WorldWideScience

Sample records for fe3o4 magnetic nanoparticles

  1. Ni doped Fe3O4 magnetic nanoparticles.

    Science.gov (United States)

    Larumbe, S; Gómez-Polo, C; Pérez-Landazábal, J I; García-Prieto, A; Alonso, J; Fdez-Gubieda, M L; Cordero, D; Gómez, J

    2012-03-01

    In this work, the effect of nickel doping on the structural and magnetic properties of Fe3O4 nanoparticles is analysed. Ni(x)Fe(3-x)O4 nanoparticles (x = 0, 0.04, 0.06 and 0.11) were obtained by chemical co-precipitation method, starting from a mixture of FeCl2 x 4H2O and Ni(AcO)2 x 4H2O salts. The analysis of the structure and composition of the synthesized nanoparticles confirms their nanometer size (main sizes around 10 nm) and the inclusion of the Ni atoms in the characteristic spinel structure of the magnetite Fe3O4 phase. In order to characterize in detail the structure of the samples, X-ray absorption (XANES) measurements were performed on the Ni and Fe K-edges. The results indicate the oxidation of the Ni atoms to the 2+ state and the location of the Ni2+ cations in the Fe2+ octahedral sites. With respect to the magnetic properties, the samples display the characteristic superparamagnetic behaviour, with anhysteretic magnetic response at room temperature. The estimated magnetic moment confirms the partial substitution of the Fe2+ cations by Ni2+ atoms in the octahedral sites of the spinel structure.

  2. Solid phase extraction of magnetic carbon doped Fe3O4 nanoparticles.

    Science.gov (United States)

    Yang, Jing; Li, Jia-yuan; Qiao, Jun-qin; Lian, Hong-zhen; Chen, Hong-yuan

    2014-01-17

    Carbon decorated Fe3O4 nanoparticles (Fe3O4/C) are promising magnetic solid-phase extraction (MSPE) sorbents in environmental and biological analysis. Fe3O4/C based MSPE method shows advantages of easy operation, rapidness, high sensitivity, and environmental friendliness. In this paper, the MSPE mechanism of Fe3O4/C nanoparticles has been comprehensively investigated, for the first time, through the following three efforts: (1) the comparison of extraction efficiency for polycyclic aromatic hydrocarbons (PAHs) between the Fe3O4/C sorbents and activated carbon; (2) the chromatographic retention behaviors of hydrophobic and hydrophilic compounds on Fe3O4/C nanoparticles as stationary phase; (3) related MSPE experiments for several typical compounds such as pyrene, naphthalene, benzene, phenol, resorcinol, anisole and thioanisole. It can be concluded that there are hybrid hydrophobic interaction and hydrogen bonding interaction or dipole-dipole attraction between Fe3O4/C sorbents and analytes. It is the existence of carbon and oxygen-containing functional groups coated on the surface of Fe3O4/C nanoparticles that is responsible for the effective extraction process. Copyright © 2013 Elsevier B.V. All rights reserved.

  3. Sulphamic acid-functionalized magnetic Fe3O4 nanoparticles as ...

    Indian Academy of Sciences (India)

    as recyclable catalyst for synthesis of imidazoles under microwave irradiation ... functionalized magnetic Fe3O4 nanoparticles (SA–MNPs) as a novel solid acid catalyst under solvent-free classical heating ..... green chemistry approach.

  4. Sonochemical synthesis, structure and magnetic properties of air-stable Fe3O4/Au nanoparticles

    International Nuclear Information System (INIS)

    Wu Wei; He Quanguo; Chen Hong; Tang Jianxin; Nie Libo

    2007-01-01

    Air-stable nanoparticles of Fe 3 O 4 /Au were prepared via sonolysis of a solution mixture of hydrogen tetrachloroaureate(III) trihydrate (HAuCl 4 ) and (3-aminopropyl)triethoxysilane (APTES)-coated Fe 3 O 4 nanoparticles with further drop-addition of sodium citrate. The Fe 3 O 4 /Au nanoparticles were characterized by x-ray powder diffraction (XRD), ultraviolet-visible spectroscopy (UV-vis), scanning electron microscopy (SEM) with energy dispersive spectroscopy (EDS), transmission electron microscopy (TEM), x-ray photoelectron spectroscopy (XPS) and superconducting quantum interference device (SQUID) magnetometry. Nanoparticles of Fe 3 O 4 /Au obtained under appropriate conditions possess a very high saturation magnetization of about 63 emu g -1 and their average diameter is about 30 nm

  5. TEA controllable preparation of magnetite nanoparticles (Fe3O4 NPs) with excellent magnetic properties

    Science.gov (United States)

    Han, Chengliang; Zhu, Dejie; Wu, Hanzhao; Li, Yao; Cheng, Lu; Hu, Kunhong

    2016-06-01

    A fast and controllable synthesis method for superparamagnetic magnetite nanoparticles (Fe3O4 NPs) was developed in Fe(III)-triethanolamine (TEA) solution. The phase structure, morphology and particle size of the as-synthesized samples were characterized by X-ray diffraction (XRD) and transmission electron microscopy (TEM). The results showed that the magnetic particles were pure Fe3O4 with mean sizes of approximately 10 nm. The used TEA has key effects on the formation of well dispersing Fe3O4 NPs. Vibrating sample magnetometer (VSM) result indicated that the as-obtained Fe3O4 NPs exhibited superparamagnetic behavior and the saturation magnetization (Ms) was about 70 emu/g, which had potential applications in magnetic science and technology.

  6. The Nature of Magnetic State of Small Fe3O4 Nanoparticles

    Directory of Open Access Journals (Sweden)

    J. Dolinšek

    2011-12-01

    Full Text Available We have investigated the nature of the magnetic state of 4 nm and 7 nm magnetite Fe3O4 nanoparticles and show that they form a collective superspin glass state. Magnetic force on the nanoparticles relevant to the tumor targeting application was determined as well.

  7. Magnetic nanoparticles of Fe3O4 enhance docetaxel-induced prostate cancer cell death

    Directory of Open Access Journals (Sweden)

    Sato A

    2013-08-01

    Full Text Available Akiko Sato,1 Naoki Itcho,1 Hitoshi Ishiguro,2,3 Daiki Okamoto,1 Naohito Kobayashi,4 Kazuaki Kawai,5 Hiroshi Kasai,5 Daisuke Kurioka,1 Hiroji Uemura,2 Yoshinobu Kubota,2 Masatoshi Watanabe11Laboratory for Medical Engineering, Division of Materials Science and Chemical Engineering, Graduate School of Engineering, Yokohama National University, Yokohama, Japan; 2Department of Urology, Yokohama City University Graduate School of Medicine, Yokohama, Japan; 3Photocatalyst Group, Kanagawa Academy of Science and Technology, Kawasaki, Japan; 4Department of Molecular Pathology, Yokohama City University Graduate School of Medicine, Yokohama, Japan; 5Department of Environmental Oncology, Institute of Industrial Ecological Sciences, University of Occupational and Environmental Health, Kitakyushu, JapanAbstract: Docetaxel (DTX is one of the most important anticancer drugs; however, the severity of its adverse effects detracts from its practical use in the clinic. Magnetic nanoparticles of Fe3O4 (MgNPs-Fe3O4 can enhance the delivery and efficacy of anticancer drugs. We investigated the effects of MgNPs-Fe3O4 or DTX alone, and in combination with prostate cancer cell growth in vitro, as well as with the mechanism underlying the cytotoxic effects. MgNPs-Fe3O4 caused dose-dependent increases in reactive oxygen species levels in DU145, PC-3, and LNCaP cells; 8-hydroxydeoxyguanosine levels were also elevated. MgNPs-Fe3O4 alone reduced the viability of LNCaP and PC-3 cells; however, MgNPs-Fe3O4 enhanced the cytotoxic effect of a low dose of DTX in all three cell lines. MgNPs-Fe3O4 also augmented the percentage of DU145 cells undergoing apoptosis following treatment with low dose DTX. Expression of nuclear transcription factor κB in DU145 was not affected by MgNPs-Fe3O4 or DTX alone; however, combined treatment suppressed nuclear transcription factor κB expression. These findings offer the possibility that MgNPs-Fe3O4–low dose DTX combination therapy may be

  8. Controlled synthesis of Fe3O4/ZIF-8 nanoparticles for magnetically separable nanocatalysts.

    Science.gov (United States)

    Pang, Fei; He, Mingyuan; Ge, Jianping

    2015-04-27

    Fe3O4/ZIF-8 nanoparticles were synthesized through a room-temperature reaction between 2-methylimidazolate and zinc nitrate in the presence of Fe3O4 nanocrystals. The particle size, surface charge, and magnetic loading can be conveniently controlled by the dosage of Zn(NO3)2 and Fe3O4 nanocrystals. The as-prepared particles show both good thermal stability (stable to 550 °C) and large surface area (1174 m(2) g(-1)). The nanoparticles also have a superparamagnetic response, so that they can strongly respond to an external field during magnetic separation and disperse back into the solution after withdrawal of the magnetic field. For the Knoevenagel reaction, which is catalyzed by alkaline active sites on external surface of catalyst, small Fe3O4/ZIF-8 nanoparticles show a higher catalytic activity. At the same time, the nanocatalysts can be continuously used in multiple catalytic reactions through magnetic separation, activation, and redispersion with little loss of activity. © 2015 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim.

  9. Biocompatibility of magnetic Fe3O4 nanoparticles and their cytotoxic effect on MCF-7 cells

    Directory of Open Access Journals (Sweden)

    Chen DZ

    2012-09-01

    Full Text Available Daozhen Chen,1,3,* Qiusha Tang,2,* Xiangdong Li,3,* Xiaojin Zhou,1 Jia Zang,1 Wen-qun Xue,1 Jing-ying Xiang,1 Cai-qin Guo11Central Laboratory, Wuxi Hospital for Matemaland Child Health Care Affiliated Medical School of Nanjing, Jiangsu Province; 2Department of Pathology and Pathophysiology, Medical College, Southeast University, Jiangsu Province; 3The People’s Hospital of Aheqi County, Xinjiang, China *These authors contributed equally to this workBackground: The objective of this study was to evaluate the synthesis and biocompatibility of Fe3O4 nanoparticles and investigate their therapeutic effects when combined with magnetic fluid hyperthermia on cultured MCF-7 cancer cells.Methods: Magnetic Fe3O4 nanoparticles were prepared using a coprecipitation method. The appearance, structure, phase composition, functional groups, surface charge, magnetic susceptibility, and release in vitro were characterized by transmission electron microscopy, x-ray diffraction, scanning electron microscopy-energy dispersive x-ray spectroscopy, and a vibrating sample magnetometer. Blood toxicity, in vitro toxicity, and genotoxicity were investigated. Therapeutic effects were evaluated by MTT [3-(4, 5-dimethyl-2-thiazolyl-2, 5-diphenyl-2H-tetrazolium bromide] and flow cytometry assays.Results: Transmission electron microscopy revealed that the shapes of the Fe3O4 nanoparticles were approximately spherical, with diameters of about 26.1 ± 5.2 nm. Only the spinel phase was indicated in a comparison of the x-ray diffraction data with Joint Corporation of Powder Diffraction Standards (JCPDS X-ray powder diffraction files. The O-to-Fe ratio of the Fe3O4 was determined by scanning electron microscopy-energy dispersive x-ray spectroscopy elemental analysis, and approximated pure Fe3O4. The vibrating sample magnetometer hysteresis loop suggested that the Fe3O4 nanoparticles were superparamagnetic at room temperature. MTT experiments showed that the toxicity of the material

  10. Effect of surfactant coating on magnetic properties of Fe3O4 nanoparticles: ESR study

    International Nuclear Information System (INIS)

    Koeseoglu, Yueksel

    2006-01-01

    Magnetic properties of surfactant-coated and uncoated superparamagnetic iron oxide nanoparticles, Fe 3 O 4 (SPION) were investigated by electron spin resonance (ESR) technique. For all samples, a strong and broad single ESR signal has been observed at all temperatures. A strong temperature dependence of ESR linewidth and resonance field is observed. Also, there is a strong effect of surfactant coating on magnetic properties of Fe 3 O 4 nanoparticles. While the resonance field is decreasing by coating, the linewidth of the ESR spectra is increasing. These changes in resonance field and the linewidth are attributed to the decrease in effective magnetic moment due to a non-collinear spin structure originated from the pinning of the surface spins and coated surfactant at the interface of nanoparticles. Also, the changes are due to the contribution of the volume of the diamagnetic coating mass to the sample volume

  11. Synchrotron radiation photoelectron spectroscopy study of dextran-coated Fe3O4 magnetic nanoparticles

    International Nuclear Information System (INIS)

    Li Shaoxia; Meng Qiang; Wang Bing; Feng Weiyue; Wang Zhuo; Kui Rexi; Qian Haijie; Wang Jia'o

    2009-01-01

    Dextran-coated Fe 3 O 4 nanoparticles were prepared by untrasonification of Fe 3 O 4 nanoparticles with dextran at 85 degree C in sodium citrate medium. The surface chemical component, structure and bond of uncoated and dextran-coated nanoparticles were measured by synchrotron radiation XPS(X-ray photoelectron spectroscopy). Qualitative and quantitative analysis of C1s and O1s of Fe 3 O 4 and dextran-Fe 3 O 4 showed that the Fe 3 O 4 nanoparticles were successively coated by sodium citrate via Fe-O-C bond, and dextrans, which can be linked with their carboxylate moiety via hydrogen bond. Sodium citrate could enhance the disperse stability of reaction system and hydrophilicity of dextran-Fe 3 O 4 . (authors)

  12. Aloe vera plant-extracted solution hydrothermal synthesis and magnetic properties of magnetite (Fe3O4) nanoparticles

    Science.gov (United States)

    Phumying, Santi; Labuayai, Sarawuth; Thomas, Chunpen; Amornkitbamrung, Vittaya; Swatsitang, Ekaphan; Maensiri, Santi

    2013-06-01

    Magnetite (Fe3O4) nanoparticles have been successfully synthesized by a novel hydrothermal method using ferric acetylacetonate (Fe(C5H8O2)3) and aloe vera plant-extracted solution. The influences of different reaction temperatures and times on the structure and magnetic properties of the synthesized Fe3O4 nanoparticles were investigated. The synthesized nanoparticles are crystalline and have particle sizes of ˜6-30 nm, as revealed by transmission electron microscopy (TEM). The results of X-ray diffraction (XRD), High resolution TEM (HRTEM) and selected area electron diffraction (SAED) indicate that the synthesized Fe3O4 nanoparticles have the inverse cubic spinel structure without the presence of any other phase impurities. The hysteresis loops of the Fe3O4 nanoparticles at room temperature show superparamagnetic behavior and the saturation magnetization of the Fe3O4 samples increases with increasing reaction temperature and time.

  13. Biocompatibility of Fe3O4@Au composite magnetic nanoparticles in vitro and in vivo

    Directory of Open Access Journals (Sweden)

    Li Y

    2011-11-01

    Full Text Available Yuntao Li1,2, Jing Liu1, Yuejiao Zhong3, Jia Zhang1, Ziyu Wang1, Li Wang1, Yanli An1, Mei Lin1, Zhiqiang Gao2, Dongsheng Zhang11School of Medicine, Southeast University, Nanjing, Jiangsu Province, People's Republic of China; 2Second Affiliated Hospital of Nanjing Medical University, Nanjing, Jiangsu Province, People's Republic of China; 3Jiangsu Cancer Hospital and Jiangsu Institute of Cancer Research, Nanjing, Jiangsu Province, People's Republic of ChinaPurpose: This research was conducted to assess the biocompatibility of the core-shell Fe3O4@Au composite magnetic nanoparticles (MNPs, which have potential application in tumor hyperthermia. Methods: Fe3O4@Au composite MNPs with core-shell structure were synthesized by reduction of Au3+ in the presence of Fe3O4-MNPs prepared by improved co-precipitation. Cytotoxicity assay, hemolysis test, micronucleus (MN assay, and detection of acute toxicity in mice and beagle dogs were then carried out.Results: The result of cytotoxicity assay showed that the toxicity grade of this material on mouse fibroblast cell line (L-929 was classified as grade 1, which belongs to no cytotoxicity. Hemolysis rates showed 0.278%, 0.232%, and 0.197%, far less than 5%, after treatment with different concentrations of Fe3O4@Au composite MNPs. In the MN assay, there was no significant difference in MN formation rates between the experimental groups and negative control (P > 0.05, but there was a significant difference between the experimental groups and the positive control (P < 0.05. The median lethal dose of the Fe3O4@Au composite MNPs after intraperitoneal administration in mice was 8.39 g/kg, and the 95% confidence interval was 6.58-10.72 g/kg, suggesting that these nanoparticles have a wide safety margin. Acute toxicity testing in beagle dogs also showed no significant difference in body weight between the treatment groups at 1, 2, 3, and 4 weeks after liver injection and no behavioral changes. Furthermore, blood

  14. Preparation and properties of bio-compatible magnetic Fe3O4 nanoparticles

    International Nuclear Information System (INIS)

    Chan, H.T.; Do, Y.Y.; Huang, P.L.; Chien, P.L.; Chan, T.S.; Liu, R.S.; Huang, C.Y.; Yang, S.Y.; Horng, H.E.

    2006-01-01

    In this work, we study the preparation and properties of bio-compatible magnetic nanoparticles for immunoassay and DNA detection. The magnetite (Fe 3 O 4 ) nanoparticles were prepared by a chemical co-precipitation method and dextran was selected as the surfactant to suspend the nanoparticles. Suspended particles associated with avidin followed by biotin were qualitatively analyzed by enzyme-linked immunosorbent assay (ELISA) method. We found further the ethylenediamine blocked activated residual groups efficiently, hence enhancing the attachment of biotin for probing the avidin

  15. Hydrothermal Synthesis of Fe3O4 Nanoparticles and Flame Resistance Magnetic Poly styrene Nanocomposite

    Directory of Open Access Journals (Sweden)

    Kambiz Hedayati

    2017-01-01

    Full Text Available Fe3O4 nanostructures were synthesized via a facile hydrothermal reaction. The effect of various surfactants such as cationic and anionic on the morphology of the product was investigated. Magnetic nanoparticles were added to poly styrene for preparation of magnetic nanocomposite. Nanostructures were then characterized using X-ray diffraction, scanning electron microscopy and Fourier transform infrared spectroscopy. The magnetic properties of the samples were also investigated using vibrating sample magnetometer. The magnesium ferrite nanoparticles exhibit super paramagnetic behaviour at room temperature, with a saturation magnetization of 66 emu/g and a coercivity less than 5 Oe. Distribution of the magnetic nanoparticles into poly styrene matrix increases the coercivity. Nanoparticles appropriately enhanced flame retardant property of the PS matrix. Nanoparticles act as barriers which decrease thermal transport and volatilization during decomposition of the polymer.

  16. Preparation of Fe3O4 magnetic nanoparticles coated with gallic acid for drug delivery

    Science.gov (United States)

    Dorniani, Dena; Hussein, Mohd Zobir Bin; Kura, Aminu Umar; Fakurazi, Sharida; Shaari, Abdul Halim; Ahmad, Zalinah

    2012-01-01

    Background and methods Magnetic iron oxide nanoparticles were prepared using a sonochemical method under atmospheric conditions at a Fe2+ to Fe3+ molar ratio of 1:2. The iron oxide nanoparticles were subsequently coated with chitosan and gallic acid to produce a core-shell structure. Results X-ray diffraction demonstrated that the magnetic nanoparticles were pure Fe3O4 with a cubic inverse spinel structure. Transmission electron microscopy showed that the Fe3O4 nanoparticles were of spherical shape with a mean diameter of 11 nm, compared with 13 nm for the iron oxide-chitosan-gallic acid (FCG) nanocarriers. Conclusion The magnetic nanocarrier enhanced the thermal stability of the drug, gallic acid. Release of the active drug from the FCG nanocarrier was found to occur in a controlled manner. The gallic acid and FCG nanoparticles were not toxic in a normal human fibroblast (3T3) line, and anticancer activity was higher in HT29 than MCF7 cell lines. PMID:23166439

  17. Hydrothermal synthesis, off-axis electron holography and magnetic properties of Fe3O4 nanoparticles

    DEFF Research Database (Denmark)

    Almeida, Trevor P.; Muxworthy, Adrian R.; Williams, Wyn

    2014-01-01

    The hydrothermal synthesis of Fe3O4 nanoparticles (NPs) (<50 nm) from mixed FeCl3 / FeCl2 precursor solution at pH ~ 12 has been confirmed using complementary characterisation techniques of transmission electron microscopy and X-ray diffractometry. Off-axis electron holography allowed for visuali......The hydrothermal synthesis of Fe3O4 nanoparticles (NPs) (holography allowed...

  18. Magnetic field enhanced photothermal effect of Fe3O4 nanoparticles

    Science.gov (United States)

    Pan, Pengfei; Lin, Yawen; Gan, Zhixing; Luo, Xiaobin; Zhou, Weiping; Zhang, Ning

    2018-03-01

    Photothermal and magnetothermal effects are promising in hyperthermia for cancer therapy. However, the development of safe treatments with limited side-effects requires a relatively-high thermal efficiency triggered by mild near-infrared (NIR) light and alternating magnetic field (HAC), which remains a formidable challenge. In this work, a magnetic field enhanced photothermal effect (MFEP) of Fe3O4 nanoparticles is proposed and investigated systematically. The results suggest remarkable temperature increments of 9.59 to 36.90 °C under irradiation of NIR with different light power densities (808 nm, 0-6.98 W/cm2) combined with a certain magnetic field (HAC = 1.5 kA/m at 90 kHz). The rise of temperature induced by MFEP is substantially larger than the sum of isolated photothermal and magnetothermal effects, which is attributed to the hot-phonon bottleneck effect. The MFEP of Fe3O4 nanoparticles could serve as an effective treatment for cancer therapy in the future.

  19. Exchange-coupled Fe3O4/CoFe2O4 nanoparticles for advanced magnetic hyperthermia

    Science.gov (United States)

    Glassell, M.; Robles, J.; Das, R.; Phan, M. H.; Srikanth, H.

    Iron oxide nanoparticles especially Fe3O4, γ-Fe2O3 have been extensively studied for magnetic hyperthermia because of their tunable magnetic properties and stable suspension in superparamagnetic regime. However, their relatively low heating capacity hindered practical application. Recently, a large improvement in heating efficiency has been reported in exchange-coupled nanoparticles with exchange coupling between soft and hard magnetic phases. Here, we systematically studied the effect of core and shell size on the heating efficiency of the Fe3O4/CoFe2O4 core/shell nanoparticles. The nanoparticles were synthesized using thermal decomposition of organometallic precursors. Transmission electron microscopy (TEM) showed formation of spherical shaped Fe3O4 and Fe3O-/CoFe2O4 nanoparticles. Magnetic measurements showed high magnetization (≅70 emu/g) and superparamagnetic behavior for the nanoparticles at room temperature. Magnetic hyperthermia results showed a large increase in specific absorption rate (SAR) for 8nm Fe3O4/CoFe2O4 compared to Fe3O4 nanoparticles of the same size. The heating efficiency of the Fe3O4/CoFe2O4 with 1 nm CoFe2O4 (shell) increased from 207 to 220 W/g (for 800 Oe) with increase in core size from 6 to 8 nm. The heating efficiency of the Fe3O4/CoFe2O4 with 2 nm CoFe2O4 (shell) and core size of 8 nm increased from 220 to 460 W/g (for 800 Oe). These exchange-coupled Fe3O4/CoFe2O4 core/shell nanoparticles can be a good candidate for advanced hyperthermia application.

  20. The Preparation of Glucan-Fe3O4 Magnetic Nanoparticles and Its In Vivo Distribution in Mice

    Directory of Open Access Journals (Sweden)

    Fengdan Jin

    2014-01-01

    Full Text Available The glucan-Fe3O4 magnetic nanoparticles were prepared by hydrothermal method. The mixture of FeCl2 and glucan was stirred vigorously for half an hour under low temperature (15°C. KOH of 1 mol/L was dropwise added, slowly, into the solution until the pH to 12. Immediately, KNO3 was added and the temperature was raised to 75°C for an hour. All the processes of Fe3O4 crystal particles generation were under nitrogen. An atomic absorption spectrometry quantitative analysis method was built to determine the in vivo distribution of the glucan-Fe3O4 magnetic nanoparticles in mice. The diameter of glucan-Fe3O4 magnetic nanoparticles was about 25 nm and they were up taken by the liver primarily after intravenous administration via the tail.

  1. Size-Controlled Synthesis of Fe3O4 Magnetic Nanoparticles in the Layers of Montmorillonite

    Directory of Open Access Journals (Sweden)

    Katayoon Kalantari

    2014-01-01

    Full Text Available Iron oxide nanoparticles (Fe3O4-NPs were synthesized using chemical coprecipitation method. Fe3O4-NPs are located in interlamellar space and external surfaces of montmorillonite (MMT as a solid supported at room temperature. The size of magnetite nanoparticles could be controlled by varying the amount of NaOH as reducing agent in the medium. The interlamellar space changed from 1.24 nm to 2.85 nm and average diameter of Fe3O4 nanoparticles was from 12.88 nm to 8.24 nm. The synthesized nanoparticles were characterized using some instruments such as transmission electron microscopy, powder X-ray diffraction, energy dispersive X-ray spectroscopy, field emission scanning electron microscopy, vibrating sample magnetometer, and Fourier transform infrared spectroscopy.

  2. Preparation of stable magnetic nanofluids containing Fe3O4@PPy nanoparticles by a novel one-pot route

    Directory of Open Access Journals (Sweden)

    Zhao Baobao

    2011-01-01

    Full Text Available Abstract Stable magnetic nanofluids containing Fe3O4@Polypyrrole (PPy nanoparticles (NPs were prepared by using a facile and novel method, in which one-pot route was used. FeCl3·6H2O was applied as the iron source, and the oxidizing agent to produce PPy. Trisodium citrate (Na3cit was used as the reducing reagent to form Fe3O4 NPs. The as-prepared nanofluid can keep long-term stability. The Fe3O4@PPy NPs can still keep dispersing well after the nanofluid has been standing for 1 month and no sedimentation is found. The polymerization reaction of the pyrrole monomers took place with Fe3+ ions as the initiator, in which these Fe3+ ions remained in the solution adsorbed on the surface of the Fe3O4 NPs. Thus, the core-shell NPs of Fe3O4@PPy were obtained. The particle size of the as-prepared Fe3O4@PPy can be easily controlled from 7 to 30 nm by the polymerization reaction of the pyrrole monomers. The steric stabilization and weight of the NPs affect the stability of the nanofluids. The as-prepared Fe3O4@PPy NPs exhibit superparamagnetic behavior.

  3. Fe3O4@Au composite magnetic nanoparticles modified with cetuximab for targeted magneto-photothermal therapy of glioma cells.

    Science.gov (United States)

    Lu, Qianling; Dai, Xinyu; Zhang, Peng; Tan, Xiao; Zhong, Yuejiao; Yao, Cheng; Song, Mei; Song, Guili; Zhang, Zhenghai; Peng, Gang; Guo, Zhirui; Ge, Yaoqi; Zhang, Kangzhen; Li, Yuntao

    2018-01-01

    Thermoresponsive nanoparticles have become an attractive candidate for designing combined multimodal therapy strategies because of the onset of hyperthermia and their advantages in synergistic cancer treatment. In this paper, novel cetuximab (C225)-encapsulated core-shell Fe 3 O 4 @Au magnetic nanoparticles (Fe 3 O 4 @Au-C225 composite-targeted MNPs) were created and applied as a therapeutic nanocarrier to conduct targeted magneto-photothermal therapy against glioma cells. The core-shell Fe 3 O 4 @Au magnetic nanoparticles (MNPs) were prepared, and then C225 was further absorbed to synthesize Fe 3 O 4 @Au-C225 composite-targeted MNPs. Their morphology, mean particle size, zeta potential, optical property, magnetic property and thermal dynamic profiles were characterized. After that, the glioma-destructive effect of magnetic fluid hyperthermia (MFH) combined with near-infrared (NIR) hyperthermia mediated by Fe 3 O 4 @Au-C225 composite-targeted MNPs was evaluated through in vitro and in vivo experiments. The inhibitory and apoptotic rates of Fe 3 O 4 @Au-C225 composite-targeted MNPs-mediated combined hyperthermia (MFH+NIR) group were significantly higher than other groups in vitro and the marked upregulation of caspase-3, caspase-8, and caspase-9 expression indicated excellent antitumor effect by inducing intrinsic apoptosis. Furthermore, Fe 3 O 4 @Au-C225 composite-targeted MNPs-mediated combined hyperthermia (MFH+NIR) group exhibited significant tumor growth suppression compared with other groups in vivo. Our studies illustrated that Fe 3 O 4 @Au-C225 composite-targeted MNPs have great potential as a promising nanoplatform for human glioma therapy and could be of great value in medical use in the future.

  4. Synthesis and characterization of magnetically recyclable Ag nanoparticles immobilized on Fe3O4@C nanospheres with catalytic activity

    International Nuclear Information System (INIS)

    Li, Wei-hong; Yue, Xiu-ping; Guo, Chang-sheng; Lv, Jia-pei; Liu, Si-si; Zhang, Yuan; Xu, Jian

    2015-01-01

    Highlights: • Ag-loaded Fe 3 O 4 @C nanospheres were synthesized by a facile method. • The Fe 3 O 4 encapsulated mesoporous carbon was decorated with 10 nm Ag nanocrystals. • The as-prepared Ag-Fe 3 O 4 @C nanocomposite showed excellent catalytic activity. • The nanocomposite had convenient magnetic separability. - Abstract: A novel approach for the synthesis of Ag-loaded Fe 3 O 4 @C nanospheres (Ag-Fe 3 O 4 @C) was successfully developed. The catalysts possessed a carbon-coated magnetic core and grew active silver nanoparticles on the outer shell using hydrazine monohydrate as the AgNO 3 reductant in ethanol. The morphology, inner structure, and magnetic properties of the as-prepared composites were studied with transmission electron microscopy (TEM), X-ray powder diffraction (XRD), fourier translation infrared spectroscopy (FT-IR), and vibrating sample magnetometer (VSM) techniques. Catalytic activity was investigated by degrading rhodamine B (RhB) in the designed experiment. The obtained products were monodispersed and bifunctional with high magnetization, as well as exhibited excellent catalytic activity toward organic dye with 98% of RhB conversion within 20 min in the presence of NaBH 4 . The product also exhibited convenient magnetic separability and maintained high catalytic activity after six cycle runs

  5. Synthesis of Fe3O4/Pt Nanoparticles Decorated Carbon Nano tubes and Their Use as Magnetically Recyclable Catalysts

    International Nuclear Information System (INIS)

    He, H.; Gao, C.

    2011-01-01

    We report a facile approach to prepare Fe 3 O 4 /Pt nanoparticles decorated carbon nano tubes (CNTs). The superparamagnetic Fe 3 O 4 nanoparticles with average size of 45 nm were loaded on the surfaces of carboxyl groups functionalized CNTs via a high-temperature solution-phase hydrolysis method from the raw material of FeCl 3 . The synthesis process of magnetic CNTs is green and readily scalable. The loading amounts of Fe 3 O 4 nanoparticles and the magnetizations of the resulting magnetic CNTs show good tunability. The Pt nanoparticles with average size of 2.5 nm were deposited on the magnetic CNTs through a solution-based method. It is demonstrated that the Fe 3 O 4 /Pt nanoparticles decorated CNTs have high catalytic activity in the reduction reaction of 4-nitrophenol and can be readily recycled by a magnet and reused in the next reactions with high efficiencies for at least fifteen successive cycles. The novel CNTs-supported magnetically recyclable catalysts are promising in heterogeneous catalysis applications.

  6. Synthesis of Fe3O4/Pt Nanoparticles Decorated Carbon Nanotubes and Their Use as Magnetically Recyclable Catalysts

    Directory of Open Access Journals (Sweden)

    Hongkun He

    2011-01-01

    Full Text Available We report a facile approach to prepare Fe3O4/Pt nanoparticles decorated carbon nanotubes (CNTs. The superparamagnetic Fe3O4 nanoparticles with average size of 4∼5 nm were loaded on the surfaces of carboxyl groups functionalized CNTs via a high-temperature solution-phase hydrolysis method from the raw material of FeCl3. The synthesis process of magnetic CNTs is green and readily scalable. The loading amounts of Fe3O4 nanopartilces and the magnetizations of the resulting magnetic CNTs show good tunability. The Pt nanopaticles with average size of 2.5 nm were deposited on the magnetic CNTs through a solution-based method. It is demonstrated that the Fe3O4/Pt nanoparticles decorated CNTs have high catalytic activity in the reduction reaction of 4-nitrophenol and can be readily recycled by a magnet and reused in the next reactions with high efficiencies for at least fifteen successive cycles. The novel CNTs-supported magnetically recyclable catalysts are promising in heterogeneous catalysis applications.

  7. Synthesis of magnetic core-shell structure Fe3O4@MCM-41 nanoparticle by vesicles in aqueous solutions☆

    Institute of Scientific and Technical Information of China (English)

    Weiming Song; Xuesong Liu; Ying Yang; Xuejia Han; Qigang Deng

    2015-01-01

    In this study, magnetic core–shel structure Fe3O4@MCM-41 nanoparticles were synthesized with vesicles as soft templates. In the preparation, FeCl2 and tetraethy orthosilicate (TEOS) were selected as Fe processor and Si pre-cursor, respectively. Stable vesicles first formed in 0.03 mol·L−1 1:2 mixture of anionic surfactant sodium dode-cyl sulfate and cationic surfactant cetyltrimethyl ammonium bromide. Then, TEOS was added in the vesicle aqueous solution, leading to a highly dispersed solution. After high-temperature calcination, Fe3O4@MCM-41 nanoparticles were obtained. Their structure and morphology were characterized by Saturn Digisizer, transmis-sion electron microscope and vibrating sample magneto-meter. The results indicate that the vesicles are spherical and their size could be tuned between 20 and 50 nm. The average grain diameter of synthesize magnetic core–shel Fe3O4@MCM-41 particles is 100–150 nm and most of them are in el iptical shape. The dispersion of magnet-ic particles is very good and magnetization values are up to 33.44 emu·g−1, which are superior to that of other Fe3O4 materials reported.

  8. Synthesis and Characterization of Fe3O4 Magnetic Nanoparticles Coated with Carboxymethyl Chitosan Grafted Sodium Methacrylate

    Directory of Open Access Journals (Sweden)

    S. Asgari

    2014-01-01

    Full Text Available N-sodium acrylate-O-carboxymethyl chitosan [CMCH-g-PAA(Na] bound Fe3O4 nanoparticles were developed as a novel magnetic nanoparticles with an ionic structure that can be potentially used in many fields. CMCH-g-PAA (Na was obtained by grafting of sodium polyacrylate on O-carboxymethyl chitosan, which is an amphiphilic polyelectrolyte with the biocompatibility and biodegradability properties. According to the great interest for improving the stability of Fe3O4 nanoparticles, CMCH-g-PAA (Na was used as a stabilizer to prepare a well dispersed suspension of magnetic nanoparticle According to the results,the presence of CMCH-g-PAA(Na could eliminate agglomeration of magnetic nanoparticles without destroying the superparamagnetic  properties

  9. Effective decolorization and adsorption of contaminant from industrial dye effluents using spherical surfaced magnetic (Fe_3O_4) nanoparticles

    International Nuclear Information System (INIS)

    Suriyaprabha, R.; Khan, Samreen Heena; Pathak, Bhawana; Fulekar, M. H.

    2016-01-01

    Treatment of highly concentrated Industrial dye stuff effluents released in the environment is the major issue faced in the era of waste management as well as in water pollution. Though there is availability of conventional techniques in large numbers, there is a need of efficient and effective advance technologies. In account of that, Nanotechnology plays a prominent role to treat the heavy metals, organic and inorganic contaminants using smart materials in nano regime (1 -100 nm). Among these nanomaterials like Iron Oxide (Fe_3O_4, magnetic nanoparticle) is one of the most promising candidates to remove the heavy metals from the industrial effluent. Fe_3O_4 is the widely used smart material with magnetic property having high surface area; high surface to volume ratio provides more surface for the chemical reaction for the surface adsorption. Fe_3O_4 nanoparticles have been synthesized using sonochemical method using ultra frequency in aqueous solution under optimized conditions. The as-synthesized nanoparticle was analyzed using different characterization tool. The Transmission Electron microscope (TEM) images revealed 10-12 nm spherical shape nanoparticles; crystal phase and surface morphology was confirmed by X-Ray Diffraction (XRD) and Scanning Electron Microscopy (SEM), respectively. The functional group were identified by Fourier Transform-Infra Red Spectroscopy (FT-IR), revealed the bending and stretching vibrations associated with Iron Oxide nanoparticle. In present study, for the efficient removal of contaminants, different concentration (10-50 ppm) of dye stuff effluent has been prepared and subjected to adsorption and decolourization at definite time intervals with Fe_3O_4 nanoparticles. The concentration of Iron oxide and the time (45 mins) was kept fixed for the reaction whereas the concentration of dye stuff effluent was kept varying. It was found that the spherical shaped Fe_3O_4 proved to be the potential material for the adsorption of

  10. Magnetic nanoparticle (Fe3O4) impregnated onto tea waste for the removal of nickel(II) from aqueous solution

    International Nuclear Information System (INIS)

    Panneerselvam, P.; Morad, Norhashimah; Tan, Kah Aik

    2011-01-01

    The removal of Ni(II) from aqueous solution by magnetic nanoparticles prepared and impregnated onto tea waste (Fe 3 O 4 -TW) from agriculture biomass was investigated. Magnetic nanoparticles (Fe 3 O 4 ) were prepared by chemical precipitation of a Fe 2+ and Fe 3+ salts from aqueous solution by ammonia solution. These magnetic nanoparticles of the adsorbent Fe 3 O 4 were characterized by surface area (BET), Scanning Electron Microscopy (SEM), Transmission Electron Microscopy (TEM) and Fourier Transform-Infrared Spectroscopy (FT-IR). The effects of various parameters, such as contact time, pH, concentration, adsorbent dosage and temperature were studied. The kinetics followed is first order in nature, and the value of rate constant was found to be 1.90 x 10 -2 min -1 at 100 mg L -1 and 303 K. Removal efficiency decreases from 99 to 87% by increasing the concentration of Ni(II) in solution from 50 to 100 mg L -1 . It was found that the adsorption of Ni(II) increases by increasing temperature from 303 to 323 K and the process is endothermic in nature. The adsorption isotherm data were fitted to Langmuir and Freundlich equation, and the Langmuir adsorption capacity, Q o , was found to be (38.3) mg g -1 . The results also revealed that nanoparticle impregnated onto tea waste from agriculture biomass, can be an attractive option for metal removal from industrial effluent.

  11. Dehydration of glucose to 5-hydroxymethylfurfural by a core-shell Fe3O4@SiO2-SO3H magnetic nanoparticle catalyst

    Science.gov (United States)

    This paper discusses the potential use of (Fe3O4@SiO2-SO3H) nanoparticle catalyst for the dehydration of glucose into 5-hydroxymethylfurfural (HMF). A magnetically recoverable (Fe3O4@SiO2-SO3H) nanoparticle catalyst was successfully prepared by supporting sulfonic acid groups (SO3H) on the surface o...

  12. Preparation and characterization of magnetic nanoparticles (Fe_3O_4) coated with oleic acid at room temperature

    International Nuclear Information System (INIS)

    Souza, Marcio Nele de; Feuser, Paulo Emilio

    2010-01-01

    This work studied a method for preparation of Fe_3O_4 magnetic nanoparticles stabilized with acid oleic precipitating Fe"+"2 and Fe"+"3 (1:1) salts at room temperature. The method involved the coprecipitation of Fe_3O_4 in aqueous solution from FeCl_3·6H_2O and FeSO_4·7H_2O solutions using as NH_4OH (30%) precipitation agent. The final size of nanoparticles was 10nn with an initial pH of 0-1 and a final neutral pH, without addition of an acid and/ or hydroxide to adjust the pH of the material. The oleic acid coated nanoparticles were characterized by Ray-X of Diffraction (DRX), thermogravimetric analysis (TGA), scanning electron microscopy in field emission and dynamic light scattering (FEG-SEM). It is important to standardize the methods of preparation of Fe_3O_4 Magnetic Nanoparticles stabilized with oleic acid, to obtain a desired material for a given application it is in technology or Biomedical. (author)

  13. Fe3O4/PS magnetic nanoparticles: Synthesis, characterization and their application as sorbents of oil from waste water

    Science.gov (United States)

    Yu, Liuhua; Hao, Gazi; Gu, Junjun; Zhou, Shuai; Zhang, Ning; Jiang, Wei

    2015-11-01

    In this work, Fe3O4/PS composites with a rough surface and different coating rates were successfully designed and synthesized by emulsion polymerization. We carried out some comparative experiments to compare magnetic properties and oil absorption properties of the nano-magnetic materials. It had been found that several prepared groups of magnetic nanocomposites have a core-shell structure and good coating rates. These nanoparticles combined with unsinked, highly hydrophobic and superoleophilic properties. The absorption capacity of Fe3O4/PS composites for organic solvents and the composites could absorb diesel oil up to 2.492 times of its own weight. It is more important that the oil could be readily removed from the surfaces of nanoparticles by a simple ultrasonic treatment whereas the nanocomposites particles still kept highly hydrophobic and superoleophilic characteristics. With a combination of simple synthesis process, low density, magnetic responsibility and excellent hydrophobicity, Fe3O4/PS nanocomposites as a promising absorbent have great potential in the application of spilled oil recovery and environmental protection.

  14. Effects of coating molecules on the magnetic heating properties of Au-Fe3O4 heterodimer nanoparticles

    Science.gov (United States)

    Yamamoto, Y.; Ogasawara, J.; Himukai, H.; Itoh, T.

    2016-10-01

    In this paper, we report the heating properties of gold-magnetite (Au-Fe3O4) heterodimer nanoparticles (NPs) subjected to an alternating magnetic field. The Au-Fe3O4 NPs coated with oleic acid and oleylamine (OA) were synthesized through a method that combines seed mediation and high-temperature decomposition. The coating was replaced with dimercaptosuccinic acid (DMSA) by the ligand-exchange method. The specific absorption rates (SARs) for the OA- and DMSA-coated Au-Fe3O4 NPs coated with OA and DMSA at room temperature were determined through the calorimetric and magnetometric methods. SAR depended on the square of the magnetic field H up to an H value of 4 kA/m. The absolute value of the SAR for DMSA-coated NPs is about fivefold higher than that of the OA-coated NPs. The AC magnetic hysteresis measurements showed the recovery of the magnetic volume and the decrease in the magnetic anisotropy of the DMSA-coated NPs relative to those of the OA-coated NPs. These results suggest that the protective agent influences the magnetic properties of magnetite NPs via gold NPs.

  15. Selective binding and magnetic separation of His-tagged proteins using Fe3O4/PAM/NTA-Ni2+ Magnetic Nanoparticles

    Science.gov (United States)

    Guo, Huiling; Li, Mengyun; Tu, Shu; Sun, Honghao

    2018-03-01

    Fe3O4 nanoparticles coated with polyacrylamide (PAM) were synthesized. The magnetic core, with an average hydrodynamic size of 235.5 nm, allowed the magnetic nanoparticles (MNPs) rapid separation from solutions under an external magnetic field. NTA-Ni2+ was modified on the surface of Fe3O4/PAM MNPs to selectively trap his-tagged green fluorescent protein (GFP). The results showed that Fe3O4/PAM/NTA-Ni2+ MNPs exhibited remarkable capability of selective binding and separating his-tagged GFP. The adsorption efficiency was 93.37%.

  16. Magnetic solid phase extraction of brominated flame retardants and pentachlorophenol from environmental waters with carbon doped Fe3O4 nanoparticles

    International Nuclear Information System (INIS)

    Yang, Jing; Li, Jia-yuan; Qiao, Jun-qin; Cui, Shi-hai; Lian, Hong-zhen; Chen, Hong-yuan

    2014-01-01

    Graphical abstract: - Highlights: • Magnetic Fe 3 O 4 /C nanospheres were used in MSPE of BFRs and PCP from water samples. • The method shows merits of simpleness, reliableness and environmental friendliness. • The bonding between Fe 3 O 4 and coated organic carbon has been demonstrated in Fe 3 O 4 /C. • The straight influences of synthesis conditions of Fe 3 O 4 /C on MSPE were investigated. • The extraction characteristics of Fe 3 O 4 /C nanoparticles were further elucidated. - Abstract: Carbon doped Fe 3 O 4 nanoparticles (Fe 3 O 4 /C) prepared by a facile hydrothermal reaction of glucose with iron resource have been applied as magnetic solid-phase extraction (MSPE) sorbent, for the first time, to extract trace brominated flame retardants (BFRs) and pentachlorophenol (PCP) from environmental waters. Various MSPE parameters were optimized including amount of Fe 3 O 4 /C nanoparticles, pH of sample solution, enrichment factor of analytes and reusability of Fe 3 O 4 /C sorbent. The reliability of the MSPE method was evaluated by the recoveries of BFRs and PCP in spiked water samples. Good recoveries (80.0–110.0%) were achieved with the relative standard deviations range from 0.3% to 6.8%. In this paper, the extraction characteristics of Fe 3 O 4 /C sorbent were further elucidated. It is found that the adsorption process of Fe 3 O 4 /C to analytes predominates the MSPE efficiency. There is hybrid hydrophobic interaction and hydrogen bonding or dipole–dipole attraction between Fe 3 O 4 /C and analytes. Notably, the chemical components of carbon layer on the surface of Fe 3 O 4 nanoparticles were identified by X-ray photoelectron spectroscopy and thermogravimetry-mass spectrometry, and in consequence the covalent bonds between Fe 3 O 4 and the coated carbon have been observed. In addition, the straight influence of synthesis condition of Fe 3 O 4 /C nanoparticles including glucose concentration and hydrothermal reaction time on extraction performance for

  17. The Effect of Emulation Formulation to Encapsulation of Fe3O4 Magnetic nanoparticle with Poly (Lactic Acid)

    International Nuclear Information System (INIS)

    Evi Yuliyanti; Sudaryanto; Mujamilah; Yoki Yulizar

    2008-01-01

    The research to study the effect of emulsion formulation to encapsulation Fe 3 O 4 magnetic nanoparticle with Poly(Lactic Acid) (PLA) has been done. Microemulsion by ultrasonic probe is used in encapsulation process and continued by solvent evaporation. Emulsion formulation has been varied by changing oil phase volume in the oil in water (o/w) emulsion system from 6 mL, 8 mL, 10 mL, 12 mL and 14 mL, whereas water phase volume is constant (55 mL). Sample characterization is carried on by Scanning Electron Microscope (SEM) to know the morphology and sample size. X-Ray Diffractometer (XRD) is used to identify the phase, Vibrating Sample Magnetometer (VSM) is used to measure magnetic saturation while Neutron Activation Analysis (NAA) is used to measure encapsulation percentage of Fe 3 O 4 with PLA. The smallest nanosphere is resulted by emulsion formulation (o/w) of 14/55 with the main sample size 382 nm. The maximum magnetic saturation of Fe 3 O 4 + PLA nanosphere is 2.556 emu/g and encapsulation percentage is 24.94 %. (author)

  18. Bio-inspired green synthesis of Fe3O4 magnetic nanoparticles using watermelon rinds and their catalytic activity

    Science.gov (United States)

    Prasad, Ch.; Gangadhara, S.; Venkateswarlu, P.

    2016-08-01

    Novel and bio-inspired magnetic nanoparticles were synthesized using watermelon rinds (WR) which are nontoxic and biodegradable. Watermelon rind extract was used as a solvent and capping and reducing agent in the synthesis. The Fe3o4 MNPs were characterized by using transmission electron microscopy (TEM), X-ray diffraction (XRD), Fourier transform infrared spectroscopy (FTIR) and vibrating sample magnetometer techniques (VSM). XRD studies revealed a high degree of crystalline and monophasic Fe nanoparticles of face-centered cubic stricture. FTIR analysis proved that particles are reduced and stabilized in solution by the capping agent that is likely to be proteins secreted by the biomass. The present process in an excellent candidate for the synthesis of iron nanoparticles that is simple, easy to execute, pollutant free and inexpensive. A practical and convenient method for the synthesis of highly stable and small-sized iron nanoparticles with a narrow distribution from 2 to 20 nm is reported. Also, the MNPs present in higher saturation magnetization (Ms) of 14.2 emu/g demonstrate tremendous magnetic response behavior. However, the synthesized iron nanoparticles were used as a catalyst for the preparation of biologically interesting 2-oxo-1,2,3,4-tetrahydropyrimidine derivatives in high yields. These results exhibited that the synthesized Fe3O4 MNPs could be used as a catalyst in organic synthesis.

  19. Size-dependent magnetic anisotropy of PEG coated Fe3O4 nanoparticles; comparing two magnetization methods

    Science.gov (United States)

    Nayek, C.; Manna, K.; Imam, A. A.; Alqasrawi, A. Y.; Obaidat, I. M.

    2018-02-01

    Understanding the size dependent magnetic anisotropy of iron oxide nanoparticles is essential for the successful application of these nanoparticles in several technological and medical fields. PEG-coated iron oxide (Fe3O4) nanoparticles with core diameters of 12 nm, 15 nm, and 16 nm were synthesized by the usual co-precipitation method. The morphology and structure of the nanoparticles were investigated using transmission electron microscopy (TEM), high resolution transmission electron microscopy (HRTEM), selected area electron diffraction (SAED), and X-ray diffraction (XRD). Magnetic measurements were conducted using a SQUID. The effective magnetic anisotropy was calculated using two methods from the magnetization measurements. In the first method the zero-field-cooled magnetization versus temperature measurements were used at several applied magnetic fields. In the second method we used the temperature-dependent coercivity curves obtained from the zero-field-cooled magnetization versus magnetic field hysteresis loops. The role of the applied magnetic field on the effective magnetic anisotropy, calculated form the zero-field-cooled magnetization versus temperature measurements, was revealed. The size dependence of the effective magnetic anisotropy constant Keff obtained by the two methods are compared and discussed.

  20. Sol-gel synthesis of 8 nm magnetite (Fe 3O 4) nanoparticles and their magnetic properties

    KAUST Repository

    Lemine, O. M.

    2012-10-01

    Magnetite (Fe 3O 4) nanoparticles were successfully synthesized by a sol-gel method. The obtained nanoparticles were characterized by X-ray diffraction (XRD), field emission scanning electron microscopy (FE-SEM), energy dispersive analysis by X-ray (EDAX), transmission electron microscopy (TEM), superconducting quantum interference device (SQUID) and Mössbauer spectrometry. XRD and Mössbauer measurements indicate that the obtained nanoparticles are single phase. TEM analysis shows the presence of spherical nanoparticles with homogeneous size distribution of about 8 nm. Room temperature ferromagnetics behavior was confirmed by SQUID measurements. The mechanism of nanoparticles formation and the comparison with recent results are discussed. Finally, the synthesized nanoparticles present a potential candidate for hyperthermia application given their saturation magnetization. © 2012 Elsevier Ltd. All rights reserved.

  1. Sol-gel synthesis of 8 nm magnetite (Fe 3O 4) nanoparticles and their magnetic properties

    KAUST Repository

    Lemine, O. M.; Omri, Karim; Zhang, Bei; El Mir, Lassaad; Sajieddine, Mohammed; Alyamani, Ahmed Y.; Bououdina, M.

    2012-01-01

    Magnetite (Fe 3O 4) nanoparticles were successfully synthesized by a sol-gel method. The obtained nanoparticles were characterized by X-ray diffraction (XRD), field emission scanning electron microscopy (FE-SEM), energy dispersive analysis by X-ray (EDAX), transmission electron microscopy (TEM), superconducting quantum interference device (SQUID) and Mössbauer spectrometry. XRD and Mössbauer measurements indicate that the obtained nanoparticles are single phase. TEM analysis shows the presence of spherical nanoparticles with homogeneous size distribution of about 8 nm. Room temperature ferromagnetics behavior was confirmed by SQUID measurements. The mechanism of nanoparticles formation and the comparison with recent results are discussed. Finally, the synthesized nanoparticles present a potential candidate for hyperthermia application given their saturation magnetization. © 2012 Elsevier Ltd. All rights reserved.

  2. Application of Molecular Imprinted Magnetic Fe3O4@SiO2 Nanoparticles for Selective Immobilization of Cellulase.

    Science.gov (United States)

    Tao, Qing-Lan; Li, Yue; Shi, Ying; Liu, Rui-Jiang; Zhang, Ye-Wang; Guo, Jianyong

    2016-06-01

    Magnetic Fe3O4@SiO2 nanoparticles were prepared with molecular imprinting method using cellulase as the template. And the surface of the nanoparticles was chemically modified with arginine. The prepared nanoparticles were used as support for specific immobilization of cellulase. SDS-PAGE results indicated that the adsorption of cellulase onto the modified imprinted nanoparticles was selective. The immobilization yield and efficiency were obtained more than 70% after the optimization. Characterization of the immobilized cellulase revealed that the immobilization didn't change the optimal pH and temperature. The half-life of the immobilized cellulase was 2-fold higher than that of the free enzyme at 50 degrees C. After 7 cycles reusing, the immobilized enzyme still retained 77% of the original activity. These results suggest that the prepared imprinted nanoparticles have the potential industrial applications for the purification or immobilization of enzymes.

  3. Effects of Fe3O4 Magnetic Nanoparticles on the Thermoelectric Properties of Heavy-Fermion YbAl3 Materials

    Science.gov (United States)

    He, Danqi; Mu, Xin; Zhou, Hongyu; Li, Cuncheng; Ma, Shifang; Ji, Pengxia; Hou, Weikang; Wei, Ping; Zhu, Wanting; Nie, Xiaolei; Zhao, Wenyu

    2018-06-01

    The magnetic nanocomposite thermoelectric materials xFe3O4/YbAl3 ( x = 0%, 0.3%, 0.6%, 1.0%, and 1.5%) have been prepared by the combination of ultrasonic dispersion and spark plasma sintering process. The nanocomposites retain good chemical stability in the presence of the second-phase Fe3O4. The second-phase Fe3O4 magnetic nanoparticles are distributed on the interfaces and boundaries of the matrix. The x dependences of thermoelectric properties indicate that Fe3O4 magnetic nanoparticles can significantly decrease the thermal conductivity and electrical conductivity. The magnetic nanoparticles embedded in YbAl3 matrix are not only the phonon scattering centers of nanostructures, but also the electron scattering centers due to the Kondo-like effect between the magnetic moment of Fe3O4 nanoparticles and the spin of electrons. The ZT values of the composites are first increased in the x range 0%-1.0% and then decreased when x > 1.0%. The highest ZT value reaches 0.3 at 300 K for the nanocomposite with x = 1.0%. Our work demonstrates that the Fe3O4 magnetic nanoparticles can greatly increase the thermoelectric performance of heavy-fermion YbAl3 thermoelectric materials through simultaneously scattering electrons and phonons.

  4. Preparation of magnetic poly lactic acid microcapsules entrapped by Fe3 O4 nanoparticles%载Fe3 O4纳米粒子磁性PLA微囊的制备

    Institute of Scientific and Technical Information of China (English)

    徐鹏; 陈懿玺; 唐进根; 曹小勇; 张蕤

    2015-01-01

    以聚乳酸为壁材,利用超声乳化同W1/O/W2复乳化方法相结合的方法,设计合成囊壁载有油溶性Fe3 O4纳米粒子的磁性中空聚乳酸微囊。扫描电子显微镜分析( SEM)显示微囊外表面光滑,平均直径为1μm;透射电子显微镜( TEM)分析显示微囊中空结构明显,Fe3 O4纳米粒子集中分布于囊壁结构。采用热重分析法( TGA)测定磁性微囊中Fe3 O4质量分数高达12%。制得的磁性微囊具有较好的复溶性,在水溶液中能稳定分散,并具有较好的磁响应性,可望成为一种有效的磁靶向给药载体材料。%The biodegradable magnetic poly lactic acid ( PLA) microcapsules with Fe3 O4 nanoparticles in the wall were designed and prepared based on the combination of ultrasonic emulsification technique and double emulsion⁃solvent evap⁃oration method. Fe3 O4 nanoparticles were prepared by coprecipitation method, and coated with undecylenic acid and oleic acid to improve its stability in dichloromethane. The structure and morphology of the magnetic PLA microcapsules were analyzed by scanning electron microcopy ( SEM ) and transmission electron microscopy ( TEM ) . Moreover, the thermal properties of the magnetic PLA microcapsules were measured by thermogravimetric analysis ( TGA) . As demon⁃strated by experimental results, the diameter of the uniform magnetic microcapsules was about 1 μm, and the magnetic PLA microcapsules could be easily separated from aqueous solution by an external magnetic field.

  5. Reversal of multidrug resistance in xenograft nude-mice by magnetic Fe(3)O(4) nanoparticles combined with daunorubicin and 5-bromotetrandrine.

    Science.gov (United States)

    Wu, Ya-Nan; Chen, Bao-An; Cheng, Jian; Gao, Feng; Xu, Wen-Lin; Ding, Jia-Hua; Gao, Chong; Sun, Xin-Chen; Li, Guo-Hong; Chen, Wen-Ji; Liu, Li-Jie; Li, Xiao-Mao; Wang, Xue-Mei

    2009-02-01

    This study was aimed to investigate the reversal effect of 5-bromotetrandrine (5-BrTet) and magnetic nanoparticle of Fe(3)O(4) (Fe(3)O(4)-MNPs) combined with DNR in vivo. The xenograft leukemia model with stable multiple drug resistance in nude mice was established. The two sub-clones of K562 and K562/A02 cells were respectively inoculated subcutaneously into back of athymic nude mice (1 x 10(7) cells/each) to establish the leukemia xenograft models. Drug resistant and the sensitive tumor-bearing nude mice were both assigned randomly into 5 groups: group A was treated with NS; group B was treated with DNR; group C was treated with nanoparticle of Fe(3)O(4) combined with DNR; group D was treated with 5-BrTet combined with DNR; group E was treated with 5-bromotetrandrine and magnetic nanoparticle of Fe(3)O(4) combined with DNR. The incidence of tumor formation, growth characteristics, weight and volume of tumor were observed. The histopathologic examination of tumors and organs were carried out. The protein levels of BCL-2, BAX, and Caspase-3 in resistant tumors were detected by Western blot. The results indicated that 5-BrTet and magnetic nanoparticle of Fe(3)O(4) combined with DNR significantly suppressed growth of K562/A02 cell xenograft tumor, histopathologic examination of tumors showed the tumors necrosis obviously. Application of 5-BrTet and magnetic nanoparticle of Fe(3)O(4) inhibited the expression of BCL-2 protein and up-regulated the expression of BAX, and Caspase-3 protein in K562/A02 cell xenograft tumor. It is concluded that 5-bromotetrandrine and magnetic nanoparticle of Fe(3)O(4) combined with DNR have significant tumor-suppressing effect on MDR leukemia cell xenograft model.

  6. Microbial-Physical Synthesis of Fe and Fe3O4 Magnetic Nanoparticles Using Aspergillus niger YESM1 and Supercritical Condition of Ethanol

    Directory of Open Access Journals (Sweden)

    Mai Abdeen

    2016-01-01

    Full Text Available Magnetic Fe and Fe3O4 (magnetite nanoparticles are successfully synthesized using Aspergillus niger YESM 1 and supercritical condition of liquids. Aspergillus niger is used for decomposition of FeSO4 and FeCl3 to FeS and Fe2O3, respectively. The produced particles are exposed to supercritical condition of ethanol for 1 hour at 300°C and pressure of 850 psi. The phase structure and the morphology measurements yield pure iron and major Fe3O4 spherical nanoparticles with average size of 18 and 50 nm, respectively. The crystal size amounts to 9 nm for Fe and 8 nm for Fe3O4. The magnetic properties are measured to exhibit superparamagnetic- and ferromagnetic-like behaviors for Fe and Fe3O4 nanoparticles, respectively. The saturation magnetization amounts to 112 and 68 emu/g for Fe and Fe3O4, respectively. The obtained results open new route for using the biophysical method for large-scale production of highly magnetic nanoparticles to be used for biomedical applications.

  7. Microbial-Physical Synthesis of Fe and Fe_3O_4 Magnetic Nanoparticles Using Aspergillus niger YESM1 and Supercritical Condition of Ethanol

    International Nuclear Information System (INIS)

    Abdeen, M.; Sabry, S.; Ghozlan, H.; El-Gendy, A. A.; Carpenter, E.E.; El-Gendy, A. A.

    2016-01-01

    Magnetic Fe and Fe_3O_4 (magnetite) nanoparticles are successfully synthesized using Aspergillus niger YESM 1 and supercritical condition of liquids. Aspergillus niger is used for decomposition of FeSO_4 and FeCl_3 to FeS and Fe_2O_3, respectively. The produced particles are exposed to supercritical condition of ethanol for 1 hour at 300 degree and pressure of 850 psi. The phase structure and the morphology measurements yield pure iron and major Fe_3O_4 spherical nanoparticles with average size of 18 and 50 nm, respectively. The crystal size amounts to 9 nm for Fe and 8 nm for Fe_3O_4. The magnetic properties are measured to exhibit superparamagnetic- and ferromagnetic-like behaviors for Fe and Fe_3O_4 nanoparticles, respectively. The saturation magnetization amounts to 112 and 68 emu/g for Fe and Fe_3O_4, respectively. The obtained results open new route for using the biophysical method for large-scale production of highly magnetic nanoparticles to be used for biomedical applications

  8. Folic acid-conjugated Fe3O4 magnetic nanoparticles for hyperthermia and MRI in vitro and in vivo

    International Nuclear Information System (INIS)

    Jiang, Q.L.; Zheng, S.W.; Hong, R.Y.; Deng, S.M.; Guo, L.; Hu, R.L.; Gao, B.; Huang, M.; Cheng, L.F.; Liu, G.H.; Wang, Y.Q.

    2014-01-01

    The folic acid (FA)-conjugated Fe 3 O 4 magnetic nanoparticles (MNPs) were synthesized by co-precipitation of Fe 3+ and Fe 2+ solution followed by surface modification with carboxymethyl dextran (CMD) to form carboxymethyl group terminated MNPs, then FA was conjugated with the carboxyl group functionalized MNPs. The morphology and properties of obtained nanoparticles were characterized by X-ray powder diffraction (XRD), Fourier transform infrared spectroscopy (FT-IR), UV–visible spectra (UV–vis), transmission electron microscopy (TEM), dynamic light scattering (DLS), vibrating sample magnetometer (VSM) and thermogravimetric analysis (TGA). The FA-conjugated MNPs exhibited relatively high saturation magnetization and fast magneto-temperature response which could be applied to hyperthermia therapy. To determine the accurate targeting effect of FA, we chose FA-conjugated MNPs as MRI contrast enhancement agent for detection of KB cells with folate receptor over-expression in vitro and in vivo. The results show that these magnetic nanoparticles appear to be the promising materials for local hyperthermia and MRI.

  9. One-step synthesis of water-dispersible cysteine functionalized magnetic Fe3O4 nanoparticles for mercury(II) removal from aqueous solutions

    International Nuclear Information System (INIS)

    Shen, Xiaofang; Wang, Qin; Chen, WenLing; Pang, Yuehong

    2014-01-01

    Graphical abstract: Using Fe 2+ as precursors, air as oxidant and cysteine as protectant, this novel cysteine functionalized Fe 3 O 4 magnetic nanoparticles (Cys-Fe 3 O 4 MNPs) was facilely one-pot synthesized at room temperature by oxidation–precipitation method with the assistance of sonication. Then the Cys-Fe 3 O 4 MNPs were demonstrated as an inexpensive and quite efficient magnetic nano-adsorbent for as high as 95% Hg(II) removal efficiency. These results indicated that Cys-Fe 3 O 4 MNPs is a potentially attractive material for the removal of Hg(II) from water. - Highlights: • A simplified one-step synthesis method of superparamagnetic Cys-Fe 3 O 4 MNPs was developed. • It was synthesized at room temperature by oxidation-precipitation method with the assistance of sonication. • It was demonstrated as an inexpensive and quite efficient magnetic nano-adsorbent for Hg(II) removal. - Abstract: Cysteine functionalized Fe 3 O 4 magnetic nanoparticles (Cys-Fe 3 O 4 MNPs) were prepared facilely for Hg(II) removal from aqueous solutions. Using Fe 2+ as precursors, air as oxidant and Cys as protectant, this novel material was one-pot synthesis at room temperature by oxidation–precipitation method with the assistance of sonication. The MNPs were characterized by TEM, VSM, FTIR, X-ray powder diffraction analysis (XRD) and TGA methods. Under the optimum experimental conditions, the removal efficiency was as high as 95% and the maximum sorption capacity is found to be 380 mg/mol for Hg(II). Study on adsorption kinetics shows that adsorption of Hg(II) onto Cys-Fe 3 O 4 MNPs follows pseudo-first-order kinetic model and the adsorption rate constant was 0.22 min −1 . Additionally, the Hg(II)-loaded Cys-Fe 3 O 4 MNPs could be easily regenerated up to 95% using 1.0 M acetic acid. These results indicated that Cys-Fe 3 O 4 MNPs is a potentially attractive material for the removal of Hg(II) from water

  10. Amperometric glucose sensor based on enhanced catalytic reduction of oxygen using glucose oxidase adsorbed onto core-shell Fe3O4-silica-Au magnetic nanoparticles

    International Nuclear Information System (INIS)

    Wang Aijun; Li Yongfang; Li Zhonghua; Feng Jiuju; Sun Yanli; Chen Jianrong

    2012-01-01

    Monodisperse Fe 3 O 4 magnetic nanoparticles (NPs) were prepared under facile solvothermal conditions and successively functionalized with silica and Au to form core/shell Fe 3 O 4 -silica-Au NPs. Furthermore, the samples were used as matrix to construct a glucose sensor based on glucose oxidase (GOD). The immobilized GOD retained its bioactivity with high protein load of 3.92 × 10 −9 mol·cm −2 , and exhibited a surface-controlled quasi-reversible redox reaction, with a fast heterogeneous electron transfer rate of 7.98 ± 0.6 s −1 . The glucose biosensor showed a broad linear range up to 3.97 mM with high sensitivity of 62.45 μA·mM −1 cm −2 and fast response (less than 5 s). - Graphical abstract: Core-shell structured Fe 3 O 4 -silica-Au nanoparticles were prepared and used as matrix to construct an amperometric glucose sensor based on glucose oxidase, which showed broad linear range, high sensitivity, and fast response. Highlights: ► Synthesis of monodispersed Fe 3 O 4 nanoparticles. ► Fabrication of core/shell Fe 3 O 4 -silica-Au nanoparticles. ► Construction of a novel glucose sensor with wide linear range, high sensitivity and fast response.

  11. Adsorption process of fluoride from drinking water with magnetic core-shell Ce-Ti@Fe3O4 and Ce-Ti oxide nanoparticles.

    Science.gov (United States)

    Abo Markeb, Ahmad; Alonso, Amanda; Sánchez, Antoni; Font, Xavier

    2017-11-15

    Synthesized magnetic core-shell Ce-Ti@Fe 3 O 4 nanoparticles were tested, as an adsorbent, for fluoride removal and the adsorption studies were optimized. Adsorption capacity was compared with the synthesized Ce-Ti oxide nanoparticles. The adsorption equilibrium for the Ce-Ti@Fe 3 O 4 adsorbent was found to occur in cycles of adsorption-desorption. Although the nanoparticles suffer slight structure modifications after their reusability, they keep their adsorption capacity. Likewise, the efficiency of the Ce-Ti@Fe 3 O 4 was demonstrated when applied to real water to obtain a residual concentration of F - below the maximum contaminated level, 1.5mg/L (WHO, 2006). Copyright © 2017 Elsevier B.V. All rights reserved.

  12. Removal of reactive red-120 and 4-(2-pyridylazo) resorcinol from aqueous samples by Fe3O4 magnetic nanoparticles using ionic liquid as modifier

    International Nuclear Information System (INIS)

    Absalan, Ghodratollah; Asadi, Mozaffar; Kamran, Sedigheh; Sheikhian, Leila; Goltz, Douglas M.

    2011-01-01

    Highlights: → Ionic liquids modify the dye-adsorption characteristics of magnetic nanoparticles. → Modified nanoparticles improved the sensitivity of dye measurements. → Water-solubility is an important factor for choosing an ionic liquid as a modifier for nanoparticles. - Abstract: The nanoparticles of Fe 3 O 4 as well as the binary nanoparticles of ionic liquid and Fe 3 O 4 (IL-Fe 3 O 4 ) were synthesized for removal of reactive red 120 (RR-120) and 4-(2-pyridylazo) resorcinol (PAR) as model azo dyes from aqueous solutions. The mean size and the surface morphology of the nanoparticles were characterized by TEM, DLS, XRD, FTIR and TGA techniques. Adsorption of RR-120 and PAR was studied in a batch reactor at different experimental conditions such as nanoparticle dosage, dye concentration, pH of the solution, ionic strength, and contact time. Experimental results indicated that the IL-Fe 3 O 4 nanoparticles had removed more than 98% of both dyes under the optimum operational conditions of a dosage of 60 mg, a pH of 2.5, and a contact time of 2 min when initial dyes concentrations of 10-200 mg L -1 were used. The maximum adsorption capacity of IL-Fe 3 O 4 was 166.67 and 49.26 mg g -1 for RR-120 and PAR, respectively. The isotherm experiments revealed that the Langmuir model attained better fits to the equilibrium data than the Freundlich model. The Langmuir adsorption constants were 5.99 and 3.62 L mg -1 for adsorptions of RR-120 and PAR, respectively. Both adsorption processes were endothermic and dyes could be desorbed from IL-Fe 3 O 4 by using a mixed NaCl-acetone solution and adsorbent was reusable.

  13. Synthesis and characterization of bracelet-like magnetic nanorings consisting of Ag-Fe3O4 bi-component nanoparticles.

