WorldWideScience

Sample records for feature recognition based

  1. Statistical feature extraction based iris recognition system

    Indian Academy of Sciences (India)

    Atul Bansal

    Abstract. Iris recognition systems have been proposed by numerous researchers using different feature extraction techniques for accurate and reliable biometric authentication. In this paper, a statistical feature extraction technique based on correlation between adjacent pixels has been proposed and implemented. Ham-.

  2. Statistical feature extraction based iris recognition system

    Indian Academy of Sciences (India)

    Atul Bansal

    features obtained from one's face [1], finger [2], voice [3] and/or iris [4, 5]. Iris recognition system is widely used in high security areas. A number of researchers have proposed various algorithms for feature extraction. A little work [6,. 7] however, has been reported using statistical techniques directly on pixel values in order to ...

  3. Statistical feature extraction based iris recognition system

    Indian Academy of Sciences (India)

    Performance of the proposed iris recognition system (IRS) has been measured by recording false acceptance rate (FAR) and false rejection rate (FRR) at differentthresholds in the distance metric. System performance has been evaluated by computing statistical features along two directions, namely, radial direction of ...

  4. GENDER RECOGNITION BASED ON SIFT FEATURES

    OpenAIRE

    Sahar Yousefi; Morteza Zahedi

    2011-01-01

    This paper proposes a robust approach for face detection and gender classification in color images. Previous researches about gender recognition suppose an expensive computational and time-consuming pre-processing step in order to alignment in which face images are aligned so that facial landmarks like eyes, nose, lips, chin are placed in uniform locations in image. In this paper, a novel technique based on mathematical analysis is represented in three stages that eliminates align...

  5. Superpixel-Based Feature for Aerial Image Scene Recognition

    Directory of Open Access Journals (Sweden)

    Hongguang Li

    2018-01-01

    Full Text Available Image scene recognition is a core technology for many aerial remote sensing applications. Different landforms are inputted as different scenes in aerial imaging, and all landform information is regarded as valuable for aerial image scene recognition. However, the conventional features of the Bag-of-Words model are designed using local points or other related information and thus are unable to fully describe landform areas. This limitation cannot be ignored when the aim is to ensure accurate aerial scene recognition. A novel superpixel-based feature is proposed in this study to characterize aerial image scenes. Then, based on the proposed feature, a scene recognition method of the Bag-of-Words model for aerial imaging is designed. The proposed superpixel-based feature that utilizes landform information establishes top-task superpixel extraction of landforms to bottom-task expression of feature vectors. This characterization technique comprises the following steps: simple linear iterative clustering based superpixel segmentation, adaptive filter bank construction, Lie group-based feature quantification, and visual saliency model-based feature weighting. Experiments of image scene recognition are carried out using real image data captured by an unmanned aerial vehicle (UAV. The recognition accuracy of the proposed superpixel-based feature is 95.1%, which is higher than those of scene recognition algorithms based on other local features.

  6. Individual discriminative face recognition models based on subsets of features

    DEFF Research Database (Denmark)

    Clemmensen, Line Katrine Harder; Gomez, David Delgado; Ersbøll, Bjarne Kjær

    2007-01-01

    of the face recognition problem. The elastic net model is able to select a subset of features with low computational effort compared to other state-of-the-art feature selection methods. Furthermore, the fact that the number of features usually is larger than the number of images in the data base makes feature......The accuracy of data classification methods depends considerably on the data representation and on the selected features. In this work, the elastic net model selection is used to identify meaningful and important features in face recognition. Modelling the characteristics which distinguish one...... person from another using only subsets of features will both decrease the computational cost and increase the generalization capacity of the face recognition algorithm. Moreover, identifying which are the features that better discriminate between persons will also provide a deeper understanding...

  7. Features fusion based approach for handwritten Gujarati character recognition

    Directory of Open Access Journals (Sweden)

    Ankit Sharma

    2017-02-01

    Full Text Available Handwritten character recognition is a challenging area of research. Lots of research activities in the area of character recognition are already done for Indian languages such as Hindi, Bangla, Kannada, Tamil and Telugu. Literature review on handwritten character recognition indicates that in comparison with other Indian scripts research activities on Gujarati handwritten character recognition are very less.  This paper aims to bring Gujarati character recognition in attention. Recognition of isolated Gujarati handwritten characters is proposed using three different kinds of features and their fusion. Chain code based, zone based and projection profiles based features are utilized as individual features. One of the significant contribution of proposed work is towards the generation of large and representative dataset of 88,000 handwritten Gujarati characters. Experiments are carried out on this developed dataset. Artificial Neural Network (ANN, Support Vector Machine (SVM and Naive Bayes (NB classifier based methods are implemented for handwritten Gujarati character recognition. Experimental results show substantial enhancement over state-of-the-art and authenticate our proposals.

  8. Multimodal recognition based on face and ear using local feature

    Science.gov (United States)

    Yang, Ruyin; Mu, Zhichun; Chen, Long; Fan, Tingyu

    2017-06-01

    The pose issue which may cause loss of useful information has always been a bottleneck in face and ear recognition. To address this problem, we propose a multimodal recognition approach based on face and ear using local feature, which is robust to large facial pose variations in the unconstrained scene. Deep learning method is used for facial pose estimation, and the method of a well-trained Faster R-CNN is used to detect and segment the region of face and ear. Then we propose a weighted region-based recognition method to deal with the local feature. The proposed method has achieved state-of-the-art recognition performance especially when the images are affected by pose variations and random occlusion in unconstrained scene.

  9. Fuzzy based finger vein recognition with rotation invariant feature matching

    Science.gov (United States)

    Ezhilmaran, D.; Joseph, Rose Bindu

    2017-11-01

    Finger vein recognition is a promising biometric with commercial applications which is explored widely in the recent years. In this paper, a finger vein recognition system is proposed using rotation invariant feature descriptors for matching after enhancing the finger vein images with an interval type-2 fuzzy method. SIFT features are extracted and matched using a matching score based on Euclidian distance. Rotation invariance of the proposed method is verified in the experiment and the results are compared with SURF matching and minutiae matching. It is seen that rotation invariance is verified and the poor quality issues are solved efficiently with the designed system of finger vein recognition during the analysis. The experiments underlines the robustness and reliability of the interval type-2 fuzzy enhancement and SIFT feature matching.

  10. Individual discriminative face recognition models based on subsets of features

    DEFF Research Database (Denmark)

    Clemmensen, Line Katrine Harder; Gomez, David Delgado; Ersbøll, Bjarne Kjær

    2007-01-01

    The accuracy of data classification methods depends considerably on the data representation and on the selected features. In this work, the elastic net model selection is used to identify meaningful and important features in face recognition. Modelling the characteristics which distinguish one...... selection techniques such as forward selection or lasso regression become inadequate. In the experimental section, the performance of the elastic net model is compared with geometrical and color based algorithms widely used in face recognition such as Procrustes nearest neighbor, Eigenfaces, or Fisher...

  11. Research on Forest Flame Recognition Algorithm Based on Image Feature

    Science.gov (United States)

    Wang, Z.; Liu, P.; Cui, T.

    2017-09-01

    In recent years, fire recognition based on image features has become a hotspot in fire monitoring. However, due to the complexity of forest environment, the accuracy of forest fireworks recognition based on image features is low. Based on this, this paper proposes a feature extraction algorithm based on YCrCb color space and K-means clustering. Firstly, the paper prepares and analyzes the color characteristics of a large number of forest fire image samples. Using the K-means clustering algorithm, the forest flame model is obtained by comparing the two commonly used color spaces, and the suspected flame area is discriminated and extracted. The experimental results show that the extraction accuracy of flame area based on YCrCb color model is higher than that of HSI color model, which can be applied in different scene forest fire identification, and it is feasible in practice.

  12. RESEARCH ON FOREST FLAME RECOGNITION ALGORITHM BASED ON IMAGE FEATURE

    Directory of Open Access Journals (Sweden)

    Z. Wang

    2017-09-01

    Full Text Available In recent years, fire recognition based on image features has become a hotspot in fire monitoring. However, due to the complexity of forest environment, the accuracy of forest fireworks recognition based on image features is low. Based on this, this paper proposes a feature extraction algorithm based on YCrCb color space and K-means clustering. Firstly, the paper prepares and analyzes the color characteristics of a large number of forest fire image samples. Using the K-means clustering algorithm, the forest flame model is obtained by comparing the two commonly used color spaces, and the suspected flame area is discriminated and extracted. The experimental results show that the extraction accuracy of flame area based on YCrCb color model is higher than that of HSI color model, which can be applied in different scene forest fire identification, and it is feasible in practice.

  13. SAR Target Recognition with Feature Fusion Based on Stacked Autoencoder

    Directory of Open Access Journals (Sweden)

    Kang Miao

    2017-04-01

    Full Text Available A feature fusion algorithm based on a Stacked AutoEncoder (SAE for Synthetic Aperture Rader (SAR imagery is proposed in this paper. Firstly, 25 baseline features and Three-Patch Local Binary Patterns (TPLBP features are extracted. Then, the features are combined in series and fed into the SAE network, which is trained by a greedy layer-wise method. Finally, the softmax classifier is employed to fine tune the SAE network for better fusion performance. Additionally, the Gabor texture features of SAR images are extracted, and the fusion experiments between different features are carried out. The results show that the baseline features and TPLBP features have low redundancy and high complementarity, which makes the fused feature more discriminative. Compared with the SAR target recognition algorithm based on SAE or CNN (Convolutional Neural Network, the proposed method simplifies the network structure and increases the recognition accuracy and efficiency. 10-classes SAR targets based on an MSTAR dataset got a classification accuracy up to 95.88%, which verifies the effectiveness of the presented algorithm.

  14. WORD BASED TAMIL SPEECH RECOGNITION USING TEMPORAL FEATURE BASED SEGMENTATION

    Directory of Open Access Journals (Sweden)

    A. Akila

    2015-05-01

    Full Text Available Speech recognition system requires segmentation of speech waveform into fundamental acoustic units. Segmentation is a process of decomposing the speech signal into smaller units. Speech segmentation could be done using wavelet, fuzzy methods, Artificial Neural Networks and Hidden Markov Model. Speech segmentation is a process of breaking continuous stream of sound into some basic units like words, phonemes or syllable that could be recognized. Segmentation could be used to distinguish different types of audio signals from large amount of audio data, often referred as audio classification. The speech segmentation can be divided into two categories based on whether the algorithm uses previous knowledge of data to process the speech. The categories are blind segmentation and aided segmentation.The major issues with the connected speech recognition algorithms were the vocabulary size will be larger with variation in the combination of words in the connected speech and the complexity of the algorithm is more to find the best match for the given test pattern. To overcome these issues, the connected speech has to be segmented into words using the attributes of speech. A methodology using the temporal feature Short Term Energy was proposed and compared with an existing algorithm called Dynamic Thresholding segmentation algorithm which uses spectrogram image of the connected speech for segmentation.

  15. Auditory-model based robust feature selection for speech recognition.

    Science.gov (United States)

    Koniaris, Christos; Kuropatwinski, Marcin; Kleijn, W Bastiaan

    2010-02-01

    It is shown that robust dimension-reduction of a feature set for speech recognition can be based on a model of the human auditory system. Whereas conventional methods optimize classification performance, the proposed method exploits knowledge implicit in the auditory periphery, inheriting its robustness. Features are selected to maximize the similarity of the Euclidean geometry of the feature domain and the perceptual domain. Recognition experiments using mel-frequency cepstral coefficients (MFCCs) confirm the effectiveness of the approach, which does not require labeled training data. For noisy data the method outperforms commonly used discriminant-analysis based dimension-reduction methods that rely on labeling. The results indicate that selecting MFCCs in their natural order results in subsets with good performance.

  16. Production ready feature recognition based automatic group technology part coding

    Energy Technology Data Exchange (ETDEWEB)

    Ames, A.L.

    1990-01-01

    During the past four years, a feature recognition based expert system for automatically performing group technology part coding from solid model data has been under development. The system has become a production quality tool, capable of quickly the geometry based portions of a part code with no human intervention. It has been tested on over 200 solid models, half of which are models of production Sandia designs. Its performance rivals that of humans performing the same task, often surpassing them in speed and uniformity. The feature recognition capability developed for part coding is being extended to support other applications, such as manufacturability analysis, automatic decomposition (for finite element meshing and machining), and assembly planning. Initial surveys of these applications indicate that the current capability will provide a strong basis for other applications and that extensions toward more global geometric reasoning and tighter coupling with solid modeler functionality will be necessary.

  17. Multi Modal Face Recognition Using Block Based Curvelet Features

    OpenAIRE

    K, Jyothi; J, Prabhakar C.

    2014-01-01

    In this paper, we present multimodal 2D +3D face recognition method using block based curvelet features. The 3D surface of face (Depth Map) is computed from the stereo face images using stereo vision technique. The statistical measures such as mean, standard deviation, variance and entropy are extracted from each block of curvelet subband for both depth and intensity images independently.In order to compute the decision score, the KNN classifier is employed independently for both intensity an...

  18. Feature Recognition of Froth Images Based on Energy Distribution Characteristics

    Directory of Open Access Journals (Sweden)

    WU Yanpeng

    2014-09-01

    Full Text Available This paper proposes a determining algorithm for froth image features based on the amplitude spectrum energy statistics by applying Fast Fourier Transformation to analyze the energy distribution of various-sized froth. The proposed algorithm has been used to do a froth feature analysis of the froth images from the alumina flotation processing site, and the results show that the consistency rate reaches 98.1 % and the usability rate 94.2 %; with its good robustness and high efficiency, the algorithm is quite suitable for flotation processing state recognition.

  19. Object Recognition using Feature- and Color-Based Methods

    Science.gov (United States)

    Duong, Tuan; Duong, Vu; Stubberud, Allen

    2008-01-01

    An improved adaptive method of processing image data in an artificial neural network has been developed to enable automated, real-time recognition of possibly moving objects under changing (including suddenly changing) conditions of illumination and perspective. The method involves a combination of two prior object-recognition methods one based on adaptive detection of shape features and one based on adaptive color segmentation to enable recognition in situations in which either prior method by itself may be inadequate. The chosen prior feature-based method is known as adaptive principal-component analysis (APCA); the chosen prior color-based method is known as adaptive color segmentation (ACOSE). These methods are made to interact with each other in a closed-loop system to obtain an optimal solution of the object-recognition problem in a dynamic environment. One of the results of the interaction is to increase, beyond what would otherwise be possible, the accuracy of the determination of a region of interest (containing an object that one seeks to recognize) within an image. Another result is to provide a minimized adaptive step that can be used to update the results obtained by the two component methods when changes of color and apparent shape occur. The net effect is to enable the neural network to update its recognition output and improve its recognition capability via an adaptive learning sequence. In principle, the improved method could readily be implemented in integrated circuitry to make a compact, low-power, real-time object-recognition system. It has been proposed to demonstrate the feasibility of such a system by integrating a 256-by-256 active-pixel sensor with APCA, ACOSE, and neural processing circuitry on a single chip. It has been estimated that such a system on a chip would have a volume no larger than a few cubic centimeters, could operate at a rate as high as 1,000 frames per second, and would consume in the order of milliwatts of power.

  20. Infrared vehicle recognition using unsupervised feature learning based on K-feature

    Science.gov (United States)

    Lin, Jin; Tan, Yihua; Xia, Haijiao; Tian, Jinwen

    2018-02-01

    Subject to the complex battlefield environment, it is difficult to establish a complete knowledge base in practical application of vehicle recognition algorithms. The infrared vehicle recognition is always difficult and challenging, which plays an important role in remote sensing. In this paper we propose a new unsupervised feature learning method based on K-feature to recognize vehicle in infrared images. First, we use the target detection algorithm which is based on the saliency to detect the initial image. Then, the unsupervised feature learning based on K-feature, which is generated by Kmeans clustering algorithm that extracted features by learning a visual dictionary from a large number of samples without label, is calculated to suppress the false alarm and improve the accuracy. Finally, the vehicle target recognition image is finished by some post-processing. Large numbers of experiments demonstrate that the proposed method has satisfy recognition effectiveness and robustness for vehicle recognition in infrared images under complex backgrounds, and it also improve the reliability of it.

  1. Feature based sliding window technique for face recognition

    Science.gov (United States)

    Javed, Muhammad Younus; Mohsin, Syed Maajid; Anjum, Muhammad Almas

    2010-02-01

    Human beings are commonly identified by biometric schemes which are concerned with identifying individuals by their unique physical characteristics. The use of passwords and personal identification numbers for detecting humans are being used for years now. Disadvantages of these schemes are that someone else may use them or can easily be forgotten. Keeping in view of these problems, biometrics approaches such as face recognition, fingerprint, iris/retina and voice recognition have been developed which provide a far better solution when identifying individuals. A number of methods have been developed for face recognition. This paper illustrates employment of Gabor filters for extracting facial features by constructing a sliding window frame. Classification is done by assigning class label to the unknown image that has maximum features similar to the image stored in the database of that class. The proposed system gives a recognition rate of 96% which is better than many of the similar techniques being used for face recognition.

  2. Uniform Local Binary Pattern Based Texture-Edge Feature for 3D Human Behavior Recognition

    OpenAIRE

    Ming, Yue; Wang, Guangchao; Fan, Chunxiao

    2015-01-01

    With the rapid development of 3D somatosensory technology, human behavior recognition has become an important research field. Human behavior feature analysis has evolved from traditional 2D features to 3D features. In order to improve the performance of human activity recognition, a human behavior recognition method is proposed, which is based on a hybrid texture-edge local pattern coding feature extraction and integration of RGB and depth videos information. The paper mainly focuses on backg...

  3. Pattern Recognition by Dinamic Feature Analysis Based on PCA

    Directory of Open Access Journals (Sweden)

    Juliana Valencia-Aguirre

    2009-06-01

    Full Text Available Usually, in pattern recognition problems we represent the observations by mean of measures on appropriate variables of data set, these measures can be categorized as Static and Dynamic Features. Static features are not always an accurate representation of data. In these sense, many phenomena are better modeled by dynamic changes on their measures. The advantage of using an extended form (dynamic features is the inclusion of new information that allows us to get a better representation of the object. Nevertheless, sometimes it is difficult in a classification stage to deal with dynamic features, because the associated computational cost often can be higher than we deal with static features. For analyzing such representations, we use Principal Component Analysis (PCA, arranging dynamic data in such a way we can consider variations related to the intrinsic dynamic of observations. Therefore, the method made possible to evaluate the dynamic information about of the observations on a lower dimensionality feature space without decreasing the accuracy performance. Algorithms were tested on real data to classify pathological speech from normal voices, and using PCA for dynamic feature selection, as well.

  4. A Study of Moment Based Features on Handwritten Digit Recognition

    Directory of Open Access Journals (Sweden)

    Pawan Kumar Singh

    2016-01-01

    Full Text Available Handwritten digit recognition plays a significant role in many user authentication applications in the modern world. As the handwritten digits are not of the same size, thickness, style, and orientation, therefore, these challenges are to be faced to resolve this problem. A lot of work has been done for various non-Indic scripts particularly, in case of Roman, but, in case of Indic scripts, the research is limited. This paper presents a script invariant handwritten digit recognition system for identifying digits written in five popular scripts of Indian subcontinent, namely, Indo-Arabic, Bangla, Devanagari, Roman, and Telugu. A 130-element feature set which is basically a combination of six different types of moments, namely, geometric moment, moment invariant, affine moment invariant, Legendre moment, Zernike moment, and complex moment, has been estimated for each digit sample. Finally, the technique is evaluated on CMATER and MNIST databases using multiple classifiers and, after performing statistical significance tests, it is observed that Multilayer Perceptron (MLP classifier outperforms the others. Satisfactory recognition accuracies are attained for all the five mentioned scripts.

  5. A Motion-Based Feature for Event-Based Pattern Recognition.

    Science.gov (United States)

    Clady, Xavier; Maro, Jean-Matthieu; Barré, Sébastien; Benosman, Ryad B

    2016-01-01

    This paper introduces an event-based luminance-free feature from the output of asynchronous event-based neuromorphic retinas. The feature consists in mapping the distribution of the optical flow along the contours of the moving objects in the visual scene into a matrix. Asynchronous event-based neuromorphic retinas are composed of autonomous pixels, each of them asynchronously generating "spiking" events that encode relative changes in pixels' illumination at high temporal resolutions. The optical flow is computed at each event, and is integrated locally or globally in a speed and direction coordinate frame based grid, using speed-tuned temporal kernels. The latter ensures that the resulting feature equitably represents the distribution of the normal motion along the current moving edges, whatever their respective dynamics. The usefulness and the generality of the proposed feature are demonstrated in pattern recognition applications: local corner detection and global gesture recognition.

  6. Emotion recognition based on multiple order features using fractional Fourier transform

    Science.gov (United States)

    Ren, Bo; Liu, Deyin; Qi, Lin

    2017-07-01

    In order to deal with the insufficiency of recently algorithms based on Two Dimensions Fractional Fourier Transform (2D-FrFT), this paper proposes a multiple order features based method for emotion recognition. Most existing methods utilize the feature of single order or a couple of orders of 2D-FrFT. However, different orders of 2D-FrFT have different contributions on the feature extraction of emotion recognition. Combination of these features can enhance the performance of an emotion recognition system. The proposed approach obtains numerous features that extracted in different orders of 2D-FrFT in the directions of x-axis and y-axis, and uses the statistical magnitudes as the final feature vectors for recognition. The Support Vector Machine (SVM) is utilized for the classification and RML Emotion database and Cohn-Kanade (CK) database are used for the experiment. The experimental results demonstrate the effectiveness of the proposed method.

  7. Fast Traffic Sign Recognition with a Rotation Invariant Binary Pattern Based Feature

    Directory of Open Access Journals (Sweden)

    Shouyi Yin

    2015-01-01

    Full Text Available Robust and fast traffic sign recognition is very important but difficult for safe driving assistance systems. This study addresses fast and robust traffic sign recognition to enhance driving safety. The proposed method includes three stages. First, a typical Hough transformation is adopted to implement coarse-grained location of the candidate regions of traffic signs. Second, a RIBP (Rotation Invariant Binary Pattern based feature in the affine and Gaussian space is proposed to reduce the time of traffic sign detection and achieve robust traffic sign detection in terms of scale, rotation, and illumination. Third, the techniques of ANN (Artificial Neutral Network based feature dimension reduction and classification are designed to reduce the traffic sign recognition time. Compared with the current work, the experimental results in the public datasets show that this work achieves robustness in traffic sign recognition with comparable recognition accuracy and faster processing speed, including training speed and recognition speed.

  8. Fast traffic sign recognition with a rotation invariant binary pattern based feature.

    Science.gov (United States)

    Yin, Shouyi; Ouyang, Peng; Liu, Leibo; Guo, Yike; Wei, Shaojun

    2015-01-19

    Robust and fast traffic sign recognition is very important but difficult for safe driving assistance systems. This study addresses fast and robust traffic sign recognition to enhance driving safety. The proposed method includes three stages. First, a typical Hough transformation is adopted to implement coarse-grained location of the candidate regions of traffic signs. Second, a RIBP (Rotation Invariant Binary Pattern) based feature in the affine and Gaussian space is proposed to reduce the time of traffic sign detection and achieve robust traffic sign detection in terms of scale, rotation, and illumination. Third, the techniques of ANN (Artificial Neutral Network) based feature dimension reduction and classification are designed to reduce the traffic sign recognition time. Compared with the current work, the experimental results in the public datasets show that this work achieves robustness in traffic sign recognition with comparable recognition accuracy and faster processing speed, including training speed and recognition speed.

  9. Uniform Local Binary Pattern Based Texture-Edge Feature for 3D Human Behavior Recognition.

    Science.gov (United States)

    Ming, Yue; Wang, Guangchao; Fan, Chunxiao

    2015-01-01

    With the rapid development of 3D somatosensory technology, human behavior recognition has become an important research field. Human behavior feature analysis has evolved from traditional 2D features to 3D features. In order to improve the performance of human activity recognition, a human behavior recognition method is proposed, which is based on a hybrid texture-edge local pattern coding feature extraction and integration of RGB and depth videos information. The paper mainly focuses on background subtraction on RGB and depth video sequences of behaviors, extracting and integrating historical images of the behavior outlines, feature extraction and classification. The new method of 3D human behavior recognition has achieved the rapid and efficient recognition of behavior videos. A large number of experiments show that the proposed method has faster speed and higher recognition rate. The recognition method has good robustness for different environmental colors, lightings and other factors. Meanwhile, the feature of mixed texture-edge uniform local binary pattern can be used in most 3D behavior recognition.

  10. Facial expression recognition in the wild based on multimodal texture features

    Science.gov (United States)

    Sun, Bo; Li, Liandong; Zhou, Guoyan; He, Jun

    2016-11-01

    Facial expression recognition in the wild is a very challenging task. We describe our work in static and continuous facial expression recognition in the wild. We evaluate the recognition results of gray deep features and color deep features, and explore the fusion of multimodal texture features. For the continuous facial expression recognition, we design two temporal-spatial dense scale-invariant feature transform (SIFT) features and combine multimodal features to recognize expression from image sequences. For the static facial expression recognition based on video frames, we extract dense SIFT and some deep convolutional neural network (CNN) features, including our proposed CNN architecture. We train linear support vector machine and partial least squares classifiers for those kinds of features on the static facial expression in the wild (SFEW) and acted facial expression in the wild (AFEW) dataset, and we propose a fusion network to combine all the extracted features at decision level. The final achievement we gained is 56.32% on the SFEW testing set and 50.67% on the AFEW validation set, which are much better than the baseline recognition rates of 35.96% and 36.08%.

  11. An Improved Iris Recognition Algorithm Based on Hybrid Feature and ELM

    Science.gov (United States)

    Wang, Juan

    2018-03-01

    The iris image is easily polluted by noise and uneven light. This paper proposed an improved extreme learning machine (ELM) based iris recognition algorithm with hybrid feature. 2D-Gabor filters and GLCM is employed to generate a multi-granularity hybrid feature vector. 2D-Gabor filter and GLCM feature work for capturing low-intermediate frequency and high frequency texture information, respectively. Finally, we utilize extreme learning machine for iris recognition. Experimental results reveal our proposed ELM based multi-granularity iris recognition algorithm (ELM-MGIR) has higher accuracy of 99.86%, and lower EER of 0.12% under the premise of real-time performance. The proposed ELM-MGIR algorithm outperforms other mainstream iris recognition algorithms.

  12. SAR Target Recognition Based on Multi-feature Multiple Representation Classifier Fusion

    Directory of Open Access Journals (Sweden)

    Zhang Xinzheng

    2017-10-01

    Full Text Available In this paper, we present a Synthetic Aperture Radar (SAR image target recognition algorithm based on multi-feature multiple representation learning classifier fusion. First, it extracts three features from the SAR images, namely principal component analysis, wavelet transform, and Two-Dimensional Slice Zernike Moments (2DSZM features. Second, we harness the sparse representation classifier and the cooperative representation classifier with the above-mentioned features to get six predictive labels. Finally, we adopt classifier fusion to obtain the final recognition decision. We researched three different classifier fusion algorithms in our experiments, and the results demonstrate thatusing Bayesian decision fusion gives thebest recognition performance. The method based on multi-feature multiple representation learning classifier fusion integrates the discrimination of multi-features and combines the sparse and cooperative representation classification performance to gain complementary advantages and to improve recognition accuracy. The experiments are based on the Moving and Stationary Target Acquisition and Recognition (MSTAR database,and they demonstrate the effectiveness of the proposed approach.

  13. An Offline Fuzzy Based Approach for Iris Recognition with Enhanced Feature Detection

    Science.gov (United States)

    Kodituwakku, S. R.; Fazeen, M. I. M.

    Among many biometric identification methods iris recognition is more attractive due to the unique features of the human eye [1]. There are many proposed algorithms for iris recognition. Although all these methods are based on the properties of the iris, they are subject to some limitations. In this research we attempt to develop an algorithm for iris recognition based on Fuzzy logic incorporated with not only the visible properties of the human iris but also considering the iris function. Visible features of the human iris such as pigment related features, features controlling the size of the pupil, visible rare anomalies, pigment frill and Collarette are considered [2]. This paper presents the algorithm we developed to recognize iris. A prototype system developed is also discussed.

  14. Synthetic Aperture Radar Target Recognition with Feature Fusion Based on a Stacked Autoencoder

    Directory of Open Access Journals (Sweden)

    Miao Kang

    2017-01-01

    Full Text Available Feature extraction is a crucial step for any automatic target recognition process, especially in the interpretation of synthetic aperture radar (SAR imagery. In order to obtain distinctive features, this paper proposes a feature fusion algorithm for SAR target recognition based on a stacked autoencoder (SAE. The detailed procedure presented in this paper can be summarized as follows: firstly, 23 baseline features and Three-Patch Local Binary Pattern (TPLBP features are extracted. These features can describe the global and local aspects of the image with less redundancy and more complementarity, providing richer information for feature fusion. Secondly, an effective feature fusion network is designed. Baseline and TPLBP features are cascaded and fed into a SAE. Then, with an unsupervised learning algorithm, the SAE is pre-trained by greedy layer-wise training method. Capable of feature expression, SAE makes the fused features more distinguishable. Finally, the model is fine-tuned by a softmax classifier and applied to the classification of targets. 10-class SAR targets based on Moving and Stationary Target Acquisition and Recognition (MSTAR dataset got a classification accuracy up to 95.43%, which verifies the effectiveness of the presented algorithm.

  15. Face Recognition Performance Improvement using a Similarity Score of Feature Vectors based on Probabilistic Histograms

    Directory of Open Access Journals (Sweden)

    SRIKOTE, G.

    2016-08-01

    Full Text Available This paper proposes an improved performance algorithm of face recognition to identify two face mismatch pairs in cases of incorrect decisions. The primary feature of this method is to deploy the similarity score with respect to Gaussian components between two previously unseen faces. Unlike the conventional classical vector distance measurement, our algorithms also consider the plot of summation of the similarity index versus face feature vector distance. A mixture of Gaussian models of labeled faces is also widely applicable to different biometric system parameters. By comparative evaluations, it has been shown that the efficiency of the proposed algorithm is superior to that of the conventional algorithm by an average accuracy of up to 1.15% and 16.87% when compared with 3x3 Multi-Region Histogram (MRH direct-bag-of-features and Principal Component Analysis (PCA-based face recognition systems, respectively. The experimental results show that similarity score consideration is more discriminative for face recognition compared to feature distance. Experimental results of Labeled Face in the Wild (LFW data set demonstrate that our algorithms are suitable for real applications probe-to-gallery identification of face recognition systems. Moreover, this proposed method can also be applied to other recognition systems and therefore additionally improves recognition scores.

  16. Optical character recognition of camera-captured images based on phase features

    Science.gov (United States)

    Diaz-Escobar, Julia; Kober, Vitaly

    2015-09-01

    Nowadays most of digital information is obtained using mobile devices specially smartphones. In particular, it brings the opportunity for optical character recognition in camera-captured images. For this reason many recognition applications have been recently developed such as recognition of license plates, business cards, receipts and street signal; document classification, augmented reality, language translator and so on. Camera-captured images are usually affected by geometric distortions, nonuniform illumination, shadow, noise, which make difficult the recognition task with existing systems. It is well known that the Fourier phase contains a lot of important information regardless of the Fourier magnitude. So, in this work we propose a phase-based recognition system exploiting phase-congruency features for illumination/scale invariance. The performance of the proposed system is tested in terms of miss classifications and false alarms with the help of computer simulation.

  17. A Method of SAR Target Recognition Based on Gabor Filter and Local Texture Feature Extraction

    Directory of Open Access Journals (Sweden)

    Wang Lu

    2015-12-01

    Full Text Available This paper presents a novel texture feature extraction method based on a Gabor filter and Three-Patch Local Binary Patterns (TPLBP for Synthetic Aperture Rader (SAR target recognition. First, SAR images are processed by a Gabor filter in different directions to enhance the significant features of the targets and their shadows. Then, the effective local texture features based on the Gabor filtered images are extracted by TPLBP. This not only overcomes the shortcoming of Local Binary Patterns (LBP, which cannot describe texture features for large scale neighborhoods, but also maintains the rotation invariant characteristic which alleviates the impact of the direction variations of SAR targets on recognition performance. Finally, we use an Extreme Learning Machine (ELM classifier and extract the texture features. The experimental results of MSTAR database demonstrate the effectiveness of the proposed method.

  18. Automatic Target Recognition in Synthetic Aperture Sonar Images Based on Geometrical Feature Extraction

    Directory of Open Access Journals (Sweden)

    J. Del Rio Vera

    2009-01-01

    Full Text Available This paper presents a new supervised classification approach for automated target recognition (ATR in SAS images. The recognition procedure starts with a novel segmentation stage based on the Hilbert transform. A number of geometrical features are then extracted and used to classify observed objects against a previously compiled database of target and non-target features. The proposed approach has been tested on a set of 1528 simulated images created by the NURC SIGMAS sonar model, achieving up to 95% classification accuracy.

  19. Gesture Recognition using Latent-Dynamic based Conditional Random Fields and Scalar Features

    Science.gov (United States)

    Yulita, I. N.; Fanany, M. I.; Arymurthy, A. M.

    2017-02-01

    The need for segmentation and labeling of sequence data appears in several fields. The use of the conditional models such as Conditional Random Fields is widely used to solve this problem. In the pattern recognition, Conditional Random Fields specify the possibilities of a sequence label. This method constructs its full label sequence to be a probabilistic graphical model based on its observation. However, Conditional Random Fields can not capture the internal structure so that Latent-based Dynamic Conditional Random Fields is developed without leaving external dynamics of inter-label. This study proposes the use of Latent-Dynamic Conditional Random Fields for Gesture Recognition and comparison between both methods. Besides, this study also proposes the use of a scalar features to gesture recognition. The results show that performance of Latent-dynamic based Conditional Random Fields is not better than the Conditional Random Fields, and scalar features are effective for both methods are in gesture recognition. Therefore, it recommends implementing Conditional Random Fields and scalar features in gesture recognition for better performance

  20. An approach to EEG-based emotion recognition using combined feature extraction method.

    Science.gov (United States)

    Zhang, Yong; Ji, Xiaomin; Zhang, Suhua

    2016-10-28

    EEG signal has been widely used in emotion recognition. However, too many channels and extracted features are used in the current EEG-based emotion recognition methods, which lead to the complexity of these methods This paper studies on feature extraction on EEG-based emotion recognition model to overcome those disadvantages, and proposes an emotion recognition method based on empirical mode decomposition (EMD) and sample entropy. The proposed method first employs EMD strategy to decompose EEG signals only containing two channels into a series of intrinsic mode functions (IMFs). The first 4 IMFs are selected to calculate corresponding sample entropies and then to form feature vectors. These vectors are fed into support vector machine classifier for training and testing. The average accuracy of the proposed method is 94.98% for binary-class tasks and the best accuracy achieves 93.20% for the multi-class task on DEAP database, respectively. The results indicate that the proposed method is more suitable for emotion recognition than several methods of comparison. Copyright © 2016 Elsevier Ireland Ltd. All rights reserved.

  1. Matching Algorithms and Feature Match Quality Measures for Model-Based Object Recognition with Applications to Automatic Target Recognition

    National Research Council Canada - National Science Library

    Keller, Martin G

    1999-01-01

    In the fields of computational vision and image understanding, the object recognition problem can be formulated as a problem of matching a collection of model features to features extracted from an observed scene...

  2. A Feature-Based Structural Measure: An Image Similarity Measure for Face Recognition

    Directory of Open Access Journals (Sweden)

    Noor Abdalrazak Shnain

    2017-08-01

    Full Text Available Facial recognition is one of the most challenging and interesting problems within the field of computer vision and pattern recognition. During the last few years, it has gained special attention due to its importance in relation to current issues such as security, surveillance systems and forensics analysis. Despite this high level of attention to facial recognition, the success is still limited by certain conditions; there is no method which gives reliable results in all situations. In this paper, we propose an efficient similarity index that resolves the shortcomings of the existing measures of feature and structural similarity. This measure, called the Feature-Based Structural Measure (FSM, combines the best features of the well-known SSIM (structural similarity index measure and FSIM (feature similarity index measure approaches, striking a balance between performance for similar and dissimilar images of human faces. In addition to the statistical structural properties provided by SSIM, edge detection is incorporated in FSM as a distinctive structural feature. Its performance is tested for a wide range of PSNR (peak signal-to-noise ratio, using ORL (Olivetti Research Laboratory, now AT&T Laboratory Cambridge and FEI (Faculty of Industrial Engineering, São Bernardo do Campo, São Paulo, Brazil databases. The proposed measure is tested under conditions of Gaussian noise; simulation results show that the proposed FSM outperforms the well-known SSIM and FSIM approaches in its efficiency of similarity detection and recognition of human faces.

  3. Weighted score-level feature fusion based on Dempster-Shafer evidence theory for action recognition

    Science.gov (United States)

    Zhang, Guoliang; Jia, Songmin; Li, Xiuzhi; Zhang, Xiangyin

    2018-01-01

    The majority of human action recognition methods use multifeature fusion strategy to improve the classification performance, where the contribution of different features for specific action has not been paid enough attention. We present an extendible and universal weighted score-level feature fusion method using the Dempster-Shafer (DS) evidence theory based on the pipeline of bag-of-visual-words. First, the partially distinctive samples in the training set are selected to construct the validation set. Then, local spatiotemporal features and pose features are extracted from these samples to obtain evidence information. The DS evidence theory and the proposed rule of survival of the fittest are employed to achieve evidence combination and calculate optimal weight vectors of every feature type belonging to each action class. Finally, the recognition results are deduced via the weighted summation strategy. The performance of the established recognition framework is evaluated on Penn Action dataset and a subset of the joint-annotated human metabolome database (sub-JHMDB). The experiment results demonstrate that the proposed feature fusion method can adequately exploit the complementarity among multiple features and improve upon most of the state-of-the-art algorithms on Penn Action and sub-JHMDB datasets.

  4. Joint Feature Extraction and Classifier Design for ECG-Based Biometric Recognition.

    Science.gov (United States)

    Gutta, Sandeep; Cheng, Qi

    2016-03-01

    Traditional biometric recognition systems often utilize physiological traits such as fingerprint, face, iris, etc. Recent years have seen a growing interest in electrocardiogram (ECG)-based biometric recognition techniques, especially in the field of clinical medicine. In existing ECG-based biometric recognition methods, feature extraction and classifier design are usually performed separately. In this paper, a multitask learning approach is proposed, in which feature extraction and classifier design are carried out simultaneously. Weights are assigned to the features within the kernel of each task. We decompose the matrix consisting of all the feature weights into sparse and low-rank components. The sparse component determines the features that are relevant to identify each individual, and the low-rank component determines the common feature subspace that is relevant to identify all the subjects. A fast optimization algorithm is developed, which requires only the first-order information. The performance of the proposed approach is demonstrated through experiments using the MIT-BIH Normal Sinus Rhythm database.

  5. Selecting an informative features vocabulary for recognition algorithms based on Fourier-descriptors

    Directory of Open Access Journals (Sweden)

    V. Ya. Kolyuchkin

    2014-01-01

    Full Text Available Working vocabulary of features include most informative features of objects to be recognized. The aim is to develop a method of forming a working vocabulary of features for recognition algorithms based on Fourier-descriptors of the object image contours.To solve this problem the paper offers to use the method of functional maximization that is the ratio of the distance between the classes to the spread of objects within each of the classes represented in the feature space, which is formed on the basis of Fourier-descriptors.To check the effectiveness of the proposed method to form a working vocabulary of features the numerical experiments have been carried out. The experiments used two databases of reference images consisting of 10 and 13 reference images. Test images obtained by rotating the reference images, by zooming, as well as by adding the noise using the normal law of distribution have been created from these images. The proposed by the author algorithm, which uses the Prewitt operator, threshold segmentation, and morphological processing has marked the contours of images. The original vocabulary of features derived from the Fourier-descriptors has dimension of 98. The vocabularies of working features having the dimensions, respectively, 3 and 4 have been formed on the basis of functional maximization for both reference images. In the course of numerical experiments the frequency of correct decisions to recognise the features of reference bases of images for the original and working vocabularies has been evaluated. It has been proved that the algorithm of recognition with the formed working vocabularies of features provides a great efficiency of automatic recognition of objects.There are known publications, which use a similar method to form a working vocabulary of features in algorithms of human recognition by the image. But there are no publications on choosing the vocabulary of features for recognition algorithms based on the

  6. Combining feature- and correspondence-based methods for visual object recognition.

    Science.gov (United States)

    Westphal, Günter; Würtz, Rolf P

    2009-07-01

    We present an object recognition system built on a combination of feature- and correspondence-based pattern recognizers. The feature-based part, called preselection network, is a single-layer feedforward network weighted with the amount of information contributed by each feature to the decision at hand. For processing arbitrary objects, we employ small, regular graphs whose nodes are attributed with Gabor amplitudes, termed parquet graphs. The preselection network can quickly rule out most irrelevant matches and leaves only the ambiguous cases, so-called model candidates, to be verified by a rudimentary version of elastic graph matching, a standard correspondence-based technique for face and object recognition. According to the model, graphs are constructed that describe the object in the input image well. We report the results of experiments on standard databases for object recognition. The method achieved high recognition rates on identity and pose. Unlike many other models, it can also cope with varying background, multiple objects, and partial occlusion.

  7. Object feature extraction and recognition model

    International Nuclear Information System (INIS)

    Wan Min; Xiang Rujian; Wan Yongxing

    2001-01-01

    The characteristics of objects, especially flying objects, are analyzed, which include characteristics of spectrum, image and motion. Feature extraction is also achieved. To improve the speed of object recognition, a feature database is used to simplify the data in the source database. The feature vs. object relationship maps are stored in the feature database. An object recognition model based on the feature database is presented, and the way to achieve object recognition is also explained

  8. Zone Based Hybrid Feature Extraction Algorithm for Handwritten Numeral Recognition of South Indian Scripts

    Science.gov (United States)

    Rajashekararadhya, S. V.; Ranjan, P. Vanaja

    India is a multi-lingual multi script country, where eighteen official scripts are accepted and have over hundred regional languages. In this paper we propose a zone based hybrid feature extraction algorithm scheme towards the recognition of off-line handwritten numerals of south Indian scripts. The character centroid is computed and the image (character/numeral) is further divided in to n equal zones. Average distance and Average angle from the character centroid to the pixels present in the zone are computed (two features). Similarly zone centroid is computed (two features). This procedure is repeated sequentially for all the zones/grids/boxes present in the numeral image. There could be some zones that are empty, and then the value of that particular zone image value in the feature vector is zero. Finally 4*n such features are extracted. Nearest neighbor classifier is used for subsequent classification and recognition purpose. We obtained 97.55 %, 94 %, 92.5% and 95.2 % recognition rate for Kannada, Telugu, Tamil and Malayalam numerals respectively.

  9. Robust and Effective Component-based Banknote Recognition by SURF Features.

    Science.gov (United States)

    Hasanuzzaman, Faiz M; Yang, Xiaodong; Tian, YingLi

    2011-01-01

    Camera-based computer vision technology is able to assist visually impaired people to automatically recognize banknotes. A good banknote recognition algorithm for blind or visually impaired people should have the following features: 1) 100% accuracy, and 2) robustness to various conditions in different environments and occlusions. Most existing algorithms of banknote recognition are limited to work for restricted conditions. In this paper we propose a component-based framework for banknote recognition by using Speeded Up Robust Features (SURF). The component-based framework is effective in collecting more class-specific information and robust in dealing with partial occlusion and viewpoint changes. Furthermore, the evaluation of SURF demonstrates its effectiveness in handling background noise, image rotation, scale, and illumination changes. To authenticate the robustness and generalizability of the proposed approach, we have collected a large dataset of banknotes from a variety of conditions including occlusion, cluttered background, rotation, and changes of illumination, scaling, and viewpoints. The proposed algorithm achieves 100% recognition rate on our challenging dataset.

  10. SD-MSAEs: Promoter recognition in human genome based on deep feature extraction.

    Science.gov (United States)

    Xu, Wenxuan; Zhang, Li; Lu, Yaping

    2016-06-01

    The prediction and recognition of promoter in human genome play an important role in DNA sequence analysis. Entropy, in Shannon sense, of information theory is a multiple utility in bioinformatic details analysis. The relative entropy estimator methods based on statistical divergence (SD) are used to extract meaningful features to distinguish different regions of DNA sequences. In this paper, we choose context feature and use a set of methods of SD to select the most effective n-mers distinguishing promoter regions from other DNA regions in human genome. Extracted from the total possible combinations of n-mers, we can get four sparse distributions based on promoter and non-promoters training samples. The informative n-mers are selected by optimizing the differentiating extents of these distributions. Specially, we combine the advantage of statistical divergence and multiple sparse auto-encoders (MSAEs) in deep learning to extract deep feature for promoter recognition. And then we apply multiple SVMs and a decision model to construct a human promoter recognition method called SD-MSAEs. Framework is flexible that it can integrate new feature extraction or new classification models freely. Experimental results show that our method has high sensitivity and specificity. Copyright © 2016 Elsevier Inc. All rights reserved.

  11. Behavioral features recognition and oestrus detection based on fast approximate clustering algorithm in dairy cows

    Science.gov (United States)

    Tian, Fuyang; Cao, Dong; Dong, Xiaoning; Zhao, Xinqiang; Li, Fade; Wang, Zhonghua

    2017-06-01

    Behavioral features recognition was an important effect to detect oestrus and sickness in dairy herds and there is a need for heat detection aid. The detection method was based on the measure of the individual behavioural activity, standing time, and temperature of dairy using vibrational sensor and temperature sensor in this paper. The data of behavioural activity index, standing time, lying time and walking time were sent to computer by lower power consumption wireless communication system. The fast approximate K-means algorithm (FAKM) was proposed to deal the data of the sensor for behavioral features recognition. As a result of technical progress in monitoring cows using computers, automatic oestrus detection has become possible.

  12. Optical implementation of a feature-based neural network with application to automatic target recognition

    Science.gov (United States)

    Chao, Tien-Hsin; Stoner, William W.

    1993-01-01

    An optical neural network based on the neocognitron paradigm is introduced. A novel aspect of the architecture design is shift-invariant multichannel Fourier optical correlation within each processing layer. Multilayer processing is achieved by feeding back the ouput of the feature correlator interatively to the input spatial light modulator and by updating the Fourier filters. By training the neural net with characteristic features extracted from the target images, successful pattern recognition with intraclass fault tolerance and interclass discrimination is achieved. A detailed system description is provided. Experimental demonstrations of a two-layer neural network for space-object discrimination is also presented.

  13. Automatic target recognition using a feature-based optical neural network

    Science.gov (United States)

    Chao, Tien-Hsin

    1992-01-01

    An optical neural network based upon the Neocognitron paradigm (K. Fukushima et al. 1983) is introduced. A novel aspect of the architectural design is shift-invariant multichannel Fourier optical correlation within each processing layer. Multilayer processing is achieved by iteratively feeding back the output of the feature correlator to the input spatial light modulator and updating the Fourier filters. By training the neural net with characteristic features extracted from the target images, successful pattern recognition with intra-class fault tolerance and inter-class discrimination is achieved. A detailed system description is provided. Experimental demonstration of a two-layer neural network for space objects discrimination is also presented.

  14. Identifying significant environmental features using feature recognition.

    Science.gov (United States)

    2015-10-01

    The Department of Environmental Analysis at the Kentucky Transportation Cabinet has expressed an interest in feature-recognition capability because it may help analysts identify environmentally sensitive features in the landscape, : including those r...

  15. Arrhythmia Classification Based on Multi-Domain Feature Extraction for an ECG Recognition System.

    Science.gov (United States)

    Li, Hongqiang; Yuan, Danyang; Wang, Youxi; Cui, Dianyin; Cao, Lu

    2016-10-20

    Automatic recognition of arrhythmias is particularly important in the diagnosis of heart diseases. This study presents an electrocardiogram (ECG) recognition system based on multi-domain feature extraction to classify ECG beats. An improved wavelet threshold method for ECG signal pre-processing is applied to remove noise interference. A novel multi-domain feature extraction method is proposed; this method employs kernel-independent component analysis in nonlinear feature extraction and uses discrete wavelet transform to extract frequency domain features. The proposed system utilises a support vector machine classifier optimized with a genetic algorithm to recognize different types of heartbeats. An ECG acquisition experimental platform, in which ECG beats are collected as ECG data for classification, is constructed to demonstrate the effectiveness of the system in ECG beat classification. The presented system, when applied to the MIT-BIH arrhythmia database, achieves a high classification accuracy of 98.8%. Experimental results based on the ECG acquisition experimental platform show that the system obtains a satisfactory classification accuracy of 97.3% and is able to classify ECG beats efficiently for the automatic identification of cardiac arrhythmias.

  16. An Efficient Multimodal 2D + 3D Feature-based Approach to Automatic Facial Expression Recognition

    KAUST Repository

    Li, Huibin

    2015-07-29

    We present a fully automatic multimodal 2D + 3D feature-based facial expression recognition approach and demonstrate its performance on the BU-3DFE database. Our approach combines multi-order gradient-based local texture and shape descriptors in order to achieve efficiency and robustness. First, a large set of fiducial facial landmarks of 2D face images along with their 3D face scans are localized using a novel algorithm namely incremental Parallel Cascade of Linear Regression (iPar-CLR). Then, a novel Histogram of Second Order Gradients (HSOG) based local image descriptor in conjunction with the widely used first-order gradient based SIFT descriptor are used to describe the local texture around each 2D landmark. Similarly, the local geometry around each 3D landmark is described by two novel local shape descriptors constructed using the first-order and the second-order surface differential geometry quantities, i.e., Histogram of mesh Gradients (meshHOG) and Histogram of mesh Shape index (curvature quantization, meshHOS). Finally, the Support Vector Machine (SVM) based recognition results of all 2D and 3D descriptors are fused at both feature-level and score-level to further improve the accuracy. Comprehensive experimental results demonstrate that there exist impressive complementary characteristics between the 2D and 3D descriptors. We use the BU-3DFE benchmark to compare our approach to the state-of-the-art ones. Our multimodal feature-based approach outperforms the others by achieving an average recognition accuracy of 86.32%. Moreover, a good generalization ability is shown on the Bosphorus database.

  17. Face recognition via edge-based Gabor feature representation for plastic surgery-altered images

    Science.gov (United States)

    Chude-Olisah, Chollette C.; Sulong, Ghazali; Chude-Okonkwo, Uche A. K.; Hashim, Siti Z. M.

    2014-12-01

    Plastic surgery procedures on the face introduce skin texture variations between images of the same person (intra-subject), thereby making the task of face recognition more difficult than in normal scenario. Usually, in contemporary face recognition systems, the original gray-level face image is used as input to the Gabor descriptor, which translates to encoding some texture properties of the face image. The texture-encoding process significantly degrades the performance of such systems in the case of plastic surgery due to the presence of surgically induced intra-subject variations. Based on the proposition that the shape of significant facial components such as eyes, nose, eyebrow, and mouth remains unchanged after plastic surgery, this paper employs an edge-based Gabor feature representation approach for the recognition of surgically altered face images. We use the edge information, which is dependent on the shapes of the significant facial components, to address the plastic surgery-induced texture variation problems. To ensure that the significant facial components represent useful edge information with little or no false edges, a simple illumination normalization technique is proposed for preprocessing. Gabor wavelet is applied to the edge image to accentuate on the uniqueness of the significant facial components for discriminating among different subjects. The performance of the proposed method is evaluated on the Georgia Tech (GT) and the Labeled Faces in the Wild (LFW) databases with illumination and expression problems, and the plastic surgery database with texture changes. Results show that the proposed edge-based Gabor feature representation approach is robust against plastic surgery-induced face variations amidst expression and illumination problems and outperforms the existing plastic surgery face recognition methods reported in the literature.

  18. Human Skeleton Model Based Dynamic Features for Walking Speed Invariant Gait Recognition

    Directory of Open Access Journals (Sweden)

    Jure Kovač

    2014-01-01

    Full Text Available Humans are able to recognize small number of people they know well by the way they walk. This ability represents basic motivation for using human gait as the means for biometric identification. Such biometrics can be captured at public places from a distance without subject's collaboration, awareness, and even consent. Although current approaches give encouraging results, we are still far from effective use in real-life applications. In general, methods set various constraints to circumvent the influence of covariate factors like changes of walking speed, view, clothing, footwear, and object carrying, that have negative impact on recognition performance. In this paper we propose a skeleton model based gait recognition system focusing on modelling gait dynamics and eliminating the influence of subjects appearance on recognition. Furthermore, we tackle the problem of walking speed variation and propose space transformation and feature fusion that mitigates its influence on recognition performance. With the evaluation on OU-ISIR gait dataset, we demonstrate state of the art performance of proposed methods.

  19. A food recognition system for diabetic patients based on an optimized bag-of-features model.

    Science.gov (United States)

    Anthimopoulos, Marios M; Gianola, Lauro; Scarnato, Luca; Diem, Peter; Mougiakakou, Stavroula G

    2014-07-01

    Computer vision-based food recognition could be used to estimate a meal's carbohydrate content for diabetic patients. This study proposes a methodology for automatic food recognition, based on the bag-of-features (BoF) model. An extensive technical investigation was conducted for the identification and optimization of the best performing components involved in the BoF architecture, as well as the estimation of the corresponding parameters. For the design and evaluation of the prototype system, a visual dataset with nearly 5000 food images was created and organized into 11 classes. The optimized system computes dense local features, using the scale-invariant feature transform on the HSV color space, builds a visual dictionary of 10000 visual words by using the hierarchical k-means clustering and finally classifies the food images with a linear support vector machine classifier. The system achieved classification accuracy of the order of 78%, thus proving the feasibility of the proposed approach in a very challenging image dataset.

  20. Human activity recognition based on feature selection in smart home using back-propagation algorithm.

    Science.gov (United States)

    Fang, Hongqing; He, Lei; Si, Hao; Liu, Peng; Xie, Xiaolei

    2014-09-01

    In this paper, Back-propagation(BP) algorithm has been used to train the feed forward neural network for human activity recognition in smart home environments, and inter-class distance method for feature selection of observed motion sensor events is discussed and tested. And then, the human activity recognition performances of neural network using BP algorithm have been evaluated and compared with other probabilistic algorithms: Naïve Bayes(NB) classifier and Hidden Markov Model(HMM). The results show that different feature datasets yield different activity recognition accuracy. The selection of unsuitable feature datasets increases the computational complexity and degrades the activity recognition accuracy. Furthermore, neural network using BP algorithm has relatively better human activity recognition performances than NB classifier and HMM. Copyright © 2014 ISA. Published by Elsevier Ltd. All rights reserved.

  1. Phonological feature-based speech recognition system for pronunciation training in non-native language learning.

    Science.gov (United States)

    Arora, Vipul; Lahiri, Aditi; Reetz, Henning

    2018-01-01

    The authors address the question whether phonological features can be used effectively in an automatic speech recognition (ASR) system for pronunciation training in non-native language (L2) learning. Computer-aided pronunciation training consists of two essential tasks-detecting mispronunciations and providing corrective feedback, usually either on the basis of full words or phonemes. Phonemes, however, can be further disassembled into phonological features, which in turn define groups of phonemes. A phonological feature-based ASR system allows the authors to perform a sub-phonemic analysis at feature level, providing a more effective feedback to reach the acoustic goal and perceptual constancy. Furthermore, phonological features provide a structured way for analysing the types of errors a learner makes, and can readily convey which pronunciations need improvement. This paper presents the authors implementation of such an ASR system using deep neural networks as an acoustic model, and its use for detecting mispronunciations, analysing errors, and rendering corrective feedback. Quantitative as well as qualitative evaluations are carried out for German and Italian learners of English. In addition to achieving high accuracy of mispronunciation detection, the system also provides accurate diagnosis of errors.

  2. Recognition of a Phase-Sensitivity OTDR Sensing System Based on Morphologic Feature Extraction.

    Science.gov (United States)

    Sun, Qian; Feng, Hao; Yan, Xueying; Zeng, Zhoumo

    2015-06-29

    This paper proposes a novel feature extraction method for intrusion event recognition within a phase-sensitive optical time-domain reflectometer (Φ-OTDR) sensing system. Feature extraction of time domain signals in these systems is time-consuming and may lead to inaccuracies due to noise disturbances. The recognition accuracy and speed of current systems cannot meet the requirements of Φ-OTDR online vibration monitoring systems. In the method proposed in this paper, the time-space domain signal is used for feature extraction instead of the time domain signal. Feature vectors are obtained from morphologic features of time-space domain signals. A scatter matrix is calculated for the feature selection. Experiments show that the feature extraction method proposed in this paper can greatly improve recognition accuracies, with a lower computation time than traditional methods, i.e., a recognition accuracy of 97.8% can be achieved with a recognition time of below 1 s, making it is very suitable for Φ-OTDR system online vibration monitoring.

  3. Training Classifiers with Shadow Features for Sensor-Based Human Activity Recognition

    Directory of Open Access Journals (Sweden)

    Simon Fong

    2017-02-01

    Full Text Available In this paper, a novel training/testing process for building/using a classification model based on human activity recognition (HAR is proposed. Traditionally, HAR has been accomplished by a classifier that learns the activities of a person by training with skeletal data obtained from a motion sensor, such as Microsoft Kinect. These skeletal data are the spatial coordinates (x, y, z of different parts of the human body. The numeric information forms time series, temporal records of movement sequences that can be used for training a classifier. In addition to the spatial features that describe current positions in the skeletal data, new features called ‘shadow features’ are used to improve the supervised learning efficacy of the classifier. Shadow features are inferred from the dynamics of body movements, and thereby modelling the underlying momentum of the performed activities. They provide extra dimensions of information for characterising activities in the classification process, and thereby significantly improve the classification accuracy. Two cases of HAR are tested using a classification model trained with shadow features: one is by using wearable sensor and the other is by a Kinect-based remote sensor. Our experiments can demonstrate the advantages of the new method, which will have an impact on human activity detection research.

  4. Feature-based decision rules for control charts pattern recognition: A comparison between CART and QUEST algorithm

    Directory of Open Access Journals (Sweden)

    Shankar Chakraborty

    2012-01-01

    Full Text Available Control chart pattern (CCP recognition can act as a problem identification tool in any manufacturing organization. Feature-based rules in the form of decision trees have become quite popular in recent years for CCP recognition. This is because the practitioners can clearly understand how a particular pattern has been identified by the use of relevant shape features. Moreover, since the extracted features represent the main characteristics of the original data in a condensed form, it can also facilitate efficient pattern recognition. The reported feature-based decision trees can recognize eight types of CCPs using extracted values of seven shape features. In this paper, a different set of seven most useful features is presented that can recognize nine main CCPs, including mixture pattern. Based on these features, decision trees are developed using CART (classification and regression tree and QUEST (quick unbiased efficient statistical tree algorithms. The relative performance of the CART and QUEST-based decision trees are extensively studied using simulated pattern data. The results show that the CART-based decision trees result in better recognition performance but lesser consistency, whereas, the QUEST-based decision trees give better consistency but lesser recognition performance.

  5. Dynamic Features for Iris Recognition.

    Science.gov (United States)

    da Costa, R M; Gonzaga, A

    2012-08-01

    The human eye is sensitive to visible light. Increasing illumination on the eye causes the pupil of the eye to contract, while decreasing illumination causes the pupil to dilate. Visible light causes specular reflections inside the iris ring. On the other hand, the human retina is less sensitive to near infra-red (NIR) radiation in the wavelength range from 800 nm to 1400 nm, but iris detail can still be imaged with NIR illumination. In order to measure the dynamic movement of the human pupil and iris while keeping the light-induced reflexes from affecting the quality of the digitalized image, this paper describes a device based on the consensual reflex. This biological phenomenon contracts and dilates the two pupils synchronously when illuminating one of the eyes by visible light. In this paper, we propose to capture images of the pupil of one eye using NIR illumination while illuminating the other eye using a visible-light pulse. This new approach extracts iris features called "dynamic features (DFs)." This innovative methodology proposes the extraction of information about the way the human eye reacts to light, and to use such information for biometric recognition purposes. The results demonstrate that these features are discriminating features, and, even using the Euclidean distance measure, an average accuracy of recognition of 99.1% was obtained. The proposed methodology has the potential to be "fraud-proof," because these DFs can only be extracted from living irises.

