gemini, Very Large Telescope, Hubble Space Telescope, and Spitzer successfully detect the host galaxies and establish spectroscopic or photometric redshifts for all 23 events, enabling us to provide measurements of the intrinsic host star formation rates, stellar masses, and mean extinctions. Compared to the hosts of unobscured GRBs at similar redshifts, we find that the hosts of dust-obscured GRBs are (on average) more massive by about an order of magnitude and also more rapidly star forming and dust obscured. While this demonstrates that GRBs populate all types of star-forming galaxies, including the most massive, luminous systems at z ≈ 2, at redshifts below 1.5 the overall GRB population continues to show a highly significant aversion to massive galaxies and a preference for low-mass systems relative to what would be expected given a purely star-formation-rate-selected galaxy sample. This supports the notion that the GRB rate is strongly dependent on metallicity, and may suggest that the most massive galaxies in the universe underwent a transition in their chemical properties ∼9 Gyr ago. We also conclude that, based on the absence of unobscured GRBs in massive galaxies and the absence of obscured GRBs in low-mass galaxies, the dust distributions of the lowest-mass and the highest-mass galaxies are relatively homogeneous, while intermediate-mass galaxies (∼10{sup 9} M {sub ☉}) have diverse internal properties.

  16. Fractal dust grains in plasma

    International Nuclear Information System (INIS)

    Huang, F.; Peng, R. D.; Liu, Y. H.; Chen, Z. Y.; Ye, M. F.; Wang, L.

    2012-01-01

    Fractal dust grains of different shapes are observed in a radially confined magnetized radio frequency plasma. The fractal dimensions of the dust structures in two-dimensional (2D) horizontal dust layers are calculated, and their evolution in the dust growth process is investigated. It is found that as the dust grains grow the fractal dimension of the dust structure decreases. In addition, the fractal dimension of the center region is larger than that of the entire region in the 2D dust layer. In the initial growth stage, the small dust particulates at a high number density in a 2D layer tend to fill space as a normal surface with fractal dimension D = 2. The mechanism of the formation of fractal dust grains is discussed.

  17. Stardust Interstellar Preliminary Examination IV: Scanning Transmission X-Ray Microscopy Analyses of Impact Features in the Stardust Interstellar Dust Collector

    Science.gov (United States)

    Butterworth, Anna L.; Westphal, Andrew J.; Frank, David R.; Allen, Carlton C.; Bechtel, Hans A.; Sandford, Scott A.; Tsou, Peter; Zolensky, Michael E.

    2014-01-01

    We report the quantitative characterization by synchrotron soft X-ray spectroscopy of 31 potential impact features in the aerogel capture medium of the Stardust Interstellar Dust Collector. Samples were analyzed in aerogel by acquiring high spatial resolution maps and high energy-resolution spectra of major rock-forming elements Mg, Al, Si, Fe, and others. We developed diagnostic screening tests to reject spacecraft secondary ejecta and terrestrial contaminants from further consideration as interstellar dust candidates. The results support an extraterrestrial origin for three interstellar candidates: I1043,1,30 (Orion) is a 3 pg particle with Mg-spinel, forsterite, and an iron-bearing phase. I1047,1,34 (Hylabrook) is a 4 pg particle comprising an olivine core surrounded by low-density, amorphous Mg-silicate and amorphous Fe, Cr, and Mn phases. I1003,1,40 (Sorok) has the track morphology of a high-speed impact, but contains no detectable residue that is convincingly distinguishable from the background aerogel. Twenty-two samples with an anthropogenic origin were rejected, including four secondary ejecta from impacts on the Stardust spacecraft aft solar panels, nine ejecta from secondary impacts on the Stardust Sample Return Capsule, and nine contaminants lacking evidence of an impact. Other samples in the collection included I1029,1,6, which contained surviving solar system impactor material. Four samples remained ambiguous: I1006,2,18, I1044,2,32, and I1092,2,38 were too dense for analysis, and we did not detect an intact projectile in I1044,3,33. We detected no radiation effects from the synchrotron soft X-ray analyses; however, we recorded the effects of synchrotron hard X-ray radiation on I1043,1,30 and I1047,1,34.

  18. Formation Features of the Customer Segments for the Network Organizations in the Smart Era

    Directory of Open Access Journals (Sweden)

    Elena V. Yaroshenko

    2017-01-01

    Full Text Available Modern network society is based on the advances of information era of Smart, connecting information and communication technologies, intellectual resources and new forms of managing in the global electronic space. It leads to domination of network forms of the organization of economic activity. Many experts prove the importance of segmentation process of consumers when developing competitive strategy of the organization. Every company needs a competent segmentation of the customer base, allowing to concentrate the attention on satisfaction of requirements of the most perspective client segments. The network organizations have specific characteristics; therefore, it is important to understand how they can influence on the formation of client profiles. It causes the necessity of the network organizations’ research in terms of management of high-profitable client segments.The aim of this study is to determine the characteristics of the market segmentation and to choose the key customers for the network organizations. This purpose has defined the statement and the solution of the following tasks: to explore characteristic features of the network forms of the organization of economic activity of the companies, their prospects, Smart technologies’ influence on them; to reveal the work importance with different client profiles; to explore the existing methods and tools of formation of key customer segments; to define criteria for selection of key groups; to reveal the characteristics of customer segments’ formation for the network organizations.In the research process, methods of the system analysis, a method of analogies, methods of generalizations, a method of the expert evaluations, methods of classification and clustering were applied.This paper explores the characteristics and principles of functioning of network organizations, the appearance of which is directly linked with the development of Smart society. It shows the influence on the

  19. Features of formation of the individual students in secondary and high school

    Directory of Open Access Journals (Sweden)

    V.O. Sutula

    2014-03-01

    Full Text Available Purpose: Analyzed features of motivation to achievement and need to praise the students of secondary and high school. Material: In the survey took part 1634 students of secondary school in Kharkov, Vinnitsa and Lugansk regions. Carried out a comprehensive psychological testing, which allowed to find out the level of motivation of students to achievement and need for praise. Results: It is shown that during the period of study at school from fifth to eleventh classes a number of students have a low motivation to achievements, and low need for praise. Confirmed provision indicates that the modern school is still not fully realized the potential of educational pedagogy. Conclusions: It is shown that the formation personality physical education students in general education is possible only with the active and conscious of their participation in various forms of sports and recreation activities undertaken in the modern school.

  20. Formation of microstructural features in hot-dip aluminized AISI 321 stainless steel

    Science.gov (United States)

    Huilgol, Prashant; Rajendra Udupa, K.; Udaya Bhat, K.

    2018-02-01

    Hot-dip aluminizing (HDA) is a proven surface coating technique for improving the oxidation and corrosion resistance of ferrous substrates. Although extensive studies on the HDA of plain carbon steels have been reported, studies on the HDA of stainless steels are limited. Because of the technological importance of stainless steels in high-temperature applications, studies of their microstructural development during HDA are needed. In the present investigation, the HDA of AISI 321 stainless steel was carried out in a pure Al bath. The microstructural features of the coating were studied using scanning electron microscopy and transmission electron microscopy. These studies revealed that the coating consists of two regions: an Al top coat and an aluminide layer at the interface between the steel and Al. The Al top coat was found to consist of intermetallic phases such as Al7Cr and Al3Fe dispersed in an Al matrix. Twinning was observed in both the Al7Cr and the Al3Fe phases. Furthermore, the aluminide layer comprised a mixture of nanocrystalline Fe2Al5, Al7Cr, and Al. Details of the microstructural features are presented, and their formation mechanisms are discussed.

  1. Features of the formation of the bodily aspect of gender identity in men

    Directory of Open Access Journals (Sweden)

    Harlanova M.M.

    2015-11-01

    Full Text Available The article examines the peculiarities of the bodily aspect of gender identity in men. The urgency of this work due to the fact that currently in Russia to study the influence of the bodily aspect to the whole structure of gender identity is given little attention. At the present time the problem of studying the physicality involved in domestic psychologists: Arina G. A., V. V. Nikolaev, A. S. Kostov, A. N. Borojevic, B. T. Sokolov, V. Yu., Baskakov, who agree in opinion on the necessity to study the influence of the morpho-biological patterns of gender identity, her social and personal "add-on" – of sex-role stereotypes, perceptions, behavior, preferences. However, studies supporting their interaction was not performed [7]. In the paper the following definitions: "gender identity", "gender", "differential socialization", "the Adonis complex". Produced comprehensive analysis of foreign sources for a detailed understanding of the studied phenomenon; analysis of the structural components and characteristics of the formation of the bodily aspect of gender identity in men with the help of specifically chosen tutorials. Discovered the distinctive features of the formation of the bodily aspect of gender identity in men and their reflection in sex-role behavior. We assume that men who are not satisfied with the perception of his own body, prone to distorted perceptions of sex-role images. The data obtained can provide the basis and prospects for development of programs of prevention, diagnostics and correction.

  2. Oil Spill Detection by SAR Images: Dark Formation Detection, Feature Extraction and Classification Algorithms

    Directory of Open Access Journals (Sweden)

    Konstantinos N. Topouzelis

    2008-10-01

    Full Text Available This paper provides a comprehensive review of the use of Synthetic Aperture Radar images (SAR for detection of illegal discharges from ships. It summarizes the current state of the art, covering operational and research aspects of the application. Oil spills are seriously affecting the marine ecosystem and cause political and scientific concern since they seriously effect fragile marine and coastal ecosystem. The amount of pollutant discharges and associated effects on the marine environment are important parameters in evaluating sea water quality. Satellite images can improve the possibilities for the detection of oil spills as they cover large areas and offer an economical and easier way of continuous coast areas patrolling. SAR images have been widely used for oil spill detection. The present paper gives an overview of the methodologies used to detect oil spills on the radar images. In particular we concentrate on the use of the manual and automatic approaches to distinguish oil spills from other natural phenomena. We discuss the most common techniques to detect dark formations on the SAR images, the features which are extracted from the detected dark formations and the most used classifiers. Finally we conclude with discussion of suggestions for further research. The references throughout the review can serve as starting point for more intensive studies on the subject.

  3. Oil Spill Detection by SAR Images: Dark Formation Detection, Feature Extraction and Classification Algorithms.

    Science.gov (United States)

    Topouzelis, Konstantinos N

    2008-10-23

    This paper provides a comprehensive review of the use of Synthetic Aperture Radar images (SAR) for detection of illegal discharges from ships. It summarizes the current state of the art, covering operational and research aspects of the application. Oil spills are seriously affecting the marine ecosystem and cause political and scientific concern since they seriously effect fragile marine and coastal ecosystem. The amount of pollutant discharges and associated effects on the marine environment are important parameters in evaluating sea water quality. Satellite images can improve the possibilities for the detection of oil spills as they cover large areas and offer an economical and easier way of continuous coast areas patrolling. SAR images have been widely used for oil spill detection. The present paper gives an overview of the methodologies used to detect oil spills on the radar images. In particular we concentrate on the use of the manual and automatic approaches to distinguish oil spills from other natural phenomena. We discuss the most common techniques to detect dark formations on the SAR images, the features which are extracted from the detected dark formations and the most used classifiers. Finally we conclude with discussion of suggestions for further research. The references throughout the review can serve as starting point for more intensive studies on the subject.

  4. FEATURES OF FORMATION OF COLLATERAL CIRCULATION IN PATIENTS WITH SUBCLAVIAN STEAL SYNDROME.

    Science.gov (United States)

    Kopolovets, I; Štefanič, P; Rusyn, V; Tóth, Š; Mashura, V; Berek, P

    2017-12-01

    To date in patients with subclavian steal syndrome diagnosis is only grade of stenosis or localization of occlusion described. Authors recommend to take into account also type of a collateral compensation of cerebral circulation for selection of an optimal treatment The objective of the research was to study the features of formation of collateral circulation in patients with subclavian steal syndrome. The authors described changes in the direction of blood flow in the extracranial vessels of 42 patients with subclavian steal syndrome. Latent subclavian steal syndrome was detected in 26.2% of patients, transient subclavian steal syndrome was found in 54.8% of patients, and a persistent course of the disease was observed in 19.9% of patients. Symptoms of vertebrobasilar insufficiency were detected in 26.6% of patients, and combination of chronic upper extremity ischemia and vertebrobasilar insufficiency was diagnosed in 73.8% of patients. When analyzing the features of collateral circulation in 64.3% of patients the extracranial compensatory mechanism was observed being provided by three main groups of collateral hemodynamic reallocation: the occipito-vertebral hemodynamic mechanism of compensation was detected in 38.1% of cases, the thyroid compensatory mechanism was found in 16.7% of cases, and the brain stem-occipital compensatory mechanism was observed in 9.5% of cases. In 35.7% of patients the intracranial compensatory mechanism was observed being provided by two main groups of collateral hemodynamic reallocation: the vertebro-vertebral compensatory mechanism was found in 21.4% of cases and cerebrobasilar compensatory mechanism was detected in 14.3% of cases. Consideration of the features of collateral circulation in patients with subclavian steal syndrome may serve as a prognostic criterion for selecting an optimal treatment tactics.Each of compensatory mechanisms has its own hemodynamic peculiarities. The occipito- vertebral compensatory mechanism has the

  5. Spatial features, problems and prospects for formation of united territorial communities in Kharkiv region

    Directory of Open Access Journals (Sweden)

    Kateryna Kravchenko

    2017-10-01

    Full Text Available In modern conditions of our country great attention of scientists devoted to the problems of improvement of territorial organization regional settlement systems. The process of decentralization of power creates entirely new conditions for the life of the regions of Kharkiv region. Formation of local communities should be focused on providing the public with maximum number of quality services. In every region of Ukraine there are territories, such as cities, that have a more intense level of development, have better living conditions than the peripheral rural areas. That is why the regional development planning is an important for aligning the economic capacity of the weaker regions on the regional level. The greatest socio-economic level of development will stand out of the community, which include large villages and townships, with important industrial and social facilities for the population with necessary services. With transport links and communication with the regional center of these towns can become new centers of economic development, «growth poles» of the region. Territorial communities legally formed in the Kharkiv region, according to the conditional basis of «preferred habitats residents» divided into: predominantly rural, rural-urban, and predominantly urban. Compared with other regions, the formation of local communities in Kharkiv region is quite slow, which indicates the existence of a significant number of problems. Important issues of formation of local communities in Kharkiv region are: complexity, diversity reform mentality of the population, the uncertainty of development priorities of communities. Among perspectives can be defined: two-level direct funding from the state, local budgets presence in the resource base, and a number of preferences of additional features to attract direct investment.

  6. Specific Features of Chip Making and Work-piece Surface Layer Formation in Machining Thermal Coatings

    Directory of Open Access Journals (Sweden)

    V. M. Yaroslavtsev

    2016-01-01

    Full Text Available A wide range of unique engineering structural and performance properties inherent in metallic composites characterizes wear- and erosion-resistant high-temperature coatings made by thermal spraying methods. This allows their use both in manufacturing processes to enhance the wear strength of products, which have to operate under the cyclic loading, high contact pressures, corrosion and high temperatures and in product renewal.Thermal coatings contribute to the qualitative improvement of the technical level of production and product restoration using the ceramic composite materials. However, the possibility to have a significantly increased product performance, reduce their factory labour hours and materials/output ratio in manufacturing and restoration is largely dependent on the degree of the surface layer quality of products at their finishing stage, which is usually provided by different kinds of machining.When machining the plasma-sprayed thermal coatings, a removing process of the cut-off layer material is determined by its distinctive features such as a layered structure, high internal stresses, low ductility material, high tendency to the surface layer strengthening and rehardening, porosity, high abrasive properties, etc. When coatings are machined these coating properties result in specific characteristics of chip formation and conditions for formation of the billet surface layer.The chip formation of plasma-sprayed coatings was studied at micro-velocities using an experimental tool-setting microscope-based setup, created in BMSTU. The setup allowed simultaneous recording both the individual stages (phases of the chip formation process and the operating force factors.It is found that formation of individual chip elements comes with the multiple micro-cracks that cause chipping-off the small particles of material. The emerging main crack in the cut-off layer of material leads to separation of the largest chip element. Then all the stages

  7. Dust Growth in Astrophysical Plasmas

    Science.gov (United States)

    Bingham, R.; Tsytovich, V. N.

    2002-12-01

    Dust formation in space is important in diverse environments such as dust molecular clouds, proto-planetary nebulae, stellar outbursts, and supernova explosions. The formation of dust proceeds the formation of stellar objects and planets. In all these environments the dust particles interact with both neutral and plasma particles as well as with (ultraviolet) radiation and cosmic rays. The conventional view of grain growth is one based on accretion by the Van der Waals and chemical forces [Watson and Salpeter [14] considered in detail both theoretically and numerically (Kempf at all [6],Meaking [7]( and confirmed recently by micro-gravity experiments Blum et all [2]). The usual point of view is that the dust grow is occurring in dust molecular clouds at very low temperatures ~ (10 - 30)° K and is a slow process - dust grows to a size of about 0.1 μm in 106 - 109 years. This contradicts recent observations of dust growing in winds of C-stars in about 10 years and behind the supernova SN1987A shock in about 500 days. Also recent observation of star formation at the edge of irradiated dust clouds suggests that new plasma mechanism operates in star formation. Dusty plasma mechanisms of agglomeration are analyzed as an explanation of the new astrophysical observation. New micro-gravity experiments are proposed for observing the plasma mechanisms of dust agglomeration at gas pressures substantially higher than used in ([2]. Calculations for the growth rates of dust agglomeration due to plasma mechanisms are presented. It is shown that at large neutral gas densities the dust plasma attraction provides an explanation of dust grow in about 10 days observed in H-star winds. Ionization by cosmic rays and by radioactive dust can provide the dust attraction necessary for forming dust clumping observed in molecular clouds and the fractal plasma clumping can enhance the time to reach the gravitational contraction phase operating at the final stage of star formation. A new

  8. Dust vortices, clouds, and jets in nuclear-induced plasmas

    International Nuclear Information System (INIS)

    Vladimirov, V.I.; Deputatova, L.V.; Nefedov, A.P.; Fortov, V.E.; Rykov, V.A.; Khudyakov, A.V.

    2001-01-01

    The collective movement of dust particles in a plasma formed during deceleration of decay products of californium nuclei in neon is investigated experimentally. For the first time, compact vortex structures containing a large number of coagulating dust particles and dense dust clouds evolving in time are observed. Dust formations have clearly defined boundaries and particles in them form ordered liquid-type structures. Under steady-state conditions, dust structures exist from several minutes to hours. An increase in the voltage applied to the high-voltage electrode leads to the formation of dust particle jets. A change in the electric field configuration transforms the structures from one type to another. A strong recombination of electrons and ions at dust particles is observed. The momentum transfer from ions drifting in an external field to gas molecules is studied using the Monte Carlo method. It is shown that the transferred momentum is so large that it may cause a gas flow. The characteristic features of vortex flow in neon and in air are explained

  9. Geochemical investigation of dry- and wet-deposited dust during the same dust-storm event in Harbin, China: Constraint on provenance and implications for formation of aeolian loess

    Science.gov (United States)

    Xie, Yuanyun; Chi, Yunping

    2016-04-01

    A strong dust-storm event occurred in Harbin, China on May 11, 2011. The dry- and wet-deposited dust depositions in this dust-storm event, together with the surface sediments from the potential sources, were collected to study grain size distributions, carbonate content and carbon isotopic composition of carbonate, major element, trace element and rare earth elements (REE), and Sr-Nd isotopic compositions. The results indicate as follows. The dry-deposited dusts are characterized by bimodal grain-size distributions with a fine mode at 3.6 μm and a coarse mode at 28 μm whereas the wet-deposited dusts are indicative of unimodal grain-size modes with a fine mode at 6 μm. The dust-storm depositions are influenced to a certain extent by sedimentary sorting and are of a derivation from the recycled sediments. Based on identifying the immobility of element pairs before constraining sources of dust-storm deposits using geochemical elements, in conjunction with REE and especially Sr-Nd isotopic compositions, the primary and strengthening sources for the dust-storm event were detected, respectively. The Hunsandake Sandy Land as the primary source and the Horqin Sandy Land as the strengthening source were together responsible for the derivation of dust depositions during dust-storm event. The Hunsandake Sandy Land, however, contributes less dust to the dust-storm event in Harbin compared to the Horqin Sandy Land, and the Hulun Buir Sandy Land is undoubtedly excluded from being one of the sources for dust-storm depositions in Harbin. There are not notable differences in geochemical (especially Sr-Nd isotopic) compositions between dry- and wet-deposited dusts, indicating that the wet-deposited dust is of identical derivation to the dry-deposited dust. Based on our observations, it is of interest to suggest that fine and coarse particles in the CLP (Chinese Loess Plateau) loess possibly have the same sources.

  10. Whither Cometary Dust?

    Science.gov (United States)

    Lisse, Carey M.

    2010-10-01

    In this paper I will discuss recent findings that have important implications for our understanding of the formation and evolution of primitive solar system dust, including: - Nesvorny et al. (2010), following up on their dynamical analyses of the zodiacal dust bands as sourced by the breakup of the Karin (5Mya) and Veritas (8Mya) asteroid families, argue that over 90% of the interplanetary dust cloud at 1 AU comes from JFC comets with near-circularized, low inclination orbits. This implies that the noted IPD collections of anhydrous and hydrous dust particles are likely to be from Oort cloud and JFC comets, respectively, not from asteroids and comets as thought in the past. Hydrous dust particles from comets like 85P/Wild2 and 9P/Tempel 1 would be consistent with results from the STARDUST and Deep Impact experiments. - Estimates of the dust particle size distributions (PSDs) in the comae of 85P/Wild2 (Green et al. 2004, 2007) and 73P/SW-3 (Sitko et al. 2010, Vaubaillon & Reach 2010) and in the trails of comets (Reach et al. 2007) have broken power law structure, with a plateau enhancement of particles of 1 mm - 1 cm in size. This size is also the size of most chondritic inclusions, and the predicted size range of the "aggregational barrier", where collisions between dust particles become destructive. - Studies of the albedo and polarization properties of cometary dust (Kolokolova et al. 2007) suggest there are 2 major groupings, one with low scattering capability and one with high. While these families could possibly have been explained by systematics in the PSDs of the emitted dust, independent work by Lisse et al. (2008) on the mineralogy of a number of highly dusty comets has shown evidence for one family of comets with highly crystalline dust and another with highly amorphous dust.

  11. A Massive Shell of Supernova-formed Dust in SNR G54.1+0.3

    Energy Technology Data Exchange (ETDEWEB)

    Temim, Tea [Space Telescope Science Institute, 3700 San Martin Drive, Baltimore, MD 21218 (United States); Dwek, Eli; Arendt, Richard G. [Observational Cosmology Lab, Code 665, NASA Goddard Space Flight Center, Greenbelt, MD 20771 (United States); Borkowski, Kazimierz J.; Reynolds, Stephen P. [North Carolina State University, Raleigh, NC 27695 (United States); Slane, Patrick; Raymond, John C. [Harvard-Smithsonian Center for Astrophysics, 60 Garden Street, Cambridge, MA 02138 (United States); Gelfand, Joseph D. [New York University, Abu Dhabi (United Arab Emirates)

    2017-02-10

    While theoretical models of dust condensation predict that most refractory elements produced in core-collapse supernovae (SNe) efficiently condense into dust, a large quantity of dust has so far only been observed in SN 1987A. We present an analysis of observations from the Spitzer Space Telescope , Herschel Space Observatory , Stratospheric Observatory for Infrared Astronomy, and AKARI of the infrared shell surrounding the pulsar wind nebula in the supernova remnant G54.1+0.3. We attribute a distinctive spectral feature at 21 μ m to a magnesium silicate grain species that has been invoked in modeling the ejecta-condensed dust in Cas A, which exhibits the same spectral signature. If this species is responsible for producing the observed spectral feature and accounts for a significant fraction of the observed infrared continuum, we find that it would be the dominant constituent of the dust in G54.1+0.3, with possible secondary contributions from other compositions, such as carbon, silicate, or alumina grains. The total mass of SN-formed dust required by this model is at least 0.3 M {sub ⊙}. We discuss how these results may be affected by varying dust grain properties and self-consistent grain heating models. The spatial distribution of the dust mass and temperature in G54.1+0.3 confirms the scenario in which the SN-formed dust has not yet been processed by the SN reverse shock and is being heated by stars belonging to a cluster in which the SN progenitor exploded. The dust mass and composition suggest a progenitor mass of 16–27 M {sub ⊙} and imply a high dust condensation efficiency, similar to that found for Cas A and SN 1987A. The study provides another example of significant dust formation in a Type IIP SN explosion and sheds light on the properties of pristine SN-condensed dust.

  12. Connecting the Interstellar Gas and Dust Properties in Distant Galaxies Using Quasar Absorption Systems

    Science.gov (United States)

    Aller, Monique C.; Dwek, Eliahu; Kulkarni, Varsha P.; York, Donald G.; Welty, Daniel E.; Vladilo, Giovanni; Som, Debopam; Lackey, Kyle; Dwek, Eli; Beiranvand, Nassim; hide

    2016-01-01

    Gas and dust grains are fundamental components of the interstellar medium and significantly impact many of the physical processes driving galaxy evolution, such as star-formation, and the heating, cooling, and ionization of the interstellar material. Quasar absorption systems (QASs), which trace intervening galaxies along the sightlines to luminous quasars, provide a valuable tool to directly study the properties of the interstellar gas and dust in distant, normal galaxies. We have established the presence of silicate dust grains in at least some gas-rich QASs, and find that they exist at higher optical depths than expected for diffuse gas in the Milky Way. Differences in the absorption feature shapes additionally suggest variations in the silicate dust grain properties, such as in the level of grain crystallinity, from system-to-system. We present results from a study of the gas and dust properties of QASs with adequate archival IR data to probe the silicate dust grain properties. We discuss our measurements of the strengths of the 10 and 18 micron silicate dust absorption features in the QASs, and constraints on the grain properties (e.g., composition, shape, crystallinity) based on fitted silicate profile templates. We investigate correlations between silicate dust abundance, reddening, and gas metallicity, which will yield valuable insights into the history of star formation and chemical enrichment in galaxies.

  13. Wood Dust

    Science.gov (United States)

    Learn about wood dust, which can raise the risk of cancers of the paranasal sinuses and nasal cavity. High amounts of wood dust are produced in sawmills, and in the furniture-making, cabinet-making, and carpentry industries.

  14. Ice formation via deposition nucleation on mineral dust and organics: dependence of onset relative humidity on total particulate surface area

    International Nuclear Information System (INIS)

    Kanji, Zamin A; Florea, Octavian; Abbatt, Jonathan P D

    2008-01-01

    We present ice nucleation results for Arizona test dust, kaolinite, montmorillonite, silica, silica coated with a hydrophobic octyl chain, oxalic acid dihydrate, Gascoyne leonardite (a humic material), and Aldrich humic acid (sodium salt). The focus was on deposition mode nucleation below water saturation at 233 K. Particles were deposited onto a hydrophobic cold stage by atomization of a slurry/solution and exposed to a constant partial pressure of water vapor. By lowering the temperature of the stage, the relative humidity with respect to ice (RH i ) was gradually increased until ice nucleation was observed using digital photography. Different numbers of particles were deposited onto the cold stage by varying the atomization solution concentration and deposition time. For the same total particulate surface area, mineral dust particles nucleated ice at lower supersaturations than all other materials. The most hydrophobic materials, i.e. Gascoyne leonardite and octyl silica, were the least active. For our limit of detection of one ice crystal, the ice onset RH i values were dependent on the total surface area of the particulates, indicating that no unique threshold RH i for ice nucleation prevails

  15. From the Milky Way to differing galaxy environments: filling critical gaps in our knowledge of star formation and its interplay with dust, and in stellar and galaxy evolution.

    Science.gov (United States)

    Bianchi, Luciana

    2018-01-01

    Rest-frame UV, uniquely sensitive to luminous, short-lived hot massive stars, trace and age-date star formation across galaxies, and is very sensitive to dust, whose properties and presence are closely connected to star formation.With wide f-o-v and deep sensitivity in two broad filters,FUV and NUV,GALEX delivered the first comprehensive UV view of large nearby galaxies, and of the universe to z~2 (e.g.,Bianchi 2014 ApSS 354,103), detected star formation at the lowest rates, in environments where it was not seen before and not expected (e.g. Bianchi 2011 ApSS 335,51; Thilker+2009 Nature 457,990;2007 ApJS 173,538), triggering a new era of investigations with HST and large ground-based telescopes. New instrument technology and modeling capabilities make it now possible and compelling to solve standing issues. The scant UV filters available (esp. FUV) and the wide gap in resolution and f-o-v between GALEX and HST leaves old and new questions open. A chief limitation is degeneracies between physical parameters of stellar populations (age/SFR) and hot stars, and dust (e.g. Bianchi+ 2014 JASR 53,928).We show sample model simulations for filter optimization to provide critical measurements for the science objectives. We also demonstrate how adequate FUV+NUV filters, and resolution, allow us to move from speculative interpretation of UV data to unbiased physical characterization of young stellar populations and dust, using new data from UVIT, which, though smaller than CETUS, has better resolution and filter coverage than GALEX.Also, our understanding of galaxy chemical enrichment is limited by critical gaps in stellar evolution; GALEX surveys enabled the first unbiased census of the Milky Way hot-WD population (Bianchi+2011 MNRAS, 411,2770), which we complement with SDSS, Pan-STARRS, and Gaia data to fill such gaps (Bianchi et al.2018, ApSS). Such objects in CETUS fields (deeper exposures, more filters, and the first UV MOS) will be much better characterized, enabling

  16. Clinical features and some mechanisms of formation of inflammatoty periodontal diseases at women in the postmenopausal period

    Directory of Open Access Journals (Sweden)

    Chanina A.I.

    2011-03-01

    Full Text Available For the purpose to determine clinical morphologic features of development of inflammatoty periodontal diseases at women in the postmenopausal period medical examination of 90 patients was carried out. It was established that a postmenopausal osteoporosis is risk factor of development periodontal diseases. In formation of periodontal diseases at women during this period the important role is played hormonal changes

  17. Raising Dust

    Science.gov (United States)

    2004-01-01

    21 December 2003Dust storms are a common occurrence on the extremely arid planet, Mars. However, very rarely do we get to see the actual process of dust being lifted off the martian surface to feed these dust storms. This Mars Global Surveyor (MGS) Mars Orbiter Camera (MOC) image captures some of the dust-raising process in action. The picture shows a shallow trough with large, ripple-like dunes on its floor. Sunlight illuminates the scene from the upper left. Puffy, billowy clouds of dust obscure some of the surface from view. Closer inspection shows streamers of dust, streaking from left/upper left toward right/lower right, down near the surface of the planet. It is in these streamers that dust is being lifted from the ground. This image is located near 29.6oS, 73.1oW, and covers an area 3 km (1.9 mi) wide.

  18. A Massive Shell of Supernova-Formed Dust in SNR G54.1+0.3

    Science.gov (United States)

    Temim, Tea; Dwek, Eli; Arendt, Richard G.; Borkowski, Kazimiera J.; Reynolds, Stephen P.; Slane, Patrick; Gelfand, Joseph D.; Raymond, John C.

    2017-01-01

    While theoretical models of dust condensation predict that most refractory elements produced in core-collapsesupernovae (SNe) efficiently condense into dust, a large quantity of dust has so far only been observed inSN1987A. We present an analysis of observations from the Spitzer Space Telescope, Herschel SpaceObservatory, Stratospheric Observatory for Infrared Astronomy, and AKARI of the infrared shell surrounding thepulsar wind nebula in the supernova remnant G54.1+0.3. We attribute a distinctive spectral feature at 21 m to amagnesium silicate grain species that has been invoked in modeling the ejecta-condensed dust in Cas A, whichexhibits the same spectral signature. If this species is responsible for producing the observed spectral feature andaccounts for a significant fraction of the observed infrared continuum, we find that it would be the dominantconstituent of the dust in G54.1+0.3, with possible secondary contributions from other compositions, such ascarbon, silicate, or alumina grains. The total mass of SN-formed dust required by this model is at least 0.3Me. Wediscuss how these results may be affected by varying dust grain properties and self-consistent grain heating models.The spatial distribution of the dust mass and temperature in G54.1+0.3 confirms the scenario in which the SNformeddust has not yet been processed by the SN reverse shock and is being heated by stars belonging to a clusterin which the SN progenitor exploded. The dust mass and composition suggest a progenitor mass of 1627Me andimply a high dust condensation efficiency, similar to that found for Cas A and SN1987A. The study providesanother example of significant dust formation in a Type IIP SN explosion and sheds light on the properties ofpristine SN-condensed dust.

  19. Features of formation of a distributive infrastructure of e-commerce in Russia

    OpenAIRE

    Kaluzhsky, Mikhail

    2015-01-01

    Article about objective laws of formation of a distributive infrastructure of e-commerce. The distributive infrastructure of e-commerce, according to the author, plays an important role in formation of network economy. The author opens strategic value of institutional regulation of distributive logistics for the decision problems of modernization of Russian economy.

  20. The features of argumentation skills formation problem in Higher Educational Establishment students

    OpenAIRE

    Tamozhska I. V.

    2010-01-01

    Deals with argumentation skill formation in future specialist's professional preparation: kinds and ways of argumentation, influence of communicative co-operation means on compromise zones defining and general decision making, strategy choice in communicators' behavior at argumentation phase in a dialogue, defining of effective factors of convincing argumentation influence in communicators. The work suggests the system of methodological research means for argumentation skill formation in High...

  1. Landscape and zonal features of the formation of producing economy in Russia

    Science.gov (United States)

    Nizovtsev, Vyacheslav; Natalia, Erman

    2016-04-01

    there was a cattle breeding economic and cultural type of producing economy with a simplified system of natural and anthropogenic and anthropogenic landscapes involving a maximum of 4-5 natural and economic systems. In the forest-steppe zone a significant part of the population was settled in the valley landscapes. The basis of the economy was pastoral and house cattle breeding with a predominance of beef cattle and pigs and hoe-mattock agriculture, which was only possible in the floodplain landscape complexes. In the areas of permanent settlements long grazing in one place led to the complete destruction of vegetation. The forced reduction of the agricultural land areas led to significant ecologic crisis. In the forest zone, along with hunters, fishermen and gatherers there appear the first tribes, who already engaged in the forest cattle breeding. First, they raised pigs and then small and beef cattle, while hunting and fishing were of subordinate nature. Pastures were situated mainly in floodplains and lakeside lowlands which had more open spaces. It is the extensive economy of that time that can be associated with the deforestation of flood plains of rivers and lakes and the emergence of meadows. There arises a natural-economic system with floodplain cattle-breeding (agricultural geo-systems of pasture type with floodplain meadows and woodlands), which existed for a long time. In all landscape zones the character of the relationship between men and the landscape was determined by the nature of producing activity, as well as natural features of "accommodating" landscape. The formation of nature use systems and settlement patterns strictly depend on the local landscape structure. In all earlier historical periods in similar landscape (zonal) conditions the settlers had the same type of economy, thus forming the same types of natural and economic systems and similar anthropogenically transformed landscapes. The dramatic change in the nature use occurs with the

  2. The Embedded Ring-like Feature and Star Formation Activities in G35.673-00.847

    Science.gov (United States)

    Dewangan, L. K.; Devaraj, R.; Ojha, D. K.

    2018-02-01

    We present a multiwavelength study to probe the star formation (SF) process in the molecular cloud linked with the G35.673-00.847 site (hereafter MCG35.6), which is traced in a velocity range of 53–62 km s‑1. Multiwavelength images reveal a semi-ring-like feature (associated with ionized gas emission) and an embedded face-on ring-like feature (without the NVSS 1.4 GHz radio emission, where 1σ ∼ 0.45 mJy beam‑1) in MCG35.6. The semi-ring-like feature is originated by the ionizing feedback from a star with spectral type B0.5V–B0V. The central region of the ring-like feature does not contain detectable ionized gas emission, indicating that the ring-like feature is unlikely to be produced by the ionizing feedback from a massive star. Several embedded Herschel clumps and young stellar objects (YSOs) are identified in MCG35.6, tracing the ongoing SF activities within the cloud. The polarization information from the Planck and GPIPS data trace the plane-of-sky magnetic field, which is oriented parallel to the major axis of the ring-like feature. At least five clumps (having M clump ∼ 740–1420 M ⊙) seem to be distributed in an almost regularly spaced manner along the ring-like feature and contain noticeable YSOs. Based on the analysis of the polarization and molecular line data, three subregions containing the clumps are found to be magnetically supercritical in the ring-like feature. Altogether, the existence of the ring-like feature and the SF activities on its edges can be explained by the magnetic field mediated process as simulated by Li & Nakamura.

  3. Ultra-faint ultraviolet galaxies at z ∼ 2 behind the lensing cluster A1689: The luminosity function, dust extinction, and star formation rate density

    Energy Technology Data Exchange (ETDEWEB)

    Alavi, Anahita; Siana, Brian; Freeman, William R.; Dominguez, Alberto [Department of Physics and Astronomy, University of California, Riverside, CA 92521 (United States); Richard, Johan [Centre de Recherche Astrophysique de Lyon, Université Lyon 1, 9 Avenue Charles André, F-69561 Saint Genis Laval Cedex (France); Stark, Daniel P.; Robertson, Brant [Department of Astronomy, Steward Observatory, University of Arizona, 933 North Cherry Avenue, Rm N204, Tucson, AZ 85721 (United States); Scarlata, Claudia [Minnesota Institute for Astrophysics, University of Minnesota, Minneapolis, MN 55455 (United States); Teplitz, Harry I.; Rafelski, Marc [Infrared Processing and Analysis Center, Caltech, Pasadena, CA 91125 (United States); Kewley, Lisa, E-mail: anahita.alavi@email.ucr.edu [Research School of Astronomy and Astrophysics, The Australian National University, Cotter Road, Weston Creek, ACT 2611 (Australia)

    2014-01-10

    We have obtained deep ultraviolet imaging of the lensing cluster A1689 with the WFC3/UVIS camera onboard the Hubble Space Telescope in the F275W (30 orbits) and F336W (4 orbits) filters. These images are used to identify z ∼ 2 star-forming galaxies via their Lyman break, in the same manner that galaxies are typically selected at z ≥ 3. Because of the unprecedented depth of the images and the large magnification provided by the lensing cluster, we detect galaxies 100× fainter than previous surveys at this redshift. After removing all multiple images, we have 58 galaxies in our sample in the range –19.5 < M {sub 1500} < –13 AB mag. Because the mass distribution of A1689 is well constrained, we are able to calculate the intrinsic sensitivity of the observations as a function of source plane position, allowing for accurate determinations of effective volume as a function of luminosity. We fit the faint-end slope of the luminosity function to be α = –1.74 ± 0.08, which is consistent with the values obtained for 2.5 < z < 6. Notably, there is no turnover in the luminosity function down to M {sub 1500} = –13 AB mag. We fit the UV spectral slopes with photometry from existing Hubble optical imaging. The observed trend of increasingly redder slopes with luminosity at higher redshifts is observed in our sample, but with redder slopes at all luminosities and average reddening of (E(B – V)) = 0.15 mag. We assume the stars in these galaxies are metal poor (0.2 Z {sub ☉}) compared to their brighter counterparts (Z {sub ☉}), resulting in bluer assumed intrinsic UV slopes and larger derived values for dust extinction. The total UV luminosity density at z ∼ 2 is 4.31{sub −0.60}{sup +0.68}×10{sup 26} erg s{sup –1} Hz{sup –1} Mpc{sup –3}, more than 70% of which is emitted by galaxies in the luminosity range of our sample. Finally, we determine the global star formation rate density from UV-selected galaxies at z ∼ 2 (assuming a constant dust

  4. The research of statistical properties of colorimetric features of screens with a three-component color formation principle

    Science.gov (United States)

    Zharinov, I. O.; Zharinov, O. O.

    2017-12-01

    The problem of the research is concerned with quantitative analysis of influence of technological variation of the screen color profile parameters on chromaticity coordinates of the displayed image. Some mathematical expressions which approximate the two-dimensional distribution of chromaticity coordinates of an image, which is displayed on the screen with a three-component color formation principle were proposed. Proposed mathematical expressions show the way to development of correction techniques to improve reproducibility of the colorimetric features of displays.

  5. Elysium region, mars: Tests of lithospheric loading models for the formation of tectonic features

    International Nuclear Information System (INIS)

    Hall, J.L.; Solomon, S.C.; Head, J.W.

    1986-01-01

    The second largest volcanic province on Mars lies in the Elysium region. Like the larger Tharsis province, Elysium is marked by a topographic rise and a broad free air gravity anomaly and also exhibits a complex assortment of tectonic and volcanic features. We test the hypothesis that the tectonic features in the Elysium region are the product of stresses produced by loading of the Martian lithosphere. We consider loading at three different scales: local loading by individual volcanoes, regional loading of the lithosphere from above or below, and quasi-global loading by Tharsis. A comparison of flexural stresses with lithospheric strength and with the inferred maximum depth of faulting confirms that concentric graben around Elysium Mons can be explained as resulting from local flexure of an elastic lithosphere about 50 km thick in response to the volcano load. Volcanic loading on a regional scale, however, leads to predicted stresses inconsistent with all observed tectonic features, suggesting that loading by widespread emplacement of thick plains deposits was not an important factor in the tectonic evolution of the Elysium region. A number of linear extensional features oriented generally NW-SE may have been the result of flexural uplift of the lithosphere on the scale of the Elysium rise. The global stress field associated with the support of the Tharsis rise appears to have influenced the development of many of the tectonic features in the Elysium region, including Cerberus Rupes and the systems of ridges in eastern and western Elysium. The comparisons of stress models for Elysium with the preserved tectonic features support a succession of stress fields operating at different times in the region

  6. Integrated system for investigating sub-surface features of a rock formation

    Science.gov (United States)

    Vu, Cung Khac; Skelt, Christopher; Nihei, Kurt; Johnson, Paul A.; Guyer, Robert; Ten Cate, James A.; Le Bas, Pierre -Yves; Larmat, Carene S.

    2015-08-18

    A system for investigating non-linear properties of a rock formation around a borehole is provided. The system includes a first sub-system configured to perform data acquisition, control and recording of data; a second subsystem in communication with the first sub-system and configured to perform non-linearity and velocity preliminary imaging; a third subsystem in communication with the first subsystem and configured to emit controlled acoustic broadcasts and receive acoustic energy; a fourth subsystem in communication with the first subsystem and the third subsystem and configured to generate a source signal directed towards the rock formation; and a fifth subsystem in communication with the third subsystem and the fourth subsystem and configured to perform detection of signals representative of the non-linear properties of the rock formation.

  7. Characteristic features of heterophase polymerisation of styrene with simultaneous formation of surfactants at the interface

    International Nuclear Information System (INIS)

    Prokopov, Nikolai I; Gritskova, Inessa A

    2001-01-01

    Data on the heterophase polymerisation of styrene under conditions of surfactant formation at the monomer-water interface are generalised. A new, in principle, approach is proposed the essence of which is to obtain a monomer emulsion simultaneously with the synthesis of an emulsifier at the monomer-water interface and with initiation of the polymerisation in the interfacial layer. The preparation of surfactants at the interface allows one to control efficiently the degree of dispersion and the stability of the emulsions formed. By varying the nature of the acid and the metal counter-ion used in the surfactant synthesis at the interface, it is possible to change the interfacial tension, to influence the microemulsification, disintegration of the monomer, and the formation of structure of interfacial adsorption layers. The mechanism of formation of polymer-monomeric particles as well as their diameter and size distribution depend substantially on the solubility of the resulting surfactants in water. The bibliography includes 47 references.

  8. Characteristic features of heterophase polymerisation of styrene with simultaneous formation of surfactants at the interface

    Energy Technology Data Exchange (ETDEWEB)

    Prokopov, Nikolai I; Gritskova, Inessa A [M.V. Lomonosov Moscow State Academy of Fine Chemical Technology, Moscow (Russian Federation)

    2001-09-30

    Data on the heterophase polymerisation of styrene under conditions of surfactant formation at the monomer-water interface are generalised. A new, in principle, approach is proposed the essence of which is to obtain a monomer emulsion simultaneously with the synthesis of an emulsifier at the monomer-water interface and with initiation of the polymerisation in the interfacial layer. The preparation of surfactants at the interface allows one to control efficiently the degree of dispersion and the stability of the emulsions formed. By varying the nature of the acid and the metal counter-ion used in the surfactant synthesis at the interface, it is possible to change the interfacial tension, to influence the microemulsification, disintegration of the monomer, and the formation of structure of interfacial adsorption layers. The mechanism of formation of polymer-monomeric particles as well as their diameter and size distribution depend substantially on the solubility of the resulting surfactants in water. The bibliography includes 47 references.

  9. The features of argumentation skills formation problem in Higher Educational Establishment students

    Directory of Open Access Journals (Sweden)

    Tamozhska I. V.

    2010-01-01

    Full Text Available Deals with argumentation skill formation in future specialist's professional preparation: kinds and ways of argumentation, influence of communicative co-operation means on compromise zones defining and general decision making, strategy choice in communicators' behavior at argumentation phase in a dialogue, defining of effective factors of convincing argumentation influence in communicators. The work suggests the system of methodological research means for argumentation skill formation in Higher Educational Establishment students, which helps professional language problem solving in composition with theoretical questions argumentation basis.

  10. Temporal and spatial features of the formation of DNA adducts in sulfur mustard-exposed skin

    International Nuclear Information System (INIS)

    Batal, Mohamed; Boudry, Isabelle; Mouret, Stéphane; Wartelle, Julien; Emorine, Sandy; Bertoni, Marine; Bérard, Izabel; Cléry-Barraud, Cécile

    2013-01-01

    Sulfur mustard (SM) is a chemical warfare agent that targets skin where it induces large blisters. DNA alkylation is a critical step to explain SM-induced cutaneous symptoms. We determined the kinetics of formation of main SM–DNA adducts and compare it with the development of the SM-induced pathogenesis in skin. SKH-1 mice were exposed to 2, 6 and 60 mg/kg of SM and treated skin was biopsied between 6 h and 21 days. Formation of SM DNA adducts was dose-dependent with a maximum immediately after exposure. However, adducts were persistent and still detectable 21 days post-exposure. The time-dependent formation of DNA adducts was also found to be correlated with the appearance of apoptotic cells. This temporal correlation suggests that these two early events are responsible for the severity of the damage to the skin. Besides, SM–DNA adducts were also detected in areas located next to contaminated zone, thus suggesting that SM diffuses in skin. Altogether, this work provides for the first time a clear picture of SM-induced genotoxicity using DNA adducts as a marker. - Highlights: • Sulfur mustard adducts are formed in DNA after skin exposure. • DNA damage formation is an early event in the pathological process of skin burn. • The amount of SM–DNA adducts is maximal at the earliest time point investigated. • Adducts are still detected 3 weeks after exposure. • Sulfur mustard diffuses in skin especially when large doses are applied

  11. Temporal and spatial features of the formation of DNA adducts in sulfur mustard-exposed skin

    Energy Technology Data Exchange (ETDEWEB)

    Batal, Mohamed [Laboratoire «Lésions des Acides Nucléiques», Université Joseph Fourier – Grenoble 1, CEA/Institut Nanoscience et Cryogénie/SCIB, UMR-E3, Grenoble (France); Département de Toxicologie et Risques Chimiques, Unité de Brûlure Chimique, Institut de Recherche Biomédicale des Armées, Antenne de La Tronche (France); Boudry, Isabelle; Mouret, Stéphane; Wartelle, Julien; Emorine, Sandy; Bertoni, Marine [Département de Toxicologie et Risques Chimiques, Unité de Brûlure Chimique, Institut de Recherche Biomédicale des Armées, Antenne de La Tronche (France); Bérard, Izabel [Laboratoire «Lésions des Acides Nucléiques», Université Joseph Fourier – Grenoble 1, CEA/Institut Nanoscience et Cryogénie/SCIB, UMR-E3, Grenoble (France); Cléry-Barraud, Cécile [Département de Toxicologie et Risques Chimiques, Unité de Brûlure Chimique, Institut de Recherche Biomédicale des Armées, Antenne de La Tronche (France); and others

    2013-12-15

    Sulfur mustard (SM) is a chemical warfare agent that targets skin where it induces large blisters. DNA alkylation is a critical step to explain SM-induced cutaneous symptoms. We determined the kinetics of formation of main SM–DNA adducts and compare it with the development of the SM-induced pathogenesis in skin. SKH-1 mice were exposed to 2, 6 and 60 mg/kg of SM and treated skin was biopsied between 6 h and 21 days. Formation of SM DNA adducts was dose-dependent with a maximum immediately after exposure. However, adducts were persistent and still detectable 21 days post-exposure. The time-dependent formation of DNA adducts was also found to be correlated with the appearance of apoptotic cells. This temporal correlation suggests that these two early events are responsible for the severity of the damage to the skin. Besides, SM–DNA adducts were also detected in areas located next to contaminated zone, thus suggesting that SM diffuses in skin. Altogether, this work provides for the first time a clear picture of SM-induced genotoxicity using DNA adducts as a marker. - Highlights: • Sulfur mustard adducts are formed in DNA after skin exposure. • DNA damage formation is an early event in the pathological process of skin burn. • The amount of SM–DNA adducts is maximal at the earliest time point investigated. • Adducts are still detected 3 weeks after exposure. • Sulfur mustard diffuses in skin especially when large doses are applied.

  12. The effect of initiation feature and environment on fatigue crack formation and early propagation in aluminum zinc magnesium copper

    Science.gov (United States)

    Burns, James T.

    The current research provides insight into fatigue crack formation and progression in the poorly understood size regime that bridges safe-life and damage tolerance approaches; particular attention is given to the influences of corrosion-induced degradation and time-cycle dependent loading environment effects. Quantitative analysis of crack formation life (Ni), microstructurally small crack (database. Results show that fatigue crack formation involves a complex interaction of elastic stress concentration, due to a 3-dimensional macro-pit, coupled with local micro-feature (and constituent) induced plastic strain concentration. Such interactions cause high Ni variability, but, from an engineering perspective, a broadly corroded surface should contain an extreme group of features driving Ni to ˜0. At low-applied stresses, Ni consumes a significant portion of total life, which is well predicted by coupling elastic-plastic FEA with empirical low-cycle fatigue life models. All pristine and corroded da/dN were uniquely correlated using complex continuum stress intensity (K) and crack opening solutions which account for the stress concentrating formation feature. Multiple crack growth regimes were observed, typical of environment enhanced fatigue in Al alloys. Such behavior is not captured by prominent mechanics-based small crack models. Furthermore, neither local closure nor slip-based models captured the order of magnitude variability in da/dN attributed to microstructure. Low temperature loading produces an order of magnitude increase in Ni, and even larger reduction in da/dN, due to elimination of H-enhanced cracking by reduced external water vapor pressure, lower crack tip reaction rate (to produce atomic-H), and slower H diffusion. Engineering level modeling approaches are validated using these high fidelity experimental results, informing next generation prognosis methods for realistic airframe environments.

