FDNS CFD Code Benchmark for RBCC Ejector Mode Operation
Holt, James B.; Ruf, Joe
1999-01-01
Computational Fluid Dynamics (CFD) analysis results are compared with benchmark quality test data from the Propulsion Engineering Research Center's (PERC) Rocket Based Combined Cycle (RBCC) experiments to verify fluid dynamic code and application procedures. RBCC engine flowpath development will rely on CFD applications to capture the multi-dimensional fluid dynamic interactions and to quantify their effect on the RBCC system performance. Therefore, the accuracy of these CFD codes must be determined through detailed comparisons with test data. The PERC experiments build upon the well-known 1968 rocket-ejector experiments of Odegaard and Stroup by employing advanced optical and laser based diagnostics to evaluate mixing and secondary combustion. The Finite Difference Navier Stokes (FDNS) code was used to model the fluid dynamics of the PERC RBCC ejector mode configuration. Analyses were performed for both Diffusion and Afterburning (DAB) and Simultaneous Mixing and Combustion (SMC) test conditions. Results from both the 2D and the 3D models are presented.
Benchmark of FDNS CFD Code For Direct Connect RBCC Test Data
Ruf, J. H.
2000-01-01
Computational Fluid Dynamics (CFD) analysis results are compared with experimental data from the Pennsylvania State University's (PSU) Propulsion Engineering Research Center (PERC) rocket based combined cycle (RBCC) rocket-ejector experiments. The PERC RBCC experimental hardware was in a direct-connect configuration in diffusion and afterburning (DAB) operation. The objective of the present work was to validate the Finite Difference Navier Stokes (FDNS) CFD code for the rocket-ejector mode internal fluid mechanics and combustion phenomena. A second objective was determine the best application procedures to use FDNS as a predictive/engineering tool. Three-dimensional CFD analysis was performed. Solution methodology and grid requirements are discussed. CFD results are compared to experimental data for static pressure, Raman Spectroscopy species distribution data and RBCC net thrust and specified impulse.
FDNS CFD Code Benchmark for RBCC Ejector Mode Operation: Continuing Toward Dual Rocket Effects
West, Jeff; Ruf, Joseph H.; Turner, James E. (Technical Monitor)
2000-01-01
Computational Fluid Dynamics (CFD) analysis results are compared with benchmark quality test data from the Propulsion Engineering Research Center's (PERC) Rocket Based Combined Cycle (RBCC) experiments to verify fluid dynamic code and application procedures. RBCC engine flowpath development will rely on CFD applications to capture the multi -dimensional fluid dynamic interactions and to quantify their effect on the RBCC system performance. Therefore, the accuracy of these CFD codes must be determined through detailed comparisons with test data. The PERC experiments build upon the well-known 1968 rocket-ejector experiments of Odegaard and Stroup by employing advanced optical and laser based diagnostics to evaluate mixing and secondary combustion. The Finite Difference Navier Stokes (FDNS) code [2] was used to model the fluid dynamics of the PERC RBCC ejector mode configuration. Analyses were performed for the Diffusion and Afterburning (DAB) test conditions at the 200-psia thruster operation point, Results with and without downstream fuel injection are presented.
Perspective: Selected benchmarks from commercial CFD codes
Energy Technology Data Exchange (ETDEWEB)
Freitas, C.J. [Southwest Research Inst., San Antonio, TX (United States). Computational Mechanics Section
1995-06-01
This paper summarizes the results of a series of five benchmark simulations which were completed using commercial Computational Fluid Dynamics (CFD) codes. These simulations were performed by the vendors themselves, and then reported by them in ASME`s CFD Triathlon Forum and CFD Biathlon Forum. The first group of benchmarks consisted of three laminar flow problems. These were the steady, two-dimensional flow over a backward-facing step, the low Reynolds number flow around a circular cylinder, and the unsteady three-dimensional flow in a shear-driven cubical cavity. The second group of benchmarks consisted of two turbulent flow problems. These were the two-dimensional flow around a square cylinder with periodic separated flow phenomena, and the stead, three-dimensional flow in a 180-degree square bend. All simulation results were evaluated against existing experimental data nd thereby satisfied item 10 of the Journal`s policy statement for numerical accuracy. The objective of this exercise was to provide the engineering and scientific community with a common reference point for the evaluation of commercial CFD codes.
Injector Design Tool Improvements: User's manual for FDNS V.4.5
Chen, Yen-Sen; Shang, Huan-Min; Wei, Hong; Liu, Jiwen
1998-01-01
The major emphasis of the current effort is in the development and validation of an efficient parallel machine computational model, based on the FDNS code, to analyze the fluid dynamics of a wide variety of liquid jet configurations for general liquid rocket engine injection system applications. This model includes physical models for droplet atomization, breakup/coalescence, evaporation, turbulence mixing and gas-phase combustion. Benchmark validation cases for liquid rocket engine chamber combustion conditions will be performed for model validation purpose. Test cases may include shear coaxial, swirl coaxial and impinging injection systems with combinations LOXIH2 or LOXISP-1 propellant injector elements used in rocket engine designs. As a final goal of this project, a well tested parallel CFD performance methodology together with a user's operation description in a final technical report will be reported at the end of the proposed research effort.
ARC Code TI: CFD Utility Software Library
National Aeronautics and Space Administration — The CFD Utility Software Library consists of nearly 30 libraries of Fortran 90 and 77 subroutines and almost 100 applications built on those libraries. Many of the...
A CFD code comparison of wind turbine wakes
DEFF Research Database (Denmark)
Laan, van der, Paul Maarten; Storey, R. C.; Sørensen, Niels N.;
2014-01-01
A comparison is made between the EllipSys3D and SnS CFD codes. Both codes are used to perform Large-Eddy Simulations (LES) of single wind turbine wakes, using the actuator disk method. The comparison shows that both LES models predict similar velocity deficits and stream-wise Reynolds...
CFD code comparison for 2D airfoil flows
DEFF Research Database (Denmark)
Sørensen, Niels N.; Méndez, B.; Muñoz, A.;
2016-01-01
The current paper presents the effort, in the EU AVATAR project, to establish the necessary requirements to obtain consistent lift over drag ratios among seven CFD codes. The flow around a 2D airfoil case is studied, for both transitional and fully turbulent conditions at Reynolds numbers of 3 × ...
CFD code comparison for 2D airfoil flows
DEFF Research Database (Denmark)
Sørensen, Niels N.; Méndez, B.; Muñoz, A.
2016-01-01
The current paper presents the effort, in the EU AVATAR project, to establish the necessary requirements to obtain consistent lift over drag ratios among seven CFD codes. The flow around a 2D airfoil case is studied, for both transitional and fully turbulent conditions at Reynolds numbers of 3...... × 106 and 15 × 106. The necessary grid resolution, domain size, and iterative convergence criteria to have consistent results are discussed, and suggestions are given for best practice. For the fully turbulent results four out of seven codes provide consistent results. For the laminar...
Two Phase Flow Models and Numerical Methods of the Commercial CFD Codes
Energy Technology Data Exchange (ETDEWEB)
Bae, Sung Won; Jeong, Jae Jun; Chang, Seok Kyu; Cho, Hyung Kyu
2007-11-15
The use of commercial CFD codes extend to various field of engineering. The thermal hydraulic analysis is one of the promising engineering field of application of the CFD codes. Up to now, the main application of the commercial CFD code is focused within the single phase, single composition fluid dynamics. Nuclear thermal hydraulics, however, deals with abrupt pressure changes, high heat fluxes, and phase change heat transfer. In order to overcome the CFD limitation and to extend the capability of the nuclear thermal hydraulics analysis, the research efforts are made to collaborate the CFD and nuclear thermal hydraulics. To achieve the final goal, the current useful model and correlations used in commercial CFD codes should be reviewed and investigated. This report gives the summary information about the constitutive relationships that are used in the FLUENT, STAR-CD, and CFX. The brief information of the solution technologies are also enveloped.
Needs and opportunities for CFD-code validation
Energy Technology Data Exchange (ETDEWEB)
Smith, B.L. [Paul Scherrer Institute, Villigen (Switzerland)]|[Paul Scherrer Instiute, Wuerenlingen (Switzerland)
1996-06-01
The conceptual design for the ESS target consists of a horizontal cylinder containing a liquid metal - mercury is considered in the present study - which circulates by forced convection and carries away the waste heat generated by the spallation reactions. The protons enter the target via a beam window, which must withstand the thermal, mechanical and radiation loads to which it is subjected. For a beam power of 5MW, it is estimated that about 3.3MW of waste heat would be deposited in the target material and associated structures. it is intended to confirm, by detailed thermal-hydraulics calculations, that a convective flow of the liquid metal target material can effectively remove the waste heat. The present series of Computational Fluid Dynamics (CFD) calculations has indicated that a single-inlet Target design leads to excessive local overheating, but a multiple-inlet design, is coolable. With this option, inlet flow streams, two from the sides and one from below, merge over the target window, cooling the window itself in crossflow and carrying away the heat generated volumetrically in the mercury with a strong axial flow down the exit channel. The three intersecting streams form a complex, three-dimensional, swirling flow field in which critical heat transfer processes are taking place. In order to produce trustworthy code simulations, it is necessary that the mesh resolution is adequate for the thermal-hydraulic conditions encountered and that the physical models used by the code are appropriate to the fluid dynamic environment. The former relies on considerable user experience in the application of the code, and the latter assurance is best gained in the context of controlled benchmark activities where measured data are available. Such activities will serve to quantify the accuracy of given models and to identify potential problem area for the numerical simulation which may not be obvious from global heat and mass balance considerations.
Dakota Uncertainty Quantification Methods Applied to the CFD code Nek5000
Energy Technology Data Exchange (ETDEWEB)
Delchini, Marc-Olivier [Oak Ridge National Lab. (ORNL), Oak Ridge, TN (United States). Reactor and Nuclear Systems Division; Popov, Emilian L. [Oak Ridge National Lab. (ORNL), Oak Ridge, TN (United States). Reactor and Nuclear Systems Division; Pointer, William David [Oak Ridge National Lab. (ORNL), Oak Ridge, TN (United States). Reactor and Nuclear Systems Division
2016-04-29
This report presents the state of advancement of a Nuclear Energy Advanced Modeling and Simulation (NEAMS) project to characterize the uncertainty of the computational fluid dynamics (CFD) code Nek5000 using the Dakota package for flows encountered in the nuclear engineering industry. Nek5000 is a high-order spectral element CFD code developed at Argonne National Laboratory for high-resolution spectral-filtered large eddy simulations (LESs) and unsteady Reynolds-averaged Navier-Stokes (URANS) simulations.
Dakota Uncertainty Quantification Methods Applied to the CFD code Nek5000
Energy Technology Data Exchange (ETDEWEB)
Delchini, Marc-Olivier [Oak Ridge National Lab. (ORNL), Oak Ridge, TN (United States). Reactor and Nuclear Systems Division; Popov, Emilian L. [Oak Ridge National Lab. (ORNL), Oak Ridge, TN (United States). Reactor and Nuclear Systems Division; Pointer, William David [Oak Ridge National Lab. (ORNL), Oak Ridge, TN (United States). Reactor and Nuclear Systems Division
2016-04-29
This report presents the state of advancement of a Nuclear Energy Advanced Modeling and Simulation (NEAMS) project to characterize the uncertainty of the computational fluid dynamics (CFD) code Nek5000 using the Dakota package for flows encountered in the nuclear engineering industry. Nek5000 is a high order spectral element CFD code developed at Argonne National Laboratory for high resolution spectral-filtered large eddy simulations (LESs) and unsteady Reynolds averaged Navier-Stokes (URANS) simulations.
Evaluation of heat transfer surfaces for compact recuperator using a CFD code
Ashok Babu, T. P.; Talekala, Mohammad Shekoor
2009-04-01
Exhaust recovery recuperator is mandatory in order to realize a thermal efficiency of 30% or higher for micro turbines. In this work an attempt is made to select the cross corrugated heat transfer surface with minimum core volume of a recuperator matrix using a CFD code. Analysis is carried out for selected cross corrugated heat transfer surface configurations. The relation between the minimum core volume from design calculation and average skin friction coefficient from CFD analysis has been established.
Validation of vortex code viscous models using lidar wake measurements and CFD
DEFF Research Database (Denmark)
Branlard, Emmanuel; Machefaux, Ewan; Gaunaa, Mac;
2014-01-01
The newly implemented vortex code Omnivor coupled to the aero-servo-elastic tool hawc2 is described in this paper. Vortex wake improvements by the implementation of viscous effects are considered. Different viscous models are implemented and compared with each other. Turbulent flow fields...... with sheared inflow are used to compare the vortex code performance with CFD and lidar measurements. Laminar CFD computations are used to evaluate the performance of the viscous models. Consistent results between the vortex code and CFD tool are obtained up to three diameters downstream. The modelling...... of viscous boundaries appear more important than the modelling of viscosity in the wake. External turbulence and shear appear sufficient but their full potential flow modelling would be preferred....
Application of CFD Codes in Nuclear Reactor Safety Analysis
Directory of Open Access Journals (Sweden)
T. Höhne
2010-01-01
Full Text Available Computational Fluid Dynamics (CFD is increasingly being used in nuclear reactor safety (NRS analyses as a tool that enables safety relevant phenomena occurring in the reactor coolant system to be described in more detail. Numerical investigations on single phase coolant mixing in Pressurised Water Reactors (PWR have been performed at the FZD for almost a decade. The work is aimed at describing the mixing phenomena relevant for both safety analysis, particularly in steam line break and boron dilution scenarios, and mixing phenomena of interest for economical operation and the structural integrity. For the experimental investigation of horizontal two phase flows, different non pressurized channels and the TOPFLOW Hot Leg model in a pressure chamber was build and simulated with ANSYS CFX. In a common project between the University of Applied Sciences Zittau/Görlitz and FZD the behaviour of insulation material released by a LOCA released into the containment and might compromise the long term emergency cooling systems is investigated. Moreover, the actual capability of CFD is shown to contribute to fuel rod bundle design with a good CHF performance.
Development and Implementation of CFD-Informed Models for the Advanced Subchannel Code CTF
Energy Technology Data Exchange (ETDEWEB)
Blyth, Taylor S. [Pennsylvania State Univ., University Park, PA (United States); Avramova, Maria [North Carolina State Univ., Raleigh, NC (United States)
2017-04-01
The research described in this PhD thesis contributes to the development of efficient methods for utilization of high-fidelity models and codes to inform low-fidelity models and codes in the area of nuclear reactor core thermal-hydraulics. The objective is to increase the accuracy of predictions of quantities of interests using high-fidelity CFD models while preserving the efficiency of low-fidelity subchannel core calculations. An original methodology named Physics- based Approach for High-to-Low Model Information has been further developed and tested. The overall physical phenomena and corresponding localized effects, which are introduced by the presence of spacer grids in light water reactor (LWR) cores, are dissected in corresponding four building basic processes, and corresponding models are informed using high-fidelity CFD codes. These models are a spacer grid-directed cross-flow model, a grid-enhanced turbulent mixing model, a heat transfer enhancement model, and a spacer grid pressure loss model. The localized CFD-models are developed and tested using the CFD code STAR-CCM+, and the corresponding global model development and testing in sub-channel formulation is performed in the thermal- hydraulic subchannel code CTF. The improved CTF simulations utilize data-files derived from CFD STAR-CCM+ simulation results covering the spacer grid design desired for inclusion in the CTF calculation. The current implementation of these models is examined and possibilities for improvement and further development are suggested. The validation experimental database is extended by including the OECD/NRC PSBT benchmark data. The outcome is an enhanced accuracy of CTF predictions while preserving the computational efficiency of a low-fidelity subchannel code.
Implementation of CFD module in the KORSAR thermal-hydraulic system code
Energy Technology Data Exchange (ETDEWEB)
Yudov, Yury V.; Danilov, Ilia G.; Chepilko, Stepan S. [Alexandrov Research Inst. of Technology (NITI), Sosnovy Bor (Russian Federation)
2015-09-15
The Russian KORSAR/GP (hereinafter KORSAR) computer code was developed by a joint team from Alexandrov NITI and OKB ''Gidropress'' for VVER safety analysis and certified by the Rostechnadzor of Russia in 2009. The code functionality is based on a 1D two-fluid model for calculation of two-phase flows. A 3D CFD module in the KORSAR computer code is being developed by Alexandrov NITI for representing 3D effects in the downcomer and lower plenum during asymmetrical loop operation. The CFD module uses Cartesian grid method with cut cell approach. The paper presents a numerical algorithm for coupling 1D and 3D thermal- hydraulic modules in the KORSAR code. The combined pressure field is calculated by the multigrid method. The performance efficiency of the algorithm for coupling 1D and 3D modules was demonstrated by solving the benchmark problem of mixing cold and hot flows in a T-junction.
A user guide for the EMTAC-MZ CFD code
Szema, Kuo-Yen; Chakravarthy, Sukumar R.
1990-05-01
The computer code (EMTAC-MZ) was applied to investigate the flow field over a variety of very complex three-dimensional (3-D) configurations across the Mach number range (subsonic, transonic, supersonic, and hypersonic flow). In the code, a finite volume, multizone implementation of high accuracy, total variation diminishing (TVD) formulation (based on Roe's scheme) is used to solve the unsteady Euler equations. In the supersonic regions of the flow, an infinitely large time step and a space-marching scheme is employed. A finite time step and a relaxation or 3-D approximate factorization method is used in subsonic flow regions. The multizone technique allows very complicated configurations to be modeled without geometry modifications, and can easily handle combined internal and external flow problems. An elliptic grid generation package is built into the EMTAC-MZ code. To generate the computational grid, only the surface geometry data are required. Results obtained for a variety of configurations, such as fighter-like configurations (F-14, AVSTOL), flow through inlet, multi-bodies (shuttle with external tank and SRBs), are reported and shown to be in good agreement with available experimental data.
CFD Code Validation against Stratified Air-Water Flow Experimental Data
Directory of Open Access Journals (Sweden)
F. Terzuoli
2008-01-01
Full Text Available Pressurized thermal shock (PTS modelling has been identified as one of the most important industrial needs related to nuclear reactor safety. A severe PTS scenario limiting the reactor pressure vessel (RPV lifetime is the cold water emergency core cooling (ECC injection into the cold leg during a loss of coolant accident (LOCA. Since it represents a big challenge for numerical simulations, this scenario was selected within the European Platform for Nuclear Reactor Simulations (NURESIM Integrated Project as a reference two-phase problem for computational fluid dynamics (CFDs code validation. This paper presents a CFD analysis of a stratified air-water flow experimental investigation performed at the Institut de Mécanique des Fluides de Toulouse in 1985, which shares some common physical features with the ECC injection in PWR cold leg. Numerical simulations have been carried out with two commercial codes (Fluent and Ansys CFX, and a research code (NEPTUNE CFD. The aim of this work, carried out at the University of Pisa within the NURESIM IP, is to validate the free surface flow model implemented in the codes against experimental data, and to perform code-to-code benchmarking. Obtained results suggest the relevance of three-dimensional effects and stress the importance of a suitable interface drag modelling.
VOLVOF: An update of the CFD code, SOLA-VOF
Energy Technology Data Exchange (ETDEWEB)
Park, J.E.
1999-12-14
The SOLA-VOF code developed by the T-3 (Theoretical Physics, Fluids) group at the Los Alamos National Laboratory (LANL) has been extensively modified at the Oak Ridge National Laboratory (ORNL). The modified and improved version has been dubbed ''VOLVOF,'' to acknowledge the state of Tennessee, the Volunteer state and home of ORNL. Modifications include generalization of boundary conditions, additional flexibility in setting up problems, addition of a problem interruption and restart capability, segregation of graphics functions to allow utilization of modern commercial graphics programs, and addition of time and date stamps to output files. Also, the pressure iteration has been restructured to exploit the much greater system memory available on modern workstations and personal computers. A solution monitoring capability has been added to utilize the multi-tasking capability of modern computer operating systems. These changes are documented in the following report. NAMELIST input variables are defined, and input files and the resulting output are given for two test problems. Modification and documentation of a working technical computer program is almost never complete. This is certainly true for the present effort. However, the impending retirement of the writer dictates that the current configuration and capability be reported.
Production Level CFD Code Acceleration for Hybrid Many-Core Architectures
Duffy, Austen C.; Hammond, Dana P.; Nielsen, Eric J.
2012-01-01
In this work, a novel graphics processing unit (GPU) distributed sharing model for hybrid many-core architectures is introduced and employed in the acceleration of a production-level computational fluid dynamics (CFD) code. The latest generation graphics hardware allows multiple processor cores to simultaneously share a single GPU through concurrent kernel execution. This feature has allowed the NASA FUN3D code to be accelerated in parallel with up to four processor cores sharing a single GPU. For codes to scale and fully use resources on these and the next generation machines, codes will need to employ some type of GPU sharing model, as presented in this work. Findings include the effects of GPU sharing on overall performance. A discussion of the inherent challenges that parallel unstructured CFD codes face in accelerator-based computing environments is included, with considerations for future generation architectures. This work was completed by the author in August 2010, and reflects the analysis and results of the time.