    Science.gov (United States)

    Zhou, Shuai; Chen, Qianwang

    2011-09-14

    Stable bracelet-like magnetic nanorings, formed by Ag-Fe(3)O(4) nanoparticles with an average size around 40 nm, have been successfully prepared in large scale by means of reducing Ag(+) and Fe(3+) simultaneously under mild conditions. In the reaction, tiny grains of silver are used as seeds to prompt small Fe(3)O(4) nanoparticles to grow larger, which is essential to enhance the magnetic dipole-dipole interactions, while only superparamagnetic Fe(3)O(4) nanoparticles (about 10 nm in size) can be obtained in the absence of Ag seeds. The XRD, TEM, SAED and the EDS line scan data reveal that these nanoparticles are in the core-shell structure. These magnetic Ag-Fe(3)O(4) nanoparticles assembled into nanorings by magnetic dipole-dipole interactions with a diameter of 100-200 nm. The saturation magnetization of the nanorings is 39.5 emu g(-1) at room temperature. The MRI images indicate that these kind of nanorings have the potential application in diagnostics as a T(2) MRI contrast agent. This journal is © The Royal Society of Chemistry 2011

  14. Enzymes immobilization on Fe 3O 4-gold nanoparticles

    Science.gov (United States)

    Kalska-Szostko, B.; Rogowska, M.; Dubis, A.; Szymański, K.

    2012-01-01

    In the present study Fe3O4 magnetic nanoparticles were synthesized by coprecipitation of Fe2+ and Fe3+ from chlorides. In the next step magnetite-gold core-shell nanoparticles were synthesized from HAuCl4 using an ethanol as a reducing agent. Finally, magnetic nanoparticles were functionalized by hexadecanethiol. The immobilization of biological molecules (trypsin and glucose oxidase) to the thiol-modified and unmodified magnetite-gold nanoparticles surface was tested. The resulting nanoparticles were characterized by infrared spectroscopy, differential scanning calorimetry, Mössbauer spectroscopy and transmission electron microscopy.

  15. Reversal of multidrug resistance by magnetic Fe3O4 nanoparticle copolymerizating daunorubicin and 5-bromotetrandrine in xenograft nude-mice.

    Science.gov (United States)

    Chen, Baoan; Cheng, Jian; Wu, Yanan; Gao, Feng; Xu, Wenlin; Shen, Huilin; Ding, Jiahua; Gao, Chong; Sun, Qian; Sun, Xinchen; Cheng, Hongyan; Li, Guohong; Chen, Wenji; Chen, Ningna; Liu, Lijie; Li, Xiaomao; Wang, Xuemei

    2009-01-01

    In this paper we establish the xenograft leukemia model with stable multidrug resistance in nude mice and to investigate the reversal effect of 5-bromotetrandrine (5-BrTet) and magnetic nanoparticle of Fe(3)O(4) (MNP-Fe(3)O(4)) combined with daunorubicin (DNR) in vivo. Two subclones of K562 and K562/A02 cells were inoculated subcutaneously into the back of athymic nude mice (1 x 10(7) cells/each) respectively to establish leukemia xenograft models. Drug-resistant and sensitive tumor-bearing nude mice were assigned randomly into five groups which were treated with normal saline; DNR; NP-Fe(3)O(4) combined with DNR; 5-BrTet combined with DNR; 5-BrTet and MNP-Fe(3)O(4) combined with DNR, respectively. The incidence of formation, growth characteristics, weight, and volume of tumors were observed. The histopathologic examination of tumors and organs were detected. For resistant tumors, the protein levels of Bcl-2, and BAX were detected by Western blot. Bcl-2, BAX, and caspase-3 genes were also detected. For K562/A02 cells xenograft tumors, 5-BrTet and MNP-Fe(3)O(4) combined with DNR significantly suppressed growth of tumor. A histopathologic examination of tumors clearly showed necrosis of the tumors. Application of 5-BrTet and MNP-Fe(3)O(4) inhibited the expression of Bcl-2 protein and upregulated the expression of BAX and caspase-3 proteins in K562/A02 cells xenograft tumor. It is concluded that 5-BrTet and MNP-Fe(3)O(4) combined with DNR had a significant tumor-suppressing effect on a MDR leukemia cells xenograft model.

  16. Humic acid coated Fe3O4 magnetic nanoparticles as highly efficient Fenton-like catalyst for complete mineralization of sulfathiazole

    International Nuclear Information System (INIS)

    Niu Hongyun; Zhang Di; Zhang Shengxiao; Zhang Xiaole; Meng Zhaofu; Cai Yaqi

    2011-01-01

    Humic acid coated Fe 3 O 4 magnetic nanoparticles (Fe 3 O 4 /HA) were prepared for the removal of sulfathiazole from aqueous media. Fe 3 O 4 /HA exhibited high activity to produce hydroxyl (·OH) radicals through catalytic decomposition of H 2 O 2 . The degradation of sulfathiazole was strongly temperature-dependent and favored in acidic solution. The catalytic rate was increased with Fe 3 O 4 /HA dosage and H 2 O 2 concentration. When 3 g L -1 of Fe 3 O 4 /HA and 0.39 M of H 2 O 2 were introduced to the aqueous solution, most sulfathiazole was degraded within 1 h, and >90% of total organic carbon (TOC) were removed in the reaction period (6 h). The major final products were identified as environmentally friendly ions or inorganic molecules (SO 4 2- , CO 2 , and N 2 ). The corresponding degradation rate (k) of sulfathiazole and TOC was 0.034 and 0.0048 min -1 , respectively. However, when 3 g L -1 of bare Fe 3 O 4 were used as catalyst, only 54% of TOC was eliminated, and SO 4 2- was not detected within 6 h. The corresponding degradation rate for sulfathiazole and TOC was 0.01 and 0.0016 min -1 , respectively. The high catalytic ability of Fe 3 O 4 /HA may be caused by the electron transfer among the complexed Fe(II)-HA or Fe(III)-HA, leading to rapid regeneration of Fe(II) species and production of ·OH radicals.

  17. Reversal of multidrug resistance by magnetic Fe3O4 nanoparticle copolymerizating daunorubicin and 5-bromotetrandrine in xenograft nude-mice

    OpenAIRE

    Chen, Baoan; Cheng, Jian; Wu, Yanan; Gao, Feng; Xu, Wenlin; Shen, Huilin; Ding, Jiahua; Gao, Chong; Sun, Qian; Sun, Xinchen; Cheng, Hongyan; Li, Guohong; Chen, Wenji; Chen, Ningna; Liu, Lijie

    2009-01-01

    In this paper we establish the xenograft leukemia model with stable multidrug resistance in nude mice and to investigate the reversal effect of 5-bromotetrandrine (5-BrTet) and magnetic nanoparticle of Fe3O4 (MNP-Fe3O4) combined with daunorubicin (DNR) in vivo. Two subclones of K562 and K562/A02 cells were inoculated subcutaneously into the back of athymic nude mice (1 × 107 cells/each) respectively to establish leukemia xenograft models. Drug-resistant and sensitive tumor-bearing nude mice w...

  18. Reversal of multidrug resistance by magnetic Fe3O4 nanoparticle copolymerizating daunorubicin and 5-bromotetrandrine in xenograft nude-mice

    OpenAIRE

    Chen, Baoan

    2009-01-01

    Baoan Chen1,* Jian Cheng1,* Yanan Wu1, Feng Gao1, Wenlin Xu2, et al 1Department of Hematology;2Department of Hematology, The Affiliated People’s Hospital, Jiangsu University, Zhenjiang, PR China *These authors have contributed equally to this workAbstract: In this paper we establish the xenograft leukemia model with stable multidrug resistance in nude mice and to investigate the reversal effect of 5-bromotetrandrine (5-BrTet) and magnetic nanoparticle of Fe3O4 (MNP-Fe3O4) c...

  19. Magnetic Fe3O4@MCM-41 core-shell nanoparticles functionalized with thiol silane for efficient l-asparaginase immobilization.

    Science.gov (United States)

    Ulu, Ahmet; Noma, Samir Abbas Ali; Koytepe, Suleyman; Ates, Burhan

    2018-06-06

    l-Asparaginase (l-ASNase) is a vital enzyme for medical treatment and food industry. Here, we assessed the use of Fe 3 O 4 @Mobil Composition of Matter No. 41 (MCM-41) magnetic nanoparticles as carrier matrix for l-ASNase immobilization. In addition, surface of Fe 3 O 4 @MCM-41 magnetic nanoparticles was functionalized with 3-mercaptopropyltrimethoxysilane (MPTMS) to enhance stability of l-ASNase. The chemical structure, thermal properties, magnetic profile and morphology of the thiol-functionalized Fe 3 O 4 @MCM-41 magnetic nanoparticles were characterized with Fourier transform infrared spectroscopy (FTIR), thermogravimetric analysis (TGA), differential thermal analysis (DTA), differential scanning calorimetry (DSC), vibrating sample magnetometer (VSM), scanning electron microscope (SEM), energy dispersive X-ray (EDX) spectroscopy and zeta-potential measurement. l-ASNase was covalently immobilized onto the thiol-functionalized Fe 3 O 4 @MCM-41 magnetic nanoparticles. The properties of the immobilized enzyme, including optimum pH, temperature, kinetic parameters, thermal stability, reusability and storage stability were investigated and compared to free one. Immobilized enzyme was found to be stable over a wide range of pH and temperature range than free enzyme. The immobilized l-ASNase also showed higher thermal stability after 180 min incubation at 50 °C. The immobilized enzyme still retained 63% of its original activity after 16 times of reuse. The Km value for the immobilized enzyme was 1.15-fold lower than the free enzyme, which indicates increased affinity for the substrate. Additionally, the immobilized enzyme was active over 65% and 53% after 30 days of storage at 4 °C and room temperature (∼25 °C), respectively. Thereby, the results confirmed that thiol-functionalized Fe 3 O 4 @MCM-41 magnetic nanoparticles had high efficiency for l-ASNase immobilization and improved stability of L-ASNase.

  20. Dipodal Silane-modified Nano Fe3O4/Polyurethane Magnetic Nanocomposites: Preparation and Characterization

    OpenAIRE

    Mir Mohammad Alavi Nikje; Maryam Vakili; Reihaneh Farajollah; Raheleh Akbar; Moslem Haghshenas

    2016-01-01

    Magnetic nanocomposites were prepared by incorporation of pure Fe3O4 and surface-modified Fe3O4 nanoparticles (dipodal silane-modified Fe3O4) into a polyurethane elastomer matrix by in situ polymerization method. In preparation of these magnetic nanocomposites, polycaprolactone (PCL) was used as a polyester polyol. Because of dipole-dipole interactions between nanoparticles and a large surface area to volume ratio, the magnetic iron oxide nanoparticles tended to agglomerate. Furthermore, the ...

  1. A comparative study for adsorption of lysozyme from aqueous samples onto Fe3O4 magnetic nanoparticles using different ionic liquids as modifier.

    Science.gov (United States)

    Kamran, Sedigheh; Absalan, Ghodratollah; Asadi, Mozaffar

    2015-12-01

    In this paper, nanoparticles of Fe3O4 as well as their modified forms with different ionic liquids (IL-Fe3O4) were prepared and used for adsorption of lysozyme. The mean size and the surface morphology of the nanoparticles were characterized by TEM, XRD and FTIR techniques. Adsorption studies of lysozyme were performed under different experimental conditions in batch system on different modified magnetic nanoparticles such as, lysozyme concentration, pH of the solution, and contact time. Experimental results were obtained under the optimum operational conditions of pH 9.0 and a contact time of 10 min when initial protein concentrations of 0.05-2.0 mg mL(-1) were used. The isotherm evaluations revealed that the Langmuir model attained better fits to the equilibrium data than the Freundlich model. The maximum obtained adsorption capacities were 370.4, 400.0 500.0 and 526.3 mg of lysozyme for adsorption onto Fe3O4 and modified magnetic nanoparticles by [C4MIM][Br], [C6MIM][Br] and [C8MIM][Br] per gram of adsorbent, respectively. The Langmuir adsorption constants were 0.004, 0.019, 0.024 and 0.012 L mg(-1) for adsorptions of lysozyme onto Fe3O4 and modified magnetic nanoparticles by [C4MIM][Br], [C6MIM][Br] and [C8MIM][Br], respectively. The adsorption capacity of lysozyme was found to be dependent on its chemical structure, pH of the solution, temperature and type of ionic liquid as modifier. The applicability of two kinetic models including pseudo-first order and pseudo-second order model was estimated. Furthermore, the thermodynamic parameters were calculated. Protein could desorb from IL-Fe3O4 nanoparticles by using NaCl solution at pH 9.5 and was reused.

  2. Preparation, characterization of Fe3O4 at TiO2 magnetic nanoparticles and their application for immunoassay of biomarker of exposure to organophosphorus pesticides

    Energy Technology Data Exchange (ETDEWEB)

    Zhang, Xiao; Wang, Hongbo; Yang, Chunming; Du, Dan; Lin, Yuehe

    2013-03-15

    Novel Fe3O4 at TiO2 magnetic nanoparticles were prepared and developed for a new nanoparticle-based immunosensor for electrochemical quantification of organophosphorylated butyrylcholinesterase (BChE) in plasma, a specific biomarker of exposure to organophosphorus (OP) agents. The Fe3O4 at TiO2 nanoparticles were synthesized by hydrolysis of tetrabutyltitanate on the surface of Fe3O4 magnetic nanospheres, and characterized by attenuated total reflection Fourier-transform infrared spectra, transmission electron microscope and X-ray diffraction. The functional Fe3O4 at TiO2 nanoparticles were performed as capture antibody to selectively enrich phosphorylated moiety instead of phosphoserine antibody in the traditional sandwich immunoassays. The secondary recognition was served by quantum dots (QDs)-tagged anti-BChE antibody (QDs-anti-BChE). With the help of a magnet, the resulting sandwich-like complex, Fe3O4 at TiO2/OP-BChE/QDs-anti-BChE, was easily isolated from sample solutions and the released cadmium ions were detected on a disposable screen-printed electrode (SPE). The binding affinities were investigated by both surface plasmon resonance (SPR) and square wave voltammetry (SWV). This method not only avoids the drawback of unavailability of commercial OP-specific antibody but also amplifies detection signal by QDs-tags together with easy separation of samples by magnetic forces. The proposed immunosensor yields a linear response over a broad OP-BChE concentrations range from 0.02 to 10 nM, with detection limit of 0.01 nM. Moreover, the disposable nanoparticle-based immunosensor has been validated with human plasma samples. It offers a new method for rapid, sensitive, selective and inexpensive screening/evaluating exposure to OP pesticides.

  3. Co-encapsulation of magnetic Fe3O4 nanoparticles and doxorubicin into biodegradable PLGA nanocarriers for intratumoral drug delivery

    Directory of Open Access Journals (Sweden)

    Jia Y

    2012-03-01

    Full Text Available Yanhui Jia1, Mei Yuan1, Huidong Yuan1, Xinglu Huang2, Xiang Sui1, Xuemei Cui1, Fangqiong Tang2, Jiang Peng1, Jiying Chen1, Shibi Lu1, Wenjing Xu1, Li Zhang1, Quanyi Guo11Institute of Orthopedics, General Hospital of the Chinese People's Liberation Army, Beijing, People's Republic of China; 2Laboratory of Controllable Preparation and Application of Nanomaterials, Technical Institute of Physics and Chemistry, Chinese Academy of Sciences, Beijing, People's Republic of ChinaAbstract: In this study, the authors constructed a novel PLGA [poly(D,L-lactic-co-glycolic acid]-based polymeric nanocarrier co-encapsulated with doxorubicin (DOX and magnetic Fe3O4 nanoparticles (MNPs using a single emulsion evaporation method. The DOX-MNPs showed high entrapment efficiency, and they supported a sustained and steady release of DOX. Moreover, the drug release was pH sensitive, with a faster release rate in an acidic environment than in a neutral environment. In vitro, the DOX-MNPs were easily internalized into murine Lewis lung carcinoma cells and they induced apoptosis. In vivo, the DOX-MNPs showed higher antitumor activity than free DOX solution. Furthermore, the antitumor activity of the DOX-MNPs was higher with than without an external magnetic field; they were also associated with smaller tumor volume and a lower metastases incidence rate. This work may provide a new modality for developing an effective drug delivery system.Keywords: antitumor activity, external magnetic field, intratumoral injection, apoptosis, Lewis lung carcinoma

  4. Size-controlled Synthesis and Characterization of Fe3O4 Nanoparticles by Chemical Coprecipitation Method

    International Nuclear Information System (INIS)

    Chia Chin Hua; Sarani Zakaria; Farahiyan, R.; Liew Tze Khong; Mustaffa Abdullah; Sahrim Ahmad; Nguyen, K.L.

    2008-01-01

    Magnetite (Fe 3 O 4 ) nanoparticles have been synthesized using the chemical coprecipitation method. The Fe 3 O 4 nanoparticles were likely formed via dissolution-recrystallization process. During the precipitation process, ferrihydrite and Fe(OH) 2 particles formed aggregates and followed by the formation of spherical Fe 3 O 4 particles. The synthesized Fe 3 O 4 nanoparticles exhibited superparamagnetic behavior and in single crystal form. The synthesis temperature and the degree of agitation during the precipitation were found to be decisive in controlling the crystallite and particle size of the produced Fe 3 O 4 nanoparticles. Lower temperature and higher degree of agitation were the favorable conditions for producing smaller particle. The magnetic properties (saturation magnetization and coercivity) of the Fe 3 O 4 nanoparticles increased with the particle size. (author)

  5. Reversal of multidrug resistance by magnetic Fe3O4 nanoparticle copolymerizating daunorubicin and 5-bromotetrandrine in xenograft nude-mice

    Directory of Open Access Journals (Sweden)

    Baoan Chen

    2009-03-01

    Full Text Available Baoan Chen1,* Jian Cheng1,* Yanan Wu1, Feng Gao1, Wenlin Xu2, et al 1Department of Hematology;2Department of Hematology, The Affiliated People’s Hospital, Jiangsu University, Zhenjiang, PR China *These authors have contributed equally to this workAbstract: In this paper we establish the xenograft leukemia model with stable multidrug resistance in nude mice and to investigate the reversal effect of 5-bromotetrandrine (5-BrTet and magnetic nanoparticle of Fe3O4 (MNP-Fe3O4 combined with daunorubicin (DNR in vivo. Two subclones of K562 and K562/A02 cells were inoculated subcutaneously into the back of athymic nude mice (1 × 107 cells/each respectively to establish leukemia xenograft models. Drug-resistant and sensitive tumor-bearing nude mice were assigned randomly into five groups which were treated with normal saline; DNR; NP-Fe3O4 combined with DNR; 5-BrTet combined with DNR; 5-BrTet and MNP-Fe3O4 combined with DNR, respectively. The incidence of formation, growth characteristics, weight, and volume of tumors were observed. The histopathologic examination of tumors and organs were detected. For resistant tumors, the protein levels of Bcl-2, and BAX were detected by Western blot. Bcl-2, BAX, and caspase-3 genes were also detected. For K562/A02 cells xenograft tumors, 5-BrTet and MNP-Fe3O4 combined with DNR significantly suppressed growth of tumor. A histopathologic examination of tumors clearly showed necrosis of the tumors. Application of 5-BrTet and MNP-Fe3O4 inhibited the expression of Bcl-2 protein and upregulated the expression of BAX and caspase-3 proteins in K562/A02 cells xenograft tumor. It is concluded that 5-BrTet and MNP-Fe3O4 combined with DNR had a significant tumor-suppressing effect on a MDR leukemia cells xenograft model.Keywords: 5-bromotetrandrine, magnetic nanoparticle of Fe3O4, multidrug-resistance, xenograft model

  6. A facile and flexible process of β-cyclodextrin grafted on Fe3O4 magnetic nanoparticles and host-guest inclusion studies

    International Nuclear Information System (INIS)

    Zhu Jie; He Jiang; Du Xiaoyan; Lu Ruihua; Huang Lizhen; Ge Xia

    2011-01-01

    In this study, a kind of novel surface-functionalized magnetic nanoparticles was fabricated by the Fe 3 O 4 nanoparticles surface modification with mono-6-deoxy-6-(p-tolylsulfonyl)-cyclodextrin (6-TsO-β-CD), which were employed to interact with uric acid and their behavior was investigated by electrochemical methods. The architecture has been characterized by powder X-ray diffraction (XRD), Fourier transform infrared spectra (FT-IR), transmission electron microscopy (TEM), and thermogravimetric analysis (TGA), which confirmed that cyclodextrins have been effectively functionalized on the surface of Fe 3 O 4 nanoparticles. The analyses of vibration sample magnetometer (VSM) verified that the nanoparticles owned good magnetic property. The grafted β-cyclodextrin on the Fe3O4 nanoparticles contributed to as a modified electrode for detecting uric acid with cyclic voltammograms. Electrochemical results revealed that the new materials could exhibit excellent molecules recognition ability and show high electrochemical response. The new nanoparticles simultaneously had unique properties of magnetic nanoparticles and cyclodextrins through combining their individual distinct advantages.

  7. Synthesis, characterization and wound healing imitation of Fe3O4 magnetic nanoparticle grafted by natural products

    Science.gov (United States)

    Pala, Sravan Kumar

    This research focused on the study of the core-shelled magnetic nanomaterials derived from a colloidal chemistry. The goals are four-fold: (1) synthesis of Fe3O4MNMs using colloidal chemistry. The Fe 3O4 MNMs were then grafted with extracts derived from natural products, namely Olecraceavar italica (broccoli), Boletus edulis (mushroom)and Solanum lycopersicum (tomato);(2)characterization of natural products by chromatography and mass spectrometry;(3) characterization of MNMs to determine their crystallinity, morphological and elemental composition by the state-of-the-art instruments; and (4) biological evaluation using Gram-negative and Gram-positive bacteria. The approach provides advantages to precisely control the composition and homogeneity. The second advantage of the colloidal chemistry is its user friendliness and feasibility. Due to the nature of the natural products, the compatibility of MNM is anticipated to be enhanced.In this chapter, the nanomaterials will be discussed from four perspectives,§1.1 Nanotechnology (§1.1), §1.2 Synthesis of nanomaterials; §1.3 The natural product extract,; §1.4 Characterization of nanomaterials; and §1.5Biological application of nanomaterials.Fig. 1 summarized the overarching goals of this study.

  8. Cube-like Fe3O4@SiO2@Au@Ag magnetic nanoparticles: a highly efficient SERS substrate for pesticide detection

    Science.gov (United States)

    Sun, Mei; Zhao, Aiwu; Wang, Dapeng; Wang, Jin; Chen, Ping; Sun, Henghui

    2018-04-01

    As a novel surface-enhanced Raman spectroscopic (SERS) nanocomposite, cube-like Fe3O4@SiO2@Au@Ag magnetic nanoparticles (NPs) were synthesized for the first time. Cube-like α-Fe2O3 NPs with uniform size were achieved by optimizing reaction temperature and time. Firstly, the cube-like Fe3O4@SiO2 with good dispersity was achieved by calcining α-Fe2O3@SiO2 NPs in hydrogen atmosphere at 360 °C for 2.5 h, followed by self-assembling a PEI shell via sonication. Furthermore, the Au@Ag particles were densely assembled on the Fe3O4@SiO2 NPs to form the Fe3O4@SiO2@Au@Ag composite structure via strong Ag-N interaction. The obtained nanocomposites exhibited an excellent SERS behavior, reflected by the low detection of limit (p-ATP) at the 5 × 10-14 M level. Moreover, these nanocubes were used for the detection of thiram, and the detection limit can reach 5 × 10-11 M. Meanwhile, the U.S. Environmental Protection Agency specifies that the residue in fruit must be lower than 7 ppm. Hence, the resulting substrate with high SERS activity has great practical potential applications in the rapid detection of chemical, biological, and environment pollutants with a simple portable Raman instrument at trace level.

  9. Dipodal Silane-modified Nano Fe3O4/Polyurethane Magnetic Nanocomposites: Preparation and Characterization

    Directory of Open Access Journals (Sweden)

    Mir Mohammad Alavi Nikje

    2016-01-01

    Full Text Available Magnetic nanocomposites were prepared by incorporation of pure Fe3O4 and surface-modified Fe3O4 nanoparticles (dipodal silane-modified Fe3O4 into a polyurethane elastomer matrix by in situ polymerization method. In preparation of these magnetic nanocomposites, polycaprolactone (PCL was used as a polyester polyol. Because of dipole-dipole interactions between nanoparticles and a large surface area to volume ratio, the magnetic iron oxide nanoparticles tended to agglomerate. Furthermore, the most important challenge was to coat the surface of magnetic Fe3O4 nanoparticles in order to prepare well dispersed and stabilized Fe3O4 magnetic nanoparticles. It was observed that surface modification of Fe3O4 nanoparticles enhanced the dispersion of the nanoparticles in polyurethane matrices and allowed magnetic nanocomposites to be prepared with better properties. Surface modification of Fe3O4 was performed by dipodal silane synthesized based on 3-aminopropyltriethoxysilane (APTS and γ-glycidoxypropyl trimethoxysilane (GPTS. Dipodal silane-coated magnetic nanoparticles (DScMNPs were synthesized and incorporated into the polyurethane elastomer matrix as reinforcing agents. The formation of dipodal silane was investigated by Fourier transform infrared spectroscopy (FTIR, proton nuclear magnetic resonance spectroscopy (1H NMR and transmission electron microscopy (TEM. Characterization and study on the magnetic polyurethane elastomer nanocomposites were performed by FTIR, thermogravimetric analysis (TGA, scanning electron microscopy (SEM, vibrating sample magnetometry (VSM and dynamic mechanical thermal analysis (DMTA. The VSM results showed that the synthesized polyurethane elastomer nanocomposites had a superparamagnetic behavior. The TGA results showed that the thermal stability of dipodal silane-modified Fe3O4/PU nanocomposite was higher than that of Fe3O4/PU nanocomposite. This could be attributed to better dispersion and compatibility of dipodal silane

  10. Novel Functionalized Polythiophene-Coated Fe3O4 Nanoparticles for Magnetic Solid-Phase Extraction of Phthalates

    Directory of Open Access Journals (Sweden)

    Siti Nor Atika Baharin

    2016-04-01

    Full Text Available Poly(phenyl-(4-(6-thiophen-3-yl-hexyloxy-benzylidene-amine (P3TArH was successfully synthesized and coated on the surface of Fe3O4 magnetic nanoparticles (MNPs. The nanocomposites were characterized by Fourier transform infra-red (FTIR, X-ray diffractometry (XRD, Brunauer-Emmett-Teller (BET surface area analysis, analyzer transmission electron microscopy (TEM and vibrating sample magnetometry (VSM. P3TArH-coated MNPs (MNP@P3TArH showed higher capabilities for the extraction of commonly-used phthalates and were optimized for the magnetic-solid phase extraction (MSPE of environmental samples. Separation and determination of the extracted phthalates, namely dimethyl phthalate (DMP, diethyl phthalate (DEP, dipropyl phthalate (DPP, dibutyl phthalate (DBP, butyl benzyl phthalate (BBP, dicyclohexyl phthalate (DCP, di-ethylhexyl phthalate (DEHP and di-n-octyl phthalate (DNOP, were conducted by a gas chromatography-flame ionization detector (GC-FID. The best working conditions were as follows; sample at pH 7, 30 min extraction time, ethyl acetate as the elution solvent, 500-µL elution solvent volumes, 10 min desorption time, 10-mg adsorbent dosage, 20-mL sample loading volume and 15 g·L−1 concentration of NaCl. Under the optimized conditions, the analytical performances were determined with a linear range of 0.1–50 µg·L−1 and a limit of detection at 0.08–0.468 µg·L−1 for all of the analytes studied. The intra-day (n = 7 and inter-day (n = 3 relative standard deviations (RSD% of three replicates were each demonstrated in the range of 3.7–4.9 and 3.0–5.0, respectively. The steadiness and reusability studies suggested that the MNP@P3TArH could be used up to five cycles. The proposed method was executed for the analysis of real water samples, namely commercial bottled mineral water and bottled fresh milk, whereby recoveries in the range of 68%–101% and RSD% lower than 7.7 were attained.

  11. Gambogic acid-loaded magnetic Fe(3)O(4) nanoparticles inhibit Panc-1 pancreatic cancer cell proliferation and migration by inactivating transcription factor ETS1.

    Science.gov (United States)

    Wang, Cailian; Zhang, Haijun; Chen, Yan; Shi, Fangfang; Chen, Baoan

    2012-01-01

    E26 transformation-specific sequence-1 (ETS1) transcription factor plays important roles in both carcinogenesis and the progression of a wide range of malignancies. Aberrant ETS1 expression correlates with aggressive tumor behavior and a poorer prognosis in patients with various malignancies. The aim of the current study was to evaluate the efficacy of a drug delivery system utilizing gambogic acid-loaded magnetic Fe(3)O(4) nanoparticles (GA-MNP-Fe(3)O(4)) on the suppression of ETS1-mediated cell proliferation and migration in Panc-1 pancreatic cancer cells. The effects caused by GA-MNP-Fe(3)O(4) on the proliferation of Panc-1 pancreatic cancer cells were evaluated using a MTT (3-(4,5-dimethylthiazol-2-yl)-2,5-diphenyltetrazolium bromide) assay while inhibition of tumor cell migration was investigated in a scratch assay. The expressions of ETS1, cyclin D1, urokinase-type plasminogen activator (u-PA), and VEGF (vascular endothelial growth factor) were examined by Western blot to elucidate the possible mechanisms involved. In Panc-1 pancreatic cancer cells, we observed that application of GA-MNP-Fe(3)O(4) was able to suppress cancer cell proliferation and prevent cells from migrating effectively. After treatment, Panc-1 pancreatic cancer cells showed significantly decreased expression of ETS1, as well as its downstream target genes for cyclin D1, u-PA, and VEGF. Our novel finding reaffirmed the significance of ETS1 in the treatment of pancreatic cancer, and application of GA-MNP-Fe(3)O(4) nanoparticles targeting ETS1 should be considered as a promising contribution for better pancreatic cancer care.

  12. Preparation and magnetic properties of magnetic photonic crystal by using monodisperse polystyrene covered Fe3O4 nanoparticles onto glass substrate

    Science.gov (United States)

    Azizi, Zahra Sadat; Tehranchi, Mohammad Mehdi; Vakili, Seyed Hamed; Pourmahdian, Saeed

    2018-05-01

    Engineering approach towards combined photonic band gap properties and magnetic/polymer composite particles, attract considerable attention of researchers due to their unique properties. In this research, two different magnetic particles were prepared by nearly monodisperse polystyrene spheres as bead with two concentrations of Fe3O4 nanoparticles to prepare magnetic photonic crystals (MPCs). The crystal surfaces and particles morphology were investigated employing scanning electron microscopy and transmission electron microscopy. The volume fraction of magnetic material embedded into colloidal spheres and their morphology was found to be a key parameter in the optical and magneto-optical properties of transparent MPC.

  13. Preparation of Fe(3)O(4)@C@CNC multifunctional magnetic core/shell nanoparticles and their application in a signal-type flow-injection photoluminescence immunosensor.

    Science.gov (United States)

    Chu, Chengchao; Li, Meng; Li, Long; Ge, Shenguang; Ge, Lei; Yu, Jinghua; Yan, Mei; Song, Xianrang

    2013-11-01

    We describe here the preparation of carbon-coated Fe3O4 magnetic nanoparticles that were further fabricated into multifunctional core/shell nanoparticles (Fe3O4@C@CNCs) through a layer-by-layer self-assembly process of carbon nanocrystals (CNCs). The nanoparticles were applied in a photoluminescence (PL) immunosensor to detect the carcinoembryonic antigen (CEA), and CEA primary antibody was immobilized onto the surface of the nanoparticles. In addition, CEA secondary antibody and glucose oxidase were covalently bonded to silica nanoparticles. After stepwise immunoreactions, the immunoreagent was injected into the PL cell using a flow-injection PL system. When glucose was injected, hydrogen peroxide was obtained because of glucose oxidase catalysis and quenched the PL of the Fe3O4@C@CNC nanoparticles. The here proposed PL immunosensor allowed us to determine CEA concentrations in the 0.005–50 ng·mL-1 concentration range, with a detection limit of 1.8 pg·mL-1.

  14. Magnetic Fe3O4@TiO2 Nanoparticles-based Test Strip Immunosensing Device for Rapid Detection of Phosphorylated Butyrylcholinesterase

    Energy Technology Data Exchange (ETDEWEB)

    Ge, Xiaoxiao; Zhang, Weiying; Lin, Yuehe; Du, Dan

    2013-12-15

    An integrated magnetic nanoparticles-based test-strip immunosensing device was developed for rapid and sensitive quantification of phosphorylated butyrylcholinesterase (BChE), the biomarker of exposure to organophosphous pesticides (OP), in human plasma. In order to overcome the difficulty in scarce availability of OP-specific antibody, here magnetic Fe3O4@TiO2 nanoparticles were used and adsorbed on the test strip through a small magnet inserted in the device to capture target OP-BChE through selective binding between TiO2 and OP moiety. Further recognition was completed by horseradish peroxidase (HRP) and anti-BChE antibody (Ab) co-immobilized gold nanoparticles (GNPs). Their strong affinities among Fe3O4@TiO2, OP-BChE and HRP/Ab-GNPs were characterized by quartz crystal microbalance (QCM), surface plasmon resonance (SPR) and square wave voltammetry (SWV) measurements. After cutting off from test strip, the resulted immunocomplex (HRP/Ab-GNPs/OP-BChE/Fe3O4@TiO2) was measured by SWV using a screen printed electrode under the test zone. Greatly enhanced sensitivity was achieved by introduction of GNPs to link enzyme and antibody at high ratio, which amplifies electrocatalytic signal significantly. Moreover, the use of test strip for fast immunoreactions reduces analytical time remarkably. Coupling with a portable electrochemical detector, the integrated device with advanced nanotechnology displays great promise for sensitive, rapid and in-filed on-site evaluation of OP poisoning.

  15. Gold Nanoparticles on Mesoporous SiO2-Coated Magnetic Fe3O4 Spheres: A Magnetically Separatable Catalyst with Good Thermal Stability

    Directory of Open Access Journals (Sweden)

    Huan Liu

    2013-11-01

    Full Text Available Fe3O4 spheres with an average size of 273 nm were prepared in the presence of CTAB by a solvothermal method. The spheres were modified by a thin layer of SiO2, and then coated by mesoporous SiO2 (m-SiO2 films, by using TEOS as a precursor and CTAB as a soft template. The resulting m-SiO2/Fe3O4 spheres, with an average particle size of 320 nm, a high surface area (656 m2/g, and ordered nanopores (average pore size 2.5 nm, were loaded with gold nanoparticles (average size 3.3 nm. The presence of m-SiO2 coating could stabilize gold nanoparticles against sintering at 500 °C. The material showed better performance than a conventional Au/SiO2 catalyst in catalytic reduction of p-nitrophenol with NaBH4. It can be separated from the reaction mixture by a magnet and be recycled without obvious loss of catalytic activity. Relevant characterization by XRD, TEM, N2 adsorption-desorption, and magnetic measurements were conducted.

  16. Si-Imidazole-HSO4 Functionalized Magnetic Fe3O4 Nanoparticles as an Efficient and Reusable Catalyst for the Regioselective Ring Opening of Epoxides in Water

    Directory of Open Access Journals (Sweden)

    Eshagh Rezaee Nezhad

    2016-01-01

    Full Text Available An efficient and simple method for the preparation of Si-Imidazole-HSO4 functionalized magnetic Fe3O4 nanoparticles (Si-Im-HSO4 MNPs and used as an efficient and reusable magnetic catalysts for the regioselective ring opening of epoxides under green conditions in water. This catalyst was used for the ring opening of epoxide corresponding to the thiocyanohydrins and azidohydrines. Compared to the classical ring opening of epoxides, this new method consistently has the advantage of excellent yields, short reaction times, and methodological simplicity.

  17. A Facile Solvothermal Synthesis of Octahedral Fe3O4 Nanoparticles

    Energy Technology Data Exchange (ETDEWEB)

    Ooi, Frances; DuChene, Joseph S.; Qiu, Jianqing; Graham, Jeremy O.; Engelhard, Mark H.; Cao, Guixin; Gai, Zheng; Wei, Wei

    2015-06-01

    Magnetic nanoparticles are of great technological interest because they promise numerous potential opportunities in biomedicine and data storage. Although intriguing, these applications require exquisite control over nanostructure morphology in order to appropriately harness their magnetic properties. Most synthesis strategies reported to date are unable to routinely produce anisotropic Fe3O4 nanostructures with appropriate sizes to enable integration into biological systems. Here, we report a simple solvothermal synthesis for obtaining octahedral Fe3O4 nanoparticles with suitable sizes for cellular internalization. Furthermore, these ferromagnetic Fe3O4 octahedrons exhibit substantial saturation magnetization with minimal remanence, suggesting their potential applicability for a host of biomedical applications.

  18. Magnetic biodegradable Fe3O4/CS/PVA nanofibrous membranes for bone regeneration

    International Nuclear Information System (INIS)

    Wei Yan; Zhang Xuehui; Hu Xiaoyang; Deng Xuliang; Song Yu; Lin Yuanhua; Han Bing; Wang Xinzhi

    2011-01-01

    In recent years, interest in magnetic biomimetic scaffolds for tissue engineering has increased considerably. The aim of this study is to develop magnetic biodegradable fibrous materials with potential use in bone regeneration. Magnetic biodegradable Fe 3 O 4 /chitosan (CS)/poly vinyl alcohol (PVA) nanofibrous membranes were achieved by electrospinning with average fiber diameters ranging from 230 to 380 nm and porosity of 83.9-85.1%. The influences of polymer concentration, applied voltage and Fe 3 O 4 nanoparticles loading on the fabrication of nanofibers were investigated. The polymer concentration of 4.5 wt%, applied voltage of 20 kV and Fe 3 O 4 nanoparticles loading of lower than 5 wt% could produce homogeneous, smooth and continuous Fe 3 O 4 /CS/PVA nanofibrous membranes. X-ray diffraction (XRD) data confirmed that the crystalline structure of the Fe 3 O 4 , CS and PVA were maintained during electrospinning process. Fourier transform infrared spectroscopy (FT-IR) demonstrated that the Fe 3 O 4 loading up to 5 wt% did not change the functional groups of CS/PVA greatly. Transmission electron microscopy (TEM) showed islets of Fe 3 O 4 nanoparticles evenly distributed in the fibers. Weak ferrimagnetic behaviors of membranes were revealed by vibrating sample magnetometer (VSM) test. Tensile test exhibited Young's modulus of membranes that were gradually enhanced with the increase of Fe 3 O 4 nanoparticles loading, while ultimate tensile stress and ultimate strain were slightly reduced by Fe 3 O 4 nanoparticles loading of 5%. Additionally, MG63 human osteoblast-like cells were seeded on the magnetic nanofibrous membranes to evaluate their bone biocompatibility. Cell growth dynamics according to MTT assay and scanning electron microscopy (SEM) observation exhibited good cell adhesion and proliferation, suggesting that this magnetic biodegradable Fe 3 O 4 /CS/PVA nanofibrous membranes can be one of promising biomaterials for facilitation of osteogenesis.

  19. Polyetherimide-grafted Fe3O4@SiO2 nanoparticles as theranostic agents for simultaneous VEGF siRNA delivery and magnetic resonance cell imaging

    Directory of Open Access Journals (Sweden)

    Li T

    2015-07-01

    Full Text Available Tingting Li,1 Xue Shen,1 Yin Chen,1 Chengchen Zhang,1 Jie Yan,1 Hong Yang,1 Chunhui Wu,1,2 Hongjun Zeng,1,2 Yiyao Liu1,21Department of Biophysics, School of Life Science and Technology, 2Center for Information in Biomedicine, University of Electronic Science and Technology of China, Chengdu, Sichuan, People’s Republic of ChinaAbstract: Engineering a safe and high-efficiency delivery system for efficient RNA interference is critical for successful gene therapy. In this study, we designed a novel nanocarrier system of polyethyleneimine (PEI-modified Fe3O4@SiO2, which allows high efficient loading of VEGF small hairpin (shRNA to form Fe3O4@SiO2/PEI/VEGF shRNA nanocomposites for VEGF gene silencing as well as magnetic resonance (MR imaging. The size, morphology, particle stability, magnetic properties, and gene-binding capacity and protection were determined. Low cytotoxicity and hemolyticity against human red blood cells showed the excellent biocompatibility of the multifunctional nanocomposites, and also no significant coagulation was observed. The nanocomposites maintain their superparamagnetic property at room temperature and no appreciable change in magnetism, even after PEI modification. The qualitative and quantitative analysis of cellular internalization into MCF-7 human breast cancer cells by Prussian blue staining and inductively coupled plasma atomic emission spectroscopy analysis, respectively, demonstrated that the Fe3O4@SiO2/PEI/VEGF shRNA nanocomposites could be easily internalized by MCF-7 cells, and they exhibited significant inhibition of VEGF gene expression. Furthermore, the MR cellular images showed that the superparamagnetic iron oxide core of our Fe3O4@SiO2/PEI/VEGF shRNA nanocomposites could also act as a T2-weighted contrast agent for cancer MR imaging. Our data highlight multifunctional Fe3O4@SiO2/PEI/VEGF shRNA nanocomposites as a potential platform for simultaneous gene delivery and MR cell imaging, which are promising

  20. Aptamer-functionalized Fe3 O4 magnetic nanoparticles as a solid-phase extraction adsorbent for the selective extraction of berberine from Cortex phellodendri.

    Science.gov (United States)

    Jiang, Ling-Feng; Chen, Bo-Cheng; Chen, Ben; Li, Xue-Jian; Liao, Hai-Lin; Zhang, Wen-Yan; Wu, Lin

    2017-07-01

    The extraction adsorbent was fabricated by immobilizing the highly specific recognition and binding of aptamer onto the surface of Fe 3 O 4 magnetic nanoparticles, which not only acted as recognition elements to recognize and capture the target molecule berberine from the extract of Cortex phellodendri, but also could favor the rapid separation and purification of the bound berberine by using an external magnet. The developed solid-phase extraction method in this work was useful for the selective extraction and determination of berberine in Cortex phellodendri extracts. Various conditions such as the amount of aptamer-functionalized Fe 3 O 4 magnetic nanoparticles, extraction time, temperature, pH value, Mg 2+ concentration, elution time and solvent were optimized for the solid-phase extraction of berberine. Under optimal conditions, the purity of berberine extracted from Cortex phellodendri was as high as 98.7% compared with that of 4.85% in the extract, indicating that aptamer-functionalized Fe 3 O 4 magnetic nanoparticles-based solid-phase extraction method was very effective for berberine enrichment and separation from a complex herb extract. The applicability and reliability of the developed solid-phase extraction method were demonstrated by separating berberine from nine different concentrations of one Cortex phellodendri extract. The relative recoveries of the spiked solutions of all the samples were between 95.4 and 111.3%, with relative standard deviations ranging between 0.57 and 1.85%. © 2017 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim.

  1. Core–shell Fe3O4–Au magnetic nanoparticles based nonenzymatic ultrasensitive electrochemiluminescence immunosensor using quantum dots functionalized graphene sheet as labels

    International Nuclear Information System (INIS)

    Liu, Weiyan; Zhang, Yan; Ge, Shenguang; Song, Xianrang; Huang, Jiadong; Yan, Mei; Yu, Jinghua

    2013-01-01

    Graphical abstract: Core–shell Fe 3 O 4 –Au magnetic nanoparticles and P-GS@QDs were prepared to immobilize Ab 1 and Ab 2 respectively and combined to fabricate a novel sandwich-type ECL immunosensor for detecting CA125 at low concentration. Highlights: ► ECL immunosensor for CA125 based on a microfluidic strategy with a homemade ECL cell was proposed. ► Core–shell Fe 3 O 4 –Au magnetic nanoparticles were employed as the carriers of the primary antibodies. ► CdTe quantum dots functionalized graphene sheet were used for signal amplification. -- Abstract: In this paper, a novel, low-cost electrochemiluminescence (ECL) immunosensor using core–shell Fe 3 O 4 –Au magnetic nanoparticles (AuMNPs) as the carriers of the primary antibody of carbohydrate antigen 125 (CA125) was designed. Graphene sheet (GS) with property of good conductivity and large surface area was a captivating candidate to amplify ECL signal. We successively synthesized functionalized GS by loading large amounts of quantum dots (QDs) onto the poly (diallyldimethyl-ammonium chloride) (PDDA) coated graphene sheet (P-GS@QDs) via self-assembly electrostatic reactions, which were used to label secondary antibodies. The ECL immunosensors coupled with a microfluidic strategy exhibited a wide detection range (0.005–50 U mL −1 ) and a low detection limit (1.2 mU mL −1 ) with the help of an external magnetic field to gather immunosensors. The method was evaluated with clinical serum sample, receiving good correlation with results from commercially available analytical procedure

  2. Fe3O4@HKUST-1 and Pd/Fe3O4@ HKUST-1 as magnetically recyclable catalysts prepared via conversion from a Cu-based ceramic

    OpenAIRE

    Toyao, Takashi; Styles, Mark J.; Yago, Tokuichiro; Sadiq, Muhammad M.; Ricco, Raffaele; Suzuki, Kiyonori; Horiuchi, Yu; Takahashi, Masahide; Matsuoka, Masaya; Falcaro, Paolo

    2017-01-01

    Nanocomposites obtained by integrating iron oxide magnetic nanoparticles (Fe3O4) into a metal-organic framework (HKUST-1 or Cu-3(BTC)(2), BTC = 1,3,5-benzenetricarboxylate) are synthesized through conversion from a composite of a Cu-based ceramic material and Fe3O4. In situ small-angle X-ray scattering (SAXS) and wide-angle X-ray scattering (WAXS) measurements reveal that the presence of Fe3O4 leads to the fast conversion and synthesis of HKUST-1 with small particle sizes. The prepared MOF co...

  3. Preparation and characterization of PVPI-coated Fe3O4 nanoparticles as an MRI contrast agent

    International Nuclear Information System (INIS)

    Wang, Guangshuo; Chang, Ying; Wang, Ling; Wei, Zhiyong; Kang, Jianyun; Sang, Lin; Dong, Xufeng; Chen, Guangyi; Wang, Hong; Qi, Min

    2013-01-01

    Polyvinylpyrrolidone-iodine (PVPI)-coated Fe 3 O 4 nanoparticles were prepared by using inverse chemical co-precipitation method, in which the PVPI serves as a stabilizer and dispersant. The wide angle X-ray diffraction (WAXD) and selected area electron diffraction (SAED) results showed that the inverse spinel structure pure phase polycrystalline Fe 3 O 4 was obtained. The scanning electron microscopy (SEM) and transmission electron microscopy (TEM) results exhibited that the resulted Fe 3 O 4 nanoparticles were roughly spherical in shape with narrow size distribution and homogenous shape. Fourier transform infrared spectroscopy (FTIR) results suggested that PVPI interacted with Fe 3 O 4 via its carbonyl groups. Results of superconducting quantum interference device (SQUID) indicated prepared Fe 3 O 4 nanoparticles exhibited superparamagnetic behavior and high saturation magnetization. T 2 -weighted MRI images of PVPI-coated Fe 3 O 4 nanoparticles showed that the magnetic resonance signal was enhanced significantly with increasing nanoparticles concentration in water at room temperature. These results indicated that the PVPI-coated Fe 3 O 4 nanoparticles had great potential for application in MRI as a T 2 contrast agent. - Highlights: • PVPI-coated Fe 3 O 4 nanoparticles were prepared using inverse co-precipitation method. • Resulted Fe 3 O 4 nanoparticles were roughly spherical in shape with narrow size distribution and homogenous shape. • Prepared Fe 3 O 4 nanoparticles exhibited superparamagnetic behavior. • T 2 -weighted MRI images of PVPI-coated Fe 3 O 4 nanoparticles were obtained

  4. Preparation and characterization of highly water-soluble magnetic Fe3O4 nanoparticles via surface double-layered self-assembly method of sodium alpha-olefin sulfonate

    International Nuclear Information System (INIS)

    Li, Honghong; Qin, Li; Feng, Ying; Hu, Lihua; Zhou, Chunhua

    2015-01-01

    A kind of double-layered self-assembly sodium alpha-olefin sulfonate (AOS) capped Fe 3 O 4 magnetic nanoparticles (Fe 3 O 4 -AOS-MN) with highly water-solubility was prepared by a wet co-precipitation method with a pH of 4.8. The resulting Fe 3 O 4 -AOS-MN could be dispersed into water to form stable magnetic fluid without other treatments. The result of X-ray diffraction (XRD) indicated that the Fe 3 O 4 -AOS-MN maintained original crystalline structure and exhibited a diameter of about 7.5 nm. The iron oxide phase of nanoparticles determined by Raman spectroscopy is Fe 3 O 4 . Transmission electron microscopy (TEM) analysis confirmed that the Fe 3 O 4 -AOS-MN with spherical morphology were uniformly dispersed in water. FT-IR spectroscopy (FT-IR) and thermo-gravimetric analysis (TGA) verified the successful preparation of Fe 3 O 4 -AOS-MN capped with double-layered self-assembled AOS. The corresponding capacities of monolayer chemical absorption and the second-layer self-assembly absorption were respectively 4.07 and 14.71 wt% of Fe 3 O 4 -MN, which were much lower than those of other surfactants. Vibrating sample magnetometer (VSM) test result showed Fe 3 O 4 -AOS-MN possessed superparamagnetic behavior with the saturation magnetization value of about 44.45 emu/g. The blocking temperature T B of Fe 3 O 4 -AOS-MN capped with double-layered AOS is 170 K. - Highlights: • Double-layered self-assembly sodium alpha-olefin sulfonate (AOS) capped Fe 3 O 4 magnetic nanoparticles are prepared by a wet co-precipitation method. • Double-layered Fe 3 O 4 -AOS-MN exhibits highly water-solubility. • The iron oxide phase is determined by Raman spectroscopy. • Fe 3 O 4 -AOS-MN capped with double-layered AOS possesses super-paramagnetic behavior. • The blocking temperature T B of Fe 3 O 4 -AOS-MN capped with double-layered AOS is 170 K

  5. Magnetic, Fluorescence and Transition Metal Ion Response Properties of 2,6-Diaminopyridine Modified Silica-Coated Fe3O4 Nanoparticles

    Directory of Open Access Journals (Sweden)

    Yunhui Zhai

    2016-08-01

    Full Text Available Multi-functional nanoparticles possessing magnetic, fluorescence and transition metal ion response properties were prepared and characterized. The particles have a core/shell structure that consists of silica-coated magnetic Fe3O4 and 2,6-diaminopyridine anchored on the silica surface via organic linker molecules. The resultant nanoparticles were found by transmission electron microscopy to be well-dispersed spherical particles with an average diameter of 10–12 nm. X-ray diffraction analysis suggested the existence of Fe3O4 and silica in/on the particle. Fourier transform infrared spectra revealed that 2,6-diaminopyridine molecules were successfully covalently bonded to the surface of magnetic composite nanoparticles. The prepared particles possessed an emission peak at 364 nm with an excitation wavelength of 307 nm and have a strong reversible response property for some transition metal ions such as Cu2+ and Zn2+. This new material holds considerable promise in selective magneto separation and optical determination applications.

  6. Convenient on water synthesis of novel derivatives of dicoumarol as functional vitamin K depleter by Fe3O4 magnetic nanoparticles

    Directory of Open Access Journals (Sweden)

    Saeed Khodabakhshi

    2017-05-01

    Full Text Available The Fe3O4 nanoparticles were successfully prepared and characterized by X-ray diffraction (XRD, Fourier transform-infrared (FT-IR, and transmission electron microscopy (TEM. The magnetic property of the prepared nanoparticles was investigated by magnetization analysis and the measured magnetization of NPs was found to be considerably lower than the values measured from bulk magnetite. The catalytic efficiency of the prepared nanoparticles was subsequently investigated as a magnetically recyclable and safe catalyst for the green synthesis of new dicoumarols via the one-pot condensation of 4-hydroxycoumarin with aryl glyoxals on water. Catalyst loadings can be as low as 2 mol% to give good yields of the corresponding products. This present method has many advantages, such as the high product yield, avoidance of toxic organic solvents, and simple work-up procedure.

  7. Conjugating folate on superparamagnetic Fe3O4@Au nanoparticles using click chemistry

    International Nuclear Information System (INIS)

    Shen, Xiaofang; Ge, Zhaoqiang; Pang, Yuehong

    2015-01-01

    Gold-coated magnetic core@shell nanoparticles, which exhibit magneto-optical properties, not only enhance the chemical stability of core and biocompatibility of surface, but also provide a combination of multimodal imaging and therapeutics. The conjugation of these tiny nanoparticles with specific biomolecules allows researchers to target the desired location. In this paper, superparamagnetic Fe 3 O 4 @Au nanoparticles were synthesized and functionalized with the azide group on the surface by formation of self-assembled monolayers. Folate (FA) molecules, non-immunogenic target ligands for cancer cells, are conjugated with alkyne and then immobilized on the azide-terminated Fe 3 O 4 @Au nanoparticles through copper(I)-catalyzed azide-alkyne cycloaddition (click reaction). Myelogenous leukemia K562 cells were used as a folate receptor (FR) model, which can be targeted and extracted by magnetic field after interaction with the Fe 3 O 4 @Au–FA nanoparticles. - Graphical abstract: Self-assembled azide-terminated group on superparamagnetic Fe 3 O 4 @Au nanoparticles followed by click reaction with alkyne-functionalized folate, allowing the nanoparticles target folate receptor of cancer cells. - Highlights: • Azidoundecanethiol was coated on the superparamagnetic Fe 3 O 4 @Au nanoparticles by forming self-assembled monolayers. • Alkyne-terminated folate was synthesized from a reaction between the amine and the carboxylic acid. • Conjugation of Fe 3 O 4 @Au nanoparticles with folate was made by copper-catalyzed azide-alkyne cycloaddition click chemistry

  8. A nanocomposite consisting of graphene oxide and Fe3O4 magnetic nanoparticles for the extraction of flavonoids from tea, wine and urine samples

    International Nuclear Information System (INIS)

    Wu, Jianrong; Xiao, Deli; Peng, Jun; Wang, Cuixia; Zhang, Chan; He, Jia; Zhao, Hongyan; He, Hua

    2015-01-01

    We describe a single-step solvothermal method for the preparation of nanocomposites consisting of graphene oxide and Fe 3 O 4 nanoparticles (GO/Fe 3 O 4 ). This material is shown to be useful as a magnetic sorbent for the extraction of flavonoids from green tea, red wine, and urine samples. The nanocomposite is taking advantage of the high surface area of GO and the magnetic phase separation feature of the magnetic sorbent. The nanocomposite is recyclable and was applied to the extraction of flavonoids prior to their determination by HPLC. The effects of amount of surfactant, pH value of the sample solution, extraction time, and desorption condition on the extraction efficiency, and the regeneration conditions were optimized. The limits of detection for luteolin, quercetin and kaempferol range from 0.2 to 0.5 ng∙ mL −1 in urine, from 3.0 to 6.0 ng∙mL −1 in green tea, and from 1.0 to 2.5 ng∙mL −1 in red wine. The recoveries are between 82.0 and 101.4 %, with relative standard deviations of <9.3 %. (author)

  9. Bare and protein-conjugated Fe3O4 ferromagnetic nanoparticles for utilization in magnetically assisted hemodialysis: biocompatibility with human blood cells

    International Nuclear Information System (INIS)

    Stamopoulos, D; Manios, E; Gogola, V; Niarchos, D; Pissas, M; Benaki, D; Bouziotis, P

    2008-01-01

    Magnetically assisted hemodialysis is a development of conventional hemodialysis and is based on the circulation of ferromagnetic nanoparticle-targeted binding substance conjugates (FN-TBS Cs) in the bloodstream of the patient and their eventual removal by means of a 'magnetic dialyzer'. Presented here is an in vitro investigation on the biocompatibility of bare Fe 3 O 4 FNs and Fe 3 O 4 -bovine serum albumin Cs with blood cells, namely red blood cells (RBCs), white blood cells (WBCs) and platelets (Plts). Atomic force microscopy (AFM) and optical microscopy (OM) enabled the examination of blood cells at the nanometer and micrometer level, respectively. The observations made on FN- and C-maturated blood samples are contrasted to those obtained on FN- and C-free reference blood samples subjected to exactly the same maturation procedure. Qualitatively, both AFM and OM revealed no changes in the overall shape of RBCs, WBCs and Plts. Incidents where bare FNs or Cs were bound onto the surface of RBCs or internalized by WBCs were very rare. Detailed examination by means of OM proved that impaired coagulation of Plts is not initiated/promoted either by FNs or Cs. Quantitatively, the statistical analysis of the obtained AFM images from RBC surfaces clearly revealed that the mean surface roughness of RBCs maturated with bare FNs or Cs was identical to the one of reference RBCs.

  10. Three Birds with One Fe3O4 Nanoparticle: Integration of Microwave Digestion, Solid Phase Extraction, and Magnetic Separation for Sensitive Determination of Arsenic and Antimony in Fish.

    Science.gov (United States)

    Jia, Yun; Yu, Huimin; Wu, Li; Hou, Xiandeng; Yang, Lu; Zheng, Chengbin

    2015-06-16

    An environmentally friendly and fast sample treatment approach that integrates accelerated microwave digestion (MWD), solid phase extraction, and magnetic separation into a single step was developed for the determination of arsenic and antimony in fish samples by using Fe3O4 magnetic nanoparticles (MNPs). Compared to conventional microwave digestion, the consumption of HNO3 was reduced significantly to 12.5%, and the digestion time and temperature were substantially decreased to 6 min and 80 °C, respectively. This is largely attributed to Fe3O4 magnetic nanoparticles being a highly effective catalyst for rapid generation of oxidative radicals from H2O2, as well as an excellent absorber of microwave irradiation. Moreover, potential interferences from sample matrices were eliminated because the As and Sb species adsorbed on the nanoparticles were efficiently separated from the digests with a hand-held magnet prior to analysis. Limits of detection for arsenic and antimony were in the range of 0.01-0.06 μg g(-1) and 0.03-0.08 μg g(-1) by using hydride generation atomic fluorescence spectrometry, respectively, and further improved to 0.002-0.005 μg g(-1) and 0.005-0.01 μg g(-1) when inductively coupled plasma mass spectrometry was used as a detector. The precision of replicate measurements (n = 9) was better than 6% by analyzing 0.1 g test sample spiked with 1 μg g(-1) arsenic and antimony. The proposed method was validated by analysis of two certified reference materials (DORM-3 and DORM-4) with good recoveries (90%-106%).

  11. Removal of reactive red-120 and 4-(2-pyridylazo) resorcinol from aqueous samples by Fe3O4 magnetic nanoparticles using ionic liquid as modifier.

    Science.gov (United States)

    Absalan, Ghodratollah; Asadi, Mozaffar; Kamran, Sedigheh; Sheikhian, Leila; Goltz, Douglas M

    2011-08-30

    The nanoparticles of Fe(3)O(4) as well as the binary nanoparticles of ionic liquid and Fe(3)O(4) (IL-Fe(3)O(4)) were synthesized for removal of reactive red 120 (RR-120) and 4-(2-pyridylazo) resorcinol (PAR) as model azo dyes from aqueous solutions. The mean size and the surface morphology of the nanoparticles were characterized by TEM, DLS, XRD, FTIR and TGA techniques. Adsorption of RR-120 and PAR was studied in a batch reactor at different experimental conditions such as nanoparticle dosage, dye concentration, pH of the solution, ionic strength, and contact time. Experimental results indicated that the IL-Fe(3)O(4) nanoparticles had removed more than 98% of both dyes under the optimum operational conditions of a dosage of 60mg, a pH of 2.5, and a contact time of 2min when initial dyes concentrations of 10-200mg L(-1) were used. The maximum adsorption capacity of IL-Fe(3)O(4) was 166.67 and 49.26mg g(-1) for RR-120 and PAR, respectively. The isotherm experiments revealed that the Langmuir model attained better fits to the equilibrium data than the Freundlich model. The Langmuir adsorption constants were 5.99 and 3.62L mg(-1) for adsorptions of RR-120 and PAR, respectively. Both adsorption processes were endothermic and dyes could be desorbed from IL-Fe(3)O(4) by using a mixed NaCl-acetone solution and adsorbent was reusable. Copyright © 2011 Elsevier B.V. All rights reserved.

  12. Fe_3O_4/carbon nanocomposite: Investigation of capacitive & magnetic properties for supercapacitor applications

    International Nuclear Information System (INIS)

    Sinan, Neriman; Unur, Ece

    2016-01-01

    Fe_3O_4 nanoparticles with ∼10 nm diameters were synthesized by an extremely low-cost, scalable and relatively biocompatible chemical co-precipitation method. Magnetic measurements revealed that Fe_3O_4 nanoparticles have bifunctional superparamagnetic and ferromagnetic character with saturation magnetization (M_s) values of 64 and 71 emu g"−"1 at 298 K and 10 K, respectively. Pseudocapacitive Fe_3O_4 nanoparticles were then integrated into hazelnut shells - an abundant agricultural biomass - by an energy efficient hydrothermal carbonization method. Presence of magnesium oxide (MgO) ceramic template or its precursor in the hydrothermal reactor allowed simultaneous introduction of pores into the composite structure. Hierarchically micro-mesoporous Fe_3O_4/C nanocomposite possesses a high specific surface area of 344 m"2 g"−"1. Electrochemical properties of Fe_3O_4/C nanocomposite were investigated by cyclic voltammetry and galvanostatic charge-discharge measurements in a conventional three-electrode cell. The Fe_3O_4/C nanocomposite is able to operate in a large negative potential window in 1 M Na_2SO_4 aqueous electrolyte (−1.2–0 V vs. Ag/AgCl). Synergistic effect of the Fe_3O_4 and carbon leads to enhanced specific capacitance, rate capability and cyclability making Fe_3O_4/C nanocomposite a very promising negative electrode material for asymmetric supercapacitors. - Highlights: • Fe_3O_4 (magnetite) particles with ∼10 nm dia. were prepared by a facile chemical co-precipitation. • Fe_3O_4 nanospheres are superparamagnetic at 298K with high saturation magnetization of 64 emu g"−"1. • Porous Fe_3O_4/C nanocomposite was also prepared by a green HTC method combined with MgO templating. • Electrochemical properties of Fe_3O_4/C were studied in 1 M Na_2SO_4 (between −1.2 and 0 V vs. Ag/AgCl). • Nanocomposite electrode showed high energy density of 27.2 Wh kg"−"1 at 1 A g"−"1.

  13. Mössbauer Studies of Core-Shell FeO/Fe3O4 Nanoparticles

    Science.gov (United States)

    Kamzin, A. S.; Valiullin, A. A.; Khurshid, H.; Nemati, Z.; Srikanth, H.; Phan, M. H.

    2018-02-01

    FeO/Fe3O4 nanoparticles were synthesized by thermal decomposition. Electron microscopy revealed that these nanoparticles were of the core-shell type and had a spherical shape with an average size of 20 nm. It was found that the obtained FeO/Fe3O4 nanoparticles had exchange coupling. The effect of anisotropy on the efficiency of heating (hyperthermic effect) of FeO/Fe3O4 nanoparticles by an external alternating magnetic field was examined. The specific absorption rate (SAR) of the studied nanoparticles was 135 W/g in the experiment with an external alternating magnetic field with a strength of 600 Oe and a frequency of 310 kHz. These data led to an important insight: the saturation magnetization is not the only factor governing the SAR, and the efficiency of heating of magnetic FeO/Fe3O4 nanoparticles may be increased by enhancing the effective anisotropy. Mössbauer spectroscopy of the phase composition of the synthesized nanoparticles clearly revealed the simultaneous presence of three phases: magnetite Fe3O4, maghemite γ-Fe2O3, and wustite FeO.

  14. Magnetic loading of TiO2/SiO2/Fe3O4 nanoparticles on electrode surface for photoelectrocatalytic degradation of diclofenac

    International Nuclear Information System (INIS)

    Hu, Xinyue; Yang, Juan; Zhang, Jingdong

    2011-01-01

    Highlights: ► Magnetic TSF nanoparticles are immobilized on electrode surface with aid of magnet. ► Magnetically attached TSF electrode shows high photoelectrochemical activity. ► Diclofenac is effectively degraded on TSF-loaded electrode by photoelectrocatalysis. ► Photoelectrocatalytic degradation of diclofenac is monitored with voltammetry. - Abstract: A novel magnetic nanomaterials-loaded electrode developed for photoelectrocatalytic (PEC) treatment of pollutants was described. Prior to electrode fabrication, magnetic TiO 2 /SiO 2 /Fe 3 O 4 (TSF) nanoparticles were synthesized and characterized by X-ray diffraction (XRD), transmission electron microscopy (TEM) and FT-IR measurements. The nanoparticles were dispersed in ethanol and then immobilized on a graphite electrode surface with aid of magnet to obtain a TSF-loaded electrode with high photoelectrochemical activity. The performance of the TSF-loaded electrode was tested by comparing the PEC degradation of methylene blue in the presence and absence of magnet. The magnetically attached TSF electrode showed higher PEC degradation efficiency with desirable stability. Such a TSF-loaded electrode was applied to PEC degradation of diclofenac. After 45 min PEC treatment, 95.3% of diclofenac was degraded on the magnetically attached TSF electrode.

  15. Use of Fe3O4 Nanoparticles for Enhancement of Biosensor Response to the Herbicide 2,4-Dichlorophenoxyacetic Acid

    OpenAIRE

    Loh, Kee-Shyuan; Lee, Yook Heng; Musa, Ahmad; Salmah, Abdul Aziz; Zamri, Ishak

    2008-01-01

    Magnetic nanoparticles of Fe3O4 were synthesized and characterized using transmission electron microscopy and X-ray diffraction. The Fe3O4 nanoparticles were found to have an average diameter of 5.48 ±1.37 nm. An electrochemical biosensor based on immobilized alkaline phosphatase (ALP) and Fe3O4 nanoparticles was studied. The amperometric biosensor was based on the reaction of ALP with the substrate ascorbic acid 2-phosphate (AA2P). The incorporation of the Fe3O4 nanoparticles together wit...

  16. A novel hydrothermal approach for synthesizing α-Fe2O3, γ-Fe2O3 and Fe3O4 mesoporous magnetic nanoparticles

    International Nuclear Information System (INIS)

    Jayanthi, S. Amala; Nathan, D. Muthu Gnana Theresa; Jayashainy, J.; Sagayaraj, P.

    2015-01-01

    A novel method to synthesize the three phases of iron oxide nanoparticles (hematite, maghemite and magnetite) using the same non-toxic inorganic precursors via a water–organic interface under the low temperature hydrothermal conditions is reported. The synthesized particles are characterized by Powder X-ray Diffraction (XRD), Field Emission Scanning Electron Microscopy (FESEM) and Transmission Electron Microscopy (TEM). The Brunauer–Emmett–Teller (BET) results reveal the mesoporous nature of the particles. The magnetic properties of the nanoparticles are studied by Vibrating Sample Magnetometer (VSM) at various low temperatures and also at room temperature. The XRD peaks corresponding to each sample clearly depict the presence of the respective phase of the as-prepared magnetic nanoparticles. The nanoparticles of maghemite and magnetite have saturation magnetization of 58.56 and 40.30 emu/g respectively at room temperature, whereas the particles of hematite possess very low saturation magnetization value of 1.89 emu/g. Further, the magnetization is studied at four different temperatures and the zero field cooled (ZFC) and field cooled (FC) magnetization are reported. - Graphical abstract: Display Omitted - Highlights: • Hematite, maghemite and magnetite are obtained under hydrothermal synthesis. • α-Fe 2 O 3 , γ-Fe 2 O 3 and Fe 3 O 4 prepared are mesoporous and nearly monodisperse. • Near superparamagnetism is observed at room temperature for maghemite and magnetite

  17. Large tunneling magnetoresistance in octahedral Fe3O4 nanoparticles

    Directory of Open Access Journals (Sweden)

    Arijit Mitra

    2016-05-01

    Full Text Available We have observed large tunneling Magnetoresistance (TMR in amine functionalized octahedral nanoparticle assemblies. Amine monolayer on the surface of nanoparticles acts as an insulating barrier between the semimetal Fe3O4 nanoparticles and provides multiple tunnel junctions where inter-granular tunneling is plausible. The tunneling magnetoresistance recorded at room temperature is 38% which increases to 69% at 180 K. When the temperature drops below 150 K, coulomb staircase is observed in the current versus voltage characteristics as the charging energy exceeds the thermal energy. A similar study is also carried out with spherical nanoparticles. A 24% TMR is recorded at room temperature which increases to 41% at 180 K for spherical particles. Mössbauer spectra reveal better stoichiometry for octahedral particles which is attainable due to lesser surface disorder and strong amine coupling at the facets of octahedral Fe3O4 nanoparticles. Less stoichiometric defect in octahedral nanoparticles leads to a higher value of spin polarization and therefore larger TMR in octahedral nanoparticles.

  18. A Novel DNA Nanosensor Based on CdSe/ZnS Quantum Dots and Synthesized Fe3O4 Magnetic Nanoparticles

    Directory of Open Access Journals (Sweden)

    Roozbeh Hushiarian

    2014-04-01

    Full Text Available Although nanoparticle-enhanced biosensors have been extensively researched, few studies have systematically characterized the roles of nanoparticles in enhancing biosensor functionality. This paper describes a successful new method in which DNA binds directly to iron oxide nanoparticles for use in an optical biosensor. A wide variety of nanoparticles with different properties have found broad application in biosensors because their small physical size presents unique chemical, physical, and electronic properties that are different from those of bulk materials. Of all nanoparticles, magnetic nanoparticles are proving to be a versatile tool, an excellent case in point being in DNA bioassays, where magnetic nanoparticles are often used for optimization of the hybridization and separation of target DNA. A critical step in the successful construction of a DNA biosensor is the efficient attachment of biomolecules to the surface of magnetic nanoparticles. To date, most methods of synthesizing these nanoparticles have led to the formation of hydrophobic particles that require additional surface modifications. As a result, the surface to volume ratio decreases and nonspecific bindings may occur so that the sensitivity and efficiency of the device deteriorates. A new method of large-scale synthesis of iron oxide (Fe3O4 nanoparticles which results in the magnetite particles being in aqueous phase, was employed in this study. Small modifications were applied to design an optical DNA nanosensor based on sandwich hybridization. Characterization of the synthesized particles was carried out using a variety of techniques and CdSe/ZnS core-shell quantum dots were used as the reporter markers in a spectrofluorophotometer. We showed conclusively that DNA binds to the surface of ironoxide nanoparticles without further surface modifications and that these magnetic nanoparticles can be efficiently utilized as biomolecule carriers in biosensing devices.