  13. Formation of tight junctions between neighboring podocytes is an early ultrastructural feature in experimental crescentic glomerulonephritis

    Directory of Open Access Journals (Sweden)

    Succar L

    2016-11-01

    Full Text Available Lena Succar,1 Ross A Boadle,2 David C Harris,1,3 Gopala K Rangan1,3 1Centre for Transplant and Renal Research, The Westmead Institute for Medical Research, The University of Sydney, 2Electron Microscopy Laboratory, Institute of Clinical Pathology and Medical Research, Westmead Hospital, 3Department of Renal Medicine, Westmead Hospital, Western Sydney Local Health District, Westmead, Sydney, NSW, Australia Purpose: In crescentic glomerulonephritis (CGN, the development of cellular bridges between podocytes and parietal epithelial cells (PECs triggers glomerular crescent formation. However, the sequential changes in glomerular ultrastructure in CGN are not well defined. This study investigated the time course of glomerular ultrastructure in experimental CGN. Methods: Transmission electron microscopy (TEM was performed using kidney samples from rats with nephrotoxic serum nephritis (NSN from day 1 to day 14. Morphometric analysis was conducted on randomly selected glomeruli captured on TEM digital images. Results: On day 1 of NSN, there was widespread formation of focal contacts between the cell bodies of neighboring podocytes, and tight junctions were evident at the site of cell-to-cell contact. This was confirmed by the increased expression of the tight junction molecule, zonula occludens-1 (ZO-1, which localized to the points of podocyte cell–cell body contact. On day 2, the interpodocyte distance decreased and the glomerular basement membrane thickness increased. Foot process effacement (FPE was segmental on day 3 and diffuse by day 5, accompanied by the formation of podocyte cellular bridges with Bowman’s capsule, as confirmed by a decrease in podocyte-to-PEC distance. Fibrinoid necrosis and cellular crescents were evident in all glomeruli by days 7 and 14. In vitro, the exposure of podocytes to macrophage-conditioned media altered cellular morphology and caused an intracellular redistribution of ZO-1. Conclusion: The formation of tight

  14. Parameterizing the interstellar dust temperature

    Science.gov (United States)

    Hocuk, S.; Szűcs, L.; Caselli, P.; Cazaux, S.; Spaans, M.; Esplugues, G. B.

    2017-08-01

    The temperature of interstellar dust particles is of great importance to astronomers. It plays a crucial role in the thermodynamics of interstellar clouds, because of the gas-dust collisional coupling. It is also a key parameter in astrochemical studies that governs the rate at which molecules form on dust. In 3D (magneto)hydrodynamic simulations often a simple expression for the dust temperature is adopted, because of computational constraints, while astrochemical modelers tend to keep the dust temperature constant over a large range of parameter space. Our aim is to provide an easy-to-use parametric expression for the dust temperature as a function of visual extinction (AV) and to shed light on the critical dependencies of the dust temperature on the grain composition. We obtain an expression for the dust temperature by semi-analytically solving the dust thermal balance for different types of grains and compare to a collection of recent observational measurements. We also explore the effect of ices on the dust temperature. Our results show that a mixed carbonaceous-silicate type dust with a high carbon volume fraction matches the observations best. We find that ice formation allows the dust to be warmer by up to 15% at high optical depths (AV> 20 mag) in the interstellar medium. Our parametric expression for the dust temperature is presented as Td = [ 11 + 5.7 × tanh(0.61 - log 10(AV) ]χuv1/5.9, where χuv is in units of the Draine (1978, ApJS, 36, 595) UV field.

  15. Microstructure formation features of the V-4Ti-4Cr alloy under severe plastic deformations

    International Nuclear Information System (INIS)

    Ditenberg, I.; Tyumentsev, A.; Pinzhin, Y.P.; Potapenko, M.M.; Korotaev, A.D.; Chernov, V.M.

    2007-01-01

    Full text of publication follows: Transmission electron microscopy was used to examine the microstructure formed under severe deformations (ε≥93%) in V-4Ti-4Cr alloys rolled at room temperature. Micro-band nano-structured states and high-energy defect substructures have been detected that feature a high curvature (up to x ij ≅ 20 deg. μm -1 ) of the crystal lattice, a high density (δΘ/δr ≥ 20 deg. μm -1 ) of partial disclinations at the micro-band boundaries, and local internal stresses reaching σ ≅ E/30 (E being Young's modulus). It has been shown that important features of the micro-band structure are the prevailing reorientation of the micro-bands around type directions and the high density of large angle boundaries with reorientation vectors Θ = (50-60) deg. . It has been supposed that these features result from the plastic deformation and reorientation of the crystal lattice through mechanisms of local martensitic type reversible transformations (direct plus reverse transformations accompanied by a change of the reverse transformation system) in fields of high local stresses. The most important factors involved in the new deformation mechanism and the prerequisites to its realization are discussed, namely, the degree of phase instability of the material, the intensity of local internal stresses, and the possibility of the relaxation of these stresses by ordinary plastic flow mechanisms. Theoretical analysis of the atomic mechanisms and distortions of the above transformations has shown that the most important features of the carriers of this deformation mode are the absence of any effective obstacles, under severe deformations included, and the possibility of the high-defect structural states formed under these conditions to intensely relax. It is supposed that the combined effect of these two factors underlies the phenomenon of ultrahigh technological plasticity of the alloys under investigation: very high (practically unlimited) plastic

  16. Dust in protoplanetary disks: observations*

    Directory of Open Access Journals (Sweden)

    Waters L.B.F.M.

    2015-01-01

    Full Text Available Solid particles, usually referred to as dust, are a crucial component of interstellar matter and of planet forming disks surrounding young stars. Despite the relatively small mass fraction of ≈1% (in the solar neighborhood of our galaxy; this number may differ substantially in other galaxies that interstellar grains represent of the total mass budget of interstellar matter, dust grains play an important role in the physics and chemistry of interstellar matter. This is because of the opacity dust grains at short (optical, UV wavelengths, and the surface they provide for chemical reactions. In addition, dust grains play a pivotal role in the planet formation process: in the core accretion model of planet formation, the growth of dust grains from the microscopic size range to large, cm-sized or larger grains is the first step in planet formation. Not only the grain size distribution is affected by planet formation. Chemical and physical processes alter the structure and chemical composition of dust grains as they enter the protoplanetary disk and move closer to the forming star. Therefore, a lot can be learned about the way stars and planets are formed by observations of dust in protoplanetary disks. Ideally, one would like to measure the dust mass, the grain size distribution, grain structure (porosity, fluffiness, the chemical composition, and all of these as a function of position in the disk. Fortunately, several observational diagnostics are available to derive constrains on these quantities. In combination with rapidly increasing quality of the data (spatial and spectral resolution, a lot of progress has been made in our understanding of dust evolution in protoplanetary disks. An excellent review of dust evolution in protoplanetary disks can be found in Testi et al. (2014.

  17. Automatic Feature Selection and Weighting for the Formation of Homogeneous Groups for Regional Intensity-Duration-Frequency (IDF) Curve Estimation

    Science.gov (United States)

    Yang, Z.; Burn, D. H.

    2017-12-01

    Extreme rainfall events can have devastating impacts on society. To quantify the associated risk, the IDF curve has been used to provide the essential rainfall-related information for urban planning. However, the recent changes in the rainfall climatology caused by climate change and urbanization have made the estimates provided by the traditional regional IDF approach increasingly inaccurate. This inaccuracy is mainly caused by two problems: 1) The ineffective choice of similarity indicators for the formation of a homogeneous group at different regions; and 2) An inadequate number of stations in the pooling group that does not adequately reflect the optimal balance between group size and group homogeneity or achieve the lowest uncertainty in the rainfall quantiles estimates. For the first issue, to consider the temporal difference among different meteorological and topographic indicators, a three-layer design is proposed based on three stages in the extreme rainfall formation: cloud formation, rainfall generation and change of rainfall intensity above urban surface. During the process, the impacts from climate change and urbanization are considered through the inclusion of potential relevant features at each layer. Then to consider spatial difference of similarity indicators for the homogeneous group formation at various regions, an automatic feature selection and weighting algorithm, specifically the hybrid searching algorithm of Tabu search, Lagrange Multiplier and Fuzzy C-means Clustering, is used to select the optimal combination of features for the potential optimal homogenous groups formation at a specific region. For the second issue, to compare the uncertainty of rainfall quantile estimates among potential groups, the two sample Kolmogorov-Smirnov test-based sample ranking process is used. During the process, linear programming is used to rank these groups based on the confidence intervals of the quantile estimates. The proposed methodology fills the gap

  18. Features of the Formation of Economic Sustainability at Different Stages of the Enterprise’s Functioning

    Directory of Open Access Journals (Sweden)

    Butnik-Sivers?kyy Oleksandr B.

    2017-03-01

    Full Text Available Given the importance of stakeholders in ensuring economic sustainability, the aim of the article is to determine the priority of their groups at different stages of the enterprise’s functioning (creation, adaptation, growth, development. It is shown that at the stage of creating the company, the priority stakeholders are the shareholders and creditors as providers of financial resources, as well as customers as the source of formation of the market resource. At the growth stage, stakeholders should be ranked based on their ability to meet the company’s needs at the new level and create conditions for expanding the debt financing tools. It is noted that the formed high ranking positions of the enterprise reduce the role of financial stakeholders and actualize the priority of partnership relations that ensure its innovative development. Attention is focused on the fact that corporate conflicts: “agent-principal” and “principal-principal” present the threat of loss of economic sustainability at any stage of the enterprise’s functioning, which requires their compromise resolving. It is stated that the formation of the economic sustainability of enterprises is largely determined by the expansion of partnership relations and balancing the interests of stakeholders. The latter should be based on the priority of the resource contribution (volume, specificity of resources and the opportunities of the influence of a certain interested party on the company (destructive, constructive ones.

  19. Biodegradable polymer (PLGA) coatings featuring cinnamaldehyde and carvacrol mitigate biofilm formation.

    Science.gov (United States)

    Zodrow, Katherine R; Schiffman, Jessica D; Elimelech, Menachem

    2012-10-02

    Biofilm-associated infections are one of the leading causes of death in the United States. Although infections may be treated with antibiotics, the overuse of antibiotics has led to the spread of antibiotic resistance. Many natural antimicrobial compounds derived from edible plants are safe for human use and target bacteria nonspecifically. Therefore, they may impair biofilm formation with less evolutionary pressure on pathogens. Here, we explore the use of two natural antimicrobial compounds, cinnamaldehyde (CA, from cinnamon) and carvacrol (CARV, from oregano), for biofilm prevention. We have fabricated and characterized films that incorporate CA and CARV into the biodegradable, FDA-approved polymer poly(lactic-co-glycolic acid), PLGA. The addition of CA and CARV to PLGA films not only adds antimicrobial activity but also changes the surface properties of the films, making them more hydrophilic and therefore more resistant to bacterial attachment. An addition of 0.1% CA to a PLGA film significantly impairs biofilm development by Staphylococcus aureus, and 0.1% CARV in PLGA significantly decreases biofilm formation by both Escherichia coli and S. aureus. Pseudomonas aeruginosa, which is less susceptible to CA and CARV, was not affected by the addition of 0.1% CA or CARV to the PLGA coatings; however, P. aeruginosa biofilm was significantly reduced by 1.0% CA. These results indicate that both CA and CARV could potentially be used in low concentrations as natural additives in polymer coatings for indwelling devices to delay colonization by bacteria.

  20. Kinetic Selectivity and Thermodynamic Features of Competitive Imine Formation in Dynamic Covalent Chemistry.

    Science.gov (United States)

    Kulchat, Sirinan; Chaur, Manuel N; Lehn, Jean-Marie

    2017-08-16

    The kinetic and thermodynamic selectivities of imine formation have been investigated for several dynamic covalent libraries of aldehydes and amines. Two systems were examined, involving the reaction of different types of primary amino groups (aliphatic amines, alkoxy-amines, hydrazides and hydrazines) with two types of aldehydes, sulfobenzaldehyde and pyridoxal phosphate in aqueous solution at different pD (5.0, 8.5, 11.4) on one hand, 2-pyridinecarboxaldehyde and salicylaldehyde in organic solvents on the other hand. The reactions were performed separately for given amine/aldehyde pairs as well as in competitive conditions between an aldehyde and a mixture of amines. In the latter case, the time evolution of the dynamic covalent libraries generated was followed, taking into consideration the operation of both kinetic and thermodynamic selectivities. The results showed that, in aqueous solution, the imine of the aliphatic amine was not stable, but oxime and hydrazone formed well in a pH dependent way. On the other hand, in organic solvents, the kinetic product was the imine derived from an aliphatic amine and the thermodynamic products were oxime and hydrazone. The insights gained from these experiments provide a basis for the implementation of imine formation in selective derivatization of mono-amines in mixtures as well as of polyfunctional compounds presenting different types of amino groups. They may in principle be extended to other dynamic covalent chemistry systems. © 2017 Wiley-VCH Verlag GmbH & Co. KGaA, Weinheim.

  1. The physics of wind-blown sand and dust.

    Science.gov (United States)

    Kok, Jasper F; Parteli, Eric J R; Michaels, Timothy I; Karam, Diana Bou

    2012-10-01

    The transport of sand and dust by wind is a potent erosional force, creates sand dunes and ripples, and loads the atmosphere with suspended dust aerosols. This paper presents an extensive review of the physics of wind-blown sand and dust on Earth and Mars. Specifically, we review the physics of aeolian saltation, the formation and development of sand dunes and ripples, the physics of dust aerosol emission, the weather phenomena that trigger dust storms, and the lifting of dust by dust devils and other small-scale vortices. We also discuss the physics of wind-blown sand and dune formation on Venus and Titan.

  2. A new hybrid particle/fluid model for cometary dust

    Science.gov (United States)

    Shou, Y.; Combi, M. R.; Tenishev, V.; Toth, G.; Hansen, K. C.; Huang, Z.; Gombosi, T. I.; Fougere, N.; Rubin, M.

    2017-12-01

    Cometary dust grains, which originate from comets, are believed to contain clues to the formation and the evolution of comets. They also play an important role in shaping the cometary environment, as they are able to decelerate and heat the gas through collisions, carry charges and interact with the plasma environment, and possibly sublimate gases. Therefore, the loss rate and behavior of dust grains are of interest to scientists. Currently, mainly two types of numerical dust models exist: particle models and fluid models have been developed. Particle models, which keep track of the positions and velocities of all gas and dust particles, allow crossing dust trajectories and a more accurate description of returning dust grains than the fluid model. However, in order to compute the gas drag force, the particle model needs to follow more gas particles than dust particles. A fluid model is usually more computationally efficient and is often used to provide simulations on larger spatial and temporal scales. In this work, a new hybrid model is developed to combine the advantages of both particle and fluid models. In the new approach a fluid model based on the University of Michigan BATSRUS code computes the gas properties, and feeds the gas drag force to the particle model, which is based on the Adaptive Mesh Particle Simulator (AMPS) code, to calculate the motion of dust grains. The coupling is done via the Space Weather Modeling Framework (SWMF). In addition to the capability of simulating the long-term dust phenomena, the model can also designate small active regions on the nucleus for comparison with the temporary fine dust features in observations. With the assistance of the newly developed model, the effect of viewing angles on observed dust jet shapes and the transportation of heavy dust grains from the southern to the northern hemisphere of comet 67P/Churyumov-Gerasimenko will be studied and compared with Rosetta mission images. Preliminary results will be

  3. Specific Features of Formation and Distribution of the Fund of Innovation Development when Motivating Employees of Enterprises

    Directory of Open Access Journals (Sweden)

    Kuzmin Oleh Ye.

    2014-02-01

    Full Text Available The article considers motivation activity at industrial enterprises and underlines importance of its execution under conditions of innovation activity. In order to perform it the article offers to use a number of material (bonus system by generalised grades, bonus for doing especially important work for a certain period of time with consideration of the labour process with innovation activity of the enterprise, etc. and non-material (praise, gratuity, methods of formation of collectives, etc. incentives, the source of which is application of the fund of innovation development. In order to increase effectiveness of motivation activity of an enterprise the article identifies specific features of its formation and distribution: financial and purposeful character, continuity, inclusion of individual payments only and existence of norms of deduction of its funds.

  4. The features of the formation of the socio-psychological climate in the institution of social services

    Directory of Open Access Journals (Sweden)

    Balakhtar Valentina Vizitorіvna

    2017-04-01

    Full Text Available The article reveals the essence of the concepts “socio-psychological climate”, “climate” and “organizational culture”. The author analyses approaches to understanding the socio-psychological climate: the socio-psychological phenomenon, the general emotional and psychological mood, the style of people's relationships with direct contact with each other, the social and psychological compatibility of the members of the group. The features of the formation of the socio-psychological climate in the establishment of the social service, factors affecting the state of the socio-psychological climate in the team are considered.

  5. Key Features of New Particle Formation Events at Background Sites in China

    Science.gov (United States)

    Shen, X.; Sun, J.; Zhang, X.; Zhang, Y.

    2016-12-01

    Long-term continuous measurements of particle number size distributions with mobility diameter sizes ranging from 3 to 800 nm were performed to study new particle formation (NPF) events at Shangdianzi (SDZ), Mt. Tai (TS), and Lin'an (LAN) stations representing the background atmospheric conditions in the North China Plain (NCP), Central East China (CEC), and Yangtze River Delta (YRD) regions, respectively. The mean formation rate of 3-nm particles was 6.3, 3.7, and 5.8 cm-3 s-1, and the mean particle growth rate was 3.6, 6.0, and 6.2 nm h-1at SDZ, TS, and LAN, respectively. The NPF event characteristics at the three sites indicate that there may be a stronger source of low volatile vapors and higher condensational sink of pre-existing particles in the YRD region. The formation rate of NPF events at these sites, as well as the condensation sink, is approximately 10 times higher than some results reported at rural/urban sites in western countries. However, the growth rates appear to be 1-2 times higher. Approximately 12%-17% of all NPF events with nucleated particles grow to a climate relevant size (>50 nm). These kinds of NPF events were normally observed with higher growth rate than the other NPF cases. Generally, the cloud condensation nuclei (CCN) number concentration can be enhanced by approximately a factor of 2-6 on these event days. The mean value of the enhancement factor is lowest at LAN (2-3) and highest at SDZ ( 4). NPF events have also been found to have greater impact on CCN production in China at the regional scale than in the other background sites worldwide. Based on the long-term measurement of NPF event at SDZ station (8-year dataset), it was found the first factor in determining the NPF occurrence was the condensation sink, and the second factor could be the concentration level of precursor vapors participating in the NPF event (e.g., sulfuric acid). Some emission control strategies applied in China will reduce the condensation sink, which is

  6. Sedimentary features of the Blackhawk formation (Cretaceous) at Sunnyside, Carbon County, Utah

    Science.gov (United States)

    Maberry, John O.

    1968-01-01

    The Blackhawk Formation at Sunnyside, Utah, was deposited along the western margin of the Western Interior Cretaceous sea during southeastward withdrawal of the sea. Sand was the dominant type of land-derived sediment deposited in the Sunnyside district during the regressive phases. Sand bodies prograded seaward in response to changing sediment supply from a source west of Sunnyside. Where conditions were favorable for the accumulation of vegetable material, peat deposits formed and were later changed to bituminous Coal by diagenesis. Studies of the coal bed show that the coals were formed from accumulation of small, low-growing plants and plant debris that was transported into the area of accumulation. Remains of large plants in the coals are rare. Trace fossils, which are tracks, trails and burrows formed by organisms and preserved in the rock, are extremely abundant in the Blackhawk rocks. These biogenic sedimentary structures are common in Cretaceous deposits throughout the western United States. Trace fossil distribution in the rocks is controlled by the depositional environment preferred by their creators. A study of the trace fossils of a. locality allows a more precise determination of the conditions during deposition of the sediments. Water depth, bottom conditions, salinity, current velocity and amount of suspended nutrients in the water are some of the environmental factors that may be reconstructed by studying trace fossils. The Blackhawk Formation at Sunnyside comprises the members, the Kenilworth Member and the Sunnyside Member. Field studies show that the formation may be further subdivided in the Sunnyside district., according to the precepts of units of mappable thickness and similar lithologic characteristics. The Blackhawk pinches out eastward and north. ward into the Mancos Shale, and names for submembers become meaningless. Names are of value in the region of interest, however, because of the prominence of the named units. Coal mining is the

  7. Dust in planetary nebulae

    International Nuclear Information System (INIS)

    Kwok, S.

    1980-01-01

    A two-component dust model is suggested to explain the infrared emission from planetary nebulae. A cold dust component located in the extensive remnant of the red-giant envelope exterior to the visible nebula is responsible for the far-infrared emission. A ward dust component, which is condensed after the formation of the planetary nebula and confined within the ionized gas shell, emits most of the near- and mid-infrared radiation. The observations of NGC 7027 are shown to be consisten with such a model. The correlation of silicate emission in several planetary nebulae with an approximately +1 spectral index at low radio frequencies suggests that both the silicate and radio emissions originate from the remnant of the circumstellar envelope of th precursor star and are observable only while the planetary nebula is young. It is argued that oxygen-rich stars as well as carbon-rich stars can be progenitors of planetary nebulae

  8. The mechanism of formation of enterprises’ financial results: foreign experience and domestic features

    Directory of Open Access Journals (Sweden)

    V.O. Kusliy

    2015-12-01

    Full Text Available Theauthor suggests the mechanism of formation of financial results of enterprises. It is built for management purposes. The information used to determine the financial result from operating activities can also be used for the «cost–volume–issue» analysis and for determination of the optimal production level and appropriateness of individual orders, pricing and more. Overall, the rate of the financial result from operating activities can describe the activity that is the basis for the company and for the implementation of which the entity was created. Another advantage of this model is that the definition of financial result from financial investments and extraordinary activities are more efficient in terms of information content than the division for the costs and revenues from these activities. As for the financial result from extraordinary activities, this figure reveals random factors beyond the control of the entity and to measure their impact on the financial performance of the enterprise as a whole.

  9. Features of the formative educational training groups in Youth sports schools in terms of our time

    Directory of Open Access Journals (Sweden)

    Artem Zhytnitskyi

    2015-12-01

    Full Text Available Purpose: identify the factors affecting the effective performance of the Children and Youth Sports School at the initial and preliminary stage of basic training. Material and Methods: analysis of the literary base, pedagogical research methods, statistical methods, questionnaire. Results: the understanding of the factors influencing the motor skills formation of students is displayed. The author grounded three-dimensional understanding of dissimilar conditions and factors determining the functionality of a Children and Youth Sports School taking into account the motivation of students the scope of use of the skills and other factors which don’t deal with teaching science. Conclusions: it was found that miscellaneous factors, many of which are associated with the state of material and technical base and infrastructure of the school, the region and the country as a whole affect screening the contingent of a Children and Youth Sports School

  10. A Fractal Model for the Capacitance of Lunar Dust and Lunar Dust Aggregates

    Science.gov (United States)

    Collier, Michael R.; Stubbs, Timothy J.; Keller, John W.; Farrell, William M.; Marshall, John; Richard, Denis Thomas

    2011-01-01

    Lunar dust grains and dust aggregates exhibit clumping, with an uneven mass distribution, as well as features that span many spatial scales. It has been observed that these aggregates display an almost fractal repetition of geometry with scale. Furthermore, lunar dust grains typically have sharp protrusions and jagged features that result from the lack of aeolian weathering (as opposed to space weathering) on the Moon. A perfectly spherical geometry, frequently used as a model for lunar dust grains, has none of these characteristics (although a sphere may be a reasonable proxy for the very smallest grains and some glasses). We present a fractal model for a lunar dust grain or aggregate of grains that reproduces (1) the irregular clumpy nature of lunar dust, (2) the presence of sharp points, and (3) dust features that span multiple scale lengths. We calculate the capacitance of the fractal lunar dust analytically assuming fixed dust mass (i.e. volume) for an arbitrary number of fractal levels and compare the capacitance to that of a non-fractal object with the same volume, surface area, and characteristic width. The fractal capacitance is larger than that of the equivalent non-fractal object suggesting that for a given potential, electrostatic forces on lunar dust grains and aggregates are greater than one might infer from assuming dust grains are sphericaL Consequently, electrostatic transport of lunar dust grains, for example lofting, appears more plausible than might be inferred by calculations based on less realistic assumptions about dust shape and associated capacitance.

  11. Random forests for feature selection in QSPR Models - an application for predicting standard enthalpy of formation of hydrocarbons

    Science.gov (United States)

    2013-01-01

    Background One of the main topics in the development of quantitative structure-property relationship (QSPR) predictive models is the identification of the subset of variables that represent the structure of a molecule and which are predictors for a given property. There are several automated feature selection methods, ranging from backward, forward or stepwise procedures, to further elaborated methodologies such as evolutionary programming. The problem lies in selecting the minimum subset of descriptors that can predict a certain property with a good performance, computationally efficient and in a more robust way, since the presence of irrelevant or redundant features can cause poor generalization capacity. In this paper an alternative selection method, based on Random Forests to determine the variable importance is proposed in the context of QSPR regression problems, with an application to a manually curated dataset for predicting standard enthalpy of formation. The subsequent predictive models are trained with support vector machines introducing the variables sequentially from a ranked list based on the variable importance. Results The model generalizes well even with a high dimensional dataset and in the presence of highly correlated variables. The feature selection step was shown to yield lower prediction errors with RMSE values 23% lower than without feature selection, albeit using only 6% of the total number of variables (89 from the original 1485). The proposed approach further compared favourably with other feature selection methods and dimension reduction of the feature space. The predictive model was selected using a 10-fold cross validation procedure and, after selection, it was validated with an independent set to assess its performance when applied to new data and the results were similar to the ones obtained for the training set, supporting the robustness of the proposed approach. Conclusions The proposed methodology seemingly improves the prediction

  12. The Features of Formation of Supply Chains of Retail Trade Enterprise

    Directory of Open Access Journals (Sweden)

    Kochubei Dmytro V.

    2017-10-01

    Full Text Available The article explores the features of functioning of retail trade enterprises in supply chains; boundaries and dimensions of the supply chain of retail trade enterprise have been defined; a differentiation of methods for managing and assessing the efficiency of supply chain of retail trade enterprise has been proposed. The leading role of the logistic service of retail trade enterprises in generating service flows in terms of supply chain has been defined. The concept of supply chain driven by demand has been considered; the prospect for application of this approach in order to ensure the sustainable competitive advantages for retail trade enterprise has been identified. In order to assess the results of management of supply chain, it is proposed to combine the assessment system of the supply of enterprise and the assessment system of the logistic service provided to consumers of the retail trade enterprise. The scientific and practical usefulness of the proposed approach lies in the ability of the enterprise to better reflect the logistical partnership with the parties in the supply chain and to achieve maximum efficiency in its management.

  13. Role of water on formation and structural features of Maya blue

    Science.gov (United States)

    Mondelli, C.; Sánchez del Río, M.; González, M. A.; Magazzú, A.; Cavallari, C.; Suárez, M.; García-Romero, E.; Romano, P.

    2012-02-01

    The Maya blue (MB) is an artificial pigment created between 500-800 A.D. and used in murals, pottery and sculptures by Mayas and other people in Mesoamerica. MB is resistant to age, acid, weathering, biodegradation and even modern chemical solvents, but the chemical reasons behind the resistance to chemical aggressions are still under debate. Water plays a fundamental role in the interactions between indigo and clay. The dynamics of the clay's zeolitic and structural water molecules during the formation of MB, usually stabilized by moderate heating, has been monitored by means of neutron inelastic scattering. Neutron incoherent scattering in these samples is only due to the hydrogen atoms, so the signal is very sensitive to the amount of released water, providing detailed information on the dehydration process. A simultaneous analysis of the coherent elastic scattering and the incoherent scattering allows observing and quantifying how the structure of the clay is affected by dehydration. Here we show that a quite resistant pigment can be obtained at room temperature simply by dehydrating a palygorskite-indigo mixture employing only vacuum, without any thermal treatment.

  14. PECULIAR FEATURES PERTAINING TO SOIL DEPOSIT FORMATION IN THE MESOPOTAMIA ZONE OF IRAQ

    Directory of Open Access Journals (Sweden)

    A. Al-Robai Ali

    2013-01-01

    Full Text Available The paper considers geological conditions for sedimentary mantle formation. In the geological past limestone deposits and sedimentation rock mass from fragmentary materials brought by water flows were formed in the southern part of the stretched geosyncline which had been submerged by shallow sea. By lapse of time deposits were transferred into sandstone, siltstone and mudstone that represented the bottom part of rock mass. Continental conditions were established as a result of orogenic process which took place nearly 30–50 million years ago. Erosional activity of wind and flowing waters was observed on the surface for a long period of time.The top part of soil rock mass is represented by alluvial deposits of the rivers Tigris and Euphrates. During the process of sediment deposition more full-flowing Tigris caused more complicated dynamics of water channels  including meandering and changeability of inter-bedding.Engineering and geological investigations have been carried out with the purpose to study structure of soil rock mass in various regions of the country (Al-Diwaniya, Khidr, Al-Nasiriya and Khila. Specific drill columns have been selected on the basis of analysis of soil rock masses.  Theses drill columns may serve for further selection of rational types of foundations (shallow foundation, piles foundation or creation of artificial foundations (cementing, armoring etc.. 

  15. Role of water on formation and structural features of Maya blue

    International Nuclear Information System (INIS)

    Mondelli, C; Río, M Sánchez del; González, M A; Magazzú, A; Cavallari, C; Suárez, M; García-Romero, E; Romano, P

    2012-01-01

    The Maya blue (MB) is an artificial pigment created between 500-800 A.D. and used in murals, pottery and sculptures by Mayas and other people in Mesoamerica. MB is resistant to age, acid, weathering, biodegradation and even modern chemical solvents, but the chemical reasons behind the resistance to chemical aggressions are still under debate. Water plays a fundamental role in the interactions between indigo and clay. The dynamics of the clay's zeolitic and structural water molecules during the formation of MB, usually stabilized by moderate heating, has been monitored by means of neutron inelastic scattering. Neutron incoherent scattering in these samples is only due to the hydrogen atoms, so the signal is very sensitive to the amount of released water, providing detailed information on the dehydration process. A simultaneous analysis of the coherent elastic scattering and the incoherent scattering allows observing and quantifying how the structure of the clay is affected by dehydration. Here we show that a quite resistant pigment can be obtained at room temperature simply by dehydrating a palygorskite-indigo mixture employing only vacuum, without any thermal treatment.

  16. Dust characterization in FTU tokamak

    Science.gov (United States)

    De Angeli, M.; Maddaluno, G.; Laguardia, L.; Ripamonti, D.; Perelli Cippo, E.; Apicella, M. L.; Conti, C.; Giacomi, G.; Grosso, G.

    2015-08-01

    Dust present in the vessel of FTU has been collected and analysed. Being FTU a device with full metal plasma facing components for the whole life and equipped with a liquid lithium limiter (LLL) make FTU of special interest from a point of view of dust studies. Analyses were conducted by standard dust analysis methods and by dedicated analysis, as X-rays and neutron diffraction, to investigate the presence of lithium compounds due the presence of the LLL in FTU. Dust collected near the LLL presents a different elemental composition, namely Li compounds, compared to the dust collected in the rest of the vessel; in particular LiO2, LiOH, and Li2CO3. On the basis of these results, the formation of Li2CO3 is proposed via a two steps process. Results of fuel retention measured by thermal desorption spectroscopy (TDS) method show that fuel retention should not be an issue for FTU.

  17. Effect of Process Parameters on Flow Length and Flash Formation in Injection Moulding of High Aspect Ratio Polymeric Micro Features

    Directory of Open Access Journals (Sweden)

    Abdelkhalik Eladl

    2018-01-01

    Full Text Available This paper reports an investigation of the effects of process parameters on the quality characteristics of polymeric parts produced by micro injection moulding (μIM with two different materials. Four injection moulding process parameters (injection velocity, holding pressure, melt temperature and mould temperature were investigated using Polypropylene (PP and Acrylonitrile Butadiene Styrene (ABS. Three key characteristics of the mouldings were evaluated with respect to process settings and the material employed: part mass, flow length and flash formation. The experimentation employs a test part with four micro fingers with different aspect ratios (from 21 up to 150 and was carried out according to the Design of Experiments (DOE statistical technique. The results show that holding pressure and injection velocity are the most influential parameters on part mass with a direct effect for both materials. Both parameters have a similar effect on flow length for both PP and ABS at all aspect ratios and have higher effects as the feature thickness decreased below 300 μm. The study shows that for the investigated materials the injection speed and packing pressure were the most influential parameters for increasing the amount of flash formation, with relative effects consistent for both materials. Higher melt and mould temperatures settings were less influential parameters for increasing the flash amount when moulding with both materials. Of the two investigated materials, PP was the one exhibiting more flash formation as compared with ABS, when corresponding injection moulding parameters settings for both materials were considered.

  18. Features of formation of «developmental institutions» in Russia: a case of the Siberian regions

    Directory of Open Access Journals (Sweden)

    Kirill Sergeyevich Sablin

    2014-03-01

    Full Text Available The article is devoted to the features of the process of “developmental institutions” formation in the Siberian regions. The importance of the institutional environment and informal personalized connections affect its formation is articulated. The research is carried out according to the methodological base of public choice theory, especially — economics of bureaucracy, and the concept of D. North. Functional roles, which “developmental institutions” are performed in the Siberian regions, are disclosed: “affiliate” of the regional administration under its full organizational and financial control; “independent agent”, which expresses the interests of academic science and small innovative business; “subdivision” of federal innovative structure that promotes commercialization of innovations in the region; “conductor” of the federal level big business interests that favor large-scale projects realization in the region. As a result, different combinations of the elements of the institutional environment and informal personalized connections between subjects, who are involved in the process of “developmental institutions” formation in the Siberian regions, determine further success or “failure” of these organizational-economic structures.

  19. THE FMOS-COSMOS SURVEY OF STAR-FORMING GALAXIES AT z ∼ 1.6. I. Hα-BASED STAR FORMATION RATES AND DUST EXTINCTION

    Energy Technology Data Exchange (ETDEWEB)

    Kashino, D.; Sugiyama, N. [Division of Particle and Astrophysical Science, Graduate School of Science, Nagoya University, Nagoya 464-8602 (Japan); Silverman, J. D. [Kavli Institute for the Physics and Mathematics of the Universe (WPI), Todai Institutes for Advanced Study, The University of Tokyo, Kashiwanoha, Kashiwa 277-8583 (Japan); Rodighiero, G. [Dipartimento di Astronomia, Università di Padova, vicolo dell' Osservatorio 3, I-35122 Padova (Italy); Renzini, A. [INAF Osservatorio Astronomico di Padova, vicolo dell' Osservatorio 5, I-35122 Padova (Italy); Arimoto, N. [National Astronomical Observatory of Japan, Subaru Telescope, 650 North Aohoku Place, Hilo, HI 96720 (United States); Daddi, E. [CEA-Saclay, Service d' Astrophysique, F-91191 Gif-sur-Yvette (France); Lilly, S. J.; Carollo, C. M. [Institute for Astronomy, ETH Zürich, Wolfgang-Pauli-strasse 27, 8093 Zürich (Switzerland); Sanders, D. B.; Zahid, H. J.; Chu, J.; Hasinger, G.; Kewley, L. J. [Institute for Astronomy, University of Hawaii, 2680 Woodlawn Drive, Honolulu, HI 96822 (United States); Kartaltepe, J. [National Optical Astronomy Observatory, 950 N. Cherry Ave., Tucson, AZ 85719 (United States); Nagao, T. [The Hakubi Center for Advanced Research, Kyoto University, Kyoto 606-8302 (Japan); Capak, P. [California Institute of Technology, 1200 E. California Blvd., Pasadena, CA 91125 (United States); Ilbert, O. [Aix Marseille Université, CNRS, LAM (Laboratoire d' Astrophysique de Marseille) UMR 7326, F-13388 Marseille (France); Kajisawa, M. [Research Center for Space and Cosmic Evolution, Ehime University, Bunkyo-cho 2-5, Matsuyama, Ehime 790-8577 (Japan); Koekemoer, A. M., E-mail: daichi@nagoya-u.jp [HST and JWST Instruments/Science Division, Space Telescope Science Institute, 3700 San Martin Drive, Baltimore, MD 21218 (United States); and others

    2013-11-01

    We present the first results from a near-IR spectroscopic survey of the COSMOS field, using the Fiber Multi-Object Spectrograph on the Subaru telescope, designed to characterize the star-forming galaxy population at 1.4 < z < 1.7. The high-resolution mode is implemented to detect Hα in emission between 1.6-1.8 μm with f {sub Hα} ∼> 4 × 10{sup –17} erg cm{sup –2} s{sup –1}. Here, we specifically focus on 271 sBzK-selected galaxies that yield a Hα detection thus providing a redshift and emission line luminosity to establish the relation between star formation rate and stellar mass. With further J-band spectroscopy for 89 of these, the level of dust extinction is assessed by measuring the Balmer decrement using co-added spectra. We find that the extinction (0.6 ∼< A {sub Hα} ∼< 2.5) rises with stellar mass and is elevated at high masses compared to low-redshift galaxies. Using this subset of the spectroscopic sample, we further find that the differential extinction between stellar and nebular emission E {sub star}(B – V)/E {sub neb}(B – V) is 0.7-0.8, dissimilar to that typically seen at low redshift. After correcting for extinction, we derive an Hα-based main sequence with a slope (0.81 ± 0.04) and normalization similar to previous studies at these redshifts.

  20. THE ROLE OF STAR FORMATION AND AN AGN IN DUST HEATING OF z = 0.3–2.8 GALAXIES. I. EVOLUTION WITH REDSHIFT AND LUMINOSITY

    Energy Technology Data Exchange (ETDEWEB)

    Kirkpatrick, Allison; Pope, Alexandra [Department of Astronomy, University of Massachusetts, Amherst, MA 01002 (United States); Sajina, Anna; Roebuck, Eric [Department of Physics and Astronomy, Tufts University, Medford, MA 02155 (United States); Yan, Lin [Infrared Processing and Analysis Center, California Institute of Technology, Pasadena, CA 91125 (United States); Armus, Lee [Spitzer Science Center, California Institute of Technology, Pasadena, CA 91125 (United States); Díaz-Santos, Tanio [Núcleo de Astronomía de la Facultad de Ingeniería, Universidad Diego Portales, Av. Ejército Libertador 441, Santiago (Chile); Stierwalt, Sabrina, E-mail: kirkpatr@astro.umass.edu [Department of Astronomy, University of Virginia, Charlottesville, VA 22904 (United States)

    2015-11-20

    We characterize infrared spectral energy distributions of 343 (ultra)luminous infrared galaxies from z = 0.3–2.8. We diagnose the presence of an active galactic nucleus (AGN) by decomposing individual Spitzer mid-IR spectroscopy into emission from star formation and an AGN-powered continuum; we classify sources as star-forming galaxies (SFGs), AGNs, or composites. Composites comprise 30% of our sample and are prevalent at faint and bright S{sub 24}, making them an important source of IR AGN emission. We combine spectroscopy with multiwavelength photometry, including Herschel imaging, to create three libraries of publicly available templates (2–1000 μm). We fit the far-IR emission using a two-temperature modified blackbody to measure cold and warm dust temperatures (T{sub c} and T{sub w}). We find that T{sub c} does not depend on mid-IR classification, while T{sub w} shows a notable increase as the AGN grows more luminous. We measure a quadratic relationship between mid-IR AGN emission and total AGN contribution to L{sub IR}. AGNs, composites, and SFGs separate in S{sub 8}/S{sub 3.6} and S{sub 250}/S{sub 24}, providing a useful diagnostic for estimating relative amounts of these sources. We estimate that >40% of IR-selected samples host an AGN, even at faint selection thresholds (S{sub 24} > 100 μJy). Our decomposition technique and color diagnostics are relevant given upcoming observations with the James Webb Space Telescope.

  1. Special Features of Structure Formation in Pipes from Medium-Carbon Low-Alloy Steel 32G2F Under Heat Treatment

    Science.gov (United States)

    Stepanov, A. I.; Belikov, S. V.; Musikhin, S. A.; Burmasov, S. P.; Popov, A. A.

    2017-03-01

    Special features of formation of structure and properties of seamless pipes from medium-carbon low-alloy steel for oil and gas applications are considered and associated with chemical inhomogeneity of the metal of the pipes.

  2. Dust Around T Tauri Stars

    Directory of Open Access Journals (Sweden)

    Kyung-Won Suh

    2011-12-01

    Full Text Available To reproduce the multiple broad peaks and the fine spectral features in the spectral energy distributions (SEDs of T Tauri stars, we model dust around T Tauri stars using a radiative transfer model for multiple isothermal circumstellar dust shells. We calculate the radiative transfer model SEDs for multiple dust shells using the opacity functions for various dust grains at different temperatures. For six sample stars, we compare the model results with the observed SEDs including the Spitzer spectral data. We present model parameters for the best fit model SEDs that would be helpful to understand the overall structure of dust envelopes around classical T Tauri stars. We find that at least three separate dust components are required to reproduce the observed SEDs. For all the sample stars, an innermost hot (250-550 K dust component of amorphous (silicate and carbon and crystalline (corundum for all objects and forsterite for some objects grains is needed. Crystalline forsterite grains can reproduce many fine spectral features of the sample stars. We find that crystalline forsterite grains exist in cold regions (80-100 K as well as in hot inner shells.

  3. Sahara Dust Cloud

    Science.gov (United States)

    2005-01-01

    [figure removed for brevity, see original site] Dust Particles Click on the image for Quicktime movie from 7/15-7/24 A continent-sized cloud of hot air and dust originating from the Sahara Desert crossed the Atlantic Ocean and headed towards Florida and the Caribbean. A Saharan Air Layer, or SAL, forms when dry air and dust rise from Africa's west coast and ride the trade winds above the Atlantic Ocean. These dust clouds are not uncommon, especially during the months of July and August. They start when weather patterns called tropical waves pick up dust from the desert in North Africa, carry it a couple of miles into the atmosphere and drift westward. In a sequence of images created by data acquired by the Earth-orbiting Atmospheric Infrared Sounder ranging from July 15 through July 24, we see the distribution of the cloud in the atmosphere as it swirls off of Africa and heads across the ocean to the west. Using the unique silicate spectral signatures of dust in the thermal infrared, AIRS can detect the presence of dust in the atmosphere day or night. This detection works best if there are no clouds present on top of the dust; when clouds are present, they can interfere with the signal, making it much harder to detect dust as in the case of July 24, 2005. In the Quicktime movie, the scale at the bottom of the images shows +1 for dust definitely detected, and ranges down to -1 for no dust detected. The plots are averaged over a number of AIRS observations falling within grid boxes, and so it is possible to obtain fractional numbers. [figure removed for brevity, see original site] Total Water Vapor in the Atmosphere Around the Dust Cloud Click on the image for Quicktime movie The dust cloud is contained within a dry adiabatic layer which originates over the Sahara Desert. This Saharan Air Layer (SAL) advances Westward over the Atlantic Ocean, overriding the cool, moist air nearer the surface. This burst of very dry air is visible in the AIRS retrieved total water

  4. Dust and Molecular Gas in the Winds of Nearby Galaxies

    Science.gov (United States)

    McCormick, Alexander N.

    2015-04-01

    Galactic winds provide a fundamental mechanism for galaxy evolution. The outflow of material in winds remains the most likely culprit responsible for a host of galaxy observations, plus mounting evidence for galactic winds at times in the past points to their importance in understanding the history of the universe. Therefore, detailed observations of galactic winds are critical to fleshing out the narrative of galaxy evolution. In particular, the dust and molecular gas of a galaxy's interstellar medium (ISM) play crucial roles in the absorption, scattering, and reemission of starlight, the heating of the ISM, and provide critical materials for star formation. We present results from archival Spitzer Space Telescope ata and exceptionally deep Herschel Space Observatory data of the dust and molecular gas found in and around 20 nearby galaxies known to host galactic-scale winds. Selecting nearby galaxies has allowed us the resolution and sensitivity to differentiate dust and molecular gas outside the galaxies and observe their typically faint emission. These are the most detailed surveys currently available of the faint dust and molecular gas components in galactic winds, and we have utilized them to address the following questions: i) What are the location and morphology of dust and molecular gas, and how do these components compare with better known neutral and ionized gas features? ii) How much do dust and molecular gas contribute to the mass and energy of galactic winds? iii) Do the properties of the dust and molecular gas correlate with the properties of the wind-hosting galaxy? Spitzer archival data has revealed kiloparsec-scale polycyclic aromatic hydrocarbon (PAH) structures in the extraplanar regions of nearly all the wind-hosting galaxies we investigated. We found a nearly linear correlation between the extraplanar PAH emission and the total infrared flux, a proxy for star formation. Our results also suggest a correlation between the height of extraplanar

  5. Dust removal from waste gas arising from fluidized beds

    International Nuclear Information System (INIS)

    Soltys, L.

    1992-01-01

    Two types dust removal equipment mostly useful for dust removal from waste gas from fluidized beds, i.e. electrofilters and pulsatory bag filters were presented. Their features and functional properties were compared. (author). 7 refs, 4 figs

  6. The physics of wind-blown sand and dust

    OpenAIRE

    Kok, Jasper F.; Parteli, Eric J. R.; Michaels, Timothy I.; Karam, Diana Bou

    2012-01-01

    The transport of sand and dust by wind is a potent erosional force, creates sand dunes and ripples, and loads the atmosphere with suspended dust aerosols. This article presents an extensive review of the physics of wind-blown sand and dust on Earth and Mars. Specifically, we review the physics of aeolian saltation, the formation and development of sand dunes and ripples, the physics of dust aerosol emission, the weather phenomena that trigger dust storms, and the lifting of dust by dust devil...

  7. Exploring the Dust Content of Galactic Winds with Herschel. II. Nearby Dwarf Galaxies*

    Science.gov (United States)

    McCormick, Alexander; Veilleux, Sylvain; Meléndez, Marcio; Martin, Crystal L.; Bland-Hawthorn, Joss; Cecil, Gerald; Heitsch, Fabian; Müller, Thomas; Rupke, David S. N.; Engelbracht, Chad

    2018-03-01

    We present results from analysis of deep Herschel Space Observatory observations of six nearby dwarf galaxies known to host galactic-scale winds. The superior far-infrared sensitivity and angular resolution of Herschel have allowed detection of cold circumgalactic dust features beyond the stellar components of the host galaxies traced by Spitzer 4.5 μm images. Comparisons of these cold dust features with ancillary data reveal an imperfect spatial correlation with the ionized gas and warm dust wind components. We find that typically ˜10-20% of the total dust mass in these galaxies resides outside of their stellar disks, but this fraction reaches ˜60% in the case of NGC 1569. This galaxy also has the largest metallicity (O/H) deficit in our sample for its stellar mass. Overall, the small number of objects in our sample precludes drawing strong conclusions on the origin of the circumgalactic dust. We detect no statistically significant trends with star formation properties of the host galaxies, as might be expected if the dust were lifted above the disk by energy inputs from on-going star formation activity. Although a case for dust entrained in a galactic wind is seen in NGC 1569, in all cases, we cannot rule out the possibility that some of the circumgalactic dust might be associated instead with gas accreted or removed from the disk by recent galaxy interaction events, or that it is part of the outer gas-rich portion of the disk that lies below the sensitivity limit of the Spitzer 4.5 μm data.

  8. Depositional features of the Middle Jurassic formation of Field N and their influence on optimal drilling schedule

    Science.gov (United States)

    Mishina, D.; Rukavishnikov, V.; Belozerov, B.; Bochkov, A.

    2015-02-01

    The Middle Jurassic formation of Field N represented by 4 hydrodynamically connected layers (J5-6, J4, J3 and J2) contains 42% of the field STOIIP. The J2-6 formation is characterized as a gas-oil-condensate massive lithologically and tectonically screened accumulation with a gas cap (J2, J3 layers) and bottom water (J5-6 layer). Oil is predominantly in the J3 and J4 layers. There is a high risk of early gas coning from gas-bearing layers to oil producing wells determined on the basis of production test results, which can significantly decrease the life of the well. To select a more optimal drilling schedule, it is necessary to take the risk of early gas coning into account and determine distinctive features within the gas- saturated zone that can reduce it. The presence of a thick shale barrier between the J2 and J3 layers with thicknesses varying from 0 to 30 m is recognized as the beginning of a transgression cycle, and if the gas cap is only in the J2 layer, this barrier with the thickness of more than 5 m can extensively prevent early gas coning into oil producing wells. The integration of geological information represented by the probability map constructed and petrophysical information represented by the kh map provide the more precise determination of an optimal drilling schedule.

  9. Ten-year operational dust forecasting - Recent model development and future plans

    Energy Technology Data Exchange (ETDEWEB)

    Kallos, G; Spyrou, C; Astitha, M; Mitsakou, C; Solomos, S; Kushta, J; Pytharoulis, I; Katsafados, P; Mavromatidis, E; Papantoniou, N; Vlastou, G [University of Athens, School of Physics, Atmospheric Modeling and Weather Forecasting Group - UOA/AM and WFG, University Campus, Bldg. PHYS-V, Athens 15784 (Greece)], E-mail: kallos@mg.uoa.gr

    2009-03-01

    The Sahara desert is one of the major sources of mineral dust on Earth, producing up to 2x10{sup 8} t yr-{sup 1}. A combined effort has been devoted during the last ten years at the University of Athens (UOA) from the Atmospheric Modeling and Weather Forecasting Group (AM and WFG) to the development of an analysis and forecasting tool that will provide early warning of Saharan dust outbreaks. The developed tool is the SKIRON limited-area forecasting system, based on the Eta limited area modeling system with embedded algorithms describing the dust cycle. A new version of the model is currently available, with extra features like eight-size particle bins, radiative transfer corrections, new dust source identification and utilization of rocky soil characterization and incorporation of more accurate deposition schemes. The new version of SKIRON modeling system is coupled with the photochemical model CAMx in order to study processes like the shading effect of dust particles on photochemical processes and the production of second and third generation of aerosols. Moreover, another new development in the AM and WFG is based on the RAMS model, with the incorporation of processes like dust and sea-salt production, gas and aqueous phase chemistry and particle formation. In this study, the major characteristics of the developed (and under development) modeling systems are presented, as well as the spatiotemporal distribution of the transported dust amounts, the interaction with anthropogenically-produced particles and the potential implications on radiative transfer.

  10. Evolution of aerosol chemistry in Xi'an, inland China, during the dust storm period of 2013 - Part 1: Sources, chemical forms and formation mechanisms of nitrate and sulfate

    Science.gov (United States)

    Wang, G. H.; Cheng, C. L.; Huang, Y.; Tao, J.; Ren, Y. Q.; Wu, F.; Meng, J. J.; Li, J. J.; Cheng, Y. T.; Cao, J. J.; Liu, S. X.; Zhang, T.; Zhang, R.; Chen, Y. B.

    2014-11-01

    A total suspended particulate (TSP) sample was collected hourly in Xi'an, an inland megacity of China near the Loess Plateau, during a dust storm event of 2013 (9 March 18:00-12 March 10:00 LT), along with a size-resolved aerosol sampling and an online measurement of PM2.5. The TSP and size-resolved samples were determined for elemental carbon (EC), organic carbon (OC), water-soluble organic carbon (WSOC) and nitrogen (WSON), inorganic ions and elements to investigate chemistry evolution of dust particles. Hourly concentrations of Cl-, NO3-, SO42-, Na+ and Ca2+ in the TSP samples reached up to 34, 12, 180, 72 and 28 μg m-3, respectively, when dust peak arrived over Xi'an. Chemical compositions of the TSP samples showed that during the whole observation period NH4+ and NO3- were linearly correlated with each other (r2=0.76) with a molar ratio of 1 : 1, while SO42- and Cl- were well correlated with Na+, Ca2+, Mg2+ and K+ (r2 > 0.85). Size distributions of NH4+ and NO3- presented a same pattern, which dominated in the coarse mode (> 2.1 μm) during the event and predominated in the fine mode (analysis further indicated that SO42- and Cl- in the dust samples possibly exist as Na2SO4, CaSO4 and NaCl, which directly originated from Gobi desert surface soil, while NH4+ and NO3- in the dust samples exist as NH4NO3. We propose a mechanism to explain these observations in which aqueous phase of dust particle surface is formed via uptake of water vapor by hygroscopic salts such as Na2SO4 and NaCl, followed by heterogeneous formation of nitrate on the liquid phase and subsequent absorption of ammonia. Our data indicate that 54 ± 20% and 60 ± 23% of NH4+ and NO3- during the dust period were secondarily produced via this pathway, with the remaining derived from the Gobi desert and Loess Plateau, while SO42- in the event almost entirely originated from the desert regions. Such cases are different from those in the East Asian continental outflow region, where during Asia dust

  11. Dust-Tolerant Intelligent Electrical Connection System

    Science.gov (United States)

    Lewis, Mark; Dokos, Adam; Perotti, Jose; Calle, Carlos; Mueller, Robert; Bastin, Gary; Carlson, Jeffrey; Townsend, Ivan, III; Immer, Chirstopher; Medelius, Pedro

    2012-01-01

    Faults in wiring systems are a serious concern for the aerospace and aeronautic (commercial, military, and civilian) industries. Circuit failures and vehicle accidents have occurred and have been attributed to faulty wiring created by open and/or short circuits. Often, such circuit failures occur due to vibration during vehicle launch or operation. Therefore, developing non-intrusive fault-tolerant techniques is necessary to detect circuit faults and automatically route signals through alternate recovery paths while the vehicle or lunar surface systems equipment is in operation. Electrical connector concepts combining dust mitigation strategies and cable diagnostic technologies have significant application for lunar and Martian surface systems, as well as for dusty terrestrial applications. The dust-tolerant intelligent electrical connection system has several novel concepts and unique features. It combines intelligent cable diagnostics (health monitoring) and automatic circuit routing capabilities into a dust-tolerant electrical umbilical. It retrofits a clamshell protective dust cover to an existing connector for reduced gravity operation, and features a universal connector housing with three styles of dust protection: inverted cap, rotating cap, and clamshell. It uses a self-healing membrane as a dust barrier for electrical connectors where required, while also combining lotus leaf technology for applications where a dust-resistant coating providing low surface tension is needed to mitigate Van der Waals forces, thereby disallowing dust particle adhesion to connector surfaces. It also permits using a ruggedized iris mechanism with an embedded electrodynamic dust shield as a dust barrier for electrical connectors where required.