Integration of CFD codes and advanced combustion models for quantitative burnout determination
Energy Technology Data Exchange (ETDEWEB)
Javier Pallares; Inmaculada Arauzo; Alan Williams [University of Zaragoza, Zaragoza (Spain). Centre of Research for Energy Resources and Consumption (CIRCE)
2007-10-15
CFD codes and advanced kinetics combustion models are extensively used to predict coal burnout in large utility boilers. Modelling approaches based on CFD codes can accurately solve the fluid dynamics equations involved in the problem but this is usually achieved by including simple combustion models. On the other hand, advanced kinetics combustion models can give a detailed description of the coal combustion behaviour by using a simplified description of the flow field, this usually being obtained from a zone-method approach. Both approximations describe correctly general trends on coal burnout, but fail to predict quantitative values. In this paper a new methodology which takes advantage of both approximations is described. In the first instance CFD solutions were obtained of the combustion conditions in the furnace in the Lamarmora power plant (ASM Brescia, Italy) for a number of different conditions and for three coals. Then, these furnace conditions were used as inputs for a more detailed chemical combustion model to predict coal burnout. In this, devolatilization was modelled using a commercial macromolecular network pyrolysis model (FG-DVC). For char oxidation an intrinsic reactivity approach including thermal annealing, ash inhibition and maceral effects, was used. Results from the simulations were compared against plant experimental values, showing a reasonable agreement in trends and quantitative values. 28 refs., 4 figs., 4 tabs.
Energy Technology Data Exchange (ETDEWEB)
Batet, L.; Mas de les Valls, E.; Sedano, L. A.
2012-07-01
In the context of regenerating sheaths for fusion reactors, the CFD simulations of liquid metal channels (ML) are essential to know the phenomenology and obtain relevant information for design as: ML thermal gain, to know the thermal efficiency of the component, existence of hot spots, to define the materials to use, existence of flow inversion, etc. Apart from design parameters there are others, bridge parameter, required as inputs into system code. In this work shown GREENER/T4F capabilities for obtaining both parameters with a CFD tool based on open source OpenFOAM.
Liquid propellant rocket engine combustion simulation with a time-accurate CFD method
Chen, Y. S.; Shang, H. M.; Liaw, Paul; Hutt, J.
1993-01-01
Time-accurate computational fluid dynamics (CFD) algorithms are among the basic requirements as an engineering or research tool for realistic simulations of transient combustion phenomena, such as combustion instability, transient start-up, etc., inside the rocket engine combustion chamber. A time-accurate pressure based method is employed in the FDNS code for combustion model development. This is in connection with other program development activities such as spray combustion model development and efficient finite-rate chemistry solution method implementation. In the present study, a second-order time-accurate time-marching scheme is employed. For better spatial resolutions near discontinuities (e.g., shocks, contact discontinuities), a 3rd-order accurate TVD scheme for modeling the convection terms is implemented in the FDNS code. Necessary modification to the predictor/multi-corrector solution algorithm in order to maintain time-accurate wave propagation is also investigated. Benchmark 1-D and multidimensional test cases, which include the classical shock tube wave propagation problems, resonant pipe test case, unsteady flow development of a blast tube test case, and H2/O2 rocket engine chamber combustion start-up transient simulation, etc., are investigated to validate and demonstrate the accuracy and robustness of the present numerical scheme and solution algorithm.
The TALL-3D facility design and commissioning tests for validation of coupled STH and CFD codes
Energy Technology Data Exchange (ETDEWEB)
Grishchenko, Dmitry, E-mail: dmitry@safety.sci.kth.se; Jeltsov, Marti, E-mail: marti@safety.sci.kth.se; Kööp, Kaspar, E-mail: kaspar@safety.sci.kth.se; Karbojian, Aram, E-mail: karbojan@kth.se; Villanueva, Walter, E-mail: walter@safety.sci.kth.se; Kudinov, Pavel, E-mail: pavel@safety.sci.kth.se
2015-08-15
Highlights: • Design of a heavy liquid thermal-hydraulic loop for CFD/STH code validation. • Description of the loop instrumentation and assessment of measurement error. • Experimental data from forced to natural circulation transient. - Abstract: Application of coupled CFD (Computational Fluid Dynamics) and STH (System Thermal Hydraulics) codes is a prerequisite for computationally affordable and sufficiently accurate prediction of thermal-hydraulics of complex systems. Coupled STH and CFD codes require validation for understanding and quantification of the sources of uncertainties in the code prediction. TALL-3D is a liquid Lead Bismuth Eutectic (LBE) loop developed according to the requirements for the experimental data for validation of coupled STH and CFD codes. The goals of the facility design are to provide (i) mutual feedback between natural circulation in the loop and complex 3D mixing and stratification phenomena in the pool-type test section, (ii) a possibility to validate standalone STH and CFD codes for each subsection of the facility, and (iii) sufficient number of experimental data to separate the process of input model calibration and code validation. Description of the facility design and its main components, approach to estimation of experimental uncertainty and calibration of model input parameters that are not directly measured in the experiment are discussed in the paper. First experimental data from the forced to natural circulation transient is also provided in the paper.
Preliminary Analysis for Flow Blockage of Plate Fuel using a Commercial CFD Code
Energy Technology Data Exchange (ETDEWEB)
Park, Jong-Pil; Park, Suki [Korea Atomic Energy Research Institute, Daejeon (Korea, Republic of)
2016-10-15
A plate-type fuel assembly is widely used in the research reactors in order to enhance power density. This type fuel assembly consists of a number of fuel plates, supporting plates, and narrow rectangular cooling channels between the fuel plates. Due to the narrow rectangular channels consisting of parallel plate fuels and side plates, the cooling channels are isolated from each other so that the cross flow between the channels are completely restricted. When blockage at the inlet of the channel occurs, therefore, the coolant flow through the blocked channel will be greatly reduced or completely interrupted. Accordingly, the blocked channel loses its own cooling capability. This event may cause initiation of nucleate boiling and two phase flow instability (FI) in the blocked channel. In recent years, CFD analyses of flow blockage of a research reactor have been performed by many researchers. The present study reports a 3-dimensional CFD simulation using two-phase model for flow blockage of two channels of a plate-type fuel assembly. The present result shows limited information since the simulation is working at the moment. However, the present study indicates that it is possible to predict a damage propagation of a plate-type fuel assembly due to the flow instability caused by flow blockage using a commercial CFD code.
Numerical modelling of pressure suppression pools with CFD and FEM codes
Energy Technology Data Exchange (ETDEWEB)
Paettikangas, T.; Niemi, J.; Timperi, A. (VTT Technical Research Centre of Finland (Finland))
2011-06-15
Experiments on large-break loss-of-coolant accident for BWR is modeled with computational fluid (CFD) dynamics and finite element calculations. In the CFD calculations, the direct-contact condensation in the pressure suppression pool is studied. The heat transfer in the liquid phase is modeled with the Hughes-Duffey correlation based on the surface renewal model. The heat transfer is proportional to the square root of the turbulence kinetic energy. The condensation models are implemented with user-defined functions in the Euler-Euler two-phase model of the Fluent 12.1 CFD code. The rapid collapse of a large steam bubble and the resulting pressure source is studied analytically and numerically. Pressure source obtained from simplified calculations is used for studying the structural effects and FSI in a realistic BWR containment. The collapse results in volume acceleration, which induces pressure loads on the pool walls. In the case of a spherical bubble, the velocity term of the volume acceleration is responsible of the largest pressure load. As the amount of air in the bubble is decreased, the peak pressure increases. However, when the water compressibility is accounted for, the finite speed of sound becomes a limiting factor. (Author)
PIV Uncertainty Methodologies for CFD Code Validation at the MIR Facility
Energy Technology Data Exchange (ETDEWEB)
Sabharwall, Piyush [Idaho National Lab. (INL), Idaho Falls, ID (United States); Skifton, Richard [Idaho National Lab. (INL), Idaho Falls, ID (United States); Stoots, Carl [Idaho National Lab. (INL), Idaho Falls, ID (United States); Kim, Eung Soo [Idaho National Lab. (INL), Idaho Falls, ID (United States); Conder, Thomas [Idaho National Lab. (INL), Idaho Falls, ID (United States)
2013-12-01
Currently, computational fluid dynamics (CFD) is widely used in the nuclear thermal hydraulics field for design and safety analyses. To validate CFD codes, high quality multi dimensional flow field data are essential. The Matched Index of Refraction (MIR) Flow Facility at Idaho National Laboratory has a unique capability to contribute to the development of validated CFD codes through the use of Particle Image Velocimetry (PIV). The significance of the MIR facility is that it permits non intrusive velocity measurement techniques, such as PIV, through complex models without requiring probes and other instrumentation that disturb the flow. At the heart of any PIV calculation is the cross-correlation, which is used to estimate the displacement of particles in some small part of the image over the time span between two images. This image displacement is indicated by the location of the largest peak. In the MIR facility, uncertainty quantification is a challenging task due to the use of optical measurement techniques. Currently, this study is developing a reliable method to analyze uncertainty and sensitivity of the measured data and develop a computer code to automatically analyze the uncertainty/sensitivity of the measured data. The main objective of this study is to develop a well established uncertainty quantification method for the MIR Flow Facility, which consists of many complicated uncertainty factors. In this study, the uncertainty sources are resolved in depth by categorizing them into uncertainties from the MIR flow loop and PIV system (including particle motion, image distortion, and data processing). Then, each uncertainty source is mathematically modeled or adequately defined. Finally, this study will provide a method and procedure to quantify the experimental uncertainty in the MIR Flow Facility with sample test results.
Energy Technology Data Exchange (ETDEWEB)
Shin, Chang Hwan; Seo, Kyong Won; Chun, Tae Hyun; Kim, Kang Seog
2005-03-15
Code coupling activities have so far focused on coupling the neutronics modules with the CFD module. An interface module for the CFD-ACE/DeCART coupling was established as an alternative to the original STAR-CD/DeCART interface. The interface module for DeCART/CFD-ACE was validated by single-pin model. The optimized CFD mesh was decided through the calculation of multi-pin model. It was important to consider turbulent mixing of subchannels for calculation of fuel temperature. For the parallel calculation, the optimized decompose process was necessary to reduce the calculation costs and setting of the iteration and convergence criterion for each code was important, too.
Energy Technology Data Exchange (ETDEWEB)
Munoz-cobo, J. L.; Chiva, S.; Pena, C.; Vela, E.
2014-07-01
In this work the development of a methodology is studied to evaluate the uncertainty in the results of CFD codes and is compatible with the VV-20 standard Standard for Verification and Validation in CFD and Heat Transfer {sup ,} developed by the Association of Mechanical Engineers ASME . Similarly, the alternatives are studied for obtaining existing uncertainty in the results to see which is the best choice from the point of view of implementation and time. We have developed two methods for calculating uncertainty of the results of a CFD code, the first method based on the use of techniques of Monte-Carlo for the propagation of uncertainty in this first method we think it is preferable to use the statistics of the order to determine the number of cases to execute the code, because this way we can always determine the confidence interval desired level of output quantities. The second type of method we have developed is based on non-intrusive polynomial chaos. (Author)
Preliminary Drop Time Analysis of a Control Rod Using CFD Code
Energy Technology Data Exchange (ETDEWEB)
Choi, Myoung Hwan; Park, Jin Seok; Lee, Won Jae [Korea Atomic Energy Research Institute, Daejeon (Korea, Republic of); Park, Jun Hong [SEST Co., Seoul (Korea, Republic of)
2010-05-15
A control rod drive mechanism (CRDM) is a reactor regulating system, which can insert and withdraw a control rod containing a neutron absorbing material to control the reactivity of the reactor core. The latch type CRDM for the SMART (System-integrated Modular Advanced ReacTor) is going to be used. The drop time of the control rod in the design stage is one of important parameters for a safety analysis of the reactor. When the control rod is falling down into the core, it is retarded by various forces acting on it such as fluid resistance buoyancy and mechanical friction caused by contacting the inner surface of the guide thimble, etc.. However, complicated coupling of the various forces makes it difficult to predict the drop behavior. This paper describes the development of the 3D CFD analysis model using a FLUENT code. The single control rod of the Westinghouse 17x17 type optimized fuel assembly (W-OFA) was considered for the verification of the CFD model. A preliminary drop time analysis for the SMART with the simulated control rod was performed
Application of CFD code for simulation of an inclined snow chute flow
Directory of Open Access Journals (Sweden)
R K Aggarwal
2013-03-01
Full Text Available In this paper, 2-D simulation of a 61 m long inclined snow chute flow and its interaction with a catch dam type obstacle has been carried out at Dhundhi field research station near Manali, Himachal Pradesh (India using a commercially available computational fluid dynamics (CFD code ANSYS Fluent. Eulerian non-granular multiphase model was chosen to model the snow flow in the surrounding atmospheric air domain. Both air and snow were assumed as laminar and incompressible fluids. User defined functions(UDF were written for the computation of bi-viscous Bingham fluid viscosity and wall shear stress of snow to account for the slip at the interface between the flowing snow and the stationary snow chute surface. Using the proposed CFD model, the velocity, dynamic pressure and debris deposition were simulatedfor flowing snow mass in the chute. Experiments were performed on the snow chute to validate the simulated results. On comparison, the simulated results were found in good agreement with the experimental results.
A 3D-CFD code for accurate prediction of fluid flows and fluid forces in seals
Athavale, M. M.; Przekwas, A. J.; Hendricks, R. C.
1994-01-01
Current and future turbomachinery requires advanced seal configurations to control leakage, inhibit mixing of incompatible fluids and to control the rotodynamic response. In recognition of a deficiency in the existing predictive methodology for seals, a seven year effort was established in 1990 by NASA's Office of Aeronautics Exploration and Technology, under the Earth-to-Orbit Propulsion program, to develop validated Computational Fluid Dynamics (CFD) concepts, codes and analyses for seals. The effort will provide NASA and the U.S. Aerospace Industry with advanced CFD scientific codes and industrial codes for analyzing and designing turbomachinery seals. An advanced 3D CFD cylindrical seal code has been developed, incorporating state-of-the-art computational methodology for flow analysis in straight, tapered and stepped seals. Relevant computational features of the code include: stationary/rotating coordinates, cylindrical and general Body Fitted Coordinates (BFC) systems, high order differencing schemes, colocated variable arrangement, advanced turbulence models, incompressible/compressible flows, and moving grids. This paper presents the current status of code development, code demonstration for predicting rotordynamic coefficients, numerical parametric study of entrance loss coefficients for generic annular seals, and plans for code extensions to labyrinth, damping, and other seal configurations.
Development of sump model for containment hydrogen distribution calculations using CFD code
Energy Technology Data Exchange (ETDEWEB)
Ravva, Srinivasa Rao, E-mail: srini@aerb.gov.in [Indian Institute of Technology-Bombay, Mumbai (India); Nuclear Safety Analysis Division, Atomic Energy Regulatory Board, Mumbai (India); Iyer, Kannan N. [Indian Institute of Technology-Bombay, Mumbai (India); Gaikwad, A.J. [Nuclear Safety Analysis Division, Atomic Energy Regulatory Board, Mumbai (India)
2015-12-15
Highlights: • Sump evaporation model was implemented in FLUENT using three different approaches. • Validated the implemented sump evaporation models against TOSQAN facility. • It was found that predictions are in good agreement with the data. • Diffusion based model would be able to predict both condensation and evaporation. - Abstract: Computational Fluid Dynamics (CFD) simulations are necessary for obtaining accurate predictions and local behaviour for carrying out containment hydrogen distribution studies. However, commercially available CFD codes do not have all necessary models for carrying out hydrogen distribution analysis. One such model is sump or suppression pool evaporation model. The water in the sump may evaporate during the accident progression and affect the mixture concentrations in the containment. Hence, it is imperative to study the sump evaporation and its effect. Sump evaporation is modelled using three different approaches in the present work. The first approach deals with the calculation of evaporation flow rate and sump liquid temperature and supplying these quantities through user defined functions as boundary conditions. In this approach, the mean values of the domain are used. In the second approach, the mass, momentum, energy and species sources arise due to the sump evaporation are added to the domain through user defined functions. Cell values adjacent to the sump interface are used in this. Heat transfer between gas and liquid is calculated automatically by the code itself. However, in these two approaches, the evaporation rate was computed using an experimental correlation. In the third approach, the evaporation rate is directly estimated using diffusion approximation. The performance of these three models is compared with the sump behaviour experiment conducted in TOSQAN facility.Classification: K. Thermal hydraulics.
A study on the dependency between turbulent models and mesh configurations of CFD codes
Energy Technology Data Exchange (ETDEWEB)
Bang, Jungjin; Heo, Yujin; Jerng, Dong-Wook [CAU, Seoul (Korea, Republic of)
2015-10-15
This paper focuses on the analysis of the behavior of hydrogen mixing and hydrogen stratification, using the GOTHIC code and the CFD code. Specifically, we examined the mesh sensitivity and how the turbulence model affects hydrogen stratification or hydrogen mixing, depending on the mesh configuration. In this work, sensitivity analyses for the meshes and the turbulence models were conducted for missing and stratification phenomena. During severe accidents in a nuclear power plants, the generation of hydrogen may occur and this will complicate the atmospheric condition of the containment by causing stratification of air, steam, and hydrogen. This could significantly impact containment integrity analyses, as hydrogen could be accumulated in local region. From this need arises the importance of research about stratification of gases in the containment. Two computation fluid dynamics code, i.e. GOTHIC and STAR-CCM+ were adopted and the computational results were benchmarked against the experimental data from PANDA facility. The main findings observed through the present work can be summarized as follows: 1) In the case of the GOTHIC code, it was observed that the aspect ratio of the mesh was found more important than the mesh size. Also, if the number of the mesh is over 3,000, the effects of the turbulence models were marginal. 2) For STAR-CCM+, the tendency is quite different from the GOTHIC code. That is, the effects of the turbulence models were small for fewer number of the mesh, however, as the number of mesh increases, the effects of the turbulence models becomes significant. Another observation is that away from the injection orifice, the role of the turbulence models tended to be important due to the nature of mixing process and inducted jet stream.
Numerical modeling of immiscible two-phase flow in micro-models using a commercial CFD code
Energy Technology Data Exchange (ETDEWEB)
Crandall, Dustin; Ahmadia, Goodarz; Smith, Duane H.
2009-01-01
Off-the-shelf CFD software is being used to analyze everything from flow over airplanes to lab-on-a-chip designs. So, how accurately can two-phase immiscible flow be modeled flowing through some small-scale models of porous media? We evaluate the capability of the CFD code FLUENT{trademark} to model immiscible flow in micro-scale, bench-top stereolithography models. By comparing the flow results to experimental models we show that accurate 3D modeling is possible.
Radiation Coupling with the FUN3D Unstructured-Grid CFD Code
Wood, William A.
2012-01-01
The HARA radiation code is fully-coupled to the FUN3D unstructured-grid CFD code for the purpose of simulating high-energy hypersonic flows. The radiation energy source terms and surface heat transfer, under the tangent slab approximation, are included within the fluid dynamic ow solver. The Fire II flight test, at the Mach-31 1643-second trajectory point, is used as a demonstration case. Comparisons are made with an existing structured-grid capability, the LAURA/HARA coupling. The radiative surface heat transfer rates from the present approach match the benchmark values within 6%. Although radiation coupling is the focus of the present work, convective surface heat transfer rates are also reported, and are seen to vary depending upon the choice of mesh connectivity and FUN3D ux reconstruction algorithm. On a tetrahedral-element mesh the convective heating matches the benchmark at the stagnation point, but under-predicts by 15% on the Fire II shoulder. Conversely, on a mixed-element mesh the convective heating over-predicts at the stagnation point by 20%, but matches the benchmark away from the stagnation region.
Hadade, Ioan; di Mare, Luca
2016-08-01
Modern multicore and manycore processors exhibit multiple levels of parallelism through a wide range of architectural features such as SIMD for data parallel execution or threads for core parallelism. The exploitation of multi-level parallelism is therefore crucial for achieving superior performance on current and future processors. This paper presents the performance tuning of a multiblock CFD solver on Intel SandyBridge and Haswell multicore CPUs and the Intel Xeon Phi Knights Corner coprocessor. Code optimisations have been applied on two computational kernels exhibiting different computational patterns: the update of flow variables and the evaluation of the Roe numerical fluxes. We discuss at great length the code transformations required for achieving efficient SIMD computations for both kernels across the selected devices including SIMD shuffles and transpositions for flux stencil computations and global memory transformations. Core parallelism is expressed through threading based on a number of domain decomposition techniques together with optimisations pertaining to alleviating NUMA effects found in multi-socket compute nodes. Results are correlated with the Roofline performance model in order to assert their efficiency for each distinct architecture. We report significant speedups for single thread execution across both kernels: 2-5X on the multicore CPUs and 14-23X on the Xeon Phi coprocessor. Computations at full node and chip concurrency deliver a factor of three speedup on the multicore processors and up to 24X on the Xeon Phi manycore coprocessor.