  19. Fe3O4 nanoparticles decorated MWCNTs @ C ferrite nanocomposites and their enhanced microwave absorption properties

    Science.gov (United States)

    Zhang, Kaichuang; Gao, Xinbao; Zhang, Qian; Chen, Hao; Chen, Xuefang

    2018-04-01

    Fe3O4 nanoparticles decorated MWCNTs @ C ferrite nanocomposites were synthesized using a co-precipitation method and a calcination process. As one kind absorbing material, we researched the electromagnetic absorption properties of the composites that were mixed with a filler loading of 80 wt% paraffin. In addition, we studied the influence of the magnetic nanoparticle content on the absorbing properties. The results showed that the frequency corresponding to the maximum absorptions shifted to lower frequency when the magnetic nanoparticles content increased. The Fe3O4 nanoparticles decorated MWCNTs @ C ferrite nanocomposites with approximately 60% Fe3O4 nanoparticles showed the best electromagnetic absorption properties. The maximum reflection loss was -52.47 dB with a thickness of 2.0 mm at 10.4 GHz.

  20. Magnetic Control of Fe3O4 Nanomaterial for Fat Ablation in Microchannel

    Directory of Open Access Journals (Sweden)

    Ming Chang

    2015-11-01

    Full Text Available In this study, surface modification of iron (II, III oxide Fe3O4 nanoparticles by oleic acid (OA coating is investigated for the microablation of fat in a microchannel. The nanoparticles are synthesized by the co-precipitation method and then dispersed in organic solvent prior to mixing with the OA. The magnetization, agglomeration, and particle size distribution properties of the OA-coated Fe3O4 nanoparticles are characterized. The surface modification of the Fe3O4 nanoparticles reveals that upon injection into a microchannel, the lipophilicity of the OA coating influences the movement of the nanoparticles across an oil-phase barrier. The motion of the nanoparticles is controlled using an AC magnetic field to induce magnetic torque and a static gradient field to control linear translation. The fat microablation process in a microchannel is demonstrated using an oscillating driving field of less than 1200 Am−1.

  1. Magnetic BaFe12O19 nanofiber filter for effective separation of Fe3O4 nanoparticles and removal of arsenic

    International Nuclear Information System (INIS)

    Byun, Jeehye; Patel, Hasmukh A.; Yavuz, Cafer T.

    2014-01-01

    Magnetic nanoparticles are promising in applications where magnetic separation is intended, although material losses via leaching mechanisms are often inevitable. Magnetic separations with widely available permanent magnets can effectively trap particles, leading to a complete removal of used or waste particles. In this report, we first demonstrate the synthesis of the thinnest (112.7 ± 16.4 nm) and most magnetic (71.96 emu g −1 ) barium hexaferrite (BaFe 12 O 19 , BHF—fridge magnet) via an organic solvent-free electrospinning procedure. When the fibers are then packed into a column, they clearly remove 12 nm magnetite (Fe 3 O 4 ) nanoparticles quantitatively. The same BHF cartridge also removes more than 99.9 % As-treated magnetite nanoparticles at capacities up to 70 times of its weight. As a result, one liter of 150 μg L −1 As-contaminated water can be purified rapidly at a material cost of less than 2 US cents

  2. Magnetic inductive heating of organs of mouse models treated by copolymer coated Fe3O4 nanoparticles

    Science.gov (United States)

    Pham, Hong Nam; Giang Pham, Thi Ha; Nguyen, Dac Tu; Thong Phan, Quoc; Thu Huong Le, Thi; Thu Ha, Phuong; Do, Hung Manh; Nhung Hoang, Thi My; Phuc Nguyen, Xuan

    2017-06-01

    Biodistribution studies provide basic information to design and perform various applications of superparamagnetic iron oxide magnetic nanoparticles (SPIOs) in biomedicine such as drug delivery, MRI as well as hyperthermia. Recently, several quantitative measurements as well as new imaging methods have been used to characterize the SPIOs distribution in organs and in tissues of animal model. In this report we used the fabricated iron oxide nanoparticles coated with two block copolymers of polystyrene-co-polyacrylic acid (St-co-PAA) and polylactic acid-co-polyethylene glycol (PLA-PEG). The biodistributions were investigated ex-vivo for several organs of both healthy and Sarcoma transplanted Swiss mice. The SPIOs concentrations were verified mainly by magnetic inductive heating (MIH) measurement with a combination with atomic absorption spectroscopy (AAS). The results indicated the density detected highest in liver and lowest in kidney. The SPIOs concentration increased significantly up to 24 h after the injection. The observations by our two methods not only are in agreement with each other but also consistent with the tendency reported by other techniques. Discussion will also concern injection strategy for various aspects of hyperthermia applications. Invited talk at 8th Int. Workshop on Advanced Materials Science and Nanotechnology (Ha Long City, Vietnam, 8-12 November 2016).

  3. Controllable synthesis and characterization of Fe3O4/Au composite nanoparticles

    International Nuclear Information System (INIS)

    Xing, Yan; Jin, Yan-Yan; Si, Jian-Chao; Peng, Ming-Li; Wang, Xiao-Fang; Chen, Chao; Cui, Ya-Li

    2015-01-01

    Fe 3 O 4 /Au composite nanoparticles (GoldMag NPs) have received considerable attention because of their advantageous properties arisen from both individual Au and Fe 3 O 4 nanoparticles. Many efforts have been devoted to the synthesis of these composite nanoparticles. Herein, GoldMag NPs were reported to be synthesized by two-step method. Fe 3 O 4 nanoparticles were prepared by co-precipitation and modified by the citric acid, and then citric acid-coated Fe 3 O 4 nanoparticles were used as seeds in sodium citrate solution to reduce the HAuCl 4 . The size of obtained nanoparticles was geared from 25 to 300 nm by controlling the concentration of reactants. The GoldMag NPs were characterized by UV–vis spectrometer, dynamic light scattering (DLS), transmission electron microscopy (TEM), X-ray photoelectron spectroscopy (XPS), X-ray diffraction (XRD), and vibrating sample magnetometer (VSM). The GoldMag NPs showed good superparamagnetism at room temperature and were well dispersed in water with surface plasmon resonance absorption peak varied from 538 nm to 570 nm. - Highlights: • A low cost, simple manipulation and nontoxic approach was designed for preparation of magnetic Fe 3 O 4 /Au (GoldMag NPs) nanocomposites. • The size of GoldMag NPs could be controlled from 25 to 300 nm by varying the concentration of reactants. • GoldMag NPs possessed good magnetic response, high dispersion, and good stability

  4. Surfactant-enhanced spectrofluorimetric determination of total aflatoxins from wheat samples after magnetic solid-phase extraction using modified Fe3O4 nanoparticles

    Science.gov (United States)

    Manafi, Mohammad Hanif; Allahyari, Mehdi; Pourghazi, Kamyar; Amoli-Diva, Mitra; Taherimaslak, Zohreh

    2015-07-01

    The extraction and preconcentration of total aflatoxins (including aflatoxin B1, B2, G1, and G2) using magnetic nanoparticles based solid phase extraction (MSPE) followed by surfactant-enhanced spectrofluorimetric detection was proposed. Ethylene glycol bis-mercaptoacetate modified silica coated Fe3O4 nanoparticles as an efficient antibody-free adsorbent was successfully applied to extract aflatoxins from wheat samples. High surface area and strong magnetization properties of magnetic nanoparticles were utilized to achieve high enrichment factor (97), and satisfactory recoveries (92-105%) using only 100 mg of the adsorbent. Furthermore, the fast separation time (less than 10 min) avoids many time-consuming cartridge loading or column-passing procedures accompany with the conventional SPE. In determination step, signal enhancement was performed by formation of Triton X-100 micelles around the analytes in 15% (v/v) acetonitrile-water which dramatically increase the sensitivity of the method. Main factors affecting the extraction efficiency and signal enhancement of the analytes including pH of sample solution, desorption conditions, extraction time, sample volume, adsorbent amount, surfactant concentration and volume and time of micelle formation were evaluated and optimized. Under the optimum conditions, wide linear range of 0.1-50 ng mL-1 with low detection limit of 0.03 ng mL-1 were obtained. The developed method was successfully applied to the extraction and preconcentration of aflatoxins in three commercially available wheat samples and the results were compared with the official AOAC method.

  5. Incorporation of the Fe3O4 and SiO2 nanoparticles in epoxy-modified silicone resin as the coating for soft magnetic composites with enhanced performance

    Science.gov (United States)

    Luo, Dahao; Wu, Chen; Yan, Mi

    2018-04-01

    Three inorganic-organic hybrids have been designed by incorporating epoxy-modified silicone resin (ESR) with SiO2, Fe3O4 and their mixture in the application as the coating of Fe soft magnetic composites (SMCs). The introduced SiO2 nanoparticles are well dispersed in the ESR, while the Fe3O4 tends to agglomerate or even separate from the ESR. Simultaneous addition of the SiO2 and Fe3O4 gives rise to satisfactory distribution of both nanoparticles and optimized magnetic performance of the SMCs with high permeability (124.6) and low loss (807.8 mW/cm3). On one hand, introduction of the ferromagnetic Fe3O4 reduces the magnetic dilution effect, which is beneficial for improved magnetization and permeability. On the other hand, SiO2 incorporation prevents the agglomeration of the Fe3O4 nanoparticles and gives rise to increased electrical resistivity for reduced core loss as well as enhanced mechanical strength of the SMCs.

  6. Polylactide-based polyurethane shape memory nanocomposites (Fe3O4/PLAUs) with fast magnetic responsiveness

    International Nuclear Information System (INIS)

    Gu, Shu-Ying; Jin, Sheng-Peng; Gao, Xie-Feng; Mu, Jian

    2016-01-01

    Polylactide-based polyurethane shape memory nanocomposites (Fe 3 O 4 /PLAUs) with fast magnetic responsiveness are presented. For the purpose of fast response and homogeneous dispersion of magnetic nanoparticles, oleic acid was used to improve the dispersibility of Fe 3 O 4 nanoparticles in a polymer matrix. A homogeneous distribution of Fe 3 O 4 nanoparticles in the polymer matrix was obtained for nanocomposites with low Fe 3 O 4 loading content. A small agglomeration was observed for nanocomposites with 6 wt% and 9 wt% loading content, leading to a small decline in the mechanical properties. PLAU and its nanocomposites have glass transition around 52 °C, which can be used as the triggering temperature. PLAU and its nanocomposites have shape fixity ratios above 99%, shape recovery ratios above 82% for the first cycle and shape recovery ratios above 91% for the second cycle. PLAU and its nanocomposites also exhibit a fast water bath or magnetic responsiveness. The magnetic recovery time decreases with an increase in the loading content of Fe 3 O 4 nanoparticles due to an improvement in heating performance for increased weight percentage of fillers. The nanocomposites have fast responses in an alternating magnetic field and have potential application in biomedical areas such as intravascular stent. (paper)

  7. Thermal decomposition study of Mn doped Fe3O4 nanoparticles

    Science.gov (United States)

    Malek, Tasmira J.; Chaki, S. H.; Tailor, J. P.; Deshpande, M. P.

    2016-05-01

    Fe3O4 is an excellent magnetic material among iron oxides. It has a cubic inverse spinel structure exhibiting distinguished electric and magnetic properties. In this paper the authors report the synthesis of Mn doped Fe3O4 nanoparticles by wet chemical reduction technique at ambient temperature and its thermal characterization. Ferric chloride hexa-hydrate (FeCl3•6H2O), manganese chloride tetra-hydrate (MnCl2•4H2O) and sodium boro-hydrate (NaBH4) were used for synthesis of Fe3O4 nanoparticles at ambient temperature. The elemental composition of the as-synthesized Mn doped Fe3O4 nanoparticles were determined by energy dispersive analysis of X-rays (EDAX) technique. Thermogravimetric (TG) and differential thermal analysis (DTA) were carried out on the Mn doped Fe3O4 nanoparticles in the temperature range of ambient to 1124 K. The thermo-curves revealed that the particles decompose by four steps. The kinetic parameters were evaluated using non-mechanistic equations for the thermal decomposition.

  8. CMC-coated Fe3O4 nanoparticles as new MRI probes for hepatocellular carcinoma

    International Nuclear Information System (INIS)

    Sitthichai, Sudarat; Pilapong, Chalermchai; Thongtem, Titipun; Thongtem, Somchai

    2015-01-01

    Highlights: • Fe 3 O 4 nanoparticles (NPs) are superparamagnetic. • CMC is water-soluble and nontoxic cellulose-derivative polymer. • CMC-coated Fe 3 O 4 NPs were successfully prepared by co-precipitation method. • The promising NPs that can be used for magnetic resonance imaging application. - Abstract: Pure Fe 3 O 4 nanoparticles and Fe 3 O 4 magnetic nanoparticles (MNPs) coated with carboxymethyl cellulose (CMC) were successfully prepared by co-precipitating of FeCl 2 ·4H 2 O and FeCl 3 ·6H 2 O in the solutions containing ammonia at 80 °C for 3 h. Phase, morphology, particle-sized distribution, surface chemistry, and weight loss were characterized by X-ray diffraction (XRD), X-ray photoelectron spectroscopy (XPS), scanning electron microscopy (SEM), transmission electron microscopy (TEM) including high-resolution transmission electron microscopy (HRTEM) and selected area electron diffraction (SAED), thermogravimetric analysis (TGA), and Fourier transform infrared (FTIR) spectroscopy. In this research, CMC-coated Fe 3 O 4 MNPs consisting of Fe 2+ and Fe 3+ ions with 543.3-mM −1 s −1 high relaxivity were detected and were able to be used for magnetic resonance imaging (MRI) application with very good contrast for targeting hepatocellular carcinoma (HCC) without any further vectorization.

  9. Natural Fe3O4 nanoparticles embedded zinc–tellurite glasses: Polarizability and optical properties

    International Nuclear Information System (INIS)

    Widanarto, W.; Sahar, M.R.; Ghoshal, S.K.; Arifin, R.; Rohani, M.S.; Hamzah, K.; Jandra, M.

    2013-01-01

    Modifying the optical behavior of zinc–tellurite glass by embedding magnetic nanoparticles has implication in nanophotonics. A series of zinc–tellurite glasses containing natural Fe 3 O 4 nanoparticles with composition (80 − x)TeO 2 ·xFe 3 O 4 ·20ZnO (0 ≤ x ≤ 2) in mol% are synthesized by melt quenching method and their optical properties are investigated using FTIR and UV–vis–NIR spectroscopies. Lorentz–Lorenz relations are exploited to determine the refractive index, molar refraction and electronic polarizability. The sharp absorption peaks of FTIR spectra show a shift from 667 cm −1 to 671 cm −1 in the presence of nanoparticles that increase the non-bridging oxygen, confirmed by the intensity change of the TeO 3 peak at 752 cm −1 . A new peak around 461 cm −1 is also observed which is attributed to the band characteristic of covalent Fe–O linkages. A decrease in the Urbach energy as much as 0.122 eV and the optical energy band gap with the increase of Fe 3 O 4 concentration (0.5–1.0 mol%) is evidenced. Electronic polarizability of the glasses increases with increasing Fe 3 O 4 nanoparticles concentration up to 1 mol%. Interestingly, the polarizability tends to decrease with the further increase of Fe 3 O 4 concentration at 2 mol%. The role of magnetic nanoparticles in influencing the structural and optical behavior are examined and understood. - Highlights: ► Incorporation of natural Fe 3 O 4 nanoparticles into the zinc–tellurite glass. ► Influence of magnetic nanoparticles in modifying structure and optical properties. ► Enhancement of refraction index and change in electronic polarizability

  10. Fe3O4 nanoparticles modified by CD-containing star polymer for MRI and drug delivery.

    Science.gov (United States)

    Cha, Ruitao; Li, Juanjuan; Liu, Yang; Zhang, Yifan; Xie, Qian; Zhang, Mingming

    2017-10-01

    Fe 3 O 4 nanoparticles with ultrasmall sizes show good T 1 or T 1 +T 2 contrast abilities, and have attracted considerable interest in the field of magnetic resonance imaging (MRI) contrast agents. For effective biomedical applications, the colloidal stability and biocompatibility of the Fe 3 O 4 nanoparticles need to be improved without reducing MRI relaxivity. In this paper, star polymers were used as coating materials to modify Fe 3 O 4 nanoparticles in view of their dense molecular architecture with moderate flexibility. The star polymer was composed of a β-cyclodextrin (β-CD) core and poly(2-(dimethylamino) ethyl methacrylate) (PDMAEMA) arms. Meanwhile, reduced glutathione (GSH), as a model drug, was also associated with the star polymer. Thus, a new platform for simultaneous diagnosis and treatment was achieved. Compared to the Fe 3 O 4 nanoparticles coated with linear polymers, the Fe 3 O 4 nanoparticles coated with star polymers (Fe 3 O 4 @GCP) possessed higher GSH association capacity and better stability in serum-containing solution. GSH could be released from Fe 3 O 4 @GCP nanoparticles in response to pH value of the solution. Since the sulfhydryl group on GSH is able to combine free radicals, Fe 3 O 4 @GCP nanoparticles exhibited less cytotoxicity compared to the Fe 3 O 4 nanoparticles without including GSH. Furthermore, the nanoparticles could also serve as good T 1 MRI contrast agent, and the MRI relaxivity of Fe 3 O 4 @GCP nanoparticles did not decrease after coated with the star polymer. These results indicate that the precisely designed Fe 3 O 4 @GCP nanoparticles could be used as a versatile promising theranostic nano-platform. Copyright © 2017 Elsevier B.V. All rights reserved.

  11. Synthesis and characterization of Fe3O4 nanoparticles coated with fucan polysaccharides

    International Nuclear Information System (INIS)

    Silva, V.A.J.; Andrade, P.L.; Silva, M.P.C.; Bustamante D, A.; De Los Santos Valladares, Luis; Albino Aguiar, J.

    2013-01-01

    In this work we report the preparation of fucan-coated magnetite (Fe 3 O 4 ) nanoparticles by the co-precipitation method. These nanoparticles were characterized by scanning electron microscopy, transmission electron microscopy, X-ray diffraction (XRD), Fourier transform infrared (FT-IR) spectroscopy, Mössbauer spectroscopy and magnetic measurements. The nanoparticles showed quasi-spherical morphology with mean sizes around 10 nm. XRD and FT-IR confirmed the functionalization of the Fe 3 O 4 nanoparticles with the fucan polysaccharide. Room temperature magnetization measurements and Mössbauer spectroscopy showed that the nanoparticles exhibited superparamagnetic behavior at 300 K and the magnetic properties of the Fe 3 O 4 are partly screened by the coating preventing aggregation. - Highlights: • Syntheses of fucan-coated Fe 3 O 4 nanoparticles were made by co-precipitation method. • The efficiency of polysaccharide coated was analyzed by XRD and FT-IR. • The magnetic nanoparticles mean size was 10–20 nm. • The fucan-coated magnetite nanoparticles showed superparamagnetic behavior

  12. Ultraefficient separation and sensing of mercury and methylmercury ions in drinking water by using aminonaphthalimide-functionalized Fe(3)O(4)@SiO(2) core/shell magnetic nanoparticles.

    Science.gov (United States)

    Park, Minsung; Seo, Sungmin; Lee, In Su; Jung, Jong Hwa

    2010-07-07

    A new fluorogenic based aminonaphthalimide-functionalized Fe(3)O(4)@SiO(2) core/shell magnetic nanoparticles 1 has been prepared, and its abilities to sense and separate metal ions were evaluated by fluorophotometry. The nanoparticles 1 exhibited a high affinity and selectivity for Hg(2+) and CH(3)Hg(+) ions over competing metal ions.

  13. Sulfonated Magnetic Nanocomposite Based on Reactive PGMA-MAn Copolymer@Fe3O4 Nanoparticles: Effective Removal of Cu(II Ions from Aqueous Solutions

    Directory of Open Access Journals (Sweden)

    Reza Hasanzadeh

    2016-01-01

    Full Text Available Chelating magnetic nanocomposites have been considered as suitable materials for removal of heavy metal ions for water treatment. In this work poly(glycidyl methacrylate-maleic anhydride copolymer (PGMA-MAn is modified with 4-aminobenzenesulfonic acid (ABSAc and subsequently the product reacted with modified Fe3O4 nanoparticles and 1,2-ethanedithiol (EDT in the presence of ultrasonic irradiation for preparation of tridimensional chelating magnetic nanocomposite. Synthesized magnetic nanocomposite was characterized by Fourier transform infrared spectroscopy (FT-IR, scanning electron microscopy (SEM, X-ray diffraction analysis (XRD, vibrating sample magnetometer (VSM, energy dispersive X-ray analysis (EDX, elemental mapping analysis (EMA, Brunauer-Emmett-Teller (BET, and thermal gravimetric analysis (TGA. The adsorption behavior of Cu(II ions was investigated by synthesized nanocomposite in various parameters such as pH, contact time, metal ion concentration, and adsorbent dosage. The equilibrium distribution coefficient (kd was determined and the findings prove that the kd value is approximately high in the case of all selected metal ions. The synthesized nanocomposite exhibited good tendency for removing Cu(II ions from aqueous solutions even at an acidic pH.

  14. Core-shell Fe3O4 polydopamine nanoparticles as sorbent for magnetic dispersive solid-phase extraction of copper from food samples.

    Science.gov (United States)

    Yavuz, Emre; Tokalıoğlu, Şerife; Patat, Şaban

    2018-10-15

    In the present study, core-shell Fe 3 O 4 polydopamine nanoparticles were synthesized and used for the first time as an adsorbent for the vortex assisted magnetic dispersive solid phase extraction of copper from food samples. After elution, copper in the solutions was determined by FAAS. The adsorbent was characterized using X-ray diffraction, scanning electron microscopy, energy dispersive X-ray spectroscopy, Fourier transform infrared spectroscopy, Brunauer-Emmett-Teller surface area, and zeta potential measurements. Various parameters affecting the magnetic dispersive solid-phase extraction were evaluated. The optimum pH and magnetic adsorbent amount were found to be 5 and 40 mg, respectively. Elution was made by 3 mL of 2 mol L -1 HNO 3 .The major advantage of the method is the fast equilibration during adsorption without the need for vortexing or shaking. The preconcentration factor and detection limit of the method were found to be 150 and 0.22 mg L -1 , respectively. The precision (as RSD%) and adsorption capacity of the method were 3.7% and 28 mg g -1 , respectively. The method was successfully verified by analyzing four certified reference materials (SPS-WW1 Batch 114 Wastewater, TMDA-53.3 Lake water, BCR-482 Lichen and 1573a Tomato Leaves) and by addition/recovery tests of copper standard solution in organic baby food, muesli, macaroni, honey, and milk samples. Copyright © 2018 Elsevier Ltd. All rights reserved.

  15. Fe3O4@ionic liquid@methyl orange nanoparticles as a novel nano-adsorbent for magnetic solid-phase extraction of polycyclic aromatic hydrocarbons in environmental water samples.

    Science.gov (United States)

    Liu, Xiaofei; Lu, Xin; Huang, Yong; Liu, Chengwei; Zhao, Shulin

    2014-02-01

    A novel nano-adsorbent, Fe3O4@ionic liquid@methyl orange nanoparticles (Fe3O4@IL@MO NPs), was prepared for magnetic solid-phase extraction (MSPE) of polycyclic aromatic hydrocarbons (PAHs) in environmental water samples. The Fe3O4@IL@MO NPs were synthesized by self-assembly of the ionic liquid 1-octadecyl-3-methylimidazolium bromide (C18mimBr) and methyl orange (MO) onto the surface of Fe3O4 silica magnetic nanoparticles, as confirmed by infrared spectroscopy, ultraviolet-visible spectroscopy and superconducting quantum interface device magnetometer. The extraction performance of Fe3O4@IL@MO NPs as a nano-adsorbent was evaluated by using five PAHs, fluorene (FLu), anthracene (AnT), pyrene (Pyr), benzo(a)anthracene (BaA) and benzo(a)pyrene (BaP) as model analytes. Under the optimum conditions, detection limits in the range of 0.1-2 ng/L were obtained by high performance liquid chromatography-fluorescence detection (HPLC-FLD). This method has been successfully applied for the determination of PAHs in environmental water samples by using the MSPE-HPLC-FLD. The recoveries for the five PAHs tested in spiked real water samples were in the range of 80.4-104.0% with relative standard deviations ranging from 2.3 to 4.9%. © 2013 Published by Elsevier B.V.

  16. Recent advances in the synthesis of Fe3O4@AU core/shell nanoparticles

    International Nuclear Information System (INIS)

    Salihov, Sergei V.; Ivanenkov, Yan A.; Krechetov, Sergei P.; Veselov, Mark S.; Sviridenkova, Natalia V.; Savchenko, Alexander G.; Klyachko, Natalya L.; Golovin, Yury I.; Chufarova, Nina V.; Beloglazkina, Elena K.; Majouga, Alexander G.

    2015-01-01

    Fe 3 O 4 @Au core/shell nanoparticles have unique magnetic and optical properties. These nanoparticles are used for biomedical applications, such as magnetic resonance imaging, photothermal therapy, controlled drug delivery, protein separation, biosensors, DNA detection, and immunosensors. In this review, recent methods for the synthesis of core/shell nanoparticles are discussed. We divided all of the synthetic methods in two groups: methods of synthesis of bi-layer structures and methods of synthesis of multilayer composite structures. The latter methods have a layer of “glue” material between the core and the shell. - Highlights: • Fe 3 O 4 nanoparticles are promising for biomedical applications but have some disadvantages. • Covering Fe 3 O 4 nanoparticles with Au shell leads to better stability and biocompatibility. • Core/shell nanoparticles are widely used for biomedical applications. • There are two types of Fe 3 O 4 @Au core/shell nanoparticles structures: bi-layer and multilayer composite. • Different synthetic methods enable production of nanoparticles of different sizes

  17. Multifunctional PMMA@Fe3O4@DR Magnetic Materials for Efficient Adsorption of Dyes

    Directory of Open Access Journals (Sweden)

    Bing Yu

    2017-10-01

    Full Text Available Magnetic porous microspheres are widely used in modern wastewater treatment technology due to their simple and quick dye adsorption and separation functions. In this article, we prepared porous polymethylmethacrylate (PMMA microspheres by the seed-swelling method, followed by in situ formation of iron oxide (Fe3O4 nanoparticles within the pore. Then, we used diazo-resin (DR to encapsulate the porous magnetic microspheres and achieve PMMA@Fe3O4@DR magnetic material. We studied the different properties of magnetic microspheres by different dye adsorption experiments before and after the encapsulation and demonstrated that the PMMA@Fe3O4@DR microspheres can be successfully used as a reusable absorbent for fast and easy removal of anionic and aromatic dyes from wastewater and can maintain excellent magnetic and adsorption properties in harsh environments.

  18. Investigation on the uptake and release ability of β-cyclodextrin functionalized Fe_3O_4 magnetic nanoparticles by methylene blue

    International Nuclear Information System (INIS)

    Zhou, Yehong; Sun, Linlin; Wang, Haixia; Liang, Wenting; Yang, Jun; Wang, Li; Shuang, Shaomin

    2016-01-01

    β-cyclodextrin functionalized magnetic nanoparticles (β-CD-MNPs) having a core–shell structure were fabricated with a layer-by-layer method by combining 3-aminopropyl triethoxysilane coated magnetic Fe_3O_4 nanoparticles (AP-MNPs) with 6-O-toluenesulfonyl-β-cyclodextrin (6-TsO-β-CD) at 70 °C. The characterization by transmission electron microscopy revealed β-CD-MNPs having an average diameter of 12 ± 2 nm and an average hydrodynamic diameter of 56.8 nm in aqueous solution by dynamic light scattering. The β-CD grafting was confirmed by Fourier-Transformed Infrared spectroscopy, and the amount of β-CD grafted on MNPs was determined as 60 mg/g by thermogravimetric analysis. The uptake and release ability of β-CD-MNPs was investigated using methylene blue (MB) as a biological staining dye by spectrophotometric method. The results showed that the uptake and release were greatly influenced by the pH value of dye solution, with a maximum loading capacity of 78.4 mg/g under pH = 8 at 25 °C, and the release was easily achieved at 73% within the first hour at physiological condition. The adsorption isotherms were examined by Langmuir and Freundlich models, and the satisfactory fitting to the Langmuir model suggested the adsorption on β-CD-MNPs as a mono-layer coverage. - Highlights: • Investigation of uptake and release of methylene blue by β-CD-MNPs. • Superparamagnetic property of β-CD-MNPs nanoparticles. • Targeted delivery with the assistance of external magnetic field. • Nanomaterials with coupled advantages of amphiphilic structure and superparamagnetism.

  19. SYNTHESIS OF M–Nd DOPED Fe3O4 NANOPARTICLES (M = Co ...

    African Journals Online (AJOL)

    Preferred Customer

    nanoparticles were spherical shaped with inverse spinel structure. ... To obtain nano sized spinel ferrite particles, various preparation techniques have been ... SEM images of (a) Fe3O4, (b) Fe3O4 doped with Nd3+ and Co2+, (c) Fe3O4 doped with. Nd3+ .... Nayar, S.; Mir, A.; Ashok, A.; Sharma, A. J. Bionic Eng. 2010, 7, 29.

  20. Effect of Fe3O4 Nanoparticles on Skin Tumor Cells and Dermal Fibroblasts

    Directory of Open Access Journals (Sweden)

    Lirija Alili

    2015-01-01

    Full Text Available Iron oxide (Fe3O4 nanoparticles have been used in many biomedical approaches. The toxicity of Fe3O4 nanoparticles on mammalian cells was published recently. Though, little is known about the viability of human cells after treatment with Fe3O4 nanoparticles. Herein, we examined the toxicity, production of reactive oxygen species, and invasive capacity after treatment of human dermal fibroblasts (HDF and cells of the squamous tumor cell line (SCL-1 with Fe3O4 nanoparticles. These nanoparticles had an average size of 65 nm. Fe3O4 nanoparticles induced oxidative stress via generation of reactive oxygen species (ROS and subsequent initiation of lipid peroxidation. Furthermore, the question was addressed of whether Fe3O4 nanoparticles affect myofibroblast formation, known to be involved in tumor invasion. Herein, Fe3O4 nanoparticles prevent the expression alpha-smooth muscle actin and therefore decrease the number of myofibroblastic cells. Moreover, our data show in vitro that concentrations of Fe3O4 nanoparticles, which are nontoxic for normal cells, partially reveal a ROS-triggered cytotoxic but also a pro-invasive effect on the fraction of squamous cancer cells surviving the treatment with Fe3O4 nanoparticles. The data herein show that the Fe3O4 nanoparticles appear not to be adequate for use in therapeutic approaches against cancer cells, in contrast to recently published data with cerium oxide nanoparticles.

  1. Green synthesis of soya bean sprouts-mediated superparamagnetic Fe3O4 nanoparticles

    International Nuclear Information System (INIS)

    Cai Yan; Shen Yuhua; Xie Anjian; Li Shikuo; Wang Xiufang

    2010-01-01

    Superparamagnetic Fe 3 O 4 nanoparticles were first synthesized via soya bean sprouts (SBS) templates under ambient temperature and normal atmosphere. The reaction process was simple, eco-friendly, and convenient to handle. The morphology and crystalline phase of the nanoparticles were determined from scanning electron microscopy (SEM), transmission electron microscopy (TEM), selected area electron diffraction (SAED), and X-ray diffraction (XRD) spectra. The effect of SBS template on the formation of Fe 3 O 4 nanoparticles was investigated using X-ray photoemission spectroscopy (XPS) and Fourier-transform infrared spectroscopy (FT-IR). The results indicate that spherical Fe 3 O 4 nanoparticles with an average diameter of 8 nm simultaneously formed on the epidermal surface and the interior stem wall of SBS. The SBS are responsible for size and morphology control during the whole formation of Fe 3 O 4 nanoparticles. In addition, the superconducting quantum interference device (SQUID) results indicate the products are superparamagnetic at room temperature, with blocking temperature (T B ) of 150 K and saturation magnetization of 37.1 emu/g.

  2. Green synthesis of soya bean sprouts-mediated superparamagnetic Fe 3O 4 nanoparticles

    Science.gov (United States)

    Cai, Yan; Shen, Yuhua; Xie, Anjian; Li, Shikuo; Wang, Xiufang

    2010-10-01

    Superparamagnetic Fe 3O 4 nanoparticles were first synthesized via soya bean sprouts (SBS) templates under ambient temperature and normal atmosphere. The reaction process was simple, eco-friendly, and convenient to handle. The morphology and crystalline phase of the nanoparticles were determined from scanning electron microscopy (SEM), transmission electron microscopy (TEM), selected area electron diffraction (SAED), and X-ray diffraction (XRD) spectra. The effect of SBS template on the formation of Fe 3O 4 nanoparticles was investigated using X-ray photoemission spectroscopy (XPS) and Fourier-transform infrared spectroscopy (FT-IR). The results indicate that spherical Fe 3O 4 nanoparticles with an average diameter of 8 nm simultaneously formed on the epidermal surface and the interior stem wall of SBS. The SBS are responsible for size and morphology control during the whole formation of Fe 3O 4 nanoparticles. In addition, the superconducting quantum interference device (SQUID) results indicate the products are superparamagnetic at room temperature, with blocking temperature ( TB) of 150 K and saturation magnetization of 37.1 emu/g.

  3. Leishmanicidal Activity of Biogenic Fe3O4 Nanoparticles

    Directory of Open Access Journals (Sweden)

    Mehrdad Khatami

    2017-11-01

    Full Text Available Abstract: Due to the multiplicity of useful applications of metal oxide nanoparticles (ONPs in medicine are growing exponentially, in this study, Fe3O4 (iron oxide nanoparticles (IONPs were biosynthesized using Rosemary to evaluate the leishmanicidal efficiency of green synthesized IONPs. This is the first report of the leishmanicidal efficiency of green synthesized IONPs against Leishmania major. The resulting biosynthesized IONPs were characterized by ultraviolet-visible spectroscopy (UV-Vis, X-ray diffraction (XRD, transmission electron microscopy (TEM, and Fourier transform infrared spectroscopy (FTIR. The leishmanicidal activity of IONPS was studied via 3-4,5-dimethylthiazol-2-yl-2,5-diphenyltetrazolium bromide (MTT assay. The results showed the fabrication of the spherical shape of monodisperse IONPs with a size 4 ± 2 nm. The UV-visible spectrophotometer absorption peak was at 334 nm. The leishmanicidal activity of biogenic iron oxide nanoparticles against Leishmania major (promastigote was also studied. The IC50 of IONPs was 350 µg/mL. In this report, IONPs were synthesized via a green method. IONPs are mainly spherical and homogeneous, with an average size of about 4 nm, and were synthesized here using an eco-friendly, simple, and inexpensive method.

  4. Sol-gel encapsulation of pullulanase in the presence of hybrid magnetic (Fe3O4-chitosan) nanoparticles improves thermal and operational stability.

    Science.gov (United States)

    Long, Jie; Li, Xingfei; Zhan, Xiaobei; Xu, Xueming; Tian, Yaoqi; Xie, Zhengjun; Jin, Zhengyu

    2017-06-01

    Pullulanase was sol-gel encapsulated in the presence of magnetic chitosan/Fe 3 O 4 nanoparticles. The resulting immobilized pullulanase was characterized by scanning electron microscopy, vibrating sample magnetometry, Fourier transform infrared spectroscopy and thermogravimetric analysis. The results showed that the addition of pullulanase created a more regular surface on the sol-gel matrix and an enhanced magnetic response to an applied magnetic field. The maximal activity retention (83.9%) and specific activity (291.7 U/mg) of the immobilized pullulanase were observed under optimized conditions including an octyltriethoxysilane:tetraethoxysilane (OTES:TEOS) ratio of 1:2 and enzyme concentration of 0.484 mg/mL sol. The immobilized enzyme exhibited good thermal stability. When the temperature was above 60 °C, the immobilized pullulanase showed significantly higher activity than the free enzyme (p sol-gel encapsulation and co-immobilized by crosslinking-encapsulation retained 52 and 69% of their initial activity after 5 h at 62 °C, respectively, compared to 11% for the free enzyme. Moreover, the stability of the pullulanase was improved by crosslinking-encapsulation, as the enzyme retained more than 85 and 81% of its original activity after 5 and 6 consecutive reuses, respectively, compared to 80 and 72% of its original activity for simple sol-gel encapsulated enzymes. This indicated the leakage of enzyme molecules through the pores of the gel was substantially abated by cross-linking. Such immobilized pullulanase provides high stability and ease of enzyme recovery, characteristics that are advantageous for applications in the food industry that involve continuous starch processing.

  5. Adsorption of acidic, basic, and neutral proteins from aqueous samples using Fe3O4 magnetic nanoparticles modified with an ionic liquid

    International Nuclear Information System (INIS)

    Kamran, S.; Asadi, M.; Absalan, G.

    2013-01-01

    We have prepared and characterized Fe 3 O 4 nanoparticles and their binary mixtures (IL-Fe 3 O 4 ) with 1-hexyl-3-methylimidazolium bromide as ionic liquid for use in the adsorption of lysozyme (LYS), bovine serum albumin (BSA), and myoglobin (MYO). The optimum operational conditions for the adsorption of proteins (at 0.05-2.0 mg mL -1 ) were 4.0 mg mL -1 of nanoparticles and a contact time of 10 min. The maximum adsorption capacities are 455, 182 and 143 mg for LYS, BSA, and MYO per gram of adsorbent, respectively. The Langmuir model better fits the adsorption isotherms, with adsorption constants of 0.003, 0.015 and 0.008 L mg -1 , in order, for LYS, BSA, MYO. The applicability of two kinetic models including pseudo-first order and pseudo-second order model was estimated on the basis of comparative analysis of the corresponding rate parameters, equilibrium adsorption capacity and correlation coefficients. The adsorption processes are endothermic. The proteins can be desorbed from the nanoparticles by using NaCl solution at pH 9.5, and the nanoparticles thus can be recycled. (author)

  6. Polarized neutron reflectivity studies of magnetic oxidic Fe3O4/NiO and Fe3O4/CoO multilayers

    NARCIS (Netherlands)

    Ball, A.R.; Fredrikze, H.; Lind, D.M.; Wolf, R.M.; Bloemen, P.J.H.; Rekveldt, M.Th.; Zaag, van der P.J.

    1996-01-01

    The magnetic properties of [1 0 0] oriented Fe3O4/NiO and Fe3O4/CoO multilayers, MBE-grown on MgO(0 0 1) substrates, have been studied by polarized neutron reflectometry. In both samples, the Fe3O4 layer exhibits a depth-dependent magnetic profile characterized by a reduction in the magnetization

  7. Synthesis of oleic acid functionalized Fe3O4 magnetic nanoparticles and studying their interaction with tumor cells for potential hyperthermia applications.

    Science.gov (United States)

    Jadhav, Neena V; Prasad, Amresh I; Kumar, Amit; Mishra, R; Dhara, Sangita; Babu, K R; Prajapat, C L; Misra, N L; Ningthoujam, R S; Pandey, B N; Vatsa, R K

    2013-08-01

    In the present study, oleic acid (OA) functionalized Fe3O4 magnetic nanoparticles (MN) were synthesized following modified wet method of MN synthesis. The optimum amount of OA required for capping of MN and the amount of bound and unbound/free OA was determined by thermogravimetric analysis (TGA). Further, we have studied the effect of water molecules, associated with MN, on the variation in their induction heating ability under alternating current (AC) magnetic field conditions. We have employed a new approach to achieve dispersion of OA functionalized MN (MN-OA) in aqueous medium using sodium carbonate, which improves their biological applicability. Interactions amongst MN, OA and sodium carbonate were studied by Fourier transform infrared spectroscopy (FT-IR). Intracellular localization of MN-OA was studied in mouse fibrosarcoma cells (WEHI-164) by prussian blue staining and confocal laser scanning microscopy (CLSM) using nile blue A as a fluorescent probe. Results showed MN-OA to be interacting mainly with the cell membrane. Their hyperthermic killing ability was evaluated in WEHI-164 cells by trypan blue method. Cells treated with MN-OA in combination with induction heating showed decreased viability as compared to respective induction heating controls. These results were supported by altered cellular morphology after treatment of MN-OA in combination with induction heating. Further, the magnitude of apoptosis was found to be ~5 folds higher in cells treated with MN-OA in combination with induction heating as compared to untreated control. These results suggest the efficacy of MN-OA in killing of tumor cells by cellular hyperthermia. Copyright © 2013 Elsevier B.V. All rights reserved.

  8. Synthesis and characterization of magnetic opal/Fe3O4 colloidal crystal

    Science.gov (United States)

    Carmona-Carmona, A. J.; Palomino-Ovando, M. A.; Hernández-Cristobal, Orlando; Sánchez-Mora, E.; Toledo-Solano, M.

    2017-03-01

    We report an experimental study of colloidal crystals based on SiO2 artificial opals, infiltrated with 1.34(M1), 2.03(M2) and 24.4(M3) wt% Fe3O4 nanoparticles, using the co-assembly method. Scanning electron microscopy (SEM), X-ray diffraction (XRD), Raman spectroscopy and Vibration sample magnetometer (VSM) were used to study the structural, magnetic and optical properties of the samples. At 300 K all the samples exhibit superparamagnetic behavior due to the magnetic coupling of Fe3O4 nanoparticles infiltrated into opal. However, for higher concentration of nanoparticles this strong coupling distorts the opal network. The UV-vis diffuse reflectance spectroscopy and Kubelka-Munk theory were applied to determine that the energy band gap of the opal-magnetite composites can be adjusted by varying the concentration of Fe3O4 nanoparticles. This values are between the energy band gap of SiO2 and Fe3O4.

  9. Fast removal of malachite green dye using novel superparamagnetic sodium alginate-coated Fe3O4 nanoparticles.

    Science.gov (United States)

    Mohammadi, Abbas; Daemi, Hamed; Barikani, Mehdi

    2014-08-01

    In this study, superparamagnetic sodium alginate-coated Fe3O4 nanoparticles (Alg-Fe3O4) as a novel magnetic adsorbent were prepared by in situ coprecipitation method, in which Fe3O4 nanoparticles were precipitated from FeCl3 and FeCl2 under alkaline medium in the presence of sodium alginate. The Alg-Fe3O4 nanoparticles were used for removal of malachite green (MG) from aqueous solutions using batch adsorption technique. The characterization of synthesized nanoparticles was performed using XRD, FTIR, TEM, TGA and vibrating sample magnetometer (VSM) techniques. FTIR analysis of synthesized nanoparticles provided the evidence that sodium alginate was successfully coated on the surface of Fe3O4 nanoparticles. The FT-IR and TGA characterization showed that the Alg-Fe3O4 nanoparticles contained about 14% (w/w) of sodium alginate. Moreover, TEM analysis indicated that the average diameter of the Alg-Fe3O4 nanoparticles was about 12nm. The effects of adsorbent dosage, pH and temperature were investigated on the adsorption properties of MG onto Alg-Fe3O4 nanoparticles. The equilibrium adsorption data were modeled using the Langmuir and Freundlich isotherms. The maximum adsorption capacity obtained from Langmuir isotherm equation was 47.84mg/g. The kinetics of adsorption of MG onto Alg-Fe3O4 nanoparticles were investigated using the pseudo-first-order and pseudo-second-order kinetic models. The results showed that the adsorption of MG onto nanoparticles followed pseudo-second-order kinetic model. Copyright © 2014 Elsevier B.V. All rights reserved.

  10. Effective preparation of magnetic superhydrophobic Fe3O4/PU sponge for oil-water separation

    Science.gov (United States)

    Li, Zeng-Tian; Lin, Bo; Jiang, Li-Wang; Lin, En-Chao; Chen, Jian; Zhang, Shi-Jie; Tang, Yi-Wen; He, Fu-An; Li, De-Hao

    2018-01-01

    Fe3O4 nanoparticles were modified by tetraethoxysilane and different amounts of trimethoxy (1H,1H,2H,2H-heptadecafluorodecyl) silane in sequence to obtain the magnetic nanoparticles with low surface energy, which could be used to construct the superhydrophobic surfaces for PU sponge, cotton fabric, and filter paper by a simple drop-coating method. Particularly, all the resultant Fe3O4/PU sponges containing different fluoroalkylsilane-modified Fe3O4 nanoparticles possessed both high water repellency with contact angle in the range of 150.2-154.7° and good oil affinity, which could not only effectively remove oil from water followed by convenient magnetic recovery but also easily realize the oil-water separation as a filter only driven by gravity. The Fe3O4/PU sponges showed high absorption capability of peanut oil, pump oil, and silicone oil with the maximum absorptive capacities of 40.3, 39.3, and 46.3 g/g, respectively. Such novel sponges might be a potential candidate for oil-water separation as well as oil absorption and transportation accompanied by the advantages of simple process, remote control by magnetic field, and low energy consumption.

  11. Cr(VI) reduction and immobilization by novel carbonaceous modified magnetic Fe_3O_4/halloysite nanohybrid

    International Nuclear Information System (INIS)

    Tian, Xike; Wang, Weiwei; Tian, Na; Zhou, Chaoxin; Yang, Chao; Komarneni, Sridhar

    2016-01-01

    Highlights: • A novel magnetic nonohybrids (Fe_3O_4/HNTs@C) were synthesized for Cr(VI) removal. • Cr(VI) was reduced to Cr(III) by Fe_3O_4 nanoparticles and hydroxyl groups. • Cr ions were attached on Fe_3O_4/HNTs@C by ion exchange and coordination interaction. - Abstract: In this work, a novel “Dumbbell-like” magnetic Fe_3O_4/Halloysite nanohybrid (Fe_3O_4/HNTs@C) with oxygen-containing organic group grafting on the surface of natural halloysite nanotubes (HNTs) and homogeneous Fe_3O_4 nanospheres selectively aggregating at the tips of modified halloysite nanotubes was successfully synthesized. XRD, TEM, IR spectroscopy, XPS and VSM were used to characterize this newly halloysite nanohybrid and its formation mechanism was discussed. Cr(VI) ions adsorption experiments showed that the Fe_3O_4/halloysite nanohybrid exhibited higher adsorption ability with a maximum adsorption capacity of 132 mg/L at 303 K, which is about 100 times higher than that of unmodified halloysite nanotubes. More importantly, with the reduction of Fe_3O_4 and electron–donor effect of oxygen-containing organic groups, Cr(VI) ions were easily reduced into low toxicity Cr(III) and then adsorbed onto the surface of halloysite nanohybrid. In addition, appreciable magnetization was observed due to the aggregation of magnetite nanoparticles, which make adsorbent facility separated from aqueous solutions after Cr pollution adsorption.

  12. Formation of multifunctional Fe3O4/Au composite nanoparticles for dual-mode MR/CT imaging applications

    International Nuclear Information System (INIS)

    Hu Yong; Li Jing-Chao; Shen Ming-Wu; Shi Xiang-Yang

    2014-01-01

    Recent advances with iron oxide/gold (Fe 3 O 4 /Au) composite nanoparticles (CNPs) in dual-modality magnetic resonance (MR) and computed tomography (CT) imaging applications are reviewed. The synthesis and assembly of “dumbbelllike” and “core/shell” Fe 3 O 4 /Au CNPs is introduced. Potential applications of some developed Fe 3 O 4 /Au CNPs as contrast agents for dual-mode MR/CT imaging applications are described in detail. (topical review - magnetism, magnetic materials, and interdisciplinary research)

  13. Supraparamagnetic, conductive, and processable multifunctional graphene nanosheets coated with high-density Fe3O4 nanoparticles.

    Science.gov (United States)

    He, Hongkun; Gao, Chao

    2010-11-01

    The amazing properties of graphene are triggering extensive interests of both scientists and engineers, whereas how to fully utilize the unique attributes of graphene to construct novel graphene-based composites with tailor-made, integrated functions remains to be a challenge. Here, we report a facile approach to multifunctional iron oxide nanoparticle-attached graphene nanosheets (graphene@Fe(3)O(4)) which show the integrated properties of strong supraparamagnetism, electrical conductivity, highly chemical reactivity, good solubility, and excellent processability. The synthesis method is efficient, scalable, green, and controllable and has the feature of reduction of graphene oxide and formation of Fe(3)O(4) nanoparticles in one step. When the feed ratios are adjusted, the average diameter of Fe(3)O(4) nanoparticles (1.2-6.3 nm), the coverage density of Fe(3)O(4) nanoparticles on graphene nanosheets (5.3-57.9%), and the saturated magnetization of graphene@Fe(3)O(4) (0.5-44.1 emu/g) can be controlled readily. Because of the good solubility of the as-prepared graphene@Fe(3)O(4), highly flexible and multifunctional films composed of polyurethane and a high content of graphene@Fe(3)O(4) (up to 60 wt %) were fabricated by the solution-processing technique. The graphene@Fe(3)O(4) hybrid sheets showed electrical conductivity of 0.7 S/m and can be aligned into a layered-stacking pattern in an external magnetic field. The versatile graphene@Fe(3)O(4) nanosheets hold great promise in a wide range of fields, including magnetic resonance imaging, electromagnetic interference shielding, microwave absorbing, and so forth.

  14. Exosome purification based on PEG-coated Fe3O4 nanoparticles.

    Science.gov (United States)

    Chang, Ming; Chang, Yaw-Jen; Chao, Pei Yu; Yu, Qing

    2018-01-01

    Cancer cells secrete many exosomes, which facilitate metastasis and the later growth of cancer. For early cancer diagnosis, the detection of exosomes is a crucial step. Exosomes exist in biological fluid, such as blood, which contains various proteins. It is necessary to remove the proteins in the biological fluid to avoid test interference. This paper presented a novel method for exosome isolation using Fe3O4 magnetic nanoparticles (MNPs), which were synthesized using the chemical co-precipitation method and then coated with polyethylene glycol (PEG). The experimental results showed that the diameter of the PEG-coated Fe3O4 nanoparticles was about 20 nm, while an agglomerate of MNPs reached hundreds of nanometers in size. In the protein removal experiments, fetal bovine serum (FBS) was adopted as the analyte for bioassays of exosome purification. PEG-coated Fe3O4 MNPs reduced the protein concentration in FBS to 39.89% of the original solution. By observing a particle size distribution of 30~200 nm (the size range of various exosomes), the exosome concentrations were kept the same before and after purification. In the gel electrophoresis experiments, the bands of CD63 (~53 kDa) and CD9 (~22 kDa) revealed that exosomes existed in FBS as well as in the purified solution. However, the bands of the serum albumins (~66 kDa) and the various immunoglobulins (around 160 ~ 188 kDa) in the purified solution's lane explained that most proteins in FBS were removed by PEG-coated Fe3O4 MNPs. When purifying exosomes from serum, protein removal is critical for further exosome investigation. The proposed technique provides a simple and effective method to remove proteins in the serum using the PEG-coated Fe3O4 MNPs.

  15. Multifunctional polypyrrole@fe3o4 nanoparticles for dual-modal imaging and in vivo photothermal cancer therapy

    KAUST Repository

    Tian, Qiwei; Wang, Qian; Yao, Kexin; Teng, Baiyang; Zhang, Jizhe; Yang, Shiping; Han, Yu

    2013-01-01

    Magnetic Fe3O4 crystals are produced in situ on preformed polypyrrole (PPY) nanoparticles by rationally converting the residual Fe species in the synthetic system. The obtained PPY@Fe3O4 composite nanoparticles exhibit good photostability and biocompatibility, and they can be used as multifunctional probes for MRI, thermal imaging, and photothermal ablation of cancer cells. © 2013 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim.

  16. Multifunctional polypyrrole@fe3o4 nanoparticles for dual-modal imaging and in vivo photothermal cancer therapy

    KAUST Repository

    Tian, Qiwei

    2013-11-27

    Magnetic Fe3O4 crystals are produced in situ on preformed polypyrrole (PPY) nanoparticles by rationally converting the residual Fe species in the synthetic system. The obtained PPY@Fe3O4 composite nanoparticles exhibit good photostability and biocompatibility, and they can be used as multifunctional probes for MRI, thermal imaging, and photothermal ablation of cancer cells. © 2013 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim.

  17. Interactions in γ-Fe2O3 and Fe3O4 nanoparticle systems

    International Nuclear Information System (INIS)

    Laha, S.S.; Tackett, R.J.; Lawes, G.

    2014-01-01

    We have investigated interaction effects in two different systems of iron oxide nanoparticles. Samples of γ-Fe 2 O 3 and Fe 3 O 4 nanoparticles were synthesized using a matrix-mediated precipitation reaction and a chemical co-precipitation technique respectively. The structural properties of these nanoparticles were studied using x-ray diffraction and transmission electron microscopy. We also used temperature dependent ac magnetic susceptibility measurements to carefully investigate the interactions among these nanoparticles. Our analysis showed that the characteristic interaction energy does not depend simply on the average spacing between the nanoparticles but is likely to be strongly influenced by the fluctuations in the nanoparticle distribution

  18. Bi-functional properties of Fe3O4@YPO4:Eu hybrid nanoparticles: hyperthermia application.

    Science.gov (United States)

    Prasad, A I; Parchur, A K; Juluri, R R; Jadhav, N; Pandey, B N; Ningthoujam, R S; Vatsa, R K

    2013-04-14

    Magnetic nanoparticles based hyperthermia therapy is a possible low cost and effective technique for killing cancer tissues in the human body. Fe3O4 and Fe3O4@YPO4:5Eu hybrid magnetic nanoparticles are prepared by co-precipitation method and their average particle sizes are found to be ∼10 and 25 nm, respectively. The particles are spherical, non-agglomerated and highly dispersible in water. The crystallinity of as-prepared YPO4:5Eu sample is more than Fe3O4@YPO4:5Eu hybrid magnetic nanoparticles. The chemical bonds interaction between Fe3O4 and YPO4:5Eu is confirmed through FeO-P. The magnetization of hybrid nanocomposite shows magnetization Ms = 11.1 emu g(-1) with zero coercivity (measured at 2 × 10(-4) Oe) at room temperature indicating superparamagnetic behaviour. They attain hyperthermia temperature (~42 °C) under AC magnetic field showing characteristic induction heating of the prepared nanohybrid and they will be potential material for biological application. Samples produce the red emission peaks at 618 nm and 695 nm, which are in range of biological window. The quantum yield of YPO4:5Eu sample is found to be 12%. Eu(3+) present on surface and core could be distinguished from luminescence decay study. Very high specific absorption rate up to 100 W g(-1) could be achieved. The intracellular uptake of nanocomposites is found in mouse fibrosarcoma (Wehi 164) tumor cells by Prussian blue staining.

  19. Assembly of Fe3O4 nanoparticles on SiO2 monodisperse spheres

    Indian Academy of Sciences (India)

    Assembly of Fe3O4 nanoparticles on SiO2 monodisperse spheres. K C BARICK and D BAHADUR*. Department of Metallurgical Engineering and Materials Science, Indian Institute of Technology Bombay,. Mumbai 400 076, India. Abstract. The assembly of superparamagnetic Fe3O4 nanoparticles on submicroscopic SiO2 ...

  20. TiO2 nanoparticles supported on the Fe3O4@SiO2 nanocomposites: a novel magnetic nanocatalyst for the synthesis of 2-aminothiazoles

    International Nuclear Information System (INIS)

    Safari, Javad; Abedi-Jazini, Zahra; Zarnegar, Zohre; Sadeghi, Masoud

    2015-01-01

    Nano TiO 2 supported on the Fe 3 O 4 @SiO 2 nanocomposites is introduced as a novel catalyst for the environmental synthesis of 2-aminothiazoles in PEG-200 as a green medium at room temperature. In this reaction, thiourea and N-bromosuccinimide were reacted with various ketones affording the desired 2-aminothiazole compounds. This green protocol has promising features for the reaction response such as simple procedure, high yields, and the ease of separation of pure product, short reaction time, and convenient manipulation. This catalyst was easily separated by an external magnet, and the recovered catalyst was reused several times without any significant loss of activity.Graphical abstract

  1. Polyethyleneimine-modified superparamagnetic Fe3O4 nanoparticles: An efficient, reusable and water tolerance nanocatalyst

    International Nuclear Information System (INIS)

    Khoobi, Mehdi; Delshad, Tayebeh Modiri; Vosooghi, Mohsen; Alipour, Masoumeh; Hamadi, Hosein; Alipour, Eskandar; Hamedani, Majid Pirali; Sadat ebrahimi, Seyed Esmaeil; Safaei, Zahra; Foroumadi, Alireza; Shafiee, Abbas

    2015-01-01

    A novel magnetically separable catalyst was prepared based on surface modification of Fe 3 O 4 magnetic nanoparticle (MNPs) with polyethyleneimine (PEI) via covalent bonding. [3-(2,3-Epoxypropoxy)propyl]trimethoxysilane (EPO) was used as cross linker to bond PEI on the surface of MNPs with permanent stability in contrast to PEI coating via electrostatic interactions. The synthesized catalyst was characterized by Fourier transform infrared (FT-IR), thermogravimetric analysis (TGA), X-ray powder diffraction (XRD), transmission electron microscopy (TEM) and vibrating sample magnetometry (VSM). The catalyst show high efficiency for one-pot synthesis of 2-amino-3-cyano-4H-pyran derivatives via multi-component reaction (MCR). This procedure offers the advantages of green reaction media, high yield, short reaction time, easy purification of the products and simple recovery and reuse of the catalyst by simple magnetic decantation without significant loss of catalytic activity. - Graphical abstract: Covalently grafted polyethyleneimine on Fe 3 O 4 magnetic nanoparticles as easily reusable catalyst for the synthesis of various 4H-pyrans. - Highlights: • Polyethyleneimine modified Fe 3 O 4 via covalent bonding as a novel water tolerance catalyst. • The catalyst showed high efficiency for one-pot synthesis of 2-amino-3-cyano-4H-pyrans in water. • Catalysts could be easily recovered and reused for several times without a significant loss in their catalytic activity

  2. Physiological effects of magnetite (Fe3O4) nanoparticles on perennial ryegrass (Lolium perenne L.) and pumpkin (Cucurbita mixta) plants.

    Science.gov (United States)

    Wang, Huanhua; Kou, Xiaoming; Pei, Zhiguo; Xiao, John Q; Shan, Xiaoquan; Xing, Baoshan

    2011-03-01

    To date, knowledge gaps and associated uncertainties remain unaddressed on the effects of nanoparticles (NPs) on plants. This study was focused on revealing some of the physiological effects of magnetite (Fe(3)O(4)) NPs on perennial ryegrass (Lolium perenne L.) and pumpkin (Cucurbita mixta cv. white cushaw) plants under hydroponic conditions. This study for the first time reports that Fe(3)O(4) NPs often induced more oxidative stress than Fe(3)O(4) bulk particles in the ryegrass and pumpkin roots and shoots as indicated by significantly increased: (i) superoxide dismutase and catalase enzyme activities, and (ii) lipid peroxidation. However, tested Fe(3)O(4) NPs appear unable to be translocated in the ryegrass and pumpkin plants. This was supported by the following data: (i) No magnetization was detected in the shoots of either plant treated with 30, 100 and 500 mg l(-1) Fe(3)O(4) NPs; (ii) Fe K-edge X-ray absorption spectroscopic study confirmed that the coordination environment of Fe in these plant shoots was similar to that of Fe-citrate complexes, but not to that of Fe(3)O(4) NPs; and (iii) total Fe content in the ryegrass and pumpkin shoots treated with Fe(3)O(4) NPs was not significantly increased compared to that in the control shoots.

  3. Magnetic SiO2/Fe3O4 colloidal crystals

    International Nuclear Information System (INIS)

    Huang, C-K; Hou, C-H; Chen, C-C; Tsai, Y-L; Chang, L-M; Wei, H-S; Hsieh, K-H; Chan, C-H

    2008-01-01

    We proposed a novel technique to fabricate colloidal crystals by using monodisperse SiO 2 coated magnetic Fe 3 O 4 (SiO 2 /Fe 3 O 4 ) microspheres. The magnetic SiO 2 /Fe 3 O 4 microspheres with a diameter of 700 nm were synthesized in the basic condition with ferric sulfate, ferrous sulfate, tartaric acid and tetraethyl orthosilicate (TEOS) in the reaction system. Monodisperse SiO 2 /Fe 3 O 4 superparamagnetic microspheres have been successfully used to fabricate colloidal crystals under the existing magnetic field

  4. CMC-coated Fe3O4 nanoparticles as new MRI probes for hepatocellular carcinoma

    Science.gov (United States)

    Sitthichai, Sudarat; Pilapong, Chalermchai; Thongtem, Titipun; Thongtem, Somchai

    2015-11-01

    Pure Fe3O4 nanoparticles and Fe3O4 magnetic nanoparticles (MNPs) coated with carboxymethyl cellulose (CMC) were successfully prepared by co-precipitating of FeCl2·4H2O and FeCl3·6H2O in the solutions containing ammonia at 80 °C for 3 h. Phase, morphology, particle-sized distribution, surface chemistry, and weight loss were characterized by X-ray diffraction (XRD), X-ray photoelectron spectroscopy (XPS), scanning electron microscopy (SEM), transmission electron microscopy (TEM) including high-resolution transmission electron microscopy (HRTEM) and selected area electron diffraction (SAED), thermogravimetric analysis (TGA), and Fourier transform infrared (FTIR) spectroscopy. In this research, CMC-coated Fe3O4 MNPs consisting of Fe2+ and Fe3+ ions with 543.3-mM-1 s-1 high relaxivity were detected and were able to be used for magnetic resonance imaging (MRI) application with very good contrast for targeting hepatocellular carcinoma (HCC) without any further vectorization.

  5. Fe_3O_4@B-MCM-41: A new magnetically recoverable nanostructured catalyst for the synthesis of polyhydroquinolines

    International Nuclear Information System (INIS)

    Abdollahi-Alibeik, Mohammad; Rezaeipoor-Anari, Ali

    2016-01-01

    Boron modified MCM-41 with magnetite core (Fe_3O_4@B-MCM-41) as a new magnetically recoverable heterogeneous catalyst was prepared and characterized by SEM, TEM, BET, XRD, VSM and FT-IR techniques. The catalytic activity of Fe_3O_4@B-MCM-41 was investigated in the four-component reaction of aldehyde, dimedone, active methylene compounds and ammonium acetate for the synthesis of polyhydroquinolines. According to optimization and characterization results the catalyst with Si:B:Fe_3O_4 mole composition of 40:4:1 has the best activity. The catalyst could be recovered easily by external magnet and has excellent reusability many times without significant decrease of activity. - Highlights: • Core–shell Fe_3O_4@MCM-41 nanoparticles modified by boron (Fe_3O_4@B-MCM-41). • Fe_3O_4@B-MCM-41 as reusable catalyst for the synthesis of polyhydroquinolines. • Characterization of Fe_3O_4@B-MCM-41 using SEM, TEM, BET, XRD and FT-IR techniques.

  6. The sandwich-type electrochemiluminescence immunosensor for α-fetoprotein based on enrichment by Fe3O4-Au magnetic nano probes and signal amplification by CdS-Au composite nanoparticles labeled anti-AFP.

    Science.gov (United States)

    Zhou, Hankun; Gan, Ning; Li, Tianhua; Cao, Yuting; Zeng, Saolin; Zheng, Lei; Guo, Zhiyong

    2012-10-09

    A novel and sensitive sandwich-type electrochemiluminescence (ECL) immunosensor was fabricated on a glassy carbon electrode (GCE) for ultra trace levels of α-fetoprotein (AFP) based on sandwich immunoreaction strategy by enrichment using magnetic capture probes and quantum dots coated with Au shell (CdS-Au) as the signal tag. The capture probe was prepared by immobilizing the primary antibody of AFP (Ab1) on the core/shell Fe(3)O(4)-Au nanoparticles, which was first employed to capture AFP antigens to form Fe(3)O(4)-Au/Ab1/AFP complex from the serum after incubation. The product can be separated from the background solution through the magnetic separation. Then the CdS-Au labeled secondary antibody (Ab2) as signal tag (CdS-Au/Ab2) was conjugated successfully with Fe(3)O(4)-Au/Ab1/AFP complex to form a sandwich-type immunocomplex (Fe(3)O(4)-Au/Ab1/AFP/Ab2/CdS-Au), which can be further separated by an external magnetic field and produce ECL signals at a fixed voltage. The signal was proportional to a certain concentration range of AFP for quantification. Thus, an easy-to-use immunosensor with magnetic probes and a quantum dots signal tag was obtained. The immunosensor performed at a level of high sensitivity and a broad concentration range for AFP between 0.0005 and 5.0 ng mL(-1) with a detection limit of 0.2 pg mL(-1). The use of magnetic probes was combined with pre-concentration and separation for trace levels of tumor markers in the serum. Due to the amplification of the signal tag, the immunosensor is highly sensitive, which can offer great promise for rapid, simple, selective and cost-effective detection of effective biomonitoring for clinical application. Copyright © 2012 Elsevier B.V. All rights reserved.

  7. Oxidative degradation of the antibiotic oxytetracycline by Cu@Fe3O4 core-shell nanoparticles.

    Science.gov (United States)

    Pham, Van Luan; Kim, Do-Gun; Ko, Seok-Oh

    2018-08-01

    A core-shell nanostructure composed of zero-valent Cu (core) and Fe 3 O 4 (shell) (Cu@Fe 3 O 4 ) was prepared by a simple reduction method and was evaluated for the degradation of oxytetracycline (OTC), an antibiotic. The Cu core and the Fe 3 O 4 shell were verified by X-ray diffractometry (XRD) and transmission electron microscopy. The optimal molar ratio of [Cu]/[Fe] (1/1) in Cu@Fe 3 O 4 created an outstanding synergic effect, leading to >99% OTC degradation as well as H 2 O 2 decomposition within 10min at the reaction conditions of 1g/L Cu@Fe 3 O 4 , 20mg/L OTC, 20mM H 2 O 2 , and pH3.0 (and even at pH9.0). The OTC degradation rate by Cu@Fe 3 O 4 was higher than obtained using single nanoparticle of Cu or Fe 3 O 4 . The results of the study using radical scavengers showed that OH is the major reactive oxygen species contributing to the OTC degradation. Finally, good stability, reusability, and magnetic separation were obtained with approximately 97% OTC degradation and no notable change in XRD patterns after the Cu@Fe 3 O 4 catalyst was reused five times. These results demonstrate that Cu@Fe 3 O 4 is a novel prospective candidate for the pharmaceutical and personal care products degradation in the aqueous phase. Copyright © 2018 Elsevier B.V. All rights reserved.

  8. Synthesis and characterization of polyethylene glycol (PEG) coated Fe3O4 nanoparticles by chemical co-precipitation method for biomedical applications.

    Science.gov (United States)

    Anbarasu, M; Anandan, M; Chinnasamy, E; Gopinath, V; Balamurugan, K

    2015-01-25

    Polyethylene glycol (PEG) coated Fe3O4 nanoparticles were synthesized by chemical co-precipitation method. With polyethylene glycol (PEG) as a stabilizer and dispersant. The X-ray diffraction and selected area electron diffraction (SAED) results show that the cubic inverse spinel structure of pure phase polycrystalline Fe3O4 was obtained. The scanning electron microscopy (SEM) and field emission transmission electron microscopy (FE-TEM) results exhibited that the resulted Fe3O4 nanoparticles were roughly spherical in shape with narrow size distribution and homogenous shape. Fourier transform infrared spectroscopy (FT-IR) results suggested that PEG indicated with Fe3O4 via its carbonyl groups. Results of vibrating sample magnetometer (VSM) indicated that the prepared Fe3O4 nanoparticles exhibit superparamagnetic behavior and high saturation magnetization at room temperature. Such Fe3O4 nanoparticles with favorable size and tunable magnetic properties are promising biomedical applications. Copyright © 2014. Published by Elsevier B.V.

  9. Iron Nanoparticles (Fe3O4 Used to Synthesize Magnetic Sodium Alginate Hydrogel Beads for the Removal of Basic Blue 159 from Aqueous Solutions

    Directory of Open Access Journals (Sweden)

    Atiyeh Ghajarieh

    2017-11-01

    Full Text Available Dyes are a main source of pollutants in textile plant effluents. Due to their molecular structure, they are usually toxic, carcinogenous, and persistent in the environment. The aim of the present work was to explore the removal of basic blue159 (BB159 using magnetic sodium alginate hydrogel beads. Magnetic sodium alginate hydrogel beads were initially synthesized  accoriodng to Rocher method using CaCl2 as a crosslink agent. Fourier transform infrared spectroscopy (FTIR was then employed to examine the functional groups on the surface of the magnetic sodium alginate hydrogel beads. In a third stage, the magnetic properties of the beads were measured using a vibrating sample magnetometer (VSM and the magnetic parameters were calculated. Subsequently, the effects of such parameters as adsorbent dosage, pH, initial concentration of dye, and contact time were evaluated on the BB159 removal efficiency of the adsorbent used. Finally, the Langmuir, Freundlich, Temkin, and B.E.T models were exploited to study the adsorption isotherm of BB159 onto the magnetic sodium alginate hydrogel beads. It was found that the magnetic sodium alginate beads possess both –COO and –OH groups that play important roles in the adsorption of the positively charged BB159 dye. A saturation magnetization equal to 21/8(emu/g was obtained for the sodium alginate beads/nano Fe3O4. Results also revealed that the highest dye removal from aqueous solutions was achieved at pH=11 in 120 minutes for 9 grams of the adsorbent. The study indicated that BB159 removal using the magnetic sodium alginate hydrogel beads as the adsorbent obeys the Langmuir model. Moreover, it was shown that the efficiency of the process for BB159 removal from aqueous solutions was satisfactory (85%.

  10. Preparation, characterization and SRXPS study of polyvinyl alcohol modified Fe3O4 nanoparticles

    International Nuclear Information System (INIS)

    Li Ming; Wang Bing; Feng Weiyue; Liu Hui; Kang Yanjie; Kui Rexi

    2011-01-01

    In this study, Fe 3 O 4 nanoparticles were coated with PVA to synthesize PVA-Fe 3 O 4 complex, which were characterized by transmission electron microscopy(TEM),thermo gravimetric(TG) analysis, UV-vis spectra,zeta potentials and ICP-MS, in terms of the physicochemical properties, while surface constituents, structures and chemical bonds of the modified and unmodified nanoparticles were characterized with synchrotron radiation X-ray photoelectron spectroscopy(SRXPS), for exploring modification mechanism of the PVA-Fe 3 O 4 . The results indicate that after PVA modification, the suspension stability of Fe 3 O 4 nanoparticles in water and cellular uptake capability were significantly improved compared with unmodified Fe 3 O 4 . The SRXPS analysis reveals that the hydroxy groups on the surface of Fe 3 O 4 nanoparticles and PVA were combined by hydrogen bond to consist a stable system, which would be beneficial to the biomedical applications of Fe 3 O 4 nanoparticles. (authors)

  11. Preparation of CNC-dispersed Fe3O4 nanoparticles and their application in conductive paper.

    Science.gov (United States)

    Liu, Kai; Nasrallah, Joseph; Chen, Lihui; Huang, Liulian; Ni, Yonghao

    2015-08-01

    Well-dispersed Fe3O4 nanoparticles (NPs) were synthesized by a co-precipitation method in the presence of cellulose nano-crystals (CNC) as the template. The thus prepared Fe3O4 NPs were then used as a coating agent for the preparation of conductive paper. Fourier transform infrared spectroscopy (FTIR) results revealed that the Fe3O4 NPs were immobilized on the CNC through interactions between the hydroxyl groups of CNC and Fe3O4. Scanning transmission electron microscopy (STEM) images showed that the Fe3O4 NPs prepared in the presence of CNC can be dispersed in the CNC network, while the Fe3O4 NPs prepared in the absence of CNC tended to aggregate in aqueous solutions. The conductivity of the Fe3O4 NPs coated paper can reach to 0.0269 S/m at the coating amount of 14.75 g/m(2) Fe3O4/CNC nanocomposites. Therefore, the thus obtained coated paper can be potentially used as anti-static packaging material in the packaging field. Copyright © 2015 Elsevier Ltd. All rights reserved.