  12. Osteoblast maturation and new bone formation in response to titanium implant surface features are reduced with age.

    Science.gov (United States)

    Olivares-Navarrete, Rene; Raines, Andrew L; Hyzy, Sharon L; Park, Jung Hwa; Hutton, Daphne L; Cochran, David L; Boyan, Barbara D; Schwartz, Zvi

    2012-08-01

    The surface properties of materials contribute to host cellular response and play a significant role in determining the overall success or failure of an implanted biomaterial. Rough titanium (Ti) surface microtopography and high surface free energy have been shown to enhance osteoblast maturation in vitro and increase bone formation in vivo. Whereas the surface properties of Ti are known to affect osteoblast response, host bone quality also plays a significant role in determining successful osseointegration. One factor affecting host bone quality is patient age. We examined both in vitro and in vivo whether response to Ti surface features was affected by animal age. Calvarial osteoblasts isolated from 1-, 3-, and 11-month-old rats all displayed a reduction in cell number and increases in alkaline phosphatase-specific activity and osteocalcin in response to increasing Ti surface microtopography and surface energy. Further, osteoblasts from the three ages examined displayed increased production of osteocalcin and local factors osteoprotegerin, vascular endothelial growth factor (VEGF)-A, and active transforming growth factor (TGF)-β1 in response to increasing Ti surface roughness and surface energy. Latent TGF-β1 only increased in cultures of osteoblasts from 1- and 3-month-old rats. Treatment with the systemic osteotropic hormone 1α,25(OH)(2)D(3) further enhanced the response of osteoblasts to Ti surface features for all three age groups. However, osteoblasts derived from 11-month-old animals had a reduced response to 1α,25(OH)(2)D(3) compared to osteoblasts derived from 1- or 3-month-old animals. These results were confirmed in vivo. Ti implants placed in the femoral intramedullary canal of old (9-month-old) mice yielded lower bone-to-implant contact and neovascularization in response to Ti surface roughness and energy compared to younger (2-month-old) mice. These results show that rodent osteoblast maturation in vitro as well as new bone formation in vivo is

  13. Composition of interstellar dust

    International Nuclear Information System (INIS)

    Field, G.B.

    1975-01-01

    Direct evidence that interstellar dust is composed partly of silicates, graphite, and water ice is reviewed. Indirect evidence, from recent studies of the chemical composition of interstellar gas, is assessed in terms of two possible models for the formation of the dust: condensation under thermal-equilibrium conditions and accretion under nonequilibrium conditions. It is concluded that probably the more refractory elements condense under equilibrium conditions and that probably the more volatile ones condense under nonequilibrium conditions. Equilibrium condensation may occur either in stellar atmospheres or in circumstellar nebulae, but arguments from stellar evolution favor the latter. If this is correct, all but a tiny fraction of the present interstellar medium has at least once been involved in circumstellar nebulae. This is consistent with the hypothesis that planetary systems are commonplace

  14. The FMOS-COSMOS survey of star-forming galaxies at z ∼ 1.6. II. The mass-metallicity relation and the dependence on star formation rate and dust extinction

    Energy Technology Data Exchange (ETDEWEB)

    Zahid, H. J.; Sanders, D. B.; Chu, J.; Hasinger, G. [Institute for Astronomy, University of Hawaii at Manoa, Honolulu, HI 96822 (United States); Kashino, D. [Division of Particle and Astrophysical Science, Graduate School of Science, Nagoya University, Nagoya, 464-8602 (Japan); Silverman, J. D. [Kavli Institute for the Physics and Mathematics of the Universe (WPI), Todai Institutes for Advanced Study, the University of Tokyo, Kashiwanoha, Kashiwa, 277-8583 (Japan); Kewley, L. J. [Research School of Astronomy and Astrophysics, The Australian National University, Cotter Road, Weston Creek, ACT 2611 (Australia); Daddi, E. [CEA-Saclay, Service d' Astrophysique, F-91191 Gif-sur-Yvette (France); Renzini, A. [INAF Osservatorio Astronomico di Padova, vicolo dell' Osservatorio 5, I-35122 Padova (Italy); Rodighiero, G. [Dipartimento di Astronomia, Università di Padova, vicolo dell Osservatorio 3, I-35122 Padova (Italy); Nagao, T. [The Hakubi Center for Advanced Research, Kyoto University, Kyoto 606-8302 (Japan); Arimoto, N. [National Astronomical Observatory of Japan, Subaru Telescope, 650 North Aohoku Place, Hilo, HI 96720 (United States); Kartaltepe, J. [National Optical Astronomy Observatory, 950 N. Cherry Ave., Tucson, AZ 85719 (United States); Lilly, S. J.; Carollo, C. M. [Institute for Astronomy, ETH Zürich, Wolfgang-Pauli-strasse 27, 8093 Zürich (Switzerland); Maier, C. [Vienna University, Department of Astrophysics, Tuerkenschanzstrasse 17, 1180 Vienna (Austria); Geller, M. J. [Smithsonian Astrophysical Observatory, 60 Garden Street, Cambridge, MA 02138 (United States); Capak, P. [California Institute of Technology, 1200 E. California Blvd., Pasadena, CA 91125 (United States); Ilbert, O. [Aix Marseille Université, CNRS, LAM (Laboratoire d' Astrophysique de Marseille) UMR 7326, 13388, Marseille (France); Kajisawa, M., E-mail: jabran@ifa.hawaii.edu [Research Center for Space and Cosmic Evolution, Ehime University, Bunkyo-cho 2-5, Matsuyama, Ehime 790-8577 (Japan); Collaboration: COSMOS Team; and others

    2014-09-01

    We investigate the relationships between stellar mass, gas-phase oxygen abundance (metallicity), star formation rate (SFR), and dust content of star-forming galaxies at z ∼ 1.6 using Subaru/FMOS spectroscopy in the COSMOS field. The mass-metallicity (MZ) relation at z ∼ 1.6 is steeper than the relation observed in the local universe. The steeper MZ relation at z ∼ 1.6 is mainly due to evolution in the stellar mass where the MZ relation begins to turnover and flatten. This turnover mass is 1.2 dex larger at z ∼ 1.6. The most massive galaxies at z ∼ 1.6 (∼10{sup 11} M {sub ☉}) are enriched to the level observed in massive galaxies in the local universe. The MZ relation we measure at z ∼ 1.6 supports the suggestion of an empirical upper metallicity limit that does not significantly evolve with redshift. We find an anti-correlation between metallicity and SFR for galaxies at a fixed stellar mass at z ∼ 1.6, which is similar to trends observed in the local universe. We do not find a relation between stellar mass, metallicity, and SFR that is independent of redshift; rather, our data suggest that there is redshift evolution in this relation. We examine the relation between stellar mass, metallicity, and dust extinction, and find that at a fixed stellar mass, dustier galaxies tend to be more metal rich. From examination of the stellar masses, metallicities, SFRs, and dust extinctions, we conclude that stellar mass is most closely related to dust extinction.

  15. Numerical Prediction of Dust. Chapter 10

    Science.gov (United States)

    Benedetti, Angela; Baldasano, J. M.; Basart, S.; Benincasa, F.; Boucher, O.; Brooks, M.; Chen, J. P.; Colarco, P. R.; Gong, S.; Huneeus, N.; hide

    2013-01-01

    Covers the whole breadth of mineral dust research, from a scientific perspective Presents interdisciplinary work including results from field campaigns, satellite observations, laboratory studies, computer modelling and theoretical studies Explores the role of dust as a player and recorder of environmental change This volume presents state-of-the-art research about mineral dust, including results from field campaigns, satellite observations, laboratory studies, computer modelling and theoretical studies. Dust research is a new, dynamic and fast-growing area of science and due to its multiple roles in the Earth system, dust has become a fascinating topic for many scientific disciplines. Aspects of dust research covered in this book reach from timescales of minutes (as with dust devils, cloud processes, and radiation) to millennia (as with loess formation and oceanic sediments), making dust both a player and recorder of environmental change. The book is structured in four main parts that explore characteristics of dust, the global dust cycle, impacts of dust on the Earth system, and dust as a climate indicator. The chapters in these parts provide a comprehensive, detailed overview of this highly interdisciplinary subject. The contributions presented here cover dust from source to sink and describe all the processes dust particles undergo while travelling through the atmosphere. Chapters explore how dust is lifted and transported, how it affects radiation, clouds, regional circulations, precipitation and chemical processes in the atmosphere, and how it deteriorates air quality. The book explores how dust is removed from the atmosphere by gravitational settling, turbulence or precipitation, how iron contained in dust fertilizes terrestrial and marine ecosystems, and about the role that dust plays in human health. We learn how dust is observed, simulated using computer models and forecast. The book also details the role of dust deposits for climate reconstructions

  16. Dust explosion hazard in ITER: Explosion indices of fine graphite and tungsten dusts and their mixtures

    International Nuclear Information System (INIS)

    Denkevits, A.; Dorofeev, S.

    2005-01-01

    Addressing the dust explosion hazard in ITER, a standard method with a 20-l-spherical combustion chamber was used to measure the explosion indices of fine graphite and tungsten dusts and their mixtures. The indices include maximum overpressure, maximum rate of pressure rise, and lower explosion concentration limit. The effect of dust particle size was studied on the explosion behaviour of graphite dusts in the range 4-45 μm. The explosion indices of 1 μm tungsten dust and its mixtures with 4 μm graphite dust were measured. The graphite dust particle size is shown to have a profound effect on the explosion characteristics. The finest dust features the highest maximum overpressure and rate of pressure rise, and the lowest explosible concentration. Four tungsten/graphite dust mixtures with molar ratios of W/C = 1/30, 1/4, 1/1, and 3/1 were tested at the concentrations at which the dust combustion consumed all the oxygen in air producing maximum overpressures and rates of pressure rise. The maximum overpressure decreases slightly with increasing tungsten content, while the maximum rate of pressure rise has a pronounced peak at W/C=1/1, i.e. this mixture burns faster than both pure graphite and pure tungsten dusts alone. All the tested dusts belong to the mildest explosion class

  17. Technical Note: High-resolution mineralogical database of dust-productive soils for atmospheric dust modeling

    Directory of Open Access Journals (Sweden)

    S. Nickovic

    2012-01-01

    Full Text Available Dust storms and associated mineral aerosol transport are driven primarily by meso- and synoptic-scale atmospheric processes. It is therefore essential that the dust aerosol process and background atmospheric conditions that drive dust emissions and atmospheric transport are represented with sufficiently well-resolved spatial and temporal features. The effects of airborne dust interactions with the environment determine the mineral composition of dust particles. The fractions of various minerals in aerosol are determined by the mineral composition of arid soils; therefore, a high-resolution specification of the mineral and physical properties of dust sources is needed.

    Several current dust atmospheric models simulate and predict the evolution of dust concentrations; however, in most cases, these models do not consider the fractions of minerals in the dust. The accumulated knowledge about the impacts of the mineral composition in dust on weather and climate processes emphasizes the importance of including minerals in modeling systems. Accordingly, in this study, we developed a global dataset consisting of the mineral composition of the current potentially dust-producing soils. In our study, we (a mapped mineral data to a high-resolution 30 s grid, (b included several mineral-carrying soil types in dust-productive regions that were not considered in previous studies, and (c included phosphorus.

  18. A simplified Suomi NPP VIIRS dust detection algorithm

    Science.gov (United States)

    Yang, Yikun; Sun, Lin; Zhu, Jinshan; Wei, Jing; Su, Qinghua; Sun, Wenxiao; Liu, Fangwei; Shu, Meiyan

    2017-11-01

    Due to the complex characteristics of dust and sparse ground-based monitoring stations, dust monitoring is facing severe challenges, especially in dust storm-prone areas. Aim at constructing a high-precision dust storm detection model, a pixel database, consisted of dusts over a variety of typical feature types such as cloud, vegetation, Gobi and ice/snow, was constructed, and their distributions of reflectance and Brightness Temperatures (BT) were analysed, based on which, a new Simplified Dust Detection Algorithm (SDDA) for the Suomi National Polar-Orbiting Partnership Visible infrared Imaging Radiometer (NPP VIIRS) is proposed. NPP VIIRS images covering the northern China and Mongolian regions, where features serious dust storms, were selected to perform the dust detection experiments. The monitoring results were compared with the true colour composite images, and results showed that most of the dust areas can be accurately detected, except for fragmented thin dusts over bright surfaces. The dust ground-based measurements obtained from the Meteorological Information Comprehensive Analysis and Process System (MICAPS) and the Ozone Monitoring Instrument Aerosol Index (OMI AI) products were selected for comparison purposes. Results showed that the dust monitoring results agreed well in the spatial distribution with OMI AI dust products and the MICAPS ground-measured data with an average high accuracy of 83.10%. The SDDA is relatively robust and can realize automatic monitoring for dust storms.

  19. Measurement of the ion drag force on falling dust particles and its relation to the void formation in complex (dusty) plasmas

    International Nuclear Information System (INIS)

    Zafiu, C.; Melzer, A.; Piel, A.

    2003-01-01

    Experiments on the quantitative determination of the weaker forces (ion drag, thermophoresis, and electric field force) on free-falling dust particles in a rf discharge tube are presented. The strongest force, gravity, is balanced by gas friction and the weaker forces are investigated in the radial (horizontal) plane. Under most discharge conditions, the particles are found to be expelled from the central plasma region. A transition to a situation where the falling particles are focused into the plasma center is observed at low gas pressures using small particles. These investigations allow a quantitative understanding of the mechanism of unwanted dust-free areas (so-called voids) in dusty plasmas under microgravity. Good quantitative agreement with standard models of the ion drag is found

  20. Probing the early stages of low-mass star formation in LDN 1689N : Dust and water in IRAS 16293-2422A, B, and E

    NARCIS (Netherlands)

    Stark, R; Sandell, G; Beck, SC; Hogerheijde, MR; van Dishoeck, EF; van der Wal, P; van der Tak, FFS; Schafer, F; Melnick, GJ; Ashby, MLN; de Lange, G

    2004-01-01

    We present deep images of dust continuum emission at 450, 800, and 850 mum of the dark cloud LDN 1689N, which harbors the low-mass young stellar objects (YSOs) IRAS 16293-2422 A and B (I16293A and I16293B) and the cold prestellar object I16293E. Toward the positions of I16293A and I16293E we also

  1. Constraints on astronomical silicate dust

    International Nuclear Information System (INIS)

    Sorrell, W.H.

    1990-01-01

    Numerical radiative-transfer models are used to discuss the properties of circumstellar dust grains around the premain-sequence star AB Aur (HD 31293). It is assumed that the dust consists of a silicate-graphite mixture with Draine and Lee (1984) optical properties. The modeling technique is to match the observed FUV through FIR energy distribution with the spectral energy distribution predicted for a spherical dust shell around a luminous hot star. Special attention is given to matching the observed 10-micron silicate emission feature and the observed circumstellar absorption curve at UV wavelengths, making it possible to strengthen constraints on dust-grain opacity and chemical composition. It is concluded that, although silicate grains can explain the observed 10-micron emission feature, the Draine and Lee silicate-graphite mixture cannot explain the observed FUV circumstellar absorption at the same time. The dust shell around AB Aur contains an additional population of small particles, the most likely candidate being amorphous carbon grains in a nonhydrogenated form. 18 refs

  2. Constraints on astronomical silicate dust

    Science.gov (United States)

    Sorrell, Wilfred H.

    1990-01-01

    Numerical radiative-transfer models are used to discuss the properties of circumstellar dust grains around the premain-sequence star AB Aur (HD 31293). It is assumed that the dust consists of a silicate-graphite mixture with Draine and Lee (1984) optical properties. The modeling technique is to match the observed FUV through FIR energy distribution with the spectral energy distribution predicted for a spherical dust shell around a luminous hot star. Special attention is given to matching the observed 10-micron silicate emission feature and the observed circumstellar absorption curve at UV wavelengths, making it possible to strengthen constraints on dust-grain opacity and chemical composition. It is concluded that, although silicate grains can explain the observed 10-micron emission feature, the Draine and Lee silicate-graphite mixture cannot explain the observed FUV circumstellar absorption at the same time. The dust shell around AB Aur contains an additional population of small particles, the most likely candidate being amorphous carbon grains in a nonhydrogenated form.

  3. Charged dust in saturn's magnetosphere

    International Nuclear Information System (INIS)

    Mendis, D.A.; Hill, J.R.; Houpis, H.L.F.

    1983-01-01

    Gravito-electrodynamic theory of charged dust grains is used to explain a variety of phenomena in those portions of the Saturnian ring system that are known to be dominated by fine (micron- and submicron-sized) dust, and in which collisional forces and Coulomb drag can be neglected. Among the phenomena discussed are the formation and evolution of the rotating near-radial spokes in the B-ring, the formation of waves in the F-ring, the cause of eccentricities of certain isolated ringlets, and the origin and morphology of the broad diffuse E-ring. Several novel processes predicted by the gravitoelectrodynamic theory, including 'magneto-gravitational capture' of exogenic dust by the magnetosphere, '1:1 magneto-gravitational orbital resonances' of charged dust with nearby satellites, and 'gyro-orbital resonances,' are used to explain individual observations. The effect of a ring current associated with this charged dust is also evaluated. Finally, the cosmogonic implications of the magneto-gravitational theory are briefly discussed. While several (although not all) of these processes have been discussed by one or more of the present authors elsewhere, the purpose of this paper is to synthesize all these processes within the framework of gravito-electrodynamics, and also to show its range of applicability within Saturn's ring system

  4. PERSPECTIVE: Dust, fertilization and sources

    Science.gov (United States)

    Remer, Lorraine A.

    2006-11-01

    Aerosols, tiny suspended particles in the atmosphere, play an important role in modifying the Earth's energy balance and are essential for the formation of cloud droplets. Suspended dust particles lifted from the world's arid regions by strong winds contain essential minerals that can be transported great distances and deposited into the ocean or on other continents where productivity is limited by lack of usable minerals [1]. Dust can transport pathogens as well as minerals great distance, contributing to the spread of human and agricultural diseases, and a portion of dust can be attributed to human activity suggesting that dust radiative effects should be included in estimates of anthropogenic climate forcing. The greenish and brownish tints in figure 1 show the wide extent of monthly mean mineral dust transport, as viewed by the MODerate resolution Imaging Spectroradiometer (MODIS) satellite sensor. The monthly mean global aerosol system for February 2006 from the MODIS aboard the Terra satellite Figure 1. The monthly mean global aerosol system for February 2006 from the MODIS aboard the Terra satellite. The brighter the color, the greater the aerosol loading. Red and reddish tints indicate aerosol dominated by small particles created primarily from combustion processes. Green and brownish tints indicate larger particles created from wind-driven processes, usually transported desert dust. Note the bright green band at the southern edge of the Saharan desert, the reddish band it must cross if transported to the southwest and the long brownish transport path as it crosses the Atlantic to South America. Image courtesy of the NASA Earth Observatory (http://earthobservatory.nasa.gov). Even though qualitatively we recognize the extent and importance of dust transport and the role that it plays in fertilizing nutrient-limited regions, there is much that is still unknown. We are just now beginning to quantify the amount of dust that exits one continental region and the

  5. Dust Destruction in the ISM: A Re-Evaluation of Dust Lifetimes

    Science.gov (United States)

    Jones, A. P.; Nuth, J. A., III

    2011-01-01

    There is a long-standing conundrum in interstellar dust studies relating to the discrepancy between the time-scales for dust formation from evolved stars and the apparently more rapid destruction in supernova-generated shock waves. Aims. We re-examine some of the key issues relating to dust evolution and processing in the interstellar medium. Methods. We use recent and new constraints from observations, experiments, modelling and theory to re-evaluate dust formation in the interstellar medium (ISM). Results. We find that the discrepancy between the dust formation and destruction time-scales may not be as significant as has previously been assumed because of the very large uncertainties involved. Conclusions. The derived silicate dust lifetime could be compatible with its injection time-scale, given the inherent uncertainties in the dust lifetime calculation. The apparent need to re-form significant quantities of silicate dust in the tenuous interstellar medium may therefore not be a strong requirement. Carbonaceous matter, on the other hand, appears to be rapidly recycled in the ISM and, in contrast to silicates, there are viable mechanisms for its re-formation in the ISM.

  6. Formation of chondrules in a moderately high dust enriched disk: Evidence from oxygen isotopes of chondrules from the Kaba CV3 chondrite

    Science.gov (United States)

    Hertwig, Andreas T.; Defouilloy, Céline; Kita, Noriko T.

    2018-03-01

    end (-6‰ and -4‰). A mass balance model involving 16O-rich anhydrous dust (Δ17O = -8‰) and 16O-poor water ice (Δ17O = +2‰) in the chondrule precursors suggests that type I chondrules in Kaba would have formed in a moderately high dust enriched protoplanetary disk at relatively dry conditions (∼50-100× dust enrichment compared to Solar abundance gas and less than 0.6× ice enhancement relative to CI chondritic dust). The olivine-rich type II chondrule probably formed in a disk with higher dust enrichment (∼2000× Solar).

  7. Young Debris Disks With Newly Discovered Emission Features

    Science.gov (United States)

    Ballering, N.

    2014-04-01

    We analyzed the Spitzer/IRS spectra of young A and F stars that host debris disks with previously unidentified silicate emission features. Such features probe small, warm dust grains in the inner regions of these young systems where terrestrial planet formation may be proceeding (Lisse et al. 2009). For most systems, these regions are too near their host star to be directly seen with high-contrast imaging and too warm to be imaged with submillimeter interferometers. Mid-infrared excess spectra - originating from the thermal emission of the debris disk dust - remain the best data to constrain the properties of the debris in these regions. For each target, we fit physically-motivated model spectra to the data. Typical spectra of unresolved debris disks are featureless and suffer severe degeneracies between the dust location and the grain properties; however, spectra with solid-state emission features provide significantly more information, allowing for a more accurate determination of the dust size, composition, and location (e.g. Chen et al. 2006; Olofsson et al. 2012). Our results shed light on the dynamic properties occurring in the terrestrial regions of these systems. For instance, the sizes of the smallest grains and the nature of the grain size distribution reveal whether the dust originates from steady-state collisional cascades or from stochastic collisions. The properties of the dust grains - such as their crystalline or amorphous structure - can inform us of grain processing mechanisms in the disk. The location of this debris illuminates where terrestrial planet forming activity is occurring. We used results from the Beta Pictoris - which has a well-resolved debris disk with emission features (Li et al. 2012) - to place our results in context. References: Chen et al. 2006, ApJS, 166, 351 Li et al. 2012, ApJ, 759, 81 Lisse et al. 2009, ApJ, 701, 2019 Olofsson et al. 2012, A&A, 542, A90

  8. Size distribution and optical properties of mineral dust aerosols transported in the western Mediterranean

    Directory of Open Access Journals (Sweden)

    C. Denjean

    2016-02-01

    Full Text Available This study presents in situ aircraft measurements of Saharan mineral dust transported over the western Mediterranean basin in June–July 2013 during the ChArMEx/ADRIMED (the Chemistry-Aerosol Mediterranean Experiment/Aerosol Direct Radiative Impact on the regional climate in the MEDiterranean region airborne campaign. Dust events differing in terms of source region (Algeria, Tunisia and Morocco, time of transport (1–5 days and height of transport were sampled. Mineral dust were transported above the marine boundary layer, which conversely was dominated by pollution and marine aerosols. The dust vertical structure was extremely variable and characterized by either a single layer or a more complex and stratified structure with layers originating from different source regions. Mixing of mineral dust with pollution particles was observed depending on the height of transport of the dust layers. Dust layers carried a higher concentration of pollution particles below 3 km above sea level (a.s.l. than above 3 km a.s.l., resulting in a scattering Ångström exponent up to 2.2 below 3 km a.s.l. However, the optical properties of the dust plumes remained practically unchanged with respect to values previously measured over source regions, regardless of the altitude. Moderate absorption of light by the dust plumes was observed with values of aerosol single scattering albedo at 530 nm ranging from 0.90 to 1.00. Concurrent calculations from the aerosol chemical composition revealed a negligible contribution of pollution particles to the absorption properties of the dust plumes that was due to a low contribution of refractory black carbon in regards to the fraction of dust and sulfate particles. This suggests that, even in the presence of moderate pollution, likely a persistent feature in the Mediterranean, the optical properties of the dust plumes could be assumed similar to those of native dust in radiative transfer simulations, modelling

  9. DUST EVOLUTION IN PROTOPLANETARY DISKS AROUND HERBIG Ae/Be STARS-THE SPITZER VIEW

    International Nuclear Information System (INIS)

    Juhasz, A.; Bouwman, J.; Henning, Th.; Acke, B.; Waters, L. B. F. M.; Van den Ancker, M. E.; Meeus, G.; Min, M.; Dominik, C.; Tielens, A. G. G. M.

    2010-01-01

    In this paper, we present mid-infrared spectra of a comprehensive set of Herbig Ae/Be stars observed with the Spitzer Space Telescope. The signal-to-noise ratio of these spectra is very high, ranging between about a hundred and several hundreds. During the analysis of these data we tested the validity of standardized protoplanetary dust models and studied grain growth and crystal formation. On the basis of the analyzed spectra, the major constituents of protoplanetary dust around Herbig Ae/Be stars are amorphous silicates with olivine and pyroxene stoichiometry, crystalline forsterite, and enstatite and silica. No other solid-state features, indicating other abundant dust species, are present in the Spitzer spectra. Deviations of the synthetic spectra from the observations are most likely related to grain shape effects and uncertainties in the iron content of the dust grains. Our analysis revealed that larger grains are more abundant in the disk atmosphere of flatter disks than in that of flared disks, indicating that grain growth and sedimentation decrease the disk flaring. We did not find, however, correlations between the value of crystallinity and any of the investigated system parameters. Our analysis shows that enstatite is more concentrated toward the warm inner disk than forsterite, in contrast to predictions of equilibrium condensation models. None of the three crystal formation mechanisms proposed so far can alone explain all our findings. It is very likely that all three play at least some role in the formation of crystalline silicates.

  10. Heating of Porous Icy Dust Aggregates

    Energy Technology Data Exchange (ETDEWEB)

    Sirono, Sin-iti [Earth and Environmental Sciences, Nagoya University, Tikusa-ku, Furo-cho, Nagoya 464-8601 (Japan)

    2017-06-10

    At the beginning of planetary formation, highly porous dust aggregates are formed through coagulation of dust grains. Outside the snowline, the main component of an aggregate is H{sub 2}O ice. Because H{sub 2}O ice is formed in amorphous form, its thermal conductivity is extremely small. Therefore, the thermal conductivity of an icy dust aggregate is low. There is a possibility of heating inside an aggregate owing to the decay of radionuclides. It is shown that the temperature increases substantially inside an aggregate, leading to crystallization of amorphous ice. During the crystallization, the temperature further increases sufficiently to continue sintering. The mechanical properties of icy dust aggregates change, and the collisional evolution of dust aggregates is affected by the sintering.

  11. Density currents as a desert dust mobilization mechanism

    Directory of Open Access Journals (Sweden)

    S. Solomos

    2012-11-01

    Full Text Available The formation and propagation of density currents are well studied processes in fluid dynamics with many applications in other science fields. In the atmosphere, density currents are usually meso-β/γ phenomena and are often associated with storm downdrafts. These storms are responsible for the formation of severe dust episodes (haboobs over desert areas. In the present study, the formation of a convective cool pool and the associated dust mobilization are examined for a representative event over the western part of Sahara desert. The physical processes involved in the mobilization of dust are described with the use of the integrated atmospheric-air quality RAMS/ICLAMS model. Dust is effectively produced due to the development of near surface vortices and increased turbulent mixing along the frontal line. Increased dust emissions and recirculation of the elevated particles inside the head of the density current result in the formation of a moving "dust wall". Transport of the dust particles in higher layers – outside of the density current – occurs mainly in three ways: (1 Uplifting of preexisting dust over the frontal line with the aid of the strong updraft (2 Entrainment at the upper part of the density current head due to turbulent mixing (3 Vertical mixing after the dilution of the system. The role of the dust in the associated convective cloud system was found to be limited. Proper representation of convective processes and dust mobilization requires the use of high resolution (cloud resolving model configuration and online parameterization of dust production. Haboob-type dust storms are effective dust sources and should be treated accordingly in dust modeling applications.

  12. Collision-dominated dust sheaths and voids - observations in micro-gravity experiments and numerical investigation of the force balance relations

    International Nuclear Information System (INIS)

    Tsytovich, V N; Morfill, G; Konopka, U; Thomas, H

    2003-01-01

    Numerical solutions of stationary force balance equations are used to investigate the possible dust configurations (dust structures) in complex plasmas between two floating potential plane electrodes. The distance between electrodes is assumed to be larger than the ion-neutral mean free path and the hydrodynamic description is used. It includes the known forces operating in this limit, the ionization source and the dust charge variations. The stationary balance equations are solved both in the case of the presence of one-size dust grains and for the case of a mixture of grains with two different sizes. Recent micro-gravity experiments with single-size dust grains and two-different-size dust grains show the formation of a system of dust sheaths and dust voids between the two plane electrodes. The observed configurations of dust structures depend strongly on the gas pressure and the degree of ionization used. The numerical investigations are able to show the necessary conditions for the types of structure to be created and give their size. The size of the structures observed is larger than the ion-neutral mean free path and is of the order of magnitude of that obtained numerically. The numerical investigations give details of the spatial distributions, the dust particles, the electron/ion densities, the ion drift velocity and dust charges inside and outside different dust structures. These details have not yet been investigated experimentally and can indicate directions for further experimental work to be performed. The single-dust-sheath structure with single-size dust particles surrounded by dust free regions (dust wall-voids) and floating potential electrodes is computed. Such a structure was observed recently and the computational results are in agreement with observations. It is shown that more often a dust void in the centre is observed. It is found that a dust void in the centre region between two electrodes is formed if the ionization rate is larger than the

  13. The features of ceramic materials structure formation when using hard-melting wastes of thermal power stations in charge stock

    Science.gov (United States)

    Skripnikova, Nelli; Yuriev, Ivan; Lutsenko, Alexander; Litvinova, Viktoriya

    2016-01-01

    The paper presents the analysis of aluminum silicate waste generated by thermal power station of the city of Seversk, Tomsk region, Russia. The chemical compositions of aluminum silicate waste are detected and the efficient mixture compositions with the addition of aluminum silicate waste are suggested herein. Ceramic brick structure formation is studied in this paper using X-ray phase and SEM analyses. It is identified that the formed vitreous phase facilitates such strengthening structural modifications as sintering out of pores and shrinkage of unmelted aluminum silicate particles with the following formation of a monolithic product.

  14. Understanding non-enzymatic aminophospholipid glycation and its inhibition. Polar head features affect the kinetics of Schiff base formation.

    Science.gov (United States)

    Caldés, Catalina; Vilanova, Bartolomé; Adrover, Miquel; Muñoz, Francisco; Donoso, Josefa

    2011-08-01

    Non-enzymatic aminophospholipid glycation is an especially important process because it alters the stability of lipid bilayers and interferes with cell function and integrity as a result. However, the kinetic mechanism behind this process has scarcely been studied. As in protein glycation, the process has been suggested to involve the formation of a Schiff base as the initial, rate-determining step. In this work, we conducted a comparative kinetic study of Schiff base formation under physiological conditions in three low-molecular weight analogues of polar heads in the naturally occurring aminophospholipids O-phosphorylethanolamine (PEA), O-phospho-DL-serine (PSer) and 2-aminoethylphenethylphosphate (APP) with various glycating carbonyl compounds (glucose, arabinose and acetol) and the lipid glycation inhibitor pyridoxal 5'-phosphate (PLP). Based on the results, the presence of a phosphate group and a carboxyl group in α position respect to the amino group decrease the formation constant for the Schiff base relative to amino acids. On the other hand, esterifying the phosphate group with a non-polar substituent in APP increases the stability of its Schiff base. The observed kinetic formation constants of aminophosphates with carbonyl groups were smaller than those for PLP. Our results constitute an important contribution to understanding the competitive inhibition effect of PLP on aminophospholipid glycation. Copyright © 2011 Elsevier Ltd. All rights reserved.

  15. Dust Dynamics in Kelvin-Helmholtz Instabilities

    Directory of Open Access Journals (Sweden)

    Keppens Rony

    2013-04-01

    Full Text Available The Kelvin-Helmholtz instability (KHI is a fluid instability which arises when two contacting flows have different tangential velocities. As shearing flows are very common in all sorts of (astrophysical fluid setups, the KHI is frequently encountered. In many astrophysical fluids the gas fluid in loaded with additional dust particles. Here we study the influence of these dust particles on the initiation of the KHI, as well as the effect the KHI has on the density distribution of dust species in a range of different particle sizes. This redistribution by the instability is of importance in the formation of dust structures in astrophysical fluids. To study the effect of dust on the linear and nonlinear phase of the KHI, we use the multi-fluid dust + gas module of the MPI-AMRVAC [1] code to perform 2D and 3D simulations of KHI in setups with physical quantities relevant to astrophysical fluids. A clear dependency on dust sizes is seen, with larger dust particles displaying significantly more clumping than smaller ones.

  16. METHODOLOGICAL PRINCIPALS OF REGIONAL POLICY FORMATION: THE ANALISIS AND THE ACCOUNT OF ECONOMY TRANSFORMATION FEATURES OF THE OLD INDUSTRY REGION

    Directory of Open Access Journals (Sweden)

    D.V. Nesterova

    2005-09-01

    Full Text Available The necessity of the account of some political-economical restrictions of objective and subjective property, the importance of realization of principal of subsidiarity of economic, social and institutional reforms for regional economic policy development are proved on the basis of the analisis of the main features of the Urals region economy, allowing do characterize it as the old region type economy.

  17. System and method for investigating sub-surface features of a rock formation with acoustic sources generating conical broadcast signals

    Science.gov (United States)

    Vu, Cung Khac; Skelt, Christopher; Nihei, Kurt; Johnson, Paul A.; Guyer, Robert; Ten Cate, James A.; Le Bas, Pierre -Yves; Larmat, Carene S.

    2015-08-18

    A method of interrogating a formation includes generating a conical acoustic signal, at a first frequency--a second conical acoustic signal at a second frequency each in the between approximately 500 Hz and 500 kHz such that the signals intersect in a desired intersection volume outside the borehole. The method further includes receiving, a difference signal returning to the borehole resulting from a non-linear mixing of the signals in a mixing zone within the intersection volume.

  18. Evolutionarily Conserved Sequence Features Regulate the Formation of the FG Network at the Center of the Nuclear Pore Complex.

    Science.gov (United States)

    Peyro, M; Soheilypour, M; Lee, B L; Mofrad, M R K

    2015-11-06

    The nuclear pore complex (NPC) is the portal for bidirectional transportation of cargos between the nucleus and the cytoplasm. While most of the structural elements of the NPC, i.e. nucleoporins (Nups), are well characterized, the exact transport mechanism is still under much debate. Many of the functional Nups are rich in phenylalanine-glycine (FG) repeats and are believed to play the key role in nucleocytoplasmic transport. We present a bioinformatics study conducted on more than a thousand FG Nups across 252 species. Our results reveal the regulatory role of polar residues and specific sequences of charged residues, named 'like charge regions' (LCRs), in the formation of the FG network at the center of the NPC. Positively charged LCRs prepare the environment for negatively charged cargo complexes and regulate the size of the FG network. The low number density of charged residues in these regions prevents FG domains from forming a relaxed coil structure. Our results highlight the significant role of polar interactions in FG network formation at the center of the NPC and demonstrate that the specific localization of LCRs, FG motifs, charged, and polar residues regulate the formation of the FG network at the center of the NPC.

  19. FEATURES OF INFLUENCE OF EMOTIONAL STRESS DURING PREGNANCY ON THE FORMATION OF EATING BEHAVIOR IN THE CHILD

    Directory of Open Access Journals (Sweden)

    J. R. Gardanova

    2016-01-01

    Full Text Available The actuality of the problem of high level of anxiety and the development of psycho-emotional disorders in women during pregnancy currently occupy a leading place in clinical practice. Pregnant "seize" the problem by using a non-adaptive coping and thereby form a similar pattern of behavior in stressful situation and in the fetus, perinatal-formed a similar pattern.Materials and methods. Clinical-descriptive, formulated the concept of the influence psycho-emotional stress and characteristics of the current pregnancy on the background of the formation of patterns of eating behavior in the fetus, followed by implementation after birth under the provisions of the dominant by A. A. Ukhtomsky, the theory of functional systems P. K. Anokhin, the endogeneity of the regularities of pathological processes, the pyramid of needs of A. Maslow.Results. As a result of the establishment of the concept, doctors will be able to identify the maladaptive pattern of eating behavior in pregnant women and to make timely prevention of the formation of this pattern in the fetus.Conclusion. The use of the developed concept could help doctors to identify the maladaptive pattern of eating behavior in pregnant women and make timely prevention of the formation of this pattern in the fetus.

  20. Co-injection of basic fluxes or BF flue dust with PC into a BF charged with 100% pellets:effects on slag formation and coal combustion

    OpenAIRE

    Sundqvist Ökvist, Lena

    2004-01-01

    Based on 100% pellets operation at BF No. 3 at SSAB Tunnplåt in Luleå a new pellet with CaO/SiO2=1 was developed during early nineties. The pellet showed good results in metallurgical laboratory test but caused slag formation problems in the bosh. A high basicity slag was formed during interaction with basic fluxes and its melting point was increased when the slag was finally reduced. By injection of basic fluxes, the slag formation problems in the bosh can be avoided. Without a sinter plant,...

  1. Dusts and Molds

    Science.gov (United States)

    ... limit your exposure by taking these general measures. Think about how they apply in your setting. • Prevent dusts and molds from forming, e.g. drying feeds and cleaning animal areas regularly. • Prevent dusts and molds from becoming ...

  2. LADEE LUNAR DUST EXPERIMENT

    Data.gov (United States)

    National Aeronautics and Space Administration — This archive bundle includes data taken by the Lunar Dust Experiment (LDEX) instrument aboard the Lunar Atmosphere and Dust Environment Explorer (LADEE) spacecraft....

  3. Construction dust amelioration techniques.

    Science.gov (United States)

    2012-04-01

    Dust produced on seasonal road construction sites in Alaska is both a traffic safety and environmental concern. Dust emanating from : unpaved road surfaces during construction severely reduces visibility and impacts stopping sight distance, and contr...

  4. Environmentally dependent dust chemistry of a super Asian dust storm in March 2010: observation and simulation

    Science.gov (United States)

    Wang, Qiongzhen; Dong, Xinyi; Fu, Joshua S.; Xu, Jian; Deng, Congrui; Jiang, Yilun; Fu, Qingyan; Lin, Yanfen; Huang, Kan; Zhuang, Guoshun

    2018-03-01

    Near-surface and vertical in situ measurements of atmospheric particles were conducted in Shanghai during 19-23 March 2010 to explore the transport and chemical evolution of dust particles in a super dust storm. An air quality model with optimized physical dust emission scheme and newly implemented dust chemistry was utilized to study the impact of dust chemistry on regional air quality. Two discontinuous dust periods were observed with one traveling over northern China (DS1) and the other passing over the coastal regions of eastern China (DS2). Stronger mixing extents between dust and anthropogenic emissions were found in DS2, reflected by the higher SO2 / PM10 and NO2 / PM10 ratios as well as typical pollution elemental species such as As, Cd, Pb, and Zn. As a result, the concentrations of SO42- and NO3- and the ratio of Ca2+ / Ca were more elevated in DS2 than in DS1 but opposite for the [NH4+] / [SO42-+NO3-] ratio, suggesting the heterogeneous reactions between calcites and acid gases were significantly promoted in DS2 due to the higher level of relative humidity and gaseous pollution precursors. Lidar observation showed a columnar effect on the vertical structure of particle optical properties in DS1 that dust dominantly accounted for ˜ 80-90 % of the total particle extinction from near the ground to ˜ 700 m. In contrast, the dust plumes in DS2 were restrained within lower altitudes while the extinction from spherical particles exhibited a maximum at a high altitude of ˜ 800 m. The model simulation reproduced relatively consistent results with observations that strong impacts of dust heterogeneous reactions on secondary aerosol formation occurred in areas where the anthropogenic emissions were intensive. Compared to the sulfate simulation, the nitrate formation on dust is suggested to be improved in the future modeling efforts.

  5. Lunar Dust Analysis Package - LDAP

    Science.gov (United States)

    Chalkley, S. A.; Richter, L.; Goepel, M.; Sovago, M.; Pike, W. T.; Yang, S.; Rodenburg, J.; Claus, D.

    2012-09-01

    The Lunar Dust Analysis package (L-DAP) is a suite of payloads which have been designed to operate in synergy with each other at the Lunar Surface. The benefits of combining these payloads in a single package allow very precise measurements of a particular regolith sample. At the same time the integration allows mass savings since common resources are shared and this also means that interfaces with the Lander are simplified significantly leading to benefits of integration and development of the overall mission. Lunar Dust represents a real hazard for lunar exploration due to its invasive, fine microscopic structure and toxic properties. However it is also valuable resource which could be exploited for future exploration if the characteristics and chemical composition is well known. Scientifically, the regolith provides an insight into the moon formation process and there are areas on the Moon which have never been ex-plored before. For example the Lunar South Pole Aitken Basin is the oldest and largest on the moon, providing excavated deep crust which has not been found on the previous lunar landing missions. The SEA-led team has been designing a compact package, known as LDAP, which will provide key data on the lunar dust properties. The intention is for this package to be part of the payload suite deployed on the ESA Lunar Lander Mission in 2018. The LDAP has a centralised power and data electronics, including front end electronics for the detectors as well as sample handling subsystem for the following set of internal instruments : • Optical Microscope - with a 1μm resolution to provide context of the regolith samples • Raman and LIBS spectrographic instrumentation providing quantification of mineral and elemental composition information of the soil at close to grain scale. This includes the capability to detect (and measure abundance of) crystalline and adsorbed volatile phases, from their Raman signature. The LIBS equipment will also allow chemical

  6. When friendship formation goes down the toilet: design features of shared accommodation influence interpersonal bonds and well-being.

    Science.gov (United States)

    Easterbrook, Matthew J; Vignoles, Vivian L

    2015-03-01

    Despite its omnipresence, the influence of the built environment on human psychology is not well understood. In a five-wave longitudinal study, we investigated whether physical design features within shared student accommodation predicted the frequency of coincidental meetings between new flatmates, and whether these meetings predicted the strength of their interpersonal bonds and psychological well-being. Multilevel latent growth modelling on responses from 462 new university residents supported our hypotheses: Respondents living in flats with design features that encouraged the use of communal areas--a shared common area and an absence of ensuite toilets--reported unintentionally meeting their flatmates more frequently within their flats. This in turn predicted the initial strength of their interpersonal bonds with their flatmates, which in turn positively predicted their well-being. These effects were maintained throughout the 10-week study. Our findings provide an empirical basis for the development of shared housing designed to foster positive relationships and well-being among residents. © 2014 The British Psychological Society.

  7. Model Study on the Transport and Mixing of Dust Aerosols and Pollutants during an Asian Dust Storm in March 2002

    Directory of Open Access Journals (Sweden)

    Xiujuan Zhao

    2007-01-01

    Full Text Available The transport and mixing of dust aerosols and pollutants in East Asia during March 18 to 22, 2002 was studied using the nested air quality prediction model system (NAQPMS. Dust was primarily generated in the Gobi desert on 19 March and then swept across several areas of East Asia. The model results were verified with observations of surface weather, TSP/PM10, SO2 and lidar data. The model simulated the right timing and strength of dust events, capturing most of the variation features in dust and SO2. Numerical results showed that the dust aerosols were mainly transported in two layers and mixed with pollutants in different ways. Some of the dust kicked up in the source region was uplifted to a higher layer (200 - 2000 m layer and transported downwind faster than dust of the lower level. This lower-level dust was of greater concentration. The dust arriving at the upper layer began to drop and mixed well with pollutants in the atmosphere during ¡§the first period¡¨. During ¡§the second period¡¨, pollutants were diluted by the dust air mass that was transported along the lower layer. The remaining pollutants mixed well with dust aerosols during this period. The mixed air mass of the higher layer (1500 m eventually reached the Northwestern Pacific. A large amount of clouds in the upper layers potentially led to an increase in sulfate mass on the surface of dust particles.

  8. Model Study on the Transport and Mixing of Dust Aerosols and Pollutants during an Asian Dust Storm in March 2002

    Directory of Open Access Journals (Sweden)

    Xiujuan Zhao

    2007-01-01

    Full Text Available The transport and mixing of dust aerosols and pollutants in East Asia during March 18 to 22, 2002 was studied using the nested air quality prediction model system (NAQPMS. Dust was primarily generated in the Gobi desert on 19 March and then swept across several areas of East Asia. The model results were verified with observations of surface weather, TSP/PM10, SO2 and lidar data. The model simulated the right timing and strength of dust events, capturing most of the variation features in dust and SO2. Numerical results showed that the dust aerosols were mainly transported in two layers and mixed with pollutants in different ways. Some of the dust kicked up in the source region was uplifted to a higher layer (200 - 2000 m layer and transported downwind faster than dust of the lower level. This lower-level dust was of greater concentration. The dust arriving at the upper layer began to drop and mixed well with pollutants in the atmosphere during _ first _ During _ second _ pollutants were diluted by the dust air mass that was transported along the lower layer. The remaining pollutants mixed well with dust aerosols during this period. The mixed air mass of the higher layer (1500 m eventually reached the Northwestern Pacific. A large amount of clouds in the upper layers potentially led to an increase in sulfate mass on the surface of dust particles.

  9. Nanostructural Features of Silver Nanoparticles Powder Synthesized through Concurrent Formation of the Nanosized Particles of Both Starch and Silver

    Directory of Open Access Journals (Sweden)

    A. Hebeish

    2013-01-01

    Full Text Available Green innovative strategy was developed to accomplish silver nanoparticles formation of starch-silver nanoparticles (St-AgNPs in the powder form. Thus, St-AgNPs were synthesized through concurrent formation of the nanosized particles of both starch and silver. The alkali dissolved starch acts as reducing agent for silver ions and as stabilizing agent for the formed AgNPs. The chemical reduction process occurred in water bath under high-speed homogenizer. After completion of the reaction, the colloidal solution of AgNPs coated with alkali dissolved starch was cooled and precipitated using ethanol. The powder precipitate was collected by centrifugation, then washed, and dried; St-AgNPs powder was characterized using state-of-the-art facilities including UV-vis spectroscopy, Transmission Electron Microscopy (TEM, particle size analyzer (PS, Polydispersity index (PdI, Zeta potential (ZP, XRD, FT-IR, EDX, and TGA. TEM and XRD indicate that the average size of pure AgNPs does not exceed 20 nm with spherical shape and high concentration of AgNPs (30000 ppm. The results obtained from TGA indicates that the higher thermal stability of starch coated AgNPS than that of starch nanoparticles alone. In addition to the data obtained from EDX which reveals the presence of AgNPs and the data obtained from particle size analyzer and zeta potential determination indicate that the good uniformity and the highly stability of St-AgNPs.

  10. Diurnal Variations of Dust from Mars Climate Sounder Observations: Initial Results

    Science.gov (United States)

    Kleinboehl, A.

    2017-12-01

    ice-free conditions and suggestive of convective lofting of dust to higher altitudes due to absorption of incoming sunlight by dust particles. Most of these events are located in the vicinity of the Hellas basin, suggesting that topographic features may also play a role in their formation.

  11. Effect of process parameters on flow length and flash formation in injection moulding of high aspect ratio polymeric micro features

    DEFF Research Database (Denmark)

    Eladl, Abdelkhalik; Mostafa, Rania; Islam, Aminul

    2018-01-01

    part with four micro fingers with different aspect ratios (from 21 up to 150) and was carried out according to the Design of Experiments (DOE) statistical technique. The results show that holding pressure and injection velocity are the most influential parameters on part mass with a direct effect......This paper reports an investigation of the effects of process parameters on the quality characteristics of polymeric parts produced by micro injection moulding (µIM) with two different materials. Four injection moulding process parameters (injection velocity, holding pressure, melt temperature...... for both materials. Both parameters have a similar effect on flow length for both PP and ABS at all aspect ratios and have higher effects as the feature thickness decreased below 300 µm. The study shows that for the investigated materials the injection speed and packing pressure were the most influential...

  12. Glass Frit Clumping And Dusting

    International Nuclear Information System (INIS)

    Steimke, J. L.

    2013-01-01

    DWPF mixes a slurry of glass frit (Frit 418) and dilute (1.5 wt%) formic acid solution with high level waste in the Slurry Mix Evaporator (SME). There would be advantages to introducing the frit in a non-slurry form to minimize water addition to the SME, however, adding completely dry frit has the potential to generate dust which could clog filters or condensers. Prior testing with another type of frit, Frit 320, and using a minimal amount of water reduced dust generation, however, the formation of hard clumps was observed. To examine options and behavior, a TTQAP [McCabe and Stone, 2013] was written to initiate tests that would address these concerns. Tests were conducted with four types of glass frit; Frit 320, DWPF Frit 418, Bekeson Frit 418 and Multi-Aspirator Frit 418. The last two frits are chemically identical to DWPF Frit 418 but smaller particles were removed by the respective vendors. Test results on Frit Clumping and Dusting are provided in this report. This report addresses the following seven questions. Short answers are provided below with more detailed answers to follow. 1. Will the addition of a small amount of water, 1.5 wt%, to dry DWPF Frit 418 greatly reduce the dust generation during handling at DWPF? a. Yes, a small scale test showed that adding a little water to the frit greatly reduced dust generation during handling. 2. Will the addition of small amounts of water to the frit cause clumping that will impair frit handling at DWPF? a. No, not with Frit 418. Although clumps were observed to form when 1.5 wt% water was mixed with DWPF Frit 418, then compressed and air-dried overnight, the clumps were easily crushed and did not form the hardened material noted when Frit 320 was tested. 3. What is the measured size distribution of dust generated when dry frit is handled? (This affects the feasibility and choice of processing equipment for removing the dust generating fraction of the frit before it is added to the SME.) a. The size distribution for

  13. System and method for investigating sub-surface features of a rock formation using compressional acoustic sources

    Energy Technology Data Exchange (ETDEWEB)

    Vu, Cung Khac; Skelt, Christopher; Nihei, Kurt; Johnson, Paul A.; Guyer, Robert; Ten Cate, James A.; Le Bas, Pierre-Yves; Larmat, Carene S.