  6. Recognition of grasp types through principal components of DWT based EMG features.

    Science.gov (United States)

    Kakoty, Nayan M; Hazarika, Shyamanta M

    2011-01-01

    With the advancement in machine learning and signal processing techniques, electromyogram (EMG) signals have increasingly gained importance in man-machine interaction. Multifingered hand prostheses using surface EMG for control has appeared in the market. However, EMG based control is still rudimentary, being limited to a few hand postures based on higher number of EMG channels. Moreover, control is non-intuitive, in the sense that the user is required to learn to associate muscle remnants actions to unrelated posture of the prosthesis. Herein lies the promise of a low channel EMG based grasp classification architecture for development of an embedded intelligent prosthetic controller. This paper reports classification of six grasp types used during 70% of daily living activities based on two channel forearm EMG. A feature vector through principal component analysis of discrete wavelet transform coefficients based features of the EMG signal is derived. Classification is through radial basis function kernel based support vector machine following preprocessing and maximum voluntary contraction normalization of EMG signals. 10-fold cross validation is done. We have achieved an average recognition rate of 97.5%. © 2011 IEEE

  7. Feature extraction for SAR target recognition based on supervised manifold learning

    International Nuclear Information System (INIS)

    Du, C; Zhou, S; Sun, J; Zhao, J

    2014-01-01

    On the basis of manifold learning theory, a new feature extraction method for Synthetic aperture radar (SAR) target recognition is proposed. First, the proposed algorithm estimates the within-class and between-class local neighbourhood surrounding each SAR sample. After computing the local tangent space for each neighbourhood, the proposed algorithm seeks for the optimal projecting matrix by preserving the local within-class property and simultaneously maximizing the local between-class separability. The use of uncorrelated constraint can also enhance the discriminating power of the optimal projecting matrix. Finally, the nearest neighbour classifier is applied to recognize SAR targets in the projected feature subspace. Experimental results on MSTAR datasets demonstrate that the proposed method can provide a higher recognition rate than traditional feature extraction algorithms in SAR target recognition

  8. Micro-Doppler Feature Extraction and Recognition Based on Netted Radar for Ballistic Targets

    Directory of Open Access Journals (Sweden)

    Feng Cun-qian

    2015-12-01

    Full Text Available This study examines the complexities of using netted radar to recognize and resolve ballistic midcourse targets. The application of micro-motion feature extraction to ballistic mid-course targets is analyzed, and the current status of application and research on micro-motion feature recognition is concluded for singlefunction radar networks such as low- and high-resolution imaging radar networks. Advantages and disadvantages of these networks are discussed with respect to target recognition. Hybrid-mode radar networks combine low- and high-resolution imaging radar and provide a specific reference frequency that is the basis for ballistic target recognition. Main research trends are discussed for hybrid-mode networks that apply micromotion feature extraction to ballistic mid-course targets.

  9. Iris image recognition wavelet filter-banks based iris feature extraction schemes

    CERN Document Server

    Rahulkar, Amol D

    2014-01-01

    This book provides the new results in wavelet filter banks based feature extraction, and the classifier in the field of iris image recognition. It provides the broad treatment on the design of separable, non-separable wavelets filter banks, and the classifier. The design techniques presented in the book are applied on iris image analysis for person authentication. This book also brings together the three strands of research (wavelets, iris image analysis, and classifier). It compares the performance of the presented techniques with state-of-the-art available schemes. This book contains the compilation of basic material on the design of wavelets that avoids reading many different books. Therefore, it provide an easier path for the new-comers, researchers to master the contents. In addition, the designed filter banks and classifier can also be effectively used than existing filter-banks in many signal processing applications like pattern classification, data-compression, watermarking, denoising etc.  that will...

  10. A natural approach to convey numerical digits using hand activity recognition based on hand shape features

    Science.gov (United States)

    Chidananda, H.; Reddy, T. Hanumantha

    2017-06-01

    This paper presents a natural representation of numerical digit(s) using hand activity analysis based on number of fingers out stretched for each numerical digit in sequence extracted from a video. The analysis is based on determining a set of six features from a hand image. The most important features used from each frame in a video are the first fingertip from top, palm-line, palm-center, valley points between the fingers exists above the palm-line. Using this work user can convey any number of numerical digits using right or left or both the hands naturally in a video. Each numerical digit ranges from 0 to9. Hands (right/left/both) used to convey digits can be recognized accurately using the valley points and with this recognition whether the user is a right / left handed person in practice can be analyzed. In this work, first the hand(s) and face parts are detected by using YCbCr color space and face part is removed by using ellipse based method. Then, the hand(s) are analyzed to recognize the activity that represents a series of numerical digits in a video. This work uses pixel continuity algorithm using 2D coordinate geometry system and does not use regular use of calculus, contours, convex hull and datasets.

  11. Face-based recognition techniques: proposals for the metrological characterization of global and feature-based approaches

    Science.gov (United States)

    Betta, G.; Capriglione, D.; Crenna, F.; Rossi, G. B.; Gasparetto, M.; Zappa, E.; Liguori, C.; Paolillo, A.

    2011-12-01

    Security systems based on face recognition through video surveillance systems deserve great interest. Their use is important in several areas including airport security, identification of individuals and access control to critical areas. These systems are based either on the measurement of details of a human face or on a global approach whereby faces are considered as a whole. The recognition is then performed by comparing the measured parameters with reference values stored in a database. The result of this comparison is not deterministic because measurement results are affected by uncertainty due to random variations and/or to systematic effects. In these circumstances the recognition of a face is subject to the risk of a faulty decision. Therefore, a proper metrological characterization is needed to improve the performance of such systems. Suitable methods are proposed for a quantitative metrological characterization of face measurement systems, on which recognition procedures are based. The proposed methods are applied to three different algorithms based either on linear discrimination, on eigenface analysis, or on feature detection.

  12. Face-based recognition techniques: proposals for the metrological characterization of global and feature-based approaches

    International Nuclear Information System (INIS)

    Betta, G; Capriglione, D; Crenna, F; Rossi, G B; Gasparetto, M; Zappa, E; Liguori, C; Paolillo, A

    2011-01-01

    Security systems based on face recognition through video surveillance systems deserve great interest. Their use is important in several areas including airport security, identification of individuals and access control to critical areas. These systems are based either on the measurement of details of a human face or on a global approach whereby faces are considered as a whole. The recognition is then performed by comparing the measured parameters with reference values stored in a database. The result of this comparison is not deterministic because measurement results are affected by uncertainty due to random variations and/or to systematic effects. In these circumstances the recognition of a face is subject to the risk of a faulty decision. Therefore, a proper metrological characterization is needed to improve the performance of such systems. Suitable methods are proposed for a quantitative metrological characterization of face measurement systems, on which recognition procedures are based. The proposed methods are applied to three different algorithms based either on linear discrimination, on eigenface analysis, or on feature detection

  13. A dynamic image recognition method for sleeper springs trouble of moving freight cars based on Haar features

    Science.gov (United States)

    Zhou, Fuqiang; Jiang, Yuan; Zhang, Guangjun

    2006-11-01

    A novel conception of automatic recognition for free-trouble sleeper springs is proposed and Adaboost algorithm based on Haar features is applied for the sleeper springs recognition in Trouble of moving Freight car Detection System (TFDS). In the recognition system, feature set of sleeper springs is determined by Haar features and selected by Adaboost algorithm. In order to recognize and select the free-trouble sleeper springs from all the captured dynamic images, a cascade of classifier is established by searching dynamic images. The amount of detected images is drastically reduced and the recognition efficiency is improved due to the conception of free-trouble recognition. Experiments show that the proposed method is characterized by simple feature, high efficiency and robustness. It performs high robustness against noise as well as translation, rotation and scale transformations of objects and indicates high stability to images with poor quality such as low resolution, partial occlusion, poor illumination and overexposure etc. The recognition time of a 640×480 image is about 16ms, and Correct Detection Rate is high up to about 97%, while Miss Detection Rate and Error Detection Rate are very low. The proposed method can recognize sleeper springs in all-weather conditions, which advances the engineering application for TFDS.

  14. A DFT-Based Method of Feature Extraction for Palmprint Recognition

    Science.gov (United States)

    Choge, H. Kipsang; Karungaru, Stephen G.; Tsuge, Satoru; Fukumi, Minoru

    Over the last quarter century, research in biometric systems has developed at a breathtaking pace and what started with the focus on the fingerprint has now expanded to include face, voice, iris, and behavioral characteristics such as gait. Palmprint is one of the most recent additions, and is currently the subject of great research interest due to its inherent uniqueness, stability, user-friendliness and ease of acquisition. This paper describes an effective and procedurally simple method of palmprint feature extraction specifically for palmprint recognition, although verification experiments are also conducted. This method takes advantage of the correspondences that exist between prominent palmprint features or objects in the spatial domain with those in the frequency or Fourier domain. Multi-dimensional feature vectors are formed by extracting a GA-optimized set of points from the 2-D Fourier spectrum of the palmprint images. The feature vectors are then used for palmprint recognition, before and after dimensionality reduction via the Karhunen-Loeve Transform (KLT). Experiments performed using palmprint images from the ‘PolyU Palmprint Database’ indicate that using a compact set of DFT coefficients, combined with KLT and data preprocessing, produces a recognition accuracy of more than 98% and can provide a fast and effective technique for personal identification.

  15. Learning Hierarchical Feature Extractors for Image Recognition

    Science.gov (United States)

    2012-09-01

    recognition, but the analysis applies to all tasks which incorporate some form 48 of pooling (e.g., text processing from which the bag-of-features method ...performance rely on solving an `1-regularized optimization. Several efficient algorithms have been devised for this problem. Homotopy methods such as the...recent advances in image recognition. First, we recast many methods into a common unsupervised feature extraction framework based on an alternation of

  16. A Kinect based sign language recognition system using spatio-temporal features

    Science.gov (United States)

    Memiş, Abbas; Albayrak, Songül

    2013-12-01

    This paper presents a sign language recognition system that uses spatio-temporal features on RGB video images and depth maps for dynamic gestures of Turkish Sign Language. Proposed system uses motion differences and accumulation approach for temporal gesture analysis. Motion accumulation method, which is an effective method for temporal domain analysis of gestures, produces an accumulated motion image by combining differences of successive video frames. Then, 2D Discrete Cosine Transform (DCT) is applied to accumulated motion images and temporal domain features transformed into spatial domain. These processes are performed on both RGB images and depth maps separately. DCT coefficients that represent sign gestures are picked up via zigzag scanning and feature vectors are generated. In order to recognize sign gestures, K-Nearest Neighbor classifier with Manhattan distance is performed. Performance of the proposed sign language recognition system is evaluated on a sign database that contains 1002 isolated dynamic signs belongs to 111 words of Turkish Sign Language (TSL) in three different categories. Proposed sign language recognition system has promising success rates.

  17. A fast noise-tolerant ECG feature recognition algorithm based on probabilistic analysis of gradient discontinuity.

    Science.gov (United States)

    Watterson, Peter A

    Improvement in real-time electrocardiogram (ECG) interpretation is still needed, especially for QT estimation. This paper proposes a fast algorithm for ECG feature recognition, based on locating turning points in the waveform gradient. The algorithm places the fiducial point at the maximal value of a probabilistic decision function, assessing line intervals of best fit before and after the point and the point location relative to R-wave peaks already found. Fiducial points were successfully located for the 30 heartbeats annotated by a cardiologist of all 10 normal sinus rhythm records from the PhysioNet QT Database. For a given subject, the algorithm's QT estimation had superior repeatability, with intrasubject QT standard deviation just 5.42ms, 60% lower than the cardiologist's 13.57ms. Initial tests suggest immunity to noise of standard deviation up to about 9% of the signal, depending on noise type. The proposed algorithm is fast to calculate and noise-tolerant, and has shown improved repeatability in its QT estimation compared to a cardiologist. Copyright © 2017 Elsevier Inc. All rights reserved.

  18. A tri-gram based feature extraction technique using linear probabilities of position specific scoring matrix for protein fold recognition.

    Science.gov (United States)

    Paliwal, Kuldip K; Sharma, Alok; Lyons, James; Dehzangi, Abdollah

    2014-03-01

    In biological sciences, the deciphering of a three dimensional structure of a protein sequence is considered to be an important and challenging task. The identification of protein folds from primary protein sequences is an intermediate step in discovering the three dimensional structure of a protein. This can be done by utilizing feature extraction technique to accurately extract all the relevant information followed by employing a suitable classifier to label an unknown protein. In the past, several feature extraction techniques have been developed but with limited recognition accuracy only. In this study, we have developed a feature extraction technique based on tri-grams computed directly from Position Specific Scoring Matrices. The effectiveness of the feature extraction technique has been shown on two benchmark datasets. The proposed technique exhibits up to 4.4% improvement in protein fold recognition accuracy compared to the state-of-the-art feature extraction techniques.

  19. Object class recognition based on compressive sensing with sparse features inspired by hierarchical model in visual cortex

    Science.gov (United States)

    Lu, Pei; Xu, Zhiyong; Yu, Huapeng; Chang, Yongxin; Fu, Chengyu; Shao, Jianxin

    2012-11-01

    According to models of object recognition in cortex, the brain uses a hierarchical approach in which simple, low-level features having high position and scale specificity are pooled and combined into more complex, higher-level features having greater location invariance. At higher levels, spatial structure becomes implicitly encoded into the features themselves, which may overlap, while explicit spatial information is coded more coarsely. In this paper, the importance of sparsity and localized patch features in a hierarchical model inspired by visual cortex is investigated. As in the model of Serre, Wolf, and Poggio, we first apply Gabor filters at all positions and scales; feature complexity and position/scale invariance are then built up by alternating template matching and max pooling operations. In order to improve generalization performance, the sparsity is proposed and data dimension is reduced by means of compressive sensing theory and sparse representation algorithm. Similarly, within computational neuroscience, adding the sparsity on the number of feature inputs and feature selection is critical for learning biologically model from the statistics of natural images. Then, a redundancy dictionary of patch-based features that could distinguish object class from other categories is designed and then object recognition is implemented by the process of iterative optimization. The method is test on the UIUC car database. The success of this approach suggests a proof for the object class recognition in visual cortex.

  20. Online Farsi Character Recognition Using Structural Features

    Directory of Open Access Journals (Sweden)

    Vahid Ghods

    2012-04-01

    Full Text Available In this paper, grouping and recognition of online Farsi discrete characters are presented according to their structural features. The letters are divided into 9 groups based on the form and structure of their main bodies. After feature extraction, grouping is performed using a decision tree. Final recognition of letters is carried out in each group by delayed strokes. The proposed method is a rapid method in character recognition because time-consuming methods have not been used. Our proposed method was tested on TMU-OFS dataset, and a recognition rate of 94% and 92% was achieved for character grouping and recognition, respectively. The mean processing time for recognizing a letter was 3ms.

  1. Traffic sign recognition based on a context-aware scale-invariant feature transform approach

    Science.gov (United States)

    Yuan, Xue; Hao, Xiaoli; Chen, Houjin; Wei, Xueye

    2013-10-01

    A new context-aware scale-invariant feature transform (CASIFT) approach is proposed, which is designed for the use in traffic sign recognition (TSR) systems. The following issues remain in previous works in which SIFT is used for matching or recognition: (1) SIFT is unable to provide color information; (2) SIFT only focuses on local features while ignoring the distribution of global shapes; (3) the template with the maximum number of matching points selected as the final result is instable, especially for images with simple patterns; and (4) SIFT is liable to result in errors when different images share the same local features. In order to resolve these problems, a new CASIFT approach is proposed. The contributions of the work are as follows: (1) color angular patterns are used to provide the color distinguishing information; (2) a CASIFT which effectively combines local and global information is proposed; and (3) a method for computing the similarity between two images is proposed, which focuses on the distribution of the matching points, rather than using the traditional SIFT approach of selecting the template with maximum number of matching points as the final result. The proposed approach is particularly effective in dealing with traffic signs which have rich colors and varied global shape distribution. Experiments are performed to validate the effectiveness of the proposed approach in TSR systems, and the experimental results are satisfying even for images containing traffic signs that have been rotated, damaged, altered in color, have undergone affine transformations, or images which were photographed under different weather or illumination conditions.

  2. Building Recognition on Subregion’s Multiscale Gist Feature Extraction and Corresponding Columns Information Based Dimensionality Reduction

    Directory of Open Access Journals (Sweden)

    Bin Li

    2014-01-01

    Full Text Available In this paper, we proposed a new building recognition method named subregion’s multiscale gist feature (SM-gist extraction and corresponding columns information based dimensionality reduction (CCI-DR. Our proposed building recognition method is presented as a two-stage model: in the first stage, a building image is divided into 4 × 5 subregions, and gist vectors are extracted from these regions individually. Then, we combine these gist vectors into a matrix with relatively high dimensions. In the second stage, we proposed CCI-DR to project the high dimensional manifold matrix to low dimensional subspace. Compared with the previous building recognition method the advantages of our proposed method are that (1 gist features extracted by SM-gist have the ability to adapt to nonuniform illumination and that (2 CCI-DR can address the limitation of traditional dimensionality reduction methods, which convert gist matrices into vectors and thus mix the corresponding gist vectors from different feature maps. Our building recognition method is evaluated on the Sheffield buildings database, and experiments show that our method can achieve satisfactory performance.

  3. Wearable Sensor-Based Human Activity Recognition Method with Multi-Features Extracted from Hilbert-Huang Transform

    Directory of Open Access Journals (Sweden)

    Huile Xu

    2016-12-01

    Full Text Available Wearable sensors-based human activity recognition introduces many useful applications and services in health care, rehabilitation training, elderly monitoring and many other areas of human interaction. Existing works in this field mainly focus on recognizing activities by using traditional features extracted from Fourier transform (FT or wavelet transform (WT. However, these signal processing approaches are suitable for a linear signal but not for a nonlinear signal. In this paper, we investigate the characteristics of the Hilbert-Huang transform (HHT for dealing with activity data with properties such as nonlinearity and non-stationarity. A multi-features extraction method based on HHT is then proposed to improve the effect of activity recognition. The extracted multi-features include instantaneous amplitude (IA and instantaneous frequency (IF by means of empirical mode decomposition (EMD, as well as instantaneous energy density (IE and marginal spectrum (MS derived from Hilbert spectral analysis. Experimental studies are performed to verify the proposed approach by using the PAMAP2 dataset from the University of California, Irvine for wearable sensors-based activity recognition. Moreover, the effect of combining multi-features vs. a single-feature are investigated and discussed in the scenario of a dependent subject. The experimental results show that multi-features combination can further improve the performance measures. Finally, we test the effect of multi-features combination in the scenario of an independent subject. Our experimental results show that we achieve four performance indexes: recall, precision, F-measure, and accuracy to 0.9337, 0.9417, 0.9353, and 0.9377 respectively, which are all better than the achievements of related works.

  4. Automatic Detection and Recognition of Craters Based on the Spectral Features of Lunar Rocks and Minerals

    Science.gov (United States)

    Ye, L.; Xu, X.; Luan, D.; Jiang, W.; Kang, Z.

    2017-07-01

    Crater-detection approaches can be divided into four categories: manual recognition, shape-profile fitting algorithms, machine-learning methods and geological information-based analysis using terrain and spectral data. The mainstream method is Shape-profile fitting algorithms. Many scholars throughout the world use the illumination gradient information to fit standard circles by least square method. Although this method has achieved good results, it is difficult to identify the craters with poor "visibility", complex structure and composition. Moreover, the accuracy of recognition is difficult to be improved due to the multiple solutions and noise interference. Aiming at the problem, we propose a method for the automatic extraction of impact craters based on spectral characteristics of the moon rocks and minerals: 1) Under the condition of sunlight, the impact craters are extracted from MI by condition matching and the positions as well as diameters of the craters are obtained. 2) Regolith is spilled while lunar is impacted and one of the elements of lunar regolith is iron. Therefore, incorrectly extracted impact craters can be removed by judging whether the crater contains "non iron" element. 3) Craters which are extracted correctly, are divided into two types: simple type and complex type according to their diameters. 4) Get the information of titanium and match the titanium distribution of the complex craters with normal distribution curve, then calculate the goodness of fit and set the threshold. The complex craters can be divided into two types: normal distribution curve type of titanium and non normal distribution curve type of titanium. We validated our proposed method with MI acquired by SELENE. Experimental results demonstrate that the proposed method has good performance in the test area.

  5. AUTOMATIC DETECTION AND RECOGNITION OF CRATERS BASED ON THE SPECTRAL FEATURES OF LUNAR ROCKS AND MINERALS

    Directory of Open Access Journals (Sweden)

    L. Ye

    2017-07-01

    Full Text Available Crater-detection approaches can be divided into four categories: manual recognition, shape-profile fitting algorithms, machine-learning methods and geological information-based analysis using terrain and spectral data. The mainstream method is Shape-profile fitting algorithms. Many scholars throughout the world use the illumination gradient information to fit standard circles by least square method. Although this method has achieved good results, it is difficult to identify the craters with poor "visibility", complex structure and composition. Moreover, the accuracy of recognition is difficult to be improved due to the multiple solutions and noise interference. Aiming at the problem, we propose a method for the automatic extraction of impact craters based on spectral characteristics of the moon rocks and minerals: 1 Under the condition of sunlight, the impact craters are extracted from MI by condition matching and the positions as well as diameters of the craters are obtained. 2 Regolith is spilled while lunar is impacted and one of the elements of lunar regolith is iron. Therefore, incorrectly extracted impact craters can be removed by judging whether the crater contains "non iron" element. 3 Craters which are extracted correctly, are divided into two types: simple type and complex type according to their diameters. 4 Get the information of titanium and match the titanium distribution of the complex craters with normal distribution curve, then calculate the goodness of fit and set the threshold. The complex craters can be divided into two types: normal distribution curve type of titanium and non normal distribution curve type of titanium. We validated our proposed method with MI acquired by SELENE. Experimental results demonstrate that the proposed method has good performance in the test area.

  6. Local binary pattern variants-based adaptive texture features analysis for posed and nonposed facial expression recognition

    Science.gov (United States)

    Sultana, Maryam; Bhatti, Naeem; Javed, Sajid; Jung, Soon Ki

    2017-09-01

    Facial expression recognition (FER) is an important task for various computer vision applications. The task becomes challenging when it requires the detection and encoding of macro- and micropatterns of facial expressions. We present a two-stage texture feature extraction framework based on the local binary pattern (LBP) variants and evaluate its significance in recognizing posed and nonposed facial expressions. We focus on the parametric limitations of the LBP variants and investigate their effects for optimal FER. The size of the local neighborhood is an important parameter of the LBP technique for its extraction in images. To make the LBP adaptive, we exploit the granulometric information of the facial images to find the local neighborhood size for the extraction of center-symmetric LBP (CS-LBP) features. Our two-stage texture representations consist of an LBP variant and the adaptive CS-LBP features. Among the presented two-stage texture feature extractions, the binarized statistical image features and adaptive CS-LBP features were found showing high FER rates. Evaluation of the adaptive texture features shows competitive and higher performance than the nonadaptive features and other state-of-the-art approaches, respectively.

  7. Evaluation of Feature Extraction and Recognition for Activity Monitoring and Fall Detection Based on Wearable sEMG Sensors.

    Science.gov (United States)

    Xi, Xugang; Tang, Minyan; Miran, Seyed M; Luo, Zhizeng

    2017-05-27

    As an essential subfield of context awareness, activity awareness, especially daily activity monitoring and fall detection, plays a significant role for elderly or frail people who need assistance in their daily activities. This study investigates the feature extraction and pattern recognition of surface electromyography (sEMG), with the purpose of determining the best features and classifiers of sEMG for daily living activities monitoring and fall detection. This is done by a serial of experiments. In the experiments, four channels of sEMG signal from wireless, wearable sensors located on lower limbs are recorded from three subjects while they perform seven activities of daily living (ADL). A simulated trip fall scenario is also considered with a custom-made device attached to the ankle. With this experimental setting, 15 feature extraction methods of sEMG, including time, frequency, time/frequency domain and entropy, are analyzed based on class separability and calculation complexity, and five classification methods, each with 15 features, are estimated with respect to the accuracy rate of recognition and calculation complexity for activity monitoring and fall detection. It is shown that a high accuracy rate of recognition and a minimal calculation time for daily activity monitoring and fall detection can be achieved in the current experimental setting. Specifically, the Wilson Amplitude (WAMP) feature performs the best, and the classifier Gaussian Kernel Support Vector Machine (GK-SVM) with Permutation Entropy (PE) or WAMP results in the highest accuracy for activity monitoring with recognition rates of 97.35% and 96.43%. For fall detection, the classifier Fuzzy Min-Max Neural Network (FMMNN) has the best sensitivity and specificity at the cost of the longest calculation time, while the classifier Gaussian Kernel Fisher Linear Discriminant Analysis (GK-FDA) with the feature WAMP guarantees a high sensitivity (98.70%) and specificity (98.59%) with a short

  8. Evaluation of Feature Extraction and Recognition for Activity Monitoring and Fall Detection Based on Wearable sEMG Sensors

    Directory of Open Access Journals (Sweden)

    Xugang Xi

    2017-05-01

    Full Text Available As an essential subfield of context awareness, activity awareness, especially daily activity monitoring and fall detection, plays a significant role for elderly or frail people who need assistance in their daily activities. This study investigates the feature extraction and pattern recognition of surface electromyography (sEMG, with the purpose of determining the best features and classifiers of sEMG for daily living activities monitoring and fall detection. This is done by a serial of experiments. In the experiments, four channels of sEMG signal from wireless, wearable sensors located on lower limbs are recorded from three subjects while they perform seven activities of daily living (ADL. A simulated trip fall scenario is also considered with a custom-made device attached to the ankle. With this experimental setting, 15 feature extraction methods of sEMG, including time, frequency, time/frequency domain and entropy, are analyzed based on class separability and calculation complexity, and five classification methods, each with 15 features, are estimated with respect to the accuracy rate of recognition and calculation complexity for activity monitoring and fall detection. It is shown that a high accuracy rate of recognition and a minimal calculation time for daily activity monitoring and fall detection can be achieved in the current experimental setting. Specifically, the Wilson Amplitude (WAMP feature performs the best, and the classifier Gaussian Kernel Support Vector Machine (GK-SVM with Permutation Entropy (PE or WAMP results in the highest accuracy for activity monitoring with recognition rates of 97.35% and 96.43%. For fall detection, the classifier Fuzzy Min-Max Neural Network (FMMNN has the best sensitivity and specificity at the cost of the longest calculation time, while the classifier Gaussian Kernel Fisher Linear Discriminant Analysis (GK-FDA with the feature WAMP guarantees a high sensitivity (98.70% and specificity (98.59% with a

  9. Multiscale Object Recognition and Feature Extraction Using Wavelet Networks

    National Research Council Canada - National Science Library

    Jaggi, Seema; Karl, W. C; Krim, Hamid; Willsky, Alan S

    1995-01-01

    In this work we present a novel method of object recognition and feature generation based on multiscale object descriptions obtained using wavelet networks in combination with morphological filtering...

  10. Towards human behavior recognition based on spatio temporal features and support vector machines

    Science.gov (United States)

    Ghabri, Sawsen; Ouarda, Wael; Alimi, Adel M.

    2017-03-01

    Security and surveillance are vital issues in today's world. The recent acts of terrorism have highlighted the urgent need for efficient surveillance. There is indeed a need for an automated system for video surveillance which can detect identity and activity of person. In this article, we propose a new paradigm to recognize an aggressive human behavior such as boxing action. Our proposed system for human activity detection includes the use of a fusion between Spatio Temporal Interest Point (STIP) and Histogram of Oriented Gradient (HoG) features. The novel feature called Spatio Temporal Histogram Oriented Gradient (STHOG). To evaluate the robustness of our proposed paradigm with a local application of HoG technique on STIP points, we made experiments on KTH human action dataset based on Multi Class Support Vector Machines classification. The proposed scheme outperforms basic descriptors like HoG and STIP to achieve 82.26% us an accuracy value of classification rate.

  11. Systematic feature evaluation for gene name recognition.

    Science.gov (United States)

    Hakenberg, Jörg; Bickel, Steffen; Plake, Conrad; Brefeld, Ulf; Zahn, Hagen; Faulstich, Lukas; Leser, Ulf; Scheffer, Tobias

    2005-01-01

    In task 1A of the BioCreAtIvE evaluation, systems had to be devised that recognize words and phrases forming gene or protein names in natural language sentences. We approach this problem by building a word classification system based on a sliding window approach with a Support Vector Machine, combined with a pattern-based post-processing for the recognition of phrases. The performance of such a system crucially depends on the type of features chosen for consideration by the classification method, such as pre- or postfixes, character n-grams, patterns of capitalization, or classification of preceding or following words. We present a systematic approach to evaluate the performance of different feature sets based on recursive feature elimination, RFE. Based on a systematic reduction of the number of features used by the system, we can quantify the impact of different feature sets on the results of the word classification problem. This helps us to identify descriptive features, to learn about the structure of the problem, and to design systems that are faster and easier to understand. We observe that the SVM is robust to redundant features. RFE improves the performance by 0.7%, compared to using the complete set of attributes. Moreover, a performance that is only 2.3% below this maximum can be obtained using fewer than 5% of the features.

  12. The Research of the Facial Expression Recognition Method for Human-Computer Interaction Based on the Gabor Features of the Key Regions

    Directory of Open Access Journals (Sweden)

    Zhan Qun

    2014-08-01

    Full Text Available According to the fact that the Gabor features of the global face image are interfered easily, the method of facial expression recognition based on the Gabor transforming to the key area of the human face image was discussed. The face features location was achieved by the active shape model and the Gabor features of the local area of the key points relation to expression was extracted. On the basis, the PCA was utilized to realize dimensional reduction of the Gabor features. On the end, the facial expression recognition was realized based on the support vector machine. Compared with the global face image Gabor features, experimental results demonstrate that Gabor features of the key area of human face image can increase the accuracy of the facial expression recognition effectively.

  13. Method for inshore ship detection based on feature recognition and adaptive background window

    Science.gov (United States)

    Zhao, Hongyu; Wang, Quan; Huang, Jingjian; Wu, Weiwei; Yuan, Naichang

    2014-01-01

    Inshore ship detection in synthetic aperture radar (SAR) images is a challenging task. We present an inshore ship detection method based on the characteristics of inshore ships. We first use the Markov random field (MRF) method to segment water and land, and then extract the feature points of inshore ships using polygonal approximation. Following this, we propose new rules for inshore ship extraction and use these rules to separate inshore ships from the land in binary images. Finally, we utilize the adaptive background window (ABW) to complete the clutter statistic and successfully detect inshore ships using a constant false alarm rate (CFAR) detector with ABW and G0 distribution. Experimental results using SAR images show that our method is more accurate than traditional CFAR detection based on K-distribution (K-CFAR), given the same CFAR, and that the quality of the image obtained through our method is higher than that of the traditional K-CFAR detection method by a factor of 0.165. Our method accurately locates and detects inshore ships in complicated environments and thus is more practical for inshore ship detection.

  14. Gender Recognition from Human-Body Images Using Visible-Light and Thermal Camera Videos Based on a Convolutional Neural Network for Image Feature Extraction

    Directory of Open Access Journals (Sweden)

    Dat Tien Nguyen

    2017-03-01

    Full Text Available Extracting powerful image features plays an important role in computer vision systems. Many methods have previously been proposed to extract image features for various computer vision applications, such as the scale-invariant feature transform (SIFT, speed-up robust feature (SURF, local binary patterns (LBP, histogram of oriented gradients (HOG, and weighted HOG. Recently, the convolutional neural network (CNN method for image feature extraction and classification in computer vision has been used in various applications. In this research, we propose a new gender recognition method for recognizing males and females in observation scenes of surveillance systems based on feature extraction from visible-light and thermal camera videos through CNN. Experimental results confirm the superiority of our proposed method over state-of-the-art recognition methods for the gender recognition problem using human body images.

  15. Gender Recognition from Human-Body Images Using Visible-Light and Thermal Camera Videos Based on a Convolutional Neural Network for Image Feature Extraction

    Science.gov (United States)

    Nguyen, Dat Tien; Kim, Ki Wan; Hong, Hyung Gil; Koo, Ja Hyung; Kim, Min Cheol; Park, Kang Ryoung

    2017-01-01

    Extracting powerful image features plays an important role in computer vision systems. Many methods have previously been proposed to extract image features for various computer vision applications, such as the scale-invariant feature transform (SIFT), speed-up robust feature (SURF), local binary patterns (LBP), histogram of oriented gradients (HOG), and weighted HOG. Recently, the convolutional neural network (CNN) method for image feature extraction and classification in computer vision has been used in various applications. In this research, we propose a new gender recognition method for recognizing males and females in observation scenes of surveillance systems based on feature extraction from visible-light and thermal camera videos through CNN. Experimental results confirm the superiority of our proposed method over state-of-the-art recognition methods for the gender recognition problem using human body images. PMID:28335510

  16. Gender Recognition from Human-Body Images Using Visible-Light and Thermal Camera Videos Based on a Convolutional Neural Network for Image Feature Extraction.

    Science.gov (United States)

    Nguyen, Dat Tien; Kim, Ki Wan; Hong, Hyung Gil; Koo, Ja Hyung; Kim, Min Cheol; Park, Kang Ryoung

    2017-03-20

    Extracting powerful image features plays an important role in computer vision systems. Many methods have previously been proposed to extract image features for various computer vision applications, such as the scale-invariant feature transform (SIFT), speed-up robust feature (SURF), local binary patterns (LBP), histogram of oriented gradients (HOG), and weighted HOG. Recently, the convolutional neural network (CNN) method for image feature extraction and classification in computer vision has been used in various applications. In this research, we propose a new gender recognition method for recognizing males and females in observation scenes of surveillance systems based on feature extraction from visible-light and thermal camera videos through CNN. Experimental results confirm the superiority of our proposed method over state-of-the-art recognition methods for the gender recognition problem using human body images.

  17. Deep Complementary Bottleneck Features for Visual Speech Recognition

    NARCIS (Netherlands)

    Petridis, Stavros; Pantic, Maja

    Deep bottleneck features (DBNFs) have been used successfully in the past for acoustic speech recognition from audio. However, research on extracting DBNFs for visual speech recognition is very limited. In this work, we present an approach to extract deep bottleneck visual features based on deep

  18. Robust Feature Detection for Facial Expression Recognition

    Directory of Open Access Journals (Sweden)

    Spiros Ioannou

    2007-07-01

    Full Text Available This paper presents a robust and adaptable facial feature extraction system used for facial expression recognition in human-computer interaction (HCI environments. Such environments are usually uncontrolled in terms of lighting and color quality, as well as human expressivity and movement; as a result, using a single feature extraction technique may fail in some parts of a video sequence, while performing well in others. The proposed system is based on a multicue feature extraction and fusion technique, which provides MPEG-4-compatible features assorted with a confidence measure. This confidence measure is used to pinpoint cases where detection of individual features may be wrong and reduce their contribution to the training phase or their importance in deducing the observed facial expression, while the fusion process ensures that the final result regarding the features will be based on the extraction technique that performed better given the particular lighting or color conditions. Real data and results are presented, involving both extreme and intermediate expression/emotional states, obtained within the sensitive artificial listener HCI environment that was generated in the framework of related European projects.

  19. Robust Feature Detection for Facial Expression Recognition

    Directory of Open Access Journals (Sweden)

    Ioannou Spiros

    2007-01-01

    Full Text Available This paper presents a robust and adaptable facial feature extraction system used for facial expression recognition in human-computer interaction (HCI environments. Such environments are usually uncontrolled in terms of lighting and color quality, as well as human expressivity and movement; as a result, using a single feature extraction technique may fail in some parts of a video sequence, while performing well in others. The proposed system is based on a multicue feature extraction and fusion technique, which provides MPEG-4-compatible features assorted with a confidence measure. This confidence measure is used to pinpoint cases where detection of individual features may be wrong and reduce their contribution to the training phase or their importance in deducing the observed facial expression, while the fusion process ensures that the final result regarding the features will be based on the extraction technique that performed better given the particular lighting or color conditions. Real data and results are presented, involving both extreme and intermediate expression/emotional states, obtained within the sensitive artificial listener HCI environment that was generated in the framework of related European projects.

  20. An Efficient Feature Extraction Method with Pseudo-Zernike Moment in RBF Neural Network-Based Human Face Recognition System

    Directory of Open Access Journals (Sweden)

    Ahmadi Majid

    2003-01-01

    Full Text Available This paper introduces a novel method for the recognition of human faces in digital images using a new feature extraction method that combines the global and local information in frontal view of facial images. Radial basis function (RBF neural network with a hybrid learning algorithm (HLA has been used as a classifier. The proposed feature extraction method includes human face localization derived from the shape information. An efficient distance measure as facial candidate threshold (FCT is defined to distinguish between face and nonface images. Pseudo-Zernike moment invariant (PZMI with an efficient method for selecting moment order has been used. A newly defined parameter named axis correction ratio (ACR of images for disregarding irrelevant information of face images is introduced. In this paper, the effect of these parameters in disregarding irrelevant information in recognition rate improvement is studied. Also we evaluate the effect of orders of PZMI in recognition rate of the proposed technique as well as RBF neural network learning speed. Simulation results on the face database of Olivetti Research Laboratory (ORL indicate that the proposed method for human face recognition yielded a recognition rate of 99.3%.

  1. Weighted Feature Gaussian Kernel SVM for Emotion Recognition.

    Science.gov (United States)

    Wei, Wei; Jia, Qingxuan

    2016-01-01

    Emotion recognition with weighted feature based on facial expression is a challenging research topic and has attracted great attention in the past few years. This paper presents a novel method, utilizing subregion recognition rate to weight kernel function. First, we divide the facial expression image into some uniform subregions and calculate corresponding recognition rate and weight. Then, we get a weighted feature Gaussian kernel function and construct a classifier based on Support Vector Machine (SVM). At last, the experimental results suggest that the approach based on weighted feature Gaussian kernel function has good performance on the correct rate in emotion recognition. The experiments on the extended Cohn-Kanade (CK+) dataset show that our method has achieved encouraging recognition results compared to the state-of-the-art methods.

  2. Weighted Feature Gaussian Kernel SVM for Emotion Recognition

    Directory of Open Access Journals (Sweden)

    Wei Wei

    2016-01-01

    Full Text Available Emotion recognition with weighted feature based on facial expression is a challenging research topic and has attracted great attention in the past few years. This paper presents a novel method, utilizing subregion recognition rate to weight kernel function. First, we divide the facial expression image into some uniform subregions and calculate corresponding recognition rate and weight. Then, we get a weighted feature Gaussian kernel function and construct a classifier based on Support Vector Machine (SVM. At last, the experimental results suggest that the approach based on weighted feature Gaussian kernel function has good performance on the correct rate in emotion recognition. The experiments on the extended Cohn-Kanade (CK+ dataset show that our method has achieved encouraging recognition results compared to the state-of-the-art methods.

  3. Hand posture recognition via joint feature sparse representation

    Science.gov (United States)

    Cao, Chuqing; Sun, Ying; Li, Ruifeng; Chen, Lin

    2011-12-01

    In this study, we cast hand posture recognition as a sparse representation problem, and propose a novel approach called joint feature sparse representation classifier for efficient and accurate sparse representation based on multiple features. By integrating different features for sparse representation, including gray-level, texture, and shape feature, the proposed method can fuse benefits of each feature and hence is robust to partial occlusion and varying illumination. Additionally, a new database optimization method is introduced to improve computational speed. Experimental results, based on public and self-build databases, show that our method performs well compared to the state-of-the-art methods for hand posture recognition.

  4. Robust emotion recognition using spectral and prosodic features

    CERN Document Server

    Rao, K Sreenivasa

    2013-01-01

    In this brief, the authors discuss recently explored spectral (sub-segmental and pitch synchronous) and prosodic (global and local features at word and syllable levels in different parts of the utterance) features for discerning emotions in a robust manner. The authors also delve into the complementary evidences obtained from excitation source, vocal tract system and prosodic features for the purpose of enhancing emotion recognition performance. Features based on speaking rate characteristics are explored with the help of multi-stage and hybrid models for further improving emotion recognition performance. Proposed spectral and prosodic features are evaluated on real life emotional speech corpus.

  5. Feature coding for image representation and recognition

    CERN Document Server

    Huang, Yongzhen

    2015-01-01

    This brief presents a comprehensive introduction to feature coding, which serves as a key module for the typical object recognition pipeline. The text offers a rich blend of theory and practice while reflects the recent developments on feature coding, covering the following five aspects: (1) Review the state-of-the-art, analyzing the motivations and mathematical representations of various feature coding methods; (2) Explore how various feature coding algorithms evolve along years; (3) Summarize the main characteristics of typical feature coding algorithms and categorize them accordingly; (4) D

  6. Gross feature recognition of Anatomical Images based on Atlas grid (GAIA): Incorporating the local discrepancy between an atlas and a target image to capture the features of anatomic brain MRI.

    Science.gov (United States)

    Qin, Yuan-Yuan; Hsu, Johnny T; Yoshida, Shoko; Faria, Andreia V; Oishi, Kumiko; Unschuld, Paul G; Redgrave, Graham W; Ying, Sarah H; Ross, Christopher A; van Zijl, Peter C M; Hillis, Argye E; Albert, Marilyn S; Lyketsos, Constantine G; Miller, Michael I; Mori, Susumu; Oishi, Kenichi

    2013-01-01

    We aimed to develop a new method to convert T1-weighted brain MRIs to feature vectors, which could be used for content-based image retrieval (CBIR). To overcome the wide range of anatomical variability in clinical cases and the inconsistency of imaging protocols, we introduced the Gross feature recognition of Anatomical Images based on Atlas grid (GAIA), in which the local intensity alteration, caused by pathological (e.g., ischemia) or physiological (development and aging) intensity changes, as well as by atlas-image misregistration, is used to capture the anatomical features of target images. As a proof-of-concept, the GAIA was applied for pattern recognition of the neuroanatomical features of multiple stages of Alzheimer's disease, Huntington's disease, spinocerebellar ataxia type 6, and four subtypes of primary progressive aphasia. For each of these diseases, feature vectors based on a training dataset were applied to a test dataset to evaluate the accuracy of pattern recognition. The feature vectors extracted from the training dataset agreed well with the known pathological hallmarks of the selected neurodegenerative diseases. Overall, discriminant scores of the test images accurately categorized these test images to the correct disease categories. Images without typical disease-related anatomical features were misclassified. The proposed method is a promising method for image feature extraction based on disease-related anatomical features, which should enable users to submit a patient image and search past clinical cases with similar anatomical phenotypes.

  7. Recognition of Mixture Control Chart Pattern Using Multiclass Support Vector Machine and Genetic Algorithm Based on Statistical and Shape Features

    Directory of Open Access Journals (Sweden)

    Min Zhang

    2015-01-01

    Full Text Available Control charts have been widely utilized for monitoring process variation in numerous applications. Abnormal patterns exhibited by control charts imply certain potentially assignable causes that may deteriorate the process performance. Most of the previous studies are concerned with the recognition of single abnormal control chart patterns (CCPs. This paper introduces an intelligent hybrid model for recognizing the mixture CCPs that includes three main aspects: feature extraction, classifier, and parameters optimization. In the feature extraction, statistical and shape features of observation data are used in the data input to get the effective data for the classifier. A multiclass support vector machine (MSVM applies for recognizing the mixture CCPs. Finally, genetic algorithm (GA is utilized to optimize the MSVM classifier by searching the best values of the parameters of MSVM and kernel function. The performance of the hybrid approach is evaluated by simulation experiments, and simulation results demonstrate that the proposed approach is able to effectively recognize mixture CCPs.

  8. Data-Wave-Based Features Extraction and Its Application in Symbol Identifier Recognition and Positioning Suitable for Multi-Robot Systems

    Directory of Open Access Journals (Sweden)

    Xilong Liu

    2012-12-01

    Full Text Available In this paper, feature extraction based on data-wave is proposed. The concept of data-wave is introduced to describe the rising and falling trends of the data over the long-term which are detected based on ripple and wave filters. Supported by data-wave, a novel symbol identifier with significant structure features is designed and these features are extracted by constructing pixel chains. On this basis, the corresponding recognition and positioning approach is presented. The effectiveness of the proposed approach is verified by experiments.

  9. Biometric Features in Person Recognition Systems

    Directory of Open Access Journals (Sweden)

    Edgaras Ivanovas

    2011-03-01

    Full Text Available Lately a lot of research effort is devoted for recognition of a human being using his biometric characteristics. Biometric recognition systems are used in various applications, e. g., identification for state border crossing or firearm, which allows only enrolled persons to use it. In this paper biometric characteristics and their properties are reviewed. Development of high accuracy system requires distinctive and permanent characteristics, whereas development of user friendly system requires collectable and acceptable characteristics. It is showed that properties of biometric characteristics do not influence research effort significantly. Properties of biometric characteristic features and their influence are discussed.Article in Lithuanian

  10. A Depth Video-based Human Detection and Activity Recognition using Multi-features and Embedded Hidden Markov Models for Health Care Monitoring Systems

    Directory of Open Access Journals (Sweden)

    Ahmad Jalal

    2017-08-01

    Full Text Available Increase in number of elderly people who are living independently needs especial care in the form of healthcare monitoring systems. Recent advancements in depth video technologies have made human activity recognition (HAR realizable for elderly healthcare applications. In this paper, a depth video-based novel method for HAR is presented using robust multi-features and embedded Hidden Markov Models (HMMs to recognize daily life activities of elderly people living alone in indoor environment such as smart homes. In the proposed HAR framework, initially, depth maps are analyzed by temporal motion identification method to segment human silhouettes from noisy background and compute depth silhouette area for each activity to track human movements in a scene. Several representative features, including invariant, multi-view differentiation and spatiotemporal body joints features were fused together to explore gradient orientation change, intensity differentiation, temporal variation and local motion of specific body parts. Then, these features are processed by the dynamics of their respective class and learned, modeled, trained and recognized with specific embedded HMM having active feature values. Furthermore, we construct a new online human activity dataset by a depth sensor to evaluate the proposed features. Our experiments on three depth datasets demonstrated that the proposed multi-features are efficient and robust over the state of the art features for human action and activity recognition.

  11. Feature Vector Construction Method for IRIS Recognition

    Science.gov (United States)

    Odinokikh, G.; Fartukov, A.; Korobkin, M.; Yoo, J.

    2017-05-01

    One of the basic stages of iris recognition pipeline is iris feature vector construction procedure. The procedure represents the extraction of iris texture information relevant to its subsequent comparison. Thorough investigation of feature vectors obtained from iris showed that not all the vector elements are equally relevant. There are two characteristics which determine the vector element utility: fragility and discriminability. Conventional iris feature extraction methods consider the concept of fragility as the feature vector instability without respect to the nature of such instability appearance. This work separates sources of the instability into natural and encodinginduced which helps deeply investigate each source of instability independently. According to the separation concept, a novel approach of iris feature vector construction is proposed. The approach consists of two steps: iris feature extraction using Gabor filtering with optimal parameters and quantization with separated preliminary optimized fragility thresholds. The proposed method has been tested on two different datasets of iris images captured under changing environmental conditions. The testing results show that the proposed method surpasses all the methods considered as a prior art by recognition accuracy on both datasets.

  12. Deep Learning Methods for Underwater Target Feature Extraction and Recognition

    Directory of Open Access Journals (Sweden)

    Gang Hu

    2018-01-01

    Full Text Available The classification and recognition technology of underwater acoustic signal were always an important research content in the field of underwater acoustic signal processing. Currently, wavelet transform, Hilbert-Huang transform, and Mel frequency cepstral coefficients are used as a method of underwater acoustic signal feature extraction. In this paper, a method for feature extraction and identification of underwater noise data based on CNN and ELM is proposed. An automatic feature extraction method of underwater acoustic signals is proposed using depth convolution network. An underwater target recognition classifier is based on extreme learning machine. Although convolution neural networks can execute both feature extraction and classification, their function mainly relies on a full connection layer, which is trained by gradient descent-based; the generalization ability is limited and suboptimal, so an extreme learning machine (ELM was used in classification stage. Firstly, CNN learns deep and robust features, followed by the removing of the fully connected layers. Then ELM fed with the CNN features is used as the classifier to conduct an excellent classification. Experiments on the actual data set of civil ships obtained 93.04% recognition rate; compared to the traditional Mel frequency cepstral coefficients and Hilbert-Huang feature, recognition rate greatly improved.

  13. A spatial-frequency-temporal optimized feature sparse representation-based classification method for motor imagery EEG pattern recognition.

    Science.gov (United States)

    Miao, Minmin; Wang, Aimin; Liu, Feixiang

    2017-09-01

    Effective feature extraction and classification methods are of great importance for motor imagery (MI)-based brain-computer interface (BCI) systems. The common spatial pattern (CSP) algorithm is a widely used feature extraction method for MI-based BCIs. In this work, we propose a novel spatial-frequency-temporal optimized feature sparse representation-based classification method. Optimal channels are selected based on relative entropy criteria. Significant CSP features on frequency-temporal domains are selected automatically to generate a column vector for sparse representation-based classification (SRC). We analyzed the performance of the new method on two public EEG datasets, namely BCI competition III dataset IVa which has five subjects and BCI competition IV dataset IIb which has nine subjects. Compared to the performance offered by the existing SRC method, the proposed method achieves average classification accuracy improvements of 21.568 and 14.38% for BCI competition III dataset IVa and BCI competition IV dataset IIb, respectively. Furthermore, our approach also shows better classification performance when compared to other competing methods for both datasets.

  14. Effective face recognition using bag of features with additive kernels

    Science.gov (United States)

    Yang, Shicai; Bebis, George; Chu, Yongjie; Zhao, Lindu

    2016-01-01

    In past decades, many techniques have been used to improve face recognition performance. The most common and well-studied ways are to use the whole face image to build a subspace based on the reduction of dimensionality. Differing from methods above, we consider face recognition as an image classification problem. The face images of the same person are considered to fall into the same category. Each category and each face image could be both represented by a simple pyramid histogram. Spatial dense scale-invariant feature transform features and bag of features method are used to build categories and face representations. In an effort to make the method more efficient, a linear support vector machine solver, Pegasos, is used for the classification in the kernel space with additive kernels instead of nonlinear SVMs. Our experimental results demonstrate that the proposed method can achieve very high recognition accuracy on the ORL, YALE, and FERET databases.

  15. PHROG: A Multimodal Feature for Place Recognition

    Directory of Open Access Journals (Sweden)

    Fabien Bonardi

    2017-05-01

    Full Text Available Long-term place recognition in outdoor environments remains a challenge due to high appearance changes in the environment. The problem becomes even more difficult when the matching between two scenes has to be made with information coming from different visual sources, particularly with different spectral ranges. For instance, an infrared camera is helpful for night vision in combination with a visible camera. In this paper, we emphasize our work on testing usual feature point extractors under both constraints: repeatability across spectral ranges and long-term appearance. We develop a new feature extraction method dedicated to improve the repeatability across spectral ranges. We conduct an evaluation of feature robustness on long-term datasets coming from different imaging sources (optics, sensors size and spectral ranges with a Bag-of-Words approach. The tests we perform demonstrate that our method brings a significant improvement on the image retrieval issue in a visual place recognition context, particularly when there is a need to associate images from various spectral ranges such as infrared and visible: we have evaluated our approach using visible, Near InfraRed (NIR, Short Wavelength InfraRed (SWIR and Long Wavelength InfraRed (LWIR.

  16. Feature dimensionality reduction for myoelectric pattern recognition: a comparison study of feature selection and feature projection methods.

    Science.gov (United States)

    Liu, Jie

    2014-12-01

    This study investigates the effect of the feature dimensionality reduction strategies on the classification of surface electromyography (EMG) signals toward developing a practical myoelectric control system. Two dimensionality reduction strategies, feature selection and feature projection, were tested on both EMG feature sets, respectively. A feature selection based myoelectric pattern recognition system was introduced to select the features by eliminating the redundant features of EMG recordings instead of directly choosing a subset of EMG channels. The Markov random field (MRF) method and a forward orthogonal search algorithm were employed to evaluate the contribution of each individual feature to the classification, respectively. Our results from 15 healthy subjects indicate that, with a feature selection analysis, independent of the type of feature set, across all subjects high overall accuracies can be achieved in classification of seven different forearm motions with a small number of top ranked original EMG features obtained from the forearm muscles (average overall classification accuracy >95% with 12 selected EMG features). Compared to various feature dimensionality reduction techniques in myoelectric pattern recognition, the proposed filter-based feature selection approach is independent of the type of classification algorithms and features, which can effectively reduce the redundant information not only across different channels, but also cross different features in the same channel. This may enable robust EMG feature dimensionality reduction without needing to change ongoing, practical use of classification algorithms, an important step toward clinical utility. Copyright © 2014 IPEM. Published by Elsevier Ltd. All rights reserved.

  17. Robust Face Recognition Via Gabor Feature and Sparse Representation

    Directory of Open Access Journals (Sweden)

    Hao Yu-Juan

    2016-01-01

    Full Text Available Sparse representation based on compressed sensing theory has been widely used in the field of face recognition, and has achieved good recognition results. but the face feature extraction based on sparse representation is too simple, and the sparse coefficient is not sparse. In this paper, we improve the classification algorithm based on the fusion of sparse representation and Gabor feature, and then improved algorithm for Gabor feature which overcomes the problem of large dimension of the vector dimension, reduces the computation and storage cost, and enhances the robustness of the algorithm to the changes of the environment.The classification efficiency of sparse representation is determined by the collaborative representation,we simplify the sparse constraint based on L1 norm to the least square constraint, which makes the sparse coefficients both positive and reduce the complexity of the algorithm. Experimental results show that the proposed method is robust to illumination, facial expression and pose variations of face recognition, and the recognition rate of the algorithm is improved.

  18. Spectral feature classification and spatial pattern recognition

    Science.gov (United States)

    Sivertson, W. E., Jr.; Wilson, R. G.

    1979-01-01

    This paper introduces a spatial pattern recognition processing concept involving the use of spectral feature classification technology and coherent optical correlation. The concept defines a hybrid image processing system incorporating both digital and optical technology. The hybrid instrument provides simplified pseudopattern images as functions of pixel classification from information embedded within a real-scene image. These pseudoimages become simplified inputs to an optical correlator for use in a subsequent pattern identification decision useful in executing landmark pointing, tracking, or navigating functions. Real-time classification is proposed as a research tool for exploring ways to enhance input signal-to-noise ratio as an aid in improving optical correlation. The approach can be explored with developing technology, including a current NASA Langley Research Center technology plan that involves a series of related Shuttle-borne experiments. A first-planned experiment, Feature Identification and Location Experiment (FILE), is undergoing final ground testing, and is scheduled for flight on the NASA Shuttle (STS2/flight OSTA-1) in 1980. FILE will evaluate a technique for autonomously classifying earth features into the four categories: bare land; water; vegetation; and clouds, snow, or ice.

  19. Robust Tomato Recognition for Robotic Harvesting Using Feature Images Fusion

    Science.gov (United States)

    Zhao, Yuanshen; Gong, Liang; Huang, Yixiang; Liu, Chengliang

    2016-01-01

    Automatic recognition of mature fruits in a complex agricultural environment is still a challenge for an autonomous harvesting robot due to various disturbances existing in the background of the image. The bottleneck to robust fruit recognition is reducing influence from two main disturbances: illumination and overlapping. In order to recognize the tomato in the tree canopy using a low-cost camera, a robust tomato recognition algorithm based on multiple feature images and image fusion was studied in this paper. Firstly, two novel feature images, the  a*-component image and the I-component image, were extracted from the L*a*b* color space and luminance, in-phase, quadrature-phase (YIQ) color space, respectively. Secondly, wavelet transformation was adopted to fuse the two feature images at the pixel level, which combined the feature information of the two source images. Thirdly, in order to segment the target tomato from the background, an adaptive threshold algorithm was used to get the optimal threshold. The final segmentation result was processed by morphology operation to reduce a small amount of noise. In the detection tests, 93% target tomatoes were recognized out of 200 overall samples. It indicates that the proposed tomato recognition method is available for robotic tomato harvesting in the uncontrolled environment with low cost. PMID:26840313

  20. Computational intelligence in multi-feature visual pattern recognition hand posture and face recognition using biologically inspired approaches

    CERN Document Server

    Pisharady, Pramod Kumar; Poh, Loh Ai

    2014-01-01

    This book presents a collection of computational intelligence algorithms that addresses issues in visual pattern recognition such as high computational complexity, abundance of pattern features, sensitivity to size and shape variations and poor performance against complex backgrounds. The book has 3 parts. Part 1 describes various research issues in the field with a survey of the related literature. Part 2 presents computational intelligence based algorithms for feature selection and classification. The algorithms are discriminative and fast. The main application area considered is hand posture recognition. The book also discusses utility of these algorithms in other visual as well as non-visual pattern recognition tasks including face recognition, general object recognition and cancer / tumor classification. Part 3 presents biologically inspired algorithms for feature extraction. The visual cortex model based features discussed have invariance with respect to appearance and size of the hand, and provide good...

  1. Recognition of Paddy, Brown Rice and White Rice Cultivars Based on Textural Features of Images and Artificial Neural Network

    Directory of Open Access Journals (Sweden)

    I Golpour

    2015-03-01

    Full Text Available Identification of rice cultivars is very important in modern agriculture. Texture properties could be used to identify of rice cultivars among of the various factors. The digital images processing can be used as a new approach to extract texture features. The objective of this research was to identify rice cultivars using of texture features with using image processing and back propagation artificial neural networks. To identify rice cultivars, five rice cultivars Fajr, Shiroodi, Neda, Tarom mahalli and Khazar were selected. Finally, 108 textural features were extracted from rice images using gray level co-occurrence matrix. Then cultivar identification was carried out using Back Propagation Artificial Neural Network. After evaluation of the network with one hidden layer using texture features, the highest classification accuracy for paddy cultivars, brown rice and white rice were obtained 92.2%, 97.8% and 98.9%, respectively. After evaluation of the network with two hidden layers, the average accuracy for classification of paddy cultivars was obtained to be 96.67%, for brown rice it was 97.78% and for white rice the classification accuracy was 98.88%. The highest mean classification accuracy acquired for paddy cultivars with 45 features was achieved to be 98.9%, for brown rice cultivars with 11 selected features it was 93.3% and it was 96.7% with 18 selected features for rice cultivars.

  2. Are Haar-like Rectangular Features for Biometric Recognition Reducible?

    DEFF Research Database (Denmark)

    Nasrollahi, Kamal; Moeslund, Thomas B.

    2013-01-01

    Biometric recognition is still a very difficult task in real-world scenarios wherein unforeseen changes in degradations factors like noise, occlusion, blurriness and illumination can drastically affect the extracted features from the biometric signals. Very recently Haar-like rectangular features...... which have usually been used for object detection were introduced for biometric recognition resulting in systems that are robust against most of the mentioned degradations [9]. The problem with these features is that one can define many different such features for a given biometric signal...... and it is not clear whether all of these features are required for the actual recognition or not. This is exactly what we are dealing with in this paper: How can an initial set of Haar-like rectangular features, that have been used for biometric recognition, be reduced to a set of most influential features...

