WorldWideScience

Sample records for fe matrix calculo

  1. Calculation of the electronic and magnetic structures of 3d impurities in the Hcp Fe matrix; Calculo da estrutura eletronica e magnetica de impurezas 3d na matriz do Fe HCP

    Energy Technology Data Exchange (ETDEWEB)

    Franca, Fernando

    1995-12-31

    In this work we investigate the local magnetic properties and the electronic structure of HCP Fe, as well introducing transition metals atoms 3d (Cs, Ti, Cr, Mn, Co, Ni, Cu, Zn) in HCP iron matrix. We employed the discrete variational method (DVM), which is an orbital molecular method which incorporate the Hartree-Fock-Slater theory and the linear combination of atomic orbitals (LCAO), in the self-consistent charge approximation and the local density approximation of Von Barth and Hedin to the exchange-correlation potential. We used the embedded cluster model to investigate the electronic structure and the local magnetic properties for the central atom of a cluster of 27 atoms immersed in the microcrystal representing the HCP Fe. (author) 32 refs., 19 figs., 2 tabs.

  2. Properties of porous FeAlOy/FeAlx ceramic matrix composite ...

    Indian Academy of Sciences (India)

    Home; Journals; Bulletin of Materials Science; Volume 36; Issue 7. Properties of porous FeAlO/FeAl ceramic matrix composite influenced by mechanical activation of FeAl powder. V Usoltsev S Tikhov A Salanov V Sadykov G Golubkova O Lomovskii. Volume 36 Issue 7 December 2013 pp 1195-1200 ...

  3. Magnetic properties of Fe-oxide and (Fe, Co) oxide nanoparticles synthesized in polystyrene resin matrix

    Science.gov (United States)

    Rodak, D.; Kroll, E.; Tsoi, G. M.; Vaishnava, P. P.; Naik, R.; Wenger, L. E.; Suryanarayanan, R.; Naik, V. M.; Boolchand, P.

    2003-03-01

    Magnetic nanoparticles have potential applications ranging from drug delivery and imaging in the medical field to sensing and memory storage in technology. The preparation, structure, and physical properties of iron oxide-based nanoparticles synthesized by ion exchange in a polystyrene resin matrix have been investigated. Employing a synthesis method developed originally by Ziolo, et. al^1, nanoparticles were prepared in a sulfonated divinyl benzene polystyrene resin matrix using various aqueous solutions of (1) FeCl_2, (2) FeCl_3, (3) FeCl2 : 2FeCl3 , (4) 9FeCl2 : CoCl_2, and (5) 4FeCl2 : CoCl_2. Powder x-ray diffraction measurements were used to identify the phases present while transmission electron microscopy was used for particle size distribution determinations. SQUID magnetization measurements (field-cooled and zero-field-cooled) and Fe^57 Mössbauer effect measurements indicate the presence of ferromagnetic iron oxide phases and a superparamagnetic behavior with blocking temperatures (T_B) varying from 50 K to room temperature. Nanoparticles synthesized using a stoichiometric mixture of FeCl2 and FeCl3 exhibit the lowest TB and smallest particle size distribution. The Mössbauer effect measurements have also been used to identify the iron oxides phases present and their relative amounts in the nanoparticles ^1R.F. Ziolo, et al., Science 207, 219 (1992). *Permanent address: Kettering University, Flint, MI 48504

  4. Determination of Fe-55 and Ni-63 in Environmental Samples. Analytical Problems. Characteristic Limits. Automatized Calculation; Determinacion de 55{sup F}e y 63{sup N}i en Muestras Ambientales. Problemas Analiticos. Limites Caracteristicos. Calculo Automatizado

    Energy Technology Data Exchange (ETDEWEB)

    Gasco, C; Navarro, N; Gonzalez, P; Heras, M C; Gapan, M P; Alonso, C; Calderon, A; Sanchez, D; Morante, R; Fernandez, M; Gajate, A; Alvarez, A

    2008-08-06

    The Department of Vigilance Radiologica y Radiactividad Ambiental from CIEMAT has developed an appropriate analytical methodology for Fe-55 and Ni-63 sequential determination in environmental samples based on the procedure used by RIS0 Laboratories. The experimental results obtained in the mayor and minor elements behaviour (soil and air constituents) in the different types of resins used for separating Fe-55 and Ni-63 are showed in this report. The measuring method of both isotopes by scintillation counting has been optimized with Ultima Gold liquid with different concentrations of stable element Fe and Ni. The decontamination factors of different gamma-emitters are experimentally determined in this method with the presence of soil matrix. The Fe-55 and Ni-63 activity concentrations and their associated uncertainties have been calculated from the counting data and sample preparation. A computer application has been implemented in Visual Basic in excel sheets for: (I) obtaining the counting data from spectrometer and counts in each window, (II) representing graphically the background and sample spectrums, (III) determining the activity concentration and its associated uncertainty and (IV) calculating the characteristic limits using ISO 11929 (2007) with various confidence levels. (Author) 30 refs.

  5. Syrio. A program for the calculation of the inverse of a matrix; Syrio. Programa para el calculo de la inversa de una matriz

    Energy Technology Data Exchange (ETDEWEB)

    Garcia de Viedma Alonso, L.

    1963-07-01

    SYRIO is a code for the inversion of a non-singular square matrix whose order is not higher than 40 for the UNIVAC-UCT (SS-90). The treatment stands from the inversion formula of sherman and Morrison, and following the Herbert S. Wilf's method for special matrices, generalize the procedure to any kind of non-singular square matrices. the limitation of the matrix order is not inherent of the program itself but imposed by the storage capacity of the computer for which it was coded. (Author)

  6. Syrio. A program for the calculation of the inverse of a matrix; Syrio. Programa para el calculo de la inversa de una matriz

    Energy Technology Data Exchange (ETDEWEB)

    Garcia de Viedma Alonso, L.

    1963-07-01

    SYRIO is a code for the inversion of a non-singular square matrix whose order is not higher than 40 for the UNIVAC-UCT (SS-90). The treatment stands from the inversion formula of sherman and Morrison, and following the Herbert S. Wilf's method for special matrices, generalize the procedure to any kind of non-singular square matrices. the limitation of the matrix order is not inherent of the program itself but imposed by the storage capacity of the computer for which it was coded. (Author)

  7. Third generation biosensing matrix based on Fe-implanted ZnO thin film

    International Nuclear Information System (INIS)

    Saha, Shibu; Gupta, Vinay; Sreenivas, K.; Tan, H. H.; Jagadish, C.

    2010-01-01

    Third generation biosensor based on Fe-implanted ZnO (Fe-ZnO) thin film has been demonstrated. Implantation of Fe in rf-sputtered ZnO thin film introduces redox center along with shallow donor level and thereby enhance its electron transfer property. Glucose oxidase (GOx), chosen as model enzyme, has been immobilized on the surface of the matrix. Cyclic voltammetry and photometric assay show that the prepared bioelectrode, GOx/Fe-ZnO/ITO/Glass is sensitive to the glucose concentration with enhanced response of 0.326 μA mM -1 cm -2 and low Km of 2.76 mM. The results show promising application of Fe-implanted ZnO thin film as an attractive matrix for third generation biosensing.

  8. Third generation biosensing matrix based on Fe-implanted ZnO thin film

    Science.gov (United States)

    Saha, Shibu; Gupta, Vinay; Sreenivas, K.; Tan, H. H.; Jagadish, C.

    2010-09-01

    Third generation biosensor based on Fe-implanted ZnO (Fe-ZnO) thin film has been demonstrated. Implantation of Fe in rf-sputtered ZnO thin film introduces redox center along with shallow donor level and thereby enhance its electron transfer property. Glucose oxidase (GOx), chosen as model enzyme, has been immobilized on the surface of the matrix. Cyclic voltammetry and photometric assay show that the prepared bioelectrode, GOx/Fe-ZnO/ITO/Glass is sensitive to the glucose concentration with enhanced response of 0.326 μA mM-1 cm-2 and low Km of 2.76 mM. The results show promising application of Fe-implanted ZnO thin film as an attractive matrix for third generation biosensing.

  9. The influence of P solutes on an irradiated α-Fe matrix

    International Nuclear Information System (INIS)

    Hurchand, H.; Kenny, S.D.; Sanz-Navarro, C.F.; Smith, R.; Flewitt, P.E.J.

    2005-01-01

    Atomistic simulations of collision cascades in a Fe-0.04at.%P matrix and a pure Fe matrix are compared to investigate the interaction of the phosphorus atoms with the radiation. The simulations were performed for a primary knock-on atom having an energy in the range 1-16 keV. It is observed that the P atom in the Fe matrix does not increase significantly the damage induced to the lattice post irradiation. The density of vacancies and the morphology of the clusters formed in the Fe-0.04at.%P system are indistinguishable from residual defects produced in a pure irradiated Fe matrix. There are two mechanisms by which the Fe interstitials interact with the P atoms. The first occurs when a P atom is dislodged from its substitutional position by a recoil atom and combines with an Fe interstitial to form a mixed dumbbell. The second is one in which the Fe interstitial is attracted to a substitutional P atom due to the lattice strain region in the vicinity of the P atom. In this case the P atom acts as an attractive centre for interstitial Fe atoms and stabilises them into Fe-P nano-clusters. Nearly 35% of the atoms which are ejected from the core region of the cascade during the ballistic phase form such solute-defect clusters which remain pinned over the period of several hundred picoseconds. Finally, the radiation induced mobility of the P atom is reported. Substitutional P atoms whether isolated or as part of the larger defect clusters have a high energy barrier for diffusion but the P atoms displaced from substitutional sites can diffuse through the lattice by hopping between dumbbell and tetrahedral sites

  10. Fe and O EELS Studies of Ion Irradiated Murchison CM2 Carbonaceous Chondrite Matrix

    Science.gov (United States)

    Keller, L. P.; Christofferson, R.; Dukes, C. A.; Baragiola, R. A.; Rahman, Z.

    2015-01-01

    Introduction: The physical and chemical response of hydrated carbonaceous chondrite materials to space weathering processes is poorly understood. Improving this understanding is a key part of establishing how regoliths on primitive carbonaceous asteroids respond to space weathering processes, knowledge that supports future sample return missions (Hayabusa 2 and OSIRISREx) that are targeting objects of this type. We previously reported on He+ irradiation of Murchison matrix and showed that the irradiation resulted in amorphization of the matrix phyllosilicates, loss of OH, and surface vesiculation. Here, we report electron energy-loss spectroscopy (EELS) measurements of the irradiated material with emphasis on the Fe and O speciation. Sample and Methods: A polished thin section of the Murchison CM2 carbonaceous chondrite was irradiated with 4 kilovolts He(+) (normal incidence) to a total dose of 1 x 10(exp 18) He(+) per square centimeter. We extracted thin sections from both irradiated and unirradiated regions in matrix using focused ion beam (FIB) techniques with electron beam deposition for the protective carbon strap to minimize surface damage artifacts from the FIB milling. The FIB sections were analyzed using a JEOL 2500SE scanning and transmission electron microscope (STEM) equipped with a Gatan Tridiem imaging filter. EELS spectra were collected from 50 nanometer diameter regions with an energy resolution of 0.7 electronvolts FWHM at the zero loss. EELS spectra were collected at low electron doses to minimize possible artifacts from electron-beam irradiation damage. Results and Discussion: Fe L (sub 2,3) EELS spectra from matrix phyllosilicates in CM chondrites show mixed Fe(2+)/Fe(3+) oxidation states with Fe(3+)/Sigma Fe approximately 0.5. Fe L(sub 2,3) spectra from the irradiated/ amorphized matrix phyllosilicates show higher Fe(2+)/Fe(3+) ratios compared to spectra obtained from pristine material at depths beyond the implantation/amorphization layer. We

  11. Microstructure Characteristics of Fe-Matrix Composites Reinforced by In-Situ Carbide Particulates

    Science.gov (United States)

    Huang, Xiaodong; Song, Yanpei

    2017-10-01

    Carbide particulates reinforced iron-matrix composites were prepared by in-situ synthesis reaction between Ti, V and C on liquid alloys surface. The microstructure of the composite was characterized by SEM, TEM and OM. The results showed that the main phases were α-Fe, carbide particulate; besides, there were small amounts of γ-Fe and graphite (G) in the composite. The carbides were TiVC2 and VC in the shape of short bar and graininess. The matrix consisted of martensite and small amounts of retained austenite.

  12. Shielding of electromagnetic fields by metallic glasses with Fe and Co matrix

    International Nuclear Information System (INIS)

    Nowosielski, R.; Griner, S.

    1997-01-01

    The influence of chemical composition and magnetic and electric properties for shielding of electromagnetic fields with frequency 10-1000 kHz, by metallic glasses has been analysed. For investigation were selected two groups of metallic glasses with matrix of Fe and Co. Particularly, in there were selected metallic glasses as follows; Fe 78 Si 9 B 13 , Co 68 Fe 4 Mo 1.5 Si 13.5 B 13 , Co 69 Mo 2 Fe 4 Si 14 B 11 , Co 70.5 Fe 2.5 Mn 4 Mo 1 Si 9 B 15 . The experiments were realised for casting metallic glasses by the CMBS method in the form of strips with width 10 mm. Obtained results of shielding indicate clear for very good shielding effectiveness of one layer shields both electric and magnetic components of electromagnetic fields, although shielding of magnetic component is smaller than electric. (author). 17 refs, 5 figs, 9 tabs

  13. The influence of Fe content on spreading ability of tungsten heavy alloys matrix on tungsten surface

    Directory of Open Access Journals (Sweden)

    A. Krzyńska

    2011-07-01

    Full Text Available The results of experimental study of tungsten spreading ability with W-Ni-Co-Fe matrix are presented. The aim of these investigations was to see how Fe concentration in W – Ni – Co matrix influences the wettability of tungsten grains during liquid phase sintering. Four green compact specimens containing 50%W, 10%Co and Ni + Fe = 40% but with different Ni to Fe ratio were prepared. The cylindrical specimen 5mm diameter and 5mm height were put on clean pure tungsten substrate and then 20 minutes heated at 1520oC in hydrogen atmosphere. After heating the specimens were carefully measured and then the specimens for structure observations were prepared. It was concluded, that increase of Fe content decrease the melting temperature of W – Ni – Co alloy. The melting point decrease caused by Fe content increase substantially the spreading ability of tungsten substrate with W – Ni – Co alloy. Metallography investigations showed some microstructure changes in “reaction zone” identified in tungsten substrate – (WNi40-xCo10Fex interface. The results of the study confirmed our earlier observations that even relative small Fe addition promotes Weight Heavy Alloys (WHA liquid phase sintering.

  14. Atomic structure of embedded Fe nanoclusters as a function of host matrix material: a synchrotron radiation study

    International Nuclear Information System (INIS)

    Baker, S H; Roy, M; Gurman, S J; Louch, S; Bleloch, A; Binns, C

    2004-01-01

    The atomic structure of Fe nanoclusters embedded in a range of matrix materials has been studied using synchrotron radiation. In particular, the effect of embedding the clusters in Ag, amorphous carbon (a-C) and a porous C 60 matrix is investigated. The embedded cluster samples were prepared by co-deposition using a gas aggregation cluster source. Samples with both dilute and high-volume-filling fraction of clusters, at 4 and 40% respectively, were prepared. Fe K edge EXAFS measurements were used to probe the structure within the clusters. In a Ag matrix, the Fe clusters retain the b.c.c. structure of bulk Fe while in a-C there is evidence for both b.c.c. and f.c.c. structures in the clusters. These results are independent of cluster volume-filling fraction over the range investigated. When embedded in a porous C 60 matrix, the Fe clusters oxidize to Fe 2 O 3

  15. Fabrication of Nano-CeO2 and Application of Nano-CeO2 in Fe Matrix Composites

    International Nuclear Information System (INIS)

    Tiebao, W.; Chunxiang, C.; Xiaodong, W.; Guobin, L.

    2010-01-01

    It is expatiated that nano-CeO2 is fabricated by the direct sedimentation method. The components and particles diameter of nano-CeO2 powders are analyzed by XRD and SEM . The thermodynamic analysis and acting mechanism of nano-CeO2 with Al in Fe matrix composites are researched, which shows that the reaction is generated between CeO2 and Al in the composite, that is, 3CeO2+4Al - 2Al2O3+3[Ce], which obtains Al2O3 and active [Ce] during the sintering process. The active [Ce] can improve the performance of CeO2/Fe matrix composites. The suitable amount of CeO2 is about 0.05% in CeO2/Fe matrix composites. SEM fracture analysis shows that the toughness sockets in nano-CeO2/Fe matrix composites are more than those in no-added nano-CeO2 composites, which can explain that adding nano-CeO2 into Fe matrix composite, the toughness of the composite is improved significantly. Applied nano-CeO2 to Fe matrix diamond saw blades shows that Fe matrix diamond saw blade is sharper and of longer cutting life than that with no-added nano-CeO2.

  16. Al-matrix composite materials reinforced by Al-Cu-Fe particles

    International Nuclear Information System (INIS)

    Bonneville, J; Laplanche, G; Joulain, A; Gauthier-Brunet, V; Dubois, S

    2010-01-01

    Al-matrix material composites were produced using hot isostatic pressing technique, starting with pure Al and icosahedral (i) Al-Cu-Fe powders. Depending on the processing temperature, the final reinforcement particles are either still of the initial i-phase or transformed into the tetragonal ω-Al0 0.70 Cu 0.20 Fe 0.10 crystalline phase. Compression tests performed in the temperature range 293K - 823K on the two types of composite, i.e. Al/i and Al/ω, indicate that the flow stress of both composites is strongly temperature dependent and exhibit distinct regimes with increasing temperature. Differences exist between the two composites, in particular in yield stress values. In the low temperature regime (T ≤ 570K), the yield stress of the Al/ω composite is nearly 75% higher than that of the Al/i composite, while for T > 570K both composites exhibit similar yield stress values. The results are interpreted in terms of load transfer contribution between the matrix and the reinforcement particles and elementary dislocation mechanisms in the Al matrix.

  17. Magnetic properties of γ-Fe2O3 nanoparticles incorporated in a polystyrene resin matrix

    Science.gov (United States)

    Vaishnava, P. P.; Senaratne, U.; Buc, E. C.; Naik, R.; Naik, V. M.; Tsoi, G. M.; Wenger, L. E.

    2007-07-01

    γ-Fe2O3 magnetic nanoparticles ranging in average diameter from 3to10nm were synthesized into a polystyrene resin matrix by an ion-exchange method and characterized by X-ray diffraction (XRD), transmission electron microscopy (TEM), Mössbauer spectroscopy, and SQUID magnetometry. The average particle size as determined from XRD and TEM was found to be strongly dependent upon the initial Fe valence state of the starting chloride salt(s) and on the number of steps that the salt introduction and ion-exchange process were repeated. Regardless of the initial Fe valence state and processing conditions, Mössbauer spectroscopy confirmed that the Fe in the resulting nanoparticles existed only as Fe(III) ions and that γ-Fe2O3 was the only phase present. The values of the saturation magnetization at 5K were found to be dependent upon the processing conditions and ranged from 203to333emu/cm3 , which are significantly smaller than the bulk value (408emu/cm3) for γ-Fe2O3 . As expected, the nanoparticles exhibited superparamagnetic behavior with the magnetic moments becoming frozen with decreasing temperature as evidenced by the appearance of a six-line splitting in the Mössbauer spectra, a bifurcation in the zero-field-cooled (ZFC) and field-cooled (FC) magnetizations, and an opening in the MV -vs- H hysteresis curves. The values of magnetic anisotropy constant (1.2-2.1×106ergs/cm3) determined from the differences between the ZFC and FC magnetizations were found to be higher than the bulk value (1.1×105ergs/cm3) for γ-Fe2O3 , and are probably due to surface effects. Likewise, the nanoparticle size distributions as deduced from the blocking temperature distribution function f(TB) based on fits to the difference in the ZFC and FC magnetization curves as well as from fits of the MV -vs- H curves in the superparamagnetic regime with a Langevin function indicate fairly broad distributions of particle sizes with the particle sizes being comparable to those deduced from XRD

  18. Calculation of the electronic and magnetic structures of 3d impurities in the Hcp Fe matrix

    International Nuclear Information System (INIS)

    Franca, Fernando

    1995-01-01

    In this work we investigate the local magnetic properties and the electronic structure of HCP Fe, as well introducing transition metals atoms 3d (Cs, Ti, Cr, Mn, Co, Ni, Cu, Zn) in HCP iron matrix. We employed the discrete variational method (DVM), which is an orbital molecular method which incorporate the Hartree-Fock-Slater theory and the linear combination of atomic orbitals (LCAO), in the self-consistent charge approximation and the local density approximation of Von Barth and Hedin to the exchange-correlation potential. We used the embedded cluster model to investigate the electronic structure and the local magnetic properties for the central atom of a cluster of 27 atoms immersed in the microcrystal representing the HCP Fe. (author)

  19. A simple stir casting technique for the preparation of in situ Fe-aluminides reinforced Al-matrix composites

    Directory of Open Access Journals (Sweden)

    Susanta K. Pradhan

    2016-09-01

    Full Text Available This article presents a simple stir casting technique for the development of Fe-aluminides particulate reinforced Al-matrix composites. It has been demonstrated that stirring of super-heated Al-melt by a mild steel plate followed by conventional casting and hot rolled results in uniform dispersion of in situ Al13Fe4 particles in the Al matrix; the amount of reinforcement is found to increase with increasing melt temperature. With reference to base alloy, the developed composite exhibits higher hardness and improved tensile strength without much loss of ductility; since, composite like base alloy undergoes ductile mode of fracture.

  20. Novel solid-state synthesis of α-Fe and Fe3O4 nanoparticles embedded in a MgO matrix

    Science.gov (United States)

    Schneeweiss, O.; Zboril, R.; Pizurova, N.; Mashlan, M.; Petrovsky, E.; Tucek, J.

    2006-01-01

    Thermally induced reduction of amorphous Fe2O3 nanopowder (2-3 nm) with nanocrystalline Mg (~20 nm) under a hydrogen atmosphere is presented as a novel route to obtain α-Fe and Fe3O4 magnetic nanoparticles dispersed in a MgO matrix. The phase composition, structural and magnetic properties, size and morphology of the nanoparticles were monitored by x-ray diffraction, 57Fe Mössbauer spectroscopy at temperatures of 24-300 K, transmission electron microscopy and magnetic measurements. Spherical magnetite nanoparticles prepared at a reaction temperature of 300 °C revealed a well-defined structure, with a ratio of tetrahedral to octahedral Fe sites of 1/2 being common for the bulk material. A narrow particle size distribution (20-30 nm) and high saturation magnetization (95 ± 5 A m2 kg-1) predispose the magnetite nanoparticles to various applications, including magnetic separation processes. The Verwey transition of Fe3O4 nanocrystals was found to be decreased to about 80 K. The deeper reduction of amorphous ferric oxide at 600 °C allows α-Fe (40-50 nm) nanoparticles to be synthesized with a coercive force of about 30 mT. They have a saturation magnetization 2.2 times higher than that of synthesized magnetite nanoparticles, which corresponds well with the ratio usually found for the pure bulk phases. The magnetic properties of α-Fe nanocrystals combined with the high chemical and thermal stability of the MgO matrix makes the prepared nanocomposite useful for various magnetic applications.

  1. A Normalized Transfer Matrix Method for the Free Vibration of Stepped Beams: Comparison with Experimental and FE(3D Methods

    Directory of Open Access Journals (Sweden)

    Tamer Ahmed El-Sayed

    2017-01-01

    Full Text Available The exact solution for multistepped Timoshenko beam is derived using a set of fundamental solutions. This set of solutions is derived to normalize the solution at the origin of the coordinates. The start, end, and intermediate boundary conditions involve concentrated masses and linear and rotational elastic supports. The beam start, end, and intermediate equations are assembled using the present normalized transfer matrix (NTM. The advantage of this method is that it is quicker than the standard method because the size of the complete system coefficient matrix is 4 × 4. In addition, during the assembly of this matrix, there are no inverse matrix steps required. The validity of this method is tested by comparing the results of the current method with the literature. Then the validity of the exact stepped analysis is checked using experimental and FE(3D methods. The experimental results for stepped beams with single step and two steps, for sixteen different test samples, are in excellent agreement with those of the three-dimensional finite element FE(3D. The comparison between the NTM method and the finite element method results shows that the modal percentage deviation is increased when a beam step location coincides with a peak point in the mode shape. Meanwhile, the deviation decreases when a beam step location coincides with a straight portion in the mode shape.

  2. Matrix-assisted relaxation in Fe(phen)2(NCS)2 spin-crossover microparticles, experimental and theoretical investigations

    International Nuclear Information System (INIS)

    Enachescu, Cristian; Stancu, Alexandru; Tanasa, Radu; Tissot, Antoine; Laisney, Jérôme; Boillot, Marie-Laure

    2016-01-01

    In this study, we present the influence of the embedding matrix on the relaxation of Fe(phen) 2 (NCS) 2 (phen = 1,10-phenanthroline) spin-transition microparticles as revealed by experiments and provide an explanation within the framework of an elastic model based on a Monte-Carlo method. Experiments show that the shape of the high-spin → low-spin relaxation curves is drastically changed when the particles are dispersed in glycerol. This effect was considered in the model by means of interactions between the microparticles and the matrix. A faster start of the relaxation for microparticles embedded in glycerol is due to an initial positive local pressure acting on the edge spin-crossover molecules from the matrix side. This local pressure diminishes and eventually becomes negative during relaxation, as an effect of the decrease of the volume of spin-crossover microparticles from high-spin to low-spin.

  3. Fabrication and Characterization of FeNiCr Matrix-TiC Composite for Polishing CVD Diamond Film

    Institute of Scientific and Technical Information of China (English)

    Zhuji Jin; Zewei Yuan; Renke Kang; Boxian Dong

    2009-01-01

    Dynamic friction polishing (DFP) is one of the most promising methods appropriate for polishing CVD diamond film with high efficiency and low cost.By this method CVD diamond film is polished through being simply pressed against a metal disc rotating at a high speed utilizing the thermochemical reaction occurring as a result of dynamic friction between them in the atmosphere.However, the relatively soft materials such as stainless steel, cast iron and nickel alloy widely used for polishing CVD diamond film are easy to wear and adhere to diamond film surface, which may further lead to low efficiency and poor polishing quality.In this paper, FeNiCr matrix-TiC composite used as grinding wheel for polishing CVD diamond film was obtained by combination of mechanical alloying (MA) and spark plasma sintering (SPS).The process of ball milling,composition, density, hardness, high-temperature oxidation resistance and wear resistance of the sintered piece were analyzed.The results show that TiC was introduced in MA-SPS process and had good combination with FeNiCr matrix and even distribution in the matrix.The density of composite can be improved by mechanical alloying.The FeNiCr matrix-TiC composite obtained at 1273 K was found to be superior to at 1173 K sintering in hardness, high-temperature oxidation resistance and wearability.These properties are more favorable than SUS304 for the preparation of high-performance grinding wheel for polishing CVD diamond film.

  4. Magnetic and magnetotransport properties of Fe nanoparticles embedded in Ag matrix

    Energy Technology Data Exchange (ETDEWEB)

    Sarmiento, G. [Departamento de Electricidad y Electronica, Universidad del Pais Vasco (UPV/EHU), Apartado 644, 48080 Bilbao (Spain); Garcia Prieto, A. [Departamento de Electricidad y Electronica, Universidad del Pais Vasco (UPV/EHU), Apartado 644, 48080 Bilbao (Spain); Orue, I. [Departamento de Electricidad y Electronica, Universidad del Pais Vasco (UPV/EHU), Apartado 644, 48080 Bilbao (Spain); Fdez-Gubieda, M.L. [Departamento de Electricidad y Electronica, Universidad del Pais Vasco (UPV/EHU), Apartado 644, 48080 Bilbao (Spain)]. E-mail: malu@we.lc.ehu.es

    2005-04-15

    Fe{sub 20}Ag{sub 80} and Fe{sub 30}Ag{sub 70} granular thin films have been prepared by the pulsed laser deposition technique under different parameter conditions of pulse frequency and target angular speed. Their influence on the microstructure of the sample, through the analysis of the hysteresis loops, magnetotransport response and magnetooptical Kerr effect, has been investigated. The Fe{sub 20}Ag{sub 80} samples present a superparamagnetic phase, composed of spherical Fe clusters with a mean diameter of 3nm. The number of Fe nanoparticles increases as both laser pulse frequency and target angular speed increase, thus enhancing their giant magnetoresistance response. The Fe{sub 30}Ag{sub 70} thin films have anisotropic magnetic behaviour and their magnetotransport measurements show giant magnetoresistance and extraordinary Hall effect. These anisotropies suggest the presence of Fe planar particles, which give rise to shape magnetic anisotropy that increases with increasing the target angular speed for a given laser pulse frequency. The planar shape of the Fe particles could be in the origin of the dominant extraordinary Hall effect.

  5. Magnetic and magnetotransport properties of Fe nanoparticles embedded in Ag matrix

    International Nuclear Information System (INIS)

    Sarmiento, G.; Garcia Prieto, A.; Orue, I.; Fdez-Gubieda, M.L.

    2005-01-01

    Fe 20 Ag 80 and Fe 30 Ag 70 granular thin films have been prepared by the pulsed laser deposition technique under different parameter conditions of pulse frequency and target angular speed. Their influence on the microstructure of the sample, through the analysis of the hysteresis loops, magnetotransport response and magnetooptical Kerr effect, has been investigated. The Fe 20 Ag 80 samples present a superparamagnetic phase, composed of spherical Fe clusters with a mean diameter of 3nm. The number of Fe nanoparticles increases as both laser pulse frequency and target angular speed increase, thus enhancing their giant magnetoresistance response. The Fe 30 Ag 70 thin films have anisotropic magnetic behaviour and their magnetotransport measurements show giant magnetoresistance and extraordinary Hall effect. These anisotropies suggest the presence of Fe planar particles, which give rise to shape magnetic anisotropy that increases with increasing the target angular speed for a given laser pulse frequency. The planar shape of the Fe particles could be in the origin of the dominant extraordinary Hall effect

  6. Al-based metal matrix composites reinforced with Al–Cu–Fe quasicrystalline particles: Strengthening by interfacial reaction

    International Nuclear Information System (INIS)

    Ali, F.; Scudino, S.; Anwar, M.S.; Shahid, R.N.; Srivastava, V.C.; Uhlenwinkel, V.; Stoica, M.; Vaughan, G.; Eckert, J.

    2014-01-01

    Highlights: • Strength of composites is enhanced as the QC-to-ω phase transformation advances. • Yield strength increases from 195 to 400 MPa with QC-to-ω interfacial reaction. • Reducing matrix ligament size explains most of the strengthening. • Improved interfacial bonding and nano ω phase explains divergence from model. - Abstract: The interfacial reaction between the Al matrix and the Al 62.5 Cu 25 Fe 12.5 quasicrystalline (QC) reinforcing particles to form the Al 7 Cu 2 Fe ω-phase has been used to further enhance the strength of the Al/QC composites. The QC-to-ω phase transformation during heating was studied by in situ X-ray diffraction using a high-energy monochromatic synchrotron beam, which permits to follow the structural evolution and to correlate it with the mechanical properties of the composites. The mechanical behavior of these transformation-strengthened composites is remarkably improved as the QC-to-ω phase transformation progresses: the yield strength increases from 195 MPa for the starting material reinforced exclusively with QC particles to 400 MPa for the material where the QC-to-ω reaction is complete. The reduction of the matrix ligament size resulting from the increased volume fraction of the reinforcing phase during the transformation can account for most of the observed improvement in strength, whereas the additional strengthening can be ascribed to the possible presence of nanosized ω-phase particles as well as to the improved interfacial bonding between matrix and particles caused by the compressive stresses arising in the matrix

  7. Al-based metal matrix composites reinforced with Al–Cu–Fe quasicrystalline particles: Strengthening by interfacial reaction

    Energy Technology Data Exchange (ETDEWEB)

    Ali, F. [IFW Dresden, Institut für Komplexe Materialien, Postfach 27 01 16, D-01171 Dresden (Germany); Materials Processing Group, DMME, Pakistan Institute of Engineering and Applied Sciences, P.O. Nilore, Islamabad (Pakistan); Scudino, S., E-mail: s.scudino@ifw-dresden.de [IFW Dresden, Institut für Komplexe Materialien, Postfach 27 01 16, D-01171 Dresden (Germany); Anwar, M.S.; Shahid, R.N. [Materials Processing Group, DMME, Pakistan Institute of Engineering and Applied Sciences, P.O. Nilore, Islamabad (Pakistan); Srivastava, V.C. [Metal Extraction and Forming Division, National Metallurgical Laboratory, Jamshedpur 831007 (India); Uhlenwinkel, V. [Institut für Werkstofftechnik, Universität Bremen, D-28359 Bremen (Germany); Stoica, M. [IFW Dresden, Institut für Komplexe Materialien, Postfach 27 01 16, D-01171 Dresden (Germany); Vaughan, G. [European Synchrotron Radiation Facilities ESRF, BP 220, 38043 Grenoble (France); Eckert, J. [IFW Dresden, Institut für Komplexe Materialien, Postfach 27 01 16, D-01171 Dresden (Germany); TU Dresden, Institut für Werkstoffwissenschaft, D-01062 Dresden (Germany)

    2014-09-01

    Highlights: • Strength of composites is enhanced as the QC-to-ω phase transformation advances. • Yield strength increases from 195 to 400 MPa with QC-to-ω interfacial reaction. • Reducing matrix ligament size explains most of the strengthening. • Improved interfacial bonding and nano ω phase explains divergence from model. - Abstract: The interfacial reaction between the Al matrix and the Al{sub 62.5}Cu{sub 25}Fe{sub 12.5} quasicrystalline (QC) reinforcing particles to form the Al{sub 7}Cu{sub 2}Fe ω-phase has been used to further enhance the strength of the Al/QC composites. The QC-to-ω phase transformation during heating was studied by in situ X-ray diffraction using a high-energy monochromatic synchrotron beam, which permits to follow the structural evolution and to correlate it with the mechanical properties of the composites. The mechanical behavior of these transformation-strengthened composites is remarkably improved as the QC-to-ω phase transformation progresses: the yield strength increases from 195 MPa for the starting material reinforced exclusively with QC particles to 400 MPa for the material where the QC-to-ω reaction is complete. The reduction of the matrix ligament size resulting from the increased volume fraction of the reinforcing phase during the transformation can account for most of the observed improvement in strength, whereas the additional strengthening can be ascribed to the possible presence of nanosized ω-phase particles as well as to the improved interfacial bonding between matrix and particles caused by the compressive stresses arising in the matrix.

  8. Characterization of a Fe inclusion in beryllium-matrix using auger electron spectroscopy

    International Nuclear Information System (INIS)

    Arkusk, R.; Moreno, D.; Simca, F.; Yeheskel, O.; Utzmoni, U.

    1991-04-01

    The auger electron spectroscopy techniques was employed to investigate the nature of an inclusion that had been revealed by radiography in a beryllium body produced by the hot isostatic press technique. The investigation's are that the inclusion is composed of several different iron-beryllium intermetallic compounds (BeFe 3 , BeFe 5 , Be 7 Fe). The conclusion drawn is that iron metal impurity was imbedded in the Be powder and that interdiffusion under the process's conditions gave rise to the enlarged inclusion. (author)

  9. Morphology and dispersion of FeCo alloy nanoparticles dispersed in a matrix of IR pyrolized polyvinyl alcohol

    Science.gov (United States)

    Vasilev, A. A.; Dzidziguri, E. L.; Muratov, D. G.; Zhilyaeva, N. A.; Efimov, M. N.; Karpacheva, G. P.

    2018-04-01

    Metal-carbon nanocomposites consisting of FeCo alloy nanoparticles dispersed in a carbon matrix were synthesized by the thermal decomposition method of a precursor based on polyvinyl alcohol and metals salts. The synthesized powders were investigated by X-ray diffraction (XRD), X-ray fluorescent spectrometry (XRFS), transmission electron microscopy (TEM) and scanning electron microscopy (SEM). Surface characteristics of materials were measured by BET-method. The morphology and dispersity of metal nanoparticles were studied depending on the metals ratio in the composite.

  10. Influence on SME and microstructure in FeMnSiCrNi SMA for strengthening of austenite matrix

    International Nuclear Information System (INIS)

    Gu, N.; Lin, C.; Song, X.; Peng, H.; Yin, F.

    2000-01-01

    Influences of solution- and deformation-strengthening on SME and the microstructures of FeMnSiCrNi SMA were researched. SME and the training effect were both obviously improved when 0.3%C added into the alloy. It was observed that some thermo-induced martensites, distributing disorderly in the matrix, formed in the alloy without carbon, while in the alloy with carbon, more stress-induced martensites, distributing orderly in the matrix, were found, thus resulting in the better SME. As far as the treatment methods were concerned, one time deformation-strengthening could be better than training many times. The ε-martensites in the strengthened alloy appeared larger in amount, short plate in shape and distributed with nearly the same orientation, which is closely related to the better SME. (orig.)

  11. Calculation of uncertainties; Calculo de incertidumbres

    Energy Technology Data Exchange (ETDEWEB)

    Diaz-Asencio, Misael [Centro de Estudios Ambientales de Cienfuegos (Cuba)

    2012-07-01

    metodologico para la obtencion de informacion (mesurando) de un sistema material (poblacion). Ello supone la necesidad de la definicion del problema, la eleccion de los metodos de muestreo y medicion adecuados y la ejecucion de estas actividades para la obtencion de la informacion. El resultado de una medicion solo es una aproximacion o estimacion del valor del mesurando, el cual se completa solo cuando va acompanado por una estimacion de la incertidumbre del proceso analitico. Segun el 'Vocabulario de Terminos Basicos y Generales de Metrologia' la incertidumbre de medicion 'es el parametro asociado con el resultado de la medicion que caracteriza la dispersion de los valores que razonablemente pudiera ser atribuida al mensurando (o magnitud). Este parametro podria ser una desviacion estandar o un intervalo de confianza'. La evaluacion de la incertidumbre exige que observemos detalladamente todas sus posibles fuentes, pero no de forma desproporcionada. Podemos realizar una buena estimacion de la incertidumbre concentrando el esfuerzo en las mayores contribuciones. Los pasos fundamentales del proceso de determinacion de la incertidumbre en las mediciones son: - la especificacion del mesurando; - la identificacion de las fuentes de incertidumbre; - la cuantificacion de las componentes individuales de la incertidumbre; - el calculo de la incertidumbre estandar combinada; - informe de la incertidumbre.

  12. Changes of Fe matrix lattice constant during liquid phase sintering of Fe-Cu-C compacts by x-ray diffraction techniques

    International Nuclear Information System (INIS)

    Mazli Mustapha; Abdul Kadir Masrom; Mohammad, M.; Meh, B.; Zawati Harun

    2002-01-01

    The dissolution of graphite and copper during sintering of PM steels prepared from iron, copper and graphite powder mixes were studied using X-Ray Diffraction method. This paper present the investigation carried out to study the changes of iron's lattice constant during liquid phase sintering of the compacts. The electrical conductivity measurement method was also used for determining the extent of carbon and copper dissolution and its influence on the formation of sintered compacts. In the experiment, the Fe-Cu-C powders were compacted into a pellets using hand press machine and were then sintered in a 5% H 2 + 95% N 2 gas atmosphere at different sintering temperature in the range of 400 degree C and 1200 degree C. The effect of sintering parameters on the mechanical properties of the sintered compacts was studied to find a correlation between mechanical behaviour, microstructure, and the resistivity in order to develop nondestructive testing method. It was observed that measurement of Fe matrix lattice constant and electrical conductivity of sintered compacts could be a viable method in studying all stages of sintering process. (Author)

  13. Neutron-proton ratios of collective quadrupole matrix elements in even Fe and Cr isotopes

    International Nuclear Information System (INIS)

    Antalik, R.

    1989-01-01

    M n /M p ratios are investigated within the QRPA framework for the low-lying quadrupole states and for isoscalar giant quadrupole resonances in 54,56,58 Fe and 50,52,54 Cr. Theoretical results for 2 l ? + states are in good agreement with empirical ones obtained from recent proton and pion inelastic scattering studies. 16 refs.; 3 tabs

  14. FePO4 nanoparticles embedded in a large mesoporous carbon matrix as a high-capacity and high-rate cathode for lithium-ion batteries

    International Nuclear Information System (INIS)

    Chen, Lian; Wu, Ping; Xie, Kongwei; Li, Jianping; Xu, Bin; Cao, Gaoping; Chen, Yu; Tang, Yawen; Zhou, Yiming; Lu, Tianhong; Yang, Yusheng

    2013-01-01

    Highlights: ► Self-made nano-CaCO 3 templated LMC as a novel supporting matrix for FePO 4 cathode. ► The 3D porous structure of LMC is well retained in LMC–FePO 4 nanohybrid. ► Its reaction kinetics of lithium insertion/extraction is significantly improved. ► Markedly higher capacities and rate capability by virtue of its structure superiority. -- Abstract: By using large mesoporous carbon (LMC) as a novel host matrix, LMC–FePO 4 nanohybrid has been synthesized through a facile homogeneous precipitation process and subsequent annealing approach. When evaluated as a cathode for lithium-ion batteries (LIBs), the LMC–FePO 4 nanohybrid exhibits higher specific capacities, improved rate capability, and better cycling performance by virtue of its unique structural characteristics

  15. Calculus of radiolytic products generation in water due to alpha radiation. Determination of the spent nuclear fuels matrix alteration rate Determination of velocity of spent fuel matrix; Calculo de la generacion de productos radioliticos en agua por radiacion {alpha}. Determinacion de la velocidad de alteracion de la matriz del combustible nuclear gastado

    Energy Technology Data Exchange (ETDEWEB)

    Quinones, J.; Serrano, J.; Diaz Arocas, P.; Rodriguez Almazan, J. L. [Ciemat. Madrid (Spain); Bruno, J.; Cera, E.; Merino, J.; Esteban, J. A.; Martinez-Esparza, A. [Enresa. Madrid (Spain)

    2000-07-01

    The generation of radiolytic products as a result of alpha radiation in the surface of the spent fuel is a key process in order to understand how the it becomes degraded in repository conditions. The present work has established a radiolytic model based on a set of reactions involving fuel oxidation-dissolution and radiolytic products recombination. It also includes the decrease of the dose rates as the main alpha emitters decay away. Four cases, with varying parameters of the system, have been assessed. The results show a decrease in both the concentration of the radiolytic products in the gap water and the degradation of the fuel matrix. It has been estimated that in the period of the evaluation (10''6 years) up to 52% of the pellet is altered in the conservative cases, whereas only 11% is altered in the realistic cases. No significant differences were observed when the carbonates reactions were included in the system. (Author)

  16. Magnetic properties of Fe3C nanograins embedded in carbon matrix

    International Nuclear Information System (INIS)

    Lee, Y.H.; Han, T.C.; Huang, J.C.A.

    2003-01-01

    Magnetron dc cosputtering of a composite target of graphite disk plus iron rods was used in manufacturing carbon films with Fe 3 C nanograin inclusions. Both temperature- and field-dependent magnetizations, M(T) and M(H), were measured for samples of various carbon concentrations (from 37% to 85%). M(T) were measured in both conditions of zero-field cooling and a field cooling at H=100 Oe. Experimental results of χ(T), obtained from M(T), of zero-field cooling, were theoretically fitted by using Wolhfarth's model of noninteracting particles with log-normal distribution function of particle size

  17. Microstructure, Texture, and Mechanical Behavior of As-cast Ni-Fe-W Matrix Alloy

    Science.gov (United States)

    Rao, A. Sambasiva; Manda, Premkumar; Mohan, M. K.; Nandy, T. K.; Singh, A. K.

    2018-04-01

    This article describes the tensile properties, flow, and work-hardening behavior of an experimental alloy 53Ni-29Fe-18W in as-cast condition. The microstructure of the alloy 53Ni-29Fe-18W displays single phase (fcc) in as-cast condition along with typical dendritic features. The bulk texture of the as-cast alloy reveals the triclinic sample symmetry and characteristic nature of coarse-grained materials. The alloy exhibits maximum strength ( σ YS and σ UTS) values along the transverse direction. The elongation values are maximum and minimum along the transverse and longitudinal directions, respectively. Tensile fracture surfaces of both the longitudinal and transverse samples display complete ductile fracture features. Two types of slip lines, namely, planar and intersecting, are observed in deformed specimens and the density of slip lines increases with increasing the amount of deformation. The alloy displays moderate in-plane anisotropy ( A IP) and reasonably low anisotropic index ( δ) values, respectively. The instantaneous or work-hardening rate curves portray three typical stages (I through III) along both the longitudinal and transverse directions. The alloy exhibits dislocation-controlled strain hardening during tensile testing, and slip is the predominant deformation mechanism.

  18. Proximity effects on the local magnetic moments of clusters V{sub 6}-V{sub 9} embedded in a Fe matrix

    Energy Technology Data Exchange (ETDEWEB)

    Sosa-Hernandez, E.M. [Departamento de Matematicas Aplicadas, Facultad de Contaduria y Administration, Universidad Autonoma de San Luis Potosi, Alvaro Obregon 64, 78000 San Luis Potosi, S.L.P. (Mexico); Alvarado-Leyva, P.G. [Departamento de Fisica, Facultad de Ciencias, Universidad Autonoma de San Luis Potosi Alvaro Obregon 64, 78000 San Luis Potosi, S.L.P. (Mexico)]. E-mail: pal@galia.fc.uaslp.mx

    2006-11-09

    The magnetic behavior of clusters V{sub 6}-V{sub 9} in bulk Fe is determined by using an electronic Hamiltonian which includes s, p and d electrons. The spin density distribution is calculated self-consistenly in the unrestricted Hartree-Fock approximation. The local magnetic moments are obtained at V and Fe atoms; the magnetic coupling between Fe and V atoms is antiferromagnetic-like. We consider two cases, the first case correspond to non-interacting clusters, the distance between them is infinity, and the another case, when the clusters are interacting, the separation between them is finite; in the first case, the magnetic order in V{sub 6} is ferromagnetic-like whereas for V{sub 9} the magnetic order is antiferromagnetic-like, in the second case we have found that the magnetic order is not well stablished in V{sub 6}. We have found that the magnetic order in the matrix is not broken by the presence of the V atoms, although the local magnetic moments of Fe atoms at the interface cluster-matrix, are reduced respect to Fe bulk magnetization (2.22{mu} {sub B}) [e.g. {mu} {sub Fe}(5) = 1.98{mu} {sub B} in V{sub 6}; {mu} {sub Fe}(3) 1.89{mu} {sub B} in V{sub 9}].

  19. Fe isotope composition of bulk chondrules from Murchison (CM2): Constraints for parent body alteration, nebula processes and chondrule-matrix complementarity

    Science.gov (United States)

    Hezel, Dominik C.; Wilden, Johanna S.; Becker, Daniel; Steinbach, Sonja; Wombacher, Frank; Harak, Markus

    2018-05-01

    Chondrules are a major constituent of primitive meteorites. The formation of chondrules is one of the most elusive problems in cosmochemistry. We use Fe isotope compositions of chondrules and bulk chondrites to constrain the conditions of chondrule formation. Iron isotope compositions of bulk chondrules are so far only known from few studies on CV and some ordinary chondrites. We studied 37 chondrules from the CM chondrite Murchison. This is particularly challenging, as CM chondrites contain the smallest chondrules of all chondrite groups, except for CH chondrites. Bulk chondrules have δ56Fe between -0.62 and +0.24‰ relative to the IRMM-014 standard. Bulk Murchison has as all chondrites a δ56Fe of 0.00‰ within error. The δ56Fe distribution of the Murchison chondrule population is continuous and close to normal. The width of the δ56Fe distribution is narrower than that of the Allende chondrule population. Opaque modal abundances in Murchison chondrules is in about 67% of the chondrules close to 0 vol.%, and in 33% typically up to 6.5 vol.%. Chondrule Al/Mg and Fe/Mg ratios are sub-chondritic, while bulk Murchison has chondritic ratios. We suggest that the variable bulk chondrule Fe isotope compositions were established during evaporation and recondensation prior to accretion in the Murchison parent body. This range in isotope composition was likely reduced during aqueous alteration on the parent body. Murchison has a chondritic Fe isotope composition and a number of chondritic element ratios. Chondrules, however, have variable Fe isotope compositions and chondrules and matrix have complementary Al/Mg and Fe/Mg ratios. In combination, this supports the idea that chondrules and matrix formed from a single reservoir and were then accreted in the parent body. The formation in a single region also explains the compositional distribution of the chondrule population in Murchison.

  20. Detection and Quantification of 4-Methylimidazole in Cola by Matrix-assisted Laser Desorption Ionization Mass Spectrometry with Fe2O3 Nanoparticles on Zeolite.

    Science.gov (United States)

    Fujii, Yosuke; Ding, Yuqi; Umezawa, Taichi; Akimoto, Takafumi; Xu, Jiawei; Uchida, Takashi; Fujino, Tatsuya

    2018-01-01

    Food additives generally used in carbonated drinks, such as 4-methylimidazole (4MI), caffeine (Caf?), citric acid (CA), and aspartame (Apm), were measured by matrix-assisted laser desorption ionization mass spectrometry (MALDI MS) using nanometer-sized particles of iron oxide (Fe 2 O 3 NPs). The quantification of 4MI in Coca Cola (C-cola) was carried out. In order to improve the reproducibility of the peak intensities, Fe 2 O 3 NPs loaded on ZSM5 zeolite were used as the matrix for quantification. By using 2-ethylimidazole (2EI) as the internal standard, the amount of 4MI in C-cola was determined to range from 88 to 65 μg/355 mL. The results agree with the published value (approx. 72 μg/355 mL). It was found that MALDI using Fe 2 O 3 was applicable to the quantification of 4MI in C-cola.

  1. Bi-Component Nanostructured Arrays of Co Dots Embedded in Ni80Fe20 Antidot Matrix: Synthesis by Self-Assembling of Polystyrene Nanospheres and Magnetic Properties.

    Science.gov (United States)

    Coïsson, Marco; Celegato, Federica; Barrera, Gabriele; Conta, Gianluca; Magni, Alessandro; Tiberto, Paola

    2017-08-23

    A bi-component nanostructured system composed by a Co dot array embedded in a Ni 80 Fe 20 antidot matrix has been prepared by means of the self-assembling polystyrene nanospheres lithography technique. Reference samples constituted by the sole Co dots or Ni 80 Fe 20 antidots have also been prepared, in order to compare their properties with those of the bi-component material. The coupling between the two ferromagnetic elements has been studied by means of magnetic and magneto-transport measurements. The Ni 80 Fe 20 matrix turned out to affect the vortex nucleation field of the Co dots, which in turn modifies the magneto-resistance behaviour of the system and its spinwave properties.

  2. Fine structures and magnetic properties of FeCo granular thin films with plasma polymerized (C4F8) n matrix

    International Nuclear Information System (INIS)

    Kakizaki, K.; Yasoshima, S.; Choi, K.-K.; Kamishima, K.; Hiratsuka, N.

    2007-01-01

    In this paper a method for polymerization of fluorocarbon gas in argon plasma to obtain a novel granular structure was reported. We prepared granular films where FeCo fine particles were distributed in plasma-polymerized fluorocarbon matrix by a facing-targets RF magnetron sputtering method, and investigated the correlation between their structures and magnetic properties. The magnetization of the films prepared with the partial pressure of fluorocarbon gas between 0 and 1.0 mTorr decreased linearly, because the FeCo content in a unit volume of a film decreased when a polymerized material was used as the matrix. However, the coercivity of the films decreased drastically with increasing the partial pressure of fluorocarbon gas above 0.4 mTorr. This is because the magnetic anisotropy of FeCo particles is decreased by the decrease of grain size. It was confirmed by a TEM observation that the FeCo-(C 4 F 8 ) n films had the granular structure which was constituted by the very fine FeCo particles and the plasma-polymerized fluorocarbon matrix. For the film deposited at the partial pressure of fluorocarbon gas of 0.4 mTorr, the size of FeCo magnetic particles is about 20 nm. On the other hand, the size of FeCo particles is decreased to about 8 nm when the film deposited at the partial pressure of fluorocarbon gas of 0.8 mTorr and its distribution is small

  3. Laser surface forming of AlCoCrCuFeNi particle reinforced AZ91D matrix composites

    Science.gov (United States)

    Meng, Guanghui; Yue, T. M.; Lin, Xin; Yang, Haiou; Xie, Hui; Ding, Xu

    2015-07-01

    Traditionally, the laser melt injection (LMI) technique can only be used for forming ceramic particles reinforced metal matrix composites (MMCs) for enhancing surface properties of lightweight engineering materials. In this research, the LMI method was employed to form metal particles reinforced MMCs on AZ91D instead. This was viable because of the unique properties of the AlCoCrCuFeNi high-entropy alloy (HEA) metal particles used. The large difference in melting point between the HEA and the substrate material (AZ91D), and the limited reaction and the lack of fusion between the HEA and Mg have made it possible that a metal particles reinforced AZ91D composite material was produced. The reason of limited reaction was considered mainly due to the relatively high mixing enthalpy between the HEA constituent elements and Mg. Although there was some melting occurred at the particles surface with some solute segregation found in the vicinity close to the surface, intermetallic compounds were not observed. With regard to the wear resistance of the MMCs, it was found that when the volume fraction of the reinforcement phase, i.e. the HEA particles, reached about 0.4, the wear volume loss of the coating was only one-seventh of that of the substrate material.

  4. Electrospun Fe3O4/TiO2 hybrid nanofibers and their in vitro biocompatibility: prospective matrix for satellite cell adhesion and cultivation.

    Science.gov (United States)

    Amna, Touseef; Hassan, M Shamshi; Van Ba, Hoa; Khil, Myung-Seob; Lee, Hak-Kyo; Hwang, I H

    2013-03-01

    We report the fabrication of novel Fe3O4/TiO2 hybrid nanofibers with the improved cellular response for potential tissue engineering applications. In this study, Fe3O4/TiO2 hybrid nanofibers were prepared by facile sol-gel electrospinning using titanium isopropoxide and iron(III) nitrate nonahydrate as precursors. The obtained electrospun nanofibers were vacuum dried at 80 °C and then calcined at 500 °C. The physicochemical characterization of the synthesized composite nanofibers was carried out by scanning electron microscopy, energy dispersive X-ray spectroscopy, transmission electron microscopy and X-ray diffraction pattern. To examine the in vitro cytotoxicity, satellite cells were treated with as-prepared Fe3O4/TiO2 and the viability of cells was analyzed by Cell Counting Kit-8 assay at regular time intervals. The morphological features of unexposed satellite cells and exposed to Fe3O4/TiO2 composite were examined with a phase contrast microscope whereas the quantification of cell viability was carried out via confocal laser scanning microscopy. The morphology of the cells attached to hybrid matrix was observed by Bio-SEM. Cytotoxicity experiments indicated that the satellite cells could attach to the Fe3O4/TiO2 composite nanofibers after being cultured. We observed that Fe3O4-TiO2 composite nanofibers could support cell adhesion and growth. Results from this study therefore suggest that Fe3O4/TiO2 composite scaffold with small diameters (approximately 200 nm) can mimic the natural extracellular matrix well and provide possibilities for diverse applications in the field of tissue engineering and regenerative medicine. Copyright © 2012 Elsevier B.V. All rights reserved.

  5. Electrospun Fe3O4/TiO2 hybrid nanofibers and their in vitro biocompatibility: Prospective matrix for satellite cell adhesion and cultivation

    International Nuclear Information System (INIS)

    Amna, Touseef; Hassan, M. Shamshi; Van Ba, Hoa; Khil, Myung-Seob; Lee, Hak-Kyo; Hwang, I.H.

    2013-01-01

    We report the fabrication of novel Fe 3 O 4 /TiO 2 hybrid nanofibers with the improved cellular response for potential tissue engineering applications. In this study, Fe 3 O 4 /TiO 2 hybrid nanofibers were prepared by facile sol–gel electrospinning using titanium isopropoxide and iron(III) nitrate nonahydrate as precursors. The obtained electrospun nanofibers were vacuum dried at 80 °C and then calcined at 500 °C. The physicochemical characterization of the synthesized composite nanofibers was carried out by scanning electron microscopy, energy dispersive X-ray spectroscopy, transmission electron microscopy and X-ray diffraction pattern. To examine the in vitro cytotoxicity, satellite cells were treated with as-prepared Fe 3 O 4 /TiO 2 and the viability of cells was analyzed by Cell Counting Kit-8 assay at regular time intervals. The morphological features of unexposed satellite cells and exposed to Fe 3 O 4 /TiO 2 composite were examined with a phase contrast microscope whereas the quantification of cell viability was carried out via confocal laser scanning microscopy. The morphology of the cells attached to hybrid matrix was observed by Bio-SEM. Cytotoxicity experiments indicated that the satellite cells could attach to the Fe 3 O 4 /TiO 2 composite nanofibers after being cultured. We observed that Fe 3 O 4 –TiO 2 composite nanofibers could support cell adhesion and growth. Results from this study therefore suggest that Fe 3 O 4 /TiO 2 composite scaffold with small diameters (approximately 200 nm) can mimic the natural extracellular matrix well and provide possibilities for diverse applications in the field of tissue engineering and regenerative medicine. Highlights: ► We report fabrication of novel Fe 3 O 4 /TiO 2 hybrid nanofibers by facile electrospinning. ► The utilized satellite cells were isolated from native Korean Hanwoo cattle. ► Fe 3 O 4 /TiO 2 composite with small diameters (∼ 200 nm) can mimic the natural ECM well. ► Fe 3 O 4 /TiO 2

  6. Mechano-synthesis, structural and magnetic characterization, and heat release of α-Fe nanoparticles embedded in a wüstite matrix

    Energy Technology Data Exchange (ETDEWEB)

    Batista, S.O.S.; Morales, M.A.; Santos, W.C. dos; Iglesias, C.A. [Departamento de Física Teórica e Experimental, Universidade Federal do Rio Grande do Norte, 59078-900 Natal, RN (Brazil); Baggio-Saitovitch, E. [Centro Brasileiro de Pesquisas Físicas, Rua Dr. Xavier Sigaud 150, Urca, 22290-180 Rio de Janeiro, RJ (Brazil); Carriço, A.S. [Departamento de Física Teórica e Experimental, Universidade Federal do Rio Grande do Norte, 59078-900 Natal, RN (Brazil); Bohn, F., E-mail: felipebohn@gmail.com [Departamento de Física Teórica e Experimental, Universidade Federal do Rio Grande do Norte, 59078-900 Natal, RN (Brazil); Medeiros, S.N. de [Departamento de Física Teórica e Experimental, Universidade Federal do Rio Grande do Norte, 59078-900 Natal, RN (Brazil)

    2015-10-01

    We report a study of the structural and magnetic properties, as well as of the heat release, of an iron/wüstite composite, prepared from iron powder and water by high energy mechanical milling. We identify that the produced sample consists of α-Fe nanoparticles embedded in a wüstite matrix and has high stability in time. Moreover, we observe that it presents noticeable features, as exchange bias effect at low temperatures and, when an alternating magnetic field is applied, its temperature reaches ∼46 °C in ∼600 s. Thus, the results and the possibility of tuning the magnetic properties of α-Fe nanoparticles embedded in a wüstite matrix, through interface interactions, place this system as a very attractive candidate for biomedical applications such as magnetic hyperthermia agent for cancer therapy. - Highlights: • We investigate the structural and magnetic properties, as well as the heat release, of an iron/wüstite composite. • The samples are produced using high energy mechanical milling. • Fe nanoparticles embedded in a wüstite matrix have high stability in time. • When an alternating magnetic field is applied, the sample temperature increases up to ∼46°C. • The composite is an interesting candidate for biomedical applications, such as magnetic hyperthermia agent for cancer therapy.

  7. Fe nanoparticle tailored poly(N-methyl pyrrole) nanowire matrix: a CHEMFET study from the perspective of discrimination among electron donating analytes

    International Nuclear Information System (INIS)

    Datta, K; Rushi, A; Shirsat, M; Mulchandani, A; Ghosh, P

    2015-01-01

    Back-gated chemically sensitive field effect transistor (CHEMFET) platforms have been developed with electrochemically synthesized poly(N-methyl pyrrole) nanowires by a templateless route. The nanowire matrix has been tailored with Fe nanoparticles to probe their effect in enhancing the sensing capabilities of the nanowire platform, and further to see if the inculcation of Fe nanoparticles is helpful to enhance the screening capability of the sensor among electron donating analytes. A noticeable difference in the sensing behaviour of the CHEMFET sensor was observed when it was exposed to three different analytes—ammonia, phosphine and carbon monoxide. FET transfer characteristics were instrumental in the corroboration of the experimental validations. The observations have been rationalized considering the simultaneous modulation of the work functions of Fe and polymeric material. The real time behaviour of the sensor shows that the sensor platform is readily capable of sensing the validated analytes at a ppb level of concentration with good response and recovery behaviour. The best response could be observed for ammonia with an Fe nanoparticle tailored polymeric matrix, with a sensitivity of ∼31.58% and excellent linearity (R 2 = 0.985) in a concentration window of 0.05 ppm to 1 ppm. (paper)

  8. Matrix-assisted relaxation in Fe(phen){sub 2}(NCS){sub 2} spin-crossover microparticles, experimental and theoretical investigations

    Energy Technology Data Exchange (ETDEWEB)

    Enachescu, Cristian, E-mail: cristian.enachescu@uaic.ro; Stancu, Alexandru [Faculty of Physics, “Alexandru Ioan Cuza” University, 700506 Iasi (Romania); Tanasa, Radu [Faculty of Physics, “Alexandru Ioan Cuza” University, 700506 Iasi (Romania); Department of Engineering, University of Cambridge, CB2 1PZ Cambridge (United Kingdom); Tissot, Antoine [Institut de Chimie Moléculaire et des Matériaux d' Orsay, Université Paris Sud, Université Paris-Saclay, CNRS, 91405 Orsay (France); Institut Lavoisier de Versailles, UMR 8180, CNRS, Université de Versailles-Saint Quentin en Yvelines, 78035 Versailles (France); Laisney, Jérôme; Boillot, Marie-Laure, E-mail: marie-laure.boillot@u-psud.fr [Institut de Chimie Moléculaire et des Matériaux d' Orsay, Université Paris Sud, Université Paris-Saclay, CNRS, 91405 Orsay (France)

    2016-07-18

    In this study, we present the influence of the embedding matrix on the relaxation of Fe(phen){sub 2}(NCS){sub 2} (phen = 1,10-phenanthroline) spin-transition microparticles as revealed by experiments and provide an explanation within the framework of an elastic model based on a Monte-Carlo method. Experiments show that the shape of the high-spin → low-spin relaxation curves is drastically changed when the particles are dispersed in glycerol. This effect was considered in the model by means of interactions between the microparticles and the matrix. A faster start of the relaxation for microparticles embedded in glycerol is due to an initial positive local pressure acting on the edge spin-crossover molecules from the matrix side. This local pressure diminishes and eventually becomes negative during relaxation, as an effect of the decrease of the volume of spin-crossover microparticles from high-spin to low-spin.

  9. RA-0 reactor. New neutronic calculations; Reactor RA-0. Nuevos calculos neutronicos

    Energy Technology Data Exchange (ETDEWEB)

    Rumis, D; Leszczynski, F

    1991-12-31

    An updating of the neutronic calculations performed at the RA-0 reactor, located at the Natural, Physical and Exact Sciences Faculty of Cordoba National University, are herein described. The techniques used for the calculation of a reactor like the RA-0 allows prediction in detail of the flux behaviour in the core`s interior and in the reflector, which will be helpful for experiments design. In particular, the use of WIMSD4 code to make calculations on the reactor implies a novelty in the possible applications of this code to solve the problems that arise in practice. (Author). [Espanol] En este trabajo se actualizan los calculos neutronicos realizados para el reactor RA-0, instalado en la Facultad de Ciencias Exactas, Fisicas y Naturales de la Universidad Nacional de Cordoba. Se describen los calculos realizados hasta la fecha y los resultados obtenidos. Las tecnicas incorporadas al calculo de un reactor como el RA-0 permiten predecir en detalle el comportamiento del flujo en el interior del nucleo y en el reflector, lo que sera una importante ayuda en el diseno de experimentos. En particular, el empleo del codigo WIMSD4 para calculos del reactor completo constituye una novedad en las posibles aplicaciones de ese codigo para resolver problemas que se presentan en la practica. (Autor).

  10. Separated CoFe{sub 2}O{sub 4}/CoFe nanoparticles by the SiO{sub x} matrix: revealing the intrinsic origin for the small remanence magnetization

    Energy Technology Data Exchange (ETDEWEB)

    Geng, B. Q.; Ma, Y. Q., E-mail: yqma@ahu.edu.cn; Xu, Y. F.; Xu, S. T.; Sun, X.; Zheng, G. H.; Dai, Z. X. [Anhui University, Anhui Key Laboratory of Information Materials and Devices, School of Physics and Materials Science (China)

    2015-07-15

    In order to clarify the intrinsic reason for the smaller remanence (M{sub r})-to-saturation (M{sub s}) magnetization ratio M{sub r}/M{sub s} than that expected by the Stoner–Wohlfarth model in CoFe{sub 2}O{sub 4}/CoFe{sub 2} nanoparticles in the previous report, we first prepared well-dispersed CoFe{sub 2}O{sub 4} nanoparticles, and then they were diluted in the SiO{sub 2} matrix followed by reduction in H{sub 2} as far as possible to exclude or reduce disadvantageous variables (such as the growth and aggregation of particles and the exchange coupling between soft magnetic particles in the process of reducing) affecting magnetic properties. Such an idea has not been taken into account before to our knowledge. The analyses on the magnetic results indicate that the CoFe{sub 2}O{sub 4}/CoFe{sub 2} nanoparticles herein reported are a pure dipolar system, in which the coercivity (H{sub c}) and M{sub r}/M{sub s} ratio are very sensitive to the anisotropy and the strength of dipolar interaction. These results signify that it is important to maintain the CoFe{sub 2}O{sub 4}/CoFe{sub 2} nanoparticles with higher anisotropy and weaker dipolar interaction for improving M{sub r}/M{sub s} and H{sub c}. This suggestion was further confirmed by our another result wherein an M{sub r}/M{sub s} value of 0.64 was obtained even though no exchange coupling was observed in the CoFe{sub 2}O{sub 4}/CoFe{sub 2} nanoparticles, and further work is in process. Graphical abstract: Numerous efforts have devoted to improve the values of M{sub s} and M{sub r}/M{sub s} by compositing hard CoFe{sub 2}O{sub 4} (CFO) ferrite with soft CoFe{sub 2} (CF) alloy, which unfortunately give the low M{sub r}/M{sub s} value (<0.5) even in presence of the exchange coupling. Key issues involve the preparation of CFO/CF composite. Previously the preparation of CFO/CF undergoes the synthesis of CFO and the subsequent reducing in the H{sub 2} ambient, as shown in Figure (a), while in this work well dispersed CFO

  11. Morphological, structural and magnetic properties of α-Fe2O3 nanoparticles in an amorphous alumina matrix obtained by aqueous combustion method

    International Nuclear Information System (INIS)

    Tadic, Marin; Kusigerski, Vladan; Markovic, Dragana; Citakovic, Nada; Remskar, Maja; Spasojevic, Vojislav

    2009-01-01

    We report on morphological, structural and magnetic properties of α-Fe 2 O 3 nanoparticles in an amorphous alumina matrix synthesized by aqueous combustion method. The sample was characterized by X-ray powder diffraction (XRPD), high-resolution electron microscopy (HREM) and SQUID magnetometry. XRPD study reveals the phase purity of α-Fe 2 O 3 whereas HREM images show an unusual spongy structure and well-crystallized nanoparticles with a size of about 25 nm. Magnetic measurements show a high irreversibility temperature T irr ∼ 350 K, Morin transition at T M ∼ 210 K, increase of the magnetization below T ∼ 45 K and hysteretic behavior below T M at 5 K and 200 K.

  12. Study on the process of sintering matrix metallic Fe-Cu-25%Nb and Fe-Cu-25%Co during hot pressing

    International Nuclear Information System (INIS)

    Batista, A.C.; Oliveira, H.C.P.; Souza, M.H.; Assis, P.S.

    2016-01-01

    The sintering process promotes densification and the evolution of the microstructure of the material, with consequent significant increase in hardness and mechanical strength. However, few studies show the influence of pressure and temperature during sintering by hot pressing. In this sense, this work aims to evaluate the microstructural changes and properties with the variation of pressure and temperature and the type suffered by sintering metal powders during sintering by hot pressing. For this, two samples were studied by changing the sintering parameters: 25% Fe-50% Cu-25% Nb and 25% Fe-50% Cu-25% Co. Samples were analyzed by SEM / EDS in order to check the morphology and the presence of pores, as well as the interaction between the metallic constituents of each sample by the EDS analysis in line. They also determined the relative density, porosity and Vickers hardness (HV5). At the end of the study it was concluded that niobium alloy composite element by sintering activated suffered together with the liquid phase sintering. For cobalt alloys were observed by liquid phase sintering. The increase in the severity of the sintering conditions (temperature and pressure) led to an improvement in physical and mechanical properties of the alloys, which indicates that these parameters are directly related to the mechanisms of diffusion in the sintering process, improving the properties and diffusivity between elements. (author)

  13. The pitchblende of Fe mine (Ciudad Rodrigo, Salamanca) as natural analogue of spent fuel behaviour (matrix I project); La pechblenda de la mina Fe (Ciudad Rodrigo, Salamanca), como analogo natural del comportamiento del combustible gastado (Proyecto Matrix I)

    Energy Technology Data Exchange (ETDEWEB)

    Perez del Villar, L; Campos, R; Gomez, P; Cozar, J S; Pardillo, J; Garralon, A; Turrero, M J; Buil, B; Pelayo, M; Ruiz, B; Rivas, P [CIEMAT, Madrid (Spain)

    2001-07-01

    Uranium ore deposits have been extensively studied as natural analogues to the deep geological disposal of radioactive waste. These investigations constitute an essential element of both national and international research programmes applied to the assessment of geological repositories in crystalline, clayey and even in schistose rocks. The uranium ore deposit of Fe mine (Ciudad Rodrigo, Salmanca) is placed in highly fractured schistose rocks, a geological setting that has not been envisaged in ENRESA options. However, the similarities with some of the repository features and the analogies with the processes involved in the degradation of the ore deposits made advisable its study as natural analogue. The most important features are. (Author)

  14. Synthesize and characterization of a novel anticorrosive cobalt ferrite nanoparticles dispersed in silica matrix (CoFe2O4-SiO2) to improve the corrosion protection performance of epoxy coating

    International Nuclear Information System (INIS)

    Gharagozlou, M.; Ramezanzadeh, B.; Baradaran, Z.

    2016-01-01

    Highlights: • An anticorrosive cobalt ferrite nanopigment dispersed in silica matrix was synthesized. • The nanopigment showed proper inhibition performance in solution study. • The nanopigment significantly improved the corrosion resistance of the epoxy coating. - Abstract: This study aimed at studying the effect of an anticorrosive nickel ferrite nanoparticle dispersed in silica matrix (NiFe 2 O 4 -SiO 2 ) on the corrosion protection properties of steel substrate. NiFe 2 O 4 and NiFe 2 O 4 -SiO 2 nanopigments were synthesized and then characterized by X-ray diffraction (XRD), Fourier transform infrared spectroscopy (FT-IR) and transmission electron microscope (TEM). Then, 1 wt.% of nanopigments was dispersed in an epoxy coating and the resultant nanocomposites were applied on the steel substrates. The corrosion inhibition effects of nanopigments were tested by an electrochemical impedance spectroscopy (EIS) and salt spray test. Results revealed that dispersing nickel ferrite nanoparticles in a silica matrix (NiFe 2 O 4 -SiO 2 ) resulted in the enhancement of the nanopigment dispersion in the epoxy coating matrix. Inclusion of 1 wt.% of NiFe 2 O 4 -SiO 2 nanopigment into the epoxy coating enhanced its corrosion protection properties before and after scratching.