Energy Technology Data Exchange (ETDEWEB)
Schramm, Berthold; Stewering, Joern; Sonnenkalb, Martin
2014-03-15
CFD (Computational Fluid Dynamic) simulation techniques have a growing relevance for the simulation and assessment of accidents in nuclear reactor containments. Some fluid dynamic problems like the calculation of the flow resistances in a complex geometry, turbulence calculations or the calculation of deflagrations could only be solved exactly for very simple cases. These fluid dynamic problems could not be represented by lumped parameter models and must be approximated numerically. Therefore CFD techniques are discussed by a growing international community in conferences like the CFD4NRS-conference. Also the number of articles with a CFD topic is increasing in professional journals like Nuclear Engineering and Design. CFD tools like GASFLOW or GOTHIC are already in use in European nuclear site licensing processes for future nuclear power plants like EPR or AP1000 and the results of these CFD tools are accepted by the authorities. For these reasons it seems to be necessary to build up national competences in the field of CFD techniques and it is important to validate and assess the existing CFD tools. GRS continues the work for the validation and assessment of CFD codes for the simulation of accident scenarios in a nuclear reactor containment within the framework of the BMWi sponsored project RS1500. The focus of this report is on the following topics: - Further validation of condensation models from GRS, FZJ and ANSYS and development of a new condensate model. - Validation of a new turbulence model which was developed by the University of Stuttgart in cooperation with ANSYS. - The formation and dissolution of light gas stratifications are analyzed by large scale experiments. These experiments were simulated by GRS. - The AREVA correlations for hydrogen recombiners (PARs) could be improved by GRS after the analysis of experimental data. Relevant experiments were simulated with this improved recombiner correlation. - Analyses on the simulation of H{sub 2
Energy Technology Data Exchange (ETDEWEB)
Yun, B. J.; Song, C. H. [Korea Atomic Energy Research Institute, Daejeon (Korea, Republic of); Splawski, A.; Lo, S. [CD-adapco, Melville (United States)
2010-10-15
Accurate simulation of subcooled boiling flow is essential for the operation and safety of nuclear power plants (NPP). In recent years, the use of computational fluid dynamics (CFD) codes has been extended to the analysis of multi-dimensional two-phase flow for the NPP. Among the applications of CFD code for the NPP analysis, the first target was selected as a mechanistic prediction of DNB (Departure from Nucleate Boiling) in PWR. In DNB-type CHF (Critical Heat Flux), the expected flow regime is bubbly or churn turbulent flow in the high mass flux and high heat flux condition and thus subcooled boiling is also one of the key phenomena for the precise prediction of DNB. In this paper, S{gamma},which is a mechanistic transport equation for the bubble parameters, was examined in a CFD code with the objective of enhancing the prediction capability of subcooled boiling flows. The models were applied in the STAR-CD 4.12 software
Study of the distribution of steam plumes in the PANDA facility using CFD code
Energy Technology Data Exchange (ETDEWEB)
Guo, Shuanshuan [School of Physics and Engineering, Sun Yat-sen University, Guangzhou (China); Cai, Jiejin, E-mail: chiven77@hotmail.com [Sino-French Institute of Nuclear Engineering & Technology, Sun Yat-sen University, Guangzhou (China); Zhang, Huiyong [China Nuclear Power Technology Research Institute, Shenzhen 518026 (China); Yin, Huaqiang; Yang, Xingtuan [Key Laboratory of Advanced Reactor Engineering and Safety of Ministry of Education, Tsinghua University, Beijing 100084 (China)
2015-08-15
Highlights: • The standard k–ε model has been verified for gas plume simulation in the large-scale volume. • The k–k{sub l}–ω model has been improved for gas plume simulations. • The sensitivity analyses about the computational mesh, time step, Froude numbers have been carried out. - Abstract: During a postulated severe accident in light water reactor, a large amount of steam is injected into containment through the break. This would lead to the increases of pressure and temperature, and consequently threaten the integrity of the containment. In this study the light gas (saturated steam) distribution in a large-scale multi-compartment volume is simulated by using CFD code. Several turbulence models, including the standard k–ε model, the k–k{sub l}–ω model, the transitional SST model, and the improved k–k{sub l}–ω model with considering buoyancy effect are used for the simulation. The results show that both the standard k–ε model and the improved k–k{sub l}–ω model with considering the buoyancy effect can get good results comparing to the experimental results. The improved k–k{sub l}–ω model can get much better than the original k–k{sub l}–ω model without considering the buoyancy effect for predicting the steam distribution in vessels, and some characteristics in concerned region are predicted well. The sensitivity analyses about the computational mesh, time step, Froude numbers are also carried out.
Development of a Prototype Lattice Boltzmann Code for CFD of Fusion Systems.
Energy Technology Data Exchange (ETDEWEB)
Pattison, Martin J; Premnath, Kannan N; Banerjee, Sanjoy; Dwivedi, Vinay
2007-02-26
Designs of proposed fusion reactors, such as the ITER project, typically involve the use of liquid metals as coolants in components such as heat exchangers, which are generally subjected to strong magnetic fields. These fields induce electric currents in the fluids, resulting in magnetohydrodynamic (MHD) forces which have important effects on the flow. The objective of this SBIR project was to develop computational techniques based on recently developed lattice Boltzmann techniques for the simulation of these MHD flows and implement them in a computational fluid dynamics (CFD) code for the study of fluid flow systems encountered in fusion engineering. The code developed during this project, solves the lattice Boltzmann equation, which is a kinetic equation whose behaviour represents fluid motion. This is in contrast to most CFD codes which are based on finite difference/finite volume based solvers. The lattice Boltzmann method (LBM) is a relatively new approach which has a number of advantages compared with more conventional methods such as the SIMPLE or projection method algorithms that involve direct solution of the Navier-Stokes equations. These are that the LBM is very well suited to parallel processing, with almost linear scaling even for very large numbers of processors. Unlike other methods, the LBM does not require solution of a Poisson pressure equation leading to a relatively fast execution time. A particularly attractive property of the LBM is that it can handle flows in complex geometries very easily. It can use simple rectangular grids throughout the computational domain -- generation of a body-fitted grid is not required. A recent advance in the LBM is the introduction of the multiple relaxation time (MRT) model; the implementation of this model greatly enhanced the numerical stability when used in lieu of the single relaxation time model, with only a small increase in computer time. Parallel processing was implemented using MPI and demonstrated the
Energy Technology Data Exchange (ETDEWEB)
Pena-Monferrer, C.; Miquel veyrat, A.; Munoz-Cobo, J. L.; Chiva Vicent, S.
2016-08-01
In the recent years, due, among others, the slowing down of the nuclear industry, investment in the development and validation of CFD codes, applied specifically to the problems of the nuclear industry has been seriously hampered. Thus the International Benchmark Exercise (IBE) sponsored by the OECD/NEA have been fundamental to analyze the use of CFD codes in the nuclear industry, because although these codes are mature in many fields, still exist doubts about them in critical aspects of thermohydraulic calculations, even in single-phase scenarios. The Polytechnic University of Valencia (UPV) and the Universitat Jaume I (UJI), sponsored by the Nuclear Safety Council (CSN), have actively participated in all benchmark's proposed by NEA, as in the expert meetings,. In this paper, a summary of participation in the various IBE will be held, describing the benchmark itself, the CFD model created for it, and the main conclusions. (Author)
CFD Simulation of Liquid Rocket Engine Injectors
Farmer, Richard; Cheng, Gary; Chen, Yen-Sen; Garcia, Roberto (Technical Monitor)
2001-01-01
Detailed design issues associated with liquid rocket engine injectors and combustion chamber operation require CFD methodology which simulates highly three-dimensional, turbulent, vaporizing, and combusting flows. The primary utility of such simulations involves predicting multi-dimensional effects caused by specific injector configurations. SECA, Inc. and Engineering Sciences, Inc. have been developing appropriate computational methodology for NASA/MSFC for the past decade. CFD tools and computers have improved dramatically during this time period; however, the physical submodels used in these analyses must still remain relatively simple in order to produce useful results. Simulations of clustered coaxial and impinger injector elements for hydrogen and hydrocarbon fuels, which account for real fluid properties, is the immediate goal of this research. The spray combustion codes are based on the FDNS CFD code' and are structured to represent homogeneous and heterogeneous spray combustion. The homogeneous spray model treats the flow as a continuum of multi-phase, multicomponent fluids which move without thermal or velocity lags between the phases. Two heterogeneous models were developed: (1) a volume-of-fluid (VOF) model which represents the liquid core of coaxial or impinger jets and their atomization and vaporization, and (2) a Blob model which represents the injected streams as a cloud of droplets the size of the injector orifice which subsequently exhibit particle interaction, vaporization, and combustion. All of these spray models are computationally intensive, but this is unavoidable to accurately account for the complex physics and combustion which is to be predicted, Work is currently in progress to parallelize these codes to improve their computational efficiency. These spray combustion codes were used to simulate the three test cases which are the subject of the 2nd International Workshop on-Rocket Combustion Modeling. Such test cases are considered by
Directory of Open Access Journals (Sweden)
Christophe Morel
2009-01-01
Full Text Available This paper describes the modeling of boiling multisize bubbly flows and its application to the simulation of the DEBORA experiment. We follow the method proposed originally by Kamp, assuming a given mathematical expression for the bubble diameter pdf. The original model is completed by the addition of some new terms for vapor compressibility and phase change. The liquid-to-interface heat transfer term, which essentially determines the bubbles condensation rate in the DEBORA experiment, is also modeled with care. First numerical results realized with the Neptune_CFD code are presented and discussed.
Dury, Trevor V.
2006-06-01
The ESS and SINQ Heat Emitting Temperature Sensing Surface (HETSS) mercury experiments have been used to validate the Computational Fluid Dynamics (CFD) code CFX-4 employed in designing the lower region of the international liquid metal cooled MEGAPIE target, to be installed at SINQ, PSI, in 2006. Conclusions were drawn on the best turbulence models and degrees of mesh refinement to apply, and a new CFD model of the MEGAPIE geometry was made, based on the CATIA CAD design of the exact geometry constructed. This model contained the fill and drain tubes as well as the bypass feed duct, with the differences in relative vertical length due to thermal expansion being considered between these tubes and the window. Results of the mercury experiments showed that CFD calculations can be trusted to give peak target window temperature under normal operational conditions to within about ±10%. The target nozzle actually constructed varied from the theoretical design model used for CFD due to the need to apply more generous separation distances between the nozzle and the window. In addition, the bypass duct contraction approaching the nozzle exit was less sharp compared with earlier designs. Both of these changes modified the bypass jet penetration and coverage of the heated window zone. Peak external window temperature with a 1.4 mA proton beam and steady-state operation is now predicted to be 375 °C, with internal temperature 354.0 °C (about 32 °C above earlier predictions). Increasing bypass flow from 2.5 to 3.0 kg/s lowers these peak temperatures by about 12 °C. Stress analysis still needs to be made, based on these thermal data.
Befrui, Bizhan A.
1995-01-01
This viewgraph presentation discusses the following: STAR-CD computational features; STAR-CD turbulence models; common features of industrial complex flows; industry-specific CFD development requirements; applications and experiences of industrial complex flows, including flow in rotating disc cavities, diffusion hole film cooling, internal blade cooling, and external car aerodynamics; and conclusions on turbulence modeling needs.
2-D Circulation Control Airfoil Benchmark Experiments Intended for CFD Code Validation
Englar, Robert J.; Jones, Gregory S.; Allan, Brian G.; Lin, Johb C.
2009-01-01
A current NASA Research Announcement (NRA) project being conducted by Georgia Tech Research Institute (GTRI) personnel and NASA collaborators includes the development of Circulation Control (CC) blown airfoils to improve subsonic aircraft high-lift and cruise performance. The emphasis of this program is the development of CC active flow control concepts for both high-lift augmentation, drag control, and cruise efficiency. A collaboration in this project includes work by NASA research engineers, whereas CFD validation and flow physics experimental research are part of NASA s systematic approach to developing design and optimization tools for CC applications to fixed-wing aircraft. The design space for CESTOL type aircraft is focusing on geometries that depend on advanced flow control technologies that include Circulation Control aerodynamics. The ability to consistently predict advanced aircraft performance requires improvements in design tools to include these advanced concepts. Validation of these tools will be based on experimental methods applied to complex flows that go beyond conventional aircraft modeling techniques. This paper focuses on recent/ongoing benchmark high-lift experiments and CFD efforts intended to provide 2-D CFD validation data sets related to NASA s Cruise Efficient Short Take Off and Landing (CESTOL) study. Both the experimental data and related CFD predictions are discussed.
Performance of the OVERFLOW-MLP and LAURA-MLP CFD Codes on the NASA Ames 512 CPU Origin System
Taft, James R.
2000-01-01
The shared memory Multi-Level Parallelism (MLP) technique, developed last year at NASA Ames has been very successful in dramatically improving the performance of important NASA CFD codes. This new and very simple parallel programming technique was first inserted into the OVERFLOW production CFD code in FY 1998. The OVERFLOW-MLP code's parallel performance scaled linearly to 256 CPUs on the NASA Ames 256 CPU Origin 2000 system (steger). Overall performance exceeded 20.1 GFLOP/s, or about 4.5x the performance of a dedicated 16 CPU C90 system. All of this was achieved without any major modification to the original vector based code. The OVERFLOW-MLP code is now in production on the inhouse Origin systems as well as being used offsite at commercial aerospace companies. Partially as a result of this work, NASA Ames has purchased a new 512 CPU Origin 2000 system to further test the limits of parallel performance for NASA codes of interest. This paper presents the performance obtained from the latest optimization efforts on this machine for the LAURA-MLP and OVERFLOW-MLP codes. The Langley Aerothermodynamics Upwind Relaxation Algorithm (LAURA) code is a key simulation tool in the development of the next generation shuttle, interplanetary reentry vehicles, and nearly all "X" plane development. This code sustains about 4-5 GFLOP/s on a dedicated 16 CPU C90. At this rate, expected workloads would require over 100 C90 CPU years of computing over the next few calendar years. It is not feasible to expect that this would be affordable or available to the user community. Dramatic performance gains on cheaper systems are needed. This code is expected to be perhaps the largest consumer of NASA Ames compute cycles per run in the coming year.The OVERFLOW CFD code is extensively used in the government and commercial aerospace communities to evaluate new aircraft designs. It is one of the largest consumers of NASA supercomputing cycles and large simulations of highly resolved full
Energy Technology Data Exchange (ETDEWEB)
Barrera matalla, J. E.; Hernandez Gomez, J.; Riverala Gurruchaga, J.
2012-07-01
Irradiated fuel has become an object of interest in the industry by the importance of ensuring its safety during long periods of storage time. New containers, stores, methods and codes will be used to ensure a suitable cooling and residual heat removal, and secure the safety of fuel elements in dry storage. The codes CFD (Computational Fluid Dynamics) have great potential to help in design of containers and stores, improving thermal-hydraulic performance and the extraction of heat generated.
Energy Technology Data Exchange (ETDEWEB)
Abanades, A; MartInez-Val, J M [Instituto de Fusion Nuclear, c/Jose Gutierrez Abascal 2, 28006 - Madrid (Spain); Sordo, F; Lafuente, A [Escuela Tecnica Superior de Ingenieros Industriales-UPM, c/Jose Gutierrez Abascal 2, 28006 - Madrid (Spain); Munoz, J [Fundacion para el Fomento de la Innovacion Industrial, c/Jose Gutierrez Abascal 2, 28006 - Madrid (Spain)], E-mail: abanades@etsii.upm.es
2008-05-15
The engineering design of the new innovative fusion reactors constitutes a clear challenge for the need to overcome several new technological edges in every engineering aspect. The great amount of thermal energy delivered into any inertial fusion chamber and the large temperatures and thermal gradients that are envisaged, joined to the even more demanding aspects related to neutron activation, Tritium breeding and the characteristics that are imposed to the coolant that could be used for that purpose, converged into material selection in which liquid metal seems to be one of the most interesting options. The safety assessment of such Fusion reactors should be clearly provided to fulfill the requirements asked by the Regulatory Bodies in a near-term future, when licensing will be a must. Therefore the availability of well proven and validated engineering design tools is a must. In this context, CFD is one of the tools that are potentially needed for thermal-hydraulic design of such complex machines. The state-of-the-art of CFD technologies will be shown, in particular in relation with liquid metals.
Abánades, A.; Sordo, F.; Lafuente, A.; Muñoz, J.; Martínez-Val, J. M.
2008-05-01
The engineering design of the new innovative fusion reactors constitutes a clear challenge for the need to overcome several new technological edges in every engineering aspect. The great amount of thermal energy delivered into any inertial fusion chamber and the large temperatures and thermal gradients that are envisaged, joined to the even more demanding aspects related to neutron activation, Tritium breeding and the characteristics that are imposed to the coolant that could be used for that purpose, converged into material selection in which liquid metal seems to be one of the most interesting options. The safety assessment of such Fusion reactors should be clearly provided to fulfill the requirements asked by the Regulatory Bodies in a near-term future, when licensing will be a must. Therefore the availability of well proven and validated engineering design tools is a must. In this context, CFD is one of the tools that are potentially needed for thermal-hydraulic design of such complex machines. The state-of-the-art of CFD technologies will be shown, in particular in relation with liquid metals.
Two-Phase Flow Simulations for PTS Investigation by Means of Neptune_CFD Code
Directory of Open Access Journals (Sweden)
Fabio Moretti
2008-11-01
Full Text Available Two-dimensional axisymmetric simulations of pressurized thermal shock (PTS phenomena through Neptune_CFD module are presented aiming at two-phase models validation against experimental data. Because of PTS complexity, only some thermal-hydraulic aspects were considered. Two different flow configurations were studied, occurring when emergency core cooling (ECC water is injected in an uncovered cold leg of a pressurized water reactor (PWRÃ¢Â€Â”a plunging water jet entering a free surface, and a stratified steam-water flow. Some standard and new implemented models were tested: modified turbulent k-ÃŽÂµ models with turbulence production induced by interfacial friction, models for the drag coefficient, and interfacial heat transfer models. Quite good agreement with experimental data was achieved with best performing models for both test cases, even if a further improvement in phase change modelling would be suitable for nuclear technology applications.
Sensitivity analysis of CFD code FLUENT-12 for supercritical water in vertical bare tubes
Energy Technology Data Exchange (ETDEWEB)
Farah, A.; Haines, P.; Harvel, G.; Pioro, I., E-mail: amjad.farah@yahoo.com, E-mail: patrickjhaines@gmail.com, E-mail: glenn.harvel@uoit.ca, E-mail: igor.pioro@uoit.ca [Univ. of Ontario Inst. of Technology, Faculty of Energy Systems and Nuclear Science,Oshawa, Ontario (Canada)
2012-07-01
The ability to use FLUENT 12 or other CFD software to accurately model supercritical water flow through various geometries in diabatic conditions is integral to research involving coal-fired power plants as well as Supercritical Water-cooled Reactors (SCWR). The cost and risk associated with constructing supercritical water test loops are far too great to use in a university setting. Previous work has shown that FLUENT 12, specifically realizable k-ε model, can reasonably predict the bulk and wall temperature distributions of externally heated vertical bare tubes for cases with relatively low heat and mass fluxes. However, sizeable errors were observed for other cases, often those which involved large heat fluxes that produce deteriorated heat transfer (DHT) regimes. The goal of this research is to gain a more complete understanding of how FLUENT 12 models supercritical water cases and where errors can be expected to occur. One control case is selected where expected changes in bulk and wall temperatures occur and they match empirical correlations' predictions, and the operating parameters are varied individually to gauge their effect on FLUENT's solution. The model used is the realizable k-ε, and the parameters altered are inlet pressure, mass flux, heat flux, and inlet temperature. (author)
Energy Technology Data Exchange (ETDEWEB)
Jaeger, Wadim; Manes, Jorge Perez; Imke, Uwe; Escalante, Javier Jimenez; Espinoza, Victor Sanchez, E-mail: victor.sanchez@kit.edu
2013-10-15
Highlights: • Simulation of BFBT turbine and pump transients at multiple scales. • CFD, sub-channel and system codes are used for the comparative study. • Heat transfer models are compared to identify difference between the code predictions. • All three scales predict results in good agreement to experiment. • Sub cooled boiling models are identified as field for future research. -- Abstract: The Institute for Neutron Physics and Reactor Technology (INR) at the Karlsruhe Institute of Technology (KIT) is involved in the validation and qualification of modern thermo hydraulic simulations tools at various scales. In the present paper, the prediction capabilities of four codes from three different scales – NEPTUNE{sub C}FD as fine mesh computational fluid dynamics code, SUBCHANFLOW and COBRA-TF as sub channels codes and TRACE as system code – are assessed with respect to their two-phase flow modeling capabilities. The subject of the investigations is the well-known and widely used data base provided within the NUPEC BFBT benchmark related to BWRs. Void fraction measurements simulating a turbine and a re-circulation pump trip are provided at several axial levels of the bundle. The prediction capabilities of the codes for transient conditions with various combinations of boundary conditions are validated by comparing the code predictions with the experimental data. In addition, the physical models of the different codes are described and compared to each other in order to explain the different results and to identify areas for further improvements.
Artnak, Edward Joseph, III
This work seeks to illustrate the potential benefits afforded by implementing aspects of fluid dynamics, especially the latest computational fluid dynamics (CFD) modeling approach, through numerical experimentation and the traditional discipline of physical experimentation to improve the calibration of the severe reactor accident analysis code, MELCOR, in one of several spent fuel pool (SFP) complete loss-ofcoolant accident (LOCA) scenarios. While the scope of experimental work performed by Sandia National Laboratories (SNL) extends well beyond that which is reasonably addressed by our allotted resources and computational time in accordance with initial project allocations to complete the report, these simulated case trials produced a significant array of supplementary high-fidelity solutions and hydraulic flow-field data in support of SNL research objectives. Results contained herein show FLUENT CFD model representations of a 9x9 BWR fuel assembly in conditions corresponding to a complete loss-of-coolant accident scenario. In addition to the CFD model developments, a MATLAB based controlvolume model was constructed to independently assess the 9x9 BWR fuel assembly under similar accident scenarios. The data produced from this work show that FLUENT CFD models are capable of resolving complex flow fields within a BWR fuel assembly in the realm of buoyancy-induced mass flow rates and that characteristic hydraulic parameters from such CFD simulations (or physical experiments) are reasonably employed in corresponding constitutive correlations for developing simplified numerical models of comparable solution accuracy.
Eu-NORSEWInD - Assessment of Viability of Open Source CFD Code for the Wind Industry
DEFF Research Database (Denmark)
Stickland, Matt; Scanlon, Tom; Fabre, Sylvie;
2009-01-01
hours of compute time to solve even on a high speed processor. One way of reducing the compute time is by employing parallel processing on a number of computational nodes. However; increasing the number of computational nodes may involve the purchase of extra licenses if using a standard commercial code....... The cost of the extra licences can become the limit on the final number of nodes employed. Whilst there are significant benefits to be found when using a commercial code which has a user friendly interface and has undergone significant verification testing the financial advantages of using an open source...