  3. Joint Tensor Feature Analysis For Visual Object Recognition.

    Science.gov (United States)

    Wong, Wai Keung; Lai, Zhihui; Xu, Yong; Wen, Jiajun; Ho, Chu Po

    2015-11-01

    Tensor-based object recognition has been widely studied in the past several years. This paper focuses on the issue of joint feature selection from the tensor data and proposes a novel method called joint tensor feature analysis (JTFA) for tensor feature extraction and recognition. In order to obtain a set of jointly sparse projections for tensor feature extraction, we define the modified within-class tensor scatter value and the modified between-class tensor scatter value for regression. The k-mode optimization technique and the L(2,1)-norm jointly sparse regression are combined together to compute the optimal solutions. The convergent analysis, computational complexity analysis and the essence of the proposed method/model are also presented. It is interesting to show that the proposed method is very similar to singular value decomposition on the scatter matrix but with sparsity constraint on the right singular value matrix or eigen-decomposition on the scatter matrix with sparse manner. Experimental results on some tensor datasets indicate that JTFA outperforms some well-known tensor feature extraction and selection algorithms.

  4. An auditory feature detection circuit for sound pattern recognition.

    Science.gov (United States)

    Schöneich, Stefan; Kostarakos, Konstantinos; Hedwig, Berthold

    2015-09-01

    From human language to birdsong and the chirps of insects, acoustic communication is based on amplitude and frequency modulation of sound signals. Whereas frequency processing starts at the level of the hearing organs, temporal features of the sound amplitude such as rhythms or pulse rates require processing by central auditory neurons. Besides several theoretical concepts, brain circuits that detect temporal features of a sound signal are poorly understood. We focused on acoustically communicating field crickets and show how five neurons in the brain of females form an auditory feature detector circuit for the pulse pattern of the male calling song. The processing is based on a coincidence detector mechanism that selectively responds when a direct neural response and an intrinsically delayed response to the sound pulses coincide. This circuit provides the basis for auditory mate recognition in field crickets and reveals a principal mechanism of sensory processing underlying the perception of temporal patterns.

  5. Military personnel recognition system using texture, colour, and SURF features

    Science.gov (United States)

    Irhebhude, Martins E.; Edirisinghe, Eran A.

    2014-06-01

    This paper presents an automatic, machine vision based, military personnel identification and classification system. Classification is done using a Support Vector Machine (SVM) on sets of Army, Air Force and Navy camouflage uniform personnel datasets. In the proposed system, the arm of service of personnel is recognised by the camouflage of a persons uniform, type of cap and the type of badge/logo. The detailed analysis done include; camouflage cap and plain cap differentiation using gray level co-occurrence matrix (GLCM) texture feature; classification on Army, Air Force and Navy camouflaged uniforms using GLCM texture and colour histogram bin features; plain cap badge classification into Army, Air Force and Navy using Speed Up Robust Feature (SURF). The proposed method recognised camouflage personnel arm of service on sets of data retrieved from google images and selected military websites. Correlation-based Feature Selection (CFS) was used to improve recognition and reduce dimensionality, thereby speeding the classification process. With this method success rates recorded during the analysis include 93.8% for camouflage appearance category, 100%, 90% and 100% rates of plain cap and camouflage cap categories for Army, Air Force and Navy categories, respectively. Accurate recognition was recorded using SURF for the plain cap badge category. Substantial analysis has been carried out and results prove that the proposed method can correctly classify military personnel into various arms of service. We show that the proposed method can be integrated into a face recognition system, which will recognise personnel in addition to determining the arm of service which the personnel belong. Such a system can be used to enhance the security of a military base or facility.

  6. Recognition of handwritten characters using local gradient feature descriptors

    NARCIS (Netherlands)

    Surinta, Olarik; Karaaba, Mahir F.; Schomaker, Lambert R.B.; Wiering, Marco A.

    2015-01-01

    Abstract In this paper we propose to use local gradient feature descriptors, namely the scale invariant feature transform keypoint descriptor and the histogram of oriented gradients, for handwritten character recognition. The local gradient feature descriptors are used to extract feature vectors

  7. Local Feature Learning for Face Recognition under Varying Poses

    DEFF Research Database (Denmark)

    Duan, Xiaodong; Tan, Zheng-Hua

    2015-01-01

    In this paper, we present a local feature learning method for face recognition to deal with varying poses. As opposed to the commonly used approaches of recovering frontal face images from profile views, the proposed method extracts the subject related part from a local feature by removing the pose...... related part in it on the basis of a pose feature. The method has a closed-form solution, hence being time efficient. For performance evaluation, cross pose face recognition experiments are conducted on two public face recognition databases FERET and FEI. The proposed method shows a significant...... recognition improvement under varying poses over general local feature approaches and outperforms or is comparable with related state-of-the-art pose invariant face recognition approaches. Copyright ©2015 by IEEE....

  8. Gait recognition based on integral outline

    Science.gov (United States)

    Ming, Guan; Fang, Lv

    2017-02-01

    Biometric identification technology replaces traditional security technology, which has become a trend, and gait recognition also has become a hot spot of research because its feature is difficult to imitate and theft. This paper presents a gait recognition system based on integral outline of human body. The system has three important aspects: the preprocessing of gait image, feature extraction and classification. Finally, using a method of polling to evaluate the performance of the system, and summarizing the problems existing in the gait recognition and the direction of development in the future.

  9. LLE Score: A New Filter-Based Unsupervised Feature Selection Method Based on Nonlinear Manifold Embedding and Its Application to Image Recognition.

    Science.gov (United States)

    Chao Yao; Ya-Feng Liu; Bo Jiang; Jungong Han; Junwei Han

    2017-11-01

    The task of feature selection is to find the most representative features from the original high-dimensional data. Because of the absence of the information of class labels, selecting the appropriate features in unsupervised learning scenarios is much harder than that in supervised scenarios. In this paper, we investigate the potential of locally linear embedding (LLE), which is a popular manifold learning method, in feature selection task. It is straightforward to apply the idea of LLE to the graph-preserving feature selection framework. However, we find that this straightforward application suffers from some problems. For example, it fails when the elements in the feature are all equal; it does not enjoy the property of scaling invariance and cannot capture the change of the graph efficiently. To solve these problems, we propose a new filter-based feature selection method based on LLE in this paper, which is named as LLE score. The proposed criterion measures the difference between the local structure of each feature and that of the original data. Our experiments of classification task on two face image data sets, an object image data set, and a handwriting digits data set show that LLE score outperforms state-of-the-art methods, including data variance, Laplacian score, and sparsity score.

  10. Evaluating word representation features in biomedical named entity recognition tasks.

    Science.gov (United States)

    Tang, Buzhou; Cao, Hongxin; Wang, Xiaolong; Chen, Qingcai; Xu, Hua

    2014-01-01

    Biomedical Named Entity Recognition (BNER), which extracts important entities such as genes and proteins, is a crucial step of natural language processing in the biomedical domain. Various machine learning-based approaches have been applied to BNER tasks and showed good performance. In this paper, we systematically investigated three different types of word representation (WR) features for BNER, including clustering-based representation, distributional representation, and word embeddings. We selected one algorithm from each of the three types of WR features and applied them to the JNLPBA and BioCreAtIvE II BNER tasks. Our results showed that all the three WR algorithms were beneficial to machine learning-based BNER systems. Moreover, combining these different types of WR features further improved BNER performance, indicating that they are complementary to each other. By combining all the three types of WR features, the improvements in F-measure on the BioCreAtIvE II GM and JNLPBA corpora were 3.75% and 1.39%, respectively, when compared with the systems using baseline features. To the best of our knowledge, this is the first study to systematically evaluate the effect of three different types of WR features for BNER tasks.

  11. Information Theory for Gabor Feature Selection for Face Recognition

    Directory of Open Access Journals (Sweden)

    Shen Linlin

    2006-01-01

    Full Text Available A discriminative and robust feature—kernel enhanced informative Gabor feature—is proposed in this paper for face recognition. Mutual information is applied to select a set of informative and nonredundant Gabor features, which are then further enhanced by kernel methods for recognition. Compared with one of the top performing methods in the 2004 Face Verification Competition (FVC2004, our methods demonstrate a clear advantage over existing methods in accuracy, computation efficiency, and memory cost. The proposed method has been fully tested on the FERET database using the FERET evaluation protocol. Significant improvements on three of the test data sets are observed. Compared with the classical Gabor wavelet-based approaches using a huge number of features, our method requires less than 4 milliseconds to retrieve a few hundreds of features. Due to the substantially reduced feature dimension, only 4 seconds are required to recognize 200 face images. The paper also unified different Gabor filter definitions and proposed a training sample generation algorithm to reduce the effects caused by unbalanced number of samples available in different classes.

  12. Feature Extraction and Selection Strategies for Automated Target Recognition

    Science.gov (United States)

    Greene, W. Nicholas; Zhang, Yuhan; Lu, Thomas T.; Chao, Tien-Hsin

    2010-01-01

    Several feature extraction and selection methods for an existing automatic target recognition (ATR) system using JPLs Grayscale Optical Correlator (GOC) and Optimal Trade-Off Maximum Average Correlation Height (OT-MACH) filter were tested using MATLAB. The ATR system is composed of three stages: a cursory region of-interest (ROI) search using the GOC and OT-MACH filter, a feature extraction and selection stage, and a final classification stage. Feature extraction and selection concerns transforming potential target data into more useful forms as well as selecting important subsets of that data which may aide in detection and classification. The strategies tested were built around two popular extraction methods: Principal Component Analysis (PCA) and Independent Component Analysis (ICA). Performance was measured based on the classification accuracy and free-response receiver operating characteristic (FROC) output of a support vector machine(SVM) and a neural net (NN) classifier.

  13. A Novel DBN Feature Fusion Model for Cross-Corpus Speech Emotion Recognition

    Directory of Open Access Journals (Sweden)

    Zou Cairong

    2016-01-01

    Full Text Available The feature fusion from separate source is the current technical difficulties of cross-corpus speech emotion recognition. The purpose of this paper is to, based on Deep Belief Nets (DBN in Deep Learning, use the emotional information hiding in speech spectrum diagram (spectrogram as image features and then implement feature fusion with the traditional emotion features. First, based on the spectrogram analysis by STB/Itti model, the new spectrogram features are extracted from the color, the brightness, and the orientation, respectively; then using two alternative DBN models they fuse the traditional and the spectrogram features, which increase the scale of the feature subset and the characterization ability of emotion. Through the experiment on ABC database and Chinese corpora, the new feature subset compared with traditional speech emotion features, the recognition result on cross-corpus, distinctly advances by 8.8%. The method proposed provides a new idea for feature fusion of emotion recognition.

  14. Investigation of efficient features for image recognition by neural networks.

    Science.gov (United States)

    Goltsev, Alexander; Gritsenko, Vladimir

    2012-04-01

    In the paper, effective and simple features for image recognition (named LiRA-features) are investigated in the task of handwritten digit recognition. Two neural network classifiers are considered-a modified 3-layer perceptron LiRA and a modular assembly neural network. A method of feature selection is proposed that analyses connection weights formed in the preliminary learning process of a neural network classifier. In the experiments using the MNIST database of handwritten digits, the feature selection procedure allows reduction of feature number (from 60 000 to 7000) preserving comparable recognition capability while accelerating computations. Experimental comparison between the LiRA perceptron and the modular assembly neural network is accomplished, which shows that recognition capability of the modular assembly neural network is somewhat better. Copyright © 2011 Elsevier Ltd. All rights reserved.

  15. Statistical Feature Extraction and Recognition of Beverages Using Electronic Tongue

    Directory of Open Access Journals (Sweden)

    P. C. PANCHARIYA

    2010-01-01

    Full Text Available This paper describes an approach for extraction of features from data generated from an electronic tongue based on large amplitude pulse voltammetry. In this approach statistical features of the meaningful selected variables from current response signals are extracted and used for recognition of beverage samples. The proposed feature extraction approach not only reduces the computational complexity but also reduces the computation time and requirement of storage of data for the development of E-tongue for field applications. With the reduced information, a probabilistic neural network (PNN was trained for qualitative analysis of different beverages. Before the qualitative analysis of the beverages, the methodology has been tested for the basic artificial taste solutions i.e. sweet, sour, salt, bitter, and umami. The proposed procedure was compared with the more conventional and linear feature extraction technique employing principal component analysis combined with PNN. Using the extracted feature vectors, highly correct classification by PNN was achieved for eight types of juices and six types of soft drinks. The results indicated that the electronic tongue based on large amplitude pulse voltammetry with reduced feature was capable of discriminating not only basic artificial taste solutions but also the various sorts of the same type of natural beverages (fruit juices, vegetable juices, soft drinks, etc..

  16. Learning optimized features for hierarchical models of invariant object recognition.

    Science.gov (United States)

    Wersing, Heiko; Körner, Edgar

    2003-07-01

    There is an ongoing debate over the capabilities of hierarchical neural feedforward architectures for performing real-world invariant object recognition. Although a variety of hierarchical models exists, appropriate supervised and unsupervised learning methods are still an issue of intense research. We propose a feedforward model for recognition that shares components like weight sharing, pooling stages, and competitive nonlinearities with earlier approaches but focuses on new methods for learning optimal feature-detecting cells in intermediate stages of the hierarchical network. We show that principles of sparse coding, which were previously mostly applied to the initial feature detection stages, can also be employed to obtain optimized intermediate complex features. We suggest a new approach to optimize the learning of sparse features under the constraints of a weight-sharing or convolutional architecture that uses pooling operations to achieve gradual invariance in the feature hierarchy. The approach explicitly enforces symmetry constraints like translation invariance on the feature set. This leads to a dimension reduction in the search space of optimal features and allows determining more efficiently the basis representatives, which achieve a sparse decomposition of the input. We analyze the quality of the learned feature representation by investigating the recognition performance of the resulting hierarchical network on object and face databases. We show that a hierarchy with features learned on a single object data set can also be applied to face recognition without parameter changes and is competitive with other recent machine learning recognition approaches. To investigate the effect of the interplay between sparse coding and processing nonlinearities, we also consider alternative feedforward pooling nonlinearities such as presynaptic maximum selection and sum-of-squares integration. The comparison shows that a combination of strong competitive

  17. Vision-Based Navigation and Recognition

    National Research Council Canada - National Science Library

    Rosenfeld, Azriel

    1996-01-01

    .... (4) Invariants -- both geometric and other types. (5) Human faces: Analysis of images of human faces, including feature extraction, face recognition, compression, and recognition of facial expressions...

  18. Vision-Based Navigation and Recognition

    National Research Council Canada - National Science Library

    Rosenfeld, Azriel

    1998-01-01

    .... (4) Invariants: both geometric and other types. (5) Human faces: Analysis of images of human faces, including feature extraction, face recognition, compression, and recognition of facial expressions...

  19. Feature Selection Using Adaboost for Face Expression Recognition

    National Research Council Canada - National Science Library

    Silapachote, Piyanuch; Karuppiah, Deepak R; Hanson, Allen R

    2005-01-01

    We propose a classification technique for face expression recognition using AdaBoost that learns by selecting the relevant global and local appearance features with the most discriminating information...

  20. Speech recognition using articulatory and excitation source features

    CERN Document Server

    Rao, K Sreenivasa

    2017-01-01

    This book discusses the contribution of articulatory and excitation source information in discriminating sound units. The authors focus on excitation source component of speech -- and the dynamics of various articulators during speech production -- for enhancement of speech recognition (SR) performance. Speech recognition is analyzed for read, extempore, and conversation modes of speech. Five groups of articulatory features (AFs) are explored for speech recognition, in addition to conventional spectral features. Each chapter provides the motivation for exploring the specific feature for SR task, discusses the methods to extract those features, and finally suggests appropriate models to capture the sound unit specific knowledge from the proposed features. The authors close by discussing various combinations of spectral, articulatory and source features, and the desired models to enhance the performance of SR systems.

  1. Boosting Discriminant Learners for Gait Recognition Using MPCA Features

    Directory of Open Access Journals (Sweden)

    Haiping Lu

    2009-01-01

    Full Text Available This paper proposes a boosted linear discriminant analysis (LDA solution on features extracted by the multilinear principal component analysis (MPCA to enhance gait recognition performance. Three-dimensional gait objects are projected in the MPCA space first to obtain low-dimensional tensorial features. Then, lower-dimensional vectorial features are obtained through discriminative feature selection. These feature vectors are then fed into an LDA-style booster, where several regularized and weakened LDA learners work together to produce a strong learner through a novel feature weighting and sampling process. The LDA learner employs a simple nearest-neighbor classifier with a weighted angle distance measure for classification. The experimental results on the NIST/USF “Gait Challenge” data-sets show that the proposed solution has successfully improved the gait recognition performance and outperformed several state-of-the-art gait recognition algorithms.

  2. Human Activity Recognition Using Hierarchically-Mined Feature Constellations

    NARCIS (Netherlands)

    Oikonomopoulos, A.; Pantic, Maja

    In this paper we address the problem of human activity modelling and recognition by means of a hierarchical representation of mined dense spatiotemporal features. At each level of the hierarchy, the proposed method selects feature constellations that are increasingly discriminative and

  3. Statistical Feature Recognition for Multidimensional Solar Imagery

    Science.gov (United States)

    Turmon, Michael; Jones, Harrison P.; Malanushenko, Olena V.; Pap, Judit M.

    2010-04-01

    A maximum a posteriori (MAP) technique is developed to identify solar features in cotemporal and cospatial images of line-of-sight magnetic flux, continuum intensity, and equivalent width observed with the NASA/National Solar Observatory (NSO) Spectromagnetograph (SPM). The technique facilitates human understanding of patterns in large data sets and enables systematic studies of feature characteristics for comparison with models and observations of long-term solar activity and variability. The method uses Bayes’ rule to compute the posterior probability of any feature segmentation of a trio of observed images from per-pixel, class-conditional probabilities derived from independently-segmented training images. Simulated annealing is used to find the most likely segmentation. New algorithms for computing class-conditional probabilities from three-dimensional Gaussian mixture models and interpolated histogram densities are described and compared. A new extension to the spatial smoothing in the Bayesian prior model is introduced, which can incorporate a spatial dependence such as center-to-limb variation. How the spatial scale of training segmentations affects the results is discussed, and a new method for statistical separation of quiet Sun and quiet network is presented.

  4. Recognition of Handwritten Character by Fuzzy Neighbor Mesh Feature

    OpenAIRE

    "王,暁文/橋本,禮治"; "/ハシモト, レイジ"; "Wang,Xiaowen/Hashimoto,Reiji"

    1993-01-01

    "The fuzzy mesh feature (FM-feature) which is proposed in our previous work has been proved that it can absorb some handwriting variation. But the recognition rate got there is still not sufficient, one reason of which may be that this feature includes limited structural information about the character. In this work, we consider a modified fuzzy feature of mesh pattern (FNM-feature) by utilizing the neighbor meshes. And by the experiment about that, we have got the result that FNM-feature imp...

  5. Fast Pedestrian Recognition Based on Multisensor Fusion

    Directory of Open Access Journals (Sweden)

    Hongyu Hu

    2012-01-01

    Full Text Available A fast pedestrian recognition algorithm based on multisensor fusion is presented in this paper. Firstly, potential pedestrian locations are estimated by laser radar scanning in the world coordinates, and then their corresponding candidate regions in the image are located by camera calibration and the perspective mapping model. For avoiding time consuming in the training and recognition process caused by large numbers of feature vector dimensions, region of interest-based integral histograms of oriented gradients (ROI-IHOG feature extraction method is proposed later. A support vector machine (SVM classifier is trained by a novel pedestrian sample dataset which adapt to the urban road environment for online recognition. Finally, we test the validity of the proposed approach with several video sequences from realistic urban road scenarios. Reliable and timewise performances are shown based on our multisensor fusing method.

  6. Automated Recognition of 3D Features in GPIR Images

    Science.gov (United States)

    Park, Han; Stough, Timothy; Fijany, Amir

    2007-01-01

    A method of automated recognition of three-dimensional (3D) features in images generated by ground-penetrating imaging radar (GPIR) is undergoing development. GPIR 3D images can be analyzed to detect and identify such subsurface features as pipes and other utility conduits. Until now, much of the analysis of GPIR images has been performed manually by expert operators who must visually identify and track each feature. The present method is intended to satisfy a need for more efficient and accurate analysis by means of algorithms that can automatically identify and track subsurface features, with minimal supervision by human operators. In this method, data from multiple sources (for example, data on different features extracted by different algorithms) are fused together for identifying subsurface objects. The algorithms of this method can be classified in several different ways. In one classification, the algorithms fall into three classes: (1) image-processing algorithms, (2) feature- extraction algorithms, and (3) a multiaxis data-fusion/pattern-recognition algorithm that includes a combination of machine-learning, pattern-recognition, and object-linking algorithms. The image-processing class includes preprocessing algorithms for reducing noise and enhancing target features for pattern recognition. The feature-extraction algorithms operate on preprocessed data to extract such specific features in images as two-dimensional (2D) slices of a pipe. Then the multiaxis data-fusion/ pattern-recognition algorithm identifies, classifies, and reconstructs 3D objects from the extracted features. In this process, multiple 2D features extracted by use of different algorithms and representing views along different directions are used to identify and reconstruct 3D objects. In object linking, which is an essential part of this process, features identified in successive 2D slices and located within a threshold radius of identical features in adjacent slices are linked in a

  7. AN ILLUMINATION INVARIANT TEXTURE BASED FACE RECOGNITION

    Directory of Open Access Journals (Sweden)

    K. Meena

    2013-11-01

    Full Text Available Automatic face recognition remains an interesting but challenging computer vision open problem. Poor illumination is considered as one of the major issue, since illumination changes cause large variation in the facial features. To resolve this, illumination normalization preprocessing techniques are employed in this paper to enhance the face recognition rate. The methods such as Histogram Equalization (HE, Gamma Intensity Correction (GIC, Normalization chain and Modified Homomorphic Filtering (MHF are used for preprocessing. Owing to great success, the texture features are commonly used for face recognition. But these features are severely affected by lighting changes. Hence texture based models Local Binary Pattern (LBP, Local Derivative Pattern (LDP, Local Texture Pattern (LTP and Local Tetra Patterns (LTrPs are experimented under different lighting conditions. In this paper, illumination invariant face recognition technique is developed based on the fusion of illumination preprocessing with local texture descriptors. The performance has been evaluated using YALE B and CMU-PIE databases containing more than 1500 images. The results demonstrate that MHF based normalization gives significant improvement in recognition rate for the face images with large illumination conditions.

  8. Combining Semantic and Acoustic Features for Valence and Arousal Recognition in Speech

    DEFF Research Database (Denmark)

    Karadogan, Seliz; Larsen, Jan

    2012-01-01

    The recognition of affect in speech has attracted a lot of interest recently; especially in the area of cognitive and computer sciences. Most of the previous studies focused on the recognition of basic emotions (such as happiness, sadness and anger) using categorical approach. Recently, the focus...... has been shifting towards dimensional affect recognition based on the idea that emotional states are not independent from one another but related in a systematic manner. In this paper, we design a continuous dimensional speech affect recognition model that combines acoustic and semantic features. We...... show that combining semantic and acoustic information for dimensional speech recognition improves the results. Moreover, we show that valence is better estimated using semantic features while arousal is better estimated using acoustic features....

  9. Feature Selection Based on Confidence Machine

    OpenAIRE

    Liu, Chang; Xu, Yi

    2014-01-01

    In machine learning and pattern recognition, feature selection has been a hot topic in the literature. Unsupervised feature selection is challenging due to the loss of labels which would supply the related information.How to define an appropriate metric is the key for feature selection. We propose a filter method for unsupervised feature selection which is based on the Confidence Machine. Confidence Machine offers an estimation of confidence on a feature'reliability. In this paper, we provide...

  10. Occlusion invariant face recognition using mean based weight ...

    Indian Academy of Sciences (India)

    Features obtained from the corresponding occlusion-free patches of training images are used for face image recognition. The SVM classifier is used for occlusion detection for each patch. In the recognition phase, the MBWM bases of occlusion-free image patches are used for face recognition. Euclidean nearest neighbour ...

  11. Feature extractor and search engine for automatic object recognition

    Science.gov (United States)

    Freire, Joao C.; Correia, Bento A. B.

    1998-10-01

    Automatic object recognition methodologies are being used increasingly in the automation of many industrial processes. However, the specific nature of each system usually implies an intensive development effort. Aiming to control and constrain such effort, this paper presents a processing architecture that promotes the reutilization of common system modules. The approach described covers the whole processing chain by connecting low-level pre-processing to the final classification stage, specially emphasizing the segmentation and feature extraction levels. The resulting core is a search engine based on the data structure of a graph. This structure is initially fed with raw edge information extracted from the original raster image representation. The edge segments used at this preliminary version of the graph are the result of a multistage process of edge following and edge linking. The use of image properties at high levels of abstraction allows the dimensions of the search space to be significantly reduced. Modularity and reutilization allows the refinement of an initial low-level representation of information into successive higher levels of description, until a final set of features that may directly feed a classifier is achieved. Parallel contours, constant curvature edge segments and closed contours of a given shape are a few examples of the features easily defined within this architecture and that can be extracted by the search engine implemented.

  12. Semisupervised feature selection via spline regression for video semantic recognition.

    Science.gov (United States)

    Han, Yahong; Yang, Yi; Yan, Yan; Ma, Zhigang; Sebe, Nicu; Zhou, Xiaofang

    2015-02-01

    To improve both the efficiency and accuracy of video semantic recognition, we can perform feature selection on the extracted video features to select a subset of features from the high-dimensional feature set for a compact and accurate video data representation. Provided the number of labeled videos is small, supervised feature selection could fail to identify the relevant features that are discriminative to target classes. In many applications, abundant unlabeled videos are easily accessible. This motivates us to develop semisupervised feature selection algorithms to better identify the relevant video features, which are discriminative to target classes by effectively exploiting the information underlying the huge amount of unlabeled video data. In this paper, we propose a framework of video semantic recognition by semisupervised feature selection via spline regression (S(2)FS(2)R) . Two scatter matrices are combined to capture both the discriminative information and the local geometry structure of labeled and unlabeled training videos: A within-class scatter matrix encoding discriminative information of labeled training videos and a spline scatter output from a local spline regression encoding data distribution. An l2,1 -norm is imposed as a regularization term on the transformation matrix to ensure it is sparse in rows, making it particularly suitable for feature selection. To efficiently solve S(2)FS(2)R , we develop an iterative algorithm and prove its convergency. In the experiments, three typical tasks of video semantic recognition, such as video concept detection, video classification, and human action recognition, are used to demonstrate that the proposed S(2)FS(2)R achieves better performance compared with the state-of-the-art methods.

  13. DCT-based iris recognition.

    Science.gov (United States)

    Monro, Donald M; Rakshit, Soumyadip; Zhang, Dexin

    2007-04-01

    This paper presents a novel iris coding method based on differences of discrete cosine transform (DCT) coefficients of overlapped angular patches from normalized iris images. The feature extraction capabilities of the DCT are optimized on the two largest publicly available iris image data sets, 2,156 images of 308 eyes from the CASIA database and 2,955 images of 150 eyes from the Bath database. On this data, we achieve 100 percent Correct Recognition Rate (CRR) and perfect Receiver-Operating Characteristic (ROC) Curves with no registered false accepts or rejects. Individual feature bit and patch position parameters are optimized for matching through a product-of-sum approach to Hamming distance calculation. For verification, a variable threshold is applied to the distance metric and the False Acceptance Rate (FAR) and False Rejection Rate (FRR) are recorded. A new worst-case metric is proposed for predicting practical system performance in the absence of matching failures, and the worst case theoretical Equal Error Rate (EER) is predicted to be as low as 2.59 x 10(-4) on the available data sets.

  14. Average Gait Differential Image Based Human Recognition

    Directory of Open Access Journals (Sweden)

    Jinyan Chen

    2014-01-01

    Full Text Available The difference between adjacent frames of human walking contains useful information for human gait identification. Based on the previous idea a silhouettes difference based human gait recognition method named as average gait differential image (AGDI is proposed in this paper. The AGDI is generated by the accumulation of the silhouettes difference between adjacent frames. The advantage of this method lies in that as a feature image it can preserve both the kinetic and static information of walking. Comparing to gait energy image (GEI, AGDI is more fit to representation the variation of silhouettes during walking. Two-dimensional principal component analysis (2DPCA is used to extract features from the AGDI. Experiments on CASIA dataset show that AGDI has better identification and verification performance than GEI. Comparing to PCA, 2DPCA is a more efficient and less memory storage consumption feature extraction method in gait based recognition.

  15. Four-Channel Biosignal Analysis and Feature Extraction for Automatic Emotion Recognition

    Science.gov (United States)

    Kim, Jonghwa; André, Elisabeth

    This paper investigates the potential of physiological signals as a reliable channel for automatic recognition of user's emotial state. For the emotion recognition, little attention has been paid so far to physiological signals compared to audio-visual emotion channels such as facial expression or speech. All essential stages of automatic recognition system using biosignals are discussed, from recording physiological dataset up to feature-based multiclass classification. Four-channel biosensors are used to measure electromyogram, electrocardiogram, skin conductivity and respiration changes. A wide range of physiological features from various analysis domains, including time/frequency, entropy, geometric analysis, subband spectra, multiscale entropy, etc., is proposed in order to search the best emotion-relevant features and to correlate them with emotional states. The best features extracted are specified in detail and their effectiveness is proven by emotion recognition results.

  16. Control chart pattern recognition using an optimized neural network and efficient features.

    Science.gov (United States)

    Ebrahimzadeh, Ata; Ranaee, Vahid

    2010-07-01

    Automatic recognition of abnormal patterns in control charts has seen increasing demands nowadays in manufacturing processes. This study investigates the design of an accurate system for control chart pattern (CCP) recognition from two aspects. First, an efficient system is introduced that includes two main modules: the feature extraction module and the classifier module. The feature extraction module uses the entropies of the wavelet packets. These are applied for the first time in this area. In the classifier module several neural networks, such as the multilayer perceptron and radial basis function, are investigated. Using an experimental study, we choose the best classifier in order to recognize the CCPs. Second, we propose a hybrid heuristic recognition system based on particle swarm optimization to improve the generalization performance of the classifier. The results obtained clearly confirm that further improvements in terms of recognition accuracy can be achieved by the proposed recognition system. 2010 ISA. Published by Elsevier Ltd. All rights reserved.

  17. Pattern Recognition Methods and Features Selection for Speech Emotion Recognition System.

    Science.gov (United States)

    Partila, Pavol; Voznak, Miroslav; Tovarek, Jaromir

    2015-01-01

    The impact of the classification method and features selection for the speech emotion recognition accuracy is discussed in this paper. Selecting the correct parameters in combination with the classifier is an important part of reducing the complexity of system computing. This step is necessary especially for systems that will be deployed in real-time applications. The reason for the development and improvement of speech emotion recognition systems is wide usability in nowadays automatic voice controlled systems. Berlin database of emotional recordings was used in this experiment. Classification accuracy of artificial neural networks, k-nearest neighbours, and Gaussian mixture model is measured considering the selection of prosodic, spectral, and voice quality features. The purpose was to find an optimal combination of methods and group of features for stress detection in human speech. The research contribution lies in the design of the speech emotion recognition system due to its accuracy and efficiency.

  18. Pattern Recognition Methods and Features Selection for Speech Emotion Recognition System

    Directory of Open Access Journals (Sweden)

    Pavol Partila

    2015-01-01

    Full Text Available The impact of the classification method and features selection for the speech emotion recognition accuracy is discussed in this paper. Selecting the correct parameters in combination with the classifier is an important part of reducing the complexity of system computing. This step is necessary especially for systems that will be deployed in real-time applications. The reason for the development and improvement of speech emotion recognition systems is wide usability in nowadays automatic voice controlled systems. Berlin database of emotional recordings was used in this experiment. Classification accuracy of artificial neural networks, k-nearest neighbours, and Gaussian mixture model is measured considering the selection of prosodic, spectral, and voice quality features. The purpose was to find an optimal combination of methods and group of features for stress detection in human speech. The research contribution lies in the design of the speech emotion recognition system due to its accuracy and efficiency.

  19. On the Use of Complementary Spectral Features for Speaker Recognition

    Directory of Open Access Journals (Sweden)

    Sridhar Krishnan

    2007-12-01

    Full Text Available The most popular features for speaker recognition are Mel frequency cepstral coefficients (MFCCs and linear prediction cepstral coefficients (LPCCs. These features are used extensively because they characterize the vocal tract configuration which is known to be highly speaker-dependent. In this work, several features are introduced that can characterize the vocal system in order to complement the traditional features and produce better speaker recognition models. The spectral centroid (SC, spectral bandwidth (SBW, spectral band energy (SBE, spectral crest factor (SCF, spectral flatness measure (SFM, Shannon entropy (SE, and Renyi entropy (RE were utilized for this purpose. This work demonstrates that these features are robust in noisy conditions by simulating some common distortions that are found in the speakers' environment and a typical telephone channel. Babble noise, additive white Gaussian noise (AWGN, and a bandpass channel with 1 dB of ripple were used to simulate these noisy conditions. The results show significant improvements in classification performance for all noise conditions when these features were used to complement the MFCC and ΔMFCC features. In particular, the SC and SCF improved performance in almost all noise conditions within the examined SNR range (10–40 dB. For example, in cases where there was only one source of distortion, classification improvements of up to 8% and 10% were achieved under babble noise and AWGN, respectively, using the SCF feature.

  20. Iris Recognition Using Feature Extraction of Box Counting Fractal Dimension

    Science.gov (United States)

    Khotimah, C.; Juniati, D.

    2018-01-01

    Biometrics is a science that is now growing rapidly. Iris recognition is a biometric modality which captures a photo of the eye pattern. The markings of the iris are distinctive that it has been proposed to use as a means of identification, instead of fingerprints. Iris recognition was chosen for identification in this research because every human has a special feature that each individual is different and the iris is protected by the cornea so that it will have a fixed shape. This iris recognition consists of three step: pre-processing of data, feature extraction, and feature matching. Hough transformation is used in the process of pre-processing to locate the iris area and Daugman’s rubber sheet model to normalize the iris data set into rectangular blocks. To find the characteristics of the iris, it was used box counting method to get the fractal dimension value of the iris. Tests carried out by used k-fold cross method with k = 5. In each test used 10 different grade K of K-Nearest Neighbor (KNN). The result of iris recognition was obtained with the best accuracy was 92,63 % for K = 3 value on K-Nearest Neighbor (KNN) method.

  1. Haar-like Rectangular Features for Biometric Recognition

    DEFF Research Database (Denmark)

    Nasrollahi, Kamal; Moeslund, Thomas B.; Rashidi, Maryam

    2013-01-01

    Developing a reliable, fast, and robust biometric recognition system is still a challenging task. This is because the inputs to these systems can be noisy, occluded, poorly illuminated, rotated, and of very low-resolutions. This paper proposes a probabilistic classifier using Haar-like features......, which mostly have been used for detection, for biometric recognition. The proposed system has been tested for three different biometrics: ear, iris, and hand vein patterns and it is shown that it is robust against most of the mentioned degradations and it outperforms state-of-the-art systems...

  2. Scale coding bag of deep features for human attribute and action recognition

    OpenAIRE

    Khan, Fahad Shahbaz; van de Weijer, Joost; Anwer, Rao Muhammad; Bagdanov, Andrew D.; Felsberg, Michael; Laaksonen, Jorma

    2017-01-01

    Most approaches to human attribute and action recognition in still images are based on image representation in which multi-scale local features are pooled across scale into a single, scale-invariant encoding. Both in bag-of-words and the recently popular representations based on convolutional neural networks, local features are computed at multiple scales. However, these multi-scale convolutional features are pooled into a single scale-invariant representation. We argue that entirely scale-in...

  3. Featural processing in recognition of emotional facial expressions.

    Science.gov (United States)

    Beaudry, Olivia; Roy-Charland, Annie; Perron, Melanie; Cormier, Isabelle; Tapp, Roxane

    2014-04-01

    The present study aimed to clarify the role played by the eye/brow and mouth areas in the recognition of the six basic emotions. In Experiment 1, accuracy was examined while participants viewed partial and full facial expressions; in Experiment 2, participants viewed full facial expressions while their eye movements were recorded. Recognition rates were consistent with previous research: happiness was highest and fear was lowest. The mouth and eye/brow areas were not equally important for the recognition of all emotions. More precisely, while the mouth was revealed to be important in the recognition of happiness and the eye/brow area of sadness, results are not as consistent for the other emotions. In Experiment 2, consistent with previous studies, the eyes/brows were fixated for longer periods than the mouth for all emotions. Again, variations occurred as a function of the emotions, the mouth having an important role in happiness and the eyes/brows in sadness. The general pattern of results for the other four emotions was inconsistent between the experiments as well as across different measures. The complexity of the results suggests that the recognition process of emotional facial expressions cannot be reduced to a simple feature processing or holistic processing for all emotions.

  4. Gait Recognition Based on Outermost Contour

    Directory of Open Access Journals (Sweden)

    Lili Liu

    2011-10-01

    Full Text Available Gait recognition aims to identify people by the way they walk. In this paper, a simple but e ective gait recognition method based on Outermost Contour is proposed. For each gait image sequence, an adaptive silhouette extraction algorithm is firstly used to segment the frames of the sequence and a series of postprocessing is applied to obtain the normalized silhouette images with less noise. Then a novel feature extraction method based on Outermost Contour is performed. Principal Component Analysis (PCA is adopted to reduce the dimensionality of the distance signals derived from the Outermost Contours of silhouette images. Then Multiple Discriminant Analysis (MDA is used to optimize the separability of gait features belonging to di erent classes. Nearest Neighbor (NN classifier and Nearest Neighbor classifier with respect to class Exemplars (ENN are used to classify the final feature vectors produced by MDA. In order to verify the e ectiveness and robustness of our feature extraction algorithm, we also use two other classifiers: Backpropagation Neural Network (BPNN and Support Vector Machine (SVM for recognition. Experimental results on a gait database of 100 people show that the accuracy of using MDA, BPNN and SVM can achieve 97.67%, 94.33% and 94.67%, respectively.

  5. Criteria and procedures for estimating the informativity and feature selection in biomedical signals for their recognition

    OpenAIRE

    SHULYAK A.P.; SHACHYKOV A.D.

    2016-01-01

    Introduction. The issues of features informativity evaluation in biomedical signals portraits according to formal comparison of their probability values, obtained during training of supervised learning recognition systems are being considered. The purpose of this work is to increase the effectiveness of the biomedical signals recognition in diagnostic systems with supervised learning, by choosing rational structure of portraits based on the nature of their elements influence on the quality of...

  6. A multi-approach feature extractions for iris recognition

    Science.gov (United States)

    Sanpachai, H.; Settapong, M.

    2014-04-01

    Biometrics is a promising technique that is used to identify individual traits and characteristics. Iris recognition is one of the most reliable biometric methods. As iris texture and color is fully developed within a year of birth, it remains unchanged throughout a person's life. Contrary to fingerprint, which can be altered due to several aspects including accidental damage, dry or oily skin and dust. Although iris recognition has been studied for more than a decade, there are limited commercial products available due to its arduous requirement such as camera resolution, hardware size, expensive equipment and computational complexity. However, at the present time, technology has overcome these obstacles. Iris recognition can be done through several sequential steps which include pre-processing, features extractions, post-processing, and matching stage. In this paper, we adopted the directional high-low pass filter for feature extraction. A box-counting fractal dimension and Iris code have been proposed as feature representations. Our approach has been tested on CASIA Iris Image database and the results are considered successful.

  7. Asymmetries in the exploitation of phonetic features for word recognition.

    Science.gov (United States)

    Martin, Alexander; Peperkamp, Sharon

    2015-04-01

    French listeners' reliance on voicing, manner, and place was tested in a mispronunciation detection task. Mispronounced words were more likely to be recognized when the mispronunciation concerned voicing rather than manner or place. This indicates that listeners rely less on the former than on the latter for the purposes of word recognition. Further, the role of visual cues to phonetic features was explored by the task being conducted in both an audio-only and an audiovisual version, but no effect of modality was found. Discussion focuses on crosslinguistic comparisons and lexical factors that might influence the weight of individual features.

  8. Matching score based face recognition

    NARCIS (Netherlands)

    Boom, B.J.; Beumer, G.M.; Spreeuwers, Lieuwe Jan; Veldhuis, Raymond N.J.

    2006-01-01

    Accurate face registration is of vital importance to the performance of a face recognition algorithm. We propose a new method: matching score based face registration, which searches for optimal alignment by maximizing the matching score output of a classifier as a function of the different

  9. Regression-based Multi-View Facial Expression Recognition

    NARCIS (Netherlands)

    Rudovic, Ognjen; Patras, Ioannis; Pantic, Maja

    2010-01-01

    We present a regression-based scheme for multi-view facial expression recognition based on 2蚠D geometric features. We address the problem by mapping facial points (e.g. mouth corners) from non-frontal to frontal view where further recognition of the expressions can be performed using a

  10. Palmprint Recognition Based on Complete Direction Representation.

    Science.gov (United States)

    Jia, Wei; Zhang, Bob; Lu, Jingting; Zhu, Yihai; Zhao, Yang; Zuo, Wangmeng; Ling, Haibin

    2017-05-18

    Direction information serves as one of the most important features for palmprint recognition. In the past decade, many effective direction representation (DR)-based methods have been proposed and achieved promising recognition performance. However, due to an incomplete understanding for DR, these methods only extract DR in one direction level and one scale. Hence, they did not fully utilized all potentials of DR. In addition, most researchers only focused on the DR extraction in spatial coding domain, and rarely considered the methods in frequency domain. In this paper, we propose a general framework for DR-based method named Complete Direction Representation (CDR), which reveals DR by a comprehensive and complete way. Different from traditional methods, CDR emphasizes the use of direction information with strategies of multi-scale, multi-direction level, multi-region, as well as feature selection or learning. This way, CDR subsumes previous methods as special cases. Moreover, thanks to its new insight, CDR can guide the design of new DR-based methods toward better performance. Motived this way, we propose a novel palmprint recognition algorithm in frequency domain. Firstly, we extract CDR using multi-scale modified finite radon transformation (MFRAT). Then, an effective correlation filter, namely Band-Limited Phase-Only Correlation (BLPOC), is explored for pattern matching. To remove feature redundancy, the Sequential Forward Selection (SFS) method is used to select a small number of CDR images. Finally, the matching scores obtained from different selected features are integrated using score-level-fusion. Experiments demonstrate that our method can achieve better recognition accuracy than the other state-of-the-art methods. More importantly, it has fast matching speed, making it quite suitable for the large-scale identification applications.

  11. Facial expression recognition based on improved deep belief networks

    Science.gov (United States)

    Wu, Yao; Qiu, Weigen

    2017-08-01

    In order to improve the robustness of facial expression recognition, a method of face expression recognition based on Local Binary Pattern (LBP) combined with improved deep belief networks (DBNs) is proposed. This method uses LBP to extract the feature, and then uses the improved deep belief networks as the detector and classifier to extract the LBP feature. The combination of LBP and improved deep belief networks is realized in facial expression recognition. In the JAFFE (Japanese Female Facial Expression) database on the recognition rate has improved significantly.

  12. Online Feature Transformation Learning for Cross-Domain Object Category Recognition.

    Science.gov (United States)

    Zhang, Xuesong; Zhuang, Yan; Wang, Wei; Pedrycz, Witold

    2017-06-09

    In this paper, we introduce a new research problem termed online feature transformation learning in the context of multiclass object category recognition. The learning of a feature transformation is viewed as learning a global similarity metric function in an online manner. We first consider the problem of online learning a feature transformation matrix expressed in the original feature space and propose an online passive aggressive feature transformation algorithm. Then these original features are mapped to kernel space and an online single kernel feature transformation (OSKFT) algorithm is developed to learn a nonlinear feature transformation. Based on the OSKFT and the existing Hedge algorithm, a novel online multiple kernel feature transformation algorithm is also proposed, which can further improve the performance of online feature transformation learning in large-scale application. The classifier is trained with k nearest neighbor algorithm together with the learned similarity metric function. Finally, we experimentally examined the effect of setting different parameter values in the proposed algorithms and evaluate the model performance on several multiclass object recognition data sets. The experimental results demonstrate the validity and good performance of our methods on cross-domain and multiclass object recognition application.

  13. Multi-Stage Recognition of Speech Emotion Using Sequential Forward Feature Selection

    Directory of Open Access Journals (Sweden)

    Liogienė Tatjana

    2016-07-01

    Full Text Available The intensive research of speech emotion recognition introduced a huge collection of speech emotion features. Large feature sets complicate the speech emotion recognition task. Among various feature selection and transformation techniques for one-stage classification, multiple classifier systems were proposed. The main idea of multiple classifiers is to arrange the emotion classification process in stages. Besides parallel and serial cases, the hierarchical arrangement of multi-stage classification is most widely used for speech emotion recognition. In this paper, we present a sequential-forward-feature-selection-based multi-stage classification scheme. The Sequential Forward Selection (SFS and Sequential Floating Forward Selection (SFFS techniques were employed for every stage of the multi-stage classification scheme. Experimental testing of the proposed scheme was performed using the German and Lithuanian emotional speech datasets. Sequential-feature-selection-based multi-stage classification outperformed the single-stage scheme by 12–42 % for different emotion sets. The multi-stage scheme has shown higher robustness to the growth of emotion set. The decrease in recognition rate with the increase in emotion set for multi-stage scheme was lower by 10–20 % in comparison with the single-stage case. Differences in SFS and SFFS employment for feature selection were negligible.

  14. Hole Feature on Conical Face Recognition for Turning Part Model

    Science.gov (United States)

    Zubair, A. F.; Abu Mansor, M. S.

    2018-03-01

    Computer Aided Process Planning (CAPP) is the bridge between CAD and CAM and pre-processing of the CAD data in the CAPP system is essential. For CNC turning part, conical faces of part model is inevitable to be recognised beside cylindrical and planar faces. As the sinus cosines of the cone radius structure differ according to different models, face identification in automatic feature recognition of the part model need special intention. This paper intends to focus hole on feature on conical faces that can be detected by CAD solid modeller ACIS via. SAT file. Detection algorithm of face topology were generated and compared. The study shows different faces setup for similar conical part models with different hole type features. Three types of holes were compared and different between merge faces and unmerge faces were studied.

  15. Algorithms for Hardware-Based Pattern Recognition

    Directory of Open Access Journals (Sweden)

    Müller Dietmar

    2004-01-01

    Full Text Available Nonlinear spatial transforms and fuzzy pattern classification with unimodal potential functions are established in signal processing. They have proved to be excellent tools in feature extraction and classification. In this paper, we will present a hardware-accelerated image processing and classification system which is implemented on one field-programmable gate array (FPGA. Nonlinear discrete circular transforms generate a feature vector. The features are analyzed by a fuzzy classifier. This principle can be used for feature extraction, pattern recognition, and classification tasks. Implementation in radix-2 structures is possible, allowing fast calculations with a computational complexity of up to . Furthermore, the pattern separability properties of these transforms are better than those achieved with the well-known method based on the power spectrum of the Fourier Transform, or on several other transforms. Using different signal flow structures, the transforms can be adapted to different image and signal processing applications.

  16. Wood Species Recognition Based on SIFT Keypoint Histogram

    OpenAIRE

    Hu, Shuaiqi; Li, Ke; Bao, Xudong

    2015-01-01

    Traditionally, only experts who are equipped with professional knowledge and rich experience are able to recognize different species of wood. Applying image processing techniques for wood species recognition can not only reduce the expense to train qualified identifiers, but also increase the recognition accuracy. In this paper, a wood species recognition technique base on Scale Invariant Feature Transformation (SIFT) keypoint histogram is proposed. We use first the SIFT algorithm to extract ...

  17. An Evaluation of PC-Based Optical Character Recognition Systems.

    Science.gov (United States)

    Schreier, E. M.; Uslan, M. M.

    1991-01-01

    The review examines six personal computer-based optical character recognition (OCR) systems designed for use by blind and visually impaired people. Considered are OCR components and terms, documentation, scanning and reading, command structure, conversion, unique features, accuracy of recognition, scanning time, speed, and cost. (DB)

  18. Target recognition based on convolutional neural network

    Science.gov (United States)

    Wang, Liqiang; Wang, Xin; Xi, Fubiao; Dong, Jian

    2017-11-01

    One of the important part of object target recognition is the feature extraction, which can be classified into feature extraction and automatic feature extraction. The traditional neural network is one of the automatic feature extraction methods, while it causes high possibility of over-fitting due to the global connection. The deep learning algorithm used in this paper is a hierarchical automatic feature extraction method, trained with the layer-by-layer convolutional neural network (CNN), which can extract the features from lower layers to higher layers. The features are more discriminative and it is beneficial to the object target recognition.

  19. Boosting color feature selection for color face recognition.

    Science.gov (United States)

    Choi, Jae Young; Ro, Yong Man; Plataniotis, Konstantinos N

    2011-05-01

    This paper introduces the new color face recognition (FR) method that makes effective use of boosting learning as color-component feature selection framework. The proposed boosting color-component feature selection framework is designed for finding the best set of color-component features from various color spaces (or models), aiming to achieve the best FR performance for a given FR task. In addition, to facilitate the complementary effect of the selected color-component features for the purpose of color FR, they are combined using the proposed weighted feature fusion scheme. The effectiveness of our color FR method has been successfully evaluated on the following five public face databases (DBs): CMU-PIE, Color FERET, XM2VTSDB, SCface, and FRGC 2.0. Experimental results show that the results of the proposed method are impressively better than the results of other state-of-the-art color FR methods over different FR challenges including highly uncontrolled illumination, moderate pose variation, and small resolution face images.

  20. A comparative study of different feature sets for recognition of handwritten Arabic numerals using a Multi Layer Perceptron

    OpenAIRE

    Das, Nibaran; Mollah, Ayatullah Faruk; Sarkar, Ram; Basu, Subhadip

    2010-01-01

    The work presents a comparative assessment of seven different feature sets for recognition of handwritten Arabic numerals using a Multi Layer Perceptron (MLP) based classifier. The seven feature sets employed here consist of shadow features, octant centroids, longest runs, angular distances, effective spans, dynamic centers of gravity, and some of their combinations. On experimentation with a database of 3000 samples, the maximum recognition rate of 95.80% is observed with both of two separat...

  1. Feature selection based classifier combination approach for ...

    Indian Academy of Sciences (India)

    2016-08-26

    Aug 26, 2016 ... Feature selection based classifier combination approach for handwritten Devanagari numeral recognition. Pratibha Singh Ajay Verma ... ensemble of classifiers. The main contribution of the proposed method is that, the method gives quite efficient results utilizing only 10% patterns of the available dataset.

  2. Face recognition based on improved BP neural network

    Directory of Open Access Journals (Sweden)

    Yue Gaili

    2017-01-01

    Full Text Available In order to improve the recognition rate of face recognition, face recognition algorithm based on histogram equalization, PCA and BP neural network is proposed. First, the face image is preprocessed by histogram equalization. Then, the classical PCA algorithm is used to extract the features of the histogram equalization image, and extract the principal component of the image. And then train the BP neural network using the trained training samples. This improved BP neural network weight adjustment method is used to train the network because the conventional BP algorithm has the disadvantages of slow convergence, easy to fall into local minima and training process. Finally, the BP neural network with the test sample input is trained to classify and identify the face images, and the recognition rate is obtained. Through the use of ORL database face image simulation experiment, the analysis results show that the improved BP neural network face recognition method can effectively improve the recognition rate of face recognition.

  3. Computing multiple aggregation levels and contextual features for road facilities recognition using mobile laser scanning data

    Science.gov (United States)

    Yang, Bisheng; Dong, Zhen; Liu, Yuan; Liang, Fuxun; Wang, Yongjun

    2017-04-01

    In recent years, updating the inventory of road infrastructures based on field work is labor intensive, time consuming, and costly. Fortunately, vehicle-based mobile laser scanning (MLS) systems provide an efficient solution to rapidly capture three-dimensional (3D) point clouds of road environments with high flexibility and precision. However, robust recognition of road facilities from huge volumes of 3D point clouds is still a challenging issue because of complicated and incomplete structures, occlusions and varied point densities. Most existing methods utilize point or object based features to recognize object candidates, and can only extract limited types of objects with a relatively low recognition rate, especially for incomplete and small objects. To overcome these drawbacks, this paper proposes a semantic labeling framework by combing multiple aggregation levels (point-segment-object) of features and contextual features to recognize road facilities, such as road surfaces, road boundaries, buildings, guardrails, street lamps, traffic signs, roadside-trees, power lines, and cars, for highway infrastructure inventory. The proposed method first identifies ground and non-ground points, and extracts road surfaces facilities from ground points. Non-ground points are segmented into individual candidate objects based on the proposed multi-rule region growing method. Then, the multiple aggregation levels of features and the contextual features (relative positions, relative directions, and spatial patterns) associated with each candidate object are calculated and fed into a SVM classifier to label the corresponding candidate object. The recognition performance of combining multiple aggregation levels and contextual features was compared with single level (point, segment, or object) based features using large-scale highway scene point clouds. Comparative studies demonstrated that the proposed semantic labeling framework significantly improves road facilities recognition

  4. Human body contour data based activity recognition.

    Science.gov (United States)

    Myagmarbayar, Nergui; Yuki, Yoshida; Imamoglu, Nevrez; Gonzalez, Jose; Otake, Mihoko; Yu, Wenwei

    2013-01-01

    This research work is aimed to develop autonomous bio-monitoring mobile robots, which are capable of tracking and measuring patients' motions, recognizing the patients' behavior based on observation data, and providing calling for medical personnel in emergency situations in home environment. The robots to be developed will bring about cost-effective, safe and easier at-home rehabilitation to most motor-function impaired patients (MIPs). In our previous research, a full framework was established towards this research goal. In this research, we aimed at improving the human activity recognition by using contour data of the tracked human subject extracted from the depth images as the signal source, instead of the lower limb joint angle data used in the previous research, which are more likely to be affected by the motion of the robot and human subjects. Several geometric parameters, such as, the ratio of height to weight of the tracked human subject, and distance (pixels) between centroid points of upper and lower parts of human body, were calculated from the contour data, and used as the features for the activity recognition. A Hidden Markov Model (HMM) is employed to classify different human activities from the features. Experimental results showed that the human activity recognition could be achieved with a high correct rate.

  5. Modeling the temporal dynamics of distinctive feature landmark detectors for speech recognition.

    Science.gov (United States)

    Jansen, Aren; Niyogi, Partha

    2008-09-01

    This paper elaborates on a computational model for speech recognition that is inspired by several interrelated strands of research in phonology, acoustic phonetics, speech perception, and neuroscience. The goals are twofold: (i) to explore frameworks for recognition that may provide a viable alternative to the current hidden Markov model (HMM) based speech recognition systems and (ii) to provide a computational platform that will facilitate engaging, quantifying, and testing various theories in the scientific traditions in phonetics, psychology, and neuroscience. This motivation leads to an approach that constructs a hierarchically structured point process representation based on distinctive feature landmark detectors and probabilistically integrates the firing patterns of these detectors to decode a phonological sequence. The accuracy of a broad class recognizer based on this framework is competitive with equivalent HMM-based systems. Various avenues for future development of the presented methodology are outlined.

  6. Study of stability of time-domain features for electromyographic pattern recognition

    Directory of Open Access Journals (Sweden)

    Huang He

    2010-05-01

    Full Text Available Abstract Background Significant progress has been made towards the clinical application of human-machine interfaces (HMIs based on electromyographic (EMG pattern recognition for various rehabilitation purposes. Making this technology practical and available to patients with motor deficits requires overcoming real-world challenges, such as physical and physiological changes, that result in variations in EMG signals and systems that are unreliable for long-term use. In this study, we aimed to address these challenges by (1 investigating the stability of time-domain EMG features during changes in the EMG signals and (2 identifying the feature sets that would provide the most robust EMG pattern recognition. Methods Variations in EMG signals were introduced during physical experiments. We identified three disturbances that commonly affect EMG signals: EMG electrode location shift, variation in muscle contraction effort, and muscle fatigue. The impact of these disturbances on individual features and combined feature sets was quantified by changes in classification performance. The robustness of feature sets was evaluated by a stability index developed in this study. Results Muscle fatigue had the smallest effect on the studied EMG features, while electrode location shift and varying effort level significantly reduced the classification accuracy for most of the features. Under these disturbances, the most stable EMG feature set with combination of four features produced at least 16.0% higher classification accuracy than the least stable set. EMG autoregression coefficients and cepstrum coefficients showed the most robust classification performance of all studied time-domain features. Conclusions Selecting appropriate EMG feature combinations can overcome the impact of the studied disturbances on EMG pattern classification to a certain extent; however, this simple solution is still inadequate. Stabilizing electrode contact locations and developing

  7. Similarity-based pattern analysis and recognition

    CERN Document Server

    Pelillo, Marcello

    2013-01-01

    This accessible text/reference presents a coherent overview of the emerging field of non-Euclidean similarity learning. The book presents a broad range of perspectives on similarity-based pattern analysis and recognition methods, from purely theoretical challenges to practical, real-world applications. The coverage includes both supervised and unsupervised learning paradigms, as well as generative and discriminative models. Topics and features: explores the origination and causes of non-Euclidean (dis)similarity measures, and how they influence the performance of traditional classification alg

  8. Biometric recognition via texture features of eye movement trajectories in a visual searching task.

    Science.gov (United States)

    Li, Chunyong; Xue, Jiguo; Quan, Cheng; Yue, Jingwei; Zhang, Chenggang

    2018-01-01

    Biometric recognition technology based on eye-movement dynamics has been in development for more than ten years. Different visual tasks, feature extraction and feature recognition methods are proposed to improve the performance of eye movement biometric system. However, the correct identification and verification rates, especially in long-term experiments, as well as the effects of visual tasks and eye trackers' temporal and spatial resolution are still the foremost considerations in eye movement biometrics. With a focus on these issues, we proposed a new visual searching task for eye movement data collection and a new class of eye movement features for biometric recognition. In order to demonstrate the improvement of this visual searching task being used in eye movement biometrics, three other eye movement feature extraction methods were also tested on our eye movement datasets. Compared with the original results, all three methods yielded better results as expected. In addition, the biometric performance of these four feature extraction methods was also compared using the equal error rate (EER) and Rank-1 identification rate (Rank-1 IR), and the texture features introduced in this paper were ultimately shown to offer some advantages with regard to long-term stability and robustness over time and spatial precision. Finally, the results of different combinations of these methods with a score-level fusion method indicated that multi-biometric methods perform better in most cases.

  9. Feature Extraction Based on Decision Boundaries

    Science.gov (United States)

    Lee, Chulhee; Landgrebe, David A.

    1993-01-01

    In this paper, a novel approach to feature extraction for classification is proposed based directly on the decision boundaries. We note that feature extraction is equivalent to retaining informative features or eliminating redundant features; thus, the terms 'discriminantly information feature' and 'discriminantly redundant feature' are first defined relative to feature extraction for classification. Next, it is shown how discriminantly redundant features and discriminantly informative features are related to decision boundaries. A novel characteristic of the proposed method arises by noting that usually only a portion of the decision boundary is effective in discriminating between classes, and the concept of the effective decision boundary is therefore introduced. Next, a procedure to extract discriminantly informative features based on a decision boundary is proposed. The proposed feature extraction algorithm has several desirable properties: (1) It predicts the minimum number of features necessary to achieve the same classification accuracy as in the original space for a given pattern recognition problem; and (2) it finds the necessary feature vectors. The proposed algorithm does not deteriorate under the circumstances of equal class means or equal class covariances as some previous algorithms do. Experiments show that the performance of the proposed algorithm compares favorably with those of previous algorithms.