  15. Effect of processing parameters on Cu-Co-Fe-based diamond impregnated metal matrix composite for stone cutting

    International Nuclear Information System (INIS)

    Mawani, K.; Shahid, M.; Arshad, S.N.; Hasaini, M.H.; Khan, B.S.

    2005-01-01

    Diamond Impregnated Metal Matrix Composites (DIMMC), manufactured by powder metallurgy route, playa major role in stone cutting tool industry. Unfortunately, these diamond tools are not manufactured locally. Our industry relies heavily on the import of these diamond tools to meet the local demand. This study was undertaken as a first step towards indigenous development of these diamond tools. Most of the diamond tools exist in the form of a composite structure with diamond grits embedded in a metallic matrix. This paper investigates the effect of various processing variables on the properties of DIMMC. Effect of pressure on the compaction behavior, sintering time and temperature has been investigated. Relatively better homogeneity has been observed with dry mixing of individual powders using zinc stearate as lubricant compared to wet mixing. A linear increase in green density has been found by increasing compaction pressure up to 400 MPa. (author)

  16. The pitchblende of Fe mine (Ciudad Rodrigo, Salamanca) as natural analogue of spent fuel behaviour (matrix I project)

    International Nuclear Information System (INIS)

    Perez del Villar, L.; Campos, R.; Gomez, P.; Cozar, J. S.; Pardillo, J.; Garralon, A.; Turrero, M. J.; Buil, B.; Pelayo, M.; Ruiz, B.; Rivas, P.

    2001-01-01

    Uranium ore deposits have been extensively studied as natural analogues to the deep geological disposal of radioactive waste. These investigations constitute an essential element of both national and international research programmes applied to the assessment of geological repositories in crystalline, clayey and even in schistose rocks. The uranium ore deposit of Fe mine (Ciudad Rodrigo, Salmanca) is placed in highly fractured schistose rocks, a geological setting that has not been envisaged in ENRESA options. However, the similarities with some of the repository features and the analogies with the processes involved in the degradation of the ore deposits made advisable its study as natural analogue. The most important features are. (Author)

  17. Photochemistry of Fe:H2O Adducts in Argon Matrixes: A Combined Experimental and Theoretical Study in the Mid-IR and UV-Visible Regions.

    Science.gov (United States)

    Deguin, Vincent; Mascetti, Joëlle; Simon, Aude; Ben Amor, Nadia; Aupetit, Christian; Latournerie, Sandra; Noble, Jennifer A

    2018-01-18

    The photochemistry of Fe:H 2 O adducts is of interest in fields as diverse as catalysis and astrochemistry. Industrially, iron can be used as a catalyst to convert H 2 O to H 2 , whereas in the interstellar medium it may be an important component of dust grains, influencing the chemistry on their icy surfaces. This study consisted of the deposition and spectral characterization of binary systems of atomic iron with H 2 O in cryogenic argon matrixes. In this way, we were able to obtain information about the interaction of the two species; we observed the formation of adducts of iron monomers and dimers with water molecules in the mid-IR and UV-visible spectral domains. Upon irradiation with a UV radiation source, the iron species were inserted into the water molecules to form HFeOH and HFe 2 OH, leading in some cases to the formation of FeO possibly accompanied by the production of H 2 . DFT and correlated multireference wave function calculations confirmed our attributions. This combination of IR and UV-visible spectroscopy with theoretical calculations allowed us to determine, for the first time, the spectral characteristics of iron adducts and their photoproducts in the UV-visible and in the OH stretching region of the mid-IR domain.

  18. EPR of some low-spin dsup(5) tris-chelate complexes of Fe(3), Ru(3), Os(3) in liquid-crystal matrix

    International Nuclear Information System (INIS)

    Domracheva, N.E.; Konstantinov, V.N.; Luchkona, S.A.; Ovchinnikov, I.V.

    1985-01-01

    Using the EPR method low-spin trischelate complexes of Fe, Ru, Os with 8-mercaptoquinoline and 8-oxyquinoline in oriented vitrified liquid-crystal matrix have been studied. Analtysis of angular dependences of EPR spectra of the complexes permitted to correlate the main axes of g-tensor with molecular axes and, consequently, to determine unambiguously the main electron states of the systems, as well as the value of crystal splittings. It is shown that in the complexes studied the splitting of energy levels is mainly determined by spin-orbital interaction, and not by axial or rhombic components of crystal field. However, rhombic distortion is responsible for anisotropy of g-tensor in xy plane and anisotropy of x- and y-axes orientation. The way to orient complexes in liquid-crystal matrix is substantiated; symmetry axis of the third order C 3 (Z) is mainly oriented along the director. Parameters of the function of orientational distribution of the complex axes are obtained

  19. Electrical memory features of ferromagnetic CoFeAlSi nano-particles embedded in metal-oxide-semiconductor matrix

    International Nuclear Information System (INIS)

    Lee, Ja Bin; Kim, Ki Woong; Lee, Jun Seok; An, Gwang Guk; Hong, Jin Pyo

    2011-01-01

    Half-metallic Heusler material Co 2 FeAl 0.5 Si 0.5 (CFAS) nano-particles (NPs) embedded in metal-oxide-semiconductor (MOS) structures with thin HfO 2 tunneling and MgO control oxides were investigated. The CFAS NPs were prepared by rapid thermal annealing. The formation of well-controlled CFAS NPs on thin HfO 2 tunneling oxide was confirmed by atomic force microscopy (AFM). Memory characteristics of CFAS NPs in MOS devices exhibited a large memory window of 4.65 V, as well as good retention and endurance times of 10 5 cycles and 10 9 s, respectively, demonstrating the potential of CFAS NPs as promising candidates for use in charge storage.

  20. Preparation and characterization of a magneto-polymeric nanocomposite: Fe 3O 4 nanoparticles in a grafted, cross-linked and plasticized poly(vinyl chloride) matrix

    Science.gov (United States)

    Rodríguez-Fernández, Oliverio S.; Rodríguez-Calzadíaz, C. A.; Yáñez-Flores, Isaura G.; Montemayor, Sagrario M.

    In this work two kind of materials: (1) grafted, cross-linked and plasticized poly(vinyl chloride) (PVC) "plastic films" and (2) magnetic plastic films "magneto-polymeric nanocomposites" were prepared. Precursor solutions or "plastisols" used to obtain the plastic films were obtained by mixing PVC (emulsion grade) as polymeric matrix, di(2-ethylhexyl)phthalate (DOP) as plasticizer, a thermal stabilizer based in Ca/Zn salts, and a cross-linking agent, 3-mercaptopropyltrimethoxysilane (MTMS) or 3-aminopropyltriethoxysilane (ATES), at several concentrations. Flexible films were obtained from the plastisols using static casting. The stress-strain behavior and the gel content (determined by Soxhlet extraction with boiling THF) of the flexible films were measured in order to evaluate the effect of the cross-linking agent and their content on the degree of cross-linking. The magneto-polymeric nanocomposites were obtained by mixing the optimum composition of the plastisols (analyzed previously) with magnetite (Fe 3O 4)-based ferrofluid and DOP. Later, flexible films were obtained by static casting of the plastisol/ferrofluid systems. The magnetic films were characterized by the above-mentioned techniques and X-ray diffraction, vibrating sample magnetometry and thermogravimetrical analysis.

  1. Calculo de la Barra Antivuelco de un Vehículo Automotor.

    Directory of Open Access Journals (Sweden)

    Javier García de la Figal

    2005-09-01

    Full Text Available El presente trabajo trata acerca del calculo de la barra antivuelco del FORD modelo A, desarrollado por elInstituto de Desarrollo Automotriz, IDA, teniendo en cuenta las fuerzas que la cinta de seguridad de losautomovilistas, ejerce sobre la citada barra, ante un choque que provoca una aceleración de 20 g en elvehículo. El calculo se hace mediante la confección de un modelo de elementos finitos de la barra y lacarrocería, para lo cual se hace uso de un programa profesional de elementos finitos.Se determinan los esfuerzos máximos y los equivalentes, tanto de las partes metálicas del sistema, queson fundamentalmente tubos de acero, como de las partes de material compuesto (poliéster con fibras devidrio E, propios de la carrocería del vehículo. Todo lo cual permite hacer los cálculos y comprobacionesa resistencia de todo el conjunto. Así mismo, se determinan los desplazamientos en todos los sentidos detodos las partes del sistema, para poder realizar los correspondientes análisis de rigidez.El objetivo final de todos los análisis es determinar lo adecuado o no de las soluciones y materialespropuestos para el sistema, bajo la acción de la citada carga de impacto.

  2. Mixed nickel-gallium tellurides Ni{sub 3−x}GaTe{sub 2} as a matrix for incorporating magnetic cations: A Ni{sub 3−x}Fe{sub x}GaTe{sub 2} series

    Energy Technology Data Exchange (ETDEWEB)

    Kuznetsov, Alexey N., E-mail: alexei@inorg.chem.msu.ru [Department of Chemistry, Lomonosov Moscow State University, Leninskie Gory 1-3, GSP-1, 119991 Moscow (Russian Federation); N.S. Kurnakov Institute of General and Inorganic Chemistry, RAS, Leninsky pr. 31, GSP-1, 119991 Moscow (Russian Federation); Stroganova, Ekaterina A.; Zakharova, Elena Yu; Solopchenko, Alexander V.; Sobolev, Alexey V.; Presniakov, Igor A. [Department of Chemistry, Lomonosov Moscow State University, Leninskie Gory 1-3, GSP-1, 119991 Moscow (Russian Federation); Kirdyankin, Denis I.; Novotortsev, Vladimir M. [N.S. Kurnakov Institute of General and Inorganic Chemistry, RAS, Leninsky pr. 31, GSP-1, 119991 Moscow (Russian Federation)

    2017-06-15

    Using a high-temperature ampoule technique, a series of mixed nickel-iron-gallium metal-rich tellurides with layered structures, Ni{sub 3-x}Fe{sub x}GaTe{sub 2}, were prepared and characterized based on X-ray powder diffraction, energy-dispersive spectroscopy, and {sup 57}Fe Mössbauer spectroscopy data. These compounds may be regarded as a result of partial substitution of nickel by iron in the recently reported ternary Ni{sub 3-x}GaTe{sub 2} series, which are based on NiAs/Ni{sub 2}In type of structure. The compositional boundary for the substitution was found to be at x~1. According to the Mössbauer spectroscopy data, the substitution is not statistical, and iron atoms with the increase in x tend to preferentially occupy those nickel positions that are partially vacant in the initial ternary compound. Magnetic measurements data for the Ni{sub 3-x}Fe{sub x}GaTe{sub 2} series show dramatic change in behavior from temperature-independent paramagnetic properties of the initial matrix to a low-temperature (~75 K) ferromagnetic ordering in the Ni{sub 2}FeGaTe{sub 2}. - Graphical abstract: Ordered substitution of nickel by iron in the Ni{sub 3−x}GaTe{sub 2} series leading to ferromagnetic ordering. - Highlights: • A series of Ni{sub 3−x}Fe{sub x}GaTe{sub 2} compounds were synthesized. • They adopt the NiAs/Ni{sub 2}In type of structure with ordered iron distribution. • The distribution of iron was studied using {sup 57}Fe Mössbauer spectroscopy. • An increase in iron content leads to the strong ferromagnetic coupling.

  3. Algorithm for the calculation of a steam generator efficiency; Algoritmo para el calculo de la eficiencia de un generador de vapor

    Energy Technology Data Exchange (ETDEWEB)

    Franco, David; Ambriz, Juan Jose; Romero Paredes, Hernando [Universidad Autonoma Metropolitana-Iztapalapa, Mexico, D. F. (Mexico)

    1994-12-31

    The efficiency calculation of steam generators is not always simple. The purpose of this paper is to propose an algorithm for the calculation of steam generators efficiency, easy to understand and carry out, in the form of a series of steps to be followed. It takes as starting point that the person in charge of applying these calculations has knowledge of the combustion processes and thermodynamic principles that rule such processes. [Espanol] El calculo de la eficiencia de los generadores de vapor no siempre es sencillo, el presente trabajo tiene como objetivo el de proponer un algoritmo de calculo de eficiencia de generadores de vapor, el cual sea facil de entender y de llevar a cabo, en forma de una serie de pasos a seguir. Se toma como punto de partida, que la persona encargada de aplicar estos calculos tenga el conocimiento de los procesos de combustion y principios termodinamicos que rigen tales procesos.

  4. Mixed hemimicelles solid-phase extraction based on ionic liquid-coated Fe3O4/SiO2 nanoparticles for the determination of flavonoids in bio-matrix samples coupled with high performance liquid chromatography.

    Science.gov (United States)

    He, Huan; Yuan, Danhua; Gao, Zhanqi; Xiao, Deli; He, Hua; Dai, Hao; Peng, Jun; Li, Nan

    2014-01-10

    A novel magnetic solid-phase extraction (MSPE) method based on mixed hemimicelles of room temperature ionic liquids (RTILs) coated Fe3O4/SiO2 nanoparticles (NPs) was developed for simultaneous extraction of trace amounts of flavonoids in bio-matrix samples. A comparative study on the use of RTILs (C16mimBr) and CTAB-coated Fe3O4/SiO2 NPs as sorbents was presented. Owing to bigger adsorption amounts for analytes, RTILs-coated Fe3O4/SiO2 NPs was selected as MSPE materials and three analytes luteolin, quercetin and kaempferol can be quantitatively extracted and simultaneously determined coupled with high performance liquid chromatography (HPLC) in urine samples. No interferences were caused by proteins or endogenous compounds. Good linearity (R(2)>0.9993) for all calibration curves was obtained, and the limits of detection (LOD) for luteolin, quercetin and kaempferol were 0.10 ng/mL, 0.50 ng/mL and 0.20 ng/mL in urine samples, respectively. Satisfactory recoveries (93.5-97.6%, 90.1-95.4% and 93.3-96.6% for luteolin, quercetin and kaempferol) in biological matrices were achieved. It was notable that while using a small amount of Fe3O4/SiO2 NPs (4.0 mg) and C16mimBr (1.0 mg), satisfactory preconcentration factors and extraction recoveries for the three flavonoids were obtained. To the best of our knowledge, this is the first time a mixed hemimicelles MSPE method based on RTILs and Fe3O4/SiO2 NPs magnetic separation has ever been used for pretreatment of complex biological samples. Copyright © 2013 Elsevier B.V. All rights reserved.

  5. The stress, surface spin and dipolar interaction in the diluted NiFe{sub 2}O{sub 4} nanoparticles by the SiO{sub 2} matrix: Characterization and analyses

    Energy Technology Data Exchange (ETDEWEB)

    Sun, X.; Ma, Y.Q., E-mail: yqma@ahu.edu.cn; Xu, S.T.; Xu, Y.F.; Geng, B.Q.

    2015-09-15

    Well-dispersed uniform NiFe{sub 2}O{sub 4} nanoparticles (NPs) with an average particle size of 15.4 nm were synthesized by thermal decomposition of a metal–organic salt, and then were diluted in a SiO{sub 2} matrix via a sol–gel method with different concentration. The magnetization (M) dependence of NiFe{sub 2}O{sub 4}/SiO{sub 2} on the temperature (T) and on the applied magnetic field (H) was systematically characterized by the Quantum Design superconducting quantum interference device (SQUID) PPMS system. The results of M ~ H/T divide the magnetic properties between 10 K and 300 K into two regions: the low temperature blocked-particle regime below the blocking temperature T{sub B} and the interacting superparamagnetic (ISP) regime above T{sub B}. In the ISP regime, all samples deviate from the ideal Langevin superparamagnetic behavior due to the effective anisotropy induced by the stress, surface spins and interparticle dipolar interaction. The Raman spectra indicate that the stress in all samples exhibits the vibration behavior, which leads to the effective anisotropy and hence coercivity vibration. - Graphical abstract: Display Omitted - Highlights: • Increase of NiFe{sub 2}O{sub 4} NPs' concentration elevates T{sub B} and broadens ZFC peak. • NiFe{sub 2}O{sub 4}/SiO{sub 2} samples do not exhibit the ideal superparamagnetism above T{sub B}. • Stress leads to the effective anisotropy and hence H{sub c} vibration. • Stress vibration was characterized in detail by the Raman spectra.

  6. Temperature dependence magnetic properties and exchange bias effect in CuFe{sub 2}O{sub 4} nanoparticles embedded in NiO matrix

    Energy Technology Data Exchange (ETDEWEB)

    Ali, Kashif [Physics Department, Quaid-i-Azam University, Islamabad (Pakistan); Physics Department, International Islamic University, Islamabad (Pakistan); Physics Department, University of Gujrat, Gujrat (Pakistan); Sarfraz, A.K., E-mail: sarfraz.ak1@gmail.com [Physics Department, Quaid-i-Azam University, Islamabad (Pakistan); Physics Department, International Islamic University, Islamabad (Pakistan); Physics Department, University of Gujrat, Gujrat (Pakistan); Ali, Atif; Mumtaz, A.; Hasanain, S.K. [Physics Department, Quaid-i-Azam University, Islamabad (Pakistan); Physics Department, International Islamic University, Islamabad (Pakistan); Physics Department, University of Gujrat, Gujrat (Pakistan)

    2014-11-15

    The effect of temperature on the magnetic properties of CuFe{sub 2}O{sub 4}/NiO nanocomposites of (1−x) NiO/xCuFe{sub 2}O{sub 4} (x=0.5) has been investigated. The (1−x)NiO/xCuFe{sub 2}O{sub 4} (x=0.5) nanoparticles were synthesized by co-precipitation route and their crystallographic structure was confirmed through X-ray diffraction (XRD) analysis. The average crystallite sizes of the nanoparticles as determined from the XRD were found to lie in the range of 20–31 nm. Magnetic characterization including coercivity and magnetization were measured with effect of particle size and temperature. During magnetic measurement it is observed that the hysteresis loop displaces along negative field axis with exchange bias field (H{sub EB}) about 75 Oe at 5 K and vanish at 150 K which is irreversible temperature T{sub irr}. The temperature dependence of coercively follows Kneller's law while the saturation magnetization followed Bloch's law with exponent α=3/2. - Highlights: • Synthesis of (1−x)NiO/xCuFe{sub 2}O{sub 4} (x=0.5) nanoparticles by co-precipitation route. • Magnetic characterization with particle size and temperature variation. • Exchange bias effect: monotonic decrease in exchange field with temperature. • Temperature dependence of coercivity follows Kneller's law. • Temperature dependence of saturation magnetization follows Bloch's law.

  7. Multiple Interfacial Fe3O4@BaTiO3/P(VDF-HFP) Core-Shell-Matrix Films with Internal Barrier Layer Capacitor (IBLC) Effects and High Energy Storage Density.

    Science.gov (United States)

    Zhou, Ling; Fu, Qiuyun; Xue, Fei; Tang, Xiahui; Zhou, Dongxiang; Tian, Yahui; Wang, Geng; Wang, Chaohong; Gou, Haibo; Xu, Lei

    2017-11-22

    Flexible nanocomposites composed of high dielectric constant fillers and polymer matrix have shown great potential for electrostatic capacitors and energy storage applications. To obtain the composited material with high dielectric constant and high breakdown strength, multi-interfacial composited particles, which composed of conductive cores and insulating shells and possessed the internal barrier layer capacitor (IBLC) effect, were adopted as fillers. Thus, Fe 3 O 4 @BaTiO 3 core-shell particles were prepared and loaded into the poly(vinylidene fluoride-co-hexafluoropropylene) (P(VDF-HFP)) polymer matrix. As the mass fraction of core-shell fillers increased from 2.5 wt % to 30 wt %, the dielectric constant of the films increased, while the loss tangent remained at a low level (capacitor model was also adopted to interpret the efficiency of IBLC effects on the suppressed loss tangent and the superior breakdown strength. This work explored an effective approach to prepare dielectric nanocomposites for energy storage applications experimentally and theoretically.

  8. Quantitative measurement of Au and Fe in ferromagnetic nanoparticles with Laser Induced Breakdown Spectroscopy using a polymer-based gel matrix

    International Nuclear Information System (INIS)

    Borowik, T.; Przybyło, M.; Pala, K.; Otlewski, J.; Langner, M.

    2011-01-01

    The medical applications of nanomaterials require substantial changes in the research and development stage, such as the introduction of new processes and methods, and adequate modifications of the national and international laws on the medical product registration. To accomplish this, proper parameterizations of nano-scaled products need to be developed and implemented, accompanied by suitable measuring methods. The introduction of metallic particles to medical practices requires the precise, quantitative evaluation of the production process and later quantification and characterization of the nanoparticles in biological matrices for the bioavailability and biodistribution evaluation. In order to address these issues we propose a method for the quantitative analysis of the metallic nanoparticles composition by Laser Induced Breakdown Spectroscopy (LIBS). Au/Fe ferro-magnetic nanoparticles were used to evaluate the method applicability. Since the powder form of nanoparticles spatters upon laser ablation, first we had to develop fast, convenient and quantitative method for the nano-powdered sample preparation. The proposed method is based on the polymer gelation of nanopowders or their water suspensions. It has been shown that nanopowders compositional changes throughout the production process, along with their final characterization, can be reliable performed with LIBS technique. The quantitative values obtained were successfully correlated with those derived with ICP technique. - Highlights: ► The atomic composition of nanoparticles was analyzed with LIBS. ► The amount of gold on ferromagnetic particles was quantified by the method. ► Gel fixation was used as new way of handling powdered samples. ► LIBS results are comparable with other equivalent methods (ICP). ► There was a difference between measured and assumed nanoparticle composition.

  9. Development of applications in Internet for the calculation of solar control devices; Desarrollo de una aplicacion en Internet para el calculo de dispositivos de control solar

    Energy Technology Data Exchange (ETDEWEB)

    Perez V, Jesus B; Robles G, Saul; Villa M, Hector A; Cabanillas L, Rafael E [Universidad de Sonora, Hermosillo, Sonora (Mexico)

    2000-07-01

    In this work the development of an interactive software, visible over the World Wide Web, is presented to support the basic calculation required to control the solar gain inside buildings and houses. The site has two main parts: one part describes in a very required parameters to design devices for the control of the illumination inside the buildings, like overhangs and wingwalls for shading. The other part has the routines and procedures to calculate the sun position for any date and position over the earth, and the horizontal and vertical protection angles. The part to implement the calculations has been developed as a Java applet which can run on any platform and let the users, in an interactive way, to get the results. This software makes possible that any Internet user can run the application from his/her own computer without having to compile of use sophisticated procedures as it happens with traditional languages. With this web site it is intended to cover the necessity of having simple and reliable means for architects and civil engineers to support the use of solar energy and the saving of energy in bioclimatic design of buildings. [Spanish] En este trabajo se presenta el desarrollo de un sitio interactivo visible en el World Wide Web (WWW) que pretende servir de apoyo para los calculos basicos de control de asoleamiento en viviendas y edificios. El sitio esta conformado por dos partes principales: una parte cubre el aspecto informativo, donde en forma sencilla y clara, se explican los conceptos y parametros necesarios para disenar los dispositivos de control, alerones y parteluces. La otra parte contiene los procedimientos y las rutinas de calculo para la determinacion de la posicion solar para cualquier fecha del ano desde cualquier punto sobre la tierra, asi como los angulos de sombreado vertical y horizontal. Para la realizacion de los calculos se ha construido un applet de Java, el cual puede ejecutarse desde cualquier plataforma de computacion y

  10. Effects of Fe fine powders doping on hot deformed NdFeB magnets

    International Nuclear Information System (INIS)

    Lin, Min; Wang, Huijie; Zheng, Jingwu; Yan, Aru

    2015-01-01

    The composite NdFeB magnets with blending melt-spun flakes and Fe fine powders were prepared by the hot-pressed and hot-deformed route. Characterizations of the hot-deformed NdFeB magnets affected by the doped Fe powders were tested. The doped Fe powders decrease the hot-deformed pressure when the strain is between 15 and 50%. XRD patterns show that the doped Fe powders have little influence on the c-axis alignment of hot-deformed NdFeB magnets in the press direction. The B r and the (BH) max get improved when the doped Fe powders are less than 3 wt%. The doped Fe of hot-deformed NdFeB magnets exists in the elongated state and the spherical state surrounded by the Nd-rich phase. With the Fe fraction increasing, the potential of magnet moves to the positive direction and the diameter of the Nyquist arc becomes larger, which indicate that the corrosion resistance improved effectively. The bending strength was enhanced by the elongated α-Fe phase embedded in the matrix 2:14:1 phase. - Highlights: • The doped Fe powders have little influence on the c-axis alignment of magnets. • The elongated Fe powders are more than the spherical Fe powders in the magnets. • The corrosion resistance is improved effectively with the increasing Fe fraction. • The bending strength is enhanced by the elongated α-Fe phase embedded in the matrix

  11. Matrix theory

    CERN Document Server

    Franklin, Joel N

    2003-01-01

    Mathematically rigorous introduction covers vector and matrix norms, the condition-number of a matrix, positive and irreducible matrices, much more. Only elementary algebra and calculus required. Includes problem-solving exercises. 1968 edition.

  12. Matrix calculus

    CERN Document Server

    Bodewig, E

    1959-01-01

    Matrix Calculus, Second Revised and Enlarged Edition focuses on systematic calculation with the building blocks of a matrix and rows and columns, shunning the use of individual elements. The publication first offers information on vectors, matrices, further applications, measures of the magnitude of a matrix, and forms. The text then examines eigenvalues and exact solutions, including the characteristic equation, eigenrows, extremum properties of the eigenvalues, bounds for the eigenvalues, elementary divisors, and bounds for the determinant. The text ponders on approximate solutions, as well

  13. Measurement and calculation of dynamic coefficients in hydrodynamic bearings of gas films; Medicion y calculo de coeficientes dinamicos en cojinetes hidrodinamicos de peliculas de gas

    Energy Technology Data Exchange (ETDEWEB)

    Ruiz, Rafael O.; Di Liscia, Marcelo H.; Diaz, Sergio E. [Universidad Simon Bolivar, Sartendejas, Baruta (Venezuela)

    2007-11-15

    dynamic coefficients. [Spanish] La identificacion de los coeficientes dinamicos en cojinetes de aire es fundamental para un adecuado analisis rotodinamico. El presente trabajo muestra el desarrollo de un algoritmo que permite la obtencion directa de los coeficientes dinamicos en cojinetes hidrodinamicos de aire tanto de forma numerica como experimental. El banco de pruebas utilizado consta de dos cojinetes magneticos, los cuales soportan al rotor en sus extremos y a su vez funcionan como actuadores permitiendo inducir orbitas controladas en el rotor. El cojinete de prueba se encuentra ubicado entre los cojinetes magneticos. Las fuerzas dinamicas generadas en el cojinete de aire se registran a partir de tres celdas de carga. El algoritmo fue desarrollado en un codigo comercial de programacion grafica, a traves del cual se pueden colectar, controlar y procesar las senales. El comportamiento no lineal de este tipo de cojinetes dificulta el calculo de los coeficientes dinamicos, por esta razon el procesamiento de las senales en espacio frecuencial facilita de cierta manera su manejo. Por otra parte, el modelo numerico se comparo con los resultados experimentales obteniendo aproximaciones aceptables tanto en magnitud como en comportamiento. El calculo de los coeficientes dinamicos numericos se realizo resolviendo la ecuacion diferencial de Reynolds para un fluido compresible en el espesor de la pelicula de gas, tomando en consideracion el flujo masico del fluido que se introduce, asi como la perdida de presion que sufre el mismo al pasar a traves de los orificios de alimentacion. Los metodos numericos utilizados incluyen la resolucion de la ecuacion diferencial de Reynolds por diferencias finitas, el calculo del perfil de presiones realizando iteraciones sucesivas y el calculo de las fuerzas hidrodinamicas a traves de una integracion numerica de Simpson. Los coeficientes dinamicos numericos fueron hallados aplicando una tecnica de minimos cuadrados a las fuerzas hidrodinamicas

  14. Effects of Fe fine powders doping on hot deformed NdFeB magnets

    Energy Technology Data Exchange (ETDEWEB)

    Lin, Min, E-mail: linm@nimte.ac.cn [Ningbo Institute of Material Technology & Engineering Chinese Academy of Science, Ningbo 315201 (China); Wang, Huijie [Ningbo Jinji Strong Magnetic Material Company, Ningbo 315041 (China); Zheng, Jingwu [Zhejiang University of Technology, Hangzhou 310014 (China); Yan, Aru [Ningbo Institute of Material Technology & Engineering Chinese Academy of Science, Ningbo 315201 (China)

    2015-04-01

    The composite NdFeB magnets with blending melt-spun flakes and Fe fine powders were prepared by the hot-pressed and hot-deformed route. Characterizations of the hot-deformed NdFeB magnets affected by the doped Fe powders were tested. The doped Fe powders decrease the hot-deformed pressure when the strain is between 15 and 50%. XRD patterns show that the doped Fe powders have little influence on the c-axis alignment of hot-deformed NdFeB magnets in the press direction. The B{sub r} and the (BH){sub max} get improved when the doped Fe powders are less than 3 wt%. The doped Fe of hot-deformed NdFeB magnets exists in the elongated state and the spherical state surrounded by the Nd-rich phase. With the Fe fraction increasing, the potential of magnet moves to the positive direction and the diameter of the Nyquist arc becomes larger, which indicate that the corrosion resistance improved effectively. The bending strength was enhanced by the elongated α-Fe phase embedded in the matrix 2:14:1 phase. - Highlights: • The doped Fe powders have little influence on the c-axis alignment of magnets. • The elongated Fe powders are more than the spherical Fe powders in the magnets. • The corrosion resistance is improved effectively with the increasing Fe fraction. • The bending strength is enhanced by the elongated α-Fe phase embedded in the matrix.

  15. Matrix thermalization

    International Nuclear Information System (INIS)

    Craps, Ben; Evnin, Oleg; Nguyen, Kévin

    2017-01-01

    Matrix quantum mechanics offers an attractive environment for discussing gravitational holography, in which both sides of the holographic duality are well-defined. Similarly to higher-dimensional implementations of holography, collapsing shell solutions in the gravitational bulk correspond in this setting to thermalization processes in the dual quantum mechanical theory. We construct an explicit, fully nonlinear supergravity solution describing a generic collapsing dilaton shell, specify the holographic renormalization prescriptions necessary for computing the relevant boundary observables, and apply them to evaluating thermalizing two-point correlation functions in the dual matrix theory.

  16. Matrix thermalization

    Science.gov (United States)

    Craps, Ben; Evnin, Oleg; Nguyen, Kévin

    2017-02-01

    Matrix quantum mechanics offers an attractive environment for discussing gravitational holography, in which both sides of the holographic duality are well-defined. Similarly to higher-dimensional implementations of holography, collapsing shell solutions in the gravitational bulk correspond in this setting to thermalization processes in the dual quantum mechanical theory. We construct an explicit, fully nonlinear supergravity solution describing a generic collapsing dilaton shell, specify the holographic renormalization prescriptions necessary for computing the relevant boundary observables, and apply them to evaluating thermalizing two-point correlation functions in the dual matrix theory.

  17. Matrix thermalization

    Energy Technology Data Exchange (ETDEWEB)

    Craps, Ben [Theoretische Natuurkunde, Vrije Universiteit Brussel (VUB), and International Solvay Institutes, Pleinlaan 2, B-1050 Brussels (Belgium); Evnin, Oleg [Department of Physics, Faculty of Science, Chulalongkorn University, Thanon Phayathai, Pathumwan, Bangkok 10330 (Thailand); Theoretische Natuurkunde, Vrije Universiteit Brussel (VUB), and International Solvay Institutes, Pleinlaan 2, B-1050 Brussels (Belgium); Nguyen, Kévin [Theoretische Natuurkunde, Vrije Universiteit Brussel (VUB), and International Solvay Institutes, Pleinlaan 2, B-1050 Brussels (Belgium)

    2017-02-08

    Matrix quantum mechanics offers an attractive environment for discussing gravitational holography, in which both sides of the holographic duality are well-defined. Similarly to higher-dimensional implementations of holography, collapsing shell solutions in the gravitational bulk correspond in this setting to thermalization processes in the dual quantum mechanical theory. We construct an explicit, fully nonlinear supergravity solution describing a generic collapsing dilaton shell, specify the holographic renormalization prescriptions necessary for computing the relevant boundary observables, and apply them to evaluating thermalizing two-point correlation functions in the dual matrix theory.

  18. Critical experiments and nuclear calculations - LAMPRE-I; Experiences critiques et calculs nucleaires concernant le LAMPRE-I; Kriticheskie opyty i yadernye raschety - LAMPRE-I; Experimentos criticos u calculos nucleares relativos al LAMPRE-I

    Energy Technology Data Exchange (ETDEWEB)

    Battat, M E [Los Alamos Scientific Laboratory, University of California, Los Alamos, NM (United States)

    1962-03-15

    utilise la methode S{sub n} pour resoudre le probleme du transport neutronique. La comparaison entre les valeurs calculees et les valeurs mesurees des parametres, tels que le coefficient thermique, l'efficacite des barres de controle et la masse critique, presente aussi de l'interet pour evaluer le degre de confiance que l'on peut accorder aux calculs des bureaux d'etudes. (author) [Spanish] Como parte de un programa de ensayos de combustibles de plutonio para reactores reproductores de neutrones rapidos, se ha construido y puesto en marcha en el Los Alamos Scientific Laboratory un reactor experimental de 1 MW refrigerado por sodio, cuyo cuerpo contiene una aleacion fundida de plutonio y hierro (90 atomos por ciento de Pu y 10 atomos por ciento de Fe; punto de fusion: 410 deg. C). La reactividad se regula por medio de un reflector de acero inoxidable y de cuatro barras de control de niquel situadas fuera del nucleo. Se han llevado a cabo experimentos a temperaturas (isotermicas) de 80, 160 y 480 deg. C en el cuerpo, a fin de determinar la masa critica y la eficacia del reflector a cada una de esas temperaturas. Tambien se midio la eficacia de las barras de control, por registro de los periodos y del coeficiente termico de la reactividad. Aplicando el metodo S{sub n} de resolucion del problema del transporte neutronico, se efectuaron calculos para determinar los parametros nucleares basicos del reactor. La comparacion entre los valores calculados y los valores medidos de parametros tales como el coeficiente termico, la eficacia de las barras de control y la masa critica, presenta tambien interes en lo que se refiere a la evaluacion del grado de confianza que puede atribuirse a los calculos del proyectista. (author) [Russian] V kachestve chasti programmy po razvitiyu plutonievogo topliva dlya reaktorov-razmnozhitele j na bystrykh nejtronakh Los-Alamosskaya nauchnaya laboratoriya skonstruirovala i ehkspluatiruet ispytatel'nyj reaktor s natrievym okhlazhdeniem moshchnost'yu v

  19. Combined use of lightweight magnetic Fe{sub 3}O{sub 4}-coated hollow glass spheres and electrically conductive reduced graphene oxide in an epoxy matrix for microwave absorption

    Energy Technology Data Exchange (ETDEWEB)

    Wang, Junpeng; Wang, Jun, E-mail: wgdfrp@whut.edu.cn; Zhang, Bin; Sun, Yu; Chen, Wei; Wang, Tao

    2016-03-01

    Epoxy resin based lightweight composites comprising Fe{sub 3}O{sub 4}-coated hollow glass spheres (HGS@Fe{sub 3}O{sub 4}) and reduced graphene oxide (RGO) were prepared. Impedance matching condition and electromagnetic wave attenuation characteristic are used for analysis of the reflection loss (RL) performance of the composites. Compared with pure HGS@Fe{sub 3}O{sub 4} and RGO composite, the −10 dB absorption bandwidth and the minimum RL of the hybrid composites are enhanced. RL values less than −10 dB are obtained in a wide frequency range and the corresponding bandwidth can reach up to 3.6 GHz when an appropriate absorber thickness is chosen. The density of the hybrid composite is in the range of 0.57–0.72 g/cm{sup 3}, which is attractive candidate for a new type of lightweight microwave absorber. - Highlights: • Lightweight composites comprising HGS@Fe{sub 3}O{sub 4} and RGO were prepared. • The RL less than −10 dB can reach up to 3.6 GHz with layer thickness of 2.5 mm. • The density of the composites is in the range of 0.57−0.72 g/cm{sup 3}.

  20. Strengthening mechanisms of Fe nanoparticles for single crystal Cu–Fe alloy

    International Nuclear Information System (INIS)

    Shi, Guodong; Chen, Xiaohua; Jiang, Han; Wang, Zidong; Tang, Hao; Fan, Yongquan

    2015-01-01

    A single crystal Cu–Fe alloy with finely dispersed precipitate Fe nanoparticles was fabricated in this study. The interface relationship of iron nanoparticle and copper matrix was analyzed with a high-resolution transmission electron microscope (HRTEM), and the effect of Fe nanoparticles on mechanical properties of single crystal Cu–Fe alloy was discussed. Results show that, the finely dispersed Fe nanoparticles can be obtained under the directional solidification condition, with the size of 5–50 nm and the coherent interface between the iron nanoparticle and the copper matrix. Single crystal Cu–Fe alloy possesses improved tensile strength of 194.64 MPa, and total elongation of 44.72%, respectively, at room temperature, in contrast to pure Cu sample. Nanoparticles which have coherent interface with matrix can improve the dislocation motion state. Some dislocations can slip through the nanoparticle along the coherent interface and some dislocations can enter into the nanoparticles. Thus to improve the tensile strength of single crystal Cu–Fe alloy without sacrificing the ductility simultaneously. Based on the above analyses, strengthening mechanisms of Fe nanoparticles for single crystal Cu–Fe alloy was described

  1. Matrix inequalities

    CERN Document Server

    Zhan, Xingzhi

    2002-01-01

    The main purpose of this monograph is to report on recent developments in the field of matrix inequalities, with emphasis on useful techniques and ingenious ideas. Among other results this book contains the affirmative solutions of eight conjectures. Many theorems unify or sharpen previous inequalities. The author's aim is to streamline the ideas in the literature. The book can be read by research workers, graduate students and advanced undergraduates.

  2. Resistance switching characteristics of core–shell γ-Fe{sub 2}O{sub 3}/Ni{sub 2}O{sub 3} nanoparticles in HfSiO matrix

    Energy Technology Data Exchange (ETDEWEB)

    Zhou, Guangdong [Guizhou Institute of Technology, Guiyang 550003 (China); Wu, Bo, E-mail: fqwubo@zync.edu.cn [Institute of Theoretical Physics, Zunyi Normal College, Zunyi 563002 (China); School of Marine Science and Technology, Northwestern Polytechnical University, Xian 710072 (China); Liu, Xiaoqin; Li, Zhiling; Zhang, Shuangju [Guizhou Institute of Technology, Guiyang 550003 (China); Zhou, Ankun [Kunming Institute of Botany, Chineses Academy Sciences, Kunming 650201 (China); Yang, Xiude [Institute of Theoretical Physics, Zunyi Normal College, Zunyi 563002 (China)

    2016-09-05

    Core–shell γ-Fe{sub 2}O{sub 3}/Ni{sub 2}O{sub 3} nanoparticles are synthesized by chemical co-precipitation method. Resistive switching memory behaviors, which have resistance ON/OFF ratio of ∼10{sup 2} and excellent retention property, are observed in the Au/HfSiO/γ-Fe{sub 2}O{sub 3}/Ni{sub 2}O{sub 3}/HfSiO/Pt structure. Space charge limited current (SCLC) mechanism, which is supported by the fitting current–voltage results, is employed to know the resistive switching memory effects. The transportation of Oxygen vacancy Vo{sup 2+}, oxygen ion O{sup 2−}, recombination of oxygen atom and drive of external electric field are responsible for the ON or OFF states observed in device. - Highlights: • Bipolar resistance switching effects are detected in core–shell of γ-Fe{sub 2}O{sub 3}@Ni{sub 2}O{sub 3}. • The Ohimc conduction and space-charge-limited current play an important role in Low/High field. • Rapture of filament assisted by Vo{sup 2+}, O{sup 2−} and O{sub 2} recombination is responsible for switching. • Resistance switching memory highlights excellent retention properties after stress 100 cycles.

  3. Moessbauer-spectroscopic study of structure and magnetism of the exchange-coupled layer systems Fe/FeSn{sub 2}, and Fe/FeSi/Si and the ion-implanted diluted magnetic semiconductor SiC(Fe); Moessbauerspektroskopische Untersuchung von Struktur und Magnetismus der austauschgekoppelten Schichtsysteme Fe/FeSn{sub 2} und Fe/FeSi/Si und des ionenimplantierten verduennten magnetischen Halbleiters SiC(Fe)

    Energy Technology Data Exchange (ETDEWEB)

    Stromberg, Frank

    2009-07-07

    ''lower'' FeSi layers the interdiffusion of Fe is inhibited. For thicker FeSi layers (t{sub FeSi} {approx} 20 A) the formation of the metastable defective c-FeSi phase was detected. For the first time an oscillating antiferromagnetic exchange coupling between the Fe layers with a period of {approx} 6 Aas a function of the FeSi thickness. In the third part of this work we attempted to produce a diluted magnetic semiconductor by ion implantation of {sup 57}Fe into SiC(0001) wafer. For doses {>=} 2 x 10{sup 16} ions cm{sup -2} and after thermal annealing superparamagnetic Fe{sub 3}Si nanoclusters were found with CEMS, XRD and TEM (Transmission Electron Microscopy), which were epitaxially embedded in the SiC matrix. Besides Fe{sub 3}Si no other phases were observed. For the lowest doses of 1 x 10{sup 16} ions cm{sup -2} the CEM spectra at 4.2 K gave evidence of ferromagnetism and the absence of nanoparticles. The upper limit under which there are no segregations of secondary phases was therefore limited to 1-3 at.% Fe. (orig.)

  4. Matrix analysis

    CERN Document Server

    Bhatia, Rajendra

    1997-01-01

    A good part of matrix theory is functional analytic in spirit. This statement can be turned around. There are many problems in operator theory, where most of the complexities and subtleties are present in the finite-dimensional case. My purpose in writing this book is to present a systematic treatment of methods that are useful in the study of such problems. This book is intended for use as a text for upper division and gradu­ ate courses. Courses based on parts of the material have been given by me at the Indian Statistical Institute and at the University of Toronto (in collaboration with Chandler Davis). The book should also be useful as a reference for research workers in linear algebra, operator theory, mathe­ matical physics and numerical analysis. A possible subtitle of this book could be Matrix Inequalities. A reader who works through the book should expect to become proficient in the art of deriving such inequalities. Other authors have compared this art to that of cutting diamonds. One first has to...

  5. Matrix pentagons

    Science.gov (United States)

    Belitsky, A. V.

    2017-10-01

    The Operator Product Expansion for null polygonal Wilson loop in planar maximally supersymmetric Yang-Mills theory runs systematically in terms of multi-particle pentagon transitions which encode the physics of excitations propagating on the color flux tube ending on the sides of the four-dimensional contour. Their dynamics was unraveled in the past several years and culminated in a complete description of pentagons as an exact function of the 't Hooft coupling. In this paper we provide a solution for the last building block in this program, the SU(4) matrix structure arising from internal symmetry indices of scalars and fermions. This is achieved by a recursive solution of the Mirror and Watson equations obeyed by the so-called singlet pentagons and fixing the form of the twisted component in their tensor decomposition. The non-singlet, or charged, pentagons are deduced from these by a limiting procedure.

  6. Matrix pentagons

    Directory of Open Access Journals (Sweden)

    A.V. Belitsky

    2017-10-01

    Full Text Available The Operator Product Expansion for null polygonal Wilson loop in planar maximally supersymmetric Yang–Mills theory runs systematically in terms of multi-particle pentagon transitions which encode the physics of excitations propagating on the color flux tube ending on the sides of the four-dimensional contour. Their dynamics was unraveled in the past several years and culminated in a complete description of pentagons as an exact function of the 't Hooft coupling. In this paper we provide a solution for the last building block in this program, the SU(4 matrix structure arising from internal symmetry indices of scalars and fermions. This is achieved by a recursive solution of the Mirror and Watson equations obeyed by the so-called singlet pentagons and fixing the form of the twisted component in their tensor decomposition. The non-singlet, or charged, pentagons are deduced from these by a limiting procedure.

  7. Magnetic nanowires (Fe, Fe-Co, Fe-Ni – magnetic moment reorientation in respect of wires composition

    Directory of Open Access Journals (Sweden)

    Kalska-Szostko Beata

    2015-03-01

    Full Text Available Magnetic nanowires of Fe, Fe-Co, and Fe-Ni alloy and layered structure were prepared by electrochemical alternating current (AC deposition method. The morphology of the nanowires in and without the matrix was studied by energy dispersive X-ray spectroscopy (EDX, scanning electron microscopy (SEM, and X-ray diffraction (XRD, respectively. The wires either show strong dependence on the combination of elements deposition (alloy or layered or chemical composition (Co or Ni. The magnetic properties of the nanostructures were determined on the basis of Mössbauer spectroscopy (MS.

  8. U-series in Fe(III)-U(VI) rich fracture infill-materials from the oxidised cap of the U-ore deposit of Mina Fe (Salamanca, Spain): Implications for water/rock interaction processes affecting and analogue site (Matrix II project)

    International Nuclear Information System (INIS)

    Perez del Villar, L.; Grespo, M. T.; Quejido, A. J.

    2002-01-01

    In the frame of the ENRESA natural analogue programme. The U-ore deposit of Mina Fe being studied as a natural analogue of radioactive spent fuel behaviour. In this context the knowledge of the role played by fracture minerals as scavengers of certain analogue elements. Mainly U, and the establishment of the time scale of the rock-water interaction processes controlling the uptakes or losses of U in the system are two relevant objectives

  9. Mechanical alloying of the FeNi-Ag system

    International Nuclear Information System (INIS)

    Gonzalez, G.; Ibarra, D.; Ochoa, J.; Villalba, R.; Sagarzazu, A.

    2007-01-01

    The Fe-Ni-Ag system is of particular interest for its potential applications as soft magnetic granular material with small magnetic grains embedded in a non-magnetic metal matrix. Under equilibrium conditions: Fe-Ag and Ni-Ag are immiscible and Fe-Ni shows complete solubility. These materials are particularly important for magnetoresistivity properties. The properties of these alloys are closely related to their microstructure; therefore, a detailed study of the transformations occurring during milling was undertaken using pre-alloyed Fe x Ni 100-x (x = 30, 50 and 70) further milled with different Ag content to give the following alloys compositions (Fe x -Ni 100-x ) 100-y Ag y (y = 5, 20, 60). Consolidation of the mechanically alloyed powders by sintering at 950 o C was performed. Morphological and structural characterization of the sintered powders was carried out by scanning and transmission electron microscopy and X-ray diffraction. Fe 30 Ni 70 and Fe 50 Ni 50 formed ordered FeNi 3 compound. Fe 70 Ni 30 showed the formation of a mixture of γ-(Fe,Ni) and α-Fe(Ni) solid solutions. The mixture of these systems with Ag showed the metal solid solutions surrounded by Ag islands of Fe x Ni y -Ag, There was also evidence of Ag diffusing into the γ-(Fe,Ni). High Ag content (60%) shows formation of islands of FeNi surrounded by Ag. Sintering is always improved with the Ag content

  10. The Impact of FeS Mineralogy on TCE Degradation

    Science.gov (United States)

    Iron- and sulfate-reducing conditions are often encountered in permeable reactive barrier (PRB) systems that are constructed to remove TCE from groundwater, which usually leads to the accumulation of FeS mineral phases in the matrix of the PRB. Poorly crystalline mackinawite (Fe...

  11. Impact of FeS Mineralogy on TCE Degradation

    Science.gov (United States)

    Iron- and sulfate-reducing conditions are often encountered in permeable reactive barrier (PRB) systems that are constructed to remove TCE from groundwater, which usually leads to the accumulation of FeS mineral phases in the matrix of the PRB. Poorly crystalline mackinawite (Fe...

  12. Microstructure and wear behaviour of FeAl-based composites ...

    Indian Academy of Sciences (India)

    FeAl-based composites; precipitation; mechanical properties; wear. 1. Introduction. Fe–Al alloys ... ground to 1500 grit and polished with alumina powder. (0.5 μm). ... Alloy-2 (figure 2) consists of cuboid-shaped ZrC (region C), an FeAl matrix ...

  13. Magnetic Properties and Microstructure of FeOx/Fe/FePt and FeOx/FePt Films

    Directory of Open Access Journals (Sweden)

    Jai-Lin Tsai

    2013-01-01

    Full Text Available The Fe(6 nm/FePt film with perpendicular magnetization was deposited on the glass substrate. To study the oxygen diffusion effect on the coupling of Fe/FePt bilayer, the plasma oxidation with 0.5~7% oxygen flow ratio was performed during sputtered part of Fe layer and formed the FeOx(3 nm/Fe(3 nm/FePt trilayer. Two-step magnetic hysteresis loops were found in trilayer with oxygen flow ratio above 1%. The magnetization in FeOx and Fe/FePt layers was decoupled. The moments in FeOx layer were first reversed and followed by coupled Fe/FePt bilayer. The trilayer was annealed again at 500°C and 800°C for 3 minutes. When the FeOx(3 nm/Fe(3 nm/FePt trilayer was annealed at 500°C, the layers structure was changed to FeOx(6 nm/FePt bilayer due to oxygen diffusion. The hard-magnetic FeOx(6 nm/FePt film was coupled with single switching field. The FeOx/(disordered FePt layer structure was observed with further annealing at 800°C and presented soft-magnetic loop. In summary, the coupling between soft-magnetic Fe, FeOx layer, and hard-magnetic L10 FePt layer can be controlled by the oxygen diffusion behavior, and the oxidation of Fe layer was tuned by the annealing temperature. The ordered L10 FePt layer was deteriorated by oxygen and became disordered FePt when the annealed temperature was up to 800°C.

  14. Calculation of absorbed dose in water by chemical Fricke dosimetry; Calculo de dose absorvida na agua por dosimetria quimica Fricke

    Energy Technology Data Exchange (ETDEWEB)

    Rodrigues, Adenilson Paiva, E-mail: adenilson-fisica@hotmail.com.br [Universidade do Estado do Rio de Janeiro (UERJ), Rio de Janeiro, RJ (Brazil); Meireles, Ramiro Conceicao [Fundacao do Cancer, Rio de Janeiro, RJ (Brazil)

    2016-07-01

    This work is the result of a laboratory activity performed in Radiological Sciences Laboratory (CRL), linked to the State University of Rio de Janeiro (UERJ). This practice aimed to determine the absorbed dose to water, through the primary calibration method called dosimetry Fricke, which consists of ferrous ions (Fe + 2) to ferric (Fe + 3), generated by water radiolysis products which is the structural change of water molecule caused by ionizing radiation. A spectrophotometer was used to extract data for analysis at a wavelength (λ) 304 and 224 nm with function of measuring the absorbance using bottles with irradiated and nonirradiated Fricke solution. (author)

  15. Kinetics and mechanism of diclofenac removal using ferrate(VI): roles of Fe3+, Fe2+, and Mn2.

    Science.gov (United States)

    Zhao, Junfeng; Wang, Qun; Fu, Yongsheng; Peng, Bo; Zhou, Gaofeng

    2018-06-01

    In this study, the effect of Fe 3+ , Fe 2+ , and Mn 2+ dose, solution pH, reaction temperature, background water matrix (i.e., inorganic anions, cations, and natural organic matters (NOM)), and the kinetics and mechanism for the reaction system of Fe(VI)/Fe 3+ , Fe(VI)/Fe 2+ , and Fe(VI)/Mn 2+ were investigated systematically. Traces of Fe 3+ , Fe 2+ , and Mn 2+ promoted the DCF removal by Fe(VI) significantly. The pseudo-first-order rate constant (k obs ) of DCF increased with decreasing pH (9-6) and increasing temperature (10-30 °C) due to the gradually reduced stability and enhanced reactivity of Fe(VI). Cu 2+ and Zn 2+ ions evidently improved the DCF removal, while CO 3 2- restrained it. Besides, SO 4 2- , Cl - , NO 3 - , Mg 2+ , and Ca 2+ almost had no influence on the degradation of DCF by Fe(VI)/Fe 3+ , Fe(VI)/Fe 2+ , and Fe(VI)/Mn 2+ within the tested concentration. The addition of 5 or 20 mg L -1 NOM decreased the removal efficiency of DCF. Moreover, Fe 2 O 3 and Fe(OH) 3 , the by-products of Fe(VI), slightly inhibited the DCF removal, while α-FeOOH, another by-product of Fe(VI), showed no influence at pH 7. In addition, MnO 2 and MnO 4 - , the by-products of Mn 2+ , enhanced the DCF degradation due to catalysis and superposition of oxidation capacity, respectively. This study indicates that Fe 3+ and Fe 2+ promoted the DCF removal mainly via the self-catalysis for Fe(VI), and meanwhile, the catalysis of Mn 2+ and the effect of its by-products (i.e., MnO 2 and MnO 4 - ) contributed synchronously for DCF degradation. Graphical abstract ᅟ.

  16. Effect of Fe Content on the Microstructure and Mechanical Properties of Ti-Al-Mo-V-Cr-Fe Alloys

    Directory of Open Access Journals (Sweden)

    Bae K.C.

    2017-06-01

    Full Text Available To investigate the effect of Fe content on the correlation between the microstructure and mechanical properties in near-b titanium alloys, the Ti-5Al-5Mo-5V-1Cr-xFe alloy system has been characterized in this study. As the Fe content increased, the number of nucleation sites and the volume fraction of the α phase decreased. We observed a significant difference in the shape and size of the α phase in the matrix before and after Fe addition. In addition, these morphological deformations were accompanied by a change in the shape of the α phase, which became increasingly discontinuous, and changed into globular-type α phase in the matrix. These phenomena affected the microstructure and mechanical properties of Ti alloys. Specimen #2 exhibited a high ultimate tensile strength (1071 MPa, which decreased with further addition of Fe.

  17. Thickness calculation software of the thermal insulation in facilities using thermal solar energy; Software para el calculo de espesores del aislante termico en instalaciones de aprovechamiento de energia solar termica

    Energy Technology Data Exchange (ETDEWEB)

    Portillo Jimenez, Canek [Universidad Autonoma de Sinaloa, Culiacan, Sinaloa (Mexico)]. E-mail: cnk@uas.uasnet.mx

    2010-11-15

    It is presented a software application for calculating the thickness of the thermal insulation used in various facilities where there are thermal systems using solar energy. The software facilitates the calculation of the thermal cover thickness over components such as pipes (flat or round), storage and other devices that require thermal protection, installed in outdoors or indoors. The software was programmed in Visual Basic by following the technical specifications of the current regulations in the field. Application examples are performed, obtaining certain results that are discussed briefly. [Spanish] Se presenta un software de aplicacion para el calculo de los espesores de los aislantes termicos, utilizados en diferentes instalaciones donde existen sistemas de aprovechamiento termico de energia solar. El software facilita el calculo del grosor del recubrimiento termico en componentes tales como: tuberias (planas o circulares), depositos acumuladores y otros aparatos que necesiten proteccion termica, instalados en exteriores o en interiores. El software fue programado en Visual Basic siguiendo las especificaciones tecnicas de la normatividad vigente en la materia. Se realizan ejemplos de aplicacion, donde se obtienen ciertos resultados de los cuales se hace una breve discusion.

  18. Clay matrix voltammetry

    International Nuclear Information System (INIS)

    Perdicakis, Michel

    2012-01-01

    Document available in extended abstract form only. In many countries, it is planned that the long life highly radioactive nuclear spent fuel will be stored in deep argillaceous rocks. The sites selected for this purpose are anoxic and satisfy several recommendations as mechanical stability, low permeability and low redox potential. Pyrite (FeS 2 ), iron(II) carbonate, iron(II) bearing clays and organic matter that are present in very small amounts (about 1% w:w) in soils play a major role in their reactivity and are considered today as responsible for the low redox potential values of these sites. In this communication, we describe an electrochemical technique derived from 'Salt matrix voltammetry' and allowing the almost in-situ voltammetric characterization of air-sensitive samples of soils after the only addition of the minimum humidity required for electrolytic conduction. Figure 1 shows the principle of the developed technique. It consists in the entrapment of the clay sample between a graphite working electrode and a silver counter/quasi-reference electrode. The sample was previously humidified by passing a water saturated inert gas through the electrochemical cell. The technique leads to well-defined voltammetric responses of the electro-active components of the clays. Figure 2 shows a typical voltammogram relative to a Callovo-Oxfordian argillite sample from Bure, the French place planned for the underground nuclear waste disposal. During the direct scan, one can clearly distinguish the anodic voltammetric signals for the oxidation of the iron (II) species associated with the clay and the oxidation of pyrite. The reverse scan displays a small cathodic signal for the reduction of iron (III) associated with the clay that demonstrates that the majority of the previously oxidized iron (II) species were transformed into iron (III) oxides reducible at lower potentials. When a second voltammetric cycle is performed, one can notice that the signal for iron (II

  19. Microstructure and properties of multiphase sintered cermets Fe-Fe{sub 2}B; Mikrostruktura i wlasnosci spiekanych reakcyjnie cermetali Fe-Fe{sub 2}B

    Energy Technology Data Exchange (ETDEWEB)

    Nowacki, J. [Wydzial Inzynierii Materialowej, Politechnika Szczecinska, Szczecin (Poland); Klimek, L. [Instytut Inzynierii Materialowej i Technik Bezwiorowych, Politechnika Lodzka, Lodz (Poland)

    1998-12-31

    The process of multiphase sintering of iron in the vacuum has been analysed. As a result of the process iron-iron boride cermets have been produced. Fe-Fe{sub 2}B cermets were obtained as a result of sintering of the Fe and B pure elements in the vacuum. Attemps at sintering in the solid phase and with the participation of the liquid phase, the Fe-Fe{sub 2}B eutectic, have been made. Metallographic qualitative and quantitative studies, X-ray structural qualitative and qauantitative analysis allowed to determine the structure of Fe{sub 2}B cermets, as well as a description of the kinetics of quantitative changes in phase proportions in the course of sintering. It has been found that their structure varies widely depending on sintering parameters and the composition of the sinters. Measurements of the Fe-Fe{sub 2}B cermets hardness and measurements on wear during dry friction by the pin-on-disc method have shown distinct advantages of the cermets as a modern constructional materials. The hardness of Fe-Fe{sub 2}B cermets, depending on their chemical composition and sintering parameters, ranges widely from 150 to 1500 HV, and their resistance to wear is comparable to that of diffusively boronized steels. FeFe{sub 2}B cermets are a composite material in which iron boride, Fe{sub 2}B, with a hardness of about 1800 HV plays the role of the reinforcement,while iron-iron boride, Fe-Fe{sub 2}B, with a hardness of about 500 HV plays the role of matrix. The eutectic in the spaces between iron boride grains is composed of boron solid solution plates in iron with a hardness of arround 250 HV, and iron boride, Fe{sub 2}B, plates with a hardness of approximaly 1800 HV. The combination of such different materials, a hard reinforcement and a relatively plastic matrix produces favourable properties of the cermet thus produced high hardness (1500 HV) constant over whole cross section of the material, resistance of abrasive wear and acceptable ductility. The properties mentioned above

  20. Efficiency criterion for teleportation via channel matrix, measurement matrix and collapsed matrix

    Directory of Open Access Journals (Sweden)

    Xin-Wei Zha

    Full Text Available In this paper, three kinds of coefficient matrixes (channel matrix, measurement matrix, collapsed matrix associated with the pure state for teleportation are presented, the general relation among channel matrix, measurement matrix and collapsed matrix is obtained. In addition, a criterion for judging whether a state can be teleported successfully is given, depending on the relation between the number of parameter of an unknown state and the rank of the collapsed matrix. Keywords: Channel matrix, Measurement matrix, Collapsed matrix, Teleportation

  1. Synthesis and magnetic properties of bulk transparent PMMA/Fe-oxide nanocomposites

    Science.gov (United States)

    Li, Shanghua; Qin, Jian; Fornara, Andrea; Toprak, Muhammet; Muhammed, Mamoun; Kim, Do Kyung

    2009-05-01

    PMMA/Fe-oxide nanocomposites are fabricated by a chemical method. Monodispersed Fe-oxide nanoparticles are well dispersed in the PMMA matrix by in situ polymerization, resulting in a bulk transparent polymeric nanocomposite. The magnetic behavior of the PMMA/Fe-oxide nanocomposites is investigated. The transparent PMMA/Fe-oxide nanocomposite has potentially interesting magneto-optic applications without compromising the advantages of a lightweight, noncorrosive polymeric material with very high transparency even for bulk samples.

  2. Synthesis and magnetic properties of bulk transparent PMMA/Fe-oxide nanocomposites

    International Nuclear Information System (INIS)

    Li Shanghua; Qin Jian; Fornara, Andrea; Toprak, Muhammet; Muhammed, Mamoun; Kim, Do Kyung

    2009-01-01

    PMMA/Fe-oxide nanocomposites are fabricated by a chemical method. Monodispersed Fe-oxide nanoparticles are well dispersed in the PMMA matrix by in situ polymerization, resulting in a bulk transparent polymeric nanocomposite. The magnetic behavior of the PMMA/Fe-oxide nanocomposites is investigated. The transparent PMMA/Fe-oxide nanocomposite has potentially interesting magneto-optic applications without compromising the advantages of a lightweight, noncorrosive polymeric material with very high transparency even for bulk samples.

  3. High strength-high conductivity Cu-Fe composites produced by powder compaction/mechanical reduction

    Science.gov (United States)

    Verhoeven, J.D.; Spitzig, W.A.; Gibson, E.D.; Anderson, I.E.

    1991-08-27

    A particulate mixture of Cu and Fe is compacted and mechanically reduced to form an ''in-situ'' Cu-Fe composite having high strength and high conductivity. Compaction and mechanical reduction of the particulate mixture are carried out at a temperature and time at temperature selected to avoid dissolution of Fe into the Cu matrix particulates to a harmful extent that substantially degrades the conductivity of the Cu-Fe composite. 5 figures.

  4. High strength-high conductivity Cu--Fe composites produced by powder compaction/mechanical reduction

    Science.gov (United States)

    Verhoeven, John D.; Spitzig, William A.; Gibson, Edwin D.; Anderson, Iver E.

    1991-08-27

    A particulate mixture of Cu and Fe is compacted and mechanically reduced to form an "in-situ" Cu-Fe composite having high strength and high conductivity. Compaction and mechanical reduction of the particulate mixture are carried out at a temperature and time at temperature selected to avoid dissolution of Fe into the Cu matrix particulates to a harmful extent that substantially degrades the conductivity of the Cu-Fe composite.

  5. Molecular orbital study of iron pentacarbonyl and its photochemical fragments Fe(CO) sub(n)

    International Nuclear Information System (INIS)

    Guenzburger, D.J.R.; Saitovitch, E.M.B.; De Paoli, M.-A.; Manella, H.

    1982-01-01

    Self-consistent Molecular Orbital calculations were performed for Fe(CO) 5 and its photofragments Fe(CO) sub(n), 1 5 , photoelectron and optical spectra are analysed, and photochemical behaviour is discussed. The Moessbauer isomer shifts and quadrupole splittings are investigated. In the case of Fe(CO) 5 and Fe(CO) 4 , the values derived for these hyperfine interactions are compared to experimental measurements reported in a polyethylene matrix. (Author) [pt

  6. Extended biorthogonal matrix polynomials

    Directory of Open Access Journals (Sweden)

    Ayman Shehata

    2017-01-01

    Full Text Available The pair of biorthogonal matrix polynomials for commutative matrices were first introduced by Varma and Tasdelen in [22]. The main aim of this paper is to extend the properties of the pair of biorthogonal matrix polynomials of Varma and Tasdelen and certain generating matrix functions, finite series, some matrix recurrence relations, several important properties of matrix differential recurrence relations, biorthogonality relations and matrix differential equation for the pair of biorthogonal matrix polynomials J(A,B n (x, k and K(A,B n (x, k are discussed. For the matrix polynomials J(A,B n (x, k, various families of bilinear and bilateral generating matrix functions are constructed in the sequel.

  7. Matrix completion by deep matrix factorization.

    Science.gov (United States)

    Fan, Jicong; Cheng, Jieyu

    2018-02-01

    Conventional methods of matrix completion are linear methods that are not effective in handling data of nonlinear structures. Recently a few researchers attempted to incorporate nonlinear techniques into matrix completion but there still exists considerable limitations. In this paper, a novel method called deep matrix factorization (DMF) is proposed for nonlinear matrix completion. Different from conventional matrix completion methods that are based on linear latent variable models, DMF is on the basis of a nonlinear latent variable model. DMF is formulated as a deep-structure neural network, in which the inputs are the low-dimensional unknown latent variables and the outputs are the partially observed variables. In DMF, the inputs and the parameters of the multilayer neural network are simultaneously optimized to minimize the reconstruction errors for the observed entries. Then the missing entries can be readily recovered by propagating the latent variables to the output layer. DMF is compared with state-of-the-art methods of linear and nonlinear matrix completion in the tasks of toy matrix completion, image inpainting and collaborative filtering. The experimental results verify that DMF is able to provide higher matrix completion accuracy than existing methods do and DMF is applicable to large matrices. Copyright © 2017 Elsevier Ltd. All rights reserved.

  8. Computer program for the calculation of stresses in rotary equipment discs; Programas de computo para el calculo de esfuerzos en discos de equipo rotatorio

    Energy Technology Data Exchange (ETDEWEB)

    Gutierrez Delgado, Wilson; Kubiak, Janusz; Serrano Romero, Luis Enrique [Instituto de Investigaciones Electricas, Cuernavaca (Mexico)

    1990-12-31

    In the preliminary design and diagnosis of rotary machines is very common to utilize simple calculation methods for the mechanical and thermal stresses, dynamic and thermodynamic analysis and flow of fluids in this machines (Gutierrez et al., 1989). The analysis with these methods provides the necessary results for the project initial stage of the machine. Later on, more complex tools are employed to refine the design of some machine components. In the Gutierrez report et al., (1989) 34 programs were developed for the preliminary design and diagnosis of rotating equipment; in this article, one of them is presented in which a method for the analysis of mechanical and thermal stresses is applied in discs of uniform or variable thickness that are normally found in turbomachines and rotary equipment. [Espanol] En el diseno preliminar y diagnostico de maquinas rotatorias es muy comun emplear metodos de calculo sencillos para el analisis de esfuerzos mecanicos y termicos, analisis dinamico y termodinamico y de flujo de fluidos en estas maquinas (Gutierrez et al., 1989). El analisis con estos metodos proporcionan los resultados necesarios para la etapa del proyecto inicial de la maquina. Posteriormente, para refinar el diseno de algunos componentes de la maquina, se aplican las herramientas mas complejas. En el informe de Gutierrez et al., (1989) se desarrollan 34 programas para el diseno preliminar y diagnostico de equipo rotatorio; en este articulo, se presenta uno de ellos, en el que se emplea un metodo para el analisis de esfuerzos mecanicos y termicos en discos de espesor constante o variable que se encuentran comunmente en turbomaquinas y en equipos rotatorios.

  9. Computer program for the calculation of stresses in rotary equipment discs; Programas de computo para el calculo de esfuerzos en discos de equipo rotatorio

    Energy Technology Data Exchange (ETDEWEB)

    Gutierrez Delgado, Wilson; Kubiak, Janusz; Serrano Romero, Luis Enrique [Instituto de Investigaciones Electricas, Cuernavaca (Mexico)

    1991-12-31

    In the preliminary design and diagnosis of rotary machines is very common to utilize simple calculation methods for the mechanical and thermal stresses, dynamic and thermodynamic analysis and flow of fluids in this machines (Gutierrez et al., 1989). The analysis with these methods provides the necessary results for the project initial stage of the machine. Later on, more complex tools are employed to refine the design of some machine components. In the Gutierrez report et al., (1989) 34 programs were developed for the preliminary design and diagnosis of rotating equipment; in this article, one of them is presented in which a method for the analysis of mechanical and thermal stresses is applied in discs of uniform or variable thickness that are normally found in turbomachines and rotary equipment. [Espanol] En el diseno preliminar y diagnostico de maquinas rotatorias es muy comun emplear metodos de calculo sencillos para el analisis de esfuerzos mecanicos y termicos, analisis dinamico y termodinamico y de flujo de fluidos en estas maquinas (Gutierrez et al., 1989). El analisis con estos metodos proporcionan los resultados necesarios para la etapa del proyecto inicial de la maquina. Posteriormente, para refinar el diseno de algunos componentes de la maquina, se aplican las herramientas mas complejas. En el informe de Gutierrez et al., (1989) se desarrollan 34 programas para el diseno preliminar y diagnostico de equipo rotatorio; en este articulo, se presenta uno de ellos, en el que se emplea un metodo para el analisis de esfuerzos mecanicos y termicos en discos de espesor constante o variable que se encuentran comunmente en turbomaquinas y en equipos rotatorios.

  10. PCRELAP5: data calculation program for RELAP 5 code; PCRELAP5: programa de calculo dos dados de entrada para o codigo RELAP5

    Energy Technology Data Exchange (ETDEWEB)

    Silvestre, Larissa Jacome Barros

    2016-07-01

    Nuclear accidents in the world led to the establishment of rigorous criteria and requirements for nuclear power plant operations by the international regulatory bodies. By using specific computer programs, simulations of various accidents and transients likely to occur at any nuclear power plant are required for certifying and licensing a nuclear power plant. Based on this scenario, some sophisticated computational tools have been used such as the Reactor Excursion and Leak Analysis Program (RELAP5), which is the most widely used code for the thermo-hydraulic analysis of accidents and transients in nuclear reactors in Brazil and worldwide. A major difficulty in the simulation by using RELAP5 code is the amount of information required for the simulation of thermal-hydraulic accidents or transients. The preparation of the input data requires a great number of mathematical operations to calculate the geometry of the components. Thus, for those calculations performance and preparation of RELAP5 input data, a friendly mathematical preprocessor was designed. The Visual Basic for Application (VBA) for Microsoft Excel demonstrated to be an effective tool to perform a number of tasks in the development of the program. In order to meet the needs of RELAP5 users, the RELAP5 Calculation Program (Programa de Calculo do RELAP5 - PCRELAP5) was designed. The components of the code were codified; all entry cards including the optional cards of each one have been programmed. In addition, an English version for PCRELAP5 was provided. Furthermore, a friendly design was developed in order to minimize the time of preparation of input data and errors committed by users. In this work, the final version of this preprocessor was successfully applied for Safety Injection System (SIS) of Angra 2. (author)

  11. Origin of magnetostriction in Fe-Ga

    DEFF Research Database (Denmark)

    Mudivarthi, Chaitanya; Laver, Mark; Cullen, James

    2010-01-01

    This paper investigates the origin of large magnetostriction in Fe-Ga alloys using small-angle neutron scattering (SANS) and Kerr microscopy. The SANS data for a single-crystal, electron irradiated, and quenched Fe81Ga19 sample under externally applied magnetic and elastic fields revealed...... the existence of magnetostrictive nanoclusters spaced at similar to 15 nm apart that have a different magnetization than the A2 matrix. Combining the SANS results and the magnetization orientation obtained from the magnetic domain images using a Kerr microscope, it appears that the nanoclusters contribute...