Technique for Calculating Solution Derivatives With Respect to Geometry Parameters in a CFD Code
Mathur, Sanjay
2011-01-01
A solution has been developed to the challenges of computation of derivatives with respect to geometry, which is not straightforward because these are not typically direct inputs to the computational fluid dynamics (CFD) solver. To overcome these issues, a procedure has been devised that can be used without having access to the mesh generator, while still being applicable to all types of meshes. The basic approach is inspired by the mesh motion algorithms used to deform the interior mesh nodes in a smooth manner when the surface nodes, for example, are in a fluid structure interaction problem. The general idea is to model the mesh edges and nodes as constituting a spring-mass system. Changes to boundary node locations are propagated to interior nodes by allowing them to assume their new equilibrium positions, for instance, one where the forces on each node are in balance. The main advantage of the technique is that it is independent of the volumetric mesh generator, and can be applied to structured, unstructured, single- and multi-block meshes. It essentially reduces the problem down to defining the surface mesh node derivatives with respect to the geometry parameters of interest. For analytical geometries, this is quite straightforward. In the more general case, one would need to be able to interrogate the underlying parametric CAD (computer aided design) model and to evaluate the derivatives either analytically, or by a finite difference technique. Because the technique is based on a partial differential equation (PDE), it is applicable not only to forward mode problems (where derivatives of all the output quantities are computed with respect to a single input), but it could also be extended to the adjoint problem, either by using an analytical adjoint of the PDE or a discrete analog.
Development of the CFD analysis methodology for PCCS using CFX code
Energy Technology Data Exchange (ETDEWEB)
Kim, Seong Oh; Hwang, Young Dong; Kim, Young In; Bae, Yoon Young [Korea Atomic Energy Research Institute, Taejon (Korea)
1998-05-01
This study is to develop heat transfer analysis of in AP600 type PCCS. The heat and mass transfer phenomena was analysized by CFX4.1 code for the simplified geometry. In calculation of film flow, height function model seems to be appropriate, since the shape of film is flat along the surface of steel containment and the motion of free surface does not include complicated motion of free surface such as free surface folding and merging. Based on the models, the thermal hydraulic phenomena which include free surface flow, turbulent and natural circulation in two separated domain were calculated by the CFX4.1 code. Reviewing the results in qualitative aspect, the trends of the variables shows reasonable results but the quantitatives of the variables should be compared with the experimental for actual applications since appropriate data are not available at present. (author). 19 refs., 14 figs., 2 tabs.
A parallelized particle tracing code for CFD simulations in Earth Sciences
Vlad Constantin Manea; Marina Manea; Mihai Pomeran; Lucian Besutiu; Luminita Zlagnean
2012-01-01
The problem of convective flows in a highly viscous fluid represents a common research direction in Earth Sciences. In order to trace the convective motion of the fluid material, a source of passive particles (or tracers) that flow at a local convection velocity and do not affect the pattern of flow is commonly used. It is presented a parallelized tracer code that uses passive and weightless particles with their position computed from their displacement during a small time interval at the vel...
Shared Memory Parallelization of an Implicit ADI-type CFD Code
Hauser, Th.; Huang, P. G.
1999-01-01
A parallelization study designed for ADI-type algorithms is presented using the OpenMP specification for shared-memory multiprocessor programming. Details of optimizations specifically addressed to cache-based computer architectures are described and performance measurements for the single and multiprocessor implementation are summarized. The paper demonstrates that optimization of memory access on a cache-based computer architecture controls the performance of the computational algorithm. A hybrid MPI/OpenMP approach is proposed for clusters of shared memory machines to further enhance the parallel performance. The method is applied to develop a new LES/DNS code, named LESTool. A preliminary DNS calculation of a fully developed channel flow at a Reynolds number of 180, Re(sub tau) = 180, has shown good agreement with existing data.
A verification and validation of the new implementation of subcooled flow boiling in a CFD code
Energy Technology Data Exchange (ETDEWEB)
Braz Filho, Francisco A.; Ribeiro, Guilherme B.; Caldeira, Alexandre D., E-mail: fbraz@ieav.cta.br, E-mail: gbribeiro@ieav.cta.br, E-mail: alexdc@ieav.cta.br [Instituto de Estudos Avancados (IEAv), Sao Jose dos Campos, SP (Brazil). Divisao de Energia Nuclear
2015-07-01
Subcooled flow boiling in a heated channel occurs when the liquid bulk temperature is lower than the saturation temperature and the wall temperature is higher. FLUENT computational fluid dynamics code uses Eulerian Multiphase Model to analyze this phenomenon. In FLUENT previous versions, the heat transfer correlations and the source terms of the conservation equations were added to the model using User Defined Functions (UDFs). Currently, these models are among the options of the FLUENT without the need to use UDFs. The comparison of the FLUENT calculations with experimental data for the void fraction presented a wide range of variation in the results, with values from satisfactory to poor results. There was the same problem in the previous versions. The fit factors of the FLUENT that control condensation and boiling in the system can be used to improve the results. This study showed a strong need for verification and validation of these calculations, along with a sensitivity analysis of the main parameters. (author)
Calculations to an IAHR-benchmark test using the CFD-code CFX-4
Energy Technology Data Exchange (ETDEWEB)
Krepper, E.
1998-10-01
The calculation concerns a test, which was defined as a benchmark for 3-D codes by the working group of advanced nuclear reactor types of IAHR (International Association of Hydraulic Research). The test is well documented and detailed measuring results are available. The test aims at the investigation of phenomena, which are important for heat removal at natural circulation conditions in a nuclear reactor. The task for the calculation was the modelling of the forced flow field of a single phase incompressible fluid with consideration of heat transfer and influence of gravity. These phenomena are typical also for other industrial processes. The importance of correct modelling of these phenomena also for other applications is a motivation for performing these calculations. (orig.)
Beta Testing of CFD Code for the Analysis of Combustion Systems
Yee, Emma; Wey, Thomas
2015-01-01
A preliminary version of OpenNCC was tested to assess its accuracy in generating steady-state temperature fields for combustion systems at atmospheric conditions using three-dimensional tetrahedral meshes. Meshes were generated from a CAD model of a single-element lean-direct injection combustor, and the latest version of OpenNCC was used to calculate combustor temperature fields. OpenNCC was shown to be capable of generating sustainable reacting flames using a tetrahedral mesh, and the subsequent results were compared to experimental results. While nonreacting flow results closely matched experimental results, a significant discrepancy was present between the code's reacting flow results and experimental results. When wide air circulation regions with high velocities were present in the model, this appeared to create inaccurately high temperature fields. Conversely, low recirculation velocities caused low temperature profiles. These observations will aid in future modification of OpenNCC reacting flow input parameters to improve the accuracy of calculated temperature fields.
Tucker, P. K.; Warsi, S. A.
1993-07-01
Film/dump cooling a rocket nozzle with fuel rich gas, as in the National Launch System (NLS) Space Transportation Main Engine (STME), adds potential complexities for integrating the engine with the vehicle. The chief concern is that once the film coolant is exhausted from the nozzle, conditions may exist during flight for the fuel-rich film gases to be recirculated to the vehicle base region. The result could be significantly higher base temperatures than would be expected from a regeneratively cooled nozzle. CFD analyses were conduced to augment classical scaling techniques for vehicle base environments. The FDNS code with finite rate chemistry was used to simulate a single, axisymmetric STME plume and the NLS base area. Parallel calculations were made of the Saturn V S-1 C/F1 plume base area flows. The objective was to characterize the plume/freestream shear layer for both vehicles as inputs for scaling the S-C/F1 flight data to NLS/STME conditions. The code was validated on high speed flows with relevant physics. This paper contains the calculations for the NLS/STME plume for the baseline nozzle and a modified nozzle. The modified nozzle was intended to reduce the fuel available for recirculation to the vehicle base region. Plumes for both nozzles were calculated at 10kFT and 50kFT.
Energy Technology Data Exchange (ETDEWEB)
Xiao, Jianjun, E-mail: jianjun.xiao@kit.edu [Institute of Nuclear and Energy Technologies, Karlsruhe Institute of Technology, P.O. Box 3640, 76021 Karlsruhe (Germany); Travis, John R., E-mail: jack_travis@comcast.com [Engineering and Scientific Software Inc., 3010 Old Pecos Trail, Santa Fe, NM 87505 (United States); Royl, Peter, E-mail: peter.royl@partner.kit.edu [Institute of Nuclear and Energy Technologies, Karlsruhe Institute of Technology, P.O. Box 3640, 76021 Karlsruhe (Germany); Necker, Gottfried, E-mail: gottfried.necker@partner.kit.edu [Institute of Nuclear and Energy Technologies, Karlsruhe Institute of Technology, P.O. Box 3640, 76021 Karlsruhe (Germany); Svishchev, Anatoly, E-mail: anatoly.svishchev@kit.edu [Institute of Nuclear and Energy Technologies, Karlsruhe Institute of Technology, P.O. Box 3640, 76021 Karlsruhe (Germany); Jordan, Thomas, E-mail: thomas.jordan@kit.edu [Institute of Nuclear and Energy Technologies, Karlsruhe Institute of Technology, P.O. Box 3640, 76021 Karlsruhe (Germany)
2016-05-15
Highlights: • 3-D scalable semi-implicit pressure-based CFD code for containment safety analysis. • Robust solution algorithm valid for all-speed flows. • Well validated and widely used CFD code for hydrogen safety analysis. • Code applied in various types of nuclear reactor containments. • Parallelization enables high-fidelity models in large scale containment simulations. - Abstract: GASFLOW is a three dimensional semi-implicit all-speed CFD code which can be used to predict fluid dynamics, chemical kinetics, heat and mass transfer, aerosol transportation and other related phenomena involved in postulated accidents in nuclear reactor containments. The main purpose of the paper is to give a brief review on recent GASFLOW code development, validations and applications in the field of nuclear safety. GASFLOW code has been well validated by international experimental benchmarks, and has been widely applied to hydrogen safety analysis in various types of nuclear power plants in European and Asian countries, which have been summarized in this paper. Furthermore, four benchmark tests of a lid-driven cavity flow, low Mach number jet flow, 1-D shock tube and supersonic flow over a forward-facing step are presented in order to demonstrate the accuracy and wide-ranging capability of ICE’d ALE solution algorithm for all-speed flows. GASFLOW has been successfully parallelized using the paradigms of Message Passing Interface (MPI) and domain decomposition. The parallel version, GASFLOW-MPI, adds great value to large scale containment simulations by enabling high-fidelity models, including more geometric details and more complex physics. It will be helpful for the nuclear safety engineers to better understand the hydrogen safety related physical phenomena during the severe accident, to optimize the design of the hydrogen risk mitigation systems and to fulfill the licensing requirements by the nuclear regulatory authorities. GASFLOW-MPI is targeting a high
Ervik, Åsmund; Müller, Bernhard
2014-01-01
To leverage the last two decades' transition in High-Performance Computing (HPC) towards clusters of compute nodes bound together with fast interconnects, a modern scalable CFD code must be able to efficiently distribute work amongst several nodes using the Message Passing Interface (MPI). MPI can enable very large simulations running on very large clusters, but it is necessary that the bulk of the CFD code be written with MPI in mind, an obstacle to parallelizing an existing serial code. In this work we present the results of extending an existing two-phase 3D Navier-Stokes solver, which was completely serial, to a parallel execution model using MPI. The 3D Navier-Stokes equations for two immiscible incompressible fluids are solved by the continuum surface force method, while the location of the interface is determined by the level-set method. We employ the Portable Extensible Toolkit for Scientific Computing (PETSc) for domain decomposition (DD) in a framework where only a fraction of the code needs to be a...
Institute of Scientific and Technical Information of China (English)
Bin Wan; Terry A.Ring
2006-01-01
For many processes of industrial significance, due to the strong coupling between particle interactions and fluid dynamics, the population balance must be solved as part of a computational fluid dynamics (CFD) simulation. In this work, a CFD based population balance model is tested using a batch crystallization reactor. In this CFD model, the population balance is solved by the standard method of moments (SMOM) and the quadrature method of moments (QMOM). The results of these simulations are compared to analytical solutions for the population balance in a batch tank where 1) nucleation, 2) growth, 3) aggregation, and 4) breakage are taking place separately. The results of these comparisons show that the first 6 moments of the population balance are accurately predicted for nucleation, growth, aggregation and breakage at all times.
Directory of Open Access Journals (Sweden)
Duduković Milorad P.
2002-01-01
Full Text Available This manuscript, based on the presentation given by one of the authors (M.P. Dudukovic at the Technological and Engineering Forum in Pančevo, May 21 2002, summarizes the use of the computer automated radioactive particle tracking (CARPT and gamma computed tomography (CT in obtaining the data needed to validate the Euler-Euler based CFD simulations for solids distribution, flow pattern and mixing in a liquid-solid riser. The riser is one of the reactors considered for acid solid catalyst promoted alkylation. It is shown that CFD calculations, validated by CARPT-CT data, show promise for scale-up and design of this novel reactor type.
Energy Technology Data Exchange (ETDEWEB)
Gomez T, A. M.; Xolocostli M, V. [ININ, Carretera Mexico-Toluca s/n, 52750 Ocoyoacac, Estado de Mexico (Mexico); Lopez M, R.; Filio L, C.; Mugica R, C. A. [Comision Nacional de Seguridad Nuclear y Salvaguardias, Dr. Jose Ma. Barragan No. 779, Col. Narvarte, 03020 Mexico D. F. (Mexico); Royl, P., E-mail: armando.gomez@inin.gob.mx [Karlsruhe Institute of Technology, Consultor, Hermann-von-Helmholtz-Platz, D-76344 Eggenstein -Leopoldshafen, Karlsruhe (Germany)
2013-10-15
The scenario of electric power total loss in the nuclear power plant of Laguna Verde (NPP-L V) has been analyzed using the code MELCOR previously, until reaching fault conditions of the primary container. A mitigation measure to avoid the loss of the primary contention is the realization of a venting toward the secondary contention (reactor building), however this measure bears the potential explosions occurrence risk when the hydrogen accumulated in the primary container with the oxygen of the reactor building atmosphere reacting. In this work a scenario has been supposed that considers the mentioned venting when the pressure of 4.5 kg/cm{sup 2} is reached in the primary container. The information for the hydrogen like an entrance fact is obtained of the MELCOR results and the hydrogen transport in both contentions is analyzed with the code CFD GASFLOW that allows predicting the detailed distribution of the hydrogen volumetric concentration and the possible detonation of flammability conditions in the reactor building. The results show that the venting will produce detonation conditions in the venting level (level 33) and flammability in the level of the recharge floor. The methodology here described constitutes the base of a detailed calculation system of this type of phenomena that can use to make safety evaluations in the NPP-L V on scenarios that include gases transport. (Author)
Pilot in the Loop CFD Method Development
2016-07-31
of the tail rotor is calculated via simple momentum theory . When the flight simulation is not coupled with the CFD, the airflow impinging on the tail...simple empirical model (Ref 3). In fully coupled simulations, the main rotor downwash component is disabled , so as not “double count” this effect when...model will then be disabled when fully coupled with CFD. This implementation doesn’t require any modification on the CFD code, since the CFD solver was
Energy Technology Data Exchange (ETDEWEB)
Bartosiewicz, Yann [Universite Catholique de Louvain (UCL), Faculty of Applied Sciences, Mechanical Engineering Department, TERM Division, Place du Levant 2, 1348 Louvain-la-Neuve (Belgium)], E-mail: yann.bartosiewicz@uclouvain.be; Lavieville, Jerome [Universite Catholique de Louvain (UCL), Faculty of Applied Sciences, Mechanical Engineering Department, TERM Division, Place du Levant 2, 1348 Louvain-la-Neuve (Belgium); Seynhaeve, Jean-Marie [Universite Catholique de Louvain (UCL), Faculty of Applied Sciences, Mechanical Engineering Department, TERM Division, Place du Levant 2, 1348 Louvain-la-Neuve (Belgium)], E-mail: jm.seynhaeve@uclouvain.be
2008-04-15
This paper presents some results concerning a first benchmark for the new European research code for thermal hydraulics computations: NEPTUNE{sub C}FD. This benchmark relies on the Thorpe experiment to model the occurrence of instabilities in a stratified two-phase flow. The first part of this work is to create a numerical trial case with the VOF approach. The results, in terms of time of onset of the instability, critical wave-number or wave phase speed, are rather good compared to linear inviscid theory and experimental data. Additional numerical tests showed the effect of the surface tension and density ratio on the growing dynamics of the instability and the structure of the waves. In the second part, a code to code (VOF/multi-field) comparison is performed for a case with zero surface tension. The results showed some discrepancies in terms of wave amplitudes, growing rates and a time shifting in the global dynamics. Afterward, two surface tension formulations are proposed in the multi-field approach. Both formulations provided similar results. The time for onset of the instability, the most amplified wave-number and its amplitude were in rather good agreement with the linear analysis and VOF results. However, the time-shifted dynamics was still observed.
Institute of Scientific and Technical Information of China (English)
何雪浤; 万兴
2007-01-01
Double-skin facade(DSF)is widely used in commercial buildings for its excellent performance in saving energy.But"it's very difficult for the ordinary designers to predict the thermal performance of DSF due to the complexity of the energy transmitting through the DSF and the difficulty of manipulating the complicated commercial CFD(computational fluid dynamic)simulation software.This paper take an effort in the foundaion of the DSF analysis code with VC++6.0 based on the commercial CFD software.This code is complied to analyze and predict the thermal behaviorof the 'standard' geometry natural ventilation DSF.The analyzer can gain the thermal behavior and the air flow characteristics of DSF after entered the relerant parameters of the model.This code gives the designer a tool to make quick design decisions in analyzing and optimizing DSF.
Mahapatra, Pallab S.; Ghosh, Koushik; Manna, Nirmal K.
2015-08-01
In the present work an effective heat transfer partitioning model of three phase (particles, liquid and vapour) flow and thermal interaction have been developed by a multi-fluid approach under film boiling condition. The in-house multiphase flow code is based on finite volume method of discretization and SIMPLE-based pressure correction algorithm. From consideration of mass, momentum and energy balance across the liquid-vapour interface, the vapour bubble generated from the vapour film have been modeled and incorporated in the code. Different interaction terms between each phase are incorporated depending upon the flow regime. The code is validated with in-house and available experimental results. Finally the effect of relevant parameters on void generation under film boiling condition of particles is estimated.
Directory of Open Access Journals (Sweden)
Anwar Ilmar Ramadhan
2015-03-01
Full Text Available Safety is a major concern in the design, operation and development of a nuclear reactor. One aspect of nuclear reactor safety factor is thermal-hydraulics aspect. In a PWR-type nuclear power plant has been used lighter fluid coolant is water or H2O. In this research, using nanofluid Al2O3-Water with volume fraction of (1%, (2% and also (3%, used as a cooling fluid in a nuclear reactor core with sub channel PWR fuel element rectangular arrangement. This research was carried out modeling of fuel elements are arranged rectangular, then performed numerical simulations using Computational Fluid Dynamics (CFD code. In order to obtain the characteristic pattern of flow velocity of each fluid, the fluid temperature distribution along the cylinder wall temperature distribution of the fuel element. Then analyzed the heat transfer in a nuclear reactor core with sub channel PWR fuel element rectangular arrangement, including heat transfer coefficient, Nusselt number (Nu, as well as heat transfer correlations. Heat transfer correlation for nanofluid Al2O3-Water (1%, (2% and also (3% proved to core of PWR nuclear reactor fuel element sub channel rectangular arrangement with the Reynolds number (Re is stretched, namely: 404 096
CFD analysis of turbopump volutes
Ascoli, Edward P.; Chan, Daniel C.; Darian, Armen; Hsu, Wayne W.; Tran, Ken
1993-07-01
An effort is underway to develop a procedure for the regular use of CFD analysis in the design of turbopump volutes. Airflow data to be taken at NASA Marshall will be used to validate the CFD code and overall procedure. Initial focus has been on preprocessing (geometry creation, translation, and grid generation). Volute geometries have been acquired electronically and imported into the CATIA CAD system and RAGGS (Rockwell Automated Grid Generation System) via the IGES standard. An initial grid topology has been identified and grids have been constructed for turbine inlet and discharge volutes. For CFD analysis of volutes to be used regularly, a procedure must be defined to meet engineering design needs in a timely manner. Thus, a compromise must be established between making geometric approximations, the selection of grid topologies, and possible CFD code enhancements. While the initial grid developed approximated the volute tongue with a zero thickness, final computations should more accurately account for the geometry in this region. Additionally, grid topologies will be explored to minimize skewness and high aspect ratio cells that can affect solution accuracy and slow code convergence. Finally, as appropriate, code modifications will be made to allow for new grid topologies in an effort to expedite the overall CFD analysis process.
2010-01-01
The works aimed at the further development and validation of models for CFD codes. For this reason, the new thermal-hydraulic test facility TOPFLOW was erected and equipped with wire-mesh sensors with high spatial and time resolution. Vertical test sections with nominal diameters of DN50 and DN200 operating with air-water as well as steam-water two-phase flows provided results on the evaluation of flow patterns, on the be¬haviour of the interfacial area as well as on interfacial momentum and ...
CFD modeling of pharmaceutical isolators with experimental verification of airflow.