  10. A Review on Video-Based Human Activity Recognition

    Directory of Open Access Journals (Sweden)

    Shian-Ru Ke

    2013-06-01

    Full Text Available This review article surveys extensively the current progresses made toward video-based human activity recognition. Three aspects for human activity recognition are addressed including core technology, human activity recognition systems, and applications from low-level to high-level representation. In the core technology, three critical processing stages are thoroughly discussed mainly: human object segmentation, feature extraction and representation, activity detection and classification algorithms. In the human activity recognition systems, three main types are mentioned, including single person activity recognition, multiple people interaction and crowd behavior, and abnormal activity recognition. Finally the domains of applications are discussed in detail, specifically, on surveillance environments, entertainment environments and healthcare systems. Our survey, which aims to provide a comprehensive state-of-the-art review of the field, also addresses several challenges associated with these systems and applications. Moreover, in this survey, various applications are discussed in great detail, specifically, a survey on the applications in healthcare monitoring systems.

  11. Discriminative kernel feature extraction and learning for object recognition and detection

    DEFF Research Database (Denmark)

    Pan, Hong; Olsen, Søren Ingvor; Zhu, Yaping

    2015-01-01

    Feature extraction and learning is critical for object recognition and detection. By embedding context cue of image attributes into the kernel descriptors, we propose a set of novel kernel descriptors called context kernel descriptors (CKD). The motivation of CKD is to use the spatial consistency...... codebook and reduced CKD are discriminative. We report superior performance of our algorithm for object recognition on benchmark datasets like Caltech-101 and CIFAR-10, as well as for detection on a challenging chicken feet dataset....... of image attributes or features defined within a neighboring region to improve the robustness of descriptor matching in kernel space. For feature learning, we develop a novel codebook learning method, based on the Cauchy-Schwarz Quadratic Mutual Information (CSQMI) measure, to learn a compact...

  12. Radar Target Recognition Based on Stacked Denoising Sparse Autoencoder

    Directory of Open Access Journals (Sweden)

    Zhao Feixiang

    2017-04-01

    Full Text Available Feature extraction is a key step in radar target recognition. The quality of the extracted features determines the performance of target recognition. However, obtaining the deep nature of the data is difficult using the traditional method. The autoencoder can learn features by making use of data and can obtain feature expressions at different levels of data. To eliminate the influence of noise, the method of radar target recognition based on stacked denoising sparse autoencoder is proposed in this paper. This method can extract features directly and efficiently by setting different hidden layers and numbers of iterations. Experimental results show that the proposed method is superior to the K-nearest neighbor method and the traditional stacked autoencoder.

  13. Image based book cover recognition and retrieval

    Science.gov (United States)

    Sukhadan, Kalyani; Vijayarajan, V.; Krishnamoorthi, A.; Bessie Amali, D. Geraldine

    2017-11-01

    In this we are developing a graphical user interface using MATLAB for the users to check the information related to books in real time. We are taking the photos of the book cover using GUI, then by using MSER algorithm it will automatically detect all the features from the input image, after this it will filter bifurcate non-text features which will be based on morphological difference between text and non-text regions. We implemented a text character alignment algorithm which will improve the accuracy of the original text detection. We will also have a look upon the built in MATLAB OCR recognition algorithm and an open source OCR which is commonly used to perform better detection results, post detection algorithm is implemented and natural language processing to perform word correction and false detection inhibition. Finally, the detection result will be linked to internet to perform online matching. More than 86% accuracy can be obtained by this algorithm.

  14. Feature Set Evaluation for Offline Handwriting Recognition Systems: Application to the Recurrent Neural Network Model.

    Science.gov (United States)

    Chherawala, Youssouf; Roy, Partha Pratim; Cheriet, Mohamed

    2016-12-01

    The performance of handwriting recognition systems is dependent on the features extracted from the word image. A large body of features exists in the literature, but no method has yet been proposed to identify the most promising of these, other than a straightforward comparison based on the recognition rate. In this paper, we propose a framework for feature set evaluation based on a collaborative setting. We use a weighted vote combination of recurrent neural network (RNN) classifiers, each trained with a particular feature set. This combination is modeled in a probabilistic framework as a mixture model and two methods for weight estimation are described. The main contribution of this paper is to quantify the importance of feature sets through the combination weights, which reflect their strength and complementarity. We chose the RNN classifier because of its state-of-the-art performance. Also, we provide the first feature set benchmark for this classifier. We evaluated several feature sets on the IFN/ENIT and RIMES databases of Arabic and Latin script, respectively. The resulting combination model is competitive with state-of-the-art systems.

  15. Hemispheric asymmetries in feature integration during visual word recognition.

    Science.gov (United States)

    Lindell, Annukka K; Arend, Isabel; Ward, Robert; Norton, Jennifer; Wathan, Jennifer

    2007-11-01

    Although the definitive source of the left hemisphere's superiority for visual word recognition remains illusive, some argue that the left (LH) and right (RH) hemispheres engage different strategies during early perceptual processes involved in stimulus encoding. In particular, it is proposed that the LH treats a word as a unitary perceptual group whereas the RH processes the letters comprising a word as a series of individual perceptual units. The present study investigated support for this processing distinction by examining hemispheric strategies for temporal integration using Prinzmetal and Millis-Wright's (1984) feature-binding paradigm. A total of 20 participants identified the colour and identity of a target letter, presented within a three-letter word (e.g., ART) or nonword (e.g., HRF), directed to their left or right visual field. Errors were classified on the basis of whether they involved substitution of a colour present within the stimulus but at a different location (ON error), or the substitution of a colour not present within the stimulus (OFF error). As anticipated, for word stimuli there was a higher proportion of OFF errors associated with trials directed to the RH, consistent with the notion that the LH treats words as single perceptual units and is hence biased toward miscombination of perceptual information present within the stimulus. The pattern of ON errors across stimulus type provided clear evidence of RH sequential encoding effects, with the number of errors increasing markedly across the ordinal position of the letters comprising the stimulus string. As such, these data provide new evidence that the LH's advantage for visual word recognition arises, at least in part, from the ability to encode verbal stimuli as single perceptual units.

  16. Language Recognition Using Latent Dynamic Conditional Random Field Model with Phonological Features

    Directory of Open Access Journals (Sweden)

    Sirinoot Boonsuk

    2014-01-01

    Full Text Available Spoken language recognition (SLR has been of increasing interest in multilingual speech recognition for identifying the languages of speech utterances. Most existing SLR approaches apply statistical modeling techniques with acoustic and phonotactic features. Among the popular approaches, the acoustic approach has become of greater interest than others because it does not require any prior language-specific knowledge. Previous research on the acoustic approach has shown less interest in applying linguistic knowledge; it was only used as supplementary features, while the current state-of-the-art system assumes independency among features. This paper proposes an SLR system based on the latent-dynamic conditional random field (LDCRF model using phonological features (PFs. We use PFs to represent acoustic characteristics and linguistic knowledge. The LDCRF model was employed to capture the dynamics of the PFs sequences for language classification. Baseline systems were conducted to evaluate the features and methods including Gaussian mixture model (GMM based systems using PFs, GMM using cepstral features, and the CRF model using PFs. Evaluated on the NIST LRE 2007 corpus, the proposed method showed an improvement over the baseline systems. Additionally, it showed comparable result with the acoustic system based on i-vector. This research demonstrates that utilizing PFs can enhance the performance.

  17. Adaptive weighted local textural features for illumination, expression, and occlusion invariant face recognition

    Science.gov (United States)

    Cui, Chen; Asari, Vijayan K.

    2014-03-01

    Biometric features such as fingerprints, iris patterns, and face features help to identify people and restrict access to secure areas by performing advanced pattern analysis and matching. Face recognition is one of the most promising biometric methodologies for human identification in a non-cooperative security environment. However, the recognition results obtained by face recognition systems are a affected by several variations that may happen to the patterns in an unrestricted environment. As a result, several algorithms have been developed for extracting different facial features for face recognition. Due to the various possible challenges of data captured at different lighting conditions, viewing angles, facial expressions, and partial occlusions in natural environmental conditions, automatic facial recognition still remains as a difficult issue that needs to be resolved. In this paper, we propose a novel approach to tackling some of these issues by analyzing the local textural descriptions for facial feature representation. The textural information is extracted by an enhanced local binary pattern (ELBP) description of all the local regions of the face. The relationship of each pixel with respect to its neighborhood is extracted and employed to calculate the new representation. ELBP reconstructs a much better textural feature extraction vector from an original gray level image in different lighting conditions. The dimensionality of the texture image is reduced by principal component analysis performed on each local face region. Each low dimensional vector representing a local region is now weighted based on the significance of the sub-region. The weight of each sub-region is determined by employing the local variance estimate of the respective region, which represents the significance of the region. The final facial textural feature vector is obtained by concatenating the reduced dimensional weight sets of all the modules (sub-regions) of the face image

  18. Distinctive Phonological Features Differ in Relevance for Both Spoken and Written Word Recognition

    Science.gov (United States)

    Ernestus, Mirjam; Mak, Willem Marinus

    2004-01-01

    This paper discusses four experiments on Dutch which show that distinctive phonological features differ in their relevance for word recognition. The relevance of a feature for word recognition depends on its phonological stability, that is, the extent to which that feature is generally realized in accordance with its lexical specification in the…

  19. Study on Feature Extraction Methods for Character Recognition of Balinese Script on Palm Leaf Manuscript Images

    OpenAIRE

    Kesiman, Made Windu Antara; Prum, Sophea; Burie, Jean-Christophe; Ogier, Jean-Marc

    2016-01-01

    International audience; The complexity of Balinese script and the poor quality of palm leaf manuscripts provide a new challenge for testing and evaluation of robustness of feature extraction methods for character recognition. With the aim of finding the combination of feature extraction methods for character recognition of Balinese script, we present, in this paper, our experimental study on feature extraction methods for character recognition on palm leaf manuscripts. We investigated and eva...

  20. Structural and dynamic features of the MutT protein in the recognition of nucleotides with the mutagenic 8-oxoguanine base.

    Science.gov (United States)

    Nakamura, Teruya; Meshitsuka, Sachiko; Kitagawa, Seiju; Abe, Nanase; Yamada, Junichi; Ishino, Tetsuya; Nakano, Hiroaki; Tsuzuki, Teruhisa; Doi, Takefumi; Kobayashi, Yuji; Fujii, Satoshi; Sekiguchi, Mutsuo; Yamagata, Yuriko

    2010-01-01

    Escherichia coli MutT hydrolyzes 8-oxo-dGTP to 8-oxo-dGMP, an event that can prevent the misincorporation of 8-oxoguanine opposite adenine in DNA. Of the several enzymes that recognize 8-oxoguanine, MutT exhibits high substrate specificity for 8-oxoguanine nucleotides; however, the structural basis for this specificity is unknown. The crystal structures of MutT in the apo and holo forms and in the binary and ternary forms complexed with the product 8-oxo-dGMP and 8-oxo-dGMP plus Mn(2+), respectively, were determined. MutT strictly recognizes the overall conformation of 8-oxo-dGMP through a number of hydrogen bonds. This recognition mode revealed that 8-oxoguanine nucleotides are discriminated from guanine nucleotides by not only the hydrogen bond between the N7-H and Odelta (N119) atoms but also by the syn glycosidic conformation that 8-oxoguanine nucleotides prefer. Nevertheless, these discrimination factors cannot by themselves explain the roughly 34,000-fold difference between the affinity of MutT for 8-oxo-dGMP and dGMP. When the binary complex of MutT with 8-oxo-dGMP is compared with the ligand-free form, ordering and considerable movement of the flexible loops surrounding 8-oxo-dGMP in the binary complex are observed. These results indicate that MutT specifically recognizes 8-oxoguanine nucleotides by the ligand-induced conformational change.

  1. Structural and Dynamic Features of the MutT Protein in the Recognition of Nucleotides with the Mutagenic 8-Oxoguanine Base*

    Science.gov (United States)

    Nakamura, Teruya; Meshitsuka, Sachiko; Kitagawa, Seiju; Abe, Nanase; Yamada, Junichi; Ishino, Tetsuya; Nakano, Hiroaki; Tsuzuki, Teruhisa; Doi, Takefumi; Kobayashi, Yuji; Fujii, Satoshi; Sekiguchi, Mutsuo; Yamagata, Yuriko

    2010-01-01

    Escherichia coli MutT hydrolyzes 8-oxo-dGTP to 8-oxo-dGMP, an event that can prevent the misincorporation of 8-oxoguanine opposite adenine in DNA. Of the several enzymes that recognize 8-oxoguanine, MutT exhibits high substrate specificity for 8-oxoguanine nucleotides; however, the structural basis for this specificity is unknown. The crystal structures of MutT in the apo and holo forms and in the binary and ternary forms complexed with the product 8-oxo-dGMP and 8-oxo-dGMP plus Mn2+, respectively, were determined. MutT strictly recognizes the overall conformation of 8-oxo-dGMP through a number of hydrogen bonds. This recognition mode revealed that 8-oxoguanine nucleotides are discriminated from guanine nucleotides by not only the hydrogen bond between the N7-H and Oδ (N119) atoms but also by the syn glycosidic conformation that 8-oxoguanine nucleotides prefer. Nevertheless, these discrimination factors cannot by themselves explain the roughly 34,000-fold difference between the affinity of MutT for 8-oxo-dGMP and dGMP. When the binary complex of MutT with 8-oxo-dGMP is compared with the ligand-free form, ordering and considerable movement of the flexible loops surrounding 8-oxo-dGMP in the binary complex are observed. These results indicate that MutT specifically recognizes 8-oxoguanine nucleotides by the ligand-induced conformational change. PMID:19864691

  2. Fast Radioactive Nuclide Recognition Method Study Based on Pattern Recognition

    Directory of Open Access Journals (Sweden)

    Yonggang Huo

    2014-01-01

    Full Text Available Based on pattern recognition method, applied the nuclear radiation digital measurement and analysis system platform, through synthetically making use of the radioactive nuclide’s ray information, selected radiation characteristic information of the radioactive nuclide, established the characteristic arrays database of radioactive nuclides, the recognition method is designed and applied to the identification of radionuclide radiation while using middle or low-resolution detector in this paper. Verified by experiments, when the count value of the traditional low-resolution spectrometer system is not reach single full energy peak’s statistical lower limit value, the three kinds of mixed radioactive nuclides’ true discrimination rate reached more than 90 % in the digital measurement and analysis system using fast radionuclide recognition method. The results show that this method is obviously superior to the traditional methods, and effectively improve the rapid identification ability to radioactive nuclide.

  3. Recognition of Pitman shorthand text using tangent feature values at ...

    Indian Academy of Sciences (India)

    . A pen-down to pen-up sequence makes a stroke, which is a composition of primitives. The words are separated based on pen-down and pen-up points. The features that form a word (a stroke) are grouped first. Next, primitives and their ...

  4. Online 3D Ear Recognition by Combining Global and Local Features.

    Science.gov (United States)

    Liu, Yahui; Zhang, Bob; Lu, Guangming; Zhang, David

    2016-01-01

    The three-dimensional shape of the ear has been proven to be a stable candidate for biometric authentication because of its desirable properties such as universality, uniqueness, and permanence. In this paper, a special laser scanner designed for online three-dimensional ear acquisition was described. Based on the dataset collected by our scanner, two novel feature classes were defined from a three-dimensional ear image: the global feature class (empty centers and angles) and local feature class (points, lines, and areas). These features are extracted and combined in an optimal way for three-dimensional ear recognition. Using a large dataset consisting of 2,000 samples, the experimental results illustrate the effectiveness of fusing global and local features, obtaining an equal error rate of 2.2%.

  5. Online 3D Ear Recognition by Combining Global and Local Features.

    Directory of Open Access Journals (Sweden)

    Yahui Liu

    Full Text Available The three-dimensional shape of the ear has been proven to be a stable candidate for biometric authentication because of its desirable properties such as universality, uniqueness, and permanence. In this paper, a special laser scanner designed for online three-dimensional ear acquisition was described. Based on the dataset collected by our scanner, two novel feature classes were defined from a three-dimensional ear image: the global feature class (empty centers and angles and local feature class (points, lines, and areas. These features are extracted and combined in an optimal way for three-dimensional ear recognition. Using a large dataset consisting of 2,000 samples, the experimental results illustrate the effectiveness of fusing global and local features, obtaining an equal error rate of 2.2%.

  6. Generalizations of the subject-independent feature set for music-induced emotion recognition.

    Science.gov (United States)

    Lin, Yuan-Pin; Chen, Jyh-Horng; Duann, Jeng-Ren; Lin, Chin-Teng; Jung, Tzyy-Ping

    2011-01-01

    Electroencephalogram (EEG)-based emotion recognition has been an intensely growing field. Yet, how to achieve acceptable accuracy on a practical system with as fewer electrodes as possible is less concerned. This study evaluates a set of subject-independent features, based on differential power asymmetry of symmetric electrode pairs [1], with emphasis on its applicability to subject variability in music-induced emotion classification problem. Results of this study have evidently validated the feasibility of using subject-independent EEG features to classify four emotional states with acceptable accuracy in second-scale temporal resolution. These features could be generalized across subjects to detect emotion induced by music excerpts not limited to the music database that was used to derive the emotion-specific features.

  7. Obscene Video Recognition Using Fuzzy SVM and New Sets of Features

    Directory of Open Access Journals (Sweden)

    Alireza Behrad

    2013-02-01

    Full Text Available In this paper, a novel approach for identifying normal and obscene videos is proposed. In order to classify different episodes of a video independently and discard the need to process all frames, first, key frames are extracted and skin regions are detected for groups of video frames starting with key frames. In the second step, three different features including 1- structural features based on single frame information, 2- features based on spatiotemporal volume and 3-motion-based features, are extracted for each episode of video. The PCA-LDA method is then applied to reduce the size of structural features and select more distinctive features. For the final step, we use fuzzy or a Weighted Support Vector Machine (WSVM classifier to identify video episodes. We also employ a multilayer Kohonen network as an initial clustering algorithm to increase the ability to discriminate between the extracted features into two classes of videos. Features based on motion and periodicity characteristics increase the efficiency of the proposed algorithm in videos with bad illumination and skin colour variation. The proposed method is evaluated using 1100 videos in different environmental and illumination conditions. The experimental results show a correct recognition rate of 94.2% for the proposed algorithm.

  8. Image-based automatic recognition of larvae

    Science.gov (United States)

    Sang, Ru; Yu, Guiying; Fan, Weijun; Guo, Tiantai

    2010-08-01

    As the main objects, imagoes have been researched in quarantine pest recognition in these days. However, pests in their larval stage are latent, and the larvae spread abroad much easily with the circulation of agricultural and forest products. It is presented in this paper that, as the new research objects, larvae are recognized by means of machine vision, image processing and pattern recognition. More visional information is reserved and the recognition rate is improved as color image segmentation is applied to images of larvae. Along with the characteristics of affine invariance, perspective invariance and brightness invariance, scale invariant feature transform (SIFT) is adopted for the feature extraction. The neural network algorithm is utilized for pattern recognition, and the automatic identification of larvae images is successfully achieved with satisfactory results.

  9. Extraction and Recognition of Nonlinear Interval-Type Features Using Symbolic KDA Algorithm with Application to Face Recognition

    Directory of Open Access Journals (Sweden)

    P. S. Hiremath

    2008-01-01

    recognition in the framework of symbolic data analysis. Classical KDA extracts features, which are single-valued in nature to represent face images. These single-valued variables may not be able to capture variation of each feature in all the images of same subject; this leads to loss of information. The symbolic KDA algorithm extracts most discriminating nonlinear interval-type features which optimally discriminate among the classes represented in the training set. The proposed method has been successfully tested for face recognition using two databases, ORL database and Yale face database. The effectiveness of the proposed method is shown in terms of comparative performance against popular face recognition methods such as kernel Eigenface method and kernel Fisherface method. Experimental results show that symbolic KDA yields improved recognition rate.

  10. Facial expression recognition based on improved local ternary pattern and stacked auto-encoder

    Science.gov (United States)

    Wu, Yao; Qiu, Weigen

    2017-08-01

    In order to enhance the robustness of facial expression recognition, we propose a method of facial expression recognition based on improved Local Ternary Pattern (LTP) combined with Stacked Auto-Encoder (SAE). This method uses the improved LTP extraction feature, and then uses the improved depth belief network as the detector and classifier to extract the LTP feature. The combination of LTP and improved deep belief network is realized in facial expression recognition. The recognition rate on CK+ databases has improved significantly.

  11. Exemplar Based Recognition of Visual Shapes

    DEFF Research Database (Denmark)

    Olsen, Søren I.

    2005-01-01

    This paper presents an approach of visual shape recognition based on exemplars of attributed keypoints. Training is performed by storing exemplars of keypoints detected in labeled training images. Recognition is made by keypoint matching and voting according to the labels for the matched keypoint....... The matching is insensitive to rotations, limited scalings and small deformations. The recognition is robust to noise, background clutter and partial occlusion. Recognition is possible from few training images and improve with the number of training images.......This paper presents an approach of visual shape recognition based on exemplars of attributed keypoints. Training is performed by storing exemplars of keypoints detected in labeled training images. Recognition is made by keypoint matching and voting according to the labels for the matched keypoints...

  12. Neural network based facial recognition system

    Science.gov (United States)

    Luebbers, Paul G.; Uwechue, Okechukwu A.; Pandya, Abhijit S.

    1994-03-01

    Researchers have for many years tried to develop machine recognition systems using video images of the human face as the input, with limited success. This paper presents a technique for recognizing individuals based on facial features using a novel multi-layer neural network architecture called `PWRNET'. We envision a real-time version of this technique to be used for high security applications. Two systems are proposed. One involves taking a grayscale video image and using it directly, the other involves decomposing the grayscale image into a series of binary images using the isodensity regions of the image. Isodensity regions are the areas within an image where the intensity is within a certain range. The binary image is produced by setting the pixels inside this intensity range to one, and the rest of the pixels in the image to zero. Features based on moments are subsequently extracted from these grayscale images. These features are then used for classification of the image. The classification is accomplished using an artificial neural network called `PWRNET', which produces a polynomial expression of the trained network. There is one neural network for each individual to be identified, with an output value which is either positive or negative identification. A detailed development of the design is presented, and identification for small population of individuals is presented. It is shown that the system is effective for variations in both scale and translation, which are considered to be reasonable variations for this type of facial identification.

  13. Recognition of Pitman shorthand text using tangent feature values at ...

    Indian Academy of Sciences (India)

    R. Narasimhan (Krishtel eMaging) 1461 1996 Oct 15 13:05:22

    Keywords. Pitman shorthand; pitman word (stroke); consonant primitives; vowel markers; tangents; contour traversal; thinning. 1. Introduction. Recognition of Pitman shorthand is a challenging pattern recognition problem because of the variety of pattern shapes involved with it (Chen & Lee 1992; Leedham & Nair 1992;.

  14. Features Speech Signature Image Recognition on Mobile Devices

    Directory of Open Access Journals (Sweden)

    Alexander Mikhailovich Alyushin

    2015-12-01

    Full Text Available The algorithms fordynamic spectrograms images recognition, processing and soundspeech signature (SS weredeveloped. The software for mobile phones, thatcan recognize speech signatureswas prepared. The investigation of the SS recognition speed on its boundarytypes was conducted. Recommendations on the boundary types choice in the optimal ratio of recognitionspeed and required space were given.

  15. Feature Selection Based on Mutual Correlation

    Czech Academy of Sciences Publication Activity Database

    Haindl, Michal; Somol, Petr; Ververidis, D.; Kotropoulos, C.

    2006-01-01

    Roč. 19, č. 4225 (2006), s. 569-577 ISSN 0302-9743. [Iberoamerican Congress on Pattern Recognition. CIARP 2006 /11./. Cancun, 14.11.2006-17.11.2006] R&D Projects: GA AV ČR 1ET400750407; GA MŠk 1M0572; GA AV ČR IAA2075302 EU Projects: European Commission(XE) 507752 - MUSCLE Institutional research plan: CEZ:AV0Z10750506 Keywords : feature selection Subject RIV: BD - Theory of Information Impact factor: 0.402, year: 2005 http://library.utia.cas.cz/separaty/historie/haindl-feature selection based on mutual correlation.pdf

  16. Featuring Old/New Recognition: The Two Faces of the Pseudoword Effect

    Science.gov (United States)

    Joordens, Steve; Ozubko, Jason D.; Niewiadomski, Marty W.

    2008-01-01

    In his analysis of the pseudoword effect, [Greene, R.L. (2004). Recognition memory for pseudowords. "Journal of Memory and Language," 50, 259-267.] suggests nonwords can feel more familiar that words in a recognition context if the orthographic features of the nonword match well with the features of the items presented at study. One possible…

  17. Man machine interface based on speech recognition

    International Nuclear Information System (INIS)

    Jorge, Carlos A.F.; Aghina, Mauricio A.C.; Mol, Antonio C.A.; Pereira, Claudio M.N.A.

    2007-01-01

    This work reports the development of a Man Machine Interface based on speech recognition. The system must recognize spoken commands, and execute the desired tasks, without manual interventions of operators. The range of applications goes from the execution of commands in an industrial plant's control room, to navigation and interaction in virtual environments. Results are reported for isolated word recognition, the isolated words corresponding to the spoken commands. For the pre-processing stage, relevant parameters are extracted from the speech signals, using the cepstral analysis technique, that are used for isolated word recognition, and corresponds to the inputs of an artificial neural network, that performs recognition tasks. (author)

  18. End-Stop Exemplar Based Recognition

    DEFF Research Database (Denmark)

    Olsen, Søren I.

    2003-01-01

    An approach to exemplar based recognition of visual shapes is presented. The shape information is described by attributed interest points (keys) detected by an end-stop operator. The attributes describe the statistics of lines and edges local to the interest point, the position of neighboring int...... interest points, and (in the training phase) a list of recognition names. Recognition is made by a simple voting procedure. Preliminary experiments indicate that the recognition is robust to noise, small deformations, background clutter and partial occlusion....

  19. Feature Compensation Employing Multiple Environmental Models for Robust In-Vehicle Speech Recognition

    Science.gov (United States)

    Kim, Wooil; Hansen, John H. L.

    An effective feature compensation method is developed for reliable speech recognition in real-life in-vehicle environments. The CU-Move corpus, used for evaluation, contains a range of speech and noise signals collected for a number of speakers under actual driving conditions. PCGMM-based feature compensation, considered in this paper, utilizes parallel model combination to generate noise-corrupted speech model by combining clean speech and the noise model. In order to address unknown time-varying background noise, an interpolation method of multiple environmental models is employed. To alleviate computational expenses due to multiple models, an Environment Transition Model is employed, which is motivated from Noise Language Model used in Environmental Sniffing. An environment dependent scheme of mixture sharing technique is proposed and shown to be more effective in reducing the computational complexity. A smaller environmental model set is determined by the environment transition model for mixture sharing. The proposed scheme is evaluated on the connected single digits portion of the CU-Move database using the Aurora2 evaluation toolkit. Experimental results indicate that our feature compensation method is effective for improving speech recognition in real-life in-vehicle conditions. A reduction of 73.10% of the computational requirements was obtained by employing the environment dependent mixture sharing scheme with only a slight change in recognition performance. This demonstrates that the proposed method is effective in maintaining the distinctive characteristics among the different environmental models, even when selecting a large number of Gaussian components for mixture sharing.

  20. Event Recognition Based on Deep Learning in Chinese Texts.

    Directory of Open Access Journals (Sweden)

    Yajun Zhang

    Full Text Available Event recognition is the most fundamental and critical task in event-based natural language processing systems. Existing event recognition methods based on rules and shallow neural networks have certain limitations. For example, extracting features using methods based on rules is difficult; methods based on shallow neural networks converge too quickly to a local minimum, resulting in low recognition precision. To address these problems, we propose the Chinese emergency event recognition model based on deep learning (CEERM. Firstly, we use a word segmentation system to segment sentences. According to event elements labeled in the CEC 2.0 corpus, we classify words into five categories: trigger words, participants, objects, time and location. Each word is vectorized according to the following six feature layers: part of speech, dependency grammar, length, location, distance between trigger word and core word and trigger word frequency. We obtain deep semantic features of words by training a feature vector set using a deep belief network (DBN, then analyze those features in order to identify trigger words by means of a back propagation neural network. Extensive testing shows that the CEERM achieves excellent recognition performance, with a maximum F-measure value of 85.17%. Moreover, we propose the dynamic-supervised DBN, which adds supervised fine-tuning to a restricted Boltzmann machine layer by monitoring its training performance. Test analysis reveals that the new DBN improves recognition performance and effectively controls the training time. Although the F-measure increases to 88.11%, the training time increases by only 25.35%.

  1. Holistic representations of internal and external face features are used to support recognition.

    Directory of Open Access Journals (Sweden)

    Jessica Pui Kar eChan

    2012-03-01

    Full Text Available Face recognition is impaired when changes are made to external face features (e.g. hairstyle, even when all internal features (i.e. eyes, nose, mouth remain the same. Eye movement monitoring was used to determine the extent to which altered hairstyles affect processing of face features, thereby shedding light on how internal and external features are stored in memory. Participants studied a series of faces, followed by a recognition test in which novel, repeated and manipulated (altered hairstyle faces were presented. Recognition was higher for repeated than manipulated faces. Although eye movement patterns distinguished repeated from novel faces, viewing of manipulated faces was similar to that of novel faces. Internal and external features may be stored together as one unit in memory; consequently, changing even a single feature alters processing of the other features and disrupts recognition.

  2. Contact less Hand Recognition using shape and texture features

    OpenAIRE

    Doublet, Julien; Lepetit, Olivier; Revenu, Marinette

    2006-01-01

    International audience; The hand recognition in biometric security was developed successfully for authentication or identification. In this paper, we propose an original method of contact less biometric recognition combining information from color, texture and form. First of all, the segmentation integrates the skin color components and a form model. Then, the authentication process amalgamates by convolution the geometrical characteristics of the fingers and the texture of the analyzed palm....

  3. Feature Fusion Algorithm for Multimodal Emotion Recognition from Speech and Facial Expression Signal

    Directory of Open Access Journals (Sweden)

    Han Zhiyan

    2016-01-01

    Full Text Available In order to overcome the limitation of single mode emotion recognition. This paper describes a novel multimodal emotion recognition algorithm, and takes speech signal and facial expression signal as the research subjects. First, fuse the speech signal feature and facial expression signal feature, get sample sets by putting back sampling, and then get classifiers by BP neural network (BPNN. Second, measure the difference between two classifiers by double error difference selection strategy. Finally, get the final recognition result by the majority voting rule. Experiments show the method improves the accuracy of emotion recognition by giving full play to the advantages of decision level fusion and feature level fusion, and makes the whole fusion process close to human emotion recognition more, with a recognition rate 90.4%.

  4. The on-line detection of engine misfire at low speed using multiple feature fusion with fuzzy pattern recognition

    OpenAIRE

    Liu, S; Gu, Fengshou; Ball, Andrew

    2002-01-01

    This paper proposes a technique for the online detection of incipient engine misfire based on multiple feature fusion and fuzzy pattern recognition. The technique requires the measurement of instantaneous angular velocity signals. By processing the engine dynamics model equation in the angular frequency domain, four dimensionless features for misfire detection are defined, along with fast feature-extracting algorithms. By directly analysing the waveforms of the angular velocity and the angula...

  5. Color-blob-based COSFIRE filters for object recognition

    NARCIS (Netherlands)

    Gecer, Baris; Azzopardi, George; Petkov, Nicolai

    Most object recognition methods rely on contour-defined features obtained by edge detection or region segmentation. They are not robust to diffuse region boundaries. Furthermore, such methods do not exploit region color information. We propose color-blob-based COSFIRE (Combination of Shifted Filter

  6. Efficient feature subset selection with probabilistic distance criteria. [pattern recognition

    Science.gov (United States)

    Chittineni, C. B.

    1979-01-01

    Recursive expressions are derived for efficiently computing the commonly used probabilistic distance measures as a change in the criteria both when a feature is added to and when a feature is deleted from the current feature subset. A combinatorial algorithm for generating all possible r feature combinations from a given set of s features in (s/r) steps with a change of a single feature at each step is presented. These expressions can also be used for both forward and backward sequential feature selection.

  7. FEATURE RECOGNITION BERBASIS CORNER DETECTION DENGAN METODE FAST, SURF DAN FLANN TREE UNTUK IDENTIFIKASI LOGO PADA AUGMENTED REALITY MOBILE SYSTEM

    Directory of Open Access Journals (Sweden)

    Rastri Prathivi

    2014-01-01

    Full Text Available Logo is a graphical symbol that is the identity of an organization, institution, or company. Logo is generally used to introduce to the public the existence of an organization, institution, or company. Through the existence of an agency logo can be seen by the public. Feature recognition is one of the processes that exist within an augmented reality system. One of uses augmented reality is able to recognize the identity of the logo through a camera.The first step to make a process of feature recognition is through the corner detection. Incorporation of several method such as FAST, SURF, and FLANN TREE for the feature detection process based corner detection feature matching up process, will have the better ability to detect the presence of a logo. Additionally when running the feature extraction process there are several issues that arise as scale invariant feature and rotation invariant feature. In this study the research object in the form of logo to the priority to make the process of feature recognition. FAST, SURF, and FLANN TREE method will detection logo with scale invariant feature and rotation invariant feature conditions. Obtained from this study will demonstration the accuracy from FAST, SURF, and FLANN TREE methods to solve the scale invariant and rotation invariant feature problems.

  8. A Micro-GA Embedded PSO Feature Selection Approach to Intelligent Facial Emotion Recognition.

    Science.gov (United States)

    Mistry, Kamlesh; Zhang, Li; Neoh, Siew Chin; Lim, Chee Peng; Fielding, Ben

    2017-06-01

    This paper proposes a facial expression recognition system using evolutionary particle swarm optimization (PSO)-based feature optimization. The system first employs modified local binary patterns, which conduct horizontal and vertical neighborhood pixel comparison, to generate a discriminative initial facial representation. Then, a PSO variant embedded with the concept of a micro genetic algorithm (mGA), called mGA-embedded PSO, is proposed to perform feature optimization. It incorporates a nonreplaceable memory, a small-population secondary swarm, a new velocity updating strategy, a subdimension-based in-depth local facial feature search, and a cooperation of local exploitation and global exploration search mechanism to mitigate the premature convergence problem of conventional PSO. Multiple classifiers are used for recognizing seven facial expressions. Based on a comprehensive study using within- and cross-domain images from the extended Cohn Kanade and MMI benchmark databases, respectively, the empirical results indicate that our proposed system outperforms other state-of-the-art PSO variants, conventional PSO, classical GA, and other related facial expression recognition models reported in the literature by a significant margin.

  9. Adaboost-based algorithm for human action recognition

    KAUST Repository

    Zerrouki, Nabil

    2017-11-28

    This paper presents a computer vision-based methodology for human action recognition. First, the shape based pose features are constructed based on area ratios to identify the human silhouette in images. The proposed features are invariance to translation and scaling. Once the human body features are extracted from videos, different human actions are learned individually on the training frames of each class. Then, we apply the Adaboost algorithm for the classification process. We assessed the proposed approach using the UR Fall Detection dataset. In this study six classes of activities are considered namely: walking, standing, bending, lying, squatting, and sitting. Results demonstrate the efficiency of the proposed methodology.

  10. Confidence-Based Feature Acquisition

    Science.gov (United States)

    Wagstaff, Kiri L.; desJardins, Marie; MacGlashan, James

    2010-01-01

    Confidence-based Feature Acquisition (CFA) is a novel, supervised learning method for acquiring missing feature values when there is missing data at both training (learning) and test (deployment) time. To train a machine learning classifier, data is encoded with a series of input features describing each item. In some applications, the training data may have missing values for some of the features, which can be acquired at a given cost. A relevant JPL example is that of the Mars rover exploration in which the features are obtained from a variety of different instruments, with different power consumption and integration time costs. The challenge is to decide which features will lead to increased classification performance and are therefore worth acquiring (paying the cost). To solve this problem, CFA, which is made up of two algorithms (CFA-train and CFA-predict), has been designed to greedily minimize total acquisition cost (during training and testing) while aiming for a specific accuracy level (specified as a confidence threshold). With this method, it is assumed that there is a nonempty subset of features that are free; that is, every instance in the data set includes these features initially for zero cost. It is also assumed that the feature acquisition (FA) cost associated with each feature is known in advance, and that the FA cost for a given feature is the same for all instances. Finally, CFA requires that the base-level classifiers produce not only a classification, but also a confidence (or posterior probability).

  11. Single trial EEG classification applied to a face recognition experiment using different feature extraction methods.

    Science.gov (United States)

    Li, Yudu; Ma, Sen; Hu, Zhongze; Chen, Jiansheng; Su, Guangda; Dou, Weibei

    2015-01-01

    Research on brain machine interface (BMI) has been developed very fast in recent years. Numerous feature extraction methods have successfully been applied to electroencephalogram (EEG) classification in various experiments. However, little effort has been spent on EEG based BMI systems regarding familiarity of human faces cognition. In this work, we have implemented and compared the classification performances of four common feature extraction methods, namely, common spatial pattern, principal component analysis, wavelet transform and interval features. High resolution EEG signals were collected from fifteen healthy subjects stimulated by equal number of familiar and novel faces. Principal component analysis outperforms other methods with average classification accuracy reaching 94.2% leading to possible real life applications. Our findings thereby may contribute to the BMI systems for face recognition.

  12. Using features of local densities, statistics and HMM toolkit (HTK for offline Arabic handwriting text recognition

    Directory of Open Access Journals (Sweden)

    El Moubtahij Hicham

    2017-12-01

    Full Text Available This paper presents an analytical approach of an offline handwritten Arabic text recognition system. It is based on the Hidden Markov Models (HMM Toolkit (HTK without explicit segmentation. The first phase is preprocessing, where the data is introduced in the system after quality enhancements. Then, a set of characteristics (features of local densities and features statistics are extracted by using the technique of sliding windows. Subsequently, the resulting feature vectors are injected to the Hidden Markov Model Toolkit (HTK. The simple database “Arabic-Numbers” and IFN/ENIT are used to evaluate the performance of this system. Keywords: Hidden Markov Models (HMM Toolkit (HTK, Sliding windows

  13. Fast and efficient local features detection for building recognition

    DEFF Research Database (Denmark)

    Nguyen, Phuong Giang; Andersen, Hans Jørgen

    2011-01-01

    The vast growth of image databases creates many challenges for computer vision applications, for instance image retrieval and object recognition. Large variation in imaging conditions such as illumination and geometrical properties (including scale, rotation, and viewpoint) gives rise to the need...

  14. Recognition of Pitman shorthand text using tangent feature values at ...

    Indian Academy of Sciences (India)

    R. Narasimhan (Krishtel eMaging) 1461 1996 Oct 15 13:05:22

    and punctuation symbols useful in automata. National Conference on Recent trends in Advanced. Computing, Tirunelveli, pp 173–185. Nagabhushan P, Murali S 2000 Linear Hough transformation for recognition of stroke primitives in. Pitman shorthand text, National Conference on Recent trends in Advanced Computing, ...

  15. Deep features for efficient multi-biometric recognition with face and ear images

    Science.gov (United States)

    Omara, Ibrahim; Xiao, Gang; Amrani, Moussa; Yan, Zifei; Zuo, Wangmeng

    2017-07-01

    Recently, multimodal biometric systems have received considerable research interest in many applications especially in the fields of security. Multimodal systems can increase the resistance to spoof attacks, provide more details and flexibility, and lead to better performance and lower error rate. In this paper, we present a multimodal biometric system based on face and ear, and propose how to exploit the extracted deep features from Convolutional Neural Networks (CNNs) on the face and ear images to introduce more powerful discriminative features and robust representation ability for them. First, the deep features for face and ear images are extracted based on VGG-M Net. Second, the extracted deep features are fused by using a traditional concatenation and a Discriminant Correlation Analysis (DCA) algorithm. Third, multiclass support vector machine is adopted for matching and classification. The experimental results show that the proposed multimodal system based on deep features is efficient and achieves a promising recognition rate up to 100 % by using face and ear. In addition, the results indicate that the fusion based on DCA is superior to traditional fusion.

  16. Robust Automatic Speech Recognition Features using Complex Wavelet Packet Transform Coefficients

    Directory of Open Access Journals (Sweden)

    Tjong Wan Sen

    2013-09-01

    Full Text Available To improve the performance of phoneme based Automatic Speech Recognition (ASR in noisy environment; we developed a new technique that could add robustness to clean phonemes features. These robust features are obtained from Complex Wavelet Packet Transform (CWPT coefficients. Since the CWPT coefficients represent all different frequency bands of the input signal, decomposing the input signal into complete CWPT tree would also cover all frequencies involved in recognition process. For time overlapping signals with different frequency contents, e. g. phoneme signal with noises, its CWPT coefficients are the combination of CWPT coefficients of phoneme signal and CWPT coefficients of noises. The CWPT coefficients of phonemes signal would be changed according to frequency components contained in noises. Since the numbers of phonemes in every language are relatively small (limited and already well known, one could easily derive principal component vectors from clean training dataset using Principal Component Analysis (PCA. These principal component vectors could be used then to add robustness and minimize noises effects in testing phase. Simulation results, using Alpha Numeric 4 (AN4 from Carnegie Mellon University and NOISEX-92 examples from Rice University, showed that this new technique could be used as features extractor that improves the robustness of phoneme based ASR systems in various adverse noisy conditions and still preserves the performance in clean environments.

  17. Robust Automatic Speech Recognition Features using Complex Wavelet Packet Transform Coefficients

    Directory of Open Access Journals (Sweden)

    TjongWan Sen

    2009-11-01

    Full Text Available To improve the performance of phoneme based Automatic Speech Recognition (ASR in noisy environment; we developed a new technique that could add robustness to clean phonemes features. These robust features are obtained from Complex Wavelet Packet Transform (CWPT coefficients. Since the CWPT coefficients represent all different frequency bands of the input signal, decomposing the input signal into complete CWPT tree would also cover all frequencies involved in recognition process. For time overlapping signals with different frequency contents, e. g. phoneme signal with noises, its CWPT coefficients are the combination of CWPT coefficients of phoneme signal and CWPT coefficients of noises. The CWPT coefficients of phonemes signal would be changed according to frequency components contained in noises. Since the numbers of phonemes in every language are relatively small (limited and already well known, one could easily derive principal component vectors from clean training dataset using Principal Component Analysis (PCA. These principal component vectors could be used then to add robustness and minimize noises effects in testing phase. Simulation results, using Alpha Numeric 4 (AN4 from Carnegie Mellon University and NOISEX-92 examples from Rice University, showed that this new technique could be used as features extractor that improves the robustness of phoneme based ASR systems in various adverse noisy conditions and still preserves the performance in clean environments.

  18. FPGA-Based Implementation of Lithuanian Isolated Word Recognition Algorithm

    Directory of Open Access Journals (Sweden)

    Tomyslav Sledevič

    2013-05-01

    Full Text Available The paper describes the FPGA-based implementation of Lithuanian isolated word recognition algorithm. FPGA is selected for parallel process implementation using VHDL to ensure fast signal processing at low rate clock signal. Cepstrum analysis was applied to features extraction in voice. The dynamic time warping algorithm was used to compare the vectors of cepstrum coefficients. A library of 100 words features was created and stored in the internal FPGA BRAM memory. Experimental testing with speaker dependent records demonstrated the recognition rate of 94%. The recognition rate of 58% was achieved for speaker-independent records. Calculation of cepstrum coefficients lasted for 8.52 ms at 50 MHz clock, while 100 DTWs took 66.56 ms at 25 MHz clock.Article in Lithuanian

  19. Finger vein recognition based on convolutional neural network

    Directory of Open Access Journals (Sweden)

    Meng Gesi

    2017-01-01

    Full Text Available Biometric Authentication Technology has been widely used in this information age. As one of the most important technology of authentication, finger vein recognition attracts our attention because of its high security, reliable accuracy and excellent performance. However, the current finger vein recognition system is difficult to be applied widely because its complicated image pre-processing and not representative feature vectors. To solve this problem, a finger vein recognition method based on the convolution neural network (CNN is proposed in the paper. The image samples are directly input into the CNN model to extract its feature vector so that we can make authentication by comparing the Euclidean distance between these vectors. Finally, the Deep Learning Framework Caffe is adopted to verify this method. The result shows that there are great improvements in both speed and accuracy rate compared to the previous research. And the model has nice robustness in illumination and rotation.

  20. Driver face recognition as a security and safety feature

    Science.gov (United States)

    Vetter, Volker; Giefing, Gerd-Juergen; Mai, Rudolf; Weisser, Hubert

    1995-09-01

    We present a driver face recognition system for comfortable access control and individual settings of automobiles. The primary goals are the prevention of car thefts and heavy accidents caused by unauthorized use (joy-riders), as well as the increase of safety through optimal settings, e.g. of the mirrors and the seat position. The person sitting on the driver's seat is observed automatically by a small video camera in the dashboard. All he has to do is to behave cooperatively, i.e. to look into the camera. A classification system validates his access. Only after a positive identification, the car can be used and the driver-specific environment (e.g. seat position, mirrors, etc.) may be set up to ensure the driver's comfort and safety. The driver identification system has been integrated in a Volkswagen research car. Recognition results are presented.

  1. Biometric Image Recognition Based on Optical Correlator

    Directory of Open Access Journals (Sweden)

    David Solus

    2017-01-01

    Full Text Available The aim of this paper is to design a biometric images recognition system able to recognize biometric images-eye and DNA marker. The input scenes are processed by user-friendly software created in C# programming language and then are compared with reference images stored in database. In this system, Cambridge optical correlator is used as an image comparator based on similarity of images in the recognition phase.

  2. EMG feature assessment for myoelectric pattern recognition and channel selection: a study with incomplete spinal cord injury.

    Science.gov (United States)

    Liu, Jie; Li, Xiaoyan; Li, Guanglin; Zhou, Ping

    2014-07-01

    Myoelectric pattern recognition with a large number of electromyogram (EMG) channels provides an approach to assessing motor control information available from the recorded muscles. In order to develop a practical myoelectric control system, a feature dependent channel reduction method was developed in this study to determine a small number of EMG channels for myoelectric pattern recognition analysis. The method selects appropriate raw EMG features for classification of different movements, using the minimum Redundancy Maximum Relevance (mRMR) and the Markov random field (MRF) methods to rank a large number of EMG features, respectively. A k-nearest neighbor (KNN) classifier was used to evaluate the performance of the selected features in terms of classification accuracy. The method was tested using 57 channels' surface EMG signals recorded from forearm and hand muscles of individuals with incomplete spinal cord injury (SCI). Our results demonstrate that appropriate selection of a small number of raw EMG features from different recording channels resulted in similar high classification accuracies as achieved by using all the EMG channels or features. Compared with the conventional sequential forward selection (SFS) method, the feature dependent method does not require repeated classifier implementation. It can effectively reduce redundant information not only cross different channels, but also cross different features in the same channel. Such hybrid feature-channel selection from a large number of EMG recording channels can reduce computational cost for implementation of a myoelectric pattern recognition based control system. Copyright © 2014 IPEM. Published by Elsevier Ltd. All rights reserved.

  3. Deep neural network features for horses identity recognition using multiview horses' face pattern

    Science.gov (United States)

    Jarraya, Islem; Ouarda, Wael; Alimi, Adel M.

    2017-03-01

    To control the state of horses in the born, breeders needs a monitoring system with a surveillance camera that can identify and distinguish between horses. We proposed in [5] a method of horse's identification at a distance using the frontal facial biometric modality. Due to the change of views, the face recognition becomes more difficult. In this paper, the number of images used in our THoDBRL'2015 database (Tunisian Horses DataBase of Regim Lab) is augmented by adding other images of other views. Thus, we used front, right and left profile face's view. Moreover, we suggested an approach for multiview face recognition. First, we proposed to use the Gabor filter for face characterization. Next, due to the augmentation of the number of images, and the large number of Gabor features, we proposed to test the Deep Neural Network with the auto-encoder to obtain the more pertinent features and to reduce the size of features vector. Finally, we performed the proposed approach on our THoDBRL'2015 database and we used the linear SVM for classification.

  4. Recognition of phonetic Arabic figures via wavelet based Mel Frequency Cepstrum using HMMs

    Directory of Open Access Journals (Sweden)

    Ibrahim M. El-Henawy

    2014-04-01

    A comparison between different features of speech is given. The features based on the Cepstrum give accuracy of 94% for speech recognition while the features based on the short time energy in time domain give accuracy of 92%. The features based on formant frequencies give accuracy of 95.5%. It is clear that the features based on MFCCs with accuracy of 98% give the best accuracy rate. So the features depend on MFCCs with HMMs may be recommended for recognition of the spoken Arabic digits.

  5. Feature activation during word recognition: action, visual, and associative-semantic priming effects

    Directory of Open Access Journals (Sweden)

    Kevin J.Y. Lam

    2015-05-01

    Full Text Available Embodied theories of language postulate that language meaning is stored in modality-specific brain areas generally involved in perception and action in the real world. However, the temporal dynamics of the interaction between modality-specific information and lexical-semantic processing remain unclear. We investigated the relative timing at which two types of modality-specific information (action-based and visual-form information contribute to lexical-semantic comprehension. To this end, we applied a behavioral priming paradigm in which prime and target words were related with respect to (1 action features, (2 visual features, or (3 semantically associative information. Using a Go/No-Go lexical decision task, priming effects were measured across four different inter-stimulus intervals (ISI = 100 ms, 250 ms, 400 ms, and 1,000 ms to determine the relative time course of the different features . Notably, action priming effects were found in ISIs of 100 ms, 250 ms, and 1,000 ms whereas a visual priming effect was seen only in the ISI of 1,000 ms. Importantly, our data suggest that features follow different time courses of activation during word recognition. In this regard, feature activation is dynamic, measurable in specific time windows but not in others. Thus the current study (1 demonstrates how multiple ISIs can be used within an experiment to help chart the time course of feature activation and (2 provides new evidence for embodied theories of language.

  6. Comparison of Feature Learning Methods for Human Activity Recognition Using Wearable Sensors.

    Science.gov (United States)

    Li, Frédéric; Shirahama, Kimiaki; Nisar, Muhammad Adeel; Köping, Lukas; Grzegorzek, Marcin

    2018-02-24

    Getting a good feature representation of data is paramount for Human Activity Recognition (HAR) using wearable sensors. An increasing number of feature learning approaches-in particular deep-learning based-have been proposed to extract an effective feature representation by analyzing large amounts of data. However, getting an objective interpretation of their performances faces two problems: the lack of a baseline evaluation setup, which makes a strict comparison between them impossible, and the insufficiency of implementation details, which can hinder their use. In this paper, we attempt to address both issues: we firstly propose an evaluation framework allowing a rigorous comparison of features extracted by different methods, and use it to carry out extensive experiments with state-of-the-art feature learning approaches. We then provide all the codes and implementation details to make both the reproduction of the results reported in this paper and the re-use of our framework easier for other researchers. Our studies carried out on the OPPORTUNITY and UniMiB-SHAR datasets highlight the effectiveness of hybrid deep-learning architectures involving convolutional and Long-Short-Term-Memory (LSTM) to obtain features characterising both short- and long-term time dependencies in the data.

  7. Feature activation during word recognition: action, visual, and associative-semantic priming effects.

    Science.gov (United States)

    Lam, Kevin J Y; Dijkstra, Ton; Rueschemeyer, Shirley-Ann

    2015-01-01

    Embodied theories of language postulate that language meaning is stored in modality-specific brain areas generally involved in perception and action in the real world. However, the temporal dynamics of the interaction between modality-specific information and lexical-semantic processing remain unclear. We investigated the relative timing at which two types of modality-specific information (action-based and visual-form information) contribute to lexical-semantic comprehension. To this end, we applied a behavioral priming paradigm in which prime and target words were related with respect to (1) action features, (2) visual features, or (3) semantically associative information. Using a Go/No-Go lexical decision task, priming effects were measured across four different inter-stimulus intervals (ISI = 100, 250, 400, and 1000 ms) to determine the relative time course of the different features. Notably, action priming effects were found in ISIs of 100, 250, and 1000 ms whereas a visual priming effect was seen only in the ISI of 1000 ms. Importantly, our data suggest that features follow different time courses of activation during word recognition. In this regard, feature activation is dynamic, measurable in specific time windows but not in others. Thus the current study (1) demonstrates how multiple ISIs can be used within an experiment to help chart the time course of feature activation and (2) provides new evidence for embodied theories of language.

  8. Chemical named entity recognition in patents by domain knowledge and unsupervised feature learning.

    Science.gov (United States)

    Zhang, Yaoyun; Xu, Jun; Chen, Hui; Wang, Jingqi; Wu, Yonghui; Prakasam, Manu; Xu, Hua

    2016-01-01

    Medicinal chemistry patents contain rich information about chemical compounds. Although much effort has been devoted to extracting chemical entities from scientific literature, limited numbers of patent mining systems are publically available, probably due to the lack of large manually annotated corpora. To accelerate the development of information extraction systems for medicinal chemistry patents, the 2015 BioCreative V challenge organized a track on Chemical and Drug Named Entity Recognition from patent text (CHEMDNER patents). This track included three individual subtasks: (i) Chemical Entity Mention Recognition in Patents (CEMP), (ii) Chemical Passage Detection (CPD) and (iii) Gene and Protein Related Object task (GPRO). We participated in the two subtasks of CEMP and CPD using machine learning-based systems. Our machine learning-based systems employed the algorithms of conditional random fields (CRF) and structured support vector machines (SSVMs), respectively. To improve the performance of the NER systems, two strategies were proposed for feature engineering: (i) domain knowledge features of dictionaries, chemical structural patterns and semantic type information present in the context of the candidate chemical and (ii) unsupervised feature learning algorithms to generate word representation features by Brown clustering and a novel binarized Word embedding to enhance the generalizability of the system. Further, the system output for the CPD task was yielded based on the patent titles and abstracts with chemicals recognized in the CEMP task.The effects of the proposed feature strategies on both the machine learning-based systems were investigated. Our best system achieved the second best performance among 21 participating teams in CEMP with a precision of 87.18%, a recall of 90.78% and aF-measure of 88.94% and was the top performing system among nine participating teams in CPD with a sensitivity of 98.60%, a specificity of 87.21%, an accuracy of 94.75%, a

  9. Supervised Filter Learning for Representation Based Face Recognition.

    Directory of Open Access Journals (Sweden)

    Chao Bi

    Full Text Available Representation based classification methods, such as Sparse Representation Classification (SRC and Linear Regression Classification (LRC have been developed for face recognition problem successfully. However, most of these methods use the original face images without any preprocessing for recognition. Thus, their performances may be affected by some problematic factors (such as illumination and expression variances in the face images. In order to overcome this limitation, a novel supervised filter learning algorithm is proposed for representation based face recognition in this paper. The underlying idea of our algorithm is to learn a filter so that the within-class representation residuals of the faces' Local Binary Pattern (LBP features are minimized and the between-class representation residuals of the faces' LBP features are maximized. Therefore, the LBP features of filtered face images are more discriminative for representation based classifiers. Furthermore, we also extend our algorithm for heterogeneous face recognition problem. Extensive experiments are carried out on five databases and the experimental results verify the efficacy of the proposed algorithm.

  10. Supervised Filter Learning for Representation Based Face Recognition.

    Science.gov (United States)

    Bi, Chao; Zhang, Lei; Qi, Miao; Zheng, Caixia; Yi, Yugen; Wang, Jianzhong; Zhang, Baoxue

    2016-01-01

    Representation based classification methods, such as Sparse Representation Classification (SRC) and Linear Regression Classification (LRC) have been developed for face recognition problem successfully. However, most of these methods use the original face images without any preprocessing for recognition. Thus, their performances may be affected by some problematic factors (such as illumination and expression variances) in the face images. In order to overcome this limitation, a novel supervised filter learning algorithm is proposed for representation based face recognition in this paper. The underlying idea of our algorithm is to learn a filter so that the within-class representation residuals of the faces' Local Binary Pattern (LBP) features are minimized and the between-class representation residuals of the faces' LBP features are maximized. Therefore, the LBP features of filtered face images are more discriminative for representation based classifiers. Furthermore, we also extend our algorithm for heterogeneous face recognition problem. Extensive experiments are carried out on five databases and the experimental results verify the efficacy of the proposed algorithm.

  11. Familiarity facilitates feature-based face processing

    Science.gov (United States)

    Wheeler, Kelsey G.; Cipolli, Carlo; Gobbini, M. Ida

    2017-01-01

    Recognition of personally familiar faces is remarkably efficient, effortless and robust. We asked if feature-based face processing facilitates detection of familiar faces by testing the effect of face inversion on a visual search task for familiar and unfamiliar faces. Because face inversion disrupts configural and holistic face processing, we hypothesized that inversion would diminish the familiarity advantage to the extent that it is mediated by such processing. Subjects detected personally familiar and stranger target faces in arrays of two, four, or six face images. Subjects showed significant facilitation of personally familiar face detection for both upright and inverted faces. The effect of familiarity on target absent trials, which involved only rejection of unfamiliar face distractors, suggests that familiarity facilitates rejection of unfamiliar distractors as well as detection of familiar targets. The preserved familiarity effect for inverted faces suggests that facilitation of face detection afforded by familiarity reflects mostly feature-based processes. PMID:28582439

  12. Determination of the Image Complexity Feature in Pattern Recognition

    Directory of Open Access Journals (Sweden)

    Veacheslav L. Perju

    2003-11-01

    Full Text Available The new image complexity informative feature is proposed. The experimental estimation of the image complexity is carried out. There are elaborated two optical-electronic processors for image complexity calculation. The determination of the necessary number of the image's digitization elements depending on the image complexity was carried out. The accuracy of the image complexity feature calculation was made.

  13. Freeform feature recognition and manipulation to support shape design

    NARCIS (Netherlands)

    Langerak, T.R.

    2008-01-01

    Freeform features are parameterizable shape parts that are used in the design of industrial products. The parametric nature of the feature allows a designer to quickly manipulate shape without having to precisely configure the geometry of the shape. However, in many cases, designers want to use

  14. Video-based face recognition via convolutional neural networks

    Science.gov (United States)

    Bao, Tianlong; Ding, Chunhui; Karmoshi, Saleem; Zhu, Ming

    2017-06-01

    Face recognition has been widely studied recently while video-based face recognition still remains a challenging task because of the low quality and large intra-class variation of video captured face images. In this paper, we focus on two scenarios of video-based face recognition: 1)Still-to-Video(S2V) face recognition, i.e., querying a still face image against a gallery of video sequences; 2)Video-to-Still(V2S) face recognition, in contrast to S2V scenario. A novel method was proposed in this paper to transfer still and video face images to an Euclidean space by a carefully designed convolutional neural network, then Euclidean metrics are used to measure the distance between still and video images. Identities of still and video images that group as pairs are used as supervision. In the training stage, a joint loss function that measures the Euclidean distance between the predicted features of training pairs and expanding vectors of still images is optimized to minimize the intra-class variation while the inter-class variation is guaranteed due to the large margin of still images. Transferred features are finally learned via the designed convolutional neural network. Experiments are performed on COX face dataset. Experimental results show that our method achieves reliable performance compared with other state-of-the-art methods.

  15. Self-Organizing Neural Integration of Pose-Motion Features for Human Action Recognition

    Directory of Open Access Journals (Sweden)

    German Ignacio Parisi

    2015-06-01

    Full Text Available The visual recognition of complex, articulated human movements is fundamental for a wide range of artificial systems oriented towards human-robot communication, action classification, and action-driven perception. These challenging tasks may generally involve the processing of a huge amount of visual information and learning-based mechanisms for generalizing a set of training actions and classifying new samples. To operate in natural environments, a crucial property is the efficient and robust recognition of actions, also under noisy conditions caused by, for instance, systematic sensor errors and temporarily occluded persons. Studies of the mammalian visual system and its outperforming ability to process biological motion information suggest separate neural pathways for the distinct processing of pose and motion features at multiple levels and the subsequent integration of these visual cues for action perception. We present a neurobiologically-motivated approach to achieve noise-tolerant action recognition in real time. Our model consists of self-organizing Growing When Required (GWR networks that obtain progressively generalized representations of sensory inputs and learn inherent spatiotemporal dependencies. During the training, the GWR networks dynamically change their topological structure to better match the input space. We first extract pose and motion features from video sequences and then cluster actions in terms of prototypical pose-motion trajectories. Multi-cue trajectories from matching action frames are subsequently combined to provide action dynamics in the joint feature space. Reported experiments show that our approach outperforms previous results on a dataset of full-body actions captured with a depth sensor, and ranks among the best 21 results for a public benchmark of domestic daily actions.