  12. Realizing high magnetic moments in fcc Fe nanoparticles through atomic structure stretch

    International Nuclear Information System (INIS)

    Baker, S H; Roy, M; Thornton, S C; Binns, C

    2012-01-01

    We describe the realization of a high moment state in fcc Fe nanoparticles through a controlled change in their atomic structure. Embedding Fe nanoparticles in a Cu 1-x Au x matrix causes their atomic structure to switch from bcc to fcc. Extended x-ray absorption fine structure (EXAFS) measurements show that the structure in both the matrix and the Fe nanoparticles expands as the amount of Au in the matrix is increased, with the data indicating a tetragonal stretch in the Fe nanoparticles. The samples were prepared directly from the gas phase by co-deposition, using a gas aggregation source and MBE-type sources respectively for the nanoparticle and matrix materials. The structure change in the Fe nanoparticles is accompanied by a sharp increase in atomic magnetic moment, ultimately to values of ∼2.5 ± 0.3 μ B /atom. (paper)

  13. The Impact of Template Types on Polyeugenol to the Adsorption Selectivity of Ionic Imprinted Polymer (IIP) Fe Metal Ion

    Science.gov (United States)

    Djunaidi, M. C.; Haris, A.; Pardoyo; Rosdiana, K.

    2018-04-01

    The synthesis of IIP was carried out by variation of Fe(III) ion templates from Fe(NO3)3, K3[Fe(CN)6] and NH4Fe(SO4)2 compounds which then tested IIP selectivity to the Fe metal ions through adsorption process. Ionic Imprinted Polymer (IIP) is a method of printing metal ions bound in a polymer, subsequently released from the polymer matrix to produce a suitable imprint for the target ion. The purposes of this study were to produce IIP from Fe(NO3)3, K3[Fe(CN)6] and NH4Fe(SO4)2 templates, to know the effect of templates on adsorption selectivity of IIP involving imprint cavity, and to know the impact of metal competitor on the selectivity adsorption of IIP to the Fe metals. The results obtained showed that IIP synthesized by variations of Fe(NO3)3, K3[Fe(CN)6] and NH4Fe(SO4)2 templates were successfully synthesized. The adsorption selectivity of Fe (III) metal ion in the Fe(NO3)3 template was greater than that of in the K3[Fe(CN)6] and NH4Fe(SO4)2 templates. The adsorption selectivity of Fe was greater on Fe-Cr compared to on Fe-Cd and Fe-Pb.

  14. The Matrix Cookbook

    DEFF Research Database (Denmark)

    Petersen, Kaare Brandt; Pedersen, Michael Syskind

    Matrix identities, relations and approximations. A desktop reference for quick overview of mathematics of matrices.......Matrix identities, relations and approximations. A desktop reference for quick overview of mathematics of matrices....

  15. Carbonate fuel cell matrix

    Science.gov (United States)

    Farooque, Mohammad; Yuh, Chao-Yi

    1996-01-01

    A carbonate fuel cell matrix comprising support particles and crack attenuator particles which are made platelet in shape to increase the resistance of the matrix to through cracking. Also disclosed is a matrix having porous crack attenuator particles and a matrix whose crack attenuator particles have a thermal coefficient of expansion which is significantly different from that of the support particles, and a method of making platelet-shaped crack attenuator particles.

  16. Matrix with Prescribed Eigenvectors

    Science.gov (United States)

    Ahmad, Faiz

    2011-01-01

    It is a routine matter for undergraduates to find eigenvalues and eigenvectors of a given matrix. But the converse problem of finding a matrix with prescribed eigenvalues and eigenvectors is rarely discussed in elementary texts on linear algebra. This problem is related to the "spectral" decomposition of a matrix and has important technical…

  17. Triangularization of a Matrix

    Indian Academy of Sciences (India)

    Much of linear algebra is devoted to reducing a matrix (via similarity or unitary similarity) to another that has lots of zeros. The simplest such theorem is the Schur triangularization theorem. This says that every matrix is unitarily similar to an upper triangular matrix. Our aim here is to show that though it is very easy to prove it ...

  18. Very high coercivities of top-layer diffusion Au/FePt thin films

    International Nuclear Information System (INIS)

    Yuan, F.T.; Chen, S.K.; Liao, W.M.; Hsu, C.W.; Hsiao, S.N.; Chang, W.C.

    2006-01-01

    The Au/FePt samples were prepared by depositing a gold cap layer at room temperature onto a fully ordered FePt layer, followed by an annealing at 800 deg. C for the purpose of interlayer diffusion. After the deposition of the gold layer and the high-temperature annealing, the gold atoms do not dissolve into the FePt Ll 0 lattice. Compared with the continuous FePt film, the TEM photos of the bilayer Au(60 nm)/FePt(60 nm) show a granular structure with FePt particles embedded in Au matrix. The coercivity of Au(60 nm)/FePt(60 nm) sample is 23.5 kOe, which is 85% larger than that of the FePt film without Au top layer. The enhancement in coercivity can be attributed to the formation of isolated structure of FePt ordered phase

  19. Matrix mineralogy of the Lance CO3 carbonaceous chondrite - A transmission electron microscope study

    Science.gov (United States)

    Keller, Lindsay P.; Buseck, Peter R.

    1990-01-01

    Results are presented on electron microprobe analyses of three CO chondrites, all of which are falls: Lance, Kainsaz, and Warrenton. The TEM mineralogy results of Lance chondrite show that Fe-rich matrix olivines have been altered to Fe-bearing serpentine and Fe(3+) oxide; matrix metal was also altered to produce Fe(3+) oxides, leaving the residual metal enriched in Ni. Olivine grains in Lance's matrix contain channels along their 100-line and 001-line directions; the formation and convergence of such channels resulted in a grain-size reduction of the olivine. A study of Kainsaz and Warrenton showed that these meteorites do not contain phyllosilicates in their matrices, although both contain Fe(3+) oxide between olivine grains. It is suggested that, prior to its alteration, Lance probably resembled Kainsaz, an unaltered CO3 chondrite.

  20. Microstructure and properties of multiphase sintered cermets Fe-Fe2B

    International Nuclear Information System (INIS)

    Nowacki, J.; Klimek, L.

    1998-01-01

    The process of multiphase sintering of iron in the vacuum has been analysed. As a result of the process iron-iron boride cermets have been produced. Fe-Fe 2 B cermets were obtained as a result of sintering of the Fe and B pure elements in the vacuum. Attemps at sintering in the solid phase and with the participation of the liquid phase, the Fe-Fe 2 B eutectic, have been made. Metallographic qualitative and quantitative studies, X-ray structural qualitative and qauantitative analysis allowed to determine the structure of Fe 2 B cermets, as well as a description of the kinetics of quantitative changes in phase proportions in the course of sintering. It has been found that their structure varies widely depending on sintering parameters and the composition of the sinters. Measurements of the Fe-Fe 2 B cermets hardness and measurements on wear during dry friction by the pin-on-disc method have shown distinct advantages of the cermets as a modern constructional materials. The hardness of Fe-Fe 2 B cermets, depending on their chemical composition and sintering parameters, ranges widely from 150 to 1500 HV, and their resistance to wear is comparable to that of diffusively boronized steels. FeFe 2 B cermets are a composite material in which iron boride, Fe 2 B, with a hardness of about 1800 HV plays the role of the reinforcement,while iron-iron boride, Fe-Fe 2 B, with a hardness of about 500 HV plays the role of matrix. The eutectic in the spaces between iron boride grains is composed of boron solid solution plates in iron with a hardness of arround 250 HV, and iron boride, Fe 2 B, plates with a hardness of approximaly 1800 HV. The combination of such different materials, a hard reinforcement and a relatively plastic matrix produces favourable properties of the cermet thus produced high hardness (1500 HV) constant over whole cross section of the material, resistance of abrasive wear and acceptable ductility. The properties mentioned above, resulting from the cermet

  1. Magnetic properties of iron-oxide and (iron, cobalt)-oxide nanoparticles synthesized in polystyrene resin matrix

    International Nuclear Information System (INIS)

    Naik, R.; Kroll, E.; Rodak, D.; Tsoi, G.M.; McCullen, E.; Wenger, L.E.; Suryanarayanan, R.; Naik, V.M.; Vaishnava, P.P.; Tao, Qu; Boolchand, P.

    2004-01-01

    A sulfonated polystyrene resin matrix was ion exchanged with aqueous solutions of (1) FeCl 2 , (2) FeCl 3 , (3) 2FeCl 2 :FeCl 3 , (4) 9FeCl 2 :CoCl 2 , and (5) 4FeCl 2 :CoCl 2 to prepare magnetic nanoparticles of varying size. The samples were characterized by X-ray diffraction (XRD), 57 Fe Mossbauer spectroscopy, X-ray photoelectron spectroscopy (XPS), and transmission electron microscopy (TEM), and identify two major phases: γ-Fe 2 O 3 , CoFe 2 O 4 , and perhaps a minor Fe 3 O 4 phase. SQUID magnetometry measurements indicate superparamagnetic particles with blocking temperatures (T B ) ranging from 20 K to room temperature

  2. Magnetic properties of iron-oxide and (iron, cobalt)-oxide nanoparticles synthesized in polystyrene resin matrix

    Energy Technology Data Exchange (ETDEWEB)

    Naik, R. E-mail: naik@physics.wayne.edu; Kroll, E.; Rodak, D.; Tsoi, G.M.; McCullen, E.; Wenger, L.E.; Suryanarayanan, R.; Naik, V.M.; Vaishnava, P.P.; Tao, Qu; Boolchand, P

    2004-05-01

    A sulfonated polystyrene resin matrix was ion exchanged with aqueous solutions of (1) FeCl{sub 2}, (2) FeCl{sub 3}, (3) 2FeCl{sub 2}:FeCl{sub 3}, (4) 9FeCl{sub 2}:CoCl{sub 2}, and (5) 4FeCl{sub 2}:CoCl{sub 2} to prepare magnetic nanoparticles of varying size. The samples were characterized by X-ray diffraction (XRD), {sup 57}Fe Mossbauer spectroscopy, X-ray photoelectron spectroscopy (XPS), and transmission electron microscopy (TEM), and identify two major phases: {gamma}-Fe{sub 2}O{sub 3}, CoFe{sub 2}O{sub 4}, and perhaps a minor Fe{sub 3}O{sub 4} phase. SQUID magnetometry measurements indicate superparamagnetic particles with blocking temperatures (T{sub B}) ranging from 20 K to room temperature.

  3. Magnetic properties of iron-oxide and (iron, cobalt)-oxide nanoparticles synthesized in polystyrene resin matrix

    Science.gov (United States)

    Naik, R.; Kroll, E.; Rodak, D.; Tsoi, G. M.; McCullen, E.; Wenger, L. E.; Suryanarayanan, R.; Naik, V. M.; Vaishnava, P. P.; Tao, Qu; Boolchand, P.

    2004-05-01

    A sulfonated polystyrene resin matrix was ion exchanged with aqueous solutions of (1) FeCl2, (2) FeCl3, (3) 2FeCl2:FeCl3, (4) 9FeCl2:CoCl2, and (5) 4FeCl2:CoCl2 to prepare magnetic nanoparticles of varying size. The samples were characterized by X-ray diffraction (XRD), 57Fe Mossbauer spectroscopy, X-ray photoelectron spectroscopy (XPS), and transmission electron microscopy (TEM), and identify two major phases: γ-Fe2O3, CoFe2O4, and perhaps a minor Fe3O4 phase. SQUID magnetometry measurements indicate superparamagnetic particles with blocking temperatures (TB) ranging from 20K to room temperature.

  4. Fine-structure excitation of Fe II and Fe III due to collisions with electrons

    Science.gov (United States)

    Wan, Yier; Qi, Yueying; Favreau, Connor; Loch, Stuart; Stancil, P.; Ballance, Connor; McLaughlin, Brendan

    2018-06-01

    Atomic data of iron peak elements are of great importance in astronomical observations. Among all the ionization stages of iron, Fe II and Fe III are of particular importance because of the high cosmic abundance, relatively low ionization potential and complex open d-shell atomic structure. Fe II and Fe III emission are observed from nearly all classes of astronomical objects over a wide spectral range from the infrared to the ultraviolet. To meaningfully interpret these spectra, astronomers have to employ highly complex modeling codes with reliable collision data to simulate the astrophysical observations. The major aim of this work is to provide reliable atomic data for diagnostics. We present new collision strengths and effective collisions for electron impact excitation of Fe II and Fe III for the forbidden transitions among the fine-structure levels of the ground terms. A very fine energy mesh is used for the collision strengths and the effective collision strengths are calculated over a wide range of electron temperatures of astrophysical importance (10-2000 K). The configuration interaction state wave functions are generated with a scaled Thomas-Fermi-Dirac-Amaldi (TFDA) potential, while the R-matrix plus intermediate coupling frame transformation (ICFT), Breit-Pauli R-matrix and Dirac R-matrix packages are used to obtain collision strengths. Influences of the different methods and configuration expansions on the collisional data are discussed. Comparison is made with earlier theoretical work and differences are found to occur at the low temperatures considered here.This work was funded by NASA grant NNX15AE47G.

  5. Magnetostriction of the polycrystalline Fe80Al20 alloy doped with boron

    International Nuclear Information System (INIS)

    Bormio-Nunes, Cristina; Teodoro dos Santos, Claudio; Botani de Souza Dias, Mateus; Doerr, Mathias; Granovsky, Sergey; Loewenhaupt, Michael

    2012-01-01

    Highlights: ► Fe 80 Al 20 polycrystalline alloy magnetostriction 40 ppm increased to 80 ppm due to 2% of B doping. ► B stabilizes α-FeAl phase and a coexistence of α-FeAl + Fe 3 Al improves magnetostriction. ► Presence of Fe 2 B phase causes domain rearrangement revealed by the decrease of the volume magnetostriction. - Abstract: The doping of Fe 80 Al 20 polycrystalline alloy with 2% of boron increased the total magnetostriction twofold compared to a sample without boron. A value close to 80 ppm was achieved at 300 K. The microstructures of the boron-doped alloys show a dendritically solidified matrix with interdendritic α-FeAl and/or Fe 3 Al and Fe 2 B eutectic between the grains. The XRD analysis reveals an increase in the volume fraction of α-FeAl and a correspondent decrease of the Fe 3 Al phase volume fraction as the boron content increases. The increase of the volume fraction of this tetragonal Fe 2 B phase in the samples doped with boron causes the decrease of the strong volume magnetostriction that was observed in the alloy without boron. There is some evidence that the improvement of the magnetostriction magnitude due to the addition of boron to the Fe 80 Al 20 alloy could reach the maximal magnetostriction if the 1:1 optimal ratio of the volume fractions of the α-FeAl and Fe 3 Al phases could be reached.

  6. Torque calculation in the induction motor with the finite element method; Calculo del par en el motor de induccion con el metodo del elemento finito

    Energy Technology Data Exchange (ETDEWEB)

    Castillo Diaz, Ramon

    2002-06-15

    In this work the method of the finite element is applied to the bi-dimensional analysis of the induction motor in operation in steady state, excited by sine sources of laminar currents and sine sources of voltage. The analysis is focused mainly in the calculation of the electromagnetic torque. The topics of electromagnetic theory are covered and in an idealized model of the induction motor, analytically and numerically with the method of the finite element, in the variant method of Galerkin, the vectorial potential and the torque are calculated. The results obtained with the analytical and numerical methods are compared. Three formulations are developed to calculate the torque with the method of the finite element, using triangular elements of first order, based in the equation of force of Lorentz, the Maxwell tensor and the principle of the virtual work. Finally, a motor of induction of real characteristics is simulated, assuming it is connected to a three-phase voltage source. In this motor it is analyzed the convergence and the evolution in the results obtained of the torque with different discretions, and the torque-velocity performance curve is calculated. [Spanish] En este trabajo se aplica el metodo del elemento finito al analisis bidimensional del motor de induccion en operacion en estado estable, excitado por fuentes de corriente laminar senoidales y fuentes de voltaje senoidales. El analisis se enfoca principalmente en el calculo del par electromagnetico. Se tratan los topicos de teoria electromagnetica involucrados y en un modelo idealizado del motor de induccion, se calculan analitica y numericamente con el metodo del elemento finito, en la variante metodo de Galerkin, el potencial vectorial y el par. Se comparan resultados obtenidos con los metodos analiticos y numericos. Se desarrollan tres formulaciones para calcular el par con el metodo del elemento finito, utilizando elementos triangulares de primer orden, basadas en la ecuacion de fuerza de

  7. Interactions in γ-Fe2O3 and Fe3O4 nanoparticle systems

    International Nuclear Information System (INIS)

    Laha, S.S.; Tackett, R.J.; Lawes, G.

    2014-01-01

    We have investigated interaction effects in two different systems of iron oxide nanoparticles. Samples of γ-Fe 2 O 3 and Fe 3 O 4 nanoparticles were synthesized using a matrix-mediated precipitation reaction and a chemical co-precipitation technique respectively. The structural properties of these nanoparticles were studied using x-ray diffraction and transmission electron microscopy. We also used temperature dependent ac magnetic susceptibility measurements to carefully investigate the interactions among these nanoparticles. Our analysis showed that the characteristic interaction energy does not depend simply on the average spacing between the nanoparticles but is likely to be strongly influenced by the fluctuations in the nanoparticle distribution

  8. Parallelism in matrix computations

    CERN Document Server

    Gallopoulos, Efstratios; Sameh, Ahmed H

    2016-01-01

    This book is primarily intended as a research monograph that could also be used in graduate courses for the design of parallel algorithms in matrix computations. It assumes general but not extensive knowledge of numerical linear algebra, parallel architectures, and parallel programming paradigms. The book consists of four parts: (I) Basics; (II) Dense and Special Matrix Computations; (III) Sparse Matrix Computations; and (IV) Matrix functions and characteristics. Part I deals with parallel programming paradigms and fundamental kernels, including reordering schemes for sparse matrices. Part II is devoted to dense matrix computations such as parallel algorithms for solving linear systems, linear least squares, the symmetric algebraic eigenvalue problem, and the singular-value decomposition. It also deals with the development of parallel algorithms for special linear systems such as banded ,Vandermonde ,Toeplitz ,and block Toeplitz systems. Part III addresses sparse matrix computations: (a) the development of pa...

  9. Neutrino mass matrix

    International Nuclear Information System (INIS)

    Strobel, E.L.

    1985-01-01

    Given the many conflicting experimental results, examination is made of the neutrino mass matrix in order to determine possible masses and mixings. It is assumed that the Dirac mass matrix for the electron, muon, and tau neutrinos is similar in form to those of the quarks and charged leptons, and that the smallness of the observed neutrino masses results from the Gell-Mann-Ramond-Slansky mechanism. Analysis of masses and mixings for the neutrinos is performed using general structures for the Majorana mass matrix. It is shown that if certain tentative experimental results concerning the neutrino masses and mixing angles are confirmed, significant limitations may be placed on the Majorana mass matrix. The most satisfactory simple assumption concerning the Majorana mass matrix is that it is approximately proportional to the Dirac mass matrix. A very recent experimental neutrino mass result and its implications are discussed. Some general properties of matrices with structure similar to the Dirac mass matrices are discussed

  10. Cermet Fuel Element (FE) on the basis of micro fuel - FE prototype for future power engineering

    International Nuclear Information System (INIS)

    Fedik, I.; Deniskin, V.; Nalivaev, V.; Gavrilin, S.

    2006-01-01

    The FE with ceramic fuel and cladding of E110 alloy under average burnup depth of 43-45MW day/kg U with providing of 3 and 4 year operation periods are used successfully in WWER. The program had been developed for improving of the fuel cycles economical indexes and for further increasing the WWER operational characteristics. In this program the reactor safety increasing has been foreseen and also the coefficient of capacity using (KIUM) at the expense of the average implement of 55-60 MW day/kg U has been achieved. The program foresees also the integration of 5-6 year fuel cycle and other developments. It is planning to solve the pointed problems with help of traditional technical solution, directed to the improving of FE with ceramic fuel. In the present paper the design-engineering and experimental development results have been presented for creation of cermet FE on the basis of micro-fuel with matrix structure (in the further -the cermet FE) for WWER. The works have been carried out over period of the last 10 years in SRI SIA 'Luch' jointly with OKB 'Gidropress', VSRINM Bochvar name, RNTs 'Kurchatovsky institute', FEI and other. During the cermet FE introduction on the basis micro fuel at the NPP, external FE construction constant is kept. That allows installation of the new active zones without any sufficient changing of reactor installations constructions. Using of cermet FE in a new generation of WWER will allow to realize its quality in large volume, in particular, to create the first hermetic contour, to simplify and to reduce the price of safety systems, automatic adjustment, radiation protection, heat transfer purity, etc. The using of cermet FE, for example, in WWER may attach to the installation the exceeded operational properties of safety in different operation conditions, manoeuvrability, vibration strength, FA life time and FE geometrical stability

  11. Microstructures and mechanical properties of heat-treated Al–5.0Cu–0.5Fe squeeze cast alloys with different Mn/Fe ratio

    International Nuclear Information System (INIS)

    Zhang, Weiwen; Lin, Bo; Fan, Jianlei; Zhang, Datong; Li, Yuanyuan

    2013-01-01

    The Al–5.0 wt% Cu–0.5 wt% Fe alloys with different Mn/Fe ratio were prepared by squeeze casting. Various test techniques, including tensile test, image analysis, scanning electron microscope (SEM), X-ray diffraction (XRD), electron probe micro-analyzer (EPMA) and transmission electron microscopy (TEM) were used to examine the microstructures and mechanical properties of the alloys in T5 heat-treated condition. The results show that the β-Fe (Al 7 Cu 2 Fe) is stable and its needle-like morphology is maintained after T5 heat treatment. However, the Chinese script Al m Fe, α-Fe or Al 6 (FeMn) partially transform to a new Chinese script Cu-rich α(CuFe) (Al 7 Cu 2 Fe or Al 7 Cu 2 (FeMn)), which is harmful to the mechanical properties of the alloys due to the decrease of the Cu content in α(Al) matrix. The optimal Mn/Fe ratio is determined by the morphology of Fe-rich intermetallics, volume fraction of θ′ and T (Al 20 Cu 2 Mn 3 ), size of α(Al) dendrite and porosity. Excessive Mn/Fe ratio will deteriorate the mechanical properties of the alloys due to the increase of the total amount of porosity and the Fe-rich intermetallics. When the Mn/Fe ratio is 1.6 and 1.2 for the applied pressure of 0 MPa and 75 MPa, respectively, the needle-like β-Fe phase is completely converted to the Chinese script Fe-rich intermetallics. The ultimate tensile strength, yield strength and elongation of the T5 heat-treated alloy with the Mn/Fe ratio of 1.2 and applied pressure of 75 MPa reach 395 MPa, 335 MPa and 14%, respectively

  12. Fractional Excretion of Survivin, Extracellular Matrix Metalloproteinase Inducer, and Matrix Metalloproteinase 7 in Children with Chronic Kidney Disease

    Directory of Open Access Journals (Sweden)

    Agnieszka Bargenda

    2016-07-01

    Full Text Available Background: Epithelial–mesenchymal transition (EMT is defined as a transformation of tubular epithelial cells into mesenchymal ones. These cells migrate through the extracellular matrix and change into active myofibroblasts, which are responsible for excessive matrix deposition. Such changes may lead to tubular dysfunction and fibrosis of the renal parenchyma, characteristic of chronic kidney disease (CKD. However, there are no data on potential EMT markers in children with CKD. The aim of our study was to assess the usefulness of fractional excretion (FE of survivin, E-cadherin, extracellular matrix metalloproteinase inducer (EMMPRIN, matrix metalloproteinase (MMP7, and transforming growth factor beta 1 (TGF-β1 as potential markers of CKD-related complications such as tubular damage and fibrosis. Methods: Forty-one pre-dialysis children with CKD Stages 3–5 and 23 age-matched controls were enrolled in the study. The serum and urine concentrations of analysed parameters were assessed by an enzyme-linked immunosorbent assay test. Results: Tubular reabsorption of all analysed parameters was >99% in the control group. All FE values rose significantly in children with CKD, yet they remained 1%. Conclusions: FE of the examined markers may become a useful tool in the assessment of tubular dysfunction during the course of CKD. The FE of survivin, EMMPRIN, and MMP7 warrant further research as potential independent markers of kidney-specific EMT.

  13. Nanostructure and magnetization reversal process in TbFeCo/Yx(FeCo)1-x spring-magnet type multilayers

    International Nuclear Information System (INIS)

    Duc, N.H.; Huong Giang, D.T.; Chau, N.

    2004-01-01

    Studies of the naturally formed nanostructure and magnetization reversal process were performed for the sputtered Tb(Fe 0.55 Co 0.45 ) 1.5 /Y x (Fe 0.7 Co 0.3 ) 1-x multilayers (0≤x≤0.2) with a TbFeCo layer thickness t TbFeCo =12 nm and YFeCo layer thickness t YFeCo =10 nm. The structural investigations showed that nanocrystals are naturally formed and coexist within the amorphous matrix in Y 0.1 (FeCo) 0.9 layers. In this state, low magnetic coercivity and large parallel magnetostrictive susceptibility are observed. The results are discussed in terms of the crystalline discontinuity of the soft YFeCo layers

  14. In vitro corrosion properties and cytocompatibility of Fe-Ga alloys as potential biodegradable metallic materials.

    Science.gov (United States)

    Wang, Henan; Zheng, Yang; Liu, Jinghua; Jiang, Chengbao; Li, Yan

    2017-02-01

    The in vitro biodegradable properties and cytocompatibility of Fe-Ga alloys including Fe 81 Ga 19 , (Fe 81 Ga 19 ) 98 B 2 and (Fe 81 Ga 19 ) 99.5 (TaC) 0.5 , and pure Fe were investigated for biomedical applications. The microstructure of the alloys was characterized using X-ray diffraction spectroscopy and optical microscopy. The results showed that A2 and D0 3 phases were detected for the three types of Fe-Ga alloys, and additional Fe 2 B and TaC phases were found in the (Fe 81 Ga 19 ) 98 B 2 and (Fe 81 Ga 19 ) 99.5 (TaC) 0.5 alloys, respectively. The corrosion rates of the Fe-Ga alloys were higher than that of pure Fe, as demonstrated by both potentiodynamic polarization measurements and immersion tests in simulated body fluid. The alloying element Ga lowered the corrosion potential of the Fe matrix and made it more susceptible to corrosion. Severe pitting corrosion developed on the surface of the Fe 81 Ga 19 alloy after the addition of ternary B or TaC due to the multi-phase microstructures. The MC3T3-E1 cells exhibited good adhesion and proliferation behavior on the surfaces of the Fe-Ga alloys after culture for 4h and 24h. Copyright © 2016 Elsevier B.V. All rights reserved.

  15. Patience of matrix games

    DEFF Research Database (Denmark)

    Hansen, Kristoffer Arnsfelt; Ibsen-Jensen, Rasmus; Podolskii, Vladimir V.

    2013-01-01

    For matrix games we study how small nonzero probability must be used in optimal strategies. We show that for image win–lose–draw games (i.e. image matrix games) nonzero probabilities smaller than image are never needed. We also construct an explicit image win–lose game such that the unique optimal...

  16. Matrix comparison, Part 2

    DEFF Research Database (Denmark)

    Schneider, Jesper Wiborg; Borlund, Pia

    2007-01-01

    The present two-part article introduces matrix comparison as a formal means for evaluation purposes in informetric studies such as cocitation analysis. In the first part, the motivation behind introducing matrix comparison to informetric studies, as well as two important issues influencing such c...

  17. Unitarity of CKM Matrix

    CERN Document Server

    Saleem, M

    2002-01-01

    The Unitarity of the CKM matrix is examined in the light of the latest available accurate data. The analysis shows that a conclusive result cannot be derived at present. Only more precise data can determine whether the CKM matrix opens new vistas beyond the standard model or not.

  18. Fuzzy risk matrix

    International Nuclear Information System (INIS)

    Markowski, Adam S.; Mannan, M. Sam

    2008-01-01

    A risk matrix is a mechanism to characterize and rank process risks that are typically identified through one or more multifunctional reviews (e.g., process hazard analysis, audits, or incident investigation). This paper describes a procedure for developing a fuzzy risk matrix that may be used for emerging fuzzy logic applications in different safety analyses (e.g., LOPA). The fuzzification of frequency and severity of the consequences of the incident scenario are described which are basic inputs for fuzzy risk matrix. Subsequently using different design of risk matrix, fuzzy rules are established enabling the development of fuzzy risk matrices. Three types of fuzzy risk matrix have been developed (low-cost, standard, and high-cost), and using a distillation column case study, the effect of the design on final defuzzified risk index is demonstrated

  19. Fuzzy vulnerability matrix

    International Nuclear Information System (INIS)

    Baron, Jorge H.; Rivera, S.S.

    2000-01-01

    The so-called vulnerability matrix is used in the evaluation part of the probabilistic safety assessment for a nuclear power plant, during the containment event trees calculations. This matrix is established from what is knows as Numerical Categories for Engineering Judgement. This matrix is usually established with numerical values obtained with traditional arithmetic using the set theory. The representation of this matrix with fuzzy numbers is much more adequate, due to the fact that the Numerical Categories for Engineering Judgement are better represented with linguistic variables, such as 'highly probable', 'probable', 'impossible', etc. In the present paper a methodology to obtain a Fuzzy Vulnerability Matrix is presented, starting from the recommendations on the Numerical Categories for Engineering Judgement. (author)

  20. Consideraciones respecto al calculo de empalmes atornillados de perfiles estructurales de GFRP sometidos a flexión

    Directory of Open Access Journals (Sweden)

    Serna, Eduardo

    2003-06-01

    Full Text Available A composite material can be defined as the combination of two or more materials with the aim of obtaining a new product with improved properties. Composite materials, composed of a polymer matrix reinforced with fibers, are currently used as structural elements, in spite of the uncertainties on strength, deformability and durability. The use of pultruded profiles in shapes similar to those used in metallic construction, results in an interesting solution for this material when high resistance. protection against chemical attacks and lightness are required. The structural key point of those materials are the joints. The present paper is focused on joints composed of bolted plates on the wings of IPN pultruded profiles. Different tests conducted in LABEIN are described. Likewise, this paper deals with tests carried out with the purpose of analysing the feasibility of joints with high resistance bolts.Se entiende como material compuesto la combinación de dos o más materiales para obtener un nuevo producto que mejore las propiedades individuales de cada uno ellos. Se está comenzando a emplear el material compuesto. formado por una matriz de tipo polimérico o resina reforzada con fibras. como elementos estructurales. pero con reticencias originadas por las incertidumbres existentes en la actualidad relativas a su resistencia, deformabilidad y durabilidad. Este material aporta un importante interés cuando se quieren obtener elementos estructurales de alta resistencia . protección frente a ataques químicos y ligereza. utilizando perfiles a la manera de la estructura metálica. fabricados por pultrusión, Debido a que el punto crítico estructural se encuentra en las uniones. el presente artículo se centrará en los empalmes atornillados con cubrejuntas de alas de perfiles pultruídos IPN, describiendo los ensayos de diferente naturaleza realizados en las instalaciones del Centro Tecnológico LABEIN. A su vez se recogen los ensayos previos

  1. Dipodal Silane-modified Nano Fe3O4/Polyurethane Magnetic Nanocomposites: Preparation and Characterization

    OpenAIRE

    Mir Mohammad Alavi Nikje; Maryam Vakili; Reihaneh Farajollah; Raheleh Akbar; Moslem Haghshenas

    2016-01-01

    Magnetic nanocomposites were prepared by incorporation of pure Fe3O4 and surface-modified Fe3O4 nanoparticles (dipodal silane-modified Fe3O4) into a polyurethane elastomer matrix by in situ polymerization method. In preparation of these magnetic nanocomposites, polycaprolactone (PCL) was used as a polyester polyol. Because of dipole-dipole interactions between nanoparticles and a large surface area to volume ratio, the magnetic iron oxide nanoparticles tended to agglomerate. Furthermore, the ...

  2. Fabrication of α-Fe/Fe3C/Woodceramic Nanocomposite with Its Improved Microwave Absorption and Mechanical Properties

    Directory of Open Access Journals (Sweden)

    Weihong Zhou

    2018-05-01

    Full Text Available Furan resin and fir powder pretreated by FeCl3 and aqueous ammonia solution were used to fabricate α-Fe/Fe3C/woodceramic nanocomposite. The bands of the pretreated wood powder were characterized by Fourier transform infrared spectroscopy (FTIR. The structural characterization of the nanocomposites was performed by scanning electron microscopy (SEM and X-ray diffraction (XRD. The microwave absorption of the nanocomposites was measured by a vector network analyzer in the range of 2–18 GHz. The mechanical properties of the composites were also investigated. XRD and SEM results show that the α-Fe and Fe3C nanoparticles are in-situ generated and disperse in the matrix of the woodceramic. The diameters of these nanoparticles increase with the increasing of concentration of FeCl3 solution. The experimental results show that both the complex permittivity and the complex permeability of α-Fe/Fe3C/woodceramic nanocomposites increase as the concentration of FeCl3 solution increases. The composites pretreated with 0.60 mol·L−1 FeCl3 have the best absorption properties. The maximum value of reflection loss (RL at 3 mm thickness reaches −25.60 dB at 10.16 GHz and the bandwidth below −10 dB is about 2.5 GHz. Compared to woodceramic, the bending strength and compressive strength of α-Fe/Fe3C/woodceramic nanocomposites increase by 22.5% and 18.7% at most, respectively.

  3. The nuclear reaction matrix

    International Nuclear Information System (INIS)

    Krenciglowa, E.M.; Kung, C.L.; Kuo, T.T.S.; Osnes, E.; and Department of Physics, State University of New York at Stony Brook, Stony Brook, New York 11794)

    1976-01-01

    Different definitions of the reaction matrix G appropriate to the calculation of nuclear structure are reviewed and discussed. Qualitative physical arguments are presented in support of a two-step calculation of the G-matrix for finite nuclei. In the first step the high-energy excitations are included using orthogonalized plane-wave intermediate states, and in the second step the low-energy excitations are added in, using harmonic oscillator intermediate states. Accurate calculations of G-matrix elements for nuclear structure calculations in the Aapprox. =18 region are performed following this procedure and treating the Pauli exclusion operator Q 2 /sub p/ by the method of Tsai and Kuo. The treatment of Q 2 /sub p/, the effect of the intermediate-state spectrum and the energy dependence of the reaction matrix are investigated in detail. The present matrix elements are compared with various matrix elements given in the literature. In particular, close agreement is obtained with the matrix elements calculated by Kuo and Brown using approximate methods

  4. Microstructure and properties of FeSiCr/PA6 composites by injection molding using FeSiCr powders by phosphating and coupling treatment

    Science.gov (United States)

    Wang, Lulu; Qiao, Liang; Zheng, Jingwu; Cai, Wei; Ying, Yao; Li, Wangchang; Che, Shenglei; Yu, Jing

    2018-04-01

    FeSiCr/PA6 composites were prepared by injection molding using the FeSiCr powders modified by different phosphating agents and KH550 coupling agent. The resistivity, impact strength, magnetic permeability and magnetic loss of the FeSiCr/PA6 composites were measured. The morphologies of different FeSiCr powders and the FeSiCr/PA6 composites were also observed by scanning electron microscope (SEM). The results showed that 1-Hydroxyethylidene-1,1-diphosphonic acid, phytic acid and H3PO4 could improve the electrical resistivity of FeSiCr powders by forming the dense phosphating layer except diphenylphosphinic acid. However, the resistivity of FeSiCr/PA6 composites using the FeSiCr powders treated by all the four phosphating agents had no obvious increase though the phosphating layer on the surface of FeSiCr powder came into being. The nylon insulation layer had much stronger influence than the phosphating layer on electrical resistivity of the composites. After adding appropriate KH550 coupling agent, the impact strengths of FeSiCr/PA6 composites were significantly improved, which may be associated with the tiny gap between FeSiCr powder and PA6 matrix. The effects of the phosphating agents on the magnetic permeability and loss of the FeSiCr/PA6 were small and the mechanism were also discussed.

  5. Matrix Metalloproteinase Enzyme Family

    Directory of Open Access Journals (Sweden)

    Ozlem Goruroglu Ozturk

    2013-04-01

    Full Text Available Matrix metalloproteinases play an important role in many biological processes such as embriogenesis, tissue remodeling, wound healing, and angiogenesis, and in some pathological conditions such as atherosclerosis, arthritis and cancer. Currently, 24 genes have been identified in humans that encode different groups of matrix metalloproteinase enzymes. This review discuss the members of the matrix metalloproteinase family and their substrate specificity, structure, function and the regulation of their enzyme activity by tissue inhibitors. [Archives Medical Review Journal 2013; 22(2.000: 209-220

  6. Matrix groups for undergraduates

    CERN Document Server

    Tapp, Kristopher

    2005-01-01

    Matrix groups touch an enormous spectrum of the mathematical arena. This textbook brings them into the undergraduate curriculum. It makes an excellent one-semester course for students familiar with linear and abstract algebra and prepares them for a graduate course on Lie groups. Matrix Groups for Undergraduates is concrete and example-driven, with geometric motivation and rigorous proofs. The story begins and ends with the rotations of a globe. In between, the author combines rigor and intuition to describe basic objects of Lie theory: Lie algebras, matrix exponentiation, Lie brackets, and maximal tori.

  7. Elementary matrix theory

    CERN Document Server

    Eves, Howard

    1980-01-01

    The usefulness of matrix theory as a tool in disciplines ranging from quantum mechanics to psychometrics is widely recognized, and courses in matrix theory are increasingly a standard part of the undergraduate curriculum.This outstanding text offers an unusual introduction to matrix theory at the undergraduate level. Unlike most texts dealing with the topic, which tend to remain on an abstract level, Dr. Eves' book employs a concrete elementary approach, avoiding abstraction until the final chapter. This practical method renders the text especially accessible to students of physics, engineeri

  8. Structural investigation of Fe(Cu)ZrB amorphous alloy

    Energy Technology Data Exchange (ETDEWEB)

    Duhaj, P. [Slovenska Akademia Vied, Bratislava (Slovakia). Fyzikalny Ustav; Matko, I. [Slovenska Akademia Vied, Bratislava (Slovakia). Fyzikalny Ustav; Svec, P. [Slovenska Akademia Vied, Bratislava (Slovakia). Fyzikalny Ustav; Sitek, J. [Department of Nuclear Physics and Technology, Slovak Technical University, 81219 Bratislava (Slovakia); Janickovic, D. [Slovenska Akademia Vied, Bratislava (Slovakia). Fyzikalny Ustav

    1996-07-01

    The crystallization process in Fe{sub 86}(Cu{sub 1})Zr{sub 7}B{sub 6} and Fe{sub 87}Zr{sub 7}B{sub 6} is investigated using the methods of transmission electron microscopy, electron and X-ray diffraction and resistometry. Two crystallization reactions take place during thermal annealing of amorphous Fe{sub 86}(Cu{sub 1})Zr{sub 7}B{sub 6} and Fe{sub 87}Zr{sub 7}B{sub 6} alloys. In both alloys the first crystallization begins with the formation of nanocrystalline {alpha}-Fe at temperature to approximately 800 K. The second crystallization starts above 1000 K; the nanocrystalline phase dissolves and together with the remaining amorphous matrix form rough grains of {alpha}-Fe and dispersed Fe{sub 23}Zr{sub 6} phases. From Moessbauer spectroscopy it seems that there exist two neighbourhoods of Fe atoms in the amorphous structure. One of them is characterized by low Zr content and is responsible for the high-field component of the hyperfine field distribution p(H). The second one is rich in Zr and B and is responsible for the low-field component of p(H). This is in accord with the observation of two crystallization steps separated by a large interval of temperatures due to the existence of two chemically different regions or clusters. (orig.)

  9. Structural investigation of Fe(Cu)ZrB amorphous alloy

    International Nuclear Information System (INIS)

    Duhaj, P.; Janickovic, D.

    1996-01-01

    The crystallization process in Fe 86 (Cu 1 )Zr 7 B 6 and Fe 87 Zr 7 B 6 is investigated using the methods of transmission electron microscopy, electron and X-ray diffraction and resistometry. Two crystallization reactions take place during thermal annealing of amorphous Fe 86 (Cu 1 )Zr 7 B 6 and Fe 87 Zr 7 B 6 alloys. In both alloys the first crystallization begins with the formation of nanocrystalline α-Fe at temperature to approximately 800 K. The second crystallization starts above 1000 K; the nanocrystalline phase dissolves and together with the remaining amorphous matrix form rough grains of α-Fe and dispersed Fe 23 Zr 6 phases. From Moessbauer spectroscopy it seems that there exist two neighbourhoods of Fe atoms in the amorphous structure. One of them is characterized by low Zr content and is responsible for the high-field component of the hyperfine field distribution p(H). The second one is rich in Zr and B and is responsible for the low-field component of p(H). This is in accord with the observation of two crystallization steps separated by a large interval of temperatures due to the existence of two chemically different regions or clusters. (orig.)

  10. In vitro corrosion properties and cytocompatibility of Fe-Ga alloys as potential biodegradable metallic materials

    Energy Technology Data Exchange (ETDEWEB)

    Wang, Henan; Zheng, Yang; Liu, Jinghua; Jiang, Chengbao; Li, Yan, E-mail: liyan@buaa.edu.cn

    2017-02-01

    The in vitro biodegradable properties and cytocompatibility of Fe-Ga alloys including Fe{sub 81}Ga{sub 19}, (Fe{sub 81}Ga{sub 19}){sub 98}B{sub 2} and (Fe{sub 81}Ga{sub 19}){sub 99.5}(TaC){sub 0.5}, and pure Fe were investigated for biomedical applications. The microstructure of the alloys was characterized using X-ray diffraction spectroscopy and optical microscopy. The results showed that A2 and D0{sub 3} phases were detected for the three types of Fe-Ga alloys, and additional Fe{sub 2}B and TaC phases were found in the (Fe{sub 81}Ga{sub 19}){sub 98}B{sub 2} and (Fe{sub 81}Ga{sub 19}){sub 99.5}(TaC){sub 0.5} alloys, respectively. The corrosion rates of the Fe-Ga alloys were higher than that of pure Fe, as demonstrated by both potentiodynamic polarization measurements and immersion tests in simulated body fluid. The alloying element Ga lowered the corrosion potential of the Fe matrix and made it more susceptible to corrosion. Severe pitting corrosion developed on the surface of the Fe{sub 81}Ga{sub 19} alloy after the addition of ternary B or TaC due to the multi-phase microstructures. The MC3T3-E1 cells exhibited good adhesion and proliferation behavior on the surfaces of the Fe-Ga alloys after culture for 4 h and 24 h. - Highlights: • Fe-Ga alloys showed a higher degradation rate than pure Fe. • Fe-Ga alloys exhibited good cytocompatibility for the MC3T3-E1 cells. • The MC3T3-E1 cells were tolerable to the corrosion products of Fe-Ga alloys.

  11. Microstructural evolution and creep of Fe-Al-Ta alloys

    Energy Technology Data Exchange (ETDEWEB)

    Prokopcakova, Petra; Svec, Martin [Technical University of Liberec (Czech Republic). Dept. of Material Science; Palm, Martin [Max-Planck-Institut fuer Eisenforschung GmbH, Duesseldorf (Germany). Structure and Nano-/Micromechanics of Materials

    2016-05-15

    The microstructural evolution in Fe-Al-Ta alloys containing 23 - 31 at.% Al and 1.5 - 2.2 at.% Ta has been studied in the temperature range 650 - 750 C by annealing for 1, 10, 100 and 1 000 h. The experiments confirm that in this temperature range the precipitation of the stable hexagonal C14 Laves phase is preceded by formation of coherent, metastable L2{sub 1} Heusler phase precipitates within the Fe-Al matrix. However, precipitates of C14 are observed after much shorter annealing times than previously assumed. Creep strength increases substantially with increasing Al content of the alloys because the solid solubility for Ta in the Fe-Al matrix increases with increasing Al content and solid-solution hardening contributes substantially to the observed high creep strength. It may therefore be that the microstructural changes during creep have no noticeable effect on creep strength.

  12. On the photofragmentation of Fe(CO)5

    International Nuclear Information System (INIS)

    De Paoli, M.-A.; Oliveira, S.M. de; Saitovitch, E.M.B.; Guenzburger, D.J.R.

    1983-01-01

    Pentacarbonyliron sorbed in low density polyethylene (LDPE) or polytetrafluorethylene (PTFE) and irradiated with ultraviolet light has been studied by infrared and Moessbauer spectroscopies. The main photofragment reacts with the residual pentacarbonyliron leading to the formation of Fe 2 (CO) 9 . This reaction, plus the information obtained from infrared and Moessbauer spectra, suggest that the new species could be assigned as tetracarbonyliron, Fe(CO) 4 , and tricarbonyliron Fe(CO) 3 . It is proved that molecules sorbed in a polymer matrix can be used as Moessbauer absorbers at low temperature. The polymer matrix allowed the isolation of otherwise unstable species: the high permeability of LDPE to gaseous carbon monoxide precludes the reformation of pentacarbonyliron molecules, thus excluding the 'cage effect' observed in frozen gas matrices. (Author) [pt

  13. Microstructural evolution and creep of Fe-Al-Ta alloys

    International Nuclear Information System (INIS)

    Prokopcakova, Petra; Svec, Martin; Palm, Martin

    2016-01-01

    The microstructural evolution in Fe-Al-Ta alloys containing 23 - 31 at.% Al and 1.5 - 2.2 at.% Ta has been studied in the temperature range 650 - 750 C by annealing for 1, 10, 100 and 1 000 h. The experiments confirm that in this temperature range the precipitation of the stable hexagonal C14 Laves phase is preceded by formation of coherent, metastable L2 1 Heusler phase precipitates within the Fe-Al matrix. However, precipitates of C14 are observed after much shorter annealing times than previously assumed. Creep strength increases substantially with increasing Al content of the alloys because the solid solubility for Ta in the Fe-Al matrix increases with increasing Al content and solid-solution hardening contributes substantially to the observed high creep strength. It may therefore be that the microstructural changes during creep have no noticeable effect on creep strength.

  14. Hacking the Matrix.

    Science.gov (United States)

    Czerwinski, Michael; Spence, Jason R

    2017-01-05

    Recently in Nature, Gjorevski et al. (2016) describe a fully defined synthetic hydrogel that mimics the extracellular matrix to support in vitro growth of intestinal stem cells and organoids. The hydrogel allows exquisite control over the chemical and physical in vitro niche and enables identification of regulatory properties of the matrix. Copyright © 2017 Elsevier Inc. All rights reserved.

  15. The Matrix Organization Revisited

    DEFF Research Database (Denmark)

    Gattiker, Urs E.; Ulhøi, John Parm

    1999-01-01

    This paper gives a short overview of matrix structure and technology management. It outlines some of the characteristics and also points out that many organizations may actualy be hybrids (i.e. mix several ways of organizing to allocate resorces effectively).......This paper gives a short overview of matrix structure and technology management. It outlines some of the characteristics and also points out that many organizations may actualy be hybrids (i.e. mix several ways of organizing to allocate resorces effectively)....

  16. Irradiation-induced patterning in dilute Cu–Fe alloys

    International Nuclear Information System (INIS)

    Stumphy, B.; Chee, S.W.; Vo, N.Q.; Averback, R.S.; Bellon, P.; Ghafari, M.

    2014-01-01

    Compositional patterning in dilute Cu 1−x Fe x (x ≈ 12%) induced by 1.8 MeV Kr + irradiation was studied as a function of temperature using atom probe tomography. Irradiation near room temperature led to homogenization of the sample, whereas irradiation at 300 °C and above led to precipitation and macroscopic coarsening. Between these two temperatures the irradiated alloys formed steady state patterns of composition where precipitates grew to a fixed size. The size in this regime increased somewhat with temperature. It was also observed that the steady state concentrations of Fe in Cu matrix and Cu in the Fe precipitates both greatly exceeded their equilibrium solubilities, with the degree of supersaturation in each phase decreasing with increasing temperature. In the macroscopic coarsening regime, the Fe-rich precipitates showed indications of a “cherry-pit” structure, with Cu precipitates forming within the Fe precipitates. In the patterning regime, interfaces between Fe-rich precipitates and the Cu-rich matrix were irregular and diffuse

  17. The Exopolysaccharide Matrix

    Science.gov (United States)

    Koo, H.; Falsetta, M.L.; Klein, M.I.

    2013-01-01

    Many infectious diseases in humans are caused or exacerbated by biofilms. Dental caries is a prime example of a biofilm-dependent disease, resulting from interactions of microorganisms, host factors, and diet (sugars), which modulate the dynamic formation of biofilms on tooth surfaces. All biofilms have a microbial-derived extracellular matrix as an essential constituent. The exopolysaccharides formed through interactions between sucrose- (and starch-) and Streptococcus mutans-derived exoenzymes present in the pellicle and on microbial surfaces (including non-mutans) provide binding sites for cariogenic and other organisms. The polymers formed in situ enmesh the microorganisms while forming a matrix facilitating the assembly of three-dimensional (3D) multicellular structures that encompass a series of microenvironments and are firmly attached to teeth. The metabolic activity of microbes embedded in this exopolysaccharide-rich and diffusion-limiting matrix leads to acidification of the milieu and, eventually, acid-dissolution of enamel. Here, we discuss recent advances concerning spatio-temporal development of the exopolysaccharide matrix and its essential role in the pathogenesis of dental caries. We focus on how the matrix serves as a 3D scaffold for biofilm assembly while creating spatial heterogeneities and low-pH microenvironments/niches. Further understanding on how the matrix modulates microbial activity and virulence expression could lead to new approaches to control cariogenic biofilms. PMID:24045647

  18. Hydrocyclone Separation of Hydrogen Decrepitated NdFeB

    Directory of Open Access Journals (Sweden)

    Muhammad Awais

    2017-11-01

    Full Text Available Hydrogen decrepitation (HD is an effective and environmentally friendly technique for recycling of neodymium-iron-boron (NdFeB magnets. During the HD process, the NdFeB breaks down into a matrix phase (Nd2Fe14BHx and RE-rich grain boundary phase. The grain boundary phase in the HD powder is <2 μm in size. Recycled NdFeB material has a higher oxygen content compared to the primary source material. This additional oxygen mainly occurs at the Rare Earth (RE rich grain boundary phase (GBP, because rare earth elements oxidise rapidly when exposed to air. This higher oxygen level in the material results in a drop in density, coercivity, and remanence of sintered NdFeB magnets. The particle size of the GBP is too small to separate by sieving or conventional screening technology. In this work, an attempt has been made to separate the GBP from the matrix phase using a hydrocyclone, and to optimise the separation process. HD powder, obtained from hard disk drive (HDD scrap NdFeB sintered magnets, was used as a starting material and passed through a hydrocyclone a total number of six times. The X-ray fluorescence (XRF analysis and sieve analysis of overflows showed the matrix phase had been directed to the underflow while the GBP was directed to the overflow. The optimum separation was achieved with three passes. Underflow and overflow samples were further analysed using an optical microscope and MagScan and matrix phase particles were found to be magnetic.

  19. Plastic deformation of Al13Fe4 particles in Al-Al13Fe4 by high-speed compression

    International Nuclear Information System (INIS)

    Yoneyama, N.; Mizoguchi, K.; Kumai, S.; Sato, A.; Kiritani, M.

    2003-01-01

    Spray-formed Al-Fe alloys having undergone high-speed deformation were examined under a high-voltage electron microscope. Two types of specimens were examined; one containing fine Al 13 Fe 4 particles, and the other containing large particles. In the former specimen, deformation is found to proceed in three patterns, depending on specimen thickness and strain rate: (1) without deformation of the Al 13 Fe 4 ; (2) breaking of the Al 13 Fe 4 ; or (3) melting of the Al 13 Fe 4 . Local melting is found to alter some of the Al 13 Fe 4 particles, to impart five-fold symmetry in diffraction or an amorphous structure. In the latter specimen, introduction of glide dislocations enabled us to determine a shear system in the mc102 monoclinic c2/m crystal of Al 13 Fe 4 . On the bases of these observations, the mechanism of high-speed deformation is discussed while taking into account the highly stressed and/or heated states of Al 13 Fe 4 embedded in Al matrix

  20. Synthesis of Fe nanoparticles-graphene composites for environmental applications

    International Nuclear Information System (INIS)

    Guo, Juan; Wang, Ruiyu; Tjiu, Weng Weei; Pan, Jisheng; Liu, Tianxi

    2012-01-01

    Graphical abstract: Fe nanoparticles-graphene composites (FGC) are successfully synthesized by forming a complex Fe 3+ -GO and further reducing it with NaBH4 as one step at ambient condition. The morphology and structure studies of FGC indicate that Fe nanoparticles with size of about 5 nm are finely dispersed on graphene sheets. Decolorization experiments show that the FGC hybrids display better removal capacities to decolorize methyl blue (MB), a model dye in the dyeing and printing industry, compared with bare Fe particles. On the other hand, FGC hybrids exhibit superparamagnetic properties and can be separated from MB solution leaving a colorless solution by using a magnet. All of these suggest FGC an excellent candidate for dye removal. Highlights: ► Graphene oxide (GO) and Fe 3+ are used as precursors. ► By adding NaBH 4 , Fe 3+ and GO are in situ reduced to Fe and graphene, respectively, thus forming FGC hybrids. ► Fe nanoparticles with size of about 5 nm are finely dispersed on graphene sheets. ► FGC hybrids have better decolorization capacities than bare Fe nanoparticles. - Abstract: Fe nanoparticles-graphene composites (FGC) are successfully synthesized by using graphene oxide (GO) as a supporting matrix. GO is first treated with Fe 3+ to form Fe 3+ -GO complexes. Then, by adding NaBH 4 solution, Fe 3+ and GO are simultaneously reduced in situ to Fe and graphene respectively, forming FGC hybrid composites. The structures, properties and applications of the hybrids thus obtained are investigated by X-ray diffraction, Raman spectroscopy, Fourier transformed infrared spectroscopy, X-ray photoelectron spectroscopy, transmission electron microscopy, energy-dispersive X-ray spectroscopy, thermogravimetric analysis and magnetization measurements. The hybrids are also evaluated for decolorization of methyl blue solution, a model dye in wastewater of dyeing industry. Compared with bare Fe particles, the high removal capacities of FGC are due to the

  1. Fe atom exchange between aqueous Fe2+ and magnetite.

    Science.gov (United States)

    Gorski, Christopher A; Handler, Robert M; Beard, Brian L; Pasakarnis, Timothy; Johnson, Clark M; Scherer, Michelle M

    2012-11-20

    The reaction between magnetite and aqueous Fe(2+) has been extensively studied due to its role in contaminant reduction, trace-metal sequestration, and microbial respiration. Previous work has demonstrated that the reaction of Fe(2+) with magnetite (Fe(3)O(4)) results in the structural incorporation of Fe(2+) and an increase in the bulk Fe(2+) content of magnetite. It is unclear, however, whether significant Fe atom exchange occurs between magnetite and aqueous Fe(2+), as has been observed for other Fe oxides. Here, we measured the extent of Fe atom exchange between aqueous Fe(2+) and magnetite by reacting isotopically "normal" magnetite with (57)Fe-enriched aqueous Fe(2+). The extent of Fe atom exchange between magnetite and aqueous Fe(2+) was significant (54-71%), and went well beyond the amount of Fe atoms found at the near surface. Mössbauer spectroscopy of magnetite reacted with (56)Fe(2+) indicate that no preferential exchange of octahedral or tetrahedral sites occurred. Exchange experiments conducted with Co-ferrite (Co(2+)Fe(2)(3+)O(4)) showed little impact of Co substitution on the rate or extent of atom exchange. Bulk electron conduction, as previously invoked to explain Fe atom exchange in goethite, is a possible mechanism, but if it is occurring, conduction does not appear to be the rate-limiting step. The lack of significant impact of Co substitution on the kinetics of Fe atom exchange, and the relatively high diffusion coefficients reported for magnetite suggest that for magnetite, unlike goethite, Fe atom diffusion is a plausible mechanism to explain the rapid rates of Fe atom exchange in magnetite.

  2. Recent R-matrix calculations and atomic data recommendations of relevance to iron impurities in fusion plasmas

    International Nuclear Information System (INIS)

    Berrington, K.A.

    1991-01-01

    A progress report on R-matrix calculations of electron impact excitation and opacity data for ionized Fe is given. This paper discusses aspects of modern calculations of the electron excitation process in atoms and ions. The Belfast Atomic Data Bank holds much data in this area, including data recommended in regular Atomic Data Workshops held to evaluate atomic data for the applications community: electron excitation data for Fe ions recommended at recent Workshops is summarised. The main R-matrix programs currently in use are described, and some recent R-matrix calculations on electron excitation in Fe ions are highlighted. Photoabsorption data for all elements up to Fe are also calculated using the R-matrix programs in the international Opacity Project, and a summary is given of the atomic data expected from the Project. Finally some possible future directions are outlined. (orig.)

  3. Magnetostrictive properties of FeAl/polyester and FeAl/silicone composites

    Energy Technology Data Exchange (ETDEWEB)

    Riesgo, G. [Dpto. de Ciencias y Técnicas de la Navegación, Universidad de Oviedo, Campus universitario de Gijón, 33203 Gijón (Spain); Carrizo, J. [Dpto. de Física de la Universidad de Oviedo, c/ Calvo Sotelo s/n, 33007 Oviedo (Spain); Elbaile, L., E-mail: elbaile@uniovi.es [Dpto. de Física de la Universidad de Oviedo, c/ Calvo Sotelo s/n, 33007 Oviedo (Spain); Crespo, R.D. [Dpto. de Física de la Universidad de Oviedo, c/ Calvo Sotelo s/n, 33007 Oviedo (Spain); Sepúlveda, R. [Dpto. de Ingeniería Mecánica y de los Materiales, Universidad de Sevilla, Isla Cartuja, 41092 Sevilla (Spain); García, J.A. [Dpto. de Física de la Universidad de Oviedo, c/ Calvo Sotelo s/n, 33007 Oviedo (Spain)

    2017-01-15

    Highlights: • Nanocrystalline powders of FeAl have been obtained from the Fe{sub 81}Al{sub 19} ribbon produced by melt spinning. • The method allows the obtainment of a FeAl solid solution from the starting process. • The microstructure and magnetic properties of the powders were investigated. • Composites with a magnetostriction of 45 ppm have been obtained. - Abstract: Ribbons of composition Fe{sub 81}Al{sub 19} obtained by the melt spinning method have been used to yield powder by mechanical milling. Using this method, a rapid nanocrystallization and a FeAl solid solution phase was obtained from the start of the process. The microstructural and magnetic properties as well as the XRD patterns of the powders were studied in function of the milling time. Grain refinement and an increase of the coercive field were the main transformations resulting from increasing the milling time. Two sets of magnetostrictive composites were produced from the 100 h-milled powder. In one of them polyester was used as matrix and in the other one silicone. In the case of the silicone composites cured in a magnetic field of 140 mT in the longitudinal direction a saturation magnetostriction as high as 45 ppm was obtained.

  4. Crystallization of amorphous Fe78Si9B13 alloy

    International Nuclear Information System (INIS)

    Jakubczyk, E; Krajczyk, A; Jakubczyk, M

    2007-01-01

    The crystallization process of Fe 78 Si 9 B 13 metallic glass was investigated by DSC, X-ray diffraction, electrical resistivity, Hall effect and TEM methods. The investigations proved two-stages crystallization. By means of non-isothermal DSC experiments the activation energy and the Avrami exponent were determined for both stages. The created phases: α-Fe(Si) and (Fe,Si) 2 B were identified on the basis of X-ray and TEM investigations. However, TEM observations showed also a little amount of the FeB 49 phase as well as some rest of the amorphous phase. The electrical and Hall resistivities decrease abruptly after the creation of the phases out of the amorphous matrix

  5. Matrix Information Geometry

    CERN Document Server

    Bhatia, Rajendra

    2013-01-01

    This book is an outcome of the Indo-French Workshop on Matrix Information Geometries (MIG): Applications in Sensor and Cognitive Systems Engineering, which was held in Ecole Polytechnique and Thales Research and Technology Center, Palaiseau, France, in February 23-25, 2011. The workshop was generously funded by the Indo-French Centre for the Promotion of Advanced Research (IFCPAR).  During the event, 22 renowned invited french or indian speakers gave lectures on their areas of expertise within the field of matrix analysis or processing. From these talks, a total of 17 original contribution or state-of-the-art chapters have been assembled in this volume. All articles were thoroughly peer-reviewed and improved, according to the suggestions of the international referees. The 17 contributions presented  are organized in three parts: (1) State-of-the-art surveys & original matrix theory work, (2) Advanced matrix theory for radar processing, and (3) Matrix-based signal processing applications.  

  6. Growth of single crystals of BaFe12O19 by solid state crystal growth

    Science.gov (United States)

    Fisher, John G.; Sun, Hengyang; Kook, Young-Geun; Kim, Joon-Seong; Le, Phan Gia

    2016-10-01

    Single crystals of BaFe12O19 are grown for the first time by solid state crystal growth. Seed crystals of BaFe12O19 are buried in BaFe12O19+1 wt% BaCO3 powder, which are then pressed into pellets containing the seed crystals. During sintering, single crystals of BaFe12O19 up to ∼130 μm thick in the c-axis direction grow on the seed crystals by consuming grains from the surrounding polycrystalline matrix. Scanning electron microscopy-energy dispersive spectroscopy analysis shows that the single crystal and the surrounding polycrystalline matrix have the same chemical composition. Micro-Raman scattering shows the single crystal to have the BaFe12O19 structure. The optimum growth temperature is found to be 1200 °C. The single crystal growth behavior is explained using the mixed control theory of grain growth.

  7. Exchange correlation length and magnetoresistance in Fe-Cu and Fe-Cu-Ni melt-spun ribbons

    International Nuclear Information System (INIS)

    El Ghannami, M.; Gomez-Polo, C.; Rivero, G.; Hernando, A.

    1994-01-01

    The magnetic properties of Fe 30 Cu 70 melt-spun ribbons are reported for the first time. In the as-cast state, the microstructure consists of b.c.c.-Fe grains immersed in a Cu-rich matrix. However, the addition of a small percentage of Ni gives rise to the appearance of new Cu-Fe-Ni phases. Under suitable thermal treatments, the microstructure of both alloys evolves towards a complete phase segregation in b.c.c-Fe and f.c.c.-Cu immiscibles phases. The temperature dependence of the magnetic properties is analysed and related to the microstructural changes produced during the thermal treatments. Remarkable magneto-resistance effects have been observed in both as-cast alloys, with maximum values of the order of 6% at low measuring temperatures. (orig.)

  8. 2016 MATRIX annals

    CERN Document Server

    Praeger, Cheryl; Tao, Terence

    2018-01-01

    MATRIX is Australia’s international, residential mathematical research institute. It facilitates new collaborations and mathematical advances through intensive residential research programs, each lasting 1-4 weeks. This book is a scientific record of the five programs held at MATRIX in its first year, 2016: Higher Structures in Geometry and Physics (Chapters 1-5 and 18-21); Winter of Disconnectedness (Chapter 6 and 22-26); Approximation and Optimisation (Chapters 7-8); Refining C*-Algebraic Invariants for Dynamics using KK-theory (Chapters 9-13); Interactions between Topological Recursion, Modularity, Quantum Invariants and Low-dimensional Topology (Chapters 14-17 and 27). The MATRIX Scientific Committee selected these programs based on their scientific excellence and the participation rate of high-profile international participants. Each program included ample unstructured time to encourage collaborative research; some of the longer programs also included an embedded conference or lecture series. The artic...

  9. Matrix interdiction problem

    Energy Technology Data Exchange (ETDEWEB)

    Pan, Feng [Los Alamos National Laboratory; Kasiviswanathan, Shiva [Los Alamos National Laboratory

    2010-01-01

    In the matrix interdiction problem, a real-valued matrix and an integer k is given. The objective is to remove k columns such that the sum over all rows of the maximum entry in each row is minimized. This combinatorial problem is closely related to bipartite network interdiction problem which can be applied to prioritize the border checkpoints in order to minimize the probability that an adversary can successfully cross the border. After introducing the matrix interdiction problem, we will prove the problem is NP-hard, and even NP-hard to approximate with an additive n{gamma} factor for a fixed constant {gamma}. We also present an algorithm for this problem that achieves a factor of (n-k) mUltiplicative approximation ratio.

  10. Dynamic Matrix Rank

    DEFF Research Database (Denmark)

    Frandsen, Gudmund Skovbjerg; Frandsen, Peter Frands

    2009-01-01

    We consider maintaining information about the rank of a matrix under changes of the entries. For n×n matrices, we show an upper bound of O(n1.575) arithmetic operations and a lower bound of Ω(n) arithmetic operations per element change. The upper bound is valid when changing up to O(n0.575) entries...... in a single column of the matrix. We also give an algorithm that maintains the rank using O(n2) arithmetic operations per rank one update. These bounds appear to be the first nontrivial bounds for the problem. The upper bounds are valid for arbitrary fields, whereas the lower bound is valid for algebraically...... closed fields. The upper bound for element updates uses fast rectangular matrix multiplication, and the lower bound involves further development of an earlier technique for proving lower bounds for dynamic computation of rational functions....

  11. MATLAB matrix algebra

    CERN Document Server

    Pérez López, César

    2014-01-01

    MATLAB is a high-level language and environment for numerical computation, visualization, and programming. Using MATLAB, you can analyze data, develop algorithms, and create models and applications. The language, tools, and built-in math functions enable you to explore multiple approaches and reach a solution faster than with spreadsheets or traditional programming languages, such as C/C++ or Java. MATLAB Matrix Algebra introduces you to the MATLAB language with practical hands-on instructions and results, allowing you to quickly achieve your goals. Starting with a look at symbolic and numeric variables, with an emphasis on vector and matrix variables, you will go on to examine functions and operations that support vectors and matrices as arguments, including those based on analytic parent functions. Computational methods for finding eigenvalues and eigenvectors of matrices are detailed, leading to various matrix decompositions. Applications such as change of bases, the classification of quadratic forms and ...

  12. Elementary matrix algebra

    CERN Document Server

    Hohn, Franz E

    2012-01-01

    This complete and coherent exposition, complemented by numerous illustrative examples, offers readers a text that can teach by itself. Fully rigorous in its treatment, it offers a mathematically sound sequencing of topics. The work starts with the most basic laws of matrix algebra and progresses to the sweep-out process for obtaining the complete solution of any given system of linear equations - homogeneous or nonhomogeneous - and the role of matrix algebra in the presentation of useful geometric ideas, techniques, and terminology.Other subjects include the complete treatment of the structur

  13. Complex matrix model duality

    International Nuclear Information System (INIS)

    Brown, T.W.

    2010-11-01

    The same complex matrix model calculates both tachyon scattering for the c=1 non-critical string at the self-dual radius and certain correlation functions of half-BPS operators in N=4 super- Yang-Mills. It is dual to another complex matrix model where the couplings of the first model are encoded in the Kontsevich-like variables of the second. The duality between the theories is mirrored by the duality of their Feynman diagrams. Analogously to the Hermitian Kontsevich- Penner model, the correlation functions of the second model can be written as sums over discrete points in subspaces of the moduli space of punctured Riemann surfaces. (orig.)

  14. Complex matrix model duality

    Energy Technology Data Exchange (ETDEWEB)

    Brown, T.W.

    2010-11-15

    The same complex matrix model calculates both tachyon scattering for the c=1 non-critical string at the self-dual radius and certain correlation functions of half-BPS operators in N=4 super- Yang-Mills. It is dual to another complex matrix model where the couplings of the first model are encoded in the Kontsevich-like variables of the second. The duality between the theories is mirrored by the duality of their Feynman diagrams. Analogously to the Hermitian Kontsevich- Penner model, the correlation functions of the second model can be written as sums over discrete points in subspaces of the moduli space of punctured Riemann surfaces. (orig.)

  15. A contribution to the investigation of the properties of the Au-Fe system

    International Nuclear Information System (INIS)

    Vano, M.; Sitek, J.; Cirak, J.

    1976-01-01

    Moessbauer spectroscopy, an electronic microanalyzer and X-ray diffractometry were used to study the properties of an Au-Fe solid solution during its preparation by installing Fe atoms into the Au matrix by diffusion heating at a temperature from 550 to 850 degC. On the basis of such measurements, the suitable heating temperature was determined at 850 degC; the Debye-Waller factor for Au-Fe is f=0.604+-0.040 and two configurations of Fe atoms in the Au crystal lattice were found. (author)

  16. Matrix mineralogy of the Lance CO3 carbonaceous chondrite: A transmission electron microscope study

    International Nuclear Information System (INIS)

    Keller, L.P.; Buseck, P.R.

    1990-01-01

    The Lance CO3 carbonaceous chondrite (CC) is less altered than the CI and CM chondrites and so provides a view of the mineralogy and textures resulting from the earliest stages of aqueous alteration of CCs. Matrix olivine in Lance has been partly altered to fine-grained, Fe-bearing serpentine and poorly crystalline Fe 3+ oxide, a process that required both hydration and oxidation. Serpentine occurs as discrete packets separated from the olivine surfaces by the Fe 3+ oxide. The Fe released during the dissolution of olivine was partly incorporated into the serpentine; the remainder was oxidized to form Fe 3+ oxide. Matrix metal was also altered to produce Fe oxides, leaving the residual metal enriched in Ni. Olivine grains in Lance matrix contain channels along their [100] and [001] directions. The formation and convergence of such channels resulted in a grain-size reduction of the olivine. The alteration was pervasive but incomplete, suggesting a limited availability of fluid. A brief study of two other CO chondrites, Kainsaz and Warrenton, shows that these meteorites do not contain phyllosilicates in their matrices, although both contain Fe 3+ oxide between olivine grains. Prior to its alteration, Lance probably resembled Kainsaz, an unaltered CO3 chondrite. The alteration assemblage in Lance is only slightly different from that in Mokoia and essentially the same as that in C3 xenoliths from Murchison. Alteration products in Lance show greater similarities to CI than to CM chondrites

  17. The Effect of Nb Addition on the Microstructure and the High-Temperature Strength of Fe3Al Aluminide

    Science.gov (United States)

    Kratochvíl, Petr; Švec, Martin; Král, Robert; Veselý, Jozef; Lukáč, Pavel; Vlasák, Tomáš

    2018-02-01

    The microstructural and high-temperature mechanical properties of Fe-26Al-xNb (x = 3 and 5 at. pct) are compared. The alloys were investigated "as cast" and after hot rolling at 1473 K (1200 °C). Scanning electron microscopes equipped with EDS and EBSD were used for the microstructure and phase identification. The addition of 3 at. pct of Nb into the Fe3Al matrix leads to the formation of C14 λ—Laves phase (Fe,Al)2Nb (LP) particles spread in the Fe3Al matrix, while an eutectic with thin lamellae of LP C14 λ—Laves phase (Fe,Al)2Nb and matrix is also formed in the iron aluminide with 5 at. pct of Nb. The presence of incoherent precipitates is connected with the enhancement of the high-temperature strength and creep resistance.