Nayan, N; Akay, H U; Walsh, M R; Bell, W V; Troyer, G L; Dukes, R E; Mohan, P
2007-01-01
Computational fluid dynamics (CFD) models have been developed to predict the airflow in a transfer isolator using a commercial CFD code. In order to assess the ability of the CFD approach in predicting the flow inside an isolator, hot wire anemometry measurements and a novel experimental flow visualization technique consisting of helium-filled glycerin bubbles were used. The results obtained have been shown to agree well with the experiments and show that CFD can be used to model barrier systems and isolators with practical fidelity. This indicates that CFD can and should be used to support the design, testing, and operation of barrier systems and isolators.
Advanced Multi-Phase Flow CFD Model Development for Solid Rocket Motor Flowfield Analysis
Liaw, Paul; Chen, Y. S.; Shang, H. M.; Doran, Denise
1993-01-01
It is known that the simulations of solid rocket motor internal flow field with AL-based propellants require complex multi-phase turbulent flow model. The objective of this study is to develop an advanced particulate multi-phase flow model which includes the effects of particle dynamics, chemical reaction and hot gas flow turbulence. The inclusion of particle agglomeration, particle/gas reaction and mass transfer, particle collision, coalescence and breakup mechanisms in modeling the particle dynamics will allow the proposed model to realistically simulate the flowfield inside a solid rocket motor. The Finite Difference Navier-Stokes numerical code FDNS is used to simulate the steady-state multi-phase particulate flow field for a 3-zone 2-D axisymmetric ASRM model and a 6-zone 3-D ASRM model at launch conditions. The 2-D model includes aft-end cavity and submerged nozzle. The 3-D model represents the whole ASRM geometry, including additional grain port area in the gas cavity and two inhibitors. FDNS is a pressure based finite difference Navier-Stokes flow solver with time-accurate adaptive second-order upwind schemes, standard and extended k-epsilon models with compressibility corrections, multi zone body-fitted formulations, and turbulence particle interaction model. Eulerian/Lagrangian multi-phase solution method is applied for multi-zone mesh. To simulate the chemical reaction, penalty function corrected efficient finite-rate chemistry integration method is used in FDNS. For the AL particle combustion rate, the Hermsen correlation is employed. To simulate the turbulent dispersion of particles, the Gaussian probability distribution with standard deviation equal to (2k/3)(exp 1/2) is used for the random turbulent velocity components. The computational results reveal that the flow field near the juncture of aft-end cavity and the submerged nozzle is very complex. The effects of the turbulent particles affect the flow field significantly and provide better
State of the art in CFD pre- and postprocessing
Vembe, B. E.; Hansen, E. W. M.
1994-06-01
Computational fluid dynamics (CFD) is a generic name for a wide range of numerical techniques that are used for obtaining solutions to the governing equations of thermo-fluid dynamics with or without chemical reactions. The report presents to the state of the art in pre- and postprocessing for CFD codes, both commercial and in-house SINTEF-NTH codes. The objectives of advanced CFD systems are discussed and the techniques for pre- and postprocessing are reviewed. The user friendliness of CFD codes, in general, are highlighted. A common definition of a user friendly computer program is one that is easy to learn, efficient, easy to remember, and satisfactory to use. Most of today's commercial CFD codes could benefit from an enhanced interface. It is desirable to develop standard data formats for input and output of CFD codes and direct-manipulation user interfaces are desirable in CFD applications. Largest potential for improvements of CFD codes and for users is in geometry modeling and grid generation.
Application of Simple CFD Models in Smoke Ventilation Design
DEFF Research Database (Denmark)
Brohus, Henrik; Nielsen, Peter Vilhelm; la Cour-Harbo, Hans
2004-01-01
The paper examines the possibilities of using simple CFD models in practical smoke ventilation design. The aim is to assess if it is possible with a reasonable accuracy to predict the behaviour of smoke transport in case of a fire. A CFD code mainly applicable for “ordinary” ventilation design...... is used for the examination. The CFD model is compared with benchmark tests and results from a special application fire simulation CFD code. Apart from benchmark tests two practical applications are examined in shape of modelling a fire in a theatre and a double façade, respectively. The simple CFD model...... uses a standard k-ε turbulence model. Simulations comprise both steady-state and dynamic approaches. Several boundary conditions are tested. Finally, the paper discusses the prospects of simple CFD models in smoke ventilation design including the inherent limitations....
Correlation of Puma airloads: Evaluation of CFD prediction methods
Strawn, Roger C.; Desopper, Andre; Miller, Judith; Jones, Alan
1989-01-01
A cooperative program was undertaken by research organizations in England, France, Australia and the U.S. to study the capabilities of computational fluid dynamics codes (CFD) to predict the aerodynamic loading on helicopter rotor blades. The program goal is to compare predictions with experimental data for flight tests of a research Puma helicopter with rectangular and swept tip blades. Two topics are studied. First, computed results from three CFD codes are compared for flight test cases where all three codes use the same partial inflow-angle boundary conditions. Second, one of the CFD codes (FPR) is iteratively coupled with the CAMRAD/JA helicopter performance code. These results are compared with experimental data and with an uncoupled CAMRAD/JA solution. The influence of flow field unsteadiness is found to play an important role in the blade aerodynamics. Alternate boundary conditions are suggested in order to properly model this unsteadiness in the CFD codes.
Correlation of Puma airfoils - Evaluation of CFD prediction methods
Strawn, Roger C.; Desopper, Andre; Miller, Judith; Jones, Alan
1989-01-01
A cooperative program was undertaken by research organizations in England, France, Australia and the U.S. to study the capabilities of computational fluid dynamics codes (CFD) to predict the aerodynamic loading on helicopter rotor blades. The program goal is to compare predictions with experimental data for flight tests of a research Puma helicopter with rectangular and swept tip blades. Two topics are studied. First, computed results from three CFD codes are compared for flight test cases where all three codes use the same partial inflow-angle boundary conditions. Second, one of the CFD codes (FPR) is iteratively coupled with the CAMRAD/JA heilcopter performance code. These results are compared with experimental data and with an uncoupled CAMRAD/JA solution. The influence of flow field unsteadiness is found to play an important role in the blade aerodynamics. Alternate boundary conditions are suggested in order to properly model this unsteadiness in the CFD codes.
Asynchronous Parallelization of a CFD Solver
Directory of Open Access Journals (Sweden)
Daniel S. Abdi
2015-01-01
Full Text Available A Navier-Stokes equations solver is parallelized to run on a cluster of computers using the domain decomposition method. Two approaches of communication and computation are investigated, namely, synchronous and asynchronous methods. Asynchronous communication between subdomains is not commonly used in CFD codes; however, it has a potential to alleviate scaling bottlenecks incurred due to processors having to wait for each other at designated synchronization points. A common way to avoid this idle time is to overlap asynchronous communication with computation. For this to work, however, there must be something useful and independent a processor can do while waiting for messages to arrive. We investigate an alternative approach of computation, namely, conducting asynchronous iterations to improve local subdomain solution while communication is in progress. An in-house CFD code is parallelized using message passing interface (MPI, and scalability tests are conducted that suggest asynchronous iterations are a viable way of parallelizing CFD code.
Improved Inlet Conditions for Terrain CFD
DEFF Research Database (Denmark)
Pedersen, Jesper Grønnegaard
The atmospheric boundary layer flow over different types of terrain is studied through simulations made with the finite volume CFD code of Ellipsys 2D and 3D. The simulations are compared to measurements made at the Høvsøre test site and over the hill of Askervein.The primary objective of these i......The atmospheric boundary layer flow over different types of terrain is studied through simulations made with the finite volume CFD code of Ellipsys 2D and 3D. The simulations are compared to measurements made at the Høvsøre test site and over the hill of Askervein.The primary objective...
Modelling of Air Flow trough a Slatted Floor by CFD
DEFF Research Database (Denmark)
Svidt, Kjeld; Bjerg, Bjarne; Morsing, Svend;
In this paper two different CFD-approaches are investigated to model the airflow through a slatted floor. Experiments are carried out in a full-scale test room. The computer simulations are carried out with the CFD-code FLOVENT, which solves the time-averaged Navier-Stokes equations by use of the k...
CFD computations of the second round of MEXICO rotor measurements
DEFF Research Database (Denmark)
Sørensen, Niels N.; Zahle, Frederik; Boorsma, K.
2016-01-01
A comparison, between selected wind tunnel data from the NEW MEXICO measuring campaign and CFD computations are shown. The present work, documents that a state of the art CFD code, including a laminar turbulent transition model, can provide good agreement with experimental data. Good agreement...
DEFF Research Database (Denmark)
Li, Y.; Nielsen, Peter V.
2011-01-01
There has been a rapid growth of scientific literature on the application of computational fluid dynamics (CFD) in the research of ventilation and indoor air science. With a 1000–10,000 times increase in computer hardware capability in the past 20 years, CFD has become an integral part...... of scientific research and engineering development of complex air distribution and ventilation systems in buildings. This review discusses the major and specific challenges of CFD in terms of turbulence modelling, numerical approximation, and boundary conditions relevant to building ventilation. We emphasize...... the growing need for CFD verification and validation, suggest on-going needs for analytical and experimental methods to support the numerical solutions, and discuss the growing capacity of CFD in opening up new research areas. We suggest that CFD has not become a replacement for experiment and theoretical...
Gasificaton Transport: A Multiphase CFD Approach & Measurements
Energy Technology Data Exchange (ETDEWEB)
Dimitri Gidaspow; Veeraya Jiradilok; Mayank Kashyap; Benjapon Chalermsinsuwan
2009-02-14
The objective of this project was to develop predictive theories for the dispersion and mass transfer coefficients and to measure them in the turbulent fluidization regime, using existing facilities. A second objective was to use our multiphase CFD tools to suggest optimized gasifier designs consistent with aims of Future Gen. We have shown that the kinetic theory based CFD codes correctly compute: (1) Dispersion coefficients; and (2) Mass transfer coefficients. Hence, the kinetic theory based CFD codes can be used for fluidized bed reactor design without any such inputs. We have also suggested a new energy efficient method of gasifying coal and producing electricity using a molten carbonate fuel cell. The principal product of this new scheme is carbon dioxide which can be converted into useful products such as marble, as is done very slowly in nature. We believe this scheme is a lot better than the canceled FutureGen, since the carbon dioxide is safely sequestered.
RSRM Chamber Pressure Oscillations: Transit Time Models and Unsteady CFD
Nesman, Tom; Stewart, Eric
1996-01-01
Space Shuttle solid rocket motor low frequency internal pressure oscillations have been observed since early testing. The same type of oscillations also are present in the redesigned solid rocket motor (RSRM). The oscillations, which occur during RSRM burn, are predominantly at the first three motor cavity longitudinal acoustic mode frequencies. Broadband flow and combustion noise provide the energy to excite these modes at low levels throughout motor burn, however, at certain times during burn the fluctuating pressure amplitude increases significantly. The increased fluctuations at these times suggests an additional excitation mechanism. The RSRM has inhibitors on the propellant forward facing surface of each motor segment. The inhibitors are in a slot at the segment field joints to prevent burning at that surface. The aft facing segment surface at a field joint slot burns and forms a cavity of time varying size. Initially the inhibitor is recessed in the field joint cavity. As propellant burns away the inhibitor begins to protrude into the bore flow. Two mechanisms (transit time models) that are considered potential pressure oscillation excitations are cavity-edge tones, and inhibitor hole-tones. Estimates of frequency variation with time of longitudinal acoustic modes, cavity edge-tones, and hole-tones compare favorably with frequencies measured during motor hot firing. It is believed that the highest oscillation amplitudes occur when vortex shedding frequencies coincide with motor longitudinal acoustic modes. A time accurate computational fluid dynamic (CFD) analysis was made to replicate the observations from motor firings and to observe the transit time mechanisms in detail. FDNS is the flow solver used to detail the time varying aspects of the flow. The fluid is approximated as a single-phase ideal gas. The CFD model was an axisymmetric representation of the RSRM at 80 seconds into burn.Deformation of the inhibitors by the internal flow was determined
Energy Technology Data Exchange (ETDEWEB)
Jimenez P, D. A.
2014-07-01
The accidents in Unit 2 of the Three Mile Island Nuclear Power Plant (NPP) in the United States (March 28{sup th}, 1979), the one in Unit 4 of the NPP Chernobyl in Ukraine (April 26{sup th}, 1986) and the explosions in some units of Fukushima NPP in Japan (March 11{sup th}, 2011) boosted the investigations on severe accidents with core damage and, in particular, the threat to the ultimate barrier by an eventual explosion from uncontrolled Hydrogen combustion within the containment was considered of particular relevance. Research programs for analyzing Hydrogen behavior and control during this kind of accidents were early initiated by research and regulatory bodies. Assessment on Hydrogen behavior once it has been postulated to be released on the containment system can be divided into two phases, in the first one, transport and the concentrations of the gas mixtures and steam in each volume or area comprised between the structures of the containment are calculated, in the second one, the propagation of the detonation of the Hydrogen is calculated if there are the conditions to occur. Currently, there are computer programs that can be used in one, or both stages of computation, and they are based on one of the two solution methods in current use, one of them are integrated codes (e.g. MELCOR), which consists in assuming the containment as a network composed of hydraulic tanks or nodes on which the balance equations of mass and energy have to be solved, the network is connected by ducts or connections where the momentum balance equation arise. This methodology relies on the use of semi-empirical relationships and the criteria used to define a geometric pattern, are subjective. The second method, which is having relevance due to the large computing power of modern computers, is the numerical solution of the three-dimensional Navier-Stokes equations in complex geometries. This method of solution is known as Computational Fluid Dynamics (CFD), and offers the advantage of
Gas explosion prediction using CFD models
Energy Technology Data Exchange (ETDEWEB)
Niemann-Delius, C.; Okafor, E. [RWTH Aachen Univ. (Germany); Buhrow, C. [TU Bergakademie Freiberg Univ. (Germany)
2006-07-15
A number of CFD models are currently available to model gaseous explosions in complex geometries. Some of these tools allow the representation of complex environments within hydrocarbon production plants. In certain explosion scenarios, a correction is usually made for the presence of buildings and other complexities by using crude approximations to obtain realistic estimates of explosion behaviour as can be found when predicting the strength of blast waves resulting from initial explosions. With the advance of computational technology, and greater availability of computing power, computational fluid dynamics (CFD) tools are becoming increasingly available for solving such a wide range of explosion problems. A CFD-based explosion code - FLACS can, for instance, be confidently used to understand the impact of blast overpressures in a plant environment consisting of obstacles such as buildings, structures, and pipes. With its porosity concept representing geometry details smaller than the grid, FLACS can represent geometry well, even when using coarse grid resolutions. The performance of FLACS has been evaluated using a wide range of field data. In the present paper, the concept of computational fluid dynamics (CFD) and its application to gas explosion prediction is presented. Furthermore, the predictive capabilities of CFD-based gaseous explosion simulators are demonstrated using FLACS. Details about the FLACS-code, some extensions made to FLACS, model validation exercises, application, and some results from blast load prediction within an industrial facility are presented. (orig.)
Applications of CFD in Hydraulics and River Engineering
Nguyen, Van Thinh; Nestmann, Franz
2004-02-01
In this paper, various applications and developments of CFD technology in hydraulics and river engineering are presented. Numerical studies of three-dimensional turbulent flow fields in open channels and rivers are carried out by CFD packages such as the finite element code FIDAP and finite volume code COMET. Meshing procedures are implemented by GAMBIT or CFD-GEOM. To calculate the position of the free surface two methods are applied, free surface tracking and volume-of-fluid, and some comparisons of these methods are discussed.
DEFF Research Database (Denmark)
Li, Y.; Nielsen, Peter V.
2011-01-01
There has been a rapid growth of scientific literature on the application of computational fluid dynamics (CFD) in the research of ventilation and indoor air science. With a 1000–10,000 times increase in computer hardware capability in the past 20 years, CFD has become an integral part of scienti......There has been a rapid growth of scientific literature on the application of computational fluid dynamics (CFD) in the research of ventilation and indoor air science. With a 1000–10,000 times increase in computer hardware capability in the past 20 years, CFD has become an integral part...... of scientific research and engineering development of complex air distribution and ventilation systems in buildings. This review discusses the major and specific challenges of CFD in terms of turbulence modelling, numerical approximation, and boundary conditions relevant to building ventilation. We emphasize...... analysis in ventilation research, rather it has become an increasingly important partner....
U.S. Environmental Protection Agency — Data associated with the development of the CFD model for spore deposition in respiratory systems of rabbits and humans. This dataset is associated with the...
Energy Technology Data Exchange (ETDEWEB)
Martinez, M.; Barrachina, T.; Miro, R.; Verdu Martin, G.; Chiva, S.
2012-07-01
In this work is proposed to evaluate the potential of the OpenFOAM code for the simulation of typical fluid flows in reactors PWR, in particular for the study of pressurized thermal stress. Test T1-1 has been simulated , within the OECD ROSA project, with the objective of evaluating the performance of the code OpenFOAM and models of turbulence that has implemented to capture the effect of the thrust forces in the case study.
Application of Simple CFD Models in Smoke Ventilation Design
DEFF Research Database (Denmark)
Brohus, Henrik; Nielsen, Peter Vilhelm; la Cour-Harbo, Hans
2004-01-01
The paper examines the possibilities of using simple CFD models in practical smoke ventilation design. The aim is to assess if it is possible with a reasonable accuracy to predict the behaviour of smoke transport in case of a fire. A CFD code mainly applicable for “ordinary” ventilation design...... uses a standard k-ε turbulence model. Simulations comprise both steady-state and dynamic approaches. Several boundary conditions are tested. Finally, the paper discusses the prospects of simple CFD models in smoke ventilation design including the inherent limitations....
A computational design system for rapid CFD analysis
Ascoli, E. P.; Barson, S. L.; Decroix, M. E.; Sindir, Munir M.
1992-01-01
A computation design system (CDS) is described in which these tools are integrated in a modular fashion. This CDS ties together four key areas of computational analysis: description of geometry; grid generation; computational codes; and postprocessing. Integration of improved computational fluid dynamics (CFD) analysis tools through integration with the CDS has made a significant positive impact in the use of CFD for engineering design problems. Complex geometries are now analyzed on a frequent basis and with greater ease.
Reproducible and replicable CFD: it's harder than you think
Mesnard, Olivier
2016-01-01
Completing a full replication study of our previously published findings on bluff-body aerodynamics was harder than we thought. Despite the fact that we have good reproducible-research practices, sharing our code and data openly. Here's what we learned from three years, four CFD codes and hundreds of runs.
Thermal hydraulic simulations, error estimation and parameter sensitivity studies in Drekar::CFD
Energy Technology Data Exchange (ETDEWEB)
Smith, Thomas Michael; Shadid, John N; Pawlowski, Roger P; Cyr, Eric C; Wildey, Timothy Michael
2014-01-01
This report describes work directed towards completion of the Thermal Hydraulics Methods (THM) CFD Level 3 Milestone THM.CFD.P7.05 for the Consortium for Advanced Simulation of Light Water Reactors (CASL) Nuclear Hub effort. The focus of this milestone was to demonstrate the thermal hydraulics and adjoint based error estimation and parameter sensitivity capabilities in the CFD code called Drekar::CFD. This milestone builds upon the capabilities demonstrated in three earlier milestones; THM.CFD.P4.02 [12], completed March, 31, 2012, THM.CFD.P5.01 [15] completed June 30, 2012 and THM.CFD.P5.01 [11] completed on October 31, 2012.
A supportive architecture for CFD-based design optimisation
Li, Ni; Su, Zeya; Bi, Zhuming; Tian, Chao; Ren, Zhiming; Gong, Guanghong
2014-03-01
Multi-disciplinary design optimisation (MDO) is one of critical methodologies to the implementation of enterprise systems (ES). MDO requiring the analysis of fluid dynamics raises a special challenge due to its extremely intensive computation. The rapid development of computational fluid dynamic (CFD) technique has caused a rise of its applications in various fields. Especially for the exterior designs of vehicles, CFD has become one of the three main design tools comparable to analytical approaches and wind tunnel experiments. CFD-based design optimisation is an effective way to achieve the desired performance under the given constraints. However, due to the complexity of CFD, integrating with CFD analysis in an intelligent optimisation algorithm is not straightforward. It is a challenge to solve a CFD-based design problem, which is usually with high dimensions, and multiple objectives and constraints. It is desirable to have an integrated architecture for CFD-based design optimisation. However, our review on existing works has found that very few researchers have studied on the assistive tools to facilitate CFD-based design optimisation. In the paper, a multi-layer architecture and a general procedure are proposed to integrate different CFD toolsets with intelligent optimisation algorithms, parallel computing technique and other techniques for efficient computation. In the proposed architecture, the integration is performed either at the code level or data level to fully utilise the capabilities of different assistive tools. Two intelligent algorithms are developed and embedded with parallel computing. These algorithms, together with the supportive architecture, lay a solid foundation for various applications of CFD-based design optimisation. To illustrate the effectiveness of the proposed architecture and algorithms, the case studies on aerodynamic shape design of a hypersonic cruising vehicle are provided, and the result has shown that the proposed architecture
Improved Stiff ODE Solvers for Combustion CFD
Imren, A.; Haworth, D. C.
2016-11-01
Increasingly large chemical mechanisms are needed to predict autoignition, heat release and pollutant emissions in computational fluid dynamics (CFD) simulations of in-cylinder processes in compression-ignition engines and other applications. Calculation of chemical source terms usually dominates the computational effort, and several strategies have been proposed to reduce the high computational cost associated with realistic chemistry in CFD. Central to most strategies is a stiff ordinary differential equation (ODE) solver to compute the change in composition due to chemical reactions over a computational time step. Most work to date on stiff ODE solvers for computational combustion has focused on backward differential formula (BDF) methods, and has not explicitly considered the implications of how the stiff ODE solver couples with the CFD algorithm. In this work, a fresh look at stiff ODE solvers is taken that includes how the solver is integrated into a turbulent combustion CFD code, and the advantages of extrapolation-based solvers in this regard are demonstrated. Benefits in CPU time and accuracy are demonstrated for homogeneous systems and compression-ignition engines, for chemical mechanisms that range in size from fewer than 50 to more than 7,000 species.