  12. Synthesis, Characterizations of Superparamagnetic Fe3O4-Ag Hybrid Nanoparticles and Their Application for Highly Effective Bacteria Inactivation.

    Science.gov (United States)

    Tung, Le Minh; Cong, Nguyen Xuan; Huy, Le Thanh; Lan, Nguyen Thi; Phan, Vu Ngoc; Hoa, Nguyen Quang; Vinh, Le Khanh; Thinh, Nguyen Viet; Tai, Le Thanh; Ngo, Duc-The; Mølhave, Kristian; Huy, Tran Quang; Le, Anh-Tuan

    2016-06-01

    In recent years, outbreaks of infectious diseases caused by pathogenic micro-organisms pose a serious threat to public health. In this work, Fe3O4-Ag hybrid nanoparticles were synthesized by simple chemistry method and these prepared nanoparticles were used to investigate their antibacterial properties and mechanism against methicilline-resistant Staphylococcus aureus (MRSA) pathogen. The formation of dimer-like nanostructure of Fe3O4-Ag hybrid NPs was confirmed by X-ray diffraction and High-resolution Transmission Electron Microscopy. Our biological analysis revealed that the Fe3O4-Ag hybrid NPs showed more noticeable bactericidal activity than that of plain Fe3O4 NPs and Ag-NPs. We suggest that the enhancement in bactericidal activity of Fe3O4-Ag hybrid NPs might be likely from main factors such as: (i) enhanced surface area property of hybrid nanoparticles; (ii) the high catalytic activity of Ag-NPs with good dispersion and aggregation stability due to the iron oxide magnetic carrier, and (iii) large direct physical contacts between the bacterial cell membrane and the hybrid nanoparticles. The superparamagnetic hybrid nanoparticles of iron oxide magnetic nanoparticles decorated with silver nanoparticles can be a potential candidate to effectively treat infectious MRSA pathogen with recyclable capability, targeted bactericidal delivery and minimum release into environment.

  13. Improving Pullulanase Catalysis via Reversible Immobilization on Modified Fe3O4@Polydopamine Nanoparticles.

    Science.gov (United States)

    Wang, Jianfeng; Liu, Zhongmei; Zhou, Zhemin

    2017-08-01

    To improve the catalysis of pullulanase from Anoxybacillus sp.WB42, Fe 3 O 4 @polydopamine nanoparticles (Fe 3 O 4 @PDA) were prepared and modified with functional groups for immobilization of pullulanases via covalent binding or ionic adsorption. Immobilized pullulanases had lower thermal stability than that of free pullulanase, whereas their catalysis depended on the surface characteristics of nanoparticles. As for covalent immobilization of pullulanases onto Fe 3 O 4 @PDA derivatives, the spacer grafted onto Fe 3 O 4 @PDA made the catalytic efficiency of pullulanase increase up to the equivalence of free enzyme but dramatically reduced the pullulanase thermostability. In contrast, pullulanases bounded ionically to Fe 3 O 4 @PDA derivatives had higher activity recovery and catalytic efficiency, and their catalytic behaviors varied with the modifier grafted onto Fe 3 O 4 @PDA. Among these immobilized pullulanases, ionic adsorption of pullulanase on Fe 3 O 4 @PDA-polyethyleneimine-glycidyltrimethylammonium gave a high-performance and durable catalyst, which displayed not only 1.5-fold increase in catalytic efficiency compared to free enzyme but also a significant improvement in operation stability with a half of initial activity after 27 consecutive cycles with a total reaction time of 13.5 h, and was reversible, making this nanoparticle reusable for immobilization.

  14. C@Fe 3 O 4 /NTA-Ni magnetic nanospheres purify histidine-tagged ...

    African Journals Online (AJOL)

    This study reports synthesis of Ni-nitrilotriacetic acid (Ni-NTA) modified carbon nanospheres containing magnetic Fe3O4 particles (C@Fe3O4), which can act as a general tool to separate and purify histidine-tagged fetidin. In this experiment, C nanospheres are prepared from glucose using the hydrothermal process, ...

  15. Fabrication and magnetic-induced aggregation of Fe3O4–noble metal composites for superior SERS performances

    International Nuclear Information System (INIS)

    Gan, Zibao; Zhao, Aiwu; Zhang, Maofeng; Wang, Dapeng; Guo, Hongyan; Tao, Wenyu; Gao, Qian; Mao, Ranran; Liu, Erhu

    2013-01-01

    Fe 3 O 4 –noble metal composites were obtained by combining Au, Ag nanoparticles (NPs) with 3-aminopropyltrimethoxysilane-functionalized Fe 3 O 4 NPs. UV–Visible absorption spectroscopy demonstrates the obtained Fe 3 O 4 –noble metal composites inherit the typical surface plasmon resonance bands of Au, Ag at 533 and 453 nm, respectively. Magnetic measurements also indicated that the superparamagnetic Fe 3 O 4 –noble metal composites have excellent magnetic response behavior. A magnetic-induced idea was introduced to change their aggregated states and take full advantage of their surface-enhanced Raman scattering (SERS) performances. Under the induction of an external magnetic field, the bifunctional Fe 3 O 4 –noble metal aggregates exhibit the unique superiority in SERS detection of Rhodamine 6G (R6G), compared with the naturally dispersed Au, Ag NPs. Especially, the detection limit of the Fe 3 O 4 –Ag aggregates for R6G is as low as 10 −14  M, and the calculated EF reaches up to 1.2 × 10 6 , which meets the requirements for trace detection of analytes. Furthermore, the superiority could be extended to sensitive detection of other organic molecules, such as 4-mercaptopyridine. This work provides a new insight for active adjustment of the aggregated states of SERS substrates and the optimization of SERS performances

  16. Gum arabic modified Fe3O4 nanoparticles cross linked with collagen for isolation of bacteria

    Directory of Open Access Journals (Sweden)

    Chittor Raghuraman

    2010-12-01

    Full Text Available Abstract Background Multifunctional magnetic nanoparticles are important class of materials in the field of nanobiotechnology, as it is an emerging area of research for material science and molecular biology researchers. One of the various methods to obtain multifunctional nanomaterials, molecular functionalization by attaching organic functional groups to nanomagnetic materials is an important technique. Recently, functionalized magnetic nanoparticles have been demonstrated to be useful in isolation/detection of dangerous pathogens (bacteria/viruses for human life. Iron (Fe based material especially FePt is used in the isolation of ultralow concentrations (2 cfu/ml of bacteria in less time and it has been demonstrated that van-FePt may be used as an alternative fast detection technique with respect to conventional polymerase chain reaction (PCR method. However, still further improved demonstrations are necessary with interest to biocompatibility and green chemistry. Herein, we report the synthesis of Fe3O4 nanoparticles by template medication and its application for the detection/isolation of S. aureus bacteria. Results The reduction of anhydrous Iron chloride (FeCl3 in presence of sodium borohydride and water soluble polyelectrolyte (polydiallyldimethyl ammonium chloride, PDADMAC produces black precipitates. The X-ray diffraction (XRD, XPS and TEM analysis of the precipitates dried at 373 K demonstrated the formation of nanocrystalline Fe3O4. Moreover, scanning electron microscopy (SEM showed isolated staphylococcous aureus (S. aureus bacteria at ultralow concentrations using collagen coated gum arabic modified iron oxide nanoparticles (CCGAMION. Conclusion We are able to synthesize nanocrystalline Fe3O4 and CCGAMION was able to isolate S. aureus bacteria at 8-10 cfu (colony forming units/ml within ~3 minutes.

  17. High-throughput multipesticides residue analysis in earthworms by the improvement of purification method: Development and application of magnetic Fe3 O4 -SiO2 nanoparticles based dispersive solid-phase extraction.

    Science.gov (United States)

    Sun, Yuhan; Qi, Peipei; Cang, Tao; Wang, Zhiwei; Wang, Xiangyun; Yang, Xuewei; Wang, Lidong; Xu, Xiahong; Wang, Qiang; Wang, Xinquan; Zhao, Changshan

    2018-06-01

    As a key representative organism, earthworms can directly illustrate the influence of pesticides on environmental organisms in soil ecosystems. The present work aimed to develop a high-throughput multipesticides residue analytical method for earthworms using solid-liquid extraction with acetonitrile as the solvent and magnetic material-based dispersive solid-phase extraction for purification. Magnetic Fe 3 O 4 nanoparticles were modified with a thin silica layer to form Fe 3 O 4 -SiO 2 nanoparticles, which were fully characterized by field-emission scanning electron microscopy, transmission electron microscopy, Fourier-transform infrared spectroscopy, X-ray diffractometry, and vibrating sample magnetometry. The Fe 3 O 4 -SiO 2 nanoparticles were used as the separation media in dispersive solid-phase extraction with primary secondary amine and ZrO 2 as the cleanup adsorbents to eliminate matrix interferences. The amounts of nanoparticles and adsorbents were optimized for the simultaneous determination of 44 pesticides and six metabolites in earthworms by liquid chromatography with tandem mass spectrometry. The method performance was systematically validated with satisfactory results. The limits of quantification were 20 μg/kg for all analytes studied, while the recoveries of the target analytes ranged from 65.1 to 127% with relative standard deviation values lower than 15.0%. The developed method was subsequently utilized to explore the bioaccumulation of bitertanol in earthworms exposed to contaminated soil, verifying its feasibility for real sample analysis. © 2018 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim.

  18. Comparison of two fabricated aptasensors based on modified carbon paste/oleic acid and magnetic bar carbon paste/Fe3O4@oleic acid nanoparticle electrodes for tetracycline detection.

    Science.gov (United States)

    Jahanbani, Shahriar; Benvidi, Ali

    2016-11-15

    In this research, we have improved two aptasensors based on a modified carbon paste electrode (CPE) with oleic acid (OA), and a magnetic bar carbon paste electrode (MBCPE) with Fe3O4 magnetic nanoparticles and oleic acid (OA). After the immobilization process of anti-TET at the electrode surfaces, the aptasensors were named CPE/OA/anti-TET and MBCPE/Fe3O4NPs/OA/anti-TET respectively. In this paper, the detection of tetracycline is compared using CPE/OA/anti-TET and MBCPE/Fe3O4NPs/OA/anti-TET aptasensors. These modified electrodes were characterized by infrared spectroscopy (IR), scanning electron microscopy (SEM), electrochemical impedance spectroscopy (EIS), UV-vis spectroscopy, and voltammetric methods. The linear range and the detection limit for TET with the CPE/OA/anti-TET aptasensor were found to be 1.0×10(-12)-1.0×10(-7)M and 3.0×10(-13)M respectively by EIS method. The linear range and the detection limit for TET with the CPE/OA/anti-TET aptasensor were found to be 1.0×10(-10)-1.0×10(-7)M with a limit of detection of 2.9×10(-11)M using differential pulse voltammetry (DPV) technique. The MBCPE/Fe3O4NPs/OA/anti-TET aptasensor was used for determination of TET, and a liner range of 1.0×10(-14)-1.0×10(-6)M with a detection limit of 3.8×10(-15)M was obtained by EIS method. Also, the linear range and detection limit of 1.0×10(-12)-1.0×10(-6)M and 3.1×10(-13)M respectively, were obtained for MBCPE/Fe3O4NPs/OA/anti-TET aptasensor using DPV. The proposed aptasensors were applied for determination of tetracycline in some real samples such as drug, milk, honey and blood serum samples. Copyright © 2016 Elsevier B.V. All rights reserved.

  19. PREPARATION,COMPLEX MECHANISM AND STRUCTURE MODEL OF METALLOPHTHALOC- YANINE-Fe3O4 NANOPARTICLES COMPOSITE

    Institute of Scientific and Technical Information of China (English)

    2000-01-01

    MPc-Fe3O4-nanoparticles composite(M=Co, Cu, Ni, Mn) have been prepared and the factors that influence their mean size have been studied. The mean size of the nanoparticles composite increase with the increase of complex temperature. The interaction of MPc with Fe3O4 nanoparticles has been studied. There are M-O covalent bonding and ionic bonding between MPc and Fe3O4 nanoparticles. The intensities of M-O bonding and ionic bonding are in vestigated .The complex mechanism of MPc with Fe3O4 nanoparticles have been studied. First, there are complex between MPc and all Fe3O4 nanoparticles. Then, Fe3O4 nanoparticles accumulate together to form the accumulators, MPc have the function of cohering Fe3O4 nanoparticles. A considerable number of MPc combine with Fe3O4 nanoparticles on the surface of the accumulators to form MPc-Fe3O4 nanoparticles composite. All the above proesses take place spontaneously. The structure model of MPc-Fe3O4 nanoparticles composite has also been investigated. Inside the MPc-Fe3O4 nanoparticles composite, Fe3O4 nanoparticles accumulate together without order, on the surface of the composite, MPc form molecular dispersion layer. The threshold of molecular dispersion layer are also investigated.

  20. Phytosynthesis and photocatalytic activity of magnetite (Fe_3O_4) nanoparticles using the Andean blackberry leaf

    International Nuclear Information System (INIS)

    Kumar, Brajesh; Smita, Kumari; Cumbal, Luis; Debut, Alexis; Galeas, Salome; Guerrero, Victor H.

    2016-01-01

    In the present study, a simple, low cost, and ecofriendly synthesis of magnetite nanoparticles (Fe_3O_4 NPs) has been developed using Andean blackberry leaf extract. UV–vis spectroscopy technique were used to study the initial formation of Fe_3O_4 NPs. Morphology, crystallinity and surface properties of nanoparticles were studied using transmission electron microscopy (TEM), Dynamic light scattering (DLS), X-ray diffraction (XRD), Fourier transform infrared spectroscopy (FTIR) and Thermal gravimetric (TG) techniques. TEM and DLS characterization indicated the formation of spherical Fe_3O_4 NPs of average size 54.5 ± 24.6 nm. XRD and FTIR studies confirmed the existence of the cubic spinel phase of Fe_3O_4 NPs and Fe−O peak at 570 cm"−"1, whereas TG analysis indicated that the nanoparticles contain 94% metal and 6% capping ligand. It has been observed that, as-synthesized Fe_3O_4 NPs exhibited photocatalytic activity for degradation of organic dyes such as methylene blue (k = 0.0105475 min"−"1), congo red (k = 0.0043240 min"−"1), and methyl orange (k = 0.0028930 min"−"1), efficiently. The antioxidant activity of Fe_3O_4 NPs against 1, 1-diphenyl-2-picrylhydrazyl were also evaluated. - Highlights: • We report extracellular phytosynthesis of Fe_3O_4 nanoparticles using the Andean blackberry leaf. • The synthesized Fe_3O_4 nanoparticles are spherical and average size is 54.5 ± 24.6 nm. • It showed enhanced photocatalytic activity and weak antioxidant efficacy. • Environmentally benign, non-toxic and cost-effective method is suggested.

  1. Fabrication of magnetically recyclable Fe3O4@Cu nanocomposites with high catalytic performance for the reduction of organic dyes and 4-nitrophenol

    International Nuclear Information System (INIS)

    Tang, Mingyi; Zhang, Sai; Li, Xianxian; Pang, Xiaobo; Qiu, Haixia

    2014-01-01

    A facile and efficient approach to synthesize Fe 3 O 4 @Cu nanocomposites using L-Lysine as a linker was developed. The morphology, composition and crystallinity of the Fe 3 O 4 @Cu nanocomposites were characterized by Fourier Transform infrared spectroscopy, transmission electron microscopy, energy-dispersive X-ray spectroscopy, and powder X-ray diffraction. In addition, the magnetic properties were determined with vibrating sample magnetometer. The surface of the Fe 3 O 4 contained many small Cu nanoparticles with sizes of about 3 nm. It was found that the Fe 3 O 4 @Cu nanocomposites could catalyze the degradation of organic dyes. The catalytic activities of the Fe 3 O 4 @Cu nanocomposites for the reduction of nitrophenol were also studied. The Fe 3 O 4 @Cu nanocomposites are more efficient catalysts compared with Cu nanoparticles and can easily be recovered from the reaction mixture with magnet. The cost effective and recyclable Fe 3 O 4 @Cu nanocomposites provide an exciting new material for environmental protection applications. - Highlights: • Cu nanoparticles as small as 3 nm are synthesized. • Low cost Fe 3 O 4 @Cu magnetical nanoparticles show catalytic activity for organic dyes and 4-nitrophenol. • The Fe 3 O 4 @Cu display high catalytic activity after 13 cycles

  2. Triton X-100 functionalized Fe3O4 nanoparticles for biomedical applications

    Science.gov (United States)

    Gawali, Santosh L.; Madan, Devendra P.; Barick, K. C.; Somani, R.; Hassan, P. A.

    2018-04-01

    We report the preparation of Triton X-100 functionalized Fe3O4 nanoparticles (TXMNPs) and investigated their potential application in hyperthermia therapy. The formation of highly crystalline, spinel-structured Fe3O4 nanoparticles of average size of about 10 nm was evident from X-ray diffraction (XRD) and transmission electron microscopy (TEM) analyses. Fourier transform infrared spectroscopy (FTIR), dynamic light scattering (DLS), UV-visible spectroscopy and zeta-potential measurements suggest the successful functionalization of nanoparticles with TX-100. These TXMNPs exhibit good colloidal stabilization in aqueous medium and show protein resistance characteristic in physiological medium. They showed excellent heating efficacy under AC magnetic field (AMF) with specific absorption rate (SAR) values of 146 and 260 W/g of Fe for 1.25 and 0.625 mg/ml of Fe, respectively at an applied AMF of 507 Oe and frequency of 300 kHz. Thus, these nanoparticles can be used as effective thermoseed for hyperthermia treatment of cancer.

  3. Synthesis of Fe3O4 particle-chain microwires in applied magnetic field

    International Nuclear Information System (INIS)

    Li Fashen; Wang Ying; Wang Tao

    2007-01-01

    Fe 3 O 4 particle-chain microwires are firstly synthesized under magnetic field by a simple coprecipitation method. The increase of magnetic field caused the lengthening of the wires, and doubled densities of starting solution lead to a halved diameter. It was supposed that the magnetic field gradient and the particular growing process of particles are the main factors of the formation of these microwires. Magnetic hysteresis curves of Fe 3 O 4 microwires were also measured. - Graphical abstract: Fe 3 O 4 particle-chain microwires are firstly synthesized under magnetic field by a simple coprecipitation method. It was supposed that the magnetic field gradient and the particular growing process of particles are the main factors of the formation of these microwires. Magnetic hysteresis curves of Fe 3 O 4 microwires were also measured

  4. Polyethyleneimine-modified superparamagnetic Fe3O4 nanoparticles for lipase immobilization: Characterization and application

    International Nuclear Information System (INIS)

    Khoobi, Mehdi; Motevalizadeh, Seyed Farshad; Asadgol, Zahra; Forootanfar, Hamid; Shafiee, Abbas; Faramarzi, Mohammad Ali

    2015-01-01

    Magnetically separable nanospheres consisting of polyethyleneimine (PEI) and succinated PEI grafted on silica coated magnetite (Fe 3 O 4 ) were prepared and characterized using Fourier transform infrared spectroscopy, thermogravimetric analysis, X-ray diffraction, vibrating sample magnetometer, scanning electron microscopy and transmission electron microscopy. The prepared magnetic nanoparticles were then applied for physical adsorption or covalent attachment of Thermomyces lanuginosa lipase (TLL) via glutaraldehyde or hexamethylene diisocyanate. The reusability, storage, pH and thermal stabilities of the immobilized enzymes compared to that of free lipase were examined. The obtained results showed that the immobilized lipase on MNPs@PEI-GLU was the best biocatalyst which retained 80% of its initial activity after 12 cycles of application. The immobilized lipase on the selected support (MNPs@PEI-GLU) was also applied for the synthesis of ethyl valerate. Following 24 h incubation of the immobilized lipase on the selected support in n-hexane and solvent free media, the esterification percentages were 72.9% and 28.9%, respectively. - Graphical abstract: A schematic of the preparation of PEI- and succinated PEI-grafted Fe 3 O 4 MNPs (MNPs@PEI) and the immobilization of lipase by covalent bonding and adsorption. - Highlights: • Functionalized polyethylenimine-grafted magnetic nanoparticles were synthesized. • The prepared supports were fully characterized by various analysis methods. • Lipase was immobilized on the nanostructures by adsorption and covalent attachment. • Immobilized lipase produced ethyl valerate in solvent free medium

  5. Electromagnetic characteristics of manganese oxide-coated Fe3O4 nanoparticles at 2-18 GHz

    Science.gov (United States)

    Yang, R. B.; Liang, W. F.; Lin, C. K.

    2011-04-01

    The dielectric and magnetic properties of manganese oxide-coated Fe3O4 nanoparticles (NPs) were measured by the transmission/reflection method in 2-18 GHz. MnOx-coated Fe3O4 NPs were prepared by sol-gel method followed by heat-treating at 300, 400, and 500 °C, respectively. The heat-treated powders were then used as magnetic fillers and added to an epoxy resin to prepare MnOx-coated Fe3O4 composites for the complex permittivity (ɛ'-jɛ″) and permeability (μ'-jμ″) measurements. After the sol-gel process, the coating of manganese oxide (mixture of major Mn2O3 and minor Mn3O4) reduced the value of ɛ'. The lower the heat-treating temperature, the larger the decrease in ɛ'. The relative decrease in ɛ', compared with uncoated Fe3O4 nanoparticles, is 28.7, 23.5, and 20.0% for coated MnOx heat-treated at 300, 400, and 500 °C, respectively, while the relative decrease in ɛ″ is 74.1, 68.8, and 65.2%, respectively. In the present study, MnOx-coated Fe3O4 exhibited a significant decrease in dielectric loss tangent of ˜100% compared to that of uncoated NPs and can be of practical use for microwave components.

  6. Magnetic anisotropies in epitaxial Fe3O4/GaAs(100) patterned structures

    International Nuclear Information System (INIS)

    Zhang, W.; Zhang, D.; Yuan, S. J.; Huang, Z. C.; Zhai, Y.; Wong, P. K. J.; Wu, J.; Xu, Y. B.

    2014-01-01

    Previous studies on epitaxial Fe 3 O 4 rings in the context of spin-transfer torque effect have revealed complicated and undesirable domain structures, attributed to the intrinsic fourfold magnetocrystalline anisotropy in the ferrite. In this Letter, we report a viable solution to this problem, utilizing a 6-nm-thick epitaxial Fe 3 O 4 thin film on GaAs(100), where the fourfold magnetocrystalline anisotropy is negligible. We demonstrate that in the Fe 3 O 4 planar wires patterned from our thin film, such a unique magnetic anisotropy system has been preserved, and relatively simple magnetic domain configurations compared to those previous reports can be obtained

  7. Green Synthesis of Magnetite (Fe3O4) Nanoparticles Using Seaweed ( Kappaphycus alvarezii) Extract

    Science.gov (United States)

    Yew, Yen Pin; Shameli, Kamyar; Miyake, Mikio; Kuwano, Noriyuki; Bt Ahmad Khairudin, Nurul Bahiyah; Bt Mohamad, Shaza Eva; Lee, Kar Xin

    2016-06-01

    In this study, a simple, rapid, and eco-friendly green method was introduced to synthesize magnetite nanoparticles (Fe3O4-NPs) successfully. Seaweed Kappaphycus alvarezii ( K. alvarezii) was employed as a green reducing and stabilizing agents. The synthesized Fe3O4-NPs were characterized with X-ray diffraction (XRD), ultraviolet-visible spectroscopy (UV-Vis), Fourier transform infrared (FT-IR), and transmission electron microscopy (TEM) techniques. The X-ray diffraction planes at (220), (311), (400), (422), (511), (440), and (533) were corresponding to the standard Fe3O4 patterns, which showed the high purity and crystallinity of Fe3O4-NPs had been synthesized. Based on FT-IR analysis, two characteristic absorption peaks were observed at 556 and 423 cm-1, which proved the existence of Fe3O4 in the prepared nanoparticles. TEM image displayed the synthesized Fe3O4-NPs were mostly in spherical shape with an average size of 14.7 nm.

  8. Alpha chymotrypsin coated clusters of Fe3O4 nanoparticles for biocatalysis in low water media

    Directory of Open Access Journals (Sweden)

    Mukherjee Joyeeta

    2012-11-01

    Full Text Available Abstract Background Enzymes in low water containing non aqueous media are useful for organic synthesis. For example, hydrolases in such media can be used for synthetic purposes. Initial work in this area was carried out with lyophilized powders of enzymes. These were found to have poor activity. Drying (removing bulk water by precipitation turned out to be a better approach. As enzymes in such media are heterogeneous catalysts, spreading these precipitates over a large surface gave even better results. In this context, nanoparticles with their better surface to volume ratio provide obvious advantage. Magnetic nanoparticles have an added advantage of easy separation after the reaction. Keeping this in view, alpha chymotrypsin solution in water was precipitated over a stirred population of Fe3O4 nanoparticles in n-propanol. This led to alpha chymotrypsin activity coated over clusters of Fe3O4 nanoparticles. These preparations were found to have quite high transesterification activity in low water containing n-octane. Results Precipitation of alpha chymotrypsin over a stirred suspension of Fe3O4 nanoparticles (3.6 nm diameter led to the formation of enzyme coated clusters of nanoparticles (ECCNs. These clusters were also magnetic and their hydrodynamic diameter ranged from 1.2- 2.6 microns (as measured by dynamic light scattering. Transmission electron microscopy (TEM, showed that these clusters had highly irregular shapes. Transesterification assay of various clusters in anhydrous n-octane led to optimization of concentration of nanoparticles in suspension during precipitation. Optimized design of enzyme coated magnetic clusters of nanoparticles (ECCN 3 showed the highest initial rate of 465 nmol min-1 mg-1protein which was about 9 times higher as compared to the simple precipitates with an initial rate of 52 nmol min-1 mg-1 protein. Circular Dichroism (CD(with a spinning cell accessory showed that secondary structure content of the alpha

  9. Magnetically Separable Fe3O4@DOPA-Pd: A Heterogeneous Catalyst for Aqueous Heck Reaction

    Science.gov (United States)

    Magnetically separable Fe3O4@DOPA-Pd catalyst has been synthesized via anchoring of palladium over dopamine-coated magnetite via non-covalent interaction and the catalyst is utilized for expeditious Heck coupling in aqueous media.

  10. Magnetically separable Fe3O4@DOPA–Pd: a heterogeneous catalyst for aqueous Heck reaction

    Data.gov (United States)

    U.S. Environmental Protection Agency — Magnetically separable Fe3O4@DOPA–Pd catalyst has been synthesized via anchoring of palladium over dopamine-coated magnetite via co-ordinate interaction and the...

  11. Solution-phase synthesis of single-crystalline Fe3O4 magnetic nanobelts

    International Nuclear Information System (INIS)

    Li Lili; Chu Ying; Liu Yang; Wang Dan

    2009-01-01

    Single-crystalline Fe 3 O 4 nanobelt was first synthesized on a large scale by a facile and efficient hydrothermal process. The samples were characterized by transmission electron microscopy (TEM), X-ray diffraction (XRD), and vibrating sample magnetometer (VSM). The SAED pattern obtained from a typical individual nanobelt has a highly symmetrical dotted lattice, which reveals the single-crystalline nature of belt-like Fe 3 O 4 . The saturation magnetization of the Fe 3 O 4 nanobelt is higher than the wire, hollow sphere and octahedral structure. Such methods are easy and mild, and could synthesize other metal oxide in such experiment situation

  12. Adsorption mechanism of magnetically separable Fe_3O_4/graphene oxide hybrids

    International Nuclear Information System (INIS)

    Ouyang, Ke; Zhu, Chuanhe; Zhao, Ya; Wang, Leichao; Xie, Shan; Wang, Qun

    2015-01-01

    Graphical abstract: A recyclable Fe_3O_4/graphene oxide (GO) magnetic hybrid was successfully synthesized via a facile one-pot polylol approach and exhibited an effective adsorption of BPA in aqueous solution. - Highlights: • Magnetically separable Fe_3O_4/GO hybrids were synthesized via a facile one-pot polylol approach. • The Fe_3O_4/GO hybrid could be easily recovered and met the need of magnetic separation, exhibiting excellent reproducibility and reusability. • The hybrids showed excellent adsorption ability for bisphenol A in aqueous solution. • The effect of pH value, temperature and coexisting ions on the adsorption was studied. • π–π interactions were postulated to be the primary mechanisms of adsorption of BPA on Fe_3O_4/GO hybrids. - Abstract: A reclaimable Fe_3O_4/graphene oxide (GO) magnetic hybrid was successfully synthesized via a facile one-pot polyol approach and employed as a recyclable adsorbent for Bisphenol A (BPA) in aqueous solutions. The maximum adsorption capacity (q_m) of the Fe_3O_4/GO hybrid for BPA was 72.80 mg/g at 273 K. The kinetics of the adsorption process and the adsorption isotherm data were fitted using the Freundlich equation and a pseudo-second-order kinetic model. The results of the thermodynamic parameters ΔH°, ΔS° and ΔG° showed that the adsorption process was exothermic and spontaneous. Furthermore, the reusability of the samples was investigated, and the results indicated that the samples exhibited high stability. The magnetic characterization demonstrated that hybrids were superparamagnetic and could be recovered conveniently by magnetic separation. The strong π–π interaction was determined to be the predominant driving force behind the adsorption of BPA onto the Fe_3O_4/GO hybrid. Therefore, the Fe_3O_4/GO hybrid could be regarded as a potential adsorbent for wastewater treatment and purification processes.

  13. Enhancement of crystallinity and magnetization in Fe3O4 nanoferrites induced by a high synthesized magnetic field

    Science.gov (United States)

    Ma, Xinxiu; Zhang, Zhanxian; Chen, Shijie; Lei, Wei; Xu, Yan; Lin, Jia; Luo, Xiaojing; Liu, Yongsheng

    2018-05-01

    A one-step hydrothermal method in different dc magnetic fields was used to prepare the Fe3O4 nanoparticles. Under the magnetic field, the average particle size decreased from 72.9 to 41.6 nm, meanwhile, the particle crystallinity is greatly improved. The magnetic field enhances its saturation magnetization and coercivity. The high magnetic field induce another magnetic structure. At room temperature, these nanoparticles exhibit superparamagnetism whose critical size (D sp) is about 26 nm. The Verwey transition is observed in the vicinity of 120 K of Fe3O4 nanoparticles. The effective magnetic anisotropy decreases with the increase of the test temperature because of the H c decreased.

  14. Modification of polydopamine-coated Fe3O4 nanoparticles with multi-walled carbon nanotubes for magnetic-μ-dispersive solid-phase extraction of antiepileptic drugs in biological matrices.

    Science.gov (United States)

    Zhang, Ruiqi; Wang, Siming; Yang, Ye; Deng, Yulan; Li, Di; Su, Ping; Yang, Yi

    2018-06-01

    In this study, multi-walled carbon nanotubes were coated on the surface of magnetic nanoparticles modified by polydopamine. The synthesized composite was characterized and applied to magnetic-μ-dispersive solid-phase extraction of oxcarbazepine (OXC), phenytoin (PHT), and carbamazepine (CBZ) from human plasma, urine, and cerebrospinal fluid samples prior to analysis by a high-performance liquid chromatography-photodiode array detector. The extraction parameters were investigated and the optimum condition was obtained when the variables were set to the following: sorbent type, Fe 3 O 4 @polyDA-MWCNTs (length Graphical abstract Magnetic multi-walled carbon nanotube core-shell composites were applied as magnetic-μ-dispersive solid-phase extraction adsorbents for determination of antiepileptic drugs in biological matrices.

  15. Cr(VI) reduction and immobilization by novel carbonaceous modified magnetic Fe3O4/halloysite nanohybrid.

    Science.gov (United States)

    Tian, Xike; Wang, Weiwei; Tian, Na; Zhou, Chaoxin; Yang, Chao; Komarneni, Sridhar

    2016-05-15

    In this work, a novel "Dumbbell-like" magnetic Fe3O4/Halloysite nanohybrid (Fe3O4/HNTs@C) with oxygen-containing organic group grafting on the surface of natural halloysite nanotubes (HNTs) and homogeneous Fe3O4 nanospheres selectively aggregating at the tips of modified halloysite nanotubes was successfully synthesized. XRD, TEM, IR spectroscopy, XPS and VSM were used to characterize this newly halloysite nanohybrid and its formation mechanism was discussed. Cr(VI) ions adsorption experiments showed that the Fe3O4/halloysite nanohybrid exhibited higher adsorption ability with a maximum adsorption capacity of 132 mg/L at 303K, which is about 100 times higher than that of unmodified halloysite nanotubes. More importantly, with the reduction of Fe3O4 and electron-donor effect of oxygen-containing organic groups, Cr(VI) ions were easily reduced into low toxicity Cr(III) and then adsorbed onto the surface of halloysite nanohybrid. In addition, appreciable magnetization was observed due to the aggregation of magnetite nanoparticles, which make adsorbent facility separated from aqueous solutions after Cr pollution adsorption. Copyright © 2016 Elsevier B.V. All rights reserved.

  16. Facile synthesis of new nano sorbent for magnetic solid-phase extraction by self assembling of bis-(2,4,4-trimethyl pentyl)-dithiophosphinic acid on Fe3O4-Ag core-shell nanoparticles: Characterization and application

    International Nuclear Information System (INIS)

    Tahmasebi, Elham; Yamini, Yadollah

    2012-01-01

    Graphical abstract: Self assembling of bis-(2,4,4-trimethylpentyl)-dithiophosphinic acid on Fe 3 O 4 -Ag core-shell nanoparticles and application of it for solid phase extraction of PAHs. Highlights: ► A novel sorbent for magnetic solid-phase extraction of PAHs was introduced. ► Silver was coated on Fe 3 O 4 nanoparticles (MNPs) by reduction of AgNO 3 with NaBH 4 . ► Bis-(2,4,4-trimethylpentyl)-dithiophosphinic acid self-assembled on silver coated MNPs. ► Size, morphology, composition and properties of the nanoparticles were characterized. ► Extraction efficiency of the sorbent was investigated by extraction of five PAHs. - Abstract: A novel sorbent for magnetic solid-phase extraction by self-assembling of organosulfur compound, (bis-(2,4,4-trimethylpentyl)-dithiophosphinic acid), onto the silver-coated Fe 3 O 4 nanoparticles was introduced. Due to the formation of covalent bond of S-Ag, the new coating on the silver surface was very stable and showed high thermal stability (up to 320 °C). The size, morphology, composition, and properties of the prepared nanoparticles have also been characterized and determined using scanning electron microscopy (SEM), energy-dispersive X-ray analyzer (EDX), dynamic light scattering (DLS), Fourier transform-infrared (FT-IR) spectroscopy, and thermal gravimetric analysis (TGA). Extraction efficiency of the new sorbent was investigated by extraction of five polycyclic aromatic hydrocarbons (PAHs) as model compounds. The optimum extraction conditions for PAHs were obtained as of extraction time, 20 min; 50 mg sorbent from 100 mL of the sample solution, and elution with 100 μL of 1-propanol under fierce vortex for 2 min. Under the optimal conditions, the calibration curves were obtained in the range of 0.05–100 μg L −1 (R 2 > 0.9980) and the LODs (S/N = 3) were obtained in the range of 0.02–0.10 μg L −1 . Relative standard deviations (RSDs) for intra- and inter-day precision were 2.6–4.2% and 3.6–8

  17. Terbium doped SnO2 nanoparticles as white emitters and SnO2:5Tb/Fe3O4 magnetic luminescent nanohybrids for hyperthermia application and biocompatibility with HeLa cancer cells.

    Science.gov (United States)

    Singh, Laishram Priyobarta; Singh, Ningthoujam Premananda; Srivastava, Sri Krishna

    2015-04-14

    SnO2:5Tb (SnO2 doped with 5 at% Tb(3+)) nanoparticles were synthesised by a polyol method and their luminescence properties at different annealing temperatures were studied. Characterization of nanomaterials was done by X-ray diffraction (XRD), Fourier transformation infrared spectroscopy (FTIR), transmission electron microscopy (TEM) and vibrating sample magnetometry (VSM). XRD studies indicate that the prepared nanoparticles were of tetragonal structures. Upon Tb(3+) ion incorporation into SnO2, Sn(4+) changes to Sn(2+) and, on annealing again at higher temperature, Sn(2+) changes to Sn(4+). The prepared nanoparticles were spherical in shape. Sn-O vibrations were found from the FTIR studies. In photoluminescence studies, the intensity of the emission peaks of Tb(3+) ions increases with the increase of annealing temperature, and emission spectra lie in the region of white emission in the CIE diagram. CCT calculations show that the SnO2:5Tb emission lies in cold white emission. Quantum yields up to 38% can be obtained for 900 °C annealed samples. SnO2:5Tb nanoparticles were well incorporated into the PVA polymer and such a material incorporated into the polymer can be used for display devices. The SnO2:5Tb/Fe3O4 nanohybrid was prepared and investigated for hyperthermia applications at different concentrations of the nanohybrid. This achieves a hyperthermia temperature (42 °C) under an AC magnetic field. The hybrid nanomaterial SnO2:5Tb/Fe3O4 was found to exhibit biocompatibility with HeLa cells (human cervical cancer cells) at concentrations up to 74% for 100 μg L(-1). Also, this nanohybrid shows green emission and thus it will be helpful in tracing magnetic nanoparticles through optical imaging in vivo and in vitro application.

  18. On-line packed magnetic in-tube solid phase microextraction of acidic drugs such as naproxen and indomethacin by using Fe3O4@SiO2@layered double hydroxide nanoparticles with high anion exchange capacity.

    Science.gov (United States)

    Shamsayei, Maryam; Yamini, Yadollah; Asiabi, Hamid; Safari, Meysam

    2018-02-22

    The authors describe a 3-component nanoparticle system composed of a silica-coated magnetite (Fe 3 O 4 ) core and a layered double (Cu-Cr) hydroxide nanoplatelet shell. The sorbent has a high anion exchange capacity for extraction anionic species. A simple online system, referred to as "on-line packed magnetic-in-tube solid phase microextraction" was designed. The nanoparticles were placed in a stainless steel cartridge via dry packing. The cartridge was then applied to the preconcentration acidic drugs including naproxen and indomethacin from urine and plasma. Extraction and desorption times, pH values of the sample solution and flow rates of sample solution and eluent were optimized. Analytes were then quantified by HPLC with UV detection. Under optimal conditions, the limits of detection range from 70 to 800 ng L -1 , with linear responses from 0.1-500 μg L -1 (water samples), 0.6-500 μg L -1 (spiked urine), and 0.9-500 μg L -1 (spiked plasma). The inter- and intra-assay precisions (RSDs, for n = 5) are in the range of 2.2-5.4%, 2.8-4.9%, and 2.0-5.2% at concentration levels of 5, 25 and 50 μg L -1 , respectively. The method was applied to the analysis of the drugs in spiked human urine and plasma, and good results were achieved. Graphical abstract Fe 3 O 4 @SiO 2 @CuCr-LDH magnetic nanoparticles were synthesized and packed in to a stainless steel column. The column was applied to solid phase microextraction of acidic drugs from biological samples.

  19. MHD convective flow of magnetite-Fe3O4 nanoparticles by curved stretching sheet

    Directory of Open Access Journals (Sweden)

    Tasawar Hayat

    Full Text Available Present work is devoted to convective flow of ferrofluid due to non linear stretching curved sheet. Electrically conducting fluid is considered in the presence of uniform magnetic field. Nanofluid comprises water and magnetite-Fe3O4 as nanoparticles. Thermal radiation and heat generation/absorption are explained. Homotopy concept is utilized for the development of solutions. Highly nonlinear partial differential systems are reduced into the nonlinear ordinary differential system. Impact of non-dimensional radius of curvature and power law index on the physical quantities like fluid pressure, velocity and temperature field are examined. Computations for surface shear stress and heat transfer rate also analyzed. Keywords: MHD nanofluid, Thermal radiation, Porous medium, Convective boundary conditions, Non-linear curved stretching sheet

  20. In-Situ Preparation and Magnetic Properties of Fe3O4/WOOD Composite

    Science.gov (United States)

    Gao, Honglin; Zhang, Genlin; Wu, Guoyuan; Guan, Hongtao

    2011-06-01

    Fe3O4/wood composite, a magnetic material, was prepared by In-situ chemosynthesis method at room temperature. The X-ray diffraction (XRD) shows that the average partical size of Fe3O4 was about 14 nm. The magnetic properties of the resulting composites were investigated by vibrating sample magnetometer (VSM). The composites have saturation magnetization (Ms) values from 4.7 to 25.3 emu/g with the increase of weight percent gains (WPG) of the wood for the composites, but coercive forces (Hc) are invariable, which is different from the magnetic materials reported before. It may be due to the fact that the interaction between wood and Fe3O4 becomes stronger when less of Fe3O4 particles are introduced in the composition, and this also changes the surface anisotropy (Ks) of the magnetism. A structural characterization by Fourier transform infrared (FTIR) proved the interaction between Fe3O4 particles and wood matrix, and it also illustrates that this interaction influences the coercive force of the composite.

  1. Use of Fe3O4 Nanoparticles for Enhancement of Biosensor Response to the Herbicide 2,4-Dichlorophenoxyacetic Acid

    Science.gov (United States)

    Loh, Kee-Shyuan; Lee, Yook Heng; Musa, Ahmad; Salmah, Abdul Aziz; Zamri, Ishak

    2008-01-01

    Magnetic nanoparticles of Fe3O4 were synthesized and characterized using transmission electron microscopy and X-ray diffraction. The Fe3O4 nanoparticles were found to have an average diameter of 5.48 ±1.37 nm. An electrochemical biosensor based on immobilized alkaline phosphatase (ALP) and Fe3O4 nanoparticles was studied. The amperometric biosensor was based on the reaction of ALP with the substrate ascorbic acid 2-phosphate (AA2P). The incorporation of the Fe3O4 nanoparticles together with ALP into a sol gel/chitosan biosensor membrane has led to the enhancement of the biosensor response, with an improved linear response range to the substrate AA2P (5-120 μM) and increased sensitivity. Using the inhibition property of the ALP, the biosensor was applied to the determination of the herbicide 2,4-dichlorophenoxyacetic acid (2,4-D). The use of Fe3O4 nanoparticles gives a two-fold improvement in the sensitivity towards 2,4-D, with a linear response range of 0.5-30 μgL-1. Exposure of the biosensor to other toxicants such as heavy metals demonstrated only slight interference from metals such as Hg2+, Cu2+, Ag2+ and Pb2+. The biosensor was shown to be useful for the determination of the herbicide 2, 4-D because good recovery of 95-100 percent was obtained, even though the analysis was performed in water samples with a complex matrix. Furthermore, the results from the analysis of 2,4-D in water samples using the biosensor correlated well with a HPLC method. PMID:27873839

  2. Use of Fe3O4 Nanoparticles for Enhancement of Biosensor Response to the Herbicide 2,4-Dichlorophenoxyacetic Acid

    Directory of Open Access Journals (Sweden)

    Ishak Zamri

    2008-09-01

    Full Text Available Magnetic nanoparticles of Fe3O4 were synthesized and characterized using transmission electron microscopy and X-ray diffraction. The Fe3O4 nanoparticles were found to have an average diameter of 5.48 ±1.37 nm. An electrochemical biosensor based on immobilized alkaline phosphatase (ALP and Fe3O4 nanoparticles was studied. The amperometric biosensor was based on the reaction of ALP with the substrate ascorbic acid 2-phosphate (AA2P. The incorporation of the Fe3O4 nanoparticles together with ALP into a sol gel/chitosan biosensor membrane has led to the enhancement of the biosensor response, with an improved linear response range to the substrate AA2P (5-120 μM and increased sensitivity. Using the inhibition property of the ALP, the biosensor was applied to the determination of the herbicide 2,4-dichlorophenoxyacetic acid (2,4-D. The use of Fe3O4 nanoparticles gives a two-fold improvement in the sensitivity towards 2,4-D, with a linear response range of 0.5-30 μgL-1. Exposure of the biosensor to other toxicants such as heavy metals demonstrated only slight interference from metals such as Hg2+, Cu2+, Ag2+ and Pb2+. The biosensor was shown to be useful for the determination of the herbicide 2, 4-D because good recovery of 95-100 percent was obtained, even though the analysis was performed in water samples with a complex matrix. Furthermore, the results from the analysis of 2,4-D in water samples using the biosensor correlated well with a HPLC method.

  3. Magnetically addressable fluorescent Fe3O4/ZnO nanocomposites: Structural, optical and magnetization studies

    Science.gov (United States)

    Roychowdhury, A.; Pati, S. P.; Mishra, A. K.; Kumar, S.; Das, D.

    2013-06-01

    Fe3O4/ZnO nanocomposites (NCs) are prepared by a wet chemical route. X-ray diffraction, transmission electron microscopy and Fourier transform infrared spectroscopy studies confirm the coexistence of Fe3O4 and ZnO phases in the NCs. The UV-vis absorption spectra show a red shift of the absorption peak with increase in Fe3O4 content indicating a modification of the band structure of ZnO in the NCs. Photoluminescence emission spectra of the NCs display strong excitonic emission in the UV region along with weak emission bands in the visible range caused by electronic transitions involving defect-related energy levels in the band gap of ZnO. Positron annihilation lifetimes indicate that cation vacancies in the ZnO structure are the strong traps for positrons and the overall defect concentration in the NCs decreases with increase in Fe3O4 content. Dc magnetization measurements reveal an anomalous temperature dependence of the coercivity of the NCs that is argued to be due to the anomalous variation of magnetocrystalline anisotropy at lower temperature. The irreversibility observed in the temperature dependent ZFC-FC magnetization points to the presence of a spin-glass phase in the NCs.

  4. Interchange core/shell assembly of diluted magnetic semiconductor CeO2 and ferromagnetic ferrite Fe3O4 for microwave absorption

    Directory of Open Access Journals (Sweden)

    Jiaheng Wang

    2017-05-01

    Full Text Available Core/shell-structured CeO2/Fe3O4 and Fe3O4/CeO2 nanocapsules are prepared by interchange assembly of diluted magnetic semiconductor CeO2 and ferromagnetic ferrite Fe3O4 as the core and the shell, and vice versa, using a facile two-step polar solvothermal method in order to utilize the room-temperature ferromagnetism and abundant O-vacancies in CeO2, the large natural resonance in Fe3O4, and the O-vacancy-enhanced interfacial polarization between CeO2 and Fe3O4 for new generation microwave absorbers. Comparing to Fe3O4/CeO2 nanocapsules, the CeO2/Fe3O4 nanocapsules show an improved real permittivity of 3–10% and an enhanced dielectric resonance of 1.5 times at 15.3 GHz due to the increased O-vacancy concentration in the CeO2 cores of larger grains as well as the O-vacancy-induced enhancement in interfacial polarization between the CeO2 cores and the Fe3O4 shells, respectively. Both nanocapsules exhibit relatively high permeability in the low-frequency S and C microwave bands as a result of the bi-magnetic core/shell combination of CeO2 and Fe3O4. The CeO2/Fe3O4 nanocapsules effectively enhance permittivity and permeability in the high-frequency Ku band with interfacial polarization and natural resonance at ∼15 GHz, thereby improving absorption with a large reflection loss of -28.9 dB at 15.3 GHz. Experimental and theoretical comparisons with CeO2 and Fe3O4 nanoparticles are also made.

  5. Sensitive Determination of 6-Thioguanine Using Caffeic Acid-functionalized Fe3O4 Nanoparticles as an Electrochemical Sensor

    Science.gov (United States)

    Amir, Md.; Tunesi, Mawada M.; Soomro, Razium A.; Baykal, Abdülhadi; Kalwar, Nazar H.

    2018-04-01

    The study demonstrates the potential application of caffeic acid-functionalized magnetite nanoparticles (CA-Fe3O4 NPs) as an effective electrode modifying material for the electrochemical oxidation of the 6-thioguanine (6-TG) drug. The functionalized Fe3O4 NPs were prepared using simple wet-chemical methodology where the used caffeic acid acted simultaneously as growth controlling and functionalizing agent. The study discusses the influence of an effective functionalization on the signal sensitivity observed for the electro-oxidation of 6-TG over CA-Fe3O4 NPs in comparison to a glassy carbon electrode modified with bare and nicotinic acid (NA)-functionalized Fe3O4 NPs. The experiment results provided sufficient evidence to support the importance of favorable functionality to achieve higher signal sensitivity for the electro-oxidation of 6-TG. The presence of favorable interactions between the active functional moieties of caffeic acid and 6-TG synergized with the greater surface area of magnetic NPs produces a stable electro-oxidation signal within the working range of 0.01-0.23 μM with sensitive up to 0.001 μM. Additionally, the sensor showed the strong anti-interference potential against the common co-existing drug molecules such as benzoic acid, acetaminophen, epinephrine, norepinephrine, glucose, ascorbic acid and l-cysteine. In addition, the successful quantification of 6-TG from the commercial tablets obtained from local pharmacy further signified the practical capability of the discussed sensor.

  6. Design of epoxy-functionalized Fe3O4@MCM-41 core-shell nanoparticles for enzyme immobilization.

    Science.gov (United States)

    Ulu, Ahmet; Ozcan, Imren; Koytepe, Suleyman; Ates, Burhan

    2018-05-01

    The scope of our research was to prepare the organosilane-modified Fe 3 O 4 @MCM-41 core-shell magnetic nanoparticles, used for L-ASNase immobilization and explored screening of immobilization conditions such as pH, temperature, thermal stability, kinetic parameters, reusability and storage stability. In this content, Fe 3 O 4 core-shell magnetic nanoparticles were prepared via co-precipitation method and coated with MCM-41. Then, Fe 3 O 4 @MCM-41 magnetic nanoparticles were functionalized by (3-glycidyloxypropyl) trimethoxysilane (GPTMS) as an organosilane compound. Subsequently, L-ASNase was covalently immobilized on epoxy-functionalized Fe 3 O 4 @MCM-41 magnetic nanoparticles. The immobilized L-ASNase had greater activity at high pH and temperature values. It also maintained >92% of the initial activity after incubation at 55 °C for 3 h. Regarding kinetic values, immobilized L-ASNase showed a higher Vmax and lower Km compared to native L-ASNase. In addition, it displayed excellent reusability for 12 successive cycles. After 30 days of storage at 4 °C and 25 °C, immobilized L-ASNase retained 54% and 26% of its initial activities while native L-ASNase lost about 68% and 84% of its initial activity, respectively. As a result, the immobilization of L-ASNase onto magnetic nanoparticles may provide an advantage in terms of removal of L-ASNase from reaction media. Copyright © 2018. Published by Elsevier B.V.

  7. Bio-dispersive liquid liquid microextraction based on nano rhaminolipid aggregates combined with magnetic solid phase extraction using Fe3O4@PPy magnetic nanoparticles for the determination of methamphetamine in human urine.

    Science.gov (United States)

    Haeri, Seyed Ammar; Abbasi, Shahryar; Sajjadifar, Sami

    2017-09-15

    In the present investigation, extraction and preconcentration of methamphetamine in human urine samples was carried out using a novel bio-dispersive liquid liquid microextraction (Bio-DLLME) technique coupled with magnetic solid phase extraction (MSPE). Bio-DLLME is a kind of microextraction technique based nano-materials which have potential capabilities in many application fields. Bio-DLLME is based on the use of a binary part system consisting of methanol and nano rhaminolipid biosurfactant. Use of this binary mixture is ecologically accepted due to their specificity, biocompatibility and biodegradable nature. The potential of nano rhaminolipid biosurfactant as a biological agent in the extraction of organic compounds has been investigated in recent years. They are able to partition at the oil/water interfaces and reduce the interfacial tension in order to increase solubility of hydrocarbons. The properties of the prepared Fe 3 O 4 @PPy magnetic nanoparticles were characterized using Fourier transform infrared spectroscopy and X-ray diffraction methods The influences of the experimental parameters on the quantitative recovery of analyte were investigated. Under optimized conditions, the enrichment factor was 310, the calibration graph was linear in the methamphetamine concentration range from 1 to 60μgL -1 , with a correlation coefficient of 0.9998. The relative standard deviations for six replicate measurements was 5.2%. Copyright © 2017 Elsevier B.V. All rights reserved.

  8. Competing reactions of selected atmospheric gases on Fe3O4 nanoparticles surfaces.

    Science.gov (United States)

    Eltouny, N; Ariya, Parisa A

    2014-11-14

    Heterogeneous reactions on atmospheric aerosol surfaces are increasingly considered important in understanding aerosol-cloud nucleation and climate change. To understand potential reactions in polluted atmospheres, the co-adsorption of NO2 and toluene to magnetite (Fe3O4i.e. FeO·Fe2O3) nanoparticles at ambient conditions was investigated for the first time. The surface area, size distribution, and morphology of Fe3O4 nanoparticles were characterized by BET method and high-resolution transmission electron microscopy. Adsorption isotherms, collected by gas chromatography with flame ionization detection, showed that the presence of NO2 decreased the adsorption of toluene. The analyses of the surface chemical composition of Fe3O4 by X-ray photoelectron spectroscopy (XPS) reveal that, upon the addition of NO2, the surface is oxidized and a contribution at 532.5 ± 0.4 eV in the O1s spectrum appears, showing that NO2 likely competes with toluene by dissociating on Fe(2+) sites and forming NO3(-). Different competing effects were observed for oxidized Fe3O4; oxidation occurred when exposed solely to NO2, whereas, the mixture of toluene and NO2 resulted in a reduction of the surface i.e. increased Fe(2+)/Fe(3+). Analyses by time of flight secondary ion mass spectrometry further suggest toluene reacts with Fe(3+) sites forming oxygenated organics. Our results indicate that on reduced magnetite, NO2 is more reactive and competes with toluene; in contrast, on oxidized Fe3O4, toluene is more reactive. Because magnetite can assume a range of oxidation ratios in the environment, different competing interactions between pollutants like NO2 and toluene could influence atmospheric processes, namely, the formation of Fe(2+) and the formation of atmospheric oxidants.

  9. Fe3O4/BSA particles induce osteogenic differentiation of mesenchymal stem cells under static magnetic field.

    Science.gov (United States)

    Jiang, Pengfei; Zhang, Yixian; Zhu, Chaonan; Zhang, Wenjing; Mao, Zhengwei; Gao, Changyou

    2016-12-01

    Differentiation of stem cells is influenced by many factors, yet uptake of the magnetic particles with or without magnetic field is rarely tackled. In this study, iron oxide nanoparticles-loaded bovine serum albumin (BSA) (Fe 3 O 4 /BSA) particles were prepared, which showed a spherical morphology with a diameter below 200 nm, negatively charged surface, and tunable magnetic property. The particles could be internalized into bone marrow mesenchymal stem cells (MSCs), and their release from the cells was significantly retarded under external magnetic field, resulting in almost twice intracellular amount of the particles within 21 d compared to that of the magnetic field free control. Uptake of the Fe 3 O 4 /BSA particles enhanced significantly the osteogenic differentiation of MSCs under a static magnetic field, as evidenced by elevated alkaline phosphatase (ALP) activity, calcium deposition, and expressions of collagen type I and osteocalcin at both mRNA and protein levels. Therefore, uptake of the Fe 3 O 4 /BSA particles brings significant influence on the differentiation of MSCs under magnetic field, and thereby should be paid great attention for practical applications. Differentiation of stem cells is influenced by many factors, yet uptake of the magnetic particles with or without magnetic field is rarely tackled. In this study, iron oxide nanoparticles-loaded bovine serum albumin (BSA) (Fe 3 O 4 /BSA) particles with a diameter below 200nm, negatively charged surface, tunable Fe 3 O 4 content and subsequently adjustable magnetic property were prepared. The particles could be internalized into bone marrow mesenchymal stem cells (MSCs), and their release from the cells was significantly retarded under external magnetic field. Uptake of the Fe 3 O 4 /BSA particles enhanced significantly the osteogenic differentiation of MSCs under a constant static magnetic field, while the magnetic particles and external magnetic field alone do not influence significantly the

  10. Manipulating cluster size of polyanion-stabilized Fe3O4 magnetic nanoparticle clusters via electrostatic-mediated assembly for tunable magnetophoresis behavior

    International Nuclear Information System (INIS)

    Yeap, Swee Pin; Ahmad, Abdul Latif; Ooi, Boon Seng; Lim, JitKang

    2015-01-01

    We report in this article an approach for manipulating the size of magnetic nanoparticle clusters (MNCs) via electrostatic-mediated assembly technique using an electrolyte as a clustering agent. The clusters were surface-tethered with poly(sodium 4-styrenesulfonate) (PSS) through electrostatic compensation to enhance their colloidal stability. Dynamic light scattering was employed to trace the evolution of cluster size. Simultaneously, electrophoretic mobility and Fourier transform infrared spectroscopy analyses were conducted to investigate the possible schemes involved in both cluster formation and PSS grafting. Results showed that the average hydrodynamic cluster size of the PSS/MNCs and their corresponding size distributions were successfully shifted by means of manipulating the suspension pH, the ionic nature of the electrolyte, and the electrolyte concentration. More specifically, the electrokinetic behavior of the particles upon interaction with the electrolyte plays a profound role in the formation of the PSS/MNCs. Nonetheless, the solubility of the polymer in electrolyte solution and the purification of the particles from residual ions should not be omitted in determining the effectiveness of this clustering approach. The PSS adlayer makes the resultant entities highly water-dispersible and provides electrosteric stabilization to shield the PSS/MNCs from aggregation. In this study, the experimental observations were analyzed and discussed on the basis of existing fundamental colloidal theories. The strategy of cluster size manipulation proposed here is simple and convenient to implement. Furthermore, manipulating the size of the MNCs also facilitates the tuning of magnetophoresis kinetics on exposure to low magnetic field gradient, which makes this nano-entity useful for engineering applications, specifically in separation processes.

  11. Construction of a sensitive and selective sensor for morphine using chitosan coated Fe3O4 magnetic nanoparticle as a modifier

    International Nuclear Information System (INIS)

    Dehdashtian, Sara; Gholivand, Mohammad Bagher; Shamsipur, Mojtaba; Kariminia, Samira

    2016-01-01

    A simple and sensitive sensor based on carbon paste electrode (CPE) modified by chitosan-coated magnetic nanoparticle (CMNP) was developed for the electrochemical determination of morphine (MO). The proposed sensor was characterized with scanning electron microscopy (SEM) and electrochemical impedance spectroscopy (EIS). The electrooxidation of MO was studied on modified carbon paste electrode using cyclic voltammetry, chronoamperometry and differential pulse voltammetry as diagnostic techniques. The oxidation peak potential of morphine on the CMNP/CPE appeared at 380 mV which was accompanied with smaller overpotential and increase in oxidation peak current compared to that obtained on the bare carbon paste electrode (CPE). Under optimum conditions the sensor provides two linear DPV responses in the range of 10–2000 nM and 2–720 μM for MO with a detection limit of 3 nM. The proposed sensor was successfully applied for monitoring of MO in serum and urine samples and satisfactory results were obtained. - Highlights: • A sensitive and selective voltammetric sensor for MO by using a carbon paste electrode modified with CMNP was introduced. • CMNP as a new modifier facilitates the charge transfer of MO oxidation process. • The proposed sensor was used successfully for MO determination in biological fluids such as serum and urine samples. • This sensor is fabricated easily and has good stability and high sensitivity.

  12. Tailoring mechanical and antibacterial properties of chitosan/gelatin nanofiber membranes with Fe3O4 nanoparticles for potential wound dressing application

    Science.gov (United States)

    Cai, Ning; Li, Chao; Han, Chao; Luo, Xiaogang; Shen, Liang; Xue, Yanan; Yu, Faquan

    2016-04-01

    In this work, magnetic Fe3O4 nanoparticles (NPs) were utilized to improve the mechanical and antibacterial properties of chitosan (CS)/gelatin (GE) composite nanofiber membranes. Homogeneous Fe3O4/CS/GE nanofibers were electrospun successfully. Scanning electron microscopy (SEM) and transmission electron microscopy (TEM) images confirmed the presence of well-dispersed Fe3O4 NPs in the composite nanofibers. Fourier transform infrared spectroscopy (FTIR) spectra revealed the effective interactions of Fe3O4 NPs to the composite matrix through hydrogen bonding. The improvement on the thermal stability of the Fe3O4/CS/GE was observed by differential scanning calorimetry (DSC) and thermo gravimetric analysis (TGA), which is tightly correlated to strong filler-matrix adhesion. The incorporation of Fe3O4 NPs resulted in a substantial enhancement of mechanical properties. The optimum mechanical performance was demonstrated on 1 wt% Fe3O4/CS/GE nanofiber membranes, achieving 155% augment of Young's modulus, 128% increase of tensile strength, and 100% boost of toughness from CS/GE. The excellent mechanical enhancement can be explained by the effective dispersion of fillers and the filler-matrix interactions, which ensures the efficient load transfer from CS/GE matrix to Fe3O4 nanofillers. Moreover, zones of inhibition for Escherichia coli and Staphylococcus aureus expanded markedly with the supplement of Fe3O4 NPs. In all, nanofiber membranes made of Fe3O4/CS/GE composite with tailored mechanical and antibacterial properties appear a promising wound dressing material.

  13. Photodegradation of Methylene Blue by TiO2-Fe3O4-Bentonite Magnetic Nanocomposite

    Directory of Open Access Journals (Sweden)

    Wei Chen

    2015-01-01

    Full Text Available Fe3O4-bentonite nanoparticles have been prepared by a coprecipitation technique under a nitrogen atmosphere. An aqueous suspension of bentonite was first modified with FeCl2 and FeCl3. TiO2 was then loaded onto the surface of the Fe3O4-bentonite by a sol-gel method. After sufficient drying, the colloidal solution was placed in a muffle furnace at 773 K to obtain the TiO2-Fe3O4-bentonite composite. The material has been characterized by scanning electron microscopy (SEM, X-ray diffraction (XRD analysis, and vibrating sample magnetometry (VSM. Morphological observation showed that Fe3O4 and TiO2 nanoparticles had been adsorbed on the surface of bentonite nanoneedles. The material was then applied for the photodegradation of the azo dye methylene blue (MB. It was found that the removal efficiency of MB exceeded 90% under UV illumination, and that only a 20% mass loss was incurred after six cycles. The composite material thus showed good photocatalytic performance and recycling properties.

  14. Enhanced microwave absorption property of epoxy nanocomposites based on PANI@Fe3O4@CNFs nanoparticles with three-phase heterostructure

    Science.gov (United States)

    Yang, Lingfeng; Cai, Haopeng; Zhang, Bin; Huo, Siqi; Chen, Xi

    2018-02-01

    Novel electromagnetic functionalized carbon nanofibers (CNFs) have been synthesized by coating with Fe3O4 magnetite nanoparticles and conducting polymers polyaniline (PANI) on CNFs through a layer by layer assembly. The Fe3O4@CNFs were first prepared by coating nano-Fe3O4 particles on CNFs via co-precipitation method; Then the PANI was coated on Fe3O4@CNFs using an in situ polymerization process to obtain PANI@Fe3O4@CNFs nanoparticles. The prepared PANI@Fe3O4@CNFs nanoparticles were dispersed in the epoxy matrix to fabricate microwave absorbing nanocomposites. Compared with the Fe3O4@CNFs/epoxy nanocomposites, the PANI@Fe3O4@CNFs/epoxy nanocomposites exhibit better microwave absorbing properties. The composite containing 15 wt% of PANI@Fe3O4@CNFs with the thickness of 2 mm showed a minimum reflection loss (RL) value of -23.7 dB with an effective absorption bandwidth which is about 3.7 GHz (11.9-15.6 GHz) in the frequency range of 1-18 GHz, indicating that it is an attractive candidate for efficient microwave absorber. A potential absorption mechanism was proposed for enhancement of the impedance-matching condition and electromagnetic wave-attenuation characteristic of materials. Specifically, the impedance-matching condition was improved by the combination of conductive polymers and magnetic nanoparticles with CNFs. The electromagnetic wave attenuation characteristic was enhanced by multiple reflections, due to the increased propagation paths.

  15. Shape Memory Polymer Composites of Poly(styrene-b-butadiene-b-styrene Copolymer/Liner Low Density Polyethylene/Fe3O4 Nanoparticles for Remote Activation

    Directory of Open Access Journals (Sweden)

    Yongkun Wang

    2016-11-01

    Full Text Available Magnetically sensitive shape memory poly(styrene-b-butadiene-b-styrene copolymer (SBS/liner low density polyethylene (LLDPE composites filled with various contents of Fe3O4 nanoparticles were prepared. The influence of the Fe3O4 nanoparticles content on the thermal properties, mechanical properties, fracture morphology, magnetic behavior, and shape memory effect of SBS/LLDPE/Fe3O4 composites was systematically studied in this paper. The results indicated that homogeneously dispersed Fe3O4 nanoparticles ensured the uniform heat generation and transfer in the alternating magnetic field, and endowed the SBS/LLDPE/Fe3O4 composites with an excellent magnetically responsive shape memory effect. When the shape memory composites were in the alternating magnetic field (f = 60 kHz, H = 21.21 kA·m−1, the best shape recovery ratio reached 99%, the shape retention ratio reached 99.4%, and the shape recovery speed increased significantly with the increment of Fe3O4 nanoparticles. It is anticipated that tagging products with this novel shape memory composite is helpful for the purpose of an intravascular delivery system in Micro-Electro-Mechanical System (MEMS devices.

  16. Investigating the Role of Shell Thickness and Field Cooling on Saturation Magnetization and Its Temperature Dependence in Fe3O4/γ-Fe2O3 Core/Shell Nanoparticles

    Directory of Open Access Journals (Sweden)

    Ihab M. Obaidat

    2017-12-01

    Full Text Available Understanding saturation magnetization and its behavior with particle size and temperature are essential for medical applications such magnetic hyperthermia. We report the effect of shell thickness and field cooling on the saturation magnetization and its behavior with temperature in Fe3O4/γ-Fe2O3 core/shell nanoparticles of fixed core diameter (8 nm and several shell thicknesses. X-ray diffraction (XRD analysis and transmission electron microscopy (TEM, high-resolution transmission electron microscopy (HRTEM were used to investigate the phase and the morphology of the samples. Selected area electron diffraction (SAED confirmed the core/shell structure and phases. Using a SQUID (San Diego, CA, USA, magnetic measurements were conducted in the temperature range of 2 to 300 K both under zero field-cooling (ZFC and field-cooling (FC protocols at several field-cooling values. In the ZFC state, considerable enhancement of saturation magnetization was obtained with the increase of shell thickness. After field cooling, we observed a drastic enhancement of the saturation magnetization in one sample up to 120 emu/g (50% larger than the bulk value. In both the FC and ZFC states, considerable deviations from the original Bloch’s law were observed. These results are discussed and attributed to the existence of interface spin-glass clusters which are modified by the changes in the shell thickness and the field-cooling.

  17. Synthesis and characterization of Fe3O4–TiO2 core-shell nanoparticles

    International Nuclear Information System (INIS)

    Stefan, M.; Pana, O.; Leostean, C.; Silipas, D.; Bele, C.; Senila, M.; Gautron, E.

    2014-01-01

    Composite core-shell nanoparticles may have morpho-structural, magnetic, and optical (photoluminescence (PL)) properties different from each of the components considered separately. The properties of Fe 3 O 4 –TiO 2 nanoparticles can be controlled by adjusting the titania amount (shell thinness). Core–shell nanoparticles were prepared by seed mediated growth of semiconductor (TiO 2 ) through a modified sol-gel process onto preformed magnetite (Fe 3 O 4 ) cores resulted from the co-precipitation method. The structure and morphology of samples were characterized by X-ray diffraction, transmission electron microscopy (TEM), and high resolution-TEM respectively. X-ray photoelectron spectroscopy was correlated with ICP-AES. Magnetic measurements, optical absorption spectra, as well as PL spectroscopy indicate the presence of a charge/spin transfer from the conduction band of magnetite into the band gap of titania nanocrystals. The process modifies both Fe 3 O 4 and TiO 2 magnetic and optical properties, respectively.