    2016-09-27

    A system and method for investigating rock formations outside a borehole are provided. The method includes generating a first compressional acoustic wave at a first frequency by a first acoustic source; and generating a second compressional acoustic wave at a second frequency by a second acoustic source. The first and the second acoustic sources are arranged within a localized area of the borehole. The first and the second acoustic waves intersect in an intersection volume outside the borehole. The method further includes receiving a third shear acoustic wave at a third frequency, the third shear acoustic wave returning to the borehole due to a non-linear mixing process in a non-linear mixing zone within the intersection volume at a receiver arranged in the borehole. The third frequency is equal to a difference between the first frequency and the second frequency.

  14. Interstellar and Ejecta Dust in the Cas A Supernova Remnant

    Science.gov (United States)

    Arendt, Richard G.; Dwek, Eli; Kober, Gladys; Rho, Jonghee; Hwang, Una

    2013-01-01

    The ejecta of the Cas A supernova remnant has a complex morphology, consisting of dense fast-moving line emitting knots and diffuse X-ray emitting regions that have encountered the reverse shock, as well as more slowly expanding, unshocked regions of the ejecta. Using the Spitzer 5-35 micron IRS data cube, and Herschel 70, 100, and 160 micron PACS data, we decompose the infrared emission from the remnant into distinct spectral components associated with the different regions of the ejecta. Such decomposition allows the association of different dust species with ejecta layers that underwent distinct nuclear burning histories, and determination of the dust heating mechanisms. Our decomposition identified three characteristic dust spectra. The first, most luminous one, exhibits strong emission features at approx. 9 and 21 micron, and a weaker 12 micron feature, and is closely associated with the ejecta knots that have strong [Ar II] 6.99 micron and [Ar III] 8.99 micron emission lines. The dust features can be reproduced by magnesium silicate grains with relatively low MgO-to-SiO2 ratios. A second, very different dust spectrum that has no indication of any silicate features, is best fit by Al2O3 dust and is found in association with ejecta having strong [Ne II] 12.8 micron and [Ne III] 15.6 micron emission lines. A third characteristic dust spectrum shows features that best matched by magnesium silicates with relatively high MgO-to-SiO2 ratio. This dust is primarily associated with the X-ray emitting shocked ejecta and the shocked interstellar/circumstellar material. All three spectral components include an additional featureless cold dust component of unknown composition. Colder dust of indeterminate composition is associated with [Si II] 34.8 micron emission from the interior of the SNR, where the reverse shock has not yet swept up and heated the ejecta. The dust mass giving rise to the warm dust component is about approx. 0.1solar M. However, most of the dust mass

  15. Dust storms and their impact on ocean and human health: dust in Earth's atmosphere

    Science.gov (United States)

    Griffin, Dale W.; Kellog, Christina A.

    2004-01-01

    Satellite imagery has greatly influenced our understanding of dust activity on a global scale. A number of different satellites such as NASA's Earth-Probe Total Ozone Mapping Spectrometer (TOMS) and Se-viewing Field-of-view Sensor (SeaWiFS) acquire daily global-scale data used to produce imagery for monitoring dust storm formation and movement. This global-scale imagery has documented the frequent transmission of dust storm-derived soils through Earth's atmosphere and the magnitude of many of these events. While various research projects have been undertaken to understand this normal planetary process, little has been done to address its impact on ocean and human health. This review will address the ability of dust storms to influence marine microbial population densities and transport of soil-associated toxins and pathogenic microorganisms to marine environments. The implications of dust on ocean and human health in this emerging scientific field will be discussed.

  16. Dust-acoustic shock waves in a dusty plasma with non-thermal ions and super-thermal electrons

    Science.gov (United States)

    Emamuddin, M.; Mamun, A. A.

    2018-01-01

    The propagation of dust-acoustic shock waves (DASWs) in a collisionless unmagnetized dusty plasma (containing super-thermal electrons of two distinct temperatures, non-thermal ions, and a negatively charged viscous dust fluid) has been theoretically investigated by deriving and solving the nonlinear Burgers' equation. It has been observed that the viscous force acting on the dust fluid is a source of dissipation, and is responsible for the formation of DASWs, and that the basic features (viz., amplitude, polarity, width, etc.) of the DASWs are significantly modified by the presence of super-thermal electrons and non-thermal ions. The possible applications of this investigation in Earth's mesosphere, the solar atmosphere, Saturn's magnetosphere, etc., have also been briefly addressed.

  17. Interstellar and ejecta dust in the cas a supernova remnant

    Energy Technology Data Exchange (ETDEWEB)

    Arendt, Richard G. [CRESST, University of Maryland, Baltimore County, Baltimore, MD 21250 (United States); Dwek, Eli; Kober, Gladys [NASA Goddard Space Flight Center, Code 665, Greenbelt, MD 20771 (United States); Rho, Jeonghee [SETI Institute, 189 Bernardo Avenue, Mountain View, CA 94043 (United States); Hwang, Una, E-mail: Richard.G.Arendt@nasa.gov [NASA Goddard Space Flight Center, Code 662, Greenbelt, MD 20771 (United States)

    2014-05-01

    Infrared continuum observations provide a means of investigating the physical composition of the dust in the ejecta and swept up medium of the Cas A supernova remnant (SNR). Using low-resolution Spitzer IRS spectra (5-35 μm), and broad-band Herschel PACS imaging (70, 100, and 160 μm), we identify characteristic dust spectra, associated with ejecta layers that underwent distinct nuclear burning histories. The most luminous spectrum exhibits strong emission features at ∼9 and 21 μm and is closely associated with ejecta knots with strong Ar emission lines. The dust features can be reproduced by magnesium silicate grains with relatively low Mg to Si ratios. Another dust spectrum is associated with ejecta having strong Ne emission lines. It has no indication of any silicate features and is best fit by Al{sub 2}O{sub 3} dust. A third characteristic dust spectrum shows features that are best matched by magnesium silicates with a relatively high Mg to Si ratio. This dust is primarily associated with the X-ray-emitting shocked ejecta, but it is also evident in regions where shocked interstellar or circumstellar material is expected. However, the identification of dust composition is not unique, and each spectrum includes an additional featureless dust component of unknown composition. Colder dust of indeterminate composition is associated with emission from the interior of the SNR, where the reverse shock has not yet swept up and heated the ejecta. Most of the dust mass in Cas A is associated with this unidentified cold component, which is ≲ 0.1 M {sub ☉}. The mass of warmer dust is only ∼0.04 M {sub ☉}.

  18. A study of the relationship between permeability distributions and small scale sedimentary features in a fluvial formation

    Energy Technology Data Exchange (ETDEWEB)

    Gotkowitz, M.

    1993-10-01

    This study focuses on styles of small-scale heterogeneity found in fluvial sand and soil bodies. Over 1,700 in situ measurements of air permeability were taken in an outcrop-based study which joins observations of sedimentary features with their associated permeability distributions. The relationship between sedimentology and hydrologic parameters provides a geologic framework to assess geostatistical hypotheses. The soils in the study area are found to have a significantly lower permeability than the channel sand deposits. The soil deposits showed a significant lack of observable small scale sedimentary structures, which is reflected in the experimental variograms. The permeability distribution in these study sites appears to be adequately represented by a continuous gaussian random field model. The presence of calcium carbonate nodules in the soils is related to the permeability distribution. Correlation lengths in the channel sands perpendicular to stratigraphy are significantly shorter than those observed parallel to stratigraphy. A sedimentological, bounding surfaces model is evaluated with regard to permeability distributions. In deposits of little sedimentary structure, the mean and variance may adequately characterize the permeability distribution. Where significant sedimentary structure exists, the bounding surfaces model can be used to determine the scales of variability present in the permeability distribution and may also be used to infer an appropriate choice of random field model.

  19. Dicarboxylic acids, metals and isotopic compositions of C and N in atmospheric aerosols from inland China: implications for dust and coal burning emission and secondary aerosol formation

    Directory of Open Access Journals (Sweden)

    G. Wang

    2010-07-01

    Full Text Available Dicarboxylic acids (C2–C10, metals, elemental carbon (EC, organic carbon (OC, and stable isotopic compositions of total carbon (TC and total nitrogen (TN were determined for PM10 samples collected at three urban and one suburban sites of Baoji, an inland city of China, during winter and spring 2008. Oxalic acid (C2 was the dominant diacid, followed by succinic (C4 and malonic (C3 acids. Total diacids in the urban and suburban areas were 1546±203 and 1728±495 ng m−3 during winter and 1236±335 and 1028±193 ng m−3 during spring. EC in the urban and the suburban atmospheres were 17±3.8 and 8.0±2.1 μg m−3 during winter and 20±5.9 and 7.1±2.7 μg m−3 during spring, while OC at the urban and suburban sites were 74±14 and 51±7.9 μg m−3 in winter and 51±20 and 23±6.1 μg m−3 in spring. Secondary organic carbon (SOC accounted for 38±16% of OC in winter and 28±18% of OC in spring, suggesting an enhanced photochemical production of secondary organic aerosols in winter under an inversion layer development. Total metal elements in winter and spring were 34±10 and 61±27 μg m−3 in the urban air and 18±7 and 32±23 μg m−3 in the suburban air. A linear correlation (r2>0.8 in winter and r2>0.6 in spring was found between primary organic carbon (POC and Ca2+/Fe, together with a strong dependence of pH value of sample extracts on water-soluble inorganic carbon, suggesting fugitive dust as an important source of the airborne particles. Polycyclic aromatic hydrocarbons (PAHs, sulfate, and Pb in the samples well correlated each other (r2>0.6 in winter, indicating an importance of emissions from coal burning for house heating. Stable carbon isotope compositions of TC (δ13C became higher with an increase

  20. Special features of the formation of high-conductivity phases of halides of alkali metals at superhigh pressures

    International Nuclear Information System (INIS)

    Babushkin, A.N.; Babushkina, G.V.

    1999-01-01

    The halides of alkali metals are the simplest crystals with the ionic nature of chemical bonds and are used widely as modelling materials in high-pressure physics. As a result of previous theoretical and experimental (optical, structural, electro-physical and shock-waves) investigations it was shown that these materials may be characterised by the overlapping of the valency and conduction bands and by the formation of groups of free charge carriers at pressures of the megabaric level. However, the authors know of no data on the direct investigations of the electrophysical properties of the halides of alkali metals at such high static pressures. The end of this investigation was to examine the temperature dependences of the electrical conductivity and thermal EMF of halides of alkali metals AX (A = Na, K, Rb, Cs, X = Cl, Br, I) in a wide temperature range at pressures from 10 to 50 GPa in order to reveal the general leisure since governing the change of their electronic structures, in particular, the transition to the state with the activation-type or metallic conductivity

  1. COLLIDING DECIMETER DUST

    Energy Technology Data Exchange (ETDEWEB)

    Deckers, J.; Teiser, J., E-mail: johannes.deckers@uni-due.de [Fakultaet fuer Physik, Universitaet Duisburg-Essen, D-47057 Duisburg (Germany)

    2013-06-01

    Collisional evolution is a key process in planetesimal formation and decimeter bodies play a key role in the different models. However, the outcome of collisions between two dusty decimeter bodies has never been studied experimentally. Therefore, we carried out microgravity collision experiments in the Bremen drop tower. The agglomerates consist of quartz with irregularly shaped micrometer-sized grains and the mean volume filling factor is 0.437 {+-} 0.004. The aggregates are cylindrical with 12 cm in height and 12 cm in diameter, and typical masses are 1.5 kg. These are the largest and most massive dust aggregates studied in collisions to date. We observed rebound and fragmentation but no sticking in the velocity range between 0.8 and 25.7 cm s{sup -1}. The critical fragmentation velocity for split up of an aggregate is 16.2 {+-} 0.4 cm s{sup -1}. At lower velocities the aggregates bounce off each other. In this velocity range, the coefficient of restitution decreases with increasing collision velocity from 0.8 to 0.3. While the aggregates are very weak, the critical specific kinetic energy for fragmentation Q{sub {mu}=1} is a factor of six larger than expected. Collisions of large bodies in protoplanetary disks are supposed to be much faster and the generation of smaller fragments is likely. In planetary rings, collision velocities are of the order of a few cm s{sup -1} and are thereby in the same range investigated in these experiments. The coefficient of restitution of dust agglomerates and regolith-covered ice particles, which are common in planetary rings, are similar.

  2. Features in chemical kinetics. I. Signatures of self-emerging dimensional reduction from a general format of the evolution law

    Science.gov (United States)

    Nicolini, Paolo; Frezzato, Diego

    2013-06-01

    Simplification of chemical kinetics description through dimensional reduction is particularly important to achieve an accurate numerical treatment of complex reacting systems, especially when stiff kinetics are considered and a comprehensive picture of the evolving system is required. To this aim several tools have been proposed in the past decades, such as sensitivity analysis, lumping approaches, and exploitation of time scales separation. In addition, there are methods based on the existence of the so-called slow manifolds, which are hyper-surfaces of lower dimension than the one of the whole phase-space and in whose neighborhood the slow evolution occurs after an initial fast transient. On the other hand, all tools contain to some extent a degree of subjectivity which seems to be irremovable. With reference to macroscopic and spatially homogeneous reacting systems under isothermal conditions, in this work we shall adopt a phenomenological approach to let self-emerge the dimensional reduction from the mathematical structure of the evolution law. By transforming the original system of polynomial differential equations, which describes the chemical evolution, into a universal quadratic format, and making a direct inspection of the high-order time-derivatives of the new dynamic variables, we then formulate a conjecture which leads to the concept of an "attractiveness" region in the phase-space where a well-defined state-dependent rate function ω has the simple evolution dot{ω }= - ω ^2 along any trajectory up to the stationary state. This constitutes, by itself, a drastic dimensional reduction from a system of N-dimensional equations (being N the number of chemical species) to a one-dimensional and universal evolution law for such a characteristic rate. Step-by-step numerical inspections on model kinetic schemes are presented. In the companion paper [P. Nicolini and D. Frezzato, J. Chem. Phys. 138, 234102 (2013)], 10.1063/1.4809593 this outcome will be naturally

  3. Features in chemical kinetics. I. Signatures of self-emerging dimensional reduction from a general format of the evolution law.

    Science.gov (United States)

    Nicolini, Paolo; Frezzato, Diego

    2013-06-21

    Simplification of chemical kinetics description through dimensional reduction is particularly important to achieve an accurate numerical treatment of complex reacting systems, especially when stiff kinetics are considered and a comprehensive picture of the evolving system is required. To this aim several tools have been proposed in the past decades, such as sensitivity analysis, lumping approaches, and exploitation of time scales separation. In addition, there are methods based on the existence of the so-called slow manifolds, which are hyper-surfaces of lower dimension than the one of the whole phase-space and in whose neighborhood the slow evolution occurs after an initial fast transient. On the other hand, all tools contain to some extent a degree of subjectivity which seems to be irremovable. With reference to macroscopic and spatially homogeneous reacting systems under isothermal conditions, in this work we shall adopt a phenomenological approach to let self-emerge the dimensional reduction from the mathematical structure of the evolution law. By transforming the original system of polynomial differential equations, which describes the chemical evolution, into a universal quadratic format, and making a direct inspection of the high-order time-derivatives of the new dynamic variables, we then formulate a conjecture which leads to the concept of an "attractiveness" region in the phase-space where a well-defined state-dependent rate function ω has the simple evolution ω[over dot]=-ω(2) along any trajectory up to the stationary state. This constitutes, by itself, a drastic dimensional reduction from a system of N-dimensional equations (being N the number of chemical species) to a one-dimensional and universal evolution law for such a characteristic rate. Step-by-step numerical inspections on model kinetic schemes are presented. In the companion paper [P. Nicolini and D. Frezzato, J. Chem. Phys. 138, 234102 (2013)] this outcome will be naturally related to the

  4. Chromatin extrusion explains key features of loop and domain formation in wild-type and engineered genomes.

    Science.gov (United States)

    Sanborn, Adrian L; Rao, Suhas S P; Huang, Su-Chen; Durand, Neva C; Huntley, Miriam H; Jewett, Andrew I; Bochkov, Ivan D; Chinnappan, Dharmaraj; Cutkosky, Ashok; Li, Jian; Geeting, Kristopher P; Gnirke, Andreas; Melnikov, Alexandre; McKenna, Doug; Stamenova, Elena K; Lander, Eric S; Aiden, Erez Lieberman

    2015-11-24

    We recently used in situ Hi-C to create kilobase-resolution 3D maps of mammalian genomes. Here, we combine these maps with new Hi-C, microscopy, and genome-editing experiments to study the physical structure of chromatin fibers, domains, and loops. We find that the observed contact domains are inconsistent with the equilibrium state for an ordinary condensed polymer. Combining Hi-C data and novel mathematical theorems, we show that contact domains are also not consistent with a fractal globule. Instead, we use physical simulations to study two models of genome folding. In one, intermonomer attraction during polymer condensation leads to formation of an anisotropic "tension globule." In the other, CCCTC-binding factor (CTCF) and cohesin act together to extrude unknotted loops during interphase. Both models are consistent with the observed contact domains and with the observation that contact domains tend to form inside loops. However, the extrusion model explains a far wider array of observations, such as why loops tend not to overlap and why the CTCF-binding motifs at pairs of loop anchors lie in the convergent orientation. Finally, we perform 13 genome-editing experiments examining the effect of altering CTCF-binding sites on chromatin folding. The convergent rule correctly predicts the affected loops in every case. Moreover, the extrusion model accurately predicts in silico the 3D maps resulting from each experiment using only the location of CTCF-binding sites in the WT. Thus, we show that it is possible to disrupt, restore, and move loops and domains using targeted mutations as small as a single base pair.

  5. Maintaining the Background Dust Opacity During Northern Hemisphere Summer Mars Using Wind Stress Based Dust Lifting

    Science.gov (United States)

    Jha, V.; Kahre, M. A.

    2017-12-01

    The Mars atmosphere has low levels of dust during Northern Hemisphere (NH) spring and summer (the non-dusty season) and increased levels during NH autumn and winter (the dusty season). In the absence of regional or global storms, dust devils and local storms maintain a background minimum dust loading during the non-dusty season. While observational surveys and Global Climate Model (GCM) studies suggest that dust devils are likely to be major contributors to the background haze during NH spring and summer, a complete understanding of the relative contribution of dust devils and local dust storms has not yet been achieved. We present preliminary results from an investigation that focuses on the effects of radiatively active water ice clouds on dust lifting processes during these seasons. Water ice clouds are known to affect atmospheric temperatures directly by absorption and emission of thermal infrared radiation and indirectly through dynamical feedbacks. Our goal is to understand how clouds affect the contribution by local (wind stress) dust storms to the background dust haze during NH spring and summer. The primary tool for this work is the NASA Ames Mars GCM, which contains physical parameterizations for a fully interactive dust cycle. Three simulations that included wind stress dust lifting were executed for a period of 5 Martian years: a case that included no cloud formation, a case that included radiatively inert cloud formation and a case that included radiatively active cloud (RAC) formation. Results show that when radiatively active clouds are included, the clouds in the aphelion cloud belt radiatively heat the atmosphere aloft in the tropics (Figure 1). This heating produces a stronger overturning circulation, which in turn produces an enhanced low-level flow in the Hadley cell return branch. The stronger low-level flow drives higher surface stresses and increased dust lifting in those locations. We examine how realistic these simulated results are by

  6. Hemispheric asymmetry of the brain as a psycho-physiological basis of individual and typological features of the formation of a sense of humour

    Directory of Open Access Journals (Sweden)

    Shportun O.N.

    2016-05-01

    Full Text Available The article describes the psycho-physiological peculiarities of hemispheric asymmetry of the brain as the basis of individual and typological features of the formation of a sense of humour. The analysis of the impact of the functional brain hemispheric asymmetry on emotional, intellectual and physiological features of development of sense of humour in ontogeny is conducted. Analysis of studies of inter-hemispheric asymmetry of the brain makes it possible to ascertain the impact of the functioning of each hemisphere on the formation of the perception of humour. Studies show that in the process of developing of sense of humour, two functional hemispheres of the brain are involved. As the emotion of humour – is an intellectual emotion, and in the development of intelligence a lot of mental processes are involved, in the formation of humour two hemispheres of the brain are functioned. The right hemisphere is responsible for the emotional nature of humour (intonation, sound level of language, speed of response to a joke ..., the left hemisphere – for processing verbal information (content of the joke, category, purpose, content analysis .... After analysing the research of hemispheric functional asymmetry of the human brain, its psycho-physiological and neurochemical characteristics, it can be assumed that people with more developed left hemisphere in perceiving humour are more prone to displays of gelotophilia and “right hemisphere” people – show signs of gelotophobia and katagelasticism. Examining gender differences of hemisphere asymmetry of the brain, it can be argued that diagnosing sense of humour is important to take into account gender-specific functioning of hemispheres, because men have more clearly functioning the left hemisphere, and women – the right one. This fact of sexual peculiarities of functioning of inter-hemispheric asymmetry of the brain allows diagnosing objectively sense of humour, as well as different variations

  7. Ocular adnexal pseudo-cyst formation as a characteristic feature of perineural spread in squamous cell carcinoma.

    Science.gov (United States)

    Valenzuela, Alejandra A; Whitehead, Kevin J; Sullivan, Timothy J

    2006-01-01

    To report the clinical features in a series of patients with perineural spread of squamous cell carcinoma involving periorbital nerves that presented with clinical and/or imaging evidence of pseudo-cystic transformation along the involved nerves. A noncomparative, retrospective chart review of the clinical and imaging findings of patients attending a regional orbital surgery department between 1998 and 2005, presenting with a pseudo-cystic orbital mass on clinical examination and/or imaging, which proved to be due to perineural squamous cell carcinoma on histopathology. The study included 8 male patients with a mean age at referral of 66 +/- 11 years. All cases had associated cutaneous squamous cell carcinoma involving the face or scalp, and, in 4 cases, the primary tumor could be identified in the vicinity of the affected orbit. The duration of the symptoms varied from 5 weeks to 9 years (24 +/- 36 months). Altered sensation, including formication and hypo-esthesia in the V1 and V2 trigeminal division, motor nerve palsies, and ptosis in conjunction with a palpable periorbital mass, were the most common presentations. The cystic tumor deposits were assessed histologically with both hematoxylin and eosin and immunoperoxidase stains (S100 protein for neural structures identification and MNF116 as a keratin marker). This demonstrated malignant squamous epithelium both within and around the wall of the tumor deposit and, in continuity, within the nerve running through the lesion. Some nerves showed substantial areas of fibrosis, representing obliteration of the nerve structure caused by involvement by tumor. Treatment modalities included surgical debulking, exenteration, radiotherapy, and combined chemo-radiotherapy. Mean follow-up was 29 +/- 23 months. Eight patients (87.5%) remain alive, and five of them show no evidence of disease. One patient died after progression of the malignancy. The presence of a cystic lesion in association with sensory or motor deficit in

  8. Asian dust outflow in the PBL and free atmosphere retrieved by NASA CALIPSO and an assimilated dust transport model

    Directory of Open Access Journals (Sweden)

    Y. Hara

    2009-02-01

    Full Text Available Three-dimensional structures of Asian dust transport in the planetary boundary layer (PBL and free atmosphere occurring successively during the end of May 2007 were clarified using results of space-borne backscatter lidar, Cloud-Aerosol Lidar with Orthogonal Polarization (CALIOP, and results obtained using a data-assimilated version of a dust transport model (RC4 based on a ground-based NIES lidar network. The dust layer depths and the vertical and horizontal structure simulated by RC4 agreed with those of CALIOP observations from the dust source region to the far-downstream region. Two important transport mechanisms of Asian dust in the PBL and free atmosphere were clarified: a low-level dust outbreak within the dry slot region of a well-developed low-pressure system, and formation of an elevated dust layer within the warm sector of a low-pressure system. We also represent the aging of pure dust particles using the particle depolarization ratio (PDR at 532 nm and the color ratio (CR at 1064 nm and 532 nm. Aerosols with high PDR were observed uniformly over the dust source region. While the dust cloud was transported to the eastern downwind regions, aerosols with low PDR and high CR occur in the layer of less than 1 km height, suggesting a mixing state of spherical aerosols and dust in the surface layer.

  9. Difference in the wind speeds required for initiation versus continuation of sand transport on mars: implications for dunes and dust storms.

    Science.gov (United States)

    Kok, Jasper F

    2010-02-19

    Much of the surface of Mars is covered by dunes, ripples, and other features formed by the blowing of sand by wind, known as saltation. In addition, saltation loads the atmosphere with dust aerosols, which dominate the Martian climate. We show here that saltation can be maintained on Mars by wind speeds an order of magnitude less than required to initiate it. We further show that this hysteresis effect causes saltation to occur for much lower wind speeds than previously thought. These findings have important implications for the formation of dust storms, sand dunes, and ripples on Mars.

  10. Spatial distribution of dust in the shell elliptical NGC 5982

    NARCIS (Netherlands)

    del Burgo, C.; Carter, D.; Sikkema, G.

    Aims. Shells in Ellipticals are peculiar faint sharp edged features that are thought to be formed by galaxy mergers. We determine the shell and dust distributions, and colours of a well-resolved shell and the underlying galaxy in NGC 5982, and compare the spatial distributions of the dust and gas

  11. FEATURES OF FORMATION AND EXECUTION OF THE FEDERAL BUDGET IN THE MILITARY-INDUSTRIAL COMPLEX OF RUSSIA

    Directory of Open Access Journals (Sweden)

    Anzhela Z. Namitulina

    2015-01-01

    Full Text Available Importance: The presented research topic is particularly relevant in terms of development of market relations inRussia, when indicated problems whose solution determines the positive results of reforming the economic system, an important place in which occupies the militaryindustrial complex (MIC. Among them special urgency are those that relate to the need to develop such economic relations that would ensure and guarantee the efficiency, competitiveness and sustainability of defense enterprises. In the new economic conditions, it became necessary to address the problems of financial security organizations, the military-industrial complex, the creation of an effective system to manage this process during the crisis and the need to find ways to stabilize the reproduction process inRussia. The conversion of potential military-economic opportunities in the real military power takes place on the basis of the functioning of the military economy that ensures the production and distribution of arms and military equipment. The war economy is responsible, on the one hand, the economic opportunities of the country, on the other – the nature and requirements of modern warfare. It is designed to ensure the maintenance of a constant high combat readiness of the armed forces and must be able to rapidly increase its power to the level required for the breakdown of military aggression. Problems of realization of military and economic potential are determined by the degree of use of the military and economic opportunities, as well as the effective use of financial resources.Objectives: The aim of the article is to analyze the problems of the formation and execution of defense spending. Objectives of the article: identify design characteristics of the defense component of the federal budget during the crisis of Economic Development. Methods: Methodological basis of this article are of economic and statistical methods of analysis.Results: Given that the

  12. Dust acoustic solitary and shock waves in strongly coupled dusty ...

    Indian Academy of Sciences (India)

    between nonlinear and dispersion effects can result in the formation of symmetrical solitary waves. Also shock ... et al have studied the effect of nonadiabatic dust charge variation on the nonlinear dust acoustic wave with ..... Figure 5 presents the border between oscillatory- and monotonic-type shock waves as functions of ...

  13. Trapping Dust to Form Planets

    Science.gov (United States)

    Kohler, Susanna

    2017-10-01

    Kraus (University of Exeter) in a recent publication. Kraus and collaborators show that the protoplanetary disk of V1247 Orionis contains a ring-shaped, asymmetric inner disk component, as well as a sharply confined crescent structure. These structures are consistent with the morphologies expected from theoretical models of vortex formation in disks.Kraus and collaborators propose the following picture: an early planet is orbiting at 100 AU within the disk, generating a one-armed spiral arm as material feeds the protoplanet. As the protoplanet orbits, it clears a gap between the ring and the crescent, and it simultaneously triggers two vortices, visible as the crescent and the bright asymmetry in the ring. These vortices are then able to trap millimeter-sized particles.Gas column density of the authors radiation-hydrodynamic simulation of V1247 Orioniss disk. [Kraus et al. 2017]The authors run detailed hydrodynamics simulations of this scenario and compare them (as well as alternative theories) to the ALMA observations of V1247 Orionis. The simulations support their model, producing sample scattered-light images thatmatchwell the one-armed spiral observed in previous scattered-light images of the disk.How can we confirm V1247 Orionis providesan example of dust-trapping vortices? One piece of supporting evidence would be the discovery of the protoplanet that Kraus and collaborators theorize triggered the potential vortices in this disk. Future deeper ALMA imaging may make this possible, helping to confirm our picture of how dust builds into planets.CitationStefan Kraus et al 2017 ApJL 848 L11. doi:10.3847/2041-8213/aa8edc

  14. An experimental study of chondrule formation from chondritic precursors via evaporation and condensation in Knudsen cell: Shock heating model of dust aggregates

    Science.gov (United States)

    Imae, Naoya; Isobe, Hiroshi

    2017-09-01

    Chondrules, igneous objects of ∼1 mm in diameter, formed in the earliest solar system via a transient heating event, are divided into two types: main (type I, FeO-poor) and minor (type II, FeO-rich). Using various chondritic materials for different redox conditions and grain sizes, chondrule reproduction experiments were carried out at IW-2 to IW-3.8, with cooling rates mainly ∼100°C/h, with peak temperatures mainly at 1450 °C, and mainly at 100 Pa in a Knudsen cell providing near chemical equilibrium between the charge and the surrounding gas at the peak temperatures. Vapor pressures in the capsule were controlled using solid buffers. After and during the significant evaporation of the iron component from the metallic iron-poor starting materials in near equilibrium, crystallization occurred. This resulted in the formation of a product similar to the type I chondrules. Dusty olivine grains occurred in charges that had precursor type II chondrules containing coarse ferroan olivine, but such grains are not common in type I chondrules. Therefore fine-grained ferroan matrices rather than type II chondrules are main precursor for type I chondrules. The type I chondrules would have evolved via evaporation and condensation in the similar conditions to the present experimental system. Residual gas, which escaped in experiments, could have condensed to form matrices, leading to complementary compositions. Clusters of matrices and primordial chondrules could have been recycled to form main-generation chondrules originated from the shock heating.

  15. Dust in Libraries

    OpenAIRE

    Mašková, Ludmila

    2013-01-01

    Indoor air pollution in libraries and archives can be harmful for materials stored there. Adverse effects of most of gaseous pollutants are well described, but less is known about dust. Dust particles cover a wide range of sizes and have a variable composition. These characteristics determine their transport to the surfaces and also possible harmful effects. Dust particles not only cause soiling, but coarse particles can damage surfaces by abrasion. Fine particles of acidic or alkaline charac...

  16. Drifts of Dust or Something Else?

    Science.gov (United States)

    2004-01-01

    While the interior and far walls of the crater dubbed 'Bonneville' can be seen in the background, the dominant foreground features in this 180-degree navigation camera mosaic are the wind-deposited drifts of dust or sand. NASA's Mars Exploration Rover Spirit completed this mosaic on sol 71, March 15, 2004, from its newest location at the rim of 'Bonneville' crater. Scientists are interested in these formations in part because they might give insight into the processes that formed some of the material within the crater. Thermal emission measurements by the rover indicate that the dark material just below the far rim of this crater is spectrally similar to rocks that scientists have analyzed along their journey to this location. They want to know why this soil-like material has a spectrum that more closely resembles rocks rather than other soils examined so far. The drifts seen in the foreground of this mosaic might have the answer. Scientists hypothesize that these drifts might consist of wind-deposited particles that are the same as the dark material found against the back wall of the crater. If so, Spirit may spend time studying the material and help scientists understand why it is different from other fine-grained material seen at Gusev. The drifts appear to be lighter in color than the dark material deposited on the back wall of the crater. They might be covered by a thin deposit of martian dust, or perhaps the drift is like other drifts seen during Spirit's journey and is just a collection of martian dust. To find out, Spirit will spend some of sol 72 digging its wheels into the drift to uncover its interior. After backing up a bit, Spirit will use the panoramic camera and miniature thermal emission spectrometer to analyze the scuffed area. If the interior material has a similar spectrum to the dark deposit in the crater, then Spirit will most likely stay here a little longer to study the drift with the instruments on its robotic arm. If the material is uniform

  17. Size Distributions and Formation Pathways of Organic and Inorganic Constituents in Spring Aerosols from Okinawa Island in the Western North Pacific Rim: An Outflow Region of Asian Dusts

    Science.gov (United States)

    Deshmukh, D. K.; Lazaar, M.; Kawamura, K.; Kunwar, B.; Tachibana, E.; Boreddy, S. K. R.

    2015-12-01

    Size-segregated aerosols (9-stages) were collected at Okinawa Island in the western North Pacific Rim in spring 2008. The samples were analyzed for diacids (C2-C12), ω-oxoacids (ωC2-ωC9), a-dicarbonyls (C2-C3), organic carbon (OC), water-soluble OC (WSOC) and major ions to understand the sources and atmospheric processes in the outflow region of Asian pollutants. The molecular distribution of diacids showed the predominance of oxalic acid (C2) followed by malonic and succinic acids in all the size-segregated aerosols. ω-Oxoacids showed the predominance of glyoxylic acid (ωC2) whereas glyoxal (Gly) was more abundant than methylglyoxal in all the sizes. The abundant presence of sulfate as well as phthalic and adipic acids in Okinawa aerosols suggested a significant contribution of anthropogenic sources in East Asia via long-range atmospheric transport. Diacids (C2-C5), ωC2 and Gly as well as WSOC and OC peaked at 0.65-1.1 µm in fine mode whereas azelaic (C9) and 9-oxononanoic (ωC9) acids peaked at 3.3-4.7 µm in coarse mode. Sulfate and ammonium are enriched in fine mode whereas sodium and chloride are in coarse mode. An important mechanism for the formation of these organic species in Okinawa aerosols is probably gas phase oxidation of VOCs and subsequent in-cloud processing during long-range transport. Their characteristics size distribution implies that fine particles enriched with these organic and inorganic species could act as CCN to develop the cloud cover over the western North Pacific. The major peak of C9 and ωC9 on coarse mode suggest that they are produced by photooxidation of unsaturated fatty acids mainly derived from phytoplankton via heterogeneous reactions on sea spray particles. This study demonstrates that anthropogenic aerosols emitted from East Asia have significant influence on the compositions of organic and inorganic aerosols in the western North Pacific Rim.

  18. Supernovae. Old supernova dust factory revealed at the Galactic center.

    Science.gov (United States)

    Lau, R M; Herter, T L; Morris, M R; Li, Z; Adams, J D

    2015-04-24

    Dust formation in supernova ejecta is currently the leading candidate to explain the large quantities of dust observed in the distant, early universe. However, it is unclear whether the ejecta-formed dust can survive the hot interior of the supernova remnant (SNR). We present infrared observations of ~0.02 solar masses of warm (~100 kelvin) dust seen near the center of the ~10,000-year-old Sagittarius A East SNR at the Galactic center. Our findings indicate the detection of dust within an older SNR that is expanding into a relatively dense surrounding medium (electron density ~10(3) centimeters(-3)) and has survived the passage of the reverse shock. The results suggest that supernovae may be the dominant dust-production mechanism in the dense environment of galaxies of the early universe. Copyright © 2015, American Association for the Advancement of Science.

  19. The variation of dust content with intrinsic galaxy properties: revealing strong dust biases in many commonly-used galaxy property measurements

    Science.gov (United States)

    Devour, Brian; Bell, Eric F.

    2018-01-01

    Dust strongly affects many observations of galaxy properties, and quantifying galaxy dust content and correcting for its effects is a delicate and often uncertain task. In particular, both the impact of dust on commonly-used metrics of galaxy structure and the variation of dust content with intrinsic galaxy properties are poorly quantified. The inclination dependence of dust attenuation is a powerful tool to quantify dust amounts and the effects of dust on galaxy property measurements; this requires the construction of dust and inclination-independent selection techniques to isolate samples of intrinsically similar galaxies for study. To this end we construct dust and inclination-independent measurements of galaxy mass and star formation rate using dust-penetrated infrared datasets, and we develop novel dust and inclination-independent galaxy ‘linear’ size and concentration measurements by collapsing the light distribution in the near-infrared onto the major axis. With these new metrics we select a sample of Milky Way analog galaxies with similar stellar masses, star formation rates, and linear sizes and concentrations. These galaxies - identical save for their orientation - show strong systematic dust and inclination dependence in their Sérsic index, concentration, half-light radius, luminosity, (dust-corrected!) star formation rate and metallicitity, and spectral classification. We use these new metrics to study the variation in relative face-on to edge-on attenuation as a function of intrinsic stellar mass, star formation rate, and linear size and concentration. We find that, if one accounts for geometric and radiative transfer effects, the complex patterns of variation in relative attenuation can be reproduced by simple scaling relation-based dust density models in which dust optical depth is set primarily by gas density and metallicity.

  20. Communication plan for windblown dust.

    Science.gov (United States)

    2015-05-01

    Windblown dust events occur in Arizona, and blowing dust has been considered a contributing factor to serious crashes on the : segment of Interstate 10 (I10) between Phoenix and Tucson, as well as on other Arizona roadways. Arizonas dust events...

  1. Chemical desorption and diffusive dust chemistry

    NARCIS (Netherlands)

    Dulieu, Francois; Pirronello, Valerio; Minissale, Marco; Congiu, Emanuele; Baouche, Saoud; Chaabouni, Henda; Moudens, Audrey; Accolla, Mario; Cazaux, Stephanie; Manicò, Giulio

    2014-01-01

    In molecular clouds, gaseous species can accrete efficiently on the cold surfaces of dust grains. As for radical-radical reactions, the surface of the grains acts as a third body, and changes dramatically the efficiency of the reactions (i.e., H2 formation), or lowers considerably the barrier to

  2. Dust in Space

    Indian Academy of Sciences (India)

    "They cannot look out far·IThey cannot look in deep. I. But when was that ever a bar ITo any watch they keep?" - Robert Frost, (Neither Out Far Nor In Deep'. Dust grains in space, which absorb and redden starlight, were once considered to be a nuisance for astronomers, but the study of dust has be- come important in ...

  3. Dust in Space

    Indian Academy of Sciences (India)

    Figure B. The concept of photon nlust travel such that the probability of its interacting is interaction length is ex- almost unity. Putting the above probability equal to unity, and plained. writing ~x = 1, the interaction length, 1, is given by 1 = (/n'. How much Dust is there? One can estimate the amount of dust in interstellar space ...

  4. Dust in planetary nebulae

    International Nuclear Information System (INIS)

    Mathis, J.S.

    1978-01-01

    The author's review concentrates on theoretical aspects of dust in planetary nebulae (PN). He considers the questions: how much dust is there is PN; what is its composition; what effects does it have on the ionization structure, on the dynamics of the nebula. (Auth.)

  5. Respirable dust measured downwind during rock dust application.

    Science.gov (United States)

    Harris, M L; Organiscak, J; Klima, S; Perera, I E

    2017-05-01

    The Pittsburgh Mining Research Division of the U.S. National Institute for Occupational Safety and Health (NIOSH) conducted underground evaluations in an attempt to quantify respirable rock dust generation when using untreated rock dust and rock dust treated with an anticaking additive. Using personal dust monitors, these evaluations measured respirable rock dust levels arising from a flinger-type application of rock dust on rib and roof surfaces. Rock dust with a majority of the respirable component removed was also applied in NIOSH's Bruceton Experimental Mine using a bantam duster. The respirable dust measurements obtained downwind from both of these tests are presented and discussed. This testing did not measure miners' exposure to respirable coal mine dust under acceptable mining practices, but indicates the need for effective continuous administrative controls to be exercised when rock dusting to minimize the measured amount of rock dust in the sampling device.

  6. MicroMED: a dust particle counter for the characterization of airborne dust close to the surface of Mars

    Science.gov (United States)

    Cozzolino, Fabio; Esposito, Francesca; Molfese, Cesare; Cortecchia, Fausto; Saggin, Bortolino; D'amato, Francesco

    2015-04-01

    Monitoring of airborne dust is very important in planetary climatology. Indeed, dust absorbs and scatter solar and thermal radiation, severely affecting atmospheric thermal structure, balance and dynamics (in terms of circulations). Wind-driven blowing of sand and dust is also responsible for shaping planetary surfaces through the formation of sand dunes and ripples, the erosion of rocks, and the creation and transport of soil particles. Dust is permanently present in the atmosphere of Mars and its amount varies with seasons. During regional or global dust storms, more than 80% of the incoming sunlight is absorbed by dust causing an intense atmospheric heating. Airborne dust is therefore a crucial climate component on Mars which impacts atmospheric circulations at all scales. Main dust parameters influencing the atmosphere heating are size distribution, abundance, albedo, single scattering phase function, imaginary part of the index of refraction. Moreover, major improvements of Mars climate models require, in addition to the standard meteorological parameters, quantitative information about dust lifting, transport and removal mechanisms. In this context, two major quantities need to be measured for the dust source to be understood: surface flux and granulometry. While many observations have constrained the size distribution of the dust haze seen from the orbit, it is still not known what the primary airborne dust (e.g. the recently lifted dust) is made of, size-wise. MicroMED has been designed to fill this gap. It will measure the abundance and size distribution of dust, not in the atmospheric column, but close to the surface, where dust is lifted, so to be able to monitor dust injection into the atmosphere. This has never been performed in Mars and other planets exploration. MicroMED is an Optical Particle Counter, analyzing light scattered from single dust particles to measure their size and abundance. A proper fluid-dynamic system, including a pump and a

  7. Lunar Dust Mitigation Screens

    Science.gov (United States)

    Knutson, Shawn; Holloway, Nancy

    With plans for the United States to return to the moon, and establish a sustainable human presence on the lunar surface many issues must be successfully overcome. Lunar dust is one of a number of issues with the potential to create a myriad of problems if not adequately addressed. Samples of dust brought back from Apollo missions show it to be soft, yet sharp and abrasive. The dust consists of a variety of morphologies including spherical, angular blocks, shards, and a number of irregular shapes. One of the main issues with lunar dust is its attraction to stick to anything it comes in contact with (i.e. astronauts, equipment, habitats, etc.). Ionized radiation from the sun strikes the moon's surface and creates an electrostatic charge on the dust. Further, the dust harbors van der Waals forces making it especially difficult to separate once it sticks to a surface. During the Apollo missions, it was discovered that trying to brush the lunar dust from spacesuits was not effective, and rubbing it caused degradation of the suit material. Further, when entering the lunar module after moonwalks, the astronauts noted that the dust was so prolific inside the cabin that they inhaled and ingested it, causing at least one of them, Harrison "Jack" Schmidt, to report irritation of the throat and lungs. It is speculated that the dust could also harm an astronaut's nervous and cardiovascular systems, especially during an extended stay. In addition to health issues, the dust can also cause problems by scouring reflective coatings off of thermal blankets, and roughening surfaces of windows and optics. Further, panels on solar cells and photovoltaics can also be compromised due to dust sticking on the surfaces. Lunar dust has the capacity to penetrate seals, interfere with connectors, as well as mechanisms on digging machines, all of which can lead to problems and failure. To address lunar dust issues, development of electrostatic screens to mitigate dust on sur-faces is currently

  8. INFRARED LUMINOSITIES AND DUST PROPERTIES OF z ∼ 2 DUST-OBSCURED GALAXIES

    International Nuclear Information System (INIS)

    Bussmann, R. S.; Dey, Arjun; Jannuzi, B. T.; Borys, C.; Desai, V.; Sheth, K.; Soifer, B. T.; Le Floc'h, E.; Melbourne, J.

    2009-01-01

    We present SHARC-II 350 μm imaging of twelve 24 μm bright (F 24μm > 0.8 mJy) Dust-Obscured Galaxies (DOGs) and Combined Array for Research in Millimeter-wave Astronomy (CARMA) 1 mm imaging of a subset of two DOGs. These objects are selected from the Booetes field of the NOAO Deep Wide-Field Survey. Detections of four DOGs at 350 μm imply infrared (IR) luminosities which are consistent to within a factor of 2 of expectations based on a warm-dust spectral energy distribution (SED) scaled to the observed 24 μm flux density. The 350 μm upper limits for the 8 non-detected DOGs are consistent with both Mrk 231 and M82 (warm-dust SEDs), but exclude cold dust (Arp 220) SEDs. The two DOGs targeted at 1 mm were not detected in our CARMA observations, placing strong constraints on the dust temperature: T dust > 35-60 K. Assuming these dust properties apply to the entire sample, we find dust masses of ∼3 x 10 8 M sun . In comparison to other dusty z ∼ 2 galaxy populations such as submillimeter galaxies (SMGs) and other Spitzer-selected high-redshift sources, this sample of DOGs has higher IR luminosities (2 x 10 13 L sun versus 6 x 10 12 L sun for the other galaxy populations) that are driven by warmer dust temperatures (>35-60 K versus ∼30 K) and lower inferred dust masses (3 x 10 8 M sun versus 3 x 10 9 M sun ). Wide-field Herschel and Submillimeter Common-User Bolometer Array-2 surveys should be able to detect hundreds of these power-law-dominated DOGs. We use the existing Hubble Space Telescope and Spitzer/InfraRed Array Camera data to estimate stellar masses of these sources and find that the stellar to gas mass ratio may be higher in our 24 μm bright sample of DOGs than in SMGs and other Spitzer-selected sources. Although much larger sample sizes are needed to provide a definitive conclusion, the data are consistent with an evolutionary trend in which the formation of massive galaxies at z ∼ 2 involves a submillimeter bright, cold-dust, and star-formation

  9. Interstellar dust. Evidence for interstellar origin of seven dust particles collected by the Stardust spacecraft.

    Science.gov (United States)

    Westphal, Andrew J; Stroud, Rhonda M; Bechtel, Hans A; Brenker, Frank E; Butterworth, Anna L; Flynn, George J; Frank, David R; Gainsforth, Zack; Hillier, Jon K; Postberg, Frank; Simionovici, Alexandre S; Sterken, Veerle J; Nittler, Larry R; Allen, Carlton; Anderson, David; Ansari, Asna; Bajt, Saša; Bastien, Ron K; Bassim, Nabil; Bridges, John; Brownlee, Donald E; Burchell, Mark; Burghammer, Manfred; Changela, Hitesh; Cloetens, Peter; Davis, Andrew M; Doll, Ryan; Floss, Christine; Grün, Eberhard; Heck, Philipp R; Hoppe, Peter; Hudson, Bruce; Huth, Joachim; Kearsley, Anton; King, Ashley J; Lai, Barry; Leitner, Jan; Lemelle, Laurence; Leonard, Ariel; Leroux, Hugues; Lettieri, Robert; Marchant, William; Ogliore, Ryan; Ong, Wei Jia; Price, Mark C; Sandford, Scott A; Sans Tresseras, Juan-Angel; Schmitz, Sylvia; Schoonjans, Tom; Schreiber, Kate; Silversmit, Geert; Solé, Vicente A; Srama, Ralf; Stadermann, Frank; Stephan, Thomas; Stodolna, Julien; Sutton, Stephen; Trieloff, Mario; Tsou, Peter; Tyliszczak, Tolek; Vekemans, Bart; Vincze, Laszlo; Von Korff, Joshua; Wordsworth, Naomi; Zevin, Daniel; Zolensky, Michael E

    2014-08-15

    Seven particles captured by the Stardust Interstellar Dust Collector and returned to Earth for laboratory analysis have features consistent with an origin in the contemporary interstellar dust stream. More than 50 spacecraft debris particles were also identified. The interstellar dust candidates are readily distinguished from debris impacts on the basis of elemental composition and/or impact trajectory. The seven candidate interstellar particles are diverse in elemental composition, crystal structure, and size. The presence of crystalline grains and multiple iron-bearing phases, including sulfide, in some particles indicates that individual interstellar particles diverge from any one representative model of interstellar dust inferred from astronomical observations and theory. Copyright © 2014, American Association for the Advancement of Science.

  10. Dust-forming molecules in VY Canis Majoris (and Betelgeuse)

    Science.gov (United States)

    Kamiński, T.; Gottlieb, C. A.; Schmidt, M. R.; Patel, N. A.; Young, K. H.; Menten, K. M.; Brünken, S.; Müller, H. S. P.; Winters, J. M.; McCarthy, M. C.

    2013-05-01

    The formation of inorganic dust in circumstellar environments of evolved stars is poorly understood. Spectra of molecules thought to be most important for the nucleation, i.e. AlO, TiO, and TiO2, have been recently detected in the red supergiant VY CMa. These molecules are effectively formed in VY CMa and the observations suggest that non-equilibrium chemistry must be involved in their formation and nucleation into dust. In addition to exploring the recent observations of VY CMa, we briefly discuss the possibility of detecting these molecules in the "dust-poor" circumstellar environment of Betelgeuse.

  11. Quantifying Anthropogenic Dust Emissions

    Science.gov (United States)

    Webb, Nicholas P.; Pierre, Caroline

    2018-02-01

    Anthropogenic land use and land cover change, including local environmental disturbances, moderate rates of wind-driven soil erosion and dust emission. These human-dust cycle interactions impact ecosystems and agricultural production, air quality, human health, biogeochemical cycles, and climate. While the impacts of land use activities and land management on aeolian processes can be profound, the interactions are often complex and assessments of anthropogenic dust loads at all scales remain highly uncertain. Here, we critically review the drivers of anthropogenic dust emission and current evaluation approaches. We then identify and describe opportunities to: (1) develop new conceptual frameworks and interdisciplinary approaches that draw on ecological state-and-transition models to improve the accuracy and relevance of assessments of anthropogenic dust emissions; (2) improve model fidelity and capacity for change detection to quantify anthropogenic impacts on aeolian processes; and (3) enhance field research and monitoring networks to support dust model applications to evaluate the impacts of disturbance processes on local to global-scale wind erosion and dust emissions.

  12. FEATURES OF FORMATION AND TRENDS OF USING OF COMPUTER-ORIENTED LEARNING ENVIRONMENT OF AN INSTITUTE OF POSTGRADUATE PEDAGOGICAL EDUCATION IN UKRAINE

    Directory of Open Access Journals (Sweden)

    Kateryna Kolos

    2016-07-01

    Full Text Available Nowadays, characterized quick reforms makes identifying promising new educational trends in the training of teaching staff, which take account of the organization and implementation of teaching and educational process in institutions of postgraduate education will intensify the development of pre-school, secondary, higher and non-formal education systems. Research findings of Ukrainian scientists point to the reasonability of ICT and e-learning resources during the training courses and the need for up to date ICT training of teaching staff as an important part of their professional competence. System effective implementation of this is the implementation of computer-oriented learning environment of an Institute of Postgraduate Pedagogical Education and building effective methods of its use in courses of teaching staff training. As a result of the analysis of practices on the use of advanced information and communication technologies in the institutions of postgraduate education in Ukraine article highlighted the features of formation and development trends of computer-oriented learning environment of an Institute of Postgraduate Pedagogical Education, for example: publication on official websites of institutions of information of the results of their activities; establishing electronic communication via email and forum; implementation of electronic registration and diagnosing students before the courses begin; construction and implementation of practical realization of individual educational trajectories of training teaching staff; publication of electronic timetable; accumulation of professional experience teaching staff in the region by means of web-technologies; publication of the results of applied research on problems of education in educational electronic media or duplicate free publications in electronic versions and more. According to this in the design contributes to the formulation of advanced theoretical and methodological principles

  13. Economics of wood dust

    Energy Technology Data Exchange (ETDEWEB)

    Kaiser, J.A.

    1980-11-01

    This article reviews the economic effects of wood dust. The most important use of wood today is a fuel, and wood chips and shavings are sources of feedstock for boilers. Other uses include wood chips in the manufacture of particleboard, wood dust as bedding in riding stables and race tracks, as mulch for florists, and as an absorbent in the meat packing industry. The installation of dust collection systems is strongly urged as the consequences of inadequate collection include rapid machine wear, poor environmental conditions for workers, general interference with work, and its combustibility makes it a constant fire hazard.