  18. Application of a dynamic-nanoindentation method to analyze the local structure of an Fe-18 at.% Gd cast alloy

    Energy Technology Data Exchange (ETDEWEB)

    Choi, Yong; Baik, Youl [Dept. of Materials Science and Technology, Dankook University, Cheonan(Korea, Republic of); Moon, Byung M. [Liquid Processing and Casting Technology R and D Group, KITECH, Incheon (Korea, Republic of); Sohn, Dong Seong [Nuclear Engineering Department, UNIST, Ulsan (Korea, Republic of)

    2017-04-15

    A dynamic nanoindentation method was applied to study an Fe-18 at.% Gd alloy as a neutron-absorbing material prepared by vacuum arc-melting and cast in a mold. The Fe-18 at.% Gd cast alloy had a microstructure with matrix phases and an Fe-rich primary dendrite of Fe9Gd. Rietveld refinement of the X-ray spectra showed that the Fe-18 at.% Gd cast alloy consisted of 35.84 at.% Fe3Gd, 6.58 at.% Fe5Gd, 16.22 at.% Fe9Gd, 1.87 at.% Fe2Gd, and 39.49 at.% β-Fe17Gd2. The average nanohardness of the primary dendrite phase and the matrix phases were 8.7 GPa and 9.3 GPa, respectively. The fatigue limit of the matrix phase was approximately 37% higher than that of the primary dendrite phase. The dynamic nanoindentation method is useful for identifying local phases and for analyzing local mechanical properties.

  19. Ethical Matrix Manual

    NARCIS (Netherlands)

    Mepham, B.; Kaiser, M.; Thorstensen, E.; Tomkins, S.; Millar, K.

    2006-01-01

    The ethical matrix is a conceptual tool designed to help decision-makers (as individuals or working in groups) reach sound judgements or decisions about the ethical acceptability and/or optimal regulatory controls for existing or prospective technologies in the field of food and agriculture.

  20. Combinatorial matrix theory

    CERN Document Server

    Mitjana, Margarida

    2018-01-01

    This book contains the notes of the lectures delivered at an Advanced Course on Combinatorial Matrix Theory held at Centre de Recerca Matemàtica (CRM) in Barcelona. These notes correspond to five series of lectures. The first series is dedicated to the study of several matrix classes defined combinatorially, and was delivered by Richard A. Brualdi. The second one, given by Pauline van den Driessche, is concerned with the study of spectral properties of matrices with a given sign pattern. Dragan Stevanović delivered the third one, devoted to describing the spectral radius of a graph as a tool to provide bounds of parameters related with properties of a graph. The fourth lecture was delivered by Stephen Kirkland and is dedicated to the applications of the Group Inverse of the Laplacian matrix. The last one, given by Ángeles Carmona, focuses on boundary value problems on finite networks with special in-depth on the M-matrix inverse problem.

  1. Visualizing Matrix Multiplication

    Science.gov (United States)

    Daugulis, Peteris; Sondore, Anita

    2018-01-01

    Efficient visualizations of computational algorithms are important tools for students, educators, and researchers. In this article, we point out an innovative visualization technique for matrix multiplication. This method differs from the standard, formal approach by using block matrices to make computations more visual. We find this method a…

  2. Challenging the CSCW matrix

    DEFF Research Database (Denmark)

    Jørnø, Rasmus Leth Vergmann; Gynther, Karsten; Christensen, Ove

    2014-01-01

    useful information, we question whether the axis of time and space comprising the matrix pertains to relevant defining properties of the tools, technology or learning environments to which they are applied. Subsequently we offer an example of an Adobe Connect e-learning session as an illustration...

  3. The 54Fe(d,t)53Fe reaction and the neutron configuration in 54Fe

    International Nuclear Information System (INIS)

    England, J.B.A.; Ophel, T.R.; Johnston, A.; Zeller, A.F.

    1980-07-01

    The 54 Fe(d,t) 53 Fe reaction has been used to study the levels populated in 54 Fe in an attempt to establish the neutron configuration in 54 Fe. The states observed show clear evidence for a 2p-4h admixture in 54 Fe. In particular, the strength of the first 3/2 - level relative to the 7/2 - ground state transition is 3-4 times that in neighbouring N = 28 nuclei

  4. Dipodal Silane-modified Nano Fe3O4/Polyurethane Magnetic Nanocomposites: Preparation and Characterization

    Directory of Open Access Journals (Sweden)

    Mir Mohammad Alavi Nikje

    2016-01-01

    Full Text Available Magnetic nanocomposites were prepared by incorporation of pure Fe3O4 and surface-modified Fe3O4 nanoparticles (dipodal silane-modified Fe3O4 into a polyurethane elastomer matrix by in situ polymerization method. In preparation of these magnetic nanocomposites, polycaprolactone (PCL was used as a polyester polyol. Because of dipole-dipole interactions between nanoparticles and a large surface area to volume ratio, the magnetic iron oxide nanoparticles tended to agglomerate. Furthermore, the most important challenge was to coat the surface of magnetic Fe3O4 nanoparticles in order to prepare well dispersed and stabilized Fe3O4 magnetic nanoparticles. It was observed that surface modification of Fe3O4 nanoparticles enhanced the dispersion of the nanoparticles in polyurethane matrices and allowed magnetic nanocomposites to be prepared with better properties. Surface modification of Fe3O4 was performed by dipodal silane synthesized based on 3-aminopropyltriethoxysilane (APTS and γ-glycidoxypropyl trimethoxysilane (GPTS. Dipodal silane-coated magnetic nanoparticles (DScMNPs were synthesized and incorporated into the polyurethane elastomer matrix as reinforcing agents. The formation of dipodal silane was investigated by Fourier transform infrared spectroscopy (FTIR, proton nuclear magnetic resonance spectroscopy (1H NMR and transmission electron microscopy (TEM. Characterization and study on the magnetic polyurethane elastomer nanocomposites were performed by FTIR, thermogravimetric analysis (TGA, scanning electron microscopy (SEM, vibrating sample magnetometry (VSM and dynamic mechanical thermal analysis (DMTA. The VSM results showed that the synthesized polyurethane elastomer nanocomposites had a superparamagnetic behavior. The TGA results showed that the thermal stability of dipodal silane-modified Fe3O4/PU nanocomposite was higher than that of Fe3O4/PU nanocomposite. This could be attributed to better dispersion and compatibility of dipodal silane

  5. Corrosion Resistance of Steels and Armco-Fe in Lead Melt Saturated by Oxygen at 550 degree C

    International Nuclear Information System (INIS)

    Tsisar, V.P.; Fedirko, V.N.; Eliseeva, O.I.

    2007-01-01

    Corrosion resistance of stainless steels and Armco-Fe in static lead melt saturated by oxygen at 550 degree C for 2000 h was investigated. It was determined that double oxide layer was formed on the surface of investigated materials. Outer part of double oxide growths from the initial interface 'solid metal/liquid lead' towards the melt and consists of Fe 3 O 4 . Inner part of double oxide based on the matrix is composed of Fe 3 O 4 for Armco-Fe, Fe 1+x Cr 2-x O 4 for martensitic 0.2 C-13 Cr and ferritic-martensitic EP823 steels and Fe 1+x Cr 2- xO 4 +Ni for austenitic 18Cr-10Ni-1Ti. Lead did not penetrate into the matrix of tested materials and was detected only in the scale formed on austenitic steel

  6. Calculation of economic viability of alternative energy sources considering its environmental costs for small communities of Northeast Brazil; Calculo de viabilidade economica de fontes alternativas de energia considerando seus custos ambientais para pequenas comuidades da regiao nordeste brasileira

    Energy Technology Data Exchange (ETDEWEB)

    Stecher, Luiza Chourkalo

    2014-09-01

    There has been an increasing concern about current environmental issues caused by human activity, as the world searches for development. The production of electricity is an extremely relevant factor in this scenario since it is responsible for a large portion of the emissions that cause the greenhouse effect. Due to this fact, a sustainable development with alternative energy sources, which are attractive for such purpose, must be proposed, especially in places that are not supplied by the conventional electricity grid such as many communities in the Northeast Brazil. This work aims to calculate the environmental cost for the alternative sources of energy - solar, wind and biomass - during electricity generation, and to estimate the economic feasibility of those sources in small communities of Northeast Brazil, considering the avoided costs. The externalities must be properly identified and valued so the costs or benefits can be internalized and reflect accurately the economic feasibility or infeasibility of those sources. For this, the method of avoided costs was adopted for the calculation of externalities. This variable was included in the equation developed for all considered alternative energy sources. The calculations of economic feasibility were performed taking the new configurations in consideration, and the new equation was reprogrammed in the Programa de Calculo de Custos de Energias Alternativas, Solar, Eolica e Biomassa (PEASEB). The results demonstrated that the solar photovoltaic energy in isolated systems is the most feasible and broadly applicable source for small communities of Northeast Brazil. (author)

  7. Stress and annealing induced changes in the Curie temperature of amorphous and nanocrystalline FeZr and FeNb based alloys

    International Nuclear Information System (INIS)

    Gorria, P.; Orue, I.; Fernandez-Gubieda, M.L.; Plazaola, F.; Zabala, N.; Barandiaran, J.M.

    1996-01-01

    The stress and annealing dependence of the Curie temperature in FeZrBCu alloys is presented. A change of about 50 /GPa has been observed. The change in amorphous matrix composition upon crystallization produces an expected increase in T C (about 200 C) which is similar to the experimentally observed increase. This behaviour is opposite to that observed in Fe-Nb based alloys. (orig.)

  8. Magnetostriction of the polycrystalline Fe{sub 80}Al{sub 20} alloy doped with boron

    Energy Technology Data Exchange (ETDEWEB)

    Bormio-Nunes, Cristina, E-mail: cristina@demar.eel.usp.br [Escola de Engenharia de Lorena, Dep. de Eng. de Materiais, Universidade de S.Paulo, Lorena, SP (Brazil); Teodoro dos Santos, Claudio; Botani de Souza Dias, Mateus [Escola de Engenharia de Lorena, Dep. de Eng. de Materiais, Universidade de S.Paulo, Lorena, SP (Brazil); Doerr, Mathias; Granovsky, Sergey; Loewenhaupt, Michael [Institut fuer Festkoerperphysik, TU Dresden, D-01062 Dresden (Germany)

    2012-10-25

    Highlights: Black-Right-Pointing-Pointer Fe{sub 80}Al{sub 20} polycrystalline alloy magnetostriction 40 ppm increased to 80 ppm due to 2% of B doping. Black-Right-Pointing-Pointer B stabilizes {alpha}-FeAl phase and a coexistence of {alpha}-FeAl + Fe{sub 3}Al improves magnetostriction. Black-Right-Pointing-Pointer Presence of Fe{sub 2}B phase causes domain rearrangement revealed by the decrease of the volume magnetostriction. - Abstract: The doping of Fe{sub 80}Al{sub 20} polycrystalline alloy with 2% of boron increased the total magnetostriction twofold compared to a sample without boron. A value close to 80 ppm was achieved at 300 K. The microstructures of the boron-doped alloys show a dendritically solidified matrix with interdendritic {alpha}-FeAl and/or Fe{sub 3}Al and Fe{sub 2}B eutectic between the grains. The XRD analysis reveals an increase in the volume fraction of {alpha}-FeAl and a correspondent decrease of the Fe{sub 3}Al phase volume fraction as the boron content increases. The increase of the volume fraction of this tetragonal Fe{sub 2}B phase in the samples doped with boron causes the decrease of the strong volume magnetostriction that was observed in the alloy without boron. There is some evidence that the improvement of the magnetostriction magnitude due to the addition of boron to the Fe{sub 80}Al{sub 20} alloy could reach the maximal magnetostriction if the 1:1 optimal ratio of the volume fractions of the {alpha}-FeAl and Fe{sub 3}Al phases could be reached.

  9. Paths correlation matrix.

    Science.gov (United States)

    Qian, Weixian; Zhou, Xiaojun; Lu, Yingcheng; Xu, Jiang

    2015-09-15

    Both the Jones and Mueller matrices encounter difficulties when physically modeling mixed materials or rough surfaces due to the complexity of light-matter interactions. To address these issues, we derived a matrix called the paths correlation matrix (PCM), which is a probabilistic mixture of Jones matrices of every light propagation path. Because PCM is related to actual light propagation paths, it is well suited for physical modeling. Experiments were performed, and the reflection PCM of a mixture of polypropylene and graphite was measured. The PCM of the mixed sample was accurately decomposed into pure polypropylene's single reflection, pure graphite's single reflection, and depolarization caused by multiple reflections, which is consistent with the theoretical derivation. Reflection parameters of rough surface can be calculated from PCM decomposition, and the results fit well with the theoretical calculations provided by the Fresnel equations. These theoretical and experimental analyses verify that PCM is an efficient way to physically model light-matter interactions.

  10. Partially separable t matrix

    International Nuclear Information System (INIS)

    Sasakawa, T.; Okuno, H.; Ishikawa, S.; Sawada, T.

    1982-01-01

    The off-shell t matrix is expressed as a sum of one nonseparable and one separable terms so that it is useful for applications to more-than-two body problems. All poles are involved in this one separable term. Both the nonseparable and the separable terms of the kernel G 0 t are regular at the origin. The nonseparable term of this kernel vanishes at large distances, while the separable term behaves asymptotically as the spherical Hankel function. These properties make our expression free from defects inherent in the Jost or the K-matrix expressions, and many applications are anticipated. As the application, a compact expression of the many-level formula is presented. Also the application is suggested to the breakup threebody problem based on the Faddeev equation. It is demonstrated that the breakup amplitude is expressed in a simple and physically interesting form and we can calculate it in coordinate space

  11. Computer-aided topological analysis of Nd-Fe-B ternary system

    International Nuclear Information System (INIS)

    Liu, G.; Xu, P.; Zhang, W.

    1993-01-01

    A three-dimensional partially matrixed topological model of the Nd-Fe-B ternary phase diagram has been established based on experimental results assessed comprehensively with the aid of a computer-aided design and graphic and graphics software, AutoCAD (R10), and application programs developed in this work. Vertical sections at 5.88 at.% B, Nd:B = 1:1, Fe-Nd/sub 2/Fe/sub 14/B-Nd, Nd/sub 2/Fe/sub 17/-Nd/sub 2/Fe/sub 7/B/sub 6/ have been cut out from the model and the corresponding phase relationships have been analyzed. Among them, those on the Nd-rich protons of both the sections at 5.88 at.% B and Nd:B = 2:1 and those on the Nd/sub 2/Fe/sub 14/B-Nd section are given for the first time. (author)

  12. The preferential orientation and lattice misfit of the directionally solidified Fe-Al-Ta eutectic composite

    Science.gov (United States)

    Cui, Chunjuan; Wang, Pei; Yang, Meng; Wen, Yagang; Ren, Chiqiang; Wang, Songyuan

    2018-01-01

    Fe-Al intermetallic compound has been paid more attentions recently in many fields such as aeronautic, aerospace, automobile, energy and chemical engineering, and so on. In this paper Fe-Al-Ta eutectic was prepared by a modified Bridgman directional solidification technique, and it is found that microstructure of the Fe-Al-Ta eutectic alloy transforms from the broken-lamellar eutectic to cellular eutectic with the increase of the solidification rate. In the cellular eutectic structure, the fibers are parallel to each other within the same grain, but some fibers are deviated from the original orientation at the grain boundaries. To study the crystallographic orientation relationship (OR) between the two phases, the preferential orientation of the Fe-Al-Ta eutectic alloy at the different solidification rates was studied by Selected Area Electron Diffraction (SAED). Moreover, the lattice misfit between Fe2Ta(Al) Laves phase and Fe(Al,Ta) matrix phase was calculated.

  13. Growth of single crystals of BaFe12O19 by solid state crystal growth

    International Nuclear Information System (INIS)

    Fisher, John G.; Sun, Hengyang; Kook, Young-Geun; Kim, Joon-Seong; Le, Phan Gia

    2016-01-01

    Single crystals of BaFe 12 O 19 are grown for the first time by solid state crystal growth. Seed crystals of BaFe 12 O 19 are buried in BaFe 12 O 19 +1 wt% BaCO 3 powder, which are then pressed into pellets containing the seed crystals. During sintering, single crystals of BaFe 12 O 19 up to ∼130 μm thick in the c-axis direction grow on the seed crystals by consuming grains from the surrounding polycrystalline matrix. Scanning electron microscopy-energy dispersive spectroscopy analysis shows that the single crystal and the surrounding polycrystalline matrix have the same chemical composition. Micro-Raman scattering shows the single crystal to have the BaFe 12 O 19 structure. The optimum growth temperature is found to be 1200 °C. The single crystal growth behavior is explained using the mixed control theory of grain growth. - Highlights: • Single crystals of BaFe 12 O 19 are grown by solid state crystal growth. • A single crystal up to ∼130 μm thick (c-axis direction) grows on the seed crystal. • The single crystal and surrounding ceramic matrix have similar composition. • Micro-Raman scattering shows the single crystal has the BaFe 12 O 19 structure.

  14. Polymeric phase change nanocomposite (PMMA/Fe:ZnO) for electronic packaging application

    Science.gov (United States)

    Maji, Pranabi; Choudhary, Ram Bilash; Majhi, Malati

    2018-01-01

    This paper reported the effect of Fe-doped ZnO (Fe:ZnO) nanoparticles on the structural, morphological, thermal, optical and dielectric properties of PMMA matrix. Fe-doped ZnO nanoparticle was synthesized by co-precipitation method, after its surface modification incorporated into the PMMA matrix by free radical polymerization method. The phase analysis and crystal structure were investigated by XRD and FTIR technique. These studies confirmed the chemical structure of the PMMA/Fe:ZnO nanocomposite. FESEM image showed the pyramidal shape and high porosity of PMMA/Fe:ZnO nanocomposite. Thermal analysis of the sample was carried out by thermo-gravimetric analyzer. PMMA/Fe:ZnO nanocomposite was found to have better thermal stability compared to pure one. Broadband dielectric spectroscopic technique was used to investigate the transition of electrical properties of Fe-doped ZnO nanoparticle reinforced PMMA matrix in temperature range 313-373 K. The results elucidated a phase transition from glassy to rubbery state at 344 K.

  15. Exactly soluble matrix models

    International Nuclear Information System (INIS)

    Raju Viswanathan, R.

    1991-09-01

    We study examples of one dimensional matrix models whose potentials possess an energy spectrum that can be explicitly determined. This allows for an exact solution in the continuum limit. Specifically, step-like potentials and the Morse potential are considered. The step-like potentials show no scaling behaviour and the Morse potential (which corresponds to a γ = -1 model) has the interesting feature that there are no quantum corrections to the scaling behaviour in the continuum limit. (author). 5 refs

  16. Inside the NIKE matrix

    OpenAIRE

    Brenner, Barbara; Schlegelmilch, Bodo B.; Ambos, Björn

    2013-01-01

    This case describes how Nike, a consumer goods company with an ever expanding portfolio and a tremendous brand value, manages the tradeoff between local responsiveness and global integration. In particular, the case highlights Nike's organizational structure that consists of a global matrix organization that is replicated at a regional level for the European market. While this organizational structure allows Nike to respond to local consumer tastes it also ensures that the company benefits f...

  17. A matrix contraction process

    Science.gov (United States)

    Wilkinson, Michael; Grant, John

    2018-03-01

    We consider a stochastic process in which independent identically distributed random matrices are multiplied and where the Lyapunov exponent of the product is positive. We continue multiplying the random matrices as long as the norm, ɛ, of the product is less than unity. If the norm is greater than unity we reset the matrix to a multiple of the identity and then continue the multiplication. We address the problem of determining the probability density function of the norm, \

  18. Matrix String Theory

    CERN Document Server

    Dijkgraaf, R; Verlinde, Herman L

    1997-01-01

    Via compactification on a circle, the matrix model of M-theory proposed by Banks et al suggests a concrete identification between the large N limit of two-dimensional N=8 supersymmetric Yang-Mills theory and type IIA string theory. In this paper we collect evidence that supports this identification. We explicitly identify the perturbative string states and their interactions, and describe the appearance of D-particle and D-membrane states.

  19. Matrix groups for undergraduates

    CERN Document Server

    Tapp, Kristopher

    2016-01-01

    Matrix groups touch an enormous spectrum of the mathematical arena. This textbook brings them into the undergraduate curriculum. It makes an excellent one-semester course for students familiar with linear and abstract algebra and prepares them for a graduate course on Lie groups. Matrix Groups for Undergraduates is concrete and example-driven, with geometric motivation and rigorous proofs. The story begins and ends with the rotations of a globe. In between, the author combines rigor and intuition to describe the basic objects of Lie theory: Lie algebras, matrix exponentiation, Lie brackets, maximal tori, homogeneous spaces, and roots. This second edition includes two new chapters that allow for an easier transition to the general theory of Lie groups. From reviews of the First Edition: This book could be used as an excellent textbook for a one semester course at university and it will prepare students for a graduate course on Lie groups, Lie algebras, etc. … The book combines an intuitive style of writing w...

  20. Extracellular matrix structure.

    Science.gov (United States)

    Theocharis, Achilleas D; Skandalis, Spyros S; Gialeli, Chrysostomi; Karamanos, Nikos K

    2016-02-01

    Extracellular matrix (ECM) is a non-cellular three-dimensional macromolecular network composed of collagens, proteoglycans/glycosaminoglycans, elastin, fibronectin, laminins, and several other glycoproteins. Matrix components bind each other as well as cell adhesion receptors forming a complex network into which cells reside in all tissues and organs. Cell surface receptors transduce signals into cells from ECM, which regulate diverse cellular functions, such as survival, growth, migration, and differentiation, and are vital for maintaining normal homeostasis. ECM is a highly dynamic structural network that continuously undergoes remodeling mediated by several matrix-degrading enzymes during normal and pathological conditions. Deregulation of ECM composition and structure is associated with the development and progression of several pathologic conditions. This article emphasizes in the complex ECM structure as to provide a better understanding of its dynamic structural and functional multipotency. Where relevant, the implication of the various families of ECM macromolecules in health and disease is also presented. Copyright © 2015 Elsevier B.V. All rights reserved.

  1. Santa Fe Accelerator Conference

    International Nuclear Information System (INIS)

    Anon.

    1983-01-01

    The 10th USA National Particle Accelerator Conference was hosted this year by the Los Alamos National Laboratory in Santa Fe from 21-23 March. It was a resounding success in emphasizing the ferment of activity in the accelerator field. About 900 people registered and about 500 papers were presented in invited and contributed talks and poster sessions

  2. Santa Fe Linac Conference

    International Nuclear Information System (INIS)

    Anon.

    1982-01-01

    The 1981 Linear Accelerator Conference, organized by Los Alamos National Laboratory, was held from 19-23 October in Santa Fe, New Mexico. The surroundings were superb and helped to ensure a successful meeting. There were more than two hundred and twenty participants, with good representation from Japan and Western Europe

  3. Standard Errors for Matrix Correlations.

    Science.gov (United States)

    Ogasawara, Haruhiko

    1999-01-01

    Derives the asymptotic standard errors and intercorrelations for several matrix correlations assuming multivariate normality for manifest variables and derives the asymptotic standard errors of the matrix correlations for two factor-loading matrices. (SLD)

  4. Hydrogenation Properties of TiFe Doped with Zirconium

    Directory of Open Access Journals (Sweden)

    Catherine Gosselin

    2015-11-01

    Full Text Available The goal of this study was to optimize the activation behaviour of hydrogen storage alloy TiFe. We found that the addition of a small amount of Zr in TiFe alloy greatly reduces the hydrogenation activation time. Two different procedural synthesis methods were applied: co-melt, where the TiFe was melted and afterward re-melted with the addition of Zr, and single-melt, where Ti, Fe and Zr were melted together in one single operation. The co-melted sample absorbed hydrogen at its maximum capacity in less than three hours without any pre-treatment. The single-melted alloy absorbed its maximum capacity in less than seven hours, also without pre-treatment. The reason for discrepancies between co-melt and single-melt alloys was found to be the different microstructure. The effect of air exposure was also investigated. We found that the air-exposed samples had the same maximum capacity as the argon protected samples but with a slightly longer incubation time, which is probably due to the presence of a dense surface oxide layer. Scanning electron microscopy revealed the presence of a rich Zr intergranular phase in the TiFe matrix, which is responsible for the enhanced hydrogenation properties of these Zr-doped TiFe alloys.

  5. Mechanically alloyed PrFeB nanocrystalline magnets

    International Nuclear Information System (INIS)

    Kaszuwara, W.; Leonowicz, M.

    1998-01-01

    Mechanically alloyed PrFeB nanocrystalline magnets were prepared by extensive ball milling of Pr, Fe and Fe 80 B 20 powders, followed by diffusion annealing. After milling, the material consisted of nanocrystalline α-Fe crystallites embedded in amorphous Pr-rich matrix. Thermomagnetic and calorimetric investigations of the transformations which occurred during annealing showed that the amorphous phase crystallised at 240 C, leading to the formation of crystalline Pr having lattice constants 10% greater than those shown in the ASTM data. This fact indicated that mechanical alloying and low temperature annealing led to the formation of a solid solution of either Fe or B in Pr, which does not exist in the equilibrium state. The Pr 2 Fe 14 B phase was subsequently formed within a temperature range of 420-620 C. The magnetic properties of magnets depend on the phase structure and grain size. Milling time appears to be a decisive processing parameter for the tailoring of the magnetic properties. Depending on the phase structure, the coercivities varied from 100 to 1200 kA/m and, respectively, the remanences from 0.98 T to 0.6 T. The highest maximum energy product was 80 kJ/m 3 . (orig.)

  6. Thermodynamical properties of 56Fe

    International Nuclear Information System (INIS)

    Tavukcu, E.; Becker, J. A.; Bernstein, L. A.; Garrett, P. E.; Younes, W.; Guttormsen, M.; Rekstad, J.; Siem, S.; Mitchell, G. E.; Schiller, A.; Voinov, A.

    2003-01-01

    Average nuclear level densities close to the nuclear binding energy in 56Fe and 57Fe are extracted from primary γ-ray spectra. A step structure is observed in the level density for both isotopes, and is interpreted as breaking of Cooper pairs. Thermal properties of 56Fe are studied within the statistical canonical ensemble. The experimental heat capacity in 56Fe is compared with the theoretical heat capacity calculated within the shell model Monte Carlo approach

  7. The ab-initio density matrix renormalization group in practice.

    Science.gov (United States)

    Olivares-Amaya, Roberto; Hu, Weifeng; Nakatani, Naoki; Sharma, Sandeep; Yang, Jun; Chan, Garnet Kin-Lic

    2015-01-21

    The ab-initio density matrix renormalization group (DMRG) is a tool that can be applied to a wide variety of interesting problems in quantum chemistry. Here, we examine the density matrix renormalization group from the vantage point of the quantum chemistry user. What kinds of problems is the DMRG well-suited to? What are the largest systems that can be treated at practical cost? What sort of accuracies can be obtained, and how do we reason about the computational difficulty in different molecules? By examining a diverse benchmark set of molecules: π-electron systems, benchmark main-group and transition metal dimers, and the Mn-oxo-salen and Fe-porphine organometallic compounds, we provide some answers to these questions, and show how the density matrix renormalization group is used in practice.

  8. The ab-initio density matrix renormalization group in practice

    Energy Technology Data Exchange (ETDEWEB)

    Olivares-Amaya, Roberto; Hu, Weifeng; Sharma, Sandeep; Yang, Jun; Chan, Garnet Kin-Lic [Department of Chemistry, Princeton University, Princeton, New Jersey 08544 (United States); Nakatani, Naoki [Department of Chemistry, Princeton University, Princeton, New Jersey 08544 (United States); Catalysis Research Center, Hokkaido University, Kita 21 Nishi 10, Sapporo, Hokkaido 001-0021 (Japan)

    2015-01-21

    The ab-initio density matrix renormalization group (DMRG) is a tool that can be applied to a wide variety of interesting problems in quantum chemistry. Here, we examine the density matrix renormalization group from the vantage point of the quantum chemistry user. What kinds of problems is the DMRG well-suited to? What are the largest systems that can be treated at practical cost? What sort of accuracies can be obtained, and how do we reason about the computational difficulty in different molecules? By examining a diverse benchmark set of molecules: π-electron systems, benchmark main-group and transition metal dimers, and the Mn-oxo-salen and Fe-porphine organometallic compounds, we provide some answers to these questions, and show how the density matrix renormalization group is used in practice.

  9. Diffusion of Nb in Fe and in some Fe alloys

    International Nuclear Information System (INIS)

    Kurokawa, S.; Ruzzante, J.E.; Hey, A.M.; Dyment, F.

    1981-01-01

    Diffusion data of microalloying elements such as Nb, V, Ti, are required when analysing the transformation and recrystallization behaviour of HSLA steels in order to optimize grain refinement and precipitation hardening. The diffusion behaviour of Nb in pure Fe, Fe 1.5 Mn, Fe 0.6 Si and Fe 1.5 Mn 0.6 Si has been measured between 1080 and 1200 0 C. Results indicate that Si increases Nb diffusivity while Mn decreases it. The sequence of diffusion coeficients values is: D sup(Nb) sub(Fe 1.5 Mn) [pt

  10. Thermodynamical Properties of 56Fe

    International Nuclear Information System (INIS)

    Tavukcu, E.; Becker, J.A.; Bernstein, L.A.; Garrett, P.E.; Guttormsen, M.; Mitchell, G.E.; Rekstad, J.; Schiller, A.; Siem, S.; Voinov, A.; Younes, W.

    2002-01-01

    Average nuclear level densities close to the nuclear binding energy in 56 Fe and 57 Fe are extracted from primary γ-ray spectra. Thermal properties of 56 Fe are studied within the statistical canonical ensemble. The experimental heat capacity is compared with the theoretical heat capacity calculated within the shell model Monte Carlo approach

  11. Developing a verification tool for calculations dissemination through COBAYA; Desarrollo de una herramienta de verificacion para calculos de difusion mediante COBAYA

    Energy Technology Data Exchange (ETDEWEB)

    Sabater Alcaraz, A.; Rucabado Rucabado, G.; Cuervo Gomez, D.; Garcia Herranz, N.

    2014-07-01

    The development of a software tool that automates the comparison of results with previous versions of the code and results using models of accuracy is crucial for implementing the code new functionalities. The work presented here has been the generation the mentioned tool and the set of reference cases that have set up the afore mentioned matrix. (Author)

  12. Effects of Fe and Cr on corrosion behavior of ZrFeCr alloys in 500 oC steam

    International Nuclear Information System (INIS)

    Wang Jun; Fan Hongyuan; Xiong Ji; Liu Hong; Miao Zhi; Ying Shihao; Yang Gang

    2011-01-01

    Research highlights: Amount and size of SPP will effect the corrosion resistance of Zr alloy at 500 o C/10.3 MPa. - Abstract: A study of the corrosion behaviors of ZrFeCr alloy and the influence of microstructure on corrosion resistance are described by X-ray diffraction and scanning electron microscope in this paper. The results show that several ZrFeCr alloys exhibit protective behavior throughout the test and oxide growth is stable and protective. The best alloy has the composition Zr1.0Fe0.6Cr. Fitting of the weight gain curves for the protective oxide alloys in the region of protective behavior, it showed nearly cubic behavior for the most protective alloys. The Zr1.0Fe0.6Cr has the more laves Zr(Fe,Cr) 2 precipitate in matrix and it has the better corrosion resistance. The Zr0.2Fe0.1Cr has little precipitate, the biggest hydrogen absorption and the worst corrosion resistance. The number of precipitates and the amount of hydrogen absorption in Zr alloy plays an important role on corrosion resistance behaviors in 500 o C/10.3 MPa steam.

  13. Phase separation in equiatomic AlCoCrFeNi high-entropy alloy

    Energy Technology Data Exchange (ETDEWEB)

    Manzoni, A., E-mail: anna.manzoni@helmholtz-berlin.de [Helmholtz-Zentrum Berlin, Institute of Applied Materials, D-14109 Berlin (Germany); Daoud, H.; Völkl, R.; Glatzel, U. [Metals and Alloys, University Bayreuth, Ludwig-Thoma-Strasse 36b, D-95447 Bayreuth (Germany); Wanderka, N. [Helmholtz-Zentrum Berlin, Institute of Applied Materials, D-14109 Berlin (Germany)

    2013-09-15

    The microstructure of the as-cast AlCoCrFeNi high entropy alloy has been investigated by transmission electron microscopy and atom probe tomography. The alloy shows a very pronounced microstructure with clearly distinguishable dendrites and interdendrites. In both regions a separation into an Al–Ni rich matrix and Cr–Fe-rich precipitates can be observed. Moreover, fluctuations of single elements within the Cr–Fe rich phase have been singled out by three dimensional atom probe measurements. The results of investigations are discussed in terms of spinodal decomposition of the alloying elements inside the Cr–Fe-rich precipitates. - Highlights: ► The Alloy separates into an Al–Ni rich matrix and Cr–Fe-rich precipitates. ► Concentration depth profiles in the Cr–Fe rich regions show opposite fluctuations. ► They have been attributed to the spinodal decomposition of Fe- and Cr-rich phases. ► The Al–Ni rich region corresponds well to the Al–Ni rich phases observed in the 6 component AlCoCrCuFeNi alloy.

  14. The cellulose resource matrix.

    Science.gov (United States)

    Keijsers, Edwin R P; Yılmaz, Gülden; van Dam, Jan E G

    2013-03-01

    The emerging biobased economy is causing shifts from mineral fossil oil based resources towards renewable resources. Because of market mechanisms, current and new industries utilising renewable commodities, will attempt to secure their supply of resources. Cellulose is among these commodities, where large scale competition can be expected and already is observed for the traditional industries such as the paper industry. Cellulose and lignocellulosic raw materials (like wood and non-wood fibre crops) are being utilised in many industrial sectors. Due to the initiated transition towards biobased economy, these raw materials are intensively investigated also for new applications such as 2nd generation biofuels and 'green' chemicals and materials production (Clark, 2007; Lange, 2007; Petrus & Noordermeer, 2006; Ragauskas et al., 2006; Regalbuto, 2009). As lignocellulosic raw materials are available in variable quantities and qualities, unnecessary competition can be avoided via the choice of suitable raw materials for a target application. For example, utilisation of cellulose as carbohydrate source for ethanol production (Kabir Kazi et al., 2010) avoids the discussed competition with easier digestible carbohydrates (sugars, starch) deprived from the food supply chain. Also for cellulose use as a biopolymer several different competing markets can be distinguished. It is clear that these applications and markets will be influenced by large volume shifts. The world will have to reckon with the increase of competition and feedstock shortage (land use/biodiversity) (van Dam, de Klerk-Engels, Struik, & Rabbinge, 2005). It is of interest - in the context of sustainable development of the bioeconomy - to categorize the already available and emerging lignocellulosic resources in a matrix structure. When composing such "cellulose resource matrix" attention should be given to the quality aspects as well as to the available quantities and practical possibilities of processing the

  15. Average Nuclear Level Densities and Radiative Strength Functions in 56,57FE from Primary (Gamma)-Ray Spectra

    International Nuclear Information System (INIS)

    Tavukcu, E.; Becker, J.A.; Bernstein, L.A.; Garrett, P.E.; Guttormsen, M.; Mitchell, G.E.; Rekstad, J.; Schiller, A.; Siem, S.; Voinov, A.; Younes, W.

    2002-01-01

    An experimental primary γ-ray spectrum vs. excitation-energy bin (P(E x , E γ ) matrix) in a light-ion reaction is obtained for 56,57 Fe isotopes using a subtraction method. By factorizing the P(E x , E γ ) matrix according to the Axel-Brink hypothesis the nuclear level density and the radiative strength function (RSF) in 56,57 Fe are extracted simultaneously. A step structure is observed in the level density for both isotopes, and is interpreted as the breaking of Cooper pairs. The RSFs for 56,57 Fe reveal an anomalous enhancement at low γ-ray energies

  16. Attenuation of Chemical Reactivity of Shale Matrixes following Scale Precipitation

    Science.gov (United States)

    Li, Q.; Jew, A. D.; Kohli, A. H.; Alalli, G.; Kiss, A. M.; Kovscek, A. R.; Zoback, M. D.; Brown, G. E.; Maher, K.; Bargar, J.

    2017-12-01

    Introduction of fracture fluids into shales initiates a myriad of fluid-rock reactions that can strongly influence migration of fluid and hydrocarbon through shale/fracture interfaces. Due to the extremely low permeability of shale matrixes, studies on chemical reactivity of shales have mostly focused on shale surfaces. Shale-fluid interactions inside within shale matrixes have not been examined, yet the matrix is the primary conduit through which hydrocarbons and potential contaminants are transmitted. To characterize changes in matrix mineralogy, porosity, diffusivity, and permeability during hydraulic stimulation, we reacted Marcellus (high clay and low carbonate) and Eagle Ford (low clay and high carbonate) shale cores with fracture fluids for 3 weeks at elevated pressure and temperature (80 oC, and 77 bars). In the carbonate-poor Marcellus system, fluid pH increased from 2 to 4, and secondary Fe(OH)3 precipitates were observed in the fluid. Sulfur X-ray fluorescence maps show that fluids had saturated and reacted with the entire 1-cm-diameter core. In the carbonate-rich Eagle Ford system, pH increased from 2 to 6 due to calcite dissolution. When additional Ba2+ and SO42- were present (log10(Q/K)=1.3), extensive barite precipitation was observed in the matrix of the Eagle Ford core (and on the surface). Barite precipitation was also observed on the surface of the Marcellus core, although to a lesser extent. In the Marcellus system, the presence of barite scale attenuated diffusivity in the matrix, as demonstrated by sharply reduced Fe leaching and much less sulfide oxidation. Systematic studies in homogeneous solution show that barite scale precipitation rates are highly sensitive to pH, salinity, and the presence of organic compounds. These findings imply that chemical reactions are not confined to shale/fluid interfaces but can penetrate into shale matrices, and that barite scale formation can clog diffusion pathways for both fluid and hydrocarbon.

  17. Metallic glasses of the type Fe80B17X3

    International Nuclear Information System (INIS)

    Riedel, M.; Gnaser, H.; Ruedenauer, F.G.

    1981-08-01

    Absolute and relative practical sensitivities for Osub2sup+ - bombardement of 14 elements, present as a 3% admixture in a Fe80B17X3 metallic glass matrix, were determined by SIMS. The variation of sensitivity data between elements is similar to that found for pure element samples. The 3% admixture causes a small but statistically significant matrix effect on the matrix elements Fe and B. Comparison with yield data of the same minor impurity elements in other matrices (stainless steel, silicon) shows, that sensitivities in different matrices are within 30% for most elements, indicating the possibility of transferring relative sensitivity factor data determined on metallic glasses to other Fe-based alloys and thereby obtaining a semi- quantitative analysis. (author)

  18. Strength and fracture behavior of aluminide matrix composites with ceramic fibers

    Energy Technology Data Exchange (ETDEWEB)

    Inoue, M.; Suganuma, K.; Niihara, K.

    1999-07-01

    This paper investigates the fracture behavior of FeAl and Ni{sub 3}Al matrix composites with ceramic continuous fibers 8.5--10 {micro}m in diameter. When stress is applied to these composites, multiple-fracture of fibers predominantly occurs before matrix cracking, because the load carried by the fibers reaches their fracture strength. Fragments which remain longer than the critical length can provide significant strengthening through load bearing even though fiber breaking has occurred. The ultimate fracture strength of the composites also depends on stress relaxation by plastic deformation of the matrix at a crack tip in the multiple-fractured fibers. Ductilizing of the matrix by B doping improves the ultimate strength at ambient temperatures in both composites. However, their mechanical properties at elevated temperatures are quite different. In the case of Ni{sub 3}Al matrix composites, embrittlement of the matrix is undesirable for high strength and reliability at 873--973 K.

  19. Nanocrystallization in amorphous Fe40Ni40(Si+B)19Mo1-2 ribbons

    International Nuclear Information System (INIS)

    Saiseng, S.; Winotai, P.; Nilpairuch, S.; Limsuwan, P.; Tang, I.M.

    2004-01-01

    Cut Fe 40 Ni 40 (Si+B) 19 Mo 1-2 ribbons were annealed for 2 h at various temperatures between 350 deg. C and 600 deg. C. XRD and Mossbauer effect spectroscopy (ME) measurements were then performed on all of the ribbons. The magnetic properties of several ribbons were measured using a vibrating sample magnetometer (VSM). A differential thermal analysis scan (over the range 20-800 deg. C) of the as-cast ribbon showed two phase transitions; the first at 454 deg. C and the second at 525 deg. C. Both the XRD and ME spectra of the as cast, the 350 deg. C and 400 deg. C annealed ribbons showed that they were amorphous. The ME spectra of the 450 deg. C, 475 deg. C and 500 deg. C annealed ribbons showed that these ribbons contained α-Fe, α-Fe(Si) and t-Fe 2 B nanocrystallites. For the ribbons annealed above 550 deg. C, crystallites of t-Fe 2 B, t-Fe 3 B, t-Fe 5 SiB 2 and FCC-FeNi appeared, with the α-Fe and α-Fe(Si) crystallites disappearing. The sextets of all of the Fe compounds appeared in the ME spectra of the 525 deg. C annealed ribbon. The VSM measurements supported the picture of a two-stage phase transitions; amorphous phase→a nanocrystalline phase (Fe-containing nanocrystallites in an amorphous matrix) at 454 deg. C and then a second transition, the nanocrystalline phase→a disordered alloy containing Fe-B and Fe-Ni crystallites at 525 deg. C

  20. Random matrix theory

    CERN Document Server

    Deift, Percy

    2009-01-01

    This book features a unified derivation of the mathematical theory of the three classical types of invariant random matrix ensembles-orthogonal, unitary, and symplectic. The authors follow the approach of Tracy and Widom, but the exposition here contains a substantial amount of additional material, in particular, facts from functional analysis and the theory of Pfaffians. The main result in the book is a proof of universality for orthogonal and symplectic ensembles corresponding to generalized Gaussian type weights following the authors' prior work. New, quantitative error estimates are derive

  1. Matrix vector analysis

    CERN Document Server

    Eisenman, Richard L

    2005-01-01

    This outstanding text and reference applies matrix ideas to vector methods, using physical ideas to illustrate and motivate mathematical concepts but employing a mathematical continuity of development rather than a physical approach. The author, who taught at the U.S. Air Force Academy, dispenses with the artificial barrier between vectors and matrices--and more generally, between pure and applied mathematics.Motivated examples introduce each idea, with interpretations of physical, algebraic, and geometric contexts, in addition to generalizations to theorems that reflect the essential structur

  2. Matrix Encryption Scheme

    Directory of Open Access Journals (Sweden)

    Abdelhakim Chillali

    2017-05-01

    Full Text Available In classical cryptography, the Hill cipher is a polygraphic substitution cipher based on linear algebra. In this work, we proposed a new problem applicable to the public key cryptography, based on the Matrices, called “Matrix discrete logarithm problem”, it uses certain elements formed by matrices whose coefficients are elements in a finite field. We have constructed an abelian group and, for the cryptographic part in this unreliable group, we then perform the computation corresponding to the algebraic equations, Returning the encrypted result to a receiver. Upon receipt of the result, the receiver can retrieve the sender’s clear message by performing the inverse calculation.

  3. Matrix string partition function

    CERN Document Server

    Kostov, Ivan K; Kostov, Ivan K.; Vanhove, Pierre

    1998-01-01

    We evaluate quasiclassically the Ramond partition function of Euclidean D=10 U(N) super Yang-Mills theory reduced to a two-dimensional torus. The result can be interpreted in terms of free strings wrapping the space-time torus, as expected from the point of view of Matrix string theory. We demonstrate that, when extrapolated to the ultraviolet limit (small area of the torus), the quasiclassical expressions reproduce exactly the recently obtained expression for the partition of the completely reduced SYM theory, including the overall numerical factor. This is an evidence that our quasiclassical calculation might be exact.

  4. Evolution of Fe environments in mechanically alloyed Fe–Nb–(B) compositions

    Energy Technology Data Exchange (ETDEWEB)

    Blázquez, J.S., E-mail: jsebas@us.es; Ipus, J.J.; Conde, C.F.; Conde, A.

    2014-12-05

    Highlights: • Nb is rapidly incorporated to the nanocrystalline FeNb(B) matrix. • B inclusions remains even after long milling times. • B is helpful to enhance the comminuting of crystallites. - Abstract: Nanocrystalline alloys of nominal composition Fe{sub 85}Nb{sub 5}B{sub 10} were produced by mechanical alloying from a mixture of elemental powders. Two commercial boron structures were used: amorphous and crystalline. In addition, a third composition Fe{sub 94.4}Nb{sub 5.6} was prepared for comparison. X-ray diffraction and Mössbauer spectroscopy were used to describe the evolution of the microstructure and Fe environments as a function of the milling time. Whereas Nb is rapidly incorporated into the nanocrystalline matrix, boron inclusions remain even after long milling times. The presence of boron is found to enhance the comminuting of crystallites.

  5. An eco-friendly route of γ-Fe2O3 nanoparticles formation and investigation of the mechanical properties of the HPMC-γ-Fe2O3 nanocomposites.

    Science.gov (United States)

    Sarkar, Joy; Mollick, Md Masud Rahaman; Chattopadhyay, Dipankar; Acharya, Krishnendu

    2017-03-01

    In recent times, biosynthetic approaches toward the synthesis of nanoparticles have been shown to have several advantages over physical and chemical methods. Here, we report the extracellular mycosynthesis of γ-Fe 2 O 3 nanoparticles by Alternaria alternata. The fungal biomass when exposed to aqueous iron(III) chloride solution led to the formation of highly stable γ-Fe 2 O 3 nanoparticles extracellularly. The influence of these biosynthesized γ-Fe 2 O 3 nanoparticles on the properties of hydroxyl propyl methyl cellulose was also investigated. Characterization of the biosynthesized γ-Fe 2 O 3 nanoparticles and HPMC-γ-Fe 2 O 3 nanocomposite films were done by the different types of spectral and electron microscopic analysis. The size of the γ-Fe 2 O 3 nanoparticles ranges from 75 to 650 nm. The mechanical effect of the agglomerated γ-Fe 2 O 3 nanoparticles into the HPMC polymer matrix was also investigated.

  6. Microstructures and mechanical properties of heat-treated Al–5.0Cu–0.5Fe squeeze cast alloys with different Mn/Fe ratio

    Energy Technology Data Exchange (ETDEWEB)

    Zhang, Weiwen, E-mail: mewzhang@scut.edu.cn; Lin, Bo; Fan, Jianlei; Zhang, Datong; Li, Yuanyuan

    2013-12-20

    The Al–5.0 wt% Cu–0.5 wt% Fe alloys with different Mn/Fe ratio were prepared by squeeze casting. Various test techniques, including tensile test, image analysis, scanning electron microscope (SEM), X-ray diffraction (XRD), electron probe micro-analyzer (EPMA) and transmission electron microscopy (TEM) were used to examine the microstructures and mechanical properties of the alloys in T5 heat-treated condition. The results show that the β-Fe (Al{sub 7}Cu{sub 2}Fe) is stable and its needle-like morphology is maintained after T5 heat treatment. However, the Chinese script Al{sub m}Fe, α-Fe or Al{sub 6}(FeMn) partially transform to a new Chinese script Cu-rich α(CuFe) (Al{sub 7}Cu{sub 2}Fe or Al{sub 7}Cu{sub 2}(FeMn)), which is harmful to the mechanical properties of the alloys due to the decrease of the Cu content in α(Al) matrix. The optimal Mn/Fe ratio is determined by the morphology of Fe-rich intermetallics, volume fraction of θ′ and T (Al{sub 20}Cu{sub 2}Mn{sub 3}), size of α(Al) dendrite and porosity. Excessive Mn/Fe ratio will deteriorate the mechanical properties of the alloys due to the increase of the total amount of porosity and the Fe-rich intermetallics. When the Mn/Fe ratio is 1.6 and 1.2 for the applied pressure of 0 MPa and 75 MPa, respectively, the needle-like β-Fe phase is completely converted to the Chinese script Fe-rich intermetallics. The ultimate tensile strength, yield strength and elongation of the T5 heat-treated alloy with the Mn/Fe ratio of 1.2 and applied pressure of 75 MPa reach 395 MPa, 335 MPa and 14%, respectively.

  7. Matrix algebra for linear models

    CERN Document Server

    Gruber, Marvin H J

    2013-01-01

    Matrix methods have evolved from a tool for expressing statistical problems to an indispensable part of the development, understanding, and use of various types of complex statistical analyses. This evolution has made matrix methods a vital part of statistical education. Traditionally, matrix methods are taught in courses on everything from regression analysis to stochastic processes, thus creating a fractured view of the topic. Matrix Algebra for Linear Models offers readers a unique, unified view of matrix analysis theory (where and when necessary), methods, and their applications. Written f

  8. MFM study of NdFeB and NdFeB/Fe/NdFeB thin films

    International Nuclear Information System (INIS)

    Gouteff, P.C.; Folks, L.; Street, R.

    1998-01-01

    Domain structures of NdFeB thin films, ranging in thickness between 1500 and 29 nm, have been studied qualitatively by magnetic force microscopy (MFM). Samples were prepared using a range of sputtering conditions resulting in differences in properties such as texture, coercivity and magnetic saturation. MFM images of all the films showed extensive interaction domain structures, similar to those observed in nanocrystalline bulk NdFeB. An exchange-coupled NdFeB/Fe/NdFeB trilayer with layer thicknesses 18 nm/15 nm/18 nm, respectively, was also examined using MFM. (orig.)

  9. Biomass carbon composited FeS2 as cathode materials for high-rate rechargeable lithium-ion battery

    Science.gov (United States)

    Xu, Xin; Meng, Zhen; Zhu, Xueling; Zhang, Shunlong; Han, Wei-Qiang

    2018-03-01

    Pyrite FeS2 has long been used as commercial primary lithium batteries at room temperature. To achieve rechargeable FeS2 battery, biomass-carbon@FeS2 composites are prepared using green and renewable auricularia auricula as carbon source through the process of carbonization and sulfuration. The auricularia auricula has strong swelling characteristics to absorb aqueous solution which can effectively absorb Fe ions into its body. FeS2 homogeneously distributed in biomass carbon matrix performs high electronic and ionic conductivity. The specific capacity of biomass-carbon@FeS2 composites remains 850 mAh g-1 after 80 cycles at 0.5C and 700 mAh g-1 at the rate of 2C after 150 cycles. Biomass-carbon@FeS2 composites exhibit high-rate capacity in lithium-ion battery.

  10. Magnetic and transport properties of Fe-based nanocrystalline materials

    Science.gov (United States)

    Barandiarán, J. M.

    1994-01-01

    Fe-rich amorphous alloys containing late transition metals like Nb, V, Zr,..., sometimes with the addition of Cu, can crystallize in ultrafine grains of a crystalline phase, a few nanometers in diameter, embedded in a disordered matrix. In such state they have shown excellent soft magnetic properties for technical applications, rising the interest for deep studies. In this paper, recent work on some Fe-Nb and Fe-Zr based alloys both in amorphous state and after several degrees of nanocrystallization is presented. The nanocrystallization process has been achieved by conventional heat treatments (about 1 h at temperatures around 400-500 °C in a controlled atmosphere furnance) as well as by Joule heating using an electrical current flowing through the sample. Magnetic measurements, electrical resistivity, x-rays diffraction and 57Fe Mössbauer spectroscopy were used in the study of the crystalline phases appearing after the thermal treatments. The basic magnetic and transport properties of the nanocrystals do not differ appreciably from their bulk values. The magnetic anisotropy, however, is very sensitive to grain size and to the intergranular magnetic coupling. The effect of such coupling is deduced from the coercivity changes at the Curie Temperature of the amorphous matrix remaining after nanocrystallization.

  11. Characterization of supercapacitors matrix

    Energy Technology Data Exchange (ETDEWEB)

    Sakka, Monzer Al, E-mail: Monzer.Al.Sakka@vub.ac.b [Vrije Universiteit Brussel, pleinlaan 2, B-1050 Brussels (Belgium); FEMTO-ST Institute, ENISYS Department, FCLAB, UFC-UTBM, bat.F, 90010 Belfort (France); Gualous, Hamid, E-mail: Hamid.Gualous@unicaen.f [Laboratoire LUSAC, Universite de Caen Basse Normandie, Rue Louis Aragon - BP 78, 50130 Cherbourg-Octeville (France); Van Mierlo, Joeri [Vrije Universiteit Brussel, pleinlaan 2, B-1050 Brussels (Belgium)

    2010-10-30

    This paper treats supercapacitors matrix characterization. In order to cut off transient power peaks and to compensate for the intrinsic limitations in embedded sources, the use of supercapacitors as a storage system is quite suitable, because of their appropriate electrical characteristics (huge capacitance, small series resistance, high specific energy, high specific power), direct storage (energy ready for use), and easy control by power electronic conversion. This use requires supercapacitors modules where several cells connected in serial and/or in parallel, thus a bypass system to balance the charging or the discharging of supercapacitors is required. In the matrix of supercapacitors, six elements of three parallel BCAP0350 supercapacitors in serial connections have been considered. This topology permits to reduce the number of the bypass circuits and it can work in degraded mode. Actually, it allows the system to have more reliability by providing power continually to the load even when there are one or more cells failed. Simulation and experimental results are presented and discussed.

  12. Characterization of supercapacitors matrix

    International Nuclear Information System (INIS)

    Sakka, Monzer Al; Gualous, Hamid; Van Mierlo, Joeri

    2010-01-01

    This paper treats supercapacitors matrix characterization. In order to cut off transient power peaks and to compensate for the intrinsic limitations in embedded sources, the use of supercapacitors as a storage system is quite suitable, because of their appropriate electrical characteristics (huge capacitance, small series resistance, high specific energy, high specific power), direct storage (energy ready for use), and easy control by power electronic conversion. This use requires supercapacitors modules where several cells connected in serial and/or in parallel, thus a bypass system to balance the charging or the discharging of supercapacitors is required. In the matrix of supercapacitors, six elements of three parallel BCAP0350 supercapacitors in serial connections have been considered. This topology permits to reduce the number of the bypass circuits and it can work in degraded mode. Actually, it allows the system to have more reliability by providing power continually to the load even when there are one or more cells failed. Simulation and experimental results are presented and discussed.

  13. Moessbauer study of 57Fe isolated in NH3 and NH3/Xe matrices

    International Nuclear Information System (INIS)

    Saitovitch, E.M.B.; Litterst, F.J.; Micklitz, H.

    1981-01-01

    Moessbauer studies on 57 Fe isolated in solid ammonia and ammonia/xenon mixtures were perfomed at 4.2 K and 77 K. They show clearly that atomic iron reacts only with one ammonia molecule forming FeNH 3 which is stable in an ammonia matrix up to 77 K. In addition a compound is formed which is attributed to an iron (II) hexammine. (Author) [pt

  14. The C60(FeCp22-Based Cell Proliferation Accelerator

    Directory of Open Access Journals (Sweden)

    Andrei Soldatov

    2013-01-01

    Full Text Available We studied structural and magnetic proprieties of the fulleride C60(FeCp22. The influence of fulleride particles on the cell proliferative activity was also investigated. We found that the proliferative activity of the RINmF5 cells increases (53% versus control in presence of the C60(FeCp22 nanosized particles. Moreover, it was registered that the cell culture became multilayered and secreted basophile matrix.

  15. Photoinduced spin-orientation transition dynamics in Fe2+ - containing Y3Fe5O12 monocrystals

    International Nuclear Information System (INIS)

    Kovalenko, V.F.; Kuts, P.S.; Lyakhimets, S.N.

    1982-01-01

    The kinetic equations describing Fe 2 + ion redistribution between orientation-nonequivalent sites in the Y 3 Fe 5 O 12 monocrystal under the action of linearly-polarized light are solved. The method proposed permits to find Fe 2 + ion distribution over four types of orientation-nonequivalent sites using an introduced matrix. The spin-redistribution transition is shown to have a threshold character. The expression allowing one to perform a quantitative calculation of the time of creation of the threshold unbalance tau, is obtained. It is shown that tau is dependent on the initial unbalance of site population. A conclusion is made on the existence of sectors, in which the polarization vector of irradiatino. light is oriented and photoinduced changes do not occur even at infinitely large values of illimination time and intensity. The analysis of the theoretical results obtained and their comparison with the existing experimental results show good agreement

  16. Hyperfine magnetic fields at 57Fe and 119Sn nuclei in the Fe48Rh52 alloy under pressure

    International Nuclear Information System (INIS)

    Nikolaev, I.N.; Potapov, V.N.; Bezotosnyj, I.Yu.; Mar'in, V.P.

    1978-01-01

    The pressure dependences of the hyperfine magnetic fields, H, and isomer shifts epsilon at the 57 Fe and 119 Sn nuclei in the Fe 48 Rh 52 alloy with an admixture of approximately 1 at. % Sn are measured by the Moessbauer effect technique. Under pressure epsilon decreases this signifying an increase (for 57 Fe) or decrease (for 119 Sn) of the s-electron density at the nuclei. In the ferromagnetic (FM) state at 398 K, ΔH/HΔp=(-2.8+-0.2)x10 -3 kbar -1 for 57 Fe and ΔH/HΔp=(-4.8+-0.8)x10 -3 kbar -1 for 119 Sn. In the antiferromagnetic (AFM) state at 78 K, ΔH/HΔp approximately 0 for 57 Fe and ΔH/HΔp=(-6.2+-1.0)x10 -3 kbar -1 for 119 Sn. The results for 57 Fe in the FM state can be ascribed to the strong dependence of the alloy matrix magnetization on the pressure and in the AFM state to the absence of local polarization of s-similar collectivized electrons and to the independence of the magnetic moments of the Fe ions of pressure. The causes of the different effect of pressure on the magnetic moments of Fe ions in the FM and AFM states are discussed. The results for 119 Sn in the FM and AFM states of the alloy are in agreement with the model of hyperfine fields at impurity Sn atoms in the magnetic matrices proposed earlier. The radial dependence of the hyperfine field at the 119 Sn nuclei in the AFM state is estimated and it is found that H(r) is stronger than r -9

  17. Ceramic matrix and resin matrix composites - A comparison

    Science.gov (United States)

    Hurwitz, Frances I.

    1987-01-01

    The underlying theory of continuous fiber reinforcement of ceramic matrix and resin matrix composites, their fabrication, microstructure, physical and mechanical properties are contrasted. The growing use of organometallic polymers as precursors to ceramic matrices is discussed as a means of providing low temperature processing capability without the fiber degradation encountered with more conventional ceramic processing techniques. Examples of ceramic matrix composites derived from particulate-filled, high char yield polymers and silsesquioxane precursors are provided.

  18. Ceramic matrix and resin matrix composites: A comparison

    Science.gov (United States)

    Hurwitz, Frances I.

    1987-01-01

    The underlying theory of continuous fiber reinforcement of ceramic matrix and resin matrix composites, their fabrication, microstructure, physical and mechanical properties are contrasted. The growing use of organometallic polymers as precursors to ceramic matrices is discussed as a means of providing low temperature processing capability without the fiber degradation encountered with more conventional ceramic processing techniques. Examples of ceramic matrix composites derived from particulate-filled, high char yield polymers and silsesquioxane precursors are provided.

  19. A matrix big bang

    International Nuclear Information System (INIS)

    Craps, Ben; Sethi, Savdeep; Verlinde, Erik

    2005-01-01

    The light-like linear dilaton background represents a particularly simple time-dependent 1/2 BPS solution of critical type-IIA superstring theory in ten dimensions. Its lift to M-theory, as well as its Einstein frame metric, are singular in the sense that the geometry is geodesically incomplete and the Riemann tensor diverges along a light-like subspace of codimension one. We study this background as a model for a big bang type singularity in string theory/M-theory. We construct the dual Matrix theory description in terms of a (1+1)-d supersymmetric Yang-Mills theory on a time-dependent world-sheet given by the Milne orbifold of (1+1)-d Minkowski space. Our model provides a framework in which the physics of the singularity appears to be under control

  20. A matrix big bang

    Energy Technology Data Exchange (ETDEWEB)

    Craps, Ben [Instituut voor Theoretische Fysica, Universiteit van Amsterdam, Valckenierstraat 65, 1018 XE Amsterdam (Netherlands); Sethi, Savdeep [Enrico Fermi Institute, University of Chicago, Chicago, IL 60637 (United States); Verlinde, Erik [Instituut voor Theoretische Fysica, Universiteit van Amsterdam, Valckenierstraat 65, 1018 XE Amsterdam (Netherlands)

    2005-10-15

    The light-like linear dilaton background represents a particularly simple time-dependent 1/2 BPS solution of critical type-IIA superstring theory in ten dimensions. Its lift to M-theory, as well as its Einstein frame metric, are singular in the sense that the geometry is geodesically incomplete and the Riemann tensor diverges along a light-like subspace of codimension one. We study this background as a model for a big bang type singularity in string theory/M-theory. We construct the dual Matrix theory description in terms of a (1+1)-d supersymmetric Yang-Mills theory on a time-dependent world-sheet given by the Milne orbifold of (1+1)-d Minkowski space. Our model provides a framework in which the physics of the singularity appears to be under control.

  1. Rapid extraction of uranium from sea water using Fe{sub 3}O{sub 4} and humic acid coated Fe{sub 3}O{sub 4} nanoparticles

    Energy Technology Data Exchange (ETDEWEB)

    Singhal, Pallavi, E-mail: psinghal@barc.gov.in [Homi Bhabha National Institute, Mumbai 400094 (India); Health Physics Division, Bhabha Atomic Research Centre, Mumbai 400085 (India); Jha, Sanjay K. [Homi Bhabha National Institute, Mumbai 400094 (India); Health Physics Division, Bhabha Atomic Research Centre, Mumbai 400085 (India); Pandey, Shailaja P. [Analytical Chemistry Division, Bhabha Atomic Research Centre, Mumbai 400085 (India); Neogy, Suman [Mechanical Metallurgy Division, Bhabha Atomic Research Centre, Mumbai 400085 (India)

    2017-08-05

    Highlights: • Uranium extraction using Fe{sub 3}O{sub 4} and HA coated Fe{sub 3}O{sub 4} NPs has been demonstrated. • Result indicates uranium extraction from both water and sea water matrix. • With increase in HA coating uranium extraction increases. • Fe{sub 3}O{sub 4}/HA 1 is the best material among synthesized one for uranium extraction. - Abstract: Uranium is one of the most toxic elements present in the environment and a number of methods have been developed for its extraction. Herein we have demonstrated a new method using magnetic nanoparticles (NPs) that can be used for uranium extraction from water and sea water matrix. Fe{sub 3}O{sub 4} and humic acid (HA) coated Fe{sub 3}O{sub 4} NPs with different amount of HA coating were synthesized and uranium sorption from water and sea water matrix was demonstrated. It was observed that sorption increases with increase in amount of HA coating. NPs settlement in presence of magnetic field was monitored where only bare Fe{sub 3}O{sub 4} and Fe{sub 3}O{sub 4}/HA 1 NPs settles while no settlement was observed for Fe{sub 3}O{sub 4}/HA 2 and Fe{sub 3}O{sub 4}/HA 3 NPs. Considering both sorption and particle separation from the matrix Fe{sub 3}O{sub 4}/HA 1 NPs are the best among synthesized ones with maximum sorption capacity of 10.5 mg of U/g of NPs. The results presented here reveal the exceptional potential of magnetic NPs and functionalized magnetic NPs for environmental remediation of uranium and to extract uranium from sea water on which to the best of our knowledge no report is available till now.

  2. Matrix metalloproteinases outside vertebrates.

    Science.gov (United States)

    Marino-Puertas, Laura; Goulas, Theodoros; Gomis-Rüth, F Xavier

    2017-11-01

    The matrix metalloproteinase (MMP) family belongs to the metzincin clan of zinc-dependent metallopeptidases. Due to their enormous implications in physiology and disease, MMPs have mainly been studied in vertebrates. They are engaged in extracellular protein processing and degradation, and present extensive paralogy, with 23 forms in humans. One characteristic of MMPs is a ~165-residue catalytic domain (CD), which has been structurally studied for 14 MMPs from human, mouse, rat, pig and the oral-microbiome bacterium Tannerella forsythia. These studies revealed close overall coincidence and characteristic structural features, which distinguish MMPs from other metzincins and give rise to a sequence pattern for their identification. Here, we reviewed the literature available on MMPs outside vertebrates and performed database searches for potential MMP CDs in invertebrates, plants, fungi, viruses, protists, archaea and bacteria. These and previous results revealed that MMPs are widely present in several copies in Eumetazoa and higher plants (Tracheophyta), but have just token presence in eukaryotic algae. A few dozen sequences were found in Ascomycota (within fungi) and in double-stranded DNA viruses infecting invertebrates (within viruses). In contrast, a few hundred sequences were found in archaea and >1000 in bacteria, with several copies for some species. Most of the archaeal and bacterial phyla containing potential MMPs are present in human oral and gut microbiomes. Overall, MMP-like sequences are present across all kingdoms of life, but their asymmetric distribution contradicts the vertical descent model from a eubacterial or archaeal ancestor. This article is part of a Special Issue entitled: Matrix Metalloproteinases edited by Rafael Fridman. Copyright © 2017 Elsevier B.V. All rights reserved.

  3. Atomic level structural modulation during the structural relaxation and its effect on magnetic properties of Fe81Si4B10P4Cu1 nanocrystalline alloy

    Science.gov (United States)

    Cao, C. C.; Zhu, L.; Meng, Y.; Zhai, X. B.; Wang, Y. G.

    2018-06-01

    The evolution of local structure and defects in the Fe81Si4B10P4Cu1 amorphous alloy during the structural relaxation has been investigated by Mössbauer spectroscopy, positron annihilation lifetime spectroscopy and transmission electron microscopy to explore their effects on magnetic properties of the nanocrystalline. The atomic rearrangements at the early stage of the structural relaxation cause the density increase of the amorphous matrix, but the subsequent atomic rearrangements contribute to the transformation of Fe3B-like atomic arrangements to FeB-like ones with the temperature increasing. As the structural relaxation processes, the released Fe atoms both from Fe3B- and Fe3P-like atomic arrangements result in the formation of new Fe clusters and the increase of Fe-Fe coordination number in the existing Fe clusters and the nucleation sites for α-Fe gradually increase, both of which promote the crystallization. However, the homogeneity of amorphous matrix will be finally destroyed under excessive relaxation temperature, which coarsens nanograins during the crystallization instead. Therefore, soft magnetic properties of the Fe81Si4B10P4Cu1 nanocrystalline alloy can be improved by pre-annealing the amorphous precursor at an appropriate temperature due to the atomic level structural optimization.

  4. How oxygen attacks [FeFe] hydrogenases from photosynthetic organisms

    Science.gov (United States)

    Stripp, Sven T.; Goldet, Gabrielle; Brandmayr, Caterina; Sanganas, Oliver; Vincent, Kylie A.; Haumann, Michael; Armstrong, Fraser A.; Happe, Thomas

    2009-01-01

    Green algae such as Chlamydomonas reinhardtii synthesize an [FeFe] hydrogenase that is highly active in hydrogen evolution. However, the extreme sensitivity of [FeFe] hydrogenases to oxygen presents a major challenge for exploiting these organisms to achieve sustainable photosynthetic hydrogen production. In this study, the mechanism of oxygen inactivation of the [FeFe] hydrogenase CrHydA1 from C. reinhardtii has been investigated. X-ray absorption spectroscopy shows that reaction with oxygen results in destruction of the [4Fe-4S] domain of the active site H-cluster while leaving the di-iron domain (2FeH) essentially intact. By protein film electrochemistry we were able to determine the order of events leading up to this destruction. Carbon monoxide, a competitive inhibitor of CrHydA1 which binds to an Fe atom of the 2FeH domain and is otherwise not known to attack FeS clusters in proteins, reacts nearly two orders of magnitude faster than oxygen and protects the enzyme against oxygen damage. These results therefore show that destruction of the [4Fe-4S] cluster is initiated by binding and reduction of oxygen at the di-iron domain—a key step that is blocked by carbon monoxide. The relatively slow attack by oxygen compared to carbon monoxide suggests that a very high level of discrimination can be achieved by subtle factors such as electronic effects (specific orbital overlap requirements) and steric constraints at the active site. PMID:19805068

  5. Chemical synthesis, phase transformation and magnetic proprieties of FePt and FePd nanoparticles

    International Nuclear Information System (INIS)

    Delattre, Anastasia

    2010-01-01

    This work aims at understanding the chemical synthesis of FePt and FePd nanoparticles (NPs), and at exploring how to implement the phase transformation from the chemically disordered to the L10 phase, without coalescence. Using hexadecanenitrile instead of oleylamine, we obtain NPs with a more homogenous internal composition, instead of core-shell NPs. Through a systematic study (designed experiment relying on Taguchi tables), we developed the FePd synthesis, while evidencing the role of each ligand and of the reductor. To induce the crystalline phase transformation while avoiding coalescence, we explored two ways. In the first one, atomic vacancies are introduced in the NPs through light ion irradiation, atomic mobility being ensured by annealing at moderate temperature (300 C). As a result, the blocking temperature is multiplied by 4, due to anisotropy enhancement. However, strong chemical ordering in the L10 phase cannot be achieved. The second approach relies on the dispersion of the NPs in a salt (NaCl) matrix, prior to annealing at 700 C: high chemical ordering is achieved, and the blocking temperature is beyond 400 C. We then developed a single-step process to remove the salt by dissolution in water and to re-disperse NPs in stable aqueous or organics solutions. These high magnetic anisotropy NPs are then readily available for further chemical or manipulation steps, with applied perspectives in areas such as data storage, or biology. (author)

  6. Phenomenology of the CKM matrix

    International Nuclear Information System (INIS)

    Nir, Y.

    1989-01-01

    The way in which an exact determination of the CKM matrix elements tests the standard Model is demonstrated by a two-generation example. The determination of matrix elements from meson semileptonic decays is explained, with an emphasis on the respective reliability of quark level and meson level calculations. The assumptions involved in the use of loop processes are described. Finally, the state of the art of the knowledge of the CKM matrix is presented. 19 refs., 2 figs

  7. On matrix fractional differential equations

    OpenAIRE

    Adem Kılıçman; Wasan Ajeel Ahmood

    2017-01-01

    The aim of this article is to study the matrix fractional differential equations and to find the exact solution for system of matrix fractional differential equations in terms of Riemann–Liouville using Laplace transform method and convolution product to the Riemann–Liouville fractional of matrices. Also, we show the theorem of non-homogeneous matrix fractional partial differential equation with some illustrative examples to demonstrate the effectiveness of the new methodology. The main objec...

  8. Efficiency of a new strategy involving a new class of natural hetero-ligand iron(III) chelates (Fe(III)-NHL) to improve fruit tree growth in alkaline/calcareous soils.

    Science.gov (United States)

    Fuentes, Marta; Ortuño, María F; Pérez-Sarmiento, Francisco; Bacaicoa, Eva; Baigorri, Roberto; Conejero, Wenceslao; Torrecillas, Arturo; García-Mina, José M

    2012-12-01

    Iron (Fe) chlorosis is a serious problem affecting the yield and quality of numerous crops and fruit trees cultivated in alkaline/calcareous soils. This paper describes the efficiency of a new class of natural hetero-ligand Fe(III) chelates (Fe-NHL) to provide available Fe for chlorotic lemon trees grown in alkaline/calcareous soils. These chelates involve the participation in the reaction system of a partially humified lignin-based natural polymer and citric acid. First results showed that Fe-NHL was adsorbed on the soil matrix while maintaining available Fe for plants in alkaline/calcareous solution. The effects of using three different sources as Fe fertilisers were also compared: two Fe-NHL formulations (NHL1, containing 100% of Fe as Fe-NHL, and NHL2, containing 80% of Fe as Fe-NHL and 20% of Fe as Fe-ethylenediamine-N,N'-bis-(o-hydroxyphenylacetic) acid (Fe-EDDHA)) and Fe-EDDHA. Both Fe-NHL formulations increased fruit yield without negative effects on fruit quality in comparison with Fe-EDDHA. In the absence of the Fe-starter fraction (NHL1), trees seemed to optimise Fe assimilation and translocation from Fe-NHL, directing it to those parts of the plant more involved in development. The field assays confirmed that Fe-NHL-based fertilisers are able to provide Fe to chlorotic trees, with results comparable to Fe-EDDHA. Besides, this would imply a more sustainable and less expensive remediation than synthetic chelates. Copyright © 2012 Society of Chemical Industry.