  16. Iris image enhancement for feature recognition and extraction

    CSIR Research Space (South Africa)

    Mabuza, GP

    2012-10-01

    Full Text Available Gonzalez, R.C. and Woods, R.E. 2002. Digital Image Processing 2nd Edition, Instructor?s manual .Englewood Cliffs, Prentice Hall, pp 17-36. Proen?a, H. and Alexandre, L.A. 2007. Toward Noncooperative Iris Recognition: A classification approach using... multiple signatures. IEEE Transactions on Pattern Analysis and Machine Intelligence. IEEE Computer Society, 29 (4): 607-611. Sazonova, N. and Schuckers, S. 2011. Fast and efficient iris image enhancement using logarithmic image processing. Biometric...

  17. LPI Radar Waveform Recognition Based on Time-Frequency Distribution

    Directory of Open Access Journals (Sweden)

    Ming Zhang

    2016-10-01

    Full Text Available In this paper, an automatic radar waveform recognition system in a high noise environment is proposed. Signal waveform recognition techniques are widely applied in the field of cognitive radio, spectrum management and radar applications, etc. We devise a system to classify the modulating signals widely used in low probability of intercept (LPI radar detection systems. The radar signals are divided into eight types of classifications, including linear frequency modulation (LFM, BPSK (Barker code modulation, Costas codes and polyphase codes (comprising Frank, P1, P2, P3 and P4. The classifier is Elman neural network (ENN, and it is a supervised classification based on features extracted from the system. Through the techniques of image filtering, image opening operation, skeleton extraction, principal component analysis (PCA, image binarization algorithm and Pseudo–Zernike moments, etc., the features are extracted from the Choi–Williams time-frequency distribution (CWD image of the received data. In order to reduce the redundant features and simplify calculation, the features selection algorithm based on mutual information between classes and features vectors are applied. The superiority of the proposed classification system is demonstrated by the simulations and analysis. Simulation results show that the overall ratio of successful recognition (RSR is 94.7% at signal-to-noise ratio (SNR of −2 dB.

  18. DBN Based Joint Dialogue Act Recognition of Multiparty Meetings

    OpenAIRE

    Dielmann, Alfred; Renals, Steve

    2007-01-01

    Joint Dialogue Act segmentation and classification of the new AMI meeting corpus has been performed through an integrated framework based on a switching dynamic Bayesian network and a set of continuous features and language models. The recognition process is based on a dictionary of 15 DA classes tailored for group decision-making. Experimental results show that a novel interpolated Factored Language Model results in a low error rate on the automatic segmentation task, an...

  19. New Missing Features Mask Estimation Method for Speaker Recognition in Noisy Environments

    Directory of Open Access Journals (Sweden)

    José Ramón Calvo de Lara

    2012-06-01

    Full Text Available Normal 0 21 false false false ES X-NONE X-NONE /* Style Definitions */ table.MsoNormalTable {mso-style-name:"Tabla normal"; mso-tstyle-rowband-size:0; mso-tstyle-colband-size:0; mso-style-noshow:yes; mso-style-priority:99; mso-style-qformat:yes; mso-style-parent:""; mso-padding-alt:0cm 5.4pt 0cm 5.4pt; mso-para-margin-top:0cm; mso-para-margin-right:0cm; mso-para-margin-bottom:10.0pt; mso-para-margin-left:0cm; line-height:115%; mso-pagination:widow-orphan; font-size:11.0pt; font-family:"Calibri","sans-serif"; mso-ascii-font-family:Calibri; mso-ascii-theme-font:minor-latin; mso-fareast-font-family:"Times New Roman"; mso-fareast-theme-font:minor-fareast; mso-hansi-font-family:Calibri; mso-hansi-theme-font:minor-latin;} Currently, many speaker recognition applications must handle speech corrupted by environmental additive noise without having a priori knowledge about the characteristics of noise. Some previous works in speaker recognition have used Missing Feature (MF approach to compensate for noise. In most of those applications the spectral reliability decision step is done using the Signal to Noise Ratio (SNR criterion. This has the goal of enhancing signal power rather than noise power, which could be dangerous in speaker recognition tasks, because useful speaker information could be removed. This work proposes a new mask estimation method based on Speaker Discriminative Information (SDI for determining spectral reliability in speaker recognition applications based on the MF approach. The proposal was evaluated through speaker verification experiments in speech corrupted by additive noise. Experiments demonstrated that this new criterion has a promising performance in speaker verification tasks.

  20. Image processing tool for automatic feature recognition and quantification

    Science.gov (United States)

    Chen, Xing; Stoddard, Ryan J.

    2017-05-02

    A system for defining structures within an image is described. The system includes reading of an input file, preprocessing the input file while preserving metadata such as scale information and then detecting features of the input file. In one version the detection first uses an edge detector followed by identification of features using a Hough transform. The output of the process is identified elements within the image.

  1. Iris double recognition based on modified evolutionary neural network

    Science.gov (United States)

    Liu, Shuai; Liu, Yuan-Ning; Zhu, Xiao-Dong; Huo, Guang; Liu, Wen-Tao; Feng, Jia-Kai

    2017-11-01

    Aiming at multicategory iris recognition under illumination and noise interference, this paper proposes a method of iris double recognition based on a modified evolutionary neural network. An equalization histogram and Laplace of Gaussian operator are used to process the iris to suppress illumination and noise interference and Haar wavelet to convert the iris feature to binary feature encoding. Calculate the Hamming distance for the test iris and template iris , and compare with classification threshold, determine the type of iris. If the iris cannot be identified as a different type, there needs to be a secondary recognition. The connection weights in back-propagation (BP) neural network use modified evolutionary neural network to adaptively train. The modified neural network is composed of particle swarm optimization with mutation operator and BP neural network. According to different iris libraries in different circumstances of experimental results, under illumination and noise interference, the correct recognition rate of this algorithm is higher, the ROC curve is closer to the coordinate axis, the training and recognition time is shorter, and the stability and the robustness are better.

  2. Critical song features for auditory pattern recognition in crickets.

    Directory of Open Access Journals (Sweden)

    Gundula Meckenhäuser

    Full Text Available Many different invertebrate and vertebrate species use acoustic communication for pair formation. In the cricket Gryllus bimaculatus, females recognize their species-specific calling song and localize singing males by positive phonotaxis. The song pattern of males has a clear structure consisting of brief and regular pulses that are grouped into repetitive chirps. Information is thus present on a short and a long time scale. Here, we ask which structural features of the song critically determine the phonotactic performance. To this end we employed artificial neural networks to analyze a large body of behavioral data that measured females' phonotactic behavior under systematic variation of artificially generated song patterns. In a first step we used four non-redundant descriptive temporal features to predict the female response. The model prediction showed a high correlation with the experimental results. We used this behavioral model to explore the integration of the two different time scales. Our result suggested that only an attractive pulse structure in combination with an attractive chirp structure reliably induced phonotactic behavior to signals. In a further step we investigated all feature sets, each one consisting of a different combination of eight proposed temporal features. We identified feature sets of size two, three, and four that achieve highest prediction power by using the pulse period from the short time scale plus additional information from the long time scale.

  3. Structural features of glycan recognition among viral pathogens.

    Science.gov (United States)

    Shanker, Sreejesh; Hu, Liya; Ramani, Sasirekha; Atmar, Robert L; Estes, Mary K; Venkataram Prasad, B V

    2017-06-01

    Recognition and binding to host glycans present on cellular surfaces is an initial and critical step in viral entry. Diverse families of host glycans such as histo-blood group antigens, sialoglycans and glycosaminoglycans are recognized by viruses. Glycan binding determines virus-host specificity, tissue tropism, pathogenesis and potential for interspecies transmission. Viruses including noroviruses, rotaviruses, enteroviruses, influenza, and papillomaviruses have evolved novel strategies to bind specific glycans often in a strain-specific manner. Structural studies have been instrumental in elucidating the molecular determinants of these virus-glycan interactions, aiding in developing vaccines and antivirals targeting this key interaction. Our review focuses on these key structural aspects of virus-glycan interactions, particularly highlighting the different strain-specific strategies employed by viruses to bind host glycans. Copyright © 2017. Published by Elsevier Ltd.

  4. Wavelet-based ground vehicle recognition using acoustic signals

    Science.gov (United States)

    Choe, Howard C.; Karlsen, Robert E.; Gerhart, Grant R.; Meitzler, Thomas J.

    1996-03-01

    We present, in this paper, a wavelet-based acoustic signal analysis to remotely recognize military vehicles using their sound intercepted by acoustic sensors. Since expedited signal recognition is imperative in many military and industrial situations, we developed an algorithm that provides an automated, fast signal recognition once implemented in a real-time hardware system. This algorithm consists of wavelet preprocessing, feature extraction and compact signal representation, and a simple but effective statistical pattern matching. The current status of the algorithm does not require any training. The training is replaced by human selection of reference signals (e.g., squeak or engine exhaust sound) distinctive to each individual vehicle based on human perception. This allows a fast archiving of any new vehicle type in the database once the signal is collected. The wavelet preprocessing provides time-frequency multiresolution analysis using discrete wavelet transform (DWT). Within each resolution level, feature vectors are generated from statistical parameters and energy content of the wavelet coefficients. After applying our algorithm on the intercepted acoustic signals, the resultant feature vectors are compared with the reference vehicle feature vectors in the database using statistical pattern matching to determine the type of vehicle from where the signal originated. Certainly, statistical pattern matching can be replaced by an artificial neural network (ANN); however, the ANN would require training data sets and time to train the net. Unfortunately, this is not always possible for many real world situations, especially collecting data sets from unfriendly ground vehicles to train the ANN. Our methodology using wavelet preprocessing and statistical pattern matching provides robust acoustic signal recognition. We also present an example of vehicle recognition using acoustic signals collected from two different military ground vehicles. In this paper, we will

  5. A feature extraction technique using bi-gram probabilities of position specific scoring matrix for protein fold recognition.

    Science.gov (United States)

    Sharma, Alok; Lyons, James; Dehzangi, Abdollah; Paliwal, Kuldip K

    2013-03-07

    Discovering a three dimensional structure of a protein is a challenging task in biological science. Classifying a protein into one of its folds is an intermediate step for deciphering the three dimensional protein structure. The protein fold recognition can be done by developing feature extraction techniques to accurately extract all the relevant information from a protein sequence and then by employing a suitable classifier to label an unknown protein. Several feature extraction techniques have been developed in the past but with limited recognition accuracy only. In this work, we have developed a feature extraction technique which is based on bi-grams computed directly from Position Specific Scoring Matrices and demonstrated its effectiveness on a benchmark dataset. The proposed technique exhibits an absolute improvement of around 10% compared with existing feature extraction techniques. Copyright © 2012 Elsevier Ltd. All rights reserved.

  6. Invariant Handwriting Features Useful in Cursive-Script Recognition

    NARCIS (Netherlands)

    Teulings, Hans-leo L; Schomaker, L R; Impedovo, S.

    1994-01-01

    A handwriting pattern is considered as a sequence of ballistic strokes. Replications of a pattern may be generated from a single, higher-level memory representation, acting as a motor program. Therefore, those stroke features which show the most invariant pattern are probably related to the

  7. CBFS: high performance feature selection algorithm based on feature clearness.

    Directory of Open Access Journals (Sweden)

    Minseok Seo

    Full Text Available BACKGROUND: The goal of feature selection is to select useful features and simultaneously exclude garbage features from a given dataset for classification purposes. This is expected to bring reduction of processing time and improvement of classification accuracy. METHODOLOGY: In this study, we devised a new feature selection algorithm (CBFS based on clearness of features. Feature clearness expresses separability among classes in a feature. Highly clear features contribute towards obtaining high classification accuracy. CScore is a measure to score clearness of each feature and is based on clustered samples to centroid of classes in a feature. We also suggest combining CBFS and other algorithms to improve classification accuracy. CONCLUSIONS/SIGNIFICANCE: From the experiment we confirm that CBFS is more excellent than up-to-date feature selection algorithms including FeaLect. CBFS can be applied to microarray gene selection, text categorization, and image classification.

  8. Active AU Based Patch Weighting for Facial Expression Recognition

    Directory of Open Access Journals (Sweden)

    Weicheng Xie

    2017-01-01

    Full Text Available Facial expression has many applications in human-computer interaction. Although feature extraction and selection have been well studied, the specificity of each expression variation is not fully explored in state-of-the-art works. In this work, the problem of multiclass expression recognition is converted into triplet-wise expression recognition. For each expression triplet, a new feature optimization model based on action unit (AU weighting and patch weight optimization is proposed to represent the specificity of the expression triplet. The sparse representation-based approach is then proposed to detect the active AUs of the testing sample for better generalization. The algorithm achieved competitive accuracies of 89.67% and 94.09% for the Jaffe and Cohn–Kanade (CK+ databases, respectively. Better cross-database performance has also been observed.

  9. Binary pattern flavored feature extractors for Facial Expression Recognition: An overview

    DEFF Research Database (Denmark)

    Kristensen, Rasmus Lyngby; Tan, Zheng-Hua; Ma, Zhanyu

    2015-01-01

    This paper conducts a survey of modern binary pattern flavored feature extractors applied to the Facial Expression Recognition (FER) problem. In total, 26 different feature extractors are included, of which six are selected for in depth description. In addition, the paper unifies important FER te...

  10. Evaluation of Different Features for Face Recognition in Video

    Science.gov (United States)

    2014-09-01

    as is: neither localized, nor aligned. This was necessary, because the algorithms, which were used to detect faces (such as those implementing Haar ... cascades [20]) missed various faces of ORL database, making it impossible to evaluate certain faces. Figure 4 presents the accuracy comparison of the...Jones, “Rapid object detection using a boosted cascade of simple features,” in CVPR (1). IEEE Computer Society, 2001, pp. 511–518. [21] I. H. Witten

  11. A novel feature ranking algorithm for biometric recognition with PPG signals.

    Science.gov (United States)

    Reşit Kavsaoğlu, A; Polat, Kemal; Recep Bozkurt, M

    2014-06-01

    This study is intended for describing the application of the Photoplethysmography (PPG) signal and the time domain features acquired from its first and second derivatives for biometric identification. For this purpose, a sum of 40 features has been extracted and a feature-ranking algorithm is proposed. This proposed algorithm calculates the contribution of each feature to biometric recognition and collocates the features, the contribution of which is from great to small. While identifying the contribution of the features, the Euclidean distance and absolute distance formulas are used. The efficiency of the proposed algorithms is demonstrated by the results of the k-NN (k-nearest neighbor) classifier applications of the features. During application, each 15-period-PPG signal belonging to two different durations from each of the thirty healthy subjects were used with a PPG data acquisition card. The first PPG signals recorded from the subjects were evaluated as the 1st configuration; the PPG signals recorded later at a different time as the 2nd configuration and the combination of both were evaluated as the 3rd configuration. When the results were evaluated for the k-NN classifier model created along with the proposed algorithm, an identification of 90.44% for the 1st configuration, 94.44% for the 2nd configuration, and 87.22% for the 3rd configuration has successfully been attained. The obtained results showed that both the proposed algorithm and the biometric identification model based on this developed PPG signal are very promising for contactless recognizing the people with the proposed method. Copyright © 2014 Elsevier Ltd. All rights reserved.

  12. Telescopic Vector Composition and Polar Accumulated Motion Residuals for Feature Extraction in Arabic Sign Language Recognition

    Directory of Open Access Journals (Sweden)

    Assaleh K

    2007-01-01

    Full Text Available This work introduces two novel approaches for feature extraction applied to video-based Arabic sign language recognition, namely, motion representation through motion estimation and motion representation through motion residuals. In the former, motion estimation is used to compute the motion vectors of a video-based deaf sign or gesture. In the preprocessing stage for feature extraction, the horizontal and vertical components of such vectors are rearranged into intensity images and transformed into the frequency domain. In the second approach, motion is represented through motion residuals. The residuals are then thresholded and transformed into the frequency domain. Since in both approaches the temporal dimension of the video-based gesture needs to be preserved, hidden Markov models are used for classification tasks. Additionally, this paper proposes to project the motion information in the time domain through either telescopic motion vector composition or polar accumulated differences of motion residuals. The feature vectors are then extracted from the projected motion information. After that, model parameters can be evaluated by using simple classifiers such as Fisher's linear discriminant. The paper reports on the classification accuracy of the proposed solutions. Comparisons with existing work reveal that up to 39% of the misclassifications have been corrected.

  13. Telescopic Vector Composition and Polar Accumulated Motion Residuals for Feature Extraction in Arabic Sign Language Recognition

    Directory of Open Access Journals (Sweden)

    T. Shanableh

    2007-10-01

    Full Text Available This work introduces two novel approaches for feature extraction applied to video-based Arabic sign language recognition, namely, motion representation through motion estimation and motion representation through motion residuals. In the former, motion estimation is used to compute the motion vectors of a video-based deaf sign or gesture. In the preprocessing stage for feature extraction, the horizontal and vertical components of such vectors are rearranged into intensity images and transformed into the frequency domain. In the second approach, motion is represented through motion residuals. The residuals are then thresholded and transformed into the frequency domain. Since in both approaches the temporal dimension of the video-based gesture needs to be preserved, hidden Markov models are used for classification tasks. Additionally, this paper proposes to project the motion information in the time domain through either telescopic motion vector composition or polar accumulated differences of motion residuals. The feature vectors are then extracted from the projected motion information. After that, model parameters can be evaluated by using simple classifiers such as Fisher's linear discriminant. The paper reports on the classification accuracy of the proposed solutions. Comparisons with existing work reveal that up to 39% of the misclassifications have been corrected.

  14. Appropriate baseline values for HMM-based speech recognition

    CSIR Research Space (South Africa)

    Barnard, E

    2004-11-01

    Full Text Available values for HMM-based speech recognition Etienne Gouws, Kobus Wolvaardt, Neil Kleynhans, Etienne Barnard Department of Electrical, Electronic and Computer Engineering University of Pretoria Pretoria, South Africa ebarnard@up.ac.za Abstract A number.... Keywords - Hidden Markov Models (HMM), Feature sets, Mixture models, Pronunciation dictionaries, Monophones, Triphones 1. Introduction There is a growing awareness that Human Language Technolo- gies can play a significant role in bridging the digital...

  15. Insulator recognition based on convolution neural network

    Directory of Open Access Journals (Sweden)

    Yang Yanli

    2017-01-01

    Full Text Available Insulator fault detection plays an important role in maintaining the safety of transmission lines. Insulator recognition is a prerequisite for its fault detection. An insulator recognition algorithm based on convolution neural network (CNN is proposed. A dataset is established to train the constructed CNN. The correct rate is 98.52% for 1220 training samples and the accuracy rate of testing is 89.04% on 1305 samples. The classification result of the CNN is further used to segment the insulator image. The test results show that the proposed method can realize the effective segmentation of insulators.

  16. Object recognition based on reflectance and geometry

    Science.gov (United States)

    Nayar, Shree K.; Bolle, Ruud M.

    1993-06-01

    In the past, recognition systems have relied solely on geometric properties of objects. This paper discusses the simultaneous use of geometric as well as reflectance properties for object recognition. Neighboring points on a smoothly curved surface have similar surface orientations and illumination conditions. Hence, their brightness values can be used to compute the ratio of their reflectance coefficients. Based on this observation, we develop an algorithm that estimates a reflectance ratio for each region in an image with respect to its background. The algorithm is computationally efficient as it computes ratios for all image regions in just two raster scans. The region reflectance ratio represents a physical property of a region that is invariant to the illumination conditions. The reflectance ratio invariant is used to recognize three-dimensional objects from a single brightness image. Object models are automatically acquired and represented using a hash table. Recognition and pose estimation algorithms are presented that use the reflectance ratios of scene regions as well as their geometric properties to index the hash table. The result is a hypothesis for the existence of an object in the image. This hypothesis is verified using the ratios and locations of other regions in the scene. The proposed approach to recognition is very effective for objects with printed characters and pictures. We conclude with experimental results on the invariance of reflectance ratios and their application to object recognition.

  17. Quality based approach for adaptive face recognition

    Science.gov (United States)

    Abboud, Ali J.; Sellahewa, Harin; Jassim, Sabah A.

    2009-05-01

    Recent advances in biometric technology have pushed towards more robust and reliable systems. We aim to build systems that have low recognition errors and are less affected by variation in recording conditions. Recognition errors are often attributed to the usage of low quality biometric samples. Hence, there is a need to develop new intelligent techniques and strategies to automatically measure/quantify the quality of biometric image samples and if necessary restore image quality according to the need of the intended application. In this paper, we present no-reference image quality measures in the spatial domain that have impact on face recognition. The first is called symmetrical adaptive local quality index (SALQI) and the second is called middle halve (MH). Also, an adaptive strategy has been developed to select the best way to restore the image quality, called symmetrical adaptive histogram equalization (SAHE). The main benefits of using quality measures for adaptive strategy are: (1) avoidance of excessive unnecessary enhancement procedures that may cause undesired artifacts, and (2) reduced computational complexity which is essential for real time applications. We test the success of the proposed measures and adaptive approach for a wavelet-based face recognition system that uses the nearest neighborhood classifier. We shall demonstrate noticeable improvements in the performance of adaptive face recognition system over the corresponding non-adaptive scheme.

  18. Sequential Filtering Processes Shape Feature Detection in Crickets: A Framework for Song Pattern Recognition.

    Science.gov (United States)

    Hedwig, Berthold G

    2016-01-01

    Intraspecific acoustic communication requires filtering processes and feature detectors in the auditory pathway of the receiver for the recognition of species-specific signals. Insects like acoustically communicating crickets allow describing and analysing the mechanisms underlying auditory processing at the behavioral and neural level. Female crickets approach male calling song, their phonotactic behavior is tuned to the characteristic features of the song, such as the carrier frequency and the temporal pattern of sound pulses. Data from behavioral experiments and from neural recordings at different stages of processing in the auditory pathway lead to a concept of serially arranged filtering mechanisms. These encompass a filter for the carrier frequency at the level of the hearing organ, and the pulse duration through phasic onset responses of afferents and reciprocal inhibition of thoracic interneurons. Further, processing by a delay line and coincidence detector circuit in the brain leads to feature detecting neurons that specifically respond to the species-specific pulse rate, and match the characteristics of the phonotactic response. This same circuit may also control the response to the species-specific chirp pattern. Based on these serial filters and the feature detecting mechanism, female phonotactic behavior is shaped and tuned to the characteristic properties of male calling song.

  19. Material Recognition for Content Based Image Retrieval

    NARCIS (Netherlands)

    Geusebroek, J.M.

    2002-01-01

    One of the open problems in content-based Image Retrieval is the recognition of material present in an image. Knowledge about the set of materials present gives important semantic information about the scene under consideration. For example, detecting sand, sky, and water certainly classifies the

  20. Human action recognition based on estimated weak poses

    Science.gov (United States)

    Gong, Wenjuan; Gonzàlez, Jordi; Roca, Francesc Xavier

    2012-12-01

    We present a novel method for human action recognition (HAR) based on estimated poses from image sequences. We use 3D human pose data as additional information and propose a compact human pose representation, called a weak pose, in a low-dimensional space while still keeping the most discriminative information for a given pose. With predicted poses from image features, we map the problem from image feature space to pose space, where a Bag of Poses (BOP) model is learned for the final goal of HAR. The BOP model is a modified version of the classical bag of words pipeline by building the vocabulary based on the most representative weak poses for a given action. Compared with the standard k-means clustering, our vocabulary selection criteria is proven to be more efficient and robust against the inherent challenges of action recognition. Moreover, since for action recognition the ordering of the poses is discriminative, the BOP model incorporates temporal information: in essence, groups of consecutive poses are considered together when computing the vocabulary and assignment. We tested our method on two well-known datasets: HumanEva and IXMAS, to demonstrate that weak poses aid to improve action recognition accuracies. The proposed method is scene-independent and is comparable with the state-of-art method.

  1. Application of nonnegative matrix factorization to improve profile-profile alignment features for fold recognition and remote homolog detection

    Directory of Open Access Journals (Sweden)

    Lee Soo-Young

    2008-07-01

    Full Text Available Abstract Background Nonnegative matrix factorization (NMF is a feature extraction method that has the property of intuitive part-based representation of the original features. This unique ability makes NMF a potentially promising method for biological sequence analysis. Here, we apply NMF to fold recognition and remote homolog detection problems. Recent studies have shown that combining support vector machines (SVM with profile-profile alignments improves performance of fold recognition and remote homolog detection remarkably. However, it is not clear which parts of sequences are essential for the performance improvement. Results The performance of fold recognition and remote homolog detection using NMF features is compared to that of the unmodified profile-profile alignment (PPA features by estimating Receiver Operating Characteristic (ROC scores. The overall performance is noticeably improved. For fold recognition at the fold level, SVM with NMF features recognize 30% of homolog proteins at > 0.99 ROC scores, while original PPA feature, HHsearch, and PSI-BLAST recognize almost none. For detecting remote homologs that are related at the superfamily level, NMF features also achieve higher performance than the original PPA features. At > 0.90 ROC50 scores, 25% of proteins with NMF features correctly detects remotely related proteins, whereas using original PPA features only 1% of proteins detect remote homologs. In addition, we investigate the effect of number of positive training examples and the number of basis vectors on performance improvement. We also analyze the ability of NMF to extract essential features by comparing NMF basis vectors with functionally important sites and structurally conserved regions of proteins. The results show that NMF basis vectors have significant overlap with functional sites from PROSITE and with structurally conserved regions from the multiple structural alignments generated by MUSTANG. The correlation between

  2. 3D facial expression recognition using maximum relevance minimum redundancy geometrical features

    Science.gov (United States)

    Rabiu, Habibu; Saripan, M. Iqbal; Mashohor, Syamsiah; Marhaban, Mohd Hamiruce

    2012-12-01

    In recent years, facial expression recognition (FER) has become an attractive research area, which besides the fundamental challenges, it poses, finds application in areas, such as human-computer interaction, clinical psychology, lie detection, pain assessment, and neurology. Generally the approaches to FER consist of three main steps: face detection, feature extraction and expression recognition. The recognition accuracy of FER hinges immensely on the relevance of the selected features in representing the target expressions. In this article, we present a person and gender independent 3D facial expression recognition method, using maximum relevance minimum redundancy geometrical features. The aim is to detect a compact set of features that sufficiently represents the most discriminative features between the target classes. Multi-class one-against-one SVM classifier was employed to recognize the seven facial expressions; neutral, happy, sad, angry, fear, disgust, and surprise. The average recognition accuracy of 92.2% was recorded. Furthermore, inter database homogeneity was investigated between two independent databases the BU-3DFE and UPM-3DFE the results showed a strong homogeneity between the two databases.

  3. Haar-like Features for Robust Real-Time Face Recognition

    DEFF Research Database (Denmark)

    Nasrollahi, Kamal; Moeslund, Thomas B.

    2013-01-01

    Face recognition is still a very challenging task when the input face image is noisy, occluded by some obstacles, of very low-resolution, not facing the camera, and not properly illuminated. These problems make the feature extraction and consequently the face recognition system unstable....... The proposed system in this paper introduces the novel idea of using Haar-like features, which have commonly been used for object detection, along with a probabilistic classifier for face recognition. The proposed system is simple, real-time, effective and robust against most of the mentioned problems....... Experimental results on public databases show that the proposed system indeed outperforms the state-of-the-art face recognition systems....

  4. Learning representation hierarchies by sharing visual features: a computational investigation of Persian character recognition with unsupervised deep learning.

    Science.gov (United States)

    Sadeghi, Zahra; Testolin, Alberto

    2017-08-01

    In humans, efficient recognition of written symbols is thought to rely on a hierarchical processing system, where simple features are progressively combined into more abstract, high-level representations. Here, we present a computational model of Persian character recognition based on deep belief networks, where increasingly more complex visual features emerge in a completely unsupervised manner by fitting a hierarchical generative model to the sensory data. Crucially, high-level internal representations emerging from unsupervised deep learning can be easily read out by a linear classifier, achieving state-of-the-art recognition accuracy. Furthermore, we tested the hypothesis that handwritten digits and letters share many common visual features: A generative model that captures the statistical structure of the letters distribution should therefore also support the recognition of written digits. To this aim, deep networks trained on Persian letters were used to build high-level representations of Persian digits, which were indeed read out with high accuracy. Our simulations show that complex visual features, such as those mediating the identification of Persian symbols, can emerge from unsupervised learning in multilayered neural networks and can support knowledge transfer across related domains.

  5. Not all visual features are created equal: early processing in letter and word recognition.

    Science.gov (United States)

    Lanthier, Sophie N; Risko, Evan F; Stolz, Jennifer A; Besner, Derek

    2009-02-01

    In four experiments, we investigated the effect of deleting specific features of letters on letter and word recognition in the context of reading aloud. Experiments 1 and 2 assessed the relative importance of vertices versus midsegments in letter recognition. Experiments 3 and 4 tested the relative importance of vertices versus midsegments in word recognition. The results demonstrate that deleting vertices is more detrimental to letter and word identification than is deleting midsegments of letters. These results converge with those of previous research on the role of vertices in object identification. Theoretical implications for early processing in reading are noted.

  6. Iris Recognition Method Based on Natural Open Eyes | Latha ...

    African Journals Online (AJOL)

    ... makes codes to feature points and figures the iris pattern by iris codes. Finally, sorts the different iris patterns by auto accommodated pattern matching method and gives the recognition results. Many experiments show the recognition rates of this method can reach 99.687% that can meet the demand of iris recognition.

  7. Model-based recognition of 3-D objects by geometric hashing technique

    International Nuclear Information System (INIS)

    Severcan, M.; Uzunalioglu, H.

    1992-09-01

    A model-based object recognition system is developed for recognition of polyhedral objects. The system consists of feature extraction, modelling and matching stages. Linear features are used for object descriptions. Lines are obtained from edges using rotation transform. For modelling and recognition process, geometric hashing method is utilized. Each object is modelled using 2-D views taken from the viewpoints on the viewing sphere. A hidden line elimination algorithm is used to find these views from the wire frame model of the objects. The recognition experiments yielded satisfactory results. (author). 8 refs, 5 figs

  8. FACE RECOGNITION BASED ON LOCAL DERIVATIVE TETRA PATTERN

    Directory of Open Access Journals (Sweden)

    A Geetha

    2017-02-01

    Full Text Available This paper proposes a new face recognition algorithm called local derivative tetra pattern (LDTrP. The new technique LDTrP is used to alleviate the face recognition rate under real-time challenges. Local derivative pattern (LDP is a directional feature extraction method to encode directional pattern features based on local derivative variations. The nth -order LDP is proposed to encode the first (n-1th order local derivative direction variations. The LDP templates extract high-order local information by encoding various distinctive spatial relationships contained in a given local region. The local tetra pattern (LTrP encodes the relationship between the reference pixel and its neighbours by using the first-order derivatives in vertical and horizontal directions. LTrP extracts values which are based on the distribution of edges which are coded using four directions. The LDTrP combines the higher order directional feature from both LDP and LTrP. Experimental results on ORL and JAFFE database show that the performance of LDTrP is consistently better than LBP, LTP and LDP for face identification under various conditions. The performance of the proposed method is measured in terms of recognition rate.

  9. Animal Recognition System Based on Convolutional Neural Network

    Directory of Open Access Journals (Sweden)

    Tibor Trnovszky

    2017-01-01

    Full Text Available In this paper, the performances of well-known image recognition methods such as Principal Component Analysis (PCA, Linear Discriminant Analysis (LDA, Local Binary Patterns Histograms (LBPH and Support Vector Machine (SVM are tested and compared with proposed convolutional neural network (CNN for the recognition rate of the input animal images. In our experiments, the overall recognition accuracy of PCA, LDA, LBPH and SVM is demonstrated. Next, the time execution for animal recognition process is evaluated. The all experimental results on created animal database were conducted. This created animal database consist of 500 different subjects (5 classes/ 100 images for each class. The experimental result shows that the PCA features provide better results as LDA and LBPH for large training set. On the other hand, LBPH is better than PCA and LDA for small training data set. For proposed CNN we have obtained a recognition accuracy of 98%. The proposed method based on CNN outperforms the state of the art methods.

  10. Face sketch recognition based on edge enhancement via deep learning

    Science.gov (United States)

    Xie, Zhenzhu; Yang, Fumeng; Zhang, Yuming; Wu, Congzhong

    2017-11-01

    In this paper,we address the face sketch recognition problem. Firstly, we utilize the eigenface algorithm to convert a sketch image into a synthesized sketch face image. Subsequently, considering the low-level vision problem in synthesized face sketch image .Super resolution reconstruction algorithm based on CNN(convolutional neural network) is employed to improve the visual effect. To be specific, we uses a lightweight super-resolution structure to learn a residual mapping instead of directly mapping the feature maps from the low-level space to high-level patch representations, which making the networks are easier to optimize and have lower computational complexity. Finally, we adopt LDA(Linear Discriminant Analysis) algorithm to realize face sketch recognition on synthesized face image before super resolution and after respectively. Extensive experiments on the face sketch database(CUFS) from CUHK demonstrate that the recognition rate of SVM(Support Vector Machine) algorithm improves from 65% to 69% and the recognition rate of LDA(Linear Discriminant Analysis) algorithm improves from 69% to 75%.What'more,the synthesized face image after super resolution can not only better describer image details such as hair ,nose and mouth etc, but also improve the recognition accuracy effectively.

  11. A modified multi-channel EMG feature for upper limb motion pattern recognition.

    Science.gov (United States)

    Tsai, An-Chih; Luh, Jer-Junn; Lin, Ta-Te

    2012-01-01

    The EMG signal is a well-known and useful biomedical signal. Much information related to muscles and human motions is included in EMG signals. Many approaches have proposed various methods that tried to recognize human motion via EMG signals. However, one of the critical problems of motion pattern recognition is that the performance of recognition is easily affected by the normalization procedure and may not work well on different days. In this paper, a modified feature of the multi-channel EMG signal is proposed and the normalization procedure is also simplified by using this modified feature. To recognize motion pattern, we applied the support vector machine (SVM) to build the motion pattern recognition model. In training and validation procedures, we used the 2-DoF exoskeleton robot arm system to do the designed pose, and the multi-channel EMG signals were obtained while the user resisted the robot. Experiment results indicate that the performance of applying the proposed feature (94.9%) is better than that of conventional features. Moreover, the performances of the recognition model, which applies the modified feature to recognize the motions on different days, are more stable than other conventional features.

  12. How can selection of biologically inspired features improve the performance of a robust object recognition model?

    Directory of Open Access Journals (Sweden)

    Masoud Ghodrati

    Full Text Available Humans can effectively and swiftly recognize objects in complex natural scenes. This outstanding ability has motivated many computational object recognition models. Most of these models try to emulate the behavior of this remarkable system. The human visual system hierarchically recognizes objects in several processing stages. Along these stages a set of features with increasing complexity is extracted by different parts of visual system. Elementary features like bars and edges are processed in earlier levels of visual pathway and as far as one goes upper in this pathway more complex features will be spotted. It is an important interrogation in the field of visual processing to see which features of an object are selected and represented by the visual cortex. To address this issue, we extended a hierarchical model, which is motivated by biology, for different object recognition tasks. In this model, a set of object parts, named patches, extracted in the intermediate stages. These object parts are used for training procedure in the model and have an important role in object recognition. These patches are selected indiscriminately from different positions of an image and this can lead to the extraction of non-discriminating patches which eventually may reduce the performance. In the proposed model we used an evolutionary algorithm approach to select a set of informative patches. Our reported results indicate that these patches are more informative than usual random patches. We demonstrate the strength of the proposed model on a range of object recognition tasks. The proposed model outperforms the original model in diverse object recognition tasks. It can be seen from the experiments that selected features are generally particular parts of target images. Our results suggest that selected features which are parts of target objects provide an efficient set for robust object recognition.

  13. An artificial intelligence approach to DNA sequence feature recognition.

    Science.gov (United States)

    Mural, R J; Einstein, J R; Guan, X; Mann, R C; Uberbacher, E C

    1992-01-01

    The ultimate goal of the Human Genome project is to extract the biologically relevant information recorded in the estimated 100,000 genes encoded by the 3 x 10(9) bases of the human genome. This necessitates development of reliable computer-based methods capable of analysing and correctly identifying genes in the vast amounts of DNA-sequence data generated. Such tools may save time and labour by simplifying, for example, screening of cDNA libraries. They may also facilitate the localization of human disease genes by identifying candidate genes in promising regions of anonymous DNA sequence.

  14. Word Recognition and Learning: Effects of Hearing Loss and Amplification Feature.

    Science.gov (United States)

    Pittman, Andrea L; Stewart, Elizabeth C; Willman, Amanda P; Odgear, Ian S

    2017-01-01

    Two amplification features were examined using auditory tasks that varied in stimulus familiarity. It was expected that the benefits of certain amplification features would increase as the familiarity with the stimuli decreased. A total of 20 children and 15 adults with normal hearing as well as 21 children and 17 adults with mild to severe hearing loss participated. Three models of ear-level devices were selected based on the quality of the high-frequency amplification or the digital noise reduction (DNR) they provided. The devices were fitted to each participant and used during testing only. Participants completed three tasks: (a) word recognition, (b) repetition and lexical decision of real and nonsense words, and (c) novel word learning. Performance improved significantly with amplification for both the children and the adults with hearing loss. Performance improved further with wideband amplification for the children more than for the adults. In steady-state noise and multitalker babble, performance decreased for both groups with little to no benefit from amplification or from the use of DNR. When compared with the listeners with normal hearing, significantly poorer performance was observed for both the children and adults with hearing loss on all tasks with few exceptions. Finally, analysis of across-task performance confirmed the hypothesis that benefit increased as the familiarity of the stimuli decreased for wideband amplification but not for DNR. However, users who prefer DNR for listening comfort are not likely to jeopardize their ability to detect and learn new information when using this feature.

  15. Method for secure electronic voting system: face recognition based approach

    Science.gov (United States)

    Alim, M. Affan; Baig, Misbah M.; Mehboob, Shahzain; Naseem, Imran

    2017-06-01

    In this paper, we propose a framework for low cost secure electronic voting system based on face recognition. Essentially Local Binary Pattern (LBP) is used for face feature characterization in texture format followed by chi-square distribution is used for image classification. Two parallel systems are developed based on smart phone and web applications for face learning and verification modules. The proposed system has two tire security levels by using person ID followed by face verification. Essentially class specific threshold is associated for controlling the security level of face verification. Our system is evaluated three standard databases and one real home based database and achieve the satisfactory recognition accuracies. Consequently our propose system provides secure, hassle free voting system and less intrusive compare with other biometrics.

  16. New approach to ECG's features recognition involving neural network

    International Nuclear Information System (INIS)

    Babloyantz, A.; Ivanov, V.V.; Zrelov, P.V.

    2001-01-01

    A new approach for the detection of slight changes in the form of the ECG signal is proposed. It is based on the approximation of raw ECG data inside each RR-interval by the expansion in polynomials of special type and on the classification of samples represented by sets of expansion coefficients using a layered feed-forward neural network. The transformation applied provides significantly simpler data structure, stability to noise and to other accidental factors. A by-product of the method is the compression of ECG data with factor 5

  17. Predicting Performance of a Face Recognition System Based on Image Quality

    NARCIS (Netherlands)

    Dutta, A.

    2015-01-01

    In this dissertation, we focus on several aspects of models that aim to predict performance of a face recognition system. Performance prediction models are commonly based on the following two types of performance predictor features: a) image quality features; and b) features derived solely from

  18. Emotion Recognition of Speech Signals Based on Filter Methods

    Directory of Open Access Journals (Sweden)

    Narjes Yazdanian

    2016-10-01

    Full Text Available Speech is the basic mean of communication among human beings.With the increase of transaction between human and machine, necessity of automatic dialogue and removing human factor has been considered. The aim of this study was to determine a set of affective features the speech signal is based on emotions. In this study system was designs that include three mains sections, features extraction, features selection and classification. After extraction of useful features such as, mel frequency cepstral coefficient (MFCC, linear prediction cepstral coefficients (LPC, perceptive linear prediction coefficients (PLP, ferment frequency, zero crossing rate, cepstral coefficients and pitch frequency, Mean, Jitter, Shimmer, Energy, Minimum, Maximum, Amplitude, Standard Deviation, at a later stage with filter methods such as Pearson Correlation Coefficient, t-test, relief and information gain, we came up with a method to rank and select effective features in emotion recognition. Then Result, are given to the classification system as a subset of input. In this classification stage, multi support vector machine are used to classify seven type of emotion. According to the results, that method of relief, together with multi support vector machine, has the most classification accuracy with emotion recognition rate of 93.94%.

  19. Perirhinal Cortex Resolves Feature Ambiguity in Configural Object Recognition and Perceptual Oddity Tasks

    Science.gov (United States)

    Bartko, Susan J.; Winters, Boyer D.; Cowell, Rosemary A.; Saksida, Lisa M.; Bussey, Timothy J.

    2007-01-01

    The perirhinal cortex (PRh) has a well-established role in object recognition memory. More recent studies suggest that PRh is also important for two-choice visual discrimination tasks. Specifically, it has been suggested that PRh contains conjunctive representations that help resolve feature ambiguity, which occurs when a task cannot easily be…

  20. Selecting Informative Features of the Helicopter and Aircraft Acoustic Signals in the Adaptive Autonomous Information Systems for Recognition

    Directory of Open Access Journals (Sweden)

    V. K. Hohlov

    2017-01-01

    Full Text Available The article forms the rationale for selecting the informative features of the helicopter and aircraft acoustic signals to solve a problem of their recognition and shows that the most informative ones are the counts of extrema in the energy spectra of the input signals, which represent non-centered random variables. An apparatus of the multiple initial regression coefficients was selected as a mathematical tool of research. The application of digital re-circulators with positive and negative feedbacks, which have the comb-like frequency characteristics, solves the problem of selecting informative features. A distinguishing feature of such an approach is easy agility of the comb frequency characteristics just through the agility of a delay value of digital signal in the feedback circuit. Adding an adaptation block to the selection block of the informative features enables us to ensure the invariance of used informative feature and counts of local extrema of the spectral power density to the airspeed of a helicopter. The paper gives reasons for the principle of adaptation and the structure of the adaptation block. To form the discriminator characteristics are used the cross-correlation statistical characteristics of the quadrature components of acoustic signal realizations, obtained by Hilbert transform. The paper proposes to provide signal recognition using a regression algorithm that allows handling the non-centered informative features and using a priori information about coefficients of initial regression of signal and noise.The simulation in Matlab Simulink has shown that selected informative features of signals in regressive processing of signal realizations of 0.5 s duration have good separability, and based on a set of 100 acoustic signal realizations in each class in full-scale conditions, has proved ensuring a correct recognition probability of 0.975, at least. The considered principles of informative features selection and adaptation can

  1. Face recognition based on depth maps and surface curvature

    Science.gov (United States)

    Gordon, Gaile G.

    1991-09-01

    This paper explores the representation of the human face by features based on the curvature of the face surface. Curature captures many features necessary to accurately describe the face, such as the shape of the forehead, jawline, and cheeks, which are not easily detected from standard intensity images. Moreover, the value of curvature at a point on the surface is also viewpoint invariant. Until recently range data of high enough resolution and accuracy to perform useful curvature calculations on the scale of the human face had been unavailable. Although several researchers have worked on the problem of interpreting range data from curved (although usually highly geometrically structured) surfaces, the main approaches have centered on segmentation by signs of mean and Gaussian curvature which have not proved sufficient in themselves for the case of the human face. This paper details the calculation of principal curvature for a particular data set, the calculation of general surface descriptors based on curvature, and the calculation of face specific descriptors based both on curvature features and a priori knowledge about the structure of the face. These face specific descriptors can be incorporated into many different recognition strategies. A system that implements one such strategy, depth template comparison, giving recognition rates between 80% and 90% is described.

  2. Extricating Manual and Non-Manual Features for Subunit Level Medical Sign Modelling in Automatic Sign Language Classification and Recognition.

    Science.gov (United States)

    R, Elakkiya; K, Selvamani

    2017-09-22

    Subunit segmenting and modelling in medical sign language is one of the important studies in linguistic-oriented and vision-based Sign Language Recognition (SLR). Many efforts were made in the precedent to focus the functional subunits from the view of linguistic syllables but the problem is implementing such subunit extraction using syllables is not feasible in real-world computer vision techniques. And also, the present recognition systems are designed in such a way that it can detect the signer dependent actions under restricted and laboratory conditions. This research paper aims at solving these two important issues (1) Subunit extraction and (2) Signer independent action on visual sign language recognition. Subunit extraction involved in the sequential and parallel breakdown of sign gestures without any prior knowledge on syllables and number of subunits. A novel Bayesian Parallel Hidden Markov Model (BPaHMM) is introduced for subunit extraction to combine the features of manual and non-manual parameters to yield better results in classification and recognition of signs. Signer independent action aims in using a single web camera for different signer behaviour patterns and for cross-signer validation. Experimental results have proved that the proposed signer independent subunit level modelling for sign language classification and recognition has shown improvement and variations when compared with other existing works.

  3. Facial Affect Recognition Using Regularized Discriminant Analysis-Based Algorithms

    Directory of Open Access Journals (Sweden)

    Cheng-Yuan Shih

    2010-01-01

    Full Text Available This paper presents a novel and effective method for facial expression recognition including happiness, disgust, fear, anger, sadness, surprise, and neutral state. The proposed method utilizes a regularized discriminant analysis-based boosting algorithm (RDAB with effective Gabor features to recognize the facial expressions. Entropy criterion is applied to select the effective Gabor feature which is a subset of informative and nonredundant Gabor features. The proposed RDAB algorithm uses RDA as a learner in the boosting algorithm. The RDA combines strengths of linear discriminant analysis (LDA and quadratic discriminant analysis (QDA. It solves the small sample size and ill-posed problems suffered from QDA and LDA through a regularization technique. Additionally, this study uses the particle swarm optimization (PSO algorithm to estimate optimal parameters in RDA. Experiment results demonstrate that our approach can accurately and robustly recognize facial expressions.

  4. New robust face recognition methods based on linear regression.

    Directory of Open Access Journals (Sweden)

    Jian-Xun Mi

    Full Text Available Nearest subspace (NS classification based on linear regression technique is a very straightforward and efficient method for face recognition. A recently developed NS method, namely the linear regression-based classification (LRC, uses downsampled face images as features to perform face recognition. The basic assumption behind this kind method is that samples from a certain class lie on their own class-specific subspace. Since there are only few training samples for each individual class, which will cause the small sample size (SSS problem, this problem gives rise to misclassification of previous NS methods. In this paper, we propose two novel LRC methods using the idea that every class-specific subspace has its unique basis vectors. Thus, we consider that each class-specific subspace is spanned by two kinds of basis vectors which are the common basis vectors shared by many classes and the class-specific basis vectors owned by one class only. Based on this concept, two classification methods, namely robust LRC 1 and 2 (RLRC 1 and 2, are given to achieve more robust face recognition. Unlike some previous methods which need to extract class-specific basis vectors, the proposed methods are developed merely based on the existence of the class-specific basis vectors but without actually calculating them. Experiments on three well known face databases demonstrate very good performance of the new methods compared with other state-of-the-art methods.

  5. Research on gesture recognition of augmented reality maintenance guiding system based on improved SVM

    Science.gov (United States)

    Zhao, Shouwei; Zhang, Yong; Zhou, Bin; Ma, Dongxi

    2014-09-01

    Interaction is one of the key techniques of augmented reality (AR) maintenance guiding system. Because of the complexity of the maintenance guiding system's image background and the high dimensionality of gesture characteristics, the whole process of gesture recognition can be divided into three stages which are gesture segmentation, gesture characteristic feature modeling and trick recognition. In segmentation stage, for solving the misrecognition of skin-like region, a segmentation algorithm combing background mode and skin color to preclude some skin-like regions is adopted. In gesture characteristic feature modeling of image attributes stage, plenty of characteristic features are analyzed and acquired, such as structure characteristics, Hu invariant moments features and Fourier descriptor. In trick recognition stage, a classifier based on Support Vector Machine (SVM) is introduced into the augmented reality maintenance guiding process. SVM is a novel learning method based on statistical learning theory, processing academic foundation and excellent learning ability, having a lot of issues in machine learning area and special advantages in dealing with small samples, non-linear pattern recognition at high dimension. The gesture recognition of augmented reality maintenance guiding system is realized by SVM after the granulation of all the characteristic features. The experimental results of the simulation of number gesture recognition and its application in augmented reality maintenance guiding system show that the real-time performance and robustness of gesture recognition of AR maintenance guiding system can be greatly enhanced by improved SVM.

  6. Two-dimensional reduction PCA: a novel approach for feature extraction, representation, and recognition

    Science.gov (United States)

    Mutelo, R. M.; Khor, L. C.; Woo, W. L.; Dlay, S. S.

    2006-01-01

    We develop a novel image feature extraction and recognition method two-dimensional reduction principal component analysis (2D-RPCA)). A two dimension image matrix contains redundancy information between columns and between rows. Conventional PCA removes redundancy by transforming the 2D image matrices into a vector where dimension reduction is done in one direction (column wise). Unlike 2DPCA, 2D-RPCA eliminates redundancies between image rows and compresses the data in rows, and finally eliminates redundancies between image columns and compress the data in columns. Therefore, 2D-RPCA has two image compression stages: firstly, it eliminates the redundancies between image rows and compresses the information optimally within a few rows. Finally, it eliminates the redundancies between image columns and compresses the information within a few columns. This sequence is selected in such a way that the recognition accuracy is optimized. As a result it has a better representation as the information is more compact in a smaller area. The classification time is reduced significantly (smaller feature matrix). Furthermore, the computational complexity of the proposed algorithm is reduced. The result is that 2D-RPCA classifies image faster, less memory storage and yields higher recognition accuracy. The ORL database is used as a benchmark. The new algorithm achieves a recognition rate of 95.0% using 9×5 feature matrix compared to the recognition rate of 93.0% with a 112×7 feature matrix for the 2DPCA method and 90.5% for PCA (Eigenfaces) using 175 principal components.

  7. Cascaded K-means convolutional feature learner and its application to face recognition

    Science.gov (United States)

    Zhou, Daoxiang; Yang, Dan; Zhang, Xiaohong; Huang, Sheng; Feng, Shu

    2017-09-01

    Currently, considerable efforts have been devoted to devise image representation. However, handcrafted methods need strong domain knowledge and show low generalization ability, and conventional feature learning methods require enormous training data and rich parameters tuning experience. A lightened feature learner is presented to solve these problems with application to face recognition, which shares similar topology architecture as a convolutional neural network. Our model is divided into three components: cascaded convolution filters bank learning layer, nonlinear processing layer, and feature pooling layer. Specifically, in the filters learning layer, we use K-means to learn convolution filters. Features are extracted via convoluting images with the learned filters. Afterward, in the nonlinear processing layer, hyperbolic tangent is employed to capture the nonlinear feature. In the feature pooling layer, to remove the redundancy information and incorporate the spatial layout, we exploit multilevel spatial pyramid second-order pooling technique to pool the features in subregions and concatenate them together as the final representation. Extensive experiments on four representative datasets demonstrate the effectiveness and robustness of our model to various variations, yielding competitive recognition results on extended Yale B and FERET. In addition, our method achieves the best identification performance on AR and labeled faces in the wild datasets among the comparative methods.

  8. Optimising chemical named entity recognition with pre-processing analytics, knowledge-rich features and heuristics.

    Science.gov (United States)

    Batista-Navarro, Riza; Rak, Rafal; Ananiadou, Sophia

    2015-01-01

    The development of robust methods for chemical named entity recognition, a challenging natural language processing task, was previously hindered by the lack of publicly available, large-scale, gold standard corpora. The recent public release of a large chemical entity-annotated corpus as a resource for the CHEMDNER track of the Fourth BioCreative Challenge Evaluation (BioCreative IV) workshop greatly alleviated this problem and allowed us to develop a conditional random fields-based chemical entity recogniser. In order to optimise its performance, we introduced customisations in various aspects of our solution. These include the selection of specialised pre-processing analytics, the incorporation of chemistry knowledge-rich features in the training and application of the statistical model, and the addition of post-processing rules. Our evaluation shows that optimal performance is obtained when our customisations are integrated into the chemical entity recogniser. When its performance is compared with that of state-of-the-art methods, under comparable experimental settings, our solution achieves competitive advantage. We also show that our recogniser that uses a model trained on the CHEMDNER corpus is suitable for recognising names in a wide range of corpora, consistently outperforming two popular chemical NER tools. The contributions resulting from this work are two-fold. Firstly, we present the details of a chemical entity recognition methodology that has demonstrated performance at a competitive, if not superior, level as that of state-of-the-art methods. Secondly, the developed suite of solutions has been made publicly available as a configurable workflow in the interoperable text mining workbench Argo. This allows interested users to conveniently apply and evaluate our solutions in the context of other chemical text mining tasks.

  9. Genetic Algorithm-based Affine Parameter Estimation for Shape Recognition

    Directory of Open Access Journals (Sweden)

    Yuxing Mao

    2014-06-01

    Full Text Available Shape recognition is a classically difficult problem because of the affine transformation between two shapes. The current study proposes an affine parameter estimation method for shape recognition based on a genetic algorithm (GA. The contributions of this study are focused on the extraction of affine-invariant features, the individual encoding scheme, and the fitness function construction policy for a GA. First, the affine-invariant characteristics of the centroid distance ratios (CDRs of any two opposite contour points to the barycentre are analysed. Using different intervals along the azimuth angle, the different numbers of CDRs of two candidate shapes are computed as representations of the shapes, respectively. Then, the CDRs are selected based on predesigned affine parameters to construct the fitness function. After that, a GA is used to search for the affine parameters with optimal matching between candidate shapes, which serve as actual descriptions of the affine transformation between the shapes. Finally, the CDRs are resampled based on the estimated parameters to evaluate the similarity of the shapes for classification. The experimental results demonstrate the robust performance of the proposed method in shape recognition with translation, scaling, rotation and distortion.

  10. [Feature extraction for breast cancer data based on geometric algebra theory and feature selection using differential evolution].

    Science.gov (United States)

    Li, Jing; Hong, Wenxue

    2014-12-01

    The feature extraction and feature selection are the important issues in pattern recognition. Based on the geometric algebra representation of vector, a new feature extraction method using blade coefficient of geometric algebra was proposed in this study. At the same time, an improved differential evolution (DE) feature selection method was proposed to solve the elevated high dimension issue. The simple linear discriminant analysis was used as the classifier. The result of the 10-fold cross-validation (10 CV) classification of public breast cancer biomedical dataset was more than 96% and proved superior to that of the original features and traditional feature extraction method.

  11. Sparse Representation Based SAR Vehicle Recognition along with Aspect Angle

    Directory of Open Access Journals (Sweden)

    Xiangwei Xing

    2014-01-01

    Full Text Available As a method of representing the test sample with few training samples from an overcomplete dictionary, sparse representation classification (SRC has attracted much attention in synthetic aperture radar (SAR automatic target recognition (ATR recently. In this paper, we develop a novel SAR vehicle recognition method based on sparse representation classification along with aspect information (SRCA, in which the correlation between the vehicle’s aspect angle and the sparse representation vector is exploited. The detailed procedure presented in this paper can be summarized as follows. Initially, the sparse representation vector of a test sample is solved by sparse representation algorithm with a principle component analysis (PCA feature-based dictionary. Then, the coefficient vector is projected onto a sparser one within a certain range of the vehicle’s aspect angle. Finally, the vehicle is classified into a certain category that minimizes the reconstruction error with the novel sparse representation vector. Extensive experiments are conducted on the moving and stationary target acquisition and recognition (MSTAR dataset and the results demonstrate that the proposed method performs robustly under the variations of depression angle and target configurations, as well as incomplete observation.

  12. Pollen Image Recognition Based on DGDB-LBP Descriptor

    Science.gov (United States)

    Han, L. P.; Xie, Y. H.

    2018-01-01

    In this paper, we propose DGDB-LBP, a local binary pattern descriptor based on the pixel blocks in the dominant gradient direction. Differing from traditional LBP and its variants, DGDB-LBP encodes by comparing the main gradient magnitude of each block rather than the single pixel value or the average of pixel blocks, in doing so, it reduces the influence of noise on pollen images and eliminates redundant and non-informative features. In order to fully describe the texture features of pollen images and analyze it under multi-scales, we propose a new sampling strategy, which uses three types of operators to extract the radial, angular and multiple texture features under different scales. Considering that the pollen images have some degree of rotation under the microscope, we propose the adaptive encoding direction, which is determined by the texture distribution of local region. Experimental results on the Pollenmonitor dataset show that the average correct recognition rate of our method is superior to other pollen recognition methods in recent years.

  13. Facial Expression Recognition Based on Facial Motion Patterns

    Directory of Open Access Journals (Sweden)

    Leila Farmohammadi

    2015-08-01

    Full Text Available Facial expression is one of the most powerful and direct mediums embedded in human beings to communicate with other individuals’ feelings and abilities. In recent years, many surveys have been carried on facial expression analysis. With developments in machine vision and artificial intelligence, facial expression recognition is considered a key technique of the developments in computer interaction of mankind and is applied in the natural interaction between human and computer, machine vision and psycho- medical therapy. In this paper, we have developed a new method to recognize facial expressions based on discovering differences of facial expressions, and consequently appointed a unique pattern to each single expression.by analyzing the image by means of a neighboring window on it, this recognition system is locally estimated. The features are extracted as binary local features; and according to changes in points of windows, facial points get a directional motion per each facial expression. Using pointy motion of all facial expressions and stablishing a ranking system, we delete additional motion points that decrease and increase, respectively, the ranking size and strenghth. Classification is provided according to the nearest neighbor. In the conclusion of the paper, the results obtained from the experiments on tatal data of Cohn-Kanade demonstrate that our proposed algorithm, compared to previous methods (hierarchical algorithm combined with several features and morphological methods as well as geometrical algorithms, has a better performance and higher reliability.

  14. Using self-organizing maps adaptive resonance theory (CARTMAP) for manufacturing feature recognition

    Science.gov (United States)

    Yu, Jason S.; Dagli, Cihan H.

    1993-10-01

    The invariant image preprocessing of moment invariants generates an invariant representation of object features which are insensitive to position, orientation, size, illusion, and contrast change. In this study ARTMAP is used for 3-D object recognition of manufacturing parts through these invariant characteristics. The analog of moment invariants created through the image preprocessing is interpreted by a binary code which is used to predict the manufacturing part through ARTMAP.

  15. Three-dimensional object recognition via integral imaging and scale invariant feature transform

    Science.gov (United States)

    Yi, Faliu; Moon, Inkyu

    2014-06-01

    We propose a three-dimensional (3D) object recognition approach via computational integral imaging and scale invariant feature transform (SIFT) that can be invariance to object changes in illumination, scale, rotation and affine. Usually, the matching between features extracted in reference object and that in computationally reconstructed image should be done for 3D object recognition. However, this process needs to alternately illustrate all of the depth images first which will affect the recognition efficiency. Considering that there are a set of elemental images with different viewpoint in integral imaging, we first recognize the object in 2D image by using five elemental images and then choose one elemental image with the most matching points from the five images. This selected image will include more information related to the reference object. Finally, we can use this selected elemental image and its neighboring elemental images which should also contain much reference object information to calculate the disparity with SIFT algorithm. Consequently, the depth of the 3D object can be achieved with stereo camera theory and the recognized 3D object can be reconstructed in computational integral imaging. This method sufficiently utilizes the different information provided by elemental images and the robust feature extraction SIFT algorithm to recognize 3D objects.