Quantitative Relative Comparison of CFD Simulation Uncertainties for a Transonic Diffuser Problem
Hosder, Serhat; Grossman, Bernard; Haftka, Raphael T.; Mason, William H.; Watson, Layne T.
2004-01-01
Different sources of uncertainty in CFD simulations are illustrated by a detailed study of two-dimensional, turbulent, transonic flow in a converging-diverging channel. Runs were performed with the commercial CFD code GASP using different turbulence models, grid levels, and flux-limiters to see the effect of each on the CFD simulation uncertainties. Two flow conditions were studied by changing the exit pressure ratio: the first is a complex case with a strong shock and a separated flow region...
OpenFOAM: Open source CFD in research and industry
Directory of Open Access Journals (Sweden)
Hrvoje Jasak
2009-12-01
Full Text Available The current focus of development in industrial Computational Fluid Dynamics (CFD is integration of CFD into Computer-Aided product development, geometrical optimisation, robust design and similar. On the other hand, in CFD research aims to extend the boundaries of practical engineering use in “non-traditional” areas. Requirements of computational flexibility and code integration are contradictory: a change of coding paradigm, with object orientation, library components, equation mimicking is proposed as a way forward. This paper describes OpenFOAM, a C++ object oriented library for Computational Continuum Mechanics (CCM developed by the author. Efficient and flexible implementation of complex physical models is achieved by mimicking the form of partial differential equation in software, with code functionality provided in library form. Open Source deployment and development model allows the user to achieve desired versatility in physical modeling without the sacrifice of complex geometry support and execution efficiency.
Static load balancing for CFD distributed simulations
Energy Technology Data Exchange (ETDEWEB)
Chronopoulos, A T; Grosu, D; Wissink, A; Benche, M
2001-01-26
The cost/performance ratio of networks of workstations has been constantly improving. This trend is expected to continue in the near future. The aggregate peak rate of such systems often matches or exceeds the peak rate offered by the fastest parallel computers. This has motivated research towards using a network of computers, interconnected via a fast network (cluster system) or a simple Local Area Network (LAN) (distributed system), for high performance concurrent computations. Some of the important research issues arise such as (1) Optimal problem partitioning and virtual interconnection topology mapping; (2) Optimal execution scheduling and load balancing. CFD codes have been efficiently implemented on homogeneous parallel systems in the past. In particular, the helicopter aerodynamics CFD code TURNS has been implemented with MPI on the IBM SP with parallel relaxation and Krylov iterative methods used in place of more traditional recursive algorithms to enhance performance. In this implementation the space domain is divided into equal subdomain which are mapped to the processors. We consider the implementation of TURNS on a LAN of heterogeneous workstations. In order to deal with the problem of load balancing due to the different processor speeds we propose a suboptimal algorithm of dividing the space domain into unequal subdomains and assign them to the different computers. The algorithm can apply to other CFD applications. We used our algorithm to schedule TURNS on a network of workstations and obtained significantly better results.
Static load balancing for CFD distributed simulations
Energy Technology Data Exchange (ETDEWEB)
Chronopoulos, A T; Grosu, D; Wissink, A; Benche, M
2001-01-26
The cost/performance ratio of networks of workstations has been constantly improving. This trend is expected to continue in the near future. The aggregate peak rate of such systems often matches or exceeds the peak rate offered by the fastest parallel computers. This has motivated research towards using a network of computers, interconnected via a fast network (cluster system) or a simple Local Area Network (LAN) (distributed system), for high performance concurrent computations. Some of the important research issues arise such as (1) Optimal problem partitioning and virtual interconnection topology mapping; (2) Optimal execution scheduling and load balancing. CFD codes have been efficiently implemented on homogeneous parallel systems in the past. In particular, the helicopter aerodynamics CFD code TURNS has been implemented with MPI on the IBM SP with parallel relaxation and Krylov iterative methods used in place of more traditional recursive algorithms to enhance performance. In this implementation the space domain is divided into equal subdomain which are mapped to the processors. We consider the implementation of TURNS on a LAN of heterogeneous workstations. In order to deal with the problem of load balancing due to the different processor speeds we propose a suboptimal algorithm of dividing the space domain into unequal subdomains and assign them to the different computers. The algorithm can apply to other CFD applications. We used our algorithm to schedule TURNS on a network of workstations and obtained significantly better results.
CFD simulation of a solar tower
Energy Technology Data Exchange (ETDEWEB)
Koten, Hasan; Yukselenturk, Yalcyn; Yilmaz, Mustafa [Marmara University Mechanical Engineering Department (Turkey)], E-mail: hasan.koten@marmara.edu.tr
2011-07-01
With the depletion of fossil fuels and the rising concerns about their impacts on the environment, the use of alternative energy sources has become necessary. Among the alternatives, solar energy, with its unlimited resources and its low impact on the environment, is the most promising. The aim of this paper is to present a numerical model of a regular solar tower. A CFD analysis of the solar tower was performed with a commercial CFD code and velocity fields, temperature measurements and flow characteristics were determined and compared to experimental results available in the literature. It was found that the numerical model is capable of assessing the buoyant air flow in chimneys. In addition results showed that increasing the solar chimney height, solar collector area, or solar irradiance increases power generation capacity while ambient temperature does not significantly affect this capacity. This study provided a numerical model which is proficient in modeling solar towers.
Duque Lombana, Juan Fernando
2007-01-01
This project is about the development of an implementable Interactive Computer Fluid Dynamics methodology -- The range of this work begins with an overview of the current status of computational fluid dynamics simulation software and methodologies, continues with an introduction to what interactive and interactivity mean, develops an all original interactive CFD methodology to follow for the solution of fluid scenarios and finally, the description of the implementation of an interactive solve...
Fully consistent CFD methods for incompressible flow computations
DEFF Research Database (Denmark)
Kolmogorov, Dmitry; Shen, Wen Zhong; Sørensen, Niels N.
2014-01-01
Nowadays collocated grid based CFD methods are one of the most e_cient tools for computations of the ows past wind turbines. To ensure the robustness of the methods they require special attention to the well-known problem of pressure-velocity coupling. Many commercial codes to ensure the pressure...
CFD Simulation of Thermal-Hydraulic Benchmark V1000CT-2 Using ANSYS CFX
2009-01-01
Plant measured data from VVER-1000 coolant mixing experiments were used within the OECD/NEA and AER coupled code benchmarks for light water reactors to test and validate computational fluid dynamic (CFD) codes. The task is to compare the various calculations with measured data, using specified boundary conditions and core power distributions. The experiments, which are provided for CFD validation, include single loop cooling down or heating-up by disturbing the heat transfer in the steam gene...
Integrating CFD and building simulation
DEFF Research Database (Denmark)
Bartak, M.; Beausoleil-Morrison, I.; Clarke, J.A.
2002-01-01
Commission, which furthered the CFD modelling aspects of the ESP-r system. The paper summarises the form of the CFD model, describes the method used to integrate the thermal and 3ow domains and reports the outcome from an empirical validation exercise. © 2002 Published by Elsevier Science Ltd....
Validation of NEPTUNE-CFD Two-Phase Flow Models Using Experimental Data
Directory of Open Access Journals (Sweden)
Jorge Pérez Mañes
2014-01-01
Full Text Available This paper deals with the validation of the two-phase flow models of the CFD code NEPTUNEC-CFD using experimental data provided by the OECD BWR BFBT and PSBT Benchmark. Since the two-phase models of CFD codes are extensively being improved, the validation is a key step for the acceptability of such codes. The validation work is performed in the frame of the European NURISP Project and it was focused on the steady state and transient void fraction tests. The influence of different NEPTUNE-CFD model parameters on the void fraction prediction is investigated and discussed in detail. Due to the coupling of heat conduction solver SYRTHES with NEPTUNE-CFD, the description of the coupled fluid dynamics and heat transfer between the fuel rod and the fluid is improved significantly. The averaged void fraction predicted by NEPTUNE-CFD for selected PSBT and BFBT tests is in good agreement with the experimental data. Finally, areas for future improvements of the NEPTUNE-CFD code were identified, too.
The role of CFD computer analyses in hydrogen safety management
Energy Technology Data Exchange (ETDEWEB)
Komen, Ed M.J.; Visser, Dirk C.; Roelofs, Ferry [Nuclear Research and Consultancy Group (NRG), Petten (Netherlands); Te Lintelo, Jos G.T. [N.V. Elekticiteits-Productiemaatschappij Zuid-Nederland EPZ, Borssele (Netherlands)
2015-11-15
The risks of hydrogen release and combustion during a severe accident in a light water reactor have attracted considerable attention after the Fukushima accident in Japan. Reliable computer analyses are needed for the optimal design of hydrogen mitigation systems. In the last decade, significant progress has been made in the development, validation, and application of more detailed, three-dimensional Computational Fluid Dynamics (CFD) simulations for hydrogen safety analyses. The validation status and reliability of CFD code simulations will be illustrated by validation analyses performed for experiments executed in the PANDA, THAI, and ENACCEF facilities.
Wood, William A.; Kleb, William L.; Tang, chun Y.; Palmer, Grant E.; Hyatt, Andrew J.; Wise, Adam J.; McCloud, Peter L.
2010-01-01
Surface temperature measurements from the STS-119 boundary-layer transition experiment on the space shuttle orbiter Discovery provide a rare opportunity to assess turbulent CFD models at hypersonic flight conditions. This flight data was acquired by on-board thermocouples and by infrared images taken off-board by the Hypersonic Thermodynamic Infrared Measurements (HYTHIRM) team, and is suitable for hypersonic CFD turbulence assessment between Mach 6 and 14. The primary assessment is for the Baldwin-Lomax and Cebeci-Smith algebraic turbulence models in the DPLR and LAURA CFD codes, respectively. A secondary assessment is made of the Shear-Stress Transport (SST) two-equation turbulence model in the DPLR code. Based upon surface temperature comparisons at eleven thermocouple locations, the algebraic-model turbulent CFD results average 4% lower than the measurements for Mach numbers less than 11. For Mach numbers greater than 11, the algebraic-model turbulent CFD results average 5% higher than the three available thermocouple measurements. Surface temperature predictions from the two SST cases were consistently 3 4% higher than the algebraic-model results. The thermocouple temperatures exhibit a change in trend with Mach number at about Mach 11; this trend is not reflected in the CFD results. Because the temperature trends from the turbulent CFD simulations and the flight data diverge above Mach 11, extrapolation of the turbulent CFD accuracy to higher Mach numbers is not recommended.
Development and acceleration of unstructured mesh-based cfd solver
Emelyanov, V.; Karpenko, A.; Volkov, K.
2017-06-01
The study was undertaken as part of a larger effort to establish a common computational fluid dynamics (CFD) code for simulation of internal and external flows and involves some basic validation studies. The governing equations are solved with ¦nite volume code on unstructured meshes. The computational procedure involves reconstruction of the solution in each control volume and extrapolation of the unknowns to find the flow variables on the faces of control volume, solution of Riemann problem for each face of the control volume, and evolution of the time step. The nonlinear CFD solver works in an explicit time-marching fashion, based on a three-step Runge-Kutta stepping procedure. Convergence to a steady state is accelerated by the use of geometric technique and by the application of Jacobi preconditioning for high-speed flows, with a separate low Mach number preconditioning method for use with low-speed flows. The CFD code is implemented on graphics processing units (GPUs). Speedup of solution on GPUs with respect to solution on central processing units (CPU) is compared with the use of different meshes and different methods of distribution of input data into blocks. The results obtained provide promising perspective for designing a GPU-based software framework for applications in CFD.
Energy Technology Data Exchange (ETDEWEB)
Lee, S.
2011-05-05
The Savannah River Remediation (SRR) Organization requested that Savannah River National Laboratory (SRNL) develop a Computational Fluid Dynamics (CFD) method to mix and blend the miscible contents of the blend tanks to ensure the contents are properly blended before they are transferred from the blend tank; such as, Tank 50H, to the Salt Waste Processing Facility (SWPF) feed tank. The work described here consists of two modeling areas. They are the mixing modeling analysis during miscible liquid blending operation, and the flow pattern analysis during transfer operation of the blended liquid. The transient CFD governing equations consisting of three momentum equations, one mass balance, two turbulence transport equations for kinetic energy and dissipation rate, and one species transport were solved by an iterative technique until the species concentrations of tank fluid were in equilibrium. The steady-state flow solutions for the entire tank fluid were used for flow pattern analysis, for velocity scaling analysis, and the initial conditions for transient blending calculations. A series of the modeling calculations were performed to estimate the blending times for various jet flow conditions, and to investigate the impact of the cooling coils on the blending time of the tank contents. The modeling results were benchmarked against the pilot scale test results. All of the flow and mixing models were performed with the nozzles installed at the mid-elevation, and parallel to the tank wall. From the CFD modeling calculations, the main results are summarized as follows: (1) The benchmark analyses for the CFD flow velocity and blending models demonstrate their consistency with Engineering Development Laboratory (EDL) and literature test results in terms of local velocity measurements and experimental observations. Thus, an application of the established criterion to SRS full scale tank will provide a better, physically-based estimate of the required mixing time, and
Free-Flowing Solutions for CFD
2003-01-01
Licensed to over 1,500 customers worldwide, an advanced computational fluid dynamics (CFD) post-processor with a quick learning curve is consistently providing engineering solutions, with just the right balance of visual insight and hard data. FIELDVIEW is the premier product of JMSI, Inc., d.b.a. Intelligent Light, a woman-owned, small business founded in 1994 and located in Lyndhurst, New Jersey. In the early 1990s, Intelligent Light entered into a joint development contract with a research based company to commercialize the post-processing FIELDVIEW code. As Intelligent Light established itself, it purchased the exclusive rights to the code, and structured its business solely around the software technology. As a result, it is enjoying profits and growing at a rate of 25 to 30 percent per year. Advancements made from the earliest commercial launch of FIELDVIEW, all the way up to the recently released versions 8 and 8.2 of the program, have been backed by research collaboration with NASA's Langley Research Center, where some of the world's most progressive work in transient (also known as time-varying) CFD takes place.
METC CFD simulations of hot gas filtration
Energy Technology Data Exchange (ETDEWEB)
O`Brien, T.J.
1995-06-01
Computational Fluid Dynamic (CFD) simulations of the fluid/particle flow in several hot gas filtration vessels will be presented. These simulations have been useful in designing filtration vessels and in diagnosing problems with filter operation. The simulations were performed using the commercial code FLUENT and the METC-developed code MFIX. Simulations of the initial configuration of the Karhula facility indicated that the dirty gas flow over the filter assemblage was very non-uniform. The force of the dirty gas inlet flow was inducing a large circulation pattern that caused flow around the candles to be in opposite directions on opposite sides of the vessel. By introducing a system of baffles, a more uniform flow pattern was developed. This modification may have contributed to the success of the project. Several simulations of configurations proposed by Industrial Filter and Pump were performed, varying the position of the inlet. A detailed resolution of the geometry of the candles allowed determination of the flow between the individual candles. Recent simulations in support of the METC/CeraMem Cooperative Research and Development Agreement have analyzed the flow in the vessel during the cleaning back-pulse. Visualization of experiments at the CeraMem cold-flow facility provided confidence in the use of CFD. Extensive simulations were then performed to assist in the design of the hot test facility being built by Ahlstrom/Pyropower. These tests are intended to demonstrate the CeraMem technology.
A new CFD modeling method for flow blockage accident investigations
Energy Technology Data Exchange (ETDEWEB)
Fan, Wenyuan, E-mail: fanwy@mail.ustc.edu.cn; Peng, Changhong, E-mail: pengch@ustc.edu.cn; Chen, Yangli, E-mail: chenyl@mail.ustc.edu.cn; Guo, Yun, E-mail: guoyun79@ustc.edu.cn
2016-07-15
Highlights: • Porous-jump treatment is applied to CFD simulation on flow blockages. • Porous-jump treatment predicts consistent results with direct CFD treatment. • Relap5 predicts abnormal flow rate profiles in MTR SFA blockage scenario. • Relap5 fails to simulate annular heat flux in blockage case of annular assembly. • Porous-jump treatment provides reasonable and generalized CFD results. - Abstract: Inlet flow blockages in both flat and annular plate-type fuel assemblies are simulated by (Computational Fluid Dynamics) CFD and system analysis methods, with blockage ratio ranging from 60 to 90%. For all the blockage scenarios, mass flow rate of the blocked channel drops dramatically as blockage ratio increases, while mass flow rates of non-blocked channels are almost steady. As a result of over-simplifications, the system code fails to capture details of mass flow rate profiles of non-blocked channels and power redistribution of fuel plates. In order to acquire generalized CFD results, a new blockage modeling method is developed by using the porous-jump condition. For comparisons, direct CFD simulations are conducted toward postulated blockages. For the porous-jump treatment, conservative flow and heat transfer conditions are predicted for the blocked channel, while consistent predictions are obtained for non-blocked channels. Besides, flow fields in the blocked channel, asymmetric power redistributions of fuel plates, and complex heat transfer phenomena in annular fuel assembly are obtained and discussed. The present study indicates that the porous-jump condition is a reasonable blockage modeling method, which predicts generalized CFD results for flow blockages.
Heat transfer in rocket engine combustion chambers and regeneratively cooled nozzles
1993-01-01
A conjugate heat transfer computational fluid dynamics (CFD) model to describe regenerative cooling in the main combustion chamber and nozzle and in the injector faceplate region for a launch vehicle class liquid rocket engine was developed. An injector model for sprays which treats the fluid as a variable density, single-phase media was formulated, incorporated into a version of the FDNS code, and used to simulate the injector flow typical of that in the Space Shuttle Main Engine (SSME). Various chamber related heat transfer analyses were made to verify the predictive capability of the conjugate heat transfer analysis provided by the FDNS code. The density based version of the FDNS code with the real fluid property models developed was successful in predicting the streamtube combustion of individual injector elements.
CFD based extraction column design-Chances and challenges
Institute of Scientific and Technical Information of China (English)
Mark W Hlawitschka; Menwer M Attarakih; Samer S Alzyod; Hans-Jrg Bart
2016-01-01
This paper shows that one-dimensional (1-D) [and three-dimensional (3-D) computational fluid dynamics (CFD)] simulations can replace the state-of-the-art usage of pseudo-homogeneous dispersion or back mixing models. This is based on standardized lab-scale cel experiments for the determination of droplet rise, breakage, coalescence and mass transfer parameters in addition to a limited number of additional mini-plant experiments with original fluids. Alternatively, the hydrodynamic parameters can also be derived using more sophisticated 3-D CFD simulations. Computational 1-D modeling served as a basis to replace pilot-plant experiments in any column geometry. The combination of 3-D CFD simulations with droplet population balance models (DPBM) increased the accuracy of the hydrodynamic simulations and gave information about the local droplet size. The high computational costs can be reduced by open source CFD codes when using a flexible mesh generation. First combined simulations using a three way coupled CFD/DPBM/mass-transfer solver pave the way for a safer design of industrial-sized columns, where no correlations are available.
Lifescience Database Archive (English)
Full Text Available ycdb.biol.tsukuba.ac.jp/CSM/CF/CFD7-A/CFD712Q.Seq.d/ Representative seq. ID CFD71...2F (Link to Original site) Representative DNA sequence >CFD712 (CFD712Q) /CSM/CF/CFD7-A/CFD712Q.Seq.d/ AAAAA
Reducing numerical costs for core wide nuclear reactor CFD simulations by the Coarse-Grid-CFD
Viellieber, Mathias; Class, Andreas G.
2013-11-01
Traditionally complete nuclear reactor core simulations are performed with subchannel analysis codes, that rely on experimental and empirical input. The Coarse-Grid-CFD (CGCFD) intends to replace the experimental or empirical input with CFD data. The reactor core consists of repetitive flow patterns, allowing the general approach of creating a parametrized model for one segment and composing many of those to obtain the entire reactor simulation. The method is based on a detailed and well-resolved CFD simulation of one representative segment. From this simulation we extract so-called parametrized volumetric forces which close, an otherwise strongly under resolved, coarsely-meshed model of a complete reactor setup. While the formulation so far accounts for forces created internally in the fluid others e.g. obstruction and flow deviation through spacers and wire wraps, still need to be accounted for if the geometric details are not represented in the coarse mesh. These are modelled with an Anisotropic Porosity Formulation (APF). This work focuses on the application of the CGCFD to a complete reactor core setup and the accomplishment of the parametrization of the volumetric forces.