  9. From solid solution to cluster formation of Fe and Cr in α-Zr

    International Nuclear Information System (INIS)

    Burr, P.A.; Wenman, M.R.; Gault, B.; Moody, M.P.; Ivermark, M.; Rushton, M.J.D.; Preuss, M.; Edwards, L.; Grimes, R.W.

    2015-01-01

    To understand the mechanisms by which the re-solution of Fe and Cr additions increase the corrosion rate of irradiated Zr alloys, the solubility and clustering of Fe and Cr in model binary Zr alloys was investigated using a combination of experimental and modelling techniques — atom probe tomography (APT), x-ray diffraction (XRD), thermoelectric power (TEP) and density functional theory (DFT). Cr occupies both interstitial and substitutional sites in the α-Zr lattice; Fe favours interstitial sites, and a low-symmetry site that was not previously modelled is found to be the most favourable for Fe. Lattice expansion as a function of Fe and Cr content in the α-Zr matrix deviates from Vegard's law and is strongly anisotropic for Fe additions, expanding the c-axis while contracting the a-axis. Matrix content of solutes cannot be reliably estimated from lattice parameter measurements, instead a combination of TEP and APT was employed. Defect clusters form at higher solution concentrations, which induce a smaller lattice strain compared to the dilute defects. In the presence of a Zr vacancy, all two-atom clusters are more soluble than individual point defects and as many as four Fe or three Cr atoms could be accommodated in a single Zr vacancy. The Zr vacancy is critical for the increased apparent solubility of defect clusters; the implications for irradiation induced microstructure changes in Zr alloys are discussed.

  10. From solid solution to cluster formation of Fe and Cr in α-Zr

    Energy Technology Data Exchange (ETDEWEB)

    Burr, P.A., E-mail: burr.patrick@gmail.com [Centre for Nuclear Engineering and Department of Materials, Imperial College London, London, SW7 2AZ (United Kingdom); Institute of Materials Engineering, Australian Nuclear Science & Technology Organisation, Menai, New South Wales 2234 (Australia); Wenman, M.R. [Centre for Nuclear Engineering and Department of Materials, Imperial College London, London, SW7 2AZ (United Kingdom); Gault, B.; Moody, M.P. [Department of Materials, University of Oxford, Parks Road, Oxford, OX1 3PH (United Kingdom); Ivermark, M. [High Temperature Materials, Sandvik Materials Technology, 734 27 Hallstahammar (Sweden); University of Manchester, School of Materials, M13 9PL (United Kingdom); Rushton, M.J.D. [Centre for Nuclear Engineering and Department of Materials, Imperial College London, London, SW7 2AZ (United Kingdom); Preuss, M. [University of Manchester, School of Materials, M13 9PL (United Kingdom); Edwards, L. [Institute of Materials Engineering, Australian Nuclear Science & Technology Organisation, Menai, New South Wales 2234 (Australia); Grimes, R.W. [Centre for Nuclear Engineering and Department of Materials, Imperial College London, London, SW7 2AZ (United Kingdom)

    2015-12-15

    To understand the mechanisms by which the re-solution of Fe and Cr additions increase the corrosion rate of irradiated Zr alloys, the solubility and clustering of Fe and Cr in model binary Zr alloys was investigated using a combination of experimental and modelling techniques — atom probe tomography (APT), x-ray diffraction (XRD), thermoelectric power (TEP) and density functional theory (DFT). Cr occupies both interstitial and substitutional sites in the α-Zr lattice; Fe favours interstitial sites, and a low-symmetry site that was not previously modelled is found to be the most favourable for Fe. Lattice expansion as a function of Fe and Cr content in the α-Zr matrix deviates from Vegard's law and is strongly anisotropic for Fe additions, expanding the c-axis while contracting the a-axis. Matrix content of solutes cannot be reliably estimated from lattice parameter measurements, instead a combination of TEP and APT was employed. Defect clusters form at higher solution concentrations, which induce a smaller lattice strain compared to the dilute defects. In the presence of a Zr vacancy, all two-atom clusters are more soluble than individual point defects and as many as four Fe or three Cr atoms could be accommodated in a single Zr vacancy. The Zr vacancy is critical for the increased apparent solubility of defect clusters; the implications for irradiation induced microstructure changes in Zr alloys are discussed.

  11. Matrix transformations and sequence spaces

    International Nuclear Information System (INIS)

    Nanda, S.

    1983-06-01

    In most cases the most general linear operator from one sequence space into another is actually given by an infinite matrix and therefore the theory of matrix transformations has always been of great interest in the study of sequence spaces. The study of general theory of matrix transformations was motivated by the special results in summability theory. This paper is a review article which gives almost all known results on matrix transformations. This also suggests a number of open problems for further study and will be very useful for research workers. (author)

  12. Multivariate Matrix-Exponential Distributions

    DEFF Research Database (Denmark)

    Bladt, Mogens; Nielsen, Bo Friis

    2010-01-01

    be written as linear combinations of the elements in the exponential of a matrix. For this reason we shall refer to multivariate distributions with rational Laplace transform as multivariate matrix-exponential distributions (MVME). The marginal distributions of an MVME are univariate matrix......-exponential distributions. We prove a characterization that states that a distribution is an MVME distribution if and only if all non-negative, non-null linear combinations of the coordinates have a univariate matrix-exponential distribution. This theorem is analog to a well-known characterization theorem...

  13. A matrix model for WZW

    International Nuclear Information System (INIS)

    Dorey, Nick; Tong, David; Turner, Carl

    2016-01-01

    We study a U(N) gauged matrix quantum mechanics which, in the large N limit, is closely related to the chiral WZW conformal field theory. This manifests itself in two ways. First, we construct the left-moving Kac-Moody algebra from matrix degrees of freedom. Secondly, we compute the partition function of the matrix model in terms of Schur and Kostka polynomials and show that, in the large N limit, it coincides with the partition function of the WZW model. This same matrix model was recently shown to describe non-Abelian quantum Hall states and the relationship to the WZW model can be understood in this framework.

  14. In vitro degradation and surface bioactivity of iron-matrix composites containing silicate-based bioceramic

    NARCIS (Netherlands)

    Wang, S; Xu, Y; Zhou, J.; Li, H; Chang, Jiang; Huan, Z

    2017-01-01

    Iron-matrix composites with calcium silicate (CS) bioceramic as the reinforcing phase were fabricated through powder metallurgy processes. The microstructures, mechanical properties, apatite deposition and biodegradation behavior of the Fe-CS composites, as well as cell attachment and proliferation

  15. Fe de Erratas

    Directory of Open Access Journals (Sweden)

    Perspectiva Geográfica

    2014-01-01

    Full Text Available La Magíster Sonia Jimena Murillo Munar, autora del artículo titulado “Transporte urbano sostenible: medidas desde la administración y transporte público como alternativa en Bogotá”, publicado en el Volumen No. 13 correspondiente al año 2008, solicita la inclusión de la siguiente FE DE ERRATAS con la enmienda de un error de exclusiva responsabilidad del Equipo Editorial de la Revista.

  16. Structure and magnetism in Co/X, Fe/Si, and Fe/(FeSi) multilayers

    Science.gov (United States)

    Franklin, Michael Ray

    Previous studies have shown that magnetic behavior in multilayers formed by repeating a bilayer unit comprised of a ferromagnetic layer and a non-magnetic spacer layer can be affected by small structural differences. For example, a macroscopic property such as giant magnetoresistance (GMR) is believed to depend significantly upon interfacial roughness. In this study, several complimentary structural probes were used to carefully characterize the structure of several sputtered multilayer systems-Co/Ag, Co/Cu, Co/Mo, Fe/Si, and Fe//[FeSi/]. X-ray diffraction (XRD) studies were used to examine the long-range structural order of the multilayers perpendicular to the plane of the layers. Transmission electron diffraction (TED) studies were used to probe the long-range order parallel to the layer plane. X-ray Absorption Fine Structure (XAFS) studies were used to determine the average local structural environment of the ferromagnetic atoms. For the Co/X systems, a simple correlation between crystal structure and saturation magnetization is discovered for the Co/Mo system. For the Fe/X systems, direct evidence of an Fe-silicide is found for the /[FeSi/] spacer layer but not for the Si spacer layer. Additionally, differences were observed in the magnetic behavior between the Fe in the nominally pure Fe layer and the Fe contained in the /[FeSi/] spacer layers.

  17. Electron impact excitation of Fe-peak elements: forbidden transitions in the 3d5 manifold of Fe IV

    International Nuclear Information System (INIS)

    McLaughlin, B M; Hibbert, A; Scott, M P; Noble, C J; Burke, V M; Burke, P G

    2005-01-01

    Electron-impact excitation collision strengths of the Fe-peak element Fe IV are calculated in the close-coupling approximation using the R-matrix suite of codes PRMAT designed for parallel processors. One hundred and eight LS-coupled states arising from the 3d 5 , 3d 4 4s and 3d 4 4p configurations of Fe IV, are retained in the present calculations. Detailed multi-configuration interaction target wavefunctions are used with the aid of 3p 2 → 3d 2 electron promotions and a 4dbar correlation orbital in the present calculations. Effective collision strengths for optically forbidden transitions, which are extremely important in the analysis of lines in the Fe IV spectra, are obtained by averaging the electron collision strengths for a wide range of incident electron energies, over a Maxwellian distribution of velocities. Results are presented for electron temperatures (T e in Kelvin) in the range 3.3 ≤ Log T e ≤ 6.0 applicable to many laboratory and astrophysical plasmas for transitions within the 3d 5 manifold. The present results compared to previous investigations provide improved results for important lines in the Fe IV spectrum

  18. Characterization of PAH matrix with monazite stream containing uranium, gadolinium and iron

    Energy Technology Data Exchange (ETDEWEB)

    Pal, Sangita, E-mail: sangpal@barc.gov.in; Goswami, D. [Desalination Division, Bhabha Atomic Research Centre, Trombay, Mumbai-400 085 (India); Meena, Sher Singh [Solid State Physics Division, Bhabha Atomic Research Centre, Trombay, Mumbai-400 085 (India)

    2016-05-23

    Uranium (U) gadolinium (Gd) and iron (Fe) containing alkaline waste simulated effluent (relevant to alkaline effluent of monazite ore) has been treated with a novel amphoteric resin viz, Polyamidehydroxamate (PAH) containing amide and hydroxamic acid groups. The resin has been synthesized in an eco-friendly manner by polymerization nad conversion to functional groups characterized by FT-IR spectra and architectural overview by SEM. Coloration of the loaded matrix and de-coloration after extraction of uranium is the special characteristic of the matrix. Effluent streams have been analyzed by ICP-AES, U loaded PAH has been characterized by FT-IR, EXAFS, Gd and Fe by X-ray energy values of EDXRF at 6.053 KeVand 6.405 KeV respectively. The remarkable change has been observed in Mössbauer spectrum of Fe-loaded PAH samples.

  19. Ceramic matrix composite article and process of fabricating a ceramic matrix composite article

    Science.gov (United States)

    Cairo, Ronald Robert; DiMascio, Paul Stephen; Parolini, Jason Robert

    2016-01-12

    A ceramic matrix composite article and a process of fabricating a ceramic matrix composite are disclosed. The ceramic matrix composite article includes a matrix distribution pattern formed by a manifold and ceramic matrix composite plies laid up on the matrix distribution pattern, includes the manifold, or a combination thereof. The manifold includes one or more matrix distribution channels operably connected to a delivery interface, the delivery interface configured for providing matrix material to one or more of the ceramic matrix composite plies. The process includes providing the manifold, forming the matrix distribution pattern by transporting the matrix material through the manifold, and contacting the ceramic matrix composite plies with the matrix material.

  20. The brush model - a new approach to numerical modeling of matrix diffusion in fractured clay stone

    International Nuclear Information System (INIS)

    Lege, T.; Shao, H.

    1998-01-01

    A special approach for numerical modeling of contaminant transport in fractured clay stone is presented. The rock matrix and the fractures are simulated with individual formulations for FE grids and transport, coupled into a single model. The capacity of the rock matrix to take up contaminants is taken into consideration with a discrete simulation of matrix diffusion. Thus, the natural process of retardation due to matrix diffusion can be better simulated than by a standard introduction of an empirical parameter into the transport equation. Transport in groundwater in fractured clay stone can be simulated using a model called a 'brush model'. The 'brush handle' is discretized by 2-D finite elements. Advective-dispersive transport in groundwater in the fractures is assumed. The contaminant diffuses into 1D finite elements perpendicular to the fractures, i.e., the 'bristles of the brush'. The conclusion is drawn that matrix diffusion is an important property of fractured clay stone for contaminant retardation. (author)

  1. Fe65-PTB2 Dimerization Mimics Fe65-APP Interaction

    Directory of Open Access Journals (Sweden)

    Lukas P. Feilen

    2017-05-01

    Full Text Available Physiological function and pathology of the Alzheimer’s disease causing amyloid precursor protein (APP are correlated with its cytosolic adaptor Fe65 encompassing a WW and two phosphotyrosine-binding domains (PTBs. The C-terminal Fe65-PTB2 binds a large portion of the APP intracellular domain (AICD including the GYENPTY internalization sequence fingerprint. AICD binding to Fe65-PTB2 opens an intra-molecular interaction causing a structural change and altering Fe65 activity. Here we show that in the absence of the AICD, Fe65-PTB2 forms a homodimer in solution and determine its crystal structure at 2.6 Å resolution. Dimerization involves the unwinding of a C-terminal α-helix that mimics binding of the AICD internalization sequence, thus shielding the hydrophobic binding pocket. Specific dimer formation is validated by nuclear magnetic resonance (NMR techniques and cell-based analyses reveal that Fe65-PTB2 together with the WW domain are necessary and sufficient for dimerization. Together, our data demonstrate that Fe65 dimerizes via its APP interaction site, suggesting that besides intra- also intermolecular interactions between Fe65 molecules contribute to homeostatic regulation of APP mediated signaling.

  2. Fe65-PTB2 Dimerization Mimics Fe65-APP Interaction.

    Science.gov (United States)

    Feilen, Lukas P; Haubrich, Kevin; Strecker, Paul; Probst, Sabine; Eggert, Simone; Stier, Gunter; Sinning, Irmgard; Konietzko, Uwe; Kins, Stefan; Simon, Bernd; Wild, Klemens

    2017-01-01

    Physiological function and pathology of the Alzheimer's disease causing amyloid precursor protein (APP) are correlated with its cytosolic adaptor Fe65 encompassing a WW and two phosphotyrosine-binding domains (PTBs). The C-terminal Fe65-PTB2 binds a large portion of the APP intracellular domain (AICD) including the GYENPTY internalization sequence fingerprint. AICD binding to Fe65-PTB2 opens an intra-molecular interaction causing a structural change and altering Fe65 activity. Here we show that in the absence of the AICD, Fe65-PTB2 forms a homodimer in solution and determine its crystal structure at 2.6 Å resolution. Dimerization involves the unwinding of a C-terminal α-helix that mimics binding of the AICD internalization sequence, thus shielding the hydrophobic binding pocket. Specific dimer formation is validated by nuclear magnetic resonance (NMR) techniques and cell-based analyses reveal that Fe65-PTB2 together with the WW domain are necessary and sufficient for dimerization. Together, our data demonstrate that Fe65 dimerizes via its APP interaction site, suggesting that besides intra- also intermolecular interactions between Fe65 molecules contribute to homeostatic regulation of APP mediated signaling.

  3. Magnetic structure of molecular magnet Fe[Fe(CN) 6

    Indian Academy of Sciences (India)

    We have studied the magnetic structure of Fe[Fe(CN)6]·4H2O, prepared by precipitation method, using neutron diffraction technique. Temperature dependent DC magnetization study down to 4.2 K shows that the compound undergoes from a high temperature disordered (paramagnetic) to an ordered magnetic phase ...

  4. Strategy BMT Al-Ittihad Using Matrix IE, Matrix SWOT 8K, Matrix SPACE and Matrix TWOS

    Directory of Open Access Journals (Sweden)

    Nofrizal Nofrizal

    2018-03-01

    Full Text Available This research aims to formulate and select BMT Al-Ittihad Rumbai strategy to face the changing of business environment both from internal environment such as organization resources, finance, member and external business such as competitor, economy, politics and others. This research method used Analysis of EFAS, IFAS, IE Matrix, SWOT-8K Matrix, SPACE Matrix and TWOS Matrix. our hope from this research it can assist BMT Al-Ittihad in formulating and selecting strategies for the sustainability of BMT Al-Ittihad in the future. The sample in this research is using purposive sampling technique that is the manager and leader of BMT Al-IttihadRumbaiPekanbaru. The result of this research shows that the position of BMT Al-Ittihad using IE Matrix, SWOT-8K Matrix and SPACE Matrix is in growth position, stabilization and aggressive. The choice of strategy after using TWOS Matrix is market penetration, market development, vertical integration, horizontal integration, and stabilization (careful.

  5. How to Study a Matrix

    Science.gov (United States)

    Jairam, Dharmananda; Kiewra, Kenneth A.; Kauffman, Douglas F.; Zhao, Ruomeng

    2012-01-01

    This study investigated how best to study a matrix. Fifty-three participants studied a matrix topically (1 column at a time), categorically (1 row at a time), or in a unified way (all at once). Results revealed that categorical and unified study produced higher: (a) performance on relationship and fact tests, (b) study material satisfaction, and…

  6. Formation of metastable phases and nanocomposite structures in rapidly solidified Al-Fe alloys

    International Nuclear Information System (INIS)

    Nayak, S.S.; Chang, H.J.; Kim, D.H.; Pabi, S.K.; Murty, B.S.

    2011-01-01

    Highlights: → Structures of nanocomposites in rapidly solidified Al-Fe alloys were investigated. → Nanoquasicrystalline, amorphous and intermetallics phases coexist with α-Al. → Nanoquasicrystalline phase was observed for the first time in the dilute Al alloys. → Thermodynamic driving force plays dominant role in precipitation of Fe-rich phases. → High hardness (3.57 GPa) was observed for nanocomposite of Al-10Fe alloy. - Abstract: In the present work the structure and morphology of the phases of nanocomposites formed in rapidly solidified Al-Fe alloys were investigated in details using analytical transmission electron microscopy and X-ray diffraction. Nanoquasicrystalline phases, amorphous phase and intermetallics like Al 5 Fe 2 , Al 13 F 4 coexisted with α-Al in nanocomposites of the melt spun alloys. It was seen that the Fe supersaturation in α-Al diminished with the increase in Fe content and wheel speed indicating the dominant role of the thermodynamic driving force in the precipitation of Fe-rich phases. Nanoquasicrystalline phases were observed for the first time in the dilute Al alloys like Al-2.5Fe and Al-5Fe as confirmed by high resolution TEM. High hardness (3.57 GPa) was measured in nanocomposite of Al-10Fe alloy, which was attributed to synergistic effect of solid solution strengthening due to high solute content (9.17 at.% Fe), dispersion strengthening by high volume fraction of nanoquasicrystalline phase; and Hall-Petch strengthening from finer cell size (20-30 nm) of α-Al matrix.

  7. Bulk metallic glass matrix composites

    International Nuclear Information System (INIS)

    Choi-Yim, H.; Johnson, W.L.

    1997-01-01

    Composites with a bulk metallic glass matrix were synthesized and characterized. This was made possible by the recent development of bulk metallic glasses that exhibit high resistance to crystallization in the undercooled liquid state. In this letter, experimental methods for processing metallic glass composites are introduced. Three different bulk metallic glass forming alloys were used as the matrix materials. Both ceramics and metals were introduced as reinforcement into the metallic glass. The metallic glass matrix remained amorphous after adding up to a 30 vol% fraction of particles or short wires. X-ray diffraction patterns of the composites show only peaks from the second phase particles superimposed on the broad diffuse maxima from the amorphous phase. Optical micrographs reveal uniformly distributed particles in the matrix. The glass transition of the amorphous matrix and the crystallization behavior of the composites were studied by calorimetric methods. copyright 1997 American Institute of Physics

  8. Machining of Metal Matrix Composites

    CERN Document Server

    2012-01-01

    Machining of Metal Matrix Composites provides the fundamentals and recent advances in the study of machining of metal matrix composites (MMCs). Each chapter is written by an international expert in this important field of research. Machining of Metal Matrix Composites gives the reader information on machining of MMCs with a special emphasis on aluminium matrix composites. Chapter 1 provides the mechanics and modelling of chip formation for traditional machining processes. Chapter 2 is dedicated to surface integrity when machining MMCs. Chapter 3 describes the machinability aspects of MMCs. Chapter 4 contains information on traditional machining processes and Chapter 5 is dedicated to the grinding of MMCs. Chapter 6 describes the dry cutting of MMCs with SiC particulate reinforcement. Finally, Chapter 7 is dedicated to computational methods and optimization in the machining of MMCs. Machining of Metal Matrix Composites can serve as a useful reference for academics, manufacturing and materials researchers, manu...

  9. Quantum mechanics in matrix form

    CERN Document Server

    Ludyk, Günter

    2018-01-01

    This book gives an introduction to quantum mechanics with the matrix method. Heisenberg's matrix mechanics is described in detail. The fundamental equations are derived by algebraic methods using matrix calculus. Only a brief description of Schrödinger's wave mechanics is given (in most books exclusively treated), to show their equivalence to Heisenberg's matrix  method. In the first part the historical development of Quantum theory by Planck, Bohr and Sommerfeld is sketched, followed by the ideas and methods of Heisenberg, Born and Jordan. Then Pauli's spin and exclusion principles are treated. Pauli's exclusion principle leads to the structure of atoms. Finally, Dirac´s relativistic quantum mechanics is shortly presented. Matrices and matrix equations are today easy to handle when implementing numerical algorithms using standard software as MAPLE and Mathematica.

  10. Preparation of the Hexacyanoferrate Ion Exchanger Matrix to Concentrate 137Cs from Sea Water

    International Nuclear Information System (INIS)

    Murdahayu Makmur

    2007-01-01

    Preparation of the hexacyanoferrate ion exchanger matrix to concentrate 137 Cs from large volume sea water has been done. The Pre-concentration is needed because 137 Cs concentration in sea water is too low. The hexacyanoferrate ion exchanger matrix can be prepared by performing the reaction of 10 gram silica gel with potassium hexacyanoferrate on concentration variation of 0.0025 M - 0.04 M and copper chloride on concentration variation of 0.005 M - 0.08 M. The volume of each reagent was 25 ml. The performance of the ion exchanger matrix depends on the chemical compositions both of the mixtures, it was expected that no remaining Fe ion and free Cu from the initial reagent. The final effluent will analyzed for Fe and Cu using Atomic Absorption Spectrometer. The optimal molar composition ration for potassium hexacyanoferrate and copper chloride was 0.5 for 10 gram silica gel. (author)

  11. Superconducting instabilities and quasipartical interference in the LiFeAs and Co-doped NaFeAs iron-based superconductors

    Energy Technology Data Exchange (ETDEWEB)

    Altenfeld, Dustin; Ahn, Felix; Eremin, Ilya [Institut fuer Theoretische Physik III, Ruhr-Universitaet Bochum, D-44801 Bochum (Germany); Borisenko, Sergey [Leibniz-Institute for Solid State Research, IFW-Dresden, D-01171 Dresden (Germany)

    2015-07-01

    We analyze and compare the structure of the pairing interaction and superconducting gaps in LiFeAs and Co-doped NaFeAs by using the ten-orbital tight-binding model, derived from ab initio LDA calculations with hopping parameters extracted from the fit to ARPES experiments. We discuss the phase diagram and experimental probes to determine the structure of the superconducting gap in these systems with special emphasis on the quasiparticle interference, computed using the T-matrix approximation. In particular, we analyze how the superconducting state with opposite sign of the gaps on the two inner hole pockets in LiFeAs evolve upon changing the parameters towards NaFeAs compound.

  12. Visualization of conduit-matrix conductivity differences in a karst aquifer using time-lapse electrical resistivity

    Science.gov (United States)

    Meyerhoff, Steven B.; Karaoulis, Marios; Fiebig, Florian; Maxwell, Reed M.; Revil, André; Martin, Jonathan B.; Graham, Wendy D.

    2012-12-01

    In the karstic upper Floridan aquifer, surface water flows into conduits of the groundwater system and may exchange with water in the aquifer matrix. This exchange has been hypothesized to occur based on differences in discharge at the Santa Fe River Sink-Rise system, north central Florida, but has yet to be visualized using any geophysical techniques. Using electrical resistivity tomography, we conducted a time-lapse study at two locations with mapped conduits connecting the Santa Fe River Sink to the Santa Fe River Rise to study changes of electrical conductivity during times of varying discharge over a six-week period. Our results show conductivity differences between matrix, conduit changes in resistivity occurring through time at the locations of mapped karst conduits, and changes in electrical conductivity during rainfall infiltration. These observations provide insight into time scales and matrix conduit conductivity differences, illustrating how surface water flow recharged to conduits may flow in a groundwater system in a karst aquifer.

  13. Formulation of coarse mesh finite difference to calculate mathematical adjoint flux; Formulacao de diferencas finitas de malha grossa para calculo do fluxo adjunto matematico

    Energy Technology Data Exchange (ETDEWEB)

    Pereira, Valmir; Martinez, Aquilino Senra; Silva, Fernando Carvalho da [Universidade Federal, Rio de Janeiro, RJ (Brazil). Coordenacao dos Programas de Pos-graduacao de Engenharia. Programa de Engenharia Nuclear

    2002-07-01

    The objective of this work is the obtention of the mathematical adjoint flux, having as its support the nodal expansion method (NEM) for coarse mesh problems. Since there are difficulties to evaluate this flux by using NEM. directly, a coarse mesh finite difference program was developed to obtain this adjoint flux. The coarse mesh finite difference formulation (DFMG) adopted uses results of the direct calculation (node average flux and node face averaged currents) obtained by NEM. These quantities (flux and currents) are used to obtain the correction factors which modify the classical finite differences formulation . Since the DFMG formulation is also capable of calculating the direct flux it was also tested to obtain this flux and it was verified that it was able to reproduce with good accuracy both the flux and the currents obtained via NEM. In this way, only matrix transposition is needed to calculate the mathematical adjoint flux. (author)

  14. Dolo y mala fe

    Directory of Open Access Journals (Sweden)

    Carlos Arturo Gómez Pavajeau

    2010-12-01

    Full Text Available Se ha dicho por grandes penalistas que las tesis en nuestra disciplina son una eterna vuelta al pasado. Empero, debe constatarse, que ello se ha dicho en un sentido de lo clásico: una vuelta a lo que resulta digno de admirar en cualquier época, toda vez que las experiencias históricas negativas nos previenen de repetir el pasado, razón fundamental por la cual debemos conocerlo. En este escrito pretendemos mostrar cómo algunas tendencias actuales nos indican que épocas nefastas ya superadas pueden repetirse, lo cual particularmente sucede tanto con la noción de dolo como con la de mala fe, concepto que de imponerse destruiría, a la manera como se derrumba un castillo de naipes, el sólido edificio dogmático construido por el Derecho penal liberal.

  15. Carbide-reinforced metal matrix composite by direct metal deposition

    Science.gov (United States)

    Novichenko, D.; Thivillon, L.; Bertrand, Ph.; Smurov, I.

    Direct metal deposition (DMD) is an automated 3D laser cladding technology with co-axial powder injection for industrial applications. The actual objective is to demonstrate the possibility to produce metal matrix composite objects in a single-step process. Powders of Fe-based alloy (16NCD13) and titanium carbide (TiC) are premixed before cladding. Volume content of the carbide-reinforced phase is varied. Relationships between the main laser cladding parameters and the geometry of the built-up objects (single track, 2D coating) are discussed. On the base of parametric study, a laser cladding process map for the deposition of individual tracks was established. Microstructure and composition of the laser-fabricated metal matrix composite objects are examined. Two different types of structures: (a) with the presence of undissolved and (b) precipitated titanium carbides are observed. Mechanism of formation of diverse precipitated titanium carbides is studied.

  16. Exchange bias variations of the seed and top NiFe layers in NiFe/FeMn/NiFe trilayer as a function of seed layer thickness

    International Nuclear Information System (INIS)

    Sankaranarayanan, V.K.; Yoon, S.M.; Kim, C.G.; Kim, C.O.

    2005-01-01

    Development of exchange bias at the seed and top NiFe layers in the NiFe (t nm)/FeMn(10 nm)/NiFe(5 nm) trilayer structure is investigated as a function of seed layer thickness, in the range of 2-20 nm. The seed NiFe layer shows maximum exchange bias at 4 nm seed layer thickness. The bias shows inverse thickness dependence with increasing thickness. The top NiFe layer on the other hand shows only half the bias of the seed layer which is retained even after the sharp fall in seed layer bias. The much smaller bias for the top NiFe layer is related to the difference in crystalline texture and spin orientations at the top FeMn/NiFe interface, in comparison to the bottom NiFe/FeMn interface which grows on a saturated NiFe layer with (1 1 1) orientation

  17. Evaluation of mechanical properties of nanocrystalline Ti-Mo-Fe-Sn alloys system; Avaliacao de propriedades mecanicas de ligas nanocristalinas do sistema Ti-Mo-Fe-Sn

    Energy Technology Data Exchange (ETDEWEB)

    Rocha, M.O.A; Vidilli, A.L.; Afonso, C.R.M., E-mail: andre.vidilli@gmail.com [Universidade Federal de Sao Carlos (UFSCar), SP (Brazil)

    2014-07-01

    The Ti-6Al-4V, widely used in biomaterials, exhibits elastic modulus (E) of approximately 110GPa, which is significantly higher than the one of human bone (E = 10 to 30 GPa). In this project, a process of rapid solidification was utilized in 4 different alloys of Ti-Mo-Fe-Sn, in order to produce ultrafine nanocrystalline eutectic alloys, which present high strength (1800-2500 MPa), low elastic modulus (50-110 GPa) and good corrosion resistance. The alloys Ti{sub 62}Fe{sub 30}Mo{sub 8}, Ti{sub 56}Fe{sub 30}Mo{sub 8}Sn{sub 6}, Ti{sub 63}Fe{sub 23}Mo{sub 8}Sn{sub 6}, Ti{sub 60}Fe{sub 23}Mo{sub 8}Sn{sub 9} show Vickers microhardness de, respectively, 745 (1mm), 733 (1mm), 609 (1mm) e 651(1mm) HV. The characterization was performed using scanning electron microscopy (SEM) and X- ray diffraction (XRD). The results indicated the presence of a β-Ti (bcc) matrix and the intermetallic TiFe and Ti{sub 3}Sn phases, and the microstructure were formed by dendrites, and eutectic constituents, which were present in the compositions Ti{sub 62}Fe{sub 30}Mo{sub 8}, Ti{sub 56}Fe{sub 30}Mo{sub 8}Sn{sub 6}, Ti{sub 63}Fe{sub 23}Mo{sub 8}Sn{sub 6}, Ti{sub 60}Fe{sub 23}Mo{sub 8}Sn{sub 9}. (author)

  18. Containment Code Validation Matrix

    International Nuclear Information System (INIS)

    Chin, Yu-Shan; Mathew, P.M.; Glowa, Glenn; Dickson, Ray; Liang, Zhe; Leitch, Brian; Barber, Duncan; Vasic, Aleks; Bentaib, Ahmed; Journeau, Christophe; Malet, Jeanne; Studer, Etienne; Meynet, Nicolas; Piluso, Pascal; Gelain, Thomas; Michielsen, Nathalie; Peillon, Samuel; Porcheron, Emmanuel; Albiol, Thierry; Clement, Bernard; Sonnenkalb, Martin; Klein-Hessling, Walter; Arndt, Siegfried; Weber, Gunter; Yanez, Jorge; Kotchourko, Alexei; Kuznetsov, Mike; Sangiorgi, Marco; Fontanet, Joan; Herranz, Luis; Garcia De La Rua, Carmen; Santiago, Aleza Enciso; Andreani, Michele; Paladino, Domenico; Dreier, Joerg; Lee, Richard; Amri, Abdallah

    2014-01-01

    The Committee on the Safety of Nuclear Installations (CSNI) formed the CCVM (Containment Code Validation Matrix) task group in 2002. The objective of this group was to define a basic set of available experiments for code validation, covering the range of containment (ex-vessel) phenomena expected in the course of light and heavy water reactor design basis accidents and beyond design basis accidents/severe accidents. It was to consider phenomena relevant to pressurised heavy water reactor (PHWR), pressurised water reactor (PWR) and boiling water reactor (BWR) designs of Western origin as well as of Eastern European VVER types. This work would complement the two existing CSNI validation matrices for thermal hydraulic code validation (NEA/CSNI/R(1993)14) and In-vessel core degradation (NEA/CSNI/R(2001)21). The report initially provides a brief overview of the main features of a PWR, BWR, CANDU and VVER reactors. It also provides an overview of the ex-vessel corium retention (core catcher). It then provides a general overview of the accident progression for light water and heavy water reactors. The main focus is to capture most of the phenomena and safety systems employed in these reactor types and to highlight the differences. This CCVM contains a description of 127 phenomena, broken down into 6 categories: - Containment Thermal-hydraulics Phenomena; - Hydrogen Behaviour (Combustion, Mitigation and Generation) Phenomena; - Aerosol and Fission Product Behaviour Phenomena; - Iodine Chemistry Phenomena; - Core Melt Distribution and Behaviour in Containment Phenomena; - Systems Phenomena. A synopsis is provided for each phenomenon, including a description, references for further information, significance for DBA and SA/BDBA and a list of experiments that may be used for code validation. The report identified 213 experiments, broken down into the same six categories (as done for the phenomena). An experiment synopsis is provided for each test. Along with a test description

  19. The matrix of inspiration

    Science.gov (United States)

    Oehlmann, Dietmar; Ohlmann, Odile M.; Danzebrink, Hans U.

    2005-04-01

    perform this exchange, as a matrix, understood as source, of new ideas.

  20. Preparation and Mechanical Properties of TiC-Fe Cermets and TiC-Fe/Fe Bilayer Composites

    Science.gov (United States)

    Zheng, Yong; Zhou, Yang; Li, Runfeng; Wang, Jiaqi; Chen, Lulu; Li, Shibo

    2017-10-01

    TiC-Fe cermets and TiC-Fe/Fe bilayer composites consisting of a pure Fe layer and a TiC-Fe cermets layer were fabricated by hot-pressing sintering. The pure Fe layer contributes to the toughness of composites, and the TiC-Fe cermets layer endows the composites with an improved tensile strength and hardness. The effect of TiC contents (30-60 vol.%) on the mechanical properties of TiC-Fe cermets and TiC-Fe/Fe bilayer composites was investigated. Among the TiC-Fe cermets, the 40 vol.% TiC-Fe cermets possessed the highest tensile strength of 581 MPa and Vickers hardness of 5.1 GPa. The maximum fracture toughness of 17.0 MPa m1/2 was achieved for the TiC-Fe cermets with 30 vol.% TiC. For the TiC-Fe/Fe bilayer composites, the 40 vol.% TiC-Fe/Fe bilayer composite owns the maximum tensile strength of 588 MPa, which is higher than that of 40 vol.% TiC-Fe cermets. In addition, the 33.5% increment of tensile strength of 30 vol.% TiC-Fe/Fe bilayer composite comparing with the 30 vol.% TiC-Fe cermets, which is attributed to the 30 vol.% TiC-Fe/Fe bilayer composite exhibited the largest interlaminar shear strength of 335 MPa. The bilayer composites are expected to be used as wear resistance components in some heavy wear conditions.

  1. Magnesium Aminoclay-Fe3O4 (MgAC-Fe3O4 Hybrid Composites for Harvesting of Mixed Microalgae

    Directory of Open Access Journals (Sweden)

    Bohwa Kim

    2018-05-01

    Full Text Available In this paper, we describe the synthesis of magnesium aminoclay-iron oxide (MgAC-Fe3O4 hybrid composites for microalgae-harvesting application. MgAC-templated Fe3O4 nanoparticles (NPs were synthesized in different ratios of MgAC and Fe3O4 NPs. The uniform distribution of Fe3O4 NPs in the MgAC matrix was confirmed by transmission electron microscopy (TEM. According to obtained X-ray diffraction (XRD patterns, increased MgAC loading leads to decreased intensity of the composites’ (311 plane of Fe3O4 NPs. For harvesting of Chlorella sp. KR-1, Scenedesmus obliquus and mixed microalgae (Chlorella sp. KR-1/ Scenedesmus obliquus, the optimal pH was 4.0. At higher pHs, the microalgae-harvesting efficiencies fell. Sample #1, which had the highest MgAC concentration, showed the most stability: the harvesting efficiencies for Chlorella sp. KR-1, Scenedesmus obliquus, and mixed microalgae were reduced only to ~50% at pH = 10.0. The electrostatic interaction between MgAC and the Fe3O4 NPs in the hybrid samples by microalgae, as confirmed by zeta potential measurements, were attributed to the harvesting mechanisms. Moreover, the zeta potentials of the MgAC-Fe3O4 hybrid composites were reduced as pH was increased, thus diminishing the microalgae-harvesting efficiencies.

  2. Effect of surface modification of BiFeO3 on the dielectric, ferroelectric, magneto-dielectric properties of polyvinylacetate/BiFeO3 nanocomposites

    Directory of Open Access Journals (Sweden)

    O. P. Bajpai

    2014-09-01

    Full Text Available Bismuth ferrite (BiFeO3 is considered as one of the most promising materials in the field of multiferroics. In this work, a simple green route as well as synthetic routes has been used for the preparation of pure phase BiFeO3. An extract of Calotropis Gigantea flower was used as a reaction medium in green route. In each case so formed BiFeO3 particles are of comparable quality. These particles are in the range of 50–60 nm and exhibit mixed morphology (viz., spherical and cubic as confirmed by TEM analysis. These pure phase BiFeO3 nanoparticles were first time surface modified effectively by mean of two silylating agent’s viz., tetraethyl orthosilicate (TEOS and (3-Aminopropyltriethoxysilane (APTES. Modified and unmodified BiFeO3 nanoparticles were efficiently introduced into polyvinylacetate (PVAc matrix. It has been shown that nanocomposite prepared by modified BiFeO3 comprise superior dispersion characteristics, improved ferroelectric properties and favorable magneto-dielectric properties along with excellent wettability in compare to nanocomposite prepared by unmodified BiFeO3. These preliminary results demonstrate possible applications of this type of nanocomposites particularly in the field of multiferroic coating and adhesives.

  3. Counting efficiency for radionuclides decaying by beta and gamma-ray emission; Calculo de la eficiencia de recuento de nucleidos que experimentan desintegracion beta y desexcitacion gamma simple

    Energy Technology Data Exchange (ETDEWEB)

    Grau, A.; Garcia-Torano, E.

    1988-07-01

    In this paper, counting efficiency vs figure of merit for beta and gamma-ray emitters has been computed. It is assumed that the decay scheme has only a gamma level and the beta-ray emission may be coincident with the gamma-rays or the internal-conversion electrons. The radionuclides tabulated are: 20 {sub 0}, 20{sub p}, 28{sub A}l, 35{sub p}, 41{sub A}r, 42{sub K}, 47{sub S}e, 62{sub F}e, 66{sub C}u, 81{sub G}e, 86{sub B}b, 108{sub R}u, 112{sub p}d, 121{sub S}n(Ni), 122{sub I}n, 129{sub I}, 141{sub C}e 171{sub T}m, 194{sub O}s, 2O3{sub H}g, 205{sub H}g, 210{sub p}b, 225{sub R}a, 142{sub p}r, 151{sub S}m, 244{sub A}m(m). It has been assumed that the liquid is a toluene based scintillator solution in standard glass vials containing 10 cm''3. (Author) 8 refs.

  4. Resilient carbon encapsulation of iron pyrite (FeS2) cathodes in lithium ion batteries

    Science.gov (United States)

    Yoder, Tara S.; Tussing, Matthew; Cloud, Jacqueline E.; Yang, Yongan

    2015-01-01

    Converting iron pyrite (FeS2) from a non-cyclable to a cyclable cathode material for lithium ion batteries has been an ongoing challenge in recent years. Herein we report a promising mitigation strategy: wet-chemistry based conformal encapsulation of synthetic FeS2 nanocrystals in a resilient carbon (RC) matrix (FeS2@RC). The FeS2@RC composite was fabricated by dispersing autoclave-synthesized FeS2 nanocrystals in an aqueous glucose solution, polymerizing the glucose in a hydrothermal reactor, and finally heating the polymer/FeS2 composite in a tube furnace to partially carbonize the polymer. The FeS2@RC electrodes showed superior cyclability compared with the FeS2 electrodes, that is, 25% versus 1% of retention at the 20th cycle. Based on electrochemical analysis, XRD study, and SEM characterization, the performance enhancement was attributed to RC's ability to accommodate volume fluctuation, enhance charge transfer, alleviate detrimental side reactions, and suppress loss of the active material. Furthermore, the remaining issues associated with the current system were identified and future research directions were proposed.

  5. A 197Au and 57Fe Moessbauer study of the roasting of refractory gold ores

    International Nuclear Information System (INIS)

    Wagner, F.E.; Marion, P.

    1989-01-01

    The transformation of chemically bound gold into metallic gold during industrial scale roasting of an arsenical gold ore concentrate from the Fairview Mine, Eastern Transvaal, has been studied quantitatively by 197 Au Moessbauer spectroscopy. The iron compounds in the concentrate, mainly FeAsS and FeS 2 , and their transformations during roasting have been studied by 57 Fe Moessbauer spectroscopy. The bound gold is found to convert into the metal in parallel to the decomposition of FeAsS and the increase in cyanide leachability. This shows that the refractory character of the ore is caused by the chemical bonding of the gold rather than by the physical inclusion of small, discrete metallic particles in the matrix of FeAsS or FeS 2 . The ratio of the f-factors of gold bound in the FeAsS component of a refractory ore and of metallic gold was determined to be f(Au:FeAsS)/f(Au)=1.48 ± 0.09. (orig.)

  6. Microstructural Evolution of Al-1Fe (Weight Percent) Alloy During Accumulative Continuous Extrusion Forming

    Science.gov (United States)

    Wang, Xiang; Guan, Ren-Guo; Tie, Di; Shang, Ying-Qiu; Jin, Hong-Mei; Li, Hong-Chao

    2018-04-01

    As a new microstructure refining method, accumulative continuous extrusion forming (ACEF) cannot only refine metal matrix but also refine the phases that exist in it. In order to detect the refinements of grain and second phase during the process, Al-1Fe (wt pct) alloy was processed by ACEF, and the microstructural evolution was analyzed by electron backscatter diffraction (EBSD) and transmission electron microscopy (TEM). Results revealed that the average grain size of Al-1Fe (wt pct) alloy decreased from 13 to 1.2 μm, and blocky Al3Fe phase with an average length of 300 nm was granulated to Al3Fe particle with an average diameter of 200 nm, after one pass of ACEF. Refinement of grain was attributed to continuous dynamic recrystallization (CDRX), and the granulation of Al3Fe phase included the spheroidization resulting from deformation heat and the fragmentation caused by the coupling effects of strain and thermal effect. The spheroidization worked in almost the entire deformation process, while the fragmentation required strain accumulation. However, fragmentation contributed more than spheroidization. Al3Fe particle stimulated the formation of substructure and retarded the migration of recrystallized grain boundary, but the effect of Al3Fe phase on refinement of grain could only be determined by the contrastive investigation of Al-1Fe (wt pct) alloy and pure Al.

  7. Measuring methods of matrix diffusion

    International Nuclear Information System (INIS)

    Muurinen, A.; Valkiainen, M.

    1988-03-01

    In Finland the spent nuclear fuel is planned to be disposed of at large depths in crystalline bedrock. The radionuclides which are dissolved in the groundwater may be able to diffuse into the micropores of the porous rock matrix and thus be withdrawn from the flowing water in the fractures. This phenomenon is called matrix diffusion. A review over matrix diffusion is presented in the study. The main interest is directed to the diffusion of non-sorbing species. The review covers diffusion experiments and measurements of porosity, pore size, specific surface area and water permeability

  8. Maximal quantum Fisher information matrix

    International Nuclear Information System (INIS)

    Chen, Yu; Yuan, Haidong

    2017-01-01

    We study the existence of the maximal quantum Fisher information matrix in the multi-parameter quantum estimation, which bounds the ultimate precision limit. We show that when the maximal quantum Fisher information matrix exists, it can be directly obtained from the underlying dynamics. Examples are then provided to demonstrate the usefulness of the maximal quantum Fisher information matrix by deriving various trade-off relations in multi-parameter quantum estimation and obtaining the bounds for the scalings of the precision limit. (paper)

  9. Plasma preparation and low-temperature sintering of spherical TiC-Fe composite powder

    Institute of Scientific and Technical Information of China (English)

    Jian-jun Wang; Jun-jie Hao; Zhi-meng Guo; Song Wang

    2015-01-01

    A spherical Fe matrix composite powder containing a high volume fraction (82vol%) of fine TiC reinforcement was produced us-ing a novel process combining in situ synthesis and plasma techniques. The composite powder exhibited good sphericity and a dense struc-ture, and the fine sub-micron TiC particles were homogeneously distributed in theα-Fe matrix. A TiC–Fe cermet was prepared from the as-prepared spherical composite powder using powder metallurgy at a low sintering temperature;the product exhibited a hardness of HRA 88.5 and a flexural strength of 1360 MPa. The grain size of the fine-grained TiC and special surface structure of the spherical powder played the key roles in the fabrication process.

  10. Validation of Hiriart equation to compute steam production by the lip pressure method; Validacion de la ecuacion de Hiriart para calculo de gasto de vapor por el metodo de presion de labio

    Energy Technology Data Exchange (ETDEWEB)

    Flores Armenta, Magaly [Gerencia de Proyectos Geotermoelectricos de la Comision Federal de Electricidad, Morelia (Mexico)

    1996-09-01

    Mainly in new geothermal wells, it is necessary to evaluate the production in a very fast, simple and not expensive way, to know the convenience to install surface equipment, such as silencers and separators, to drive the steam to the commercial gathering system. In practice, one of the most known methods is the lip pressure one, which requires a simple set of installations. The objective of this paper is to validate the steam flow rate calculated by the lip pressure method, with respect to the ASME method. The ASME method is known for its accuracy, and is done by measuring the steam and liquid after a high pressure separator, by an orifice plate of known diameter and a triangular weir. Results of the validation show up the feasibility of application of the lip pressure method by using a simple adjustment equation. Percentage of mistake results less than 1%, without any notable influence of the production enthalpy. That equation to be applied in a general case, is as follows: Q{nu} =(20642)(F*P*D{sup 2}/{radical}h-2000). For the particular case of the Los Azufres geothermal field, the equation is: Q{nu}= 810*P*D{sup 2} [Espanol] En los pozos geotermicos, principalmente en los nuevos, es necesario evaluar su produccion de manera rapida, sencilla y economica, para determinar la conveniencia de instalar equipo superficial, como separadores, silenciadores, etc., que permita la integracion del vapor al sistema comercial de generacion electrica. Para fines practicos uno de los metodos mas conocidos es el de presion de labio, que solo requiere un arreglo sencillo de instalaciones superficiales. En este documento se validan y ajustan los calculos de produccion de vapor por ese metodo de presion de labio, con respecto a las mediciones exactas efectuadas con el metodo ASME. Este ultimo es reconocido internacionalmente por su precision, y se lleva a cabo separando la mezcla obtenida en superficie en un recipiente a presion para medir el vapor a traves de una placa de orificio

  11. Calculation of the temperature distribution and thermal stresses in a gas turbine nozzle cooled by air film; Calculo de la distribucion de temperaturas y esfuerzos termicos en una tobera de turbina de gas enfriada por pelicula de aire

    Energy Technology Data Exchange (ETDEWEB)

    Hernandez R, Alejandro; Garcia I, Rafael; Mazur C, Zdislaw [Instituto de Investigaciones Electricas, Cuernavaca, Morelos (Mexico)

    2004-07-01

    temperaturas. Con las temperaturas correctamente importadas, se realizaron las simulaciones para el calculo de los esfuerzos termicos en la tobera.

  12. Hanle-Zeeman Scattering Matrix for Magnetic Dipole Transitions

    Energy Technology Data Exchange (ETDEWEB)

    Megha, A.; Sampoorna, M.; Nagendra, K. N.; Sankarasubramanian, K., E-mail: megha@iiap.res.in, E-mail: sampoorna@iiap.res.in, E-mail: knn@iiap.res.in, E-mail: sankar@iiap.res.in [Indian Institute of Astrophysics, Koramangala, Bengaluru 560 034 (India)

    2017-06-01

    The polarization of the light that is scattered by the coronal ions is influenced by the anisotropic illumination from the photosphere and the magnetic field structuring in the solar corona. The properties of the coronal magnetic fields can be well studied by understanding the polarization properties of coronal forbidden emission lines that arise from magnetic dipole ( M 1) transitions in the highly ionized atoms that are present in the corona. We present the classical scattering theory of the forbidden lines for a more general case of arbitrary-strength magnetic fields. We derive the scattering matrix for M 1 transitions using the classical magnetic dipole model of Casini and Lin and applying the scattering matrix approach of Stenflo. We consider a two-level atom model and neglect collisional effects. The scattering matrix so derived is used to study the Stokes profiles formed in coronal conditions in those regions where the radiative excitations dominate collisional excitations. To this end, we take into account the integration over a cone of an unpolarized radiation from the solar disk incident on the scattering atoms. Furthermore, we also integrate along the line of sight to calculate the emerging polarized line profiles. We consider radial and dipole magnetic field configurations and spherically symmetric density distributions. For our studies we adopt the atomic parameters corresponding to the [Fe xiii] 10747 Å coronal forbidden line. We also discuss the nature of the scattering matrix for M 1 transitions and compare it with that for the electric dipole ( E 1) transitions.

  13. Electrodeposition and Properties of Copper Layer on NdFeB Device

    Directory of Open Access Journals (Sweden)

    LI Yue

    2017-06-01

    Full Text Available To decrease the impact of the regular Ni/Cu/Ni coating on the magnetic performance of sintered NdFeB device, alkaline system of HEDP complexing agent was applied to directly electro-deposit copper layer on NdFeB matrix, then nickel layer was electrodeposited on the copper layer and Cu/Ni coating was finally obtained to replace the regular Ni/Cu/Ni coating. The influence of concentration of HEDP complexing agent on deposition course was tested by electrochemical testing; morphology of copper layer was characterized by SEM, XRD and TEM; the binding force of copper layer and the thermal reduction of magnetic of NdFeB caused by electrodeposited coating were respectively explored through the thermal cycle test and thermal demagnetization test. The results show that the concentration of HEDP has great impact on the deposition overpotential of copper. In the initial electrodepositing stage, copper particles precipitate at the grain boundaries of NdFeB magnets with a preferred (111 orientation. The copper layer is compact and has enough binding force with the NdFeB matrix to meet the requirements in SJ 1282-1977. Furthermore, the thermal demagnetization loss rate of the sintered NdFeB with the protection of Cu/Ni coating is significantly less than that with the protection of Ni/Cu/Ni coating.

  14. A review of calculation methods for fast and intermediate reactors; Expose des methodes pour le calcul de reacteurs a neutrons rapides et intermediaires; Obzor metodov rascheta reaktorov na promezhutochnykh i bystrykh nejtronakh; Estudio panoramico de los metodos de calculo de los reactores rapidos e intermedios

    Energy Technology Data Exchange (ETDEWEB)

    Marchuk, G I [Akademiya Nauk, Moskva, Union of Soviet Socialist Republics (Russian Federation)

    1962-03-15

    This paper discusses the development of methods for calculating intermediate and fast reactors. It deals with various approaches to the problems of physical calculation. The calculation of resonance effects is discussed. Consideration is given to multi-group systems of fundamental and conjugate equations, various applications of perturbation theory to the problems of physical reactor calculation, and numerical methods of solving fundamental and conjugate reactor equations, which approximate the method of spherical harmonics. The paper describes an application of the response method to the solution of critical-mass problems, and methods of calculating reactors with hydrogeneous moderators. The fundamental features of an effective one-group reactor model are described. (author) [French] L'auteur examine la mise au point de methodes pour le calcul de reacteurs a neutrons rapides et intermediaires . Il decrit diverses manieres d'aborder les problemes des calculs sur la physique des reacteurs, notamment le calcul des effets de resonance. Il s'attache particulierement aux points suivants: systemes d'equations fondamentales et conjuguees a plusieurs groupes; diverses applications de la theorie des perturbations aux problemes de calculs sur la physique des reacteurs; methodes numeriques pour resoudre les equations fondamentales et conjuguees, voisines de la methode des harmoniques spheriques. L'auteur decrit ensuite une maniere d'appliquer la methode de la reponse aux problemes de la masse critique ainsi que des methodes pour le calcul de reacteurs ralentis a l'hydrogene. Il decrit les caracteristique s fondamentale s d'un modele de reacteur a un groupe effectif. (author) [Spanish] El autor analiza el desarrollo de los metodos de calculo de los reactores nucleares que trabajan con neutrones rapidos y con neutrones intermedios. Examina diversos planteos de los problemas del calculo fisico. Indica la forma de tomar en cuenta los efectos de resonancia y menciona los sistemas

  15. Matrix product operators, matrix product states, and ab initio density matrix renormalization group algorithms

    Science.gov (United States)

    Chan, Garnet Kin-Lic; Keselman, Anna; Nakatani, Naoki; Li, Zhendong; White, Steven R.

    2016-07-01

    Current descriptions of the ab initio density matrix renormalization group (DMRG) algorithm use two superficially different languages: an older language of the renormalization group and renormalized operators, and a more recent language of matrix product states and matrix product operators. The same algorithm can appear dramatically different when written in the two different vocabularies. In this work, we carefully describe the translation between the two languages in several contexts. First, we describe how to efficiently implement the ab initio DMRG sweep using a matrix product operator based code, and the equivalence to the original renormalized operator implementation. Next we describe how to implement the general matrix product operator/matrix product state algebra within a pure renormalized operator-based DMRG code. Finally, we discuss two improvements of the ab initio DMRG sweep algorithm motivated by matrix product operator language: Hamiltonian compression, and a sum over operators representation that allows for perfect computational parallelism. The connections and correspondences described here serve to link the future developments with the past and are important in the efficient implementation of continuing advances in ab initio DMRG and related algorithms.

  16. GoM Diet Matrix

    Data.gov (United States)

    National Oceanic and Atmospheric Administration, Department of Commerce — This data set was taken from CRD 08-18 at the NEFSC. Specifically, the Gulf of Maine diet matrix was developed for the EMAX exercise described in that center...

  17. On matrix fractional differential equations

    Directory of Open Access Journals (Sweden)

    Adem Kılıçman

    2017-01-01

    Full Text Available The aim of this article is to study the matrix fractional differential equations and to find the exact solution for system of matrix fractional differential equations in terms of Riemann–Liouville using Laplace transform method and convolution product to the Riemann–Liouville fractional of matrices. Also, we show the theorem of non-homogeneous matrix fractional partial differential equation with some illustrative examples to demonstrate the effectiveness of the new methodology. The main objective of this article is to discuss the Laplace transform method based on operational matrices of fractional derivatives for solving several kinds of linear fractional differential equations. Moreover, we present the operational matrices of fractional derivatives with Laplace transform in many applications of various engineering systems as control system. We present the analytical technique for solving fractional-order, multi-term fractional differential equation. In other words, we propose an efficient algorithm for solving fractional matrix equation.

  18. Electromagnetic matrix elements in baryons

    International Nuclear Information System (INIS)

    Lipkin, H.J.; Moinester, M.A.

    1992-01-01

    Some simple symmetry relations between matrix elements of electromagnetic operators are investigated. The implications are discussed for experiments to study hyperon radiative transitions and polarizabilities and form factors. (orig.)

  19. The R-matrix theory

    International Nuclear Information System (INIS)

    Descouvemont, P; Baye, D

    2010-01-01

    The different facets of the R-matrix method are presented pedagogically in a general framework. Two variants have been developed over the years: (i) The 'calculable' R-matrix method is a calculational tool to derive scattering properties from the Schroedinger equation in a large variety of physical problems. It was developed rather independently in atomic and nuclear physics with too little mutual influence. (ii) The 'phenomenological' R-matrix method is a technique to parametrize various types of cross sections. It was mainly (or uniquely) used in nuclear physics. Both directions are explained by starting from the simple problem of scattering by a potential. They are illustrated by simple examples in nuclear and atomic physics. In addition to elastic scattering, the R-matrix formalism is applied to inelastic and radiative-capture reactions. We also present more recent and more ambitious applications of the theory in nuclear physics.

  20. Random matrix improved subspace clustering

    KAUST Repository

    Couillet, Romain; Kammoun, Abla

    2017-01-01

    This article introduces a spectral method for statistical subspace clustering. The method is built upon standard kernel spectral clustering techniques, however carefully tuned by theoretical understanding arising from random matrix findings. We show

  1. Environmental degradation of NdFeB magnets

    Energy Technology Data Exchange (ETDEWEB)

    Yan Gaolin [Wuhan University, School of Physics and Technology, Wuhan 430072 (China)], E-mail: gaolinyan@whu.edu.cn; McGuiness, P.J. [Jozef Stefan Institute (Slovenia); Farr, J.P.G.; Harris, I.R. [School of Metallurgy and Materials, University of Birmingham, Elms Road, Edgbaston, Birmingham B15 2TT (United Kingdom)

    2009-06-10

    A mechanism for pitting of NdFeB magnet because of differential-aeration beneath a water droplet is proposed and observations of the localised corrosions are presented. NdFeB magnets exhibit general corrosion along the grain boundaries when etched in Viella's reagent. However, localised corrosion of these magnets results in a crater-like feature when corrosion is produced in an environmental chamber, e.g. when Nd{sub 16}Fe{sub 76}B{sub 8} magnets are corroded in the environmental chamber at 85 deg. C, relative humidity (RH): 80%. This is attributed to the condensation of water droplets on the surface of samples and the concentration gradient of oxygen dissolved in the droplets then influencing the corrosion process. It is thought that during the process of pitting, the high concentration of H{sup +} in the center of the pit accelerates the pit development; meanwhile, the cathodic Nd{sub 2}Fe{sub 14}B matrix phase absorbs the nascent hydrogen atoms. It is believed that pits start at the Nd-rich phase and then propagate along the grain boundaries.

  2. Modeling on Fe-Cr microstructure: evolution with Cr content

    International Nuclear Information System (INIS)

    Diaz Arroyo, D.; Perlado, J.M.; Hernandez-Mayoral, M.; Caturla, M.J.; Victoria, M.

    2007-01-01

    Full text of publication follows: The minimum energy configuration of interstitials in the Fe-Cr system, which is the base for the low activation steels being developed in the European fusion reactor materials community, is determined by magnetism. Magnetism plays also a role in the atomic configurations found with increasing Cr content. Results will be presented from a program in which the microstructure evolution produced after heavy ion irradiation in the range from room temperature to 80 K is studied as a function of the Cr content in alloys produced under well controlled conditions, i.e. from high purity elements and with adequate heat treatment. It is expected that these measurements will serve as matrix for model validation. The first step in such modeling sequence is being performed by modeling the evolution of displacement cascades in Fe using the Dudarev -Derlet and Mendeleev potentials for Fe and the Caro potential for Fe-Cr. It is of particular interest to study the evolution of high-energy cascades, where an attempt will be made to clarify the role of the evolution of sub-cascades. Kinetic Monte Carlo (kMC) techniques will be used then to simulate the defect evolution. A new parallel kMC code is being implemented for this purpose. (authors)

  3. Matrix Effects in XRF Measurements

    International Nuclear Information System (INIS)

    Kandil, A.T.; Gabr, N.A.; El-Aryan, S.M.

    2015-01-01

    This research treats the matrix effect on XRF measurements. The problem is treated by preparing general oxide program, which contains many samples that represent all materials in cement factories, then by using T rail Lachance m ethod to correct errors of matrix effect. This work compares the effect of using lithium tetraborate or sodium tetraborate as a fluxing agent in terms of accuracy and economic cost

  4. Matrix analysis of electrical machinery

    CERN Document Server

    Hancock, N N

    2013-01-01

    Matrix Analysis of Electrical Machinery, Second Edition is a 14-chapter edition that covers the systematic analysis of electrical machinery performance. This edition discusses the principles of various mathematical operations and their application to electrical machinery performance calculations. The introductory chapters deal with the matrix representation of algebraic equations and their application to static electrical networks. The following chapters describe the fundamentals of different transformers and rotating machines and present torque analysis in terms of the currents based on the p

  5. Staggered chiral random matrix theory

    International Nuclear Information System (INIS)

    Osborn, James C.

    2011-01-01

    We present a random matrix theory for the staggered lattice QCD Dirac operator. The staggered random matrix theory is equivalent to the zero-momentum limit of the staggered chiral Lagrangian and includes all taste breaking terms at their leading order. This is an extension of previous work which only included some of the taste breaking terms. We will also present some results for the taste breaking contributions to the partition function and the Dirac eigenvalues.

  6. Microwave-Assisted Synthesis of CuFe2O4 Nanoparticles and Starch-Based Magnetic Nanocomposites

    Directory of Open Access Journals (Sweden)

    Gh. Nabiyouni

    2013-06-01

    Full Text Available Magnetic CuFe2O4 nanoparticles were synthesized by a facile microwave-assisted reaction between Cu(NO32 and Fe(NO33. The magnetic nanoparticles were added to starch to make magnetic polymeric nanocomposite. The nanoparticles and nanocomposites were characterized using X-ray diffraction and scanning electron microscopy. The magnetic properties of the samples were investigated using an alternating gradient force magnetometer (AGFM. The copper ferrite nanoparticles exhibited ferromagnetic behavior at room temperature, with a saturation magnetization of 29emu/g and a coercivity of 136 Oe. The distribution of the CuFe2O4 nanoparticles into the polymeric matrixes decreases the coercivity (136 Oe to 66 Oe. The maximum coercivity of 82 Oe was found for 15% of CuFe2O4 distributed to the starch matrix.

  7. Neutron transmission through crystalline Fe

    International Nuclear Information System (INIS)

    Adib, M.; Habib, N.; Kilany, M.; El-Mesiry, M.S.

    2004-01-01

    The neutron transmission through crystalline Fe has been calculated for neutron energies in the range 10 4 < E<10 eV using an additive formula. The formula permits calculation of the nuclear capture, thermal diffuse and Bragg scattering cross-section as a function of temperature and crystalline form. The obtained agreement between the calculated values and available experimental ones justifies the applicability of the used formula. A feasibility study on using poly-crystalline Fe as a cold neutron filter and a large Fe single crystal as a thermal one is given

  8. Evaluation of 54Fe(n,2n)53m+gFe reaction cross sections for high energy dosimetry applications

    International Nuclear Information System (INIS)

    Zolotarev, K.I.; Pashchenko, A.B.

    2001-01-01

    The new evaluation of excitation function for the high energy threshold 54 Fe(n,2n) 53m+g Fe dosimetry reaction in the energy range from the threshold to 20 MeV is briefly described. The cross section uncertainties and the covariance matrix were estimated simultaneously from the analysis. The adopted curve is compared to the available processed experimental data and the existing FEI-93, ENDF/B-VI and JENDL-3.2 evaluations. The ENDF-6 formatted data file is available from the Web site of the Russian Nuclear Data Center (RNDC) online (http://www.rndc.ippe.obninsk.ru). (author)

  9. Effectiveness of FeEDDHA, FeEDDHMA, and FeHBED in Preventing Iron-Deficiency Chlorosis in Soybean

    NARCIS (Netherlands)

    Bin, Levi M.; Weng, Liping; Bugter, Marcel H.J.

    2016-01-01

    The performance of FeHBED in preventing Fe deficiency chlorosis in soybean (Glycine max (L.) Merr.) in comparison to FeEDDHA and FeEDDHMA was studied, as well as the importance of the ortho-ortho and ortho-para/rest isomers in defining the performance. To this end, chlorophyll production (SPAD),

  10. Physical and Mechanical Properties of LoVAR: A New Lightweight Particle-Reinforced Fe-36Ni Alloy

    Science.gov (United States)

    Stephenson, Timothy; Tricker, David; Tarrant, Andrew; Michel, Robert; Clune, Jason

    2015-01-01

    Fe-36Ni is an alloy of choice for low thermal expansion coefficient (CTE) for optical, instrument and electrical applications in particular where dimensional stability is critical. This paper outlines the development of a particle-reinforced Fe-36Ni alloy that offers reduced density and lower CTE compared to the matrix alloy. A summary of processing capability will be given relating the composition and microstructure to mechanical and physical properties.

  11. The total neutron cross section of 58Fe in the energy range 7 to 325 keV

    International Nuclear Information System (INIS)

    Hong, L.D.; Beer, H.; Kaeppeler, F.

    1976-08-01

    The total neutron cross section of 58 Fe has been determined in the energy range 7-325 keV by a transmission measurement using enriched 58 Fe samples. The data have been shape fitted by means of an R-matrix multi-level formalism to extract resonance parameters for s- and l > 0 wave resonances. The s-wave strength function was determined to S 0 = (4.3 +- 1.9) c 10 -4 . (orig.) [de

  12. CO{sub 2} capture in Mg oxides doped with Fe and Ni; Captura de CO{sub 2} en oxidos de Mg dopados con Fe y Ni

    Energy Technology Data Exchange (ETDEWEB)

    Sanchez S, I. F.

    2016-07-01

    In this work the CO{sub 2} capture-desorption characteristics in Mg oxides doped with Fe and Ni obtained by the direct oxidation of Mg-Ni and Mg-Fe mixtures are presented. Mixtures of Mg-Ni and Mg-Fe in a different composition were obtained by mechanical milling in a Spex-type mill in a controlled atmosphere of ultra high purity argon at a weight / weight ratio of 4:1 powder using methanol as a lubricating agent, for 20 h. The powders obtained by mechanical milling showed as main phase, the Mg with nanocrystalline structure. Subsequently, the mixtures of Mg-Ni and Mg-Fe were oxidized within a muffle for 10 min at 600 degrees Celsius. By means of X-ray diffraction analysis, the Mg O with nano metric grain size was identified as the main phase, which was determined by the Scherrer equation. In the Mg O doped with Ni, was identified that as the Ni amount 1 to 5% by weight dispersed in the Mg O matrix was increased, the main peak intensity of the Ni phase increased, whereas in the Mg O doped with Fe was observed by XRD, that the Fe{sub 2}O{sub 3} phase was present and by increasing the amount of Fe (1 to 5% by weight) dispersed in the crystalline phase of Mg O, the intensity of this impurity also increased. Sem-EDS analysis showed that the Ni and Fe particles are dispersed homogeneously in the Mg O matrix, and the particles are porous, forming agglomerates. Through energy dispersive spectroscopy analysis, the elemental chemical composition obtained is very close to the theoretical composition. The capture of CO{sub 2} in the Mg O-1% Ni was carried out in a Parr reactor at different conditions of pressure, temperature and reaction time. Was determined that under the pressure of 0.2 MPa at 26 degrees Celsius for 1 h of reaction, the highest CO{sub 2} capture of 7.04% by weight was obtained, while in Mg O-1% Fe the CO{sub 2} capture was 6.32% by weight. The other magnesium oxides doped in 2.5 and 5% by weight Ni and Fe showed lower CO{sub 2} capture. The different stages

  13. EISPACK, Subroutines for Eigenvalues, Eigenvectors, Matrix Operations

    International Nuclear Information System (INIS)

    Garbow, Burton S.; Cline, A.K.; Meyering, J.

    1993-01-01

    1 - Description of problem or function: EISPACK3 is a collection of 75 FORTRAN subroutines, both single- and double-precision, that compute the eigenvalues and eigenvectors of nine classes of matrices. The package can determine the Eigen-system of complex general, complex Hermitian, real general, real symmetric, real symmetric band, real symmetric tridiagonal, special real tridiagonal, generalized real, and generalized real symmetric matrices. In addition, there are two routines which use the singular value decomposition to solve certain least squares problem. The individual subroutines are - Identification/Description: BAKVEC: Back transform vectors of matrix formed by FIGI; BALANC: Balance a real general matrix; BALBAK: Back transform vectors of matrix formed by BALANC; BANDR: Reduce sym. band matrix to sym. tridiag. matrix; BANDV: Find some vectors of sym. band matrix; BISECT: Find some values of sym. tridiag. matrix; BQR: Find some values of sym. band matrix; CBABK2: Back transform vectors of matrix formed by CBAL; CBAL: Balance a complex general matrix; CDIV: Perform division of two complex quantities; CG: Driver subroutine for a complex general matrix; CH: Driver subroutine for a complex Hermitian matrix; CINVIT: Find some vectors of complex Hess. matrix; COMBAK: Back transform vectors of matrix formed by COMHES; COMHES: Reduce complex matrix to complex Hess. (elementary); COMLR: Find all values of complex Hess. matrix (LR); COMLR2: Find all values/vectors of cmplx Hess. matrix (LR); CCMQR: Find all values of complex Hessenberg matrix (QR); COMQR2: Find all values/vectors of cmplx Hess. matrix (QR); CORTB: Back transform vectors of matrix formed by CORTH; CORTH: Reduce complex matrix to complex Hess. (unitary); CSROOT: Find square root of complex quantity; ELMBAK: Back transform vectors of matrix formed by ELMHES; ELMHES: Reduce real matrix to real Hess. (elementary); ELTRAN: Accumulate transformations from ELMHES (for HQR2); EPSLON: Estimate unit roundoff

  14. Effect of γ-(Fe,Ni) crystal-size stabilization in Fe-Ni-B amorphous ribbon

    Science.gov (United States)

    Gorshenkov, M. V.; Glezer, A. M.; Korchuganova, O. A.; Aleev, A. A.; Shurygina, N. A.

    2017-02-01

    The effect of stabilizing crystal size in a melt-quenched amorphous Fe50Ni33B17 ribbon is described upon crystallization in a temperature range of 360-400°C. The shape, size, volume fraction, and volume density have been investigated by transmission electron microscopy and X-ray diffraction methods. The formation of an amorphous layer of the Fe50Ni29B21 compound was found by means of atomic-probe tomography at the boundary of the crystallite-amorphous phase. The stabilization of crystal sizes during annealing is due to the formation of a barrier amorphous layer that has a crystallization temperature that exceeds the crystallization temperature of the matrix amorphous alloy.

  15. Photoionization of FE3+ Ions

    International Nuclear Information System (INIS)

    Ovchinnikov, O.; Schlachter, F.

    2003-01-01

    Photoionization of Fe3+ ions was studied for the first time using synchrotron radiation from the Advanced Light Source (ALS) and the merged-beams technique. Fe3+ ions were successfully produced using ferrocene in an electron cyclotron resonance ion source (ECR). The measured yield of Fe4+ photoions as a function of photon energy revealed the presence of resonances that correspond to excitation of autoionizing states. These resonances are superimposed upon the photoion yield produced by direct photoionization, which is a smooth, slowly decreasing function of energy. The spectra for the photoionization of Fe3+ will be analyzed and compared with theory. The data collected will also serve to test models for the propagation of light through ionized matter.