  16. Feature Selection Software to Improve Accuracy and Reduce Cost in Automated Recognition Systems

    Czech Academy of Sciences Publication Activity Database

    Somol, Petr

    2011-01-01

    Roč. 2011, č. 84 (2011), s. 54-54 ISSN 0926-4981 R&D Projects: GA MŠk 1M0572 Grant - others:GA MŠk(CZ) 2C06019 Institutional research plan: CEZ:AV0Z10750506 Keywords : feature selection * software library * machine learning Subject RIV: BD - Theory of Information http:// library .utia.cas.cz/separaty/2011/RO/somol-feature selection software to improve accuracy and reduce cost in automated recognition systems.pdf

  17. Multispectral image fusion based on fractal features

    Science.gov (United States)

    Tian, Jie; Chen, Jie; Zhang, Chunhua

    2004-01-01

    Imagery sensors have been one indispensable part of the detection and recognition systems. They are widely used to the field of surveillance, navigation, control and guide, et. However, different imagery sensors depend on diverse imaging mechanisms, and work within diverse range of spectrum. They also perform diverse functions and have diverse circumstance requires. So it is unpractical to accomplish the task of detection or recognition with a single imagery sensor under the conditions of different circumstances, different backgrounds and different targets. Fortunately, the multi-sensor image fusion technique emerged as important route to solve this problem. So image fusion has been one of the main technical routines used to detect and recognize objects from images. While, loss of information is unavoidable during fusion process, so it is always a very important content of image fusion how to preserve the useful information to the utmost. That is to say, it should be taken into account before designing the fusion schemes how to avoid the loss of useful information or how to preserve the features helpful to the detection. In consideration of these issues and the fact that most detection problems are actually to distinguish man-made objects from natural background, a fractal-based multi-spectral fusion algorithm has been proposed in this paper aiming at the recognition of battlefield targets in the complicated backgrounds. According to this algorithm, source images are firstly orthogonally decomposed according to wavelet transform theories, and then fractal-based detection is held to each decomposed image. At this step, natural background and man-made targets are distinguished by use of fractal models that can well imitate natural objects. Special fusion operators are employed during the fusion of area that contains man-made targets so that useful information could be preserved and features of targets could be extruded. The final fused image is reconstructed from the

  18. Multiple Adaptive Neuro-Fuzzy Inference System with Automatic Features Extraction Algorithm for Cervical Cancer Recognition

    Directory of Open Access Journals (Sweden)

    Mohammad Subhi Al-batah

    2014-01-01

    Full Text Available To date, cancer of uterine cervix is still a leading cause of cancer-related deaths in women worldwide. The current methods (i.e., Pap smear and liquid-based cytology (LBC to screen for cervical cancer are time-consuming and dependent on the skill of the cytopathologist and thus are rather subjective. Therefore, this paper presents an intelligent computer vision system to assist pathologists in overcoming these problems and, consequently, produce more accurate results. The developed system consists of two stages. In the first stage, the automatic features extraction (AFE algorithm is performed. In the second stage, a neuro-fuzzy model called multiple adaptive neuro-fuzzy inference system (MANFIS is proposed for recognition process. The MANFIS contains a set of ANFIS models which are arranged in parallel combination to produce a model with multi-input-multioutput structure. The system is capable of classifying cervical cell image into three groups, namely, normal, low-grade squamous intraepithelial lesion (LSIL and high-grade squamous intraepithelial lesion (HSIL. The experimental results prove the capability of the AFE algorithm to be as effective as the manual extraction by human experts, while the proposed MANFIS produces a good classification performance with 94.2% accuracy.

  19. Multiple adaptive neuro-fuzzy inference system with automatic features extraction algorithm for cervical cancer recognition.

    Science.gov (United States)

    Al-batah, Mohammad Subhi; Isa, Nor Ashidi Mat; Klaib, Mohammad Fadel; Al-Betar, Mohammed Azmi

    2014-01-01

    To date, cancer of uterine cervix is still a leading cause of cancer-related deaths in women worldwide. The current methods (i.e., Pap smear and liquid-based cytology (LBC)) to screen for cervical cancer are time-consuming and dependent on the skill of the cytopathologist and thus are rather subjective. Therefore, this paper presents an intelligent computer vision system to assist pathologists in overcoming these problems and, consequently, produce more accurate results. The developed system consists of two stages. In the first stage, the automatic features extraction (AFE) algorithm is performed. In the second stage, a neuro-fuzzy model called multiple adaptive neuro-fuzzy inference system (MANFIS) is proposed for recognition process. The MANFIS contains a set of ANFIS models which are arranged in parallel combination to produce a model with multi-input-multioutput structure. The system is capable of classifying cervical cell image into three groups, namely, normal, low-grade squamous intraepithelial lesion (LSIL) and high-grade squamous intraepithelial lesion (HSIL). The experimental results prove the capability of the AFE algorithm to be as effective as the manual extraction by human experts, while the proposed MANFIS produces a good classification performance with 94.2% accuracy.

  20. Facial Expression Recognition with Fusion Features Extracted from Salient Facial Areas

    Directory of Open Access Journals (Sweden)

    Yanpeng Liu

    2017-03-01

    Full Text Available In the pattern recognition domain, deep architectures are currently widely used and they have achieved fine results. However, these deep architectures make particular demands, especially in terms of their requirement for big datasets and GPU. Aiming to gain better results without deep networks, we propose a simplified algorithm framework using fusion features extracted from the salient areas of faces. Furthermore, the proposed algorithm has achieved a better result than some deep architectures. For extracting more effective features, this paper firstly defines the salient areas on the faces. This paper normalizes the salient areas of the same location in the faces to the same size; therefore, it can extracts more similar features from different subjects. LBP and HOG features are extracted from the salient areas, fusion features’ dimensions are reduced by Principal Component Analysis (PCA and we apply several classifiers to classify the six basic expressions at once. This paper proposes a salient areas definitude method which uses peak expressions frames compared with neutral faces. This paper also proposes and applies the idea of normalizing the salient areas to align the specific areas which express the different expressions. As a result, the salient areas found from different subjects are the same size. In addition, the gamma correction method is firstly applied on LBP features in our algorithm framework which improves our recognition rates significantly. By applying this algorithm framework, our research has gained state-of-the-art performances on CK+ database and JAFFE database.

  1. Reduced isothermal feature set for long wave infrared (LWIR) face recognition

    Science.gov (United States)

    Donoso, Ramiro; San Martín, Cesar; Hermosilla, Gabriel

    2017-06-01

    In this paper, we introduce a new concept in the thermal face recognition area: isothermal features. This consists of a feature vector built from a thermal signature that depends on the emission of the skin of the person and its temperature. A thermal signature is the appearance of the face to infrared sensors and is unique to each person. The infrared face is decomposed into isothermal regions that present the thermal features of the face. Each isothermal region is modeled as circles within a center representing the pixel of the image, and the feature vector is composed of a maximum radius of the circles at the isothermal region. This feature vector corresponds to the thermal signature of a person. The face recognition process is built using a modification of the Expectation Maximization (EM) algorithm in conjunction with a proposed probabilistic index to the classification process. Results obtained using an infrared database are compared with typical state-of-the-art techniques showing better performance, especially in uncontrolled acquisition conditions scenarios.

  2. Support vector machine-based facial-expression recognition method combining shape and appearance

    Science.gov (United States)

    Han, Eun Jung; Kang, Byung Jun; Park, Kang Ryoung; Lee, Sangyoun

    2010-11-01

    Facial expression recognition can be widely used for various applications, such as emotion-based human-machine interaction, intelligent robot interfaces, face recognition robust to expression variation, etc. Previous studies have been classified as either shape- or appearance-based recognition. The shape-based method has the disadvantage that the individual variance of facial feature points exists irrespective of similar expressions, which can cause a reduction of the recognition accuracy. The appearance-based method has a limitation in that the textural information of the face is very sensitive to variations in illumination. To overcome these problems, a new facial-expression recognition method is proposed, which combines both shape and appearance information, based on the support vector machine (SVM). This research is novel in the following three ways as compared to previous works. First, the facial feature points are automatically detected by using an active appearance model. From these, the shape-based recognition is performed by using the ratios between the facial feature points based on the facial-action coding system. Second, the SVM, which is trained to recognize the same and different expression classes, is proposed to combine two matching scores obtained from the shape- and appearance-based recognitions. Finally, a single SVM is trained to discriminate four different expressions, such as neutral, a smile, anger, and a scream. By determining the expression of the input facial image whose SVM output is at a minimum, the accuracy of the expression recognition is much enhanced. The experimental results showed that the recognition accuracy of the proposed method was better than previous researches and other fusion methods.

  3. Review of research in feature based design

    NARCIS (Netherlands)

    Salomons, O.W.; van Houten, Frederikus J.A.M.; Kals, H.J.J.

    1993-01-01

    Research in feature-based design is reviewed. Feature-based design is regarded as a key factor towards CAD/CAPP integration from a process planning point of view. From a design point of view, feature-based design offers possibilities for supporting the design process better than current CAD systems

  4. Business model for sensor-based fall recognition systems.

    Science.gov (United States)

    Fachinger, Uwe; Schöpke, Birte

    2014-01-01

    AAL systems require, in addition to sophisticated and reliable technology, adequate business models for their launch and sustainable establishment. This paper presents the basic features of alternative business models for a sensor-based fall recognition system which was developed within the context of the "Lower Saxony Research Network Design of Environments for Ageing" (GAL). The models were developed parallel to the R&D process with successive adaptation and concretization. An overview of the basic features (i.e. nine partial models) of the business model is given and the mutual exclusive alternatives for each partial model are presented. The partial models are interconnected and the combinations of compatible alternatives lead to consistent alternative business models. However, in the current state, only initial concepts of alternative business models can be deduced. The next step will be to gather additional information to work out more detailed models.

  5. A Vocal-Based Analytical Method for Goose Behaviour Recognition

    Directory of Open Access Journals (Sweden)

    Henrik Karstoft

    2012-03-01

    Full Text Available Since human-wildlife conflicts are increasing, the development of cost-effective methods for reducing damage or conflict levels is important in wildlife management. A wide range of devices to detect and deter animals causing conflict are used for this purpose, although their effectiveness is often highly variable, due to habituation to disruptive or disturbing stimuli. Automated recognition of behaviours could form a critical component of a system capable of altering the disruptive stimuli to avoid this. In this paper we present a novel method to automatically recognise goose behaviour based on vocalisations from flocks of free-living barnacle geese (Branta leucopsis. The geese were observed and recorded in a natural environment, using a shielded shotgun microphone. The classification used Support Vector Machines (SVMs, which had been trained with labeled data. Greenwood Function Cepstral Coefficients (GFCC were used as features for the pattern recognition algorithm, as they can be adjusted to the hearing capabilities of different species. Three behaviours are classified based in this approach, and the method achieves a good recognition of foraging behaviour (86–97% sensitivity, 89–98% precision and a reasonable recognition of flushing (79–86%, 66–80% and landing behaviour(73–91%, 79–92%. The Support Vector Machine has proven to be a robust classifier for this kind of classification, as generality and non-linearcapabilities are important. We conclude that vocalisations can be used to automatically detect behaviour of conflict wildlife species, and as such, may be used as an integrated part of awildlife management system.

  6. Adaptive Deep Supervised Autoencoder Based Image Reconstruction for Face Recognition

    Directory of Open Access Journals (Sweden)

    Rongbing Huang

    2016-01-01

    Full Text Available Based on a special type of denoising autoencoder (DAE and image reconstruction, we present a novel supervised deep learning framework for face recognition (FR. Unlike existing deep autoencoder which is unsupervised face recognition method, the proposed method takes class label information from training samples into account in the deep learning procedure and can automatically discover the underlying nonlinear manifold structures. Specifically, we define an Adaptive Deep Supervised Network Template (ADSNT with the supervised autoencoder which is trained to extract characteristic features from corrupted/clean facial images and reconstruct the corresponding similar facial images. The reconstruction is realized by a so-called “bottleneck” neural network that learns to map face images into a low-dimensional vector and reconstruct the respective corresponding face images from the mapping vectors. Having trained the ADSNT, a new face image can then be recognized by comparing its reconstruction image with individual gallery images, respectively. Extensive experiments on three databases including AR, PubFig, and Extended Yale B demonstrate that the proposed method can significantly improve the accuracy of face recognition under enormous illumination, pose change, and a fraction of occlusion.

  7. An Analysis of Audio Features to Develop a Human Activity Recognition Model Using Genetic Algorithms, Random Forests, and Neural Networks

    Directory of Open Access Journals (Sweden)

    Carlos E. Galván-Tejada

    2016-01-01

    Full Text Available This work presents a human activity recognition (HAR model based on audio features. The use of sound as an information source for HAR models represents a challenge because sound wave analyses generate very large amounts of data. However, feature selection techniques may reduce the amount of data required to represent an audio signal sample. Some of the audio features that were analyzed include Mel-frequency cepstral coefficients (MFCC. Although MFCC are commonly used in voice and instrument recognition, their utility within HAR models is yet to be confirmed, and this work validates their usefulness. Additionally, statistical features were extracted from the audio samples to generate the proposed HAR model. The size of the information is necessary to conform a HAR model impact directly on the accuracy of the model. This problem also was tackled in the present work; our results indicate that we are capable of recognizing a human activity with an accuracy of 85% using the HAR model proposed. This means that minimum computational costs are needed, thus allowing portable devices to identify human activities using audio as an information source.

  8. HOTS: A Hierarchy of Event-Based Time-Surfaces for Pattern Recognition.

    Science.gov (United States)

    Lagorce, Xavier; Orchard, Garrick; Galluppi, Francesco; Shi, Bertram E; Benosman, Ryad B

    2017-07-01

    This paper describes novel event-based spatio-temporal features called time-surfaces and how they can be used to create a hierarchical event-based pattern recognition architecture. Unlike existing hierarchical architectures for pattern recognition, the presented model relies on a time oriented approach to extract spatio-temporal features from the asynchronously acquired dynamics of a visual scene. These dynamics are acquired using biologically inspired frameless asynchronous event-driven vision sensors. Similarly to cortical structures, subsequent layers in our hierarchy extract increasingly abstract features using increasingly large spatio-temporal windows. The central concept is to use the rich temporal information provided by events to create contexts in the form of time-surfaces which represent the recent temporal activity within a local spatial neighborhood. We demonstrate that this concept can robustly be used at all stages of an event-based hierarchical model. First layer feature units operate on groups of pixels, while subsequent layer feature units operate on the output of lower level feature units. We report results on a previously published 36 class character recognition task and a four class canonical dynamic card pip task, achieving near 100 percent accuracy on each. We introduce a new seven class moving face recognition task, achieving 79 percent accuracy.This paper describes novel event-based spatio-temporal features called time-surfaces and how they can be used to create a hierarchical event-based pattern recognition architecture. Unlike existing hierarchical architectures for pattern recognition, the presented model relies on a time oriented approach to extract spatio-temporal features from the asynchronously acquired dynamics of a visual scene. These dynamics are acquired using biologically inspired frameless asynchronous event-driven vision sensors. Similarly to cortical structures, subsequent layers in our hierarchy extract increasingly abstract

  9. Ferrography Wear Particles Image Recognition Based on Extreme Learning Machine

    Directory of Open Access Journals (Sweden)

    Qiong Li

    2017-01-01

    Full Text Available The morphology of wear particles reflects the complex properties of wear processes involved in particle formation. Typically, the morphology of wear particles is evaluated qualitatively based on microscopy observations. This procedure relies upon the experts’ knowledge and, thus, is not always objective and cheap. With the rapid development of computer image processing technology, neural network based on traditional gradient training algorithm can be used to recognize them. However, the feedforward neural network based on traditional gradient training algorithms for image segmentation creates many issues, such as needing multiple iterations to converge and easy fall into local minimum, which restrict its development heavily. Recently, extreme learning machine (ELM for single-hidden-layer feedforward neural networks (SLFN has been attracting attentions for its faster learning speed and better generalization performance than those of traditional gradient-based learning algorithms. In this paper, we propose to employ ELM for ferrography wear particles image recognition. We extract the shape features, color features, and texture features of five typical kinds of wear particles as the input of the ELM classifier and set five types of wear particles as the output of the ELM classifier. Therefore, the novel ferrography wear particle classifier is founded based on ELM.

  10. Cardinality as a Highly Descriptive Feature in Myoelectric Pattern Recognition for Decoding Motor Volition

    Directory of Open Access Journals (Sweden)

    Max eOrtiz-Catalan

    2015-10-01

    Full Text Available Accurate descriptors of muscular activity play an important role in clinical practice and rehabilitation research. Such descriptors are features of myoelectric signals extracted from sliding time windows. A wide variety of myoelectric features have been used as inputs to pattern recognition algorithms that aim to decode motor volition. The output of these algorithms can then be used to control limb prostheses, exoskeletons, and rehabilitation therapies. In the present study, cardinality is introduced and compared with traditional time-domain (Hudgins’ set and other recently proposed myoelectric features (for example, rough entropy. Cardinality was found to consistently outperform other features, including those that are more sophisticated and computationally expensive, despite variations in sampling frequency, time window length, contraction dynamics, type and number of movements (single or simultaneous, and classification algorithms. Provided that the signal resolution is kept between 12 and 14 bits, cardinality improves myoelectric pattern recognition for the prediction of motion volition. This technology is instrumental for the rehabilitation of amputees and patients with motor impairments where myoelectric signals are viable. All code and data used in this work is available online within BioPatRec.

  11. Cardinality as a highly descriptive feature in myoelectric pattern recognition for decoding motor volition.

    Science.gov (United States)

    Ortiz-Catalan, Max

    2015-01-01

    Accurate descriptors of muscular activity play an important role in clinical practice and rehabilitation research. Such descriptors are features of myoelectric signals extracted from sliding time windows. A wide variety of myoelectric features have been used as inputs to pattern recognition algorithms that aim to decode motor volition. The output of these algorithms can then be used to control limb prostheses, exoskeletons, and rehabilitation therapies. In the present study, cardinality is introduced and compared with traditional time-domain (Hudgins' set) and other recently proposed myoelectric features (for example, rough entropy). Cardinality was found to consistently outperform other features, including those that are more sophisticated and computationally expensive, despite variations in sampling frequency, time window length, contraction dynamics, type, and number of movements (single or simultaneous), and classification algorithms. Provided that the signal resolution is kept between 12 and 14 bits, cardinality improves myoelectric pattern recognition for the prediction of motion volition. This technology is instrumental for the rehabilitation of amputees and patients with motor impairments where myoelectric signals are viable. All code and data used in this work is available online within BioPatRec.

  12. Image Classification Using Biomimetic Pattern Recognition with Convolutional Neural Networks Features.

    Science.gov (United States)

    Zhou, Liangji; Li, Qingwu; Huo, Guanying; Zhou, Yan

    2017-01-01

    As a typical deep-learning model, Convolutional Neural Networks (CNNs) can be exploited to automatically extract features from images using the hierarchical structure inspired by mammalian visual system. For image classification tasks, traditional CNN models employ the softmax function for classification. However, owing to the limited capacity of the softmax function, there are some shortcomings of traditional CNN models in image classification. To deal with this problem, a new method combining Biomimetic Pattern Recognition (BPR) with CNNs is proposed for image classification. BPR performs class recognition by a union of geometrical cover sets in a high-dimensional feature space and therefore can overcome some disadvantages of traditional pattern recognition. The proposed method is evaluated on three famous image classification benchmarks, that is, MNIST, AR, and CIFAR-10. The classification accuracies of the proposed method for the three datasets are 99.01%, 98.40%, and 87.11%, respectively, which are much higher in comparison with the other four methods in most cases.

  13. Robust and Effective Component-based Banknote Recognition for the Blind.

    Science.gov (United States)

    Hasanuzzaman, Faiz M; Yang, Xiaodong; Tian, Yingli

    2012-11-01

    We develop a novel camera-based computer vision technology to automatically recognize banknotes for assisting visually impaired people. Our banknote recognition system is robust and effective with the following features: 1) high accuracy: high true recognition rate and low false recognition rate, 2) robustness: handles a variety of currency designs and bills in various conditions, 3) high efficiency: recognizes banknotes quickly, and 4) ease of use: helps blind users to aim the target for image capture. To make the system robust to a variety of conditions including occlusion, rotation, scaling, cluttered background, illumination change, viewpoint variation, and worn or wrinkled bills, we propose a component-based framework by using Speeded Up Robust Features (SURF). Furthermore, we employ the spatial relationship of matched SURF features to detect if there is a bill in the camera view. This process largely alleviates false recognition and can guide the user to correctly aim at the bill to be recognized. The robustness and generalizability of the proposed system is evaluated on a dataset including both positive images (with U.S. banknotes) and negative images (no U.S. banknotes) collected under a variety of conditions. The proposed algorithm, achieves 100% true recognition rate and 0% false recognition rate. Our banknote recognition system is also tested by blind users.

  14. Reverberant speech recognition combining deep neural networks and deep autoencoders augmented with a phone-class feature

    Science.gov (United States)

    Mimura, Masato; Sakai, Shinsuke; Kawahara, Tatsuya

    2015-12-01

    We propose an approach to reverberant speech recognition adopting deep learning in the front-end as well as b a c k-e n d o f a r e v e r b e r a n t s p e e c h r e c o g n i t i o n s y s t e m, a n d a n o v e l m e t h o d t o i m p r o v e t h e d e r e v e r b e r a t i o n p e r f o r m a n c e of the front-end network using phone-class information. At the front-end, we adopt a deep autoencoder (DAE) for enhancing the speech feature parameters, and speech recognition is performed in the back-end using DNN-HMM acoustic models trained on multi-condition data. The system was evaluated through the ASR task in the Reverb Challenge 2014. The DNN-HMM system trained on the multi-condition training set achieved a conspicuously higher word accuracy compared to the MLLR-adapted GMM-HMM system trained on the same data. Furthermore, feature enhancement with the deep autoencoder contributed to the improvement of recognition accuracy especially in the more adverse conditions. While the mapping between reverberant and clean speech in DAE-based dereverberation is conventionally conducted only with the acoustic information, we presume the mapping is also dependent on the phone information. Therefore, we propose a new scheme (pDAE), which augments a phone-class feature to the standard acoustic features as input. Two types of the phone-class feature are investigated. One is the hard recognition result of monophones, and the other is a soft representation derived from the posterior outputs of monophone DNN. The augmented feature in either type results in a significant improvement (7-8 % relative) from the standard DAE.

  15. Distribution-based dimensionality reduction applied to articulated motion recognition.

    Science.gov (United States)

    Nayak, Sunita; Sarkar, Sudeep; Loeding, Barbara

    2009-05-01

    Some articulated motion representations rely on frame-wise abstractions of the statistical distribution of low-level features such as orientation, color, or relational distributions. As configuration among parts changes with articulated motion, the distribution changes, tracing a trajectory in the latent space of distributions, which we call the configuration space. These trajectories can then be used for recognition using standard techniques such as dynamic time warping. The core theory in this paper concerns embedding the frame-wise distributions, which can be looked upon as probability functions, into a low-dimensional space so that we can estimate various meaningful probabilistic distances such as the Chernoff, Bhattacharya, Matusita, Kullback-Leibler (KL) or symmetric-KL distances based on dot products between points in this space. Apart from computational advantages, this representation also affords speed-normalized matching of motion signatures. Speed normalized representations can be formed by interpolating the configuration trajectories along their arc lengths, without using any knowledge of the temporal scale variations between the sequences. We experiment with five different probabilistic distance measures and show the usefulness of the representation in three different contexts-sign recognition (with large number of possible classes), gesture recognition (with person variations), and classification of human-human interaction sequences (with segmentation problems). We find the importance of using the right distance measure for each situation. The low-dimensional embedding makes matching two to three times faster, while achieving recognition accuracies that are close to those obtained without using a low-dimensional embedding. We also empirically establish the robustness of the representation with respect to low-level parameters, embedding parameters, and temporal-scale parameters.

  16. Feature selection for speech emotion recognition in Spanish and Basque: on the use of machine learning to improve human-computer interaction.

    Science.gov (United States)

    Arruti, Andoni; Cearreta, Idoia; Alvarez, Aitor; Lazkano, Elena; Sierra, Basilio

    2014-01-01

    Study of emotions in human-computer interaction is a growing research area. This paper shows an attempt to select the most significant features for emotion recognition in spoken Basque and Spanish Languages using different methods for feature selection. RekEmozio database was used as the experimental data set. Several Machine Learning paradigms were used for the emotion classification task. Experiments were executed in three phases, using different sets of features as classification variables in each phase. Moreover, feature subset selection was applied at each phase in order to seek for the most relevant feature subset. The three phases approach was selected to check the validity of the proposed approach. Achieved results show that an instance-based learning algorithm using feature subset selection techniques based on evolutionary algorithms is the best Machine Learning paradigm in automatic emotion recognition, with all different feature sets, obtaining a mean of 80,05% emotion recognition rate in Basque and a 74,82% in Spanish. In order to check the goodness of the proposed process, a greedy searching approach (FSS-Forward) has been applied and a comparison between them is provided. Based on achieved results, a set of most relevant non-speaker dependent features is proposed for both languages and new perspectives are suggested.

  17. Arabic sign language recognition based on HOG descriptor

    Science.gov (United States)

    Ben Jmaa, Ahmed; Mahdi, Walid; Ben Jemaa, Yousra; Ben Hamadou, Abdelmajid

    2017-02-01

    We present in this paper a new approach for Arabic sign language (ArSL) alphabet recognition using hand gesture analysis. This analysis consists in extracting a histogram of oriented gradient (HOG) features from a hand image and then using them to generate an SVM Models. Which will be used to recognize the ArSL alphabet in real-time from hand gesture using a Microsoft Kinect camera. Our approach involves three steps: (i) Hand detection and localization using a Microsoft Kinect camera, (ii) hand segmentation and (iii) feature extraction using Arabic alphabet recognition. One each input image first obtained by using a depth sensor, we apply our method based on hand anatomy to segment hand and eliminate all the errors pixels. This approach is invariant to scale, to rotation and to translation of the hand. Some experimental results show the effectiveness of our new approach. Experiment revealed that the proposed ArSL system is able to recognize the ArSL with an accuracy of 90.12%.

  18. Recognition of Aircraft Engine Sound Based on GMM-UBM Model

    Directory of Open Access Journals (Sweden)

    Yuan Shuai

    2017-01-01

    Full Text Available Gaussian mixture model-universal background model (GMM-UBM is a commonly-used speaker recognition technology, and which has achieved good effect for detection speaker’s sound. In this paper, we explore GMM-UBM method for use with abnormal aircraft engine sound detection. We designed a GMM-UBM based aircraft engine sound recognition system, which extracts MFCC feature parameters and trains the GMM-UBM models using maximum a posteriori (MAP adaptive algorithm. Experimental results show the GMM-UBM based aircraft engine sound recognition system can achieve higher recognize rate in real-word aircraft engine sound test.

  19. View based approach to forensic face recognition

    NARCIS (Netherlands)

    Dutta, A.; van Rootseler, R.T.A.; Veldhuis, Raymond N.J.; Spreeuwers, Lieuwe Jan

    Face recognition is a challenging problem for surveillance view images commonly encountered in a forensic face recognition case. One approach to deal with a non-frontal test image is to synthesize the corresponding frontal view image and compare it with frontal view reference images. However, it is

  20. Exemplar-based Face Recognition from Video

    DEFF Research Database (Denmark)

    Krüger, Volker; Zhou, Shaohua; Chellappa, Rama

    2005-01-01

    The ability to integrate information over time in order to come to a conclusion is a strength of a cognitive system. It allows the cognitive system to verify insecure observations: This is the case when the data is noisy or the conditions are non-optimal exploit general knowledge about spatio......-temporal relations: This allows the system to use dynamics as well as to generate warnings when 'implausible' situations occur or to circumvent these altogether. We have studied the effectiveness of temporal integration for recognition purposes by using the face recognition as an example problem. Face recognition...... is a prominent problem and has been studied more extensively than almost any other recognition problem. An observation is that face recognition works well in ideal conditions. If those conditions, however, are not met, then all present algorithms break down disgracefully. This probelm appears to be general...

  1. Flexible Piezoelectric Sensor-Based Gait Recognition

    Directory of Open Access Journals (Sweden)

    Youngsu Cha

    2018-02-01

    Full Text Available Most motion recognition research has required tight-fitting suits for precise sensing. However, tight-suit systems have difficulty adapting to real applications, because people normally wear loose clothes. In this paper, we propose a gait recognition system with flexible piezoelectric sensors in loose clothing. The gait recognition system does not directly sense lower-body angles. It does, however, detect the transition between standing and walking. Specifically, we use the signals from the flexible sensors attached to the knee and hip parts on loose pants. We detect the periodic motion component using the discrete time Fourier series from the signal during walking. We adapt the gait detection method to a real-time patient motion and posture monitoring system. In the monitoring system, the gait recognition operates well. Finally, we test the gait recognition system with 10 subjects, for which the proposed system successfully detects walking with a success rate over 93 %.

  2. Autonomous facial recognition system inspired by human visual system based logarithmical image visualization technique

    Science.gov (United States)

    Wan, Qianwen; Panetta, Karen; Agaian, Sos

    2017-05-01

    Autonomous facial recognition system is widely used in real-life applications, such as homeland border security, law enforcement identification and authentication, and video-based surveillance analysis. Issues like low image quality, non-uniform illumination as well as variations in poses and facial expressions can impair the performance of recognition systems. To address the non-uniform illumination challenge, we present a novel robust autonomous facial recognition system inspired by the human visual system based, so called, logarithmical image visualization technique. In this paper, the proposed method, for the first time, utilizes the logarithmical image visualization technique coupled with the local binary pattern to perform discriminative feature extraction for facial recognition system. The Yale database, the Yale-B database and the ATT database are used for computer simulation accuracy and efficiency testing. The extensive computer simulation demonstrates the method's efficiency, accuracy, and robustness of illumination invariance for facial recognition.

  3. Infrared and visible fusion face recognition based on NSCT domain

    Science.gov (United States)

    Xie, Zhihua; Zhang, Shuai; Liu, Guodong; Xiong, Jinquan

    2018-01-01

    Visible face recognition systems, being vulnerable to illumination, expression, and pose, can not achieve robust performance in unconstrained situations. Meanwhile, near infrared face images, being light- independent, can avoid or limit the drawbacks of face recognition in visible light, but its main challenges are low resolution and signal noise ratio (SNR). Therefore, near infrared and visible fusion face recognition has become an important direction in the field of unconstrained face recognition research. In this paper, a novel fusion algorithm in non-subsampled contourlet transform (NSCT) domain is proposed for Infrared and visible face fusion recognition. Firstly, NSCT is used respectively to process the infrared and visible face images, which exploits the image information at multiple scales, orientations, and frequency bands. Then, to exploit the effective discriminant feature and balance the power of high-low frequency band of NSCT coefficients, the local Gabor binary pattern (LGBP) and Local Binary Pattern (LBP) are applied respectively in different frequency parts to obtain the robust representation of infrared and visible face images. Finally, the score-level fusion is used to fuse the all the features for final classification. The visible and near infrared face recognition is tested on HITSZ Lab2 visible and near infrared face database. Experiments results show that the proposed method extracts the complementary features of near-infrared and visible-light images and improves the robustness of unconstrained face recognition.

  4. A New Framework of Human Interaction Recognition Based on Multiple Stage Probability Fusion

    Directory of Open Access Journals (Sweden)

    Xiaofei Ji

    2017-06-01

    Full Text Available Visual-based human interactive behavior recognition is a challenging research topic in computer vision. There exist some important problems in the current interaction recognition algorithms, such as very complex feature representation and inaccurate feature extraction induced by wrong human body segmentation. In order to solve these problems, a novel human interaction recognition method based on multiple stage probability fusion is proposed in this paper. According to the human body’s contact in interaction as a cut-off point, the process of the interaction can be divided into three stages: start stage, execution stage and end stage. Two persons’ motions are respectively extracted and recognizes in the start stage and the finish stage when there is no contact between those persons. The two persons’ motion is extracted as a whole and recognized in the execution stage. In the recognition process, the final recognition results are obtained by the weighted fusing these probabilities in different stages. The proposed method not only simplifies the extraction and representation of features, but also avoids the wrong feature extraction caused by occlusion. Experiment results on the UT-interaction dataset demonstrated that the proposed method results in a better performance than other recent interaction recognition methods.

  5. Subauditory Speech Recognition based on EMG/EPG Signals

    Science.gov (United States)

    Jorgensen, Charles; Lee, Diana Dee; Agabon, Shane; Lau, Sonie (Technical Monitor)

    2003-01-01

    Sub-vocal electromyogram/electro palatogram (EMG/EPG) signal classification is demonstrated as a method for silent speech recognition. Recorded electrode signals from the larynx and sublingual areas below the jaw are noise filtered and transformed into features using complex dual quad tree wavelet transforms. Feature sets for six sub-vocally pronounced words are trained using a trust region scaled conjugate gradient neural network. Real time signals for previously unseen patterns are classified into categories suitable for primitive control of graphic objects. Feature construction, recognition accuracy and an approach for extension of the technique to a variety of real world application areas are presented.

  6. Speech Emotion Feature Selection Method Based on Contribution Analysis Algorithm of Neural Network

    International Nuclear Information System (INIS)

    Wang Xiaojia; Mao Qirong; Zhan Yongzhao

    2008-01-01

    There are many emotion features. If all these features are employed to recognize emotions, redundant features may be existed. Furthermore, recognition result is unsatisfying and the cost of feature extraction is high. In this paper, a method to select speech emotion features based on contribution analysis algorithm of NN is presented. The emotion features are selected by using contribution analysis algorithm of NN from the 95 extracted features. Cluster analysis is applied to analyze the effectiveness for the features selected, and the time of feature extraction is evaluated. Finally, 24 emotion features selected are used to recognize six speech emotions. The experiments show that this method can improve the recognition rate and the time of feature extraction

  7. Own- and Other-Race Face Identity Recognition in Children: The Effects of Pose and Feature Composition

    Science.gov (United States)

    Anzures, Gizelle; Kelly, David J.; Pascalis, Olivier; Quinn, Paul C.; Slater, Alan M.; de Viviés, Xavier; Lee, Kang

    2014-01-01

    We used a matching-to-sample task and manipulated facial pose and feature composition to examine the other-race effect (ORE) in face identity recognition between 5 and 10 years of age. Overall, the present findings provide a genuine measure of own- and other-race face identity recognition in children that is independent of photographic and image…

  8. The Word Shape Hypothesis Re-Examined: Evidence for an External Feature Advantage in Visual Word Recognition

    Science.gov (United States)

    Beech, John R.; Mayall, Kate A.

    2005-01-01

    This study investigates the relative roles of internal and external letter features in word recognition. In Experiment 1 the efficacy of outer word fragments (words with all their horizontal internal features removed) was compared with inner word fragments (words with their outer features removed) as primes in a forward masking paradigm. These…

  9. SIFT Based Vein Recognition Models: Analysis and Improvement

    Directory of Open Access Journals (Sweden)

    Guoqing Wang

    2017-01-01

    Full Text Available Scale-Invariant Feature Transform (SIFT is being investigated more and more to realize a less-constrained hand vein recognition system. Contrast enhancement (CE, compensating for deficient dynamic range aspects, is a must for SIFT based framework to improve the performance. However, evidence of negative influence on SIFT matching brought by CE is analysed by our experiments. We bring evidence that the number of extracted keypoints resulting by gradient based detectors increases greatly with different CE methods, while on the other hand the matching result of extracted invariant descriptors is negatively influenced in terms of Precision-Recall (PR and Equal Error Rate (EER. Rigorous experiments with state-of-the-art and other CE adopted in published SIFT based hand vein recognition system demonstrate the influence. What is more, an improved SIFT model by importing the kernel of RootSIFT and Mirror Match Strategy into a unified framework is proposed to make use of the positive keypoints change and make up for the negative influence brought by CE.

  10. Automatic recognition of severity level for diagnosis of diabetic retinopathy using deep visual features.

    Science.gov (United States)

    Abbas, Qaisar; Fondon, Irene; Sarmiento, Auxiliadora; Jiménez, Soledad; Alemany, Pedro

    2017-11-01

    Diabetic retinopathy (DR) is leading cause of blindness among diabetic patients. Recognition of severity level is required by ophthalmologists to early detect and diagnose the DR. However, it is a challenging task for both medical experts and computer-aided diagnosis systems due to requiring extensive domain expert knowledge. In this article, a novel automatic recognition system for the five severity level of diabetic retinopathy (SLDR) is developed without performing any pre- and post-processing steps on retinal fundus images through learning of deep visual features (DVFs). These DVF features are extracted from each image by using color dense in scale-invariant and gradient location-orientation histogram techniques. To learn these DVF features, a semi-supervised multilayer deep-learning algorithm is utilized along with a new compressed layer and fine-tuning steps. This SLDR system was evaluated and compared with state-of-the-art techniques using the measures of sensitivity (SE), specificity (SP) and area under the receiving operating curves (AUC). On 750 fundus images (150 per category), the SE of 92.18%, SP of 94.50% and AUC of 0.924 values were obtained on average. These results demonstrate that the SLDR system is appropriate for early detection of DR and provide an effective treatment for prediction type of diabetes.

  11. Comparison of Feature Learning Methods for Human Activity Recognition Using Wearable Sensors

    Directory of Open Access Journals (Sweden)

    Frédéric Li

    2018-02-01

    Full Text Available Getting a good feature representation of data is paramount for Human Activity Recognition (HAR using wearable sensors. An increasing number of feature learning approaches—in particular deep-learning based—have been proposed to extract an effective feature representation by analyzing large amounts of data. However, getting an objective interpretation of their performances faces two problems: the lack of a baseline evaluation setup, which makes a strict comparison between them impossible, and the insufficiency of implementation details, which can hinder their use. In this paper, we attempt to address both issues: we firstly propose an evaluation framework allowing a rigorous comparison of features extracted by different methods, and use it to carry out extensive experiments with state-of-the-art feature learning approaches. We then provide all the codes and implementation details to make both the reproduction of the results reported in this paper and the re-use of our framework easier for other researchers. Our studies carried out on the OPPORTUNITY and UniMiB-SHAR datasets highlight the effectiveness of hybrid deep-learning architectures involving convolutional and Long-Short-Term-Memory (LSTM to obtain features characterising both short- and long-term time dependencies in the data.

  12. Feature binding in visual short term memory: A General Recognition Theory analysis.

    Science.gov (United States)

    Fitousi, Daniel

    2017-05-23

    Creating and maintaining accurate bindings of elementary features (e.g., color and shape) in visual short-term memory (VSTM) is fundamental for veridical perception. How are low-level features bound in memory? The present work harnessed a multivariate model of perception - the General Recognition Theory (GRT) - to unravel the internal representations underlying feature binding in VSTM. On each trial, preview and target colored shapes were presented in succession, appearing in either repeated or altered spatial locations. Participants gave two same/different responses: one with respect to color and one with respect to shape. Converging GRT analyses on the accuracy confusion matrices provided substantial evidence for binding in the form of violations of perceptual independence at the level of the individual stimulus, such that positive correlations were obtained when both features repeated or alternated together, while negative correlations were obtained when one feature repeated and the other alternated. This "cloverleaf" GRT pattern of binding was similar whether the spatial location of the preview and target repeated or altered. The current results are consistent with: (a) the discrete memory "slots" model of VSTM, and (b) the notion that spatial location is not necessary for the formation of "object files." The GRT approach presented here offers a viable quantitative model for testing various questions regarding feature binding in VSTM.

  13. Deep Visual Attributes vs. Hand-Crafted Audio Features on Multidomain Speech Emotion Recognition

    Directory of Open Access Journals (Sweden)

    Michalis Papakostas

    2017-06-01

    Full Text Available Emotion recognition from speech may play a crucial role in many applications related to human–computer interaction or understanding the affective state of users in certain tasks, where other modalities such as video or physiological parameters are unavailable. In general, a human’s emotions may be recognized using several modalities such as analyzing facial expressions, speech, physiological parameters (e.g., electroencephalograms, electrocardiograms etc. However, measuring of these modalities may be difficult, obtrusive or require expensive hardware. In that context, speech may be the best alternative modality in many practical applications. In this work we present an approach that uses a Convolutional Neural Network (CNN functioning as a visual feature extractor and trained using raw speech information. In contrast to traditional machine learning approaches, CNNs are responsible for identifying the important features of the input thus, making the need of hand-crafted feature engineering optional in many tasks. In this paper no extra features are required other than the spectrogram representations and hand-crafted features were only extracted for validation purposes of our method. Moreover, it does not require any linguistic model and is not specific to any particular language. We compare the proposed approach using cross-language datasets and demonstrate that it is able to provide superior results vs. traditional ones that use hand-crafted features.

  14. Person Recognition System Based on a Combination of Body Images from Visible Light and Thermal Cameras.

    Science.gov (United States)

    Nguyen, Dat Tien; Hong, Hyung Gil; Kim, Ki Wan; Park, Kang Ryoung

    2017-03-16

    The human body contains identity information that can be used for the person recognition (verification/recognition) problem. In this paper, we propose a person recognition method using the information extracted from body images. Our research is novel in the following three ways compared to previous studies. First, we use the images of human body for recognizing individuals. To overcome the limitations of previous studies on body-based person recognition that use only visible light images for recognition, we use human body images captured by two different kinds of camera, including a visible light camera and a thermal camera. The use of two different kinds of body image helps us to reduce the effects of noise, background, and variation in the appearance of a human body. Second, we apply a state-of-the art method, called convolutional neural network (CNN) among various available methods, for image features extraction in order to overcome the limitations of traditional hand-designed image feature extraction methods. Finally, with the extracted image features from body images, the recognition task is performed by measuring the distance between the input and enrolled samples. The experimental results show that the proposed method is efficient for enhancing recognition accuracy compared to systems that use only visible light or thermal images of the human body.

  15. Automatic solar feature detection using image processing and pattern recognition techniques

    Science.gov (United States)

    Qu, Ming

    The objective of the research in this dissertation is to develop a software system to automatically detect and characterize solar flares, filaments and Corona Mass Ejections (CMEs), the core of so-called solar activity. These tools will assist us to predict space weather caused by violent solar activity. Image processing and pattern recognition techniques are applied to this system. For automatic flare detection, the advanced pattern recognition techniques such as Multi-Layer Perceptron (MLP), Radial Basis Function (RBF), and Support Vector Machine (SVM) are used. By tracking the entire process of flares, the motion properties of two-ribbon flares are derived automatically. In the applications of the solar filament detection, the Stabilized Inverse Diffusion Equation (SIDE) is used to enhance and sharpen filaments; a new method for automatic threshold selection is proposed to extract filaments from background; an SVM classifier with nine input features is used to differentiate between sunspots and filaments. Once a filament is identified, morphological thinning, pruning, and adaptive edge linking methods are applied to determine filament properties. Furthermore, a filament matching method is proposed to detect filament disappearance. The automatic detection and characterization of flares and filaments have been successfully applied on Halpha full-disk images that are continuously obtained at Big Bear Solar Observatory (BBSO). For automatically detecting and classifying CMEs, the image enhancement, segmentation, and pattern recognition techniques are applied to Large Angle Spectrometric Coronagraph (LASCO) C2 and C3 images. The processed LASCO and BBSO images are saved to file archive, and the physical properties of detected solar features such as intensity and speed are recorded in our database. Researchers are able to access the solar feature database and analyze the solar data efficiently and effectively. The detection and characterization system greatly improves

  16. Visual Thing Recognition with Binary Scale-Invariant Feature Transform and Support Vector Machine Classifiers Using Color Information

    OpenAIRE

    Wei-Jong Yang; Wei-Hau Du; Pau-Choo Chang; Jar-Ferr Yang; Pi-Hsia Hung

    2017-01-01

    The demands of smart visual thing recognition in various devices have been increased rapidly for daily smart production, living and learning systems in recent years. This paper proposed a visual thing recognition system, which combines binary scale-invariant feature transform (SIFT), bag of words model (BoW), and support vector machine (SVM) by using color information. Since the traditional SIFT features and SVM classifiers only use the gray information, color information is still an importan...

  17. RGB-D-T based Face Recognition

    DEFF Research Database (Denmark)

    Nikisins, Olegs; Nasrollahi, Kamal; Greitans, Modris

    2014-01-01

    Facial images are of critical importance in many real-world applications from gaming to surveillance. The current literature on facial image analysis, from face detection to face and facial expression recognition, are mainly performed in either RGB, Depth (D), or both of these modalities. But......, such analyzes have rarely included Thermal (T) modality. This paper paves the way for performing such facial analyzes using synchronized RGB-D-T facial images by introducing a database of 51 persons including facial images of different rotations, illuminations, and expressions. Furthermore, a face recognition...... algorithm has been developed to use these images. The experimental results show that face recognition using such three modalities provides better results compared to face recognition in any of such modalities in most of the cases....

  18. A biometric identification system based on eigenpalm and eigenfinger features.

    Science.gov (United States)

    Ribaric, Slobodan; Fratric, Ivan

    2005-11-01

    This paper presents a multimodal biometric identification system based on the features of the human hand. We describe a new biometric approach to personal identification using eigenfinger and eigenpalm features, with fusion applied at the matching-score level. The identification process can be divided into the following phases: capturing the image; preprocessing; extracting and normalizing the palm and strip-like finger subimages; extracting the eigenpalm and eigenfinger features based on the K-L transform; matching and fusion; and, finally, a decision based on the (k, l)-NN classifier and thresholding. The system was tested on a database of 237 people (1,820 hand images). The experimental results showed the effectiveness of the system in terms of the recognition rate (100 percent), the equal error rate (EER = 0.58 percent), and the total error rate (TER = 0.72 percent).

  19. A knowledge-based approach for recognition of handwritten Pitman ...

    Indian Academy of Sciences (India)

    The paper describes a knowledge-based approach for the recognition of PSL strokes. Information about location and the direction of the starting point and final point of strokes are considered the knowledge base for recognition of strokes. The work comprises preprocessing, determination of starting and final points, ...

  20. Implicit Recognition Based on Lateralized Perceptual Fluency

    Directory of Open Access Journals (Sweden)

    Iliana M. Vargas

    2012-02-01

    Full Text Available In some circumstances, accurate recognition of repeated images in an explicit memory test is driven by implicit memory. We propose that this “implicit recognition” results from perceptual fluency that influences responding without awareness of memory retrieval. Here we examined whether recognition would vary if images appeared in the same or different visual hemifield during learning and testing. Kaleidoscope images were briefly presented left or right of fixation during divided-attention encoding. Presentation in the same visual hemifield at test produced higher recognition accuracy than presentation in the opposite visual hemifield, but only for guess responses. These correct guesses likely reflect a contribution from implicit recognition, given that when the stimulated visual hemifield was the same at study and test, recognition accuracy was higher for guess responses than for responses with any level of confidence. The dramatic difference in guessing accuracy as a function of lateralized perceptual overlap between study and test suggests that implicit recognition arises from memory storage in visual cortical networks that mediate repetition-induced fluency increments.

  1. Feature extraction for deep neural networks based on decision boundaries

    Science.gov (United States)

    Woo, Seongyoun; Lee, Chulhee

    2017-05-01

    Feature extraction is a process used to reduce data dimensions using various transforms while preserving the discriminant characteristics of the original data. Feature extraction has been an important issue in pattern recognition since it can reduce the computational complexity and provide a simplified classifier. In particular, linear feature extraction has been widely used. This method applies a linear transform to the original data to reduce the data dimensions. The decision boundary feature extraction method (DBFE) retains only informative directions for discriminating among the classes. DBFE has been applied to various parametric and non-parametric classifiers, which include the Gaussian maximum likelihood classifier (GML), the k-nearest neighbor classifier, support vector machines (SVM) and neural networks. In this paper, we apply DBFE to deep neural networks. This algorithm is based on the nonparametric version of DBFE, which was developed for neural networks. Experimental results with the UCI database show improved classification accuracy with reduced dimensionality.

  2. Eye movement identification based on accumulated time feature

    Science.gov (United States)

    Guo, Baobao; Wu, Qiang; Sun, Jiande; Yan, Hua

    2017-06-01

    Eye movement is a new kind of feature for biometrical recognition, it has many advantages compared with other features such as fingerprint, face, and iris. It is not only a sort of static characteristics, but also a combination of brain activity and muscle behavior, which makes it effective to prevent spoofing attack. In addition, eye movements can be incorporated with faces, iris and other features recorded from the face region into multimode systems. In this paper, we do an exploring study on eye movement identification based on the eye movement datasets provided by Komogortsev et al. in 2011 with different classification methods. The time of saccade and fixation are extracted from the eye movement data as the eye movement features. Furthermore, the performance analysis was conducted on different classification methods such as the BP, RBF, ELMAN and SVM in order to provide a reference to the future research in this field.

  3. HUMAN IDENTIFICATION BASED ON EXTRACTED GAIT FEATURES

    OpenAIRE

    Hu Ng; Hau-Lee Ton; Wooi-Haw Tan; Timothy Tzen-Vun Yap; Pei-Fen Chong; Junaidi Abdullah

    2011-01-01

    This paper presents a human identification system based on automatically extracted gait features. The proposed approach consists of three parts: extraction of human gait features from enhanced human silhouette, smoothing process on extracted gait features and classification by three classification techniques: fuzzy k- nearest neighbour, linear discriminate analysis and linear support vector machine. The gait features extracted are height, width, crotch height, step-size of the human silhouett...

  4. An MPCA/LDA Based Dimensionality Reduction Algorithm for Face Recognition

    Directory of Open Access Journals (Sweden)

    Jun Huang

    2014-01-01

    Full Text Available We proposed a face recognition algorithm based on both the multilinear principal component analysis (MPCA and linear discriminant analysis (LDA. Compared with current traditional existing face recognition methods, our approach treats face images as multidimensional tensor in order to find the optimal tensor subspace for accomplishing dimension reduction. The LDA is used to project samples to a new discriminant feature space, while the K nearest neighbor (KNN is adopted for sample set classification. The results of our study and the developed algorithm are validated with face databases ORL, FERET, and YALE and compared with PCA, MPCA, and PCA + LDA methods, which demonstrates an improvement in face recognition accuracy.

  5. EMG Pattern Recognition based on Evidence Accumulation for Prosthesis Control

    Energy Technology Data Exchange (ETDEWEB)

    Lee, S.P. [Daewoo Electronics Co., Ltd., Seoul (Korea, Republic of); Park, S.H. [Yonsei University, Seoul (Korea, Republic of)

    1997-12-01

    We present a method of electromyography(EMG) pattern recognition to identify motion commands for the control of a prosthetic arm by evidence accumulation with multiple parameters. Integral absolute value, variance, autoregressive(AR) model coefficients, linear cepstrum coefficients, and adaptive cepstrum vector are extracted as feature parameters from several time segments of the EMG signals. Pattern recognition is carried out through the evidence accumulation procedure using the distances measured with reference parameters. A fuzzy mapping function is designed to transform the distances for the application of the evidence accumulation method. Results are presented to support the feasibility of the suggested approach for EMG pattern recognition. (author). 29 refs., 11 figs., 7 tabs.

  6. Enhanced Gender Recognition System Using an Improved Histogram of Oriented Gradient (HOG) Feature from Quality Assessment of Visible Light and Thermal Images of the Human Body.

    Science.gov (United States)

    Nguyen, Dat Tien; Park, Kang Ryoung

    2016-07-21

    With higher demand from users, surveillance systems are currently being designed to provide more information about the observed scene, such as the appearance of objects, types of objects, and other information extracted from detected objects. Although the recognition of gender of an observed human can be easily performed using human perception, it remains a difficult task when using computer vision system images. In this paper, we propose a new human gender recognition method that can be applied to surveillance systems based on quality assessment of human areas in visible light and thermal camera images. Our research is novel in the following two ways: First, we utilize the combination of visible light and thermal images of the human body for a recognition task based on quality assessment. We propose a quality measurement method to assess the quality of image regions so as to remove the effects of background regions in the recognition system. Second, by combining the features extracted using the histogram of oriented gradient (HOG) method and the measured qualities of image regions, we form a new image features, called the weighted HOG (wHOG), which is used for efficient gender recognition. Experimental results show that our method produces more accurate estimation results than the state-of-the-art recognition method that uses human body images.

  7. Enhanced Gender Recognition System Using an Improved Histogram of Oriented Gradient (HOG Feature from Quality Assessment of Visible Light and Thermal Images of the Human Body

    Directory of Open Access Journals (Sweden)

    Dat Tien Nguyen

    2016-07-01

    Full Text Available With higher demand from users, surveillance systems are currently being designed to provide more information about the observed scene, such as the appearance of objects, types of objects, and other information extracted from detected objects. Although the recognition of gender of an observed human can be easily performed using human perception, it remains a difficult task when using computer vision system images. In this paper, we propose a new human gender recognition method that can be applied to surveillance systems based on quality assessment of human areas in visible light and thermal camera images. Our research is novel in the following two ways: First, we utilize the combination of visible light and thermal images of the human body for a recognition task based on quality assessment. We propose a quality measurement method to assess the quality of image regions so as to remove the effects of background regions in the recognition system. Second, by combining the features extracted using the histogram of oriented gradient (HOG method and the measured qualities of image regions, we form a new image features, called the weighted HOG (wHOG, which is used for efficient gender recognition. Experimental results show that our method produces more accurate estimation results than the state-of-the-art recognition method that uses human body images.

  8. Random-Profiles-Based 3D Face Recognition System

    Directory of Open Access Journals (Sweden)

    Joongrock Kim

    2014-03-01

    Full Text Available In this paper, a noble nonintrusive three-dimensional (3D face modeling system for random-profile-based 3D face recognition is presented. Although recent two-dimensional (2D face recognition systems can achieve a reliable recognition rate under certain conditions, their performance is limited by internal and external changes, such as illumination and pose variation. To address these issues, 3D face recognition, which uses 3D face data, has recently received much attention. However, the performance of 3D face recognition highly depends on the precision of acquired 3D face data, while also requiring more computational power and storage capacity than 2D face recognition systems. In this paper, we present a developed nonintrusive 3D face modeling system composed of a stereo vision system and an invisible near-infrared line laser, which can be directly applied to profile-based 3D face recognition. We further propose a novel random-profile-based 3D face recognition method that is memory-efficient and pose-invariant. The experimental results demonstrate that the reconstructed 3D face data consists of more than 50 k 3D point clouds and a reliable recognition rate against pose variation.

  9. Novel structure-recognition-based OCR system and its parallel VLSI architecture

    Science.gov (United States)

    Shan, Tie-Jun

    1993-04-01

    We propose a structure pattern recognition based OCR system for printed text recognition. The segmentation algorithm is a raster-scan based one that reduces memory access time a great deal. The feature extract algorithm is a chain-code encoding based graph traversal algorithm. It has an advantage of single memory access for each pixel while most graph traversal algorithms require multiple scans of the entire image. While traversing a thinned character, structural feature is automatically extracted. The classification is a process of tree search in the structure feature space that is created during the training process. The segmentation, thinning, and feature extraction algorithms are all raster-scan based algorithms that can be implemented by a parallel systolic array architecture.

  10. Retrieval Architecture with Classified Query for Content Based Image Recognition

    Directory of Open Access Journals (Sweden)

    Rik Das

    2016-01-01

    Full Text Available The consumer behavior has been observed to be largely influenced by image data with increasing familiarity of smart phones and World Wide Web. Traditional technique of browsing through product varieties in the Internet with text keywords has been gradually replaced by the easy accessible image data. The importance of image data has portrayed a steady growth in application orientation for business domain with the advent of different image capturing devices and social media. The paper has described a methodology of feature extraction by image binarization technique for enhancing identification and retrieval of information using content based image recognition. The proposed algorithm was tested on two public datasets, namely, Wang dataset and Oliva and Torralba (OT-Scene dataset with 3688 images on the whole. It has outclassed the state-of-the-art techniques in performance measure and has shown statistical significance.

  11. A Patch-based Sparse Representation for Sketch Recognition

    DEFF Research Database (Denmark)

    Qi, Yonggong; Zhang, Honggang; Song, Yi-Zhe

    2014-01-01

    , such as Symmetric-aware Flip Invariant Sketch Histogram (SYM-FISH). We present a novel patch-based sparse representation (PSR) for describing sketch image and it is evaluated under a sketch recognition framework. Extensive experiments on a large scale human drawn sketch dataset demonstrate the effectiveness......Categorizing free-hand human sketches has profound implications in applications such as human computer interaction and image retrieval. The task is non-trivial due to the iconic nature of sketches, signified by large variances in both appearance and structure when compared with photographs. One...... of the most fundamental problem is how to effectively describe a sketch image. Many existing descriptors, such as Histogram of Oriented Gradients (HOG) and Shape Context (SC), have achieved great success. Moreover, some works have attempted to design features specifically engineered for sketches...

  12. Facial Expression Recognition Based on TensorFlow Platform

    Directory of Open Access Journals (Sweden)

    Xia Xiao-Ling

    2017-01-01

    Full Text Available Facial expression recognition have a wide range of applications in human-machine interaction, pattern recognition, image understanding, machine vision and other fields. Recent years, it has gradually become a hot research. However, different people have different ways of expressing their emotions, and under the influence of brightness, background and other factors, there are some difficulties in facial expression recognition. In this paper, based on the Inception-v3 model of TensorFlow platform, we use the transfer learning techniques to retrain facial expression dataset (The Extended Cohn-Kanade dataset, which can keep the accuracy of recognition and greatly reduce the training time.

  13. Hybrid facial image feature extraction and recognition for non-invasive chronic fatigue syndrome diagnosis.

    Science.gov (United States)

    Chen, Yunhua; Liu, Weijian; Zhang, Ling; Yan, Mingyu; Zeng, Yanjun

    2015-09-01

    Due to an absence of reliable biochemical markers, the diagnosis of chronic fatigue syndrome (CFS) mainly relies on the clinical symptoms, and the experience and skill of the doctors currently. To improve objectivity and reduce work intensity, a hybrid facial feature is proposed. First, several kinds of appearance features are identified in different facial regions according to clinical observations of traditional Chinese medicine experts, including vertical striped wrinkles on the forehead, puffiness of the lower eyelid, the skin colour of the cheeks, nose and lips, and the shape of the mouth corner. Afterwards, such features are extracted and systematically combined to form a hybrid feature. We divide the face into several regions based on twelve active appearance model (AAM) feature points, and ten straight lines across them. Then, Gabor wavelet filtering, CIELab color components, threshold-based segmentation and curve fitting are applied to extract features, and Gabor features are reduced by a manifold preserving projection method. Finally, an AdaBoost based score level fusion of multi-modal features is performed after classification of each feature. Despite that the subjects involved in this trial are exclusively Chinese, the method achieves an average accuracy of 89.04% on the training set and 88.32% on the testing set based on the K-fold cross-validation. In addition, the method also possesses desirable sensitivity and specificity on CFS prediction. Copyright © 2015 Elsevier Ltd. All rights reserved.

  14. Fuzzy Relational Compression Applied on Feature Vectors for Infant Cry Recognition

    Science.gov (United States)

    Reyes-Galaviz, Orion Fausto; Reyes-García, Carlos Alberto

    Data compression is always advisable when it comes to handling and processing information quickly and efficiently. There are two main problems that need to be solved when it comes to handling data; store information in smaller spaces and processes it in the shortest possible time. When it comes to infant cry analysis (ICA), there is always the need to construct large sound repositories from crying babies. Samples that have to be analyzed and be used to train and test pattern recognition algorithms; making this a time consuming task when working with uncompressed feature vectors. In this work, we show a simple, but efficient, method that uses Fuzzy Relational Product (FRP) to compresses the information inside a feature vector, building with this a compressed matrix that will help us recognize two kinds of pathologies in infants; Asphyxia and Deafness. We describe the sound analysis, which consists on the extraction of Mel Frequency Cepstral Coefficients that generate vectors which will later be compressed by using FRP. There is also a description of the infant cry database used in this work, along with the training and testing of a Time Delay Neural Network with the compressed features, which shows a performance of 96.44% with our proposed feature vector compression.