  14. Monitoring seasonal dust depositions on snow in a high-altitude site of the European Alps

    Science.gov (United States)

    Di Mauro, Biagio; Filippa, Gianluca; Pogliotti, Paolo; Galvagno, Marta; Morra di Cella, Umberto; Cremonese, Edoardo; Isabellon, Michel; Rossini, Micol; Garzonio, Roberto; Gramegna, Gianluca; Colombo, Roberto

    2017-04-01

    The seasonal input of mineral dust from Saharan desert impacts the optical properties of snow in the European Alps. The albedo reduction may alter the melting dynamics of the snowpack, resulting in earlier snow melts. In this contribution, we evaluate the impact of dust depositions on snowpack melting dynamics in a high-altitude site (2160 m) in the northwestern Italian Alps (Aosta Valley, IT). In particular, we focus on the two following specific objectives: i) to assess the potential of a spectral index derived from digital camera images to identify the occurrence of dust deposition events; ii) to evaluate the impact of dust depositions on snow melting based on the comparison between observed snow height and the potential snow height simulated with a hydrological model not accounting for melting caused by snow impurities. The experimental site is equipped with instruments that measure snow albedo (Kipp and Zonen cnr4 net radiometer), snow height (SR50A, Campbell Scientific, Inc), air temperature (HMP45, Vaisala Inc.) and surface temperature (SI-111, Apogee Instr. Inc.). Furthermore, a Nikon digital camera (model d5000) is installed at the site. The camera collects images in JPEG format and features a resolution of 12.3 megapixels, with three color channels (namely Red, Green and Blue). Data were collected from 10 am to 5 pm, with an hourly temporal resolution. Data from 2013 to 2016 are presented here. The seasonality and timing of dust depositions were determined using two atmospheric transport models: the NAAPS and the BSC-DREAM8 model. Dust depositions were compared with time series of the Snow Darkening Index (SDI) calculated from the channels of the digital camera, combining the Red and Green channels as a normalized difference. SDI time series were extracted from the repeated images using the Phenopix R package (https://r-forge.r-project.org/projects/phenopix/). The impact of dust deposition on snow melt was evaluated by comparing the observed snow height

  15. THE ROLE OF DUST IN THE EARLY UNIVERSE. I. PROTOGALAXY EVOLUTION

    International Nuclear Information System (INIS)

    Yamasawa, Daisuke; Habe, Asao; Kozasa, Takashi; Nozawa, Takaya; Nomoto, Ken'ichi; Hirashita, Hiroyuki; Umeda, Hideyuki

    2011-01-01

    We develop one-zone galaxy formation models in the early universe, taking into account dust formation and evolution by supernova (SN) explosions. We focus on the time evolution of dust size distribution, because H 2 formation on the dust surface plays a critical role in the star formation process in the early universe. In the model, we assume that star formation rate (SFR) is proportional to the total amount of H 2 . We consistently treat (1) the formation and size evolution of dust, (2) the chemical reaction networks including H 2 formation both on the surface of dust and in gas phase, and (3) the SFR in the model. First, we find that, because of dust destruction due to both reverse and forward shocks driven by SNe, H 2 formation is more suppressed than in situations without such dust destruction. At the galaxy age of ∼0.8 Gyr, for galaxy models with virial mass M vir = 10 9 M sun and formation redshift z vir = 10, the molecular fraction is 2.5 orders of magnitude less in the model with dust destruction by both shocks than that in the model without dust destruction. Second, we show that the H 2 formation rate strongly depends on the interstellar medium (ISM) density around SN progenitors. The SFR in higher ISM density is lower, since dust destruction by reverse shocks is more effective in higher ISM density. We conclude that not only the amount but also the size distribution of dust related to star formation activity strongly affects the evolution of galaxies in the early universe.

  16. The aeolian dust accumulation curve

    NARCIS (Netherlands)

    Goossens, D.

    2001-01-01

    This article presents a simple physical concept of aeolian dust accumulation, based on the behaviour of the subprocesses of dust deposition and dust erosion. The concept is tested in an aeolian dust wind tunnel. The agreement between the accumulation curve predicted by the model and the accumulation

  17. The Role of Jet Adjustment Processes in Subtropical Dust Storms

    Science.gov (United States)

    Pokharel, Ashok Kumar; Kaplan, Michael L.; Fiedler, Stephanie

    2017-11-01

    Meso-α/β/γ scale atmospheric processes of jet dynamics responsible for generating Harmattan, Saudi Arabian, and Bodélé Depression dust storms are analyzed with observations and high-resolution modeling. The analysis of the role of jet adjustment processes in each dust storm shows similarities as follows: (1) the presence of a well-organized baroclinic synoptic scale system, (2) cross mountain flows that produced a leeside inversion layer prior to the large-scale dust storm, (3) the presence of thermal wind imbalance in the exit region of the midtropospheric jet streak in the lee of the respective mountains shortly after the time of the inversion formation, (4) dust storm formation accompanied by large magnitude ageostrophic isallobaric low-level winds as part of the meso-β scale adjustment process, (5) substantial low-level turbulence kinetic energy (TKE), and (6) emission and uplift of mineral dust in the lee of nearby mountains. The thermally forced meso-γ scale adjustment processes, which occurred in the canyons/small valleys, may have been the cause of numerous observed dust streaks leading to the entry of the dust into the atmosphere due to the presence of significant vertical motion and TKE generation. This study points to the importance of meso-β to meso-γ scale adjustment processes at low atmospheric levels due to an imbalance within the exit region of an upper level jet streak for the formation of severe dust storms. The low level TKE, which is one of the prerequisites to deflate the dust from the surface, cannot be detected with the low resolution data sets; so our results show that a high spatial resolution is required for better representing TKE as a proxy for dust emission.

  18. Potential source regions of dust accumulated in northern Africa

    Science.gov (United States)

    Wasowska, S.; Woronko, B.

    2012-04-01

    Iguidi and Chech-Adrar, although the most probable source area is Erg Occidental. Tunisian dusts come from vast expanses of Erg Oriental and Chott-el-Jerid. The potential source of the dusts accumulated in Alexandria could be Libyan Desert. This does not preclude also much more distant sources of sediment, as for instance ergs from North Sudan. From the other hand the presence of shell parts of diatoms of the Actinoptychus genus may indicate the dispelling of the Nile alluvium. Key words: source region, aeolian accumulation, north Africa, textural features of grains, aeolian dust, meteorological situation, Sahara, SEM analysis

  19. The structure, logic of operation and distinctive features of the system of triggers and counting signals formation for gamma-telescope GAMMA-400

    Science.gov (United States)

    Topchiev, N. P.; Galper, A. M.; Arkhangelskiy, A. I.; Arkhangelskaja, I. V.; Kheymits, M. D.; Suchkov, S. I.; Yurkin, Y. T.

    2017-01-01

    Scientific project GAMMA-400 (Gamma Astronomical Multifunctional Modular Apparatus) relates to the new generation of space observatories intended to perform an indirect search for signatures of dark matter in the cosmic-ray fluxes, measurements of characteristics of diffuse gamma-ray emission and gamma-rays from the Sun during periods of solar activity, gamma-ray bursts, extended and point gamma-ray sources, electron/positron and cosmic-ray nuclei fluxes up to TeV energy region by means of the GAMMA-400 gamma-ray telescope represents the core of the scientific complex. The system of triggers and counting signals formation of the GAMMA-400 gamma-ray telescope constitutes the pipelined processor structure which collects data from the gamma-ray telescope subsystems and produces summary information used in forming the trigger decision for each event. The system design is based on the use of state-of-the-art reconfigurable logic devices and fast data links. The basic structure, logic of operation and distinctive features of the system are presented.

  20. Meteorological Situations Favouring the Development of Dust Plumes over Iceland

    Science.gov (United States)

    Schepanski, K.; Szodry, K.

    2017-12-01

    The knowledge on mineral dust emitted at high latitudes is limited, but its impact on the polar environments is divers. Within a warming climate, dust emitted from regions in cold climates is expected to increase due to the retreat of the ice sheet and increasing melting rates. Therefore, and for its extensive impacts on different aspects of the climate system, a better understanding of the atmospheric dust life-cycle at high latitudes/cold climates in general, and the spatio-temporal distribution of dust sources in particular, are essential. At high-latitudes, glacio-fluvial sediments as found on river flood plains e.g. supplied by glaciers are prone to wind erosion when dry and bare. In case of the occurrence of strong winds, sediments are blown out and dust plumes develop. As dust uplift is controlled by soil surface characteristics, the availability of suitable sediments, and atmospheric conditions, an interannual variability in dust source activity is expected. We investigated atmospheric circulation patterns that favour the development of dust plumes over Iceland, which presents a well-known dust source at high latitudes. Using the atmosphere model COSMO (COnsortium for Small-scale MOdeling), we analysed the wind speed distribution over the Iceland region for identified and documented dust cases. As one outcome of the study, the position of the Icelandic low, the anticyclones located over Northern Europe, and the resulting pressure gradients are of particular relevance. The interaction of the synoptic-scale winds with the Icelandic orography may locally enhance the wind speeds and thus foster local dust emission. Results from this study suggest that the atmospheric circulation determined by the pressure pattern is of particular relevance for the formation of dust plumes entering the North Atlantic.

  1. CUACE/Dust ─ an integrated system of observation and modeling systems for operational dust forecasting in Asia

    Directory of Open Access Journals (Sweden)

    X. Y. Zhang

    2008-05-01

    Full Text Available An integrated sand and dust storm (SDS forecasting system – CUACE/Dust (Chinese Unified Atmospheric Chemistry Environment for Dust has been developed, which consists of a comprehensive dust aerosol module with emission, dry/wet depositions and other atmospheric dynamic processes, and a data assimilation system (DAS using observational data from the CMA (China Meteorological Administration ground dust monitoring network and retrieved dust information from a Chinese geostationary satellite – FY-2C. This is the first time that a combination of surface network observations and satellite retrievals of the dust aerosol has been successfully used in the real time operational forecasts in East Asia through a DAS. During its application for the operational SDS forecasts in East Asia for spring 2006, this system captured the major 31 SDS episodes observed by both surface and satellite observations. Analysis shows that the seasonal mean threat score (TS for 0–24 h forecast over the East Asia in spring 2006 increased from 0.22 to 0.31 by using the DAS, a 41% enhancement. The time series of the forecasted dust concentrations for a number of representative stations for the whole spring 2006 were also evaluated against the surface PM10 monitoring data, showing a very good agreement in terms of the SDS timing and magnitudes near source regions where dust aerosols dominate. This is a summary paper for a special issue of ACP featuring the development and results of the forecasting system.

  2. Dust filter testing

    International Nuclear Information System (INIS)

    Dupoux, J.

    1975-01-01

    The composition of dust filters used in cleanup systems for radioactive gaseous effluents is described as well as the technical controls, especially efficiency measured by a soda fluorescein aerosol [fr

  3. Dust mite (image)

    Science.gov (United States)

    This is a magnified photograph of a dust mite. Mites are carriers (vectors) of many important diseases including typhus (scrub and murine) and rickettsialpox. (Image courtesy of the Centers for Disease Control ...

  4. Cosmic Dust Catalog

    Data.gov (United States)

    National Aeronautics and Space Administration — Since May 1981, the National Aeronautics and Space Administration (NASA) has used aircraft to collect cosmic dust (CD) particles from Earth's stratosphere. Specially...

  5. Nano Dust Analyzer Project

    Data.gov (United States)

    National Aeronautics and Space Administration — We propose to develop a new highly sensitive instrument to confirm the existence of the so-called nano-dust particles, characterize their impact parameters, and...

  6. Effect of dust size distribution and dust charge fluctuation on dust ion ...

    Indian Academy of Sciences (India)

    2016-06-17

    Jun 17, 2016 ... Dusty plasma; dust-acoustic shock wave; dust size distribution; adiabatic dust charge variation; negative ions. PACS Nos 52.27.Lw; 52.35.Tc; 52.35.Mw. 1. Introduction. The low-frequency dust ion-acoustic waves are typi- cal acoustic modes in unmagnetized and collisionless dusty plasma with a weak ...

  7. Effect of dust size distribution and dust charge fluctuation on dust ion ...

    Indian Academy of Sciences (India)

    The effects of dust size distribution and dust charge fluctuation of dust grains on the small but finite amplitude nonlinear dust ion-acoustic shock waves, in an unmagnetized multi-ion dusty plasma which contains negative ions, positive ions and electrons, are studied in this paper. A Burgers equation and its stationary ...

  8. Simulation of W dust transport in the KSTAR tokamak, comparison with fast camera data

    Directory of Open Access Journals (Sweden)

    A. Autricque

    2017-08-01

    Full Text Available In this paper, dust transport in tokamak plasmas is studied through both experimental and modeling aspects. Image processing routines allowing dust tracking on CCD camera videos are presented. The DUMPRO (DUst Movie PROcessing code features a dust detection method and a trajectory reconstruction algorithm. In addition, a dust transport code named DUMBO (DUst Migration in a plasma BOundary is briefly described. It has been developed at CEA in order to simulate dust grains transport in tokamaks and to evaluate the contribution of dust to the impurity inventory of the plasma. Like other dust transport codes, DUMBO integrates the Orbital Motion Limited (OML approach for dust/plasma interactions modeling. OML gives direct expressions for plasma ions and electrons currents, forces and heat fluxes on a dust grain. The equation of motion is solved, giving access to the dust trajectory. An attempt of model validation is made through comparison of simulated and measured trajectories on the 2015 KSTAR dust injection experiment, where W dust grains were successfully injected in the plasma using a gun-type injector. The trajectories of the injected particles, estimated using the DUMPRO routines applied on videos from the fast CCD camera in KSTAR, show two distinct general dust behaviors, due to different dust sizes. Simulations were made with DUMBO to match the measurements. Plasma parameters were estimated using different diagnostics during the dust injection experiment plasma discharge. The experimental trajectories show longer lifetimes than the simulated ones. This can be due to the substitution of a boiling/sublimation point to the usual vaporization/sublimation cooling, OML limitations (eventual potential barriers in the vicinity of a dust grain are neglected and/or to the lack of a vapor shielding model in DUMBO.

  9. The microphysics of the Saharan dust and its implications on climate

    International Nuclear Information System (INIS)

    Kalu, A.E.

    1987-12-01

    A strong influence of Saharan dust plumes on the microphysics of cumulus clouds, especially along their long-distance transport trajectories into cloudy regions of the world, has been discussed and illustrated. This climate-related influence is primarily based on the observed anhydrous non-hygroscopic property of the Saharan dust, otherwise known as the Harmattan dust haze in Nigeria. An observational feature of the dust-cloud interaction which is strongly climate-related is the rapid clearance of cumulus clouds on arrival of a dust plume. This is because aeolian dust particles and water droplets cannot coexist comfortably. A useful practical application of this influence of the dust on clouds by means of atmospheric teleconnection principles for fine-weather prediction in cloudy remote regions seasonally affected by dust plumes from the Sahara, has therefore been suggested. (author). 37 refs, 6 figs, 3 tabs, 3 plates

  10. Late Pleistocene dust dynamics and pedogenesis in Southern Eurasia - Detailed insights from the loess profile Toshan (NE Iran)

    Science.gov (United States)

    Vlaminck, Stefan; Kehl, Martin; Rolf, Christian; Franz, Sven Oliver; Lauer, Tobias; Lehndorff, Eva; Frechen, Manfred; Khormali, Farhad

    2018-01-01

    In southern Eurasia recurrent phases of aridization, dust source extension and enhanced Aeolian sedimentation alternated with moister intervals, promoting reduced deflation areas and dust accumulation in the context of late Pleistocene climate changes. Weathering and soil forming intensity in this greater region are, hence, mainly governed by fluctuations in the balance between dust supply and moisture availability. Among the hitherto known sections, the Toshan loess-soil sequence (LPS) represents a key site due to the quality of the record and the multitude of available data giving detailed insights into the timing and magnitude of dust accumulation and soil formation of the region. To elucidate these dynamics for much of the past 130.000 years bulk mineralogical and geochemical data are presented supplemented by a high resolution magnetic susceptibility record and by the results of a detailed micromorphological study of loess at Toshan. The last interglacial Luvisol/Phaeozem-like (∼MIS 5e) and the early glacial interstadial steppic palaeosols (∼MIS 5 c and a) are characterized by gradually increasing grain-size and decreasing degrees in decomposition of micaceous and mafic minerals. Pronounced feldspar weathering is detected in the last interglacial and modern soils only, which formed under reduced or absent dust deposition on penultimate and last glacial loess, respectively (postsedimentary). The overall pedosedimentary conditions correspond to large scale trends of increasing drought, dust accumulation and wind strength in southern Eurasia in relation to decreasing moisture availability towards the early Pleniglacial (∼MIS 4), causing soil formation under ongoing dust deposition (synsedimentary). Similar intervals of synsedimentary soil formation are recorded during the interglacial/interstadial-stadial transitions of the early glacial and during pleniglacial (∼MIS 4 to 2) interstadials. The latter are marked by gradual increases in magnetic

  11. Universal instability of dust ion-sound waves and dust-acoustic waves

    International Nuclear Information System (INIS)

    Tsytovich, V.N.; Watanabe, K.

    2002-01-01

    It is shown that the dust ion-sound waves (DISW) and the dust-acoustic waves (DAW) are universally unstable for wave numbers less than some critical wave number. The basic dusty plasma state is assumed to be quasi-neutral with balance of the plasma particle absorption on the dust particles and the ionization with the rate proportional to the electron density. An analytical expression for the critical wave numbers, for the frequencies and for the growth rates of DISW and DAW are found using the hydrodynamic description of dusty plasma components with self-consistent treatment of the dust charge variations and by taking into account the change of the ion and electron distributions in the dust charging process. Most of the previous treatment do not take into account the latter process and do not treat the basic state self-consistently. The critical lengths corresponding to these critical wave numbers can be easily achieved in the existing experiments. It is shown that at the wave numbers larger than the critical ones DISW and DAW have a large damping which was not treated previously and which can be also measured. The instabilities found in the present work on their non linear stage can lead to formation of different types of dust self-organized structures. (author)

  12. Pathways of high-latitude dust in the North Atlantic

    Science.gov (United States)

    Baddock, Matthew C.; Mockford, Tom; Bullard, Joanna E.; Thorsteinsson, Throstur

    2017-02-01

    The contribution of mineral dust from high-latitude sources has remained an under-examined feature of the global dust cycle. Dust events originating at high latitudes can provide inputs of aeolian sediment to regions lying well outside the subtropical dust belt. Constraining the seasonal variability and preferential pathways of dust from high-latitude sources is important for understanding the potential impacts that the dust may have on wider environmental systems, such as nearby marine or cryospheric domains. This study quantifies dust pathways from two areas exhibiting different emission dynamics in the north and south of Iceland, which is a prominent Northern Hemisphere dust source. The analysis uses air parcel trajectory modelling, and for the first time for high-latitude sources, explicitly links all trajectory simulations to time-specific (meteorological) observations of suspended dust. This approach maximises the potential for trajectories to represent dust, and illustrates that trajectory climatologies not limited to dust can grossly overestimate the potential for dust transport. Preferential pathways emerge that demonstrate the role of Iceland in supplying dust to the Northern Atlantic and sub-Arctic oceans. For dust emitted from northern sources, a dominant route exists to the northeast, into the Norwegian, Greenland and Barents Seas, although there is also potential for delivery to the North Atlantic in summer months. From the southern sources, the primary pathway extends into the North Atlantic, with a high density of trajectories extending as far south as 50°N, particularly in spring and summer. Common to both southern and northern sources is a pathway to the west-southwest of Iceland into the Denmark Strait and towards Greenland. For trajectories simulated at ≤500 m, the vertical development of dust plumes from Iceland is limited, likely due to the stable air masses of the region suppressing the potential for vertical motion. Trajectories rarely

  13. Computer simulation of dust grain evolution

    Science.gov (United States)

    Liffman, K.

    1989-01-01

    The latest results are reported from a Monte Carlo code that is being developed at NASA Ames. The goal of this program, is to derive from the observed and presumed properties of the interstellar medium (ISM) the following information: (1) the size spectrum of interstellar dust; (2) the chemical structure of interstellar dust; (3) interstellar abundances; and (4) the lifetime of a dust grain in the ISM. Presently this study is restricted to refractory interstellar material, i.e., the formation and destruction of ices are not included in the program. The program is embedded in an analytic solution for the bulk chemical evolution of a two-phase interstellar medium in which stars are born in molecular clouds, but new nucleosynthesis products and stellar return are entered into a complementary intercloud medium. The well-mixed matter of each interstellar phase is repeatedly cycled stochastically through the complementary phase and back. Refractory dust is created by thermal condensation as stellar matter flows away from sites of nucleosynthesis such as novae and supernovae and/or from the matter returned from evolved intermediate stars. The history of each particle is traced by standard Monte Carlo techniques as it is sputtered and fragmented by supernova shock waves in the intercloud medium. It also accretes an amorphous mantle of gaseous refractory atoms when its local medium joins with the molecular cloud medium. Finally it encounters the possibility of astration (destruction by star formation) within the molecular clouds.

  14. Computer simulation of dust grain evolution

    International Nuclear Information System (INIS)

    Liffman, K.

    1989-01-01

    The latest results are reported from a Monte Carlo code that is being developed at NASA Ames. The goal of this program, is to derive from the observed and presumed properties of the interstellar medium (ISM) the following information: (1) the size spectrum of interstellar dust; (2) the chemical structure of interstellar dust; (3) interstellar abundances; and (4) the lifetime of a dust grain in the ISM. Presently this study is restricted to refractory interstellar material, i.e., the formation and destruction of ices are not included in the program. The program is embedded in an analytic solution for the bulk chemical evolution of a two-phase interstellar medium in which stars are born in molecular clouds, but new nucleosynthesis products and stellar return are entered into a complementary intercloud medium. The well-mixed matter of each interstellar phase is repeatedly cycled stochastically through the complementary phase and back. Refractory dust is created by thermal condensation as stellar matter flows away from sites of nucleosynthesis such as novae and supernovae and/or from the matter returned from evolved intermediate stars. The history of each particle is traced by standard Monte Carlo techniques as it is sputtered and fragmented by supernova shock waves in the intercloud medium. It also accretes an amorphous mantle of gaseous refractory atoms when its local medium joins with the molecular cloud medium. Finally it encounters the possibility of astration (destruction by star formation) within the molecular clouds

  15. Interplanetary Dust Particles

    Science.gov (United States)

    Bradley, J. P.

    2003-12-01

    One of the fundamental goals of the study of meteorites is to understand how the solar system and planetary systems around other stars formed. It is known that the solar system formed from pre-existing (presolar) interstellar dust grains and gas. The grains originally formed in the circumstellar outflows of other stars. They were modified to various degrees, ranging from negligible modification to complete destruction and reformation during their ˜108 yr lifetimes in the interstellar medium (ISM) (Seab, 1987; Mathis, 1993). Finally, they were incorporated into the solar system. Submicrometer-sized silicates and carbonaceous material are believed to be the most common grains in the ISM ( Mathis, 1993; Sandford, 1996), but it is not known how much of this presolar particulate matter was incorporated into the solar system, to what extent it has survived, and how it might be distinguished from solar system grains. In order to better understand the process of solar system formation, it is important to identify and analyze these solid grains. Since all of the alteration processes that modified solids in the solar nebula presumably had strong radial gradients, the logical place to find presolar grains is in small primitive bodies like comets and asteroids that have undergone little, if any, parent-body alteration.Trace quantities of refractory presolar grains (e.g., SiC and Al2O3) survive in the matrices of the most primitive carbon-rich chondritic meteorites (Anders and Zinner, 1993; Bernatowicz and Zinner, 1996; Bernatowicz and Walker, 1997; Hoppe and Zinner, 2000; see Chapter 1.02). Chondritic meteorites are believed to be from the asteroid belt, a narrow region between 2.5 and 3.5 astronomical units (AU) that marks the transition from the terrestrial planets to the giant gas-rich planets. The spectral properties of the asteroids suggest a gradation in properties with some inner and main belt C and S asteroids (the source region of most meteorites and polar

  16. The use of expanded clay dust in paint manufacturing

    Science.gov (United States)

    Sverguzova, S. V.; Sapronova, Zh A.; Starostina, Yu L.; Belovodskiy, E. A.

    2018-01-01

    Production increase of useful products is accompanied by the formation and the accumulation of the vast amounts of industrial wastes, the bulk of which is not involved in the recycling processes. An example of such wastes is dust bag filters of ceramsite production. At the large enterprises, the volume of its formation can reach 7-8 tons of dust per day, which is 10-15% of feedstock mass. The studies on the use of ceramsite production dust as filler pigment in the composition of organic mixed primer of red-brown color are carried out in this work. For comparison, red iron oxide pigment (Pg FGM) was used. The results showed that, primer with the use of expanded clay dust is characterized by the short drying time and meets all regulatory requirements.

  17. Analytical Study of Nonlinear Dust Acoustic Waves in Two-Dimensional Dust Plasma with Dust Charge Variation

    International Nuclear Information System (INIS)

    Lin Chang; Zhang Xiulian

    2005-01-01

    The nonlinear dust acoustic waves in two-dimensional dust plasma with dust charge variation is analytically investigated by using the formally variable separation approach. New analytical solutions for the governing equation of this system have been obtained for dust acoustic waves in a dust plasma for the first time. We derive exact analytical expressions for the general case of the nonlinear dust acoustic waves in two-dimensional dust plasma with dust charge variation.

  18. A SOFIA FORCAST Grism Study of the Mineralogy of Dust in the Winds of Proto-planetary Nebulae: RV Tauri Stars and SRd Variables

    International Nuclear Information System (INIS)

    Arneson, R. A.; Gehrz, R. D.; Woodward, C. E.; Shenoy, D.; Helton, L. A.; Evans, A.; Keller, L. D.; Hinkle, K. H.; Jura, M.; Lebzelter, T.; Lisse, C. M.; Rushton, M. T.; Mizrachi, J.

    2017-01-01

    We present a SOFIA FORCAST grism spectroscopic survey to examine the mineralogy of the circumstellar dust in a sample of post-asymptotic giant branch (post-AGB) yellow supergiants that are believed to be the precursors of planetary nebulae. Our mineralogical model of each star indicates the presence of both carbon-rich and oxygen-rich dust species—contrary to simple dredge-up models—with a majority of the dust in the form of amorphous carbon and graphite. The oxygen-rich dust is primarily in the form of amorphous silicates. The spectra do not exhibit any prominent crystalline silicate emission features. For most of the systems, our analysis suggests that the grains are relatively large and have undergone significant processing, supporting the hypothesis that the dust is confined to a Keplerian disk and that we are viewing the heavily processed, central regions of the disk from a nearly face-on orientation. These results help to determine the physical properties of the post-AGB circumstellar environment and to constrain models of post-AGB mass loss and planetary nebula formation.

  19. A SOFIA FORCAST Grism Study of the Mineralogy of Dust in the Winds of Proto-planetary Nebulae: RV Tauri Stars and SRd Variables

    Energy Technology Data Exchange (ETDEWEB)

    Arneson, R. A.; Gehrz, R. D.; Woodward, C. E.; Shenoy, D. [Minnesota Institute for Astrophysics, School of Physics and Astronomy, University of Minnesota, 106 Pleasant Street S.E., Minneapolis, MN 55455 (United States); Helton, L. A. [USRA-SOFIA Science Center, NASA Ames Research Center, Moffett Field, CA 94035 (United States); Evans, A. [Astrophysics Group, Lennard Jones Laboratory, Keele University, Keele, Staffordshire ST5 5BG (United Kingdom); Keller, L. D. [Department of Physics and Astronomy, 264 Center for Natural Sciences, Ithaca College, Ithaca, NY 14850 (United States); Hinkle, K. H. [National Optical Astronomy Observatory, P.O. Box 26732, Tucson, AZ 85726 (United States); Jura, M. [Department of Physics and Astronomy, University of California, Los Angeles, CA 90095 (United States); Lebzelter, T. [Institute for Astrophysics (IfA), University of Vienna, Türkenschanzstrasse 17, A-1180 Vienna (Austria); Lisse, C. M. [Solar System Exploration Branch, Space Department, Johns Hopkins University Applied Physics Laboratory, Laurel, MD 20723 (United States); Rushton, M. T. [Astronomical Institute of the Romanian Academy, Str. Cutitul de Argint 5, Bucharest, 040557 (Romania); Mizrachi, J., E-mail: arneson@astro.umn.edu [Biomedical Engineering Department, Stony Brook University, Stony Brook, NY 11794 (United States)

    2017-07-01

    We present a SOFIA FORCAST grism spectroscopic survey to examine the mineralogy of the circumstellar dust in a sample of post-asymptotic giant branch (post-AGB) yellow supergiants that are believed to be the precursors of planetary nebulae. Our mineralogical model of each star indicates the presence of both carbon-rich and oxygen-rich dust species—contrary to simple dredge-up models—with a majority of the dust in the form of amorphous carbon and graphite. The oxygen-rich dust is primarily in the form of amorphous silicates. The spectra do not exhibit any prominent crystalline silicate emission features. For most of the systems, our analysis suggests that the grains are relatively large and have undergone significant processing, supporting the hypothesis that the dust is confined to a Keplerian disk and that we are viewing the heavily processed, central regions of the disk from a nearly face-on orientation. These results help to determine the physical properties of the post-AGB circumstellar environment and to constrain models of post-AGB mass loss and planetary nebula formation.

  20. The Mars Dust Cycle: Investigating the Effects of Radiatively Active Water Ice Clouds on Surface Stresses and Dust Lifting Potential with the NASA Ames Mars General Circulation Model

    Science.gov (United States)

    Kahre, Melinda A.; Hollingsworth, Jeffery

    2012-01-01

    The dust cycle is a critically important component of Mars' current climate system. Dust is present in the atmosphere of Mars year-round but the dust loading varies with season in a generally repeatable manner. Dust has a significant influence on the thermal structure of the atmosphere and thus greatly affects atmospheric circulation. The dust cycle is the most difficult of the three climate cycles (CO2, water, and dust) to model realistically with general circulation models. Until recently, numerical modeling investigations of the dust cycle have typically not included the effects of couplings to the water cycle through cloud formation. In the Martian atmosphere, dust particles likely provide the seed nuclei for heterogeneous nucleation of water ice clouds. As ice coats atmospheric dust grains, the newly formed cloud particles exhibit different physical and radiative characteristics. Thus, the coupling between the dust and water cycles likely affects the distributions of dust, water vapor and water ice, and thus atmospheric heating and cooling and the resulting circulations. We use the NASA Ames Mars GCM to investigate the effects of radiatively active water ice clouds on surface stress and the potential for dust lifting. The model includes a state-of-the-art water ice cloud microphysics package and a radiative transfer scheme that accounts for the radiative effects of CO2 gas, dust, and water ice clouds. We focus on simulations that are radiatively forced by a prescribed dust map, and we compare simulations that do and do not include radiatively active clouds. Preliminary results suggest that the magnitude and spatial patterns of surface stress (and thus dust lifting potential) are substantial influenced by the radiative effects of water ice clouds.

  1. Dust-Plasma Interactions

    International Nuclear Information System (INIS)

    Rosenberg, M.

    2010-01-01

    The objective of our theoretical research under this grant over the past 3 years was to develop new understanding in a range of topics in the physics of dust-plasma interactions, with application to space and the laboratory. We conducted studies related to the physical properties of dust, waves and instabilities in both weakly coupled and strongly coupled dusty plasmas, and innovative possible applications. A major consideration in our choice of topics was to compare theory with experiments or observations, and to motivate new experiments, which we believe is important for developing this relatively new field. Our research is summarized, with reference to our list of journal publications.

  2. Long-term spatio-temporal evolution of the dust distribution in dusty argon rf plasmas

    Science.gov (United States)

    Killer, Carsten; Greiner, Franko; Groth, Sebastian; Tadsen, Benjamin; Melzer, André

    2016-10-01

    The 3D dust distribution in dense dust clouds confined in argon rf plasmas is measured by a computed tomography (CT) technique based on the extinction of visible light. On the one hand, clouds of micron-sized particles were created by injecting standardized plastic particles into the plasma. On the other hand, sub-micron sized dust with well-defined properties is grown in situ in an argon acetylene mixture. Once created, both kinds of dust clouds decay in the course of minutes to hours. This decay is monitored by CT measurements. It is revealed that micro-dust clouds feature a drastic change of the dust distribution due to a size reduction of the dust. Dust clouds of sub-micron particles, in contrast, show a strong variation of the overall dust density while the relative dust distribution remains nearly unchanged. The evolution of the overall dust density is subject to two effects: the loss of particles due to an imperfect confinement and the reduction of the dust size via etching.

  3. Paleo-dust insights onto dust-climate interactions

    Science.gov (United States)

    Albani, S.; Mahowald, N. M.

    2017-12-01

    Mineral dust emissions are affected by changing climate conditions, and in turn dust impacts the atmospheric radiation budget, clouds and biogeochemical cycles. Climate and public health dust-related issues call for attention on the fate of the dust cycle in the future, and the representation of the dust cycle is now part of the strategy of the Paleoclimate Modelling Intercomparison Project phase 4 and the Coupled Model Intercomparison Project phase 6 (PMIP4-CMIP6). Since mineral aerosols are one of the most important natural aerosols, understanding past dust responses to climate in the paleoclimate will allow us to better understand mineral aerosol feedbacks with climate and biogeochemistry in the Anthropocene. Modern observations and paleoclimate records offer the possibility of multiple, complementary views on the global dust cycle, and allow to validate and/or constrain the numerical representation of dust in climate and Earth system models. We present our results from a set of simulations with the Community Earth System Model for different climate states, including present and past climates such as the pre-industrial, the mid-Holocene and the Last Glacial Maximum. A set of simulations including a prognostic dust cycle was thoroughly compared with a wide set of present day observations from different platforms and regions, in order to realistically constrain the magnitude of dust load, surface concentration, deposition, optical properties, and particle size distributions. The magnitude of emissions for past climate regimes was constrained based on compilations of paleodust mass accumulation rates and size distributions, as well as based on information on dust provenance. The comparison with a parallel set of simulations without dust allows estimating the impacts of dust on surface climate. We analyze impacts of dust on the mean and variability of surface temperature and precipitation in each climate state, as well as the impacts that changing dust emissions had

  4. 75 FR 32142 - Combustible Dust

    Science.gov (United States)

    2010-06-07

    ... Combustible Dust AGENCY: Occupational Safety and Health Administration (OSHA), Labor. ACTION: Notice of combustible dust Web Chat. SUMMARY: OSHA invites interested parties to participate in a Web Chat on the workplace hazards of combustible dust. OSHA plans to use the information gathered in response to this Web...

  5. The dust that lights up the Zodiac

    International Nuclear Information System (INIS)

    Dixon, D.; McDonnell, T.; Carey, B.

    1985-01-01

    The article concerns cosmic dust particles, which vary in size from fine dust to large dust particles which burn-up in the atmosphere as meteors. The composition and properties of cosmic dust; zodiacal light; brownlee particles; capture cell for collecting dust samples in space and hypervelocity impacts of cosmic dust on the cell; are all discussed. (U.K.)

  6. DustPedia: A Definitive Study of Cosmic Dust in the Local Universe

    Science.gov (United States)

    Davies, J. I.; Baes, M.; Bianchi, S.; Jones, A.; Madden, S.; Xilouris, M.; Bocchio, M.; Casasola, V.; Cassara, L.; Clark, C.; De Looze, I.; Evans, R.; Fritz, J.; Galametz, M.; Galliano, F.; Lianou, S.; Mosenkov, A. V.; Smith, M.; Verstocken, S.; Viaene, S.; Vika, M.; Wagle, G.; Ysard, N.

    2017-04-01

    The European Space Agency has invested heavily in two cornerstones missions: Herschel and Planck. The legacy data from these missions provides an unprecedented opportunity to study cosmic dust in galaxies so that we can, for example, answer fundamental questions about the origin of the chemical elements, physical processes in the interstellar medium (ISM), its effect on stellar radiation, its relation to star formation and how this relates to the cosmic far-infrared background. In this paper we describe the DustPedia project, which enables us to develop tools and computer models that will help us relate observed cosmic dust emission to its physical properties (chemical composition, size distribution, and temperature), its origins (evolved stars, supernovae, and growth in the ISM), and the processes that destroy it (high-energy collisions and shock heated gas). To carry out this research, we combine the Herschel/Planck data with that from other sources of data, and provide observations at numerous wavelengths (≤slant 41) across the spectral energy distribution, thus creating the DustPedia database. To maximize our spatial resolution and sensitivity to cosmic dust, we limit our analysis to 4231 local galaxies (v< 3000 km s-1) selected via their near-infrared luminosity (stellar mass). To help us interpret this data, we developed a new physical model for dust (THEMIS), a new Bayesian method of fitting and interpreting spectral energy distributions (HerBIE) and a state-of-the-art Monte Carlo photon-tracing radiative transfer model (SKIRT). In this, the first of the DustPedia papers, we describe the project objectives, data sets used, and provide an insight into the new scientific methods we plan to implement.

  7. Identification of the exploatation dust in road dust

    Directory of Open Access Journals (Sweden)

    B. Gajdzik

    2012-01-01

    Full Text Available The aim of this publication is to determine models of explore dust from vehicle brake systems and the presentationof measurement results of the exploitation dust, which is separate from road dust. The following methods and measuring devices were used: T-01M device, screen analysis, analysis of chemical composition with the use of a scanning microscope with Energy Dispersive x-ray Spectroscopy (EDS analyser. The measurements for identifying this type of dust were conducted on marked sections of roads: motorway, city road and mountain road. The explored dust was distinguished in the following car systems: brakes, clutch plates, tyres and catalytic converters.

  8. Dust pollution from agriculture

    Science.gov (United States)

    Fine dust particles emitted from agricultural facilities, lands and operations are considered pollutants when they affect public health and welfare. These particles, with a diameter of less than or equal to 2.5 µm (PM2.5) and less than or equal to 10 µm (PM10), are regulated by government agencies. ...

  9. Allergies, asthma, and dust

    Science.gov (United States)

    ... and box springs. House dust may also contain tiny particles of pollen, mold, fibers from clothing and fabrics, and detergents. All of these can also trigger allergies and asthma. Choose the Right Home Furnishings You can do many things to limit ...

  10. Composition, structure and chemistry of interstellar dust

    International Nuclear Information System (INIS)

    Tielens, A.G.G.M.; Allamandola, L.J.

    1986-09-01

    The observational constraints on the composition of the interstellar dust are analyzed. The dust in the diffuse interstellar medium consists of a mixture of stardust (amorphous silicates, amorphous carbon, polycyclic aromatic hydrocarbons, and graphite) and interstellar medium dust (organic refractory material). Stardust seems to dominate in the local diffuse interstellar medium. Inside molecular clouds, however, icy grain mantles are also important. The structural differences between crystalline and amorphous materials, which lead to differences in the optical properties, are discussed. The astrophysical consequences are briefly examined. The physical principles of grain surface chemistry are discussed and applied to the formation of molecular hydrogen and icy grain mantles inside dense molecular clouds. Transformation of these icy grain mantles into the organic refractory dust component observed in the diffuse interstellar medium requires ultraviolet sources inside molecular clouds as well as radical diffusion promoted by transient heating of the mantle. The latter process also returns a considerable fraction of the molecules in the grain mantle to the gas phase

  11. Saharan dust detection using multi-sensor satellite measurements

    Directory of Open Access Journals (Sweden)

    Sriharsha Madhavan

    2017-02-01

    Full Text Available Contemporary scientists have vested interest in trying to understand the climatology of the North Atlantic Basin since this region is considered as the genesis for hurricane formation that eventually get shipped to the tropical Atlantic region and the Caribbean. The effects of atmospheric water cycle and the climate of West Africa and the Atlantic basin are hugely impacted by the radiative forcing of Saharan dust. The focus area in this paper would be to improve the dust detection schemes by employing the use of multi sensor measurements in the thermal emissive wavelengths using legacy sensors such as Terra (T and Aqua (A MODerate-resolution Imaging Spectroradiometer (MODIS, fusing with Ozone Monitoring Instrument (OMI. Previous work by Hao and Qu (2007 had considered a limited number of thermal infrared channels which led to a correlation coefficient R2 value of 0.765 between the Aerosol Optical Thickness (AOT at 550 nm and the modeled dust index. In this work, we extend the thermal infrared based dust detection by employing additional channels: the 8.55 μm which has shown high sensitivity to the Saharan dust, along with water vapor channel of 7.1 μm and cloud top channel of 13.1 μm. Also, the dust pixels were clearly identified using the OMI based aerosol types. The dust pixels were cleanly segregated from the other aerosol types such as sulfates, biomass, and other carbonaceous aerosols. These improvements led to a much higher correlation coefficient R2 value of 0.85 between the modified dust index and the AOT in comparison to the previous work. The key limitations from the current AOT products based on MODIS and were put to test by validating the improved dust detection algorithm. Two improvements were noted. First, the dust measurement radiometry using MODIS is significantly improved by at least an order of 2. Second the spatial measurements are enhanced by a factor of at least 10.

  12. Can explicit convection improve modeled dust in summertime West Africa?

    Science.gov (United States)

    Roberts, A. J.; Woodage, M. J.; Marsham, J. H.; Highwood, E. J.; Ryder, C. L.; McGinty, W.; Crook, J. A.

    2017-12-01

    Global and regional models have large errors in modeled dust fields over West Africa. Parameterized moist convection in models gives a very poor representation of haboobs (an important dust uplift mechanism). This is true for climate models, numerical weather prediction and even reanalyses. Recent work on near-surface winds from the Fennec and AMMA field campaigns has shown that analyzed winds (ERA-Interim) require improvement to represent key mechanisms that lift dust. Specifically there is: (1) a deficit of occurrence of rare high wind speed events, (2) an under-representation of diurnal and seasonal variability, and (3) poor correlation between observed and analyzed winds during the West African Monsoon season, even in regions far from the northern edge of the monsoon flow. Here, we test the hypothesis that explicit convection improves haboob winds and reduces errors in modeled dust fields. This study compares satellite AOD retrievals and surface wind observations with a suite of five-month, large-domain simulations with prognostic dust over the Sahel and Sahara. The results show that despite varying both grid-spacing and the representation of moist convection there are only minor changes in dust metrics. In all simulations there is an AOD deficit over the observed central Saharan dust maximum and a high bias in AOD along the west coast: both features are consistent with climate models (CMIP5). Cold pools are present in simulations with explicit convection leading to an improved diurnal cycle in dust-generating winds. However, this does not change the AOD field significantly because: (1) the evening haboob peak is offset by a reduction in strength of the nocturnal low level jet, (2) simulated haboobs are weaker and less frequent than observed, especially close to the observed summertime Saharan dust maximum, and (3) Sahelian cold pools (that raise dust in reality), do not raise dust in the simulations due to a seasonally constant bare soil fraction and soil

  13. The nature of dust-obscured galaxies at z~2

    Science.gov (United States)

    Bussmann, Robert Shane

    I use observational evidence to examine the nature and role in galaxy evolution of a population of dust-obscured galaxies (DOGs) at z ˜ 2. These objects are selected with the Spitzer Space Telescope, are bright in the mid-infrared (mid-IR) but faint in the optical, and contribute a significant fraction of the luminosity density in the universe at z ˜ 2. The first component of my thesis is a morphological study using high spatial resolution imaging with the Hubble Space Telescope of two samples of DOGs. One set of 33 DOGs have mid-IR spectral features typical of an obscured active galactic nucleus (AGN) (called power-law DOGs), while the other set of 20 DOGs have a local maximum in their spectral energy distribution (SED) at rest-frame 1.6microm associated with stellar emission (called bump DOGs). The host galaxy dominates the light profile in all but two of these DOGs. In addition, bump DOGs are larger than power-law DOGs and exhibit more diffuse and irregular morphologies; these trends are consistent with expectations from simulations of major mergers in which bump DOGs evolve into power-law DOGs. The second component of my thesis is a study of the dust properties of DOGs, using sub-mm imaging of 12 power-law DOGs. These power-law DOGs are hyper-luminous (2 x 1013 L⊙ ) and have predominantly warm dust (Tdust > 35 -- 60 K). These results are consistent with an evolutionary sequence in which power-law DOGs represent a brief but important phase when AGN feedback heats the interstellar medium and quenches star-formation. The third component of my thesis is a study of the stellar masses and star-formation histories of DOGs, using stellar population synthesis models and broadband photometry in the rest-frame ultra-violet, optical, and near-IR. The best-fit quantities indicate bump DOGs are less massive than power-law DOGs. The relatively low stellar masses found from this line of analysis favor a merger-driven origin for ULIRGs at z ˜ 2.

  14. Potential of polarization/Raman lidar to separate fine dust, coarse dust, maritime, and anthropogenic aerosol profiles

    Science.gov (United States)

    Mamouri, Rodanthi-Elisavet; Ansmann, Albert

    2017-09-01

    We applied the recently introduced polarization lidar-photometer networking (POLIPHON) technique for the first time to triple-wavelength polarization lidar measurements at 355, 532, and 1064 nm. The lidar observations were performed at Barbados during the Saharan Aerosol Long-Range Transport and Aerosol-Cloud-Interaction Experiment (SALTRACE) in the summer of 2014. The POLIPHON method comprises the traditional lidar technique to separate mineral dust and non-dust backscatter contributions and the new, extended approach to separate even the fine and coarse dust backscatter fractions. We show that the traditional and the advanced method are compatible and lead to a consistent set of dust and non-dust profiles at simplified, less complex aerosol layering and mixing conditions as is the case over the remote tropical Atlantic. To derive dust mass concentration profiles from the lidar observations, trustworthy extinction-to-volume conversion factors for fine, coarse, and total dust are needed and obtained from an updated, extended Aerosol Robotic Network sun photometer data analysis of the correlation between the fine, coarse and total dust volume concentration and the respective fine, coarse, and total dust extinction coefficient for all three laser wavelengths. Conversion factors (total volume to extinction) for pure marine aerosol conditions and continental anthropogenic aerosol situations are presented in addition. As a new feature of the POLIPHON data analysis, the Raman lidar method for particle extinction profiling is used to identify the aerosol type (marine or anthropogenic) of the non-dust aerosol fraction. The full POLIPHON methodology was successfully applied to a SALTRACE case and the results are discussed. We conclude that the 532 nm polarization lidar technique has many advantages in comparison to 355 and 1064 nm polarization lidar approaches and leads to the most robust and accurate POLIPHON products.

  15. Mechanisms of metal dusting corrosion

    DEFF Research Database (Denmark)

    Hummelshøj, Thomas Strabo

    In this thesis the early stages of metal dusting corrosion is addressed; the development of carbon expanded austenite, C, and the decomposition hereof into carbides. Later stages of metal dusting corrosion are explored by a systematic study of stainless steel foils exposed to metal dusting...... the supersaturated alloy, into a diverse carbide network. Finally, the foils turn into metal dust accompanied by a thinning and disappearance of the foils. Investigations of TEM samples, prepared by means of FIB, on the carbide network revealed a lamellar structure with carbides and austenite. Finally, the mutual...... influence of oxygen and carbon on the metal dusting corrosion is explored. The results indicate that exposure to metal dusting conditions have a detrimental effect on the resistance against oxidation and, conversely, that exposure to oxidation has a detrimental effect on the resistance towards metal dusting...

  16. Mars - Experimental study of albedo changes caused by dust fallout

    Science.gov (United States)

    Wells, E. N.; Veverka, J.; Thomas, P.

    1984-01-01

    A laboratory apparatus was used to simulate the uniform fallout and deposition of particles 1 to 5 microns in diameter in an experimental study on how the spectral and photometric properties of representative Martian areas are affected by fallout of atmospheric dust (smaller than or equalling 60 microns) suspended during dust storms. In this study, measurements are made in the changes in reflectance at optical and near-infrared wavelengths (0.4 to 1.2 micron) caused by deposition of varying amounts of a Mars-analog dust on bright and dark substrates before and after deposition of 6 x 10 to the -5th to 1.5 x 10 to the -3rd g/sq cm of simulated fallout. It is believed that only small amounts of dust particles (approximately 3 x 10 to the -4th g/sq cm) are needed to make significant albedo changes in dark areas of Mars, and that this would rule out uniform dust deposition on the surface of the planet. Data also indicate that other high albedo features like bright crater-related wind streaks may not be areas of significant sediment deposits. Laboratory simulations have permitted estimates of how much the reflectance of an area on Mars would change given a certain amount of dust fallout (g/sq cm) or reflectance data. These simulations may also be useful in tracking the transport and deposition of the dust.

  17. Measurements of Martian dust devil winds with HiRISE

    Science.gov (United States)

    Choi, D.S.; Dundas, C.M.

    2011-01-01

    We report wind measurements within Martian dust devils observed in plan view from the High Resolution Imaging Science Experiment (HiRISE) orbiting Mars. The central color swath of the HiRISE instrument has three separate charge-coupled devices (CCDs) and color filters that observe the surface in rapid cadence. Active features, such as dust devils, appear in motion when observed by this region of the instrument. Our image animations reveal clear circulatory motion within dust devils that is separate from their translational motion across the Martian surface. Both manual and automated tracking of dust devil clouds reveal tangential winds that approach 20-30 m s -1 in some cases. These winds are sufficient to induce a ???1% decrease in atmospheric pressure within the dust devil core relative to ambient, facilitating dust lifting by reducing the threshold wind speed for particle elevation. Finally, radial velocity profiles constructed from our automated measurements test the Rankine vortex model for dust devil structure. Our profiles successfully reveal the solid body rotation component in the interior, but fail to conclusively illuminate the profile in the outer regions of the vortex. One profile provides evidence for a velocity decrease as a function of r -1/2, instead of r -1, suggestive of surface friction effects. However, other profiles do not support this observation, or do not contain enough measurements to produce meaningful insights. Copyright 2011 by the American Geophysical Union.

  18. COLLISIONAL GROOMING MODELS OF THE KUIPER BELT DUST CLOUD

    International Nuclear Information System (INIS)

    Kuchner, Marc J.; Stark, Christopher C.

    2010-01-01

    We modeled the three-dimensional structure of the Kuiper Belt (KB) dust cloud at four different dust production rates, incorporating both planet-dust interactions and grain-grain collisions using the collisional grooming algorithm. Simulated images of a model with a face-on optical depth of ∼10 -4 primarily show an azimuthally symmetric ring at 40-47 AU in submillimeter and infrared wavelengths; this ring is associated with the cold classical KB. For models with lower optical depths (10 -6 and 10 -7 ), synthetic infrared images show that the ring widens and a gap opens in the ring at the location of Neptune; this feature is caused by trapping of dust grains in Neptune's mean motion resonances. At low optical depths, a secondary ring also appears associated with the hole cleared in the center of the disk by Saturn. Our simulations, which incorporate 25 different grain sizes, illustrate that grain-grain collisions are important in sculpting today's KB dust, and probably other aspects of the solar system dust complex; collisions erase all signs of azimuthal asymmetry from the submillimeter image of the disk at every dust level we considered. The model images switch from being dominated by resonantly trapped small grains ('transport dominated') to being dominated by the birth ring ('collision dominated') when the optical depth reaches a critical value of τ ∼ v/c, where v is the local Keplerian speed.

  19. Collisional Grooming Models of the Kuiper Belt Dust Cloud

    Science.gov (United States)

    Kuchner, Marc J.; Stark, Christopher C.