  16. Coercivity enhancement in Nd-Fe-B sintered permanent magnet by Dy nanoparticles doping

    Energy Technology Data Exchange (ETDEWEB)

    Liu, W.Q., E-mail: liuweiqiang77@hotmail.co [College of Materials Science and Engineering, Beijing University of Technology, Beijing 100124 (China); Sun, H. [College of Materials Science and Engineering, Beijing University of Technology, Beijing 100124 (China); Yi, X.F. [Anhui Earth-panda Advance Magnetic Material Co., Ltd., Anhui 231500 (China); Liu, X.C.; Zhang, D.T. [College of Materials Science and Engineering, Beijing University of Technology, Beijing 100124 (China); Yue, M., E-mail: yueming@bjut.edu.c [College of Materials Science and Engineering, Beijing University of Technology, Beijing 100124 (China); Zhang, J.X. [College of Materials Science and Engineering, Beijing University of Technology, Beijing 100124 (China)

    2010-07-02

    Nd-Fe-B permanent magnets with a small amount of Dysprosium (Dy) nanoparticles doping were prepared by conventional sintered method, and the microstructure and magnetic properties of the magnets were studied. Investigation shows that the coercivity rises gradually, while the remanence decreases simultaneously with increased Dy doping amount. As a result, the magnet with 1.5 wt.% Dy exhibits optimal magnetic properties. Further investigation presumed that Dy is enriched as (Nd, Dy){sub 2}Fe{sub 14}B phase in the surface region of the Nd{sub 2}Fe{sub 14}B matrix grains indicated by the enhancement of the magneto-crystalline anisotropy field of the Nd{sub 2}Fe{sub 14}B phase. As a result, the magnet doped with a small amount of Dy nanoparticles possesses remarkably enhanced coercivity without sacrificing its magnetization noticeably.

  17. Large Enhancement in High-Energy Photoionization of Fe XVII and Missing Continuum Plasma Opacity

    Science.gov (United States)

    Nahar, Sultana N.; Pradhan, Anil K.

    2016-06-01

    Aimed at solving the outstanding problem of solar opacity, and radiation transport plasma models in general, we report substantial photoabsorption in the high-energy regime due to atomic core photoexcitations not heretofore considered. In extensive R -matrix calculations of unprecedented complexity for an important iron ion Fe xvii (Fe16 + ), with a wave function expansion of 99 Fe xviii (Fe17 + ) LS core states from n ≤4 complexes (equivalent to 218 fine structure levels), we find (i) up to orders of magnitude enhancement in background photoionization cross sections, in addition to strongly peaked photo-excitation-of-core resonances not considered in current opacity models, and ii) demonstrate convergence with respect to successive core excitations. The resulting increase in the monochromatic continuum, and 35% in the Rosseland mean opacity, are compared with the "higher-than-predicted" iron opacity measured at the Sandia Z -pinch fusion device at solar interior conditions.

  18. Fe IX CALCULATIONS FOR THE SOLAR DYNAMICS OBSERVATORY

    International Nuclear Information System (INIS)

    Foster, Adam R.; Testa, Paola

    2011-01-01

    New calculations of the energy levels, radiative transition rates, and collisional excitation rates of Fe IX have been carried out using the Flexible Atomic Code, paying close attention to experimentally identified levels and extending existing calculations to higher energy levels. For lower levels, R-matrix collisional excitation rates from earlier work have been used. Significant emission is predicted by these calculations in the 5f-3d transitions, which will impact analysis of Solar Dynamics Observatory Atmospheric Imaging Assembly observations using the 94 A filter.

  19. Sintering prevention and phase transformation of FePt nanoparticles

    International Nuclear Information System (INIS)

    Ding, Y.; Majetich, S.A.; Kim, J.; Barmak, K.; Rollins, H.; Sides, P.

    2004-01-01

    Two approaches attempted to overcome FePt nanoparticle sintering during the transformation to the high coercivity L1 0 phase, which currently limits the use of these nanoparticles in data storage media. High-pressure treatment of dilute nanoparticle solutions failed to prevent sintering due to surfactant decomposition above 360 deg. C. By pre-annealing nanoparticle monolayers to decompose the surfactant, and then coating with an immiscible SiO 2 matrix, sintering was prevented with annealing temperatures up to 700 deg. C

  20. Crystallization of an amorphous Fe72Ni9Si8B11 alloy upon laser heating and isothermal annealing

    International Nuclear Information System (INIS)

    Girzhon, V.V.; Smolyakov, A.V.; Yastrebova, T.S.

    2003-01-01

    With the use of methods of x-ray diffraction, resistometric and metallographic analyses specific features of crystallization and phase formation in amorphous alloy Fe 72 Ni 9 Si 8 B 11 are studied under various heating conditions. It is shown that laser heating results in alloy crystallization by an explosive mechanism when attaining a certain density of irradiation power. It is stated that ribbon surface laser heating with simultaneous water cooling of an opposite surface allows manufacturing two-layer amorphous-crystalline structures of the amorphous matrix + α-(Fe, Si) - amorphous matrix type [ru

  1. Chemical states of localized Fe atoms in ethylene matrices using in-beam Mössbauer spectroscopy

    Energy Technology Data Exchange (ETDEWEB)

    Kobayashi, Y., E-mail: kyoshio@pc.uec.ac.jp [University of Electro-Communications, Graduate School of Engineering Science (Japan); Yamada, Y. [Tokyo University of Science, Department of Chemistry (Japan); Tanigawa, S. [University of Electro-Communications, Graduate School of Engineering Science (Japan); Mihara, M. [Osaka University, Graduate School of Science (Japan); Kubo, M. K. [International Christian University, Division of Arts and Sciences (Japan); Sato, W. [Kanazawa University, Institute of Science and Engineering (Japan); Miyazaki, J. [Tokyo University of Agriculture and Technology, Department of Chemical Engineering (Japan); Nagatomo, T. [RIKEN, Nishina Center for Accelerator-Based Science (Japan); Sato, Y.; Natori, D.; Suzuki, M. [University of Electro-Communications, Graduate School of Engineering Science (Japan); Kobayashi, J. [International Christian University, Division of Arts and Sciences (Japan); Sato, S.; Kitagawa, A. [National Institute of Radiological Science (Japan)

    2016-12-15

    The reaction products of isolated single iron atoms in a low concentration matrix of ethylene were studied using in-beam Mössbauer spectroscopy with a short-lived {sup 57}Mn (T{sub 1/2}=1.45 m) beam. The in-beam Mössbauer spectrum of {sup 57}Fe arising from {sup 57}Mn in a matrix of ethylene and argon measured at 16 K was analyzed with four components. Density functional theory calculations were carried out to confirm the assignments. It was suggested that the reaction produced monoiron species of Fe(C {sub 2}H{sub 4}) with a spin state of S = 2.

  2. Effect of phosphate-based glass fibre surface properties on thermally produced poly(lactic acid) matrix composites.

    Science.gov (United States)

    Mohammadi, Maziar Shah; Ahmed, Ifty; Muja, Naser; Rudd, Christopher D; Bureau, Martin N; Nazhat, Showan N

    2011-12-01

    Incorporation of soluble bioactive glass fibres into biodegradable polymers is an interesting approach for bone repair and regeneration. However, the glass composition and its surface properties significantly affect the nature of the fibre-matrix interface and composite properties. Herein, the effect of Si and Fe on the surface properties of calcium containing phosphate based glasses (PGs) in the system (50P(2)O(5)-40CaO-(10-x)SiO(2)-xFe(2)O(3), where x = 0, 5 and 10 mol.%) were investigated. Contact angle measurements revealed a higher surface energy, and surface polarity as well as increased hydrophilicity for Si doped PG which may account for the presence of surface hydroxyl groups. Two PG formulations, 50P(2)O(5)-40CaO-10Fe(2)O(3) (Fe10) and 50P(2)O(5)-40CaO-5Fe(2)O(3)-5SiO(2) (Fe5Si5), were melt drawn into fibres and randomly incorporated into poly(lactic acid) (PLA) produced by melt processing. The ageing in deionised water (DW), mechanical property changes in phosphate buffered saline (PBS) and cytocompatibility properties of these composites were investigated. In contrast to Fe10 and as a consequence of the higher surface energy and polarity of Fe5Si5, its incorporation into PLA led to increased inorganic/organic interaction indicated by a reduction in the carbonyl group of the matrix. PLA chain scission was confirmed by a greater reduction in its molecular weight in PLA-Fe5Si5 composites. In DW, the dissolution rate of PLA-Fe5Si5 was significantly higher than that of PLA-Fe10. Dissolution of the glass fibres resulted in the formation of channels within the matrix. Initial flexural strength was significantly increased through PGF incorporation. After PBS ageing, the reduction in mechanical properties was greater for PLA-Fe5Si5 compared to PLA-Fe10. MC3T3-E1 preosteoblasts seeded onto PG discs, PLA and PLA-PGF composites were evaluated for up to 7 days indicating that the materials were generally cytocompatible. In addition, cell alignment along the PGF

  3. Impact of the B2 ordering behavior on the mechanical properties of a FeCoMo alloy

    Energy Technology Data Exchange (ETDEWEB)

    Turk, C., E-mail: chris.turk@unileoben.ac.at [Montanuniversität Leoben, Department of Physical Metallurgy and Materials Testing, Franz-Josef Straße 18, 8700 Leoben (Austria); Leitner, H.; Kellezi, G. [Böhler Edelstahl GmbH & Co KG, Mariazellerstraße 25, 8605 Kapfenberg (Austria); Clemens, H. [Montanuniversität Leoben, Department of Physical Metallurgy and Materials Testing, Franz-Josef Straße 18, 8700 Leoben (Austria); Gan, W.M.; Staron, P. [German Engineering Materials Science Centre, Helmholtz-Zentrum Geesthacht, D-21502 Geesthacht (Germany); Primig, S. [Montanuniversität Leoben, Department of Physical Metallurgy and Materials Testing, Franz-Josef Straße 18, 8700 Leoben (Austria)

    2016-04-26

    A Fe - 25 at% Co - 9 at% Mo alloy can be hardened by nm-sized (Fe, Co){sub 7}Mo{sub 6} µ-phase precipitates which is accomplished by solution annealing in the austenite region followed by rapid quenching to room temperature and subsequent aging below the austenite transition temperature. In overaged condition the Mo-content in the remaining matrix drops towards zero and, therefore, the matrix consist of 71 at% Fe and 29 at% Co. The binary Fe-Co system shows a disorder-order, A2↔B2 transition at a critical ordering temperature between 25 at% and 72 at% Co. It is expected that the remaining matrix of an overaged Fe - 25 at% Co - 9 at% Mo alloy also exhibits such an ordering reaction. It will be demonstrated that the formation of a B2 ordered FeCo phase can be delayed or completely prevented by rapid quenching from temperatures above the critical ordering temperature. This has a strong impact on the mechanical properties of this alloy which have been studied by means of tensile, impact toughness and hardness testing. The evidence for a disorder-order transition in this alloy has been given by neutron diffraction as well as high resolution transmission electron microscopy.

  4. CoFeRh alloys

    Energy Technology Data Exchange (ETDEWEB)

    Tabakovic, Ibro [Seagate Technology, Research and Development, Bloomington, MN 55435 (United States)], E-mail: ibro.m.tabakovic@seagate.com; Qiu Jiaoming; Riemer, Steve; Sun Ming; Vas' ko, Vlad; Kief, Mark [Seagate Technology, Research and Development, Bloomington, MN 55435 (United States)

    2008-01-01

    The electrochemical behavior of Rh(III) species in CoFe solution containing RhCl{sub 3}, NH{sub 4}Cl, H{sub 3}BO{sub 3}, CoSO{sub 4}, FeSO{sub 4}, saccharin, and NaLS (Na lauryl sulfate) has been investigated. The electrochemistry of Rh(III) species is influenced by each of the compounds present in CoFe plating solution, but especially by addition of saccharin and H{sub 3}BO{sub 3} to the RhCl{sub 3}-NH{sub 4}Cl solution. The nucleation and growth of Rh on GC (glassy carbon), Ru, and Cu electrodes from NH{sub 4}Cl solution was studied using the potentiostatic current-transient methods. The results support a predominantly progressive nucleation of Rh on all three-electrode surfaces. The nucleation kinetic parameters ANo (steady state nucleation rate) and Ns (saturation nuclear number density) were found to vary with potential and are electrode-dependent in order: GC > Ru{approx}Cu. The electrodeposited Rh films obtained from NH{sub 4}Cl solution and nonmagnetic CoFeRh film obtained from CoFe solution were characterized in terms of the following properties: morphology, surface roughness, crystal structure and chemical composition. The origin of light elements found in Rh and CoFeRh films (O, Cl, S, C, N) was discussed.

  5. CoFeRh alloys

    International Nuclear Information System (INIS)

    Tabakovic, Ibro; Qiu Jiaoming; Riemer, Steve; Sun Ming; Vas'ko, Vlad; Kief, Mark

    2008-01-01

    The electrochemical behavior of Rh(III) species in CoFe solution containing RhCl 3 , NH 4 Cl, H 3 BO 3 , CoSO 4 , FeSO 4 , saccharin, and NaLS (Na lauryl sulfate) has been investigated. The electrochemistry of Rh(III) species is influenced by each of the compounds present in CoFe plating solution, but especially by addition of saccharin and H 3 BO 3 to the RhCl 3 -NH 4 Cl solution. The nucleation and growth of Rh on GC (glassy carbon), Ru, and Cu electrodes from NH 4 Cl solution was studied using the potentiostatic current-transient methods. The results support a predominantly progressive nucleation of Rh on all three-electrode surfaces. The nucleation kinetic parameters ANo (steady state nucleation rate) and Ns (saturation nuclear number density) were found to vary with potential and are electrode-dependent in order: GC > Ru∼Cu. The electrodeposited Rh films obtained from NH 4 Cl solution and nonmagnetic CoFeRh film obtained from CoFe solution were characterized in terms of the following properties: morphology, surface roughness, crystal structure and chemical composition. The origin of light elements found in Rh and CoFeRh films (O, Cl, S, C, N) was discussed

  6. Gold-coated iron nanoparticles in transparent Si3N4 matrix thin films

    Science.gov (United States)

    Sánchez-Marcos, J.; Céspedes, E.; Jiménez-Villacorta, F.; Muñoz-Martín, A.; Prieto, C.

    2013-06-01

    A new method to prepare thin films containing gold-coated iron nanoparticles is presented. The ternary Fe-Au-Si3N4 system prepared by sequential sputtering has revealed a progressive variation of microstructures from Au/Fe/Au/Si3N4 multilayers to iron nanoparticles. Microstructural characterization by transmission electron microscopy, analysis of the magnetic properties and probing of the iron short-range order by X-ray absorption spectroscopy confirm the existence of a gold-coated iron nanoparticles of 1-2 nm typical size for a specific range of iron and gold contents per layer in the transparent silicon nitride ceramic matrix.

  7. Effect of Mechanical Activation on the In Situ Formation of TiB2 Particulates in the Powder Mixture of TiH2 and FeB

    Directory of Open Access Journals (Sweden)

    Huynh X.-K.

    2017-06-01

    Full Text Available The in situ formation of TiB2 particulates via an interface reaction between Ti and FeB powders was studied. The effects of mechanical activation by high-energy milling on the decomposition of TiH2 and the interface reactions between Ti and FeB powders to form TiB2 were investigated. Powder mixtures were fabricated using planetary ball-milling under various milling conditions. The specific ball-milling energy was calculated from the measured electrical power consumption during milling process. High specific milling energy (152.6 kJ/g resulted in a size reduction and homogeneous dispersion of constituent powders. This resulted in a decrease in the decomposition temperature of TiH2 and an increase in the formation reaction of TiB2 particulates in the Fe matrix, resulting in a homogeneous microstructure of nanoscale TiB2 evenly distributed within the Fe matrix. In contrast, the powder mixture milled with low specific milling energy (36.5 kJ/g showed an inhomogeneous microstructure composed of relatively large Fe-Fe2B particles surrounded by a thin layer of Fe-TiB2 within a finely dispersed Fe-TiB2 matrix region.

  8. A survey of matrix theory and matrix inequalities

    CERN Document Server

    Marcus, Marvin

    2010-01-01

    Written for advanced undergraduate students, this highly regarded book presents an enormous amount of information in a concise and accessible format. Beginning with the assumption that the reader has never seen a matrix before, the authors go on to provide a survey of a substantial part of the field, including many areas of modern research interest.Part One of the book covers not only the standard ideas of matrix theory, but ones, as the authors state, ""that reflect our own prejudices,"" among them Kronecker products, compound and induced matrices, quadratic relations, permanents, incidence

  9. Octonionic matrix representation and electromagnetism

    Energy Technology Data Exchange (ETDEWEB)

    Chanyal, B. C. [Kumaun University, S. S. J. Campus, Almora (India)

    2014-12-15

    Keeping in mind the important role of octonion algebra, we have obtained the electromagnetic field equations of dyons with an octonionic 8 x 8 matrix representation. In this paper, we consider the eight - dimensional octonionic space as a combination of two (external and internal) four-dimensional spaces for the existence of magnetic monopoles (dyons) in a higher-dimensional formalism. As such, we describe the octonion wave equations in terms of eight components from the 8 x 8 matrix representation. The octonion forms of the generalized potential, fields and current source of dyons in terms of 8 x 8 matrix are discussed in a consistent manner. Thus, we have obtained the generalized Dirac-Maxwell equations of dyons from an 8x8 matrix representation of the octonion wave equations in a compact and consistent manner. The generalized Dirac-Maxwell equations are fully symmetric Maxwell equations and allow for the possibility of magnetic charges and currents, analogous to electric charges and currents. Accordingly, we have obtained the octonionic Dirac wave equations in an external field from the matrix representation of the octonion-valued potentials of dyons.

  10. Fe and Cu stable isotopes in archeological human bones and their relationship to sex.

    Science.gov (United States)

    Jaouen, Klervia; Balter, Vincent; Herrscher, Estelle; Lamboux, Aline; Telouk, Philippe; Albarède, Francis

    2012-07-01

    Accurate sex assignment of ancient human remains usually relies on the availability of coxal bones or well-preserved DNA. Iron (Fe) and copper (Cu) stable isotope compositions ((56)Fe/(54)Fe and (65)Cu/(63)Cu, respectively) were recently measured in modern human blood, and an unexpected result was the discovery of a (56)Fe-depletion and a (65)Cu-enrichment in men's blood compared to women's blood. Bones, being pervasively irrigated by blood, are expected to retain the (56)Fe/(54)Fe and (65)Cu/(63)Cu signature of blood, which in turn is useful for determining the sex of ancient bones. Here, we report the (56)Fe/(54)Fe, (65)Cu/(63)Cu, and (66)Zn/(64)Zn ratios from a suite of well-preserved phalanxes (n = 43) belonging to individuals buried in the 17th and 18th centuries at the necropolis of Saint-Laurent de Grenoble, France, and for which the sex was independently estimated from pelvic bone morphology. The metals were purified from the bone matrix by liquid chromatography on ion exchange resin and the isotope compositions were measured by multiple-collector inductively coupled plasma mass spectrometry. The results show that, as expected from literature data on blood, male bone iron is depleted in (56)Fe and enriched in (65)Cu relative to female. No sex difference is found in the (66)Zn/(64)Zn ratios of bone. The concentration and isotopic data show no evidence of soil contamination. Four samples of five (77%) can be assigned their correct sex, a result comparable to sex assignment using Fe and Cu isotopes in blood (81%). Isotopic analysis of metals may therefore represent a valid method of sex assignment applicable to incomplete human remains. Copyright © 2012 Wiley Periodicals, Inc.

  11. Coupling between magnetic and optical properties of stable Au-Fe solid solution nanoparticles

    Energy Technology Data Exchange (ETDEWEB)

    De Julian Fernandez, C; Novak, R L; Bogani, L; Caneschi, A [INSTM RU at the Department of Chemistry of the University of Firenze, via della Lastruccia 3, 50019 Sesto Fiorentino (Italy); Mattei, G; Mazzoldi, P [Department of Physics, CNISM and University of Padova, via Marzolo 8, 35131 Padova (Italy); Paz, E; Palomares, F J [Instituto de Ciencia de Materiales de Madrid (CSIC), Cantoblanco, 28049 Madrid (Spain); Cavigli, L, E-mail: cesar.dejulian@unifi.it [Department of Physics-LENS, University of Florence, via Sansone 1, 50019 Sesto Fiorentino (Italy)

    2010-04-23

    Au-Fe nanoparticles constitute one of the simplest prototypes of a multifunctional nanomaterial that can exhibit both magnetic and optical (plasmonic) properties. This solid solution, not feasible in the bulk phase diagram in thermal equilibrium, can be formed as a nanostructure by out-of-equilibrium processes. Here, the novel magnetic, optical and magneto-optical properties of ion-implanted Au-Fe solid solution nanoparticles dispersed in a SiO{sub 2} matrix are investigated and correlated. The surface plasmon resonance of the Au-Fe nanoparticles with almost equicomposition is strongly damped when compared to pure Au and to Au-rich Au-Fe nanoparticles. In all cases, the Au atoms are magnetically polarized, as measured by x-ray magnetic circular dichroism, and ferromagnetically coupled with Fe atoms. Although the chemical stability of Au-Fe nanoparticles is larger than that of Fe nanoparticles, both the magnetic moment per Fe atom and the order temperature are smaller. These results suggest that electronic and magnetic properties are more influenced by the hybridization of the electronic bands in the Au-Fe solid solution than by size effects. On the other hand, the magneto-optical transitions allowed in the vis-nIR spectral regions are very similar. In addition, we also observe, after studying the properties of thermally treated samples, that the Au-Fe alloy is stabilized, not by surface effects, but by the combination of the out-of-equilibrium nature of the ion implantation technique and by changes in the properties due to size effects.

  12. Coupling between magnetic and optical properties of stable Au-Fe solid solution nanoparticles

    International Nuclear Information System (INIS)

    De Julian Fernandez, C; Novak, R L; Bogani, L; Caneschi, A; Mattei, G; Mazzoldi, P; Paz, E; Palomares, F J; Cavigli, L

    2010-01-01

    Au-Fe nanoparticles constitute one of the simplest prototypes of a multifunctional nanomaterial that can exhibit both magnetic and optical (plasmonic) properties. This solid solution, not feasible in the bulk phase diagram in thermal equilibrium, can be formed as a nanostructure by out-of-equilibrium processes. Here, the novel magnetic, optical and magneto-optical properties of ion-implanted Au-Fe solid solution nanoparticles dispersed in a SiO 2 matrix are investigated and correlated. The surface plasmon resonance of the Au-Fe nanoparticles with almost equicomposition is strongly damped when compared to pure Au and to Au-rich Au-Fe nanoparticles. In all cases, the Au atoms are magnetically polarized, as measured by x-ray magnetic circular dichroism, and ferromagnetically coupled with Fe atoms. Although the chemical stability of Au-Fe nanoparticles is larger than that of Fe nanoparticles, both the magnetic moment per Fe atom and the order temperature are smaller. These results suggest that electronic and magnetic properties are more influenced by the hybridization of the electronic bands in the Au-Fe solid solution than by size effects. On the other hand, the magneto-optical transitions allowed in the vis-nIR spectral regions are very similar. In addition, we also observe, after studying the properties of thermally treated samples, that the Au-Fe alloy is stabilized, not by surface effects, but by the combination of the out-of-equilibrium nature of the ion implantation technique and by changes in the properties due to size effects.

  13. Coupling between magnetic and optical properties of stable Au-Fe solid solution nanoparticles

    Science.gov (United States)

    de Julián Fernández, C.; Mattei, G.; Paz, E.; Novak, R. L.; Cavigli, L.; Bogani, L.; Palomares, F. J.; Mazzoldi, P.; Caneschi, A.

    2010-04-01

    Au-Fe nanoparticles constitute one of the simplest prototypes of a multifunctional nanomaterial that can exhibit both magnetic and optical (plasmonic) properties. This solid solution, not feasible in the bulk phase diagram in thermal equilibrium, can be formed as a nanostructure by out-of-equilibrium processes. Here, the novel magnetic, optical and magneto-optical properties of ion-implanted Au-Fe solid solution nanoparticles dispersed in a SiO2 matrix are investigated and correlated. The surface plasmon resonance of the Au-Fe nanoparticles with almost equicomposition is strongly damped when compared to pure Au and to Au-rich Au-Fe nanoparticles. In all cases, the Au atoms are magnetically polarized, as measured by x-ray magnetic circular dichroism, and ferromagnetically coupled with Fe atoms. Although the chemical stability of Au-Fe nanoparticles is larger than that of Fe nanoparticles, both the magnetic moment per Fe atom and the order temperature are smaller. These results suggest that electronic and magnetic properties are more influenced by the hybridization of the electronic bands in the Au-Fe solid solution than by size effects. On the other hand, the magneto-optical transitions allowed in the vis-nIR spectral regions are very similar. In addition, we also observe, after studying the properties of thermally treated samples, that the Au-Fe alloy is stabilized, not by surface effects, but by the combination of the out-of-equilibrium nature of the ion implantation technique and by changes in the properties due to size effects.

  14. Active Iron Sites of Disordered Mesoporous Silica Catalyst FeKIL-2 in the Oxidation of Volatile Organic Compounds (VOC

    Directory of Open Access Journals (Sweden)

    Mojca Rangus

    2014-05-01

    Full Text Available Iron-functionalized disordered mesoporous silica (FeKIL-2 is a promising, environmentally friendly, cost-effective and highly efficient catalyst for the elimination of volatile organic compounds (VOCs from polluted air via catalytic oxidation. In this study, we investigated the type of catalytically active iron sites for different iron concentrations in FeKIL-2 catalysts using advanced characterization of the local environment of iron atoms by a combination of X-ray Absorption Spectroscopy Techniques (XANES, EXAFS and Atomic-Resolution Scanning Transmission Electron Microscopy (AR STEM. We found that the molar ratio Fe/Si ≤ 0.01 leads to the formation of stable, mostly isolated Fe3+ sites in the silica matrix, while higher iron content Fe/Si > 0.01 leads to the formation of oligonuclear iron clusters. STEM imaging and EELS techniques confirmed the existence of these clusters. Their size ranges from one to a few nanometers, and they are unevenly distributed throughout the material. The size of the clusters was also found to be similar, regardless of the nominal concentration of iron (Fe/Si = 0.02 and Fe/Si = 0.05. From the results obtained from sample characterization and model catalytic tests, we established that the enhanced activity of FeKIL-2 with the optimal Fe/Si = 0.01 ratio can be attributed to: (1 the optimal concentration of stable isolated Fe3+ in the silica support; and (2 accelerated diffusion of the reactants in disordered mesoporous silica (FeKIL-2 when compared to ordered mesoporous silica materials (FeSBA-15, FeMCM-41.

  15. Preparation, thermal stability, and magnetic properties of Fe-Zr-Mo-W-B bulk metallic glass

    International Nuclear Information System (INIS)

    Liu, D.Y.; Sun, W.S.; Wang, A.M.; Zhang, H.F.; Hu, Z.Q.

    2004-01-01

    A bulk metallic glass (BMG) cylinder of Fe 60 Co 8 Zr 10 Mo 5 W 2 B 15 with a diameter of 1.5 mm was prepared by copper mould casting of industrial raw materials. The amorphous state and the crystallization behavior were investigated by X-ray diffraction (XRD). The thermal stability parameters, such as glass transition temperature (T g ), crystallization temperature (T x ), supercooled liquid region (ΔT x ) between T g and T x , and reduced glass transition temperature T rg (T g /T m ) were measured by differential scanning calorimetry (DSC) to be 891, 950, 59 K, and 0.62, respectively. The crystallization process took place through a single stage, and involved crystallization of the phases α-Fe, ZrFe 2 , Fe 3 B, MoB 2 , Mo 2 FeB 2 , and an unknown phase, as determined by X-ray analysis of the sample annealed for 1.5 ks at 1023 K, 50 K above the DSC peak temperature of crystallization. Moessbauer spectroscopy was studied for this alloy. The spectra exhibit a broadened and asymmetric doublet-like structure that indicated paramagnetic behavior and a fully amorphous structure. α-Fe was found in the amorphous matrix for a cylinder with a diameter of 2.5 mm. The success of synthesis of the Fe-based bulk metallic glass from industrial materials is important for the future progress in research and practical application of new bulk metallic glasses

  16. Ferromagnetism and suppression of metallic clusters in Fe implanted ZnO -- a phenomenon related to defects?

    International Nuclear Information System (INIS)

    Arenholz, Elke; Zhou, S.; Potzger, K.; Talut, G.; Reuther, H.; Kuepper, K.; Grenzer, J.; Xu, Q.; Mucklich, A.; Helm, M.; Fassbender, J.; Arenholz, E.

    2008-01-01

    We investigated ZnO(0001) single crystals annealed in high vacuum with respect to their magnetic properties and cluster formation tendency after implant-doping with Fe. While metallic Fe cluster formation is suppressed, no evidence for the relevance of the Fe magnetic moment to the observed ferromagnetism was found. The latter along with the cluster suppression is discussed with respect to defects in the ZnO host matrix, since the crystalline quality of the substrates was lowered due to the preparation as observed by x-ray diffraction

  17. Ferromagnetism and suppression of metallic clusters in Fe implanted ZnO: a phenomenon related to defects?

    International Nuclear Information System (INIS)

    Zhou Shengqiang; Potzger, K; Talut, G; Reuther, H; Kuepper, K; Grenzer, J; Xu Qingyu; Muecklich, A; Helm, M; Fassbender, J; Arenholz, E

    2008-01-01

    We investigated ZnO(0 0 0 1) single crystals annealed in high vacuum with respect to their magnetic properties and cluster formation tendency after implant-doping with Fe. While metallic Fe cluster formation is suppressed, no evidence for the relevance of the Fe magnetic moment to the observed ferromagnetism was found. The latter along with the cluster suppression is discussed with respect to defects in the ZnO host matrix, since the crystalline quality of the substrates was lowered due to the preparation as observed by x-ray diffraction

  18. Molecular dynamics studies of displacement cascades in Fe-Y{sub 2}TiO{sub 5} system

    Energy Technology Data Exchange (ETDEWEB)

    Dholakia, Manan, E-mail: manan@igcar.gov.in; Chandra, Sharat; Jaya, S. Mathi [Materials Physics Division, Indira Gandhi Centre for Atomic Research, Kalpakkam 603102, TN (India)

    2016-05-23

    The effect of displacement cascade on Fe-Y{sub 2}TiO{sub 5} bilayer is studied using classical molecular dynamics simulations. Different PKA species – Fe, Y, Ti and O – with the same PKA energy of 8 keV are used to produce displacement cascades that encompass the interface. It is shown that Ti atom has the highest movement in the ballistic regime of cascades which can lead to Ti atoms moving out of the oxide clusters into the Fe matrix in ODS alloys.

  19. Parallel R-matrix computation

    International Nuclear Information System (INIS)

    Heggarty, J.W.

    1999-06-01

    For almost thirty years, sequential R-matrix computation has been used by atomic physics research groups, from around the world, to model collision phenomena involving the scattering of electrons or positrons with atomic or molecular targets. As considerable progress has been made in the understanding of fundamental scattering processes, new data, obtained from more complex calculations, is of current interest to experimentalists. Performing such calculations, however, places considerable demands on the computational resources to be provided by the target machine, in terms of both processor speed and memory requirement. Indeed, in some instances the computational requirements are so great that the proposed R-matrix calculations are intractable, even when utilising contemporary classic supercomputers. Historically, increases in the computational requirements of R-matrix computation were accommodated by porting the problem codes to a more powerful classic supercomputer. Although this approach has been successful in the past, it is no longer considered to be a satisfactory solution due to the limitations of current (and future) Von Neumann machines. As a consequence, there has been considerable interest in the high performance multicomputers, that have emerged over the last decade which appear to offer the computational resources required by contemporary R-matrix research. Unfortunately, developing codes for these machines is not as simple a task as it was to develop codes for successive classic supercomputers. The difficulty arises from the considerable differences in the computing models that exist between the two types of machine and results in the programming of multicomputers to be widely acknowledged as a difficult, time consuming and error-prone task. Nevertheless, unless parallel R-matrix computation is realised, important theoretical and experimental atomic physics research will continue to be hindered. This thesis describes work that was undertaken in

  20. Numerical methods in matrix computations

    CERN Document Server

    Björck, Åke

    2015-01-01

    Matrix algorithms are at the core of scientific computing and are indispensable tools in most applications in engineering. This book offers a comprehensive and up-to-date treatment of modern methods in matrix computation. It uses a unified approach to direct and iterative methods for linear systems, least squares and eigenvalue problems. A thorough analysis of the stability, accuracy, and complexity of the treated methods is given. Numerical Methods in Matrix Computations is suitable for use in courses on scientific computing and applied technical areas at advanced undergraduate and graduate level. A large bibliography is provided, which includes both historical and review papers as well as recent research papers. This makes the book useful also as a reference and guide to further study and research work. Åke Björck is a professor emeritus at the Department of Mathematics, Linköping University. He is a Fellow of the Society of Industrial and Applied Mathematics.

  1. Lectures on matrix field theory

    CERN Document Server

    Ydri, Badis

    2017-01-01

    These lecture notes provide a systematic introduction to matrix models of quantum field theories with non-commutative and fuzzy geometries. The book initially focuses on the matrix formulation of non-commutative and fuzzy spaces, followed by a description of the non-perturbative treatment of the corresponding field theories. As an example, the phase structure of non-commutative phi-four theory is treated in great detail, with a separate chapter on the multitrace approach. The last chapter offers a general introduction to non-commutative gauge theories, while two appendices round out the text. Primarily written as a self-study guide for postgraduate students – with the aim of pedagogically introducing them to key analytical and numerical tools, as well as useful physical models in applications – these lecture notes will also benefit experienced researchers by providing a reference guide to the fundamentals of non-commutative field theory with an emphasis on matrix models and fuzzy geometries.

  2. Simulation of radiation damage in Fe and Fe-Cr

    International Nuclear Information System (INIS)

    Lagerstedt, Christina

    2005-11-01

    Steel is an important structural material in nuclear reactors used for example in pressure vessels and fast reactor cladding. In reactor environments it has been observed that ferritic steels are more resistant to swelling than the austenitic steels typically used. Much effort has been put into developing basic models of FeCr alloys which can serve as model alloys for describing ferritic steels. As a result, a number of interatomic potentials for Fe and FeCr alloys exist today. For the work in this thesis, basic material properties coming from experiments or ab initio calculations were used to fit interatomic potentials for Fe, Cr and FeCr implementing both the embedded atom method and the Finnis-Sinclair formalisms. The potentials were then validated by molecular dynamic calculations of material properties such as defect formation energies, migration energies and thermal expansion. Further studies of potential performance were carried out in simulations of radiation damage cascades and thermal aging. The influence of the interatomic potential on the primary defect state in materials under irradiation was analyzed in a study comparing results obtained using four different potentials. The objective of the study was to find correlations between potential properties and the primary damage state produced in simulations of displacement cascades. The defect evolution and clustering during different cascade stages were also investigated to try to gain a better understanding of these processes

  3. Moessbauer Study of Electrodeposited Fe/Fe-Oxide Multilayers

    International Nuclear Information System (INIS)

    Kuzmann, E.; Homonnay, Z.; Klencsar, Z.; Vertes, A.; Lakatos-Varsanyi, M.; Miko, A.; Varga, L.K.; Kalman, E.; Nagy, F.

    2005-01-01

    Iron has been deposited electrochemically by short current pulses in Na-saccharin containing FeII-chloride and sulphate solution electrolytes. Combined electrochemical techniques with initial pulse plating of iron nanolayer and its subsequent anodic oxidation under potential control have been used for production of Fe/Fe-oxide multilayers. 57Fe CEM spectra of pulse plated iron revealed the presence of a minor doublet attributed mainly to γ-FeOOH in addition to the dominant sextet of α-iron. In the case of anodically oxidized pulse plated iron and of samples after repeated deposition of anodically oxidized pulse plated iron an additional minor doublet, assigned to ferrous chloride, also appears in the Moessbauer spectra. A significant change in the magnetic anisotropy of α-iron was observed with the anodic oxidation. The thickness of the layers were estimated from the CEM spectrum data by a modified computer program of the Liljequist method. The coercive field and the power loss versus frequency data showed that the pulse plated iron cores are good inductive elements up to several kHz frequencies

  4. In situ Fabrication of Fe-TiB{sub 2} Nanocomposite Powder by Planetary Ball Milling and Subsequent Heat-treatment of FeB and TiH{sub 2} Powder Mixture

    Energy Technology Data Exchange (ETDEWEB)

    Huynh, Xuan-Khoa [Hanoi Uneversity of Science and Technology, Hanoi (Viet Nam); Bae, Sun-Woo; Kim, Ji Soon [University of Ulsan, Ulsan (Korea, Republic of)

    2017-01-15

    Fe-TiB{sub 2} powder was synthesized in-situ by the planetary ball milling and subsequent heat-treatment of an iron boride (FeB) and titanium hydride (TiH{sub 2}) powder mixture. Mechanical activation of the (FeB+TiH{sub 2}) powder mixtures was observed after a milling time of 3 hours at 700 rpm of rotation speed, but activation was not the same after 1 hour milling time. The particle size of the (FeB+ TiH{sub 2}) powder mixture was reduced to the nanometer scale, and each constituent was homogeneously distributed. A sharp exothermic peak was observed at a lower temperature (749 ℃) on the DSC curves for the (FeB+TiH{sub 2}) powder mixture milled for 3 hours, compared to the one milled for 1 hour (774 ℃). These peaks were confirmed to have resulted from the formation reaction of the TiB{sub 2} phase, from Ti and B elements in the FeB. The Fe-TiB{sub 2} composite powder fabricated in situ exhibited only two phases of Fe and TiB{sub 2} with homogeneous distribution. The size of the TiB{sub 2} particulates in the Fe matrix was less than 5 nm.

  5. Ferromagnetic resonance spectroscopy of CoFeZr-Al{sub 2}O{sub 3} granular films containing “FeCo core – oxide shell” nanoparticles

    Energy Technology Data Exchange (ETDEWEB)

    Kołtunowicz, Tomasz N., E-mail: t.koltunowicz@pollub.pl [Department of Electrical Devices and High Voltage Technology, Lublin University of Technology, Nadbystrzycka 38a, 20-618 Lublin (Poland); Zukowski, Pawel [Department of Electrical Devices and High Voltage Technology, Lublin University of Technology, Nadbystrzycka 38a, 20-618 Lublin (Poland); Sidorenko, Julia [Department of Semiconductors Physics and Nanoelectronics, Belarusian State University, Independence Av. 4, 220030 Minsk (Belarus); Bayev, Vadim; Fedotova, Julia A. [Institute for Nuclear Problems, Belarusian State University, Bobrujskaya Str. 11, 220030 Minsk (Belarus); Opielak, Marek [Institute of Transport, Combustion Engines and Ecology, Lublin University of Technology, Nadbystrzycka 36, 20-618 Lublin (Poland); Marczuk, Andrzej [Department of Transporting and Agricultural Machinery, University of Life Sciences in Lublin, Głeboka 28, 20-612 Lublin (Poland)

    2017-01-01

    Ferromagnetic resonance (FMR) spectroscopy is applied for comparative analysis of granular (CoFeZ){sub x}(Al{sub 2}O{sub 3}){sub 100−x}, (31 at%≤x≤47 at%) films containing pure FeCo-based nanoparticles (NPs) or “FeCo-based core – oxide shell” NPs inside Al{sub 2}O{sub 3} matrix when deposited in oxygen-free or oxygen-containing atmosphere, correspondingly. It is established that g-factor extracted from the FMR spectra of films with core–shell NPs decreases with x below the value g =2.0023 for free electron that is untypical for metallic NPs. This effect is associated with the formation of the interface between ferromagnetic core and antiferromagnetic (ferrimagnetic) oxide shell of NPs. - Highlights: • CoFeZr-Al{sub 2}O{sub 3} granular films containing “FeCo core – oxide shell” nanoparticles. • magnetic anisotropy of (CoFeZr){sub x}(Al{sub 2}O{sub 3}){sub 100−x} films is of an easy plane type. • essential difference in dependence of g-factor on metal content in non- and oxidized film. • non-oxidized samples indicates the reduction of the value of films magnetization.

  6. Tailoring mechanical and antibacterial properties of chitosan/gelatin nanofiber membranes with Fe3O4 nanoparticles for potential wound dressing application

    Science.gov (United States)

    Cai, Ning; Li, Chao; Han, Chao; Luo, Xiaogang; Shen, Liang; Xue, Yanan; Yu, Faquan

    2016-04-01

    In this work, magnetic Fe3O4 nanoparticles (NPs) were utilized to improve the mechanical and antibacterial properties of chitosan (CS)/gelatin (GE) composite nanofiber membranes. Homogeneous Fe3O4/CS/GE nanofibers were electrospun successfully. Scanning electron microscopy (SEM) and transmission electron microscopy (TEM) images confirmed the presence of well-dispersed Fe3O4 NPs in the composite nanofibers. Fourier transform infrared spectroscopy (FTIR) spectra revealed the effective interactions of Fe3O4 NPs to the composite matrix through hydrogen bonding. The improvement on the thermal stability of the Fe3O4/CS/GE was observed by differential scanning calorimetry (DSC) and thermo gravimetric analysis (TGA), which is tightly correlated to strong filler-matrix adhesion. The incorporation of Fe3O4 NPs resulted in a substantial enhancement of mechanical properties. The optimum mechanical performance was demonstrated on 1 wt% Fe3O4/CS/GE nanofiber membranes, achieving 155% augment of Young's modulus, 128% increase of tensile strength, and 100% boost of toughness from CS/GE. The excellent mechanical enhancement can be explained by the effective dispersion of fillers and the filler-matrix interactions, which ensures the efficient load transfer from CS/GE matrix to Fe3O4 nanofillers. Moreover, zones of inhibition for Escherichia coli and Staphylococcus aureus expanded markedly with the supplement of Fe3O4 NPs. In all, nanofiber membranes made of Fe3O4/CS/GE composite with tailored mechanical and antibacterial properties appear a promising wound dressing material.

  7. Isotopic fractionation associated with [NiFe]- and [FeFe]-hydrogenases

    Energy Technology Data Exchange (ETDEWEB)

    Yang, Hui; Gandhi, Hasand; Cornish, Adam J.; Moran, James J.; Kreuzer, Helen W.; Ostrom, Nathaniel; Hegg, Eric L.

    2016-01-30

    Hydrogenases catalyze the reversible formation of H2 from electrons and protons with high efficiency. Understanding the relationships between H2 production, H2 uptake, and H2-H2O exchange can provide insight into the metabolism of microbial communities in which H2 is an essential component in energy cycling. In this manuscript, we used stable H isotopes (1H and 2H) to probe the isotope effects associated with three [FeFe]-hydrogenases and three [NiFe]-hydrogenases. All six hydrogenases displayed fractionation factors for H2 formation that were significantly less than 1, producing H2 that was severely depleted in 2H relative to the substrate, water. Consistent with differences in their active site structure, the fractionation factors for each class appear to cluster, with the three [NiFe]-hydrogenases (α = 0.27-0.40) generally having smaller values than the three [FeFe]-hydrogenases (α = 0.41-0.55). We also obtained isotopic fractionation factors associated with H2 uptake and H2-H2O exchange under conditions similar to those utilized for H2 production, providing us with a more complete picture of the three reactions catalyzed by hydrogenases. The fractionation factors determined in our studies can be used as signatures for different hydrogenases to probe their activity under different growth conditions and to ascertain which hydrogenases are most responsible for H2 production and/or uptake in complex microbial communities.

  8. Supersymmetry in random matrix theory

    International Nuclear Information System (INIS)

    Kieburg, Mario

    2010-01-01

    I study the applications of supersymmetry in random matrix theory. I generalize the supersymmetry method and develop three new approaches to calculate eigenvalue correlation functions. These correlation functions are averages over ratios of characteristic polynomials. In the first part of this thesis, I derive a relation between integrals over anti-commuting variables (Grassmann variables) and differential operators with respect to commuting variables. With this relation I rederive Cauchy- like integral theorems. As a new application I trace the supermatrix Bessel function back to a product of two ordinary matrix Bessel functions. In the second part, I apply the generalized Hubbard-Stratonovich transformation to arbitrary rotation invariant ensembles of real symmetric and Hermitian self-dual matrices. This extends the approach for unitarily rotation invariant matrix ensembles. For the k-point correlation functions I derive supersymmetric integral expressions in a unifying way. I prove the equivalence between the generalized Hubbard-Stratonovich transformation and the superbosonization formula. Moreover, I develop an alternative mapping from ordinary space to superspace. After comparing the results of this approach with the other two supersymmetry methods, I obtain explicit functional expressions for the probability densities in superspace. If the probability density of the matrix ensemble factorizes, then the generating functions exhibit determinantal and Pfaffian structures. For some matrix ensembles this was already shown with help of other approaches. I show that these structures appear by a purely algebraic manipulation. In this new approach I use structures naturally appearing in superspace. I derive determinantal and Pfaffian structures for three types of integrals without actually mapping onto superspace. These three types of integrals are quite general and, thus, they are applicable to a broad class of matrix ensembles. (orig.)

  9. Supersymmetry in random matrix theory

    Energy Technology Data Exchange (ETDEWEB)

    Kieburg, Mario

    2010-05-04

    I study the applications of supersymmetry in random matrix theory. I generalize the supersymmetry method and develop three new approaches to calculate eigenvalue correlation functions. These correlation functions are averages over ratios of characteristic polynomials. In the first part of this thesis, I derive a relation between integrals over anti-commuting variables (Grassmann variables) and differential operators with respect to commuting variables. With this relation I rederive Cauchy- like integral theorems. As a new application I trace the supermatrix Bessel function back to a product of two ordinary matrix Bessel functions. In the second part, I apply the generalized Hubbard-Stratonovich transformation to arbitrary rotation invariant ensembles of real symmetric and Hermitian self-dual matrices. This extends the approach for unitarily rotation invariant matrix ensembles. For the k-point correlation functions I derive supersymmetric integral expressions in a unifying way. I prove the equivalence between the generalized Hubbard-Stratonovich transformation and the superbosonization formula. Moreover, I develop an alternative mapping from ordinary space to superspace. After comparing the results of this approach with the other two supersymmetry methods, I obtain explicit functional expressions for the probability densities in superspace. If the probability density of the matrix ensemble factorizes, then the generating functions exhibit determinantal and Pfaffian structures. For some matrix ensembles this was already shown with help of other approaches. I show that these structures appear by a purely algebraic manipulation. In this new approach I use structures naturally appearing in superspace. I derive determinantal and Pfaffian structures for three types of integrals without actually mapping onto superspace. These three types of integrals are quite general and, thus, they are applicable to a broad class of matrix ensembles. (orig.)

  10. Polychoric/Tetrachoric Matrix or Pearson Matrix? A methodological study

    Directory of Open Access Journals (Sweden)

    Dominguez Lara, Sergio Alexis

    2014-04-01

    Full Text Available The use of product-moment correlation of Pearson is common in most studies in factor analysis in psychology, but it is known that this statistic is only applicable when the variables related are in interval scale and normally distributed, and when are used in ordinal data may to produce a distorted correlation matrix . Thus is a suitable option using polychoric/tetrachoric matrices in item-level factor analysis when the items are in level measurement nominal or ordinal. The aim of this study was to show the differences in the KMO, Bartlett`s Test and Determinant of the Matrix, percentage of variance explained and factor loadings in depression trait scale of Depression Inventory Trait - State and the Neuroticism dimension of the short form of the Eysenck Personality Questionnaire -Revised, regarding the use of matrices polychoric/tetrachoric matrices and Pearson. These instruments was analyzed with different extraction methods (Maximum Likelihood, Minimum Rank Factor Analysis, Unweighted Least Squares and Principal Components, keeping constant the rotation method Promin were analyzed. Were observed differences regarding sample adequacy measures, as well as with respect to the explained variance and the factor loadings, for solutions having as polychoric/tetrachoric matrix. So it can be concluded that the polychoric / tetrachoric matrix give better results than Pearson matrices when it comes to item-level factor analysis using different methods.

  11. Argon Ion Irradiation Effect on the Magnetic Properties of Fe-Al2O3 Nano Granular Film

    Directory of Open Access Journals (Sweden)

    Setyo Purwanto

    2014-10-01

    Full Text Available We studied the effect of Argon (Ar ion irradiation on Fe-Al2O3 nanogranular thin film. X-ray diffraction (XRD patterns show that the ion dose might promote the growth of the Fe2O3 phase from an amorphous phase to a crystalline phase. The magnetic and magnetoresistance properties were investigated using a vibrating sample magnetometer (VSM and a four point probe (FPP. The results suggest that percolation concentration occurred at the 0.55 Fe volume fraction and with a maximum magnetoresistance (MR ratio of 3%. The present MR ratio was lower than that of previous results, which might be related to the existence of the α-Fe2O3 phase promoted by Ar ion irradiation. CEMS spectra show ion irradiation induces changes from superparamagnetic characteristics to ferromagnetic ones, which indicates the spherical growth of Fe particles in the Al2O3 matrix.

  12. Towards Google matrix of brain

    Energy Technology Data Exchange (ETDEWEB)

    Shepelyansky, D.L., E-mail: dima@irsamc.ups-tlse.f [Laboratoire de Physique Theorique (IRSAMC), Universite de Toulouse, UPS, F-31062 Toulouse (France); LPT - IRSAMC, CNRS, F-31062 Toulouse (France); Zhirov, O.V. [Budker Institute of Nuclear Physics, 630090 Novosibirsk (Russian Federation)

    2010-07-12

    We apply the approach of the Google matrix, used in computer science and World Wide Web, to description of properties of neuronal networks. The Google matrix G is constructed on the basis of neuronal network of a brain model discussed in PNAS 105 (2008) 3593. We show that the spectrum of eigenvalues of G has a gapless structure with long living relaxation modes. The PageRank of the network becomes delocalized for certain values of the Google damping factor {alpha}. The properties of other eigenstates are also analyzed. We discuss further parallels and similarities between the World Wide Web and neuronal networks.

  13. Towards Google matrix of brain

    International Nuclear Information System (INIS)

    Shepelyansky, D.L.; Zhirov, O.V.

    2010-01-01

    We apply the approach of the Google matrix, used in computer science and World Wide Web, to description of properties of neuronal networks. The Google matrix G is constructed on the basis of neuronal network of a brain model discussed in PNAS 105 (2008) 3593. We show that the spectrum of eigenvalues of G has a gapless structure with long living relaxation modes. The PageRank of the network becomes delocalized for certain values of the Google damping factor α. The properties of other eigenstates are also analyzed. We discuss further parallels and similarities between the World Wide Web and neuronal networks.

  14. Inverse Interval Matrix: A Survey

    Czech Academy of Sciences Publication Activity Database

    Rohn, Jiří; Farhadsefat, R.

    2011-01-01

    Roč. 22, - (2011), s. 704-719 E-ISSN 1081-3810 R&D Projects: GA ČR GA201/09/1957; GA ČR GC201/08/J020 Institutional research plan: CEZ:AV0Z10300504 Keywords : interval matrix * inverse interval matrix * NP-hardness * enclosure * unit midpoint * inverse sign stability * nonnegative invertibility * absolute value equation * algorithm Subject RIV: BA - General Mathematics Impact factor: 0.808, year: 2010 http://www.math.technion.ac.il/iic/ ela / ela -articles/articles/vol22_pp704-719.pdf

  15. Symmetries and Interactions in Matrix String Theory

    NARCIS (Netherlands)

    Hacquebord, F.H.

    1999-01-01

    This PhD-thesis reviews matrix string theory and recent developments therein. The emphasis is put on symmetries, interactions and scattering processes in the matrix model. We start with an introduction to matrix string theory and a review of the orbifold model that flows out of matrix string theory

  16. Measurements and Calculations of the Slowing-Down and Migration Time; Mesures et Calcul du Temps de Ralentissement et de Migration; Izmereniya i raschety vremeni zamedleniya i migratsii; Medicion y Calculo del Tiempo de Moderacion y de Migracion

    Energy Technology Data Exchange (ETDEWEB)

    Profio, A. E.; Koppel, J. U. [General Atomic Division of General Dynamics Corporation, John Jay Hopkins Laboratory for Pure and Applied Science, San Diego, CA (United States); Adamantiades, A. [Massachusetts Institute of Technology, Cambridge, MA (United States)

    1965-08-15

    transcurre hasta que la velocidad de los neutrones pulsados disminuya en la medida necesaria para que estos alcancen la energia, el angulo y la posicion de observacion apetecidas. El tiempo medio es una correccion de las mediciones de espectros neutronicos en la masa hechas segun el metodo del tiempo de vuelo, y la variacion impone limites al poder de resolucion efectivo de tales experimentos. Estos parametros son igualmente importantes en los detectores cuyo funcionamiento se base en la moderacion, en los experimentos con el metodo de tiempo de vuelo en los que un moderador situado cerca de la fuente de neutrones pulsados proporciona neutrones de baja energia, y en la espectrometria del tiempo de moderacion. Se han ideado diversos metodos analfticos y numericos para calcular la distribucion espacio-energia angulo-tiempo o sus integrales. Ha podido demostrarse que los momentos temporales Empty-Set {sup (n)} (r, {Omega}, v, t) = {integral}{sub 0}{sup {infinity}}t{sup n} Empty-Set (r, {Omega}, v, t)dt, pueden calcularse aplicando repetidamente una clave de transporte en regimen estacionario. El termino de la fuente para el calculo del momento 'n'es igual a nv{sup -1} Empty-Set {sup (n-1)}. Los autores presentan los resultados correspondientes a maquetas del reactor TRIGA en las que se emplean medios multiplicadores y no multiplicadores. Otro valioso metodo de calculo consiste en emplear una clave de Monte Cario en funcion del tiempo. Los autores exponen los resultados del calculo de un flujo que escapa de una delgada placa de plomo. Se han hecho mediciones del tiempo de moderacion hasta la energia de corte del Cd y hasta la resonancia de 1,46 eV del In en agua y en tolueno. Los rayos gamma de captura se detectaron con un contador de centelleo. Esta tecnica exige disponer de una fuente de suficiente intensidad y de un detector eficaz debido a la brevedad del ciclo de trabajo (escasa anchura de las rafagas para la resolucion del tiempo de moderacion y amplio intervalo entre los

  17. The Moessbauer effect in Fe(III) HEDTA, Fe(III) EDTA, and Fe(III) CDTA compounds

    International Nuclear Information System (INIS)

    Prado, F.R.

    1989-01-01

    The dependence of Moessbauer spectra with pH value of Fe(III)HEDTA and Fe(III)CDTA compounds is studied. Informations on formation processes of LFe-O-FeL (L=ligand) type dimers by the relation of titration curves of Fe(III)EDTA, Fe(III)HEDTA and Fe(III)CDTA compounds with the series of Moessbauer spectra, are obtained. Some informations on Fe-O-Fe bond structure are also obtained. Comparing the titration curves with the series of Moessbauer spectra, it is concluded that the dimerization process begins when a specie of the form FeXOH α (X = EDTA, HEDTA, CDTA; α = -1, -2) arises. (M.C.K.) [pt

  18. Facile Preparation, Characterization, and Highly Effective Microwave Absorption Performance of CNTs/Fe3O4/PANI Nanocomposites

    Directory of Open Access Journals (Sweden)

    Deqing Zhang

    2013-01-01

    Full Text Available A facile method has been developed to synthesize light-weight CNTs/Fe3O4/PANI nanocomposites. The formation route was proposed as the coprecipitation of Fe2+ and Fe3+ and an additional process of in situ polymerization of aniline monomer. The structure and morphology of CNTs/Fe3O4/PANI were characterized by transmission electron microscopy (TEM, X-ray photoelectron spectroscopy (XPS, and Fourier transform infrared (FTIR spectroscopy. The TEM investigation shows that the CNTs/Fe3O4/PANI nanocomposites exhibit less intertwined structure and that many more Fe3O4 particles are attached homogeneously on the surface of CNTs, indicating that PANI can indeed help CNTs to disperse in isolated form. The wave-absorbing properties were investigated in a frequency of 2–18 GHz. The results show that the CNTs/Fe3O4/PANI nanocomposites exhibit a super absorbing behavior and possess a maximum reflection loss of −48 dB at 12.9 GHz, and the bandwidth below −20 dB is more than 5 GHz. More importantly, the absorption peak frequency ranges of the CNTs/Fe3O4/PANI composites can be tuned easily by changing the wax weight ratio and thickness of CNTs/Fe3O4/PANI paraffin wax matrix.

  19. A Mössbauer and magnetic study of ball milled Fe-doped ZnO Powders

    Energy Technology Data Exchange (ETDEWEB)

    Zamora, Ligia E., E-mail: ligia.zamora@correounivalle.edu.co; Paz, J. C.; Piamba, J. F.; Tabares, J. A.; Alcázar, G. A. Pérez [Universidad del Valle, Departamento de física (Colombia)

    2015-06-15

    The structural and magnetic properties of Fe-doped ZnO are reported in this study, as obtained by mechanical alloying from elemental powders of ZnO and Fe. The properties of Zn{sub 0.90}Fe{sub 0.10}O samples alloying while varying the milling time (6, 12, 24 and 36 h) are also reported. The Rietveld refinement of X-ray Diffraction (XRD) patterns revealed that the system presents two structures: the würtzite structure of ZnO and the bcc structure of α-Fe. The Mössbauer spectra show that the samples present three components: a ferromagnetic component, associated with the Fe phase and two paramagnetic components, associated with the Fe atoms, which penetrate inside the ZnO matrix behaving as Fe{sup 3+} and Fe{sup 2+}. The milling time contributes to an increase in the paramagnetic sites, and a solubility limit of the Fe atoms in the ZnO lattice was detected. The VSM measurements at room temperature detected ferromagnetic behavior with a saturation magnetization of 11 emu/g and a coercive field of 330 Oe for the sample alloyed over 24 h. A similar behavior was shown by the other samples.

  20. Incorporation of Fe3O4/CNTs nanocomposite in an epoxy coating for corrosion protection of carbon steel

    Science.gov (United States)

    Pham, Gia Vu; Truc Trinh, Anh; To, Thi Xuan Hang; Duong Nguyen, Thuy; Trang Nguyen, Thu; Hoan Nguyen, Xuan

    2014-09-01

    In this study Fe3O4/CNTs composite with magnetic property was prepared by attaching magnetic nanoparticles (Fe3O4) to carbon nanotubes (CNTs) by hydrothermal method. The obtained Fe3O4/CNTs composite was characterized by Fourier transform infrared (FTIR) spectroscopy, powder x-ray diffraction and transmission electron microscopy. The Fe3O4/CNTs composite was then incorporated into an epoxy coating at concentration of 3 wt%. Corrosion protection of epoxy coating containing Fe3O4/CNTs composite was evaluated by electrochemical impedance spectroscopy and adhesion measurement. The impedance measurements show that Fe3O4/CNTs composite enhanced the corrosion protection of epoxy coating. The corrosion resistance of the carbon steel coated by epoxy coating containing Fe3O4/CNTs composite was significantly higher than that of carbon steel coated by clear epoxy coating and epoxy coating containing CNTs. FE-SEM photographs of fracture surface of coatings showed good dispersion of Fe3O4/CNTs composite in the epoxy matrix.

  1. Incorporation of Fe3O4/CNTs nanocomposite in an epoxy coating for corrosion protection of carbon steel

    International Nuclear Information System (INIS)

    Pham, Gia Vu; Trinh, Anh Truc; Hang To, Thi Xuan; Nguyen, Thuy Duong; Nguyen, Thu Trang; Nguyen, Xuan Hoan

    2014-01-01

    In this study Fe 3 O 4 /CNTs composite with magnetic property was prepared by attaching magnetic nanoparticles (Fe 3 O 4 ) to carbon nanotubes (CNTs) by hydrothermal method. The obtained Fe 3 O 4 /CNTs composite was characterized by Fourier transform infrared (FTIR) spectroscopy, powder x-ray diffraction and transmission electron microscopy. The Fe 3 O 4 /CNTs composite was then incorporated into an epoxy coating at concentration of 3 wt%. Corrosion protection of epoxy coating containing Fe 3 O 4 /CNTs composite was evaluated by electrochemical impedance spectroscopy and adhesion measurement. The impedance measurements show that Fe 3 O 4 /CNTs composite enhanced the corrosion protection of epoxy coating. The corrosion resistance of the carbon steel coated by epoxy coating containing Fe 3 O 4 /CNTs composite was significantly higher than that of carbon steel coated by clear epoxy coating and epoxy coating containing CNTs. FE-SEM photographs of fracture surface of coatings showed good dispersion of Fe 3 O 4 /CNTs composite in the epoxy matrix. (paper)

  2. Effectiveness of FeEDDHA, FeEDDHMA, and FeHBED in Preventing Iron-Deficiency Chlorosis in Soybean.

    Science.gov (United States)

    Bin, Levi M; Weng, Liping; Bugter, Marcel H J

    2016-11-09

    The performance of FeHBED in preventing Fe deficiency chlorosis in soybean (Glycine max (L.) Merr.) in comparison to FeEDDHA and FeEDDHMA was studied, as well as the importance of the ortho-ortho and ortho-para/rest isomers in defining the performance. To this end, chlorophyll production (SPAD), plant dry matter yield, and the mass fractions of important mineral elements in the plant were quantified in a greenhouse pot experiment. All three Fe chelates increased SPAD index and dry matter yield compared to the control. The effect of FeHBED on chlorophyll production was visible over a longer time span than that of FeEDDHA and FeEDDHMA. Additionally, FeHBED did not suppress Mn uptake as much as the other Fe chelates. Compared to the other Fe chelates, total Fe content in the young leaves was lower in the FeHBED treatment; however, total Fe content was not directly related to chlorophyll production and biomass yield. For each chelate, the ortho-ortho isomer was found to be more effective than the other isomers evaluated.

  3. MIL-100-Fe derived N-doped Fe/Fe3C@C electrocatalysts for efficient oxygen reduction reaction

    Science.gov (United States)

    Guo, Dakai; Han, Sancan; Wang, Jiacheng; Zhu, Yufang

    2018-03-01

    N-doped porous Fe/Fe3C@C electrocatalysts were prepared by the pyrolysis of the hexamethylenetetramine (HMT)-incorporated MIL-100-Fe at different temperatures (700-1000 °C) under N2 atmosphere. Rotary evaporation of MIL-100-Fe and HMT solution could make more N-enriched HMT molecules enter into the pores of MIL-100-Fe, thus improving nitrogen contents of the final pyrolyzed samples. All pyrolyzed samples show porous textures with middle specific surface areas. The X-ray photoelectron spectroscopy (XPS) results demonstrate the successful introduction of N atoms into carbon framework. Sample Fe-N2-800 prepared by annealing the precursors with the HMT/MIL-100-Fe weight ratio of 2 at 800 °C exhibits the best electrocatalytic activity towards the oxygen reduction reaction (ORR) in terms of onset potential and current density because of high graphitic N and pyridinic N content. The enwrapped Fe/Fe3C nanoparticles and Fe-Nx active sites in these samples could also boost the ORR activity synergistically. Moreover, sample Fe-N2-800 demonstrates a dominant four electron reduction process, as well as excellent long-term operation stability and methanol crossover resistance. Thus, the N-doped Fe/Fe3C@C composites derived from the HMT-incorporated MIL-100-Fe are promising electrocatalysts to replace Pt/C for ORR in practical applications.

  4. Immobilization of (dd)heteronuclear hexacyanoferrates(II) in a gelatin matrix

    International Nuclear Information System (INIS)

    Mikhajlov, O.V.

    2008-01-01

    Data pertinent to potentiality of preparing salts of (dd)heteronuclear hexacyanoferrates(II) with(M 1 ) II and (M 2 ) II (M 1 , M 2 = Mn, Co, Ni, Cu, Zn, Cd) as a result of contact between M 1 2 [Fe(CN) 6 ] immobilized in a gelatin matrix and aqueous solutions of metal chlorides have been systematized and summarized. The decisive role of the gelatin matrix, performing the function of an organizing system in formation of (dd)heteronuclear hexacyanoferrates(II) of metals, has been pointed out [ru

  5. Magnetic properties of Fe/NiO/Fe(001) trilayers

    International Nuclear Information System (INIS)

    Biagioni, P.; Brambilla, A.; Portalupi, M.; Rougemaille, N.; Schmid, A.K.; Lanzara, A.; Vavassori, P.; Zani, M.; Finazzi, M.; Duo, L.; Ciccacci, F.

    2005-01-01

    We have investigated the magnetic properties of epitaxially grown Fe/NiO/Fe(001) trilayers, for different thicknesses of the NiO spacer. Magneto Optical Kerr Effect has been exploited to study the in-plane magnetization reversal processes in the iron layers. We found that the NiO thickness t AFM has a critical value t C for the magnetic coupling between the Fe layers: for t AFM C the magnetization directions align perpendicularly, with zero applied field, while the alignment is collinear for thicker spacers. A phenomenological model has been developed to reproduce and discuss the results. Complementary information has been obtained by means of spin polarized low energy electron microscopy

  6. Magnetic properties of Fe/NiO/Fe(001) trilayers

    Energy Technology Data Exchange (ETDEWEB)

    Biagioni, P [INFM - Dipartimento di Fisica, Politecnico di Milano, Piazza Leonardo da Vinci 32, 20133 Milan (Italy); Brambilla, A [INFM - Dipartimento di Fisica, Politecnico di Milano, Piazza Leonardo da Vinci 32, 20133 Milan (Italy); Portalupi, M [INFM - Dipartimento di Fisica, Politecnico di Milano, Piazza Leonardo da Vinci 32, 20133 Milan (Italy); Lawrence Berkeley National Laboratory, Berkeley, CA 94720 (United States); Rougemaille, N [Lawrence Berkeley National Laboratory, Berkeley, CA 94720 (United States); Schmid, A K [Lawrence Berkeley National Laboratory, Berkeley, CA 94720 (United States); Lanzara, A [Lawrence Berkeley National Laboratory, Berkeley, CA 94720 (United States); Department of Physics, University of California at Berkeley, Berkeley, CA 94720 (United States); Vavassori, P [INFM - Dipartimento di Fisica, Universita di Ferrara, Via Paradiso 12, 44100 Ferrara (Italy); Zani, M [INFM - Dipartimento di Fisica, Politecnico di Milano, Piazza Leonardo da Vinci 32, 20133 Milan (Italy); Finazzi, M [INFM - Dipartimento di Fisica, Politecnico di Milano, Piazza Leonardo da Vinci 32, 20133 Milan (Italy); Duo, L [INFM - Dipartimento di Fisica, Politecnico di Milano, Piazza Leonardo da Vinci 32, 20133 Milan (Italy); Ciccacci, F [INFM - Dipartimento di Fisica, Politecnico di Milano, Piazza Leonardo da Vinci 32, 20133 Milan (Italy)

    2005-04-15

    We have investigated the magnetic properties of epitaxially grown Fe/NiO/Fe(001) trilayers, for different thicknesses of the NiO spacer. Magneto Optical Kerr Effect has been exploited to study the in-plane magnetization reversal processes in the iron layers. We found that the NiO thickness t{sub AFM} has a critical value t{sub C} for the magnetic coupling between the Fe layers: for t{sub AFM}

  7. Polylactide-based polyurethane shape memory nanocomposites (Fe3O4/PLAUs) with fast magnetic responsiveness

    International Nuclear Information System (INIS)

    Gu, Shu-Ying; Jin, Sheng-Peng; Gao, Xie-Feng; Mu, Jian

    2016-01-01

    Polylactide-based polyurethane shape memory nanocomposites (Fe 3 O 4 /PLAUs) with fast magnetic responsiveness are presented. For the purpose of fast response and homogeneous dispersion of magnetic nanoparticles, oleic acid was used to improve the dispersibility of Fe 3 O 4 nanoparticles in a polymer matrix. A homogeneous distribution of Fe 3 O 4 nanoparticles in the polymer matrix was obtained for nanocomposites with low Fe 3 O 4 loading content. A small agglomeration was observed for nanocomposites with 6 wt% and 9 wt% loading content, leading to a small decline in the mechanical properties. PLAU and its nanocomposites have glass transition around 52 °C, which can be used as the triggering temperature. PLAU and its nanocomposites have shape fixity ratios above 99%, shape recovery ratios above 82% for the first cycle and shape recovery ratios above 91% for the second cycle. PLAU and its nanocomposites also exhibit a fast water bath or magnetic responsiveness. The magnetic recovery time decreases with an increase in the loading content of Fe 3 O 4 nanoparticles due to an improvement in heating performance for increased weight percentage of fillers. The nanocomposites have fast responses in an alternating magnetic field and have potential application in biomedical areas such as intravascular stent. (paper)

  8. Matrix theory selected topics and useful results

    CERN Document Server

    Mehta, Madan Lal

    1989-01-01

    Matrices and operations on matrices ; determinants ; elementary operations on matrices (continued) ; eigenvalues and eigenvectors, diagonalization of normal matrices ; functions of a matrix ; positive definiteness, various polar forms of a matrix ; special matrices ; matrices with quaternion elements ; inequalities ; generalised inverse of a matrix ; domain of values of a matrix, location and dispersion of eigenvalues ; symmetric functions ; integration over matrix variables ; permanents of doubly stochastic matrices ; infinite matrices ; Alexander matrices, knot polynomials, torsion numbers.

  9. Matrix isolation as a tool for studying interstellar chemical reactions

    Science.gov (United States)

    Ball, David W.; Ortman, Bryan J.; Hauge, Robert H.; Margrave, John L.

    1989-01-01

    Since the identification of the OH radical as an interstellar species, over 50 molecular species were identified as interstellar denizens. While identification of new species appears straightforward, an explanation for their mechanisms of formation is not. Most astronomers concede that large bodies like interstellar dust grains are necessary for adsorption of molecules and their energies of reactions, but many of the mechanistic steps are unknown and speculative. It is proposed that data from matrix isolation experiments involving the reactions of refractory materials (especially C, Si, and Fe atoms and clusters) with small molecules (mainly H2, H2O, CO, CO2) are particularly applicable to explaining mechanistic details of likely interstellar chemical reactions. In many cases, matrix isolation techniques are the sole method of studying such reactions; also in many cases, complexations and bond rearrangements yield molecules never before observed. The study of these reactions thus provides a logical basis for the mechanisms of interstellar reactions. A list of reactions is presented that would simulate interstellar chemical reactions. These reactions were studied using FTIR-matrix isolation techniques.

  10. Melting relations in the Fe-rich portion of the system FeFeS at 30 kb pressure

    Science.gov (United States)

    Brett, R.; Bell, P.M.

    1969-01-01

    The melting relations of FeFeS mixtures covering the composition range from Fe to Fe67S33 have been determined at 30 kb pressure. The phase relations are similar to those at low pressure. The eutectic has a composition of Fe72.9S27.1 and a temperature of 990??C. Solubility of S in Fe at elevated temperatures at 30 kb is of the same order of magnitude as at low pressure. Sulfur may have significantly lowered the melting point of iron in the upper mantle during the period of coalescence of metal prior to core formation in the primitive earth. ?? 1969.

  11. Parallel Sparse Matrix - Vector Product

    DEFF Research Database (Denmark)

    Alexandersen, Joe; Lazarov, Boyan Stefanov; Dammann, Bernd

    This technical report contains a case study of a sparse matrix-vector product routine, implemented for parallel execution on a compute cluster with both pure MPI and hybrid MPI-OpenMP solutions. C++ classes for sparse data types were developed and the report shows how these class can be used...

  12. Unravelling the nuclear matrix proteome

    DEFF Research Database (Denmark)

    Albrethsen, Jakob; Knol, Jaco C; Jimenez, Connie R

    2009-01-01

    The nuclear matrix (NM) model posits the presence of a protein/RNA scaffold that spans the mammalian nucleus. The NM proteins are involved in basic nuclear function and are a promising source of protein biomarkers for cancer. Importantly, the NM proteome is operationally defined as the proteins...

  13. Amorphous metal matrix composite ribbons

    International Nuclear Information System (INIS)

    Barczy, P.; Szigeti, F.