  15. ANALYTIC WORD RECOGNITION WITHOUT SEGMENTATION BASED ON MARKOV RANDOM FIELDS

    NARCIS (Netherlands)

    Coisy, C.; Belaid, A.

    2004-01-01

    In this paper, a method for analytic handwritten word recognition based on causal Markov random fields is described. The words models are HMMs where each state corresponds to a letter; each letter is modelled by a NSHP­HMM (Markov field). Global models are build dynamically, and used for recognition

  16. Molecular Recognition: Detection of Colorless Compounds Based on Color Change

    Science.gov (United States)

    Khalafi, Lida; Kashani, Samira; Karimi, Javad

    2016-01-01

    A laboratory experiment is described in which students measure the amount of cetirizine in allergy-treatment tablets based on molecular recognition. The basis of recognition is competition of cetirizine with phenolphthalein to form an inclusion complex with ß-cyclodextrin. Phenolphthalein is pinkish under basic condition, whereas it's complex form…

  17. Frequency recognition in SSVEP-based BCI using multiset canonical correlation analysis.

    Science.gov (United States)

    Zhang, Yu; Zhou, Guoxu; Jin, Jing; Wang, Xingyu; Cichocki, Andrzej

    2014-06-01

    Canonical correlation analysis (CCA) has been one of the most popular methods for frequency recognition in steady-state visual evoked potential (SSVEP)-based brain-computer interfaces (BCIs). Despite its efficiency, a potential problem is that using pre-constructed sine-cosine waves as the required reference signals in the CCA method often does not result in the optimal recognition accuracy due to their lack of features from the real electro-encephalo-gram (EEG) data. To address this problem, this study proposes a novel method based on multiset canonical correlation analysis (MsetCCA) to optimize the reference signals used in the CCA method for SSVEP frequency recognition. The MsetCCA method learns multiple linear transforms that implement joint spatial filtering to maximize the overall correlation among canonical variates, and hence extracts SSVEP common features from multiple sets of EEG data recorded at the same stimulus frequency. The optimized reference signals are formed by combination of the common features and completely based on training data. Experimental study with EEG data from 10 healthy subjects demonstrates that the MsetCCA method improves the recognition accuracy of SSVEP frequency in comparison with the CCA method and other two competing methods (multiway CCA (MwayCCA) and phase constrained CCA (PCCA)), especially for a small number of channels and a short time window length. The superiority indicates that the proposed MsetCCA method is a new promising candidate for frequency recognition in SSVEP-based BCIs.

  18. Classification of EEG Signals Based on Pattern Recognition Approach.

    Science.gov (United States)

    Amin, Hafeez Ullah; Mumtaz, Wajid; Subhani, Ahmad Rauf; Saad, Mohamad Naufal Mohamad; Malik, Aamir Saeed

    2017-01-01

    Feature extraction is an important step in the process of electroencephalogram (EEG) signal classification. The authors propose a "pattern recognition" approach that discriminates EEG signals recorded during different cognitive conditions. Wavelet based feature extraction such as, multi-resolution decompositions into detailed and approximate coefficients as well as relative wavelet energy were computed. Extracted relative wavelet energy features were normalized to zero mean and unit variance and then optimized using Fisher's discriminant ratio (FDR) and principal component analysis (PCA). A high density EEG dataset validated the proposed method (128-channels) by identifying two classifications: (1) EEG signals recorded during complex cognitive tasks using Raven's Advance Progressive Metric (RAPM) test; (2) EEG signals recorded during a baseline task (eyes open). Classifiers such as, K-nearest neighbors (KNN), Support Vector Machine (SVM), Multi-layer Perceptron (MLP), and Naïve Bayes (NB) were then employed. Outcomes yielded 99.11% accuracy via SVM classifier for coefficient approximations (A5) of low frequencies ranging from 0 to 3.90 Hz. Accuracy rates for detailed coefficients were 98.57 and 98.39% for SVM and KNN, respectively; and for detailed coefficients (D5) deriving from the sub-band range (3.90-7.81 Hz). Accuracy rates for MLP and NB classifiers were comparable at 97.11-89.63% and 91.60-81.07% for A5 and D5 coefficients, respectively. In addition, the proposed approach was also applied on public dataset for classification of two cognitive tasks and achieved comparable classification results, i.e., 93.33% accuracy with KNN. The proposed scheme yielded significantly higher classification performances using machine learning classifiers compared to extant quantitative feature extraction. These results suggest the proposed feature extraction method reliably classifies EEG signals recorded during cognitive tasks with a higher degree of accuracy.

  19. Palm-vein classification based on principal orientation features.

    Directory of Open Access Journals (Sweden)

    Yujia Zhou

    Full Text Available Personal recognition using palm-vein patterns has emerged as a promising alternative for human recognition because of its uniqueness, stability, live body identification, flexibility, and difficulty to cheat. With the expanding application of palm-vein pattern recognition, the corresponding growth of the database has resulted in a long response time. To shorten the response time of identification, this paper proposes a simple and useful classification for palm-vein identification based on principal direction features. In the registration process, the Gaussian-Radon transform is adopted to extract the orientation matrix and then compute the principal direction of a palm-vein image based on the orientation matrix. The database can be classified into six bins based on the value of the principal direction. In the identification process, the principal direction of the test sample is first extracted to ascertain the corresponding bin. One-by-one matching with the training samples is then performed in the bin. To improve recognition efficiency while maintaining better recognition accuracy, two neighborhood bins of the corresponding bin are continuously searched to identify the input palm-vein image. Evaluation experiments are conducted on three different databases, namely, PolyU, CASIA, and the database of this study. Experimental results show that the searching range of one test sample in PolyU, CASIA and our database by the proposed method for palm-vein identification can be reduced to 14.29%, 14.50%, and 14.28%, with retrieval accuracy of 96.67%, 96.00%, and 97.71%, respectively. With 10,000 training samples in the database, the execution time of the identification process by the traditional method is 18.56 s, while that by the proposed approach is 3.16 s. The experimental results confirm that the proposed approach is more efficient than the traditional method, especially for a large database.

  20. Products recognition on shop-racks from local scale-invariant features

    Science.gov (United States)

    Zawistowski, Jacek; Kurzejamski, Grzegorz; Garbat, Piotr; Naruniec, Jacek

    2016-04-01

    This paper presents a system designed for the multi-object detection purposes and adjusted for the application of product search on the market shelves. System uses well known binary keypoint detection algorithms for finding characteristic points in the image. One of the main idea is object recognition based on Implicit Shape Model method. Authors of the article proposed many improvements of the algorithm. Originally fiducial points are matched with a very simple function. This leads to the limitations in the number of objects parts being success- fully separated, while various methods of classification may be validated in order to achieve higher performance. Such an extension implies research on training procedure able to deal with many objects categories. Proposed solution opens a new possibilities for many algorithms demanding fast and robust multi-object recognition.

  1. Finger vein recognition based on finger crease location

    Science.gov (United States)

    Lu, Zhiying; Ding, Shumeng; Yin, Jing

    2016-07-01

    Finger vein recognition technology has significant advantages over other methods in terms of accuracy, uniqueness, and stability, and it has wide promising applications in the field of biometric recognition. We propose using finger creases to locate and extract an object region. Then we use linear fitting to overcome the problem of finger rotation in the plane. The method of modular adaptive histogram equalization (MAHE) is presented to enhance image contrast and reduce computational cost. To extract the finger vein features, we use a fusion method, which can obtain clear and distinguishable vein patterns under different conditions. We used the Hausdorff average distance algorithm to examine the recognition performance of the system. The experimental results demonstrate that MAHE can better balance the recognition accuracy and the expenditure of time compared with three other methods. Our resulting equal error rate throughout the total procedure was 3.268% in a database of 153 finger vein images.

  2. Neural Network Based Indexing and Recognition of Power Quality Disturbances

    Directory of Open Access Journals (Sweden)

    Ram Awtar Gupta

    2011-08-01

    Full Text Available Power quality (PQ analysis has become imperative for utilities as well as for consumers due to huge cost burden of poor power quality. Accurate recognition of PQ disturbances is still a challenging task, whereas methods for its indexing are not much investigated yet. This paper expounds a system, which includes generation of unique patterns called signatures of various PQ disturbances using continuous wavelet transform (CWT and recognition of these signatures using feed-forward neural network. It is also corroborated that the size of signatures of PQ disturbances are proportional to its magnitude, so this feature of the signature is used for indexing the level of PQ disturbance in three sub-classes viz. high, medium, and low. Further, the effect of number of neurons used by neural network on the performance of recognition is also analyzed. Almost 100% accuracy of recognition substantiates the effectiveness of the proposed system.

  3. Multispectral iris recognition based on group selection and game theory

    Science.gov (United States)

    Ahmad, Foysal; Roy, Kaushik

    2017-05-01

    A commercially available iris recognition system uses only a narrow band of the near infrared spectrum (700-900 nm) while iris images captured in the wide range of 405 nm to 1550 nm offer potential benefits to enhance recognition performance of an iris biometric system. The novelty of this research is that a group selection algorithm based on coalition game theory is explored to select the best patch subsets. In this algorithm, patches are divided into several groups based on their maximum contribution in different groups. Shapley values are used to evaluate the contribution of patches in different groups. Results show that this group selection based iris recognition

  4. Skilled readers begin processing sub-phonemic features by 80 ms during visual word recognition: evidence from ERPs.

    Science.gov (United States)

    Ashby, Jane; Sanders, Lisa D; Kingston, John

    2009-01-01

    Two masked priming experiments investigated the time-course of the activation of sub-phonemic information during visual word recognition. EEG was recorded as participants read targets with voiced and unvoiced final consonants (e.g., fad and fat), preceded by nonword primes that were incongruent or congruent in voicing and vowel duration (e.g., fap or faz). Experiment 1 used a long duration mask (100 ms) between prime and target, whereas Experiment 2 used a short mask (22 ms). Phonological feature congruency began modulating the amplitude of brain potentials by 80 ms; the feature incongruent condition evoked greater negativity than the feature congruent condition in both experiments. The early onset of the congruency effect indicates that skilled readers initially activate sub-phonemic feature information during word identification. Congruency effects also appeared in the middle and late periods of word recognition, suggesting that readers use phonological representations in multiple aspects of visual word recognition.

  5. Recognition

    DEFF Research Database (Denmark)

    Gimmler, Antje

    2017-01-01

    In this article, I shall examine the cognitive, heuristic and theoretical functions of the concept of recognition. To evaluate both the explanatory power and the limitations of a sociological concept, the theory construction must be analysed and its actual productivity for sociological theory must...... be evaluated. In the first section, I will introduce the concept of recognition as a travelling concept playing a role both on the intellectual stage and in real life. In the second section, I will concentrate on the presentation of Honneth’s theory of recognition, emphasizing the construction of the concept...... and its explanatory power. Finally, I will discuss Honneth’s concept in relation to the critique that has been raised, addressing the debate between Honneth and Fraser. In a short conclusion, I will return to the question of the explanatory power of the concept of recognition....

  6. Automated Facial Expression Recognition Using Gradient-Based Ternary Texture Patterns

    Directory of Open Access Journals (Sweden)

    Faisal Ahmed

    2013-01-01

    Full Text Available Recognition of human expression from facial image is an interesting research area, which has received increasing attention in the recent years. A robust and effective facial feature descriptor is the key to designing a successful expression recognition system. Although much progress has been made, deriving a face feature descriptor that can perform consistently under changing environment is still a difficult and challenging task. In this paper, we present the gradient local ternary pattern (GLTP—a discriminative local texture feature for representing facial expression. The proposed GLTP operator encodes the local texture of an image by computing the gradient magnitudes of the local neighborhood and quantizing those values in three discrimination levels. The location and occurrence information of the resulting micropatterns is then used as the face feature descriptor. The performance of the proposed method has been evaluated for the person-independent face expression recognition task. Experiments with prototypic expression images from the Cohn-Kanade (CK face expression database validate that the GLTP feature descriptor can effectively encode the facial texture and thus achieves improved recognition performance than some well-known appearance-based facial features.

  7. Cross-domain expression recognition based on sparse coding and transfer learning

    Science.gov (United States)

    Yang, Yong; Zhang, Weiyi; Huang, Yong

    2017-05-01

    Traditional facial expression recognition methods usually assume that the training set and the test set are independent and identically distributed. However, in actual expression recognition applications, the conditions of independent and identical distribution are hardly satisfied for the training set and test set because of the difference of light, shade, race and so on. In order to solve this problem and improve the performance of expression recognition in the actual applications, a novel method based on transfer learning and sparse coding is applied to facial expression recognition. First of all, a common primitive model, that is, the dictionary is learnt. Then, based on the idea of transfer learning, the learned primitive pattern is transferred to facial expression and the corresponding feature representation is obtained by sparse coding. The experimental results in CK +, JAFFE and NVIE database shows that the transfer learning based on sparse coding method can effectively improve the expression recognition rate in the cross-domain expression recognition task and is suitable for the practical facial expression recognition applications.

  8. Tool Wear Feature Extraction Based on Hilbert Marginal Spectrum

    Science.gov (United States)

    Guan, Shan; Song, Weijie; Pang, Hongyang

    2017-09-01

    In the metal cutting process, the signal contains a wealth of tool wear state information. A tool wear signal’s analysis and feature extraction method based on Hilbert marginal spectrum is proposed. Firstly, the tool wear signal was decomposed by empirical mode decomposition algorithm and the intrinsic mode functions including the main information were screened out by the correlation coefficient and the variance contribution rate. Secondly, Hilbert transform was performed on the main intrinsic mode functions. Hilbert time-frequency spectrum and Hilbert marginal spectrum were obtained by Hilbert transform. Finally, Amplitude domain indexes were extracted on the basis of the Hilbert marginal spectrum and they structured recognition feature vector of tool wear state. The research results show that the extracted features can effectively characterize the different wear state of the tool, which provides a basis for monitoring tool wear condition.

  9. A Multi-Layer Fusion-Based Facial Expression Recognition Approach with Optimal Weighted AUs

    Directory of Open Access Journals (Sweden)

    Xibin Jia

    2017-01-01

    Full Text Available Affective computing is an increasingly important outgrowth of Artificial Intelligence, which is intended to deal with rich and subjective human communication. In view of the complexity of affective expression, discriminative feature extraction and corresponding high-performance classifier selection are still a big challenge. Specific features/classifiers display different performance in different datasets. There has currently been no consensus in the literature that any expression feature or classifier is always good in all cases. Although the recently updated deep learning algorithm, which uses learning deep feature instead of manual construction, appears in the expression recognition research, the limitation of training samples is still an obstacle of practical application. In this paper, we aim to find an effective solution based on a fusion and association learning strategy with typical manual features and classifiers. Taking these typical features and classifiers in facial expression area as a basis, we fully analyse their fusion performance. Meanwhile, to emphasize the major attributions of affective computing, we select facial expression relative Action Units (AUs as basic components. In addition, we employ association rules to mine the relationships between AUs and facial expressions. Based on a comprehensive analysis from different perspectives, we propose a novel facial expression recognition approach that uses multiple features and multiple classifiers embedded into a stacking framework based on AUs. Extensive experiments on two public datasets show that our proposed multi-layer fusion system based on optimal AUs weighting has gained dramatic improvements on facial expression recognition in comparison to an individual feature/classifier and some state-of-the-art methods, including the recent deep learning based expression recognition one.

  10. SAR Target Recognition via Supervised Discriminative Dictionary Learning and Sparse Representation of the SAR-HOG Feature

    Directory of Open Access Journals (Sweden)

    Shengli Song

    2016-08-01

    Full Text Available Automatic target recognition (ATR in synthetic aperture radar (SAR images plays an important role in both national defense and civil applications. Although many methods have been proposed, SAR ATR is still very challenging due to the complex application environment. Feature extraction and classification are key points in SAR ATR. In this paper, we first design a novel feature, which is a histogram of oriented gradients (HOG-like feature for SAR ATR (called SAR-HOG. Then, we propose a supervised discriminative dictionary learning (SDDL method to learn a discriminative dictionary for SAR ATR and propose a strategy to simplify the optimization problem. Finally, we propose a SAR ATR classifier based on SDDL and sparse representation (called SDDLSR, in which both the reconstruction error and the classification error are considered. Extensive experiments are performed on the MSTAR database under standard operating conditions and extended operating conditions. The experimental results show that SAR-HOG can reliably capture the structures of targets in SAR images, and SDDL can further capture subtle differences among the different classes. By virtue of the SAR-HOG feature and SDDLSR, the proposed method achieves the state-of-the-art performance on MSTAR database. Especially for the extended operating conditions (EOC scenario “Training 17 ∘ —Testing 45 ∘ ”, the proposed method improves remarkably with respect to the previous works.

  11. Sound event recognition through expectancy-based evaluation of signal-driven hypotheses

    NARCIS (Netherlands)

    Krijnders, J. D.; Niessen, M. E.; Andringa, T. C.

    2010-01-01

    A recognition system for environmental sounds is presented. Signal-driven classification is performed by applying machine-learning techniques on features extracted from a cochleogram. These possibly unreliable classifications are improved by creating expectancies of sound events based on context

  12. Gesture recognition based on computer vision and glove sensor for remote working environments

    Energy Technology Data Exchange (ETDEWEB)

    Chien, Sung Il; Kim, In Chul; Baek, Yung Mok; Kim, Dong Su; Jeong, Jee Won; Shin, Kug [Kyungpook National University, Taegu (Korea)

    1998-04-01

    In this research, we defined a gesture set needed for remote monitoring and control of a manless system in atomic power station environments. Here, we define a command as the loci of a gesture. We aim at the development of an algorithm using a vision sensor and glove sensors in order to implement the gesture recognition system. The gesture recognition system based on computer vision tracks a hand by using cross correlation of PDOE image. To recognize the gesture word, the 8 direction code is employed as the input symbol for discrete HMM. Another gesture recognition based on sensor has introduced Pinch glove and Polhemus sensor as an input device. The extracted feature through preprocessing now acts as an input signal of the recognizer. For recognition 3D loci of Polhemus sensor, discrete HMM is also adopted. The alternative approach of two foregoing recognition systems uses the vision and and glove sensors together. The extracted mesh feature and 8 direction code from the locus tracking are introduced for further enhancing recognition performance. MLP trained by backpropagation is introduced here and its performance is compared to that of discrete HMM. (author). 32 refs., 44 figs., 21 tabs.

  13. Recognition of underground nuclear explosion and natural earthquake based on neural network

    International Nuclear Information System (INIS)

    Yang Hong; Jia Weimin

    2000-01-01

    Many features are extracted to improve the identified rate and reliability of underground nuclear explosion and natural earthquake. But how to synthesize these characters is the key of pattern recognition. Based on the improved Delta algorithm, features of underground nuclear explosion and natural earthquake are inputted into BP neural network, and friendship functions are constructed to identify the output values. The identified rate is up to 92.0%, which shows that: the way is feasible

  14. Character-based Recognition of Simple Word Gesture

    Directory of Open Access Journals (Sweden)

    Paulus Insap Santosa

    2013-11-01

    Full Text Available People with normal senses use spoken language to communicate with others. This method cannot be used by those with hearing and speech impaired. These two groups of people will have difficulty when they try to communicate to each other using their own language. Sign language is not easy to learn, as there are various sign languages, and not many tutors are available. This research focused on a simple word recognition gesture based on characters that form a word to be recognized. The method used for character recognition was the nearest neighbour method. This method identified different fingers using the different markers attached to each finger. Testing a simple word gesture recognition is done by providing a series of characters that make up the intended simple word. The accuracy of a simple word gesture recognition depended upon the accuracy of recognition of each character.

  15. Molecular recognition in poly(epsilon-caprolactone)-based thermoplastic elastomers

    NARCIS (Netherlands)

    Wisse, Eva; Spiering, A. J. H.; van Leeuwen, Ellen N. M.; Renken, Raymond A. E.; Dankers, Patricia Y. W.; Brouwer, Linda A.; van Luyn, Marja J. A.; Harmsen, Martin C.; Sommerdijk, Nico A. J. M.; Meijer, E. W.

    2006-01-01

    The molecular recognition properties of the hydrogen bonding segments in biodegradable thermoplastic elastomers were explored, aiming at the further functionalization of these potentially interesting biomaterials. A poly(epsilon-caprolactone)-based poly(urea) 2 was synthesized and characterized in

  16. Bag-of-visual-words based feature extraction for SAR target classification

    Science.gov (United States)

    Amrani, Moussa; Chaib, Souleyman; Omara, Ibrahim; Jiang, Feng

    2017-07-01

    Feature extraction plays a key role in the classification performance of synthetic aperture radar automatic target recognition (SAR-ATR). It is very crucial to choose appropriate features to train a classifier, which is prerequisite. Inspired by the great success of Bag-of-Visual-Words (BoVW), we address the problem of feature extraction by proposing a novel feature extraction method for SAR target classification. First, Gabor based features are adopted to extract features from the training SAR images. Second, a discriminative codebook is generated using K-means clustering algorithm. Third, after feature encoding by computing the closest Euclidian distance, the targets are represented by new robust bag of features. Finally, for target classification, support vector machine (SVM) is used as a baseline classifier. Experiments on Moving and Stationary Target Acquisition and Recognition (MSTAR) public release dataset are conducted, and the classification accuracy and time complexity results demonstrate that the proposed method outperforms the state-of-the-art methods.

  17. Image based Monument Recognition using Graph based Visual Saliency

    DEFF Research Database (Denmark)

    Kalliatakis, Grigorios; Triantafyllidis, Georgios

    2013-01-01

    This article presents an image-based application aiming at simple image classification of well-known monuments in the area of Heraklion, Crete, Greece. This classification takes place by utilizing Graph Based Visual Saliency (GBVS) and employing Scale Invariant Feature Transform (SIFT) or Speeded...

  18. A Research of Speech Emotion Recognition Based on Deep Belief Network and SVM

    Directory of Open Access Journals (Sweden)

    Chenchen Huang

    2014-01-01

    Full Text Available Feature extraction is a very important part in speech emotion recognition, and in allusion to feature extraction in speech emotion recognition problems, this paper proposed a new method of feature extraction, using DBNs in DNN to extract emotional features in speech signal automatically. By training a 5 layers depth DBNs, to extract speech emotion feature and incorporate multiple consecutive frames to form a high dimensional feature. The features after training in DBNs were the input of nonlinear SVM classifier, and finally speech emotion recognition multiple classifier system was achieved. The speech emotion recognition rate of the system reached 86.5%, which was 7% higher than the original method.

  19. Single-Word Recognition Need Not Depend on Single-Word Features: Narrative Coherence Counteracts Effects of Single-Word Features That Lexical Decision Emphasizes

    Science.gov (United States)

    Teng, Dan W.; Wallot, Sebastian; Kelty-Stephen, Damian G.

    2016-01-01

    Research on reading comprehension of connected text emphasizes reliance on single-word features that organize a stable, mental lexicon of words and that speed or slow the recognition of each new word. However, the time needed to recognize a word might not actually be as fixed as previous research indicates, and the stability of the mental lexicon…

  20. EMD-Based Symbolic Dynamic Analysis for the Recognition of Human and Nonhuman Pyroelectric Infrared Signals.

    Science.gov (United States)

    Zhao, Jiaduo; Gong, Weiguo; Tang, Yuzhen; Li, Weihong

    2016-01-20

    In this paper, we propose an effective human and nonhuman pyroelectric infrared (PIR) signal recognition method to reduce PIR detector false alarms. First, using the mathematical model of the PIR detector, we analyze the physical characteristics of the human and nonhuman PIR signals; second, based on the analysis results, we propose an empirical mode decomposition (EMD)-based symbolic dynamic analysis method for the recognition of human and nonhuman PIR signals. In the proposed method, first, we extract the detailed features of a PIR signal into five symbol sequences using an EMD-based symbolization method, then, we generate five feature descriptors for each PIR signal through constructing five probabilistic finite state automata with the symbol sequences. Finally, we use a weighted voting classification strategy to classify the PIR signals with their feature descriptors. Comparative experiments show that the proposed method can effectively classify the human and nonhuman PIR signals and reduce PIR detector's false alarms.

  1. EMD-Based Symbolic Dynamic Analysis for the Recognition of Human and Nonhuman Pyroelectric Infrared Signals

    Directory of Open Access Journals (Sweden)

    Jiaduo Zhao

    2016-01-01

    Full Text Available In this paper, we propose an effective human and nonhuman pyroelectric infrared (PIR signal recognition method to reduce PIR detector false alarms. First, using the mathematical model of the PIR detector, we analyze the physical characteristics of the human and nonhuman PIR signals; second, based on the analysis results, we propose an empirical mode decomposition (EMD-based symbolic dynamic analysis method for the recognition of human and nonhuman PIR signals. In the proposed method, first, we extract the detailed features of a PIR signal into five symbol sequences using an EMD-based symbolization method, then, we generate five feature descriptors for each PIR signal through constructing five probabilistic finite state automata with the symbol sequences. Finally, we use a weighted voting classification strategy to classify the PIR signals with their feature descriptors. Comparative experiments show that the proposed method can effectively classify the human and nonhuman PIR signals and reduce PIR detector’s false alarms.

  2. Vehicle Color Recognition with Vehicle-Color Saliency Detection and Dual-Orientational Dimensionality Reduction of CNN Deep Features

    Science.gov (United States)

    Zhang, Qiang; Li, Jiafeng; Zhuo, Li; Zhang, Hui; Li, Xiaoguang

    2017-12-01

    Color is one of the most stable attributes of vehicles and often used as a valuable cue in some important applications. Various complex environmental factors, such as illumination, weather, noise and etc., result in the visual characteristics of the vehicle color being obvious diversity. Vehicle color recognition in complex environments has been a challenging task. The state-of-the-arts methods roughly take the whole image for color recognition, but many parts of the images such as car windows; wheels and background contain no color information, which will have negative impact on the recognition accuracy. In this paper, a novel vehicle color recognition method using local vehicle-color saliency detection and dual-orientational dimensionality reduction of convolutional neural network (CNN) deep features has been proposed. The novelty of the proposed method includes two parts: (1) a local vehicle-color saliency detection method has been proposed to determine the vehicle color region of the vehicle image and exclude the influence of non-color regions on the recognition accuracy; (2) dual-orientational dimensionality reduction strategy has been designed to greatly reduce the dimensionality of deep features that are learnt from CNN, which will greatly mitigate the storage and computational burden of the subsequent processing, while improving the recognition accuracy. Furthermore, linear support vector machine is adopted as the classifier to train the dimensionality reduced features to obtain the recognition model. The experimental results on public dataset demonstrate that the proposed method can achieve superior recognition performance over the state-of-the-arts methods.

  3. Composer Recognition based on 2D-Filtered Piano-Rolls

    DEFF Research Database (Denmark)

    Velarde, Gissel; Weyde, Tillman; Cancino Chacón, Carlos

    2016-01-01

    We propose a method for music classification based on the use of convolutional models on symbolic pitch-time representations (i.e. piano-rolls) which we apply to composer recognition. An excerpt of a piece to be classified is first sampled to a 2D pitch-time representation which is then subjected...... not require parsing of the music into separate voices, or extraction of any other predefined features prior to processing; instead it is based on the analysis of texture in a 2D pitch-time representation. We show that filtering significantly improves recognition and that the method proves robust to encoding...

  4. Hand gesture recognition based on convolutional neural networks

    Science.gov (United States)

    Hu, Yu-lu; Wang, Lian-ming

    2017-11-01

    Hand gesture has been considered a natural, intuitive and less intrusive way for Human-Computer Interaction (HCI). Although many algorithms for hand gesture recognition have been proposed in literature, robust algorithms have been pursued. A recognize algorithm based on the convolutional neural networks is proposed to recognize ten kinds of hand gestures, which include rotation and turnover samples acquired from different persons. When 6000 hand gesture images were used as training samples, and 1100 as testing samples, a 98% recognition rate was achieved with the convolutional neural networks, which is higher than that with some other frequently-used recognition algorithms.

  5. Deep Learning based Super-Resolution for Improved Action Recognition

    DEFF Research Database (Denmark)

    Nasrollahi, Kamal; Guerrero, Sergio Escalera; Rasti, Pejman

    2015-01-01

    and cameras, people are pictured very small and hence challenge action recognition algorithms. Simple upsampling methods, like bicubic interpolation, cannot retrieve all the detailed information that can help the recognition. To deal with this problem, in this paper we combine results of bicubic interpolation...... with results of a state-of- the-art deep learning-based super-resolution algorithm, through an alpha-blending approach. The experimental results obtained on down-sampled version of a large subset of Hoolywood2 benchmark database show the importance of the proposed system in increasing the recognition rate...

  6. Evaluation of accelerometer based multi-sensor versus single-sensor activity recognition systems.

    Science.gov (United States)

    Gao, Lei; Bourke, A K; Nelson, John

    2014-06-01

    Physical activity has a positive impact on people's well-being and it had been shown to decrease the occurrence of chronic diseases in the older adult population. To date, a substantial amount of research studies exist, which focus on activity recognition using inertial sensors. Many of these studies adopt a single sensor approach and focus on proposing novel features combined with complex classifiers to improve the overall recognition accuracy. In addition, the implementation of the advanced feature extraction algorithms and the complex classifiers exceed the computing ability of most current wearable sensor platforms. This paper proposes a method to adopt multiple sensors on distributed body locations to overcome this problem. The objective of the proposed system is to achieve higher recognition accuracy with "light-weight" signal processing algorithms, which run on a distributed computing based sensor system comprised of computationally efficient nodes. For analysing and evaluating the multi-sensor system, eight subjects were recruited to perform eight normal scripted activities in different life scenarios, each repeated three times. Thus a total of 192 activities were recorded resulting in 864 separate annotated activity states. The methods for designing such a multi-sensor system required consideration of the following: signal pre-processing algorithms, sampling rate, feature selection and classifier selection. Each has been investigated and the most appropriate approach is selected to achieve a trade-off between recognition accuracy and computing execution time. A comparison of six different systems, which employ single or multiple sensors, is presented. The experimental results illustrate that the proposed multi-sensor system can achieve an overall recognition accuracy of 96.4% by adopting the mean and variance features, using the Decision Tree classifier. The results demonstrate that elaborate classifiers and feature sets are not required to achieve high

  7. Strip Steel Surface Defects Recognition Based on SOCP Optimized Multiple Kernel RVM

    Directory of Open Access Journals (Sweden)

    Hou Jingzhong

    2018-01-01

    Full Text Available Strip steel surface defect recognition is a pattern recognition problem with wide applications. Previous works on strip surface defect recognition mainly focus on feature selection and dimension reduction. There are also approaches on real-time systems that mainly exploit the autocorrection within some given picture. However, the instances cannot be used in practical applications because of a bad recognition rate and low efficiency. In this paper, we study the intelligent algorithm of strip steel surface defect recognition, where the goal is to improve the accuracy and save running time. This problem is very important in various applications, especially the process testing of steel manufacturing. We propose an approach called the second-order cone programming (SOCP optimized multiple kernel relevance vector machine (MKRVM, which can recognize strip surface defects much better than other methods. The method includes the model parameter estimation, training, and optimization of the model based on SOCP and the classification test. We compare our approach with existing methods on strip surface defect recognition. The results demonstrate that our proposed approach can improve the recognition accuracy and reduce the time costs of the strip surface defect.

  8. Fast and accurate face recognition based on image compression

    Science.gov (United States)

    Zheng, Yufeng; Blasch, Erik

    2017-05-01

    Image compression is desired for many image-related applications especially for network-based applications with bandwidth and storage constraints. The face recognition community typical reports concentrate on the maximal compression rate that would not decrease the recognition accuracy. In general, the wavelet-based face recognition methods such as EBGM (elastic bunch graph matching) and FPB (face pattern byte) are of high performance but run slowly due to their high computation demands. The PCA (Principal Component Analysis) and LDA (Linear Discriminant Analysis) algorithms run fast but perform poorly in face recognition. In this paper, we propose a novel face recognition method based on standard image compression algorithm, which is termed as compression-based (CPB) face recognition. First, all gallery images are compressed by the selected compression algorithm. Second, a mixed image is formed with the probe and gallery images and then compressed. Third, a composite compression ratio (CCR) is computed with three compression ratios calculated from: probe, gallery and mixed images. Finally, the CCR values are compared and the largest CCR corresponds to the matched face. The time cost of each face matching is about the time of compressing the mixed face image. We tested the proposed CPB method on the "ASUMSS face database" (visible and thermal images) from 105 subjects. The face recognition accuracy with visible images is 94.76% when using JPEG compression. On the same face dataset, the accuracy of FPB algorithm was reported as 91.43%. The JPEG-compressionbased (JPEG-CPB) face recognition is standard and fast, which may be integrated into a real-time imaging device.

  9. Audiovisual laughter detection based on temporal features

    NARCIS (Netherlands)

    Petridis, Stavros; Nijholt, Antinus; Nijholt, A.; Pantic, M.; Pantic, Maja; Poel, Mannes; Poel, M.; Hondorp, G.H.W.

    2008-01-01

    Previous research on automatic laughter detection has mainly been focused on audio-based detection. In this study we present an audiovisual approach to distinguishing laughter from speech based on temporal features and we show that the integration of audio and visual information leads to improved

  10. Combining Deep and Handcrafted Image Features for Presentation Attack Detection in Face Recognition Systems Using Visible-Light Camera Sensors

    Directory of Open Access Journals (Sweden)

    Dat Tien Nguyen

    2018-02-01

    Full Text Available Although face recognition systems have wide application, they are vulnerable to presentation attack samples (fake samples. Therefore, a presentation attack detection (PAD method is required to enhance the security level of face recognition systems. Most of the previously proposed PAD methods for face recognition systems have focused on using handcrafted image features, which are designed by expert knowledge of designers, such as Gabor filter, local binary pattern (LBP, local ternary pattern (LTP, and histogram of oriented gradients (HOG. As a result, the extracted features reflect limited aspects of the problem, yielding a detection accuracy that is low and varies with the characteristics of presentation attack face images. The deep learning method has been developed in the computer vision research community, which is proven to be suitable for automatically training a feature extractor that can be used to enhance the ability of handcrafted features. To overcome the limitations of previously proposed PAD methods, we propose a new PAD method that uses a combination of deep and handcrafted features extracted from the images by visible-light camera sensor. Our proposed method uses the convolutional neural network (CNN method to extract deep image features and the multi-level local binary pattern (MLBP method to extract skin detail features from face images to discriminate the real and presentation attack face images. By combining the two types of image features, we form a new type of image features, called hybrid features, which has stronger discrimination ability than single image features. Finally, we use the support vector machine (SVM method to classify the image features into real or presentation attack class. Our experimental results indicate that our proposed method outperforms previous PAD methods by yielding the smallest error rates on the same image databases.

  11. Combining Deep and Handcrafted Image Features for Presentation Attack Detection in Face Recognition Systems Using Visible-Light Camera Sensors

    Science.gov (United States)

    Nguyen, Dat Tien; Pham, Tuyen Danh; Baek, Na Rae; Park, Kang Ryoung

    2018-01-01

    Although face recognition systems have wide application, they are vulnerable to presentation attack samples (fake samples). Therefore, a presentation attack detection (PAD) method is required to enhance the security level of face recognition systems. Most of the previously proposed PAD methods for face recognition systems have focused on using handcrafted image features, which are designed by expert knowledge of designers, such as Gabor filter, local binary pattern (LBP), local ternary pattern (LTP), and histogram of oriented gradients (HOG). As a result, the extracted features reflect limited aspects of the problem, yielding a detection accuracy that is low and varies with the characteristics of presentation attack face images. The deep learning method has been developed in the computer vision research community, which is proven to be suitable for automatically training a feature extractor that can be used to enhance the ability of handcrafted features. To overcome the limitations of previously proposed PAD methods, we propose a new PAD method that uses a combination of deep and handcrafted features extracted from the images by visible-light camera sensor. Our proposed method uses the convolutional neural network (CNN) method to extract deep image features and the multi-level local binary pattern (MLBP) method to extract skin detail features from face images to discriminate the real and presentation attack face images. By combining the two types of image features, we form a new type of image features, called hybrid features, which has stronger discrimination ability than single image features. Finally, we use the support vector machine (SVM) method to classify the image features into real or presentation attack class. Our experimental results indicate that our proposed method outperforms previous PAD methods by yielding the smallest error rates on the same image databases. PMID:29495417

  12. FPGA design of correlation-based pattern recognition

    Science.gov (United States)

    Jridi, Maher; Alfalou, Ayman

    2017-05-01

    Optical/Digital pattern recognition and tracking based on optical/digital correlation are a well-known techniques to detect, identify and localize a target object in a scene. Despite the limited number of treatments required by the correlation scheme, computational time and resources are relatively high. The most computational intensive treatment required by the correlation is the transformation from spatial to spectral domain and then from spectral to spatial domain. Furthermore, these transformations are used on optical/digital encryption schemes like the double random phase encryption (DRPE). In this paper, we present a VLSI architecture for the correlation scheme based on the fast Fourier transform (FFT). One interesting feature of the proposed scheme is its ability to stream image processing in order to perform correlation for video sequences. A trade-off between the hardware consumption and the robustness of the correlation can be made in order to understand the limitations of the correlation implementation in reconfigurable and portable platforms. Experimental results obtained from HDL simulations and FPGA prototype have demonstrated the advantages of the proposed scheme.

  13. Multiple Levels of Recognition in Ants: A Feature of Complex Societies

    DEFF Research Database (Denmark)

    D'Ettorre, Patrizia

    2008-01-01

    Communication and recognition are essential for social life. Social insects are good model systems to study social behavior and complexity because their societies are evolutionarily stable and ecologically successful. Ants, in particular, show a large variety of adaptations and are extremely...... diverse. In ants, social interactions are regulated by at least three levels of recognition. Nestmate recognition occurs between colonies, is very effective, and involves fast processing. Within a colony, division of labor is enhanced by recognition of different classes of individuals. Ultimately......, in particular circumstances, such as cooperative colony founding with stable dominance hierarchies, ants are capable of individual recognition. The underlying recognition cues and mechanisms appear to be specific to each recognition level, and their integrated understanding could contribute...

  14. 2.5D Multi-View Gait Recognition Based on Point Cloud Registration

    Science.gov (United States)

    Tang, Jin; Luo, Jian; Tjahjadi, Tardi; Gao, Yan

    2014-01-01

    This paper presents a method for modeling a 2.5-dimensional (2.5D) human body and extracting the gait features for identifying the human subject. To achieve view-invariant gait recognition, a multi-view synthesizing method based on point cloud registration (MVSM) to generate multi-view training galleries is proposed. The concept of a density and curvature-based Color Gait Curvature Image is introduced to map 2.5D data onto a 2D space to enable data dimension reduction by discrete cosine transform and 2D principle component analysis. Gait recognition is achieved via a 2.5D view-invariant gait recognition method based on point cloud registration. Experimental results on the in-house database captured by a Microsoft Kinect camera show a significant performance gain when using MVSM. PMID:24686727

  15. A Biometric Face Recognition System Using an Algorithm Based on the Principal Component Analysis Technique

    Directory of Open Access Journals (Sweden)

    Gheorghe Gîlcă

    2015-06-01

    Full Text Available This article deals with a recognition system using an algorithm based on the Principal Component Analysis (PCA technique. The recognition system consists only of a PC and an integrated video camera. The algorithm is developed in MATLAB language and calculates the eigenfaces considered as features of the face. The PCA technique is based on the matching between the facial test image and the training prototype vectors. The mathcing score between the facial test image and the training prototype vectors is calculated between their coefficient vectors. If the matching is high, we have the best recognition. The results of the algorithm based on the PCA technique are very good, even if the person looks from one side at the video camera.

  16. Emotion recognition based on facial components

    Indian Academy of Sciences (India)

    P ITHAYA RANI

    2018-03-28

    Mar 28, 2018 ... time and memory, to convolve face images with a bank of. Gabor filters to .... over, the LBP is sensitive to noise because the point fea- ... ences of noise. In addition, it encodes the comparative sizes of the central region with locally neighbouring regions into a binary code as in an LBP feature (see figure 2).

  17. Parallel computing-based sclera recognition for human identification

    Science.gov (United States)

    Lin, Yong; Du, Eliza Y.; Zhou, Zhi

    2012-06-01

    Compared to iris recognition, sclera recognition which uses line descriptor can achieve comparable recognition accuracy in visible wavelengths. However, this method is too time-consuming to be implemented in a real-time system. In this paper, we propose a GPU-based parallel computing approach to reduce the sclera recognition time. We define a new descriptor in which the information of KD tree structure and sclera edge are added. Registration and matching task is divided into subtasks in various sizes according to their computation complexities. Every affine transform parameters are generated by searching on KD tree. Texture memory, constant memory, and shared memory are used to store templates and transform matrixes. The experiment results show that the proposed method executed on GPU can dramatically improve the sclera matching speed in hundreds of times without accuracy decreasing.

  18. Possibility of object recognition using Altera's model based design approach

    International Nuclear Information System (INIS)

    Tickle, A J; Harvey, P K; Smith, J S; Wu, F

    2009-01-01

    Object recognition is an image processing task of finding a given object in a selected image or video sequence. Object recognition can be divided into two areas: one of these is decision-theoretic and deals with patterns described by quantitative descriptors, for example such as length, area, shape and texture. With this Graphical User Interface Circuitry (GUIC) methodology employed here being relatively new for object recognition systems, the aim of this work is to identify if the developed circuitry can detect certain shapes or strings within the target image. A much smaller reference image feeds the preset data for identification, tests are conducted for both binary and greyscale and the additional mathematical morphology to highlight the area within the target image with the object(s) are located is also presented. This then provides proof that basic recognition methods are valid and would allow the progression to developing decision-theoretical and learning based approaches using GUICs for use in multidisciplinary tasks.

  19. A Comparison of Moments-Based Logo Recognition Methods

    Directory of Open Access Journals (Sweden)

    Zili Zhang

    2014-01-01

    Full Text Available Logo recognition is an important issue in document image, advertisement, and intelligent transportation. Although there are many approaches to study logos in these fields, logo recognition is an essential subprocess. Among the methods of logo recognition, the descriptor is very vital. The results of moments as powerful descriptors were not discussed before in terms of logo recognition. So it is unclear which moments are more appropriate to recognize which kind of logos. In this paper we find out the relations between logos with different transforms and moments, which moments are fit for logos with different transforms. The open datasets are employed from the University of Maryland. The comparisons based on moments are carried out from the aspects of logos with noise, and rotation, scaling, rotation and scaling.

  20. NMR and Molecular Recognition of N-Glycans: Remote Modifications of the Saccharide Chain Modulate Binding Features.

    Science.gov (United States)

    Gimeno, Ana; Reichardt, Niels-Christian; Cañada, F Javier; Perkams, Lukas; Unverzagt, Carlo; Jiménez-Barbero, Jesús; Ardá, Ana

    2017-04-21

    Glycans play a key role as recognition elements in the communication of cells and other organisms. Thus, the analysis of carbohydrate-protein interactions has gained significant importance. In particular, nuclear magnetic resonance (NMR) techniques are considered powerful tools to detect relevant features in the interaction between sugars and their natural receptors. Here, we present the results obtained in the study on the molecular recognition of different mannose-containing glycans by Pisum sativum agglutinin. NMR experiments supported by Corcema-ST analysis, isothermal titration calorimetry (ITC) experiments, and molecular dynamics (MD) protocols have been successfully applied to unmask important binding features and especially to determine how a remote branching substituent significantly alters the binding mode of the sugar entity. These results highlight the key influence of common structural modifications in natural glycans on molecular recognition processes and underscore their importance for the development of biomedical applications.

  1. Enhancement of Iris Recognition System Based on Phase Only Correlation

    Directory of Open Access Journals (Sweden)

    Nuriza Pramita

    2011-08-01

    Full Text Available Iris recognition system is one of biometric based recognition/identification systems. Numerous techniques have been implemented to achieve a good recognition rate, including the ones based on Phase Only Correlation (POC. Significant and higher correlation peaks suggest that the system recognizes iris images of the same subject (person, while lower and unsignificant peaks correspond to recognition of those of difference subjects. Current POC methods have not investigated minimum iris point that can be used to achieve higher correlation peaks. This paper proposed a method that used only one-fourth of full normalized iris size to achieve higher (or at least the same recognition rate. Simulation on CASIA version 1.0 iris image database showed that averaged recognition rate of the proposed method achieved 67%, higher than that of using one-half (56% and full (53% iris point. Furthermore, all (100% POC peak values of the proposed method was higher than that of the method with full iris points.

  2. Face recognition in simulated prosthetic vision: face detection-based image processing strategies.

    Science.gov (United States)

    Wang, Jing; Wu, Xiaobei; Lu, Yanyu; Wu, Hao; Kan, Han; Chai, Xinyu

    2014-08-01

    Given the limited visual percepts elicited by current prosthetic devices, it is essential to optimize image content in order to assist implant wearers to achieve better performance of visual tasks. This study focuses on recognition of familiar faces using simulated prosthetic vision. Combined with region-of-interest (ROI) magnification, three face extraction strategies based on a face detection technique were used: the Viola-Jones face region, the statistical face region (SFR) and the matting face region. These strategies significantly enhanced recognition performance compared to directly lowering resolution (DLR) with Gaussian dots. The inclusion of certain external features, such as hairstyle, was beneficial for face recognition. Given the high recognition accuracy achieved and applicable processing speed, SFR-ROI was the preferred strategy. DLR processing resulted in significant face gender recognition differences (i.e. females were more easily recognized than males), but these differences were not apparent with other strategies. Face detection-based image processing strategies improved visual perception by highlighting useful information. Their use is advisable for face recognition when using low-resolution prosthetic vision. These results provide information for the continued design of image processing modules for use in visual prosthetics, thus maximizing the benefits for future prosthesis wearers.

  3. Video Shot Boundary Recognition Based on Adaptive Locality Preserving Projections

    Directory of Open Access Journals (Sweden)

    Yongliang Xiao

    2013-01-01

    Full Text Available A novel video shot boundary recognition method is proposed, which includes two stages of video feature extraction and shot boundary recognition. Firstly, we use adaptive locality preserving projections (ALPP to extract video feature. Unlike locality preserving projections, we define the discriminating similarity with mode prior probabilities and adaptive neighborhood selection strategy which make ALPP more suitable to preserve the local structure and label information of the original data. Secondly, we use an optimized multiple kernel support vector machine to classify video frames into boundary and nonboundary frames, in which the weights of different types of kernels are optimized with an ant colony optimization method. Experimental results show the effectiveness of our method.

  4. Evaluation of pattern recognition and feature extraction methods in ADHD prediction.

    Science.gov (United States)

    Sato, João Ricardo; Hoexter, Marcelo Queiroz; Fujita, André; Rohde, Luis Augusto

    2012-01-01

    Attention Deficit/Hyperactivity Disorder (ADHD) is a neurodevelopmental disorder, being one of the most prevalent psychiatric disorders in childhood. The neural substrates associated with this condition, both from structural and functional perspectives, are not yet well established. Recent studies have highlighted the relevance of neuroimaging not only to provide a more solid understanding about the disorder but also for possible clinical support. The ADHD-200 Consortium organized the ADHD-200 global competition making publicly available, hundreds of structural magnetic resonance imaging (MRI) and functional MRI (fMRI) datasets of both ADHD patients and typically developing (TD) controls for research use. In the current study, we evaluate the predictive power of a set of three different feature extraction methods and 10 different pattern recognition methods. The features tested were regional homogeneity (ReHo), amplitude of low frequency fluctuations (ALFF), and independent components analysis maps (resting state networks; RSN). Our findings suggest that the combination ALFF+ReHo maps contain relevant information to discriminate ADHD patients from TD controls, but with limited accuracy. All classifiers provided almost the same performance in this case. In addition, the combination ALFF+ReHo+RSN was relevant in combined vs. inattentive ADHD classification, achieving a score accuracy of 67%. In this latter case, the performances of the classifiers were not equivalent and L2-regularized logistic regression (both in primal and dual space) provided the most accurate predictions. The analysis of brain regions containing most discriminative information suggested that in both classifications (ADHD vs. TD controls and combined vs. inattentive), the relevant information is not confined only to a small set of regions but it is spatially distributed across the whole brain.

  5. Evaluation of pattern recognition and feature extraction methods in ADHD prediction.

    Directory of Open Access Journals (Sweden)

    Joao Ricardo Sato

    2012-09-01

    Full Text Available Attention-Deficit/Hyperactivity Disorder is a neurodevelopmental disorder, being one of the most prevalent psychiatric disorders in childhood. The neural substrates associated with this condition, both from structural and functional perspectives, are not yet well established . Recent studies have highlighted the relevance of neuroimaging not only to provide a more solid understanding about the disorder but also for possible clinical support. The ADHD-200 Consortium organized the ADHD-200 global competition making publicly available, hundreds of structural magnetic resonance imaging (MRI and functional MRI (fMRI datasets of both ADHD patients and typically developing controls for research use. In the current study, we evaluate the predictive power of a set of three different feature extraction methods and 10 different pattern recognition methods. The features tested were regional homogeneity (ReHo, amplitude of low frequency fluctuations (ALFF and independent components analysis maps (RSN. Our findings suggest that the combination ALFF+ReHo maps contain relevant information to discriminate ADHD patients from typically developing controls, but with limited accuracy. All classifiers provided almost the same performance in this case. In addition, the combination ALFF+ReHo+RSN was relevant in combined vs inattentive ADHD classification, achieving a score accuracy of 67%. In this latter case, the performances of the classifiers were not equivalent and L2-regularized logistic regression (both in primal and dual space provided the most accurate predictions. The analysis of brain regions containing most discriminative information suggested that in both classifications (ADHD vs typically developing controls and combined vs inattentive, the relevant information is not confined only to a small set of regions but it is spatially distributed across the whole brain.

  6. Note: Gaussian mixture model for event recognition in optical time-domain reflectometry based sensing systems.

    Science.gov (United States)

    Fedorov, A K; Anufriev, M N; Zhirnov, A A; Stepanov, K V; Nesterov, E T; Namiot, D E; Karasik, V E; Pnev, A B

    2016-03-01

    We propose a novel approach to the recognition of particular classes of non-conventional events in signals from phase-sensitive optical time-domain-reflectometry-based sensors. Our algorithmic solution has two main features: filtering aimed at the de-nosing of signals and a Gaussian mixture model to cluster them. We test the proposed algorithm using experimentally measured signals. The results show that two classes of events can be distinguished with the best-case recognition probability close to 0.9 at sufficient numbers of training samples.

  7. Vision-Based Recognition of Activities by a Humanoid Robot

    Directory of Open Access Journals (Sweden)

    Mounîm A. El-Yacoubi

    2015-12-01

    Full Text Available We present an autonomous assistive robotic system for human activity recognition from video sequences. Due to the large variability inherent to video capture from a non-fixed robot (as opposed to a fixed camera, as well as the robot's limited computing resources, implementation has been guided by robustness to this variability and by memory and computing speed efficiency. To accommodate motion speed variability across users, we encode motion using dense interest point trajectories. Our recognition model harnesses the dense interest point bag-of-words representation through an intersection kernel-based SVM that better accommodates the large intra-class variability stemming from a robot operating in different locations and conditions. To contextually assess the engine as implemented in the robot, we compare it with the most recent approaches of human action recognition performed on public datasets (non-robot-based, including a novel approach of our own that is based on a two-layer SVM-hidden conditional random field sequential recognition model. The latter's performance is among the best within the recent state of the art. We show that our robot-based recognition engine, while less accurate than the sequential model, nonetheless shows good performances, especially given the adverse test conditions of the robot, relative to those of a fixed camera.

  8. Enhanced iris recognition method based on multi-unit iris images

    Science.gov (United States)

    Shin, Kwang Yong; Kim, Yeong Gon; Park, Kang Ryoung

    2013-04-01

    For the purpose of biometric person identification, iris recognition uses the unique characteristics of the patterns of the iris; that is, the eye region between the pupil and the sclera. When obtaining an iris image, the iris's image is frequently rotated because of the user's head roll toward the left or right shoulder. As the rotation of the iris image leads to circular shifting of the iris features, the accuracy of iris recognition is degraded. To solve this problem, conventional iris recognition methods use shifting of the iris feature codes to perform the matching. However, this increases the computational complexity and level of false acceptance error. To solve these problems, we propose a novel iris recognition method based on multi-unit iris images. Our method is novel in the following five ways compared with previous methods. First, to detect both eyes, we use Adaboost and a rapid eye detector (RED) based on the iris shape feature and integral imaging. Both eyes are detected using RED in the approximate candidate region that consists of the binocular region, which is determined by the Adaboost detector. Second, we classify the detected eyes into the left and right eyes, because the iris patterns in the left and right eyes in the same person are different, and they are therefore considered as different classes. We can improve the accuracy of iris recognition using this pre-classification of the left and right eyes. Third, by measuring the angle of head roll using the two center positions of the left and right pupils, detected by two circular edge detectors, we obtain the information of the iris rotation angle. Fourth, in order to reduce the error and processing time of iris recognition, adaptive bit-shifting based on the measured iris rotation angle is used in feature matching. Fifth, the recognition accuracy is enhanced by the score fusion of the left and right irises. Experimental results on the iris open database of low-resolution images showed that the

  9. FUZZY BASED IMAGE DIMENSIONALITY REDUCTION USING SHAPE PRIMITIVES FOR EFFICIENT FACE RECOGNITION

    Directory of Open Access Journals (Sweden)

    P. Chandra Sekhar Reddy

    2013-11-01

    Full Text Available Today face recognition capability of the human visual system plays a significant role in day to day life due to numerous important applications for automatic face recognition. One of the problems with the recent image classification and recognition approaches are they have to extract features on the entire image and on the large grey level range of the image. The present paper overcomes this by deriving an approach that reduces the dimensionality of the image using Shape primitives and reducing the grey level range by using a fuzzy logic while preserving the significant attributes of the texture. The present paper proposed an Image Dimensionality Reduction using shape Primitives (IDRSP model for efficient face recognition. Fuzzy logic is applied on IDRSP facial model to reduce the grey level range from 0 to 4. This makes the proposed fuzzy based IDRSP (FIDRSP model suitable to Grey level co-occurrence matrices. The proposed FIDRSP model with GLCM features are compared with existing face recognition algorithm. The results indicate the efficacy of the proposed method.

  10. Mood Recognition Based on Upper Body Posture and Movement Features

    NARCIS (Netherlands)

    Thrasher, M.L.; Van der Zwaag, M. D.; Bianchi-Berthouze, N.; Westerink, J.H.D.M.

    2012-01-01

    While studying body postures in relation to mood is not a new concept, the majority of these studies rely on actors interpretations. This project investigated the temporal aspects of naturalistic body postures while users listened to mood inducing music. Video data was collected while participants

  11. Dynamic Gesture Recognition with a Terahertz Radar Based on Range Profile Sequences and Doppler Signatures.

    Science.gov (United States)

    Zhou, Zhi; Cao, Zongjie; Pi, Yiming

    2017-12-21

    The frequency of terahertz radar ranges from 0.1 THz to 10 THz, which is higher than that of microwaves. Multi-modal signals, including high-resolution range profile (HRRP) and Doppler signatures, can be acquired by the terahertz radar system. These two kinds of information are commonly used in automatic target recognition; however, dynamic gesture recognition is rarely discussed in the terahertz regime. In this paper, a dynamic gesture recognition system using a terahertz radar is proposed, based on multi-modal signals. The HRRP sequences and Doppler signatures were first achieved from the radar echoes. Considering the electromagnetic scattering characteristics, a feature extraction model is designed using location parameter estimation of scattering centers. Dynamic Time Warping (DTW) extended to multi-modal signals is used to accomplish the classifications. Ten types of gesture signals, collected from a terahertz radar, are applied to validate the analysis and the recognition system. The results of the experiment indicate that the recognition rate reaches more than 91%. This research verifies the potential applications of dynamic gesture recognition using a terahertz radar.

  12. Biometric features and privacy : condemned, based upon your finger print

    NARCIS (Netherlands)

    Bullee, Jan-Willem; Veldhuis, Raymond N.J.

    What information is available in biometric features besides that needed for the biometric recognition process? What if a biometric feature contains Personally Identifiable Information? Will the whole biometric system become a threat to privacy? This paper is an attempt to quantifiy the link between

  13. Case-Based Plan Recognition in Computer Games

    OpenAIRE

    Fagan, Michael; Cunningham, Padraig

    2003-01-01

    In this paper we explore the use of case-based plan recognition to predict a player?s actions in a computer game. The game we work with is the classic Space Invaders game and we show that case-based plan recognition can produce good prediction accuracy in real-time, working with a fairly simple game representation. Our evaluation suggests that a personalized plan library will produce better prediction accuracy but, for Space Invaders, good accuracy can be produced using a pl...

  14. Correlation-based nonlinear composite filters applied to image recognition

    Science.gov (United States)

    Martínez-Díaz, Saúl

    2010-08-01

    Correlation-based pattern recognition has been an area of extensive research in the past few decades. Recently, composite nonlinear correlation filters invariants to translation, rotation, and scale were proposed. The design of the filters is based on logical operations and nonlinear correlation. In this work nonlinear filters are designed and applied to non-homogeneously illuminated images acquired with an optical microscope. Images are embedded into cluttered background, non-homogeneously illuminated and corrupted by random noise, which makes difficult the recognition task. Performance of nonlinear composite filters is compared with performance of other composite correlation filters, in terms discrimination capability.

  15. EMG-based facial gesture recognition through versatile elliptic basis function neural network.

    Science.gov (United States)

    Hamedi, Mahyar; Salleh, Sh-Hussain; Astaraki, Mehdi; Noor, Alias Mohd

    2013-07-17

    Recently, the recognition of different facial gestures using facial neuromuscular activities has been proposed for human machine interfacing applications. Facial electromyograms (EMGs) analysis is a complicated field in biomedical signal processing where accuracy and low computational cost are significant concerns. In this paper, a very fast versatile elliptic basis function neural network (VEBFNN) was proposed to classify different facial gestures. The effectiveness of different facial EMG time-domain features was also explored to introduce the most discriminating. In this study, EMGs of ten facial gestures were recorded from ten subjects using three pairs of surface electrodes in a bi-polar configuration. The signals were filtered and segmented into distinct portions prior to feature extraction. Ten different time-domain features, namely, Integrated EMG, Mean Absolute Value, Mean Absolute Value Slope, Maximum Peak Value, Root Mean Square, Simple Square Integral, Variance, Mean Value, Wave Length, and Sign Slope Changes were extracted from the EMGs. The statistical relationships between these features were investigated by Mutual Information measure. Then, the feature combinations including two to ten single features were formed based on the feature rankings appointed by Minimum-Redundancy-Maximum-Relevance (MRMR) and Recognition Accuracy (RA) criteria. In the last step, VEBFNN was employed to classify the facial gestures. The effectiveness of single features as well as the feature sets on the system performance was examined by considering the two major metrics, recognition accuracy and training time. Finally, the proposed classifier was assessed and compared with conventional methods support vector machines and multilayer perceptron neural network. The average classification results showed that the best performance for recognizing facial gestures among all single/multi-features was achieved by Maximum Peak Value with 87.1% accuracy. Moreover, the results proved a

  16. Multi-script handwritten character recognition : Using feature descriptors and machine learning

    NARCIS (Netherlands)

    Surinta, Olarik

    2016-01-01

    Handwritten character recognition plays an important role in transforming raw visual image data obtained from handwritten documents using for example scanners to a format which is understandable by a computer. It is an important application in the field of pattern recognition, machine learning and

  17. Traffic Command Gesture Recognition for Virtual Urban Scenes Based on a Spatiotemporal Convolution Neural Network

    Directory of Open Access Journals (Sweden)

    Chunyong Ma

    2018-01-01

    Full Text Available Intelligent recognition of traffic police command gestures increases authenticity and interactivity in virtual urban scenes. To actualize real-time traffic gesture recognition, a novel spatiotemporal convolution neural network (ST-CNN model is presented. We utilized Kinect 2.0 to construct a traffic police command gesture skeleton (TPCGS dataset collected from 10 volunteers. Subsequently, convolution operations on the locational change of each skeletal point were performed to extract temporal features, analyze the relative positions of skeletal points, and extract spatial features. After temporal and spatial features based on the three-dimensional positional information of traffic police skeleton points were extracted, the ST-CNN model classified positional information into eight types of Chinese traffic police gestures. The test accuracy of the ST-CNN model was 96.67%. In addition, a virtual urban traffic scene in which real-time command tests were carried out was set up, and a real-time test accuracy rate of 93.0% was achieved. The proposed ST-CNN model ensured a high level of accuracy and robustness. The ST-CNN model recognized traffic command gestures, and such recognition was found to control vehicles in virtual traffic environments, which enriches the interactive mode of the virtual city scene. Traffic command gesture recognition contributes to smart city construction.