    2010-01-01

    We modeled the three-dimensional structure of the Kuiper Belt (KB) dust cloud at four different dust production rates, incorporating both planet-dust interactions and grain-grain collisions using the collisional grooming algorithm. Simulated images of a model with a face-on optical depth of approximately 10 (exp -4) primarily show an azimuthally- symmetric ring at 40-47 AU in submillimeter and infrared wavelengths; this ring is associated with the cold classical KB. For models with lower optical depths (10 (exp -6) and 10 (exp-7)), synthetic infrared images show that the ring widens and a gap opens in the ring at the location of Neptune; this feature is caused by trapping of dust grains in Neptune's mean motion resonances. At low optical depths, a secondary ring also appears associated with the hole cleared in the center of the disk by Saturn. Our simulations, which incorporate 25 different grain sizes, illustrate that grain-grain collisions are important in sculpting today's KB dust, and probably other aspects of the solar system dust complex; collisions erase all signs of azimuthal asymmetry from the submillimeter image of the disk at every dust level we considered. The model images switch from being dominated by resonantly trapped small grains ("transport dominated") to being dominated by the birth ring ("collision dominated") when the optical depth reaches a critical value of r approximately v/c, where v is the local Keplerian speed.

  20. Impact Assessment of Atmospheric Dust on Foliage Pigments and Pollution Resistances of Plants Grown Nearby Coal Based Thermal Power Plants.

    Science.gov (United States)

    Hariram, Manisha; Sahu, Ravi; Elumalai, Suresh Pandian

    2018-01-01

    Plant species grown in the vicinity of thermal power plants (TPP) are one of the immobile substrates to sink most of the pollutants emitted from their stacks. The continuous exposure of toxic pollutants to these plants may affect their resistances and essential biochemical's concentrations. In the present study, we estimated the impact of dust load generated by a TPPs to plant's dust retention capacity and pollution resistances (APTI and API). The observed ambient air quality index (AQI) showed that the surroundings of TPPs are in the severe air pollution category. Observed AQI was greater than 100 in the surrounding area of TPP. The mean dust load on plant foliage was significantly greater in the polluted site compared with the control site: 4.45 ± 1.96 versus 1.38 ± 0.41 mg cm -2 . Nearby, TPP highest and lowest dust load were founded in F. benghalensis (7.58 ± 0.74) and F. religiosa (2.25 ± 0.12 mg cm -2 ) respectively. Analysis revealed the strong negative correlation between dust load and essential pigments of foliage, such as chlorophyll content, carotenoids, pH of foliage extract, and relative water content. Conversely, strong positive correlation was observed with the ascorbic acid content of plant species. Correlation and percentage change analysis in ascorbic acid content for the polluted site against the control site showed the adverse impact on plants due to dust load. Based on their responses to dust pollution, A. scholaris, P. longifolia, and M. indica were observed as most suitable plant species. Estimation of DRC, chlorophyll a/b ratio, APTI and API revealed the A. scholaris, F. benghalensis, P. longifolia, and M. indica as the most suitable plant species for green belt formation. The high gradation was obtained in A. scholaris, F. benghalensis, P. longifolia, and M. indica for opted parameters and showed their most suitability for green belt formation. Salient features of the present study provide useful evidences to estimate the

  1. Studying Dust Scattering Halos with Galactic X-ray Binaries

    Science.gov (United States)

    Beeler, Doreen; Corrales, Lia; Heinz, Sebastian

    2018-01-01

    Dust is an important part of the interstellar medium (ISM) and contributes to the formation of stars and planets. Since the advent of modern X-ray telescopes, Galactic X-ray point sources have permitted a closer look at all phases of the ISM. Interstellar metals from oxygen to iron — in both gas and dust form — are responsible for absorption and scattering of X-ray light. Dust scatters the light in a forward direction and creates a diffuse halo image surrounding many bright Galactic X-ray binaries. We use all the bright X-ray point sources available in the Chandra HETG archive to study dust scattering halos from the local ISM. We have described a data analysis pipeline using a combination of the data reduction software CIAO and Python. We compare our results from Chandra HETG and ACIS-I observations of a well studied dust scattering halo around GX 13+1, in order to characterize any systematic errors associated with the HETG data set. We describe how our data products will be used to measure ISM scaling relations for X-ray extinction, dust abundance, and dust-to-metal ratios.

  2. Scattering properties of lunar dust analogs

    Science.gov (United States)

    Davis, Sanford; Marshall, John; Richard, Denis; Adler, David; Adler, Benjamin

    2014-01-01

    The Lunar Atmosphere and Dust Environment Explorer (LADEE) spacecraft is designed to characterize the exospheric dust environment using an on-board suite of specialized sensors. The objective of this paper is to present results from scattering experiments using an aqueous suspension of lunar simulants that contains a population of dust grains ranging in size from ~0.1 μm to 10 μm. The intensity of scattered light is measured with a commercial version of the ultraviolet-visible spectrometer (UVS) used in the LADEE mission. We show that our data is consistent with the fact that micron-sized particles tend to form agglomerates rather than remaining isolated entities and that certain characteristics of the target particles can be predicted from intensity measurements alone. These results can be used directly to assess general features of the lunar exosphere. Further analysis of particle properties from such remote sensing data will require more refined measurements such as polarization features or other components of the Stokes vector.

  3. Distribution of dust during two dust storms in Iceland

    Science.gov (United States)

    Ösp Magnúsdóttir, Agnes; Dagsson-Waldhauserova, Pavla; Arnalds, Ólafur; Ólafsson, Haraldur

    2017-04-01

    Particulate matter mass concentrations and size fractions of PM1, PM2.5, PM4, PM10, and PM15 measured in transversal horizontal profile of two dust storms in southwestern Iceland are presented. Images from a camera network were used to estimate the visibility and spatial extent of measured dust events. Numerical simulations were used to calculate the total dust flux from the sources as 180,000 and 280,000 tons for each storm. The mean PM15 concentrations inside of the dust plumes varied from 10 to 1600 ?g?m?3 (PM10 = 7 to 583 ?g?m?3). The mean PM1 concentrations were 97-241 ?g?m?3 with a maximum of 261 ?g?m?3 for the first storm. The PM1/PM2.5 ratios of >0.9 and PM1/PM10 ratios of 0.34-0.63 show that suspension of volcanic materials in Iceland causes air pollution with extremely high PM1 concentrations, similar to polluted urban areas in Europe or Asia. Icelandic volcanic dust consists of a higher proportion of submicron particles compared to crustal dust. Both dust storms occurred in relatively densely inhabited areas of Iceland. First results on size partitioning of Icelandic dust presented here should challenge health authorities to enhance research in relation to dust and shows the need for public dust warning systems.

  4. Cosmic dust in the earth's atmosphere

    Science.gov (United States)

    Plane, John M. C.

    2012-04-01

    This review discusses the magnitude of the cosmic dust input into the earth's atmosphere, and the resulting impacts from around 100 km to the earth's surface. Zodiacal cloud observations and measurements made with a spaceborne dust detector indicate a daily mass input of interplanetary dust particles ranging from 100 to 300 tonnes, which is in agreement with the accumulation rates of cosmic-enriched elements (Ir, Pt, Os and super-paramagnetic Fe) in polar ice cores and deep-sea sediments. In contrast, measurements in the middle atmosphere - by radar, lidar, high-flying aircraft and satellite remote sensing - indicate that the input is between 5 and 50 tonnes per day. There are two reasons why this huge discrepancy matters. First, if the upper range of estimates is correct, then vertical transport in the middle atmosphere must be considerably faster than generally believed; whereas if the lower range is correct, then our understanding of dust evolution in the solar system, and transport from the middle atmosphere to the surface, will need substantial revision. Second, cosmic dust particles enter the atmosphere at high speeds and undergo significant ablation. The resulting metals injected into the atmosphere are involved in a diverse range of phenomena, including: the formation of layers of metal atoms and ions; the nucleation of noctilucent clouds, which are a sensitive marker of climate change; impacts on stratospheric aerosols and O3 chemistry, which need to be considered against the background of a cooling stratosphere and geo-engineering plans to increase sulphate aerosol; and fertilization of the ocean with bio-available Fe, which has potential climate feedbacks.

  5. Implementation and testing of a desert dust module in a regional climate model

    Directory of Open Access Journals (Sweden)

    A. S. Zakey

    2006-01-01

    Full Text Available In an effort to improve our understanding of aerosol impacts on climate, we implement a desert dust module within a regional climate model (RegCM. The dust module includes emission, transport, gravitational settling, wet and dry removal and calculations of dust optical properties. The coupled RegCM-dust model is used to simulate two dust episodes observed over the Sahara region (a northeastern Africa dust outbreak, and a west Africa-Atlantic dust outbreak observed during the SHADE "Saharan Dust Experiment", as well as a three month simulation over an extended domain covering the Africa-Europe sector. Comparisons with satellite and local aerosol optical depth measurements shows that the model captures the main spatial (both horizontal and vertical and temporal features of the dust distribution. The main model deficiency occurs in the representation of certain dynamical patterns observed during the SHADE case which is associated with an active easterly wave that contributed to the generation of the dust outbreak. The model appears suitable to conduct long term simulations of the effects of Saharan dust on African and European climate.

  6. Lack of dust in quasar absorption line systems

    International Nuclear Information System (INIS)

    Jura, M.

    1977-01-01

    It is stated that the origin of absorption line systems in quasars is still uncertain. Most such systems apparently have atomic hydrogen column densities of the order of 10 19 /cm 2 , but at least two quasars, 1331 + 170 and PHL957, have such strong Lyman α absorption lines that atomic hydrogen column densities of the order of 10 21 /cm 2 are indicated. It should be possible to observe the dust produced 2,200 A extinction feature as it is red shifted into the visible, and to determine whether absorption line systems are produced in spiral galaxies where the dust content is similar to that in the interstellar medium. It has been argued that the emission line regions of quasars generally lack dust and that towards PHL957 the 2,200 A feature is absent. The present author argues that dust similar to that found in the interstellar medium is not found towards the quasars 1331 + 170 and PHL957. This could explain why H 2 is not found towards PHL957, and it indicates that the absorption line systems in quasars are not produced in spiral galaxies similar to our own. It seems from the analysis presented that the dust-to-gas ratio towards 1331 + 170 is at least a factor of 20 less than in the interstellar medium, and there is no reason to suppose that this lack of dust results from a lack of metals It is concluded that there seems to be a lack of normal dust towards PHL957 by at least a factor of two; and that the absorption region towards 1331 + 170 and probably the region towards PHL957 are lacking dust similar to that in our own galaxy. This can explain the lack of H 2 in these systems. (U.K.)

  7. Dust acoustic shock wave at high dust density

    International Nuclear Information System (INIS)

    Ghosh, Samiran; Sarkar, Susmita; Khan, Manoranjan; Avinash, K.; Gupta, M. R.

    2003-01-01

    Dust acoustic (DA) shock wave at high dust density, i.e., the dust electroacoustic (DEA) or dust Coulomb (DC) shock wave has been investigated incorporating the nonadiabatic dust charge variation. The nonlinear DEA (DC) shock wave is seen to be governed by the Korteweg-de Vries Burger equation, in which the Burger term is proportional to the nonadiabaticity generated dissipation. It is seen that the shock strength decreases but after reaching minimum, it increases as the dust space charge density |q d n d | increases and the shock strength of DA wave is greater than that of DEA (DC) wave. Moreover the DEA (DC) shock width increases appreciably with increase mass m i of the ion component of the dusty plasma but for DA shock wave the effect is weak

  8. Dust, Climate, and Human Health

    Science.gov (United States)

    Maynard, Nancy G.

    2003-01-01

    Air pollution from both natural and anthropogenic causes is considered to be one of the most serious world-wide environment-related health problems, and is expected to become worse with changes in the global climate. Dust storms from the atmospheric transport of desert soil dust that has been lifted and carried by the winds - often over significant distances - have become an increasingly important emerging air quality issue for many populations. Recent studies have shown that the dust storms can cause significant health impacts from the dust itself as well as the accompanying pollutants, pesticides, metals, salt, plant debris, and other inorganic and organic materials, including viable microorganisms (bacteria, viruses and fungi). For example, thousands of tons of Asian desert sediments, some containing pesticides and herbicides from farming regions, are commonly transported into the Arctic during dust storm events. These chemicals have been identified in animal and human tissues among Arctic indigenous populations. Millions of tons of airborne desert dust are being tracked by satellite imagery, which clearly shows the magnitude as well as the temporal and spatial variability of dust storms across the "dust belt" regions of North Africa, the Middle East, and China. This paper summarizes the most recent findings on the effects of airborne desert dust on human health as well as potential climate influences on dust and health.

  9. Propagation of the three-dimensional dust acoustic solitons in magnetized quantum plasmas with dust polarity effect

    Science.gov (United States)

    Sadiq, M.; Ali, S.; Sabry, R.

    2009-01-01

    The quantum hydrodynamical model is employed to investigate the nonlinear properties of the quantum dust acoustic waves in a magnetized dusty plasma composed of inertialess electrons, ions, and mobile positive/negative charged dust particles. For this purpose, a quantum Zakharov-Kuznetsov equation is derived and the basic features of the electrostatic excitations are investigated by applying the direct method. It is found that positive and negative bell-shaped solitary pulses become explosive pulses depending mainly upon the angles of propagation and dust polarity. Furthermore, the effects due to nondimensional quantum parameter and the external magnetic field are examined on the width of the quantum dust acoustic solitary pulses. The relevance of the present results to semiconductor quantum wells is mentioned.

  10. Effects of mineral dust on global atmospheric nitrate concentrations

    Directory of Open Access Journals (Sweden)

    V. A. Karydis

    2016-02-01

    Full Text Available This study assesses the chemical composition and global aerosol load of the major inorganic aerosol components, focusing on mineral dust and aerosol nitrate. The mineral dust aerosol components (i.e., Ca2+, Mg2+, K+, Na+ and their emissions are included in the ECHAM5/MESSy Atmospheric Chemistry model (EMAC. Gas/aerosol partitioning is simulated using the ISORROPIA-II thermodynamic equilibrium model that considers K+, Ca2+, Mg2+, NH4+, Na+, SO42−, NO3−, Cl−, and H2O aerosol components. Emissions of mineral dust are calculated online by taking into account the soil particle size distribution and chemical composition of different deserts worldwide. Presence of metallic ions can substantially affect the nitrate partitioning into the aerosol phase due to thermodynamic interactions. The model simulates highest fine aerosol nitrate concentration over urban and industrialized areas (1–3 µg m−3, while coarse aerosol nitrate is highest close to deserts (1–4 µg m−3. The influence of mineral dust on nitrate formation extends across southern Europe, western USA, and northeastern China. The tropospheric burden of aerosol nitrate increases by 44 % when considering interactions of nitrate with mineral dust. The calculated global average nitrate aerosol concentration near the surface increases by 36 %, while the coarse- and fine-mode concentrations of nitrate increase by 53 and 21 %, respectively. Other inorganic aerosol components are affected by reactive dust components as well (e.g., the tropospheric burden of chloride increases by 9 %, ammonium decreases by 41 %, and sulfate increases by 7 %. Sensitivity tests show that nitrate aerosol is most sensitive to the chemical composition of the emitted mineral dust, followed by the soil size distribution of dust particles, the magnitude of the mineral dust emissions, and the aerosol state assumption.

  11. Effects of mineral dust on global atmospheric nitrate concentrations

    Science.gov (United States)

    Karydis, V. A.; Tsimpidi, A. P.; Pozzer, A.; Astitha, M.; Lelieveld, J.

    2016-02-01

    This study assesses the chemical composition and global aerosol load of the major inorganic aerosol components, focusing on mineral dust and aerosol nitrate. The mineral dust aerosol components (i.e., Ca2+, Mg2+, K+, Na+) and their emissions are included in the ECHAM5/MESSy Atmospheric Chemistry model (EMAC). Gas/aerosol partitioning is simulated using the ISORROPIA-II thermodynamic equilibrium model that considers K+, Ca2+, Mg2+, NH4+, Na+, SO42-, NO3-, Cl-, and H2O aerosol components. Emissions of mineral dust are calculated online by taking into account the soil particle size distribution and chemical composition of different deserts worldwide. Presence of metallic ions can substantially affect the nitrate partitioning into the aerosol phase due to thermodynamic interactions. The model simulates highest fine aerosol nitrate concentration over urban and industrialized areas (1-3 µg m-3), while coarse aerosol nitrate is highest close to deserts (1-4 µg m-3). The influence of mineral dust on nitrate formation extends across southern Europe, western USA, and northeastern China. The tropospheric burden of aerosol nitrate increases by 44 % when considering interactions of nitrate with mineral dust. The calculated global average nitrate aerosol concentration near the surface increases by 36 %, while the coarse- and fine-mode concentrations of nitrate increase by 53 and 21 %, respectively. Other inorganic aerosol components are affected by reactive dust components as well (e.g., the tropospheric burden of chloride increases by 9 %, ammonium decreases by 41 %, and sulfate increases by 7 %). Sensitivity tests show that nitrate aerosol is most sensitive to the chemical composition of the emitted mineral dust, followed by the soil size distribution of dust particles, the magnitude of the mineral dust emissions, and the aerosol state assumption.

  12. Evidence for the presence of dust in intervening QSO absorbers from the Sloan Digital Sky Survey

    Science.gov (United States)

    Khare, P.; York, D. G.; vanden Berk, D.; Kulkarni, V. P.; Crotts, A. P. S.; Welty, D. E.; Lauroesch, J. T.; Richards, G. T.; Alsayyad, Y.; Kumar, A.; Lundgren, B.; Shanidze, N.; Vanlandingham, J.; Baugher, B.; Hall, P. B.; Jenkins, E. B.; Menard, B.; Rao, S.; Turnshek, D.; Yip, C. W.

    2005-03-01

    We find evidence for dust in the intervening QSO absorbers from the spectra of QSOs in the Sloan Digital Sky Survey Data Release 1. No evidence is found for the 2175 Å feature which is present in the Milky Way dust extinction curve.

  13. The composition and distribution of dust along the line of sight toward the Galactic center

    NARCIS (Netherlands)

    Chiar, JE; Tielens, AGGM; Whittet, DCB; Schutte, WA; Boogert, ACA; Lutz, D; van Dishoeck, EF; Bernstein, MP

    2000-01-01

    We discuss the composition of dust and ice along the line of sight to the Galactic center (GC) based on analysis of mid-infrared spectra (2.4-13 mu m) from the Short Wavelength Spectrometer on the Infrared Space Observatory (ISO). We have analyzed dust absorption features arising in the molecular

  14. A simple model for the evolution of the dust population in protoplanetary disks

    Science.gov (United States)

    Birnstiel, T.; Klahr, H.; Ercolano, B.

    2012-03-01

    Context. The global size and spatial distribution of dust is an important ingredient in the structure and evolution of protoplanetary disks and in the formation of larger bodies, such as planetesimals. Aims: We aim to derive simple equations that explain the global evolution of the dust surface density profile and the upper limit of the grain size distribution and which can readily be used for further modeling or for interpreting of observational data. Methods: We have developed a simple model that follows the upper end of the dust size distribution and the evolution of the dust surface density profile. This model is calibrated with state-of-the-art simulations of dust evolution, which treat dust growth, fragmentation, and transport in viscously evolving gas disks. Results: We find very good agreement between the full dust-evolution code and the toy model presented in this paper. We derive analytical profiles that describe the dust-to-gas ratios and the dust surface density profiles well in protoplanetary disks, as well as the radial flux by solid material "rain out", which is crucial for triggering any gravity assisted formation of planetesimals. We show that fragmentation is the dominating effect in the inner regions of the disk leading to a dust surface density exponent of -1.5, while the outer regions at later times can become drift-dominated, yielding a dust surface density exponent of -0.75. Our results show that radial drift is not efficient in fragmenting dust grains. This supports the theory that small dust grains are resupplied by fragmentation due to the turbulent state of the disk.

  15. A new galactic chemical evolution model with dust: results for dwarf irregular galaxies and DLA systems

    Science.gov (United States)

    Gioannini, L.; Matteucci, F.; Vladilo, G.; Calura, F.

    2017-01-01

    We present a galactic chemical evolution model which adopts updated prescriptions for all the main processes governing the dust cycle. We follow in detail the evolution of the abundances of several chemical species (C, O, S, Si, Fe and Zn) in the gas and dust of a typical dwarf irregular galaxy. The dwarf irregular galaxy is assumed to evolve with a low but continuous level of star formation and experience galactic winds triggered by supernova (SN) explosions. We predict the evolution of the gas to dust ratio in such a galaxy and discuss critically the main processes involving dust, such as dust production by asymptotic giant branch stars and Type II SNe, destruction and accretion (gas condensation in clouds). We then apply our model to damped Lyman α (DLA) systems which are believed to be dwarf irregulars, as witnessed by their abundance patterns. Our main conclusions are the following. (I) We can reproduce the observed gas to dust ratio in dwarf galaxies. (II) We find that the process of dust accretion plays a fundamental role in the evolution of dust and in certain cases it becomes the dominant process in the dust cycle. On the other hand, dust destruction seems to be a negligible process in irregulars. (III) Concerning DLA systems, we show that the observed gas-phase abundances of silicon, normalized to volatile elements (zinc and sulfur), are in agreement with our model. (IV) The abundances of iron and silicon in DLA systems suggest that the two elements undergo a different history of dust formation and evolution. Our work casts light on the nature of iron-rich dust: the observed depletion pattern of iron is well reproduced only when an additional source of iron dust is considered. Here we explore the possibility of a contribution from Type Ia SNe as well as an efficient accretion of iron nanoparticles.

  16. The chemical imprint of silicate dust on the most metal-poor stars

    International Nuclear Information System (INIS)

    Ji, Alexander P.; Frebel, Anna; Bromm, Volker

    2014-01-01

    We investigate the impact of dust-induced gas fragmentation on the formation of the first low-mass, metal-poor stars (<1 M ☉ ) in the early universe. Previous work has shown the existence of a critical dust-to-gas ratio, below which dust thermal cooling cannot cause gas fragmentation. Assuming that the first dust is silicon-based, we compute critical dust-to-gas ratios and associated critical silicon abundances ([Si/H] crit ). At the density and temperature associated with protostellar disks, we find that a standard Milky Way grain size distribution gives [Si/H] crit = –4.5 ± 0.1, while smaller grain sizes created in a supernova reverse shock give [Si/H] crit = –5.3 ± 0.1. Other environments are not dense enough to be influenced by dust cooling. We test the silicate dust cooling theory by comparing to silicon abundances observed in the most iron-poor stars ([Fe/H] < -4.0). Several stars have silicon abundances low enough to rule out dust-induced gas fragmentation with a standard grain size distribution. Moreover, two of these stars have such low silicon abundances that even dust with a shocked grain size distribution cannot explain their formation. Adding small amounts of carbon dust does not significantly change these conclusions. Additionally, we find that these stars exhibit either high carbon with low silicon abundances or the reverse. A silicate dust scenario thus suggests that the earliest low-mass star formation in the most metal-poor regime may have proceeded through two distinct cooling pathways: fine-structure line cooling and dust cooling. This naturally explains both the carbon-rich and carbon-normal stars at extremely low [Fe/H].

  17. Large aperture electrostatic dust detector

    International Nuclear Information System (INIS)

    Skinner, C.H.; Hensley, R.; Roquemore, A.L.

    2008-01-01

    Diagnosis and management of dust inventories generated in next-step magnetic fusion devices is necessary for their safe operation. A novel electrostatic dust detector, based on a fine grid of interlocking circuit traces biased to 30 or 50 V has been developed for the detection of dust particles on remote surfaces in air and vacuum environments. Impinging dust particles create a temporary short circuit and the resulting current pulse is recorded by counting electronics. Up to 90% of the particles are ejected from the grid or vaporized suggesting the device may be useful for controlling dust inventories. We report measurements of the sensitivity of a large area (5 x 5 cm) detector to microgram quantities of dust particles

  18. Large Aperture Electrostatic Dust Detector

    International Nuclear Information System (INIS)

    Skinner, C.H.; Hensley, R.; Roquemore, A.L.

    2007-01-01

    Diagnosis and management of dust inventories generated in next-step magnetic fusion devices is necessary for their safe operation. A novel electrostatic dust detector, based on a fine grid of interlocking circuit traces biased to 30 or 50 v has been developed for the detection of dust particles on remote surfaces in air and vacuum environments. Impinging dust particles create a temporary short circuit and the resulting current pulse is recorded by counting electronics. Up to 90% of the particles are ejected from the grid or vaporized suggesting the device may be useful for controlling dust inventories. We report measurements of the sensitivity of a large area (5x5 cm) detector to microgram quantities of dust particles and review its applications to contemporary tokamaks and ITER.

  19. Bakers' exposure to flour dust.

    Science.gov (United States)

    Kirkeleit, Jorunn; Hollund, Bjørg Eli; Riise, Trond; Eduard, Wijnand; Bråtveit, Magne; Storaas, Torgeir

    2017-02-01

    We aimed to characterize bakers' personal exposure to airborne flour dust with respect to the health-related aerosol fractions inhalable, extrathoracic, and thoracic dust, and to examine possible production-related determinants of dust exposure. Sixty-eight bakers from 7 bakeries in Bergen, Norway (2009-2012) participated in the exposure assessment, comprising full-shift personal samples of inhalable dust (n = 107) and thoracic dust (n = 61). The relation between possible determinants and exposure was estimated using mixed effects models, while associations between the various aerosol fractions across task groups and type of bakeries were described by Pearson's correlation coefficients. Bakers' overall geometric mean personal exposure to inhalable, extrathoracic, and thoracic dust were 2.6 mg/m 3 (95% CI: 2.0, 3.2), 2.2 mg/m 3 (95% CI: 1.9, 2.7), and 0.33 mg/m 3 (95% CI 0.3, 0.4), respectively. A total of 29% of the measurements of inhalable dust were above the Norwegian Occupational Exposure Limit of 3 mg/m 3 . The exposure variability of inhalable dust could not be explained by any of the examined production-related determinants, while the daily production volume explained 18% of the variance in thoracic dust exposure. Overall, the thoracic dust represented 15% of the inhalable dust, being rather stable across the production-related determinants. The overall correlation between inhalable and thoracic dust was nevertheless moderate (r = 0.52, p bakers (r = 0.62) and no correlation during dough forming (r = 0.01). Bakers are exposed to flour dust at a level that most likely represents an excess risk of developing chronic diseases of the respiratory system, and a decrease of present exposure level is imperative. Extrathoracic dust-likely the most relevant sub-fraction in respect to flour-induced sensitization and occupational rhinitis-represented the main proportion of the measured inhalable dust. The variation in correlation coefficients between the dust fractions

  20. Dust in cosmic plasma environments

    International Nuclear Information System (INIS)

    Mendis, D.A.

    1979-01-01

    Cosmic dust is invariably immersed in a plasma and a radiative environment. Consequently, it is charged to some electrostatic potential which depends on the properties of the environment as well as the nature of the dust. This charging affects the physical and dynamical properties of the dust. In this paper the basic aspects of this dust-plasma interaction in several cosmic environments - including planetary magnetospheres, the heliosphere and the interstellar medium - are discussed. The physical and dynamical consequences of the interaction, as well as the pertinent observational evidence, are reviewed. Finally, the importance of the surface charge during the condensation process in plasma environments is stressed. (Auth.)

  1. The formative years of relativity the history and meaning of Einstein's Princeton lectures : featuring Einstein's classic text The meaning of relativity in its historical context

    CERN Document Server

    Gutfreund, Hanoch

    2017-01-01

    First published in 1922 and based on lectures delivered in May 1921, Albert Einstein's The Meaning of Relativity offered an overview and explanation of the then new and controversial theory of relativity. The work would go on to become a monumental classic, printed in numerous editions and translations worldwide. Now, The Formative Years of Relativity introduces Einstein's masterpiece to new audiences. This beautiful volume contains Einstein's insightful text, accompanied by important historical materials and commentary looking at the origins and development of general relativity. Hanoch Gutfreund and Jurgen Renn provide fresh, original perspectives, placing Einstein's achievements into a broader context for all readers. In this book, Gutfreund and Renn tell the rich story behind the early reception, spread, and consequences of Einstein's ideas during the formative years of general relativity in the late 1910s and 1920s. They show that relativity's meaning changed radically throughout the nascent years of it...

  2. Features of formation spirituality pictures of the world in youth in in the era of information-highlytechnological scientific and technical progress

    Directory of Open Access Journals (Sweden)

    N. V. Polishchuk

    2016-06-01

    Full Text Available In clause necessity of formation of a spiritual picture of the world, anthropocosmos at young generation at the present stage of development much crisis world and, including, the Ukrainian society is proved. In the article the necessity of formation of anthropocosmos-spiritual picture of the world at young generation at the present stage of development bagalicious the world and, in particular, of the Ukrainian society. The proposed definition of new terms: anthropocosmos is a spiritual picture of the world, anthropocosmic spirituality, anthropocosmic worldview and other anthropocentric concepts and definitions in contemporary philosophical and pedagogical discourse. The presented model of the formation of anthropocosmos-spiritual worldview of the young generation in the information and high-tech scientific and technical progress and the author’s interpretation of its philosophical, educational, pedagogical and spiritual essence. It is proved, that having generated in consciousness of the young man a anthropocosmos-spiritual picture of the world, will allow it in conditions of inevitable crash in the near future of a human civilization, if it will not solve present global-civilizational crises and will not avoid geocosmic accidents, to understand sense space-ekzoplanete lives which will be esclusivi, and, therefore, crisis-free, conflict-free, comprehensive and meaningful, anthropocosmos-highly spiritual (divine M. Berdyaev, and, therefore, progressive and virtually eternal as the life of society, which is composed of such anthropocosmos educated individuals. Solved zagalnoosvitnioi sense anthropocosmos spiritual world picture, which is to solve the problem of the choice of life strategies of mankind, the search for new ways of civilization development, in particular, resettlement anthropocosmos-conscious part of humanity for exoplanets space with the aim of preserving the gene pool of humanity and creation of human cosmically

  3. UNUSUAL DUST EMISSION FROM PLANETARY NEBULAE IN THE MAGELLANIC CLOUDS

    International Nuclear Information System (INIS)

    Bernard-Salas, J.; Sloan, G. C.; Gutenkunst, S.; Houck, J. R.; Peeters, E.; Matsuura, M.; Tielens, A. G. G. M.; Zijlstra, A. A.

    2009-01-01

    We present a Spitzer Space Telescope spectroscopic study of a sample of 25 planetary nebulae (PNe) in the Magellanic Clouds (MCs). The low-resolution modules are used to analyze the dust features present in the infrared spectra. This study complements a previous work by the same authors where the same sample was analyzed in terms of neon and sulfur abundances. Over half of the objects (14) show emission of polycyclic aromatic hydrocarbons, typical of carbon-rich dust environments. We compare the hydrocarbon emission in our objects to those of Galactic H II regions and PNe, and Large Magellanic Cloud/Small Magellanic Cloud H II regions. Amorphous silicates are seen in just two objects, enforcing the now well known fact that oxygen-rich dust is less common at low metallicities. Besides these common features, some PNe show very unusual dust. Nine objects show a strong silicon carbide feature at 11 μm and 12 of them show magnesium sulfide emission starting at 25 μm. The high percentage of spectra with silicon carbide in the MCs is not common. Two objects show a broadband which may be attributed to hydrogenated amorphous carbon and weak low-excitation atomic lines. It is likely that these nebulae are very young. The spectra of the remaining eight nebulae are dominated by the emission of fine-structure lines with a weak continuum due to thermal emission of dust, although in a few cases the signal-to-noise ratio in the spectra is low, and weak dust features may not have been detected.

  4. Dust coagulation in ISM

    Science.gov (United States)

    Chokshi, Arati; Tielens, Alexander G. G. M.; Hollenbach, David

    1989-01-01

    Coagulation is an important mechanism in the growth of interstellar and interplanetary dust particles. The microphysics of the coagulation process was theoretically analyzed as a function of the physical properties of the coagulating grains, i.e., their size, relative velocities, temperature, elastic properties, and the van der Waal interaction. Numerical calculations of collisions between linear chains provide the wave energy in individual particles and the spectrum of the mechanical vibrations set up in colliding particles. Sticking probabilities are then calculated using simple estimates for elastic deformation energies and for the attenuation of the wave energy due to absorption and scattering processes.

  5. Gravitational radiation from dust

    International Nuclear Information System (INIS)

    Isaacson, R.A.; Welling, J.S.; Winicour, J.

    1985-01-01

    A dust cloud is examined within the framework of the general relativistic characteristic initial value problem. Unique gravitational initial data are obtained by requiring that the space-time be quasi-Newtonian. Explicit calculations of metric and matter fields are presented, which include all post-Newtonian corrections necessary to discuss the major physical properties of null infinity. These results establish a curved space version of the Einstein quadrupole formula, in the form ''news function equals third time derivative of transverse quadrupole moment,'' for this system. However, these results imply that some weakened notion of asymptotic flatness is necessary for the description of quasi-Newtonian systems

  6. Dust confinement and dust acoustic waves in a magnetized plasma

    Science.gov (United States)

    Piel, A.

    2005-10-01

    Systematic laboratory experiments on dust acoustic waves require the confinement of dust particles. Here we report on new experiments in a magnetized plasma region in front of an additional positively biased disk electrode in a background plasma which is generated in argon at 27MHz between a disk and grid electrode. The plasma diffuses through the grid along the magnetic field. The three-dimensional dust distribution is measured with a horizontal sheet of laser light and a CCD camera, which are mounted on a vertical translation stage. Depending on magnetic field and discharge current, cigar or donut-shaped dust clouds are generated, which tend to rotate about the magnetic field direction. Measurements with emissive probes show that the axial confinement of dust particles with diameters between 0.7-2 μm is achieved by a balance of ion-drag force and electric field force. Dust levitation and radial confinement is due to a strong radial electric field. Dust acoustic waves are destabilized by the ion flow or can be stimulated by a periodic bias on the disk electrode. The observed wave dispersion is compared with fluid and kinetic models of the dust acoustic wave.

  7. Gravimetric dust sampling for control purposes and occupational dust sampling.

    CSIR Research Space (South Africa)

    Unsted, AD

    1997-02-01

    Full Text Available Prior to the introduction of gravimetric dust sampling, konimeters had been used for dust sampling, which was largely for control purposes. Whether or not absolute results were achievable was not an issue since relative results were used to evaluate...

  8. The heating of dust in starburst galaxies: The contribution of the nonionizing radiation

    Science.gov (United States)

    Calzetti, D.; Bohlin, R. C.; Kinney, Anne L.; Storchi-Bergmann, T.; Heckman, Timothy M.

    1995-01-01

    The IUE UV and optical spectra and the far-infrared (FIR) IRAS flux densities of a sample of starburst and blue compact galaxies are used to investigate the relationship between dust obscuration and dust emission. The amount of dust obscuration at UV wavelengths correlates with the FIR-to-blue ratio; and an analysis of the correlation indicates that not only the ionizing but also the nonionizing radiation contribute to the FIR emission. The amount of UV and optical energy lost to dust obscuration accounts for most of the cool dust FIUR emission and for about 70% of the warm dust FIR emission. The remaining 30% of the warm dust FIR flux is probably due to dust emission from regions of star formation which are embedded in opaque giant molecular clouds and do not contribute to the integrated UV and optical spectrum. The use of the FIR emission as an indicator of high-mass star formation rate in star-forming galaxies can be problematic, since the contribution to the FIR flux from cool dust emission heated by relatively old stars is nonnegligible.

  9. Extended dust in dwarf galaxies - solving an energy-budget paradox?

    Science.gov (United States)

    Keel, William C.; Holwerda, Benne; Lintott, Chris; Schawinski, Kevin

    2012-02-01

    The role of dust in shaping the emerging spectral energy distributions of galaxies remains poorly understood; recent Herschel results suggest large amounts of cold dust coupled with only modest optical extinction for much of the galaxy population. Previous work has used the discovery of a silhouetted-galaxy pair of a backlit dwarf galaxy with dust features extending beyond the de Vaucouleurs radius to investigate this question. We propose to examine a larger set of galaxies of this type drawn from the Galaxy Zoo catalog of silhouetted-galaxy pairs, to see whether a significant fraction of dwarfs have such extensive dust distributions. The catalog contains ~ 150 candidate backlit dwarfs; if such dust distributions are common enough to account for the Herschel results, we would see many additional cases of silhouetted dust beyond their stellar disks.

  10. Dust generation mechanisms under powerful plasma impacts to the tungsten surfaces in ITER ELM simulation experiments

    International Nuclear Information System (INIS)

    Makhlaj, V.A.; Garkusha, I.E.; Aksenov, N.N.; Chuvilo, A.A.; Chebotarev, V.V.; Landman, I.; Malykhin, S.V.; Pestchanyi, S.; Pugachov, A.T.

    2013-01-01

    In recent tokamak simulation experiments with the QSPA Kh-50 facility several mechanisms of dust generation from tungsten surfaces under ITER ELM-like energy loads have been identified. Here cracking and melting are reported. The brittle destruction dominates after a few transient impacts when a network of major cracks forms on the surface. Bifurcation of major cracks results in ejection of dust particles with sizes up to ∼30 μm. Dust generation occurs also after surface melting and following resolidification when fine crack networks along the grain boundaries develop. In this process the destruction is accompanied by bridge formation due to capillary tension across the fine cracks. Next impacts (even weak melt-free ones) can destroy those bridges, which produces considerable amounts of dust particles of nm-size dust. Surface modification after the repetitive plasma pulses also results in creation of nm-size dust

  11. Dust and Gas in Different Galactic Environments

    Science.gov (United States)

    Goncalves, Daniela Catarina Pinheiro

    2014-01-01

    This thesis encompasses the study of the mid-infrared (IR) dust properties in diffuse high latitude cirrus and in the dense environments of supernova remnants (SNRs) in the plane of our Galaxy. Unlike the well known emission properties of dust grains in the diffuse ISM in the far-IR and submillimeter, the mid-IR spectrum is still relatively unconstrained. We extend the correlation of dust emission with H I column densities to mid-IR wavelengths and look for evidence of variations in the emissivity of dust associated with local and halo gas. This is accomplished by spatially correlating the IR maps from the IRIS/IRAS survey at 12, 25, 60 and 100 μm with H I column density maps inferred from 21-cm line emission observations obtained with the GBT (at a 9' resolution). We find that IVCs (halo clouds thought to be part of the Galactic fountain) show color ratios consistent with a dust evolution scenario in which large dust grains are shattered into smaller ones (VSGs). The low 12 μm emission found suggests a reduced abundance of PAHs in IVCs. We also address the IR extragalactic emission seen in our residual maps and quantify its power spectrum behaviour. Continuing with the mid-IR theme, we conducted a comprehensive study of the morphology and energetics of SNRs in the plane of our Galaxy. We make use of the Spitzer MIPSGAL (at 24 and 70 μm) and GLIMPSE (at 8 μm) surveys to detected infrared counterparts to SNR candidates in Green's catalog. We find that a third of the sample shows IR emission and calculate the corresponding fluxes. We explore the relation between IR colors to place constraints on the different IR SNRs emission mechanisms. Aided by archival radio data, we find that most candidates detected show IR-to-radio ratios consistent with SNRs with a few exceptions displaying ratios seen in H II regions. Finally, we explore the connection between the IR and the high-energy X-ray emission of SNRs and find a good morphological association between the 24

  12. In and out of glacial extremes by way of dust-climate feedbacks.

    Science.gov (United States)

    Shaffer, Gary; Lambert, Fabrice

    2018-02-27

    Mineral dust aerosols cool Earth directly by scattering incoming solar radiation and indirectly by affecting clouds and biogeochemical cycles. Recent Earth history has featured quasi-100,000-y, glacial-interglacial climate cycles with lower/higher temperatures and greenhouse gas concentrations during glacials/interglacials. Global average, glacial maxima dust levels were more than 3 times higher than during interglacials, thereby contributing to glacial cooling. However, the timing, strength, and overall role of dust-climate feedbacks over these cycles remain unclear. Here we use dust deposition data and temperature reconstructions from ice sheet, ocean sediment, and land archives to construct dust-climate relationships. Although absolute dust deposition rates vary greatly among these archives, they all exhibit striking, nonlinear increases toward coldest glacial conditions. From these relationships and reconstructed temperature time series, we diagnose glacial-interglacial time series of dust radiative forcing and iron fertilization of ocean biota, and use these time series to force Earth system model simulations. The results of these simulations show that dust-climate feedbacks, perhaps set off by orbital forcing, push the system in and out of extreme cold conditions such as glacial maxima. Without these dust effects, glacial temperature and atmospheric CO 2 concentrations would have been much more stable at higher, intermediate glacial levels. The structure of residual anomalies over the glacial-interglacial climate cycles after subtraction of dust effects provides constraints for the strength and timing of other processes governing these cycles. Copyright © 2018 the Author(s). Published by PNAS.

  13. CXCR1/CXCR2 antagonist CXCL8(3-74)K11R/G31P blocks lung inflammation in swine barn dust-instilled mice.

    Science.gov (United States)

    Schneberger, D; Gordon, J R; DeVasure, J M; Boten, J A; Heires, A J; Romberger, D J; Wyatt, T A

    2015-04-01

    Inhalation of agricultural occupational dusts from swine confinement facilities can result in lung inflammation. The innate immune response to organic barn dusts results in production of a number of pro-inflammatory factors in the lungs of barn workers such as cytokines, chemokines, and an influx of neutrophils. Many of these inflammatory factors are influenced by the chemokine CXCL8/IL-8 (KC or MIP-2 in mice). Previously, we have demonstrated that an endotoxin-independent component of swine barn dust extract (SBE) elevates lung chemokines in a protein kinase C (PKC)-dependent manner resulting in the significant formation of lung inflammatory cell infiltrates in a mouse model of SBE injury. In this study we test the ability of a CXCR1/CXCR2 antagonist, CXCL8(3-74)K11R/G31P (G31P) to block many of the features of lung-inflammation in response to challenge with SBE in an established mouse exposure system. Injection of G31P concurrent with SBE nasal instillation over a course of 3 weeks significantly reduced neutrophil accumulation in the lungs of barn dust exposed animals compared to those given SBE alone. There was a similar reduction in pro-inflammatory cytokines and chemokines IL-6, KC, and MIP-2 in SBE plus G31P-treated mice. In addition to excreted products, the receptors ICAM-1, CXCR1, and CXCR2, which all were elevated with SBE exposure, were also decreased with G31P treatment. SBE activation of PKCα and PKCε was reduced as well with G31P treatment. Thus, G31P was found to be highly effective at reducing several features of lung inflammation in mice exposed to barn dust extracts. Copyright © 2015 Elsevier Ltd. All rights reserved.

  14. The origin and evolution of dust clouds in Central Asia

    Science.gov (United States)

    Smirnov, V.V.; Gillette, Dale A.; Golitsyn, G.S.; MacKinnon, D.J.

    1994-01-01

    Data from a high resolution radiometer AVHRR (580-680 nm optical lengthwaves) installed on the "NOAA-11" satellite as well as TV (500-700 nm) and IR (8000-12000 nm) equipment of the Russia satellite "Meteor-2/16" were used to study the evolution of dust storms for 1-30 September 1989 in Tajikistan, Uzbekistan, Turkmenistan and Afghanistan. These data help to validate the hypothesis, that long-term dusted boundary layer (duration of the order of a day or more), but of comparatively not high optical density (4-10 km meteorological visibility range at the 20-50 km background), is formed after the northwest intrusions into a region of intensive cold fronts at the surface wind velocities of 7-15 m/s. Stability of dust clouds of vertical power to 3-3.5 km (up to an inversion level) is explained by an action of collective buoyancy factors at heating the dust particles of 2-4 ??m in mean diameter by solar radiation. The more intensive intrusions stimulate a formation of simultaneously dust and water clouds. The last partially reduce the solar radiation (by the calculations of the order of 30-50%) and decrease the role of buoyancy factors. Thus, initiated is the intensive but short-term dusted boundary layer at horizontal visibility of 50-200 m. ?? 1994.

  15. HTGR Dust Safety Issues and Needs for Research and Development

    Energy Technology Data Exchange (ETDEWEB)

    Paul W. Humrickhouse

    2011-06-01

    This report presents a summary of high temperature gas-cooled reactor dust safety issues. It draws upon a literature review and the proceedings of the Very High Temperature Reactor Dust Assessment Meeting held in Rockville, MD in March 2011 to identify and prioritize the phenomena and issues that characterize the effect of carbonaceous dust on high temperature reactor safety. It reflects the work and input of approximately 40 participants from the U.S. Department of Energy and its National Labs, the U.S. Nuclear Regulatory Commission, industry, academia, and international nuclear research organizations on the topics of dust generation and characterization, transport, fission product interactions, and chemical reactions. The meeting was organized by the Idaho National Laboratory under the auspices of the Next Generation Nuclear Plant Project, with support from the U.S. Nuclear Regulatory Commission. Information gleaned from the report and related meetings will be used to enhance the fuel, graphite, and methods technical program plans that guide research and development under the Next Generation Nuclear Plant Project. Based on meeting discussions and presentations, major research and development needs include: generating adsorption isotherms for fission products that display an affinity for dust, investigating the formation and properties of carbonaceous crust on the inside of high temperature reactor coolant pipes, and confirming the predominant source of dust as abrasion between fuel spheres and the fuel handling system.

  16. Galaxy Zoo: dust in spiral galaxies

    Science.gov (United States)

    Masters, Karen L.; Nichol, Robert; Bamford, Steven; Mosleh, Moein; Lintott, Chris J.; Andreescu, Dan; Edmondson, Edward M.; Keel, William C.; Murray, Phil; Raddick, M. Jordan; Schawinski, Kevin; Slosar, Anže; Szalay, Alexander S.; Thomas, Daniel; Vandenberg, Jan

    2010-05-01

    We investigate the effect of dust on spiral galaxies by measuring the inclination dependence of optical colours for 24276 well-resolved Sloan Digital Sky Survey (SDSS) galaxies visually classified via the Galaxy Zoo project. We find clear trends of reddening with inclination which imply a total extinction from face-on to edge-on of 0.7, 0.6, 0.5 and 0.4mag for the ugri passbands (estimating 0.3mag of extinction in z band). We split the sample into `bulgy' (early-type) and `discy' (late-type) spirals using the SDSS fracdeV (or fDeV) parameter and show that the average face-on colour of `bulgy' spirals is redder than the average edge-on colour of `discy' spirals. This shows that the observed optical colour of a spiral galaxy is determined almost equally by the spiral type (via the bulge-disc ratio and stellar populations), and reddening due to dust. We find that both luminosity and spiral type affect the total amount of extinction, with discy spirals at Mr ~ -21.5mag having the most reddening - more than twice as much as both the lowest luminosity and most massive, bulge-dominated spirals. An increase in dust content is well known for more luminous galaxies, but the decrease of the trend for the most luminous has not been observed before and may be related to their lower levels of recent star formation. We compare our results with the latest dust attenuation models of Tuffs et al. We find that the model reproduces the observed trends reasonably well but overpredicts the amount of u-band attenuation in edge-on galaxies. This could be an inadequacy in the Milky Way extinction law (when applied to external galaxies), but more likely indicates the need for a wider range of dust-star geometries. We end by discussing the effects of dust on large galaxy surveys and emphasize that these effects will become important as we push to higher precision measurements of galaxy properties and their clustering. This publication has been made possible by the participation of more than

  17. Nonlinear screening of dust grains and structurization of dusty plasma

    Energy Technology Data Exchange (ETDEWEB)

    Tsytovich, V. N., E-mail: tsytov@lpi.ru; Gusein-zade, N. G. [Russian Academy of Sciences, Prokhorov General Physics Institute (Russian Federation)

    2013-07-15

    A review of theoretical ideas on the physics of structurization instability of a homogeneous dusty plasma, i.e., the formation of zones with elevated and depressed density of dust grains and their arrangement into different structures observed in laboratory plasma under microgravity conditions, is presented. Theoretical models of compact dust structures that can form in the nonlinear stage of structurization instability, as well as models of a system of voids (both surrounding a compact structure and formed in the center of the structure), are discussed. Two types of structures with very different dimensions are possible, namely, those smaller or larger than the characteristic mean free path of ions in the plasma flow. Both of them are characterized by relatively regular distributions of dust grains; however, the first ones usually require external confinement, while the structures of the second type can be self-sustained (which is of particular interest). In this review, they are called dust clusters and self-organized dust structures, respectively. Both types of the structures are characterized by new physical processes that take place only in the presence of the dust component. The role of nonlinearities in the screening of highly charged dust grains that are often observed in modern laboratory experiments turns out to be great, but these nonlinearities have not received adequate study as of yet. Although structurization takes place upon both linear and nonlinear screening, it can be substantially different under laboratory and astrophysical conditions. Studies on the nonlinear screening of large charges in plasma began several decades ago; however, up to now, this effect was usually disregarded when interpreting the processes occurring in laboratory dusty plasma. One of the aims of the present review was to demonstrate the possibility of describing the nonlinear screening of individual grains and take it into account with the help of the basic equations for the

  18. The Origin and Evolution of Interstellar Dust in the Local and High-redshift Universe

    Science.gov (United States)

    Dwek, Eliahu

    2012-01-01

    In this talk I will begin by reviewing our current state of knowledge regarding the origin and evolution of dust in the local solar neighborhood. using chemical evolution models, I will discuss their many different input parameters and their uncertainties. An important consequence of these models is the delayed injection of dust from AGB stars, compared to supernova-condensed dust, into the interstellar medium. I will show that these stellar evolutionary effects on dust composition are manifested in the infrared spectra of local galaxies. The delayed production of dust in AGB stars has also important consequences for the origin of the large amount of dust detected in high-redshift galaxies, when the universe was less that approx. 1 Gyr old. Supernovae may have been the only viable dust sources in those galaxies. Recent observations of sN1987a show a significant mass of dust in the ejecta of this SN. Is that production rate high enough to account for the observed dust mass in these galaxies? If not, what are the alternative viable sources of dust, and how do they depend on the nature of the galaxy (starburst or AGN) and its star formation history .

  19. On the Effect of Dust Particles on Global Cloud Condensation Nuclei and Cloud Droplet Number

    Science.gov (United States)

    Karydis, V. A.; Kumar, P.; Barahona, D.; Sokolik, I. N.; Nenes, A.

    2011-01-01

    Aerosol-cloud interaction studies to date consider aerosol with a substantial fraction of soluble material as the sole source of cloud condensation nuclei (CCN). Emerging evidence suggests that mineral dust can act as good CCN through water adsorption onto the surface of particles. This study provides a first assessment of the contribution of insoluble dust to global CCN and cloud droplet number concentration (CDNC). Simulations are carried out with the NASA Global Modeling Initiative chemical transport model with an online aerosol simulation, considering emissions from fossil fuel, biomass burning, marine, and dust sources. CDNC is calculated online and explicitly considers the competition of soluble and insoluble CCN for water vapor. The predicted annual average contribution of insoluble mineral dust to CCN and CDNC in cloud-forming areas is up to 40 and 23.8%, respectively. Sensitivity tests suggest that uncertainties in dust size distribution and water adsorption parameters modulate the contribution of mineral dust to CDNC by 23 and 56%, respectively. Coating of dust by hygroscopic salts during the atmospheric aging causes a twofold enhancement of the dust contribution to CCN; the aged dust, however, can substantially deplete in-cloud supersaturation during the initial stages of cloud formation and can eventually reduce CDNC. Considering the hydrophilicity from adsorption and hygroscopicity from solute is required to comprehensively capture the dust-warm cloud interactions. The framework presented here addresses this need and can be easily integrated in atmospheric models.

  20. An ISO/SWS study of the dust composition around S stars. A novel view of S-star dust

    Science.gov (United States)

    Hony, S.; Heras, A. M.; Molster, F. J.; Smolders, K.