    1998-01-01

    Composite ribbons with amorphous matrix and ceramic (SiC, WC, MoB) particles were produced by modified planar melt flow casting methods. Weldability, abrasive wear and wood sanding examinations were carried out in order to find optimal material and technology for elevated wear resistance and sanding durability. The correlation between structure and composite properties is discussed. (author)

  14. Hyper-systolic matrix multiplication

    NARCIS (Netherlands)

    Lippert, Th.; Petkov, N.; Palazzari, P.; Schilling, K.

    A novel parallel algorithm for matrix multiplication is presented. It is based on a 1-D hyper-systolic processor abstraction. The procedure can be implemented on all types of parallel systems. (C) 2001 Elsevier Science B,V. All rights reserved.

  15. Matrix Metalloproteinases in Myasthenia Gravis

    NARCIS (Netherlands)

    Helgeland, G.; Petzold, A.F.S.; Luckman, S.P.; Gilhus, N.E.; Plant, G.T.; Romi, F.R.

    2011-01-01

    Introduction: Myasthenia gravis (MG) is an autoimmune disease with weakness in striated musculature due to anti-acetylcholine receptor (AChR) antibodies or muscle specific kinase at the neuromuscular junction. A subgroup of patients has periocular symptoms only; ocular MG (OMG). Matrix

  16. Concept for Energy Security Matrix

    International Nuclear Information System (INIS)

    Kisel, Einari; Hamburg, Arvi; Härm, Mihkel; Leppiman, Ando; Ots, Märt

    2016-01-01

    The following paper presents a discussion of short- and long-term energy security assessment methods and indicators. The aim of the current paper is to describe diversity of approaches to energy security, to structure energy security indicators used by different institutions and papers, and to discuss several indicators that also play important role in the design of energy policy of a state. Based on this analysis the paper presents a novel Energy Security Matrix that structures relevant energy security indicators from the aspects of Technical Resilience and Vulnerability, Economic Dependence and Political Affectability for electricity, heat and transport fuel sectors. Earlier publications by different authors have presented energy security assessment methodologies that use publicly available indicators from different databases. Current paper challenges viability of some of these indicators and introduces new indicators that would deliver stronger energy security policy assessments. Energy Security Matrix and its indicators are based on experiences that the authors have gathered as high-level energy policymakers in Estonia, where all different aspects of energy security can be observed. - Highlights: •Energy security should be analysed in technical, economic and political terms; •Energy Security Matrix provides a framework for energy security analyses; •Applicability of Matrix is limited due to the lack of statistical data and sensitivity of output.

  17. The COMPADRE Plant Matrix Database

    DEFF Research Database (Denmark)

    2014-01-01

    COMPADRE contains demographic information on hundreds of plant species. The data in COMPADRE are in the form of matrix population models and our goal is to make these publicly available to facilitate their use for research and teaching purposes. COMPADRE is an open-access database. We only request...

  18. A two-matrix alternative

    Czech Academy of Sciences Publication Activity Database

    Rohn, Jiří

    2013-01-01

    Roč. 26, 15 December (2013), s. 836-841 ISSN 1537-9582 Institutional support: RVO:67985807 Keywords : two-matrix alternative * solution * algorithm Subject RIV: BA - General Mathematics Impact factor: 0.514, year: 2013 http://www.math.technion.ac.il/iic/ ela / ela -articles/articles/vol26_pp836-841.pdf

  19. Regularization in Matrix Relevance Learning

    NARCIS (Netherlands)

    Schneider, Petra; Bunte, Kerstin; Stiekema, Han; Hammer, Barbara; Villmann, Thomas; Biehl, Michael

    A In this paper, we present a regularization technique to extend recently proposed matrix learning schemes in learning vector quantization (LVQ). These learning algorithms extend the concept of adaptive distance measures in LVQ to the use of relevance matrices. In general, metric learning can

  20. Strong 3D and 1D magnetism in hexagonal Fe-chalcogenides FeS and FeSe vs. weak magnetism in hexagonal FeTe

    Energy Technology Data Exchange (ETDEWEB)

    Parker, David S. [Oak Ridge National Lab. (ORNL), Oak Ridge, TN (United States)

    2017-06-13

    We present a comparative theoretical study of the hexagonal forms of the Fe-chalcogenides FeS, FeSe and FeTe with their better known tetragonal forms. While the tetragonal forms exhibit only an incipient antiferromagnetism and experimentally show superconductivity when doped, the hexagonal forms of FeS and FeSe display a robust magnetism. We show that this strong magnetism arises from a van Hove singularity associated with the direct Fe-Fe c-axis chains in the generally more three-dimensional NiAs structure. We also find that hexagonal FeTe is much less magnetic than the other two hexagonal materials, so that unconventional magnetically-mediated superconductivity is possible, although a large Tc value is unlikely.

  1. Strong 3D and 1D magnetism in hexagonal Fe-chalcogenides FeS and FeSe vs. weak magnetism in hexagonal FeTe.

    Science.gov (United States)

    Parker, David S

    2017-06-13

    We present a comparative theoretical study of the hexagonal forms of the Fe-chalcogenides FeS, FeSe and FeTe with their better known tetragonal forms. While the tetragonal forms exhibit only an incipient antiferromagnetism and experimentally show superconductivity when doped, the hexagonal forms of FeS and FeSe display a robust magnetism. We show that this strong magnetism arises from a van Hove singularity associated with the direct Fe-Fe c-axis chains in the generally more three-dimensional NiAs structure. We also find that hexagonal FeTe is much less magnetic than the other two hexagonal materials, so that unconventional magnetically-mediated superconductivity is possible, although a large T c value is unlikely.

  2. Calculation of attenuation by rain using the DAH model and diameter of antennas for the Ka Band in Mexico; Calculo de atenuacion por lluvia usando el modelo DAH y diametro de antena para Banda Ka en Mexico

    Energy Technology Data Exchange (ETDEWEB)

    Landeros-Ayala, S.; Neri-Vela, R; Cruz-Sanchez, H.; Hernandez-Bautista, H. [Universidad Nacional Autonoma de Mexico, Mexico, D.F. (Mexico)

    2002-03-01

    Fatim Haidara), combinado con los mapas globales de distribucion de lluvia de Crane, para el calculo de la atencion por lluvia en sistema de comunicacion por satelite que operen en la Banda Ka. Ademas, se proponen diametros de antena para los sistemas de comunicaciones en Banda Ka en diferentes localidades de la Republica Mexicana, empleando para ello, los margenes de atencion por lluvia obtenidos a trav del Modelo DAH, y usando como referencia las caracteristicas del satelite de comunicaciones ANIK F2 y de una estacion terrena VSAT.Se muestra una fig. de la atenuacion por lluvia a 27.5 gHz y de los diametros de antena para banda Ka en Mexico. Se da una tabla de la atenuacion por lluvia a 29.5 GHz y a 20.2 GHz.

  3. Systems for the calculation of electrical parameters and energy efficiency for high-capacity hydroelectric generators; Sistemas para el calculo de parametros electricos y eficiencia energetica para generadores hidroelectricos de gran capacidad

    Energy Technology Data Exchange (ETDEWEB)

    Reyes Martinez, Oscar Alfonso; Pascacio de los Santos, Alberth; Perez Abad, Carlos Alberto [Instituto de Investigaciones Electricas, Cuernavaca, Morelos (Mexico); Leon Rivera, Nicolas [CFE-LAPEM, Irapuato, Guanajuato (Mexico)

    2012-07-01

    construccion es la Central Hidroelectrica La Yesca, el cual concluira a finales de 2012 y consiste en dos generadores electricos de 375 MW, 17 kV. Sera el segundo en potencia y el tercero en generacion electrica en el sistema. De acuerdo con las normas nacionales e internacionales, debe efectuarse un conjunto de pruebas estaticas y dinamicas en estos generadores antes de la puesta en servicio, para asegurar su operacion apropiada. La prueba de resistencia de alto voltaje del devanado del estator, la prueba de corto circuito subito trifasico y el calculo de eficiencia energetica son algunas de las pruebas mas importantes por realizar en un nuevo generador electrico. Estas pruebas son dificiles de efectuar en sitio debido a la capacidad del equipo requerido, por lo que muy pocas companias en el mundo pueden conducirlas.

  4. Sol-gel synthesis and characterization of single-phase Ni ferrite nanoparticles dispersed in SiO2 matrix

    International Nuclear Information System (INIS)

    Nadeem, K.; Traussnig, T.; Letofsky-Papst, I.; Krenn, H.; Brossmann, U.; Wuerschum, R.

    2010-01-01

    Nanoparticles of NiFe 2 O 4 dispersed in SiO 2 (25 wt%) matrix were synthesized by sol-gel method using tetraethyl orthosilicate (TEOS), as a precursor for SiO 2 . The sol-gel method for nanocomposites normally provides multi-phase nanoparticles. We investigated by a synopsis of different analysis methods, X-ray diffraction (XRD), Fourier transform infrared spectroscopy (FTIR) and SQUID-magnetometry, how the various chemical phases are transformed to a single-phase spinel structure during the various stages of annealing from 300 to 900 o C. We have developed a full phase diagram of chemical phases as a function of annealing temperature. The average particle size lies in the range 16-27 nm. The chemical phases formed below 900 o C are NiFe, NiO, γ-Fe 2 O 3 , α-Fe 2 O 3 , and NiFe 2 O 4 , respectively. The role of the TEOS prepared SiO 2 matrix is to restrict the particle size in a small range in order to rule out particle size effects. In the mid-infrared, a shift of the vibrational Fe-O bond is observed from 568 to 586 cm -1 for annealing between 500 and 700 o C which indicates an increasing NiFe 2 O 4 phase formation. A systematic study of coercivity field (ranging from 32 to 200 Oe) and saturation magnetic moment (ranging from 12.2 to 32.1 emu/g) for differently annealed samples supports our findings about the evolution of single-phase NiFe 2 O 4 at 900 o C. The opposite trend of saturation magnetic moment and coercivity with respect to annealing temperature clearly separates the different phases of metallic, antiferromagnetic, and finally single-phase spinel NiFe 2 O 4 .

  5. Influence of an Fe cap layer on the structural and magnetic properties of Fe49Pt51/Fe bi-layers

    International Nuclear Information System (INIS)

    Chao-Yang, Duan; Bin, Ma; Zong-Zhi, Zhang; Qing-Yuan, Jin; Fu-Lin, Wei

    2009-01-01

    The influences of an Fe cap layer on the structural and magnetic properties of FePt/Fe bi-layers are investigated. Compared with single FePt alloy films, a thin Fe layer can affect the crystalline orientation and improve the chemical ordering of L1 0 FePt films. Moreover, the coercivity increases when a thin Fe layer covers the FePt layer. Beyond a critical thickness, however, the Fe cover layer quickens the magnetization reversal of Fe 49 Pt 51 /Fe bi-layers by their exchange coupling

  6. Structure of AlmFe

    International Nuclear Information System (INIS)

    Skjerpe, P.

    1988-01-01

    The metastable phase Al m Fe (m=4.9-4.4, bodycentred tetragonal, a=8.84, c=21.6 A) has been examined by transmission electron microscopy and high-resolution electron microscopy (HREM). Crystals, 1-10 μm in size, were extracted from a cast Al-0.25 wt%Fe-0.13wt%Si alloy of commercial purity. By the use of electron diffraction patterns, a possible structure model for Al m Fe was set up, assuming space group I4/mmm. The model was in qualitative agreement with diffraction patterns as well as HREM micrographs, recorded in and . Streaks along hhO in the diffraction patterns were ascribed to faults on (110). (orig.)

  7. Effects of metal ions on the reactivity and corrosion electrochemistry of Fe/FeS nanoparticles.

    Science.gov (United States)

    Kim, Eun-Ju; Kim, Jae-Hwan; Chang, Yoon-Seok; Turcio-Ortega, David; Tratnyek, Paul G

    2014-04-01

    Nano-zerovalent iron (nZVI) formed under sulfidic conditions results in a biphasic material (Fe/FeS) that reduces trichloroethene (TCE) more rapidly than nZVI associated only with iron oxides (Fe/FeO). Exposing Fe/FeS to dissolved metals (Pd(2+), Cu(2+), Ni(2+), Co(2+), and Mn(2+)) results in their sequestration by coprecipitation as dopants into FeS and FeO and/or by electroless precipitation as zerovalent metals that are hydrogenation catalysts. Using TCE reduction rates to probe the effect of metal amendments on the reactivity of Fe/FeS, it was found that Mn(2+) and Cu(2+) decreased TCE reduction rates, while Pd(2+), Co(2+), and Ni(2+) increased them. Electrochemical characterization of metal-amended Fe/FeS showed that aging caused passivation by growth of FeO and FeS phases and poisoning of catalytic metal deposits by sulfide. Correlation of rate constants for TCE reduction (kobs) with electrochemical parameters (corrosion potentials and currents, Tafel slopes, and polarization resistance) and descriptors of hydrogen activation by metals (exchange current density for hydrogen reduction and enthalpy of solution into metals) showed the controlling process changed with aging. For fresh Fe/FeS, kobs was best described by the exchange current density for activation of hydrogen, whereas kobs for aged Fe/FeS correlated with electrochemical descriptors of electron transfer.

  8. Experimental investigation of inhomogeneities, nanoscopic phase separation, and magnetism in arc melted Fe-Cu metals with equal atomic ratio of the constituents

    KAUST Repository

    Hassnain Jaffari, G.; Aftab, M.; Anjum, Dalaver H.; Cha, Dong Kyu; Poirier, Gerald; Ismat Shah, S.

    2015-01-01

    Composition gradient and phase separation at the nanoscale have been investigated for arc-melted and solidified with equiatomic Fe-Cu. Diffraction studies revealed that Fe and Cu exhibited phase separation with no trace of any mixing. Microscopy studies revealed that immiscible Fe-Cu form dense bulk nanocomposite. The spatial distribution of Fe and Cu showed existence of two distinct regions, i.e., Fe-rich and Cu-rich regions. Fe-rich regions have Cu precipitates of various sizes and different shapes, with Fe forming meshes or channels greater than 100 nm in size. On the other hand, the matrix of Cu-rich regions formed strips with fine strands of nanosized Fe. Macromagnetic response of the system showed ferromagnetic behavior with a magnetic moment being equal to about 2.13 μB/Fe atom and a bulk like negligible value of coercivity over the temperature range of 5–300 K. Anisotropy constant has been calculated from various laws of approach to saturation, and its value is extracted to be equal to 1350 J/m3. Inhomogeneous strain within the Cu and Fe crystallites has been calculated for the (unannealed) sample solidified after arc-melting. Annealed sample also exhibited local inhomogeneity with removal of inhomogeneous strain and no appreciable change in magnetic character. However, for the annealed sample phase separated Fe exhibited homogenous strain.

  9. Experimental investigation of inhomogeneities, nanoscopic phase separation, and magnetism in arc melted Fe-Cu metals with equal atomic ratio of the constituents

    KAUST Repository

    Hassnain Jaffari, G.

    2015-12-16

    Composition gradient and phase separation at the nanoscale have been investigated for arc-melted and solidified with equiatomic Fe-Cu. Diffraction studies revealed that Fe and Cu exhibited phase separation with no trace of any mixing. Microscopy studies revealed that immiscible Fe-Cu form dense bulk nanocomposite. The spatial distribution of Fe and Cu showed existence of two distinct regions, i.e., Fe-rich and Cu-rich regions. Fe-rich regions have Cu precipitates of various sizes and different shapes, with Fe forming meshes or channels greater than 100 nm in size. On the other hand, the matrix of Cu-rich regions formed strips with fine strands of nanosized Fe. Macromagnetic response of the system showed ferromagnetic behavior with a magnetic moment being equal to about 2.13 μB/Fe atom and a bulk like negligible value of coercivity over the temperature range of 5–300 K. Anisotropy constant has been calculated from various laws of approach to saturation, and its value is extracted to be equal to 1350 J/m3. Inhomogeneous strain within the Cu and Fe crystallites has been calculated for the (unannealed) sample solidified after arc-melting. Annealed sample also exhibited local inhomogeneity with removal of inhomogeneous strain and no appreciable change in magnetic character. However, for the annealed sample phase separated Fe exhibited homogenous strain.

  10. CO_2 capture in Mg oxides doped with Fe and Ni

    International Nuclear Information System (INIS)

    Sanchez S, I. F.

    2016-01-01

    In this work the CO_2 capture-desorption characteristics in Mg oxides doped with Fe and Ni obtained by the direct oxidation of Mg-Ni and Mg-Fe mixtures are presented. Mixtures of Mg-Ni and Mg-Fe in a different composition were obtained by mechanical milling in a Spex-type mill in a controlled atmosphere of ultra high purity argon at a weight / weight ratio of 4:1 powder using methanol as a lubricating agent, for 20 h. The powders obtained by mechanical milling showed as main phase, the Mg with nanocrystalline structure. Subsequently, the mixtures of Mg-Ni and Mg-Fe were oxidized within a muffle for 10 min at 600 degrees Celsius. By means of X-ray diffraction analysis, the Mg O with nano metric grain size was identified as the main phase, which was determined by the Scherrer equation. In the Mg O doped with Ni, was identified that as the Ni amount 1 to 5% by weight dispersed in the Mg O matrix was increased, the main peak intensity of the Ni phase increased, whereas in the Mg O doped with Fe was observed by XRD, that the Fe_2O_3 phase was present and by increasing the amount of Fe (1 to 5% by weight) dispersed in the crystalline phase of Mg O, the intensity of this impurity also increased. Sem-EDS analysis showed that the Ni and Fe particles are dispersed homogeneously in the Mg O matrix, and the particles are porous, forming agglomerates. Through energy dispersive spectroscopy analysis, the elemental chemical composition obtained is very close to the theoretical composition. The capture of CO_2 in the Mg O-1% Ni was carried out in a Parr reactor at different conditions of pressure, temperature and reaction time. Was determined that under the pressure of 0.2 MPa at 26 degrees Celsius for 1 h of reaction, the highest CO_2 capture of 7.04% by weight was obtained, while in Mg O-1% Fe the CO_2 capture was 6.32% by weight. The other magnesium oxides doped in 2.5 and 5% by weight Ni and Fe showed lower CO_2 capture. The different stages of mass loss and thermal

  11. Application research of ferrous matrix composites in roller ring used in high-speed wire/bar rolling mill

    International Nuclear Information System (INIS)

    Song Yanpei; Li Xiuqing; Bi Shuangxu

    2010-01-01

    Research highlights: → A composite structure roller rings was fabricated by centrifugal casting. → The roller rings consisted of outer WCP/Fe-C composites layer and inner Fe-C alloy matrix. → Hardness attained to HRA80-85 in the composites layer, and HRA73-76 in inner Fe-C alloy matrix where the toughness was over 8 J/cm 2 . → The wear resistance of the roller rings excelled that of high-speed steel, and approached to that of the WC hard alloy roll. → The production cost of the WCP/Fe-C composites roller ring decreased by 50%. - Abstract: Tungsten carbide particle (WC P ) reinforced ferrous matrix composites roller rings were fabricated by centrifugal casting. The microstructures, properties and application effect of the composites roller rings were investigated by SEM, TEM and various property testers. The experimental results show that the WC P were uniformly distributed in outer reinforced-layer (working-layer) of 20-50 mm in thickness and their volume fraction reached 60-80 vol.%; there was a good interface bonding between WC P and Fe-C alloy without any reaction products; hardness attained to HRA80-85 in working-layer, and HRA73-76 in inner ferrous matrix where the toughness was over 8 J/cm 2 ; the wear resistance of the composites roller rings excels that of high-speed steel; service life of the composites parts approached to that of the WC hard alloy roll when the same WC P -volume-fraction in working-layer were obtained for both of them, but the production cost of the WC P /Fe-C composites roller ring decreased by 50%.

  12. Speciation of Fe in Fe-modified zeolite catalysts

    Czech Academy of Sciences Publication Activity Database

    Smoláková, L.; Grygar, Tomáš; Čapek, L.; Schneeweiss, Oldřich; Zbořil, R.

    2010-01-01

    Roč. 647, č. 1 (2010), s. 8-19 ISSN 1572-6657 Institutional research plan: CEZ:AV0Z40320502; CEZ:AV0Z20410507 Keywords : solid state speciation * Fe2O3 * heterogeneous catalysts Subject RIV: CB - Analytical Chemistry, Separation Impact factor: 2.732, year: 2010

  13. Magnetic properties of Fe1-xMnx/Fe nanocomposites

    DEFF Research Database (Denmark)

    Anhøj, Thomas Aarøe; Jacobsen, Claus Schelde; Mørup, Steen

    2004-01-01

    of the two materials showed enhanced coercivity, but almost negligible exchange bias at room temperature after field cooling from 520 K. However, samples with higher content of gamma-Fe50Mn50 showed significant exchange bias. The mechanisms for exchange bias and enhanced coercivity in the system...

  14. Stabilization of the high coercivity ε-Fe2O3 phase in the CeO2–Fe2O3/SiO2 nanocomposites

    International Nuclear Information System (INIS)

    Mantlikova, A.; Poltierova Vejpravova, J.; Bittova, B.; Burianova, S.; Niznansky, D.; Ardu, A.; Cannas, C.

    2012-01-01

    We have investigated the processes leading to the formation of the Fe 2 O 3 and CeO 2 nanoparticles in the SiO 2 matrix in order to stabilize the ε-Fe 2 O 3 as the major phase. The samples with two different concentrations of the Fe were prepared by sol–gel method, subsequently annealed at different temperatures up to 1100 °C, and characterized by the Mössbauer spectroscopy, Transmission Electron Microscopy (TEM), Powder X-ray Diffraction (PXRD), Energy Dispersive X-ray analysis (EDX) and magnetic measurements. The evolution of the different Fe 2 O 3 phases under various conditions of preparation was investigated, starting with the preferential appearance of the γ-Fe 2 O 3 phase for the sample with low Fe concentration and low annealing temperature and stabilization of the major ε-Fe 2 O 3 phase for high Fe concentration and high annealing temperature, coexisting with the most stable α-Fe 2 O 3 phase. A continuous increase of the particle size of the CeO 2 nanocrystals with increasing annealing temperature was also observed. - Graphical abstract: The graphical abstract displays the most important results of our work. The significant change of the phase composition due to the variation of preparation conditions is demonstrated. As a result, significant change of the magnetic properties from superparamagnetic γ-Fe 2 O 3 phase with negligible coercivity to the high coercivity ε-Fe 2 O 3 phase has been observed. Highlights: ► Research of the stabilization of the high coercivity ε-Fe 2 O 3 in CeO 2 –Fe 2 O 3 /SiO 2 . ► Samples with two different concentrations of Fe and three annealing temperatures. ► Phase transition γ→ε→(β)→α with increasing annealing temperature and particle size. ► Elimination of the superparamagnetic phases in samples with higher content of Fe. ► Best conditions for high coercivity ε-Fe 2 O 3 —higher Fe content and T A =1100°C.

  15. Tailoring mechanical and antibacterial properties of chitosan/gelatin nanofiber membranes with Fe{sub 3}O{sub 4} nanoparticles for potential wound dressing application

    Energy Technology Data Exchange (ETDEWEB)

    Cai, Ning; Li, Chao; Han, Chao; Luo, Xiaogang [Key Laboratory for Green Chemical Process of Ministry of Education & Hubei Key Laboratory of Novel Reactor & Green Chemical Technology, School of Chemical Engineering and Pharmacy, Wuhan Institute of Technology, Wuhan 430073 (China); Shen, Liang [Department of Chemical and Biochemical Engineering, College of Chemistry and Chemical Engineering, Xiamen University, Xiamen 361005 (China); Xue, Yanan [Key Laboratory for Green Chemical Process of Ministry of Education & Hubei Key Laboratory of Novel Reactor & Green Chemical Technology, School of Chemical Engineering and Pharmacy, Wuhan Institute of Technology, Wuhan 430073 (China); Yu, Faquan, E-mail: fyuwucn@gmail.com [Key Laboratory for Green Chemical Process of Ministry of Education & Hubei Key Laboratory of Novel Reactor & Green Chemical Technology, School of Chemical Engineering and Pharmacy, Wuhan Institute of Technology, Wuhan 430073 (China)

    2016-04-30

    Graphical abstract: - Highlights: • Fe{sub 3}O{sub 4} nanoparticles/chitosan (CS)/gelatin (GE) nanofibers were electrospun facilely. • Introducing Fe{sub 3}O{sub 4} enhanced mechanical and antibacterial properties of CS/GE nanofibers. • Mechanical enhancement relied on good filler dispersion and filler-matrix adhesion. • Fe{sub 3}O{sub 4}/CS/GE nanofiber membranes are promising candidates as wound dressings. - Abstract: In this work, magnetic Fe{sub 3}O{sub 4} nanoparticles (NPs) were utilized to improve the mechanical and antibacterial properties of chitosan (CS)/gelatin (GE) composite nanofiber membranes. Homogeneous Fe{sub 3}O{sub 4}/CS/GE nanofibers were electrospun successfully. Scanning electron microscopy (SEM) and transmission electron microscopy (TEM) images confirmed the presence of well-dispersed Fe{sub 3}O{sub 4} NPs in the composite nanofibers. Fourier transform infrared spectroscopy (FTIR) spectra revealed the effective interactions of Fe{sub 3}O{sub 4} NPs to the composite matrix through hydrogen bonding. The improvement on the thermal stability of the Fe{sub 3}O{sub 4}/CS/GE was observed by differential scanning calorimetry (DSC) and thermo gravimetric analysis (TGA), which is tightly correlated to strong filler-matrix adhesion. The incorporation of Fe{sub 3}O{sub 4} NPs resulted in a substantial enhancement of mechanical properties. The optimum mechanical performance was demonstrated on 1 wt% Fe{sub 3}O{sub 4}/CS/GE nanofiber membranes, achieving 155% augment of Young's modulus, 128% increase of tensile strength, and 100% boost of toughness from CS/GE. The excellent mechanical enhancement can be explained by the effective dispersion of fillers and the filler-matrix interactions, which ensures the efficient load transfer from CS/GE matrix to Fe{sub 3}O{sub 4} nanofillers. Moreover, zones of inhibition for Escherichia coli and Staphylococcus aureus expanded markedly with the supplement of Fe{sub 3}O{sub 4} NPs. In all, nanofiber

  16. Omentin-1 prevents cartilage matrix destruction by regulating matrix metalloproteinases.

    Science.gov (United States)

    Li, Zhigang; Liu, Baoyi; Zhao, Dewei; Wang, BenJie; Liu, Yupeng; Zhang, Yao; Li, Borui; Tian, Fengde

    2017-08-01

    Matrix metalloproteinases (MMPs) play a crucial role in the degradation of the extracellular matrix and pathological progression of osteoarthritis (OA). Omentin-1 is a newly identified anti-inflammatory adipokine. Little information regarding the protective effects of omentin-1 in OA has been reported before. In the current study, our results indicated that omentin-1 suppressed expression of MMP-1, MMP-3, and MMP-13 induced by the proinflammatory cytokine interleukin-1β (IL-1β) at both the mRNA and protein levels in human chondrocytes. Importantly, administration of omentin-1 abolished IL-1β-induced degradation of type II collagen (Col II) and aggrecan, the two major extracellular matrix components in articular cartilage, in a dose-dependent manner. Mechanistically, omentin-1 ameliorated the expression of interferon regulatory factor 1 (IRF-1) by blocking the JAK-2/STAT3 pathway. Our results indicate that omentin-1 may have a potential chondroprotective therapeutic capacity. Copyright © 2017 Elsevier Masson SAS. All rights reserved.

  17. Wear resistance of TiB/sub 2/-Fe cermets

    International Nuclear Information System (INIS)

    Champagne, B.; Dallaire, S.

    1985-01-01

    A material which consists of TiB/sub 2/ dispersed in an iron matrix was synthesized by the exothermic reaction of ferrotitanium and boron. The as-reacted products were hot isostatically pressed to produce TiB/sub 2/-Fe cermets. The influence of HIP variables on the density and total fractional porosity of specimens is presented. Density above 95% is obtained by HIPping at temperatures below 1300 0 C. Increasing the temperature and the time of HIPping enhance the mechanical properties and wear resistance of TiB/sub 2/-Fe cermets by reducing their residual porosity. Relations obtained by regression analysis showed that the porosity strongly affects the properties of parts. Regression analysis point out that the wear loss of a 5% porosity TiB/sub 2/-Fe cermet is 270% higher than a dense HIPped cermet. Low stress and high stress abrasion resistance tests utilizing various abrasive media were carried out on dense HIPped cermets and results were compared with those obtained from WC-Co cermets and 1020 steel

  18. Equilibrium Fe isotope fractionation between inorganic aqueous Fe(III) and the siderophore complex, Fe(III)-desferrioxamine B

    DEFF Research Database (Denmark)

    Dideriksen, Knud; Baker, Joel A.; Stipp, Susan Louise Svane

    2008-01-01

    be controlled by isotope fractionation between the free and complexed iron.We have determined the equilibrium Fe isotope fractionation induced by organic ligand activity in experiments with solutions having co-existing inorganic Fe(III) species and siderophore complexes, Fedesferrioxamine B (at pH 2). The two......-type fractionation during precipitation, this experiment yielded an isotope fractionation factor of a56Fesolution-solid=1.00027. Calculations based on these results indicate that isotopic re-equilibration is unlikely to significantly affect our determined equilibrium Fe isotope fractionation between inorganically...... and organically complexed Fe. To determine the equilibrium Fe isotope fractionation between inorganically and organically bound Fe(III), experiments with variable proportions of inorganic Fe were carried out at 25 °C. Irrespective of the proportion of inorganic Fe, equilibrium fractionation factors were within...

  19. Anomalous superconducting spin-valve effect in NbN/FeN/Cu/FeN/FeMn multilayers

    Energy Technology Data Exchange (ETDEWEB)

    Hwang, Tae Jong; Kim, Dong Ho [Yeungnam University, Gyeongsan (Korea, Republic of)

    2017-09-15

    We have studied magnetic and transport properties of NbN/FeN/Cu/FeN/FeMn spin-valve structure. In-plane magnetic moment exhibited typical hysteresis loops of spin valves in the normal state of NbN film at 20 K. On the other hand, the magnetic hysteresis loop in the superconducting state exhibited more complex behavior in which exchange bias provided by antiferrmagnetic FeMn layer to adjacent FeN layer was disturbed by superconductivity. Because of this, the ideal superconducting spin-valve effect was not detected. Instead the stray field originated from unsaturated magnetic states dominated the transport properties of NbN/FeN/Cu/FeN/FeMn multilayer.

  20. Giant magnetoimpedance effect in sputtered single layered NiFe film and meander NiFe/Cu/NiFe film

    International Nuclear Information System (INIS)

    Chen, L.; Zhou, Y.; Lei, C.; Zhou, Z.M.; Ding, W.

    2010-01-01

    Giant magnetoimpedance (GMI) effect on NiFe thin film is very promising due to its application in developing the magnetic field sensors with highly sensitivity and low cost. In this paper, the single layered NiFe thin film and NiFe/Cu/NiFe thin film with a meander structure are prepared by the MEMS technology. The influences of sputtering parameters, film structure and conductor layer width on GMI effect in NiFe single layer and meander NiFe/Cu/NiFe film are investigated. Maximum of the GMI ratio in single layer and sandwich film is 5% and 64%, respectively. The results obtained are useful for developing the high-performance magnetic sensors based on NiFe thin film.

  1. Asymmetric interfaces in Fe/Ag and Ag/Fe bilayers prepared by molecular beam evaporation

    Energy Technology Data Exchange (ETDEWEB)

    Tunyogi, A. [KFKI Research Institute for Particle and Nuclear Physics, P.O. Box 49, H-1525 Budapest (Hungary)]. E-mail: tunyogi@rmki.kfki.hu; Paszti, F. [KFKI Research Institute for Particle and Nuclear Physics, P.O. Box 49, H-1525 Budapest (Hungary); Osvath, Z. [MTA Research Institute for Technical Physics and Materials Science, P.O. Box 49, H-1525 Budapest (Hungary); Tancziko, F. [KFKI Research Institute for Particle and Nuclear Physics, P.O. Box 49, H-1525 Budapest (Hungary); Major, M. [KFKI Research Institute for Particle and Nuclear Physics, P.O. Box 49, H-1525 Budapest (Hungary); Szilagyi, E. [KFKI Research Institute for Particle and Nuclear Physics, P.O. Box 49, H-1525 Budapest (Hungary)

    2006-08-15

    Single layers of Fe and Ag, as well as Fe/Ag (iron deposited first) and Ag/Fe bilayers were prepared by molecular beam evaporation onto Si. The samples were investigated with backscattering spectrometry (BS) and atomic force microscopy (AFM). BS spectra of Fe/Ag and Ag/Fe indicate a significant difference at the interface. In the case of Fe/Ag the Ag peak has a long tail at the interface, while for Ag/Fe the interface is abrupt. The tail in the Fe/Ag spectrum is too large to be caused by double or plural scattering. According to AFM, the effect of surface roughness is also negligible. In spite of the fact that Fe and Ag are completely immiscible in equilibrium, this tail, however, suggests that some Ag is located in the Fe layer. After annealing, both samples show mixing between the two layers; this is much larger again for Fe/Ag.

  2. Matrix composition effects on the tensile properties of tungsten-molybdenum heavy alloys

    International Nuclear Information System (INIS)

    Bose, A.; German, R.N.

    1990-01-01

    Tungsten-base heavy alloys are liquid-phase sintered from mixed tungsten, nickel, and iron powders. The sintered product is a composite consisting of interlaced tungsten and solidified matrix (W-Ni-Fe) phases. These alloys are most useful in applications requiring high density, strength, and toughness. The design of improved tungsten heavy alloys has been the subject of several research investigations. Much success has taken place through improved processing, but parallel compositional studies have resulted in new microstructure-property combinations. As part of these investigations, the Ni/Fe ratio has been varied, with the general conclusion that optimal strength and ductility occur with a ratio between 2 and 4. Brittle intermetallic phases can form outside of this composition range. Historically, a 7/3 Ni/Fe ratio has been selected for processing studies. Recently, others reported higher ductilities and impact energies for 90 and 93 pct W heavy alloys with the 8/2 Ni/Fe ratio. Alternatively, these alloys can be strengthened by both solid solution and grain size refinement through incorporation of molybdenum, tantalum, or rhenium. These additions are soluble in both the tungsten and matrix phases and retard solution-reprecipitation during liquid phase sintering. In this study, the alloy composition was varied in the nickel/iron ratio and molybdenum was partially substituted for tungsten. The sintered tensile properties are assessed vs these compositional variations

  3. A Polycarboxyl-Decorated FeIII -Based Xerogel-Derived Multifunctional Composite (Fe3 O4 /Fe/C) as an Efficient Electrode Material towards Oxygen Reduction Reaction and Supercapacitor Application.

    Science.gov (United States)

    Devi, Bandhana; Venkateswarulu, Mangili; Kushwaha, Himmat Singh; Halder, Aditi; Koner, Rik Rani

    2018-05-02

    Low cost, non-noble metal catalysts with a good oxygen reduction reaction (ORR) activity comparable to that of platinum and also having good energy storage properties are highly desirable but challenging. Several challenges are associated with the development of such materials. Herein, we demonstrate a new polycarboxyl-functionalised Fe III -based gel material, synthesised following a solvothermal method and the development of its composite (Fe 3 O 4 /Fe/C) by annealing at optimised temperature. The developed composite displayed excellent electrocatalytic activity for the oxygen reduction reaction with an onset potential of 0.87 V (vs. RHE) and a current density value of -5 mA cm -2 , which are comparable with commercial 20 wt % Pt/C. In addition, as one of the most desirable properties, the composite exhibits a better methanol tolerance and greater durability than Pt/C. The same material was explored as an energy storage material for supercapacitors, which showed a specific capacitance of 245 F g -1 at a current density of 1 A g -1 . It is expected that this Fe 3 O 4 /Fe/C composite with a disordered graphitised carbon matrix will pave a horizon for developing energy conversion and energy storage devices. © 2018 Wiley-VCH Verlag GmbH & Co. KGaA, Weinheim.

  4. Spin structure of exchange biased heterostructures. Fe/MnF{sub 2} and Fe/FeF{sub 2}

    Energy Technology Data Exchange (ETDEWEB)

    Sahoo, B

    2006-12-18

    In this work, the {sup 57}Fe probe layer technique is used in order to investigate the depth- and temperature-dependent Fe-layer spin structure of exchange biased Fe/MnF{sub 2} and Fe/FeF{sub 2} (pseudo-twinned) antiferromagnetic (AFM) systems by conversion electron Moessbauer spectroscopy (CEMS) and nuclear resonant scattering (NRS) of synchrotron radiation. Two kinds of samples with a 10 A {sup 57}Fe probe layer directly at or 35 A away from the interface, labeled as interface and center sample, respectively, were studied in this work. The results obtained by CEMS for Fe/MnF{sub 2} suggests that, at 80 K, i.e., above T{sub N}=67 K of MnF{sub 2}, the remanent state Fe-layer spin structure of the two studied samples are slightly different due to their different microstructure. In the temperature range from 300 K to 80 K, the Fe-layer spin structure does not change just by zero-field cooling the sample in remanence. For Fe/FeF{sub 2}, a continuous non-monotonic change of the remanent-state Fe spin structure was observed by cooling from 300 K to 18 K. NRS of synchrotron radiation was used to investigate the temperature- and depth-dependent Fe-layer spin structure during magnetization reversal in pseudo-twinned Fe/MnF{sub 2}. A depthdependent Fe spin structure in an applied magnetic field (applied along the bisector of the twin domains) was observed at 10 K, where the Fe spins closer to the interface are not aligned along the field direction. The depth-dependence disappears at 150 K. (orig.)

  5. Structural and magnetic properties of NdFeB and NdFeB/Fe films with Mo addition

    Energy Technology Data Exchange (ETDEWEB)

    Urse, M; Grigoras, M; Lupu, N; Chiriac, H, E-mail: urse@phys-iasi.ro [National Institute of R and D for Technical Physics, 47 Mangeron Blvd., 700050 Iasi (Romania)

    2011-07-06

    The influence of the Mo addition on the microstructure and magnetic properties of Nd-Fe-B and Nd-Fe-B/Fe films was studied. The coercivity is a key parameter in the control of technical performances of Nd-Fe-B films. A small amount of about 1 at.% Mo can enhance the coercivity of Nd-Fe-B film by controlling the growth of soft and hard magnetic grains. A coercivity of 22.1 kOe, a remanence ratio, M{sub r}/M{sub s}, of 0.83 and a maximum energy product of 8 MGOe were obtained for Ta/[NdFeBMo(1at.%)(540nm)/Ta films annealed at 650{sup 0}C for 20 minutes due to Mo precipitates formed at the Nd{sub 2}Fe{sub 14}B phase boundaries which prevent the nucleation and expansion of the magnetic domains. Simultaneous use of Mo as addition and the stratification of Nd-Fe-B-Mo films using Fe as spacer layer are important tools for the improvement of the hard magnetic properties of Nd-Fe-B films. The Ta/[NdFeBMo(1at.%)(180nm)/Fe(1nm)]x3/Ta multilayer film annealed at 620{sup 0}C exhibits an increase in the coercivity from 12.1 kOe to 22.8 kOe, in the remanence ratio from 0.77 to 0.80, and in the maximum energy product from 4.5 to 7.1 MGOe in comparison with Ta/Nd-Fe-B/Ta film. As compared to Ta/Nd-Fe-B/Ta film, the Ta/[NdFeBMo(1at.%)(180nm)/Fe(1nm)]x3/Ta film presents a decrease in the crystallization temperature of about 30{sup 0}C.

  6. q-Virasoro constraints in matrix models

    Energy Technology Data Exchange (ETDEWEB)

    Nedelin, Anton [Dipartimento di Fisica, Università di Milano-Bicocca and INFN, sezione di Milano-Bicocca, Piazza della Scienza 3, I-20126 Milano (Italy); Department of Physics and Astronomy, Uppsala university,Box 516, SE-75120 Uppsala (Sweden); Zabzine, Maxim [Department of Physics and Astronomy, Uppsala university,Box 516, SE-75120 Uppsala (Sweden)

    2017-03-20

    The Virasoro constraints play the important role in the study of matrix models and in understanding of the relation between matrix models and CFTs. Recently the localization calculations in supersymmetric gauge theories produced new families of matrix models and we have very limited knowledge about these matrix models. We concentrate on elliptic generalization of hermitian matrix model which corresponds to calculation of partition function on S{sup 3}×S{sup 1} for vector multiplet. We derive the q-Virasoro constraints for this matrix model. We also observe some interesting algebraic properties of the q-Virasoro algebra.

  7. Immobilization of cellulase using porous polymer matrix

    International Nuclear Information System (INIS)

    Kumakura, M.; Kaetsu, I.

    1984-01-01

    A new method is discussed for the immobilization of cellulase using porous polymer matrices, which were obtained by radiation polymerization of hydrophilic monomers. In this method, the immobilized enzyme matrix was prepared by enzyme absorbtion in the porous polymer matrix and drying treatment. The enzyme activity of the immobilized enzyme matrix varied with monomer concentration, cooling rate of the monomer solution, and hydrophilicity of the polymer matrix, takinn the change of the nature of the porous structure in the polymer matrix. The leakage of the enzymes from the polymer matrix was not observed in the repeated batch enzyme reactions

  8. Minimal solution for inconsistent singular fuzzy matrix equations

    Directory of Open Access Journals (Sweden)

    M. Nikuie

    2013-10-01

    Full Text Available The fuzzy matrix equations $Ailde{X}=ilde{Y}$ is called a singular fuzzy matrix equations while the coefficients matrix of its equivalent crisp matrix equations be a singular matrix. The singular fuzzy matrix equations are divided into two parts: consistent singular matrix equations and inconsistent fuzzy matrix equations. In this paper, the inconsistent singular fuzzy matrix equations is studied and the effect of generalized inverses in finding minimal solution of an inconsistent singular fuzzy matrix equations are investigated.

  9. The gravitational S-matrix

    CERN Document Server

    Giddings, Steven B

    2010-01-01

    We investigate the hypothesized existence of an S-matrix for gravity, and some of its expected general properties. We first discuss basic questions regarding existence of such a matrix, including those of infrared divergences and description of asymptotic states. Distinct scattering behavior occurs in the Born, eikonal, and strong gravity regimes, and we describe aspects of both the partial wave and momentum space amplitudes, and their analytic properties, from these regimes. Classically the strong gravity region would be dominated by formation of black holes, and we assume its unitary quantum dynamics is described by corresponding resonances. Masslessness limits some powerful methods and results that apply to massive theories, though a continuation path implying crossing symmetry plausibly still exists. Physical properties of gravity suggest nonpolynomial amplitudes, although crossing and causality constrain (with modest assumptions) this nonpolynomial behavior, particularly requiring a polynomial bound in c...

  10. Matrix metalloproteinases in lung biology

    Directory of Open Access Journals (Sweden)

    Parks William C

    2000-12-01

    Full Text Available Abstract Despite much information on their catalytic properties and gene regulation, we actually know very little of what matrix metalloproteinases (MMPs do in tissues. The catalytic activity of these enzymes has been implicated to function in normal lung biology by participating in branching morphogenesis, homeostasis, and repair, among other events. Overexpression of MMPs, however, has also been blamed for much of the tissue destruction associated with lung inflammation and disease. Beyond their role in the turnover and degradation of extracellular matrix proteins, MMPs also process, activate, and deactivate a variety of soluble factors, and seldom is it readily apparent by presence alone if a specific proteinase in an inflammatory setting is contributing to a reparative or disease process. An important goal of MMP research will be to identify the actual substrates upon which specific enzymes act. This information, in turn, will lead to a clearer understanding of how these extracellular proteinases function in lung development, repair, and disease.

  11. Structural properties of matrix metalloproteinases.

    Science.gov (United States)

    Bode, W; Fernandez-Catalan, C; Tschesche, H; Grams, F; Nagase, H; Maskos, K

    1999-04-01

    Matrix metalloproteinases (MMPs) are involved in extracellular matrix degradation. Their proteolytic activity must be precisely regulated by their endogenous protein inhibitors, the tissue inhibitors of metalloproteinases (TIMPs). Disruption of this balance results in serious diseases such as arthritis, tumour growth and metastasis. Knowledge of the tertiary structures of the proteins involved is crucial for understanding their functional properties and interference with associated dysfunctions. Within the last few years, several three-dimensional MMP and MMP-TIMP structures became available, showing the domain organization, polypeptide fold and main specificity determinants. Complexes of the catalytic MMP domains with various synthetic inhibitors enabled the structure-based design and improvement of high-affinity ligands, which might be elaborated into drugs. A multitude of reviews surveying work done on all aspects of MMPs have appeared in recent years, but none of them has focused on the three-dimensional structures. This review was written to close the gap.

  12. Brazing Inconel 625 Using Two Ni/(Fe)-Based Amorphous Filler Foils

    Science.gov (United States)

    Chen, Wen-Shiang; Shiue, Ren-Kae

    2012-07-01

    For MBF-51 filler, the brazed joint consists of interfacial grain boundary borides, coarse Nb6Ni16Si7, and Ni/Cr-rich matrix. In contrast, the VZ-2106 brazed joint is composed of interfacial Nb6Ni16Si7 precipitates as well as grain boundary borides, coarse Nb6Ni16Si7, and Ni/Cr/Fe-rich matrix. The maximum tensile strength of 443 MPa is obtained from the MBF-51 brazed specimen. The tensile strengths of VZ-2106 brazed joints are approximately 300 MPa. Both amorphous filler foils demonstrate potential in brazing IN-625 substrate.

  13. Understanding FE Mergers. Research Report

    Science.gov (United States)

    Calvert, Natasha

    2009-01-01

    This report presents research findings and discussion to help develop an understanding of what gives rise to mergers and, when they do happen, what makes them work. The research has focused on merger activity between further education (FE) colleges since incorporation in 1993. Mergers are highly contextual, and part of ensuring success is…

  14. Random matrix improved subspace clustering

    KAUST Repository

    Couillet, Romain

    2017-03-06

    This article introduces a spectral method for statistical subspace clustering. The method is built upon standard kernel spectral clustering techniques, however carefully tuned by theoretical understanding arising from random matrix findings. We show in particular that our method provides high clustering performance while standard kernel choices provably fail. An application to user grouping based on vector channel observations in the context of massive MIMO wireless communication networks is provided.

  15. Coherence matrix of plasmonic beams

    DEFF Research Database (Denmark)

    Novitsky, Andrey; Lavrinenko, Andrei

    2013-01-01

    We consider monochromatic electromagnetic beams of surface plasmon-polaritons created at interfaces between dielectric media and metals. We theoretically study non-coherent superpositions of elementary surface waves and discuss their spectral degree of polarization, Stokes parameters, and the for...... of the spectral coherence matrix. We compare the polarization properties of the surface plasmonspolaritons as three-dimensional and two-dimensional fields concluding that the latter is superior....

  16. The Biblical Matrix of Economics

    OpenAIRE

    Grigore PIROŞCĂ; Angela ROGOJANU

    2012-01-01

    The rationale of this paper is a prime pattern of history of economic thought in the previous ages of classic ancient times of Greek and Roman civilizations using a methodological matrix able to capture the mainstream ideas from social, political and religious events within the pages of Bible. The economic perspective of these events follows the evolution of the seeds of economic thinking within the Fertile Crescent, focused on the Biblical patriarchic heroes’ actions, but a...

  17. The Euclid Statistical Matrix Tool

    Directory of Open Access Journals (Sweden)

    Curtis Tilves

    2017-06-01

    Full Text Available Stataphobia, a term used to describe the fear of statistics and research methods, can result from a lack of improper training in statistical methods. Poor statistical methods training can have an effect on health policy decision making and may play a role in the low research productivity seen in developing countries. One way to reduce Stataphobia is to intervene in the teaching of statistics in the classroom; however, such an intervention must tackle several obstacles, including student interest in the material, multiple ways of learning materials, and language barriers. We present here the Euclid Statistical Matrix, a tool for combatting Stataphobia on a global scale. This free tool is comprised of popular statistical YouTube channels and web sources that teach and demonstrate statistical concepts in a variety of presentation methods. Working with international teams in Iran, Japan, Egypt, Russia, and the United States, we have also developed the Statistical Matrix in multiple languages to address language barriers to learning statistics. By utilizing already-established large networks, we are able to disseminate our tool to thousands of Farsi-speaking university faculty and students in Iran and the United States. Future dissemination of the Euclid Statistical Matrix throughout the Central Asia and support from local universities may help to combat low research productivity in this region.

  18. Graphene derivatives/Fe_3O_4/polymer nanocomposite films: Optical and electrical properties

    International Nuclear Information System (INIS)

    Hatel, Rhizlane; Goumri, Meryem; Ratier, Bernard; Baitoul, Mimouna

    2017-01-01

    This paper reports a simple solution casting method for the preparation of nanocomposite films in which graphene oxide (GO)/Fe_3O_4 nanocomposites are incorporated into poly (vinyl alcohol) (PVA) matrix. The films obtained with different weight percent of GO/Fe_3O_4 (0.5, 0.7 and 1 wt%) are subjected an in situ chemical and thermal reduction in order to explore the evolution and interactions between these components under different treatments and get an insight into on how this can affects the optical and electrical properties of these nanocomposites. Characterization was carried out using, UV–Vis absorption, Photoluminescence, electrical conductivity measurements, Fourier transform infrared spectroscopy (FT-IR) and Raman spectroscopy. Strong covalent functionalization occurs between the polymer and graphene derivatives (GD)/Fe_3O_4 hybrids. The experimental results obtained for our nanocomposites films exhibit significant enhancement in properties highlighted the efficiency of the in situ thermal reduction. The high absorption with strong photoluminescence and electrical conductivity achieved might promote these nanocomposites for opto-electronic devices in near future. - Highlights: • Novel inorganic-organic hybrid flexible films were successfully prepared. • Good interfacial interaction between the graphene/Fe_3O_4 and the hydroxyl-rich PVA. • Optical and electrical properties of Graphene Derivatives/Fe_3O_4/PVA were investigated. • Thermally reduced GO/Fe_3O_4/PVA films show high absorption and strong photoluminescence.

  19. In-gap bound states induced by interstitial Fe impurities in iron-based superconductors

    Energy Technology Data Exchange (ETDEWEB)

    Zhang, Degang, E-mail: degangzhang@yahoo.com

    2015-12-15

    Highlights: • We provide an explanation for the interesting STM observation of the robust zero energy bound state on the interstitial Fe impurities in iron-based superconductors. - Abstract: Based on a two-orbit four-band tight binding model, we investigate the low-lying electronic states around the interstitial excess Fe ions in the iron-based superconductors by using T-matrix approach. It is shown that the local density of states at the interstitial Fe impurity (IFI) possesses a strong resonance inside the gap, which seems to be insensitive to the doping and the pairing symmetry in the Fe–Fe plane, while a single or two resonances appear at the nearest neighboring (NN) Fe sites. The location and height of the resonance peaks only depend on the hopping t and the pairing parameter Δ{sub I} between the IFI and the NN Fe sites. These in-gap resonances are originated in the Andreev’s bound states due to the quasiparticle tunneling through the IFI, leading to the change of the magnitude of the superconducting order parameter. When both t and Δ{sub I} are small, this robust zero-energy bound state near the IFI is consistent with recent scanning tunneling microscopy observations.

  20. Experiment and simulation on the thermal instability of a heavily deformed Cu-Fe composite

    International Nuclear Information System (INIS)

    Qu Lei; Wang Engang; Zuo Xiaowei; Zhang Lin; He Jicheng

    2011-01-01

    Research highlights: → Fe fibers undergo thermal instability at temperature above 600 deg. C. → Longitudinal boundary splitting is the dominant instability process. → Instability of cylindrical fibers is controlled by breakup, growth and coarsening. → Breakup times can be predicted by Rayleigh perturbation model accurately. → The increase of fiber diameters is due to the coarsening and growth. - Abstract: The thermal instability of the Fe fibers in the heavily deformed Cu-12.8 wt.%Fe composites is investigated experimentally and numerically. The fiber evolution is characterized by a field emission scanning electron microscopy (FESEM). The results show that the dominant instability of the Fe fibers is the longitudinal boundary splitting which is determined by the greater cross sectional aspect ratio (width/thickness, w/t) and the larger ratio of boundary to interfacial energy (γ B /γ S ). The longitudinal boundary splitting makes the ribbon-like Fe fibers evolve into a series of cylindrical fibers. Then the cylindrical Fe fibers undergo the instability process in terms of the breakup, growth and coarsening concurrently. The breakup times are accurately predicted by the Rayleigh perturbation model. The growth process primarily contributes to the higher increasing rate of the fiber radius during isothermal annealing at 700 deg. C than that calculated by the coarsening theory developed for cylindrical fibers, since the Cu-matrix of composites is highly supersaturated after casting/cold-working process.

  1. Ab-initio approach to the effect of Fe on the diffusion in hcp Zr

    International Nuclear Information System (INIS)

    Perez, Rodolfo Ariel; Weissmann, Mariana

    2008-01-01

    The role of Fe in the hcp Zr diffusion process is analyzed, given its ultra-fast diffusion (up to nine orders of magnitude higher than the self-diffusion in the temperature range 779-1128 K) and the enhancement observed in the self and substitutional diffusion induced by its unavoidable presence as impurity. Ab-initio calculations using SIESTA and WIEN2K codes were performed in order to find the actual Fe minimum energy configuration within the hcp Zr matrix and its interaction with vacancies. Several off-centre quasi-interstitial positions with energies similar to substitutional Fe were encountered. The comparison with diffusion coefficient measurements and Moessbauer experiments allows us to discard the substitutional position of the Fe atom as well as to affirm that its presence creates a considerable lattice distortion together with an increment in the number of vacancies. The above effects could be responsible for the enhancement in the self and substitutional diffusion, whereas the large amount of quasi-interstitial positions for Fe could be, at least partially, responsible for the ultra-fast Fe diffusion

  2. Flow Velocity Effects on Fe(III Clogging during Managed Aquifer Recharge Using Urban Storm Water

    Directory of Open Access Journals (Sweden)

    Xinqiang Du

    2018-03-01

    Full Text Available Storm water harvesting and storage has been employed for nearly a hundred years, and using storm water to recharge aquifers is one of the most important ways to relieve water scarcity in arid and semi-arid regions. However, it cannot be widely adopted because of clogging problems. The risk of chemical clogging is mostly associated with iron oxyhydroxide precipitation; anhydrous ferric oxide (HFO clogging remains a problem in many wellfields. This paper investigates Fe(III clogging levels at three flow velocities (Darcy velocities, 0.46, 1.62 and 4.55 m/d. The results indicate that clogging increases with flow velocity, and is mostly affected by the first 0–3 cm of the column. The highest water velocity caused full clogging in 35 h, whereas the lowest took 53 h to reach an stable 60% reduction in hydraulic conductivity. For the high flow velocity, over 90% of the HFO was deposited in the 0–1 cm section. In contrast, the lowest flow velocity deposited only 75% in this section. Fe(III deposition was used as an approximation for Fe(OH3. High flow velocity may promote Fe(OH3 flocculent precipitate, thus increasing Fe(III deposition. The main mechanism for a porous matrix interception of Fe(III colloidal particles was surface filtration. Thus, the effects of deposition, clogging phenomena, and physicochemical mechanisms, are more significant at higher velocities.

  3. Decolorization of Methylene Blue by Persulfate Activated with FeO Magnetic Particles.

    Science.gov (United States)

    Hung, Chang-Mao; Chen, Chiu-Wen; Liu, Yi-Yuan; Dong, Cheng-Di

    2016-08-01

    In this study, the degradation of methylene blue (MB) was conducted to evaluate the feasibility of using persulfate oxidation activated with iron oxide (FeO) magnetic particles. The results demonstrated that the decolorization rate of MB increased with increasing FeO concentration, exhibiting maximum efficiency at pH0 3.0. The kinetics of MB was studied in the binary FeO catalyst and persulfate oxidation system. The surface properties of FeO before and after reaction was analyzed using cyclic voltammogram (CV), three-dimensional excitation-emission fluorescence matrix (EEFM) spectroscopy, zeta potential, particle size distribution measurements, X-ray diffraction (XRD) and environmental scanning electron microscopy-energy dispersive X-ray spectrometry (ESEM-EDS). The CV data indicated that a reversible redox reaction holds the key to explaining the significant activity of the catalyst. EEFM was used to evaluate the catalyst yield of FeO by fluorescence intensity plots with excitation/emission at 220/300 nm and 260/300 nm. The XRD and ESEM-EDS results confirmed the presence of FeO in the catalyst.

  4. Silver-incorporated composites of Fe2O3 carbon nanofibers as anodes for high-performance lithium batteries

    Science.gov (United States)

    Zou, Mingzhong; Li, Jiaxin; Wen, WeiWei; Chen, Luzhuo; Guan, Lunhui; Lai, Heng; Huang, Zhigao

    2014-12-01

    Composites of Ag-incorporated carbon nanofibers (CNFs) confined with Fe2O3 nanoparticles (Ag-Fe2O3/CNFs) have been synthesized through an electrospinning method and evaluated as anodes for lithium batteries (LIBs). The obtained Ag-Fe2O3/CNF anodes show good LIB performance with a capacity of 630 mAh g-1 tested at 800 mA g-1 after 150 cycles with almost no capacity loss and superb rate performance. The obtained properties for Ag-Fe2O3/CNF anodes are much better than Fe2O3/CNF anodes without Ag-incorporating. In addition, the low-temperature LIB performances for Ag-Fe2O3/CNF anodes have been investigated for revealing the enhanced mechanism of Ag-incorporating. The superior electrochemical performances of the Ag-Fe2O3/CNFs are associated with a synergistic effect of the CNF matrix and the highly conducting Ag incorporating. This unique configuration not only facilitates electron conduction especially at a relative temperature, but also maintains the structural integrity of active materials. Meanwhile, the related analysis of the AC impedance spectroscopy and the corresponding hypothesis for DC impedance confirm that such configuration can effectively enhance the charge-transfer efficiency and the lithium diffusion coefficient. Therefore, CNF-supported coupled with Ag incorporating synthesis supplied a promising route to obtain Fe2O3 based anodes with high-performance LIBs especially at low temperature.

  5. 57Fe Moessbauer studies on natural chromites

    International Nuclear Information System (INIS)

    Das, D.; Sudarshan, M.; Chintalapudi, S.N.; Chakravorty, K.L.

    1996-01-01

    Five chromite samples procured from two different belts of India have been studied by 57 Fe Moessbauer spectroscopy. It is shown that four symmetric doublets are sufficient to fit the chromite spectrum; the Moessbauer parameters and Fe 3+ /Fe 2+ ratio are computed. For fully oxidized chromite with only Fe 3+ , two doublets are needed and the parameters are computed. (author). 19 refs., 4 figs., 4 tabs

  6. Surface modification of 5083 Al alloy by electrical discharge alloying processing with a 75 mass% Si-Fe alloy electrode

    Energy Technology Data Exchange (ETDEWEB)

    Stambekova, Kuralay [Department of Materials Science and Engineering, National Chung Hsing University, 250 Kuo-Kuang Rd., Taichung 40227, Taiwan (China); Lin, Hung-Mao [Department of Mechanical Engineering, Far East University, No. 49, Zhonghua Rd., Xinshi Dist., Tainan City 74448, Taiwan (China); Uan, Jun-Yen, E-mail: jyuan@dragon.nchu.edu.tw [Department of Materials Science and Engineering, National Chung Hsing University, 250 Kuo-Kuang Rd., Taichung 40227, Taiwan (China)

    2012-03-01

    This study experimentally investigates the surface modification of 5083 Al alloy by the electrical discharge alloying (EDA) process with a Si-Fe alloy as an electrode. Samples were analyzed by transmission electron microscopy (TEM), scanning electron microscopy (SEM), micro-hardness and corrosion resistance tests. The micro-hardness of EDA alloyed layer was evidently higher than that of the base metal (5083 Al alloy). The TEM results show that the matrix of the alloyed layer has an amorphous-like structure; the matrix contains fine needle-like Si particles, block-like Si particles and nano-size Al{sub 4.5}FeSi and Al{sub 13}Fe{sub 4} particles. The TEM results support experimental results for the high hardness of the alloyed layer. Moreover, the EDA alloyed layer with composite microstructures has good corrosion resistance in NaCl aqueous solution.

  7. Microwave absorption properties of NiCoFe2O4-graphite embedded poly(o-phenetidine nanocomposites

    Directory of Open Access Journals (Sweden)

    Anil Ohlan

    2011-09-01

    Full Text Available Poly(o-phenetidine nanocomposites (PNG with NiCoFe2O4 and exfoliated graphite have been synthesized via in-situ emulsion polymerization. Systematic investigations reveal that the NiCoFe2O4 nanoparticles (30-40 nm in the poly(o-phenetidine matrix have phenomenal effect in determining the electrical, magnetic, and the microwave absorption properties of the nanocomposites. Shielding effectiveness due to absorption (SEA value of 32 dB (>99.9% has been achieved for PNG composite for its use as broadband microwave absorbing material. The microwave absorption of these composites can be attributed to dielectric loss from graphite and poly(o-phenetidine matrix, and magnetic loss from NiCoFe2O4 nanoparticles.

  8. Metal-carbon nanosystem IR-PVA/Fe-Co for catalysis in the Fischer-Tropsch synthesis

    International Nuclear Information System (INIS)

    Vasilev, A A; Dzidziguri, E L; Ivantsov, M I; Efimov, M N

    2016-01-01

    Metal-carbon nanosystems consisting of nanodimensional bimetallic particles of Fe- Co dispersed in a carbon matrix for the Fischer-Tropsch synthesis were studied. Prepared metal-carbon nanopowders samples were characterized by X-ray diffraction (XRD), transmission electron microscopy (TEM) and scanning electron microscopy (SEM). It was shown formation of FeCo nanoparticles with body-centered cubic structures started at 400 °C. FeCo nanoparticles have spherical form, the mean size is 7 - 12 nm and uniform distribution in a carbon matrix. The metal-carbon nanosystem demonstrates a catalytic activity in the Fischer- Tropsch synthesis. The maximum yield of liquid hydrocabons C 5+ was 92 g/m 3 while the selectivity for the target product - 35%. (paper)

  9. About oxide dispersion particles chemical compatibility with areas coherent dissipation/sub-grains of bcc-alloys in Fe - (Cr, V, Mo, W systems

    Directory of Open Access Journals (Sweden)

    Udovsky A.

    2016-01-01

    Full Text Available A concept of partial magnetic moments (PMM of the iron atoms located in the first ч four coordination spheres (1÷4 CS for bcc lattice have been introduced based on analysis of results obtained by quantum-mechanical calculations (QMC for volume dependence of the average magnetic moment ferromagnetic (FM Fe. The values of these moments have been calculated for pure bcc Fe and bcc - Fe-Cr alloys. This concept has been used to formulate a three sub-lattice model for binary FM alloys of the Fe-M systems (M is an alloying paramagnetic element. Physical reason for sign change dependence of the short-range order and mixing enthalpy obtained by QMCs for Fe-(Cr, V bcc phases has been found. Using this model it has been predicted that static displacements of Fe - atoms in alloy matrix increase with increasing the of CS number and result in reducing of the area of coherent dissipation (ACD size with growth of the dimension factor (DF in the Fe-(Cr, V, Mo, W systems in agreement with the X-ray experiments. It has been shown theoretically that anisotropy of spin- density in bcc lattice Fe and DF in binary Fe - (Cr, V, Mo, W systems is main factor for origins of segregations on small angle boundaries of ACD and sub-grains boundaries To prevent the coagulation of both ACD and sub-grains, and to increase the strength of alloys, it is advisable to add oxide dispersion particles into ferrite steel taking into account their chemical compatibility and coherent interfacing with the crystalline lattice of a ferrite matrix. Application of phase diagrams for binary and ternary the Fe-(Y, Zr-O systems to verify chemical compatibility of oxide dispersion particles with ferrite matrix have been discussed

  10. Low Temperature Diffusion Transformations in Fe-Ni-Ti Alloys During Deformation and Irradiation

    Science.gov (United States)

    Sagaradze, Victor; Shabashov, Valery; Kataeva, Natalya; Kozlov, Kirill; Arbuzov, Vadim; Danilov, Sergey; Ustyugov, Yury

    2018-03-01

    The deformation-induced dissolution of Ni3Ti intermetallics in the matrix of austenitic alloys of Fe-36Ni-3Ti type was revealed in the course of their cascade-forming neutron irradiation and cold deformation at low temperatures via employment of Mössbauer method. The anomalous deformation-related dissolution of the intermetallics has been explained by the migration of deformation-induced interstitial atoms from the particles into a matrix in the stress field of moving dislocations. When rising the deformation temperature, this process is substituted for by the intermetallics precipitation accelerated by point defects. A calculation of diffusion processes has shown the possibility of the realization of the low-temperature diffusion of interstitial atoms in configurations of the crowdions and dumbbell pairs at 77-173 K. The existence of interstitial atoms in the Fe-36Ni alloy irradiated by electrons or deformed at 77 K was substantiated in the experiments of the electrical resistivity measurements.

  11. Atom exchange between aqueous Fe(II) and structural Fe in clay minerals.

    Science.gov (United States)

    Neumann, Anke; Wu, Lingling; Li, Weiqiang; Beard, Brian L; Johnson, Clark M; Rosso, Kevin M; Frierdich, Andrew J; Scherer, Michelle M

    2015-03-03

    Due to their stability toward reductive dissolution, Fe-bearing clay minerals are viewed as a renewable source of Fe redox activity in diverse environments. Recent findings of interfacial electron transfer between aqueous Fe(II) and structural Fe in clay minerals and electron conduction in octahedral sheets of nontronite, however, raise the question whether Fe interaction with clay minerals is more dynamic than previously thought. Here, we use an enriched isotope tracer approach to simultaneously trace Fe atom movement from the aqueous phase to the solid ((57)Fe) and from the solid into the aqueous phase ((56)Fe). Over 6 months, we observed a significant decrease in aqueous (57)Fe isotope fraction, with a fast initial decrease which slowed after 3 days and stabilized after about 50 days. For the aqueous (56)Fe isotope fraction, we observed a similar but opposite trend, indicating that Fe atom movement had occurred in both directions: from the aqueous phase into the solid and from the solid into aqueous phase. We calculated that 5-20% of structural Fe in clay minerals NAu-1, NAu-2, and SWa-1 exchanged with aqueous Fe(II), which significantly exceeds the Fe atom layer exposed directly to solution. Calculations based on electron-hopping rates in nontronite suggest that the bulk conduction mechanism previously demonstrated for hematite1 and suggested as an explanation for the significant Fe atom exchange observed in goethite2 may be a plausible mechanism for Fe atom exchange in Fe-bearing clay minerals. Our finding of 5-20% Fe atom exchange in clay minerals indicates that we need to rethink how Fe mobility affects the macroscopic properties of Fe-bearing phyllosilicates and its role in Fe biogeochemical cycling, as well as its use in a variety of engineered applications, such as landfill liners and nuclear repositories.

  12. Mechanical alloying of Hf and Fe powders

    International Nuclear Information System (INIS)

    Mendoza Zelis, L.; Crespo, E.; Creus, M.; Damonte, L.C.; Sanchez, F.H.; Punte, G.

    1994-01-01

    Pure crystalline Hf and Fe powders were mixed and milled under an argon atmosphere. The evolution of the system with milling time was followed with Moessbauer effect spectroscopy and X-ray diffraction. The results indicate that in the first stages an amorphous Fe-rich alloy was gradually formed together with a solid solution of Hf in Fe beyond the solubility limit. (orig.)

  13. Laser alloyed Al-Ni-Fe coatings

    CSIR Research Space (South Africa)

    Pityana, SL

    2008-10-01

    Full Text Available The aim of this work was to produce crack-free thin surface layers consisting of binary (Al-Ni, Al-Fe) and ternary (Al-Ni-Fe) intermetallic phases by means of a high power laser beam. The laser surface alloying was carried out by melting Fe and Ni...

  14. Biogeochemical speciation of Fe in ocean water

    NARCIS (Netherlands)

    Hiemstra, T.; Riemsdijk, van W.H.

    2006-01-01

    The biogeochemical speciation of Fe in seawater has been evaluated using the consistent Non-Ideal Competitive Adsorption model (NICA¿Donnan model). Two types of data sets were used, i.e. Fe-hydroxide solubility data and competitive ligand equilibration/cathodic stripping voltammetry (CLE/CSV) Fe

  15. Redesigning Triangular Dense Matrix Computations on GPUs

    KAUST Repository

    Charara, Ali; Ltaief, Hatem; Keyes, David E.

    2016-01-01

    A new implementation of the triangular matrix-matrix multiplication (TRMM) and the triangular solve (TRSM) kernels are described on GPU hardware accelerators. Although part of the Level 3 BLAS family, these highly computationally intensive kernels

  16. Positron Annihilation Spectroscopy and Small Angle Neutron Scattering Characterization of Nanostructural Features in Irradiated Fe-Cu-Mn Alloys

    International Nuclear Information System (INIS)

    Wirth, B D; Asoka-Kumar, P; Howell, R H; Odette, G R; Sterne, P A

    2001-01-01

    Radiation embrittlement of nuclear reactor pressure vessel steels results from a high number density of nanometer sized Cu-Mn-Ni rich precipitates (CRPs) and sub-nanometer matrix features, thought to be vacancy-solute cluster complexes (VSC). However, questions exist regarding both the composition of the precipitates and the defect character and composition of the matrix features. We present results of positron annihilation spectroscopy (PAS) and small angle neutron scattering (SANS) characterization of irradiated and thermally aged Fe-Cu and Fe-Cu-Mn alloys. These complementary techniques provide insight into the composition and character of both types of nanoscale features. The SANS measurements indicate populations of CRPs and VSCs in both alloys. The CRPs are coarser in the Fe-Cu alloy and the number densities of CRP and VSC increase with the addition of Mn. The PAS involved measuring both the positron lifetimes and the Doppler broadened annihilation spectra in the high momentum region to provide elemental sensitivity at the annihilation site. The spectra in Fe-Cu-Mn specimens thermally aged to peak hardness at 450 C and irradiated at 288 C are nearly identical to elemental Cu. Positron lifetime and spectrum measurements in Fe-Cu specimens irradiated at 288 C clearly show the existence of long lifetime (∼500 ps) open volume defects, which also contain Cu. Thus the SANS and PAS provide a self-consistent picture of nanostructures composed of CRPs and VSCs and tend to discount high Fe concentrations in the CRPs

  17. Point defects in B.C.C. Fe-Al, Fe-Co, and Fe-Co-V ordered alloys

    International Nuclear Information System (INIS)

    Riviere, J.P.; Dinhut, J.F.

    1982-01-01

    Radiation damage produced at 20 K by 2.5 MeV electrons is studied in three B 2 type Fe-40 at % Al, Fe-Co, Fe-Co-V ordered alloys. The resistivity damage in Fe-40 at % Al ordered single crystals is found less effective in the directions. The results suggest that replacement collision chains are difficult to propagate along the direction. Frenkel pair creation superimposed with disordering can account for the resistivity damage in the initially ordered Fe-Co alloy. Informations concerning replacement collision sequences in direction are derived. During the recovery of all the alloys, three main stages are observed and an ordering enhancement occurs. (author)

  18. Electrical resistivity surface for FeO-Fe2O3-P2O5 glasses

    Science.gov (United States)

    Vaughan, J. G.; Kinser, D. L.