  18. Preparation and drug-loading properties of Fe3O4/Poly(styrene-co-acrylic acid) magnetic polymer nanocomposites

    International Nuclear Information System (INIS)

    Lu, Wensheng; Shen, Yuhua; Xie, Anjian; Zhang, Weiqiang

    2013-01-01

    Fe 3 O 4 /poly(styrene-co-acrylic acid) magnetic polymer nanocomposites were synthesized by the dispersion polymerization method using styrene as hard monomer, acrylic acid as functional monomer, Fe 3 O 4 nanoparticles modified with oleic acid as core, and poly(styrene-co-acrylic acid) as shell. Drug-loading properties of magnetic polymer nanocomposites with curcumin as a model drug were also studied. The results indicated that magnetic polymer nanocomposites with monodisperse were obtained, the particle size distribution was 50–120 nm, and the average size was about 100 nm. The contents of poly(styrene-co-acrylic acid) and Fe 3 O 4 nanoparticles in magnetic polymer nanocomposites were 74% and 24.7%, respectively. The drug-loading capacity and entrapment efficiency were 2.5% and 44.4%, respectively. The saturation magnetization of magnetic polymer nanocomposites at 300 K was 20.2 emu/g without coercivity and remanence. The as-prepared magnetic polymer nanocomposites have not only lots of functional carboxyl groups but also stronger magnetic response, which might have potential applications in drug carrier and targeted drug release

  19. Superparamagnetic Fe3O4 nanoparticles: synthesis by thermal decomposition of iron(III) glucuronate and application in magnetic resonance imaging

    Czech Academy of Sciences Publication Activity Database

    Patsula, Vitalii; Kosinová, L.; Lovrić, M.; Ferhatovic Hamzic, L.; Rabyk, Mariia; Konefal, Rafal; Paruzel, Aleksandra; Šlouf, Miroslav; Herynek, V.; Gajović, S.; Horák, Daniel

    2016-01-01

    Roč. 8, č. 11 (2016), s. 7238-7247 ISSN 1944-8244 R&D Projects: GA MŠk(CZ) LH14318; GA MŠk(CZ) LO1507; GA MŠk(CZ) ED1.1.00/02.0109 EU Projects: European Commission(XE) 316120 - GLOWBRAIN Institutional support: RVO:61389013 Keywords : superparamagnetic * nanoparticles * iron oxide Subject RIV: CD - Macromolecular Chemistry Impact factor: 7.504, year: 2016

  20. Investigation of temperature dependent magnetic hyperthermia in Fe3O4 ferrofluids

    Science.gov (United States)

    Nemala, Humeshkar Bhaskar

    Magnetic nanoparticles (MNPs) of Fe3O4 and gamma-Fe2O3 have been exploited in the biomedical fields for imaging, targeted drug delivery and magnetic hyperthermia. Magnetic hyperthermia (MHT), the production of heat using ferrofluids, colloidal suspensions of MNPs, in an external AC magnetic field (amplitude, 100-500 Oe and frequency 50 kHz -1MHz), has been explored by many researchers, both in vitro and in vivo, as an alternative viable option to treat cancer. The heat energy generated by Neel and Brownian relaxation processes of the internal magnetic spins could be used to elevate local tissue temperature to about 46 ˚C to arrest cancerous growth. MHT, due to its local nature of heating, when combined with other forms of treatment such as chemotherapy and/or radiation therapy, it could become an effective therapy for cancer treatment. The efficiency of heat production in MHT is quantified by specific absorption rate (SAR), defined as the power output per gram of the MNPs used. In this thesis, ferrofluids consisting of Fe3O4 MNPs of three different sizes (˜ 10 - 13 nm) coated with two different biocompatible surfactants, dextran and polyethylene glycol (PEG), have been investigated. The structural and magnetic characterization of the MNPs were done using XRD, TEM, and DC magnetization measurements. While XRD revealed the crystallite size, TEM provided the information about morphology and physical size distribution of the MNPs. Magnetic measurements of M-vs-H curves for ferrofluids provided information about the saturation magnetization (Ms) and magnetic core size distribution of MNPs. Using MHT measurements, the SAR has been studied as a function of temperature, taking into account the heat loss due to non-adiabatic nature of the experimental set-up. The observed SAR values have been interpreted using the theoretical framework of linear response theory (LRT). We found the SAR values depend on particle size distribution of MNPs, Ms (65-80 emu/g) and the magnetic

  1. Synthesis and characterization of magnetic poly(divinyl benzene)/Fe3O4, C/Fe3O4/Fe, and C/Fe onionlike fullerene micrometer-sized particles with a narrow size distribution.

    Science.gov (United States)

    Snovski, Ron; Grinblat, Judith; Margel, Shlomo

    2011-09-06

    Magnetic poly(divinyl benzene)/Fe(3)O(4) microspheres with a narrow size distribution were produced by entrapping the iron pentacarbonyl precursor within the pores of uniform porous poly(divinyl benzene) microspheres prepared in our laboratory, followed by the decomposition in a sealed cell of the entrapped Fe(CO)(5) particles at 300 °C under an inert atmosphere. Magnetic onionlike fullerene microspheres with a narrow size distribution were produced by annealing the obtained PDVB/Fe(3)O(4) particles at 500, 600, 800, and 1100 °C, respectively, under an inert atmosphere. The formation of carbon graphitic layers at low temperatures such as 500 °C is unique and probably obtained because of the presence of the magnetic iron nanoparticles. The annealing temperature allowed control of the composition, size, size distribution, crystallinity, porosity, and magnetic properties of the produced magnetic microspheres. © 2011 American Chemical Society

  2. Facile Synthesis of Magnetic Copolymer Microspheres Based on Poly(glycidyl methacrylate-co-N-isopropylacrylamide/Fe3O4 by Suspension Photopolymerization

    Directory of Open Access Journals (Sweden)

    Siti Zulaikha Mazlan

    2014-01-01

    Full Text Available Magnetic copolymer based on poly(glycidyl methacrylate-co-N-isopropylacrylamide microspheres was prepared by 2,2-dimethoxy-2-phenylacetophenone- (DMPP- photo initiated and poly(vinyl alcohol- (PVA- stabilized single step suspension photopolymerization. The effect of chemical interaction, morphology, and thermal properties by adding 0.1% w/v Fe3O4 in the copolymer was investigated. Infrared analysis (FTIR showed that (C=C band disappeared after copolymerization, indicating that the magnetic copolymer microspheres were successfully synthesized and two important bands at 908 cm−1 and 1550 cm−1 appear. These are associated with the epoxy group stretching of GMA and secondary amide (N–H/C–H deformation vibration of NIPAAm in magnetic microspheres. The X-ray diffraction (XRD result proved the incorporation of Fe3O4 nanoparticles with copolymer microspheres as peak of Fe3O4 was observed. Morphology study revealed that magnetic copolymer exhibited uniform spheres and smoother appearance when entrapped with Fe3O4 nanoparticles. The lowest percentage of Fe3O4 nanoparticles leached from the copolymer microspheres was obtained at pH 7. Finally, thermal property of the copolymer microspheres was improved by adding a small amount of Fe3O4 nanoparticles that has been shown from the thermogram.

  3. Study of "2"2"3Ra uptake mechanism by Fe_3O_4 nanoparticles: towards new prospective theranostic SPIONs

    International Nuclear Information System (INIS)

    Mokhodoeva, Olga; Vlk, Martin; Málková, Eva; Kukleva, Ekaterina; Mičolová, Petra; Štamberg, Karel; Šlouf, Miroslav; Dzhenloda, Rustam; Kozempel, Ján

    2016-01-01

    The use of superparamagnetic iron oxide nanoparticles (SPIONs) and radiolabelled nanoparticles (NPs) has grown considerably over the recent years, and the SPIONs labelled with medicinal radionuclides offer new opportunities in multimodal diagnostics and in the drug-delivery systems for targeted alpha-particle therapy (TAT) driven by magnetic field gradient or by biologically active moieties bound on NPs shell. However, the mechanisms of NPs radiolabelling are not studied substantially and still remain unclear, even though the way of label attachment directly implies the stability of the label-nanoparticle construct. Since the "2"2"3Ra was the first clinically approved alpha-emitter, it is a promising nuclide for further development of its targeted carriers. We report here on the study of "2"2"3Ra uptake by the Fe_3O_4SPIONs, together with an attempt to propose the "2"2"3Ra uptake mechanism by the Fe_3O_4NPs in the presence of a phosphate buffer a typical formulation medium, under the pseudo-equilibrium conditions. Further, the in vitro stability tests of the prepared ["2"2"3Ra]Fe_3O_4NPs were performed to estimate the "2"2"3Ra label stability. The potential use of "2"2"3Ra-labelled SPIONs in theranostic applications is also discussed.Graphical abstract

  4. Synthesis and Characterization of Fe3O4 Nanoparticles using Polyvinyl Alcohol (PVA) as Capping Agent and Glutaraldehyde (GA) as Crosslinker

    Science.gov (United States)

    Budi Hutami Rahayu, Lale; Oktavia Wulandari, Ika; Herry Santjojo, Djoko; Sabarudin, Akhmad

    2018-01-01

    The use of polyvinyl alcohol (PVA) as a capping agent and glutaraldehyde (GA) as a crosslinker for a synthesis of magnetite (Fe3O4) nanoparticles is able to reduce agglomeration of produced Fe3O4. Additionally, oxidation of Fe3O4 by air could be avoided. The synthesis is carried out in two steps: first step, magnetite (Fe3O4) nanoparticles were prepared by dissolving the FeCl3.6H2O and FeCl2.4H2O in alkaline media (NH3.H2O). The second step, magnetite nanoparticles were coated with polyvinyl alcohol (PVA) and glutaraldehyde (GA) to obtain Fe3O4-PVA-GA. The latter material was then characterized by FTIR to determine the typical functional groups of magnetite coated with PVA-GA. X-ray Diffraction analysis was used to determine structure and size of crystal as well as the percentage of magnetite produced. It was found that the produced nanoparticles have crystal sizes around 4-9 nm with the cubic crystal structure. The percentage of magnetite phase increases when the amount of glutaraldehyde increased. SEM-EDX was employed to assess the surface morphology and elemental composition of the resulted nanoparticles. The magnetic character of the magnetite and Fe3O4- PVA-GA were studied using Electron Spin Resonance.

  5. Folate attached, curcumin loaded Fe_3O_4 nanoparticles: A novel multifunctional drug delivery system for cancer treatment

    International Nuclear Information System (INIS)

    Thu Huong, Le Thi; Nam, Nguyen Hoai; Doan, Do Hai; My Nhung, Hoang Thi; Quang, Bui Thuc; Nam, Pham Hong; Thong, Phan Quoc; Phuc, Nguyen Xuan; Thu, Ha Phuong

    2016-01-01

    Study and development of drug delivery nanosystem for cancer treatment are attracting great attention in recent years. In this work, we studied the role of folic acid as a targeting factor on magnetic nanoparticle Fe_3O_4 based curcumin loading nanosystem. Characteristics of the nanosystems were investigated by Fourier transform infrared spectroscopy (FTIR) and field-emission scanning electron microscopy (FESEM), X-ray diffraction (XRD), thermal gravimetric analysis (TGA) and vibrating sample magnetometer (VSM), while targeting role of folic was accessed in vivo on tumor bearing mice. The results showed that folate attached Fe_3O_4 based curcumin loading nanosystem has very small size and exhibits better targeting effect compared to the counterpart without folate. In addition, magnetic induction heating of this nanosystem evidenced its potential for cancer hyperthermia. - Highlights: • Folate attached, curcumin loaded Fe3O4 nanoparticles were prepared and characterized. • The NPs have high curcumin loading capacity and good ability for hyperthermia. • Folate shows its bioactivity of effectively targeting the NPs to tumor tissues. • Chemotherapy, hyperthermia and targeting factor are all well combined in the NPs.

  6. Multifunctional glucose biosensors from Fe3O4 nanoparticles modified chitosan/graphene nanocomposites

    Science.gov (United States)

    Zhang, Wenjing; Li, Xiaojian; Zou, Ruitao; Wu, Huizi; Shi, Haiyan; Yu, Shanshan; Liu, Yong

    2015-01-01

    Novel water-dispersible and biocompatible chitosan-functionalized graphene (CG) has been prepared by a one-step ball milling of carboxylic chitosan and graphite. Presence of nitrogen (from chitosan) at the surface of graphene enables the CG to be an outstanding catalyst for the electrochemical biosensors. The resulting CG shows lower ID/IG ratio in the Raman spectrum than other nitrogen-containing graphene prepared using different techniques. Magnetic Fe3O4 nanoparticles (MNP) are further introduced into the as-synthesized CG for multifunctional applications beyond biosensors such as magnetic resonance imaging (MRI). Carboxyl groups from CG is used to directly immobilize glucose oxidase (GOx) via covalent linkage while incorporation of MNP further facilitated enzyme loading and other unique properties. The resulting biosensor exhibits a good glucose detection response with a detection limit of 16 μM, a sensitivity of 5.658 mA/cm2/M, and a linear detection range up to 26 mM glucose. Formation of the multifunctional MNP/CG nanocomposites provides additional advantages for applications in more clinical areas such as in vivo biosensors and MRI agents. PMID:26052919

  7. Preparation and Characterization of Chitosan-coated Fe3O4 Nanoparticles using Ex-Situ Co-Precipitation Method and Tripolyphosphate/Sulphate as Dual Crosslinkers

    Science.gov (United States)

    Wulandari, Ika O.; Mardila, Vita T.; Santjojo, D. J. Djoko H.; Sabarudin, Akhmad

    2018-01-01

    The unique properties of nanomaterial provide great opportunities to develop in several fields. Several types of nanoparticles have been proven beneficial for biomedical and therapeutic agent development. Particularly for clinical use, nanoparticles must be biocompatible and non-toxic. Iron oxide nanoparticles consist of either magnetite (Fe3O4) or maghemite (γ-Fe2O3) was eligible to use for in vivo application including targeting drug delivery. Due to their distinct properties, these nanoparticles could be directed to the specific target under external magnetic field. However, nanoparticles have a tendency to form agglomeration. Therefore, surface modification was required to reduce the agglomeration. In this study, nanoparticles of Fe3O4 were produced and coated by biomaterial (chitosan) using ex-situ co-precipitation method. Nanoparticles of Fe3O4 were synthesized by adding ammonia water into iron ferric and ferrous solution. Synthesis process of Fe3O4 was conducted prior to adding chitosan. Chitosan was then cross-linked by a combination of tripolyphosphate/sulphate. The different composition ratio and crosslinking time provide the different physical and magnetic characteristics of nanoparticles. Particle and crystallite size was determined by using Scanning Electron Microscopy (SEM) and X-Ray Diffraction (XRD) respectively, whereas magnetic characteristic was determined by Electron Spin Resonance (ESR). The results showed that the ratio enhancement between chitosan: Fe3O4 increase the particle size, while decreased the crystallite size. Morphology and particle size were influenced by the ratio of crosslinkers. It was found that the higher tripolyphosphate content was contributed to the small size and more spherical morphology. In addition, the influence of crosslinking time toward crystallite size was determined by altering stirring time. The longer duration of crosslinking time, provide the larger crystallite size of chitosan-Fe3O4. There was an interesting

  8. Umbelliprenin-coated Fe3O4 magnetite nanoparticles: Antiproliferation evaluation on human Fibrosarcoma cell line (HT-1080)

    International Nuclear Information System (INIS)

    Khorramizadeh, M.R.; Esmail-Nazari, Z.; Zarei-Ghaane, Z.; Shakibaie, M.; Mollazadeh-Moghaddam, K.; Iranshahi, M.; Shahverdi, A.R.

    2010-01-01

    The potential applications of Fe 3 O 4 magnetite nanoparticles (MNPs) in nanomedicine as drug delivery systems are well known. In this study we prepared umbelliprenin-coated Fe 3 O 4 MNPs and evaluated the antiproliferative effect of combination in vitro. After synthesis of Fe 3 O 4 MNPs, particles were characterized by transmission electron microscopy, energy-dispersive spectroscopy, and X-ray diffraction spectroscopy techniques. The natural candidate compound - umbelliprenin- was isolated and identified and umbelliprenin-coated Fe 3 O 4 MNPs were prepared, using precipitation method. The surface chemistry of umbelliprenin-coated Fe 3 O 4 MNPs as well as their thermal decomposition characteristics was examined using Fourier transform infrared spectroscopy and Thermogravimetric Analyzer equipment, respectively. HT-1080 cells were cultured until the logarithmic phase of growth, and MTT assay was successfully carried out to evaluate the possible cytotoxic effects of umbelliprenin-coated Fe 3 O 4 MNPs in viable cells in vitro. The results demonstrated that umbelliprenin has moderate antiproliferative effects with IC 50 value of 50 μg/mL. However, the combination of umbelliprenin and Fe 3 O 4 MNPs showed the IC 50 value of 9 μg/mL. In other words, cell proliferation decreased to the remarkably-low proportion of 45% after treating cells with umbelliprenin-coated Fe 3 O 4 MNPs. This suggests that with the aid of nanoparticles as carriers, natural products may have even broader range of medical applications in future.

  9. One-pot synthesis of polyamines improved magnetism and fluorescence Fe3O4-carbon dots hybrid NPs for dual modal imaging.

    Science.gov (United States)

    Li, Bo; Wang, Xudong; Guo, Yali; Iqbal, Anam; Dong, Yaping; Li, Wu; Liu, Weisheng; Qin, Wenwu; Chen, Shizhen; Zhou, Xin; Yang, Yunhuang

    2016-04-07

    A one-step hydrothermal method was developed to fabricate Fe3O4-carbon dots (Fe3O4-CDs) magnetic-fluorescent hybrid nanoparticles (NPs). Ferric ammonium citrate (FAC) was used as a cheap and nontoxic iron precursor and as the carbon source. Moreover, triethylenetetramine (TETA) was used to improve the adhesive strength of CDs on Fe3O4 and the fluorescence intensity of CDs. The prepared water-soluble hybrid NPs not only exhibit excellent superparamagnetic properties (Ms = 56.8 emu g(-1)), but also demonstrate excitation-independent photoluminescence for down-conversion and up-conversion at 445 nm. Moreover, the prepared water-soluble Fe3O4-CDs hybrid NPs have a dual modal imaging ability for both magnetic resonance imaging (MRI) and fluorescence imaging.

  10. Magnetic and electronic properties of Fe3O4/graphene heterostructures: First principles perspective

    KAUST Repository

    Mi, Wenbo; Yang, Hua; Cheng, Yingchun; Chen, Guifeng; Bai, Haili

    2013-01-01

    Magnetic and electronic properties of Fe3O4(111)/graphene heterostructures are investigated by first principles calculations. Different structural models have been considered, which differ in the interface termination of Fe3O4(111) surface with respect to the same monolayer graphene. In three models, the magnetic moment of Fe(A) has a major change due to less O atoms surrounding Fe(A) atoms than Fe(B). Magnetic moment is enhanced by 8.5%, 18.5%, and 8.7% for models (a), (b), and (c), respectively. Furthermore, the spin polarization of models (a) and (c) is lowered due to the simultaneous occurrence of density of states of spin-up Fe(A) and spin-down Fe(B) at Fermi lever. The spin polarization of model (b) remains the same as that of bulk Fe3O4. Our results suggest that different interface terminations and Fe(A) play an important role in determining the magnetism strength and spin polarization.

  11. Magnetic and electronic properties of Fe3O4/graphene heterostructures: First principles perspective

    KAUST Repository

    Mi, Wenbo

    2013-02-27

    Magnetic and electronic properties of Fe3O4(111)/graphene heterostructures are investigated by first principles calculations. Different structural models have been considered, which differ in the interface termination of Fe3O4(111) surface with respect to the same monolayer graphene. In three models, the magnetic moment of Fe(A) has a major change due to less O atoms surrounding Fe(A) atoms than Fe(B). Magnetic moment is enhanced by 8.5%, 18.5%, and 8.7% for models (a), (b), and (c), respectively. Furthermore, the spin polarization of models (a) and (c) is lowered due to the simultaneous occurrence of density of states of spin-up Fe(A) and spin-down Fe(B) at Fermi lever. The spin polarization of model (b) remains the same as that of bulk Fe3O4. Our results suggest that different interface terminations and Fe(A) play an important role in determining the magnetism strength and spin polarization.

  12. Lightweight reduced graphene oxide-Fe3O4 nanoparticle composite in the quest for an excellent electromagnetic interference shielding material

    Science.gov (United States)

    Singh, Ashwani Kumar; Kumar, Ajit; Kamal Haldar, Krishna; Gupta, Vinay; Singh, Kedar

    2018-06-01

    This work reports a detailed study of reduced graphene oxide (rGO)-Fe3O4 nanoparticle composite as an excellent electromagnetic (EM) interference shielding material in GHz range. A rGO-Fe3O4 nanoparticle composite was synthesized using a facile, one step, and modified solvothermal method with the reaction of FeCl3, ethylenediamine and graphite oxide powder in the presence of ethylene glycol. Various structural, microstructural and optical characterization tools were used to determine its synthesis and various properties. Dielectric, magnetic and EM shielding parameters were also evaluated to estimate its performance as a shielding material for EM waves. X-ray diffraction patterns have provided information about the structural and crystallographic properties of the as-synthesized material. Scanning electron microscopy micrographs revealed the information regarding the exfoliation of graphite into rGO. Well-dispersed Fe3O4 nanoparticles over the surface of the graphene can easily be seen by employing transmission electron microscopy. For comparison, rGO nanosheets and Fe3O4 nanoparticles have also been synthesized and characterized in a similar fashion. A plot of the dielectric and magnetic characterizations provides some useful information related to various losses and the relaxation process. Shielding effectiveness due to reflection (SER), shielding effectiveness due to absorption (SEA), and total shielding effectiveness (SET) were also plotted against frequency over a broad range (8–12 GHz). A significant change in all parameters (SEA value from 5 dB to 35 dB for Fe3O4 nanoparticles to rGO-Fe3O4 nanoparticle composite) was found. An actual shielding effectiveness (SET) up to 55 dB was found in the rGO-Fe3O4 nanoparticle composite. These graphs give glimpses of how significantly this material shows shielding effectiveness over a broad range of frequency.

  13. Lightweight reduced graphene oxide-Fe3O4 nanoparticle composite in the quest for an excellent electromagnetic interference shielding material.

    Science.gov (United States)

    Singh, Ashwani Kumar; Kumar, Ajit; Haldar, Krishna Kamal; Gupta, Vinay; Singh, Kedar

    2018-06-15

    This work reports a detailed study of reduced graphene oxide (rGO)-Fe 3 O 4 nanoparticle composite as an excellent electromagnetic (EM) interference shielding material in GHz range. A rGO-Fe 3 O 4 nanoparticle composite was synthesized using a facile, one step, and modified solvothermal method with the reaction of FeCl 3 , ethylenediamine and graphite oxide powder in the presence of ethylene glycol. Various structural, microstructural and optical characterization tools were used to determine its synthesis and various properties. Dielectric, magnetic and EM shielding parameters were also evaluated to estimate its performance as a shielding material for EM waves. X-ray diffraction patterns have provided information about the structural and crystallographic properties of the as-synthesized material. Scanning electron microscopy micrographs revealed the information regarding the exfoliation of graphite into rGO. Well-dispersed Fe 3 O 4 nanoparticles over the surface of the graphene can easily be seen by employing transmission electron microscopy. For comparison, rGO nanosheets and Fe 3 O 4 nanoparticles have also been synthesized and characterized in a similar fashion. A plot of the dielectric and magnetic characterizations provides some useful information related to various losses and the relaxation process. Shielding effectiveness due to reflection (SE R ), shielding effectiveness due to absorption (SE A ), and total shielding effectiveness (SE T ) were also plotted against frequency over a broad range (8-12 GHz). A significant change in all parameters (SE A value from 5 dB to 35 dB for Fe 3 O 4 nanoparticles to rGO-Fe 3 O 4 nanoparticle composite) was found. An actual shielding effectiveness (SE T ) up to 55 dB was found in the rGO-Fe 3 O 4 nanoparticle composite. These graphs give glimpses of how significantly this material shows shielding effectiveness over a broad range of frequency.

  14. Detection of malachite green in fish based on magnetic fluorescent probe of CdTe QDs/nano-Fe3O4@MIPs

    Science.gov (United States)

    Wu, Le; Lin, Zheng-Zhong; Zeng, Jun; Zhong, Hui-Ping; Chen, Xiao-Mei; Huang, Zhi-Yong

    2018-05-01

    A magnetic fluorescent probe of CdTe QDs/nano-Fe3O4@MIPs was prepared using CdTe QDs and Fe3O4 nanoparticles as co-nucleus and molecularly imprinted polymers (MIPs) as specific recognition sites based on a reverse microemulsion method. With the specific enrichment and magnetic separation properties, the probe of CdTe QDs/nano-Fe3O4@MIPs was used to detect malachite green (MG) in fish samples. The TEM analysis showed that the particles of CdTe QDs/nano-Fe3O4@MIPs were spherical with average diameter around 53 nm, and a core-shell structure was well-shaped with several Fe3O4 nanoparticles and CdTe QDs embedded in each of the microsphere. Quick separation of the probes from solutions could be realized with a magnet, indicating the excellent magnetic property of CdTe QDs/nano-Fe3O4@MIPs. The probe exhibited high specific adsorption towards MG and excellent fluorescence emission at λem 598 nm. The fluorescence of CdTe QDs/nano-Fe3O4@MIPs could be linearly quenched by MG at the concentrations from 0.025 to 1.5 μmol L-1. The detection limit was 0.014 μmol L-1. The average recovery of spiked MG in fish samples was 105.2%. The result demonstrated that the as-prepared CdTe QDs/nano-Fe3O4@MIPs could be used as a probe to the detection of trace MG in fish samples.

  15. A simple approach to design chitosan functionalized Fe3O4 nanoparticles for pH responsive delivery of doxorubicin for cancer therapy

    Science.gov (United States)

    Adimoolam, Mahesh G.; Amreddy, Narsireddy; Nalam, Madhusudana Rao; Sunkara, Manorama V.

    2018-02-01

    The use of magnetic nanoparticles (MNPs) in cancer therapy offer many advantages due to their unique size, physical and biocompatible properties. In this study we have developed a formulation, comprising of anti-cancer drug doxorubicin (Dox) conjugated to iron oxide nanoparticles via a pH sensitive imine linker. Different amounts of chitosan functionalized superparamagnetic iron oxide nanoparticles (Fe3O4-CHI) were synthesized in-situ by a simple hydrolysis method at room temperature. The synthesized nanoparticles were well characterized by TEM, Zeta Potential, TOC, XPS, TGA and VSM for their physicochemical properties. Dox was conjugated to the Fe3O4-CHI nanoparticles via a glutaraldehyde cross linker with the imine (sbnd Cdbnd Nsbnd) bond, which is sensitive to cleavage in the pH range of 4.4-6.4. The synthesized Fe3O4-Dox nanoparticles exhibited enhanced drug release in lower pH conditions which mimics the tumor microenvironment or intracellular organelles such as endosomes/lysosomes. The cell uptake and therapeutic efficacy of Fe3O4-Dox nanoparticles carried out in ovarian cancer cell (SK-OV-3) and breast cancer cell line (MCF7) showed improved therapeutic efficacy of Dox by nearly four-fold with Fe3O4-Dox nanoparticles.

  16. In-situ ionic liquid dispersive liquid-liquid microextraction using a new anion-exchange reagent combined Fe3O4 magnetic nanoparticles for determination of pyrethroid pesticides in water samples.

    Science.gov (United States)

    Fan, Chen; Liang, You; Dong, Hongqiang; Ding, Guanglong; Zhang, Wenbing; Tang, Gang; Yang, Jiale; Kong, Dandan; Wang, Deng; Cao, Yongsong

    2017-07-04

    In this work, in-situ ionic liquid dispersive liquid-liquid microextraction combined ultrasmall Fe 3 O 4 magnetic nanoparticles was developed as a kind of pretreatment method to detect pyrethroid pesticides in water samples. New anion-exchange reagents including Na[DDTC] and Na[N(CN) 2 ] were optimized for in-situ extraction pyrethroids, which showed enhanced microextraction performance. Pyrethroids were enriched by hydrophilic ionic liquid [P 4448 ][Br] (aqueous solution, 200 μL, 0.2 mmol mL -1 ) reaction in-situ with anion-exchange reagent Na[N(CN) 2 ] (aqueous solution, 300 μL, 0.2 mmol mL -1 ) forming hydrophobic ionic liquid as extraction agent in water sample (10 mL). Ultrasmall superparamagnetic iron oxide nanoparticles (30 mg) were used to collect the mixture of ionic liquid and pyrethroids followed by elution with acetonitrile. The extraction of ionic liquid strategies was unique and efficiently fulfilled with high enrichment factors (176-213) and good recoveries (80.20-117.31%). The method was successively applied to the determination of pyrethroid pesticides in different kinds of water samples with the limits of detection ranged from 0.16 to 0.21 μg L -1 . The proposed method is actually nanometer-level microextraction (average size 80 nm) with the advantages of simplicity, rapidity, and sensitivity. Copyright © 2017 Elsevier B.V. All rights reserved.

  17. Phenylalanine Removal from Water by Fe3O4 Nanoparticles Functionalized with Two Different Surfactants

    Directory of Open Access Journals (Sweden)

    Ameneh Heidari

    2016-07-01

    Full Text Available In the present study, the application for the removal of phenylalanine by using two nano sorbents, namely, cetyltrimethylammonium bromide –Coated and BKC (benzal-conium chloride-Coated Fe3O4 nanoparticles was investigated. Solid-phase extraction (SPE and ultra violet–visible spectroscopy were used for studying the removal ability of each nano-sorbent in this study. Scanning Electron Microscopy, X-ray diffraction and Fourier infrared were used to characterize the synthesized magnetite nanoparticles. Batch adsorption studies were carried out to study the effect of various parameters, such as contact time, solution pH and concentration of phenylalanine. The equilibrium adsorption data of phenylalanine onto Fe3O4 nanoparticles (non-functionalized sample, cetyltrimethylammonium bromide -Coated and BKC -Coated were analyzed using Freundlich and Langmuir adsorption isotherms. The results indicated that adsorption of phenylalanine increased with increasing solution pH and maximum removal of phenylalanine was obtained at pH=9.0. Correlation coefficient were determined by analyzing each isotherm. It was found that the Freundlich equation showed better correlation with the experimental data than the Langmuir.

  18. Fe3O4/carbon hybrid nanoparticle electrodes for high-capacity electrochemical capacitors.

    Science.gov (United States)

    Lee, Jun Seop; Shin, Dong Hoon; Jun, Jaemoon; Lee, Choonghyeon; Jang, Jyongsik

    2014-06-01

    Fe3O4/carbon hybrid nanoparticles (FeCHNPs) were fabricated using dual-nozzle electrospraying, vapor deposition polymerization (VDP), and carbonization. FeOOH nanoneedles decorated with polypyrrole (PPy) nanoparticles (FePNPs) were fabricated by electrospraying pristine PPy mixed with FeCl3 solution, followed by heating stirring reaction. A PPy coating was then formed on the FeOOH nanoneedles through a VDP process. FeCHNPs were produced through carbonization of PPy and FeOOH phase transitions. These hybrid carbon nanoparticles (NPs) were used to build electrodes of electrochemical capacitors. The specific capacitance of the FeCHNPs was 455 F g(-1), which is larger than that of pristine PPy NPs (105 F g(-1)) or other hybrid PPy NPs. Furthermore, the FeCHNP-based capacitors exhibited better cycle stability during charge-discharge cycling than other hybrid NP capacitors. This is because the carbon layer on the Fe3 O4 surface formed a protective coating, preventing damage to the electrode materials during the charge-discharge processes. This fabrication technique is an effective approach for forming stable carbon/metal oxide nanostructures for energy storage applications. © 2014 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim.

  19. Magnetic rotational hysteresis study on spherical 85-160 nm Fe3O4 particles

    Science.gov (United States)

    Schmidbauer, E.

    1988-05-01

    Rotational hysteresis losses Wr were determined as a function of magnetic field H for dispensed spherical Fe3O4 particles of mean grain sizes 85 nm, 127 nm and 162 nm between 78 K and 294 K. The observed Wr-H curves are compared with theoretical curves for single domain particles. The analysed particles reveal centers of high magnetic anisotropy. Such centers can be of importance during the generation of a thermoremanent magnetization, as they may be the origin of enhanced magnetic stability.

  20. Combined Effects of Fe3O4 Nanoparticles and Chemotherapeutic Agents on Prostate Cancer Cells In Vitro

    Directory of Open Access Journals (Sweden)

    Kanako Kojima

    2018-01-01

    Full Text Available Patients with metastatic castration-resistant prostate cancer (mCRPC have poor outcomes. Docetaxel (DTX-based therapy is a current standard treatment for patients with mCRPC. Approaches combining conventional chemotherapeutic agents and nanoparticles (NPs, particularly iron oxide NPs, may overcome the serious side effects and drug resistance, resulting in the establishment of new therapeutic strategies. We previously reported the combined effects of Fe3O4 nanoparticles (Fe3O4 NPs with DTX on prostate cancer cells in vitro. In this study, we investigated the combined effects of Fe3O4 NPs and rapamycin or carboplatin on prostate cancer cells in vitro. Treatment of DU145 and PC-3 cells with Fe3O4 NPs increased intracellular reactive oxygen species (ROS levels in a concentration-dependent manner. Treatment of both cell lines with 100 μg/mL Fe3O4 NPs for 72 h resulted in significant inhibition of cell viability with a different inhibitory effect. Combination treatments with 100 µg/mL Fe3O4 NPs and 10 µM carboplatin or 10 nM rapamycin in DU145 and PC-3 cells significantly decreased cell viability. Synergistic effects on apoptosis were observed in PC-3 cells treated with Fe3O4 NPs and rapamycin and in DU145 cells with Fe3O4 NPs and carboplatin. These results suggest the possibility of combination therapy with Fe3O4 NPs and various chemotherapeutic agents as a novel therapeutic strategy for patients with mCRPC.

  1. Continuous preparation of Fe3O4 nanoparticles through Impinging Stream-Rotating Packed Bed reactor and their electrochemistry detection toward heavy metal ions

    International Nuclear Information System (INIS)

    Fan, Hong-Lei; Zhou, Shao-Feng; Gao, Jing; Liu, You-Zhi

    2016-01-01

    We reported the continuous preparation and electrochemical behavior toward heavy metal ions of the Fe 3 O 4 nanoparticles (Fe 3 O 4 NPs). This Fe 3 O 4 NPs were fabricated through a novel Impinging Stream-Rotating Packed Bed reactor with a high production rate of 2.23 kg/hour. The as-prepared Fe 3 O 4 NPs were quasi-spherical with a mean diameter of about 10 nm and shown the characteristics of superparamagnetism with the saturated magnetization of 60.5 emu/g. The electrochemical characterization of the as-prepared Fe 3 O 4 NPs toward heavy metal ions were evaluated using square wave anodic stripping voltammetry (SWASV) analysis. The results indicated that the modified electrode could be used to individual detection of Pb(II), Cu(II), Hg(II) and Cd(II). In particular, the modified electrode exhibited the selective detection toward Pb(II) with higher sensitivity of 14.9 μA/μM, while the response to Cu(II), Hg(II) and Cd(II) were negligible. Besides, the modified electrode shown good stability and potential practical applicability in the electrochemical determination of Pb(II). This above results offered a simple method for continuous preparation sensing materials in the application field of electrochemical detection of toxic metal ions through the technology of process intensification. - Highlights: • Fe 3 O 4 nanoparticles were continuous prepared through IS-RPB reactor. • The Fe 3 O 4 nanoparticles showed selective detection of heavy metal ions. • It exhibited favorable sensitivity (14.9 μA μM −1 ) and LOD (0.119 μM) for Pb(II). • The as-prepared nanoparticles showed favorable potential application.

  2. Highly-efficient forward osmosis membrane tailored by magnetically responsive graphene oxide/Fe3O4 nanohybrid

    Science.gov (United States)

    Rastgar, Masoud; Shakeri, Alireza; Bozorg, Ali; Salehi, Hasan; Saadattalab, Vahid

    2018-05-01

    Emerging forward osmosis (FO) process as a potentially more energy efficient method has recently gained remarkable attention. Herein, considering the unique features of graphene oxide (GO), a new facile method has been proposed to magnetically modify GO within the polyamide active layer to obtain highly efficient osmotically driven membranes. While exposed to magnetic field, thin film nanocomposite membranes modified by GO/Fe3O4 nanohybrids (TFN-MMGO/Fe3O4) were synthesized by in-situ interfacial polymerization of the prepared monomer solution and organic trimesoyl chloride. Water permeability, salt rejection, and fouling tendency of the modified membranes were then evaluated and compared with both pristine thin film composite (TFC) membrane and the ones modified by GO/Fe3O4 nanohybrides in the absence of magnetic field (TFN-GO/Fe3O4). According to the experimental results, when compared to the TFC and TFN-GO/Fe3O4 membranes, respectively, 117.4% and 63.2% water flux enhancements were achieved in TFN-MMGO/Fe3O4 membrane with optimal GO/Fe3O4 nanohybrid concentration of 100 ppm. In spite of such improvements in water flux, little compromise in reverse salt leakages were observed in the TFN-MMGO/Fe3O4 membranes compared to the TFC one. As well, the TFN-MMGO/Fe3O4 and TFN-GO/Fe3O4 membranes revealed higher fouling resistances than the TFC membrane due to their distinguished manipulated surface characteristics.

  3. Profound Interfacial Effects in CoFe2O4/Fe3O4 and Fe3O4/CoFe2O4 Core/Shell Nanoparticles

    Science.gov (United States)

    Polishchuk, Dmytro; Nedelko, Natalia; Solopan, Sergii; Ślawska-Waniewska, Anna; Zamorskyi, Vladyslav; Tovstolytkin, Alexandr; Belous, Anatolii

    2018-03-01

    Two sets of core/shell magnetic nanoparticles, CoFe2O4/Fe3O4 and Fe3O4/CoFe2O4, with a fixed diameter of the core ( 4.1 and 6.3 nm for the former and latter sets, respectively) and thickness of shells up to 2.5 nm were synthesized from metal chlorides in a diethylene glycol solution. The nanoparticles were characterized by X-ray diffraction, transmission electron microscopy, and magnetic measurements. The analysis of the results of magnetic measurements shows that coating of magnetic nanoparticles with the shells results in two simultaneous effects: first, it modifies the parameters of the core-shell interface, and second, it makes the particles acquire combined features of the core and the shell. The first effect becomes especially prominent when the parameters of core and shell strongly differ from each other. The results obtained are useful for optimizing and tailoring the parameters of core/shell spinel ferrite magnetic nanoparticles for their use in various technological and biomedical applications.

  4. Monodisperse magnetite (Fe_3O_4) nanoparticles modified with water soluble polymers for the diagnosis of breast cancer by MRI method

    International Nuclear Information System (INIS)

    Rezayan, Ali Hossein; Mousavi, Majid; Kheirjou, Somayyeh; Amoabediny, Ghasem; Ardestani, Mehdi Shafiee; Mohammadnejad, Javad

    2016-01-01

    In this study, magnetic nanoparticles (MNPs) were synthesized via co-precipitation method. To enhance the biocompatibility and colloidal stability of the synthesized nanoparticles, they were modified with carboxyl functionalized PEG via dopamine (DPA) linker. Both modified and unmodified Fe_3O_4 nanoparticles exhibited super paramagnetic behavior (particle size below 20 nm). The saturation magnetization (Ms) of PEGdiacid-modified Fe_3O_4 was 45 emu/g, which was less than the unmodified Fe_3O_4 nanoparticles (70 emu/g). This difference indicated that PEGdiacid polymer was immobilized on the surface of Fe_3O_4 nanoparticles successfully. To evaluate the efficiency of the resulting nanoparticles as contrast agents for magnetic resonance imaging (MRI), different concentration of MNPs and different value of echo time TE were investigated. The results showed that by increasing the concentration of the nanoparticles, transverse relaxation time (T_2) decreased, which subsequently resulted in MR signal enhancement. T_2-weighted MR images of the different concentration of MNPs in different value of echo time TE indicated that MR signal intensity increased with increase in TE value up to 66 and then remained constant. The cytotoxicity effect of the modified and unmodified nanoparticles was evaluated in three different concentrations (12, 60 and 312 mg l"−"1) on MDA-MB-231 cancer cells for 24 and 48 h. In both tested time (24 and 48 h) for all three samples, the modified nanoparticles had long life time than unmodified nanoparticles. Cellular uptake of modified MNPs was 80% and reduced to 9% by the unmodified MNPs. - Highlights: • Magnetic nanoparticles (MNPs) were synthesized via co-precipitation method. • MNPs were modified with carboxyl functionalized PEG via dopamine (DPA) linker. • Modified and unmodified Fe_3O_4 nanoparticles exhibited super paramagnetic behavior. • T_2 decrease as MNPs concentration increase, this led to MR signal enhancement. • Modified

  5. Influence of different synthesis conditions on properties of oleic acid-coated-Fe3O4 nanoparticles

    Directory of Open Access Journals (Sweden)

    Aliakbari Atieh

    2015-03-01

    Full Text Available In the present paper, iron oxide nanoparticles coated by oleic acid have been synthesized in different conditions by coprecipitation method. For investigating the effect of time spent on adding the oleic acid to the precursor solution, two different processes have been considered. The as synthesized samples were characterized by X-ray diffraction (XRD, transmission electron microscopy (TEM and Fourier transform infrared spectroscopy (FT-IR. Magnetic measurement was carried out at room temperature using a vibrating sample magnetometer (VSM. The results show that the magnetic nanoparticles decorated with oleic acid decreased the saturation of magnetization. From the data, it can also be concluded that the magnetization of Fe3O4/oleic acid nanoparticles depends on synthesis conditions.

  6. Synthesis and characterization of Fe_3O_4 nanoparticles stabilized by polyvinylpyrrolidone / polyethylene glycol with variable mass ratios

    International Nuclear Information System (INIS)

    Silva, F.A.S. da; Campos, M.F. de; Rojas, E. E.G.

    2014-01-01

    Magnetic nanoparticles are devices able to optimize cancer treatments. In particular, magnetite nanoparticles are very effective in producing heat to cause lysis of tumor cells. However, in order that nanoparticles are internalized without causing damage to body they must be coated by biocompatible material. In this work, Fe_3O_4 nanoparticles were coated by a polymer blend: polyethylene glycol / polyvinylpyrrolidone. Some variations in mass ratio of polymer mixture were made. The effect of varying mass ratio in polymers was investigated. Samples were characterized by X-ray diffraction and Rietveld analysis. Moreover, hysteresis curves were analyzed. The results indicate good agreement between mass proportions used and physical and magnetic properties of nanocomposite. (author)

  7. Functionalized graphene oxide/Fe3O4 hybrids for cellular magnetic resonance imaging and fluorescence labeling.

    Science.gov (United States)

    Zhou, Chaohui; Wu, Hui; Wang, Mingliang; Huang, Chusen; Yang, Dapeng; Jia, Nengqin

    2017-09-01

    In this work, we developed a T 2 -weighted contrast agent based on graphene oxide (GO)/Fe 3 O 4 hybrids for efficient cellular magnetic resonance imaging (MRI). The GO/Fe 3 O 4 hybrids were obtained by combining with co-precipitation method and pyrolysis method. The structural, surface and magnetic characteristics of the hybrids were systematically characterized by transmission electron microscopy (TEM), vibrating sample magnetometer (VSM), AFM, Raman, FT-IR and XRD. The GO/Fe 3 O 4 hybrids were functionalized by modifying with anionic and cationic polyelectrolyte through layer-by-layer assembling. The fluorescence probe fluorescein isothiocyanate (FITC) was further loaded on the surface of functionalized GO/Fe 3 O 4 hybrids to trace the location of GO/Fe 3 O 4 hybrids in cells. Functionalized GO/Fe 3 O 4 hybrids possess good hydrophilicity, less cytotoxicity, high MRI enhancement with the relaxivity (r 2 ) of 493mM -1 s -1 as well as cellular MRI contrast effect. These obtained results indicated that the functionalized GO/Fe 3 O 4 hybrids could have great potential to be utilized as cellular MRI contrast agents for tumor early diagnosis and monitoring. Copyright © 2017 Elsevier B.V. All rights reserved.

  8. Fabrication of magnetically responsive HKUST-1/Fe3O4 composites by dry gel conversion for deep desulfurization and denitrogenation.

    Science.gov (United States)

    Tan, Peng; Xie, Xiao-Yan; Liu, Xiao-Qin; Pan, Ting; Gu, Chen; Chen, Peng-Fei; Zhou, Jia-Yu; Pan, Yichang; Sun, Lin-Bing

    2017-01-05

    Selective adsorption by use of metal-organic frameworks (MOFs) is an effective method for purification of hydrocarbon fuels. In consideration that the adsorption processes proceed in liquid phases, separation and recycling of adsorbents should be greatly facilitated if MOFs were endowed with magnetism. In the present study, we reported for the first time a dry gel conversion (DGC) strategy to fabricate magnetically responsive MOFs as adsorbents for deep desulfurization and denitrogenation. The solvent is separated from the solid materials in the DGC strategy, and vapor is generated at elevated temperatures to induce the growth of MOFs around magnetic Fe 3 O 4 nanoparticles. This strategy can greatly simplify the complicated procedures of the well-known layer-by-layer method and avoid the blockage of pores confronted by introducing magnetic Fe 3 O 4 nanoparticles to the pores of MOFs. Our results show that the adsorbents are capable of efficiently removing aromatic sulfur and nitrogen compounds from model fuels, for example removing 0.62mmolg -1 S and 0.89mmolg -1 N of thiophene and indole, respectively. In addition, the adsorbents are facile to separate from liquid phases by use of an external field. After 6 cycles, the adsorbents still show a good adsorption capacity that is comparable to the fresh one. Copyright © 2016 Elsevier B.V. All rights reserved.

  9. Biopanning and characterization of peptides with Fe3O4 nanoparticles-binding capability via phage display random peptide library technique.

    Science.gov (United States)

    You, Fei; Yin, Guangfu; Pu, Ximing; Li, Yucan; Hu, Yang; Huang, Zhongbin; Liao, Xiaoming; Yao, Yadong; Chen, Xianchun

    2016-05-01

    Functionalization of inorganic nanoparticles (NPs) play an important role in biomedical applications. A proper functionalization of NPs can improve biocompatibility, avoid a loss of bioactivity, and further endow NPs with unique performances. Modification with vairous specific binding biomolecules from random biological libraries has been explored. In this work, two 7-mer peptides with sequences of HYIDFRW and TVNFKLY were selected from a phage display random peptide library by using ferromagnetic NPs as targets, and were verified to display strong binding affinity to Fe3O4 NPs. Fourier transform infrared spectrometry, fluorescence microscopy, thermal analysis and X-ray photoelectron spectroscopy confirmed the presence of peptides on the surface of Fe3O4 NPs. Sequence analyses revealed that the probable binding mechanism between the peptide and Fe3O4 NPs might be driven by Pearson hard acid-hard base specific interaction and hydrogen bonds, accompanied with hydrophilic interactions and non-specific electrostatic attractions. The cell viability assay indicated a good cytocompatibility of peptide-bound Fe3O4 NPs. Furthermore, TVNFKLY peptide and an ovarian tumor cell A2780 specific binding peptide (QQTNWSL) were conjugated to afford a liner 14-mer peptide (QQTNWSLTVNFKLY). The binding and targeting studies showed that 14-mer peptide was able to retain both the strong binding ability to Fe3O4 NPs and the specific binding ability to A2780 cells. The results suggested that the Fe3O4-binding peptides would be of great potential in the functionalization of Fe3O4 NPs for the tumor-targeted drug delivery and magnetic hyperthermia. Copyright © 2016 Elsevier B.V. All rights reserved.

  10. High surface area monodispersed Fe3O4 nanoparticles alone and on physical exfoliated graphite for improved supercapacitors

    Science.gov (United States)

    Sarno, Maria; Ponticorvo, Eleonora; Cirillo, Claudia

    2016-12-01

    Highly conductive, unsophisticated and easy to be obtained physical exfoliated graphite (PHG) supporting well dispersed magnetite, Fe3O4/PHG nanocomposite, has been prepared by a one-step chemical strategy and physico-chemical characterized. The nanocomposite, favoured by the a-polar nanoparticles (NPs) capping, results in a self-assembled monolayer of monodispersed Fe3O4, covering perfectly the hydrophobic surfaces of PHG. The nanocomposite as an electrode material was fabricated into a supercapacitor and characterized by cyclic voltammetry (CV) and galvanostatic charge-discharge measurements. It shows, after a suitable annealing, significant electrochemical properties (capacitance value of 787 F/g at 0.5 A g-1 and a Fe3O4/PHG weight ratio of 0.31) and good cycling stability (retention 91% after 30,000 cycles). Highly monodispersed very fine Fe3O4 NPs, covered by organic chains, have been also synthesized. The high surface area Fe3O4 NPs, after washing to leave a low content of organic chains able to avoid aggregation without excessively affecting the electrical properties of the material, exhibit remarkable pseudocapacitive activities, including the highest specific capacitance over reported for Fe3O4 (300 F/g at 0.5 A g-1).

  11. Magnetism and Microwave Absorption Properties of Fe3O4 Microflake-Paraffin Composites Without and With Magnetic Orientation

    Science.gov (United States)

    Wang, Peng; Zhang, Junming; Chen, Yuanwei; Wang, Guowu; Wang, Dian; Wang, Tao; Li, Fashen

    2018-01-01

    We have synthesized thin Fe3O4 microflakes by a simple hydrothermal method and prepared Fe3O4 microflake-paraffin composites without and with magnetic orientation using the method of simple ultrasonic mixing and rotating samples in a magnetic field. X-ray diffractometer, Mössbauer spectrum, scanning electron microscope and vibrating sample magnetometer were used to characterize the samples. The complex permittivity and permeability of Fe3O4 microflake-paraffin composites without and with magnetic orientation were measured in the frequency range of 0.1-18 GHz by a vector network analyzer using a coaxial method. The reflection loss (RL) was calculated by the measured electromagnetic parameters using transmission line theory. The measurement of electromagnetic parameters shows that magnetic orientation makes the complex permittivity and permeability increase. The calculated RL shows that the Fe3O4 microflake-paraffin composite with magnetic orientation has enhanced microwave absorption properties in the frequency range of 1-3 GHz and the thickness range of 2.9-3.5 mm, indicating that the Fe3O4 microflake-paraffin composite with magnetic orientation is a promising thin microwave absorption material in the L-S band.

  12. Green biosynthesis of magnetic iron oxide (Fe3O4) nanoparticles using the aqueous extracts of food processing wastes under photo-catalyzed condition and investigation of their antimicrobial and antioxidant activity.

    Science.gov (United States)

    Patra, Jayanta Kumar; Baek, Kwang-Hyun

    2017-08-01

    In this study, a simple, rapid, and eco-friendly green method was introduced to synthesize magnetite iron oxide nanoparticles (Fe 3 O 4 NPs) using the aqueous extracts of two food processing wastes, namely silky hairs of corn (Zea mays L.) and outer leaves of Chinese cabbage (Brassica rapa L. subsp. pekinensis). The boiled solutions of silky hairs (MH) and outer leaves of Chinese cabbage (CCP) were used to synthesize Fe 3 O 4 NPs under photo exposed condition. The MH-FeNPs and CCP-FeNPs synthesized via green route were characterized by UV-Vis spectroscopy, field emission scanning electron microscopy (FE-SEM), energy-dispersive X-ray spectroscopy (EDX), Fourier-transform infrared spectroscopy (FT-IR), X-ray diffraction (XRD), differential thermogravimetric (TG/DTG) analysis, and vibrating sample magnetometer (VSM) analysis. The UV-Visible spectra displayed two absorption bands at 325nm and 375mm for the MH-FeNPs, and 325mm and 365mm for the CCP-FeNPs, respectively. The estimated absolute crystallite sizes of the MH-FeNPs and CCP-FeNPs were calculated to be 84.81 and 48.91nm, respectively. VSM analysis revealed that both FeNPs were superparamagnetic in nature. Both FeNPs mixed with kanamycin and rifampicin displayed positive synergistic antibacterial activity against pathogenic foodborne bacteria (9.36-24.42mm inhibition zones), and those mixed with amphotericin b also exerted synergistic anticandidal activity against five different pathogenic Candida species (9.81-17.68mm inhibition zones). Both FeNPs exhibited strong antioxidant activities; therefore, all the properties of the green synthesized MH-FeNPs and CCP-FeNPs using food processing wastes could be beneficial for their potential applications in various fields such as drug delivery, antibacterial and anticandidal drugs, and biomedical fields. Copyright © 2017. Published by Elsevier B.V.

  13. A multi-controlled drug delivery system based on magnetic mesoporous Fe3O4 nanopaticles and a phase change material for cancer thermo-chemotherapy

    Science.gov (United States)

    Zhang, Qi; Liu, Jian; Yuan, Kunjie; Zhang, Zhengguo; Zhang, Xiaowen; Fang, Xiaoming

    2017-10-01

    Herein a novel multi-controlled drug release system for doxorubicin (DOX) was developed, in which monodisperse mesoporous Fe3O4 nanoparticles were combined with a phase change material (PCM) and polyethylene glycol 2000 (PEG2000). It is found that the PCM/PEG/DOX mixture containing 20% PEG could be dissolved into water at 42 °C. The mesoporous Fe3O4 nanoparticles prepared by the solvothermal method had sizes of around 25 nm and exhibited a mesoporous microstructure. A simple solvent evaporation process was employed to load the PCM/PEG/DOX mixture on the mesoporous Fe3O4 nanoparticles completely. In the Fe3O4@PCM/PEG/DOX system, the pores of the Fe3O4 nanoparticles were observed to be filled with the mixture of PCM/PEG/DOX. The Fe3O4@PCM/PEG/DOX system showed a saturation magnetization value of 50.0 emu g-1, lower than 71.1 emu g-1 of the mesoporous Fe3O4 nanoparticles, but it was still high enough for magnetic targeting and hyperthermia application. The evaluation on drug release performance indicated that the Fe3O4@PCM/PEG/DOX system achieved nearly zero release of DOX in vitro in body temperature, while around 80% of DOX could be released within 1.5 h at the therapeutic threshold of 42 °C or under the NIR laser irradiation for about 4 h. And a very rapid release of DOX was achieved by this system when applying an alternating magnetic field. By comparing the systems with and without PEG2000, it is revealed that the presence of PEG2000 makes DOX easy to be released from 1-tetradecanol to water, owing to its functions of increasing the solubility of DOX in 1-tetradecanol as well as decreasing the surface tension between water and 1-tetradecanol. The novel drug release system shows great potential for the development of thermo-chemotherapy of cancer treatment.

  14. Compact Ag@Fe3O4 Core-shell Nanoparticles by Means of Single-step Thermal Decomposition Reaction

    Science.gov (United States)

    Brollo, Maria Eugênia F.; López-Ruiz, Román; Muraca, Diego; Figueroa, Santiago J. A.; Pirota, Kleber R.; Knobel, Marcelo

    2014-10-01

    A temperature pause introduced in a simple single-step thermal decomposition of iron, with the presence of silver seeds formed in the same reaction mixture, gives rise to novel compact heterostructures: brick-like Ag@Fe3O4 core-shell nanoparticles. This novel method is relatively easy to implement, and could contribute to overcome the challenge of obtaining a multifunctional heteroparticle in which a noble metal is surrounded by magnetite. Structural analyses of the samples show 4 nm silver nanoparticles wrapped within compact cubic external structures of Fe oxide, with curious rectangular shape. The magnetic properties indicate a near superparamagnetic like behavior with a weak hysteresis at room temperature. The value of the anisotropy involved makes these particles candidates to potential applications in nanomedicine.

  15. Solvothermal synthesis and good microwave absorbing properties for magnetic porous-Fe3O4/graphene nanocomposites

    Directory of Open Access Journals (Sweden)

    Xiaojun Zeng

    2017-05-01

    Full Text Available The magnetic porous-Fe3O4/graphene nanocomposites have been fabricated by a facile solvothermal method. The porous Fe3O4 nanospheres are embedded uniformly in the graphene oxide (GO sheets to form a 3D Fe3O4/GO nanocomposite network. The dielectric properties for the Fe3O4/GO composites can be greatly improved by the 7 wt% GO additions. Good impedance matching can be also obtained in these Fe3O4/GO composites, which is proved to dominate their excellent microwave absorbing properties including the minimum reflection loss (RL value of -43.7 dB at 6.8 GHz with a sample thickness of 5 mm and a broad absorption bandwidth of 5.92 GHz (below -10 dB. These porous-Fe3O4/GO composites also exhibit the good structural stability and low density, which shows their great potential application in high-performance electromagnetic microwave-absorbing materials.

  16. Synergistic operation of photocatalytic degradation and Fenton process by magnetic Fe3O4 loaded TiO2

    Science.gov (United States)

    Sun, Qiong; Hong, Yong; Liu, Qiuhong; Dong, Lifeng

    2018-02-01

    The magnetic Fe3O4 loaded anatase TiO2 photocatalysts with different mass ratios were successfully synthesized by a one-step convenient calcining method. The morphology and structure analysis revealed that Fe3O4 was formed in TiO2 with very fine-grained particles. After a small amount of Fe3O4 loaded onto TiO2, the photocatalytic property enhanced obviously for the degradation of organic dye. Furthermore, the photo-Fenton-like catalysis of the iron-containing samples could also be induced after the addition of hydrogen peroxide. The apparent kinetic constant of the reaction that catalyzed by Fe-TiO2 was about 5.3 and 8.3 times of that catalyzed by TiO2 or Fe3O4 only, respectively, proving an effective synergistic contribution of the photocatalysis and Fenton reaction in the composite. Compared with Fe3O4 or free Fe3+ ions, only 13% of iron in TiO2 dissolved into acidic solution (25% for Fe3O4 and 100% for Fe3+) after the reaction, which confirmed the iron had been well immobilized onto TiO2. In addition, the extremely stable photocatalytic activity in cycling experiments proved the immobilized iron had been tightly attached onto TiO2, indicating the great potential of the catalyst for practical applications.

  17. Electrochemical performance of carbon-encapsulated Fe3O4 nanoparticles in lithium-ion batteries: morphology and particle size effects

    International Nuclear Information System (INIS)

    Zhang, Yongguang; Li, Yue; Li, Haipeng; Zhao, Yan; Yin, Fuxing; Bakenov, Zhumabay

    2016-01-01

    Graphical abstract: Cycling performance and schematic of the fabrication process for the Fe 3 O 4 @C composites. - Highlights: • Carbon-encapsulated Fe 3 O 4 nanoparticles with varied microstructures were produced. • Pomegranate-like Fe 3 O 4 @C electrodes exhibit enhanced cycling ability and rate ability. • The carbon content has impact on the specific capacity of the Fe 3 O 4 @C electrodes. - Abstract: Carbon-encapsulated Fe 3 O 4 nanoparticles (Fe 3 O 4 @C) with varied microstructures were produced by controlling the relative concentrations of glucose and iron nitrate hydrate in a hydrothermal process, followed by heat treatment in Ar atmosphere. Three Fe 3 O 4 @C nanocomposites with different particle sizes (mean diameter 31.2, 45.1 and 55.3 nm) and Fe 3 O 4 core size (26.8, 15.4 and 10.3 nm) were investigated for lithium storage performance. The Fe 3 O 4 @C nanoparticles with 15.4 nm Fe 3 O 4 core exhibit excellent initial specific capacity (1215 mAh g −1 ) and significantly improved cycling performance (806 mAh g −1 after 100 cycles) and rate capability (573 mAh g −1 at current density of 1500 mA g −1 ), in comparison to the other Fe 3 O 4 @C composites. This superior performance is attributed to microstructural effects spawned from the pomegranate-like carbon coating architecture of the composite, the appropriate carbon content, and the optimized particle size of Fe 3 O 4 @C nanoparticles, which combined suppress the agglomeration and pulverization of Fe 3 O 4 nanoparticle upon cycling and enhance the electrical conductivity of the Fe 3 O 4 anode.

  18. Synthesis of Ce(III)-doped Fe3O4 magnetic particles for efficient removal of antimony from aqueous solution

    International Nuclear Information System (INIS)

    Qi, Zenglu; Joshi, Tista Prasai; Liu, Ruiping; Liu, Huijuan; Qu, Jiuhui

    2017-01-01

    Highlights: • Doping of Ce into Fe 3 O 4 was achieved based on a facile solvothermal method. • After doping, the removal capacity was increased by 5 times for “Sb(V)” and 2 times for “Sb(III)”. • Decreasing pH improved adsorption of Sb(V) but decreased adsorption of Sb(III). • Antimony sorption mechanisms on Ce-doped Fe 3 O 4 were illustrated. - Abstract: Aqueous antimony (Sb) pollution from human activity is of great concern in drinking water due to its adverse health effect. Magnetic Fe 3 O 4 particles, with high separation ability from solution, have been considered as a low-cost Sb adsorbent for contaminants. However, the limited adsorption capacity has restricted its practical application. In this study, a solvothermal approach was developed for doping Ce(III) into Fe 3 O 4 , thereby increasing the adsorption efficacy for both Sb(III) and Sb(V). In contrast to un-doped Fe 3 O 4 , the adsorption capacity towards Sb(III) and Sb(V) in Ce-doped materials increased from 111.4 to 224.2 mg/g and from 37.2 to 188.1 mg/g at neutral pH, respectively. Based on the combined results of XPS, XRD, and FTIR, it confirmed that Ce atom successfully doped into the Fe 3 O 4 structure, resulting in the decreased particle size, increased the surface area, and isoelectric point. Furthermore, the vibrating sample magnetometer (VSM) results showed that the Ce doping process had some side effects on the primitive magnetic property, but remaining the high separation potential during water treatment. According to the high removal efficiency and magnetic property, the Ce-doped Fe 3 O 4 of great simplicity should be a promising adsorbent for aqueous Sb removal.

  19. A novel synthesis method for TiO2 particles with magnetic Fe3O4 cores.

    Science.gov (United States)

    Dong, Qi; Zhang, Keqiang; An, Yi

    2014-01-01

    TiO2@(AC/Fe3O4) (AC is activated carbon) was prepared by using AC and Fe3O4 as joint support. The morphological features, crystal structure, and magnetism of the final product were characterized. The results indicate that TiO2 particles formed on the surface of AC and Fe3O4; the sizes of TiO2 and Fe3O4 were 0.5 and 0.7 μm respectively, and that of AC fell within a wide range. The highly crystalline cubic structures of the TiO2 particles was in accord with the standard X-ray diffractometry spectrum of magnetite and anatase. The maximum saturation magnetization of TiO2@(AC/Fe3O4) was 75 emu g(-1), which was enough to support magnetic recovery. The rate of methylene blue (MB) removal photocatalyzed by TiO2@(AC/Fe3O4) was higher by 50% than that achieved with AC/Fe3O4 photocatalysis, and similar to that achieved with TiO2@AC. The removal rate (kobs) decreased drastically from 1.77 × 10(-2) to 9.36 × 10(-3)min(-1) when the initial concentration of MB solution increased from 2.0 to 5.0 mg L(-1). The kobs value increased from 9.41 × 10(-3) to 1.34 × 10(-2)min(-1) with increasing photocatalyst dosage from 0.2 to 1.0 g, then slightly decreased to 1.33 × 10(-2)min(-1) at 2.0 g dosage.

  20. Removal of silver nanoparticles by mussel-inspired Fe3O4@ polydopamine core-shell microspheres and its use as efficient catalyst for methylene blue reduction

    Science.gov (United States)

    Wu, Maoling; Li, Yinying; Yue, Rui; Zhang, Xiaodan; Huang, Yuming

    2017-02-01

    The removal of silver nanoparticles (AgNPs) from water is highly needed because of their increasing use and potential risk to the environment due to their toxic effects. Catalysis over AgNPs has received significant attention because of their highly catalytic performance. However, their use in practical applications is limited due to high cost and limited resources. Here, we present for the first time that the mussel-inspired Fe3O4@polydopamine (Fe3O4@PDA) nanocomposite can be used for efficient removal and recovery of AgNPs. Adsorption of AgNPs over Fe3O4@PDA was confirmed by TEM, FT-IR, XRD, TGA and magnetic property. The adsorption efficiency of AgNPs by Fe3O4@PDA was investigated as a function of pH, contact time, ionic strength and concentration of AgNPs. The kinetic data were well fitted to a pseudo-second order kinetic model. The isotherm data were well described by Langmuir model with a maximum adsorption capacity of 169.5 mg/g, which was higher than those by other adsorbents. Notably, the obtained AgNPs-Fe3O4@PDA exhibited highly catalytic activity for methylene blue reduction by NaBH4 with a rate constant of 1.44 × 10-3/s, which was much higher than those by other AgNPs catalysts. The AgNPs-Fe3O4@PDA promised good recyclability for at least 8 cycles and acid resistant with good stability.

  1. Photoelectron diffraction study of Rh nanoparticles growth on Fe3O4/Pd(111) ultrathin film

    International Nuclear Information System (INIS)

    Abreu, G. J. P.; Pancotti, A; Lima, L. H. de; Landers, R.; Siervo, A. de

    2013-01-01

    Metallic nanoparticles (NPs) supported on oxides thin films are commonly used as model catalysts for studies of heterogeneous catalysis. Several 4d and 5d metal NPs (for example, Pd, Pt and Au) grown on alumina, ceria and titania have shown strong metal support interaction (SMSI), for instance the encapsulation of the NPs by the oxide. The SMSI plays an important role in catalysis and is very dependent on the support oxide used. The present work investigates the growth mechanism and atomic structure of Rh NPs supported on epitaxial magnetite Fe 3 O 4 (111) ultrathin films prepared on Pd(111) using the Molecular Beam Epitaxy (MBE) technique. The iron oxide and the Rh NPs were characterized using X-ray photoelectron spectroscopy (XPS), low-energy electron diffraction and photoelectron diffraction (PED). The combined XPS and PED results indicate that Rh NPs are metallic, cover approximately 20 % of the iron oxide surface and show height distribution ranging 3–5 ML (monolayers) with essentially a bulk fcc structure.

  2. Fe3O4@mesoporous SBA-15: A magnetically recoverable catalyst for photodegradation of malachite green

    International Nuclear Information System (INIS)

    Aliyan, Hamid; Fazaeli, Razieh; Jalilian, Rahil

    2013-01-01

    Surface of mesostructured silica (SBA-15) was modified by immobilizing Fe 3 O 4 . This modified-nanosized mesoporous silica Fe 3 O 4 @SBA-15 was characterized by FTIR, XRD, BET and SEM. A comparison of the photoefficiency of Fe 3 O 4 @SBA-15 toward photodegradation of malachite green (MG) was investigated in a photocatalytic reactor using UV lamp as a light source. The effect of various experimental parameters on the degradation performance of the process was evaluated by examining catalyst dosage, initial dye concentration and pH of the dye solution in the presence of Fe 3 O 4 @SBA-15 as photocatalyst. It was found that the photocatalyst exhibited significantly high catalytic stability, and the activity loss is negligible after five MG degradation cycles.

  3. Synthesis of Acylated Xylan-Based Magnetic Fe3O4 Hydrogels and Their Application for H2O2 Detection

    Directory of Open Access Journals (Sweden)

    Qing-Qing Dai

    2016-08-01

    Full Text Available Acylated xylan-based magnetic Fe3O4 nanocomposite hydrogels (ACX-MNP-gels were prepared by fabricating Fe3O4 nanoctahedra in situ within a hydrogel matrix which was synthesized by the copolymerization of acylated xylan (ACX with acrylamide and N-isopropylacrylamide under ultraviolet irradiation. The size of the Fe3O4 fabricated within the hydrogel matrix could be adjusted through controlling the crosslinking concentrations (C. The magnetic hydrogels showed desirable magnetic and mechanical properties, which were confirmed by XRD, Raman spectroscopy, physical property measurement system, SEM, TGA, and compression test. Moreover, the catalytic performance of the magnetic hydrogels was explored. The magnetic hydrogels (C = 7.5 wt % presented excellent catalytic activity and provided a sensitive response to H2O2 detection even at a concentration level of 5 × 10−6 mol·L−1. This approach to preparing magnetic hydrogels loaded with Fe3O4 nanoparticles endows xylan-based hydrogels with new promising applications in biotechnology and environmental chemistry.

  4. Controllable synthesis of magnetic Fe_3O_4 particles with different morphology by one-step hydrothermal route

    International Nuclear Information System (INIS)

    Chen, Zhongtao; Du, Yi; Li, Zhongfu; Yang, Kai; Lv, Xingjie

    2017-01-01

    Well-defined Fe_3O_4 particles were successfully fabricated by a facile triethanolamine (TEA)-assisted method under mild hydrothermal conditions. Hydrated ferric salt was employed as the single iron precursor. TEA was used as the complexing agent and/or alkaline source. The crystalline phases of the as-obtained samples were characterized by X-ray diffraction (XRD). Furthermore, the morphology as well as the compositions of the samples were investigated by scanning electron microscopy (SEM) equipped with an energy dispersion spectroscopy (EDS). The results indicated that the products were Fe_3O_4 crystal phase, and the morphology and powder size of the particles were varied with adding different amount of NaOAc and keeping the content of TEA unchanged. On the basis of these results, the possible formation mechanism of Fe_3O_4 was discussed. It was observed that TEA and NaOAc affected the growth rate of crystal planes and nucleation. Besides, the magnetic property tested by a vibrating sample magnetometer (VSM) showed that the products exhibited a ferromagnetic behavior and possessed the excellent saturation magnetization (Ms) at room temperature. - Highlights: • Fe_3O_4 particles were obtained by employing TEA as single alkali source. • Morphology and size of Fe_3O_4 particles varied by adjusting the TEA/NaOAc ratio. • Magnetic properties of products were influenced by particle size and morphology.

  5. Magnetic ordered mesoporous Fe3O4/CeO2 composites with synergy of adsorption and Fenton catalysis

    Science.gov (United States)

    Li, Keyan; Zhao, Yongqin; Song, Chunshan; Guo, Xinwen

    2017-12-01

    Magnetic Fe3O4/CeO2 composites with highly ordered mesoporous structure and large surface area were synthesized by impregnation-calcination method, and the mesoporous CeO2 as support was synthesized via the hard template approach. The composition, morphology and physicochemical properties of the materials were characterized by XRD, SEM, TEM, XPS, Raman spectra and N2 adsorption/desorption analysis. The mesoporous Fe3O4/CeO2 composite played a dual-function role as both adsorbent and Fenton-like catalyst for removal of organic dye. The methylene blue (MB) removal efficiency of mesoporous Fe3O4/CeO2 was much higher than that of irregular porous Fe3O4/CeO2. The superior adsorption ability of mesoporous materials was attributed to the abundant oxygen vacancies on the surface of CeO2, high surface area and ordered mesoporous channels. The good oxidative degradation resulted from high Ce3+ content and the synergistic effect between Fe and Ce. The mesoporous Fe3O4/CeO2 composite presented low metal leaching (iron 0.22 mg L-1 and cerium 0.63 mg L-1), which could be ascribed to the strong metal-support interactions for dispersion and stabilization of Fe species. In addition, the composite can be easily separated from reaction solution with an external magnetic field due to its magnetic property, which is important to its practical applications.

  6. Ferrofluid synthesis using oleic acid coated Fe3O4 nanoparticles dispersed in mineral oil for heat transfer applications

    Science.gov (United States)

    Imran, Mohd; Rahman Ansari, Akhalakur; Hussain Shaik, Aabid; Abdulaziz; Hussain, Shahir; Khan, Afzal; Rehaan Chandan, Mohammed

    2018-03-01

    Ferrofluids are stable dispersion of iron oxide nanoparticles in a carrier fluid which find potential applications in heat transfer. Fe3O4 nanoparticles of mean size in the range of 5–10 nm were synthesized using conventional co-precipitation method. This work deals with the synthesis of ferrofluids using mineral oil as a carrier fluid and oleic acid coated Fe3O4 nanoparticles as dispersed phase. Morphology (shape and size) and crystallinity of the synthesized nanoparticle is captured using TEM and XRD. Oleic acid coating on nanoparticle is probed using FTIR for confirming the stability of ferrofluid. Thermal properties of mineral oil based ferrofluid with varying concentration of nanoparticles are evaluated in terms of thermal conductivity. It was found that the thermal conductivity of ferrofluid increases upto 2.5% (w/v) nanoparticle loading, where a maximum enhancement of ∼51% in thermal conductivity was recorded as compared to the base fluid.