    2009-07-01

    Aims: We investigate the composition of the solid-state materials in the winds around S-type AGB stars. The S stars produce dust in their wind that bears a resemblance to the dust produced in some O-rich AGB stars. However, the reported resemblance is mostly based on IRAS/LRS spectra with limited spectral resolution, sensitivity, and wavelength coverage. Methods: We investigate the dust composition around S stars using ISO/SWS data that surpass the previous studies in terms of spectral resolution and wavelength coverage. We selected the dust producing S stars in the ISO/SWS archive with enough signal to perform a detailed dust analysis, and then compare the dust spectra from the 9 sources with the O-rich AGB spectra and a subset of M super-giants. We constructed average dust emission spectra of the different categories. Results: We report the discovery of several previously unreported dust emission features in the S star spectra. The long wavelength spectra of W Aql and π1 Gru exhibit the “30” μm feature attributed to MgS. Two sources exhibit a series of emission bands between 20 and 40 μm that we tentatively ascribe to Diopside. We show that the 10-20 μm spectra of the S stars are significantly different from the O-rich AGB stars. The O-rich stars exhibit a structured emission feature that is believed to arise from amorphous silicate and aluminium-oxide. The S stars lack the substructure found in the O-rich stars. Instead they show a smooth peak with a varying peak-position from source to source. We suggest that this feature is caused by a family of related materials, whose exact composition determines the peak position. The observed trend mimics the laboratory trend of non-stoichiometric silicates. In this scenario the degree of non-stoichiometry is related to the Mg to SiO4 ratio, in other words, to the amount of free O available during the dust grain growth. based on observations obtained with ISO, an ESA project with instruments funded by ESA Member

  1. Study of Diagenetic Features in Rudist Buildups of Cretaceous Edwards Formation Using Ground Based Hyperspectral Scanning and Terrestrial LiDAR

    Science.gov (United States)

    Krupnik, D.; Khan, S.; Okyay, U.; Hartzell, P. J.; Biber, K.

    2015-12-01

    Ground based remote sensing is a novel technique for development of digital outcrop models which can be instrumental in performing detailed qualitative and quantitative sedimentological analysis for the study of depositional environment, diagenetic processes, and hydrocarbon reservoir characterization. For this investigation, ground-based hyperspectral data collection is combined with terrestrial LiDAR to study outcrops of Late Albian rudist buildups of the Edwards formation in the Lake Georgetown Spillway in Williamson County, Texas. The Edwards formation consists of shallow water deposits of reef and associated inter-reef facies, including rudist bioherms and biostromes. It is a significant aquifer and was investigated as a hydrocarbon play in south central Texas. Hyperspectral data were used to map compositional variation in the outcrop by distinguishing spectral properties unique to each material. Lithological variation was mapped in detail to investigate the structure and composition of rudist buildups. Hyperspectral imagery was registered to a 3D model produced from the LiDAR point cloud with an accuracy of up to one pixel. Flat-topped toucasid-rich bioherm facies were distinguished from overlying toucasid-rich biostrome facies containing chert nodules, overlying sucrosic dolostones, and uppermost peloid wackestones and packstones of back-reef facies. Ground truth was established by petrographic study of samples from this area and has validated classification products of remote sensing data. Several types of porosity were observed and have been associated with increased dolomitization. This ongoing research involves integration of remotely sensed datasets to analyze geometrical and compositional properties of this carbonate formation at a finer scale than traditional methods have achieved and seeks to develop a workflow for quick and efficient ground based remote sensing-assisted outcrop studies.

  2. Numerical determination of the material properties of porous dust cakes

    NARCIS (Netherlands)

    Paszun, D.; Dominik, C.

    2008-01-01

    The formation of planetesimals requires the growth of dust particles through collisions. Micron-sized particles must grow by many orders of magnitude in mass. To understand and model the processes during this growth, both the mechanical properties and the interaction cross sections of aggregates

  3. Of data and dust

    CERN Multimedia

    Stephanie Hills

    2016-01-01

    The traditional image of an archive is one of dusty old boxes, books and papers. When your archive is digital, dust spells disaster. An innovative environmental sensor designed and built by a CERN IT specialist has become an essential element in the Laboratory’s data-preservation strategy.   The novel air particle monitoring sensor designed by CERN's Julien Leduc. CERN’s archive holds more than 130 petabytes of data from past and present high-energy physics experiments. Some of it is 40 years old, most of it needs to be kept forever, and all of it is held on tape cartridges (over 20,000 of them). The cartridges are held inside tape libraries with robotic arms that load them into tape drives where they can be read and written. Tape cartridges have many advantages over other data storage media, notably cost and long-term reliability, but topping the list of drawbacks is their vulnerability to contamination from airborne dust particles; a tiny piece of g...

  4. Spectrophotometry of Dust in Comet Hale-Bopp

    Science.gov (United States)

    Witteborn, Fred C. (Technical Monitor)

    1997-01-01

    Comets, such as Hale-Bopp (C/1995 O1), are frozen reservoirs of primitive solar nebula dust grains and ices. Analysis of the composition of cometary dust grains from infrared spectroscopic techniques permits an estimation of the types of organic and inorganic materials that constituted the early primitive solar nebula. In addition, the cometary bombardment of the Earth (approximately 3.5 Gy ago) supplied the water for the oceans and brought organic materials to Earth which may have been biogenic. Spectroscopic observations of comet Hale-Bopp suggest the possible presence of organic hydrocarbon species, silicate and olivine dust grains, and water ice. Spectroscopy near 3 microns obtained in Nov 1996 r=2.393 AU, delta=3.034 AU) shows a feature which we attribute to PAH emission. The spatial morphology of the 3.28 microns PAH feature is also presented. Optical and infrared spectrophotometric observations of comets convey valuable information about the spatial distribution and properties of dust and gas within the inner coma. In the optical and NIR shortward of 2 microns, the observed light is primarily scattered sunlight from the dust grains. At longer wavelengths, particularly in the 10 gm window, thermal emission from these grains dominates the radiation allowing an accurate estimate of grain sizes and chemical composition. Here we present an initial analysis of spectra taken with the NASA HIFOGS at 7-14 microns as part of a multiwavelength temporal study of the "comet of the century".

  5. Airborne Sea of Dust over China

    Science.gov (United States)

    2002-01-01

    TDust covered northern China in the last week of March during some of the worst dust storms to hit the region in a decade. The dust obscuring China's Inner Mongolian and Shanxi Provinces on March 24, 2002, is compared with a relatively clear day (October 31, 2001) in these images from the Multi-angle Imaging SpectroRadiometer's vertical-viewing (nadir) camera aboard NASA's Terra satellite. Each image represents an area of about 380 by 630 kilometers (236 by 391 miles). In the image from late March, shown on the right, wave patterns in the yellowish cloud liken the storm to an airborne ocean of dust. The veil of particulates obscures features on the surface north of the Yellow River (visible in the lower left). The area shown lies near the edge of the Gobi desert, a few hundred kilometers, or miles, west of Beijing. Dust originates from the desert and travels east across northern China toward the Pacific Ocean. For especially severe storms, fine particles can travel as far as North America. The Multi-angle Imaging SpectroRadiometer, built and managed by NASA's Jet Propulsion Laboratory, Pasadena, Calif., is one of five Earth-observing instruments aboard the Terra satellite, launched in December 1999. The instrument acquires images of Earth at nine angles simultaneously, using nine separate cameras pointed forward, downward and backward along its flight path. The change in reflection at different view angles affords the means to distinguish different types of atmospheric particles, cloud forms and land surface covers. Image courtesy NASA/GSFC/LaRC/JPL, MISR Team

  6. The Coupled Mars Dust and Water Cycles: Understanding How Clouds Affect the Vertical Distribution and Meridional Transport of Dust and Water.

    Science.gov (United States)

    Kahre, M. A.

    2015-01-01

    The dust and water cycles are crucial to the current Martian climate, and they are coupled through cloud formation. Dust strongly impacts the thermal structure of the atmosphere and thus greatly affects atmospheric circulation, while clouds provide radiative forcing and control the hemispheric exchange of water through the modification of the vertical distributions of water and dust. Recent improvements in the quality and sophistication of both observations and climate models allow for a more comprehensive understanding of how the interaction between the dust and water cycles (through cloud formation) affects the dust and water cycles individually. We focus here on the effects of clouds on the vertical distribution of dust and water, and how those vertical distributions control the net meridional transport of water. For this study, we utilize observations of temperature, dust and water ice from the Mars Climate Sounder (MCS) on the Mars Reconnaissance Orbiter (MRO) combined with the NASA ARC Mars Global Climate Model (MGCM). We demonstrate that the magnitude and nature of the net meridional transport of water between the northern and southern hemispheres during NH summer is sensitive to the vertical structure of the simulated aphelion cloud belt. We further examine how clouds influence the atmospheric thermal structure and thus the vertical structure of the cloud belt. Our goal is to identify and understand the importance of radiative/dynamic feedbacks due to the physical processes involved with cloud formation and evolution on the current climate of Mars.

  7. The Mars Dust and Water Cycles: Investigating the Influence of Clouds on the Vertical Distribution and Meridional Transport of Dust and Water.

    Science.gov (United States)

    Kahre, M. A.; Haberle, R. M.; Hollingsworth, J. L.; Brecht, A. S.; Urata, R.

    2015-01-01

    The dust and water cycles are critical to the current Martian climate, and they interact with each other through cloud formation. Dust modulates the thermal structure of the atmosphere and thus greatly influences atmospheric circulation. Clouds provide radiative forcing and control the net hemispheric transport of water through the alteration of the vertical distributions of water and dust. Recent advancements in the quality and sophistication of both climate models and observations enable an increased understanding of how the coupling between the dust and water cycles (through cloud formation) impacts the dust and water cycles. We focus here on the effects of clouds on the vertical distributions of dust and water and how those vertical distributions control the net meridional transport of water. We utilize observations of temperature, dust and water ice from the Mars Climate Sounder (MCS) on the Mars Reconnaissance Orbiter (MRO) and the NASA ARC Mars Global Climate Model (MGCM) to show that the magnitude and nature of the hemispheric exchange of water during NH summer is sensitive to the vertical structure of the simulated aphelion cloud belt. Further, we investigate how clouds influence atmospheric temperatures and thus the vertical structure of the cloud belt. Our goal is to isolate and understand the importance of radiative/dynamic feedbacks due to the physical processes involved with cloud formation and evolution on the current climate of Mars.

  8. Dust forecasting system in JMA

    International Nuclear Information System (INIS)

    Mikami, M; Tanaka, T Y; Maki, T

    2009-01-01

    JMAs dust forecasting information, which is based on a GCM dust model, is presented through the JMA website coupled with nowcast information. The website was updated recently and JMA and MOE joint 'KOSA' website was open from April 2008. Data assimilation technique will be introduced for improvement of the 'KOSA' information.

  9. Health hazards of cement dust

    International Nuclear Information System (INIS)

    Meo, Sultan A.

    2004-01-01

    ven in the 21st century, millions of people are working daily in a dusty environment. They are exposed to different types of health hazards such as fume, gases and dust, which are risk factors in developing occupational disease. Cement industry is involved in the development of structure of this advanced and modern world but generates dust during its production. Cement dust causes lung function impairment, chronic obstructive lung disease, restrictive lung disease, pneumoconiosis and carcinoma of the lungs, stomach and colon. Other studies have shown that cement dust may enter into the systemic circulation and thereby reach the essentially all the organs of body and affects the different tissues including heart, liver, spleen, bone, muscles and hairs and ultimately affecting their micro-structure and physiological performance. Most of the studies have been previously attempted to evaluate the effects of cement dust exposure on the basis of spirometry or radiology, or both. However, collective effort describing the general effects of cement dust on different organ and systems in humans or animals, or both has not been published. Therefore, the aim of this review is to gather the potential toxic effects of cement dust and to minimize the health risks in cement mill workers by providing them with information regarding the hazards of cement dust. (author)

  10. Parameterizing the interstellar dust temperature

    NARCIS (Netherlands)

    Hocuk, S.; Szűcs, L.; Caselli, P.; Cazaux, S.; Spaans, M.; Esplugues, G. B.

    2017-01-01

    The temperature of interstellar dust particles is of great importance to astronomers. It plays a crucial role in the thermodynamics of interstellar clouds, because of the gas-dust collisional coupling. It is also a key parameter in astrochemical studies that governs the rate at which molecules form

  11. 75 FR 3881 - Combustible Dust

    Science.gov (United States)

    2010-01-25

    ... Combustible Dust AGENCY: Occupational Safety and Health Administration (OSHA), Labor. ACTION: Notice of stakeholder meetings. SUMMARY: OSHA invites interested parties to participate in informal stakeholder meetings on the workplace hazards of combustible dust. OSHA plans to use the information gathered at these...

  12. 75 FR 10739 - Combustible Dust

    Science.gov (United States)

    2010-03-09

    ... Combustible Dust AGENCY: Occupational Safety and Health Administration (OSHA), Labor. ACTION: Notice of stakeholder meetings. SUMMARY: OSHA invites interested parties to participate in informal stakeholder meetings on the workplace hazards of combustible dust. OSHA plans to use the information gathered at these...

  13. Lunar Dust: Properties and Investigation Techniques

    Science.gov (United States)

    Kuznetsov, I. A.; Zakharov, A. V.; Dolnikov, G. G.; Lyash, A. N.; Afonin, V. V.; Popel, S. I.; Shashkova, I. A.; Borisov, N. D.

    2017-12-01

    Physical conditions in the near-surface layer of the Moon are overviewed. This medium is formed in the course of the permanent micrometeoroid bombardment of the lunar regolith and due to the exposure of the regolith to solar radiation and high-energy charged particles of solar and galactic origin. During a considerable part of a lunar day (more than 20%), the Moon is passing through the Earth's magnetosphere, where the conditions strongly differ from those in the interplanetary space. The external effects on the lunar regolith form the plasma-dusty medium above the lunar surface, the so-called lunar exosphere, whose characteristic altitude may reach several tens of kilometers. Observations of the near-surface dusty exosphere were carried out with the TV cameras onboard the landers Surveyor 5, 6, and 7 (1967-1968) and with the astrophotometer of Lunokhod-2 (1973). Their results showed that the near-surface layer glows above the sunlit surface of the Moon. This was interpreted as the scattering of solar light by dust particles. Direct detection of particles on the lunar surface was made by the Lunar Ejects and Meteorite (LEAM) instrument deployed by the Apollo 17 astronauts. Recently, the investigations of dust particles were performed by the Lunar Atmosphere and Dust Environment Explorer (LADEE) instrument at an altitude of several tens of kilometers. These observations urged forward the development of theoretical models for the lunar exosphere formation, and these models are being continuously improved. However, to date, many issues related to the dynamics of dust and the near-surface electric fields remain unresolved. Further investigations of the lunar exosphere are planned to be performed onboard the Russian landers Luna-Glob and Luna-Resurs.

  14. Nano structural Features of Silver Nanoparticles Powder Synthesized through Concurrent Formation of the Nano sized Particles of Both Starch and Silver

    International Nuclear Information System (INIS)

    Hebeish, A.; El-Rafie, M.H.; El-Sheikh, M.A.; El-Naggar, M.E.

    2013-01-01

    Green innovative strategy was developed to accomplish silver nanoparticles formation of starch-silver nanoparticles (St-AgNPs) in the powder form. Thus, St-AgNPs were synthesized through concurrent formation of the nano sized particles of both starch and silver. The alkali dissolved starch acts as reducing agent for silver ions and as stabilizing agent for the formed AgNPs. The chemical reduction process occurred in water bath under high-speed homogenizer. After completion of the reaction, the colloidal solution of AgNPs coated with alkali dissolved starch was cooled and precipitated using ethanol. The powder precipitate was collected by centrifugation, then washed, and dried; St-AgNPs powder was characterized using state-of-the-art facilities including UV-vis spectroscopy, Transmission Electron Microscopy (TEM), particle size analyzer (PS), Polydispersity index (PdI), Zeta potential (ZP), XRD, FT-IR, EDX, and TGA. TEM and XRD indicate that the average size of pure AgNPs does not exceed 20 nm with spherical shape and high concentration of AgNPs (30000 ppm). The results obtained from TGA indicates that the higher thermal stability of starch coated AgNPS than that of starch nanoparticles alone. In addition to the data obtained from EDX which reveals the presence of AgNPs and the data obtained from particle size analyzer and zeta potential determination indicate that the good uniformity and the highly stability of St-AgNPs).

  15. Andromeda's dust

    Energy Technology Data Exchange (ETDEWEB)

    Draine, B. T.; Aniano, G. [Princeton University Observatory, Peyton Hall, Princeton, NJ 08544-1001 (United States); Krause, Oliver; Groves, Brent; Sandstrom, Karin; Klaas, Ulrich; Linz, Hendrik; Rix, Hans-Walter; Schinnerer, Eva; Schmiedeke, Anika; Walter, Fabian [Max-Planck-Institut fur Astronomie, Konigstuhl 17, D-69117 Heidelberg (Germany); Braun, Robert [CSIRO—Astronomy and Space Science, P.O. Box 76, Epping, NWS 1710 (Australia); Leroy, Adam, E-mail: draine@astro.princeton.edu, E-mail: ganiano@ias.u-psud.fr [National Radio Astronomy Observatory, 520 Edgemont Road, Charlottesville, VA 22903 (United States)

    2014-01-10

    Spitzer Space Telescope and Herschel Space Observatory imaging of M31 is used, with a physical dust model, to construct maps of dust surface density, dust-to-gas ratio, starlight heating intensity, and polycyclic aromatic hydrocarbon (PAH) abundance, out to R ≈ 25 kpc. The global dust mass is M {sub d} = 5.4 × 10{sup 7} M {sub ☉}, the global dust/H mass ratio is M {sub d}/M {sub H} = 0.0081, and the global PAH abundance is (q {sub PAH}) = 0.039. The dust surface density has an inner ring at R = 5.6 kpc, a maximum at R = 11.2 kpc, and an outer ring at R ≈ 15.1 kpc. The dust/gas ratio varies from M {sub d}/M {sub H} ≈ 0.026 at the center to ∼0.0027 at R ≈ 25 kpc. From the dust/gas ratio, we estimate the interstellar medium metallicity to vary by a factor ∼10, from Z/Z {sub ☉} ≈ 3 at R = 0 to ∼0.3 at R = 25 kpc. The dust heating rate parameter (U) peaks at the center, with (U) ≈ 35, declining to (U) ≈ 0.25 at R = 20 kpc. Within the central kiloparsec, the starlight heating intensity inferred from the dust modeling is close to what is estimated from the stars in the bulge. The PAH abundance reaches a peak q {sub PAH} ≈ 0.045 at R ≈ 11.2 kpc. When allowance is made for the different spectrum of the bulge stars, q {sub PAH} for the dust in the central kiloparsec is similar to the overall value of q {sub PAH} in the disk. The silicate-graphite-PAH dust model used here is generally able to reproduce the observed dust spectral energy distribution across M31, but overpredicts 500 μm emission at R ≈ 2-6 kpc, suggesting that at R = 2-6 kpc, the dust opacity varies more steeply with frequency (with β ≈ 2.3 between 200 and 600 μm) than in the model.

  16. Dust in flowing magnetized plasma

    International Nuclear Information System (INIS)

    Pandey, Birendra P.; Samarian, Alex A.; Vladimirov, Sergey V.

    2009-01-01

    Plasma flows occur in almost every laboratory device and interactions of flowing plasmas with near-wall impurities and/or dust significantly affects the efficiency and lifetime of such devices. The charged dust inside the magnetized flowing plasma moves primarily under the influence of the plasma drag and electric forces. Here, the charge on the dust, plasma potential, and plasma density are calculated self-consistently. The electrons are assumed non-Boltzmannian and the effect of electron magnetization and electron-atom collisions on the dust charge is calculated in a self-consistent fashion. For various plasma magnetization parameters viz. the ratio of the electron and ion cyclotron frequencies to their respective collision frequencies, plasma-atom and ionization frequencies, the evolution of the plasma potential and density in the flow region is investigated. The variation of the dust charge profile is shown to be a sensitive function of plasma parameters. (author)

  17. Regional Modeling of Dust Mass Balance and Radiative Forcing over East Asia using WRF-Chem

    Energy Technology Data Exchange (ETDEWEB)

    Chen, Siyu; Zhao, Chun; Qian, Yun; Leung, Lai-Yung R.; Huang, J.; Huang, Zhongwei; Bi, Jianrong; Zhang, Wu; Shi, Jinsen; Yang, Lei; Li, Deshuai; Li, Jinxin

    2014-12-01

    The Weather Research and Forecasting model with Chemistry (WRF-Chem) is used to investigate the seasonal and annual variations of mineral dust over East Asia during 2007-2011, with a focus on the dust mass balance and radiative forcing. A variety of measurements from in-stu and satellite observations have been used to evaluate simulation results. Generally, WRF-Chem reproduces not only the column variability but also the vertical profile and size distribution of mineral dust over and near the dust source regions of East Asia. We investigate the dust lifecycle and the factors that control the seasonal and spatial variations of dust mass balance and radiative forcing over the seven sub-regions of East Asia, i.e. source regions, the Tibetan Plateau, Northern China, Southern China, the ocean outflow region, and Korea-Japan regions. Results show that, over the source regions, transport and dry deposition are the two dominant sinks. Transport contributes to ~30% of the dust sink over the source regions. Dust results in a surface cooling of up to -14 and -10 W m-2, atmospheric warming of up to 20 and 15 W m-2, and TOA cooling of -5 and -8 W m-2 over the two major dust source regions of East Asia, respectively. Over the Tibetan Plateau, transport is the dominant source with a peak in summer. Over identified outflow regions, maximum dust mass loading in spring is contributed by the transport. Dry and wet depositions are the comparably dominant sinks, but wet deposition is larger than dry deposition over the Korea-Japan region, particularly in spring (70% versus 30%). The WRF-Chem simulations can generally capture the measured features of dust aerosols and its radaitve properties and dust mass balance over East Asia, which provides confidence for use in further investigation of dust impact on climate over East Asia.

  18. Synergistic Use of Remote Sensing and Modeling for Tracing Dust Storms in the Mediterranean

    Directory of Open Access Journals (Sweden)

    D. G. Kaskaoutis

    2012-01-01

    Full Text Available This study focuses on the detection of the dust source region and monitoring of the transport of the dust plume from its primary outflow to final deposition. The application area is the Sahara desert and the eastern Mediterranean, where two dust events occurred during the period 4–6 February 2009, an unusual event for a winter period. The Aqua-MODIS and OMI observations clearly define the spatial distribution of the dust plumes, while the CALIPSO observations of total attenuated backscatter (TAB at 532 nm, depolarization ratio (DR, and attenuated color ratio (1064/532 nm on 5 February 2009 provide a clear view and vertical structure of the dust-laden layer. The dust source region is defined to be near the Chad-Niger-Libyan borders, using satellite observations and model (DREAM output. This dust plume is vertically extended up to 2.5 km and is observed as a mass plume of dust from surface level to that altitude, where the vertical variation of TAB (0.002 to 0.2 and DR (0.2–0.5 implies dust-laden layer with non-spherical particles. CALIPSO profiles show that after the dust plume reached at its highest level, the dust particles start to be deposited over the Mediterranean and the initial dust plume was strongly attenuated, while features of dust were limited below about 1–1.5 km for latitudes northern of ~36° (Greek territory.

  19. [Nephrolithiasis coexisting with type 2 diabetes: current concept of the features of stone formation and the effects of hypoglycemic therapy on lithogenesis].

    Science.gov (United States)

    Yarovoi, S K; Golovanov, S A; Khaziakhmetova, M R; Dzhalilov, O V

    2017-07-01

    The article analyzes Russian and international literature examining specific features of the pathogenesis of renal stones in the setting of carbohydrate metabolism disorders. The authors outline the renal effects of the main pharmacological groups of oral hypoglycemic drugs regarding metaphylaxis of nephrolithiasis. An increased risk of nephrolithiasis in type 2 diabetes mellitus is realized through hyperuricemia with concurrent urine acidification. Current literature is lacking studies on the effects of oral hypoglycemic drugs on urine properties. There are reports about the tendency of biguanides (metformin) to shift the urine reaction to the acid side. Derivatives of sulfonylureas, incretins and inhibitors of dipeptidyl peptidase-4, do not significantly affect the urinary acidity and urinary salt excretion. Inhibitors of sodium-glucose cotransporter type 2 (gliflozins) tend to reduce the blood level of urate, but the mechanism of this effect and the safety of these drugs in the setting of urolithiasis have not yet been investigated.

  20. Reducing dust at longwall shearers by confining the dust cloud to the face

    Energy Technology Data Exchange (ETDEWEB)

    Kissell, F.; Jayaraman, N.; Taylor, C.; Jankowski, R.

    1981-02-01

    The Bureau of Mines has developed the shearer-clearer dust control system for longwall shearers. The system partitions the airflow around the shearer into a clean split and a contaminated split. The dust cloud is confined to the vicinity of the coal face, while the shearer operators remain in the clean split on the gob side of the machine. The shearer-clearer operates on the principle that each water spray moves air like a small fan and can be positioned to direct the dustry air toward the face. The hardware is inexpensive and can be installed in a single shift. It consists of several strategically mounted water sprays and one or more passive barriers. Laboratory testing indicates reductions in shearer operator dust exposure as high as 97%. Preliminary results indicate that considerable dust reductions at the shearer may also be obtained. In conjunction with the development of the shearer-clearer, dust surveys were conducted in three other mines to determine if some shearer spray systems currently in use partition the flow in a manner similar to the shearer-clearer, and if so, whether this partially accounts for markedly cleaner conditions on some longwalls. Results indicate this to be the case: a feature of the cleaner longwalls was a downwind orientation of their water sprays, which is a key element of the shearer-clearer system. The shearer-clearer system described was designed for an Eickhoff EDW 300 shearer working a 7-foot coal seam. Testing to date has concentrated on cutting directions counter to the primary airflow. It is expected that different systems will be required to accommodate the range of conditions occurring underground. Application to conditions different than those described is not likely to produce the same results.

  1. Ice Nucleation Activity of Various Agricultural Soil Dust Aerosol Particles

    Science.gov (United States)

    Schiebel, Thea; Höhler, Kristina; Funk, Roger; Hill, Thomas C. J.; Levin, Ezra J. T.; Nadolny, Jens; Steinke, Isabelle; Suski, Kaitlyn J.; Ullrich, Romy; Wagner, Robert; Weber, Ines; DeMott, Paul J.; Möhler, Ottmar

    2016-04-01

    Recent investigations at the cloud simulation chamber AIDA (Aerosol Interactions and Dynamics in the Atmosphere) suggest that agricultural soil dust has an ice nucleation ability that is enhanced up to a factor of 10 compared to desert dust, especially at temperatures above -26 °C (Steinke et al., in preparation for submission). This enhancement might be caused by the contribution of very ice-active biological particles. In addition, soil dust aerosol particles often contain a considerably higher amount of organic matter compared to desert dust particles. To test agricultural soil dust as a source of ice nucleating particles, especially for ice formation in warm clouds, we conducted a series of laboratory measurements with different soil dust samples to extend the existing AIDA dataset. The AIDA has a volume of 84 m3 and operates under atmospherically relevant conditions over wide ranges of temperature, pressure and humidity. By controlled adiabatic expansions, the ascent of an air parcel in the troposphere can be simulated. As a supplement to the AIDA facility, we use the INKA (Ice Nucleation Instrument of the KArlsruhe Institute of Technology) continuous flow diffusion chamber based on the design by Rogers (1988) to expose the sampled aerosol particles to a continuously increasing saturation ratio by keeping the aerosol temperature constant. For our experiments, soil dust was dry dispersed into the AIDA vessel. First, fast saturation ratio scans at different temperatures were performed with INKA, sampling soil dust aerosol particles directly from the AIDA vessel. Then, we conducted the AIDA expansion experiment starting at a preset temperature. The combination of these two different methods provides a robust data set on the temperature-dependent ice activity of various agriculture soil dust aerosol particles with a special focus on relatively high temperatures. In addition, to extend the data set, we investigated the role of biological and organic matter in more

  2. The rarity of dust in metal-poor galaxies.

    Science.gov (United States)

    Fisher, David B; Bolatto, Alberto D; Herrera-Camus, Rodrigo; Draine, Bruce T; Donaldson, Jessica; Walter, Fabian; Sandstrom, Karin M; Leroy, Adam K; Cannon, John; Gordon, Karl

    2014-01-09

    Galaxies observed at redshift z > 6, when the Universe was less than a billion years old, thus far very rarely show evidence of the cold dust that accompanies star formation in the local Universe, where the dust-to-gas mass ratio is around one per cent. A prototypical example is the galaxy Himiko (z = 6.6), which--a mere 840 million years after the Big Bang--is forming stars at a rate of 30-100 solar masses per year, yielding a mass assembly time of about 150 × 10(6) years. Himiko is thought to have a low fraction (2-3 per cent of the Sun's) of elements heavier than helium (low metallicity), and although its gas mass cannot yet be determined its dust-to-stellar mass ratio is constrained to be less than 0.05 per cent. The local dwarf galaxy I Zwicky 18, which has a metallicity about 4 per cent that of the Sun's and is forming stars less rapidly (assembly time about 1.6 × 10(9) years) than Himiko but still vigorously for its mass, is also very dust deficient and is perhaps one of the best analogues of primitive galaxies accessible to detailed study. Here we report observations of dust emission from I Zw 18, from which we determine its dust mass to be 450-1,800 solar masses, yielding a dust-to-stellar mass ratio of about 10(-6) to 10(-5) and a dust-to-gas mass ratio of 3.2-13 × 10(-6). If I Zw 18 is a reasonable analogue of Himiko, then Himiko's dust mass must be around 50,000 solar masses, a factor of 100 below the current upper limit. These numbers are quite uncertain, but if most high-z galaxies are more like Himiko than like the very-high-dust-mass galaxy SDSS J114816.64 + 525150.3 at z ≈ 6, which hosts a quasar, then our prospects for detecting the gas and dust inside such galaxies are much poorer than hitherto anticipated.

  3. NMMB/BSC-DUST: an online mineral dust atmospheric model from meso to global scales

    Science.gov (United States)

    Haustein, K.; Pérez, C.; Jorba, O.; Baldasano, J. M.; Janjic, Z.; Black, T.; Nickovic, S.

    2009-04-01

    While mineral dust distribution and effects are important at global scales, they strongly depend on dust emissions that are controlled on small spatial and temporal scales. Most global dust models use prescribed wind fields provided by meteorological centers (e.g., NCEP and ECMWF) and their spatial resolution is currently never better than about 1°×1°. Regional dust models offer substantially higher resolution (10-20 km) and are typically coupled with weather forecast models that simulate processes that GCMs either cannot resolve or can resolve only poorly. These include internal circulation features such as the low-level nocturnal jet which is a crucial feature for dust emission in several dust ‘hot spot' sources in North Africa. Based on our modeling experience with the BSC-DREAM regional forecast model (http://www.bsc.es/projects/earthscience/DREAM/) we are currently implementing an improved mineral dust model [Pérez et al., 2008] coupled online with the new global/regional NMMB atmospheric model under development in NOAA/NCEP/EMC [Janjic, 2005]. The NMMB is an evolution of the operational WRF-NMME extending from meso to global scales. The NMMB will become the next-generation NCEP model for operational weather forecast in 2010. The corresponding unified non-hydrostatic dynamical core ranges from meso to global scale allowing regional and global simulations. It has got an add-on non-hydrostatic module and it is based on the Arakawa B-grid and hybrid pressure-sigma vertical coordinates. NMMB is fully embedded into the Earth System Modeling Framework (ESMF), treating dynamics and physics separately and coupling them easily within the ESMF structure. Our main goal is to provide global dust forecasts up to 7 days at mesoscale resolutions. New features of the model include a physically-based dust emission scheme after White [1979], Iversen and White [1982] and Marticorena and Bergametti [1995] that takes the effects of saltation and sandblasting into account

  4. PECULIAR FEATURES OF MACHINING MARKS FORMATION ON SURFACE ОF TITANIUM SPECIMEN WITH SINGLE ELECTRO CONTACT ACTION OF WIRE ELECTRODE-TOOL

    Directory of Open Access Journals (Sweden)

    M. G. Kiselev

    2013-01-01

    Full Text Available The paper presents an investigation of shape and geometry parameters of machining marks obtained on the surface of titanium specimen with a single electro contact action of a wire electrode-tool. A description of the developed unit and methodology for execution of experimental investigations has been given in the paper. The paper provides and analyzes experimentally obtained data showing the effect of conditions and modes of single electro contact action of wire tool-electrode on the shape and geometrical parameters of machining marks obtained on the surface of titanium specimen. It is shown that the formation of these traces occurs in the context of joint action of both the electrical erosion and mechanical action of the working part of the wire electrode-tool on the surface of the titanium specimen that expands technological capabilities of electro contact treatment while  solving problems associated with targeted modification of the original work-piece surfaces.

  5. Features of the propagation of pseudorandom pulse signals from the shelf to deep water in the presence of gyre formation on the acoustic track

    Science.gov (United States)

    Akulichev, V. A.; Burenin, A. V.; Ladychenko, S. Yu.; Lobanov, V. B.; Morgunov, Yu. N.

    2017-08-01

    The paper discusses the results of an experiment conducted in the Sea of Japan in March 2016 on an acoustic track 194 km long in winter hydrological conditions. The most complex case of propagation of pseudorandom pulse signals from the shelf to deep water in the presence of gyre formation on the acoustic track. An analysis of the experimentally obtained pulse characteristics show that at all points, a maximum, in terms of amplitude, first arrival of acoustic energy is recorded. This is evidence that at a given depth horizon, pulses that have passed the shortest distance through a near-surface sound channel at small angles close to zero are received first. The calculation method of mean sound velocity on the track, based on the satellite data of surface temperature monitoring, is proposed. We expect that the results obtained with this method can be successfully used for the purposes of acoustic range finding and navigation.

  6. Cycloid motions of grains in a dust plasma

    Science.gov (United States)

    Yong-Liang, Zhang; Fan, Feng; Fu-Cheng, Liu; Li-Fang, Dong; Ya-Feng, He

    2016-02-01

    Hypocycloid and epicycloid motions of irregular grains (pine pollen) are observed for the first time in a dust plasma in a two-dimensional (2D) horizontal plane. These cycloid motions can be regarded as a combination of a primary circle and a secondary circle. An inverse Magnus force originating from the spin of the irregular grain gives rise to the primary circle. Radial confinement resulting from the electrostatic force and the ion drag force, together with inverse Magnus force, plays an important role in the formation of the secondary circle. In addition, the cyclotron radius is seen to change periodically during the cycloid motion. Force analysis and comparison experiments have shown that the cycloid motions are distinctive features of an irregular grain immersed in a plasma. Project supported by the National Natural Science Foundation of China (Grant Nos. 11205044 and 11405042), the Natural Science Foundation of Hebei Province, China (Grant Nos. A2011201006 and A2012201015), the Research Foundation of Education Bureau of Hebei Province, China (Grant No. Y2012009), the Program for Young Principal Investigators of Hebei Province, and the Midwest Universities Comprehensive Strength Promotion Project.

  7. Risk of Adverse Health and Performance Effects of Celestial Dust Exposure

    Science.gov (United States)

    Scully, Robert R.; Meyers, Valerie E.

    2015-01-01

    Crew members can be directly exposed to celestial dust in several ways. After crew members perform extravehicular activities (EVAs), they may introduce into the habitat dust that will have collected on spacesuits and boots. Cleaning of the suits between EVAs and changing of the Environmental Control Life Support System filters are other operations that could result in direct exposure to celestial dusts. In addition, if the spacesuits used in exploration missions abrade the skin, as current EVA suits have, then contact with these wounds would provide a source of exposure. Further, if celestial dusts gain access to a suit's interior, as was the case during the Apollo missions, the dust could serve as an additional source of abrasions or enhance suit-induced injuries. When a crew leaves the surface of a celestial body and returns to microgravity, the dust that is introduced into the return vehicle will "float," thus increasing the opportunity for ocular and respiratory injury. Because the features of the respirable fraction of lunar dusts indicate they could be toxic to humans, NASA conducted several studies utilizing lunar dust simulants and authentic lunar dust to determine the unique properties of lunar dust that affect physiology, assess the dermal and ocular irritancy of the dust, and establish a permissible exposure limit for episodic exposure to airborne lunar dust during missions that would involve no more than 6 months stay on the lunar surface. Studies, with authentic lunar soils from both highland (Apollo 16) and mare (Apollo17) regions demonstrated that the lunar soil is highly abrasive to a high fidelity model of human skin. Studies of lunar dust returned during the Apollo 14 mission from an area of the moon in which the soils were comprised of mineral constituents from both major geological regions (highlands and mares regions) demonstrated only minimal ocular irritancy, and pulmonary toxicity that was less than the highly toxic terrestrial crystalline

  8. Direct Radiative Effect of Mineral Dust on the Middle East and North Africa Climate

    KAUST Repository

    Bangalath, Hamza Kunhu

    2016-11-01

    Dust-climate interaction over the Middle East and North Africa (MENA) has long been studied, as it is the "dustiest" region on earth. However, the quantitative and qualitative understanding of the role of dust direct radiative effect on MENA climate is still rudimentary. The present dissertation investigates dust direct radiative effect on MENA climate during summer with a special emphasis on the sensitivity of climate response to dust shortwave absorption, which is one of the most uncertain components of dust direct radiative effect. Simulations are conducted with and without dust radiative effect, to differentiate the effect of dust on climate. To elucidate the sensitivity of climate response to dust shortwave absorption, simulations with dust assume three different cases of dust shortwave absorption, representing dust as a very efficient, standard and inefficient shortwave absorber. The non-uniformly distributed dust perturb circulations at various scales. Therefore, the present study takes advantage of the high spatial resolution capabilities of an Atmospheric General Circulation Model (AGCM), High Resolution Atmospheric Model (HiRAM), which incorporates global and regional circulations. AMIP-style global high-resolution simulations are conducted at a spatial resolution of 25 km. A significant response in the strength and position of the local Hadley circulation is predicted in response to meridionally asymmetric distribution of dust and the corresponding radiative effects. Significant responses are also found in regional circulation features such as African Easterly Jet and West African Monsoon circulation. Consistent with these dynamic responses at various scales, the tropical rainbelt across MENA strengthens and shifts northward. Similarly, the temperature under rainbelt cools and that over subtropical deserts warms. Inter-comparison of various dust shortwave absorption cases shows that the response of the MENA tropical rainbelt is extremely sensitive to the

  9. Engineering knowledge requirements for sand and dust on Mars

    Science.gov (United States)

    Kaplan, D. I.

    1991-01-01

    The successful landing of human beings on Mars and the establishment of a permanent outpost there will require an understanding of the Martian environment by the engineers. A key feature of the Martian environment is the nearly ubiquitous presence of sand and dust. The process which the engineering community will undertake to determine the sensitivities of their designs to the current level of knowledge about Mars sand and dust is emphasized. The interaction of the engineering community with the space exploration initiative (SEI) mission planners and management is described.

  10. Childhood to adolescence: dust and gas clearing in protoplanetary disks

    Science.gov (United States)

    Brown, Joanna Margaret

    Disks are ubiquitous around young stars. Over time, disks dissipate, revealing planets that formed hidden by their natal dust. Since direct detection of young planets at small orbital radii is currently impossible, other tracers of planet formation must be found. One sign of disk evolution, potentially linked to planet formation, is the opening of a gap or inner hole in the disk. In this thesis, I have identified and characterized several cold disks with large inner gaps but retaining massive primordial outer disks. While cold disks are not common, with ~5% of disks showing signs of inner gaps, they provide proof that at least some disks evolve from the inside-out. These large gaps are equivalent to dust clearing from inside the Earth's orbit to Neptune's orbit or even the inner Kuiper belt. Unlike more evolved systems like our own, the central star is often still accreting and a large outer disk remains. I identified four cold disks in Spitzer 5-40 μm spectra and modeled these disks using a 2-D radiative transfer code to determine the gap properties. Outer gap radii of 20-45 AU were derived. However, spectrophotometric identification is indirect and model-dependent. To validate this interpretation, I observed three disks with a submillimeter interferometer and obtained the first direct images of the central holes. The images agree well with the gap sizes derived from the spectrophotometry. One system, LkH&alpha 330, has a very steep outer gap edge which seems more consistent with gravitational perturbation rather than gradual processes, such as grain growth and settling. Roughly 70% of cold disks show CO v=1&rarr 0 gas emission from the inner 1 AU and therefore are unlikely to have evolved due to photoevaporation. The derived rotation temperatures are significantly lower for the cold disks than disks without gaps. Unresolved (sub)millimeter photometry shows that cold disks have steeper colors, indicating that they are optically thin at these wavelengths, unlike

  11. Estimation of the emission of radioactive contaminated dust in connection with the remediation activities of the Wismut GmbH

    International Nuclear Information System (INIS)

    Loebner, W.; Lange, C.; Hinz, W.

    1998-01-01

    Radiological protection regulations require assessment of exposure to workers and the general public from the inhalation of contaminated dust due to remediation activities performed by WISMUT GmbH. Relocation activities of waste pile material and vehicle movements on contaminated surfaces are characterized as diffuse dust emissions. Specific measurements performed near working places were aimed at the quantification of dust generation rates. Findings of dust concentration measurements, particle size distributions and activity concentrations of longlived alpha emitters contained in dust during waste pile relocation activities are presented. In addition, investigations focused on dust release by wind erosion which is significantly determined by wind speed, soil roughness and soil properties (particle size distribution, moisture, crust formation). Quantification of dust release by wind erosion was performed under field conditions by means of a mobile wind tunnel. (orig.) [de

  12. Ulysses dust measurements near Jupiter.

    Science.gov (United States)

    Grün, E; Zook, H A; Baguhl, M; Fechtig, H; Hanner, M S; Kissel, J; Lindblad, B A; Linkert, D; Linkert, G; Mann, I B

    1992-09-11

    Submicrometer- to micrometer-sized particles were recorded by the Ulysses dust detector within 40 days of the Jupiter flyby. Nine impacts were recorded within 50 Jupiter radii with most of them recorded after closest approach. Three of these impacts are consistent with particles on prograde orbits around Jupiter and the rest are believed to have resulted from gravitationally focused interplanetary dust. From the ratio of the impact rate before the Jupiter flyby to the impact rate after the Jupiter flyby it is concluded that interplanetary dust particles at the distance of Jupiter move on mostly retrograde orbits. On 10 March 1992, Ulysses passed through an intense dust stream. The dust detector recorded 126 impacts within 26 hours. The stream particles were moving on highly inclined and apparently hyperbolic orbits with perihelion distances of >5 astronomical units. Interplanetary dust is lost rather quickly from the solar system through collisions and other mechanisms and must be almost continuously replenished to maintain observed abundances. Dust flux measurements, therefore, give evidence of the recent rates of production from sources such as comets, asteroids, and moons, as well as the possible presence of interstellar grains.

  13. Milky Way Tomography IV: Dissecting Dust

    Energy Technology Data Exchange (ETDEWEB)

    Berry, Michael; /Washington U., Seattle, Astron. Dept. /Rutgers U., Piscataway; Ivezic, Zeljko; /Washington U., Seattle, Astron. Dept.; Sesar, Branimir; /Caltech; Juric, Mario; /Harvard U., Phys. Dept.; Schlafly, Edward F.; /Harvard-Smithsonian Ctr. Astrophys.; Bellovary, Jillian; /Michigan U.; Finkbeiner, Douglas; /Harvard-Smithsonian Ctr. Astrophys.; Vrbanec, Dijana; /Zagreb U.; Beers, Timothy C.; /Natl. Solar Observ., Tucson; Brooks, Keira J.; /Washington U., Seattle, Astron. Dept.; Schneider, Donald P.; /Penn State U. /Washington U., Seattle, Astron. Dept.

    2011-11-01

    intrinsic scatter of R{sub V} in the regions probed by SEGUE stripes is {approx} 0.2. We introduce a method for efficient selection of candidate red giant stars in the disk, dubbed 'dusty parallax relation', which utilizes a correlation between distance and the extinction along the line of sight. We make these best-fit parameters, as well as all the input SDSS and 2MASS data, publicly available in a user-friendly format. These data can be used for studies of stellar number density distribution, the distribution of dust properties, for selecting sources whose SED differs from SEDs for high-latitude main sequence stars, and for estimating distances to dust clouds and, in turn, to molecular gas clouds.

  14. Development of body, head and brain features in the Australian fat-tailed dunnart (Sminthopsis crassicaudata; Marsupialia: Dasyuridae); A postnatal model of forebrain formation.

    Science.gov (United States)

    Suárez, Rodrigo; Paolino, Annalisa; Kozulin, Peter; Fenlon, Laura R; Morcom, Laura R; Englebright, Robert; O'Hara, Patricia J; Murray, Peter J; Richards, Linda J

    2017-01-01

    Most of our understanding of forebrain development comes from research of eutherian mammals, such as rodents, primates, and carnivores. However, as the cerebral cortex forms largely prenatally, observation and manipulation of its development has required invasive and/or ex vivo procedures. Marsupials, on the other hand, are born at comparatively earlier stages of development and most events of forebrain formation occur once attached to the teat, thereby permitting continuous and non-invasive experimental access. Here, we take advantage of this aspect of marsupial biology to establish and characterise a resourceful laboratory model of forebrain development: the fat-tailed dunnart (Sminthopsis crassicaudata), a mouse-sized carnivorous Australian marsupial. We present an anatomical description of the postnatal development of the body, head and brain in dunnarts, and provide a staging system compatible with human and mouse developmental stages. As compared to eutherians, the orofacial region develops earlier in dunnarts, while forebrain development is largely protracted, extending for more than 40 days versus ca. 15 days in mice. We discuss the benefits of fat-tailed dunnarts as laboratory animals in studies of developmental biology, with an emphasis on how their accessibility in the pouch can help address new experimental questions, especially regarding mechanisms of brain development and evolution.

  15. Features of formation of car-traffic in a regional transportation system in conditions the multi-agents organization of a railway transportation

    Directory of Open Access Journals (Sweden)

    Aleksandr Leonidovich Kazakov

    2011-09-01

    Full Text Available As a result of structural reform of Russian railways, a host of agents that provide customers with loading resources, especially wagons for transport by railway. These processes reduce in efficiency of the car fleet, increasing transportation costs, shortage of cars for many customers, an increase of empty runs and, as a result, a depletion of a number of sections of the network carrying capacity at a reduced total volume of rail traffic. The article describes the reasons for this situation due to the mismatch occurred heterogeneity of rolling stock to existing planning conditions and tariffs. It is also shown that the inefficiency of decentralized car fleet contributes to the predominance of tree-type network, and the importance of this factor in the new environment has increased substantially. To ensure the efficient operation of rail transport as a systemic industry, providing mass-haul transport, it is proposed for integration into a regional logistics. Freight terminals regional logistics transportation and distribution system (RLTRS is appropriate to create on the basis of major freight railway stations. Thus, the adaptation of planning car traffic volume and train formation to modern standards, the establishment of tariff incentives and long-term changes in network configuration are considered as a prerequisite for the transformation of local transport and technological systems on the network of Russian railways into the integrated transport and logistics systems.

  16. PW Vulpeculae - a dust-poor DG Herculis?

    International Nuclear Information System (INIS)

    Gehrz, R.D.; Harrison, T.E.; Ney, E.P.; Matthews, K.; Neugebauer, G.

    1988-01-01

    The paper reports 2.3-19.5 micron infrared photometry of the very slow nova PW Vul during August 12, 1984 to October 19, 1986. Some aspects of the eruptions of PW Vul and DQ Her were similar in detail, but differing physical conditions in the ejecta caused dust formation to proceed at vastly different efficiencies in the two novae. It is argued that, although an optically thin dust shell eventually condensed in the ejecta of PW Vul, the dust formation process was severely suppressed compared to classical DQ Her novae. Expansion of the pseudophotosphere implies a very slow ejection speed which is consistent with the long dust formation time. Several effects which could have suppressed the grain growth process are discussed. The nova remnant emitted between 500 and 40,000 solar luminosities 812 days after the eruption. Comparison of the photometric data for PW Vul with recent measurements of its sister nova, QU Vul, implies that the presence of silicate emission and strong fine structure line emission during the late stages of PW Vul's development cannot be completely ruled out. 43 references

  17. Triton's streaks as windblown dust

    Science.gov (United States)

    Sagan, Carl; Chyba, Christopher

    1990-01-01

    Explanations for the surface streaks observed by Voyager 2 on Triton's southern hemisphere are discussed. It is shown that, despite Triton's tenuous atmosphere, low-cohesion dust trains with diameters of about 5 micron or less may be carried into suspension by aeolian surface shear stress, given expected geostrophic wind speeds of about 10 m/s. For geyser-like erupting dust plumes, it is shown that dust-settling time scales and expected wind velocities can produce streaks with length scales in good agreement with those of the streaks. Thus, both geyserlike eruptions or direct lifting by surface winds appear to be viable mechanisms for the origin of the streaks.

  18. Microwave spectral lines in galactic dust globules

    International Nuclear Information System (INIS)

    Martin, R.N.; Barrett, A.H.

    1978-01-01

    In order to better understand galactic dust globules, a program of mapping several molecular transitions in these clouds has been undertaken. The results of observations of the J=1→0 rotational transitions of CO, 13 CO, C 18 O, and CS, the J=2→1rotational transitions of CS and C 34 S, the J, K=1, 1 and J, K=2, 2 inversion transitions of NH 3 , the J/sub KKprime/=1 11 →1 10 and J/sub KKprime/=2 12 →2 11 transitions of H 2 CO, and the OH 2 Pi/sub 3/2/F=2→2 and F=1→1 transitions are reported here. Twelve globules have been selected for observation; seven of these were studied in detail and the remainder observed only sparsely. A strong positive correlation appears to exist between the spatial extent of the molecular emission (or absorption) and the optical features of the globule. Even the main isotope of CO shows this correlation between dust extinction and molecular emission. Close examination of the Palomar prints reveals dust wherever CO is observed, and CO is probably a good tracer of dust extinction.The simultaneous observation of many molecular transitions has proven useful in obtaining reliable physical parameters for the dust globules. For example, CO and NH 3 are reliable thermometers of the kinetic temperature, and CS and NH 3 are indicators of the total gas density. The kinetic temperatures of the globules are almost always approx.10 K, and the derived H 2 densities are 10/sup 3.4/-10/sup 4.5/ cm -3 . The density in the core of the globules could well be larger than these value, which represent an average for the entire cloud. The kinetic temperature appears uniform across each cloud (within a few kelvins), in agreement with theoretical predictions. All of the globules studied in detail appear to be gravitationally bound and collapsing objects. Rotation has been observed in at least two globules (B163 and B163 SW). The projected axis of rotation is in a direction opposite to that of the Galaxy

  19. Dust Dynamics Near Planetary Surfaces

    Science.gov (United States)

    Colwell, Joshua; Hughes, Anna; Grund, Chris

    Observations of a lunar "horizon glow" by several Surveyor spacecraft in the 1960s opened the study of the dynamics of charged dust particles near planetary surfaces. The surfaces of the Moon and other airless planetary bodies in the solar system (asteroids, and other moons) are directly exposed to the solar wind and ionizing solar ultraviolet radiation, resulting in a time-dependent electric surface potential. Because these same objects are also exposed to bombardment by micrometeoroids, the surfaces are usually characterized by a power-law size distribution of dust that extends to sub-micron-sized particles. Individual particles can acquire a charge different from their surroundings leading to electrostatic levitation. Once levitated, particles may simply return to the surface on nearly ballistic trajectories, escape entirely from the moon or asteroid if the initial velocity is large, or in some cases be stably levitated for extended periods of time. All three outcomes have observable consequences. Furthermore, the behavior of charged dust near the surface has practical implications for planned future manned and unmanned activities on the lunar surface. Charged dust particles also act as sensitive probes of the near-surface plasma environment. Recent numerical modeling of dust levitation and transport show that charged micron-sized dust is likely to accumulate in topographic lows such as craters, providing a mechanism for the creation of dust "ponds" observed on the asteroid 433 Eros. Such deposition can occur when particles are supported by the photoelectron sheath above the dayside and drift over shadowed regions of craters where the surface potential is much smaller. Earlier studies of the lunar horizon glow are consistent with those particles being on simple ballistic trajectories following electrostatic launching from the surface. Smaller particles may be accelerated from the lunar surface to high altitudes consistent with observations of high altitude

  20. 30 CFR 75.402 - Rock dusting.