CFD Verification of 5x5 Rod Bundle with Mixing Vane Spacer Grids
Energy Technology Data Exchange (ETDEWEB)
Park, Sungkew; Jang, Hyungwook; Lim, Jongseon; Park, Eungjun; Nahm, Keeyil [Korea Atomic Energy Research Institute, Daejeon (Korea, Republic of)
2014-05-15
Results of the CHF test are used for determining the CHF correlation, which is used to evaluate the thermal margin in the reactor core. Computational fluid dynamics (CFD) has been used to save the time and cost for experimental tests, components design and complicated phenomena in all industries including the reactor coolant system. L. D. Smith et al. applied the CFD methodology in a 5x5 rod bundle with the mixing vane spacer grid using the renormalization group (RNG) k-epsilon model. This CFD model agreed reasonably well with the test data. M. E. Conner et al. conducted experiments to validate the CFD methodology for the single-phase flow conditions in PWR fuel assemblies. In this validation case, the CFD code predicted very similar flow field structures as the test data. In this study, a CFD simulation under single-phase flow condition was conducted for one specific condition in a thermal mixing flow test of 5x5 rod bundle with some mixing vane spacer grids. In this study, a CFD simulation under a single-phase flow condition was conducted for one specific condition in a thermal mixing flow test of 5x5 rod bundle with the mixing vane spacer grids to verify the applicability of the CFD model for predicting the outlet temperature distribution. FLUENT 14.5 Version was used in this CFD analysis. For the successful prediction of the wall bounded turbulent flows, the y+ with 3 prism layers was determined within 5. At this time, k-epsilon standard turbulence model was used. The temperature distribution of CFD for each sub-channel at the outlet region of test bundle showed the difference approximately within 1.1% and 0.2% while comparing to that of test and sub-channel analysis code, respectively.
Simultaneous Excitation of Multiple-Input Multiple-Output CFD-Based Unsteady Aerodynamic Systems
Silva, Walter A.
2008-01-01
A significant improvement to the development of CFD-based unsteady aerodynamic reduced-order models (ROMs) is presented. This improvement involves the simultaneous excitation of the structural modes of the CFD-based unsteady aerodynamic system that enables the computation of the unsteady aerodynamic state-space model using a single CFD execution, independent of the number of structural modes. Four different types of inputs are presented that can be used for the simultaneous excitation of the structural modes. Results are presented for a flexible, supersonic semi-span configuration using the CFL3Dv6.4 code.
Aerodynamic analysis of the ejector-mode RBCC engine by CFD
Hasegawa, Susumu; Tani, Koichiro; 長谷川 進; 谷 香一郎
2006-01-01
Rocket Based Combined-Cycle (RBCC) engines are currently being explored as advanced propulsion for space transportation. JAXA has been conducting RBCC engine research by using various experimental facilities. In order to clarify the experimental results and contribute to the improvement of designing, the analysis of the RBCC engine in an ejector-jet mode was carried out using the CFD (Computational Fluid Dynamics) code developed in-house for unstructured grids. CFD replicated the basic flow s...
Lifescience Database Archive (English)
Full Text Available CF (Link to library) CFD139 (Link to dictyBase) - - - Contig-U13855-1 CFD139Z (Link... to Original site) - - CFD139Z 648 - - - - Show CFD139 Library CF (Link to library) Clone ID CFD139 (Link to...ycdb.biol.tsukuba.ac.jp/CSM/CF/CFD1-B/CFD139Q.Seq.d/ Representative seq. ID CFD13...9Z (Link to Original site) Representative DNA sequence >CFD139 (CFD139Q) /CSM/CF/CFD1-B/CFD139Q.Seq.d/ XXXXX... Score E Sequences producing significant alignments: (bits) Value CFD139 (CFD139Q) /CSM/CF/CFD1-B/CFD139Q.Se
Aeroelastic Calculations Using CFD for a Typical Business Jet Model
Gibbons, Michael D.
1996-01-01
Two time-accurate Computational Fluid Dynamics (CFD) codes were used to compute several flutter points for a typical business jet model. The model consisted of a rigid fuselage with a flexible semispan wing and was tested in the Transonic Dynamics Tunnel at NASA Langley Research Center where experimental flutter data were obtained from M(sub infinity) = 0.628 to M(sub infinity) = 0.888. The computational results were computed using CFD codes based on the inviscid TSD equation (CAP-TSD) and the Euler/Navier-Stokes equations (CFL3D-AE). Comparisons are made between analytical results and with experiment where appropriate. The results presented here show that the Navier-Stokes method is required near the transonic dip due to the strong viscous effects while the TSD and Euler methods used here provide good results at the lower Mach numbers.
Thompson, David E.; Brooks, Walt F. (Technical Monitor)
1994-01-01
A collaborative team of researchers from fields of Computational Fluid Dynamics (CFD), fluid physics, computer architectures, and computer science and knowledge engineering have begun work on a prototype system that addresses several of industry's concerns in using NASA-developed CFD codes as part of the design cycle. A major problem exists in the application of CFD technologies within the aeronautics design cycle due primarily to misunderstandings in the ranges of applicability of the various solver codes or turbulence models. Features that arise during the CFD solution process need to be discriminated and recognized as actual flow features with physical support in the geometry and flow conditions of the problem being solved, or as numerical or non-physical errors arising from mis-application of solver code and its parameters, gridding strategies, or discretization. interpolations. The fundamental concept is to develop an intelligent computational system that can accept the engineer's definition of the problem and construct an optimal CFD solution. To do this requires capturing both the knowledge of how to apply the various CFD tools and how to adapt the application of those tools to flow structures as they evolve during the flow simulation. Embedded within this adaptive system approach is the additional desire to automatically identify and quantify the quality of resolution of the pertinent flow structures, be they genuine or error-induced, and then to adjust the solution strategy accordingly. This paper discusses the status of that prototyping effort.
CFD Analysis of Passive Autocatalytic Recombiner
Directory of Open Access Journals (Sweden)
B. Gera
2011-01-01
Full Text Available In water-cooled nuclear power reactors, significant quantities of hydrogen could be produced following a postulated loss-of-coolant accident (LOCA along with nonavailability of emergency core cooling system (ECCS. Passive autocatalytic recombiners (PAR are implemented in the containment of water-cooled power reactors to mitigate the risk of hydrogen combustion. In the presence of hydrogen with available oxygen, a catalytic reaction occurs spontaneously at the catalyst surfaces below conventional ignition concentration limits and temperature and even in presence of steam. Heat of reaction produces natural convection flow through the enclosure and promotes mixing in the containment. For the assessment of the PAR performance in terms of maximum temperature of catalyst surface and outlet hydrogen concentration an in-house 3D CFD model has been developed. The code has been used to study the mechanism of catalytic recombination and has been tested for two literature-quoted experiments.
Toward a CFD-grade database addressing LWR containment phenomena
Energy Technology Data Exchange (ETDEWEB)
Paladino, Domenico, E-mail: domenico.paladino@psi.ch [Laboratory for Thermal-Hydraulics, Nuclear Energy and Safety Department, Paul Scherrer Institut, CH-5232 Villigen PSI (Switzerland); Andreani, Michele; Zboray, Robert; Dreier, Joerg [Laboratory for Thermal-Hydraulics, Nuclear Energy and Safety Department, Paul Scherrer Institut, CH-5232 Villigen PSI (Switzerland)
2012-12-15
Highlights: Black-Right-Pointing-Pointer The SETH-2 PANDA tests have supplied data with CFD-grade on plumes and jets at large-scale. Black-Right-Pointing-Pointer The PANDA tests have contributed to the understanding of phenomena with high safety relevance for LWRs. Black-Right-Pointing-Pointer The analytical activities related increased confidence in the use of various computational tools for safety analysis. - Abstract: The large-scale, multi-compartment PANDA facility (located at PSI in Switzerland) is one of the state-of-the-art facilities which is continuously upgraded to progressively match the requirements of CFD-grade experiments. Within the OECD/SETH projects, the PANDA facility has been used for the creation of an experimental database on basic containment phenomena e.g. gas mixing, transport, stratification, condensation. In the PANDA tests, these phenomena are driven by large scale plumes or jets. In the paper is presented a selection of the SETH PANDA experimental results. Examples of analytical activities performed at PSI using the GOTHIC, CFX-4 and CFX-5 codes will be used to illustrate how the spatial and temporal resolutions of the measurement grid in PANDA tests are adequate for CFD code (and advanced containment codes) assessment and validation purposes.
CFD Analysis of Core Bypass Phenomena
Energy Technology Data Exchange (ETDEWEB)
Richard W. Johnson; Hiroyuki Sato; Richard R. Schultz
2010-03-01
The U.S. Department of Energy is exploring the potential for the VHTR which will be either of a prismatic or a pebble-bed type. One important design consideration for the reactor core of a prismatic VHTR is coolant bypass flow which occurs in the interstitial regions between fuel blocks. Such gaps are an inherent presence in the reactor core because of tolerances in manufacturing the blocks and the inexact nature of their installation. Furthermore, the geometry of the graphite blocks changes over the lifetime of the reactor because of thermal expansion and irradiation damage. The existence of the gaps induces a flow bias in the fuel blocks and results in unexpected increase of maximum fuel temperature. Traditionally, simplified methods such as flow network calculations employing experimental correlations are used to estimate flow and temperature distributions in the core design. However, the distribution of temperature in the fuel pins and graphite blocks as well as coolant outlet temperatures are strongly coupled with the local heat generation rate within fuel blocks which is not uniformly distributed in the core. Hence, it is crucial to establish mechanistic based methods which can be applied to the reactor core thermal hydraulic design and safety analysis. Computational Fluid Dynamics (CFD) codes, which have a capability of local physics based simulation, are widely used in various industrial fields. This study investigates core bypass flow phenomena with the assistance of commercial CFD codes and establishes a baseline for evaluation methods. A one-twelfth sector of the hexagonal block surface is modeled and extruded down to whole core length of 10.704m. The computational domain is divided vertically with an upper reflector, a fuel section and a lower reflector. Each side of the sector grid can be set as a symmetry boundary
CFD Analysis of Core Bypass Phenomena
Energy Technology Data Exchange (ETDEWEB)
Richard W. Johnson; Hiroyuki Sato; Richard R. Schultz
2009-11-01
The U.S. Department of Energy is exploring the potential for the VHTR which will be either of a prismatic or a pebble-bed type. One important design consideration for the reactor core of a prismatic VHTR is coolant bypass flow which occurs in the interstitial regions between fuel blocks. Such gaps are an inherent presence in the reactor core because of tolerances in manufacturing the blocks and the inexact nature of their installation. Furthermore, the geometry of the graphite blocks changes over the lifetime of the reactor because of thermal expansion and irradiation damage. The existence of the gaps induces a flow bias in the fuel blocks and results in unexpected increase of maximum fuel temperature. Traditionally, simplified methods such as flow network calculations employing experimental correlations are used to estimate flow and temperature distributions in the core design. However, the distribution of temperature in the fuel pins and graphite blocks as well as coolant outlet temperatures are strongly coupled with the local heat generation rate within fuel blocks which is not uniformly distributed in the core. Hence, it is crucial to establish mechanistic based methods which can be applied to the reactor core thermal hydraulic design and safety analysis. Computational Fluid Dynamics (CFD) codes, which have a capability of local physics based simulation, are widely used in various industrial fields. This study investigates core bypass flow phenomena with the assistance of commercial CFD codes and establishes a baseline for evaluation methods. A one-twelfth sector of the hexagonal block surface is modeled and extruded down to whole core length of 10.704m. The computational domain is divided vertically with an upper reflector, a fuel section and a lower reflector. Each side of the one-twelfth grid can be set as a symmetry boundary
Statistical Analysis of CFD Solutions from the 6th AIAA CFD Drag Prediction Workshop
Derlaga, Joseph M.; Morrison, Joseph H.
2017-01-01
A graphical framework is used for statistical analysis of the results from an extensive N- version test of a collection of Reynolds-averaged Navier-Stokes computational uid dynam- ics codes. The solutions were obtained by code developers and users from North America, Europe, Asia, and South America using both common and custom grid sequencees as well as multiple turbulence models for the June 2016 6th AIAA CFD Drag Prediction Workshop sponsored by the AIAA Applied Aerodynamics Technical Committee. The aerodynamic con guration for this workshop was the Common Research Model subsonic transport wing- body previously used for both the 4th and 5th Drag Prediction Workshops. This work continues the statistical analysis begun in the earlier workshops and compares the results from the grid convergence study of the most recent workshop with previous workshops.
Computational Fluid Dynamics (CFD) Technology Programme 1995- 1999
Energy Technology Data Exchange (ETDEWEB)
Haekkinen, R.J.; Hirsch, C.; Krause, E.; Kytoemaa, H.K. [eds.
1997-12-31
The report is a mid-term evaluation of the Computational Fluid Dynamics (CFD) Technology Programme started by Technology Development Centre Finland (TEKES) in 1995 as a five-year initiative to be concluded in 1999. The main goal of the programme is to increase the know-how and application of CFD in Finnish industry, to coordinate and thus provide a better basis for co-operation between national CFD activities and encouraging research laboratories and industry to establish co-operation with the international CFD community. The projects of the programme focus on the following areas: (1) studies of modeling the physics and dynamics of the behaviour of fluid material, (2) expressing the physical models in a numerical mode and developing a computer codes, (3) evaluating and testing current physical models and developing new ones, (4) developing new numerical algorithms, solvers, and pre- and post-processing software, and (5) applying the new computational tools to problems relevant to their ultimate industrial use. The report consists of two sections. The first considers issues concerning the whole programme and the second reviews each project
CFD Simulations of Soap Separation; CFD-simulering av avsaapning
Energy Technology Data Exchange (ETDEWEB)
Birkestad, Per
2010-07-01
A part of Vaermeforsk, the 'Skogsindustriella programmet', has identified the possibility to increase the production of tall oil, and hence the competitiveness, in Swedish pulp mills through an increase in the efficiency of the soap separation tanks. Currently, soap is extracted from the black liquor through a sedimentation process where the less dense soap rise to the top of the liquor tank where it is removed through a over-flow ducting at the top of the tank. Vaermeforsk seeks a better understanding of the detailed flow and the separation mechanisms within the liquor tanks and has initiated a study of computational fluid dynamics (CFD) of the tanks. The aim of the study has been threefold; To develop CFD-methods for use in the study of soap separation processes, to investigate the detailed flow within two Swedish liquor tanks and one North American soap skimmer and lastly to develop new design rules for use in future designs of soap separation tanks. The project shows that CFD is a useful tool for the investigation of black liquor and soap flow within a soap separation tank. The CFD simulations of three existing liquor tanks show that the previously used design-rules based on surface loads are inadequate as the actual flow velocities within the tanks are two orders of magnitude larger than those previously used as reference (the surface load). The CFD simulations also show that the black liquor flow, and hence the soap separation, is very sensitive to density variations on the black liquor inlet and temperature variations as small as 1 deg C can significantly affect the liquor flow.
Engineering-Based Thermal CFD Simulations on Massive Parallel Systems
Directory of Open Access Journals (Sweden)
Jérôme Frisch
2015-05-01
Full Text Available The development of parallel Computational Fluid Dynamics (CFD codes is a challenging task that entails efficient parallelization concepts and strategies in order to achieve good scalability values when running those codes on modern supercomputers with several thousands to millions of cores. In this paper, we present a hierarchical data structure for massive parallel computations that supports the coupling of a Navier–Stokes-based fluid flow code with the Boussinesq approximation in order to address complex thermal scenarios for energy-related assessments. The newly designed data structure is specifically designed with the idea of interactive data exploration and visualization during runtime of the simulation code; a major shortcoming of traditional high-performance computing (HPC simulation codes. We further show and discuss speed-up values obtained on one of Germany’s top-ranked supercomputers with up to 140,000 processes and present simulation results for different engineering-based thermal problems.
Engineering-Based Thermal CFD Simulations on Massive Parallel Systems
Frisch, Jérôme
2015-05-22
The development of parallel Computational Fluid Dynamics (CFD) codes is a challenging task that entails efficient parallelization concepts and strategies in order to achieve good scalability values when running those codes on modern supercomputers with several thousands to millions of cores. In this paper, we present a hierarchical data structure for massive parallel computations that supports the coupling of a Navier–Stokes-based fluid flow code with the Boussinesq approximation in order to address complex thermal scenarios for energy-related assessments. The newly designed data structure is specifically designed with the idea of interactive data exploration and visualization during runtime of the simulation code; a major shortcoming of traditional high-performance computing (HPC) simulation codes. We further show and discuss speed-up values obtained on one of Germany’s top-ranked supercomputers with up to 140,000 processes and present simulation results for different engineering-based thermal problems.
CFD Analysis of Dry Storage System for CANDU Spent Fuel using Fluent 6.2
Energy Technology Data Exchange (ETDEWEB)
Shin, Byung Soo; Jeong, Yong Hoon; Chang, Soon Heung Chang [KAIST, Taejon (Korea, Republic of)
2006-07-01
To obtain the licensing for MACSTOR/KN-400 developed by KHNP, 3-D CFD analysis was demanded to prove that the maximum temperature was not over the limited temperature (93 .deg. C locally and 66 .deg. C averagely for concrete). Though the thermal-hydraulic prediction by CATHENA-code show the reliable results, that could not the temperature distribution. That is, that could not predict the location of maximum temperature well. In this study, the analysis of the temperature distribution on the natural convection flow with thermal radiation shows the concrete temperature distribution. It was different from the predicted results by CATHENA-code. Therefore, to obtain the licensing for AMCSTOR/KN- 400, CFD analysis should be performed by 3-D CFD code like FLUENT at the same time.
Computational Methods for HSCT-Inlet Controls/CFD Interdisciplinary Research
Cole, Gary L.; Melcher, Kevin J.; Chicatelli, Amy K.; Hartley, Tom T.; Chung, Joongkee
1994-01-01
A program aimed at facilitating the use of computational fluid dynamics (CFD) simulations by the controls discipline is presented. The objective is to reduce the development time and cost for propulsion system controls by using CFD simulations to obtain high-fidelity system models for control design and as numerical test beds for control system testing and validation. An interdisciplinary team has been formed to develop analytical and computational tools in three discipline areas: controls, CFD, and computational technology. The controls effort has focused on specifying requirements for an interface between the controls specialist and CFD simulations and a new method for extracting linear, reduced-order control models from CFD simulations. Existing CFD codes are being modified to permit time accurate execution and provide realistic boundary conditions for controls studies. Parallel processing and distributed computing techniques, along with existing system integration software, are being used to reduce CFD execution times and to support the development of an integrated analysis/design system. This paper describes: the initial application for the technology being developed, the high speed civil transport (HSCT) inlet control problem; activities being pursued in each discipline area; and a prototype analysis/design system in place for interactive operation and visualization of a time-accurate HSCT-inlet simulation.
Lifescience Database Archive (English)
Full Text Available CF (Link to library) CFD190 (Link to dictyBase) - G00190 DDB0231328 Contig-U14182-1 CFD1...90P (Link to Original site) CFD190F 642 CFD190Z 594 CFD190P 1236 - - Show CFD190 Library CF (Link to library) Clone ID CFD1...Contig-U14182-1 Original site URL http://dictycdb.biol.tsukuba.ac.jp/CSM/CF/CFD1-D/CFD1...90Q.Seq.d/ Representative seq. ID CFD190P (Link to Original site) Representative DNA sequence >CFD190 (CFD190Q) /CSM/CF/CFD1...-D/CFD190Q.Seq.d/ ATAAATTAAAAAAAAATGAATAAAGAAATTTTTAATTCAAAATTATTTGAAAAATTAGAT AAAGATA
Hypersonic simulations using open-source CFD and DSMC solvers
Casseau, V.; Scanlon, T. J.; John, B.; Emerson, D. R.; Brown, R. E.
2016-11-01
Hypersonic hybrid hydrodynamic-molecular gas flow solvers are required to satisfy the two essential requirements of any high-speed reacting code, these being physical accuracy and computational efficiency. The James Weir Fluids Laboratory at the University of Strathclyde is currently developing an open-source hybrid code which will eventually reconcile the direct simulation Monte-Carlo method, making use of the OpenFOAM application called dsmcFoam, and the newly coded open-source two-temperature computational fluid dynamics solver named hy2Foam. In conjunction with employing the CVDV chemistry-vibration model in hy2Foam, novel use is made of the QK rates in a CFD solver. In this paper, further testing is performed, in particular with the CFD solver, to ensure its efficacy before considering more advanced test cases. The hy2Foam and dsmcFoam codes have shown to compare reasonably well, thus providing a useful basis for other codes to compare against.
Energy Technology Data Exchange (ETDEWEB)
Kansal, Anuj Kumar, E-mail: akansal@barc.gov.in [Bhabha Atomic Research Centre, Trombay, Mumbai 400085 (India); Joshi, Jyeshtharaj B., E-mail: jbjoshi@gmail.com [Homi Bhabha National Institute, Anushaktinagar, Mumbai 400094 (India); Maheshwari, Naresh Kumar, E-mail: nmahesh@barc.gov.in [Bhabha Atomic Research Centre, Trombay, Mumbai 400085 (India); Vijayan, Pallippattu Krishnan, E-mail: vijayanp@barc.gov.in [Bhabha Atomic Research Centre, Trombay, Mumbai 400085 (India)
2015-06-15
Highlights: • 3D CFD of vertical calandria vessel. • Spatial distribution of volumetric heat generation. • Effect of Archimedes number. • Non-dimensional analysis. - Abstract: Three dimensional computational fluid dynamics (CFD) analysis has been performed for the moderator flow and temperature fields inside a vertical calandria vessel of nuclear reactor under normal operating condition using OpenFOAM CFD code. OpenFOAM is validated by comparing the predicted results with the experimental data available in literature. CFD model includes the calandria vessel, calandria tubes, inlet header and outlet header. Analysis has been performed for the cases of uniform and spatial distribution of volumetric heat generation. Studies show that the maximum temperature in moderator is lower in the case of spatial distribution of heat generation as compared to that in the uniform heat generation in calandria. In addition, the effect of Archimedes number on maximum and average moderator temperature was investigated.
Summary of the First AIAA CFD High Lift Prediction Workshop (invited)
Rumsey, C. L.; Long, M.; Stuever, R. A.; Wayman, T. R.