  7. Magnetic properties of Fe3O4 thin films grown on different substrates by laser ablation

    International Nuclear Information System (INIS)

    Parames, M.L.; Viskadourakis, Z.; Rogalski, M.S.; Mariano, J.; Popovici, N.; Giapintzakis, J.; Conde, O.

    2007-01-01

    Magnetite thin films have been grown onto (1 0 0)Si (1 0 0)GaAs and (0 0 0 1)Al 2 O 3 , at substrate temperatures varying from 473 to 673 K, by UV pulsed laser ablation of Fe 3 O 4 targets in reactive atmospheres of O 2 and Ar, at working pressure of 8 x 10 -2 Pa. The influence of the substrate on stoichiometry, microstructure and the magnetic properties has been studied by X-ray diffraction (XRD), conversion electron Moessbauer spectroscopy (CEMS) and magnetic measurements. Magnetite crystallites, with stoichiometry varying from Fe 2.95 O 4 to Fe 2.99 O 4 , are randomly oriented for (1 0 0)GaAs and (1 0 0)Si substrates and exhibit (1 1 1) texture if grown onto (0 0 0 1)Al 2 O 3 . Interfacial Fe 3+ diffusion, which is virtually absent for (1 0 0)Si substrates, was found for both (0 0 0 1)Al 2 O 3 and (1 0 0)GaAs, with some deleterious effect on the subsequent microstructure and magnetic behaviour

  8. Facile synthesis of magnetic Fe3O4/graphene composites for enhanced U(VI) sorption

    Science.gov (United States)

    Zhao, Donglin; Zhu, Hongyu; Wu, Changnian; Feng, Shaojie; Alsaedi, Ahmed; Hayat, Tasawar; Chen, Changlun

    2018-06-01

    A novel magnetic Fe3O4/graphene composite (FGC) was fabricated by a facile one-step reaction route and shown to be effective for sorbing U(VI) from aqueous solution. The structure, properties and application of the prepared FGC composite were well evaluated. The high saturation magnetization (45.6 emu/g) made FGC easier to be separated from the media within several seconds under an external magnetic. Effects of different ambient conditions (i.e., pH and ionic strength, contact time, temperatures) on sorption behaviors of U(VI) on FGC were carried out by batch experiments. According to the calculation of Langmuir model, the maximum sorption capacity of U(VI) on the FGC at pH 5.5 and 298 K was 176.47 mg/g. The sorption was correlated with the effects of pH, contact time, and temperature. X-ray photoelectron spectroscopy analysis revealed that U(VI) was sorbed on FGC via oxygen-containing functional groups. This work demonstrated that FGC could be recycled and used as an effective recyclable sorbent for sorption of U(VI).

  9. Plant Explants Grown on Medium Supplemented with Fe3O4 Nanoparticles Have a Significant Increase in Embryogenesis

    Directory of Open Access Journals (Sweden)

    Inese Kokina

    2017-01-01

    Full Text Available Development of nanotechnology leads to the increasing release of nanoparticles in the environment that results in accumulation of different NPs in living organisms including plants. This can lead to serious changes in plant cultures which leads to genotoxicity. The aims of the present study were to detect if iron oxide NPs pass through the flax cell wall, to compare callus morphology, and to estimate the genotoxicity in Linum usitatissimum L. callus cultures induced by different concentrations of Fe3O4 nanoparticles. Two parallel experiments were performed: experiment A, where flax explants were grown on medium supplemented with 0.5 mg/l, 1 mg/l, and 1.5 mg/l Fe3O4 NPs for callus culture obtaining, and experiment B, where calluses obtained from basal MS medium were transported into medium supplemented with concentrations of NPs identical to experiment A. Obtained results demonstrate similarly in both experiments that 25 nm Fe3O4 NPs pass into callus cells and induce low toxicity level in the callus cultures. Nevertheless, calluses from experiment A showed 100% embryogenesis in comparison with experiment B where 100% rhizogenesis was noticed. It could be associated with different stress levels and adaptation time for explants and calluses that were transported into medium with Fe3O4 NPs supplementation.

  10. Synergistic interaction between pseudocapacitive Fe3O4 nanoparticles and highly porous silicon carbide for high-performance electrodes as electrochemical supercapacitors.

    Science.gov (United States)

    Kim, Myeongjin; Kim, Jooheon

    2017-05-12

    Composites of micro- and mesoporous SiC flakes (SiCF) and ferroferric oxide (Fe 3 O 4 ), SiCF/Fe 3 O 4 , were prepared via the chemical deposition of Fe 3 O 4 on SiCF by the chemical reduction of an Fe precursor. The SiCF/Fe 3 O 4 electrodes were fabricated at different Fe 3 O 4 feeding ratios to determine the optimal Fe 3 O 4 content that can maintain a high total surface area of SiCF/Fe 3 O 4 composites as well as cause a vigorous redox reaction, thereby maximizing the synergistic effect between the electric double-layer capacitive effects of SiCF and the pseudo-capacitive effects of Fe 3 O 4 . The SiCF/Fe 3 O 4 electrode fabricated with a Fe 3 O 4 /SiCF feeding ratio of 1.5:1 (SiCF/Fe 3 O 4 (1.5)) exhibited the highest charge storage capacity, showing a specific capacitance of 423.2 F g -1 at a scan rate of 5 mV s -1 with a rate performance of 81.8% from 5 to 500 mV s -1 in an aqueous 1 M KOH electrolyte. The outstanding capacitive performance of the SiCF/Fe 3 O 4 (1.5) electrode could be attributed to the harmonious synergistic effect between the electric double-layer capacitive contribution of the SiCF and the pseudocapacitive contribution of the Fe 3 O 4 nanoparticles introduced on the SiCF surface. These encouraging results demonstrate that the SiCF/Fe 3 O 4 (1.5) electrode is a promising high-performance electrode material for use in supercapacitors.

  11. Magnetic porous Fe3O4/carbon octahedra derived from iron-based metal-organic framework as heterogeneous Fenton-like catalyst

    Science.gov (United States)

    Li, Wenhui; Wu, Xiaofeng; Li, Shuangde; Tang, Wenxiang; Chen, Yunfa

    2018-04-01

    The synthesis of effective and recyclable Fenton-like catalyst is still a key factor for advanced oxidation processes. Herein, magnetic porous Fe3O4/carbon octahedra were constructed by a two-step controlled calcination of iron-based metal organic framework. The porous octahedra were assembled by interpenetrated Fe3O4 nanoparticles coated with graphitic carbon layer, offering abundant mesoporous channels for the solid-liquid contact. Moreover, the oxygen-containing functional groups on the surface of graphitic carbon endow the catalysts with hydrophilic nature and well-dispersion into water. The porous Fe3O4/carbon octahedra show efficiently heterogeneous Fenton-like reactions for decomposing the organic dye methylene blue (MB) with the help of H2O2, and nearly 100% removal efficiency within 60 min. Furthermore, the magnetic catalyst retains the activity after ten cycles and can be easily separated by external magnetic field, indicating the long-term catalytic durability and recyclability. The good Fenton-like catalytic performance of the as-synthesized Fe3O4/carbon octahedra is ascribed to the unique mesoporous structure derived from MOF-framework, as well as the sacrificial role and stabilizing effect of graphitic carbon layer. This work provides a facile strategy for the controllable synthesis of integrated porous octahedral structure with graphitic carbon layer, and thereby the catalyst holds significant potential for wastewater treatment.

  12. The effects of magnetite (Fe3O4 nanoparticles on electroporation-induced inward currents in pituitary tumor (GH3 cells and in RAW 264.7 macrophages

    Directory of Open Access Journals (Sweden)

    Liu YC

    2012-03-01

    Full Text Available Yen-Chin Liu1, Ping-Ching Wu2, Dar-Bin Shieh2–5, Sheng-Nan Wu3,6,71Department of Anesthesiology, 2Institute of Oral Medicine and Department of Stomatology, 3Department of Physiology, National Cheng Kung University Hospital, College of Medicine, 4Advanced Optoelectronic Technology Center, 5Center for Micro/Nano Science and Technology, National Cheng Kung University, 6Innovation Center for Advanced Medical Device Technology, National Cheng Kung University, 7Department of Anatomy and Cell Biology, National Cheng Kung University Medical College, Tainan, TaiwanAims: Fe3O4 nanoparticles (NPs have been known to provide a distinct image contrast effect for magnetic resonance imaging owing to their super paramagnetic properties on local magnetic fields. However, the possible effects of these NPs on membrane ion currents that concurrently induce local magnetic field perturbation remain unclear.Methods: We evaluated whether amine surface-modified Fe3O4 NPs have any effect on ion currents in pituitary tumor (GH3 cells via voltage clamp methods.Results: The addition of Fe3O4 NPs decreases the amplitude of membrane electroporation-induced currents (IMEP with a half-maximal inhibitory concentration at 45 µg/mL. Fe3O4 NPs at a concentration of 3 mg/mL produced a biphasic response in the amplitude of IMEP, ie, an initial decrease followed by a sustained increase. A similar effect was also noted in RAW 264.7 macrophages.Conclusion: The modulation of magnetic electroporation-induced currents by Fe3O4 NPs constitutes an important approach for cell tracking under various imaging modalities or facilitated drug delivery.Keywords: iron oxide, ion current, free radical

  13. Electrostatic Self-Assembly of Fe3O4 Nanoparticles on Graphene Oxides for High Capacity Lithium-Ion Battery Anodes

    Directory of Open Access Journals (Sweden)

    Jung Kyoo Lee

    2013-09-01

    Full Text Available Magnetite, Fe3O4, is a promising anode material for lithium ion batteries due to its high theoretical capacity (924 mA h g−1, high density, low cost and low toxicity. However, its application as high capacity anodes is still hampered by poor cycling performance. To stabilize the cycling performance of Fe3O4 nanoparticles, composites comprising Fe3O4 nanoparticles and graphene sheets (GS were fabricated. The Fe3O4/GS composite disks of mm dimensions were prepared by electrostatic self-assembly between negatively charged graphene oxide (GO sheets and positively charged Fe3O4-APTMS [Fe3O4 grafted with (3-aminopropyltrimethoxysilane (APTMS] in an acidic solution (pH = 2 followed by in situ chemical reduction. Thus prepared Fe3O4/GS composite showed an excellent rate capability as well as much enhanced cycling stability compared with Fe3O4 electrode. The superior electrochemical responses of Fe3O4/GS composite disks assure the advantages of: (1 electrostatic self-assembly between high storage-capacity materials with GO; and (2 incorporation of GS in the Fe3O4/GS composite for high capacity lithium-ion battery application.

  14. Preparation and characterization of Fe3O4/SiO2/Bi2MoO6 composite as magnetically separable photocatalyst

    International Nuclear Information System (INIS)

    Hou, Xuemei; Tian, Yanlong; Zhang, Xiang; Dou, Shuliang; Pan, Lei; Wang, Wenjia; Li, Yao; Zhao, Jiupeng

    2015-01-01

    Highlights: • Fe 3 O 4 /SiO 2 /Bi 2 MoO 6 composite was prepared by a hydrothermal method. • The composite has an enhanced visible absorption compared with pure Bi 2 MoO 6 . • The magnetic photocatalyst displayed excellent stability and reusability. • O 2 ·− and · OH play a major role during the photocatalytic process. - Abstract: In this paper, Fe 3 O 4 /SiO 2 /Bi 2 MoO 6 microspheres were prepared by a facile hydrothermal method. The scanning electron microscope (SEM) results revealed that flower-like three dimensional (3D) Bi 2 MoO 6 microspheres were decorated with Fe 3 O 4 /SiO 2 magnetic nanoparticles. The UV–vis diffuse reflection spectra showed extended absorption within the visible light range compared with pure Bi 2 MoO 6 . We evaluated the photocatalytic activities of Fe 3 O 4 /SiO 2 /Bi 2 MoO 6 microspheres on the degradation of Rhodamine B (RhB) under visible light irradiation and found that the obtained composite exhibited higher photocatalytic activity than pure Bi 2 MoO 6 and P25. Moreover, the Fe 3 O 4 /SiO 2 /Bi 2 MoO 6 composite also displayed excellent stability and their photocatalytic activity decreased slightly after reusing 5 cycles. Meanwhile, the composite could be easily separated by applying an external magnetic field. The trapping experiment results suggest that superoxide radical species O 2 ·− and hydroxyl radicals · OH play a major role in Fe 3 O 4 /SiO 2 /Bi 2 MoO 6 system under visible light irradiation. The combination of flower-like three dimensional (3D) Bi 2 MoO 6 microspheres and Fe 3 O 4 /SiO 2 magnetic nanospheres provides a useful strategy for designing multifunctional nanostructure materials with enhanced photocatalytic activities in the potential applications of water purification

  15. Study of AC Magnetic Properties and Core Losses of Fe/Fe3O4-epoxy Resin Soft Magnetic Composite

    Science.gov (United States)

    Laxminarayana, T. A.; Manna, Subhendu Kumar; Fernandes, B. G.; Venkataramani, N.

    Soft Magnetic Composites (SMC) were prepared by coating of nanocrystalline Fe3O4 particles, synthesized by co-precipitation method, on atomized iron powder of particle size less than 53 μm in size using epoxy resin as a binder between iron and Fe3O4. Fe3O4 was chosen, for its high electric resistivity and suitable magnetic properties, to keep the coating layer magnetic and seek improvement to the magnetic properties of SMC. SEM images and XRD patterns were recorded in order to investigate the coatings on the surface of iron powder. A toroid was prepared by cold compaction of coated iron powder at 1050 MPa and subsequently cured at 150˚C for 1 hr in argon atmosphere. For comparison of properties, a toroid of uncoated iron powder was also compacted at 1050 MPa and annealed at 600˚C for 2 hr in argon atmosphere. The coated iron powder composite has a resistivity of greater than 200 μΩm, measured by four probe method. A comparison of Magnetic Hysteresis loops and core losses using B-H Loop tracer in the frequency range 0 to 1500 Hz on the coated and uncoated iron powder is reported.

  16. One-step microwave-assisted synthesis of water-dispersible Fe3O4 magnetic nanoclusters for hyperthermia applications

    Science.gov (United States)

    Sathya, Ayyappan; Kalyani, S.; Ranoo, Surojit; Philip, John

    2017-10-01

    To realize magnetic hyperthermia as an alternate stand-alone therapeutic procedure for cancer treatment, magnetic nanoparticles with optimal performance, within the biologically safe limits, are to be produced using simple, reproducible and scalable techniques. Herein, we present a simple, one-step approach for synthesis of water-dispersible magnetic nanoclusters (MNCs) of superparamagnetic iron oxide by reducing of Fe2(SO4)3 in sodium acetate (alkali), poly ethylene glycol (capping ligand), and ethylene glycol (solvent and reductant) in a microwave reactor. The average size and saturation magnetization of the MNC's are tuned from 27 to 52 nm and 32 to 58 emu/g by increasing the reaction time from 10 to 600 s. Transmission electron microscopy images reveal that each MNC composed of large number of primary Fe3O4 nanoparticles. The synthesised MNCs show excellent colloidal stability in aqueous phase due to the adsorbed PEG layer. The highest SAR value of 215 ± 10 W/gFe observed in 52 nm size MNC at a frequency of 126 kHz and field of 63 kA/m suggest the potential use of these MNC in hyperthermia applications. This study further opens up the possibilities to develop metal ion-doped MNCs with tunable sizes suitable for various biomedical applications using microwave assisted synthesis.

  17. Rapid removal of uranium from aqueous solutions using magnetic Fe3O4@SiO2 composite particles.

    Science.gov (United States)

    Fan, Fang-Li; Qin, Zhi; Bai, Jing; Rong, Wei-Dong; Fan, Fu-You; Tian, Wei; Wu, Xiao-Lei; Wang, Yang; Zhao, Liang

    2012-04-01

    Rapid removal of U(VI) from aqueous solutions was investigated using magnetic Fe(3)O(4)@SiO(2) composite particles as the novel adsorbent. Batch experiments were conducted to study the effects of initial pH, amount of adsorbent, shaking time and initial U(VI) concentrations on uranium sorption efficiency as well as the desorbing of U(VI). The sorption of uranium on Fe(3)O(4)@SiO(2) composite particles was pH-dependent, and the optimal pH was 6.0. In kinetics studies, the sorption equilibrium can be reached within 180 min, and the experimental data were well fitted by the pseudo-second-order model, and the equilibrium sorption capacities calculated by the model were almost the same as those determined by experiments. The Langmuir sorption isotherm model correlates well with the uranium sorption equilibrium data for the concentration range of 20-200 mg/L. The maximum uranium sorption capacity onto magnetic Fe(3)O(4)@SiO(2) composite particles was estimated to be about 52 mg/g at 25 °C. The highest values of uranium desorption (98%) was achieved using 0.01 M HCl as the desorbing agent. Fe(3)O(4)@SiO(2) composite particles showed a good selectivity for uranium from aqueous solution with other interfering cation ions. Present study suggested that magnetic Fe(3)O(4)@SiO(2) composite particles can be used as a potential adsorbent for sorption uranium and also provided a simple, fast separation method for removal of heavy metal ion from aqueous solution. Copyright © 2011 Elsevier Ltd. All rights reserved.

  18. Facile preparation of magnetic mesoporous Fe_3O_4/C/Cu composites as high performance Fenton-like catalysts

    International Nuclear Information System (INIS)

    Li, Keyan; Zhao, Yongqin; Janik, Michael J.; Song, Chunshan; Guo, Xinwen

    2017-01-01

    Highlights: • Fe-Cu composites with different compositions were prepared by calcining tartrates. • Magnetic mesoporous Fe_3O_4/C/Cu was obtained by calcining tartrate under N_2. • Fe_3O_4/C/Cu exhibits excellent photo-Fenton catalytic activity and reusability. • The activity is due to the synergistic and photo-reduction effects of Fe and Cu. - Abstract: Fe-Cu composites with different compositions and morphologies were synthesized by a hydrothermal method combined with precursor thermal transformation. γ-Fe_2O_3/CuO and α-Fe_2O_3/CuO were obtained by calcining the Fe and Cu tartrates under air atmosphere at 350 °C and 500 °C, respectively, while Fe_3O_4/C/Cu was obtained by calcining the tartrate precursor under N_2 atmosphere at 500 °C. The Fe_3O_4/C/Cu composite possessed mesoporous structure and large surface area up to 133 m"2 g"−"1. The Fenton catalytic performance of Fe_3O_4/C/Cu composite was closely related to the Fe/Cu molar ratio, and only proper amounts of Fe and Cu exhibited a synergistic enhancement in Fenton catalytic activity. Cu inclusion reduced Fe"3"+ to Fe"2"+, which accelerated the Fe"3"+/Fe"2"+ cycles and favored H_2O_2 decomposition to produce more hydroxyl radicals for methylene blue (MB) oxidation. Due to the photo-reduction of Fe"3"+ and Cu"2"+, the Fenton catalytic performance was greatly improved when amending with visible light irradiation in the Fe_3O_4/C/Cu-H_2O_2 system, and MB (100 mg L"−"1) was nearly removed within 60 min. The Fe_3O_4/C/Cu composite showed good recyclability and could be conveniently separated by an applied magnetic field. Compared with conventional methods for mesoporous composite construction, the thermolysis method using mixed metal tartrates as precursors has the advantages of easy preparation and low cost. This strategy provides a facile, cheap and green method for the synthesis of mesoporous composites as excellent Fenton-like catalysts, without any additional reductants or organic

  19. Biological Fate of Fe3O4 Core-Shell Mesoporous Silica Nanoparticles Depending on Particle Surface Chemistry

    Science.gov (United States)

    Rascol, Estelle; Daurat, Morgane; Da Silva, Afitz; Maynadier, Marie; Dorandeu, Christophe; Charnay, Clarence; Garcia, Marcel; Lai-Kee-Him, Joséphine; Bron, Patrick; Auffan, Mélanie; Angeletti, Bernard; Devoisselle, Jean-Marie; Guari, Yannick; Gary-Bobo, Magali; Chopineau, Joël

    2017-01-01

    The biological fate of nanoparticles (NPs) for biomedical applications is highly dependent of their size and charge, their aggregation state and their surface chemistry. The chemical composition of the NPs surface influences their stability in biological fluids, their interaction with proteins, and their attraction to the cell membranes. In this work, core-shell magnetic mesoporous silica nanoparticles (Fe3O4@MSN), that are considered as potential theranostic candidates, are coated with polyethylene glycol (PEG) or 1,2-dimyristoyl-sn-glycero-3-phosphocholine (DMPC) lipid bilayer. Their biological fate is studied in comparison to the native NPs. The physicochemical properties of these three types of NPs and their suspension behavior in different media are investigated. The attraction to a membrane model is also evaluated using a supported lipid bilayer. The surface composition of NPs strongly influences their dispersion in biological fluids mimics, protein binding and their interaction with cell membrane. While none of these types of NPs is found to be toxic on mice four days after intravenous injection of a dose of 40 mg kg−1 of NPs, their surface coating nature influences the in vivo biodistribution. Importantly, NP coated with DMPC exhibit a strong accumulation in liver and a very low accumulation in lung in comparison with nude or PEG ones. PMID:28665317

  20. A facile method for preparing porous, optically active, magnetic Fe3 O4 @poly(N-acryloyl-leucine) inverse core/shell composite microspheres.

    Science.gov (United States)

    Liu, Dong; Deng, Jianping; Yang, Wantai

    2014-01-01

    The first synthesis of porous, optically active, magnetic Fe3 O4 @poly(N-acryloyl-leucine) inverse core/shell composite microspheres is reported, in which the core is constructed of chiral polymer and the shell is constructed of Fe3 O4 NPs. The microspheres integrate three significant concepts, "porosity", "chirality", and "magneticity", in one single microspheric entity. The microspheres consist of Fe3 O4 nanoparticles and porous optically active microspheres, and thus combine the advantages of both magnetic nanoparticles and porous optically active microspheres. The pore size and specific surface area of the microspheres are characterized by N2 adsorption, from which it is found that the composite microspheres possess a desirable porous structure. Circular dichroism and UV-vis absorption spectroscopy measurements demonstrate that the microspheres exhibit the expected optical activity. The microspheres also have high saturation magnetization of 14.7 emu g(-1) and rapid magnetic responsivity. After further optimization, these novel microspheres may potentially find applications in areas such as asymmetric catalysis, chiral adsorption, etc. © 2013 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim.

  1. Electrochemical detection of short HIV sequences on chitosan/Fe3O4 nanoparticle based screen printed electrodes

    International Nuclear Information System (INIS)

    Tran, Lam Dai; Nguyen, Binh Hai; Van Hieu, Nguyen; Tran, Hoang Vinh; Nguyen, Huy Le; Nguyen, Phuc Xuan

    2011-01-01

    In this study, a novel CS/Fe 3 O 4 nanobiocomposite-based platform for electrochemical detection of HIV-1 was developed. The most attractive feature of this system is a suitable microenvironment (Fe 3 O 4 nanoparticles) which could contribute to electron transfer and thus sensitivity enhancement when using methylene blue (MB) as an external mediator and Square Wave Voltammetry (SWV), Electrochemical Impedance Spectroscopy (EIS) techniques. The proposed screen printed electrode (SPE) had a low detection limit (as low as 50 pM), acceptable stability and good reproducibility, which would be valuable for clinical diagnosis. In addition, this sensing interface may be feasibly adapted for multiplexed detection of other species of bacterial pathogens.

  2. Magnetic alignment of SWCNTs decorated with Fe3O4 to enhance mechanical properties of SC-15 epoxy

    Directory of Open Access Journals (Sweden)

    O. Malkina

    2013-04-01

    Full Text Available We report significant improvement in mechanical properties of SC-15 epoxy when reinforced with decorated nanotubes and cured in a modest magnetic field. The chemical synthesis and field curing process is a low cost and relatively easy technique to impose strong magnetic anisotropy into the system without the need of a superconducting magnet. SWCNT(COOHs were decorated with Fe3O4 nanoparticles through a sonochemical oxidation process and then dispersed into SC-15 epoxy at 0.5 wt% loading. The admixture was cured for 6 hours in a magnetic field of 10 kOe followed by an additional 24 hours of post curing at room temperature. Control samples were prepared in a similar manner but without the application of the magnetic field. Mechanical tests performed on field-cured samples indicated that tensile strength and modulus increased by 62% and 40%. Most importantly, modulus of toughness, fracture strain, and modulus of resilience improved by 346%, 165%% and 170%, respectively. Such enhancement in mechanical properties was attributed to changes in polymer morphology, partial alignment of nanotubes in the field direction, and sliding at the polymer-nanotube interface. Detailed characterization of the system with XRD, TEM, DMA, and Magnetometry are described in the paper.

  3. Synthesis and characterization of novel Cu(II) complex coated Fe3O4@SiO2 nanoparticles for catalytic performance

    Science.gov (United States)

    Nasrollahzadeh, Mahmoud; Sajjadi, Mohaddeseh; Khonakdar, Hossein Ali

    2018-06-01

    In this study, a convenient method for the synthesis of arylaminotetrazoles has been developed using a copper (II)-aminotetrazole complex immobilized on silica-coated Fe3O4 (Fe3O4@SiO2) nanoparticles (Fe3O4@SiO2-aminotet-Cu(II)) as a novel and efficient magnetically catalyst. The constructed superparamagnetic core-shell nanoparticles were successfully prepared, as proven using different spectroscopic techniques such as fourier-transform infrared spectroscopy (FT-IR), X-ray diffraction (XRD), transmission electron microscope (TEM), field emission scanning electron microscopy (FESEM), energy dispersive X-ray spectroscopy (EDS), thermogravimetry and differential thermogravimetry (TG-DTG) and vibrating sample magnetometer (VSM) analysis. The applicability of Fe3O4@SiO2-aminotet-Cu(II) magnetic catalyst allows the efficient synthesis of a variety of arylaminotetrazoles from the reaction between various arylcyanamides with sodium azide in high yields. The effect of catalyst loading was investigated. In addition, the reaction mechanism for the synthesis of arylaminotetrazoles was reasonably proposed. Results show that the 1-aryl-5-amino-1H-tetrazole (B isomer) and 5-arylamino-1H-tetrazole (A isomer) can be obtained from the arylcyanamides carrying electron-donating and electron-withdrawing substituents, respectively. This procedure offers a simple methodology, relatively short reaction times, easy work-up, high yields of the products and a cleaner reaction with elimination of hydrazoic acid (HN3). Moreover, catalyst can be conveniently recovered through the use of external magnet and reused for at least 6 times without any significant loss of its activity.

  4. Removal of Chromium(VI from Aqueous Solutions Using Fe3O4 Magnetic Polymer Microspheres Functionalized with Amino Groups

    Directory of Open Access Journals (Sweden)

    Kai Wang

    2015-12-01

    Full Text Available Magnetic polymer microspheres (MPMs using glycidylmethacrylate (GMA as a functional monomer were synthesized in the presence of Fe3O4 nanoparticles via dispersion polymerization. After polymerization, the magnetic polymer microbeads were modified with ethylenediamine (EDA. The obtained ethylenediamine-functionalized magnetic microspheres (EDA-MPMs were characterized by scanning electron microscope (SEM, X-ray diffraction (XRD, vibrating-sample magnetometer (VSM and Fourier transform infrared (FT-IR spectroscopy. Then the EDA-MPMs were applied as adsorbents for the removal of Cr(VI from aqueous solution. Langmuir equation was appropriate to describe the experimental data. The maximum adsorption capacities obtained from the Langmuir model were 236.9, 242.1 and 253.2 mg/g at 298, 308 and 318 K, respectively. The Cr(VI adsorption equilibrium was established within 120 min and the adsorption kinetics was compatibly described by the pseudo-second order equation. The thermodynamic parameters (ΔG°, ΔH°, ΔS° of the sorption process revealed that the adsorption was spontaneous and was an endothermic process. The regeneration study demonstrated that the EDA-MPMs could be repeatedly utilized with no significant loss of adsorption efficiency.

  5. Experimental heat capacities, excess entropies, and magnetic properties of bulk and nano Fe3O4-Co3O4 and Fe3O4-Mn3O4 spinel solid solutions

    Science.gov (United States)

    Schliesser, Jacob M.; Huang, Baiyu; Sahu, Sulata K.; Asplund, Megan; Navrotsky, Alexandra; Woodfield, Brian F.

    2018-03-01

    We have measured the heat capacities of several well-characterized bulk and nanophase Fe3O4-Co3O4 and Fe3O4-Mn3O4 spinel solid solution samples from which magnetic properties of transitions and third-law entropies have been determined. The magnetic transitions show several features common to effects of particle and magnetic domain sizes. From the standard molar entropies, excess entropies of mixing have been generated for these solid solutions and compared with configurational entropies determined previously by assuming appropriate cation and valence distributions. The vibrational and magnetic excess entropies for bulk materials are comparable in magnitude to the respective configurational entropies indicating that excess entropies of mixing must be included when analyzing entropies of mixing. The excess entropies for nanophase materials are even larger than the configurational entropies. Changes in valence, cation distribution, bonding and microstructure between the mixing ions are the likely sources of the positive excess entropies of mixing.

  6. Perspective of Fe3O4 Nanoparticles Role in Biomedical Applications

    Science.gov (United States)

    Kashefi, Mehrdad; Shams, Seyyedeh Fatemeh; Jaafari, Mahmoud Reza

    2016-01-01

    In recent years, although many review articles have been presented about bioapplications of magnetic nanoparticles by some research groups with different expertise such as chemistry, biology, medicine, pharmacology, and materials science and engineering, the majority of these reviews are insufficiently comprehensive in all related topics like magnetic aspects of process. In the current review, it is attempted to carry out the inclusive surveys on importance of magnetic nanoparticles and especially magnetite ones and their required conditions for appropriate performance in bioapplications. The main attentions of this paper are focused on magnetic features which are less considered. Accordingly, the review contains essential magnetic properties and their measurement methods, synthesis techniques, surface modification processes, and applications of magnetic nanoparticles. PMID:27293893

  7. Adsorption and magnetic removal of neutral red dye from aqueous solution using Fe3O4 hollow nanospheres

    International Nuclear Information System (INIS)

    Iram, Mahmood; Guo, Chen; Guan Yueping; Ishfaq, Ahmad; Liu Huizhou

    2010-01-01

    Fe 3 O 4 hollow nanospheres were prepared via a simple one-pot template-free hydrothermal method and were fully characterized. These magnetic spheres have been investigated for application as an adsorbant for the removal of dye contaminants from water. Because of the high specific surface area, nano-scale particle size, and hollow porous material, Fe 3 O 4 hollow spheres showed favorable adsorption behavior for Neutral red. Factors affecting adsorption, such as, initial dye concentration, pH and contact time were evaluated. Langmuir and the Freundlich adsorption isotherms were selected to explicate the interaction of the dye and magnetic adsorbant. The characteristic parameters for each isotherm have been determined. The overall trend followed an increase of the sorption capacity with increasing dye concentration with a maximum of 90% dye removal. The monolayer adsorption capacity of magnetic hollow spheres (0.05 g) for NR in the concentration range studied, as calculated from the Langmuir isotherm model at 25 deg. C and pH 6, was found to be 105 mg g -1 . Adsorption kinetic followed pseudo-second-order reaction kinetics. Thermodynamic study showed that the adsorption processes are spontaneous and endothermic. The combination of the superior adsorption and the magnetic properties of Fe 3 O 4 nanospheres can be useful as a powerful separation tool to deal with environmental pollution.

  8. Controllable synthesis, magnetic and biocompatible properties of Fe3O4 and α-Fe2O3 nanocrystals

    International Nuclear Information System (INIS)

    Zhou, Xi; Shi, Yanfeng; Ren, Lei; Bao, Shixiong; Han, Yu; Wu, Shichao; Zhang, Honggang; Zhong, Lubin; Zhang, Qiqing

    2012-01-01

    Iron oxide nanocrystals (NCs) with a series of well-controlled morphologies (octahedron, rod, wire, cube and plate) and compositions (Fe 3 O 4 and α-Fe 2 O 3 ) were synthesized via a facile hydrothermal process. The morphological and compositional control of various iron oxide NCs was based on the regulations of precursor thermolysis kinetics and surfactants. The obtained samples were characterized by XRD, SEM, TEM, SQUID and cytotoxicity test. These as-prepared iron oxide NCs showed excellent magnetic properties and good biocompatibility, paving the way for their high-efficiency bio-separation and bio-detection applications. - Graphical Abstract: Schematic illustration for the formation of iron oxide NCs (Fe 3 O 4 and α-Fe 2 O 3 ) with different controlled morphologies and compositions. Highlights: ► Iron oxide NCs with a series of well-controlled morphologies (octahedron, rod, wire, cube, and plate) and compositions (Fe 3 O 4 and α-Fe 2 O 3 ) were synthesized via a facile hydrothermal method. ► The mechanism of the morphological and compositional control process is directly related to precursor thermolysis kinetics and surfactants. ► These iron oxide NCs exhibited excellent magnetic response and good biocompatibility, which should have great applications in the cell separation and biodetection.

  9. A Discovery of Strong Metal-Support Bonding in Nanoengineered Au-Fe3O4 Dumbbell-like Nanoparticles by in Situ Transmission Electron Microscopy.

    Science.gov (United States)

    Han, Chang Wan; Choksi, Tej; Milligan, Cory; Majumdar, Paulami; Manto, Michael; Cui, Yanran; Sang, Xiahan; Unocic, Raymond R; Zemlyanov, Dmitry; Wang, Chao; Ribeiro, Fabio H; Greeley, Jeffrey; Ortalan, Volkan

    2017-08-09

    The strength of metal-support bonding in heterogeneous catalysts determines their thermal stability, therefore, a tremendous amount of effort has been expended to understand metal-support interactions. Herein, we report the discovery of an anomalous "strong metal-support bonding" between gold nanoparticles and "nano-engineered" Fe 3 O 4 substrates by in situ microscopy. During in situ vacuum annealing of Au-Fe 3 O 4 dumbbell-like nanoparticles, synthesized by the epitaxial growth of nano-Fe 3 O 4 on Au nanoparticles, the gold nanoparticles transform into the gold thin films and wet the surface of nano-Fe 3 O 4 , as the surface reduction of nano-Fe 3 O 4 proceeds. This phenomenon results from a unique coupling of the size-and shape-dependent high surface reducibility of nano-Fe 3 O 4 and the extremely strong adhesion between Au and the reduced Fe 3 O 4 . This strong metal-support bonding reveals the significance of controlling the metal oxide support size and morphology for optimizing metal-support bonding and ultimately for the development of improved catalysts and functional nanostructures.

  10. A colloidal solution of Fe3O4 crystallites to optically locate the magnetic center of multipole magnets

    International Nuclear Information System (INIS)

    Sugahara, Ryuhei; Kubo, Tadashi; Oosawa, Yasunobu.

    1989-09-01

    In the alignment of accelerator components or beam transports components along the beam line, it is important to identify the magnetic center of multipole magnets, which does not necessarily coincide with the mechanical center. The position of the magnetic center of magnets can be located by using a colloidal solution of Fe 3 O 4 crystallites with a high resolution of about 10 μm. This is because the magnetic center can be observed visually and neither elaborate equipment nor accurate adjustment of the colloidal solution is necessary. A colloidal solution of Fe 3 O 4 crystallites is prepared and its performance is examined. The life time of the scattering pattern formed by the scattering of plane-polarized light in the colloidal solution is found to be longer than two days, which is much longer than the pattern life of about 40 minutes for commercial colloidal solution. The reproducibility of the alignment of the hair cross of the telescope onto the cross point of the pattern is less than 20 μm. It is suggested that polydextrose, a soluble derivative of cellulose, can be effective in improving the pattern life. (N.K.)

  11. Boosted Hyperthermia Therapy by Combined AC Magnetic and Photothermal Exposures in Ag/Fe3O4 Nanoflowers.

    Science.gov (United States)

    Das, R; Rinaldi-Montes, N; Alonso, J; Amghouz, Z; Garaio, E; García, J A; Gorria, P; Blanco, J A; Phan, M H; Srikanth, H

    2016-09-28

    Over the past two decades, magnetic hyperthermia and photothermal therapy are becoming very promising supplementary techniques to well-established cancer treatments such as radiotherapy and chemotherapy. These techniques have dramatically improved their ability to perform controlled treatments, relying on the procedure of delivering nanoscale objects into targeted tumor tissues, which can release therapeutic killing doses of heat either upon AC magnetic field exposure or laser irradiation. Although an intense research effort has been made in recent years to study, separately, magnetic hyperthermia using iron oxide nanoparticles and photothermal therapy based on gold or silver plasmonic nanostructures, the full potential of combining both techniques has not yet been systematically explored. Here we present a proof-of-principle experiment showing that designing multifunctional silver/magnetite (Ag/Fe3O4) nanoflowers acting as dual hyperthermia agents is an efficient route for enhancing their heating ability or specific absorption rate (SAR). Interestingly, the SAR of the nanoflowers is increased by at least 1 order of magnitude under the application of both an external magnetic field of 200 Oe and simultaneous laser irradiation. Furthermore, our results show that the synergistic exploitation of the magnetic and photothermal properties of the nanoflowers reduces the magnetic field and laser intensities that would be required in the case that both external stimuli were applied separately. This constitutes a key step toward optimizing the hyperthermia therapy through a combined multifunctional magnetic and photothermal treatment and improving our understanding of the therapeutic process to specific applications that will entail coordinated efforts in physics, engineering, biology, and medicine.

  12. Hierarchically porous MnO2 microspheres doped with homogeneously distributed Fe3O4 nanoparticles for supercapacitors.

    Science.gov (United States)

    Zhu, Jian; Tang, Shaochun; Xie, Hao; Dai, Yuming; Meng, Xiangkang

    2014-10-22

    Hierarchically porous yet densely packed MnO2 microspheres doped with Fe3O4 nanoparticles are synthesized via a one-step and low-cost ultrasound assisted method. The scalable synthesis is based on Fe(2+) and ultrasound assisted nucleation and growth at a constant temperature in a range of 25-70 °C. Single-crystalline Fe3O4 particles of 3-5 nm in diameter are homogeneously distributed throughout the spheres and none are on the surface. A systematic optimization of reaction parameters results in isolated, porous, and uniform Fe3O4-MnO2 composite spheres. The spheres' average diameter is dependent on the temperature, and thus is controllable in a range of 0.7-1.28 μm. The involved growth mechanism is discussed. The specific capacitance is optimized at an Fe/Mn atomic ratio of r = 0.075 to be 448 F/g at a scan rate of 5 mV/s, which is nearly 1.5 times that of the extremely high reported value for MnO2 nanostructures (309 F/g). Especially, such a structure allows significantly improved stability at high charging rates. The composite has a capacitance of 367.4 F/g at a high scan rate of 100 mV/s, which is 82% of that at 5 mV/s. Also, it has an excellent cycling performance with a capacitance retention of 76% after 5000 charge/discharge cycles at 5 A/g.

  13. Harmonic decomposition of magneto-optical signal from superparamagnetic Fe3O4 nanoparticles

    Science.gov (United States)

    Syed, Maarij; Patterson, Cody; Takemura, Yasushi

    Superparamagnetic nanoparticles (SPNPs) are expected to play an increasingly important role in bio-imaging and therapy. These applications rely on understanding SPNPs magnetic properties which have been successfully characterized by AC Faraday rotation (FR). AC FR is used here to build on results presented earlier by measuring solutions of surfactant-coated magnetite nanoparticles. The setup employs a He-Ne laser, polarizing components, a sinusoidal B-field, and a lock-in detection scheme to measure the SPNPs FR. Such a setup provides a novel, economical way of determining important magnetic properties of SPNPs. The main intensity signal (1f) along with higher harmonics are collected and analyzed to calculate quantities such as the Verdet constant and the magnetic moment. We hope further analysis can also reveal details of size distribution and relaxation times of SPNPs. We will present results from samples with various concentrations as well as a particular concentration subjected to a range of B-field frequencies (between 800 Hz and 14 kHz). Findings are compared to results from more traditional techniques like magnetic susceptibility measurements, magnetic force microscopy, etc. We will also address the comparative advantages of this technique and its limitations.

  14. Sodium alginate-polyvinyl alcohol-bovin serum albumin coated Fe3O4 nanoparticles as anticancer drug delivery vehicle: Doxorubicin loading and in vitro release study and cytotoxicity to HepG2 and L02 cells.

    Science.gov (United States)

    Prabha, G; Raj, V

    2017-10-01

    The challenging part of this work was to research the potential aspects of sodium alginate (SA)-polyvinyl alcohol (PVA)-bovin serum albumin (BSA) coated Fe 3 O 4 nanoparticles (Fe 3 O 4 -SA-PVA-BSA) as a drug delivery system for doxorubicin (DOX). The anticancer drug doxorubicin was selected as a model drug which is powerful for numerous cancer treatments. Superparamagnetic Fe 3 O 4 nanoparticles were prepared by co-precipitation method. The mixture solution of Fe 3 O 4 -sodium alginate (SA) - doxorubicin (DOX) was crosslinked with Ca 2+ to form (Fe 3 O 4 -SA-DOX) nanoparticles and addition of PVA and BSA with (Fe 3 O 4 -SA-DOX) nanoparticles was prepared by coating procedure. Doxorubicin drug loaded NPs were prepared by a simple crosslinking method by calcium chloride solution. The prepared polymer coated magnetic nanoparticles (Fe 3 O 4 -SA-PVA-BSA) were characterized by using SEM, AFM, FT-IR, XRD and VSM. The mean sizes of the obtained drug loaded nanoparticles (Fe 3 O 4 -SA-DOX, Fe 3 O 4 -SA-DOX-PVA and Fe 3 O 4 -SA-DOX-PVA-BSA) were between 240±8.3 and 460±8.7nm and zeta potential of the particles also was evaluated using Malvern Zetasizer which ranged between -48.1±2.3 and -22.4±4.1mV. The encapsulation efficiency, was between 36.2±0.01 and 96.45±2.12. Moreover drug loading and drug release properties of the polymer coated magnetic nanoparticles loaded with doxorubicin (Fe 3 O 4 -SA-DOX-PVA-BSA) were also studied. In addition, the cytotoxicity of the created nanoparticles was performed by using MTT assay analysis which showed that DOX loaded nanoparticles (Fe 3 O 4 -SA-DOX-PVA-BSA) were toxic to HepG2 cell lines and non-toxic to L02 cell lines. The in-vitro drug release was studied by using UV-Visible spectrophotometer at acidic environment (pH5.0) and basic environment (pH7.4) as well as at different temperatures (37°C and 42°C). It was found that DOX drug is released much faster in acidic environment (pH5.0) than in the basic environment (pH7

  15. Synthesis of raspberry-like monodisperse magnetic hollow hybrid nanospheres by coating polystyrene template with Fe(3)O(4)@SiO(2) particles.

    Science.gov (United States)

    Wang, Chunlei; Yan, Juntao; Cui, Xuejun; Wang, Hongyan

    2011-02-01

    In this paper, we present a novel method for the preparation of raspberry-like monodisperse magnetic hollow hybrid nanospheres with γ-Fe(2)O(3)@SiO(2) particles as the outer shell. PS@Fe(3)O(4)@SiO(2) composite nanoparticles were successfully prepared on the principle of the electrostatic interaction between negatively charged silica and positively charged polystyrene, and then raspberry-like magnetic hollow hybrid nanospheres with large cavities were achieved by means of calcinations, simultaneously, the magnetite (Fe(3)O(4)) was transformed into maghemite (γ-Fe(2)O(3)). Transmission electron microscopy (TEM) demonstrated that the obtained magnetic hollow silica nanospheres with the perfect spherical profile were well monodisperse and uniform with the mean size of 253nm. The Fourier transform infrared (FTIR) spectrometry, energy dispersive spectroscopy (EDS) and X-ray diffraction (XRD) provided the sufficient evidences for the presence of Fe(3)O(4) in the silica shell. Moreover, the magnetic hollow silica nanospheres possessed a characteristic of superparamagnetic with saturation magnetization value of about 7.84emu/g by the magnetization curve measurement. In addition, the nitrogen adsorption-desorption measurement exhibited that the pore size, BET surface area, pore volume of magnetic hollow silica nanospheres were 3.5-5.5nm, 307m(2)g(-1) and 1.33cm(3)g(-1), respectively. Therefore, the magnetic hollow nanospheres possess a promising future in controlled drug delivery and targeted drug applications. Copyright © 2010 Elsevier Inc. All rights reserved.

  16. Novel solid-state synthesis of α-Fe and Fe3O4 nanoparticles embedded in a MgO matrix

    Science.gov (United States)

    Schneeweiss, O.; Zboril, R.; Pizurova, N.; Mashlan, M.; Petrovsky, E.; Tucek, J.

    2006-01-01

    Thermally induced reduction of amorphous Fe2O3 nanopowder (2-3 nm) with nanocrystalline Mg (~20 nm) under a hydrogen atmosphere is presented as a novel route to obtain α-Fe and Fe3O4 magnetic nanoparticles dispersed in a MgO matrix. The phase composition, structural and magnetic properties, size and morphology of the nanoparticles were monitored by x-ray diffraction, 57Fe Mössbauer spectroscopy at temperatures of 24-300 K, transmission electron microscopy and magnetic measurements. Spherical magnetite nanoparticles prepared at a reaction temperature of 300 °C revealed a well-defined structure, with a ratio of tetrahedral to octahedral Fe sites of 1/2 being common for the bulk material. A narrow particle size distribution (20-30 nm) and high saturation magnetization (95 ± 5 A m2 kg-1) predispose the magnetite nanoparticles to various applications, including magnetic separation processes. The Verwey transition of Fe3O4 nanocrystals was found to be decreased to about 80 K. The deeper reduction of amorphous ferric oxide at 600 °C allows α-Fe (40-50 nm) nanoparticles to be synthesized with a coercive force of about 30 mT. They have a saturation magnetization 2.2 times higher than that of synthesized magnetite nanoparticles, which corresponds well with the ratio usually found for the pure bulk phases. The magnetic properties of α-Fe nanocrystals combined with the high chemical and thermal stability of the MgO matrix makes the prepared nanocomposite useful for various magnetic applications.

  17. Synthesis and application of strawberry-like Fe3O4-Au nanoparticles as CT-MR dual-modality contrast agents in accurate detection of the progressive liver disease.

    Science.gov (United States)

    Zhao, Hui Y; Liu, Sen; He, Jian; Pan, Chao C; Li, Hui; Zhou, Zheng Y; Ding, Yin; Huo, Da; Hu, Yong

    2015-05-01

    Development of non-invasive assay for the accurate diagnosis of progressive liver diseases (e.g., fatty liver and hepatocellular carcinoma (HCC)) is of great clinical significance and remains to be a big challenge. Herein, we reported the synthesis of strawberry-like Fe3O4-Au hybrid nanoparticles at room temperature that simultaneously exhibited fluorescence, enhanced X-ray attenuation, and magnetic properties. The results of in vitro fluorescence assay showed that the nanoparticles had significant photo-stability and could avoid the endosome degradation in cells. The in vivo imaging of normal mice demonstrated that the Fe3O4-Au nanoparticles provided 34.61-fold contrast enhancement under magnetic resonance (MR) guidance 15 min post the administration. Computed tomography (CT) measurements showed that the highest Hounsfield Unit (HU) was 174 at 30 min post the injection of Fe3O4-Au nanoparticles. In vivo performance of the Fe3O4-Au nanoparticles was further evaluated in rat models bearing three different liver diseases. For the fatty liver model, nearly homogeneous contrast enhancement was observed under both MR (highest contrast ratio 47.33) and CT (from 19 HU to 72 HU) guidances without the occurrences of focal nodules or dysfunction. For the cirrhotic liver and HCC, pronounced enhancement under MR and CT guidance could be seen in liver parenchyma with highlighted lesions after Fe3O4-Au injection. Furthermore, pathological, hematological and biochemical analysis revealed the absence of acute and chronic toxicity, confirming the biocompatibility of our platform for in vivo applications. Collectively, These Fe3O4-Au nanoparticles showed great promise as a candidate for multi-modality bio-imaging. Copyright © 2015 Elsevier Ltd. All rights reserved.

  18. Novel room-temperature spin-valve-like magnetoresistance in magnetically coupled nano-column Fe3O4/Ni heterostructure.

    Science.gov (United States)

    Xiao, Wen; Song, Wendong; Herng, Tun Seng; Qin, Qing; Yang, Yong; Zheng, Ming; Hong, Xiaoliang; Feng, Yuan Ping; Ding, Jun

    2016-08-25

    Herein, we design a room-temperature spin-valve-like magnetoresistance in a nano-column Fe3O4/Ni heterostructure without using a non-magnetic spacer or pinning layer. An Fe3O4 nano-column film is self-assembled on a Ni underlayer by the thermal decomposition method. The wet-chemical self-assembly is facile, economical and scalable. The magnetoresistance (MR) response of the Ni underlayer in the heterostructure under positive and negative out-of-plane magnetic fields differ by ∼0.25 at room temperature and ∼0.43 at 100 K. We attribute the spin-valve-like magnetoresistance to the unidirectional magnetic anisotropy of the Ni underlayer when being magnetically coupled by the Fe3O4 nano-column film. The out-of-plane negative-field magnetization is higher than the positive-field magnetization, affirming the unidirectional magnetic anisotropy of the Fe3O4/Ni heterostructure. Temperature-dependent magnetic and resistivity studies illustrate a close correlation between the magnetization transition of Fe3O4 and resistivity transition of Ni and prove a magnetic coupling between the Fe3O4 and Ni. First-principles calculations reveal that the Fe3O4/Ni model under a negative magnetic field is energetically more stable than that under a positive magnetic field. Furthermore, partial density of states (PDOS) analysis demonstrates the unidirectional magnetic anisotropy of the Ni 3d orbital. This is induced by the strong ferromagnetic coupling between Fe3O4 and Ni via oxygen-mediated Fe 3d-O 2p-Ni 3d hybridizations.

  19. Preparation and characterization of Fe3O4@Au-C225 composite targeted nanoparticles for MRI of human glioma.

    Science.gov (United States)

    Ge, Yaoqi; Zhong, Yuejiao; Ji, Guozhong; Lu, Qianling; Dai, Xinyu; Guo, Zhirui; Zhang, Peng; Peng, Gang; Zhang, Kangzhen; Li, Yuntao

    2018-01-01

    To study the characterization of Fe3O4@Au-C225 composite targeted MNPs. Fe3O4@Au-C225 was prepared by the absorption method. The immunosorbent assay was used to evaluate its absorption efficiency at C225 Fc. ZETA SIZER3000 laser particle size analyzer, ultraviolet photometer and its characteristics were analyzed by VSM. the targeting effect of Fe3O4@Au-C225 composite targeted MNPs on U251 cells in vitro were detected by 7.0 Tesla Micro-MR; and subcutaneous transplanted human glioma in nude mice were performed the targeting effect in vivo after tail vein injection of Fe3O4@Au-C225 composite targeted MNPs by MRI. The self-prepared Fe3O4@Au composite MNPs can adsorb C225 with high efficiency of adsorption so that Fe3O4@Au-C225 composite targeted MNPs were prepared successfully. Fe3O4@Au-C225 composite targeted MNPs favorably targeted human glioma cell line U251 in vitro; Fe3O4@Au-C225 composite targeted MNPs have good targeting ability to xenografted glioma on nude mice in vivo, and can be traced by MRI. The Fe3O4@Au-C225 composite targeted MNPs have the potential to be used as a tracer for glioma in vivo.

  20. Magnetic characterization by SQUID and FMR of a biocompatible ferrofluid based on Fe3O4

    International Nuclear Information System (INIS)

    Gamarra, L F; Amaro Jr, E; Pontuschka, W M; Mamani, J B; Cornejo, D R; Oliveira, T R; Vieira, E D; Costa-Filho, A J

    2009-01-01

    Biocompatible superparamagnetic iron oxide nanoparticles of magnetite coated with dextran were magnetically characterized using the techniques of SQUID (superconducting quantum interference device) magnetometry and ferromagnetic resonance (FMR). The SQUID magnetometry characterization was performed by isothermal measurements under applied magnetic field using the methods of zero-field-cooling (ZFC) and field-cooling (FC). The magnetic behavior of the nanoparticles indicated their superparamagnetic nature and it was assumed that they consisted exclusively of monodomains. The transition to a blocked state was observed at the temperature T B = (43 ± 1) K for frozen ferrofluid and at (52 ± 1) K for the lyophilized ferrofluid samples. The FMR analysis showed that the derivative peak-to-peak linewidth (ΔH PP ), gyromagnetic factor (g), number of spins (N S ), and spin-spin relaxation time (T 2 ) were strongly dependent on both temperature and super-exchange interaction. This information is important for possible nanotechnological applications, mainly those which are strongly dependent on the magnetic parameters.

  1. Compact magnetic-field sensor based on optical microfiber Michelson interferometer and Fe3O4 nanofluid.

    Science.gov (United States)

    Deng, Ming; Sun, Xiaokang; Han, Meng; Li, Decai

    2013-02-01

    We report a magnetic-field sensor by merging the advantages of optical fiber Michelson interferometers with that of magnetic fluid. Compact and low-cost optical fiber Michelson interferometers were first fabricated by a high-frequency CO(2) laser, and then they were inserted into glass capillaries with water-based Fe(3)O(4) magnetic fluid as sensing elements. The sensing characteristics have been investigated and the experimental results show that the reflective spectrum of the fiber-magnetic sensor linearly shifted with the change of the magnetic-field strength that is perpendicular to the axial of the devices. The fiber-magnetic sensor with interference arm's diameter of 50 μm is most sensitive to the external magnetic field, and the sensitivity is up to 64.9 pm/mT, which is 20 times higher than that of 125 μm diameter.

  2. Facile fabrication of superparamagnetic graphene/polyaniline/Fe3O4 nanocomposites for fast magnetic separation and efficient removal of dye

    OpenAIRE

    Mu, Bin; Tang, Jie; Zhang, Long; Wang, Aiqin

    2017-01-01

    Using graphene as adsorbent for removal of pollutants from polluted water is commonly recognized to be costly because the graphene is usually produced by a very complex process. Herein, a simple and eco-friendly method was employed to fabricate efficient superparamagnetic graphene/polyaniline/Fe3O4 nanocomposites for removal of dyes. The exfoliation of graphite as nanosheets and the functionalization of nanosheets with polyaniline and Fe3O4 nanoparticles were simultaneously achieved via a one...

  3. Two-phase magnetoconvection flow of magnetite (Fe3O4) nanoparticles in a horizontal composite porous annulus

    Science.gov (United States)

    Abbas, Zaheer; Hasnain, Jafar

    A numerical study is performed to examine the two-phase magnetoconvection and heat transfer phenomena of Fe3O4 -kerosene nanofluid flow in a horizontal composite porous annulus with an external magnetic field. The annulus is filled with immiscible fluids flowing between two concentric cylinders. The governing equations of the flow problem are obtained using Darcy-Brinkman model. Heat transfer is analyzed in the presence of viscous and Darcian dissipation terms. The shooting method is used as a tool to solve the obtained non-linear ordinary differential equations for the velocity and temperature profiles. The velocity and temperature distributions are analyzed and discussed under the influence of involved flow parameters with the aid of graphs. It is found that both velocity and temperature of fluid are decreased with ferroparticle volume fraction. In addition to that, it is also presented that the existence of magnetic field decreases the benefit of ferrofluids in heat transfer progression.

  4. Magnetically recoverable catalyst for the asymmetric Henry reaction based on a substituted imidazolidine-4-one copper(II) complex supported by Fe3O4 center dot SiO2 nanoparticles

    Czech Academy of Sciences Publication Activity Database

    Bhosale, D. S.; Drabina, P.; Kincl, Miloslav; Vlček, Milan; Sedlák, M.

    2015-01-01

    Roč. 26, 21-22 (2015), s. 1300-1306 ISSN 0957-4166 Institutional support: RVO:61389013 Keywords : transition - metal - complexes * nanoparticle * adsorption Subject RIV: CC - Organic Chemistry Impact factor: 2.108, year: 2015

  5. Environmentally Compatible Synthesis of Superparamagnetic Magnetite (Fe3O4 Nanoparticles with Prehydrolysate from Corn Stover

    Directory of Open Access Journals (Sweden)

    Chunming Zheng

    2013-12-01

    Full Text Available An environmentally compatible and size-controlled method has been employed for synthesis of superparamagnetic magnetite nanoparticles with prehydrolysate from corn stover. Various characterizations involving X-ray diffraction (XRD, standard and high-resolution transmission electron microscopy (TEM and HRTEM, selected area electron diffraction (SAED, and thermogravimetric analysis (TGA have integrally confirmed the formation of magnetite nanoparticles with homogeneous morphology and the formation mechanism of magnetite only from ferric precursor. Organic materials in the prehydrolysate act as a bifunctional agent: (1 a reducing agent to reduce ferric ions to prepare magnetite with the coexistence of ferric and ferrous ions; and (2 a coating agent to prevent particle growth and agglomeration and to promote the formation of nanoscale and superparamagnetic magnetite. The size of the magnetite nanoparticles can be easily controlled by tailoring the reducing sugar concentration, reaction time, or hydrothermal temperature.

  6. Yolk–shell Fe3O4@SiO2@PMO: amphiphilic magnetic nanocomposites as an adsorbent and a catalyst with high efficiency and recyclability

    KAUST Repository

    Dai, Jinyu

    2017-01-20

    This study describes the preparation of a multifunctional adsorptive catalyst by the incorporation of ligand groups within the channels of magnetic amphiphilic nanocomposites and attached with Pd nanoparticles. It was clearly demonstrated that Pd2+ was adsorbed by ligand-functionalized materials in water, and then Pd2+ was coordinated with ligand groups. Finally, the Pd nanoparticles were produced via an in situ reduction of Pd2+ by ligand groups through a simple hydrothermal process. Moreover, amphiphilic nanomaterials are viewed as excellent collectors of hydrophobic contaminants in water. The immobilized catalytic active sites with ligand-functionalized nanocomposites were allowed for maximal exposure to the reactants with minimal leaching of the Pd nanoparticles. The unique amphiphilic nanocomposites enabled selective oxidation of alcohols to proceed efficiently in water under aerobic conditions. Moreover, this nanocomposite catalyst could be completely recovered using an external magnet due to the superparamagnetic behavior of Fe3O4 and can be recycled with sustained selectivity and activity.

  7. Synthesis of Al2O3-Coated Fe3O4 Nanoparticles for Thermomagnetic Processing

    Science.gov (United States)

    2015-12-01

    field on transformations in a novel bainitic steel . Scripta Materialia. 2005;52:461–466. 8. Ludtka GM, Jaramillo RA, Kisner RA, Nicholson DM, Wilgen...development in steel alloys.7–9 Furthermore, additional studies have demonstrated texture development in weakly magnetic metals during sintering...JB, Mackiewicz-Ludtka G, Kalu PN. In situ evidence of enhanced transformation kinetics in a medium carbon steel due to a high magnetic field

  8. Immobilization of Horseradish Peroxidase on NH2-Modified Magnetic Fe3O4/SiO2 Particles and Its Application in Removal of 2,4-Dichlorophenol

    Directory of Open Access Journals (Sweden)

    Qing Chang

    2014-09-01

    Full Text Available Fe3O4 nanoparticles were prepared by a co-precipitation method with the assistance of ultrasound irradiation, and then coated with silica generated by hydrolysis and condensation of tetraethoxysilane. The silica-coated Fe3O4 nanoparticles were further modified with 3-aminopropyltriethoxysilane, resulting in anchoring of primary amine groups on the surface of the particles. Horseradish peroxidase (HRP was then immobilized on the magnetic core-shell particles by using glutaraldehyde as a crosslinking agent. Immobilization conditions were optimized to obtain the highest relative activity of the immobilized enzyme. It was found the durability of the immobilized enzyme to heating and pH variation were improved in comparison with free HRP. The apparent Michaelis constants of the immobilized HRP and free HRP with substrate were compared, showing that the enzyme activity of the immobilized HRP was close to that of free HRP. The HRP immobilized particles, as an enzyme catalyst, were used to activate H2O2 for degrading 2,4-dichlorophenol. The rapid degradation of 2,4-dichlorophenol indicated that the immobilized enzyme has potential applications for removing organic pollutants.

  9. Fe3O4 nanoparticles decorated on the biochar derived from pomelo pericarp as excellent anode materials for Li-ion batteries

    International Nuclear Information System (INIS)

    Li, Tao; Bai, Xue; Qi, Yong-Xin; Lun, Ning; Bai, Yu-Jun

    2016-01-01

    Fe 3 O 4 has been regarded as one of the sustainable alternatives for anode materials of Li-ion batteries (LIBs), but the severe volume expansion and agglomeration of Fe 3 O 4 nanoparticles pose limitations to the lithium storage capability. In this paper, Fe 3 O 4 nanoparticles are loaded on the carbon derived from inner pomelo pericarp to form Fe 3 O 4 /C composite. Benefiting from the synergistic effect of the good electronic conductivity of the biochar and the high capacity of Fe 3 O 4 nanoparticles, the composite delivers a pronounced reversible capacity of 1003.3 mAh g −1 after 200 cycles at 100 mA g −1 , and reveals an impressive high rate capacity of 634.6 mAh g −1 at 500 mA g −1 with the capacity fading of 0.074% per cycle, suggesting the great potential as anode materials for LIBs. The mineral substances of uniformly distributed KCl and CaCO 3 in the biochar play an important role in enhancing the electrochemical performance of the composite.

  10. Synthesis, characterisation of polyaniline-Fe3O4 magnetic nanocomposite and its application for removal of an acid violet 19 dye

    Science.gov (United States)

    Patil, Manohar R.; Khairnar, Subhash D.; Shrivastava, V. S.

    2016-04-01

    The present work deals with the development of a new method for the removal of dyes from an aqueous solution using polyaniline (PANI)-Fe3O4 magnetic nanocomposite. It is synthesised in situ through self-polymerisation of monomer aniline. Photocatalytic degradation studies were carried out for cationic acid violet 19 (acid fuchsine) dye using PANI-Fe3O4 nanocomposite in aqueous solution. Different parameters like catalyst dose, contact time and pH have been studied to optimise reaction condition. The optimum conditions for the removal of the dye are initial concentration 20 mg/l, adsorbent dose 6 gm/l, pH 7. The EDS technique gives elemental composition of synthesised PANI-Fe3O4. The SEM and XRD studies were carried for morphological feature characteristics of PANI-Fe3O4 nanocomposite. The VSM (vibrating sample magnetometer) gives magnetic property of PANI-Fe3O4 nanocomposite; also FT-IR analysis gives characteristics frequency of synthesised PANI-Fe3O4. Besides the above studies kinetic study has also been carried out.

  11. In vitro toxicity test and searching the possibility of cancer cell line extermination by magnetic heating with using Fe3O4 magnetic fluid

    International Nuclear Information System (INIS)

    Pham Hoai Linh; Nguyen Chi Thuan; Nguyen Anh Tuan; Pham Van Thach; Nguyen Xuan Phuc; Le Van Hong; Tran Cong Yen; Nguyen Thi Quy; Hoang Thi My Nhung; Phi Thi Xuyen

    2009-01-01

    A Fe 3 O 4 based magnetic fluid with different concentrations ranged between 0.15 ng/cell to 10 ng/cell (nano gram/cell) was used in the in vitro toxicity test on several cancer cell lines, Sarcoma 180, HeLa and H358. It shows that the fluid with a concentration of Fe 3 O 4 below 1.2 ng/cell is completely non-toxic for these cell lines. Even through in the presence of the highest concentration of 10 ng/cell, the cell viability still reaches more than 60%. The magnetic fluid with Fe 3 O 4 concentration of about 0.1 ng/cell was also used to search ex-vivo the possibility of Sarcoma 180 extermination by magnetic heating with an AC field of 120Oe and 184 KHz. The result shows that after a heat treatment for 30 min., 40% of Sarcoma 180 cells was killed.

  12. Efficient solar light-driven degradation of Congo red with novel Cu-loaded Fe3O4@TiO2 nanoparticles.

    Science.gov (United States)

    Arora, Priya; Fermah, Alisha; Rajput, Jaspreet Kaur; Singh, Harminder; Badhan, Jigyasa

    2017-08-01

    In this work, Cu-loaded Fe 3 O 4 @TiO 2 core shell nanoparticles were prepared in a single pot by coating of TiO 2 on Fe 3 O 4 nanoparticles followed by Cu loading. X-ray powder diffraction (XRD), Fourier transform infrared spectroscopy (FT-IR), transmission electron microscopy (TEM), high-resolution transmission electron microscopy (HR-TEM), thermogravimetric analysis (TGA), Brunauer-Emmett- Teller (BET), vibrating sample magnetometry (VSM), X-ray photoelectron spectroscopy (XPS), and valence band X-ray photoelectron spectroscopy (VB XPS) techniques were used for characterization of as prepared nanoparticles. Synergism between copper and titania was evaluated by studying the solar light-driven photodegradation of Congo red dye solution in the presence of Fe 3 O 4 @TiO 2 nanoparticles on one side and Cu-loaded Fe 3 O 4 @TiO 2 nanoparticles on the other side. The latter performed better than the former catalyst, indicating the enhanced activity of copper-loaded catalyst. Further photodegradation was studied by three means, i.e., under ultraviolet (UV), refluxing, and solar radiations. Cu-loaded Fe 3 O 4 @TiO 2 enhanced the degradation efficiency of Congo red dye. Thus, Cu act possibly by reducing the band gap of TiO 2 and widening the optical response of semiconductor, as a result of which solar light could be used to carry out photocatalysis. Graphical abstract Photodegradation of congo red over Cu-loaded Fe 3 O 4 @TiO 2 nanoparticles.

  13. Thermal Characterization of Fe3O4 Nanoparticles Formed from Poorly Crystalline Siderite

    Science.gov (United States)

    Lauer, H. V., Jr.; Ming, D. W.; Golden, D. C.

    2005-01-01

    Increasing interest in environmental geochemistry has led to the recognition that crystals with sizes in the nanometer range (e.g., colloids and nanoscale precipitates) and poorly crystalline compounds (e.g., ferrihydrites) may comprise the majority of reactive mineral surface area near the Earth s surface. When the diameters of individual particles are in the range of 100 nm or less, the surface energy contribution to the free energy modifies phase stability. This results in stabilization of polymorphs not normally encountered in the macrocrystal domain. These phases potentially have very different surface-site geometries, adsorptive properties, and growth mechanisms, and exhibit size-dependent kinetic behavior. Thus nanophases dramatically modify the physical and chemical properties of soils and sediments. In a more general sense, the characteristics of nanocrystals are of intense technological interest because small particle size confers novel chemical, optical, and electronic properties. Thus, nanocrystalline materials are finding applications as catalytic substrates, gas phase separation materials, and even more importantly in the field of medicine. This is an opportune time for mineral physicists working on nanocrystalline materials to develop collaborative efforts with materials scientists, chemists, and others working on nanophase materials of technological interest (e.g., for magnetic memories). Our objective in this study was to synthesize submicron (properties.

  14. Investigation of Fe3O4 Colloid Behaviour in a Magnetic Field by Polarized Neutron Transmission

    International Nuclear Information System (INIS)

    Dokukin, E.B.; Kozhevnikov, S.V.; Nikitenko, Yu.V.; Petrenko, A.V.

    1994-01-01

    Experiments were conducted to measure the dependence of neutron polarization following their transmission through a magnetic colloid on the concentration of magnetic particles, magnetic field strength and wavelength of neutrons. In a magnetic field up to 500 Oe the precession of the neutron polarization is seen. Comparison of the experimental data and theory is made and colloid magnetization is determined. The measurement was carried out with the SPN-1 polarized neutron spectrometer at the high-flux pulsed reactor IBR-2 in Dubna. 7 refs., 2 figs

  15. Preparation and characterization of iron oxide (Fe3O4) nanoparticles coated with polyvinylpyrrolidone/polyethylenimine through a facile one-pot deposition route

    Science.gov (United States)

    Karimzadeh, Isa; Aghazadeh, Mustafa; Ganjali, Mohammad Reza; Doroudi, Taher; Kolivand, Peir Hossein

    2017-07-01

    In this article, we report the electrochemical synthesis and simultaneous in situ coating of magnetic iron oxide nanoparticles (MNPs) with polyvinylpyrrolidone (PVP) and polyethylenimine (PEI). The cathodic deposition was carried out through electro-generation of OH- on the surface of cathode. An aqueous solution of Fe(NO3)3·9H2O (3.4 g/L) and FeCl2·4H2O (1.6 g/L) was used as the deposition bath. The electrochemical precipitation experiments were performed in the direct current mode under a 10 mA cm-2 current density for 30 min. Polymer coating was performed in an identical deposition bath containing of 0.5 g PVP and 0.5 g PEI. The deposited uncoated and PVP-PEI coated MNPs were characterized through powder X-ray diffraction (XRD), Fourier transform infrared spectroscopy (FTIR), thermogravimetric analysis (TGA), dynamic light scattering (DLS), vibrating sample magnetometer (VSM), and field-emission scanning and transmission electron microscopies (FE-SEM and TEM). Structural XRD and IR analyses revealed both samples to be composed of pure crystalline magnetite (Fe3O4). Morphological observations through FE-SEM and TEM proved the product to be spherical nanoparticles in the range of 10-15 nm. The presence of two coating polymers (i.e. PVP and PEI) on the surface of the electro-synthesized MNPs was proved by FTIR and DLS results. The percentage of the polymer coating (31.8%) on the MNPs surface was also determined based on DSC-TGA data. The high magnetization value, coercivity and remanence values measured by VSM indicated the superparamagnetic nature of both prepared MNPs. The obtained results confirmed that the prepared Fe3O4 nanoparticles had suitable physico-chemical and magnetic properties for biomedical applications.

  16. Temperature dependence of magnetization reversal in Co and Fe3O4 nanowire arrays

    International Nuclear Information System (INIS)

    Kazakova, Olga; Erts, Donats; Crowley, Timothy A.; Kulkarni, Jaideep S.; Holmes, Justin D.