  18. Motorcycle Start-stop System based on Intelligent Biometric Voice Recognition

    Science.gov (United States)

    Winda, A.; E Byan, W. R.; Sofyan; Armansyah; Zariantin, D. L.; Josep, B. G.

    2017-03-01

    Current mechanical key in the motorcycle is prone to bulgary, being stolen or misplaced. Intelligent biometric voice recognition as means to replace this mechanism is proposed as an alternative. The proposed system will decide whether the voice is belong to the user or not and the word utter by the user is ‘On’ or ‘Off’. The decision voice will be sent to Arduino in order to start or stop the engine. The recorded voice is processed in order to get some features which later be used as input to the proposed system. The Mel-Frequency Ceptral Coefficient (MFCC) is adopted as a feature extraction technique. The extracted feature is the used as input to the SVM-based identifier. Experimental results confirm the effectiveness of the proposed intelligent voice recognition and word recognition system. It show that the proposed method produces a good training and testing accuracy, 99.31% and 99.43%, respectively. Moreover, the proposed system shows the performance of false rejection rate (FRR) and false acceptance rate (FAR) accuracy of 0.18% and 17.58%, respectively. In the intelligent word recognition shows that the training and testing accuracy are 100% and 96.3%, respectively.

  19. Uniform design based SVM model selection for face recognition

    Science.gov (United States)

    Li, Weihong; Liu, Lijuan; Gong, Weiguo

    2010-02-01

    Support vector machine (SVM) has been proved to be a powerful tool for face recognition. The generalization capacity of SVM depends on the model with optimal hyperparameters. The computational cost of SVM model selection results in application difficulty in face recognition. In order to overcome the shortcoming, we utilize the advantage of uniform design--space filling designs and uniformly scattering theory to seek for optimal SVM hyperparameters. Then we propose a face recognition scheme based on SVM with optimal model which obtained by replacing the grid and gradient-based method with uniform design. The experimental results on Yale and PIE face databases show that the proposed method significantly improves the efficiency of SVM model selection.

  20. Palmprint and Face Multi-Modal Biometric Recognition Based on SDA-GSVD and Its Kernelization

    Directory of Open Access Journals (Sweden)

    Jing-Yu Yang

    2012-04-01

    Full Text Available When extracting discriminative features from multimodal data, current methods rarely concern themselves with the data distribution. In this paper, we present an assumption that is consistent with the viewpoint of discrimination, that is, a person’s overall biometric data should be regarded as one class in the input space, and his different biometric data can form different Gaussians distributions, i.e., different subclasses. Hence, we propose a novel multimodal feature extraction and recognition approach based on subclass discriminant analysis (SDA. Specifically, one person’s different bio-data are treated as different subclasses of one class, and a transformed space is calculated, where the difference among subclasses belonging to different persons is maximized, and the difference within each subclass is minimized. Then, the obtained multimodal features are used for classification. Two solutions are presented to overcome the singularity problem encountered in calculation, which are using PCA preprocessing, and employing the generalized singular value decomposition (GSVD technique, respectively. Further, we provide nonlinear extensions of SDA based multimodal feature extraction, that is, the feature fusion based on KPCA-SDA and KSDA-GSVD. In KPCA-SDA, we first apply Kernel PCA on each single modal before performing SDA. While in KSDA-GSVD, we directly perform Kernel SDA to fuse multimodal data by applying GSVD to avoid the singular problem. For simplicity two typical types of biometric data are considered in this paper, i.e., palmprint data and face data. Compared with several representative multimodal biometrics recognition methods, experimental results show that our approaches outperform related multimodal recognition methods and KSDA-GSVD achieves the best recognition performance.

  1. Digit recognition for Arabic/Jawi and Roman using features from triangle geometry

    Science.gov (United States)

    Azmi, Mohd Sanusi; Omar, Khairuddin; Nasrudin, Mohamad Faidzul; Idrus, Bahari; Wan Mohd Ghazali, Khadijah

    2013-04-01

    A novel method is proposed to recognize the Arab/Jawi and Roman digits. This new method is based on features from the triangle geometry, normalized into nine features. The features are used for zoning which results in five and 25 zones. The algorithm is validated by using three standard datasets which are publicly available and used by researchers in this field. The first dataset is HODA that contains 60,000 images for training and 20,000 images for testing. The second dataset is IFHCDB. This dataset has 52,380 isolated characters and 17,740 digits. Only the 17,740 images of digits are used for this research. For the roman digit, MNIST are chosen. MNIST dataset has 60,000 images for training and 10,000 images for testing. Supervised (SML) and Unsupervised Machine Learning (UML) are used to test the nine features. The SML used are Neural Network (NN) and Support Vector Machine (SVM). Whereas the UML uses Euclidean Distance Method with data mining algorithms; namely Mean Average Precision (eMAP) and Frequency Based (eFB). Results for SML testing for HODA dataset are 98.07% accuracy for SVM, and 96.73% for NN. For IFHCDB and MNIST the accuracy are 91.75% and 93.095% respectively. For the UML tests, HODA dataset is 93.91%, IFHCDB 85.94% and MNIST 86.61%. The train and test images are selected using both random and the original dataset's distribution. The results show that the accuracy of proposed algorithm is over 90% for each SML trained datasets where the highest result is the one that uses 25 zones features.

  2. Compression of a Deep Competitive Network Based on Mutual Information for Underwater Acoustic Targets Recognition

    Directory of Open Access Journals (Sweden)

    Sheng Shen

    2018-04-01

    Full Text Available The accuracy of underwater acoustic targets recognition via limited ship radiated noise can be improved by a deep neural network trained with a large number of unlabeled samples. However, redundant features learned by deep neural network have negative effects on recognition accuracy and efficiency. A compressed deep competitive network is proposed to learn and extract features from ship radiated noise. The core idea of the algorithm includes: (1 Competitive learning: By integrating competitive learning into the restricted Boltzmann machine learning algorithm, the hidden units could share the weights in each predefined group; (2 Network pruning: The pruning based on mutual information is deployed to remove the redundant parameters and further compress the network. Experiments based on real ship radiated noise show that the network can increase recognition accuracy with fewer informative features. The compressed deep competitive network can achieve a classification accuracy of 89.1 % , which is 5.3 % higher than deep competitive network and 13.1 % higher than the state-of-the-art signal processing feature extraction methods.

  3. The nuclear fuel rod character recognition system based on neural network technique

    International Nuclear Information System (INIS)

    Kim, Woong-Ki; Park, Soon-Yong; Lee, Yong-Bum; Kim, Seung-Ho; Lee, Jong-Min; Chien, Sung-Il.

    1994-01-01

    The nuclear fuel rods should be discriminated and managed systematically by numeric characters which are printed at the end part of each rod in the process of producing fuel assembly. The characters are used to examine manufacturing process of the fuel rods in the inspection process of irradiated fuel rod. Therefore automatic character recognition is one of the most important technologies to establish automatic manufacturing process of fuel assembly. In the developed character recognition system, mesh feature set extracted from each character written in the fuel rod is employed to train a neural network based on back-propagation algorithm as a classifier for character recognition system. Performance evaluation has been achieved on a test set which is not included in a training character set. (author)

  4. Body-Based Gender Recognition Using Images from Visible and Thermal Cameras

    Science.gov (United States)

    Nguyen, Dat Tien; Park, Kang Ryoung

    2016-01-01

    Gender information has many useful applications in computer vision systems, such as surveillance systems, counting the number of males and females in a shopping mall, accessing control systems in restricted areas, or any human-computer interaction system. In most previous studies, researchers attempted to recognize gender by using visible light images of the human face or body. However, shadow, illumination, and time of day greatly affect the performance of these methods. To overcome this problem, we propose a new gender recognition method based on the combination of visible light and thermal camera images of the human body. Experimental results, through various kinds of feature extraction and fusion methods, show that our approach is efficient for gender recognition through a comparison of recognition rates with conventional systems. PMID:26828487

  5. Combining Biometric Fractal Pattern and Particle Swarm Optimization-Based Classifier for Fingerprint Recognition

    Directory of Open Access Journals (Sweden)

    Chia-Hung Lin

    2010-01-01

    Full Text Available This paper proposes combining the biometric fractal pattern and particle swarm optimization (PSO-based classifier for fingerprint recognition. Fingerprints have arch, loop, whorl, and accidental morphologies, and embed singular points, resulting in the establishment of fingerprint individuality. An automatic fingerprint identification system consists of two stages: digital image processing (DIP and pattern recognition. DIP is used to convert to binary images, refine out noise, and locate the reference point. For binary images, Katz's algorithm is employed to estimate the fractal dimension (FD from a two-dimensional (2D image. Biometric features are extracted as fractal patterns using different FDs. Probabilistic neural network (PNN as a classifier performs to compare the fractal patterns among the small-scale database. A PSO algorithm is used to tune the optimal parameters and heighten the accuracy. For 30 subjects in the laboratory, the proposed classifier demonstrates greater efficiency and higher accuracy in fingerprint recognition.

  6. Handwritten Character Recognition Based on the Specificity and the Singularity of the Arabic Language

    Directory of Open Access Journals (Sweden)

    Youssef Boulid

    2017-08-01

    Full Text Available A good Arabic handwritten recognition system must consider the characteristics of Arabic letters which can be explicit such as the presence of diacritics or implicit such as the baseline information (a virtual line on which cursive text are aligned and/join. In order to find an adequate method of features extraction, we have taken into consideration the nature of the Arabic characters. The paper investigate two methods based on two different visions: one describes the image in terms of the distribution of pixels, and the other describes it in terms of local patterns. Spatial Distribution of Pixels (SDP is used according to the first vision; whereas Local Binary Patterns (LBP are used for the second one. Tested on the Arabic portion of the Isolated Farsi Handwritten Character Database (IFHCDB and using neural networks as a classifier, SDP achieve a recognition rate around 94% while LBP achieve a recognition rate of about 96%.

  7. Choice: 36 band feature selection software with applications to multispectral pattern recognition

    Science.gov (United States)

    Jones, W. C.

    1973-01-01

    Feature selection software was developed at the Earth Resources Laboratory that is capable of inputting up to 36 channels and selecting channel subsets according to several criteria based on divergence. One of the criterion used is compatible with the table look-up classifier requirements. The software indicates which channel subset best separates (based on average divergence) each class from all other classes. The software employs an exhaustive search technique, and computer time is not prohibitive. A typical task to select the best 4 of 22 channels for 12 classes takes 9 minutes on a Univac 1108 computer.

  8. Multi-channel EEG signal feature extraction and pattern recognition on horizontal mental imagination task of 1-D cursor movement for brain computer interface.

    Science.gov (United States)

    Serdar Bascil, M; Tesneli, Ahmet Y; Temurtas, Feyzullah

    2015-06-01

    Brain computer interfaces (BCIs), based on multi-channel electroencephalogram (EEG) signal processing convert brain signal activities to machine control commands. It provides new communication way with a computer by extracting electroencephalographic activity. This paper, deals with feature extraction and classification of horizontal mental task pattern on 1-D cursor movement from EEG signals. The hemispherical power changes are computed and compared on alpha & beta frequencies and horizontal cursor control extracted with only mental imagination of cursor movements. In the first stage, features are extracted with the well-known average signal power or power difference (alpha and beta) method. Principal component analysis is used for reducing feature dimensions. All features are classified and the mental task patterns are recognized by three neural network classifiers which learning vector quantization, multilayer neural network and probabilistic neural network due to obtaining acceptable good results and using successfully in pattern recognition via k-fold cross validation technique.

  9. The Research and Application of SURF Algorithm Based on Feature Point Selection Algorithm

    Directory of Open Access Journals (Sweden)

    Zhang Fang Hu

    2014-04-01

    Full Text Available As the pixel information of depth image is derived from the distance information, when implementing SURF algorithm with KINECT sensor for static sign language recognition, there can be some mismatched pairs in palm area. This paper proposes a feature point selection algorithm, by filtering the SURF feature points step by step based on the number of feature points within adaptive radius r and the distance between the two points, it not only greatly improves the recognition rate, but also ensures the robustness under the environmental factors, such as skin color, illumination intensity, complex background, angle and scale changes. The experiment results show that the improved SURF algorithm can effectively improve the recognition rate, has a good robustness.

  10. The method of micro-motion cycle feature extraction based on confidence coefficient evaluation criteria

    Science.gov (United States)

    Tang, Chuanzi; Ren, Hongmei; Bo, Li; Jing, Huang

    2017-11-01

    In radar target recognition, the micro motion characteristics of target is one of the characteristics that researchers pay attention to at home and abroad, in which the characteristics of target precession cycle is one of the important characteristics of target movement characteristics. Periodic feature extraction methods have been studied for years, the complex shape of the target and the scattering center stack lead to random fluctuations of the RCS. These random fluctuations also exist certain periodicity, which has a great influence on the target recognition result. In order to solve the problem, this paper proposes a extraction method of micro-motion cycle feature based on confidence coefficient evaluation criteria.

  11. Development of remote handling system based on 3-D shape recognition technique

    International Nuclear Information System (INIS)

    Tomizuka, Chiaki; Takeuchi, Yutaka

    2006-01-01

    In a nuclear facility, the maintenance and repair activities must be done remotely in a radioactive environment. Fuji Electric Systems Co., Ltd. has developed a remote handling system based on 3-D recognition technique. The system recognizes the pose and position of the target to manipulate, and visualizes the scene with the target in 3-D, enabling an operator to handle it easily. This paper introduces the concept and the key features of this system. (author)

  12. Primitive Based Action Representation and Recognition

    DEFF Research Database (Denmark)

    Baby, Sanmohan; Krüger, Volker

    2009-01-01

    There has been a recent interest in segmenting action sequences into   meaningful parts (action primitives) and to model actions on a   higher level based on these action primitives. Unlike previous works where action primitives are defined    a-priori and search is made for them later, we present...

  13. A General Polygon-based Deformable Model for Object Recognition

    DEFF Research Database (Denmark)

    Jensen, Rune Fisker; Carstensen, Jens Michael

    1999-01-01

    We propose a general scheme for object localization and recognition based on a deformable model. The model combines shape and image properties by warping a arbitrary prototype intensity template according to the deformation in shape. The shape deformations are constrained by a probabilistic...... distribution, which combined with a match of the warped intensity template and the image form the final criteria used for localization and recognition of a given object. The chosen representation gives the model an ability to model an almost arbitrary object. Beside the actual model a full general scheme...

  14. Noisy Ocular Recognition Based on Three Convolutional Neural Networks

    Directory of Open Access Journals (Sweden)

    Min Beom Lee

    2017-12-01

    Full Text Available In recent years, the iris recognition system has been gaining increasing acceptance for applications such as access control and smartphone security. When the images of the iris are obtained under unconstrained conditions, an issue of undermined quality is caused by optical and motion blur, off-angle view (the user’s eyes looking somewhere else, not into the front of the camera, specular reflection (SR and other factors. Such noisy iris images increase intra-individual variations and, as a result, reduce the accuracy of iris recognition. A typical iris recognition system requires a near-infrared (NIR illuminator along with an NIR camera, which are larger and more expensive than fingerprint recognition equipment. Hence, many studies have proposed methods of using iris images captured by a visible light camera without the need for an additional illuminator. In this research, we propose a new recognition method for noisy iris and ocular images by using one iris and two periocular regions, based on three convolutional neural networks (CNNs. Experiments were conducted by using the noisy iris challenge evaluation-part II (NICE.II training dataset (selected from the university of Beira iris (UBIRIS.v2 database, mobile iris challenge evaluation (MICHE database, and institute of automation of Chinese academy of sciences (CASIA-Iris-Distance database. As a result, the method proposed by this study outperformed previous methods.

  15. Face-iris multimodal biometric scheme based on feature level fusion

    Science.gov (United States)

    Huo, Guang; Liu, Yuanning; Zhu, Xiaodong; Dong, Hongxing; He, Fei

    2015-11-01

    Unlike score level fusion, feature level fusion demands all the features extracted from unimodal traits with high distinguishability, as well as homogeneity and compatibility, which is difficult to achieve. Therefore, most multimodal biometric research focuses on score level fusion, whereas few investigate feature level fusion. We propose a face-iris recognition method based on feature level fusion. We build a special two-dimensional-Gabor filter bank to extract local texture features from face and iris images, and then transform them by histogram statistics into an energy-orientation variance histogram feature with lower dimensions and higher distinguishability. Finally, through a fusion-recognition strategy based on principal components analysis and support vector machine (FRSPS), feature level fusion and one-to-n identification are accomplished. The experimental results demonstrate that this method can not only effectively extract face and iris features but also provide higher recognition accuracy. Compared with some state-of-the-art fusion methods, the proposed method has a significant performance advantage.

  16. Extracting time-frequency feature of single-channel vastus medialis EMG signals for knee exercise pattern recognition.

    Science.gov (United States)

    Zhang, Yi; Li, Peiyang; Zhu, Xuyang; Su, Steven W; Guo, Qing; Xu, Peng; Yao, Dezhong

    2017-01-01

    The EMG signal indicates the electrophysiological response to daily living of activities, particularly to lower-limb knee exercises. Literature reports have shown numerous benefits of the Wavelet analysis in EMG feature extraction for pattern recognition. However, its application to typical knee exercises when using only a single EMG channel is limited. In this study, three types of knee exercises, i.e., flexion of the leg up (standing), hip extension from a sitting position (sitting) and gait (walking) are investigated from 14 healthy untrained subjects, while EMG signals from the muscle group of vastus medialis and the goniometer on the knee joint of the detected leg are synchronously monitored and recorded. Four types of lower-limb motions including standing, sitting, stance phase of walking, and swing phase of walking, are segmented. The Wavelet Transform (WT) based Singular Value Decomposition (SVD) approach is proposed for the classification of four lower-limb motions using a single-channel EMG signal from the muscle group of vastus medialis. Based on lower-limb motions from all subjects, the combination of five-level wavelet decomposition and SVD is used to comprise the feature vector. The Support Vector Machine (SVM) is then configured to build a multiple-subject classifier for which the subject independent accuracy will be given across all subjects for the classification of four types of lower-limb motions. In order to effectively indicate the classification performance, EMG features from time-domain (e.g., Mean Absolute Value (MAV), Root-Mean-Square (RMS), integrated EMG (iEMG), Zero Crossing (ZC)) and frequency-domain (e.g., Mean Frequency (MNF) and Median Frequency (MDF)) are also used to classify lower-limb motions. The five-fold cross validation is performed and it repeats fifty times in order to acquire the robust subject independent accuracy. Results show that the proposed WT-based SVD approach has the classification accuracy of 91.85%±0.88% which

  17. Extracting time-frequency feature of single-channel vastus medialis EMG signals for knee exercise pattern recognition.

    Directory of Open Access Journals (Sweden)

    Yi Zhang

    Full Text Available The EMG signal indicates the electrophysiological response to daily living of activities, particularly to lower-limb knee exercises. Literature reports have shown numerous benefits of the Wavelet analysis in EMG feature extraction for pattern recognition. However, its application to typical knee exercises when using only a single EMG channel is limited. In this study, three types of knee exercises, i.e., flexion of the leg up (standing, hip extension from a sitting position (sitting and gait (walking are investigated from 14 healthy untrained subjects, while EMG signals from the muscle group of vastus medialis and the goniometer on the knee joint of the detected leg are synchronously monitored and recorded. Four types of lower-limb motions including standing, sitting, stance phase of walking, and swing phase of walking, are segmented. The Wavelet Transform (WT based Singular Value Decomposition (SVD approach is proposed for the classification of four lower-limb motions using a single-channel EMG signal from the muscle group of vastus medialis. Based on lower-limb motions from all subjects, the combination of five-level wavelet decomposition and SVD is used to comprise the feature vector. The Support Vector Machine (SVM is then configured to build a multiple-subject classifier for which the subject independent accuracy will be given across all subjects for the classification of four types of lower-limb motions. In order to effectively indicate the classification performance, EMG features from time-domain (e.g., Mean Absolute Value (MAV, Root-Mean-Square (RMS, integrated EMG (iEMG, Zero Crossing (ZC and frequency-domain (e.g., Mean Frequency (MNF and Median Frequency (MDF are also used to classify lower-limb motions. The five-fold cross validation is performed and it repeats fifty times in order to acquire the robust subject independent accuracy. Results show that the proposed WT-based SVD approach has the classification accuracy of 91.85%±0

  18. Hand-Geometry Recognition Based on Contour Parameters

    NARCIS (Netherlands)

    Veldhuis, Raymond N.J.; Bazen, A.M.; Booij, W.D.T.; Hendrikse, A.J.; Jain, A.K.; Ratha, N.K.

    This paper demonstrates the feasibility of a new method of hand-geometry recognition based on parameters derived from the contour of the hand. The contour is completely determined by the black-and-white image of the hand and can be derived from it by means of simple image-processing techniques. It

  19. Non-frontal Model Based Approach to Forensic Face Recognition

    NARCIS (Netherlands)

    Dutta, A.; Veldhuis, Raymond N.J.; Spreeuwers, Lieuwe Jan

    2012-01-01

    In this paper, we propose a non-frontal model based approach which ensures that a face recognition system always gets to compare images having similar view (or pose). This requires a virtual suspect reference set that consists of non-frontal suspect images having pose similar to the surveillance

  20. Biometric verification based on grip-pattern recognition

    NARCIS (Netherlands)

    Veldhuis, Raymond N.J.; Bazen, A.M.; Kauffman, J.A.; Hartel, Pieter H.; Delp, Edward J.; Wong, Ping W.

    This paper describes the design, implementation and evaluation of a user-verification system for a smart gun, which is based on grip-pattern recognition. An existing pressure sensor consisting of an array of 44 x 44 piezoresistive elements is used to measure the grip pattern. An interface has been

  1. A survey on vision-based human action recognition

    NARCIS (Netherlands)

    Poppe, Ronald Walter

    Vision-based human action recognition is the process of labeling image sequences with action labels. Robust solutions to this problem have applications in domains such as visual surveillance, video retrieval and human–computer interaction. The task is challenging due to variations in motion

  2. Collaborative Tracking of Image Features Based on Projective Invariance

    Science.gov (United States)

    Jiang, Jinwei

    In past manned lunar landing missions, such as Apollo 14, spatial disorientation of astronauts substantially compromised the productivities of astronauts, and caused safety and mission success problems. The non-GPS lunar environment has micro-gravity field, and lacks both spatial recognition cues and reference objects which are familiar to the human biological sensors related to spatial recognition (e.g. eyes). Such an environment causes misperceptions of the locations of astronauts and targets and their spatial relations, as well as misperceptions of the heading direction and travel distances of astronauts. These spatial disorientation effects can reduce productivity and cause life risks in lunar manned missions. A navigation system, which is capable of locating astronauts and tracking the movements of them on the lunar surface, is critical for future lunar manned missions where multiple astronauts will traverse more than 100km from the lander or the base station with the assistance from roving vehicle, and need real-time navigation support for effective collaborations among them. Our earlier research to solve these problems dealt with developing techniques to enable a precise, flexible and reliable Lunar Astronaut Spatial Orientation and Information System (LASOIS) capable of delivering real-time navigation information to astronauts on the lunar surface. The LASOIS hardware was a sensor network composed of orbital, ground and on-suit sensors: the Lunar Reconnaissance Orbiter Camera (LROC), radio beacons, the on-suit cameras, and shoe-mounted Inertial Measurement Unit (IMU). The LASOIS software included efficient and robust algorithms for estimating trajectory from IMU signals, generating heading information from imagery acquired from on-suit cameras, and an Extended Kalman Filter (EKF) based approach for integrating these spatial information components to generate the trajectory of an astronaut with meter-level accuracy. Moreover, LASOIS emphasized multi

  3. Recognition of unnatural variation patterns in metal-stamping process using artificial neural network and statistical features

    Science.gov (United States)

    Rahman, Norasulaini Abdul; Masood, Ibrahim; Nasrull Abdol Rahman, Mohd

    2016-11-01

    Unnatural process variation (UPV) is vital in quality problem of a metalstamping process. It is a major contributor to a poor quality product. The sources of UPV usually found from special causes. Recently, there is still debated among researchers in finding an effective technique for on-line monitoring-diagnosis the sources of UPV. Control charts pattern recognition (CCPR) is the most investigated technique. The existing CCPR schemes were mainly developed using raw data-based artificial neural network (ANN) recognizer, whereby the process samples were mainly generated artificially using mathematical equations. This is because the real process samples were commonly confidential or not economically available. In this research, the statistical features - ANN recognizer was utilized as the control chart pattern recognizer, whereby process sample was taken directly from an actual manufacturing process. Based on dynamic data training, the proposed recognizer has resulted in better monitoring-diagnosis performance (Normal = 100%, Unnatural = 100%) compared to the raw data- ANN (Normal = 66.67%, Unnatural = 26.97%).

  4. Pain Expression Recognition Based on pLSA Model

    Directory of Open Access Journals (Sweden)

    Shaoping Zhu

    2014-01-01

    Full Text Available We present a new approach to automatically recognize the pain expression from video sequences, which categorize pain as 4 levels: “no pain,” “slight pain,” “moderate pain,” and “ severe pain.” First of all, facial velocity information, which is used to characterize pain, is determined using optical flow technique. Then visual words based on facial velocity are used to represent pain expression using bag of words. Final pLSA model is used for pain expression recognition, in order to improve the recognition accuracy, the class label information was used for the learning of the pLSA model. Experiments were performed on a pain expression dataset built by ourselves to test and evaluate the proposed method, the experiment results show that the average recognition accuracy is over 92%, which validates its effectiveness.

  5. A NEURAL NETWORK BASED IRIS RECOGNITION SYSTEM FOR PERSONAL IDENTIFICATION

    Directory of Open Access Journals (Sweden)

    Usham Dias

    2010-10-01

    Full Text Available This paper presents biometric personal identification based on iris recognition using artificial neural networks. Personal identification system consists of localization of the iris region, normalization, enhancement and then iris pattern recognition using neural network. In this paper, through results obtained, we have shown that a person’s left and right eye are unique. In this paper, we also show that the network is sensitive to the initial weights and that over-training gives bad results. We also propose a fast algorithm for the localization of the inner and outer boundaries of the iris region. Results of simulations illustrate the effectiveness of the neural system in personal identification. Finally a hardware iris recognition model is proposed and implementation aspects are discussed.

  6. Human Gait Recognition Based on Multiview Gait Sequences

    Directory of Open Access Journals (Sweden)

    Xiaxi Huang

    2008-05-01

    Full Text Available Most of the existing gait recognition methods rely on a single view, usually the side view, of the walking person. This paper investigates the case in which several views are available for gait recognition. It is shown that each view has unequal discrimination power and, therefore, should have unequal contribution in the recognition process. In order to exploit the availability of multiple views, several methods for the combination of the results that are obtained from the individual views are tested and evaluated. A novel approach for the combination of the results from several views is also proposed based on the relative importance of each view. The proposed approach generates superior results, compared to those obtained by using individual views or by using multiple views that are combined using other combination methods.

  7. Clonal Selection Based Artificial Immune System for Generalized Pattern Recognition

    Science.gov (United States)

    Huntsberger, Terry

    2011-01-01

    The last two decades has seen a rapid increase in the application of AIS (Artificial Immune Systems) modeled after the human immune system to a wide range of areas including network intrusion detection, job shop scheduling, classification, pattern recognition, and robot control. JPL (Jet Propulsion Laboratory) has developed an integrated pattern recognition/classification system called AISLE (Artificial Immune System for Learning and Exploration) based on biologically inspired models of B-cell dynamics in the immune system. When used for unsupervised or supervised classification, the method scales linearly with the number of dimensions, has performance that is relatively independent of the total size of the dataset, and has been shown to perform as well as traditional clustering methods. When used for pattern recognition, the method efficiently isolates the appropriate matches in the data set. The paper presents the underlying structure of AISLE and the results from a number of experimental studies.

  8. Interchange Recognition Method Based on CNN

    Directory of Open Access Journals (Sweden)

    HE Haiwei

    2018-03-01

    Full Text Available The identification and classification of interchange structures in OSM data can provide important information for the construction of multi-scale model, navigation and location services, congestion analysis, etc. The traditional method of interchange identification relies on the low-level characteristics of artificial design, and cannot distinguish the complex interchange structure with interference section effectively. In this paper, a new method based on convolutional neural network for identification of the interchange is proposed. The method combines vector data with raster image, and uses neural network to learn the fuzzy characteristics of the interchange, and classifies the complex interchange structure in OSM. Experiments show that this method has strong anti-interference, and has achieved good results in the classification of complex interchange shape, and there is room for further improvement with the expansion of the case base and the optimization of neural network model.

  9. Towards cardinality-based service feature diagrams

    Directory of Open Access Journals (Sweden)

    Ghulam Mustafa Assad

    2015-03-01

    Full Text Available To provide efficient services to end-user it is essential to manage variability among services. Feature modelling is an important approach to manage variability and commonalities of a system in product line. Feature models are composed of feature diagrams. Service feature diagrams (an extended form of feature diagrams changed the basic framework of feature diagrams by proposing new feature types and their relevance. Service feature diagrams provide selection rights for variable features. In this paper we argue that it is essential to put cardinalities on service feature diagrams. That is, the selection of features should be done under some constraints, to provide a lower and upper limit for the selection of features. The use of cardinalities on service feature diagrams reduces the types of features to half, while keeping the integrity of all features.

  10. FEATURE EXTRACTION FOR EMG BASED PROSTHESES CONTROL

    Directory of Open Access Journals (Sweden)

    R. Aishwarya

    2013-01-01

    Full Text Available The control of prosthetic limb would be more effective if it is based on Surface Electromyogram (SEMG signals from remnant muscles. The analysis of SEMG signals depend on a number of factors, such as amplitude as well as time- and frequency-domain properties. Time series analysis using Auto Regressive (AR model and Mean frequency which is tolerant to white Gaussian noise are used as feature extraction techniques. EMG Histogram is used as another feature vector that was seen to give more distinct classification. The work was done with SEMG dataset obtained from the NINAPRO DATABASE, a resource for bio robotics community. Eight classes of hand movements hand open, hand close, Wrist extension, Wrist flexion, Pointing index, Ulnar deviation, Thumbs up, Thumb opposite to little finger are taken into consideration and feature vectors are extracted. The feature vectors can be given to an artificial neural network for further classification in controlling the prosthetic arm which is not dealt in this paper.

  11. Improved Collaborative Representation Classifier Based on l2-Regularized for Human Action Recognition

    Directory of Open Access Journals (Sweden)

    Shirui Huo

    2017-01-01

    Full Text Available Human action recognition is an important recent challenging task. Projecting depth images onto three depth motion maps (DMMs and extracting deep convolutional neural network (DCNN features are discriminant descriptor features to characterize the spatiotemporal information of a specific action from a sequence of depth images. In this paper, a unified improved collaborative representation framework is proposed in which the probability that a test sample belongs to the collaborative subspace of all classes can be well defined and calculated. The improved collaborative representation classifier (ICRC based on l2-regularized for human action recognition is presented to maximize the likelihood that a test sample belongs to each class, then theoretical investigation into ICRC shows that it obtains a final classification by computing the likelihood for each class. Coupled with the DMMs and DCNN features, experiments on depth image-based action recognition, including MSRAction3D and MSRGesture3D datasets, demonstrate that the proposed approach successfully using a distance-based representation classifier achieves superior performance over the state-of-the-art methods, including SRC, CRC, and SVM.

  12. Memory Driven Feature-Based Design

    Science.gov (United States)

    1993-01-01

    memory , measures of similarity, and the question of how to manage remembering and recollecting on the basis of similarity [18]. There is a large body...is also influenced by the Dynamic Memory ideas of Schank [20], by the episodic memory ideas of Kolodner [21], and by the Case-based planning approach...AD-A264 697 WL-TR-93-4021 MEMORY DRIVEN FEATURE-BASED DESIGN DTIC Y.H. PAO AY 11993 F.L. MERAT G.M. RADACK CASE WESTERN RESERVE UNIVERSITY ELECTRICAL

  13. Inertial Sensor-Based Gait Recognition: A Review

    Science.gov (United States)

    Sprager, Sebastijan; Juric, Matjaz B.

    2015-01-01

    With the recent development of microelectromechanical systems (MEMS), inertial sensors have become widely used in the research of wearable gait analysis due to several factors, such as being easy-to-use and low-cost. Considering the fact that each individual has a unique way of walking, inertial sensors can be applied to the problem of gait recognition where assessed gait can be interpreted as a biometric trait. Thus, inertial sensor-based gait recognition has a great potential to play an important role in many security-related applications. Since inertial sensors are included in smart devices that are nowadays present at every step, inertial sensor-based gait recognition has become very attractive and emerging field of research that has provided many interesting discoveries recently. This paper provides a thorough and systematic review of current state-of-the-art in this field of research. Review procedure has revealed that the latest advanced inertial sensor-based gait recognition approaches are able to sufficiently recognise the users when relying on inertial data obtained during gait by single commercially available smart device in controlled circumstances, including fixed placement and small variations in gait. Furthermore, these approaches have also revealed considerable breakthrough by realistic use in uncontrolled circumstances, showing great potential for their further development and wide applicability. PMID:26340634

  14. Unsupervised Posture Modeling Based on Spatial-Temporal Movement Features

    Science.gov (United States)

    Yan, Chunjuan

    Traditional posture modeling for human action recognition is based on silhouette segmentation, which is subject to the noise from illumination variation and posture occlusions and shadow interruptions. In this paper, we extract spatial temporal movement features from human actions and adopt unsupervised clustering method for salient posture learning. First, spatial-temporal interest points (STIPs) were extracted according to the properties of human movement, and then, histogram of gradient was built to describe the distribution of STIPs in each frame for a single pose. In addition, the training samples were clustered by non-supervised classification method. Moreover, the salient postures were modeled with GMM according to Expectation Maximization (EM) estimation. The experiment results proved that our method can effectively and accurately recognize human's action postures.

  15. Modified kernel-based nonlinear feature extraction.

    Energy Technology Data Exchange (ETDEWEB)

    Ma, J. (Junshui); Perkins, S. J. (Simon J.); Theiler, J. P. (James P.); Ahalt, S. (Stanley)

    2002-01-01

    Feature Extraction (FE) techniques are widely used in many applications to pre-process data in order to reduce the complexity of subsequent processes. A group of Kernel-based nonlinear FE ( H E ) algorithms has attracted much attention due to their high performance. However, a serious limitation that is inherent in these algorithms -- the maximal number of features extracted by them is limited by the number of classes involved -- dramatically degrades their flexibility. Here we propose a modified version of those KFE algorithms (MKFE), This algorithm is developed from a special form of scatter-matrix, whose rank is not determined by the number of classes involved, and thus breaks the inherent limitation in those KFE algorithms. Experimental results suggest that MKFE algorithm is .especially useful when the training set is small.

  16. Named Entity Recognition in a Hungarian NL Based QA System

    Science.gov (United States)

    Tikkl, Domonkos; Szidarovszky, P. Ferenc; Kardkovacs, Zsolt T.; Magyar, Gábor

    In WoW project our purpose is to create a complex search interface with the following features: search in the deep web content of contracted partners' databases, processing Hungarian natural language (NL) questions and transforming them to SQL queries for database access, image search supported by a visual thesaurus that describes in a structural form the visual content of images (also in Hungarian). This paper primarily focuses on a particular problem of question processing task: the entity recognition. Before going into details we give a short overview of the project's aims.

  17. Efficient Kernel-based 2DPCA for Smile Stages Recognition

    Directory of Open Access Journals (Sweden)

    Fitri Damayanti

    2012-03-01

    Full Text Available Recently, an approach called two-dimensional principal component analysis (2DPCA has been proposed for smile stages representation and recognition. The essence of 2DPCA is that it computes the eigenvectors of the so-called image covariance matrix without matrix-to-vector conversion so the size of the image covariance matrix are much smaller, easier to evaluate covariance matrix, computation cost is reduced and the performance is also improved than traditional PCA. In an effort to improve and perfect the performance of smile stages recognition, in this paper, we propose efficient Kernel based 2DPCA concepts. The Kernelization of 2DPCA can be benefit to develop the nonlinear structures in the input data. This paper discusses comparison of standard Kernel based 2DPCA and efficient Kernel based 2DPCA for smile stages recognition. The results of experiments show that Kernel based 2DPCA achieve better performance in comparison with the other approaches. While the use of efficient Kernel based 2DPCA can speed up the training procedure of standard Kernel based 2DPCA thus the algorithm can achieve much more computational efficiency and remarkably save the memory consuming compared to the standard Kernel based 2DPCA.

  18. Digital field mapping for stimulating Secondary School students in the recognition of geological features and landforms

    Science.gov (United States)

    Giardino, Marco; Magagna, Alessandra; Ferrero, Elena; Perrone, Gianluigi

    2015-04-01

    Digital field mapping has certainly provided geoscientists with the opportunity to map and gather data in the field directly using digital tools and software rather than using paper maps, notebooks and analogue devices and then subsequently transferring the data to a digital format for subsequent analysis. But, the same opportunity has to be recognized for Geoscience education, as well as for stimulating and helping students in the recognition of landforms and interpretation of the geological and geomorphological components of a landscape. More, an early exposure to mapping during school and prior to university can optimise the ability to "read" and identify uncertainty in 3d models. During 2014, about 200 Secondary School students (aged 12-15) of the Piedmont region (NW Italy) participated in a research program involving the use of mobile devices (smartphone and tablet) in the field. Students, divided in groups, used the application Trimble Outdoors Navigators for tracking a geological trail in the Sangone Valley and for taking georeferenced pictures and notes. Back to school, students downloaded the digital data in a .kml file for the visualization on Google Earth. This allowed them: to compare the hand tracked trail on a paper map with the digital trail, and to discuss about the functioning and the precision of the tools; to overlap a digital/semitransparent version of the 2D paper map (a Regional Technical Map) used during the field trip on the 2.5D landscape of Google Earth, as to help them in the interpretation of conventional symbols such as contour lines; to perceive the landforms seen during the field trip as a part of a more complex Pleistocene glacial landscape; to understand the classical and innovative contributions from different geoscientific disciplines to the generation of a 3D structural geological model of the Rivoli-Avigliana Morainic Amphitheatre. In 2013 and 2014, some other pilot projects have been carried out in different areas of the

  19. The 3-D image recognition based on fuzzy neural network technology

    Science.gov (United States)

    Hirota, Kaoru; Yamauchi, Kenichi; Murakami, Jun; Tanaka, Kei

    1993-01-01

    Three dimensional stereoscopic image recognition system based on fuzzy-neural network technology was developed. The system consists of three parts; preprocessing part, feature extraction part, and matching part. Two CCD color camera image are fed to the preprocessing part, where several operations including RGB-HSV transformation are done. A multi-layer perception is used for the line detection in the feature extraction part. Then fuzzy matching technique is introduced in the matching part. The system is realized on SUN spark station and special image input hardware system. An experimental result on bottle images is also presented.

  20. Ship Radiated Noise Recognition Using Resonance-Based Sparse Signal Decomposition

    Directory of Open Access Journals (Sweden)

    Jiaquan Yan

    2017-01-01

    Full Text Available Under the complex oceanic environment, robust and effective feature extraction is the key issue of ship radiated noise recognition. Since traditional feature extraction methods are susceptible to the inevitable environmental noise, the type of vessels, and the speed of ships, the recognition accuracy will degrade significantly. Hence, we propose a robust time-frequency analysis method which combines resonance-based sparse signal decomposition (RSSD and Hilbert marginal spectrum (HMS analysis. First, the observed signals are decomposed into high resonance component, low resonance component, and residual component by RSSD, which is a nonlinear signal analysis method based not on frequency or scale but on resonance. High resonance component is multiple simultaneous sustained oscillations, low resonance component is nonoscillatory transients, and residual component is white Gaussian noises. According to the low-frequency periodic oscillatory characteristic of ship radiated noise, high resonance component is the purified ship radiated noise. RSSD is suited to noise suppression for low-frequency oscillation signals. Second, HMS of high resonance component is extracted by Hilbert-Huang transform (HHT as the feature vector. Finally, support vector machine (SVM is adopted as a classifier. Real audio recordings are employed in the experiments under different signal-to-noise ratios (SNRs. The experimental results indicate that the proposed method has a better recognition performance than the traditional method under different SNRs.

  1. Real-Time (Vision-Based) Road Sign Recognition Using an Artificial Neural Network

    Science.gov (United States)

    Islam, Kh Tohidul; Raj, Ram Gopal

    2017-01-01

    Road sign recognition is a driver support function that can be used to notify and warn the driver by showing the restrictions that may be effective on the current stretch of road. Examples for such regulations are ‘traffic light ahead’ or ‘pedestrian crossing’ indications. The present investigation targets the recognition of Malaysian road and traffic signs in real-time. Real-time video is taken by a digital camera from a moving vehicle and real world road signs are then extracted using vision-only information. The system is based on two stages, one performs the detection and another one is for recognition. In the first stage, a hybrid color segmentation algorithm has been developed and tested. In the second stage, an introduced robust custom feature extraction method is used for the first time in a road sign recognition approach. Finally, a multilayer artificial neural network (ANN) has been created to recognize and interpret various road signs. It is robust because it has been tested on both standard and non-standard road signs with significant recognition accuracy. This proposed system achieved an average of 99.90% accuracy with 99.90% of sensitivity, 99.90% of specificity, 99.90% of f-measure, and 0.001 of false positive rate (FPR) with 0.3 s computational time. This low FPR can increase the system stability and dependability in real-time applications. PMID:28406471

  2. Real-Time (Vision-Based) Road Sign Recognition Using an Artificial Neural Network.

    Science.gov (United States)

    Islam, Kh Tohidul; Raj, Ram Gopal

    2017-04-13

    Road sign recognition is a driver support function that can be used to notify and warn the driver by showing the restrictions that may be effective on the current stretch of road. Examples for such regulations are 'traffic light ahead' or 'pedestrian crossing' indications. The present investigation targets the recognition of Malaysian road and traffic signs in real-time. Real-time video is taken by a digital camera from a moving vehicle and real world road signs are then extracted using vision-only information. The system is based on two stages, one performs the detection and another one is for recognition. In the first stage, a hybrid color segmentation algorithm has been developed and tested. In the second stage, an introduced robust custom feature extraction method is used for the first time in a road sign recognition approach. Finally, a multilayer artificial neural network (ANN) has been created to recognize and interpret various road signs. It is robust because it has been tested on both standard and non-standard road signs with significant recognition accuracy. This proposed system achieved an average of 99.90% accuracy with 99.90% of sensitivity, 99.90% of specificity, 99.90% of f-measure, and 0.001 of false positive rate (FPR) with 0.3 s computational time. This low FPR can increase the system stability and dependability in real-time applications.

  3. A Novel Generic Ball Recognition Algorithm Based on Omnidirectional Vision for Soccer Robots

    Directory of Open Access Journals (Sweden)

    Hui Zhang

    2013-11-01

    Full Text Available It is significant for the final goal of RoboCup to realize the recognition of generic balls for soccer robots. In this paper, a novel generic ball recognition algorithm based on omnidirectional vision is proposed by combining the modified Haar-like features and AdaBoost learning algorithm. The algorithm is divided into offline training and online recognition. During the phase of offline training, numerous sub-images are acquired from various panoramic images, including generic balls, and then the modified Haar-like features are extracted from them and used as the input of the AdaBoost learning algorithm to obtain a classifier. During the phase of online recognition, and according to the imaging characteristics of our omnidirectional vision system, rectangular windows are defined to search for the generic ball along the rotary and radial directions in the panoramic image, and the learned classifier is used to judge whether a ball is included in the window. After the ball has been recognized globally, ball tracking is realized by integrating a ball velocity estimation algorithm to reduce the computational cost. The experimental results show that good performance can be achieved using our algorithm, and that the generic ball can be recognized and tracked effectively.

  4. A robust automatic leukocyte recognition method based on island-clustering texture

    Directory of Open Access Journals (Sweden)

    Xiaoshun Li

    2016-01-01

    Full Text Available A leukocyte recognition method for human peripheral blood smear based on island-clustering texture (ICT is proposed. By analyzing the features of the five typical classes of leukocyte images, a new ICT model is established. Firstly, some feature points are extracted in a gray leukocyte image by mean-shift clustering to be the centers of islands. Secondly, the growing region is employed to create regions of the islands in which the seeds are just these feature points. These islands distribution can describe a new texture. Finally, a distinguished parameter vector of these islands is created as the ICT features by combining the ICT features with the geometric features of the leukocyte. Then the five typical classes of leukocytes can be recognized successfully at the correct recognition rate of more than 92.3% with a total sample of 1310 leukocytes. Experimental results show the feasibility of the proposed method. Further analysis reveals that the method is robust and results can provide important information for disease diagnosis.

  5. Automatic Pavement Crack Recognition Based on BP Neural Network

    Directory of Open Access Journals (Sweden)

    Li Li

    2014-02-01

    Full Text Available A feasible pavement crack detection system plays an important role in evaluating the road condition and providing the necessary road maintenance. In this paper, a back propagation neural network (BPNN is used to recognize pavement cracks from images. To improve the recognition accuracy of the BPNN, a complete framework of image processing is proposed including image preprocessing and crack information extraction. In this framework, the redundant image information is reduced as much as possible and two sets of feature parameters are constructed to classify the crack images. Then a BPNN is adopted to distinguish pavement images between linear and alligator cracks to acquire high recognition accuracy. Besides, the linear cracks can be further classified into transversal and longitudinal cracks according to the direction angle. Finally, the proposed method is evaluated on the data of 400 pavement images obtained by the Automatic Road Analyzer (ARAN in Northern China and the results show that the proposed method seems to be a powerful tool for pavement crack recognition. The rates of correct classification for alligator, transversal and longitudinal cracks are 97.5%, 100% and 88.0%, respectively. Compared to some previous studies, the method proposed in this paper is effective for all three kinds of cracks and the results are also acceptable for engineering application.

  6. It's What's on the Outside that Matters: An Advantage for External Features in Children's Word Recognition

    Science.gov (United States)

    Webb, Tessa M.; Beech, John R.; Mayall, Kate M.; Andrews, Antony S.

    2006-01-01

    The relative importance of internal and external letter features of words in children's developing reading was investigated to clarify further the nature of early featural analysis. In Experiment 1, 72 6-, 8-, and 10-year-olds read aloud words displayed as wholes, external features only (central features missing, thereby preserving word shape…

  7. EEG-Based Emotion Recognition Using Deep Learning Network with Principal Component Based Covariate Shift Adaptation

    Directory of Open Access Journals (Sweden)

    Suwicha Jirayucharoensak

    2014-01-01

    Full Text Available Automatic emotion recognition is one of the most challenging tasks. To detect emotion from nonstationary EEG signals, a sophisticated learning algorithm that can represent high-level abstraction is required. This study proposes the utilization of a deep learning network (DLN to discover unknown feature correlation between input signals that is crucial for the learning task. The DLN is implemented with a stacked autoencoder (SAE using hierarchical feature learning approach. Input features of the network are power spectral densities of 32-channel EEG signals from 32 subjects. To alleviate overfitting problem, principal component analysis (PCA is applied to extract the most important components of initial input features. Furthermore, covariate shift adaptation of the principal components is implemented to minimize the nonstationary effect of EEG signals. Experimental results show that the DLN is capable of classifying three different levels of valence and arousal with accuracy of 49.52% and 46.03%, respectively. Principal component based covariate shift adaptation enhances the respective classification accuracy by 5.55% and 6.53%. Moreover, DLN provides better performance compared to SVM and naive Bayes classifiers.

  8. Qualified matching feature collection for feature point-based copy-move forgery detection

    Science.gov (United States)

    Yu, Liyang; Han, Qi; Niu, Xiamu

    2015-03-01

    The feature matching step plays a critical role during the copy-move forgery detection procedure. However, when several highly similar features simultaneously exist in the feature space, current feature matching methods will miss a considerable number of genuine matching feature pairs. To this end, we propose a clustering-based method to collect qualified matching features for the feature point-based methods. The proposed method can collect far more genuine matching features than existing methods do, and thus significantly improve the detection performance, especially for multiple pasting cases. Experimental results confirm the efficacy of the proposed method.

  9. Analysis of image content recognition algorithm based on sparse coding and machine learning

    Science.gov (United States)

    Xiao, Yu

    2017-03-01

    This paper presents an image classification algorithm based on spatial sparse coding model and random forest. Firstly, SIFT feature extraction of the image; and then use the sparse encoding theory to generate visual vocabulary based on SIFT features, and using the visual vocabulary of SIFT features into a sparse vector; through the combination of regional integration and spatial sparse vector, the sparse vector gets a fixed dimension is used to represent the image; at last random forest classifier for image sparse vectors for training and testing, using the experimental data set for standard test Caltech-101 and Scene-15. The experimental results show that the proposed algorithm can effectively represent the features of the image and improve the classification accuracy. In this paper, we propose an innovative image recognition algorithm based on image segmentation, sparse coding and multi instance learning. This algorithm introduces the concept of multi instance learning, the image as a multi instance bag, sparse feature transformation by SIFT images as instances, sparse encoding model generation visual vocabulary as the feature space is mapped to the feature space through the statistics on the number of instances in bags, and then use the 1-norm SVM to classify images and generate sample weights to select important image features.

  10. Contact-Free Cognitive Load Recognition Based on Eye Movement

    Directory of Open Access Journals (Sweden)

    Xin Liu

    2016-01-01

    Full Text Available The cognitive overload not only affects the physical and mental diseases, but also affects the work efficiency and safety. Hence, the research of measuring cognitive load has been an important part of cognitive load theory. In this paper, we proposed a method to identify the state of cognitive load by using eye movement data in a noncontact manner. We designed a visual experiment to elicit human’s cognitive load as high and low state in two light intense environments and recorded the eye movement data in this whole process. Twelve salient features of the eye movement were selected by using statistic test. Algorithms for processing some features are proposed for increasing the recognition rate. Finally we used the support vector machine (SVM to classify high and low cognitive load. The experimental results show that the method can achieve 90.25% accuracy in light controlled condition.

  11. Comparing grapheme-based and phoneme-based speech recognition for Afrikaans

    CSIR Research Space (South Africa)

    Basson, WD

    2012-11-01

    Full Text Available This paper compares the recognition accuracy of a phoneme-based automatic speech recognition system with that of a grapheme-based system, using Afrikaans as case study. The first system is developed using a conventional pronunciation dictionary...

  12. Intrusion recognition for optic fiber vibration sensor based on the selective attention mechanism

    Science.gov (United States)

    Xu, Haiyan; Xie, Yingjuan; Li, Min; Zhang, Zhuo; Zhang, Xuewu

    2017-11-01

    Distributed fiber-optic vibration sensors receive extensive investigation and play a significant role in the sensor panorama. A fiber optic perimeter detection system based on all-fiber interferometric sensor is proposed, through the back-end analysis, processing and intelligent identification, which can distinguish effects of different intrusion activities. In this paper, an intrusion recognition based on the auditory selective attention mechanism is proposed. Firstly, considering the time-frequency of vibration, the spectrogram is calculated. Secondly, imitating the selective attention mechanism, the color, direction and brightness map of the spectrogram is computed. Based on these maps, the feature matrix is formed after normalization. The system could recognize the intrusion activities occurred along the perimeter sensors. Experiment results show that the proposed method for the perimeter is able to differentiate intrusion signals from ambient noises. What's more, the recognition rate of the system is improved while deduced the false alarm rate, the approach is proved by large practical experiment and project.

  13. Research on Remote Sensing recognition features of Yuan Yang Terraces in Yunnan Province (China)

    Science.gov (United States)

    Xiang, Jie; Chen, Jianping; Lai, ZiLi; Yang, Wei

    2016-04-01

    Yuan Yang terraces is one of the most famous terraces in China, and it was successfully listed in the world heritage list at the 37th world heritage convention. On the one hand, Yuan Yang terraces retain more soil and water, to reduce both hydrological connectivity and erosion, and to support irrigation. On the other hand, It has the important tourism value, bring the huge revenue to local residents. In order to protect and make use of Yuan Yang terraces better, This study analyzed the spatial distribution and spectral characteristics of terraces:(1) Through visual interpretation, the study recognized the terraces based on the spatial adjusted remote sensing image (2010 Geoeye-1 with resolution of 1m/pix), and extracted topographic feature (elevation, slope, aspect, etc.) based on the digital elevation model with resolution of 20m/pix. The terraces cover a total area of about 11.58Km2, accounted for 24.4% of the whole study area. The terraces appear at range from 1400m to 1800m in elevation, 10°to 20°in slope, northwest to northeast in aspect; (2) Using the method of weight of evidence, this study assessed the importance of different topographic feature. The results show that the sort of importance: elevation>slope>aspect; (3) The study counted the Normalized Difference Vegetation Index (NDVI) changes of terraces throughout the year, based on the landsat-5 image with resolution of 30m/pix. The results show that the changes of terraces' NDVI are bigger than other stuff (e.g. forest, road, house, etc.). Those work made a good preparations for establishing the dynamic remote sensing monitoring system of Yuan Yang terraces.

  14. Enhancing Speech Recognition Using Improved Particle Swarm Optimization Based Hidden Markov Model

    Directory of Open Access Journals (Sweden)

    Lokesh Selvaraj

    2014-01-01

    Full Text Available Enhancing speech recognition is the primary intention of this work. In this paper a novel speech recognition method based on vector quantization and improved particle swarm optimization (IPSO is suggested. The suggested methodology contains four stages, namely, (i denoising, (ii feature mining (iii, vector quantization, and (iv IPSO based hidden Markov model (HMM technique (IP-HMM. At first, the speech signals are denoised using median filter. Next, characteristics such as peak, pitch spectrum, Mel frequency Cepstral coefficients (MFCC, mean, standard deviation, and minimum and maximum of the signal are extorted from the denoised signal. Following that, to accomplish the training process, the extracted characteristics are given to genetic algorithm based codebook generation in vector quantization. The initial populations are created by selecting random code vectors from the training set for the codebooks for the genetic algorithm process and IP-HMM helps in doing the recognition. At this point the creativeness will be done in terms of one of the genetic operation crossovers. The proposed speech recognition technique offers 97.14% accuracy.

  15. Comparative characterization of botulinum neurotoxin subtypes F1 and F7 featuring differential substrate recognition and cleavage mechanisms.

    Science.gov (United States)

    Guo, Jiubiao; Chan, Edward Wai Chi; Chen, Sheng

    2016-03-01

    BoNT/F7, one of the seven subtypes of botulinum neurotoxin type F (F1 to F7), is the second-most divergent subtype of this group. Despite sharing >60% identity with BoNT/F1 at both holotoxin and enzymatic domain levels, it requires an N-terminal extended peptide substrate for efficient substrate cleavage, suggesting its unique substrate recognition and specificity mechanism. Substrate mapping and saturation mutagenesis analysis revealed that VAMP2 (20-65) was likely a minimally effective substrate for LC/F7 (light chain of BoNT/F7), and in addition, LC/F7 recognized VAMP2 in a unique way, which differed significantly from that of LC/F1, although both of them share similar substrate binding and hydrolysis mode. LC/F7 utilizes distinct pockets for specific substrate binding and recognition in particular for the B1, B2 and S2 sites recognitions. Our findings provide insights into the distinct substrate recognition features of BoNT subtypes and useful information for therapy development for BoNT/F. Copyright © 2016 Elsevier Ltd. All rights reserved.

  16. Melanoma recognition framework based on expert definition of ABCD for dermoscopic images.

    Science.gov (United States)

    Abbas, Qaisar; Emre Celebi, M; Garcia, Irene Fondón; Ahmad, Waqar

    2013-02-01

    Melanoma Recognition based on clinical ABCD rule is widely used for clinical diagnosis of pigmented skin lesions in dermoscopy images. However, the current computer-aided diagnostic (CAD) systems for classification between malignant and nevus lesions using the ABCD criteria are imperfect due to use of ineffective computerized techniques. In this study, a novel melanoma recognition system (MRS) is presented by focusing more on extracting features from the lesions using ABCD criteria. The complete MRS system consists of the following six major steps: transformation to the CIEL*a*b* color space, preprocessing to enhance the tumor region, black-frame and hair artifacts removal, tumor-area segmentation, quantification of feature using ABCD criteria and normalization, and finally feature selection and classification. The MRS system for melanoma-nevus lesions is tested on a total of 120 dermoscopic images. To test the performance of the MRS diagnostic classifier, the area under the receiver operating characteristics curve (AUC) is utilized. The proposed classifier achieved a sensitivity of 88.2%, specificity of 91.3%, and AUC of 0.880. The experimental results show that the proposed MRS system can accurately distinguish between malignant and benign lesions. The MRS technique is fully automatic and can easily integrate to an existing CAD system. To increase the classification accuracy of MRS, the CASH pattern recognition technique, visual inspection of dermatologist, contextual information from the patients, and the histopathological tests can be included to investigate the impact with this system. © 2012 John Wiley & Sons A/S.

  17. Speech Recognition and Acoustic Features in Combined Electric and Acoustic Stimulation

    Science.gov (United States)

    Yoon, Yang-soo; Li, Yongxin; Fu, Qian-Jie

    2012-01-01

    Purpose: In this study, the authors aimed to identify speech information processed by a hearing aid (HA) that is additive to information processed by a cochlear implant (CI) as a function of signal-to-noise ratio (SNR). Method: Speech recognition was measured with CI alone, HA alone, and CI + HA. Ten participants were separated into 2 groups; good…

  18. Learning spectral-temporal features with 3D CNNs for speech emotion recognition

    NARCIS (Netherlands)

    Kim, Jaebok; Truong, Khiet; Englebienne, Gwenn; Evers, Vanessa

    2017-01-01

    In this paper, we propose to use deep 3-dimensional convolutional networks (3D CNNs) in order to address the challenge of modelling spectro-temporal dynamics for speech emotion recognition (SER). Compared to a hybrid of Convolutional Neural Network and Long-Short-Term-Memory (CNN-LSTM), our proposed

  19. Likelihood Ratio-Based Detection of Facial Features

    NARCIS (Netherlands)

    Bazen, A.M.; Veldhuis, Raymond N.J.; Croonen, Gerrie H.

    One of the first steps in face recognition, after image acquisition, is registration. A simple but effective technique of registration is to align facial features, such as eyes, nose and mouth, as well as possible to a standard face. This requires an accurate automatic estimate of the locations of

  20. Computer-vision-based car logotype detection and recognition

    OpenAIRE

    Tomažič, Gašper

    2015-01-01

    This thesis addresses the problem of image-based logotype detection and recognition. A new algorithm for logotype detection in images of cars is proposed. In the first stage, the algorithm localizes all maximally-stable extremal regions as candidates of logotype parts. In the next stage, the regions are combined to create logotype candidates, which are encoded by histograms of gradients. A random forest classifier is then used to verify the candidate regions as being logotypes or not and simu...