    1975-01-01

    The dc electrical properties and microstructure of x(FeO-Fe2O3)-(100-x)P2O5 glasses were investigated up to a maximum of x = 75 mol %. Results indicate that, in general, the minimum resistivity of the glass does not occur at equal Fe(2+) and Fe(3+) concentrations, although for the special case where x = 55 mol % the minimum does occur at Fe(2+)/Fe total = 0.5, as reported by other investigators. Evidence presented shows that the position of the minimum resistivity is a function of total iron content. The minimum shifts to glasses richer in Fe(2+) at higher total iron concentrations.

  19. Analytic matrix elements with shifted correlated Gaussians

    DEFF Research Database (Denmark)

    Fedorov, D. V.

    2017-01-01

    Matrix elements between shifted correlated Gaussians of various potentials with several form-factors are calculated analytically. Analytic matrix elements are of importance for the correlated Gaussian method in quantum few-body physics.......Matrix elements between shifted correlated Gaussians of various potentials with several form-factors are calculated analytically. Analytic matrix elements are of importance for the correlated Gaussian method in quantum few-body physics....

  20. A quenched c = 1 critical matrix model

    International Nuclear Information System (INIS)

    Qiu, Zongan; Rey, Soo-Jong.

    1990-12-01

    We study a variant of the Penner-Distler-Vafa model, proposed as a c = 1 quantum gravity: 'quenched' matrix model with logarithmic potential. The model is exactly soluble, and exhibits a two-cut branching as observed in multicritical unitary matrix models and multicut Hermitian matrix models. Using analytic continuation of the power in the conventional polynomial potential, we also show that both the Penner-Distler-Vafa model and our 'quenched' matrix model satisfy Virasoro algebra constraints

  1. Development of FeCoB/Graphene Oxide based microwave absorbing materials for X-Band region

    International Nuclear Information System (INIS)

    Das, Sukanta; Chandra Nayak, Ganesh; Sahu, S.K.; Oraon, Ramesh

    2015-01-01

    This work explored the microwave absorption capability of Graphene Oxide and Graphene Oxide coated with FeCoB for stealth technology. Epoxy based microwave absorbing materials were prepared with 30% loading of Graphene Oxide, FeCoB alloy and Graphene Oxide coated with FeCoB. Graphene Oxide and FeCoB were synthesized by Hummer's and Co-precipitation methods, respectively. The filler particles were characterized by FESEM, XRD and Vibrating Sample Magnetometer techniques. Permittivity, permeability and reflection loss values of the composite absorbers were measured with vector network analyzer which showed a reflection loss value of −7.86 dB, at 10.72 GHz, for single layered Graphene Oxide/Epoxy based microwave absorbers which can be correlated to the absorption of about 83.97% of the incident microwave energy. Reflection loss value of FeCoB/Epoxy based microwave absorber showed −13.30 dB at 11.67 GHz, which corresponded to maximum absorption of 93.8%. However, reflection loss values of Graphene Oxide coated with FeCoB/Epoxy based single-layer absorber increased to −22.24 dB at 12.4 GHz which corresponds to an absorption of 99% of the incident microwave energy. - Highlights: • FeCoB coated Graphene Oxide (GO) was synthesized by co-precipitation method. • GO, FeCoB and GO@FeCoB based microwave absorbers were developed with Epoxy matrix. • GO and FeCoB/Epoxy absorbers showed −7.86 & −13.30 dB reflection loss, respectively. • Maximum Reflection loss of −22.24 dB was achieved with GO@FeCoB/Epoxy absorber

  2. Radio frequency shielding behaviour of silane treated Fe2O3/E-glass fibre reinforced epoxy hybrid composite

    Science.gov (United States)

    Arun prakash, V. R.; Rajadurai, A.

    2016-10-01

    In this work, radio frequency shielding behaviour of polymer (epoxy) matrixes composed of E-glass fibres and Fe2O3 fillers have been studied. The principal aim of this project is to prepare suitable shielding material for RFID application. When RFID unit is pasted on a metal plate without shielding material, the sensing distance is reduced, resulting in a less than useful RFID system. To improve RF shielding of epoxy, fibres and fillers were utilized. Magnetic behaviour of epoxy polymer composites was measured by hysteresis graphs (B-H) followed by radio frequency identifier setup. Fe2O3 particles of sizes 800, 200 and 100 nm and E-glass fibre woven mat of 600 g/m2 were used to make composites. Particle sizes of 800 nm and 200 nm were prepared by high-energy ball milling, whereas particles of 100 nm were prepared by sol-gel method. To enhance better dispersion of particles within the epoxy matrix, a surface modification process was carried out on fillers by an amino functional coupling agent called 3-Aminopropyltrimethoxysilane (APTMS). Crystalline and functional groups of siliconized Fe2O3 particles were characterized by XRD and FTIR spectroscopy analysis. Variable quantity of E-glass fibre (25, 35, and 45 vol%) was laid down along with 0.5 and 1.0 vol% of 800, 200, and 100 nm size Fe2O3 particles into the matrix, to fabricate the hybrid composites. Scanning electron microscopy and transmission electron microscopy images reveal the shape and size of Fe2O3 particles for different milling times and particle dispersion in the epoxy matrix. The maximum improved sensing distance of 45.2, 39.4 and 43.5 % was observed for low-, high-, and ultra-high radio frequency identifier setup along with shielding composite consist of epoxy, 1 vol% 200 nm Fe2O3 particles and 45 vol% of E-glass fibre.

  3. Process and genes for expression and overexpression of active [FeFe] hydrogenases

    Science.gov (United States)

    Seibert, Michael; King, Paul W; Ghirardi, Maria Lucia; Posewitz, Matthew C; Smolinski, Sharon L

    2014-09-16

    A process for expression of active [FeFe]-hydrogenase in a host organism that does not contain either the structural gene(s) for [FeFe]-hydrogenases and/or homologues for the maturation genes HydE, HydF and HyG, comprising: cloning the structural hydrogenase gene(s) and/or the maturation genes HydE, HydF and HydG from an organisms that contains these genes into expression plasmids; transferring the plasmids into an organism that lacks a native [FeFe]-hydrogenase or that has a disrupted [FeFe]-hydrogenase and culturing it aerobically; and inducing anaerobiosis to provide [FeFe] hydrogenase biosynthesis and H?2#191 production.

  4. Mechanical properties of thermomechanical treated hyper-eutectic Al-Si-(Fe, Mn, Cu) materials

    OpenAIRE

    Umezawa, Osamu

    2005-01-01

    Tensile and high-cycle fatigue behavior of thermomechanical treated hyper-eutectic Al-Si-(Fe, Mn, Cu) materials were studied. Through the repeated thermomechanical treatment (RTMT) which is a repeat of the multi steps cold-working followed by heat treatment, Si crystals and/or intermetallic compounds were broken into some fragments and dispersed in the aluminum matrix. Fine dispersion of the second phase particles exhibited good ductility, since early fracture was overcome. A few large Si cry...

  5. X-ray fluorescence analysis of Fe, Mn, Cr and V in natural silicate crystals

    International Nuclear Information System (INIS)

    Dias, O.L.; Albuquerque, A.R.P.L.; Isotani, S.

    1983-04-01

    Concentrations of Fe, Mn, Cr and V were determined in samples of beryl, topaz, tourmaline and spodumene by measuring the first order K sub(α) fluorescence lines. The intensity of these lines were calibrated by using beryl as the standard matrix. The matrices were prepared in the form of pressed pellets with 4:1 mixture of beryl and boric acid, where transition metal oxides were added. (Author) [pt

  6. X-ray fluorescence analysis of Fe, Mn, Cr and V in natural silicate crystals

    International Nuclear Information System (INIS)

    Dias, O.L.; Albuquerque, A.R.P.L.; Isotani, S.

    1983-01-01

    Concentrations of Fe, Mn, Cr and V were determined in samples of beryl, topaze, tourmaline and spodumene by measuring the first order Kα fluorescence lines. The intensity of these lines were calibrated by using beryl as the standard matrix. The matrices were prepared in the form of pressed pellets with 4:1 mixture of beryl and boric acid, where transition metal oxides were added. (Author) [pt

  7. Nondestructive evaluation of ceramic and metal matrix composites for NASA's HITEMP and enabling propulsion materials programs

    Science.gov (United States)

    Generazio, Edward R.

    1992-01-01

    In a preliminary study, ultrasonic, x-ray opaque, and fluorescent dye penetrants techniques were used to evaluate and characterize ceramic and metal matrix composites. Techniques are highlighted for identifying porosity, fiber alignment, fiber uniformity, matrix cracks, fiber fractures, unbonds or disbonds between laminae, and fiber-to-matrix bond variations. The nondestructive evaluations (NDE) were performed during processing and after thermomechanical testing. Specific examples are given for Si3N4/SiC (SCS-6 fiber), FeCrAlY/Al2O3 fibers, Ti-15-3/SiC (SCS-6 fiber) materials, and Si3N4/SiC (SCS-6 fiber) actively cooled panel components. Results of this study indicate that the choice of the NDE tools to be used can be optimized to yield a faithful and accurate evaluation of advanced composites.

  8. Confocal microscopy imaging of the biofilm matrix

    DEFF Research Database (Denmark)

    Schlafer, Sebastian; Meyer, Rikke L

    2017-01-01

    The extracellular matrix is an integral part of microbial biofilms and an important field of research. Confocal laser scanning microscopy is a valuable tool for the study of biofilms, and in particular of the biofilm matrix, as it allows real-time visualization of fully hydrated, living specimens...... the concentration of solutes and the diffusive properties of the biofilm matrix....

  9. Matrix algebra for higher order moments

    NARCIS (Netherlands)

    Meijer, Erik

    2005-01-01

    A large part of statistics is devoted to the estimation of models from the sample covariance matrix. The development of the statistical theory and estimators has been greatly facilitated by the introduction of special matrices, such as the commutation matrix and the duplication matrix, and the

  10. MatrixPlot: visualizing sequence constraints

    DEFF Research Database (Denmark)

    Gorodkin, Jan; Stærfeldt, Hans Henrik; Lund, Ole

    1999-01-01

    MatrixPlot: visualizing sequence constraints. Sub-title Abstract Summary : MatrixPlot is a program for making high-quality matrix plots, such as mutual information plots of sequence alignments and distance matrices of sequences with known three-dimensional coordinates. The user can add information...

  11. Ellipsoids and matrix-valued valuations

    OpenAIRE

    Ludwig, Monika

    2003-01-01

    We obtain a classification of Borel measurable, GL(n) covariant, symmetric-matrix-valued valuations on the space of n-dimensional convex polytopes. The only ones turn out to be the moment matrix corresponding to the classical Legendre ellipsoid and the matrix corresponding to the ellipsoid recently discovered by E. Lutwak, D. Yang, and G. Zhang.

  12. Construction of covariance matrix for experimental data

    International Nuclear Information System (INIS)

    Liu Tingjin; Zhang Jianhua

    1992-01-01

    For evaluators and experimenters, the information is complete only in the case when the covariance matrix is given. The covariance matrix of the indirectly measured data has been constructed and discussed. As an example, the covariance matrix of 23 Na(n, 2n) cross section is constructed. A reasonable result is obtained

  13. Data on a Laves phase intermetallic matrix composite in situ toughened by ductile precipitates.

    Science.gov (United States)

    Knowles, Alexander J; Bhowmik, Ayan; Purkayastha, Surajit; Jones, Nicholas G; Giuliani, Finn; Clegg, William J; Dye, David; Stone, Howard J

    2017-10-01

    The data presented in this article are related to the research article entitled "Laves phase intermetallic matrix composite in situ toughened by ductile precipitates" (Knowles et al.) [1]. The composite comprised a Fe 2 (Mo, Ti) matrix with bcc (Mo, Ti) precipitated laths produced in situ by an aging heat treatment, which was shown to confer a toughening effect (Knowles et al.) [1]. Here, details are given on a focused ion beam (FIB) slice and view experiment performed on the composite so as to determine that the 3D morphology of the bcc (Mo, Ti) precipitates were laths rather than needles. Scanning transmission electron microscopy (S(TEM)) micrographs of the microstructure as well as energy dispersive X-ray spectroscopy (EDX) maps are presented that identify the elemental partitioning between the C14 Laves matrix and the bcc laths, with Mo rejected from the matrix into laths. A TEM selected area diffraction pattern (SADP) and key is provided that was used to validate the orientation relation between the matrix and laths identified in (Knowles et al.) [1] along with details of the transformation matrix determined.

  14. Data on a Laves phase intermetallic matrix composite in situ toughened by ductile precipitates

    Directory of Open Access Journals (Sweden)

    Alexander J. Knowles

    2017-10-01

    Full Text Available The data presented in this article are related to the research article entitled “Laves phase intermetallic matrix composite in situ toughened by ductile precipitates” (Knowles et al. [1]. The composite comprised a Fe2(Mo, Ti matrix with bcc (Mo, Ti precipitated laths produced in situ by an aging heat treatment, which was shown to confer a toughening effect (Knowles et al. [1]. Here, details are given on a focused ion beam (FIB slice and view experiment performed on the composite so as to determine that the 3D morphology of the bcc (Mo, Ti precipitates were laths rather than needles. Scanning transmission electron microscopy (S(TEM micrographs of the microstructure as well as energy dispersive X-ray spectroscopy (EDX maps are presented that identify the elemental partitioning between the C14 Laves matrix and the bcc laths, with Mo rejected from the matrix into laths. A TEM selected area diffraction pattern (SADP and key is provided that was used to validate the orientation relation between the matrix and laths identified in (Knowles et al. [1] along with details of the transformation matrix determined.

  15. Atom probe study on the bulk nanocomposite SmCo/Fe permanent magnet produced by ball-milling and warm compaction

    Energy Technology Data Exchange (ETDEWEB)

    Xiong, X.Y., E-mail: xiangyuan.xiong@mcem.monash.edu.au [Monash Centre for Electron Microscopy, Monash University, Vic. 3800 (Australia); Department of Materials Engineering, Monash University, Vic. 3800 (Australia); Rong, C.B. [Department of Physics, University of Texas at Arlington, Arlington, TX 76019 (United States); Rubanov, S. [Electron Microscopy Unit, Bio21 Institute, University of Melbourne, Vic. 3052 (Australia); Zhang, Y. [Division of Materials Science and Engineering, Ames Laboratory, Iowa State University, Ames, IA 50011 (United States); Liu, J.P. [Department of Physics, University of Texas at Arlington, Arlington, TX 76019 (United States)

    2011-11-15

    The microstructure and compositions of the bulk nanocomposite SmCo/Fe permanent magnet were studied using transmission electron microscopy and 3-dimensional atom probe techniques. The excellent magnetic properties were related to the uniform nanocomposite structure with nanometer {alpha}-Fe particles uniformly distributed in the SmCo phase matrix. The {alpha}-Fe phase contained {approx}26 at% Co, and the SmCo phase contained {approx}19 at% Fe, confirming that the interdiffusion of Fe and Co atoms between the two phases occurred. The formation of the {alpha}-Fe(Co) phase explained why the saturation magnetization of the nanocomposite permanent magnet was higher than that expected from the original pure {alpha}-Fe and SmCo{sub 5} powders, which enhanced further the maximum energy product of the nanocomposite permanent magnet. - Highlights: > A uniform nanocomposite SmCo/{alpha}-Fe permanent magnet with high performance obtained. > The first quantitative analyses of interdiffusion of Fe and Co between the two phases presented. > The saturation magnetization of the nanocomposite enhanced by the resulting {alpha}-Fe(Co) phase.

  16. Second coordination sphere effects in [FeFe]-Hydrogenase mimics

    NARCIS (Netherlands)

    Zaffaroni, R.

    2017-01-01

    Iron–iron hydrogenase are fascinating metallo‐enzymes able to reversibly perform interconversion between protons and dihydrogen with high rates at low overpotentials. Nevertheless, activity and stability of synthetic analogues without the protein matrix are rarely comparable to the enzyme. This

  17. Magnetoelectric investigations on poly (vinylidene fluoride)/CoFe2O4 flexible electrospun membranes

    Science.gov (United States)

    Durgaprasad, P.; Hemalatha, J.

    2018-02-01

    Flexible and free standing magnetoelectric polymer nanocomposite electrospun membranes, which exhibit both ferroelectric and magnetic orderings simultaneously, are fabricated. CoFe2O4 nanoparticles of different weight percentages are embedded as fillers in poly (vinylidene fluoride) (PVDF) matrix. The percentage of electroactive β phase is analysed using XRD and FTIR studies. Investigations on the effect of filler on the structural, functional, morphological properties are discussed. CoFe2O4 content in PVDF plays a main role in controlling the α and β phase conformations and makes significant effect on the ferroelectric and ferromagnetic properties of PVDF/CoFe2O4 membranes. The domain switching behaviour of these ferroelectric membranes is confirmed through DC-EFM studies. In addition to the coexistence of ferroelectric and ferromagnetic orderings, the cross coupling between them have been proved.

  18. Linear arrangement of nano-scale magnetic particles formed in Cu-Fe-Ni alloys

    Energy Technology Data Exchange (ETDEWEB)

    Kang, Sung, E-mail: k3201s@hotmail.co [Department of Materials Engineering (SEISAN), Yokohama National University, 79-5 Tokiwadai, Hodogayaku, Yokohama, 240-8501 (Japan); Takeda, Mahoto [Department of Materials Engineering (SEISAN), Yokohama National University, 79-5 Tokiwadai, Hodogayaku, Yokohama, 240-8501 (Japan); Takeguchi, Masaki [Advanced Electron Microscopy Group, National Institute for Materials Science (NIMS), Sakura 3-13, Tsukuba, 305-0047 (Japan); Bae, Dong-Sik [School of Nano and Advanced Materials Engineering, Changwon National University, Gyeongnam, 641-773 (Korea, Republic of)

    2010-04-30

    The structural evolution of nano-scale magnetic particles formed in Cu-Fe-Ni alloys on isothermal annealing at 878 K has been investigated by means of transmission electron microscopy (TEM), electron dispersive X-ray spectroscopy (EDS), electron energy-loss spectroscopy (EELS) and field-emission scanning electron microscopy (FE-SEM). Phase decomposition of Cu-Fe-Ni occurred after an as-quenched specimen received a short anneal, and nano-scale magnetic particles were formed randomly in the Cu-rich matrix. A striking feature that two or more nano-scale particles with a cubic shape were aligned linearly along <1,0,0> directions was observed, and the trend was more pronounced at later stages of the precipitation. Large numbers of <1,0,0> linear chains of precipitates extended in three dimensions in late stages of annealing.

  19. Methods of characterization of multiphase Nd-Fe-B melt-spun alloys

    Directory of Open Access Journals (Sweden)

    Grujić A.

    2007-01-01

    Full Text Available Nanocomposite permanent magnetic materials based on Nd-Fe-B alloys with a low Nd content are a new type of permanent magnetic material. The microstructure of these nanocomposite permanent magnets is composed of a mixture of magnetically soft and hard phases providing the so called exchange coupling effect. Beside the optimization process parameters, methods of characterization have a very important role in the design of an optimal magnetic matrix of multiphase melt-spun Nd-Fe-B alloys. Different methods and techniques of characterization were used for observation and study of the microstructure evolution during crystallization. A summary results of measurements using different methods of characterization are presented to enable a better insight into relations between the microstructure and magnetic properties of the investigated melt-spun Nd-Fe-B alloys. .

  20. The effects of boron on Tb0.27Dy0.73Fe2 compound

    International Nuclear Information System (INIS)

    Wu Lei; Chen Xicheng; Chen Xishen

    1995-01-01

    The magnetostrictive properties and microstructure of Tb 0.27 Dy 0.73 Fe 2 B x (x=0, 0.05, 0.1, 0.15, 0.2) have been investigated. Measurement of magnetic properties, X-ray diffraction and magnetostriction were made on Tb 0.27 Dy 0.73 Fe 2 B x polycrystalline samples prepared by arc melting. With the increase of boron content x, the iron-rich phase which leads to the detriment of magnetostrictive properties, decreases. The matrix phase of these alloys also has the MgCu 2 structure. The lattice constant and Curie transition temperature change only slightly. The doping of boron in the Tb 0.27 Dy 0.73 Fe 2 alloy can restrain the emergence of the iron-rich phase. The peritectic region probably shifts slightly with the addition of boron. ((orig.))

  1. Magnetic properties of FeZr{sub 2} and Fe{sub 2}Zr intermetallic compounds

    Energy Technology Data Exchange (ETDEWEB)

    Prajapat, C. L., E-mail: prajapat@barc.gov.in; Singh, M. R.; Mishra, P. K. [Technical Physics Division, Bhabha Atomic Research Centre, Mumbai, INDIA-400085 (India); Chattaraj, D. [Product Development Division, Bhabha Atomic Research Centre, Mumbai, INDIA-400085 (India); Mishra, R. [Chemistry Division, Bhabha Atomic Research Centre, Mumbai, INDIA-400085 (India); Ravikumar, G. [Scientific Information Resources Division, Bhabha Atomic Research Centre, Mumbai, INDIA-400085 (India)

    2016-05-23

    Magnetic properties of Fe-Zr system, viz., FeZr{sub 2} and Fe{sub 2}Zr have been studied. Both the compounds show soft ferromagnetic behavior. Curie temperature is well above the room temperature. Lower saturation magnetization for the zirconium rich sample, FeZr{sub 2}, could be due to possible donation of electrons from the Zr-rich neighbors to Fe atoms or diminution of long range magnetic order by defects.

  2. Fe(II)/Fe(III)-Catalyzed Intramolecular Didehydro-Diels-Alder Reaction of Styrene-ynes.

    Science.gov (United States)

    Mun, Hyeon Jin; Seong, Eun Young; Ahn, Kwang-Hyun; Kang, Eun Joo

    2018-02-02

    The intramolecular didehydro-Diels-Alder reaction of styrene-ynes was catalyzed by Fe(II) and Fe(III) to produce various naphthalene derivatives under microwave heating conditions. Mechanistic calculations found that the Fe(II) catalyst activates the styrenyl diene in an inverse-electron-demand Diels-Alder reaction, and the consecutive dehydrogenation reaction can be promoted by either Fe(II)-catalyzed direct dehydrogenation or an Fe(III)-catalyzed rearomatization/dehydrogenation pathway.

  3. Improvement of thermal stability of nano-granular TMR films by using a Mg-Al-O insulator matrix

    Science.gov (United States)

    Kanie, S.; Koyama, S.

    2018-05-01

    A new metal-insulator nano-granular tunneling magnetoresistance (TMR) film made of (Fe-Co)-(Mg-Al-O) has been investigated. It is confirmed that the film has granular structure in which crystal Fe-Co granules are surrounded by an amorphous Mg-Al-O matrix. A large MR ratio of 11.8 % at room temperature is observed for a 42 vol.%(Fe0.6Co0.4)-(Mg-Al-O) film annealed at 395 °C. The electrical resistivity increases rapidly by annealing at above the changing point (500 °C). The changing point is about 300 °C higher than that of conventional (Fe-Co)-(Mg-F) nano-granular TMR films. The 42 vol.%(Fe0.6Co0.4)-(Mg-Al-O) film also exhibits less degradation in the MR ratio at high annealing temperatures such as 600 °C. These results suggest the (Fe-Co)-(Mg-Al-O) film is superior to the (Fe-Co)-(Mg-F) film in thermal stability.

  4. Microstructures and properties of ceramic particle-reinforced metal matrix composite layers produced by laser cladding

    Science.gov (United States)

    Zhang, Qingmao; He, Jingjiang; Liu, Wenjin; Zhong, Minlin

    2005-01-01

    Different weight ratio of titanium, zirconium, WC and Fe-based alloy powders were mixed, and cladded onto a medium carbon steel substrate using a 3kW continuous wave CO2 laser, aiming at producing Ceramic particles- reinforced metal matrix composites (MMCs) layers. The microstructures of the layers are typical hypoeutectic, and the major phases are Ni3Si2, TiSi2, Fe3C, FeNi, MC, Fe7Mo3, Fe3B, γ(residual austenite) and M(martensite). The microstructure morphologies of MMCs layers are dendrites/cells. The MC-type reinforcements are in situ synthesis Carbides which main compositions consist of transition elements Zr, Ti, W. The MC-type particles distributed within dendrite and interdendritic regions with different volume fractions for single and overlapping clad layers. The MMCs layers are dense and free of cracks with a good metallurgical bonding between the layer and substrate. The addition ratio of WC in the mixtures has the remarkable effect on the microhardness of clad layers.

  5. Microstructural and magnetic characterization of iron precipitation in Ni-Fe-Al alloys

    International Nuclear Information System (INIS)

    Duman, Nagehan; Mekhrabov, Amdulla O.; Akdeniz, M. Vedat

    2011-01-01

    The influence of annealing on the microstructural evolution and magnetic properties of Ni 50 Fe x Al 50-x alloys for x = 20, 25, and 30 has been investigated. Solidification microstructures of as-cast alloys reveal coarse grains of a single B2 type β-phase and typical off eutectic microstructure consisting of proeutectic B2 type β dendrites and interdendritic eutectic for x = 20 and x > 20 at.% Fe respectively. However, annealing at 1073 K results in the formation of FCC γ-phase particles along the grain boundaries as well as grain interior in x = 20 at.% Fe alloy. The volume fraction of interdentritic eutectic regions tend to decrease and their morphologies start to degenerate by forming FCC γ-phase for x > 20 at.% Fe alloys with increasing annealing temperatures. Increasing Fe content of alloys induce an enhancement in magnetization and a rise in the Curie transition temperature (T C ). Temperature scan magnetic measurements and transmission electron microscopy reveal that a transient rise in the magnetization at temperatures well above the T C of the alloys would be attributed to the precipitation of a nano-scale ferromagnetic BCC α-Fe phase. Retained magnetization above the Curie transition temperature of alloy matrix, together with enhanced room temperature saturation magnetization of alloys annealed at favorable temperatures support the presence of ferromagnetic precipitates. These nano-scale precipitates are shown to induce significant precipitation hardening of the β-phase in conjunction with enhanced room temperature saturation magnetization in particular when an annealing temperature of 673 K is used. - Research Highlights: → Evolution of microstructure and magnetic properties with varying Fe content. → Transient rise in magnetization via the formation of ferromagnetic phase. → Enhancements in saturation magnetization owing to precipitated ferromagnetic phase. → Nanoscale precipitation of ferromagnetic BCC α-Fe confirmed by TEM.

  6. Effects of rare earth oxide addition on NdFeB magnets

    International Nuclear Information System (INIS)

    Ohashi, K.; Yokoyama, T.; Tawara, Y.

    1988-01-01

    The effects of addition of rare-earth oxides on the magnetic properties of Nd-Fe-B sintered magnets are studied. The addition of Dy 2 O 3 and Tb 4 O 7 leads to an increase in intrinsic coercivity. For addition of Dy 2 O 3 , the optimum conditions for powder mixing and the optimum Dy 2 O 3 particle size were determined. A mixing time of more than 10 minutes, and a Dy 2 O 3 particle size of less than 3 μm, are required to obtain a high intrinsic coercivity. EPMA measurements of NdFeBAl magnets with Dy 2 O 3 added reveal an inhomogeneous distribution of Dy in the Nd 2 Fe 14 B matrix: the material is Dy-rich near grain boundaries, but Dy-poor within the matrix. The appearance of such an inhomogeneous distribution of Dy is attributed to the reduction of Dy 2 O 3 in the Nd-rich phases, followed by diffusion of the resulting Dy atoms into the matrix

  7. Surface decoration of amine-rich carbon nitride with iron nanoparticles for arsenite (As{sup III}) uptake: The evolution of the Fe-phases under ambient conditions

    Energy Technology Data Exchange (ETDEWEB)

    Georgiou, Y., E-mail: yiannisgeorgiou@hotmail.com [Physics Department, University of Ioannina, Ioannina 45110 (Greece); Mouzourakis, E., E-mail: emouzou@cc.uoi.gr [Physics Department, University of Ioannina, Ioannina 45110 (Greece); Bourlinos, A.B., E-mail: bourlino@cc.uoi.gr [Physics Department, University of Ioannina, Ioannina 45110 (Greece); Regional Centre of Advanced Technologies and Materials, Faculty of Science, Department of Physical Chemistry and Experimental Physics, Palacky University in Olomouc, 77146 (Czech Republic); Zboril, R., E-mail: radek.zboril@upol.cz [Regional Centre of Advanced Technologies and Materials, Faculty of Science, Department of Physical Chemistry and Experimental Physics, Palacky University in Olomouc, 77146 (Czech Republic); Karakassides, M.A., E-mail: mkarakas@cc.uoi.gr [Department of Materials Science and Engineering, University of Ioannina, Ioannina 45110 (Greece); Douvalis, A.P., E-mail: adouval@uoi.gr [Physics Department, University of Ioannina, Ioannina 45110 (Greece); Bakas, Th., E-mail: tbakas@cc.uoi.gr [Physics Department, University of Ioannina, Ioannina 45110 (Greece); Deligiannakis, Y., E-mail: ideligia@cc.uoi.gr [Physics Department, University of Ioannina, Ioannina 45110 (Greece)

    2016-07-15

    Highlights: • Novel hybrid based on carbon nitride and iron nanoparticles (gC{sub 3}N{sub 4}-rFe). • gC{sub 3}N{sub 4}-rFe superior As{sup III} sorbent(76.5 mg g{sup −1}). • Surface complexation modeling of As{sup III} adsorption. • Dual mode EPR,monitoring of Fe{sup 2+} and Fe{sup 3+} evolution. - Abstract: A novel hybrid material (gC{sub 3}N{sub 4}-rFe) consisting of amine-rich graphitic carbon nitride (gC{sub 3}N{sub 4}), decorated with reduced iron nanoparticles (rFe) is presented. XRD and TEM show that gC{sub 3}N{sub 4}-rFe bears aggregation-free Fe-nanoparticles (10 nm) uniformly dispersed over the gC{sub 3}N{sub 4} surface. In contrast, non-supported iron nanoparticles are strongly aggregated, with non-uniform size distribution (20–100 nm). {sup 57}Fe-Mössbauer spectroscopy, dual-mode electron paramagnetic resonance (EPR) and magnetization measurements, allow a detailed mapping of the evolution of the Fe-phases after exposure to ambient O{sub 2}. The as-prepared gC{sub 3}N{sub 4}-rFe bears Fe{sup 2+} and Fe° phases, however only after long exposure to ambient O{sub 2}, a Fe-oxide layer is formed around the Fe° core. In this [Fe°/Fe-oxide] core-shell configuration, the gC{sub 3}N{sub 4}-rFe hybrid shows enhanced As{sup III} uptake capacity of 76.5 mg g{sup −1}, i.e., ca 90% higher than the unmodified carbonaceous support, and 300% higher than the non-supported Fe-nanoparticles. gC{sub 3}N{sub 4}-rFe is a superior As{sup III} sorbent i.e., compared to its single counterparts or vs. graphite/graphite oxide or activated carbon analogues (11–36 mg g{sup −1}). The present results demonstrate that the gC{sub 3}N{sub 4} matrix is not simply a net that holds the particles, but rather an active component that determines particle formation dynamics and ultimately their redox profile, size and surface dispersion homogeneity.

  8. Comparative Study of Catalytic Oxidation of Ethanol to Acetaldehyde Using Fe(III Dispersed on Sb2O5 Grafted on SiO2 and on Untreated SiO2 Surfaces

    Directory of Open Access Journals (Sweden)

    Benvenutti Edilson V.

    1998-01-01

    Full Text Available Fe(III was supported on Sb(V oxide grafted on the silica gel surface and directly on the silica gel surface using ion-exchange and impregnation processes producing Fe/Sb/SiO2 and Fe/SiO2, respectively. The catalytic conversion of ethanol to acetaldehyde was much more efficient using Fe/Sb/SiO2 than Fe/SiO2 as catalyst. This higher efficiency of the former catalyst takes into account two aspects: a the new phase FeSbO4 formed when Fe/Sb/SiO2 is heat treated and, b it is higher dispersion on the matrix.

  9. Origin of metallic Fe-Ni in Renazzo and related chondrites

    Science.gov (United States)

    Lee, Min S.; Rubin, Alan E.; Wasson, John T.

    1992-01-01

    To assess the formation of metallic Fe-Ni in Renazzo and related chondrites, Ni and Co zoning profiles in metallic Fe-Ni are determined from different petrographic sites (chondrule interiors, chondrule margins, chondrule rims, and matrix) in Renazzo, Al Rais, and the related chondrite, MacAlpine Hills 87320. Metal from chondrule interiors shows flat Ni and Co concentrations and profiles, moderately large grain-to-grain compositional variations (even with chondrules), and generally high Ni and Co. Nickel concentrations extend above the kamacite stability limit; etching such 'martensite' shows high-Ni domains in some cases, but observed Ni concentrations do not exceed 190 mg/g. Metal from chondrule margins adjacent to matrix shows convex Ni and Co zoning profiles; the highest Ni and Co concentrations are at grain centers, although the mean central Ni and Co concentrations in margin grains are much lower than those from chondrule interiors; the remainder are convex. The low Co and Ni contents at the edge of grains in chondrule margins are interpreted to reflect dilution by Fe produced by FeO reduction.

  10. Fine structure transitions in Fe XIV

    Science.gov (United States)

    Nahar, Sultana N.

    2013-07-01

    Results are reported for Fe XIV energy levels and transitions obtained from the ab initio relativistic Breit-Pauli R-matrix (BPRM) method. BPRM method developed under the Iron Project is capable of calculating very large number of fine structure energy levels and corresponding transitions. However, unlike in the atomic structure calculations, where levels are identified spectroscopically based on the leading percentage contributions of configurations, BPRM is incapable of such identification of the levels and hence the transitions. The main reason for it is that the percentage contributions can not be determined exactly from the large number of channels in the R-matrix space. The present report describes an identification method that uses considerations of quantum defects of channels, contributions of channel from outer regions, Hund's rule, and angular momenta algebra for addition and completeness of fine structure components. The present calculations are carried out using a close coupling wave function expansion that included 26 core excitations from configurations 2s22p63s2, 2s22p63s3p,2s22p63p2,2s22p63s3d, and 2s22p63p3d. A total of 1002 fine structure levels with n ⩽ 10, l⩽9, and 0.5 ⩽J⩽ 9.5 with even and odd parities and the corresponding 130,520 electric dipole allowed (E1) fine structure transitions, a most complete set for astrophysical modelings of spectral analysis and opacities, is presented. Large number of new energy levels are found and identified. The energies agree very well, mostly in less than 1% with the highest being 1.9%, with the 68 observed fine structure levels. While the high lying levels may have some uncertainty, an overall accuracy of energy levels should be within 10%. BPRM transitions have been benchmarked with the existing most accurate calculated transition probabilities with very good agreement for most cases. Based on the accuracy of the method and comparisons, most of the transitions can be rated with A (⩽10%) to C (

  11. Interaction between solute atoms and radiation defects in Fe-Ni-Si and Fe-Mn-Si alloys under irradiation with proton ions at low-temperature

    Energy Technology Data Exchange (ETDEWEB)

    Murakami, Kenta, E-mail: murakami@tokai.t.u-tokyo.ac.jp [Nuclear Professional School, School of Engineering, The University of Tokyo, 2-22 Shirakata-Shirane, Tokai-mura, Ibaraki, 319-1188 (Japan); Iwai, Takeo, E-mail: iwai@med.id.yamagata-u.ac.jp [Faculty of Medicine, Yamagata University, 2-2-2 Iida-Nishi, Yamagata, Yamagata-shi, 990-9585 (Japan); Abe, Hiroaki [Nuclear Professional School, School of Engineering, The University of Tokyo, 2-22 Shirakata-Shirane, Tokai-mura, Ibaraki, 319-1188 (Japan); Sekimura, Naoto, E-mail: sekimura@n.t.u-tokyo.ac.jp [Department of Nuclear Engineering and Management, School of Engineering, The University of Tokyo, 7-3-1, Tokyo, Hongo, Bunkyo, 113-8656 (Japan)

    2016-12-15

    Isochronal annealing followed by residual resistivity measurements at 12 K was performed in Fe-0.6Ni-0.6Si and Fe-1.5Mn-0.6Si alloys irradiated with 1 MeV proton ions below 70 K, and recovery stages were compared with those of Fe–0.6Ni and Fe–1.5Mn. The effects of silicon addition in the Fe-Ni alloy was observed as the appearance of a new recovery stage at 282–372 K, presumably corresponding to clustering of solute atoms in matrix, and as a change in mixed dumbbell migration at 122–142 K. Silicon addition mitigated the manganese effect in Fe–Mn alloy that is obstructing the recovery of radiation defects. Reduction of resistivity in Fe-Mn-Si alloy also suggested formation of small solute atom clusters.

  12. The COMPADRE Plant Matrix Database

    DEFF Research Database (Denmark)

    Salguero-Gomez, Roberto; Jones, Owen; Archer, C. Ruth

    2015-01-01

    growth or decline, such data furthermore help us understand how different biomes shape plant ecology, how plant populations and communities respond to global change, and how to develop successful management tools for endangered or invasive species. 2. Matrix population models summarize the life cycle......1. Schedules of survival, growth and reproduction are key life history traits. Data on how these traits vary among species and populations are fundamental to our understanding of the ecological conditions that have shaped plant evolution. Because these demographic schedules determine population...

  13. Hexagonal response matrix using symmetries

    International Nuclear Information System (INIS)

    Gotoh, Y.

    1991-01-01

    A response matrix for use in core calculations for nuclear reactors with hexagonal fuel assemblies is presented. It is based on the incoming currents averaged over the half-surface of a hexagonal node by applying symmetry theory. The boundary conditions of the incoming currents on the half-surface of the node are expressed by a complete set of orthogonal vectors which are constructed from symmetrized functions. The expansion coefficients of the functions are determined by the boundary conditions of incoming currents. (author)

  14. Distributively generated matrix near rings

    International Nuclear Information System (INIS)

    Abbasi, S.J.

    1993-04-01

    It is known that if R is a near ring with identity then (I,+) is abelian if (I + ,+) is abelian and (I,+) is abelian if (I*,+) is abelian [S.J. Abbasi, J.D.P. Meldrum, 1991]. This paper extends these results. We show that if R is a distributively generated near ring with identity then (I,+) is included in Z(R), the center of R, if (I + ,+) is included in Z(M n (R)), the center of matrix near ring M n (R). Furthermore (I,+) is included in Z(R) if (I*,+) is included in Z(M n (R)). (author). 5 refs

  15. Geometric phase from dielectric matrix

    International Nuclear Information System (INIS)

    Banerjee, D.

    2005-10-01

    The dielectric property of the anisotropic optical medium is found by considering the polarized photon as two component spinor of spherical harmonics. The Geometric Phase of a polarized photon has been evaluated in two ways: the phase two-form of the dielectric matrix through a twist and the Pancharatnam phase (GP) by changing the angular momentum of the incident polarized photon over a closed triangular path on the extended Poincare sphere. The helicity in connection with the spin angular momentum of the chiral photon plays the key role in developing these phase holonomies. (author)

  16. Matrix regularization of 4-manifolds

    OpenAIRE

    Trzetrzelewski, M.

    2012-01-01

    We consider products of two 2-manifolds such as S^2 x S^2, embedded in Euclidean space and show that the corresponding 4-volume preserving diffeomorphism algebra can be approximated by a tensor product SU(N)xSU(N) i.e. functions on a manifold are approximated by the Kronecker product of two SU(N) matrices. A regularization of the 4-sphere is also performed by constructing N^2 x N^2 matrix representations of the 4-algebra (and as a byproduct of the 3-algebra which makes the regularization of S...

  17. Random Matrix Theory and Econophysics

    Science.gov (United States)

    Rosenow, Bernd

    2000-03-01

    Random Matrix Theory (RMT) [1] is used in many branches of physics as a ``zero information hypothesis''. It describes generic behavior of different classes of systems, while deviations from its universal predictions allow to identify system specific properties. We use methods of RMT to analyze the cross-correlation matrix C of stock price changes [2] of the largest 1000 US companies. In addition to its scientific interest, the study of correlations between the returns of different stocks is also of practical relevance in quantifying the risk of a given stock portfolio. We find [3,4] that the statistics of most of the eigenvalues of the spectrum of C agree with the predictions of RMT, while there are deviations for some of the largest eigenvalues. We interpret these deviations as a system specific property, e.g. containing genuine information about correlations in the stock market. We demonstrate that C shares universal properties with the Gaussian orthogonal ensemble of random matrices. Furthermore, we analyze the eigenvectors of C through their inverse participation ratio and find eigenvectors with large ratios at both edges of the eigenvalue spectrum - a situation reminiscent of localization theory results. This work was done in collaboration with V. Plerou, P. Gopikrishnan, T. Guhr, L.A.N. Amaral, and H.E Stanley and is related to recent work of Laloux et al.. 1. T. Guhr, A. Müller Groeling, and H.A. Weidenmüller, ``Random Matrix Theories in Quantum Physics: Common Concepts'', Phys. Rep. 299, 190 (1998). 2. See, e.g. R.N. Mantegna and H.E. Stanley, Econophysics: Correlations and Complexity in Finance (Cambridge University Press, Cambridge, England, 1999). 3. V. Plerou, P. Gopikrishnan, B. Rosenow, L.A.N. Amaral, and H.E. Stanley, ``Universal and Nonuniversal Properties of Cross Correlations in Financial Time Series'', Phys. Rev. Lett. 83, 1471 (1999). 4. V. Plerou, P. Gopikrishnan, T. Guhr, B. Rosenow, L.A.N. Amaral, and H.E. Stanley, ``Random Matrix Theory

  18. Facile synthesis, dielectric properties and electrocatalytic activities of PMMA-NiFe2O4 nanocomposite

    International Nuclear Information System (INIS)

    Maji, Pranabi; Choudhary, Ram Bilash

    2017-01-01

    The paper deals with the dielectric and catalytic properties of poly (methyl methacrylate)-nikel ferrite (PMMA-NiFe 2 O 4 ) nanocomposite. The nanocomposite was prepared by using a general and facile synthesis strategy. Fourier transform infrared (FTIR) and X-ray diffraction (XRD) spectra confirmed the formation of PMMA-NiFe 2 O 4 nanocomposite. Field effect scanning electron microscopic (FESEM) and transmission electron microscopic (TEM) images revealed that NiFe 2 O 4 nanoparticles were uniformly distributed and were tightly adhered with PMMA matrix owing to surface modification with 3-methacryloyloxy propyl trimethoxy silane (KH-570). Thermal stability was enhanced by incorporation of NiFe 2 O 4 nanofillers. The nanocomposite showed high dielectric constant and low dielectric loss. The achieved dielectric and thermal property inferred the potential application of this material in energy storage and embedded electronics devices. Further, the as prepared nanocomposite also offered a remarkable electrochemical performance towards hydrogen peroxide (H 2 O 2 ) sensing. - Highlights: • PMMA-NiFe 2 O 4 nanocomposite was synthesized via free radical polymerization. • The nanocomposite exhibited high value of dielectric constant (51) and tanδ (0.3). • Thermal stability of the PMMA matrix was improved by the incorporation of NiFe 2 O 4. • The H 2 O 2 detection limit was estimated 44 μM when signal to noise (S/N) ration was 3. • The electrochemical sensitivity of H 2 O 2 was calculated 0.6727 μA mM -1 .

  19. Computed oscillator strengths and energy levels for Fe III, Fe IV, Fe V, and Fe VI with calculated wavelengths and wavelengths derived from established data

    International Nuclear Information System (INIS)

    Fawcett, B.C.

    1989-01-01

    Calculated weighted oscillator strengths are tabulated for spectral lines of Fe III, Fe IV, Fe V, and Fe VI. The lines belong to transition arrays 3d 6 -3d 5 4p and 3d 5 4s-3d 5 4p in Fe III, 3d 5 -3d 4 4p and 3d 4 4s-3d 4 4p in Fe IV, 3d 4 -3d 3 4p and 3d 3 4s-3d 3 4p in Fe V, and 3d 3 -3d 2 4p and 3d 2 4s-3d 2 4p in Fe VI. For the calculations, Slater parameters are optimized on the basis of minimizing the discrepancies between observed and computed wavelengths. Configuration interaction was included among the 3d n , 3d n-1 4s, 3d n-2 4s 2 , 3d n-1 4d, and 3d n-1 5s even configurations and among the 3d n-1 4p, 3d n-2 4s4p, and 3d n-1 5p odd configurations, with 3p 5 3d n+1 added for Fe VI. Calculated wavelengths are compared with observational data, and the compositions of energy levels are listed. This completes a series of similar computations for these complex configurations covering Fe I to Fe VI

  20. Diffusion in ordered Fe-Si alloys

    International Nuclear Information System (INIS)

    Sepiol, B.; Vogl, G.

    1995-01-01

    The measurement of the diffusional Moessbauer line broadening in single crystalline samples at high temperatures provides microscopic information about atomic jumps. We can separate jumps of iron atoms between the various sublattices of Fe-Si intermetallic alloys (D0 3 structure) and measure their frequencies. The diffusion of iron in Fe-Si samples with Fe concentrations between 75 and 82 at% shows a drastic composition dependence: the jump frequency and the proportion between jumps on Fe sublattices and into antistructure (Si) sublattice positions change greatly. Close to Fe 3 Si stoichiometry iron diffusion is extremely fast and jumps are performed exclusively between the three Fe sublattices. The change in the diffusion process when changing the alloy composition from stoichiometric Fe 3 Si to the iron-rich side is discussed. (orig.)

  1. A [4Fe-4S]-Fe(CO)(CN)-l-cysteine intermediate is the first organometallic precursor in [FeFe] hydrogenase H-cluster bioassembly

    Science.gov (United States)

    Rao, Guodong; Tao, Lizhi; Suess, Daniel L. M.; Britt, R. David

    2018-05-01

    Biosynthesis of the [FeFe] hydrogenase active site (the 'H-cluster') requires the interplay of multiple proteins and small molecules. Among them, the radical S-adenosylmethionine enzyme HydG, a tyrosine lyase, has been proposed to generate a complex that contains an Fe(CO)2(CN) moiety that is eventually incorporated into the H-cluster. Here we describe the characterization of an intermediate in the HydG reaction: a [4Fe-4S][(Cys)Fe(CO)(CN)] species, 'Complex A', in which a CO, a CN- and a cysteine (Cys) molecule bind to the unique 'dangler' Fe site of the auxiliary [5Fe-4S] cluster of HydG. The identification of this intermediate—the first organometallic precursor to the H-cluster—validates the previously hypothesized HydG reaction cycle and provides a basis for elucidating the biosynthetic origin of other moieties of the H-cluster.

  2. Microstructure and mechanical properties of ion-beam-produced Fe-Ti-(N), Fe-Ti-(C), and Fe-Ti-(C,N) surface films

    Science.gov (United States)

    Hirvonen, J.-P.; Nastasi, M.; Zocco, T. G.; Jervis, T. R.

    1990-06-01

    Ion-mixed films of Fe53 Ti47 were produced by ion irradiating a Fe-Ti multilayer structure on AISI 304 stainless steel. The ion-mixed films were subsequently implanted with nitrogen, carbon, or both carbon and nitrogen. The microstructure following nitrogen implantation consisted of a bcc solid solution of iron and titanium and finely dispersed TiN precipitates. In the cases of carbon or carbon and nitrogen implantation, a two-phase structure consisting of an amorphous matrix with TiC or Ti(C,N) precipitates was found. All these films initially possessed improved tribological properties as revealed by lowered friction and increased wear resistance. However, after an extended test of 1000 wear cycles, a reduced friction was only observed for the carbon or carbon and nitrogen implanted samples. The wear track on the dual implanted surface was extremely smooth, while the surface of the nitrogen-implanted sample was partly worn through, causing the friction to increase to the level of the untreated sample. The improved tribological properties of the implanted films are attributed to an increase in surface hardness. However, the surface hardness is unable to explain differences between different implantations. In the case of the dual carbon and nitrogen implantation, improvements appear to be in part the result from an increased capability to accommodate plastic deformation. These conclusions are supported by transmission electron microscope studies of the wear tracks as well as by nanoindentation measurements.

  3. Microstructural properties of electrochemically prepared Ni-Fe-W powders

    Energy Technology Data Exchange (ETDEWEB)

    Ribic-Zelenovic, L. [Faculty of Agronomy, University of Kragujevac, Cacak (Serbia); Cirovic, N. [Joint Laboratory for Advanced Materials of SASA, Technical Faculty Cacak, University of Kragujevac, Cacak (Serbia); Spasojevic, M. [Faculty of Agronomy, University of Kragujevac, Cacak (Serbia); Mitrovic, N., E-mail: nmitrov@tfc.kg.ac.rs [Joint Laboratory for Advanced Materials of SASA, Technical Faculty Cacak, University of Kragujevac, Cacak (Serbia); Maricic, A. [Joint Laboratory for Advanced Materials of SASA, Technical Faculty Cacak, University of Kragujevac, Cacak (Serbia); Pavlovic, V. [Faculty of Agriculture, University of Belgrade, Belgrade (Serbia)

    2012-07-16

    A nanostructured Ni-Fe-W powder was obtained by electrodeposition from ammonium citrate electrolyte within the current density range of 500-1000 mA cm{sup -2} at the electrolyte temperature of 50 Degree-Sign C-70 Degree-Sign C. XRD analysis shows that the powder contains an amorphous matrix having embedded nanocrystals of the FCC solid solution of iron and tungsten in nickel, with an average crystal grain size of 3.4 nm, a high internal microstrain value and a high density of chaotically distributed dislocations. EDS analysis exhibits that the chemical composition of the Ni-24%Fe-11%W powder does not depend upon current density and electrolyte temperature due to the diffusion control of the process of codeposition of nickel, iron and tungsten. SEM micrographs show that the electrodeposition results in the formation of two particle shapes: large cauliflower-like particles and small dendrite particles. The cauliflower-like particles contain deep cavities at hydrogen evolution sites. Cavity density increases with increasing deposition current density. Smaller powder particles are formed at higher temperatures and at higher current densities. During the first heating, relative magnetic permeability decreases reaching the Curie temperature at about 350 Degree-Sign C and after cooling exhibits a 12% increase due to the performed relaxation process. Following the second heating to 500 Degree-Sign C, the magnetic permeability of the powder is about 5% lower than that of the as-prepared powder due to crystallization of the amorphous phase of the powder and the crystal grain growth in FCC phase. - Highlights: Black-Right-Pointing-Pointer Electrodeposition Ni-Fe-W powder from ammonium citrate electrolyte (500-1000 mA cm{sup -2}). Black-Right-Pointing-Pointer Powder contains amorphous matrix and embedded nanocrystals 3.4 nm. Black-Right-Pointing-Pointer Chemical composition Ni-24%Fe-11%W do not depend upon current density and electrolyte temperature. Black

  4. Effect of addition of V and C on strain recovery characteristics in Fe-Mn-Si alloy

    International Nuclear Information System (INIS)

    Lin Chengxin; Wang Guixin; Wu Yandong; Liu Qingsuo; Zhang Jianjun

    2006-01-01

    Shape recoverable strain, recovery stress and low-temperature stress relaxation characteristics in an Fe-17Mn-5Si-10Cr-4Ni (0.08C) alloy and an Fe-17Mn-2Cr-5Si-2Ni-1V (0.23C) alloy have been studied by means of X-ray diffraction, transmission electron microscopy and measurement of recoverable strain and recovery stress. The amount of stress-induced ε martensite under tensile deformation at room temperature, recoverable strain and recovery stress are increased obviously with addition V and C in Fe-Mn-Si alloy, which is owing to the influence of addition V and C on strengthening austenitic matrix. Addition of V and C in Fe-Mn-Si alloy is evidently effective to reduce the degree of low-temperature stress relaxation, for the dispersed VC particles 50-180 nm in size precipitated during annealing restrain the stress induced martensitic transformation

  5. Synthesis and characterization of structural and magnetic properties of polyaniline-cobalt ferrite (PA-CoFe) nanocomposites

    Science.gov (United States)

    Thakur, Sonika; Kaur, Parminder; Singh, Lakhwant

    2018-05-01

    The growing interest in the investigation of the properties of modified conducting polymers stems from their potential applications in various fields such as in sensing and catalytic devices. The present work reports the modification of conducting polymer polyaniline with cobalt ferrite (CoFe) nanoparticles, where CoFe nanoparticles are added in different successive weight percents. The composite samples were synthesized by in-situ chemical oxidative polymerization technique. The density of the samples has been found to increase with an increase in the CoFe content. Structural analysis of the synthesized sample has been done using X-ray diffraction studies. Perusal of the hysteresis curves of the prepared samples depicts that the introduction of CoFe into the polymer matrix leads to enhancement in the ferromagnetic behavior of the synthesized samples, suggesting that these nanocomposites have excellent microwave absorbing capacity.

  6. Integrins and extracellular matrix in mechanotransduction

    Directory of Open Access Journals (Sweden)

    Ramage L

    2011-12-01

    Full Text Available Lindsay RamageQueen’s Medical Research Institute, University of Edinburgh, Edinburgh, UKAbstract: Integrins are a family of cell surface receptors which mediate cell–matrix and cell–cell adhesions. Among other functions they provide an important mechanical link between the cells external and intracellular environments while the adhesions that they form also have critical roles in cellular signal-transduction. Cell–matrix contacts occur at zones in the cell surface where adhesion receptors cluster and when activated the receptors bind to ligands in the extracellular matrix. The extracellular matrix surrounds the cells of tissues and forms the structural support of tissue which is particularly important in connective tissues. Cells attach to the extracellular matrix through specific cell-surface receptors and molecules including integrins and transmembrane proteoglycans. Integrins work alongside other proteins such as cadherins, immunoglobulin superfamily cell adhesion molecules, selectins, and syndecans to mediate cell–cell and cell–matrix interactions and communication. Activation of adhesion receptors triggers the formation of matrix contacts in which bound matrix components, adhesion receptors, and associated intracellular cytoskeletal and signaling molecules form large functional, localized multiprotein complexes. Cell–matrix contacts are important in a variety of different cell and tissue properties including embryonic development, inflammatory responses, wound healing, and adult tissue homeostasis. This review summarizes the roles and functions of integrins and extracellular matrix proteins in mechanotransduction.Keywords: ligand binding, α subunit, ß subunit, focal adhesion, cell differentiation, mechanical loading, cell–matrix interaction

  7. Effect of Soil Parameters on the Kinetics of the Displacement of Fe from FeEDDHA Chelates by Cu

    NARCIS (Netherlands)

    Schenkeveld, W.D.C.; Reichwein, A.M.; Temminghoff, E.J.M.; Riemsdijk, van W.H.

    2012-01-01

    In soil application, o,o-FeEDDHA (iron (3+) ethylene diamine-N,N'-bis(2-hydroxy phenyl acetic acid) complex) is the active ingredient of FeEDDHA chelate-based Fe fertilizers. The effectiveness of o,o-FeEDDHA is potentially compromised by the displacement of Fe from FeEDDHA by Cu. The actual impact

  8. Form of multicomponent Fickian diffusion coefficients matrix

    International Nuclear Information System (INIS)

    Wambui Mutoru, J.; Firoozabadi, Abbas

    2011-01-01

    Highlights: → Irreversible thermodynamics establishes form of multicomponent diffusion coefficients. → Phenomenological coefficients and thermodynamic factors affect sign of diffusion coefficients. → Negative diagonal elements of diffusion coefficients matrix can occur in non-ideal mixtures. → Eigenvalues of the matrix of Fickian diffusion coefficients may not be all real. - Abstract: The form of multicomponent Fickian diffusion coefficients matrix in thermodynamically stable mixtures is established based on the form of phenomenological coefficients and thermodynamic factors. While phenomenological coefficients form a symmetric positive definite matrix, the determinant of thermodynamic factors matrix is positive. As a result, the Fickian diffusion coefficients matrix has a positive determinant, but its elements - including diagonal elements - can be negative. Comprehensive survey of reported diffusion coefficients data for ternary and quaternary mixtures, confirms that invariably the determinant of the Fickian diffusion coefficients matrix is positive.

  9. Structure of Ag, Fe and Ge microclusters

    International Nuclear Information System (INIS)

    Montano, P.A.; Shenoy, G.K.; Schulze, W.

    1989-01-01

    The structures of Ag, Fe and Ge microclusters were determined using EXAFS. The measurements were performed over a wide range of clusters sizes. The clusters were prepared using the gas aggregation technique and isolated in solid argon at 4.2 K. The measurements were performed at the National Synchrotron Light Source (NSLS) at beam line X-18B. A strong contraction of the interatomic distances was observed for Ag dimers and multimers. Silver clusters larger than 12 A mean diameter show a small contraction of the nn distance and a structure consistent with an fcc lattice. By contrast clusters smaller than 12 A show the presence of a small expansion and a strong reduction or absence of nnn in the EXAFS signal. This points towards a different crystallographic structure for Ag microclusters with diameter less than 12 A. In iron clusters we observe a gradual reduction of the nn distance as the cluster size decreases. The interatomic distance for iron dimers was determined to be 1.94 A, in good agreement with earlier measurements. The iron microclusters show a bcc structure down to a mean diameter of 9 A. Iron clusters with 9 A mean diameter show a structure inconsistent with a bcc lattice. The new structure is consistent with an fcc or hcp lattice. The measurements on Ge clusters show the presence of only nearest neighbors. There was clear evidence of temporal annealing as determined by variations in the near edge structure of the K-absorption edge. Absorption edge measurements were also performed for free Ge clusters travelling perpendicular to the direction of the synchrotron radiation beam. The measurements performed on the free clusters were consistent with those obtained for matrix isolated clusters. (orig.)

  10. Study on adsorption of 99Tc on Fe, Fe2O3 and Fe3O4

    International Nuclear Information System (INIS)

    Liu Dejun; Fan Xianhua; Zhang Yingjie; Yao Jun; Zhou Duo; Wang Yong

    2004-01-01

    The absorption behavior of 99 Tc on Fe, Fe 2 O 3 and Fe 3 O 4 powders from aqueous 99 TcO 4 - solutions is studied by batch method in atmospheric conditions. After the adsorption reaches equilibrium, the valence state of 99 Tc in the aqueous solution is examined by extraction with tetraphenylarsonium chloride. The experimental results show that the adsorption ratio of 99 Tc on iron powders decreases with the increase of pH (in the range of 5-8) and of CO 3 2- concentration (in the range of 1 x 10 -8 -1 x 10 -2 mol/L). In opposite, the two factors have no significant influence on the absorption of 99 Tc on both Fe 2 O 3 and Fe 3 O 4 powders. The adsorption isotherms of 99 TcO 4 - on Fe, Fe 2 O 3 and Fe 3 O 4 powders can be well described by the Freundlich's equation. The major valence state of 99 Tc is deduced to be Tc(IV) when iron powders is used as the absorbent. In the case of Fe 2 O 3 or Fe 3 O 4 as an absorbent, the 99 Tc remains as the TcO 4 - form

  11. Interpolation of rational matrix functions

    CERN Document Server

    Ball, Joseph A; Rodman, Leiba

    1990-01-01

    This book aims to present the theory of interpolation for rational matrix functions as a recently matured independent mathematical subject with its own problems, methods and applications. The authors decided to start working on this book during the regional CBMS conference in Lincoln, Nebraska organized by F. Gilfeather and D. Larson. The principal lecturer, J. William Helton, presented ten lectures on operator and systems theory and the interplay between them. The conference was very stimulating and helped us to decide that the time was ripe for a book on interpolation for matrix valued functions (both rational and non-rational). When the work started and the first partial draft of the book was ready it became clear that the topic is vast and that the rational case by itself with its applications is already enough material for an interesting book. In the process of writing the book, methods for the rational case were developed and refined. As a result we are now able to present the rational case as an indepe...

  12. Effect of crystallization on corrosion behavior of Fe40Ni38B18Mo4 amorphous alloy in 3.5% sodium chloride solution

    DEFF Research Database (Denmark)

    Wu, Y.F.; Chiang, Wen-Chi; Wu, J.K.

    2008-01-01

    After the crystallization of F40Ni38B18Mo4 amorphous alloy by vacuum annealing, the corrosion resistance of its crystalline state shows inferior to its amorphous state due to the local cell action between Ni phase and (Fe, Ni, Mo)(23)B-6 phase in matrix.......After the crystallization of F40Ni38B18Mo4 amorphous alloy by vacuum annealing, the corrosion resistance of its crystalline state shows inferior to its amorphous state due to the local cell action between Ni phase and (Fe, Ni, Mo)(23)B-6 phase in matrix....

  13. Magnetostrictive GMR spin valves with composite FeGa/FeCo free layers

    Energy Technology Data Exchange (ETDEWEB)

    Liu, Luping [Key Laboratory of Magnetic Materials and Devices & Zhejiang Province Key Laboratory of Magnetic Materials and Application Technology, Ningbo Institute of Materials Technology and Engineering, Chinese Academy of Sciences, Ningbo 315201 (China); Institute of Materials Science, School of Materials Science and Engineering, Shanghai University, Shanghai 200072 (China); Zhan, Qingfeng, E-mail: zhanqf@nimte.ac.cn, E-mail: runweili@nimte.ac.cn; Yang, Huali; Li, Huihui; Zhang, Shuanglan; Liu, Yiwei; Wang, Baomin; Li, Run-Wei, E-mail: zhanqf@nimte.ac.cn, E-mail: runweili@nimte.ac.cn [Key Laboratory of Magnetic Materials and Devices & Zhejiang Province Key Laboratory of Magnetic Materials and Application Technology, Ningbo Institute of Materials Technology and Engineering, Chinese Academy of Sciences, Ningbo 315201 (China); Tan, Xiaohua [Institute of Materials Science, School of Materials Science and Engineering, Shanghai University, Shanghai 200072 (China)

    2016-03-15

    We have fabricated strain-sensitive spin valves on flexible substrates by utilizing the large magnetostrictive FeGa alloy to promote the strain sensitivity and the composite free layer of FeGa/FeCo to avoid the drastic reduction of giant magnetoresistance (GMR) ratio. This kind of spin valve (SV-FeGa/FeCo) displays a MR ratio about 5.9%, which is comparable to that of the conventional spin valve (SV-FeCo) with a single FeCo free layer. Different from the previously reported works on magnetostrictive spin valves, the SV-FeGa/FeCo displays an asymmetric strain dependent GMR behavior. Upon increasing the lateral strain, the MR ratio for the ascending branch decreases more quickly than that for the descending branch, which is ascribed to the formation of a spiraling spin structure around the FeGa/FeCo interface under the combined influences of both magnetic field and mechanical strain. A strain sensitivity of GF = 7.2 was achieved at a magnetic bias field of -30 Oe in flexible SV-FeGa/FeCo, which is significantly larger than that of SV-FeCo.

  14. Magnetostrictive GMR spin valves with composite FeGa/FeCo free layers

    International Nuclear Information System (INIS)

    Liu, Luping; Zhan, Qingfeng; Yang, Huali; Li, Huihui; Zhang, Shuanglan; Liu, Yiwei; Wang, Baomin; Li, Run-Wei; Tan, Xiaohua

    2016-01-01

    We have fabricated strain-sensitive spin valves on flexible substrates by utilizing the large magnetostrictive FeGa alloy to promote the strain sensitivity and the composite free layer of FeGa/FeCo to avoid the drastic reduction of giant magnetoresistance (GMR) ratio. This kind of spin valve (SV-FeGa/FeCo) displays a MR ratio about 5.9%, which is comparable to that of the conventional spin valve (SV-FeCo) with a single FeCo free layer. Different from the previously reported works on magnetostrictive spin valves, the SV-FeGa/FeCo displays an asymmetric strain dependent GMR behavior. Upon increasing the lateral strain, the MR ratio for the ascending branch decreases more quickly than that for the descending branch, which is ascribed to the formation of a spiraling spin structure around the FeGa/FeCo interface under the combined influences of both magnetic field and mechanical strain. A strain sensitivity of GF = 7.2 was achieved at a magnetic bias field of -30 Oe in flexible SV-FeGa/FeCo, which is significantly larger than that of SV-FeCo.

  15. Magnetostrictive GMR spin valves with composite FeGa/FeCo free layers

    Science.gov (United States)

    Liu, Luping; Zhan, Qingfeng; Yang, Huali; Li, Huihui; Zhang, Shuanglan; Liu, Yiwei; Wang, Baomin; Tan, Xiaohua; Li, Run-Wei

    2016-03-01

    We have fabricated strain-sensitive spin valves on flexible substrates by utilizing the large magnetostrictive FeGa alloy to promote the strain sensitivity and the composite free layer of FeGa/FeCo to avoid the drastic reduction of giant magnetoresistance (GMR) ratio. This kind of spin valve (SV-FeGa/FeCo) displays a MR ratio about 5.9%, which is comparable to that of the conventional spin valve (SV-FeCo) with a single FeCo free layer. Different from the previously reported works on magnetostrictive spin valves, the SV-FeGa/FeCo displays an asymmetric strain dependent GMR behavior. Upon increasing the lateral strain, the MR ratio for the ascending branch decreases more quickly than that for the descending branch, which is ascribed to the formation of a spiraling spin structure around the FeGa/FeCo interface under the combined influences of both magnetic field and mechanical strain. A strain sensitivity of GF = 7.2 was achieved at a magnetic bias field of -30 Oe in flexible SV-FeGa/FeCo, which is significantly larger than that of SV-FeCo.

  16. Nanoscale Reinforced, Polymer Derived Ceramic Matrix Coatings

    Energy Technology Data Exchange (ETDEWEB)

    Rajendra Bordia

    2009-07-31

    The goal of this project was to explore and develop a novel class of nanoscale reinforced ceramic coatings for high temperature (600-1000 C) corrosion protection of metallic components in a coal-fired environment. It was focused on developing coatings that are easy to process and low cost. The approach was to use high-yield preceramic polymers loaded with nano-size fillers. The complex interplay of the particles in the polymer, their role in controlling shrinkage and phase evolution during thermal treatment, resulting densification and microstructural evolution, mechanical properties and effectiveness as corrosion protection coatings were investigated. Fe-and Ni-based alloys currently used in coal-fired environments do not possess the requisite corrosion and oxidation resistance for next generation of advanced power systems. One example of this is the power plants that use ultra supercritical steam as the working fluid. The increase in thermal efficiency of the plant and decrease in pollutant emissions are only possible by changing the properties of steam from supercritical to ultra supercritical. However, the conditions, 650 C and 34.5 MPa, are too severe and result in higher rate of corrosion due to higher metal temperatures. Coating the metallic components with ceramics that are resistant to corrosion, oxidation and erosion, is an economical and immediate solution to this problem. Good high temperature corrosion protection ceramic coatings for metallic structures must have a set of properties that are difficult to achieve using established processing techniques. The required properties include ease of coating complex shapes, low processing temperatures, thermal expansion match with metallic structures and good mechanical and chemical properties. Nanoscale reinforced composite coatings in which the matrix is derived from preceramic polymers have the potential to meet these requirements. The research was focused on developing suitable material systems and

  17. Effect of Ag micro-alloying on the microstructure and properties of Cu-14Fe in situ composite

    International Nuclear Information System (INIS)

    Liu, K.M.; Lu, D.P.; Zhou, H.T.; Atrens, A.; Zou, J.; Yang, Y.L.; Zeng, S.M.

    2010-01-01

    This paper studied Ag micro-alloying in the deformation-processed Cu-14Fe in situ composite, by a comparison of Cu-14Fe and Cu-14Fe-0.06Ag. Each alloy was prepared by casting and processed into an in situ composite by hot and cold working. The microstructures were documented using light microscopy and scanning electron microscopy (SEM). The mechanical properties were measured with a tensile-testing machine. The electrical conductivity was measured with a micro-ohmmeter. For both alloys, the as-cast microstructure consisted of a Cu matrix and Fe dendrites; after hot and cold working the microstructure consisted of a Cu matrix containing Fe fibres elongated in the working direction. The as-cast Ag-containing alloy contained finer Fe dendrites. The Ag-containing in situ composite had thinner Fe fibres, higher tensile strength, higher ductility, and higher conductivity. The cold worked Cu-14Fe-0.06Ag in situ composite with cumulative cold deformation strain η = 7.8 (where η = ln(A 0 /A) and A 0 and A are the original and final cross-section areas, respectively), achieved a tensile strength of 930 MPa and a conductivity of 56%IACS (International Annealed Copper Standard; 17.241 nΩ m is defined as 100%IACS). The Ag micro-alloyed in situ composite had a combination of properties comparable to that of a much more expensive alloy containing much more Ag. After 1 h heat treatment at 300 deg. C, the tensile strength was increased to 950 MPa and the conductivity was increased to 56.4%IACS.

  18. Magnetic reversal processes and critical thickness in FePt/α-Fe/FePt trilayers

    International Nuclear Information System (INIS)

    Guo, N.L.; Zhao, G.P.; Zhang, H.W.; Zhou, X.L.; Deng, Y.

    2011-01-01

    Magnetic reversal processes of a FePt/α-Fe/FePt trilayer system with in-plane easy axes have been investigated within a micromagnetic approach. It is found that the magnetic reversal process consists of three steps: nucleation of a prototype of domain wall in the soft phase, the evolution as well as the motion of the domain wall from the soft to the hard phase and finally, the magnetic reversal of the hard phase. For small soft layer thickness L s , the three steps are reduced to one single step, where the magnetizations in the two phases reverses simultaneously and the hysteresis loops are square with nucleation as the coercivity mechanism. As L s increases, both nucleation and pinning fields decrease. In the meantime, the single-step reversal expands to a standard three-step one and the coercivity mechanism changes from nucleation to pinning. The critical thickness where the coercivity mechanism alters, could be derived analytically, which is found to be inversely proportional to the square root of the crystalline anisotropy of the hard phase. Such a scaling law might provide an easy way to test the present theory. Further increase of L s leads to the change of the coercivity mechanism from pinning to nucleation. - Highlights: → Analytical critical thickness scales with square root of anisotropy of hard phase. → Reversal process determined nucleation, motion and depinning of domain walls. → Coercivity mechanism is nucleation and pinning for thin and thick soft layers. → Microscopic and macroscopic hysteresis loops calculated.

  19. 57Fe Moessbauer Studies in Mo-Fe Supported Catalysts

    International Nuclear Information System (INIS)

    Castelao-Dias, M.; Costa, B. F. O.; Quinta-Ferreira, R. M.

    2001-01-01

    Industrially, the Mo-Fe catalysts used in the selective oxidation of methanol to formaldehyde can rapidly deactivate. The use of support materials may reduce the high temperatures in the catalytic bed and/or increase thermal and mechanical resistance. However, during the preparation of these catalysts, or even during reaction conditions, the active species may react with the support material losing their catalytic activity. In this work silica, silicium carbide and titania were studied as supported catalysts by Moessbauer spectroscopy which proved to be a useful technique in the choice of supported materials

  20. Interstitial Fe in MgO

    CERN Document Server

    Mølholt, T E; Gunnlaugsson, H P; Svane, A; Masenda, H; Naidoo, D; Bharuth-Ram, K; Fanciulli, M; Gislason, H P; Johnston, K; Langouche, G; Ólafsson, S; Sielemann, R; Weyer, G

    2014-01-01

    Isolated Fe-57 atoms were studied in MgO single-crystals by emission Mossbauer spectroscopy following implantation of Mn-57 decaying to Fe-57. Four Mossbauer spectral components were found corresponding to different Fe lattice positions and/or charge states. Two components represent Fe atoms substituting Mg as Fe2+ and Fe3+, respectively; a third component is due to Fe in a strongly implantation-induced disturbed region. The fourth component, which is the focus of this paper, can be assigned to Fe at an interstitial site. Comparison of its measured isomer shift with ab initio calculations suggests that the interstitial Fe is located on, or close to, the face of the rock-salt MgO structure. To harmonize such an assignment with the measured near-zero quadrupole interaction a local motion process (cage motion) of the Fe has to be stipulated. The relation of such a local motion as a starting point for long range diffusion is discussed.