    2005-01-01

    In this paper, we investigate the magnetization reversal of cobalt and magnetite nanowires, 4 nm in diameter, synthesized within the pores of mesoporous silica thin films. A SQUID magnetometer was used to study the magnetic properties of the nanowire arrays over a broad temperature interval, T=1.8-300 K. The magnetization reversal process was found to be strongly temperature dependent. While a coherent rotation may occur at room temperature, a process involving the formation of domain structures takes place as the temperature decreases down to 1.8 K

  17. Magnetite (Fe3O4 Nanoparticles Alleviate Growth Inhibition and Oxidative Stress Caused by Heavy Metals in Young Seedlings of Cucumber (Cucumis Sativus L

    Directory of Open Access Journals (Sweden)

    Konate Alexandre

    2017-01-01

    Full Text Available Accumulation of heavy metals in the ecosystem and their toxic effects through food chain can cause serious ecological and health problems. In the present study, experiments were performed to understand how the addition of magnetite (Fe3O4 nanoparticles reduces the toxicity caused by Cd, Pb, Cu, and Zn in cucumber plants. Plant growth parameters, lipid peroxidation, and antioxidant enzymes were measured in seedling samples treated with either metals or metals supplemented with Fe3O4 to demonstrate the reduction in metal-induced oxidative stress conferred by Fe3O4. Results showed that the toxic effect of metals on seedling growth parameters can be arranged in the rank order of inhibition as follows: Cu > Cd > Zn > Pb. Exposure to metals significantly decreased the seedlings growth, the activities of superoxide dismutase (SOD and peroxidases (POD, while the malondialdehyde (MDA content significantly increased in cucumber seedlings. The reducing activity of nano-Fe3O4 against heavy metals stresses was confirmed in this study by the decrease in MDA content. The correlation between the decrease of MDA concentration and the increase in SOD and POD activities in the presence of nano-Fe3O4 suggest that the MDA reduction in the tested seedlings can result from the increased enzyme activity.

  18. Thermal and magnetic behavior of Angustifolia Kunth bamboo fibers covered with Fe3O4 particles

    International Nuclear Information System (INIS)

    Calvo, S.; Arias, N.P.; Giraldo, O.; Rosales-Rivera, A.; Moscoso, O.

    2012-01-01

    Several Angustifolia Kunth bamboo fibers, which have been previously treated with an alkaline solution, were coated with magnetite particles. The coating of the fibers was achieved by an in-situ co-precipitation method with Fe 2+ and Fe 3+ in NaOH or NH 4 OH. The fibers were evaluated by chemical analysis using atomic absorption (A.A.) technique, structural characterization by X-ray diffraction (XRD), thermal stability with thermo-gravimetric analysis (TGA) in nitrogen at temperature range between 23 °C and 800 °C and magnetic behavior using vibrating sample magnetometry (VSM) applying a magnetic field between -27 KOe and 27 KOe at room temperature. We found that the thermal stability and magnetization depend of the synthesis method used to cover the Angustifolia Kunth bamboo fibers. In addition, an improved magnetic response was observed when NaOH solution is used to generate the magnetite coating on the fiber surface.

  19. Facile synthesis of multifunctional attapulgite/Fe3O4/polyaniline nanocomposites for magnetic dispersive solid phase extraction of benzoylurea insecticides in environmental water samples

    International Nuclear Information System (INIS)

    Yang, Xiaoling; Qiao, Kexin; Ye, Yiren; Yang, Miyi; Li, Jing; Gao, Haixiang; Zhang, Sanbing; Zhou, Wenfeng; Lu, Runhua

    2016-01-01

    In this study, the superparamagnetic attapulgite/Fe 3 O 4 /polyaniline (ATP/Fe 3 O 4 /PANI) nanocomposites were successfully synthesized by a one-pot method. Fe (III) was applied as both the oxidant for the oxidative polymerization of aniline and the single iron source of Fe 3 O 4 formed by the redox reaction between aniline and Fe (III). The ATP/Fe 3 O 4 /PANI was used as sorbent for magnetic dispersive solid phase extraction (MDSPE) of benzoylurea insecticides (BUs) in environmental water samples. The as-prepared nanocomposite sorbents were characterized by Fourier transform infrared spectra (FT-IR), X Ray diffraction (XRD), scanning electron microscopy(SEM), transmission electron microscopy (TEM), and vibrating sample magnetometry. Various experimental parameters affecting the ATP/Fe 3 O 4 /PANI-based MDSPE procedure, including the composition of the nanocomposite sorbents, amount of ATP/Fe 3 O 4 /PANI nanocomposites, vortex time, pH, and desorption conditions were investigated. Under the optimal conditions, a good linearity was observed for all target analytes, with correlation coefficients (r 2 ) ranging from 0.9985 to 0.9997; the limits of detection (LOD) were in the range of 0.02–0.43 μg L −1 , and the recoveries of analytes using the proposed method ranged between 77.37% and 103.69%. The sorbents exhibited an excellent reproducibility in the range of 1.52–5.27% in extracting the five target analytes. In addition, the intra-day and inter-day precision values were found to be in the range of 0.78–6.86% and 1.66–8.41%, respectively. Finally, the proposed ATP/Fe 3 O 4 /PANI-based MDSPE method was successfully applied to analyze river water samples by rapid preconcentration of BUs. - Highlights: • A novel superparamagnetic ATP/Fe 3 O 4 /PANI nanocomposite was first introduced in MDSPE. • ATP/Fe 3 O 4 /PANI nanocomposites exhibited fast adsorption and desorption kinetics. • An excellent sorbent-to-sorbent reproducibility was demonstrated in the

  20. Ba doped Fe3O4 nanocrystals: Magnetic field and temperature tuning dielectric and electrical transport

    Science.gov (United States)

    Dutta, Papia; Mandal, S. K.; Nath, A.

    2018-05-01

    Nanocrystalline BaFe2O4 has been prepared through low temperature pyrophoric reaction method. The structural, dielectric and electrical transport properties of BaFe2O4 are investigated in detail. AC electrical properties have been studied over the wide range of frequencies with applied dc magnetic fields and temperatures. The value of impedance is found to increase with increase in magnetic field attributing the magnetostriction property of the sample. The observed value of magneto-impedance and magnetodielectric is found to ∼32% and ∼33% at room temperature. Nyquist plots have been fitted using resistance-capacitor circuits at different magnetic fields and temperatures showing the dominant role of grain and grain boundaries of the sample. Metal-semiconductor transition ∼403 K has been discussed in terms of delocalized and localized charge carrier.We have estimated activation energy using Arrhenius relation indicating temperature dependent electrical relaxation process in the system. Ac conductivity follow a Jonscher’s single power law indicating the large and small polaronic hopping conduction mechanism in the system.

  1. Highly stable and magnetically separable alginate/Fe3O4 composite for the removal of strontium (Sr) from seawater.

    Science.gov (United States)

    Hong, Hye-Jin; Jeong, Hyeon Su; Kim, Byoung-Gyu; Hong, Jeongsik; Park, In-Su; Ryu, Taegong; Chung, Kang-Sup; Kim, Hyuncheol; Ryu, Jungho

    2016-12-01

    In this study, a highly stable alginate/Fe 3 O 4 composite was synthesized, and systematically investigated for the practical application of strontium (Sr) removal in complex media, such as seawater and radioactive wastewater. To overcome the drawbacks of the use of alginate microspheres, high contents of alginic acid and Fe 3 O 4 were used to provide a more rigid structure with little swelling and facile separation, respectively. The synthesized composite was optimized for particle sizes of seawater spiked with 50 mg/L of Sr, the alginate/Fe 3 O 4 composite showed 12.5 mg/g of Sr uptake, despite the highly concentrated ions in seawater. The adsorption experiment for radio-active 90 Sr revealed a removal efficiency of 67% in real seawater, demonstrating the reliability of the alginate/Fe 3 O 4 composite. Copyright © 2016 Elsevier Ltd. All rights reserved.

  2. Synthesis of carbon-coated magnetic nanocomposite (Fe3O4@C) and its application for sulfonamide antibiotics removal from water.

    Science.gov (United States)

    Bao, Xiaolei; Qiang, Zhimin; Chang, Jih-Hsing; Ben, Weiwei; Qu, Jiuhui

    2014-05-01

    The occurrence of antibiotics in the environment has recently raised serious concerns regarding their potential threat to human health and aquatic ecosystem. A new magnetic nanocomposite, Fe3O4@C (Fe3O4 coated with carbon), was synthesized, characterized, and then applied to remove five commonly-used sulfonamides (SAs) from water. Due to its combinational merits of the outer functionalized carbon shell and the inner magnetite core, Fe3O4@C exhibited a high adsorption affinity for selected SAs and a fast magnetic separability. The adsorption kinetics of SAs on Fe3O4@C could be expressed by the pseudo second-order model. The adsorption isotherms were fitted well with the Dual-mode model, revealing that the adsorption process consisted of an initial partitioning stage and a subsequent hole-filling stage. Solution pH exerted a strong impact on the adsorption process with the maximum removal efficiencies (74% to 96%) obtained at pH 4.8 for all selected SAs. Electrostatic force and hydrogen bonding were two major driving forces for adsorption, and electron-donor-acceptor interactions may also make a certain contribution. Because the synthesized Fe3O4@C showed comprehensive advantages of high adsorptivity, fast magnetic separability, and prominent reusability, it has potential applications in water treatment. Copyright © 2014 The Research Centre for Eco-Environmental Sciences, Chinese Academy of Sciences. Published by Elsevier B.V. All rights reserved.

  3. One-pot hydrothermal synthesis of hollow Fe3O4 microspheres assembled with nanoparticles for lithium-ion battery anodes

    DEFF Research Database (Denmark)

    Liu, Yanguo; Wang, Xiaoliang; Ma, Wuming

    2016-01-01

    Hollow Fe3O4 microspheres assembled with nanoparticles were successfully synthesized without the addition of any templates or subsequent treatments. When used as the anode materials for lithium-ion battery (LIB), the products showed good lithium storage properties, demonstrating their promising...

  4. Degradation of Semiconductor Manufacturing Wastewater by Using a Novel Magnetic Composite TiO2/Fe3O4 Photoreactor Design

    Directory of Open Access Journals (Sweden)

    Chen-Yu Chang

    2012-01-01

    Full Text Available The purpose of this research is to develop a photocatalytic TiO2 that can be activated by visible light and can be conveniently recollected for reusing. This research synthesizes the 20 to 40 nm TiO2/Fe3O4 particles with magnetization of 5.8 emu/g using the modified sol-gel method followed by 500°C calcinations. The experiment verified that visible fluorescent light (VFL, contains no UV-A could activate the photocatalytic activity of TiO2/Fe3O4 particles as did ultraviolet A light (UV-A, 360 nm. Regular magnets can be used to separate TiO2/Fe3O4 particles from solution. The results indicate that VFL-sirradiated TiO2/Fe3O4 particles could decompose isopropanol (IPA in the absence of UV-A and the issue of TiO2/Fe3O4 recollection from water for reusing is also resolved.

  5. Size-dependent cytotoxicity of Fe3O4 nanoparticles induced by biphasic regulation of oxidative stress in different human hepatoma cells

    Directory of Open Access Journals (Sweden)

    Xie Y

    2016-07-01

    Full Text Available Yuexia Xie,1,2,* Dejun Liu,3,* Chenlei Cai,1,* Xiaojing Chen,1 Yan Zhou,1 Liangliang Wu,1 Yongwei Sun,3 Huili Dai,1,2 Xianming Kong,1,2 Peifeng Liu1,2 1Central Laboratory, 2State Key Laboratory of Oncogenes and Related Genes, Shanghai Cancer Institute, 3Department of Biliary-Pancreatic Surgery, Renji Hospital, School of Medicine, Shanghai Jiao Tong University, Shanghai, People’s Republic of China *These authors contributed equally to this work Abstract: The application of Fe3O4 nanoparticles (NPs has made great progress in the diagnosis of disease and in the drug delivery system for cancer therapy, but the relative mecha­nisms of potential toxicity induced by Fe3O4 have not kept pace with its development in the application, which has hampered its further clinical application. In this article, we used two kinds of human hepatoma cell lines, SK-Hep-1 and Hep3B, to investigate the cytotoxic effects and the involved mechanisms of small Fe3O4 NPs with different diameters (6 nm, 9 nm, and 14 nm. Results showed that the size of NPs effectively influences the cytotoxicity of hepatoma cells: 6 nm Fe3O4 NPs exhibited negligible cytotoxicity and 9 nm Fe3O4 NPs affected cytotoxicity via cellular mitochondrial dysfunction and by inducing necrosis mediated through the mitochondria-dependent intracellular reactive oxygen species generation. Meanwhile, 14 nm Fe3O4 NPs induced cytotoxicity by impairing the integrity of plasma membrane and promoting massive lactate dehydrogenase leakage. These results explain the detailed mechanism of different diameters of small Fe3O4 NPs-induced cytotoxicity. We anticipate that this study will provide different insights into the cytotoxicity mechanism of Fe3O4 NPs, so as to make them safer to use in clinical application. Keywords: hepatoma cells, nanoparticles, cytotoxicity, mechanism, oxidative stress

  6. Ab initio understanding of magnetic properties in Zn2+ substitution of Fe3O4 ultra-thin film with dilute Zn substitution

    Science.gov (United States)

    Huang, Zhaocong; Chen, Qian; Jiang, Sheng; Dong, Shuai; Zhai, Ya

    2018-05-01

    The mechanism of the magnetic properties on the Zn2+ substituted Fe3O4 film have been investigated based on first principle calculations. It is found that the surface effect plays an important role in the occupation of Zn ion, and in turn changes the magnetic moment. It may also destroy the half metallic behavior of Fe3O4 film even if the Zn2+ concentration only is one Zn2+ per unit cell (4%), which is different from that in bulk material.

  7. Sub-10 nm Fe3O4@Cu2-xS core-shell nanoparticles for dual-modal imaging and photothermal therapy

    KAUST Repository

    Tian, Qiwei

    2013-06-12

    Photothermal nanomaterials have recently attracted significant research interest due to their potential applications in biological imaging and therapeutics. However, the development of small-sized photothermal nanomaterials with high thermal stability remains a formidable challenge. Here, we report the rational design and synthesis of ultrasmall (<10 nm) Fe3O 4@Cu2-xS core-shell nanoparticles, which offer both high photothermal stability and superparamagnetic properties. Specifically, these core-shell nanoparticles have proven effective as probes for T 2-weighted magnetic resonance imaging and infrared thermal imaging because of their strong absorption at the near-infrared region centered around 960 nm. Importantly, the photothermal effect of the nanoparticles can be precisely controlled by varying the Cu content in the core-shell structure. Furthermore, we demonstrate in vitro and in vivo photothermal ablation of cancer cells using these multifunctional nanoparticles. The results should provide improved understanding of synergistic effect resulting from the integration of magnetism with photothermal phenomenon, important for developing multimode nanoparticle probes for biomedical applications. © 2013 American Chemical Society.

  8. Sub-10 nm Fe3O4@Cu2-xS core-shell nanoparticles for dual-modal imaging and photothermal therapy

    KAUST Repository

    Tian, Qiwei; Hu, Junqing; Zhu, Yihan; Zou, Rujia; Chen, Zhigang; Yang, Shiping; Li, Runwei; Su, Qianqian; Han, Yu; Liu, Xiaogang

    2013-01-01

    Photothermal nanomaterials have recently attracted significant research interest due to their potential applications in biological imaging and therapeutics. However, the development of small-sized photothermal nanomaterials with high thermal stability remains a formidable challenge. Here, we report the rational design and synthesis of ultrasmall (<10 nm) Fe3O 4@Cu2-xS core-shell nanoparticles, which offer both high photothermal stability and superparamagnetic properties. Specifically, these core-shell nanoparticles have proven effective as probes for T 2-weighted magnetic resonance imaging and infrared thermal imaging because of their strong absorption at the near-infrared region centered around 960 nm. Importantly, the photothermal effect of the nanoparticles can be precisely controlled by varying the Cu content in the core-shell structure. Furthermore, we demonstrate in vitro and in vivo photothermal ablation of cancer cells using these multifunctional nanoparticles. The results should provide improved understanding of synergistic effect resulting from the integration of magnetism with photothermal phenomenon, important for developing multimode nanoparticle probes for biomedical applications. © 2013 American Chemical Society.

  9. Green synthesis of Fe3O4 nanoparticles using aqueous extracts of Pandanus odoratissimus leaves for efficient bifunctional electro-catalytic activity

    Science.gov (United States)

    Alajmi, Mohamed F.; Ahmed, Jahangeer; Hussain, Afzal; Ahamad, Tansir; Alhokbany, Norah; Amir, Samira; Ahmad, Tokeer; Alshehri, Saad M.

    2018-04-01

    Iron oxide (Fe3O4) nanoparticles (NPs) were prepared at room temperature by one-step synthesis via green chemistry using aqueous extracts of Pandanus odoratissimus leaves. Fe3O4 NPs show uniform particle size distribution with an average diameter of 5.0 nm. BET surface area and average pore diameter of the nanoparticles were found to be 150 m2/g and 3.0 nm, respectively. FTIR, Raman, EDAX and XPS studies were also carried out to confirm the phase purity of the prepared materials. Electrochemical water splitting reactions have been carried out using Fe3O4 NPs as electrocatalysts in 0.1 M KOH electrolyte solution. Polarization studies confirm dual nature of Fe3O4 electro-catalysts in water electrolysis for oxygen reduction reaction (ORR) and oxygen evolution reaction (OER). Potentiodynamic polarization curves reveal low Tafel values of 295 and 126 mV/dec (± 2) for OER and ORR, respectively. The overpotential for water oxidation reaction was found to be 390 mV (± 5) at the current density of 1 mA/cm2 in 0.1 M KOH. Chronoamperometry and chronopotentiometry experiments were conducted for stability tests of the electrodes.

  10. Fabrication of a magnetic nanocomposite photocatalysts Fe3O4@ZIF-67 for degradation of dyes in water under visible light irradiation

    Science.gov (United States)

    Guan, Weihua; Gao, Xuechuan; Ji, Guanfeng; Xing, Yongxing; Du, Chunfang; Liu, Zhiliang

    2017-11-01

    As organic dyes are a major group of water pollutants, the development of materials for the removal of dyes is of great significance for the environment. Here, a novel flower-like Fe3O4@ZIF-67 photocatalyst was synthesized using a simple method at room temperature. It was found that the Fe3O4@ZIF-67 exhibited the ability of degrading Congo red (CR) quickly under visible light irradiation in a short time after adsorption equilibrium. Free radical trapping experiments revealed that the photo-induced active species superoxide radical (•O2-) and holes (h+) were the predominant active species in the photocatalytic system. In addition, results demonstrated that the Fe3O4@ZIF-67 can be magnetically recycled, and maintain high photocatalytic activity after reuse over five cycles with no obvious decrease in the removal efficiency. It suggested that the synthesized material had a potentially promising application for CR removal from waste water.

  11. MAGNETIC AND HYPERFINE CHARACTERIZATION OF THE THERMAL TRANSFORMATION CuO - Fe2O3 TO Fe3O4

    Directory of Open Access Journals (Sweden)

    Juan D. Betancur

    2018-01-01

    Full Text Available A magnetic study about the thermal transformation of hematite doped with CuO (Fe2O3 + CuO is presented. The heat treatment was carried out at a temperature of 375 ± 1 ºC, in a controlled atmosphere composed by 20% hydrogen and 80% nitrogen. Samples were characterized by Mössbauer spectroscopy at room temperature, magnetization as a function of temperature and hysteresis loops at 10K. Our results suggest that both the hyperfine fields and linewidths of the A and B sites remain essentially constant with increasing the CuO concentration, while at the same time a paramagnetic component arises, which is indicative of the appearance of a precipitate or a new phase of Fe-Cu, i.e. there is not an effective incorporation of the copper into the structure of the magnetite. The saturation magnetization falls from approximately 87 emu/g to 78 emu/g, consistent with such a paramagnetic phase. Also, an increase in the coercivity from ~576 Oe up to ~621 Oe by increasing the percentage of CuO from 2% up to 20% is observed. Such increase is also attributed to the paramagnetic phase acting as pinning center for domain walls, besides also de pinning effect due to vacancies induced by the thermal treatment. Finally, an inversion of the magnetization in the Verwey temperature is observed. The data suggest that by means of the synthesis method employed, it is possible to obtain Fe3O4 magnetite particles coexisting with precipitates of Fe-Cu, giving rise to a modification in the magnetic properties and generatingan interesting effect in the magnetization at the Verwey temperature.

  12. Metallic Nanoparticle (TiO2 and Fe3O4) Application Modifies Rhizosphere Phosphorus Availability and Uptake by Lactuca sativa.

    Science.gov (United States)

    Zahra, Zahra; Arshad, Muhammad; Rafique, Rafia; Mahmood, Arshad; Habib, Amir; Qazi, Ishtiaq A; Khan, Saud A

    2015-08-12

    Application of engineered nanoparticles (NPs) with respect to nutrient uptake in plants is not yet well understood. The impacts of TiO2 and Fe3O4 NPs on the availability of naturally soil-bound inorganic phosphorus (Pi) to plants were studied along with relevant parameters. For this purpose, Lactuca sativa (lettuce) was cultivated on the soil amended with TiO2 and Fe3O4 (0, 50, 100, 150, 200, and 250 mg kg(-1)) over a period of 90 days. Different techniques, such as scanning electron microscopy (SEM), energy-dispersive X-ray spectroscopy (EDX), Raman, and Fourier transform infrared spectroscopy (FTIR) were used to monitor translocation and understand the possible mechanisms for phosphorus (P) uptake. The trends for P accumulation were different for roots (TiO2 > Fe3O4 > control) and shoots (Fe3O4 > TiO2 > control). Cystine and methionine were detected in the rhizosphere in Raman spectra. Affinities of NPs to adsorb phosphate ions, modifications in P speciation, and NP stress in the rhizosphere had possibly contributed to enhanced root exudation and acidification. All of these changes led to improved P availability and uptake by the plants. These promising results can help to develop an innovative strategy for using NPs for improved nutrient management to ensure food security.

  13. Kinetics of elimination and distribution in blood and liver of biocompatible ferrofluids based on Fe3O4 nanoparticles: An EPR and XRF study

    International Nuclear Information System (INIS)

    Gamarra, L.F.; Pontuschka, W.M.; Amaro, E.; Costa-Filho, A.J.; Brito, G.E.S.; Vieira, E.D.; Carneiro, S.M.; Escriba, D.M.; Falleiros, A.M.F.; Salvador, V.L.

    2008-01-01

    In this study, we evaluated the biodistribution and the elimination kinetics of a biocompatible magnetic fluid, Endorem TM , based on dextran-coated Fe 3 O 4 nanoparticles endovenously injected into Winstar rats. The iron content in blood and liver samples was recorded using electron paramagnetic resonance (EPR) and X-ray fluorescence (XRF) techniques. The EPR line intensity at g = 2.1 was found to be proportional to the concentration of magnetic nanoparticles and the best temperature for spectra acquisition was 298 K. Both EPR and XRF analysis indicated that the maximum concentration of iron in the liver occurred 95 min after the ferrofluid administration. The half-life of the magnetic nanoparticles (MNP) in the blood was (11.6 ± 0.6) min measured by EPR and (12.6 ± 0.6) min determined by XRF. These results indicate that both EPR and XRF are very useful and appropriate techniques for the study of kinetics of ferrofluid elimination and biodistribution after its administration into the organism

  14. Dispersive admicelle solid-phase extraction based on sodium dodecyl sulfate coated Fe3 O4 nanoparticles for the selective adsorption of three alkaloids in Gegen-Qinlian oral liquid before high-performance liquid chromatography.

    Science.gov (United States)

    Shi, Zhihong; Xu, Dan; Zhao, Xuan; Li, Xinghong; Shen, Huimin; Yang, Bing; Zhang, Hongyi

    2017-12-01

    A novel dispersive admicelle solid-phase extraction method based on sodium dodecyl sulfate-coated Fe 3 O 4 nanoparticles was developed for the selective adsorption of berberine, coptisine, and palmatine in Gegen-Qinlian oral liquid before high-performance liquid chromatography. Fe 3 O 4 nanoparticles were synthesized by a chemical coprecipitation method and characterized by using transmission electron microscopy. Under acidic conditions, the surface of Fe 3 O 4 nanoparticles was coated with sodium dodecyl sulfate to form a nano-sized admicelle magnetic sorbent. Owing to electrostatic interaction, the alkaloids were adsorbed onto the oppositely charged admicelle magnetic nanoparticles. The quick separation of the analyte-adsorbed nanoparticles from the sample solution was performed by using Nd-Fe-B magnet. Best extraction efficiency was achieved under the following conditions: 800 μL Fe 3 O 4 nanoparticles suspension (20 mg/mL), 150 μL sodium dodecyl sulfate solution (10 mg/mL), pH 2, and vortexing time 2 min for the extraction of alkaloids from 10 mL of diluted sample. Four hundred microliters of methanol was used to desorb the alkaloids by vortexing for 1 min. Satisfactory extraction recoveries were obtained in the range of 85.9-120.3%, relative standard deviations for intra- and interday precisions were less than 6.3 and 10.0%, respectively. Finally, the established method was successfully applied to analyze the alkaloids in two batches of Gegen-Qinlian oral liquids. © 2017 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim.

  15. Mixed hemimicelles solid-phase extraction based on ionic liquid-coated Fe3O4/SiO2 nanoparticles for the determination of flavonoids in bio-matrix samples coupled with high performance liquid chromatography.

    Science.gov (United States)

    He, Huan; Yuan, Danhua; Gao, Zhanqi; Xiao, Deli; He, Hua; Dai, Hao; Peng, Jun; Li, Nan

    2014-01-10

    A novel magnetic solid-phase extraction (MSPE) method based on mixed hemimicelles of room temperature ionic liquids (RTILs) coated Fe3O4/SiO2 nanoparticles (NPs) was developed for simultaneous extraction of trace amounts of flavonoids in bio-matrix samples. A comparative study on the use of RTILs (C16mimBr) and CTAB-coated Fe3O4/SiO2 NPs as sorbents was presented. Owing to bigger adsorption amounts for analytes, RTILs-coated Fe3O4/SiO2 NPs was selected as MSPE materials and three analytes luteolin, quercetin and kaempferol can be quantitatively extracted and simultaneously determined coupled with high performance liquid chromatography (HPLC) in urine samples. No interferences were caused by proteins or endogenous compounds. Good linearity (R(2)>0.9993) for all calibration curves was obtained, and the limits of detection (LOD) for luteolin, quercetin and kaempferol were 0.10 ng/mL, 0.50 ng/mL and 0.20 ng/mL in urine samples, respectively. Satisfactory recoveries (93.5-97.6%, 90.1-95.4% and 93.3-96.6% for luteolin, quercetin and kaempferol) in biological matrices were achieved. It was notable that while using a small amount of Fe3O4/SiO2 NPs (4.0 mg) and C16mimBr (1.0 mg), satisfactory preconcentration factors and extraction recoveries for the three flavonoids were obtained. To the best of our knowledge, this is the first time a mixed hemimicelles MSPE method based on RTILs and Fe3O4/SiO2 NPs magnetic separation has ever been used for pretreatment of complex biological samples. Copyright © 2013 Elsevier B.V. All rights reserved.

  16. High adsorptive γ-AlOOH(boehmite)@SiO2/Fe3O4 porous magnetic microspheres for detection of toxic metal ions in drinking water.

    Science.gov (United States)

    Wei, Yan; Yang, Ran; Zhang, Yong-Xing; Wang, Lun; Liu, Jin-Huai; Huang, Xing-Jiu

    2011-10-21

    γ-AlOOH(boehmite)@SiO(2)/Fe(3)O(4) porous magnetic microspheres with high adsorption capacity toward heavy metal ions were found to be useful for the simultaneous and selective electrochemical detection of five metal ions, such as ultratrace zinc(II), cadmium(II), lead(II), copper(II), and mercury(II), in drinking water.

  17. Preparation of Modified Magnetic Nanocomposites Dithiooxamide/Fe3O4 for Preconcentration and Determination of Trace Amounts of Cobalt Ions in Food and Natural Water Samples

    Directory of Open Access Journals (Sweden)

    Ali Mirabi

    2016-09-01

    Full Text Available The first study on the high efficiency of nanometer-sized magnetic nanoparticles (Fe3O4 coated with sodium dodecyl sulfate (SDS and dithiooxamide as a new sorbent solid phase extraction has been reported. Modified magnetic nanicomposites was used to preconcentrate and separate Co (II ions in food and environmental water samples. Magnetic nanoparticles were prepared by chemical precipitation of Fe (II and Fe (III salts from aqueous solution by ammonia solution. These magnetic nanoparticles and nanocomposites were characterized by scanning electron microscopy (SEM, transmission electron microscopy (TEM, thermo gravimetric analysis (TGA and elemental analysis CHNS. A micro sample introduction system was employed for the nebulization micro-volume of diluted solution into flame atomic absorption spectrometry (FAAS. The extraction conditions were optimized by selecting the appropriate extraction parameters including the amount of nanosorbent, pH value, volume of dithiooxamide and condition of eluting solution. The detection limit of this method for Co (II ions was 1.21 ng ml-1 and the R.S.D. was 0.9% (n=6. The advantages of this new method include rapidity, easy preparation of nanosorbents and a high preconcentration factor. The proposed method has been applied to the determination of Co (II ions at trace levels in real samples such as, kiwi, orange, cucumber, apple, green pepper, honey, potato, tap water, river water and sea water with satisfactory results.

  18. Magnetic characterization of radio frequency heat affected micron size Fe3O4 powders: a bio-application perspective

    CSIR Research Space (South Africa)

    Roul, BK

    2009-05-01

    Full Text Available in oxygen plasma and noted to be dependent on average particle size. Microscopic rise in electron temperature during RF heating may likely to enhance the electron-hopping rate between Fe(+2) and Fe(+3) in the octahedral site of Fe3O4 molecular crystal...

  19. A new route for the synthesis of graphene oxide–Fe3O4 (GO–Fe3O4) nanocomposites and their Schottky diode applications

    International Nuclear Information System (INIS)

    Metin, Önder; Aydoğan, Şakir; Meral, Kadem

    2014-01-01

    Highlights: • Graphene Oxide (GO)–Fe 3 O 4 nanocomposites were prepared by a novel and facile method. • The successful assembly of Fe 3 O 4 NPs onto GO sheets was displayed by TEM. • The GO–Fe 3 O 4 nanocomposites/p-Si junction showed good rectifying property. -- Abstract: Addressed herein is a facile method for the preparation of magnetic graphene oxide–Fe 3 O 4 (GO–Fe 3 O 4 ) nanocomposites and the rectifying properties of (GO–Fe 3 O 4 )/p-Si junction in a Schottky diode. GO–Fe 3 O 4 nanocomposites were prepared by a novel method in which as-prepared GO sheets were decorated with the monodisperse Fe 3 O 4 nanoparticles (NPs) in dimethylformamide/chloroform mixture via a sonication process. The successful assembly of Fe 3 O 4 NPs onto GO sheets was displayed by transmission electron microscopy (TEM). Inductively couple plasma optical emission spectroscopy (ICP-OES) analysis of the GO–Fe 3 O 4 nanocomposite showed that the nanocomposite consists of 20.1 wt% Fe 3 O 4 NPs which provides a specific saturation magnetization (Ms) as 16 emu/g. The current–voltage (I–V) characteristics of the (GO–Fe 3 O 4 )/p-Si junction in a Schottky diode were studied in the temperature range of 50–350 K in the steps of 25 K. It was determined that the barrier height and ideality factor of the Au/GO–Fe 3 O 4 /p-Si/Al Schottky diode were depended on temperature as the barrier height increased while the ideality factor decreased with increasing temperature. The experimental values of barrier height and ideality factor were varied from 0.12 eV and 11.24 at 50 K to 0.76 eV and 2.49 at 350 K, respectively. The Richardson plot exhibited non-linearity at low temperatures that was attributed to the barrier inhomogeneities prevailing at the GO–Fe 3 O 4 /p-Si junction

  20. Characteristics of modified Fe3O4 nanoparticles and application for immobilization of functioning bacterium and denitrification in water%改性 Fe3O4纳米粒子的定性及对功能菌固定化与脱氮特性

    Institute of Scientific and Technical Information of China (English)

    郑永杰; 尚明慧; 田景芝; 王志刚; 徐伟慧

    2015-01-01

    为解决水体富营养化所导致的恶臭现象,用 SiO2和壳聚糖(CS)对 Fe3O4纳米粒子进行改性,再运用纳米粒子与微胶囊吸附-包埋的方法固定化功能性菌株,进而对该体系的脱氮特性进行了研究。通过扫描电镜(SEM)、透射电镜(TEM)、 X 射线衍射仪(XRD)、热重分析(TGA)及振动样品磁强计(VSM)等手段对材料的形貌、结构、磁学性能等进行表征。研究结果表明,SiO2与 CS 在 Fe3O4微球表面形成的包覆层具有产物结晶度高、形态规则、磁性能优良等特点。磁性微球在20min 时对菌株的吸附率达85.00%,吸附的活菌数达(2.1~2.2)×106cfu/mL。在对水体脱氮的研究中,游离态菌株对氨氮和硝氮的去除率分别为54.13%和59.17%,固定化菌株对氨氮和硝氮的去除率分别达到72.26%和74.56%。实验结果表明,改性 Fe3O4磁性微球对菌株吸附能力强,微胶囊结构使固定化菌株比游离态菌株具有更强的脱氮性能,且能延长 Fe3O4磁性微球的生命周期。%In order to solve the water pollution caused by eutrophication,Fe3O4 nanoparticles modified with SiO2 and chitosan(CS)was used for immobilizing functional strain,so that the strain can denitrify the contamination in water more efficiently. The morphology,structure and magnetic properties of Fe3O4 nanoparticles were characterized by scanning electron microscopy(SEM),transmission electron microscopy(TEM),X-ray diffraction(XRD),thermogravimetric analysis(TGA)and vibrating sample magnetometer(VSM),and the functions for removing ammonia nitrogen and nitrate nitrogen from water were investigated. The results showed that Fe3O4 nanoparticles exhibited highly ordered crystallinity,regular crystalline morphologies and excellent magnetism. The adsorption rate for the bacteria was up to 85.00% and the numbers of adsorption strain achieved (2.1—2.2)×106cfu/mL at 20min during the adsorption process. Furthermore

  1. Preparation of Fe3 O4 @ion imprinted poly(MMA-HPMA-DVB)magnetic composite and its selective adsorption to Ni(Ⅱ)%磁性Fe3O4@离子印迹聚(MMA-HPMA-DVB)复合材料的合成及其对水中Ni(Ⅱ)选择性吸附

    Institute of Scientific and Technical Information of China (English)

    王燕; 叶思; 吕珊珊; 张佳丽; 沈昊宇; 叶仙森

    2017-01-01

    采用超声协助悬浮聚合法以Ni(Ⅱ)离子为模板制备了氨基功能化纳米Fe3O4-离子印迹聚(甲基丙烯酸甲酯(MMA)-3-(2-氨基乙基胺)-2-甲基丙烯酸羟丙酯(HPMA)-二乙烯基苯(DVB))磁性复合材料(Fe3O4@ion im-printed poly(MMA-HPMA-DVB),Fe3 O4@IIP(MMA-HPMA-DVB)).通过EA、XRD、FTIR、TEM、VSM等手段对Fe3O4@IIP(MMA-HPMA-DVB)的组成、结构、形貌、磁性等进行了表征,并研究了其吸附水中Ni(Ⅱ)的性能.结果表明:合成的Fe3O4@IIP(MMA-HPMA-DVB)平均粒径为100 nm,饱和磁化强度为43.8 emu/g;共聚单体甲基丙烯酸甲酯(MMA)的羰基通过氢键与Fe3O4表面羟基结合,有利于Fe3O4@IIP(MMA-HPMA-DVB)的核-壳结构的形成与稳定;Fe3O4@IIP(MMA-HPMA-DVB)对Ni(Ⅱ)的吸附受溶液pH值影响较小;等温吸附线符合Langmuir模型,饱和吸附量(q m,c=500 mg/g,q m,e=478 mg/g)高于非离子印迹材料(Fe3 O4@none-ion imprinted poly(MMA-HPMA-DVB),Fe3 O4@NIP(MMA-HPMA-DVB)),q m,c=90.9 mg/g,q m,e=83.8 mg/g).吸附过程可在5 min内达到平衡,符合准二级动力学模型.Fe3 O4@IIP(MMA-HPMA-DVB)能高选择性地有效吸附水中Ni(Ⅱ),对Ni(Ⅱ)的印迹因子(α)为1.9,对几种常见共存离子的选择性因子(β)>7.7,是潜在的高选择性吸附和回收Ni(Ⅱ)的功能材料.%An amino-functionalized Fe3 O4-ion imprinted poly(methyl methacrylate (MMA)-3-(2-amino-ethylami-no)-2-hydroxypropyl methacrylate (HPMA)-divinylbenzene(DVB))magnetic composite (Fe3 O4 @ion imprinted po-ly(IIP)(MMA-HPMA-DVB))was synthesized via ultrasonic assisted suspension polymerization with nickel(Ⅱ)as ion imprinting template.The Fe3 O4 @IIP(MMA-HPMA-DVB)was characterized by EA,XRD,FTIR,TEM,TG and VSM.The application for its adsorption properties on Ni(Ⅱ)from water was investigated.The results show that the Fe3 O4 @IIP(MMA-HPMA-DVB)has an average size of 100 nm,with the saturation magnetization intensity of 43.8 emu/g.The carbonyl group of the co-monomer methyl methacrylate (MMA)can connect

  2. Drug-loaded poly (ε-caprolactone)/Fe3O4 composite microspheres for magnetic resonance imaging and controlled drug delivery

    Science.gov (United States)

    Wang, Guangshuo; Zhao, Dexing; Li, Nannan; Wang, Xuehan; Ma, Yingying

    2018-06-01

    In this study, poly (ε-caprolactone) (PCL) microspheres loading magnetic Fe3O4 nanoparticles and anti-cancer drug of doxorubicin hydrochloride (DOX) were successfully prepared by a modified solvent-evaporation method. The obtained magnetic composite microspheres exhibited dual features of magnetic resonance imaging and controlled drug delivery. The morphology, structure, thermal behavior and magnetic properties of the drug-loaded magnetic microspheres were investigated in detail by SEM, XRD, DSC and SQUID. The obtained composite microspheres showed superparamagnetic behavior and T2-weighted enhancement effect. The drug loading, encapsulation efficiency, releasing behavior and in vitro cytotoxicity of the drug-loaded composite microspheres were systematically investigated. It was found that the values of drug loading and encapsulation efficiency were 36.7% and 25.8%, respectively. The composite microspheres were sensitive to pH and released in a sustained way, and both the release curves under various pH conditions (4.0 and 7.4) were well satisfied with the biphase kinetics function. In addition, the magnetic response of the drug-loaded microspheres was studied and the results showed that the composite microspheres had a good magnetic stability and strong targeting ability.

  3. Carbon-Based Fe3O4 Nanocomposites Derived from Waste Pomelo Peels for Magnetic Solid-Phase Extraction of 11 Triazole Fungicides in Fruit Samples

    Science.gov (United States)

    Ren, Keyu; Zhang, Wenlin; Cao, Shurui; Wang, Guomin; Zhou, Zhiqin

    2018-01-01

    Carbon-based Fe3O4 nanocomposites (C/Fe3O4 NCs) were synthesized by a simple one-step hydrothermal method using waste pomelo peels as the carbon precursors. The characterization results showed that they had good structures and physicochemical properties. The prepared C/Fe3O4 NCs could be applied as excellent and recyclable adsorbents for magnetic solid phase extraction (MSPE) of 11 triazole fungicides in fruit samples. In the MSPE procedure, several parameters including the amount of adsorbents, extraction time, the type and volume of desorption solvent, and desorption time were optimized in detail. Under the optimized conditions, the good linearity (R2 > 0.9916), the limits of detection (LOD), and quantification (LOQ) were obtained in the range of 1–100, 0.12–0.55, and 0.39–1.85 μg/kg for 11 pesticides, respectively. Lastly, the proposed MSPE method was successfully applied to analyze triazole fungicides in real apple, pear, orange, peach, and banana samples with recoveries in the range of 82.1% to 109.9% and relative standard deviations (RSDs) below 8.4%. Therefore, the C/Fe3O4 NCs based MSPE method has a great potential for isolating and pre-concentrating trace levels of triazole fungicides in fruits. PMID:29734765

  4. Rapid ultrasound-assisted magnetic microextraction of gallic acid from urine, plasma and water samples by HKUST-1-MOF-Fe3O4-GA-MIP-NPs: UV-vis detection and optimization study.

    Science.gov (United States)

    Asfaram, Arash; Ghaedi, Mehrorang; Dashtian, Kheibar

    2017-01-01

    Magnetite (Fe 3 O 4 nanoparticles (NPs)) HKUST-1 metal organic framework (MOF) composite as a support was used for surface imprinting of gallic acid imprinted polymer (HKUST-1-MOF-Fe 3 O 4 -GA-MIP) using vinyltrimethoxysilane (VTMOS) as the cross-linker. Subsequently, HKUST-1-MOF-Fe 3 O 4 -NPs-GA-MIP characterized by FT-IR, XRD and FE-SEM analysis and applied for fast and selective and sensitive ultrasound assisted dispersive magnetic solid phase microextraction of gallic acid (GA) by UV-Vis (UA-DMSPME-UV-Vis) detection method. Plackett-Burman design (PBD) and central composite design (CCD) according to desirability function (DF) indicate the significant variables among the extraction factors vortex (mixing) time (min), sonication time (min), temperature (°C), eluent volume (L), pH and HKUST-1-MOF-Fe 3 O 4 -NPs-GA-MIP mass (mg) and their contribution on the response. Optimum conditions and values correspond to pH, HKUST-1-MOF-Fe 3 O 4 -NPs-GA-MIP mass, sonication time and the eluent volume were set as follow 3.0, 1.6mg, 4.0min and 180μL, respectively. The average recovery (ER%) of GA was 98.13% with desirability of 0.997, while the present method has best operational performance like wide linear range 8-6000ngmL -1 with a Limit of detection (LOD) of 1.377ngmL -1 , limit of quantification (LOQ) 4.591ngmL -1 and precision (<3.50% RSD). The recovery of GA in urine, human plasma and water samples within the range of 92.3-100.6% that strongly support high applicability of present method for real samples analysis, which candidate this method as promise for further application. Copyright © 2016. Published by Elsevier B.V.

  5. A novel dianionic amino acid ionic liquid-coated PEG 4000 modified Fe3O4 nanocomposite for the magnetic solid-phase extraction of trypsin.

    Science.gov (United States)

    Yang, Qin; Wang, Yuzhi; Zhang, Hongmei; Xu, Kaijia; Wei, Xiaoxiao; Xu, Panli; Zhou, Yigang

    2017-11-01

    A novel magnetic extractant, PEG 4000 modified Fe 3 O 4 nanomaterial that coated with dianionic amino acid ionic liquid (Fe 3 O 4 @PEG@DAAAIL), was successfully synthesized and characterized. X-ray diffraction (XRD), transmission electron microscope (TEM), vibrating sample magnetometer (VSM), fourier transform infrared spectrometry (FT-IR), thermal gravimetric analysis (TGA) and zeta potentials were used to confirm that the novel nanocomposite was successfully synthesized. Subsequently, the prepared Fe 3 O 4 @PEG@DAAAIL nanocomposite was used as the extractant for trypsin coupled with magnetic solid-phase extraction (MSPE). The concentrations of trypsin in the supernatant were detected by UV-vis spectrophotometer at 278nm. The extraction ability turned out to be better than the other four kinds of extractants prepared in this work. Furthermore, the influence of a series of factors, such as extraction time and temperature, initial trypsin concentration, the value of pH and ionic strength, was systematically investigated. Under the optimal extraction condition, the extraction capacity for trypsin could reach up to 718.73mg/g, absolutely higher than that of other adsorbents reported. This satisfactory extraction capacity could be maintained unchangeable after at least eight days, and kept over 90% of initial extraction capacity after eight recycles. What's more, the activity of trypsin after extraction retained 92.29% of initial activity, verifying the biocompatibility of the prepared extractant. Finally, the developed Fe 3 O 4 @PEG@DAAAIL-MSPE method was successfully applied to the real sample analysis with satisfactory results. All of above proves the potential value of Fe 3 O 4 @PEG@DAAAIL-MSPE in the analysis of biomass. Copyright © 2017 Elsevier B.V. All rights reserved.

  6. An electrochemical sensor for rizatriptan benzoate determination using Fe3O4 nanoparticle/multiwall carbon nanotube-modified glassy carbon electrode in real samples.

    Science.gov (United States)

    Madrakian, Tayyebeh; Maleki, Somayeh; Heidari, Mozhgan; Afkhami, Abbas

    2016-06-01

    In this paper a sensitive and selective electrochemical sensor for determination of rizatriptan benzoate (RZB) was proposed. A glassy carbon electrode was modified with nanocomposite of multiwalled carbon nanotubes (MWCNTs) and Fe3O4 nanoparticles (Fe3O4/MWCNTs/GCE). The results obtained clearly show that the combination of MWCNTs and Fe3O4 nanoparticles definitely improves the sensitivity of modified electrode to RZB determination. The morphology and electroanalytical performance of the fabricated sensor were characterized by scanning electron microscopy (SEM), transmission electron microscopy (TEM), X-ray diffraction (XRD), energy dispersive X-ray spectroscopy (EDS), square wave voltammetry (SWV) and cyclic voltammetry (CV). Also, the effect of experimental and instrumental parameters on the sensor response was evaluated. The square wave voltammetric response of the electrode to RZB was linear in the range 0.5-100.0 μmol L(-1) with a detection limit of 0.09 μmol L(-1) under the optimum conditions. The investigated method showed good stability, reproducibility and repeatability. The proposed sensor was successfully applied for real life samples of blood serum and RZB determination in pharmaceutical. Copyright © 2016 Elsevier B.V. All rights reserved.

  7. Magnetic field aligned orderly arrangement of Fe3O4 nanoparticles in CS/PVA/Fe3O4 membranes

    Science.gov (United States)

    Du, Meng; Cao, Xing-Zhong; Xia, Rui; Zhou, Zhong-Po; Jin, Shuo-Xue; Wang, Bao-Yi

    2018-02-01

    Not Available Project supported by the National Natural Science Foundation of China (Grant Nos. 11475197, 11575205, 11404100, and 11304083) and the Key Scientific and Technological Project of Henan Province, China (Grant No. 102102210186).

  8. Highly Sensitive Electrochemical Biosensor for Evaluation of Oxidative Stress Based on the Nanointerface of Graphene Nanocomposites Blended with Gold, Fe3O4, and Platinum Nanoparticles.

    Science.gov (United States)

    Wang, Le; Zhang, Yuanyuan; Cheng, Chuansheng; Liu, Xiaoli; Jiang, Hui; Wang, Xuemei

    2015-08-26

    High levels of H2O2 pertain to high oxidative stress and are associated with cancer, autoimmune, and neurodegenerative disease, and other related diseases. In this study, a sensitive H2O2 biosensor for evaluation of oxidative stress was fabricated on the basis of the reduced graphene oxide (RGO) nanocomposites decorated with Au, Fe3O4, and Pt nanoparticles (RGO/AuFe3O4/Pt) modified glassy carbon electrode (GCE) and used to detect the released H2O2 from cancer cells and assess the oxidative stress elicited from H2O2 in living cells. Electrochemical behavior of RGO/AuFe3O4/Pt nanocomposites exhibits excellent catalytic activity toward the relevant reduction with high selection and sensitivity, low overpotential of 0 V, low detection limit of ∼0.1 μM, large linear range from 0.5 μM to 11.5 mM, and outstanding reproducibility. The as-prepared biosensor was applied in the measurement of efflux of H2O2 from living cells including healthy normal cells and tumor cells under the external stimulation. The results display that this new nanocomposites-based biosensor is a promising candidate of nonenzymatic H2O2 sensor which has the possibility of application in clinical diagnostics to assess oxidative stress of different kinds of living cells.

  9. Fluoride adsorption from aqueous solution by magnetic core-shell Fe_3O_4@alginate-La particles fabricated via electro-coextrusion

    International Nuclear Information System (INIS)

    Zhang, Yahui; Lin, Xiaoyan; Zhou, Quisheng; Luo, Xuegang

    2016-01-01

    Graphical abstract: The magnetic core-shell Fe_3O_4@Alg-La particles were fabricated successfully by a simple method of electro-coextrusion, and employed as an adsorbent for separation of fluoride from aqueous solution. - Highlights: • Magnetic core-shell Fe_3O_4@Alg-La particles were prepared by electro-coextrusion. • The maximum adsorption capacity for fluoride at 298.15 K was 45.230 mg/g. • The adsorbent has a good saturation magnetization value. • The adsorbent has a great potential in removing the fluoride. - Abstract: The magnetic core-shell Fe_3O_4@Alg-La particles were fabricated successfully by a simple method of electro-coextrusion, and employed as an adsorbent for separation of fluoride from aqueous solution. Main factors affecting the removal of fluoride, including pH, adsorbent dosage, initial concentration, temperature and contact time were investigated. The adsorption isotherm and adsorption kinetics were studied to understand the adsorption process in detail. The experimental data were fitted well by the non-linear Freundlich isotherm and linear pseudo-second-order model, the maximum fluoride adsorption capacity was 45.230 mg/g at pH 4, 298.15 K. Thermodynamic parameters indicated that the fluoride adsorption process was feasible and spontaneous. The presence of other anions like Cl"−, SO_4"2"−, HCO_3"− and PO_4"3"− had almost no effect on the fluoride adsorption. The adsorbent can be easily separated from the solution by a magnet. The magnetic core-shell Fe_3O_4@Alg-La particles before and after fluoride adsorption were studied by SEM, FTIR, EDX and XPS, which indicated that the adsorption mechanism may be related to electrostatic attraction and Lewis acid-base interaction.

  10. A facile one-pot solvothermal method for synthesis of magnetically recoverable Pd-Fe3O4 hybrid nanocatalysts for the Mizoroki-Heck reaction

    Science.gov (United States)

    Zhen, Fangchen; Ran, Maofei; Chu, Wei; Jiang, Chengfa; Sun, Wenjing

    2018-03-01

    Pd-Fe3O4 hybrid nanostructures were prepared using a simple one-pot hydrothermal method. The prepared materials were characterized by Fourier transform-infrared spectroscopy, X-ray diffraction, X-ray photoelectron spectroscopy, scanning electron microscopy, transmission electron microscopy, inductively coupled plasma, N2 adsorption-desorption, and vibrating sample magnetometry. This self-assembled nanosystem acted as an efficient magnetically recyclable noble metal-based multi-functional nanocatalyst. It showed excellent catalytic activity and stability for the Heck reaction of iodobenzene and styrene under mild conditions. The methods used to prepare the Pd-Fe3O4 catalysts were simple and low-cost, which will be useful for the large-scale development and application of a magnetically recoverable Pd catalyst.

  11. Preparation of new nano magnetic material Fe3O4@g-C3N4 and good adsorption performance on uranium ion

    Science.gov (United States)

    Long, Wei; Liu, Huijun; Yan, Xueming; Fu, Li

    2018-03-01

    A new nano magnetic material Fe3O4@g-C3N4 was prepared by deposition reduction method, which performed good adsorption performance to uranium ion. Characterization results showed that the g-C3N4 particles were wrapped around the nano magnetic Fe3O4 particles, and the textural properties of this material was improved, so the adsorption performance to uranium ion was good. Adsorption experiments of this material demonstrated that the optimum pH value was 10, the optimum mass of adsorbent was 6.5 mg and the optimum adsorption time was 150 min in the initial concentration of 140 mg/L uranium ion solution system, and the maximum adsorption capacity was up to 352.1 mg/g and the maximum adsorption rate was more than 90%.

  12. An amino-functionalized magnetic framework composite of type Fe3O4-NH2@MIL-101(Cr) for extraction of pyrethroids coupled with GC-ECD.

    Science.gov (United States)

    He, Xi; Yang, Wei; Li, Sijia; Liu, Yu; Hu, Baichun; Wang, Ting; Hou, Xiaohong

    2018-01-24

    An amino-functionalized magnetic framework composite of type Fe 3 O 4 -NH 2 @MIL-101(Cr) was synthesized using a solvothermal method. The material was characterized by scanning electron microscopy, X-ray diffraction, Fourier transform infrared spectroscopy, nitrogen adsorption, and magnetometry. The composite combines the advantages of amino-modified Fe 3 O 4 and MIL-101(Cr). The presence of amino groups facilitates the fairly specific adsorption of pyrethroids. The composite was employed as a sorbent for magnetic solid phase extraction of five pyrethroids from environmental water samples. Following desorption with acidified acetone, the pyrethroids were quantified by gas chromatography with electron capture detection. The detection limits for bifenthrin, fenpropathrin, λ-cyhalothrin, permethrin, and deltamethrin range from 5 to 9 pg·mL -1 . The method is rapid, accurate, and highly sensitive. The molecular interactions and free binding energies between MIL-101(Cr) and the five pyrethroids were calculated by means of molecular docking. Graphical abstract A novel functionalized magnetic framework composite of type Fe 3 O 4 -NH 2 @MIL-101(Cr) was synthesized. It was applied as a sorbent for magnetic solid phase extraction of pyrethroids prior to their quantitation by gas chromatography with electron capture detection. The molecular interactions of analytes and MIL-101(Cr) were studied.

  13. Hydrothermal synthesis of Ag@TiO2–Fe3O4 nanocomposites using sonochemically activated precursors: magnetic, photocatalytic and antibacterial properties

    International Nuclear Information System (INIS)

    Bokare, Anuja; Singh, Hema; Nair, Roopa; Sabharwal, Sushma; Athawale, Anjali A; Pai, Mrinal

    2014-01-01

    Fe 3 O 4 –TiO 2 nanocomposites have been synthesized by hydrothermal method using sonochemically activated precursors. X-ray diffraction analysis of the samples reveals the formation of pure phase composites. The optical properties of the composites are superior to TiO 2 as noted from the red shift in the diffused reflectance spectra of the composites. The presence of nanocubes of Fe 3 O 4 , nanospheres of TiO 2 and heterojunctions of the two in the composite samples have been observed in transmission electron micrographs. The magnetic properties of the samples were determined with the help of vibrating sample magnetometry (VSM) and magnetic force microscopy (MFM). The photocatalytic activity of the samples was investigated in terms of degradation of methyl orange (MO) dye. The composites could be easily separated from the reaction mixture after photocatalysis due to their magnetic behaviour. However, the photocatalytic activity of the composites was observed to be lower compared to bare TiO 2 . The composite (15% Fe 3 O 4 –TiO 2 ) when modified by coating it with Ag showed enhanced photocatalytic activity. Further, the antibacterial activities of the samples were also examined using E. coli as a model organism. Positive results were obtained only for the Ag coated composite with lower MIC (minimum inhibition concentration) values. (paper)

  14. Hydrothermal synthesis of Ag@TiO2-Fe3O4 nanocomposites using sonochemically activated precursors: magnetic, photocatalytic and antibacterial properties

    Science.gov (United States)

    Bokare, Anuja; Singh, Hema; Pai, Mrinal; Nair, Roopa; Sabharwal, Sushma; Athawale, Anjali A.

    2014-12-01

    Fe3O4-TiO2 nanocomposites have been synthesized by hydrothermal method using sonochemically activated precursors. X-ray diffraction analysis of the samples reveals the formation of pure phase composites. The optical properties of the composites are superior to TiO2 as noted from the red shift in the diffused reflectance spectra of the composites. The presence of nanocubes of Fe3O4, nanospheres of TiO2 and heterojunctions of the two in the composite samples have been observed in transmission electron micrographs. The magnetic properties of the samples were determined with the help of vibrating sample magnetometry (VSM) and magnetic force microscopy (MFM). The photocatalytic activity of the samples was investigated in terms of degradation of methyl orange (MO) dye. The composites could be easily separated from the reaction mixture after photocatalysis due to their magnetic behaviour. However, the photocatalytic activity of the composites was observed to be lower compared to bare TiO2. The composite (15% Fe3O4-TiO2) when modified by coating it with Ag showed enhanced photocatalytic activity. Further, the antibacterial activities of the samples were also examined using E. coli as a model organism. Positive results were obtained only for the Ag coated composite with lower MIC (minimum inhibition concentration) values.

  15. Sorption of Pb(II and Cu(II by low-cost magnetic eggshells-Fe3O4 powder

    Directory of Open Access Journals (Sweden)

    Ren Jianwei

    2012-01-01

    Full Text Available This study explored the feasibility of using magnetic eggshell-Fe3O4 powder as adsorbent for the removal of Pb(II and Cu(II ions from aqueous solution. The metal ionsadsorption media interaction was characterized using XRD and FTIR. The effects of contact time, initial concentrations, temperature, solution pH and reusability of the adsorption media were investigated. The metal ions adsorption was fast and the amount of metal ions adsorbed increased with an increase in temperature, suggesting an endothermic adsorption. The kinetic data showed that the adsorption process followed the pseudo-second-order kinetic model. The optimal adsorption pH value was around 5.5 at which condition the equilibrium capacity was 263.2 mg/g for Pb(II and 250.0 for Cu(II. The adsorption equilibrium data fitted very well to the Langmuir and Freundlich adsorption isotherm models. The thermodynamics of Pb(II and Cu(II adsorption onto the magnetic eggshell-Fe3O4 powder indicated that the adsorption was spontaneous. The reusability study has proven that magnetic eggshell-Fe3O4 powder can be employed as a low-cost and easy to separate adsorbent.

  16. Facile fabrication of superparamagnetic graphene/polyaniline/Fe3O4 nanocomposites for fast magnetic separation and efficient removal of dye.

    Science.gov (United States)

    Mu, Bin; Tang, Jie; Zhang, Long; Wang, Aiqin

    2017-07-13

    Using graphene as adsorbent for removal of pollutants from polluted water is commonly recognized to be costly because the graphene is usually produced by a very complex process. Herein, a simple and eco-friendly method was employed to fabricate efficient superparamagnetic graphene/polyaniline/Fe 3 O 4 nanocomposites for removal of dyes. The exfoliation of graphite as nanosheets and the functionalization of nanosheets with polyaniline and Fe 3 O 4 nanoparticles were simultaneously achieved via a one-pot reaction process combining the intercalation polymerization of aniline and the co-precipitation of the residual Fe 3+ and the generated Fe 2+ . The obtained graphene/polyaniline/Fe 3 O 4 nanocomposites exhibited excellent adsorption performance for Congo red, even in the presence of Brilliant green. The adsorption kinetics and adsorption isotherms were well fitted with pseudo second-order kinetic model and Langmuir isotherm model, respectively. In a word, this method is simple and industrially feasible, which provides a new approach to fabricate highly efficient graphene-based adsorbents on large scale for removal of dyes. In addition, it also can be used to exfoliate other two-dimensional materials, such as boron nitride, carbon nitride and MoS 2 for a range of possible applications.

  17. Hydrothermal green synthesis of magnetic Fe3O4-carbon dots by lemon and grape fruit extracts and as a photoluminescence sensor for detecting of E. coli bacteria.

    Science.gov (United States)

    Ahmadian-Fard-Fini, Shahla; Salavati-Niasari, Masoud; Ghanbari, Davood

    2018-10-05

    The aim of this work is preparing of a photoluminescence nanostructures for rapid detection of bacterial pathogens. Firstly, carbon dots (CDs) were synthesized by grape fruit, lemon, turmeric extracts and hydrothermal method. Then Fe 3 O 4 (magnetite) nanoparticles was achieved using these bio-compatible capping agents. Finally, magnetite-carbon dots were synthesized as a novel magnetic and photoluminescence nanocomposite. X-ray diffraction (XRD) confirms the crystallinity and phase of the products, scanning electron microscopy (SEM) and transmission electron microscopy (TEM) investigate the morphology, shape and size of the magnetite, carbon dot and nanocomposites. Fourier transform infrared (FT-IR) spectroscopy shows the purity of the nanostructures. Ultraviolet-visible (UV-Vis) absorption and photo-luminescence (PL) spectroscopy show suitable photo-luminescence under ultraviolet irradiation. Vibrating sample magnetometer (VSM) shows super paramagnetic property of the product. Interestingly carbon dots were used as a non-toxic photoluminescence sensor for detecting of Escherichia coli (E. coli) bacteria. Results show quenching of photoluminescence of the CDs nanocomposite by increasing amount of E. coli bacteria. Copyright © 2018 Elsevier B.V. All rights reserved.

  18. Fabrication of graphene/Fe3O4@polythiophene nanocomposite and its application in the magnetic solid-phase extraction of polycyclic aromatic hydrocarbons from environmental water samples.

    Science.gov (United States)

    Mehdinia, Ali; Khodaee, Nader; Jabbari, Ali

    2015-04-08

    Polythiophene (PT) was used as a surface modifier of graphene/Fe3O4 (G/Fe3O4) composite to increase merit of it, and also overcome some limitations and disadvantages of using G/Fe3O4 alone as solid phase extraction (SPE) sorbent. An in-situ chemical polymerization method was employed to prepare G/Fe3O4@PT nanocomposites. Application of this newly designed material in the magnetic SPE (MSPE) of polycyclic aromatic hydrocarbons (PAHs), as model analytes, in the environmental water samples was investigated. The characterization of the hybrid material was performed using transmission electron microscopy, scanning electron microscopy, energy-dispersive X-ray analysis, Fourier transform-infrared (FT-IR) spectroscopy and vibrating sample magnetometry. Seven important parameters, affecting the extraction efficiency of PAHs, including: amount of adsorbent, adsorption and desorption times, type and volume of the eluent solvent, initial sample volume and salt content of the sample were evaluated. The optimum extraction conditions were obtained as: 4 min for extraction time, 20 mg for sorbent amount, 100mL for initial sample volume, toluene as desorption solvent, 0.6 mL for desorption solvent volume, 6 min for desorption time and 30% (w/v) for NaCl concentration. Good performance data were obtained at the optimized conditions. Detection limits were in the range of 0.009-0.020 μg L(-1) in the real matrix. The calibration curves were linear over the concentration ranges from 0.03 to 80 μg L(-1) with correlation coefficients (R(2)) between 0.995 and 0.998 for all the analytes. Relative standard deviations were ranged from 4.3 to 6.3%. Appropriate recovery values, in the range of 83-107%, were also obtained for the real sample analysis. Copyright © 2014 Elsevier B.V. All rights reserved.

  19. Antifungal activity of magnetically separable Fe3O4/ZnO/AgBr nanocomposites prepared by a facile microwave-assisted method

    Directory of Open Access Journals (Sweden)

    Abolghasem Hoseinzadeh

    2016-08-01

    Full Text Available In the present work, magnetically separable Fe3O4/ZnO/AgBr nanocomposites with different weight ratios of Fe3O4 to ZnO/AgBr were prepared by a facile microwave-assisted method. The resultant samples were characterized by X-ray diffraction (XRD, scanning electron microscopy (SEM, transmission electron microscopy (TEM, energy dispersive analysis of X-rays (EDX, and vibrating sample magnetometery (VSM. Antifungal activity of the as-prepared samples was evaluated against Fusarium graminearum and Fusarium oxysporum as two phytopathogenic fungi. Among the nanocomposites, the sample with 1:8 weight ratio of Fe3O4 to ZnO/AgBr was selected as the best nanocomposite. This nanocomposite inactivates Fusarium graminearum and Fusarium oxysporum at 120 and 60 min, respectively. Moreover, it was observed that the microwave irradiation time has considerable influence on the antifungal activity and the sample prepared by irradiation for 10 min showed the best activity. Moreover, the nanocomposite without any thermal treatment displayed the superior activity.

  20. Core-Shell Nano structure of a-Fe2O3/Fe3O4: Synthesis and Photo catalysis for Methyl Orange

    International Nuclear Information System (INIS)

    Tian, Y.; Wu, D.; Yu, B.; Jia, X.; Zhan, S.

    2011-01-01

    Fe 3 O 4 nanoparticle was synthesized in the solution involving water and ethanol. Then, a-Fe 2 O 3 shell was produced in situ on the surface of the Fe 3 O 4 nanoparticle by surface oxidation in molten salts, forming α-Fe 2 O 3 /Fe 3 O 4 core-shell nano structure. It was showed that the magnetic properties transformed from ferromagnetism to superparamagnetism after the primary Fe 3 O 4 nanoparticles were oxidized. Furthermore, the obtained a-Fe 2 O 3 /Fe 3 O 4 core-shell nanoparticles were used to photo catalyse solution of methyl orange, and the results revealed that a-Fe 2 O 3 /Fe 3 O 4 nanoparticles were more efficient than the self-prepared α-Fe 2 O 3 nanoparticles. At the same time, the photo catalyzer was recyclable by applying an appropriate magnetic field.

  1. Facile and solvent-free routes for the synthesis of size-controllable Fe3O4 nanoparticles

    International Nuclear Information System (INIS)

    Ngo, Thanh Hieu; Tran, Dai Lam; Do, Hung Manh; Le, Van Hong; Nguyen, Xuan Phuc; Tran, Vinh Hoang

    2010-01-01

    Magnetite nanoparticles are one of the most important materials that are widely used in both medically diagnostic and therapeutic research. In this paper, we present some facile and non-toxic synthetic approaches for size-controllable preparations of magnetite nanoparticles, which are appropriate for biomedical applications, namely (i) co-precipitation; (ii) reduction–precipitation and (iii) oxidation–precipitation. Magnetic characterizations of the obtained nanoparticles have been studied and discussed. The oxidation precipitation route was chosen for investigation of the dependence of kinetic driven activation energy and that of coercive force on particle size (and temperature) during the course of the reaction. The structural–magnetic behavior was also correlated. Being solvent and surfactant-free, these methods are advantageous for synthesis and further functionalization towards biomedical applications

  2. Magnetorelaxometry of few Fe3O4 nanoparticles at 77 K employing a self-compensated SQUID magnetometer

    International Nuclear Information System (INIS)

    Guillaume, Alexander; Scholtyssek, Jan M.; Lak, Aidin; Kassner, Alexander; Ludwig, Frank; Schilling, Meinhard

    2016-01-01

    Magnetic nanoparticles (MNPs) are of great interest for industrial and medical applications. Therefore, the properties of the particles have to be well controlled. Several magnetic measurement schemes have been developed in order to determine particle parameters such as size distribution and structural properties. In general, systems are designed either for the analysis of large amounts of MNP (≫1000) or for single particle investigation. Up to now, the region in between has been less studied. However, small and well defined amounts of MNPs are of high interest, e.g. for the systematic investigation of particle–particle interactions. In this paper, we present a method using electron beam lithographic preparation of small amounts of MNPs directly on a self-compensating high-temperature superconducting quantum interference device (SQUID) with micrometer dimensions which is insensitive to homogeneous fields and first order gradients but very sensitive to internal magnetic dipole fields. Magnetorelaxometry (MRX) measurements were carried out at 77 K sample temperature in a magnetically shielded room in order to analyze the dynamic behavior of MNP samples and to evaluate the detection limit of our SQUID sensors. Calculations based on the magnetic moment superposition model (MSM) and finite element simulations (FEM) indicate that the MNP samples can be fabricated in a well-defined way by the presented method. Based on MRX measurements of a sample with 200 single-core magnetite MNPs with core diameters of 12 nm, we estimate the detection limit of our SQUID MRX setup as 70 MNPs. - Highlights: • Novel self-compensated superconducting quantum interference device (SQUID). • Electron-beam lithographical patterning of magnetic nanoparticles directly on SQUID. • Magnetorelaxometric detection of 200 nanoparticles with diameter of 12 nm at 77 K. • FEM simulations provide detection limit of less than 100 nanoparticles.

  3. A magnetic nanocomposite prepared from chelator-modified magnetite (Fe_3O_4) and HKUST-1 (MOF-199) for separation and preconcentration of mercury(II)

    International Nuclear Information System (INIS)

    Tadjarodi, Azadeh; Abbaszadeh, Abolfazl

    2016-01-01

    We describe a magnetic metal-organic framework for preconcentration of Hg(II). The material is obtained from magnetite (Fe3O4) nanoparticles that were modified with 4-(5)-imidazoledithiocarboxylic acid and then reacted with trimesic acid and Cu(II) acetate to form the metal-organic framework capable of extracting Hg(II). The sorption time, amount of the magnetic nanocomposite, and pH value of the sample were selected as the main affecting factors in sorption, and central composite design and response surface methodology were applied to optimize these parameters. Following sorption of Hg(II), the sorbent is removed by a magnet, Hg(II) is eluted with a solution of thiourea and then quantified by cold vapor AAS. The type, volume and concentration of the eluent, and the elution time were selected for the optimization of the elution. The results showed the sorption process to obey the Langmuir model. The maximum monolayer capacity is as high as 254 mg g"−"1, and the Langmuir constant is 0.330 L mg"−"1. The findings can be well described by pseudo second-order kinetics. High sorption capacity means that one needs less sorbent. Under the optimal conditions, the limit of detection and limit of quantification for Hg(II) were 10 ng L"−"1 and 40 ng L"−"1, respectively and the relative standard deviations are <8.3 %. The nanocomposite was successfully applied to the rapid extraction of trace amounts of mercury ions from fish and canned tuna samples. (author)

  4. Fe3O4 epitaxial films

    KAUST Repository

    Liu, Xiang; Mi, Wenbo; Zhang, Qiang; Zhang, Xixiang

    2017-01-01

    fast charge ordering process and a continuous formation process of trimeron, which is comfirmed by the temperature-dependent Raman spectra. Just below T-V, the twofold AMR in Fe3O4(100) film originates from uniaxial magnetic anisotropy. The fourfold AMR

  5. Fe3O4 nanoparticle loaded paclitaxel induce multiple myeloma apoptosis by cell cycle arrest and increase cleavage of caspases in vitro

    Science.gov (United States)

    Yang, Cuiping; He, Xiangfeng; Chen, Junsong; Chen, Dengyu; Liu, Yunjing; Xiong, Fei; Shi, Fangfang; Dou, Jun; Gu, Ning

    2013-08-01

    Multiple myeloma (MM) still remains an incurable disease in spite of extending the patient survival by new therapies. The hypothesis of cancer stem cells (CSCs) states that although chemotherapy kills most tumor cells, it is believed to leave a reservoir of CSCs that allows the tumor cell propagation. The objective of this research was to evaluate the therapeutic effect of new paclitaxel-Fe3O4 nanoparticles (PTX-NPs) with an average size range of 7.17 ± 1.31 nm on MM CSCs in vitro. The characteristics of CD138-CD34- cells, isolated from human MM RPMI 8226 and NCI-H929 cell lines by the magnetic associated cell sorting method, were identified by the assays of colony formation, cell proliferation, drug resistance, cell migration, and tumorigenicity in non-obese diabetic/severe combined immunodeficiency (NOD/SCID) mice, respectively. Inhibitory effects of PTX-NPs on CD138-CD34- cells were evaluated by a variety of assays in vitro. The results showed that the CD138-CD34- cells were capable of forming colonies, exhibited high proliferative and migratory ability, possessed a strong drug resistance, and had powerful tumorigenicity in NOD/SCID mice compared to non-CD138-CD34- cells. PTX-NPs significantly inhibited CD138- CD34- cell viability and invasive ability, and resulted in G0/G1 cell cycle arrest and apoptosis compared with PTX alone. We concluded that the CD138-CD34- phenotype cells might be CSCs in RPMI 8226 and NCI-H929 cell lines. PTX-NPs had an obvious inhibitory effect on MM CD138-CD34- CSCs. The findings may provide a guideline for PTX-NPs' treatment of MM CSCs in preclinical investigation.