    Science.gov (United States)

    2010-07-01

    ... 30 Mineral Resources 1 2010-07-01 2010-07-01 false Rock dusting. 75.402 Section 75.402 Mineral... SAFETY STANDARDS-UNDERGROUND COAL MINES Combustible Materials and Rock Dusting § 75.402 Rock dusting... or too high in incombustible content to propagate an explosion, shall be rock dusted to within 40...

  1. Evaluation of the Corrosivity of Dust Deposited on Waste Packages at Yucca Mountain, Nevada

    International Nuclear Information System (INIS)

    C. Bryan; R. Jarek; T. Wolery; D. Shields; M. Sutton; E. Hardin; D. Barr

    2005-01-01

    Small amounts of dust will be deposited on the surfaces of waste packages in drifts at Yucca Mountain during the operational and the preclosure ventilation periods. Salts present in the dust will deliquesce as the waste packages cool and relative humidity in the drifts increases. In this paper, we evaluate the potential for brines formed by dust deliquescence to initiate and sustain localized corrosion that results in failure of the waste package outer barrier and early failure of the waste package. These arguments have been used to show that dust deliquescence-induced localized or crevice corrosion of the waste package outer barrier (Alloy 22) is of low consequence with respect to repository performance. Measured atmospheric and underground dust compositions are the basis of thermodynamic modeling and experimental studies to evaluate the likelihood of brine formation and persistence, the volume of brines that may form, and the relative corrosivity of the initial deliquescent brines and of brines modified by processes on the waste package surface. In addition, we evaluate several mechanisms that could inhibit or stifle localized corrosion should it initiate. The dust compositions considered include both tunnel dust samples from Yucca Mountain, National Airfall Deposition Program rainout data, and collected windblown dust samples. Also considered is sublimation of ammonium salts, a process that could affect dust composition prior to deliquescence. Ammonium chlorides, nitrates, and even sulfates sublimate readily into ammonia and acid gases, and will be lost from the surface of the waste package prior to deliquescence

  2. Laboratory Studies of the Cloud Droplet Activation Properties and Corresponding Chemistry of Saline Playa Dust.

    Science.gov (United States)

    Gaston, Cassandra J; Pratt, Kerri A; Suski, Kaitlyn J; May, Nathaniel W; Gill, Thomas E; Prather, Kimberly A

    2017-02-07

    Playas emit large quantities of dust that can facilitate the activation of cloud droplets. Despite the potential importance of playa dusts for cloud formation, most climate models assume that all dust is nonhygroscopic; however, measurements are needed to clarify the role of dusts in aerosol-cloud interactions. Here, we report measurements of CCN activation from playa dusts and parameterize these results in terms of both κ-Köhler theory and adsorption activation theory for inclusion in atmospheric models. κ ranged from 0.002 ± 0.001 to 0.818 ± 0.094, whereas Frankel-Halsey-Hill (FHH) adsorption parameters of A FHH = 2.20 ± 0.60 and B FHH = 1.24 ± 0.14 described the water uptake properties of the dusts. Measurements made using aerosol time-of-flight mass spectrometry (ATOFMS) revealed the presence of halite, sodium sulfates, and sodium carbonates that were strongly correlated with κ underscoring the role that mineralogy, including salts, plays in water uptake by dust. Predictions of κ made using bulk chemical techniques generally showed good agreement with measured values. However, several samples were poorly predicted suggesting that chemical heterogeneities as a function of size or chemically distinct particle surfaces can determine the hygroscopicity of playa dusts. Our results further demonstrate the importance of dust in aerosol-cloud interactions.

  3. Charging-delay effect on longitudinal dust acoustic shock wave in strongly coupled dusty plasma

    International Nuclear Information System (INIS)

    Ghosh, Samiran; Gupta, M.R.

    2005-01-01

    Taking into account the charging-delay effect, the nonlinear propagation characteristics of longitudinal dust acoustic wave in strongly coupled collisional dusty plasma described by generalized hydrodynamic model have been investigated. In the 'hydrodynamic limit', a Korteweg-de Vries Burger (KdVB) equation with a damping term arising due to dust-neutral collision is derived in which the Burger term is proportional to the dissipation due to dust viscosity through dust-dust correlation and charging-delay-induced anomalous dissipation. On the other hand, in the 'kinetic limit', a KdVB equation with a damping term and a nonlocal nonlinear forcing term arising due to memory-dependent strong correlation effect of dust fluid is derived in which the Burger term depends only on the charging-delay-induced dissipation. Numerical solution of integrodifferential equations reveals that (i) dissipation due to dust viscosity and principally due to charging delay causes excitation of the longitudinal dust acoustic shock wave in strongly coupled dusty plasma and (ii) dust-neutral collision does not appear to play any direct role in shock formation. The condition for the generation of shock is also discussed briefly

  4. Black hole formation in a contracting universe

    International Nuclear Information System (INIS)

    Quintin, Jerome; Brandenberger, Robert H.

    2016-01-01

    We study the evolution of cosmological perturbations in a contracting universe. We aim to determine under which conditions density perturbations grow to form large inhomogeneities and collapse into black holes. Our method consists in solving the cosmological perturbation equations in complete generality for a hydrodynamical fluid. We then describe the evolution of the fluctuations over the different length scales of interest and as a function of the equation of state for the fluid, and we explore two different types of initial conditions: quantum vacuum and thermal fluctuations. We also derive a general requirement for black hole collapse on sub-Hubble scales, and we use the Press-Schechter formalism to describe the black hole formation probability. For a fluid with a small sound speed (e.g., dust), we find that both quantum and thermal initial fluctuations grow in a contracting universe, and the largest inhomogeneities that first collapse into black holes are of Hubble size and the collapse occurs well before reaching the Planck scale. For a radiation-dominated fluid, we find that no black hole can form before reaching the Planck scale. In the context of matter bounce cosmology, it thus appears that only models in which a radiation-dominated era begins early in the cosmological evolution are robust against the formation of black holes. Yet, the formation of black holes might be an interesting feature for other models. We comment on a number of possible alternative early universe scenarios that could take advantage of this feature.

  5. State selective reactions of cosmic dust analogues at cryogenic temperatures

    International Nuclear Information System (INIS)

    Perry, James Samuel Anthony

    2001-01-01

    Molecular hydrogen (H 2 ) is the most abundant molecule in interstellar space. It is crucial for initiating all of the chemistry in the Interstellar Medium (ISM) and consequently plays an important role in star formation. However, the amount of H 2 believed to exist in the ISM cannot be accounted for by formation through gas-phase reactions alone. The current, widely accepted theory, is that H 2 forms on the surface of cosmic dust grains. These grains are thought to be composed of amorphous forms of carbon or silicates with temperatures of around 10 K. This thesis describes a new experiment that has been constructed to study H 2 formation on the surface of cosmic dust analogues and presents the initial experimental results. The experiment simulates, through ultra-high vacuum and the use of cryogenics, the conditions of the ISM where cosmic dust grains and H 2 molecules exist. During the experiment, a beam of atomic hydrogen is aimed at a cosmic dust analogue target. H 2 formed on the target's surface is ionised using a laser spectroscopy technique known as Resonance Enhanced Multiphoton lonisation (REMPI) and detected using time-of-flight mass spectrometry. The sensitivity of REMPI is such that H 2 molecules can be ionised in selective internal energy states. This allows the rovibrational populations of the H 2 molecules desorbing from the cosmic dust targets to be determined, providing information on the energy budget of the H 2 formation process in the ISM. Preliminary results from the experiment show that H 2 molecules formed on a diamond-like-carbon surface have a significant non-thermal population of excited vibrational and rotational energy states. (author)

  6. Characterization of size, composition and origins of dust in fusion devices. Summary report of the 1. research coordination meeting

    International Nuclear Information System (INIS)

    Clark, R.E.H.

    2009-03-01

    Nine experts on dust formation and their physical and behavioural characteristics attended the first Research Coordination Meeting (RCM) on Characterization of Size, Composition and Origins of Dust in Fusion Devices held at IAEA Headquarters on 10-12 December 2008. Participants summarized recent relevant developments related to dust in fusion devices. The specific objectives of the CRP and a detailed work plan were formulated. Discussions, conclusions and recommendations of the RCM are briefly described in this report. (author)

  7. Impacts of Cosmic Dust on Planetary Atmospheres and Surfaces

    Science.gov (United States)

    Plane, John M. C.; Flynn, George J.; Määttänen, Anni; Moores, John E.; Poppe, Andrew R.; Carrillo-Sanchez, Juan Diego; Listowski, Constantino

    2018-02-01

    Recent advances in interplanetary dust modelling provide much improved estimates of the fluxes of cosmic dust particles into planetary (and lunar) atmospheres throughout the solar system. Combining the dust particle size and velocity distributions with new chemical ablation models enables the injection rates of individual elements to be predicted as a function of location and time. This information is essential for understanding a variety of atmospheric impacts, including: the formation of layers of metal atoms and ions; meteoric smoke particles and ice cloud nucleation; perturbations to atmospheric gas-phase chemistry; and the effects of the surface deposition of micrometeorites and cosmic spherules. There is discussion of impacts on all the planets, as well as on Pluto, Triton and Titan.

  8. Experiments on Alignment of Dust Particles in Plasma Sheath

    International Nuclear Information System (INIS)

    Samarian, A.A.; Vladimirov, S.V.; James, B.W.

    2005-01-01

    Here, we report an experimental investigation of the stability of vertical and horizontal confinement of dust particles levitated in an rf sheath. The experiments were carried out in argon plasma with micron-sized dust particles. Changes of particle arrangement were triggered by changing the discharge parameters, applying an additional bias to the confining electrode and by laser beam. The region where the transition was triggered by changes of discharge parameters and the transition from horizontal to vertical alignment has been found to be more pronounced than for the reverse transition. A clear hysteretic effect was observed for transitions triggered by changes of the confining voltage. A vertical alignment occurs in a system of two dust horizontally arranged particles with the decrease of the particle separation. This disruption is attributed to the formation of the common ion wake in the system

  9. Adapting MODIS Dust Mask Algorithm to Suomi NPP VIIRS for Air Quality Applications

    Science.gov (United States)

    Ciren, P.; Liu, H.; Kondragunta, S.; Laszlo, I.

    2012-12-01

    Despite pollution reduction control strategies enforced by the Environmental Protection Agency (EPA), large regions of the United States are often under exceptional events such as biomass burning and dust outbreaks that lead to non-attainment of particulate matter standards. This has warranted the National Weather Service (NWS) to provide smoke and dust forecast guidance to the general public. The monitoring and forecasting of dust outbreaks relies on satellite data. Currently, Aqua/MODIS (MODerate resolution Imaging Spectrometer) and Terra/MODIS provide measurements needed to derive dust mask and Aerosol Optical Thickness (AOT) products. The newly launched Suomi NPP VIIRS (Visible/Infrared Imaging Radiometer Suite) instrument has a Suspended Matter (SM) product that indicates the presence of dust, smoke, volcanic ash, sea salt, and unknown aerosol types in a given pixel. The algorithm to identify dust is different over land and ocean but for both, the information comes from AOT retrieval algorithm. Over land, the selection of dust aerosol model in the AOT retrieval algorithm indicates the presence of dust and over ocean a fine mode fraction smaller than 20% indicates dust. Preliminary comparisons of VIIRS SM to CALIPSO Vertical Feature Mask (VFM) aerosol type product indicate that the Probability of Detection (POD) is at ~10% and the product is not mature for operational use. As an alternate approach, NESDIS dust mask algorithm developed for NWS dust forecast verification that uses MODIS deep blue, visible, and mid-IR channels using spectral differencing techniques and spatial variability tests was applied to VIIRS radiances. This algorithm relies on the spectral contrast of dust absorption at 412 and 440 nm and an increase in reflectivity at 2.13 μm when dust is present in the atmosphere compared to a clear sky. To avoid detecting bright desert surface as airborne dust, the algorithm uses the reflectances at 1.24 μm and 2.25 μm to flag bright pixels. The

  10. Circumnuclear Dust in Nearby Active and Inactive Galaxies. I. Data

    Science.gov (United States)

    Martini, Paul; Regan, Michael W.; Mulchaey, John S.; Pogge, Richard W.

    2003-06-01

    The detailed morphology of the interstellar medium (ISM) in the central kiloparsec of galaxies is controlled by pressure and gravitation. The combination of these forces shapes both circumnuclear star formation and the growth of the central, supermassive black hole. We present visible and near-infrared Hubble Space Telescope images and color maps of 123 nearby galaxies that show the distribution of the cold ISM, as traced by dust, with excellent spatial resolution. These observations reveal that nuclear dust spirals are found in the majority of active and inactive galaxies and they possess a wide range in coherence, symmetry, and pitch angle. We have used this large sample to develop a classification system for circumnuclear dust structures. In spite of the heterogeneous nature of the complete sample, we only find symmetric, two-arm nuclear dust spirals in galaxies with large-scale bars, and these dust lanes clearly connect to dust lanes along the leading edges of the large-scale bars. Not all dust lanes along large-scale bars form two-arm spirals, however, and several instead end in nuclear rings. We find that tightly wound, or low pitch angle, nuclear dust spirals are more common in unbarred galaxies than barred galaxies. Finally, the extended narrow-line region in several of the active galaxies is well resolved. The connection between the ionized gas and circumnuclear dust lanes in four of these galaxies provides additional evidence that a significant fraction of their extended narrow-line region is ambient gas photoionized in situ by the active nucleus. In a future paper we will use our classification system for circumnuclear dust to identify differences between active and inactive galaxies, as well as barred and unbarred galaxies, in well-matched subsamples of these data. Based on observations with the NASA/ESA Hubble Space Telescope obtained at the Space Telescope Science Institute, which is operated by the Association of Universities for Research in

  11. Deuterium enrichment of interstellar dusts

    Science.gov (United States)

    Das, Ankan; Chakrabarti, Sandip Kumar; Majumdar, Liton; Sahu, Dipen

    2016-07-01

    High abundance of some abundant and simple interstellar species could be explained by considering the chemistry that occurs on interstellar dusts. Because of its simplicity, the rate equation method is widely used to study the surface chemistry. However, because the recombination efficiency for the formation of any surface species is highly dependent on various physical and chemical parameters, the Monte Carlo method is best suited for addressing the randomness of the processes. We carry out Monte-Carlo simulation to study deuterium enrichment of interstellar grain mantle under various physical conditions. Based on the physical properties, various types of clouds are considered. We find that in diffuse cloud regions, very strong radiation fields persists and hardly a few layers of surface species are formed. In translucent cloud regions with a moderate radiation field, significant number of layers would be produced and surface coverage is mainly dominated by photo-dissociation products such as, C, CH_3, CH_2D, OH and OD. In the intermediate dense cloud regions (having number density of total hydrogen nuclei in all forms ˜2 × 10^4 cm^{-3}), water and methanol along with their deuterated derivatives are efficiently formed. For much higher density regions (˜10^6 cm^{-3}), water and methanol productions are suppressed but surface coverage of CO, CO_2, O_2, O_3 are dramatically increased. We find a very high degree of fractionation of water and methanol. Observational results support a high fractionation of methanol but surprisingly water fractionation is found to be low. This is in contradiction with our model results indicating alternative routes for de-fractionation of water.

  12. Regarding Electrified Martian Dust Storms

    Science.gov (United States)

    Farrell, W. M.

    2017-06-01

    We examine the dynamic competition between dust devil/storm charging currents and dissipating atmospheric currents. A question: Can high-current lightning be a dissipation product of this competition? Most likely not but there are exceptions.

  13. Loess and Eolian Dust Data

    Data.gov (United States)

    National Oceanic and Atmospheric Administration, Department of Commerce — Records of past environment derived from Loess and Eolian dust (silt-sized material deposited on the Earth surface by the surface winds. Parameter keywords describe...

  14. Physicochemical Processes on Ice Dust Towards Deuterium Enrichment

    Science.gov (United States)

    Watanabe, Naoki

    2017-06-01

    Water and some organic molecules were found to be deuterium enriched toward various astronomical targets. Understanding the deuterium-fractionation process pertains directly to know how and when molecules are created. Although gas phase chemistry is certainly important for deuterium enrichment, the role of physicochemical processes on the dust surfaces should be also considered. In fact, the extreme deuterium enrichment of formaldehyde and methanol requires the dust grain-surface process. In this context, we have performed a series of experiments on the formation of deuterated species of water and simple organic molecules. From the results of these experiments and related works, I will discuss the key processes for the deuterium enrichment on dust. For deuterium chemistry, another important issue is the ortho-to-para ratio (OPR) of H_{2}, which is closely related to the formation of H_{2}D^{+} and thus the deuterium fractionation of molecules in the gas phase. Because the radiative nuclear spin conversion of H_{2} is forbidden, the ortho-para conversion is very slow in the gas phase. In contrast, it was not obvious how the nuclear spins behave on cosmic dust. Therefore, it is desirable to understand how the OPR of H_{2} is determined on the dust surfaces. We have tackled this issue experimentally. Using experimental techniques of molecular beam, photostimulated-desorption, and resonance-enhanced multiphoton ionization, we measured the OPRs of H_{2} photodesorbed from amorphous solid water at around 10 K, which is an ice dust analogue. It was first demonstrated that the rate of spin conversion from ortho to para drastically increases from 2.4 × 10^{-4} to 1.7 × 10^{-3} s^{-1} within the very narrow temperature window of 9.2 to16 K. The observed strong temperature cannot be explained by solely state-mixing models ever proposed but by the energy dissipation model via two phonon process. I will present our recent experiments regarding this.

  15. Dust Availability in Desert Terrains

    Science.gov (United States)

    1985-01-01

    RAVIKOVIrCIl, 1953: KAPLAN , 19119. Si ATKINE. 1960). From Yaalon & Ginzhourg (1988). B.8 AMOUNTS AND CONCENTRATIONS OFl DUST IN THE ATMOSPHERE (see also...deposits of comparable origin and age further north along the Dead Sea Rift. Another exampie is the lava flows of latest Pleisto- cene age in the Cima ...the Cima Volcanic Field in the southern Mojave Desert, located downwind of extensive dust-producing playa surfaces. More than 1 m of a gravel-free B

  16. Atmospheric processing outside clouds increases soluble iron in mineral dust.

    Science.gov (United States)

    Shi, Zongbo; Krom, Michael D; Bonneville, Steeve; Benning, Liane G

    2015-02-03

    Iron (Fe) is a key micronutrient regulating primary productivity in many parts of the global ocean. Dust deposition is an important source of Fe to the surface ocean, but most of this Fe is biologically unavailable. Atmospheric processing and reworking of Fe in dust aerosol can increase the bioavailable Fe inputs to the ocean, yet the processes are not well understood. Here, we experimentally simulate and model the cycling of Fe-bearing dust between wet aerosol and cloud droplets. Our results show that insoluble Fe in dust particles readily dissolves under acidic conditions relevant to wet aerosols. By contrast, under the higher pH conditions generally relevant to clouds, Fe dissolution tends to stop, and dissolved Fe precipitates as poorly crystalline nanoparticles. If the dust-bearing cloud droplets evaporated again (returning to the wet aerosol stage with low pH), those neo-formed Fe nanoparticles quickly redissolve, while the refractory Fe-bearing phases continue to dissolve gradually. Overall, the duration of the acidic, wet aerosol stage ultimately increases the amount of potentially bioavailable Fe delivered to oceans, while conditions in clouds favor the formation of Fe-rich nanoparticles in the atmosphere.

  17. Dust prevention in bulk material transportation and handling

    Science.gov (United States)

    Kirichenko, A. V.; Kuznetsov, A. L.; Pogodin, V. A.

    2017-10-01

    The environmental problem of territory and atmosphere pollution caused by transportation and handling of dust-generating bulk cargo materials is quite common for the whole world. The reducing of weight of fine class coal caused by air blowing reaches the level of 0.5-0.6 t per railcar over the 500 km transportation distance, which is equal to the loss of 1 % of the total weight. The studies showed that all over the country in the process of the railroad transportation, the industry loses 3-5 metric tonnes of coal annually. There are several common tactical measurers to prevent dust formation: treating the dust-producing materials at dispatch point with special liquid solutions; watering the stacks and open handling points of materials; frequent dust removing and working area cleaning. Recently there appeared several new radical measures for pollution prevention in export of ore and coal materials via sea port terminals, specifically: wind-dust protection screens, the container cargo handling system of delivery materials to the hold of the vessels. The article focuses on the discussion of these measures.

  18. Asian dust transport during the springtime of year 2001 and 2002 with a nested version of dust transport model

    Science.gov (United States)

    Uno, I.; Satake, S.; Hara, Y.; Takemura, T.; Wang, Z.; Carmichael, G. R.

    2002-12-01

    Number of yellow sand (Kosa) observation has been surprisingly increasing in Japan and Korea since 2000. Especially extremely high PM10 concentration (exceeding 0.5mg/m3) was observed in Japan several times in 2002, so we have an urgent scientific and political need to forecast/reproduce the detailed dust emission, transport and deposition processes. Intensive modeling studies have already been conducted to examine transport of Sahara dust and its impact on global radiation budget. One of the important differences between the Sahara desert and the Asian desert (mainly Gobi Desert and Takla Makan Desert) is the elevation of the dust source. The averaged elevation of Gobi Desert is approximately 1500 to 2500 m. These deserts are surrounded by high mountains. Furthermore advance of the recent manmade desertification made complicated land use patches for the arid region in Inner Mongolia. Therefore the development of a high horizontal resolution dust model is highly required. In this study, we will report a newly developed nested version of the dust transport model (as a part of Chemical weather FORecasting System; CFORS) in order to have a better understanding of Asian springtime heady dust episode. Here, CFORS is a multi-tracer, on-line, system built within the RAMS mesoscale meteorological model. A unique feature of nested CFORS is that multiple tracers are run on-line in RAMS under the two-way nesting, so that all the fine-scale on-line meteorological information such as 3-D winds, boundary-layer turbulence, surface fluxes and precipitation amount are directly used by the dust emission and transport at every time step. As a result, nested-CFORS produces with high time resolution 3-dimensional fields of dust distributions and major meteorological parameters under the nesting capability of RAMS. In this work, the dust transport model simulation with the nested-CFORS was conducted between March and April of the years 2001 and 2002, respectively. The sensititivy

  19. Suspended dust in Norwegian cities

    International Nuclear Information System (INIS)

    2001-01-01

    According to calculations, at least 80 000 people in Oslo and 8 000 in Trondheim were annoyed by too much suspended dust in 2000. The dust concentration is greatest in the spring, presumably because dust is swirling up from melting snow and ice on the streets. Car traffic is the main source of the dust, except for some of the most highly exposed regions where wood-firing from old stoves contributes up to 70 percent of the dust. National targets for air quality include suspended dust, nitrogen dioxide, sulphur dioxide and benzene. Calculations show that nitrogen dioxide emissions exceeding the limit affected 4 000 people in Oslo and 1 000 people in Trondheim. The sulphur dioxide emissions in the major cities did non exceed the national quality limit; they did exceed the limit in some of the smaller industrial centres. In Trondheim, measurements show that the national limit for benzene was exceeded. Most of the emission of nitrogen dioxide comes from the road traffic. Local air pollution at times causes considerable health- and well-being problems in the larger cities and industrial centres, where a great part of the population may be at risk of early death, infection of the respiratory passage, heart- and lung diseases and cancer

  20. Modeling of cleaning of dust emission’ in fluidized bed building aspiration’ collector

    Directory of Open Access Journals (Sweden)

    Koshkarev Sergey A.

    2017-01-01

    Full Text Available This article describes one of the modern way to reduce dust emissions of pollutions exhausting into the atmosphere at expanded clay aggregates and other similar building materials manufactures applying filtering fluidized granular particulate material bed’ separator with low degree of dust leakage out from one. There is presented quasi-diffusion model featuring of process of cleaning of industrial emissions of dust in devices of tray type with the fluidized and weighted bed. There considered case of variable coefficient of longitudinal hashing intermixing within trough tray type separator in this article. It was made attempt to get meanings value of leakage’ degree dust out from separator. It was obtain in an implicit form. It was obtained and announced some results of the carried-out analysis are intended to get high efficiency of dust removal set up installations to clean emissions of aspiration scheme of the air environmental protection in production of bulk dispersed materials building construction industry.

  1. Dust Particle Size Distributions during Spring in Yinchuan, China

    OpenAIRE

    Jiangfeng Shao; Jiandong Mao

    2016-01-01

    Dust particle size distributions in Yinchuan, China, were measured during March and April 2014, using APS-3321 sampler. The distributions were measured under different dust conditions (background, floating dust, blowing dust, and dust storm) and statistical analyses were performed. The results showed that, under different dust conditions, the instantaneous number concentrations of dust particles differed widely. For example, during blowing sand and dust storm conditions, instantaneous dust pa...

  2. PADME – new code for modeling of planet georesources formation on heterogeneous computing systems

    Directory of Open Access Journals (Sweden)

    Protasov Viktor

    2018-01-01

    Full Text Available Many planets were detected in last few years, but there is no clear understanding of how they are formed. The fairly clear understanding of Solar system formation was founded with time, but there are some doubts yet because we don’t know what was at the beginning of the process, and what was acquired afterward. Moreover, formed ideas often couldn’t explain some features of other systems. Searching for Earth-like terrestrial planets is another very important problem. Even if any of found exoplanets will be similar to Earth, we couldn’t say that it is a “second Earth” exactly because its internal, geological, composition could be different – Venus is a vivid example. A new method for modelling of the planet formation process in a 3D2V formulation based on two-phase approach is presented in the paper. Fluids-in-cells method by Belotserkovskii-Davydov, modified with using the Godunov’s scheme, is used to model the gas component. The dust component is described by N-body system solved with the Particle-Mesh method. The method was accelerated by using of Nvidia CUDA technology. Gas-dust disk modelling results with the formation of sealing of gas and dust that could be interpreted as potential exoplanet are given.

  3. Observation of dust acoustic shock wave in a strongly coupled dusty plasma

    International Nuclear Information System (INIS)

    Sharma, Sumita K.; Boruah, A.; Nakamura, Y.; Bailung, H.

    2016-01-01

    Dust acoustic shock wave is observed in a strongly coupled laboratory dusty plasma. A supersonic flow of charged microparticles is allowed to perturb a stationary dust fluid to excite dust acoustic shock wave. The evolution process beginning with steepening of initial wave front and then formation of a stable shock structure is similar to the numerical results of the Korteweg-de Vries-Burgers equation. The measured Mach number of the observed shock wave agrees with the theoretical results. Reduction of shock amplitude at large distances is also observed due to the dust neutral collision and viscosity effects. The dispersion relation and the spatial damping of a linear dust acoustic wave are also measured and compared with the relevant theory.

  4. ALMA REVEALS POTENTIAL LOCALIZED DUST ENRICHMENT FROM MASSIVE STAR CLUSTERS IN II Zw 40

    Energy Technology Data Exchange (ETDEWEB)

    Consiglio, S. Michelle; Turner, Jean L. [Department of Physics and Astronomy, University of California, Los Angeles, Los Angeles, CA 90095 (United States); Beck, Sara [Department of Physics and Astronomy, University of Tel Aviv, Ramat Aviv (Israel); Meier, David S., E-mail: smconsiglio@ucla.edu [Department of Physics, New Mexico Institute of Mining and Technology, Socorro, NM 87801 (United States)

    2016-12-10

    We present subarcsecond images of submillimeter CO and continuum emission from a local galaxy forming massive star clusters: the blue compact dwarf galaxy II Zw 40. At ∼0.″4 resolution (20 pc), the CO(3-2), CO(1-0), 3 mm, and 870 μ m continuum maps illustrate star formation on the scales of individual molecular clouds. Dust contributes about one-third of the 870 μ m continuum emission, with free–free accounting for the rest. On these scales, there is not a good correspondence between gas, dust, and free–free emission. Dust continuum is enhanced toward the star-forming region as compared to the CO emission. We suggest that an unexpectedly low and spatially variable gas-to-dust ratio is the result of rapid and localized dust enrichment of clouds by the massive clusters of the starburst.

  5. What makes the desert bloom? Contribution of dust and crusts to soil fertility on the Colorado Plateau

    Science.gov (United States)

    Jayne Belnap; Richard Reynolds; Marith Reheis; Susan L. Phillips

    2001-01-01

    Eolian dust (windblown silt and clay) and biological soil crusts are both important to ecosystem functioning of arid lands. Dust furnishes essential nutrients, influences hydrology, contributes to soil formation, and renders surfaces vulnerable to erosion. Biological soil crusts contribute directly to soil fertility by fixing carbon and nitrogen, and indirectly by...

  6. The Herschel Exploitation of Local Galaxy Andromeda (HELGA). IV. Dust scaling relations at sub-kpc resolution

    NARCIS (Netherlands)

    Viaene, S.; Fritz, J.; Baes, M.; Bendo, G. J.; Blommaert, J. A. D. L.; Boquien, M.; Boselli, A.; Ciesla, L.; Cortese, L.; De Looze, I.; Gear, W. K.; Gentile, G.; Hughes, T. M.; Jarrett, T.; Karczewski, O. Ł.; Smith, M. W. L.; Spinoglio, L.; Tamm, A.; Tempel, E.; Thilker, D.; Verstappen, J.

    Context. Dust and stars play a complex game of interactions in the interstellar medium and around young stars. The imprints of these processes are visible in scaling relations between stellar characteristics, star formation parameters, and dust properties. Aims: In the present work, we aim to

  7. Understanding Legacy Features with Featureous

    DEFF Research Database (Denmark)

    Olszak, Andrzej; Jørgensen, Bo Nørregaard

    2011-01-01

    Feature-centric comprehension of source code is essential during software evolution. However, such comprehension is oftentimes difficult to achieve due the discrepancies between structural and functional units of object-oriented programs. We present a tool for feature-centric analysis of legacy...

  8. Differences in ice nucleation behavior of arable and desert soil dust in deposition nucleation regime

    Science.gov (United States)

    Ullrich, Romy; Vogel, Franziska; Möhler, Ottmar; Höhler, Kristina; Schiebel, Thea

    2017-04-01

    Soil dust from arid and semi-arid regions is one of the most abundant aerosol types in the atmosphere with emission rates of about 1600 Tg per year (Andreae et al. (2009)). Therewith, soil dust plays an important role for the atmospheric radiative transfer and also for the formation of clouds. Soil dust refers to dust sampled from agricultural used areas, to dust from bare soil as well as to dust from desert regions. By mass-spectrometric measurements of the chemical composition of ice residuals, mineral dust as component of soil dust was found to be the major heterogeneous ice nucleating particle (INP) type (e.g. Cziczo et al. (2013)), in particular in the upper troposphere. Also in laboratory studies the ice nucleation efficiency of the different soil dusts was investigated. It was shown that desert dusts (Ullrich et al. (2017)) as well as soil dusts from arable regions (O'Sullivan et al. (2014), Tobo et al. (2014)) are efficient INP. However, there is still a lack of data for ice nucleation on soil dusts for temperatures below about 220 K. With the AIDA (Aerosol Interactions and Dynamics in the Atmosphere) cloud chamber, we are able to characterize the ice nucleation efficiency for different aerosol types to temperatures down to 180 K and high ice supersaturations. In order to extend the already existing AIDA data base for deposition nucleation on desert dusts and agricultural soil dusts, new experiments were done in the upper tropospheric temperature regime. This contribution will show the results of the new experiments with desert dust in comparison to existing data for higher temperatures. The first data analysis confirms the temperature dependent trend of the ice nucleation activity as discussed and parameterized in a recent paper by Ullrich et al. (2017). Furthermore, the update and extension of the recently published parameterization of deposition nucleation for desert dust to lower temperatures will be discussed. The experiments with agricultural soil

  9. Site Features

    Data.gov (United States)

    U.S. Environmental Protection Agency — This dataset consists of various site features from multiple Superfund sites in U.S. EPA Region 8. These data were acquired from multiple sources at different times...

  10. Feature Extraction

    CERN Multimedia

    CERN. Geneva

    2015-01-01

    Feature selection and reduction are key to robust multivariate analyses. In this talk I will focus on pros and cons of various variable selection methods and focus on those that are most relevant in the context of HEP.

  11. Solar Features

    Data.gov (United States)

    National Oceanic and Atmospheric Administration, Department of Commerce — Collection includes a variety of solar feature datasets contributed by a number of national and private solar observatories located worldwide.

  12. Identifying Biases in Dust Source Functions

    Science.gov (United States)

    Evan, A. T.; Wang, W.; Zhao, C.

    2017-12-01

    The Sahara is the largest desert in the world and accounts for more than 50% of global dust emission. However, it is difficult to identify dust source regions as the Sahara is vastly uninhabited. In order to model North African dust, previous works have used satellite data to construct so-called dust source functions. Here we examine such dust source function using output from multi-year runs with the Weather Research and Forecasting with Chemistry (WRF-Chem) model. We find that dust source functions based on satellite data overestimate DOD in the Sahel and the western Sahara region. To eliminate the biases of the dust source function due to advection, we develop a new source function using DOD in the lowest 1 km from the model. This work suggests that dust source functions constructed with satellite retrievlas of optical depth may overestimate dust emission in the downwind regions and DOD may not be a good proxy for the source function.

  13. Investigating the interstellar dust through the Fe K-edge

    Science.gov (United States)

    Rogantini, D.; Costantini, E.; Zeegers, S. T.; de Vries, C. P.; Bras, W.; de Groot, F.; Mutschke, H.; Waters, L. B. F. M.

    2018-01-01

    Context. The chemical and physical properties of interstellar dust in the densest regions of the Galaxy are still not well understood. X-rays provide a powerful probe since they can penetrate gas and dust over a wide range of column densities (up to 1024 cm-2). The interaction (scattering and absorption) with the medium imprints spectral signatures that reflect the individual atoms which constitute the gas, molecule, or solid. Aims: In this work we investigate the ability of high resolution X-ray spectroscopy to probe the properties of cosmic grains containing iron. Although iron is heavily depleted into interstellar dust, the nature of the Fe-bearing grains is still largely uncertain. Methods: In our analysis we use iron K-edge synchrotron data of minerals likely present in the ISM dust taken at the European Synchrotron Radiation Facility. We explore the prospects of determining the chemical composition and the size of astrophysical dust in the Galactic centre and in molecular clouds with future X-ray missions. The energy resolution and the effective area of the present X-ray telescopes are not sufficient to detect and study the Fe K-edge, even for bright X-ray sources. Results: From the analysis of the extinction cross sections of our dust models implemented in the spectral fitting program SPEX, the Fe K-edge is promising for investigating both the chemistry and the size distribution of the interstellar dust. We find that the chemical composition regulates the X-ray absorption fine structures in the post edge region, whereas the scattering feature in the pre-edge is sensitive to the mean grain size. Finally, we note that the Fe K-edge is insensitive to other dust properties, such as the porosity and the geometry of the dust. The absorption, scattering, and extinction cross sections of the compounds are only available at the CDS via anonymous ftp to http://cdsarc.u-strasbg.fr (http://130.79.128.5) or via http://cdsarc.u-strasbg.fr/viz-bin/qcat?J/A+A/609/A22

  14. An analysis of the dust deposition on solar photovoltaic modules.

    Science.gov (United States)

    Styszko, Katarzyna; Jaszczur, Marek; Teneta, Janusz; Hassan, Qusay; Burzyńska, Paulina; Marcinek, Ewelina; Łopian, Natalia; Samek, Lucyna

    2018-03-29

    Solid particles impair the performance of the photovoltaic (PV) modules. This results in power losses which lower the efficiency of the system as well as the increases of temperature which additionally decreases the performance and lifetime. The deposited dust chemical composition, concentration and formation of a dust layer on the PV surface differ significantly in reference to time and location. In this study, an evaluation of dust deposition on the PV front cover glass during the non-heating season in one of the most polluted European cities, Kraków, was performed. The time-dependent particle deposition and its correlation to the air pollution with particulate matter were analysed. Dust deposited on several identical PV modules during variable exposure periods (from 1 day up to 1 week) and the samples of total suspended particles (TSP) on quartz fibre filters using a low volume sampler were collected during the non-heating season in the period of 5 weeks. The concentration of TSP in the study period ranged between 12.5 and 60.05 μg m -3 while the concentration of PM10 observed in the Voivodeship Inspectorate of Environmental Protection traffic station, located 1.2 km from the TSP sampler, ranged from 14 to 47 μg m -3 . It was revealed that dust deposition density on a PV surface ranged from 7.5 to 42.1 mg m -2 for exposure periods of 1 day while the measured weekly dust deposition densities ranged from 25.8 to 277.0 mg m -2 . The precipitation volume and its intensity as well as humidity significantly influence the deposited dust. The rate of dust accumulation reaches approximately 40 mg m -2 day -1 in the no-precipitation period and it was at least two times higher than fluxes calculated on the basis of PM10 and TSP concentrations which suggest that additional forces such as electrostatic forces significantly influence dust deposition.

  15. From Desert to Dessert: Why Australian Dust Matters.

    Science.gov (United States)

    Hunter, K. A.; Mackie, D. S.; Boyd, P. W.; McTainsh, G. H.

    2006-12-01

    The growth of some types of phytoplankton in several parts of the world ocean, including much of the Southern Ocean, is limited by the supply of iron. Large Australian dust storms uplift, transport and abrade soils, to produce aeolian dust that is a significant source iron to the Southern Ocean. Atmospheric processes that enhance the dissolution of iron from aeolian dusts are of interest and have been studied for material from major dust producing regions like the Sahara, Gobi and Australian deserts; the reported solubility of iron from aeolian dusts ranges from <0.01% to 80%. The characteristic red soils, sands and dusts from Australia are generally believed to consist of quartz grains with a coating of fine grains and crystals of iron oxides, primarily hematite and goethite. The precise mineralogy of soil and dust grain coatings is poorly understood and it also not well known how the coatings are altered during uplift and transport to the ocean. Current models to understand the processes operating during the transport and atmospheric processing of dust include some generalisations and simplifications that are not always warranted and our work has shown the overlooked complexity of the system. Models for aeolian-iron dissolution based on Northern Hemisphere data commonly include the pollutants SOx and NOx. The modern Southern Hemisphere is less polluted and thus resembles past environmental systems. The dissolution of iron from soils of the Saharan, Gobi and Australian deserts in the presence of protons only (i.e. without SOx and NOx) occurs in two phases. The first, faster phase, representing up to 20% of total iron is via a surface-controlled mechanism. The rate determining variable is the exposed surface area of the iron oxides and not the size of the underlying quartz grain. The second, slower, phase of dissolution occurs via the transport-controlled formation of a leached layer. During the simulated aeolian abrasion of Australian soils from dust producing

  16. Metal dusting of low alloy steels

    Energy Technology Data Exchange (ETDEWEB)

    Grabke, H.J. (Max-Planck-Institut fuer Eisenforschung GmbH, Duesseldorf (Germany)); Bracho-Troconis, C.B. (Max-Planck-Institut fuer Eisenforschung GmbH, Duesseldorf (Germany)); Mueller-Lorenz, E.M. (Max-Planck-Institut fuer Eisenforschung GmbH, Duesseldorf (Germany))

    1994-04-01

    The metal dusting of two low alloy steels was investigated at 475 C in flowing CO-H[sub 2]-H[sub 2]O mixtures at atmospheric pressure with a[sub C] > 1. The reaction sequence comprises: (1) oversaturation with C, formation of cementite and its decomposition to metal particles and carbon, and (2) additional carbon deposition on the metal particles from the atmosphere. The metal wastage rate r[sub 1] was determined by analysis of the corrosion product after exposures, this rate is constant with time and virtually independent of the environment. The carbon deposition from the atmosphere was determined by thermogravimetry, its rate r[sub 2] increases linearly with time, which can be explained by the catalytic action of the metal particles - periodic changes are superposed. The rate of carbon deposition r[sub 2] is proportional to the carbon activity in the atmosphere. The metal dusting could not be suppressed by increasing the oxygen activity or preoxidation, even if magnetite should be stable. Addition of H[sub 2]S, however, effectively suppresses the attack. (orig.)

  17. Dust extinction in the first galaxies

    Science.gov (United States)

    Jaacks, Jason; Finkelstein, Steven L.; Bromm, Volker

    2018-04-01

    Using cosmological volume simulations and a custom built sub-grid model for Population III (Pop III) star formation, we examine the baseline dust extinction in the first galaxies due to Pop III metal enrichment in the first billion years of cosmic history. We find that although the most enriched, high-density lines of sight in primordial galaxies can experience a measurable amount of extinction from Pop III dust [E(B - V)max = 0.07, AV, max ≈ 0.28], the average extinction is very low with ≲ 10-3. We derive a power-law relationship between dark matter halo mass and extinction of E(B-V)∝ M_halo^{0.80}. Performing a Monte Carlo parameter study, we establish the baseline reddening of the ultraviolet spectra of dwarf galaxies at high redshift due to Pop III enrichment only. With this method, we find - 2.51 ± 0.07, which is both nearly halo mass and redshift independent.

  18. Charging of Individual Micron-Size Interstellar/Planetary Dust Grains by Secondary Electron Emissions

    Science.gov (United States)

    Tankosic, D.; Abbas, M. M.

    2012-01-01

    Dust grains in various astrophysical environments are generally charged electrostatically by photoelectric emissions with UV/X-ray radiation, as well as by electron/ion impact. Knowledge of physical and optical properties of individual dust grains is required for understanding of the physical and dynamical processes in space environments and the role of dust in formation of stellar and planetary systems. In this paper, we discuss experimental results on dust charging by electron impact, where low energy electrons are scattered or stick to the dust grains, thereby charging the dust grains negatively, and at sufficiently high energies the incident electrons penetrate the grain leading to excitation and emission of electrons referred to as secondary electron emission (SEE). Currently, very limited experimental data are available for charging of individual micron-size dust grains, particularly by low energy electron impact. Available theoretical models based on the Sternglass equation (Sternglass, 1954) are applicable for neutral, planar, and bulk surfaces only. However, charging properties of individual micron-size dust grains are expected to be different from the values measured on bulk materials. Our recent experimental results on individual, positively charged, micron-size lunar dust grains levitated in an electrodynamic balance facility (at NASA-MSFC) indicate that the SEE by electron impact is a complex process. The electron impact may lead to charging or discharging of dust grains depending upon the grain size, surface potential, electron energy, electron flux, grain composition, and configuration (e.g. Abbas et al, 2010). Here we discuss the complex nature of SEE charging properties of individual micron-size lunar dust grains and silica microspheres.

  19. Dust-Medicane Interaction: Tropical-Like Cyclone on November 7th, 2014

    Science.gov (United States)

    Isik, A. G.

    2017-12-01

    Mineral dust aerosols, soil particles suspended in the atmosphere, play a vital role in climate and can alter weather systems. Those particles have both direct (dust-radiation effect) and indirect (dust-microphysical effect) impacts on the energy budget. This study aims to investigate the dust impact on tropical-like cyclones over the Mediterranean Basin. Tropical-like cyclones (TLCs) called Medicanes (MEDIterranean hurriCANE) are rare cases observed in the Mediterranean Sea. On average, one TLC case is caught by satellite images in the Mediterranean basin. Moreover, tropical cyclone (TC) activity over Atlantic region peaks during summer and early fall while TLCs occur in September, October and November. There are many studies examining the relation between Saharan dust and TC development over Atlantic. TC's environmental conditions could be influenced by dust. An environment with weaker vertical wind shear is more favorable to TC development. Similar to TCs, TLCs require minimal wind shear and abundant amount of moisture and vorticity. However, there are not many studies related to dust impact on medicanes. This study tries to find out if dust transport could effect medicane formation and development. One of the objectives of the study is to analyze the medicane and dust transport by satellite data. For this purpose, Medicane case on 7th of November, 2014 was chosen. The TLC formed early on November 7th, hit eastern Sicily. It was dissipated on 8th of November. A strong low level jet-stream blew warm air masses from the Sahara desert towards the Mediterranean. Another objective is to study the dust-medicane interaction over Mediterranean Sea in 2014 using a numerical model. The case simulated with WRF will enlighten the interaction between dust and TLC activity. Furthermore, more studies in different TLC cases and simulations with different physics options will give insight into the interaction.

  20. Mid-Infrared Spectrum of the Zodiacal Emission: Detection of Crystalline Silicates in Interplanetary Dust

    Science.gov (United States)

    Ootsubo, T.; Onaka, T.; Yamamura, I.; Ishihara, D.; Tanabe, T.; Roellig, T. L.

    2003-01-01

    Within a few astronomical units of the Sun the solar system is filled with interplanetary dust, which is believed to be dust of cometary and asteroidal origin. Spectroscopic observations of the zodiacal emission with moderate resolution provide key information on the composition and size distribution of the dust in the interplanetary space. They can be compared directly to laboratory measurements of candidate materials, meteorites, and dust particles collected in the stratosphere. Recently mid-infrared spectroscopic observations of the zodiacal emission have been made by two instruments on board the Infrared Space Observatory; the camera (ISOCAM) and the spectrophotometer (ISOPHOT-S). A broad excess emission feature in the 9-11 micron range is reported in the ISOCAM spectrum, whereas the ISOPHOT-S spectra in 6-12 microns can be well fitted by a blackbody radiation without spectral features.

  1. Spring Dust Storm Smothers Beijing

    Science.gov (United States)

    2002-01-01

    A few days earlier than usual, a large, dense plume of dust blew southward and eastward from the desert plains of Mongolia-quite smothering to the residents of Beijing. Citizens of northeastern China call this annual event the 'shachenbao,' or 'dust cloud tempest.' However, the tempest normally occurs during the spring time. The dust storm hit Beijing on Friday night, March 15, and began coating everything with a fine, pale brown layer of grit. The region is quite dry; a problem some believe has been exacerbated by decades of deforestation. According to Chinese government estimates, roughly 1 million tons of desert dust and sand blow into Beijing each year. This true-color image was made using two adjacent swaths (click to see the full image) of data from the Sea-viewing Wide Field-of-view Sensor (SeaWiFS), flying aboard the OrbView-2 satellite, on March 17, 2002. The massive dust storm (brownish pixels) can easily be distinguished from clouds (bright white pixels) as it blows across northern Japan and eastward toward the open Pacific Ocean. The black regions are gaps between SeaWiFS' viewing swaths and represent areas where no data were collected. Image courtesy the SeaWiFS Project, NASA/Goddard Space Flight Center, and ORBIMAGE

  2. Improving the simulation of convective dust storms in regional-to-global models

    Science.gov (United States)

    Foroutan, Hosein; Pleim, Jonathan E.

    2017-09-01

    Convective dust storms have significant impacts on atmospheric conditions and air quality and are a major source of dust uplift in summertime. However, regional-to-global models generally do not accurately simulate these storms, a limitation that can be attributed to (1) using a single mean value for wind speed per grid box, i.e., not accounting for subgrid wind variability and (2) using convective parametrizations that poorly simulate cold pool outflows. This study aims to improve the simulation of convective dust storms by tackling these two issues. Specifically, we incorporate a probability distribution function for surface wind in each grid box to account for subgrid wind variability due to dry and moist convection. Furthermore, we use lightning assimilation to increase the accuracy of the convective parameterization and simulated cold pool outflows. This updated model framework is used to simulate a massive convective dust storm that hit Phoenix, AZ, on 6 July 2011. The results show that lightning assimilation provides a more realistic simulation of precipitation features, including timing and location, and the resulting cold pool outflows that generated the dust storm. When those results are combined with a dust model that accounts for subgrid wind variability, the prediction of dust uplift and concentrations are considerably improved compared to the default model results. This modeling framework could potentially improve the simulation of convective dust storms in global models, regional climate simulations, and retrospective air quality studies.

  3. Model Simulations of Complex Dust Emissions over the Sahara during the West African Monsoon Onset

    Directory of Open Access Journals (Sweden)

    Carolina Cavazos-Guerra

    2012-01-01

    Full Text Available The existing limitations in ground-based observations in remote areas in West Africa determine the dependence on numerical models to represent the atmospheric mechanisms that contribute to dust outbreaks at different space-time scales. In this work, the ability of the Weather Research and Forecasting model coupled with the Chemistry (WRF-Chem model using the GOCART dust scheme is evaluated. The period comprises the West African Monsoon onset phase (the 7th to 12th of June, 2006 coinciding with the AMMA Special Observing Period (SOP. Different features in the horizontal and vertical dynamical structure of the Saharan atmosphere are analyzed with a combination of satellite and ground-based observations and model experimentation at 10 and 30 km model resolution. The main features of key Saharan dust processes during summer are identifiable, and WRF-CHEM replicates these adequately. Observations and model analyses have shown that cold pools (haboobs contributed a substantial proportion of total dust during the study period. The comparative analysis between observations and WRF-Chem simulations demonstrates the model efficiency to simulate the spatial and 3D structure of dust transport over the Sahara and Sahel. There is, therefore, a strong basis for accurate forecasting of dust events associated with synoptic scale events when model dust emission parameterization is suitably calibrated.

  4. Understanding the dust cycle at high latitudes: integrating models and observations

    Science.gov (United States)

    Albani, S.; Mahowald, N. M.; Maggi, V.; Delmonte, B.; Winckler, G.; Potenza, M. A. C.; Baccolo, G.; Balkanski, Y.

    2017-12-01

    Changing climate conditions affect dust emissions and the global dust cycle, which in turn affects climate and biogeochemistry. Paleodust archives from land, ocean, and ice sheets preserve the history of dust deposition for a range of spatial scales from close to the major hemispheric sources to remote sinks such as the polar ice sheets. In each hemisphere common features on the glacial-interglacial time scale mark the baseline evolution of the dust cycle, and inspired the hypothesis that increased dust deposition to ocean stimulated the glacial biological pump contributing to the reduction of atmospheric carbon dioxide levels. On the other hand finer geographical and temporal scales features are superposed to these glacial-interglacial trends, providing the chance of a more sophisticated understanding of the dust cycle, for instance allowing distinctions in terms of source availability or transport patterns as recorded by different records. As such paleodust archives can prove invaluable sources of information, especially when characterized by a quantitative estimation of the mass accumulation rates, and interpreted in connection with climate models. We review our past work and present ongoing research showing how climate models can help in the interpretation of paleodust records, as well as the potential of the same observations for constraining the representation of the global dust cycle embedded in Earth System Models, both in terms of magnitude and physical parameters related to particle sizes and optical properties. Finally we show the impacts on climate, based on this kind of observationally constrained model simulations.

  5. Dust Ion-Acoustic Shock Waves in a Multicomponent Magnetorotating Plasma

    Science.gov (United States)

    Kaur, Barjinder; Saini, N. S.

    2018-02-01

    The nonlinear properties of dust ion-acoustic (DIA) shock waves in a magnetorotating plasma consisting of inertial ions, nonextensive electrons and positrons, and immobile negatively charged dust are examined. The effects of dust charge fluctuations are not included in the present investigation, but the ion kinematic viscosity (collisions) is a source of dissipation, leading to the formation of stable shock structures. The Zakharov-Kuznetsov-Burgers (ZKB) equation is derived using the reductive perturbation technique, and from its solution the effects of different physical parameters, i.e. nonextensivity of electrons and positrons, kinematic viscosity, rotational frequency, and positron and dust concentrations, on the characteristics of shock waves are examined. It is observed that physical parameters play a very crucial role in the formation of DIA shocks. This study could be useful in understanding the electrostatic excitations in dusty plasmas in space (e.g. interstellar medium).

  6. Laboratory Spectroscopy of Astrophysically-Relevant Materials: Developing Dust as a Diagnostic

    Science.gov (United States)

    Rinehart, Stephen A.

    2010-01-01

    Over forty years ago, observations in