  6. Fe3O4 nanoparticle loaded paclitaxel induce multiple myeloma apoptosis by cell cycle arrest and increase cleavage of caspases in vitro

    International Nuclear Information System (INIS)

    Yang, Cuiping; He, Xiangfeng; Chen, Junsong; Chen, Dengyu; Liu, Yunjing; Xiong, Fei; Shi, Fangfang; Dou, Jun; Gu, Ning

    2013-01-01

    Multiple myeloma (MM) still remains an incurable disease in spite of extending the patient survival by new therapies. The hypothesis of cancer stem cells (CSCs) states that although chemotherapy kills most tumor cells, it is believed to leave a reservoir of CSCs that allows the tumor cell propagation. The objective of this research was to evaluate the therapeutic effect of new paclitaxel-Fe 3 O 4 nanoparticles (PTX-NPs) with an average size range of 7.17 ± 1.31 nm on MM CSCs in vitro. The characteristics of CD138 − CD34 − cells, isolated from human MM RPMI 8226 and NCI-H929 cell lines by the magnetic associated cell sorting method, were identified by the assays of colony formation, cell proliferation, drug resistance, cell migration, and tumorigenicity in non-obese diabetic/severe combined immunodeficiency (NOD/SCID) mice, respectively. Inhibitory effects of PTX-NPs on CD138 − CD34 − cells were evaluated by a variety of assays in vitro. The results showed that the CD138 − CD34 − cells were capable of forming colonies, exhibited high proliferative and migratory ability, possessed a strong drug resistance, and had powerful tumorigenicity in NOD/SCID mice compared to non-CD138 − CD34 − cells. PTX-NPs significantly inhibited CD138 − CD34 − cell viability and invasive ability, and resulted in G0/G1 cell cycle arrest and apoptosis compared with PTX alone. We concluded that the CD138 − CD34 − phenotype cells might be CSCs in RPMI 8226 and NCI-H929 cell lines. PTX-NPs had an obvious inhibitory effect on MM CD138 − CD34 − CSCs. The findings may provide a guideline for PTX-NPs’ treatment of MM CSCs in preclinical investigation

  7. Study of 223Ra uptake mechanism by Fe3O4 nanoparticles: towards new prospective theranostic SPIONs

    Czech Academy of Sciences Publication Activity Database

    Mokhodoeva, O.; Vlk, M.; Málková, E.; Kukleva, E.; Mičolová, P.; Štamberg, K.; Šlouf, Miroslav; Dzhenloda, R.; Kozempel, J.

    2016-01-01

    Roč. 18, č. 10 (2016), s. 1-12, č. článku 301. ISSN 1388-0764 R&D Projects: GA MZd(CZ) NV16-30544A; GA TA ČR(CZ) TE01020118; GA MŠk(CZ) LO1507 Institutional support: RVO:61389013 Keywords : magnetic nanoparticles * radium * sorption Subject RIV: CD - Macromolecular Chemistry Impact factor: 2.020, year: 2016

  8. Studies on Properties of Rice Straw/Polymer Nanocomposites Based on Polycaprolactone and Fe3O4 Nanoparticles and Evaluation of Antibacterial Activity

    Directory of Open Access Journals (Sweden)

    Roshanak Khandanlou

    2014-10-01

    Full Text Available Modified rice straw/Fe3O4/polycaprolactone nanocomposites (ORS/Fe3O4/ PCL-NCs have been prepared for the first time using a solution casting method. The RS/Fe3O4-NCs were modified with octadecylamine (ODA as an organic modifier. The prepared NCs were characterized by using X-ray powder diffraction (XRD, Scanning electron microscopy (SEM, Transmission electron microscopy (TEM, Thermogravimetric analysis (TGA and Fourier transform infrared spectroscopy (FT-IR. The XRD results showed that as the intensity of the peaks decreased with the increase of ORS/Fe3O4-NCs content in comparison with PCL peaks, the Fe3O4-NPs peaks increased from 1.0 to 60.0 wt. %. The TEM and SEM results showed a good dispersion of ORS/Fe3O4-NCs in the PCL matrix and the spherical shape of the NPs. The TGA analysis indicated thermal stability of ORS/Fe3O4-NCs increased after incorporation with PCL but the thermal stability of ORS/Fe3O4/PCL-NCs decreased with the increase of ORS/Fe3O4-NCs content. Tensile strength was improved with the addition of 5.0 wt. % of ORS/Fe3O4-NCs. The antibacterial activities of the ORS/Fe3O4/PCL-NC films were examined against Gram-negative bacteria (Escherichia coli and Gram-positive bacteria (Staphylococcus aureus by diffusion method using nutrient agar. The results indicated that ORS/Fe3O4/PCL-NC films possessed a strong antibacterial activity with the increase in the percentage of ORS/Fe3O4-NCs in the PCL.

  9. Hierarchical Fe_3O_4@MoS_2/Ag_3PO_4 magnetic nanocomposites: Enhanced and stable photocatalytic performance for water purification under visible light irradiation

    International Nuclear Information System (INIS)

    Guo, Na; Li, Haiyan; Xu, Xingjian; Yu, Hongwen

    2016-01-01

    Highlights: • The FM/A-6% possesses a large specific surface area: 76.56 m"2/g. • The FM/A-6% displays high photocatalytic stability. • The FM/A-6% can be collected easily from the water by magnetic field. - Abstract: Novel hierarchical Fe_3O_4@MoS_2/Ag_3PO_4 magnetic nanophotocatalyst with remarkable photocatalytic capability were prepared by simply depositing the Ag_3PO_4 onto the surface of crumpled Fe_3O_4@MoS_2 nanosphere. The nanocomposites were characterized by XRD, TEM, HRTEM, XPS, BET, and UV–vis DRS. The outcome of the photocatalytic experiments demonstrated that Fe_3O_4@MoS_2/Ag_3PO_4 with 6 wt% content of Ag_3PO_4 (FM/A-6%) showed the highest photocatalytic activity upon the degradation Congo red (CR) and Rhodamine B (RhB) under both visible light and simulated sunlight irradiation. In addition, FM/A-6% possessed larger specific surface area (76.56 m"2/g) and excellent optical property. The possible Z-scheme charge carriers transfer mechanism for the enhanced photocatalytic properties of the FM/A-6% was also discussed. The Z-scheme charge carriers transfer mechanism established between MoS_2 and Ag_3PO_4 facilitate the charge separation efficiency. Moreover, FM/A-6% can be separated and collected easily by external magnetic field and maintain high activity after five times photoreaction cycles. Given the remarkable photocatalytic performance and high stability of FM/A-6% nanocomposite, it is looking forward to exhibit great potential for applications in water purification.

  10. Film fabrication of Fe or Fe3O4 nanoparticles mixed with palmitic acid for vertically aligned carbon nanotube growth using Langmuir-Blodgett technique

    Science.gov (United States)

    Nakamura, Kentaro; Kuriyama, Naoki; Takagiwa, Shota; Sato, Taiga; Kushida, Masahito

    2016-03-01

    Vertically aligned carbon nanotubes (VA-CNTs) were studied as a new catalyst support for polymer electrolyte fuel cells (PEFCs). Controlling the number density and the diameter of VA-CNTs may be necessary to optimize PEFC performance. As the catalyst for CNT growth, we fabricated Fe or Fe3O4 nanoparticle (NP) films by the Langmuir-Blodgett (LB) technique. The catalyst Fe or Fe3O4 NPs were widely separated by mixing with filler molecules [palmitic acid (C16)]. The number density of VA-CNTs was controlled by varying the ratio of catalyst NPs to C16 filler molecules. The VA-CNTs were synthesized from the catalyst NP-C16 LB films by thermal chemical vapor deposition (CVD) using acetylene gas as the carbon source. The developing solvents used in the LB technique and the hydrogen reduction conditions of CVD were optimized to improve the VA-CNT growth rate. We demonstrate that the proposed method can independently control both the density and the diameter of VA-CNTs.

  11. Defluoridation technology for drinking water and tea by green synthesized Fe3O4/Al2O3 nanoparticles coated polyurethane foams for rural communities.

    Science.gov (United States)

    Kumari, Sonu; Khan, Suphiya

    2017-08-14

    Fluoride (F) contaminated ground water poses a serious public health concern to rural population with unaffordable purification technologies. Therefore, development of a cost-effective, portable, environment and user-friendly defluoridation technique is imperative. In the present study, we report on the development of a green and cost-effective method that utilizes Fe 3 O 4 and Al 2 O 3 nanoparticles (NPs) that were synthesized using jojoba defatted meal. These NPs were impregnated on to polyurethane foam (PUF) and made into tea infusion bags. The Al 2 O 3 NPs-PUF displayed a higher water defluoridation capacity of 43.47 mg g -1 of F as compared to 34.48 mg g -1 of F with Fe 3 O 4 NPs-PUF. The synthesized Al 2 O 3 -PUF infusion bags removed the F that was under the permissible limit of 1.5 mg L -1 . The sorption experiments were conducted to verify the effect of different parameters such as pH, contact time, size of PUF and initial F concentration. The different properties of adsorbent were characterized using a combination of FESEM, EDX, XRD and FTIR techniques, respectively. The calculated total cost per NPs-PUF pouch developed is as low as US $0.05, which makes the technology most suitable for rural communities. This paper will be beneficial for researchers working toward further improvement in water purification technologies.

  12. Simple and efficient synthesis of copper(II)-modified uniform magnetic Fe3O4@SiO2 core/shell microspheres for immobilization of cellulase

    Science.gov (United States)

    Li, Shi-Kuo; Hou, Xiao-Cheng; Huang, Fang-Zhi; Li, Chuan-Hao; Kang, Wen-Juan; Xie, An-Jian; Shen, Yu-Hua

    2013-11-01

    In this paper, we reported a simple and efficient protocol for preparation of Cu2+-modified magnetic Fe3O4@SiO2 core/shell microspheres for immobilization of cellulase. The uniform magnetic Fe3O4@SiO2 core/shell microspheres with a thin shell of 20 nm were synthesized through a solvothermal method followed by a sol-gel process. An amino-terminated silane coupling agent of (3-aminopropyl)triethoxysilane (APTS) was then grafted on them for capturing Cu2+ ions. The reaction process is very simple, efficient, and economical. Noticeably, the content of Cu2+ ions on the magnetic core/shell microspheres can reach 4.6 Wt%, endowing them possess as high immobilization capacity as 225.5 mg/g for cellulase. And the immobilized cellulase can be retained over 90 % on the magnetic microspheres after six cycles. Meanwhile, the magnetic microspheres decorated with Cu2+ ions show a superparamagnetic character with a high magnetic saturation of 58.5 emu/g at room temperature, suggesting conveniently and rapidly recycle the enzyme from solution. This facile, recyclable, high immobilization capacity and activity strategy may find potential applications in enzyme catalytic reactions with low cost.

  13. Simple and efficient synthesis of copper(II)-modified uniform magnetic Fe3O4@SiO2 core/shell microspheres for immobilization of cellulase

    International Nuclear Information System (INIS)

    Li, Shi-Kuo; Hou, Xiao-Cheng; Huang, Fang-Zhi; Li, Chuan-Hao; Kang, Wen-Juan; Xie, An-Jian; Shen, Yu-Hua

    2013-01-01

    In this paper, we reported a simple and efficient protocol for preparation of Cu 2+ -modified magnetic Fe 3 O 4 @SiO 2 core/shell microspheres for immobilization of cellulase. The uniform magnetic Fe 3 O 4 @SiO 2 core/shell microspheres with a thin shell of 20 nm were synthesized through a solvothermal method followed by a sol–gel process. An amino-terminated silane coupling agent of (3-aminopropyl)triethoxysilane (APTS) was then grafted on them for capturing Cu 2+ ions. The reaction process is very simple, efficient, and economical. Noticeably, the content of Cu 2+ ions on the magnetic core/shell microspheres can reach 4.6 Wt%, endowing them possess as high immobilization capacity as 225.5 mg/g for cellulase. And the immobilized cellulase can be retained over 90 % on the magnetic microspheres after six cycles. Meanwhile, the magnetic microspheres decorated with Cu 2+ ions show a superparamagnetic character with a high magnetic saturation of 58.5 emu/g at room temperature, suggesting conveniently and rapidly recycle the enzyme from solution. This facile, recyclable, high immobilization capacity and activity strategy may find potential applications in enzyme catalytic reactions with low cost

  14. An Ultrasensitive Electrochemiluminescence Immunoassay for Carbohydrate Antigen 19-9 in Serum Based on Antibody Labeled Fe3O4 Nanoparticles as Capture Probes and Graphene/CdTe Quantum Dot Bionanoconjugates as Signal Amplifiers

    Science.gov (United States)

    Gan, Ning; Zhou, Jing; Xiong, Ping; Li, Tianhua; Jiang, Shan; Cao, Yuting; Jiang, Qianli

    2013-01-01

    The CdTe quantum dots (QDs), graphene nanocomposite (CdTe-G) and dextran–Fe3O4 magnetic nanoparticles have been synthesized for developing an ultrasensitive electrochemiluminescence (ECL) immunoassay for Carcinoembryonic antigen 19-9 (CA 19-9) in serums. Firstly, the capture probes (CA 19-9 Ab1/Fe3O4) for enriching CA 19-9 were synthesized by immobilizing the CA 19-9’s first antibody (CA 19-9 Ab1) on magnetic nanoparticles (dextran-Fe3O4). Secondly, the signal probes (CA 19-9 Ab2/CdTe-G), which can emit an ECL signal, were formed by attaching the secondary CA 19-9 antibody (CA 19-9 Ab2) to the surface of the CdTe-G. Thirdly, the above two probes were used for conjugating with a serial of CA 19-9 concentrations. Graphene can immobilize dozens of CdTe QDs on their surface, which can emit stronger ECL intensity than CdTe QDs. Based on the amplified signal, ultrasensitive antigen detection can be realized. Under the optimal conditions, the ECL signal depended linearly on the logarithm of CA 19-9 concentration from 0.005 to 100 pg/mL, and the detection limit was 0.002 pg/mL. Finally, five samples of human serum were tested, and the results were compared with a time-resolved fluorescence assay (TRFA). The novel immunoassay provides a stable, specific and highly sensitive immunoassay protocol for tumor marker detection at very low levels, which can be applied in early diagnosis of tumor. PMID:23685872

  15. Synthesis Of Fe3O4-Chitosan Magnetic NanoComposites By Gamma Irradiation For Absorbing Of Heavy Metals In Aqueous Solutions

    International Nuclear Information System (INIS)

    Tran Minh Quynh; Nguyen Van Binh; Nguyen Quang Long; Hoang Dang Sang

    2014-01-01

    Studies on adsorption capacity of the obtained Fe 3 O 4 -chitosan nanoparticles for metal ions in aqueous solutions showed that initial amount of adsorbent and pH have much influenced on their adsorption capacity. Adsorption rate was quite fast at first, then slower. Maximum adsorption capacity were measured at 25 o C are 71, 41.4 and 26 mg/g obtained at pH 5, 6 and 7 for Cu(CH 3 COO) 2 .H 2 O, Pb(CH 3 COO) 2 .3H 2 O and NaH 2 AsO 4 .7H 2 O, respectively. The adsorption capacity increased with adsorbent amount to a certain value, then leveled off. These results suggested that the Fe 3 O 4 -chitosan nanoparticles can be applied as a potential adsorbent for removal of heavy metals from aqueous solution, but it required further studies including of adsorption kinetics and desorption in order to control the process in practice. (author)

  16. Synthesis of flower-like BaTiO3/Fe3O4 hierarchically structured particles and their electrorheological and magnetic properties.

    Science.gov (United States)

    Wang, Baoxiang; Yin, Yichao; Liu, Chenjie; Yu, Shoushan; Chen, Kezheng

    2013-07-21

    Flower-like BaTiO3/Fe3O4 hierarchically structured particles composed of nano-scale structures on micro-scale materials were synthesized by a simple solvothermal approach and characterized by the means of X-ray powder diffraction (XRD), scanning electron microscopy (SEM), transmission electron microscopy (TEM), magnetic testing and rotary viscometer. The influences on the morphology and structure of solvothermal times, type and amount of surfactant, EG : H2O ratio, etc. were studied. Magnetic testing results show that the samples have strong magnetism and they exhibit superparamagnetic behavior, as evidenced by no coercivity and the remanence at room temperature, due to their very small sizes, observed on the M-H loop. The saturation magnetization (M(s)) value can achieve 18.3 emu g(-1). The electrorheological (ER) effect was investigated using a suspension of the flower-like BaTiO3/Fe3O4 hierarchically structured particles dispersed in silicone oil. We can observe a slight shear-thinning behavior of shear viscosity at a low shear rate region even at zero applied electric field and a Newtonian fluid behavior at high shear rate regions.

  17. A novel magnetic core-shell nanocomposite Fe3O4@chitosan@ZnO for the green synthesis of 2-benzimidazoles

    Science.gov (United States)

    Tian, Fei; Niu, Libo; Chen, Bo; Gao, Xuejia; Lan, Xingwang; Huo, Li; Bai, Guoyi

    2017-10-01

    A novel magnetic core-shell nanocomposite Fe3O4@Chitosan@ZnO was successfully prepared by in situ chemical precipitation method. It has a clear core-shell structure with magnetic Fe3O4 (about 160 nm in diameter) as core, chitosan as the inner shell, and ZnO as the outer shell, as demonstrated by the transmission electron microscopy and the related elemental mapping. Moreover, this nanocomposite has high magnetization (43.6 emu g-1) so that it can be easily separated from the reaction mixture within 4 s by an external magnetic field. The introduction of the natural chitosan shell, instead of the conventional SiO2 shell, and its combination with the active ZnO ensures this novel nanocomposite green character and good catalytic performance in the synthesis of 2-benzimidazoles with moderate to excellent isolated yields at room temperature. Notably, it can be recycled seven times without appreciable loss of its initial catalytic activity, demonstrating its good stability and making it an attractive candidate for the green synthesis of 2-benzimidazoles. [Figure not available: see fulltext.

  18. Synthesis, characterization and application of polyglycerol coated Fe3O4 nanoparticles as a nano-theranostics agent

    International Nuclear Information System (INIS)

    Jahandar, Marzieh; Zarrabi, Ali; Shokrgozar, Mohammad Ali; Mousavi, Hajar

    2015-01-01

    Superparamagnetic iron oxide nanoparticles (SPIONs) with an average size of 10 nm have been successfully synthesized by the polyol method. Then, hyperbranched polyglycerol (HPG) branches have been introduced on the surface of SPIONs through ring opening polymerization of glycidol as a biocompatible surface modifier with a more hydrophilic nature than other biomedical polymers. The as-synthesized SPION-HPGs were analyzed by FT-IR, CHNS and TGA analysis which all exhibited the successful HPG grafting onto the SPION surface. The anticancer herbal drug, curcumin, was loaded on the resultant nanocarrier. The MTT assay demonstrated the non-cytotoxicity effect of SPION-HPGs and the low cytotoxicity effect of curcumin at low concentrations on L929 and MCF-7 cell lines as normal and cancerous cells, respectively. Moreover, these nanoparticles exhibited an improved effect as a contrast agent in magnetic resonance imaging. Thus, it is concluded that SPION-HPG has the potential to be used in theranostics applications due to its simultaneous drug delivery and imaging capabilities. (paper)

  19. Fe3O4/γ-Fe2O3 nanoparticle multilayers deposited by the Langmuir-Blodgett technique for gas sensors application.

    Science.gov (United States)

    Capone, S; Manera, M G; Taurino, A; Siciliano, P; Rella, R; Luby, S; Benkovicova, M; Siffalovic, P; Majkova, E

    2014-02-04

    Fe3O4/γ-Fe2O3 nanoparticles (NPs) based thin films were used as active layers in solid state resistive chemical sensors. NPs were synthesized by high temperature solution phase reaction. Sensing NP monolayers (ML) were deposited by Langmuir-Blodgett (LB) techniques onto chemoresistive transduction platforms. The sensing ML were UV treated to remove NP insulating capping. Sensors surface was characterized by scanning electron microscopy (SEM). Systematic gas sensing tests in controlled atmosphere were carried out toward NO2, CO, and acetone at different concentrations and working temperatures of the sensing layers. The best sensing performance results were obtained for sensors with higher NPs coverage (10 ML), mainly for NO2 gas showing interesting selectivity toward nitrogen oxides. Electrical properties and conduction mechanisms are discussed.

  20. Polyethylenimine-coated Fe3O4 nanoparticles effectively quench fluorescent DNA, which can be developed as a novel platform for protein detection.

    Science.gov (United States)

    Ma, Long; Sun, Nana; Zhang, Jinyan; Tu, Chunhao; Cao, Xiuqi; Duan, Demin; Diao, Aipo; Man, Shuli

    2017-11-23

    We report a novel assembly of polyethyleneimine (PEI)-coated Fe 3 O 4 nanoparticles (NPs) with single-stranded DNA (ssDNA), and the fluorescence of the dye labeled in the DNA is remarkably quenched. In the presence of a target protein, the protein-DNA aptamer mutual interaction releases the ssDNA from this assembly and hence restores the fluorescence. This feature could be adopted to develop an aptasensor for protein detection. As a proof-of-concept, for the first time, we have used this proposed sensing strategy to detect thrombin selectively and sensitively. Furthermore, simultaneous multiple detection of thrombin and lysozyme in a complex protein mixture has been proven to be possible.

  1. Electrophoretically-Deposited Nano-Fe3O4@carbon 3D Structure on Carbon Fiber as High-Performance Supercapacitors

    Science.gov (United States)

    Hajalilou, Abdollah; Etemadifar, Reza; Abbasi-Chianeh, Vahid; Abouzari-Lotf, Ebrahim

    2018-05-01

    Structural and electrochemical behaviors of electrophortically-deposited Fe3O4 and Fe3O4@C nanoparticles on carbon fiber (CF) were investigated. The nanoparticles were synthesized via a green-assisted hydrothermal route. The as-prepared samples were characterized by x-ray diffraction, transmission and scanning electron microscopies, Fourier transform infrared and UV-visible spectroscopies as well as by a vibration sample magnetometer. Surprisingly, the saturation magnetization (M s) of the Fe3O4@C ( 26.99 emu/g) was about 20% higher than that of Fe3O4 nanoparticles. A rather rectangular CV curve for both the elecrophortically-deposited Fe3O4 and Fe3O4@C on CF indicated the double-layer supercapacitor behavior of the samples. The synergistic effects of double shells improved the electrochemical behavior of Fe3O4@CF. The Fe3O4@C@CF composite exhibited a higher specific capacitance of 412 F g-1 at scan rate of 0.05 V/s compared to the Fe3O4@CF with a value of 193 F g-1. The superb electrochemical properties of Fe3O4@C@CF confirm their potential for applications as supercapacitors in the energy storage field.

  2. Magnetically targeted delivery of DOX loaded Cu9S5@mSiO2@Fe3O4-PEG nanocomposites for combined MR imaging and chemo/photothermal synergistic therapy

    Science.gov (United States)

    Liu, Bei; Zhang, Xinyang; Li, Chunxia; He, Fei; Chen, Yinyin; Huang, Shanshan; Jin, Dayong; Yang, Piaoping; Cheng, Ziyong; Lin, Jun

    2016-06-01

    The combination of multi-theranostic modes in a controlled fashion has received tremendous attention for the construction of cooperative therapeutic systems in nanomedicine. Herein, we have synthesized a smart magnetically targeted nanocarrier system, Cu9S5@mSiO2@Fe3O4-PEG (labelled as CMF), which integrates NIR triggered photothermal therapy, pH/NIR-responsive chemotherapy and MR imaging into one nanoplatform to enhance the therapeutic efficacy. This new multifunctional paradigm has a uniform and monodisperse sesame ball-like structure by decorating tiny Fe3O4 nanoparticles on the surface of Cu9S5@mSiO2 before a further PEG modification to improve its hydrophilicity and biocompatibility. With doxorubicin (DOX) payload, the as-obtained CMF-DOX composites can simultaneously provide an intense heating effect and enhanced DOX release upon 980 nm NIR light exposure, achieving a combined chemo/photothermal therapy. Under the influence of an external magnetic field, the magnetically targeted synergistic therapeutic effect of CMF-DOX can lead to highly superior inhibition of animal H22 tumor in vivo when compared to any of the single approaches alone. The results revealed that this Cu9S5 based magnetically targeted chemo/photothermal synergistic nanocarrier system has great promise in future MR imaging assisted tumor targeted therapy of cancer.

  3. Incorporation of Fe3O4/CNTs nanocomposite in an epoxy coating for corrosion protection of carbon steel

    Science.gov (United States)

    Pham, Gia Vu; Truc Trinh, Anh; To, Thi Xuan Hang; Duong Nguyen, Thuy; Trang Nguyen, Thu; Hoan Nguyen, Xuan

    2014-09-01

    In this study Fe3O4/CNTs composite with magnetic property was prepared by attaching magnetic nanoparticles (Fe3O4) to carbon nanotubes (CNTs) by hydrothermal method. The obtained Fe3O4/CNTs composite was characterized by Fourier transform infrared (FTIR) spectroscopy, powder x-ray diffraction and transmission electron microscopy. The Fe3O4/CNTs composite was then incorporated into an epoxy coating at concentration of 3 wt%. Corrosion protection of epoxy coating containing Fe3O4/CNTs composite was evaluated by electrochemical impedance spectroscopy and adhesion measurement. The impedance measurements show that Fe3O4/CNTs composite enhanced the corrosion protection of epoxy coating. The corrosion resistance of the carbon steel coated by epoxy coating containing Fe3O4/CNTs composite was significantly higher than that of carbon steel coated by clear epoxy coating and epoxy coating containing CNTs. FE-SEM photographs of fracture surface of coatings showed good dispersion of Fe3O4/CNTs composite in the epoxy matrix.

  4. Incorporation of Fe3O4/CNTs nanocomposite in an epoxy coating for corrosion protection of carbon steel

    International Nuclear Information System (INIS)

    Pham, Gia Vu; Trinh, Anh Truc; Hang To, Thi Xuan; Nguyen, Thuy Duong; Nguyen, Thu Trang; Nguyen, Xuan Hoan

    2014-01-01

    In this study Fe 3 O 4 /CNTs composite with magnetic property was prepared by attaching magnetic nanoparticles (Fe 3 O 4 ) to carbon nanotubes (CNTs) by hydrothermal method. The obtained Fe 3 O 4 /CNTs composite was characterized by Fourier transform infrared (FTIR) spectroscopy, powder x-ray diffraction and transmission electron microscopy. The Fe 3 O 4 /CNTs composite was then incorporated into an epoxy coating at concentration of 3 wt%. Corrosion protection of epoxy coating containing Fe 3 O 4 /CNTs composite was evaluated by electrochemical impedance spectroscopy and adhesion measurement. The impedance measurements show that Fe 3 O 4 /CNTs composite enhanced the corrosion protection of epoxy coating. The corrosion resistance of the carbon steel coated by epoxy coating containing Fe 3 O 4 /CNTs composite was significantly higher than that of carbon steel coated by clear epoxy coating and epoxy coating containing CNTs. FE-SEM photographs of fracture surface of coatings showed good dispersion of Fe 3 O 4 /CNTs composite in the epoxy matrix. (paper)

  5. Employment of modified Fe3 O4 nanoparticles using thermo-sensitive polymer for extraction and pre-concentration of cefexime in biological samples.

    Science.gov (United States)

    Naghibi, Saman; Sahebi, Hamed

    2018-02-01

    Cefexime is a useful antibiotic that can be prescribed to treat bacterial infections. Nanoparticles have been widely marketed as a universal solution among scientists. Many studies have been performed to modify nanoparticles to make them functional as extraction and pre-concentration agents and drug carriers. Temperature-sensitive polymers belong to a group of substances that undergo a major change in their physical features in response to temperature. Recently developed polymers can be used in many different areas, including modification of nanoparticles. In order to modify this nanoparticle, grafting copolymerization of Fe 3 O 4 nanoparticles was performed using poly (N-vinylcaprolactam) and 3-allyloxy-1,2-propanediol. The optimum conditions for pre-concentration of cefexime were studied. Under these optimum conditions, extraction recovery of biological samples in the range of 71-89% was obtained. The limit of detection and precision of proposed method were 4.5 × 10 -4  μg mL -1 and analysis of cefexime, in biological samples using the proposed method, the ability of this method to extract and pre-concentrate cefexime was confirmed. Also, satisfactory results from an in vitro study on drug release in simulated intestine media were obtained. Copyright © 2017 John Wiley & Sons, Ltd.

  6. Photocatalytic application of TiO2/SiO2-based magnetic nanocomposite (Fe3O4@SiO2/TiO2 for reusing of textile wastewater

    Directory of Open Access Journals (Sweden)

    Laleh Enayati Ahangar

    2016-01-01

    Full Text Available In this research we have developed a treatment method for textile wastewater by TiO2/SiO2-based magnetic nanocomposite. Textile wastewater includes a large variety of dyes and chemicals and needs treatments. This manuscript presents a facile method for removing dyes from the textile wastewater by using TiO2/SiO2-based nanocomposite (Fe3O4@SiO2/TiO2 under UV irradiation. This magnetic nanocomposite, as photocatalytically active composite, is synthesized via solution method in mild conditions. A large range of cationic, anionic and neutral dyes including: methyl orange, methylene blue, neutral red, bromocresol green and methyl red are used for treatment investigations. Neutral red and bromocresol green have good results in reusing treatment. The high surface area of nanocomposites improve the kinetic of wastewater treatment. In this method, by using the magnetic properties of Fe3O4 nanoparticles, TiO2-based photocatalyst could be separated and reused for 3 times. The efficiency of this method is respectively 100% and 65% for low concentration (10 ppm and high concentration (50 ppm of neutral red and bromocrosol green after 3 h treatment. The efficiency of treatment using the second used nanocomposite was 90% for 10 ppm of the same dyes.

  7. Synthesis of Fe3O4 poly(styrene-glycidyl methacrylate) magnetic porous microspheres and application in the immobilization of Klebsiella sp. FD-3 to reduce Fe(III)EDTA in a NO(x) scrubbing solution.

    Science.gov (United States)

    Wang, Xiaoyan; Zhou, Zuoming; Jing, Guohua

    2013-02-01

    Magnetic poly(styrene-glycidyl methacrylate) porous microspheres (MPPM) with high magnetic contents were prepared by surfactant reverse micelles and emulsion polymerization of monomers, in which the well-dispersed Fe(3)O(4) nanoparticles were modified by polyethylene glycol (PEG) and oleic acid (OA) respectively. The characterizations showed that both of the OA-MPPM and the PEG-MPPM were ferromagnetic, however, the OA-MPPM was used to immobilize the bacteria for more advantages. Therefore, the effects of monomer ratio, surfactant, crosslinker and amount of Fe(3)O(4) on the structure, morphology and magnetic contents of the OA-MPPM were investigated. Then, the OA-MPPM was utilized to immobilize Klebsiella sp. FD-3, an iron-reducing bacterium for Fe(III)EDTA reduction applied in NO(x) removal. Compared with free bacteria, the immobilized FD-3 showed a better tolerance to the unbeneficial pH and temperature conditions. Copyright © 2012 Elsevier Ltd. All rights reserved.

  8. The dynamic magnetoviscoelastic properties of biomineralized (Fe3O4) PVP-CMC hydrogel

    Science.gov (United States)

    Ray, Ayan; Saha, Nabanita; Saha, Petr

    2017-05-01

    The Polyvinylpyrrolidone (PVP) and carboxymethylcellulose (CMC) based polymer matrix was used as a template for the preparation of magnetic hydrogel. This freshly prepared PVP-CMC hydrogel template was successfully mineralized by in situ synthesis of magnetic nanoparticles (Fe3O4) via chemical co-precipitation reaction using liquid diffusion method. The present study emphasizes on the rheological behavior of non-mineralized and mineralized PVP-CMC hydrogels. Scanning Electron Microscopy (SEM), transmission electron microscopy (TEM), X-ray Diffraction (XRD) pattern, Fourier transform infrared spectroscopy (FT-TR), Vibrating sample magnetometer (VSM) and dynamic magneto rheometer were used to study the morphological, physical, chemical and magnetic properties of nanoparticle (Fe3O4) filled PVP-CMC hydrogel respectively in order to monitor how Fe3O4 magnetic nanoparticles affects the mechanical properties of the hydrogel network. The storage (G') and loss (G") moduli with a complex viscosity of the system was measured using a parallel plate rheometer. Frequency and amplitude sweep with temperature variation was performed to determine the frequency and amplitude dependent magneto viscoelastic moduli for both hydrogel samples. A strong shear thinning effect was observed in both (non-mineralized and mineralized) PVP-CMC hydrogels, which confirm that Fe3O4 filled magnetic hydrogels, are pseudoplastic in nature. This Fe3O4 filled PVP-CMC hydrogel can be considered as stimuli-responsive soft matter that may be used as an actuator in medical devices.

  9. Synthesis of DNPH/SDS/Fe3O4 Nanoparticles for Removal of Cr (VI Ions From Aqueous Solution

    Directory of Open Access Journals (Sweden)

    Soheil Sobhanardakani

    2016-06-01

    Full Text Available In this study, sodium dodecyl sulfate (SDS coated magnetite modified with 2, 4-Dinitrophenylhydrazine was used to remove Cr (VI ions from aqueous solution. The modified magnetite nanoparticles were characterized by X-ray diffraction (XRD analysis, Fourier transform infrared spectroscopy (FT-IR, scanning electron microscopy (SEM, and SEM–EDXS measurement. The synthesized nanoparticles exhibited a high surface area of 75.5 m2 g−1 and were of 20 - 35 nm in particle size. The effects of parameters, including pH, dose of adsorbent, temperature and contact time were investigated to find the optimum adsorption conditions. Adsorption data fits well with the Langmuir isotherm model with a maximum adsorption capacity (qm and a Langmuir adsorption equilibrium constant (b of 169.5 mg g-1 and 0.168 L mg-1, respectively. The adsorption kinetic agrees well with pseudo-second-order model.

  10. Synthesis, surface modification/decoration of luminescent–magnetic core/shell nanomaterials, based on the lanthanide doped fluorides (Fe3O4/SiO2/NH2/PAA/LnF3)

    International Nuclear Information System (INIS)

    Runowski, Marcin; Lis, Stefan

    2016-01-01

    The synthesized magnetite nanoparticles (10–15 nm) were successfully coated with amine modified silica nanoshell, which led to the formation of core/shell type nanostructures (30–50 nm). The as-prepared nanoparticles were surface modified with polyacrylic acid (PAA) via electrostatic interactions of –NH 2 and –COOH groups. Afterwards, the surface PAA molecules acted as complexing agents of the introduced lanthanide (Ln 3+ ) ions. Subsequently, the as-prepared nanostructures were surface decorated with luminescent LnF 3 nanoparticles, forming Eu 3+ or Tb 3+ doped Fe 3 O 4 /SiO 2 /NH 2 /PAA/LnF 3 nanomaterials (50–100 nm). The obtained luminescent–magnetic products exhibited simultaneously bright red or green emission under UV lamp irradiation (λ ex =254 nm), and a response for the applied magnetic field (strong magnet attracts the colloidal particles, dispersed in aqueous medium). After the synthesis, properties of the nanomaterials were investigated by powder X-ray diffraction (XRD) technique, transmission electron microscopy (TEM), infrared spectroscopy (IR) and spectrofluorometry (analysis of excitation/emission spectra and luminescence decay curves). Such advanced nanomaterials can be potentially used in multimodal imaging, targeted therapies and as multifunctional contrast agents, novel luminescent–magnetic tracers, protection of documents, etc. - Highlights: • Luminescent–magnetic nanomaterials Fe 3 O 4 /SiO 2 /NH 2 /PAA/LnF 3 were synthesized. • Core/shell nanostructures were obtained by surface modification of nanoparticles. • Luminescent lanthanide fluoride nanoparticles doped with Eu 3+ and Tb 3+ ions. • Multifunctional core/shell nanostructures exhibited red or green emission. • Nanomaterials formed stable aqueous colloids.

  11. Novel method of room temperature ionic liquid assisted Fe3O4 nanocubes and nanoflakes synthesis

    International Nuclear Information System (INIS)

    Ramalakshmi, M.; Shakkthivel, P.; Sundrarajan, M.; Chen, S.M.

    2013-01-01

    Graphical abstract: - Highlights: • First time [Bmim][TfO] IL is used for the Fe 3 O 4 nanoparticle synthesis. • Novel method tunes Fe 3 O 4 nanocubes and nanoflakes forms influenced by the base and IL. • Fe 3 O 4 oxidized topotactically into γ-Fe 2 O 3 nanoparticles by annealing and base. • Uniform morphology with average size of 33 nm negligible superstructure are formed. • Ms values are characterized by thin layer of γ-Fe 2 O 3 on the nanoparticle surface. - Abstract: For the first time, the nanomagnetite superparamagnetic particles are successfully synthesized by precipitation method using 1-n-butyl-3-methylimidazolium trifluoromethane sulfonate [Bmim][TfO] ionic liquid medium/surfactant. The obtained Fe 3 O 4 particles are nanocubes and nanoflakes and this formation is influenced by the base concentration and anisotropic circumstances produced by the ionic liquid and their size varies from 20 nm to 150 × 300 nm (width × length). The synthesized magnetite nanoparticles are characterized by X-ray diffraction (XRD), Fourier transform infrared spectroscopy (FT-IR), Raman spectroscopy, Field emission scanning electron microscopy (FE-SEM), Transmission electron microscopy (TEM) and Vibrating sample magnetometer (VSM) studies. The results show that the core of the Fe 3 O 4 nanoparticles is surrounded by a thin layer of γ-Fe 2 O 3 by topotactical partial oxidation, which is remarkably proceed with the subsequent calcination. The magnetite nanocubes have high saturation magnetization value and exhibit superparamagnetic hysteresis loop

  12. Photocatalytic Property of Fe3O4/SiO2/TiO2 Core-Shell Nanoparticle with Different Functional Layer Thicknesses

    Directory of Open Access Journals (Sweden)

    Junyang Li

    2014-01-01

    Full Text Available This study examined the different properties of Fe3O4/SiO2/TiO2 (FST core-shell nanoparticles encapsulated for one to five different times, represented as FST1 to FST5, respectively. These FST nanoparticles were obtained using the carbon reduction and sol-gel methods, and their properties were characterized by various tools, such as scanning electron microscopy, transmission electron microscopy, X-ray diffraction, vibratory sample magnetometer, laser granularity apparatus, and specific surface area analyzer. The relationship between irradiation time and decoloration ratio indicates that FST2 demonstrated significant efficiency in the decolorization of methyl orange (MO under UV light. Further study on recycle activity showed that FST2 had a high decoloration rate after four cycles of photocatalysis, and its degradation of MO was well aligned with the apparent first-order kinetic equation. Furthermore, FST2 exhibited the highest apparent rate in the first cycle. All these results demonstrate that the recoverable FST2 possessed excellent photocatalytic activity while maintaining outstanding stability for further applications, such as managing environmental pollution.

  13. Paclitaxel-Fe3O4 nanoparticles inhibit growth of CD138–  CD34– tumor stem-like cells in multiple myeloma-bearing mice

    Directory of Open Access Journals (Sweden)

    Yang C

    2013-04-01

    Full Text Available Cuiping Yang,1,3,* Jing Wang,2,* Dengyu Chen,1,* Junsong Chen,1 Fei Xiong,4 Hongyi Zhang,1 Yunxia Zhang,2 Ning Gu,4 Jun Dou11Department of Pathogenic Biology and Immunology, Medical School, 2Department of Gynecology and Obstetrics, Zhongda Hospital, Southeast University, Nanjing, 3Department of Pathogenic Biology and Immunology, School of Basic Medicine, Jiangxi University of Traditional Chinese Medicine, Nanchang, 4School of Biological Science and Medical Engineering, Southeast University, Nanjing, People’s Republic of China*These authors contributed equally to this workBackground: There is growing evidence that CD138– CD34– cells may actually be tumor stem cells responsible for initiation and relapse of multiple myeloma. However, effective drugs targeted at CD138– CD34– tumor stem cells are yet to be developed. The purpose of this study was to investigate the inhibitory effect of paclitaxel-loaded Fe3O4 nanoparticles (PTX-NPs on CD138– CD34– tumor stem cells in multiple myeloma-bearing mice.Methods: CD138– CD34– cells were isolated from a human U266 multiple myeloma cell line using an immune magnetic bead sorting method and then subcutaneously injected into mice with nonobese diabetic/severe combined immunodeficiency to develop a multiple myeloma-bearing mouse model. The mice were treated with Fe3O4 nanoparticles 2 mg/kg, paclitaxel 4.8 mg/kg, and PTX-NPs 0.64 mg/kg for 2 weeks. Tumor growth, pathological changes, serum and urinary interleukin-6 levels, and molecular expression of caspase-3, caspase-8, and caspase-9 were evaluated.Results: CD138– CD34– cells were found to have tumor stem cell characteristics. All the mice developed tumors in 40 days after injection of 1 × 106 CD138– CD34– tumor stem cells. Tumor growth in mice treated with PTX-NPs was significantly inhibited compared with the controls (P <  0.005, and the groups that received nanoparticles alone (P < 0.005 or paclitaxel alone (P < 0.05. In addition

  14. Anti-fish bacterial pathogen effect of visible light responsive Fe3O4@TiO2 nanoparticles immobilized on glass using TiO2 sol–gel

    International Nuclear Information System (INIS)

    Yeh, N.; Lee, Y.C.; Chang, C.Y.; Cheng, T.C.

    2013-01-01

    This paper demonstrates a fish pathogen reduction procedure that uses TiO 2 sol–gel coating Fe 3 O 4 @TiO 2 powder on glass substrate. Such procedure can effectively relieve two constraints that haunt TiO 2 sterilization applications: 1) the need for UV for overcoming the wide band gap of pure TiO 2 and 2) the difficulty of its recovering from water for reuse. In the process, visible light responsive Fe 3 O 4 /TiO 2 nanoparticles are synthesized and immobilized on glass using TiO 2 sol–gel as the binder for fish bacterial pathogen disinfection test. After 3 h of visible light irradiation, the immobilized Fe 3 O 4 @TiO 2 's inhibition efficiencies for fish bacterial pathogen are, respectively, 50% for Edwardsiella tarda (BCRC 10670) and 23% for Aeromonas hydrophila (BCRC 13018)

  15. Preparation of Nano-sized Bismuth-Doped Fe3O4 as an Excellent Magnetic Material for Supercapacitor Electrodes

    Science.gov (United States)

    Aghazadeh, Mustafa; Karimzadeh, Isa; Ganjali, Mohammad Reza

    2018-03-01

    Nano-sized Bi3+-doped iron oxide (n-Bi-IO) particles were prepared through a one-pot electrochemical procedure, and the product was evaluated using x-ray diffraction, field-emission scanning electron microscopy and energy-dispersive x-ray spectroscopy. Based on the analyses, the average size of the n-Bi-IO was determined to be 10 nm. Galvanostatic charge-discharge (GCD) evaluations revealed that the specific capacitance of the material reached 235 F g-1 at a discharge condition of 0.2 A g-1. n-Bi-IO had a 94.2% capacity retention after 2000 GCD cycles. Further vibrating sample magnetometery analyses showed that the product has enhanced superparamagnetic qualities (i.e. M r = 0.15 emu g-1 and H Ci = 2.71 G) in comparison to iron oxide nanoparticles (i.e. M r = 0.95 emu g-1 and H Ci = 14.62 G). Given the results, the product is considered to be a promising material for developing high performance supercapacitor electrodes.

  16. Ultrasound-assisted dispersive magnetic solid phase extraction based on amino-functionalized Fe3O4 adsorbent for recovery of clomipramine from human plasma and its determination by high performance liquid chromatography: Optimization by experimental design.

    Science.gov (United States)

    Hamidi, Fatemeh; Hadjmohammadi, Mohammad Reza; Aghaie, Ali B G

    2017-09-15

    The applicability of Amino-functionalized Fe 3 O 4 nanoparticles (NPs) as an effective adsorbent was developed for the extraction and determination of clomipramine (CLP) in plasma sample by ultrasound-assisted dispersive magnetic solid phase extraction (UADM-SPE) and high-performance liquid chromatography-ultraviolet (HPLC-UV) detection. Fabrication of the Fe 3 O 4 @SiO 2 -NH 2 magnetic nanoparticles confirmed by Fourier transform infrared spectroscopy (FT-IR), thermogravimetric analysis (TGA), scanning electron microscopy (SEM) and transmission electron microscopy (TEM). The effect of different extraction parameters (i.e. pH of the sample solution, the amount of magnetic nanoparticles (MNPs), sample volume, temperature and sonication time) on the extraction recovery of CLP were investigated by response surface methodology through central composite design (CCD). The optimum condition is obtained when the affecting parameters are set to: pH of the sample solution=9, the amount of MNPs=37mg, sample volume=23mL, 25°C temperature and sonication time=1min. Under the optimum condition, extraction recovery was 90.6% with relative standard deviation of 3.5%, and enrichment factor of 117. The linear range for determination of CLP was 0.017-0.70mgL -1 with a determination coefficient (R 2 ) of 0.999. Limit of detection (LOD) and limit of quantification (LOQ) were 0.005 and 0.0167mgL -1 , respectively. The established UADM-SPE-HPLC-UV method was rapid, simple and efficient for determination of CLP in human plasma samples. Copyright © 2017 Elsevier B.V. All rights reserved.

  17. Preparation and characterization of a magneto-polymeric nanocomposite: Fe 3O 4 nanoparticles in a grafted, cross-linked and plasticized poly(vinyl chloride) matrix

    Science.gov (United States)

    Rodríguez-Fernández, Oliverio S.; Rodríguez-Calzadíaz, C. A.; Yáñez-Flores, Isaura G.; Montemayor, Sagrario M.

    In this work two kind of materials: (1) grafted, cross-linked and plasticized poly(vinyl chloride) (PVC) "plastic films" and (2) magnetic plastic films "magneto-polymeric nanocomposites" were prepared. Precursor solutions or "plastisols" used to obtain the plastic films were obtained by mixing PVC (emulsion grade) as polymeric matrix, di(2-ethylhexyl)phthalate (DOP) as plasticizer, a thermal stabilizer based in Ca/Zn salts, and a cross-linking agent, 3-mercaptopropyltrimethoxysilane (MTMS) or 3-aminopropyltriethoxysilane (ATES), at several concentrations. Flexible films were obtained from the plastisols using static casting. The stress-strain behavior and the gel content (determined by Soxhlet extraction with boiling THF) of the flexible films were measured in order to evaluate the effect of the cross-linking agent and their content on the degree of cross-linking. The magneto-polymeric nanocomposites were obtained by mixing the optimum composition of the plastisols (analyzed previously) with magnetite (Fe 3O 4)-based ferrofluid and DOP. Later, flexible films were obtained by static casting of the plastisol/ferrofluid systems. The magnetic films were characterized by the above-mentioned techniques and X-ray diffraction, vibrating sample magnetometry and thermogravimetrical analysis.

  18. High-performance magnetic poly (arylene ether nitrile) nanocomposites: Co-modification of Fe3O4 via mussel inspired poly(dopamine) and amino functionalized silane KH550

    Science.gov (United States)

    Wan, Xinyi; Zhan, Yingqing; Long, Zhihang; Zeng, Guangyong; Ren, Yang; He, Yi

    2017-12-01

    To develop high-performance magnetic polymer composites, we reported a facial mussel-inspired way to functionalize Fe3O4 microspheres with dopamine (DA) and KH550, followed by compounding with poly (arylene ether nitrile) (PEN), to prepare functional nanocomposite films. Such mussel inspired co-modification of Fe3O4 was characterized and confirmed by Fourier transform infrared spectroscopy (FT-IR), X-ray photoelectron spectroscopy (XPS), X-ray diffraction (XRD), thermogravimetric analysis (TGA), scanning electron microscopy (SEM) and transmission electron microscopy (TEM). Therefore, the outstanding properties of the functionalize Fe3O4/polymer composites were obtained. With the addition of 15 wt% functionalized Fe3O4, the saturation magnetization (Ms) and dielectric permittivity of the PEN composites were increased to 12.49 emu/g and 14.3 (250 Hz), respectively, while the low dielectric loss was maintained. In addition, even the high loading content of Fe3O4 was incorporated, the functional PEN composites still exhibited high mechanical properties and thermal stability, including the significant improvement in glass transition temperature, and the same level of the tensile strength compared with neat PEN. Our work revealed that magnetic and dielectric PEN composites materials along with high comprehensive properties may be potentially used in the electromagnetic fields.

  19. Double-layer Electromagnetic Wave Absorber Based on Carbon Nanotubes Doped with La(NO33 and Fe3O4 Nanoparticles

    Directory of Open Access Journals (Sweden)

    Cuiling HOU

    2017-08-01

    Full Text Available Double-layer structure absorbing materials based on the impedance matching principle and transmission line theory can effectively improve the electromagnetic wave absorbing properties. In this paper, the electro-magnetic wave absorbing properties of double-layer absorbers (2 mm thickness, where multiwall carbon nanotube (MWCNT-La(NO33/polyvinyl chloride (PVC and MWCNT-Fe3O4/PVC composites had been taken turns as the absorption layer and matching layer, were investigated in 2 – 18 GHz range. The absorbing properties of single- and double-layer structure and different each-layer thickness with two types of combinations were compared. The results showed that the design of double-layer structure for composites could effectively broaden the absorption frequency area, and increase the absorption intensity. When MWCNT-La(NO33/PVC composite were used as absorption layers with 0.6 mm thickness, the absorption bandwidth (< – 15 dB or > 97 % of double-layer composite was the widest, reaching a maximum of about 3.36 GHz, and the absorption peak value was also the lowest about – 46.02 dB at 16.24 GHz.DOI: http://dx.doi.org/10.5755/j01.ms.23.3.16279

  20. Application of Fe3O4@MIL-100 (Fe) core-shell magnetic microspheres for evaluating the sorption of organophosphate esters to dissolved organic matter (DOM).

    Science.gov (United States)

    Pang, Long; Yang, Peijie; Yang, Huiqiang; Ge, Liming; Xiao, Jingwen; Zhou, Yifan

    2018-06-01

    Organophosphate esters (OPEs) are widely used as flame retardants and plasticizers in many products and materials. Because of the potential biologic toxicity on human beings, OPEs are regarded as a class of emerging pollutants. Dissolved organic matters (DOM) have significant effects on the bioavailability and toxicity of the pollutants in the environment. Negligible-depletion solid-phase microextraction (nd-SPME) is an efficient way for measuring the freely dissolved pollutants but suffers from long equilibrium time. Metal-organic frameworks (MOFs) are a class of porous crystalline materials with unique properties such as high pore volume, regular porosity, and tunable pore size, being widely used for the extraction of various organic compounds. Here we developed a novel method for quick determination the sorption coefficients of OPEs to DOM in aquatic phase using Fe 3 O 4 @MIL-100 (Fe) core-shell magnetic microspheres. The mesoporous structures of the as-synthesized microspheres hindered the extraction of OPEs which associated with humic acid due to the volume exclusion effect. However, the freely dissolved OPEs can access into the mesoporous and then were extracted by MIL-100 (Fe). Due to the small pore size (4.81 nm), large surface area (141 m 2  g -1 ), high pore volume (0.17 g 3  g -1 ), and ultra-thin MOFs layers, Fe 3 O 4 @MIL-100 (Fe) core-shell magnetic microspheres have large contact area for the analytes in aqueous phase and therefore the diffusion distance was largely shortened. Besides, the microspheres can be collected conveniently after the extraction process by applying a magnetic field. Compared to the nd-SPME method with 35 h equilibration time (t 90% ), the proposed method for these studied OPEs only need 24 min to achieve equilibration. The sorption coefficients (logK DOC ) of the OPEs to humic acid were ranged from 3.84-5.28, which were highly consistent with the results by using polyacrylate-coated fiber and polydimethylsiloxane

  1. Fabrication of shape controlled Fe3O4 nanostructure

    International Nuclear Information System (INIS)

    Zheng, Y.Y.; Wang, X.B.; Shang, L.; Li, C.R.; Cui, C.; Dong, W.J.; Tang, W.H.; Chen, B.Y.

    2010-01-01

    Shape-controlled Fe 3 O 4 nanostructure has been successfully prepared using polyethylene glycol as template in a water system at room temperature. Different morphologies of Fe 3 O 4 nanostructures, including spherical, cubic, rod-like, and dendritic nanostructure, were obtained by carefully controlling the concentration of the Fe 3+ , Fe 2+ , and the molecular weight of the polyethylene glycol. Transmission Electron Microscope images, X-ray powder diffraction patterns and magnetic properties were used to characterize the final product. This easy procedure for Fe 3 O 4 nanostructure fabrication offers the possibility of a generalized approach to the production of single and complex nanocrystalline oxide with tunable morphology.

  2. Study of the Thermodynamics of Chromium(III) and Chromium(VI) Binding to Fe3O4 and MnFe2O4 nanoparticles

    Science.gov (United States)

    Luther, Steven; Brogfeld, Nathan; Kim, Jisoo; Parsons, J.G.

    2013-01-01

    Removal of chromium(III) or (VI) from aqueous solution was achieved using Fe3O4, and MnFe2O4 nanomaterials. The nanomaterials were synthesized using a precipitation method and characterized using XRD. The size of the nanomaterials was determined to be 22.4 ± 0.9 nm (Fe3O4) and 15.5 ± 0.5 nm (MnFe2O4). The optimal binding pH for chromium(III) and chromium(VI) were pH 6 and pH 3. Isotherm studies were performed, under light and dark conditions, to determine the capacity of the nanomaterials. The capacities for the light studies with MnFe2O4 and Fe3O4 were determined to be 7.189 and 10.63 mg/g, respectively, for chromium(III). The capacities for the light studies with MnFe2O4 and Fe3O4 were 3.21 and 3.46 mg/g, respectively, for chromium(VI). Under dark reaction conditions the binding of chromium(III) to the MnFe2O4 and Fe3O4 nanomaterials were 5.74 and 15.9 mg/g, respectively. The binding capacity for the binding of chromium(VI) to MnFe2O4 and Fe3O4 under dark reaction conditions were 3.87 and 8.54 mg/g, respectively. The thermodynamics for the reactions showed negative ΔG values, and positive ΔH values. The ΔS values were positive for the binding of chromium(III) and for chromium(VI) binding under dark reaction conditions. The ΔS values for chromium(VI) binding under the light reaction conditions were determined to be negative. PMID:23558081

  3. Synthesis of water-dispersible poly-l-lysine-functionalized magnetic Fe3O4-(GO-MWCNTs) nanocomposite hybrid with a large surface area for high-efficiency removal of tartrazine and Pb(II).

    Science.gov (United States)

    Hu, Dan; Wan, Xiaodong; Li, Xiaohui; Liu, Jianguo; Zhou, Chunhua

    2017-12-01

    In this study, a novel, effective and environment-friendly methods was used to prepare poly-l-lysine (PLL)-functionalized magnetic Fe 3 O 4 -(GO-MWCNTs) hybrid composite with large surface area and abundant hydroxyl and amino groups. The as-prepared PLL-Fe 3 O 4 -(GO-MWCNTs) nanocomposite was systematically characterized by FT-IR, XRD, TGA, SEM, TEM, VSM and EDX. The PLL-Fe 3 O 4 -(GO-MWCNTs) hybrid composite exhibited excellent adsorption performance for the removal of a dye (tartrazine) and a heave metal (Pb(II)). The result showed that adsorption of Pb(II) reached equilibrium in 30min and adsorption of tartrazine reached equilibrium in approximately 60min. Most importantly, PLL-Fe 3 O 4 -(GO-MWCNTs) hybrid possesses high adsorption capacity, rapid separation, and less time-consuming. The equilibrium adsorption capacity was 1038.42mgg -1 for Pb(II) and 775.19mgg -1 for tartrazine under the optimal conditions. These two pollutants removal were found to obey Langmuir adsorption model, while the kinetics of adsorption followed pseudo-second-order kinetic model. A possible adsorption mechanism has been proposed where the chelation between PLL and Pb(II) or electrostatic interaction between GO and tartrazine. These results demonstrated the potential applications of PLL-Fe 3 O 4 -(GO-MWCNTs) hybrid composite in deep-purification of polluted water. Copyright © 2017 Elsevier B.V. All rights reserved.

  4. Modified surface based on magnetic nanocomposite of dithiooxamide/Fe3O4 as a sorbent for preconcentration and determination of trace amounts of copper

    International Nuclear Information System (INIS)

    Mirabi, Ali; Shokuhi Rad, Ali; Khodadad, Hadiseh

    2015-01-01

    Magnetic nanocomposites surface (MNCS) which has anionic surfactant sodium dodecyl sulfate (SDS) coating and has undergone dithiooxamide treatment as the sorbent could be an easy and useful method to extract and make a pre-concentrated in detecting the copper ions before they are determined via the flame atomic absorption spectrometry (FAAS). The influences of the experimental parameters such as the pH of the sample, the type and concentration of the eluent, dithiooxamide concentration and volume, amount of sorbent and the interactions of ions with respect to the copper ion detection have been studied. The calibration graph was linear in the range of 2–600 ng ml −1 with detection limit of 0.2 ng ml −1 . Relative standard deviation (RSD) for 6 replicate measurements was 1.8%. This method of detection has been applied to the determination of Cu ions at levels in real samples such as wheat flour, tomatoes, potatoes, red beans, oat, tap water, river water and sea water with satisfactory results. - Highlights: • Fe 3 O 4 nano-magnetic improved by SDS/dithiooxamide. • It can be used in both the pre-concentration function and detecting of Cu ions. • This modified surface shows high adsorptive characteristics. • This procedure is relatively simple, fast and imposes less test analysis expenses

  5. 1D Magnetic Materials of Fe3O4 and Fe with High Performance of Microwave Absorption Fabricated by Electrospinning Method

    Science.gov (United States)

    Han, Rui; Li, Wei; Pan, Weiwei; Zhu, Minggang; Zhou, Dong; Li, Fa-shen

    2014-01-01

    Fe3O4 and Fe nanowires are successfully fabricated by electrospinning method and reduction process. Wiry microstructures were achieved with the phase transformation from α-Fe2O3 to Fe3O4 and Fe by partial and full reduction, while still preserving the wire morphology. The diameters of the Fe3O4 and Fe nanowires are approximately 50–60 nm and 30–40 nm, respectively. The investigation of microwave absorption reveals that the Fe3O4 nanowires exhibit excellent microwave absorbing properties. For paraffin-based composite containing 50% weight concentration of Fe3O4 nanowires, the minimum reflection loss reaches −17.2 dB at 6.2 GHz with the matching thickness of 5.5 mm. Furthermore, the calculation shows that the modulus of the ratio between the complex permittivity and permeability |ε/μ| is far away from unity at the minimum reflection loss point, which is quite different from the traditional opinions. PMID:25510415

  6. Magnetic bionanoparticles of Penicillium sp. yz11-22N2 doped with Fe3O4 and encapsulated within PVA-SA gel beads for atrazine removal.

    Science.gov (United States)

    Yu, Jiaping; He, Huijun; Yang, William L; Yang, Chunping; Zeng, Guangming; Wu, Xin

    2018-07-01

    A novel magnetic bionanomaterial, Penicillium sp. yz11-22N2 doped with nano Fe 3 O 4 entrapped in polyvinyl alcohol-sodium alginate gel beads (PFEPS), was successfully synthesized. The factors including nutrient substance, temperature, pH, initial concentrations of atrazine and rotational speeds were presented and discussed in detail. Results showed that the highest removal efficiency of atrazine by PFEPS was 91.2% at 8.00 mg/L atrazine. The maximum removal capacity for atrazine was 7.94 mg/g. Meanwhile, it has been found that most of atrazine were removed by metabolism and degradation of Penicillium sp. yz11-22N2, which could use atrazine as the sole source of either carbon or nitrogen. Degradation kinetics of atrazine conformed to first-order kinetics model. The intermediates indicated that the possible pathway for atrazine degradation by PFEPS mainly included hydrolysis dechlorination, dealkylation, side-chain oxidation and ring-opening. Copyright © 2018 Elsevier Ltd. All rights reserved.

  7. Magnetic Solid-phase Extraction with Fe3O4/Molecularly Imprinted Polymers Modified by Deep Eutectic Solvents and Ionic Liquids for the Rapid Purification of Alkaloid Isomers (Theobromine and Theophylline from Green Tea

    Directory of Open Access Journals (Sweden)

    Guizhen Li

    2017-06-01

    Full Text Available Different kinds of deep eutectic solvents (DES based on choline chloride (ChCl and ionic liquids (ILs based on 1-methylimidazole were used to modify Fe3O4/molecularly imprinted polymers (Fe3O4/MIPs, and the resulting materials were applied for the rapid purification of alkaloid isomers (theobromine and theophylline from green tea with magnetic solid-phase extraction (M-SPE. The M-SPE procedure was optimized using the response surface methodology (RSM to analyze the maximum conditions. The materials were characterized by Fourier transform infrared spectroscopy (FI-IR and field emission scanning electron microscopy (FE-SEM. Compared to the ILs-Fe3O4/MIPs, the DESs-Fe3O4/MIPs were developed for the stronger recognition and higher recoveries of the isomers (theophylline and theobromine from green tea, particularly DES-7-Fe3O4/MIPs. With RSM, the optimal recovery condition for theobromine and theophylline in the M-SPE were observed with ratio of methanol (80% as the washing solution, methanol/acetic acid (HAc (8:2 as the eluent at pH 3, and an eluent volume of 4 mL. The practical recoveries of theobromine and theophylline in green tea were 92.27% and 87.51%, respectively, with a corresponding actual extraction amount of 4.87 mg•g−1 and 5.07 mg•g−1. Overall, the proposed approach with the high affinity of Fe3O4/MIPs might offer a novel method for the purification of complex isomer samples.

  8. Screen-Printed Electrode Modified by Bismuth /Fe3O4 Nanoparticle/Ionic Liquid Composite Using Internal Standard Normalization for Accurate Determination of Cd(II in Soil

    Directory of Open Access Journals (Sweden)

    Hui Wang

    2017-12-01

    Full Text Available The quality and safety of agricultural products are threatened by heavy metal ions in soil, which can be absorbed by the crops, and then accumulated in the human body through the food chain. In this paper, we report a low-cost and easy-to-use screen-printed electrode (SPE for cadmium ion (Cd(II detection based on differential pulse voltammetry (DPV, which decorated with ionic liquid (IL, magnetite nanoparticle (Fe3O4, and deposited a bismuth film (Bi. The characteristics of Bi/Fe3O4/ILSPE were investigated using scanning electron microscopy, cyclic voltammetry, impedance spectroscopy, and linear sweep voltammetry. We found that the sensitivity of SPE was improved dramatically after functionalized with Bi/Fe3O4/IL. Under optimized conditions, the concentrations of Cd(II are linear with current responses in a range from 0.5 to 40 µg/L with the lowest detection limit of 0.05 µg/L (S/N = 3. Additionally, the internal standard normalization (ISN was used to process the response signals of Bi/Fe3O4/ILSPE and established a new linear equation. For detecting three different Cd(II concentrations, the root-mean-square error using ISN (0.25 is lower than linear method (0.36. Finally, the proposed electrode was applied to trace Cd(II in soil samples with the recovery in the range from 91.77 to 107.83%.

  9. Facile hydrothermal synthesis of Fe3O4@cellulose aerogel nanocomposite and its application in Fenton-like degradation of Rhodamine B.

    Science.gov (United States)

    Jiao, Yue; Wan, Caichao; Bao, Wenhui; Gao, He; Liang, Daxin; Li, Jian

    2018-06-01

    A magnetic cellulose aerogel-supported Fe 3 O 4 nanoparticles composite was designed as a highly efficient and eco-friendly catalyst for Fenton-like degradation of Rhodamine B (RhB). The composite (coded as Fe 3 O 4 @CA) was formed by embedding well-dispersed Fe 3 O 4 nanoparticles into the 3D structure of cellulose aerogels by virtue of a facile and cheap hydrothermal method. Comparative studies indicate that the RhB decolorization ratio is much higher in co-presence of Fe 3 O 4 and H 2 O 2 than that in presence of Fe 3 O 4 or H 2 O 2 only, revealing that the Fe 3 O 4 @CA-catalyzed Fenton-like reaction governed the RhB decolorization process. It was also found that almost 100% RhB removal was achieved in the Fenton-like system. Moreover, the composite exhibited higher catalytic activity than that of the individual Fe 3 O 4 particles. In addition, the Fe 3 O 4 @CA catalyst retained ∼97% of its ability to degrade RhB after the six successive degradation experiments, suggesting its excellent reusability. All these merits indicate that the green and low-cost catalyst with strong magnetic responsiveness possesses good potential for H 2 O 2 -driven Fenton-like treatment of organic dyestuff wastewater. Copyright © 2018 Elsevier Ltd. All rights reserved.

  10. Synthesis of KMnO4-treated magnetic graphene oxide nanocomposite (Fe3O4@GO/MnO x ) and its application for removing of Cu2+ ions from aqueous solution

    Science.gov (United States)

    Zhang, Huining; Chang, Qing; Jiang, Yu; Li, Huili; Yang, Yahong

    2018-04-01

    A magnetic KMnO4-treated graphene-oxide-based nanocomposite, Fe3O4@GO/MnO x , was synthesized through a facile hydrothermal technique. The properties of the Fe3O4@GO/MnO x nanocomposite were characterized by SEM, XRD and FTIR. Batch experiments showed that the maximum adsorption capacity calculated by the Langmuir model for Cu2+ was 62.65 mg g-1 at T = 303.15 K. Kinetics and XPS analysis also revealed that the mechanism of Cu2+ removal was mainly a chemical adsorption process involving both the MnO x particles and oxygen functional groups. The prepared Fe3O4@GO/MnO x was found to be an ideal adsorbent for the removal of Cu2+ ions due to the MnO x particle coating, and was easily separated using a magnetic field after utilization. Reusability studies imply that Fe3O4@GO/MnO x is a suitable material for heavy metal ion removal from aqueous solutions in real applications.

  11. Preparation of Fe3O4/Bentonite Nanocomposite from Natural Iron Sand by Co-precipitation Method for Adsorbents Materials

    Science.gov (United States)

    Sebayang, Perdamean; Kurniawan, Candra; Aryanto, Didik; Arief Setiadi, Eko; Tamba, Konni; Djuhana; Sudiro, Toto

    2018-03-01

    An adsorption method is one of the effective ways to filter the heavy metals wastes in aqueous system. In this paper, the Fe3O4/bentonite nanocomposites were successfully prepared from natural iron sand by co-precipitation method. The chemical process was carried out by dissolving and hot stirring the milled iron sand and bentonite in acid solution and precipitating it by NH4OH. The sediment was then washed using distilled water to neutralize pH and dried at 100 °C for 5 hours to produce Fe3O4/bentonite powders. The samples were characterized by XRD, FTIR, BET, TEM, VSM and AAS. All samples were composed by Fe3O4 single phase with a spinnel structure and lattice parameter of 8.373 Å. The transmittance peak of FTIR curve proved that the Fe3O4 particles and bentonite had a molecular bonding. The addition of bentonite to Fe3O4 nanoparticles generally reduced the magnetic properties of Fe3O4/bentonite nanocomposites. The optimum condition of 30 wt% bentonite resulted 105.9 m2/g in surface area, 14 nm in an average particle size and 3.2 nm in pore size. It can be used as Cu and Pb adsorbent materials.

  12. Fabrication of graphene oxide decorated with Fe3O4@SiO2 for immobilization of cellulase

    Science.gov (United States)

    Li, Yue; Wang, Xiang-Yu; Jiang, Xiao-Ping; Ye, Jing-Jing; Zhang, Ye-Wang; Zhang, Xiao-Yun

    2015-01-01

    Fe3O4@SiO2-graphene oxide (GO) composites were successfully fabricated by chemical binding of functional Fe3O4@SiO2 and GO and applied to immobilization of cellulase via covalent attachment. The prepared composites were further characterized by transmission electron microscopy and Fourier transform infrared spectroscopy. Fe3O4 nanoparticles (NPs) were monodisperse spheres with a mean diameter of 17 ± 0.2 nm. The thickness of SiO2 layer was calculated as being 6.5 ± 0.2 nm. The size of Fe3O4@SiO2 NPs was 24 ± 0.3 nm, similar to that of Fe3O4@SiO2-NH2. Fe3O4@SiO2-GO composites were synthesized by linking of Fe3O4@SiO2-NH2 NPs to GO with the catalysis of EDC and NHS. The prepared composites were used for immobilization of cellulase. A high immobilization yield and efficiency of above 90 % were obtained after the optimization. The half-life of immobilized cellulase (722 min) was 3.34-fold higher than that of free enzyme (216 min) at 50 °C. Compared with the free cellulase, the optimal temperature of the immobilized enzyme was not changed; but the optimal pH was shifted from 5.0 to 4.0, and the thermal stability was enhanced. The immobilized cellulase could be easily separated and reused under magnetic field. These results strongly indicate that the cellulase immobilized onto the Fe3O4@SiO2-GO composite has potential applications in the production of bioethanol.

  13. Fabrication of graphene oxide decorated with Fe3O4@SiO2 for immobilization of cellulase

    International Nuclear Information System (INIS)

    Li, Yue; Wang, Xiang-Yu; Jiang, Xiao-Ping; Ye, Jing-Jing; Zhang, Ye-Wang; Zhang, Xiao-Yun

    2015-01-01

    Fe 3 O 4 @SiO 2 –graphene oxide (GO) composites were successfully fabricated by chemical binding of functional Fe 3 O 4 @SiO 2 and GO and applied to immobilization of cellulase via covalent attachment. The prepared composites were further characterized by transmission electron microscopy and Fourier transform infrared spectroscopy. Fe 3 O 4 nanoparticles (NPs) were monodisperse spheres with a mean diameter of 17 ± 0.2 nm. The thickness of SiO 2 layer was calculated as being 6.5 ± 0.2 nm. The size of Fe