2011-01-01
The 1st AIAA CFD High Lift Prediction Workshop was held in Chicago in June 2010. The goals of the workshop included an assessment of the numerical prediction capability of current-generation CFD technology/ codes for swept, medium/high-aspect ratio wings in landing/take-off (high lift) configurations. 21 participants from 8 countries and 18 organizations, submitted a total of 39 datasets of CFD results. A variety of grid systems (both structured and unstructured) were used. Trends due to flap angle were analyzed, and effects of grid family, grid density, solver, and turbulence model were addressed. Some participants also assessed the effects of support brackets used to attach the flap and slat to the main wing. This invited paper describes the combined results from all workshop participants. Comparisons with experimental data are made. A statistical summary of the CFD results is also included.
Towards a CFD-based mechanistic deposit formation model for straw-fired boilers
DEFF Research Database (Denmark)
Kær, Søren Knudsen; Rosendahl, Lasse Aistrup; Baxter, L.L.
2006-01-01
in the reminder of the paper. The growth of deposits on furnace walls and super heater tubes is treated including the impact on heat transfer rates determined by the CFD code. Based on the commercial CFD code FLUENTe, the overall model is fully implemented through the User Defined Functions. The model...... is configured entirely through a graphical user interface integrated in the standard FLUENTe interface. The model considers fine and coarse mode ash deposition and sticking mechanisms for the complete deposit growth, as well as an influence on the local boundary conditions for heat transfer due to thermal...
CFD modeling of the IRIS pressurizer dynamic
Energy Technology Data Exchange (ETDEWEB)
Sanz, Ronny R.; Montesinos, Maria E.; Garcia, Carlos; Bueno, Elizabeth D.; Mazaira, Leorlen R., E-mail: rsanz@instec.cu, E-mail: mmontesi@instec.cu, E-mail: cgh@instec.cu, E-mail: leored1984@gmail.com [Instituto Superior de Tecnologias y Ciencias Aplicadas (InSTEC), La Habana (Cuba); Bezerra, Jair L.; Lira, Carlos A.B. Oliveira, E-mail: jair.lima@ufpe.br, E-mail: cabol@ufpe.br [Universida Federal de Pernambuco (UFPE), Recife, PE (Brazil). Dept. de Energia Nuclear
2015-07-01
Integral layout of nuclear reactor IRIS makes possible the elimination of the spray system, which is usually used to mitigate in-surge transient and also help to Boron homogenization. The study of transients with deficiencies in the Boron homogenization in this technology is very important, because they can cause disturbances in the reactor power and insert a strong reactivity in the core. The detailed knowledge of the behavior of multiphase multicomponent flows is challenging due to the complex phenomena and interactions at the interface. In this context, the CFD modeling is employed in the design of equipment in the nuclear industry as it allows predicting accidents or predicting their performance in dissimilar applications. The aim of the present research is to model the IRIS pressurizer's dynamic using the commercial CFD code CFX. A symmetric tri dimensional model equivalent to 1/8 of the total geometry was adopted to reduce mesh size and minimize processing time. The model considers the coexistence of four phases and also takes into account the heat losses. The relationships for interfacial mass, energy, and momentum transport are programmed and incorporated into CFX. Moreover, two subdomains and several additional variables are defined to monitoring the boron dilution sequences and condensation-evaporation rates in different control volumes. For transient states a non - equilibrium stratification in the pressurizer is considered. This paper discusses the model developed and the behavior of the system for representative transients sequences. The results of analyzed transients of IRIS can be applied to the design of pressurizer internal structures and components. (author)
Experimental Measurements and CFD Simulations
Directory of Open Access Journals (Sweden)
Arijit A. Ganguli
2012-01-01
Full Text Available Bubble dynamics of a single condensing vapor bubble in a subcooled pool boiling system with a centrally heated cylindrical tank has been studied in the Rayleigh number range 7.9×1012
Validation of NEPTUNE-CFD on ULPU-V experiments
Energy Technology Data Exchange (ETDEWEB)
Jamet, Mathieu, E-mail: mathieu.jamet@edf.fr; Lavieville, Jerome; Atkhen, Kresna; Mechitoua, Namane
2015-11-15
In-vessel retention (IVR) of molten corium through external cooling of the reactor pressure vessel is one possible means of severe accident mitigation for a class of nuclear power plants. The aim is to successfully terminate the progression of a core melt within the reactor vessel. The probability of success depends on the efficacy of the cooling strategy; hence one of the key aspects of an IVR demonstration relates to the heat removal capability through the vessel wall by convection and boiling in the external water flow. This is only possible if the in-vessel thermal loading is lower than the local critical heat flux expected along the outer wall of the vessel, which is in turn highly dependent on the flow characteristics between the vessel and the insulator. The NEPTUNE-CFD multiphase flow solver is used to obtain a better understanding at local scale of the thermal hydraulics involved in this situation. The validation of the NEPTUNE-CFD code on the ULPU-V facility experiments carried out at the University of California Santa Barbara is presented as a first attempt of using CFD codes at EDF to address such an issue. Two types of computation are performed. On the one hand, a steady state algorithm is used to compute natural circulation flow rates and differential pressures and, on the other, a transient algorithm computation reveals the oscillatory nature of the pressure data recorded in the ULPU facility. Several dominant frequencies are highlighted. In both cases, the CFD simulations reproduce reasonably well the experimental data for these quantities.
Optimization of Hydraulic Machinery Bladings by Multilevel CFD Techniques
Directory of Open Access Journals (Sweden)
Thum Susanne
2005-01-01
Full Text Available The numerical design optimization for complex hydraulic machinery bladings requires a high number of design parameters and the use of a precise CFD solver yielding high computational costs. To reduce the CPU time needed, a multilevel CFD method has been developed. First of all, the 3D blade geometry is parametrized by means of a geometric design tool to reduce the number of design parameters. To keep geometric accuracy, a special B-spline modification technique has been developed. On the first optimization level, a quasi-3D Euler code (EQ3D is applied. To guarantee a sufficiently accurate result, the code is calibrated by a Navier-Stokes recalculation of the initial design and can be recalibrated after a number of optimization steps by another Navier-Stokes computation. After having got a convergent solution, the optimization process is repeated on the second level using a full 3D Euler code yielding a more accurate flow prediction. Finally, a 3D Navier-Stokes code is applied on the third level to search for the optimum optimorum by means of a fine-tuning of the geometrical parameters. To show the potential of the developed optimization system, the runner blading of a water turbine having a specific speed n q = 41 1 / min was optimized applying the multilevel approach.
HART-II Acoustic Predictions using a Coupled CFD/CSD Method
Boyd, D. Douglas, Jr.
2009-01-01
This paper documents results to date from the Rotorcraft Acoustic Characterization and Mitigation activity under the NASA Subsonic Rotary Wing Project. The primary goal of this activity is to develop a NASA rotorcraft impulsive noise prediction capability which uses first principles fluid dynamics and structural dynamics. During this effort, elastic blade motion and co-processing capabilities have been included in a recent version of the computational fluid dynamics code (CFD). The CFD code is loosely coupled to computational structural dynamics (CSD) code using new interface codes. The CFD/CSD coupled solution is then used to compute impulsive noise on a plane under the rotor using the Ffowcs Williams-Hawkings solver. This code system is then applied to a range of cases from the Higher Harmonic Aeroacoustic Rotor Test II (HART-II) experiment. For all cases presented, the full experimental configuration (i.e., rotor and wind tunnel sting mount) are used in the coupled CFD/CSD solutions. Results show good correlation between measured and predicted loading and loading time derivative at the only measured radial station. A contributing factor for a typically seen loading mean-value offset between measured data and predictions data is examined. Impulsive noise predictions on the measured microphone plane under the rotor compare favorably with measured mid-frequency noise for all cases. Flow visualization of the BL and MN cases shows that vortex structures generated in the prediction method are consist with measurements. Future application of the prediction method is discussed.
Energy Technology Data Exchange (ETDEWEB)
Choi, Y.J.
2005-12-15
In the case of PWR severe accident (Loss of Coolant Accident, LOCA), the inner containment ambient properties such as temperature, pressure and gas species concentrations due to the released steam condensation are the main factors that determine the risk. For this reason, their distributions should be known accurately, but the complexity of the geometry and the computational costs are strong limitations to conduct full three-dimensional numerical simulations. An alternative approach is presented in this thesis, namely, the coupling between a lumped-parameter model and a CFD. The coupling is based on the introduction of a 'heat transfer function' between both models and it is expected that large decreases in the CPU-costs may be achieved. First of all, wall condensation models, such as the Uchida or the Chilton-Colburn models which are implemented in the code CAST3M/TONUS, are investigated. They are examined through steady-state calculations by using the code TONUS-0D, based on lumped parameter models. The temperature and the pressure within the inner containment are compared with those reported in the archival literature. In order to build the 'heat transfer function', natural convection heat transfer is then studied by using the code CAST3M for a partitioned cavity which represents a simplified geometry of the reactor containment. At a first step, two-dimensional natural convection heat transfer without condensation is investigated only. Either the incompressible-Boussinesq fluid flow model or the asymptotic low Mach model are considered for solving the time dependent conservation equations. The SUPG finite element method and the implicit scheme are applied for the numerical discretization. The computed results are qualified by the second-order Richardson extrapolation method which allows obtaining the so-called 'Exact values', i.e. grid size independent values. The computations are also validated through non-partitioned cavity case
Progress in application of CFD techniques
Institute of Scientific and Technical Information of China (English)
2008-01-01
Computational Fluid Dynamics (CFD) is an important branch of fluid mechanics, and will continue to play great roles on the design of aerospace vehicles, explora- tion of new concept vehicles and new aerodynamic technology. This paper will present the progress of CFD from point of view of engineering application in recent years at CARDC, including the software integration, grid technique, speeding up of convergence, unsteady fluid computation,etc., and also give some engineering application examples of CFD at CARDC.
CFD lends the government a hand
Lekoudis, Spiro; Singleton, Robert E.; Mehta, Unmeel B.
1992-02-01
The present survey of important and novel CFD applications being developed and implemented by U.S. Government contractors gives attention to naval vessel flow-modeling, Army ballistic and rotary wing aerodynamics, and NASA hypersonic vehicle related applications of CFD. CFD-generated knowledge of numerical algorithms, fluid motion, and supercomputer use is being incorporated into such additional areas as computational electromagnetics and acoustics. Attention is presently given to CFD methods' development status in such fields as submarine boundary layers, hypersonic kinetic energy projectile shock structures, helicopter main rotor tip flows, and National Aerospace Plane aerothermodynamics.
Opstilling af ventilationsarmaturer i CFD-beregninger
DEFF Research Database (Denmark)
Nielsen, Peter V.
2009-01-01
Opstilling af armaturer i CFD-beregninger er et område, hvor ventilationsbranchen skal tilføre CFD-metoderne en specialviden, som ikke på forhånd er indlagt i programmerne. I artiklen bringes nogle eksempler på specificering af en indblæsningsåbning......Opstilling af armaturer i CFD-beregninger er et område, hvor ventilationsbranchen skal tilføre CFD-metoderne en specialviden, som ikke på forhånd er indlagt i programmerne. I artiklen bringes nogle eksempler på specificering af en indblæsningsåbning...
CFD Script for Rapid TPS Damage Assessment
McCloud, Peter
2013-01-01
This grid generation script creates unstructured CFD grids for rapid thermal protection system (TPS) damage aeroheating assessments. The existing manual solution is cumbersome, open to errors, and slow. The invention takes a large-scale geometry grid and its large-scale CFD solution, and creates a unstructured patch grid that models the TPS damage. The flow field boundary condition for the patch grid is then interpolated from the large-scale CFD solution. It speeds up the generation of CFD grids and solutions in the modeling of TPS damages and their aeroheating assessment. This process was successfully utilized during STS-134.
Preliminary CFD Assessment of an Experimental Test Facility Operating with Heavy Liquid Metals
Directory of Open Access Journals (Sweden)
Matteo Lizzoli
2017-01-01
Full Text Available The CFD analysis of a Venturi nozzle operating in LBE (key component of the CIRCE facility, owned by ENEA is presented in this paper. CIRCE is a facility developed to investigate in detail the fluid-dynamic behavior of ADS and/or LFR reactor plants. The initial CFD simulations have been developed hand in hand with the comparison with experimental data: the test results were used to confirm the reliability of the CFD model, which, in turn, was used to improve the interpretation of the experimental data. The Venturi nozzle is modeled with a 3D CFD code (STAR-CCM+. Later on, the CFD model has been used to assess the performance of the component in conditions different from the ones tested in CIRCE: the performance of the Venturi is presented, in terms of pressure drops, for various operating conditions. Finally, the CFD analysis has been focused on the evaluation of the effects of the injection of an inert gas in the flow of the liquid coolant on the performance of the Venturi nozzle.
Studies on CFD simulation of hydrodynamic phenomena with vortex flow around the bow of a blunt ship
上浦, 鉄平
2014-01-01
In the present studies, hydrodynamic phenomena with vortex flow around the bow of a blunt ship are simulated by using various CFD (Computational Fluid Dynamics) codes. In the conventional experimental studies, some flow properties in front of the bow beneath the free surface have been found out and reported; for example, a necklace vortex based on the wave breaking phenomena is the typical one. In CFD simulations, however, reliable results have not been obtained yet.In this study, the authors...
Energy Technology Data Exchange (ETDEWEB)
Galindo G, I. F., E-mail: igalindo@iie.org.mx [Instituto de Investigaciones Electricas, Reforma No. 113, Col. Palmira, 62490 Cuernavaca, Morelos (Mexico)
2013-10-15
The scenarios simulation in nuclear power plants is usually carried out with system codes that are based on concentrated parameters networks. However situations exist in some components where the flow is predominantly 3-D, as they are the natural circulation, mixed and stratification phenomena. The simulation techniques of computational fluid dynamics (CFD) have the potential to simulate these flows numerically. The use of CFD simulations embraces many branches of the engineering and continues growing, however, in relation to its application with respect to the problems related with the safety in nuclear power plants, has a smaller development, although is accelerating quickly and is expected that in the future they play a more emphasized paper in the analyses. A main obstacle to be able to achieve a general acceptance of the CFD is that the simulations should have very complete validation studies, sometimes not available. In this article a general panorama of the state of the methods application CFD in nuclear power plants is presented and the problem associated to its routine application and acceptance, including the view point of the regulatory authorities. Application examples are revised in those that the CFD offers real benefits and are also presented two illustrative study cases of the application of CFD techniques. The case of a water recipient with a heat source in its interior, similar to spent fuel pool of a nuclear power plant is presented firstly; and later the case of the Boron dilution of a water volume that enters to a nuclear reactor is presented. We can conclude that the CFD technology represents a very important opportunity to improve the phenomena understanding with a strong component 3-D and to contribute in the uncertainty reduction. (Author)
Integrating Multibody Simulation and CFD: toward Complex Multidisciplinary Design Optimization
Pieri, Stefano; Poloni, Carlo; Mühlmeier, Martin
This paper describes the use of integrated multidisciplinary analysis and optimization of a race car model on a predefined circuit. The objective is the definition of the most efficient geometric configuration that can guarantee the lowest lap time. In order to carry out this study it has been necessary to interface the design optimization software modeFRONTIER with the following softwares: CATIA v5, a three dimensional CAD software, used for the definition of the parametric geometry; A.D.A.M.S./Motorsport, a multi-body dynamic simulation software; IcemCFD, a mesh generator, for the automatic generation of the CFD grid; CFX, a Navier-Stokes code, for the fluid-dynamic forces prediction. The process integration gives the possibility to compute, for each geometrical configuration, a set of aerodynamic coefficients that are then used in the multiboby simulation for the computation of the lap time. Finally an automatic optimization procedure is started and the lap-time minimized. The whole process is executed on a Linux cluster running CFD simulations in parallel.
CFD Extraction Tool for TecPlot From DPLR Solutions
Norman, David
2013-01-01
This invention is a TecPlot macro of a computer program in the TecPlot programming language that processes data from DPLR solutions in TecPlot format. DPLR (Data-Parallel Line Relaxation) is a NASA computational fluid dynamics (CFD) code, and TecPlot is a commercial CFD post-processing tool. The Tec- Plot data is in SI units (same as DPLR output). The invention converts the SI units into British units. The macro modifies the TecPlot data with unit conversions, and adds some extra calculations. After unit conversions, the macro cuts a slice, and adds vectors on the current plot for output format. The macro can also process surface solutions. Existing solutions use manual conversion and superposition. The conversion is complicated because it must be applied to a range of inter-related scalars and vectors to describe a 2D or 3D flow field. It processes the CFD solution to create superposition/comparison of scalars and vectors. The existing manual solution is cumbersome, open to errors, slow, and cannot be inserted into an automated process. This invention is quick and easy to use, and can be inserted into an automated data-processing algorithm.
CFD Modeling of Thermal Manikin Heat Loss in a Comfort Evaluation Benchmark Test
DEFF Research Database (Denmark)
Nilsson, Håkan O.; Brohus, Henrik; Nielsen, Peter V.
2007-01-01
and companies still use several in-house codes for their calculations. The validation and association with human perception and heat losses in reality is consequently very difficult to make. This paper is providing requirements for the design and development of computer manikins and CFD benchmark tests...
Drag prediction for blades at high angle of attack using CFD
DEFF Research Database (Denmark)
Sørensen, Niels N.; Michelsen, J.A.
2004-01-01
In the present paper it is first demonstrated that state of the art 3D CFD codes are. capable of predicting the correct dependency of the integrated drag of a flat plate placed perpendicular to the flow. This is in strong contrast to previous 2D investigations of infinite plates, where computations...
CFD and reaction computational analysis of the growth of GaN by HVPE method
Kempisty, P.; Łucznik, B.; Pastuszka, B.; Grzegory, I.; Boćkowski, M.; Krukowski, S.; Porowski, S.
2006-10-01
GaCl synthesis reaction during hydride vapor phase epitaxy (HVPE) growth of GaN in horizontal flow reactor has been analyzed using computerized fluid dynamics (CFD) and molecular estimates of the reaction rates. Finite element code FIDAP (commercially available from Fluent Inc.) [Fidap User Manual, Fluent Inc. [1
DEFF Research Database (Denmark)
Yang, Hua; Shen, Wen Zhong; Xu, Haoran
2013-01-01
some models before they can be used in a BEM code. In this article, the airfoil data for the MEXICO (Model EXperiments in Controlled cOnditions) rotor are extracted from CFD (Computational Fluid Dynamics) results. The azimuthally averaged velocity is used as the sectional velocity to define the angle...
Transient CFD simulation of a Francis turbine startup
Nicolle, J.; Morissette, J. F.; Giroux, A. M.
2012-11-01
To assess the life expectancy of hydraulic turbines, it is essential to obtain the loading on the blades, especially during transient operations known to be the most damaging. This paper presents a simplified CFD setup to model the startup phase of a Francis turbine while it goes from rest to speed no-load condition. The fluid domain included one distributor sector coupled with one runner passage. The guide vane motion and change in the angular velocity were included in a commercial code with user functions. Comparisons between numerical results and measurements acquired on a full-size turbine showed that most of the flow physics occurring during startup were captured.
User-Dependent CFD Predictions of a Backward-Facing Step Flow
DEFF Research Database (Denmark)
Peng, Lei; Nielsen, Peter Vilhelm; Wang, Xiaoxue;
2015-01-01
The backward-facing step flow with an expansion ratio of 5 has been modelled by 19 teams without benchmark solution or experimental data. Different CFD codes, turbulence models, boundary conditions, numerical schemes and convergent criteria are adopted based on the participants’ own experience...... in CFD simulation. The predicted non-dimensional penetration lengths as a function of Reynolds number are diverse among different teams. Even when the same turbulence model or even the laminar model is used, the difference is still notable among the results from different users. We believe...
CFD evaluation of SFP cooling capacity during normal operating conditions
Energy Technology Data Exchange (ETDEWEB)
Yoon, Dong Hyeog; Kim, Jin Hyuck; Seul, Kwang Won [Korea Institute of Nuclear Safety, Daejeon (Korea, Republic of)
2012-10-15
In Fukushima nuclear accident, due to earthquake, the cooling system of the spent fuel pool failed and the safety issue of the spent fuel pool (SFP) generated. Because of the unavailability of offsite storage for spent nuclear fuel in Korea, the spent fuel should be placed in storage at specially designed facilities, kept and monitored in the plant. In recent years, spent fuel storage racks are being replaced with high density racks due to the lack of storage capacity. For the above reasons, the necessity is felt to analyze the safety of the spent fuel pool. Hence, to evaluate the safety of spent fuel pools, in case of loss of offsite power like the Fukushima nuclear accident, the safety analysis was conducted for Gori Unit 1 and Ulchin unit3 in order to estimate the time it takes for nuclear fuels to be uncovered, when water in the pool evaporated by decay heat of spent fuels. In addition, there are some researches evaluating heat removal, thermal hydraulic behaviors and accident circumstances in the spent fuel pool with system thermal hydraulic codes, such as RELAP, TRACE and ASTEC. Some researchers are attempting to carry out 3D CFD analysis. In this study, thermal hydraulic characteristics of the spent fuel pool of Ulchin unit 3 are investigated by using ANSYS CFX 13 which is a commercial CFD code. Three dimensional fluid flow and heat removal capacity of the spent fuel pool are evaluated by 3 D CFD simulation, while carrying out comparative analysis with the multi D analysis of MARS KS.
CFD Simulation of Thermal-Hydraulic Benchmark V1000CT-2 Using ANSYS CFX
Directory of Open Access Journals (Sweden)
Thomas Höhne
2009-01-01
Full Text Available Plant measured data from VVER-1000 coolant mixing experiments were used within the OECD/NEA and AER coupled code benchmarks for light water reactors to test and validate computational fluid dynamic (CFD codes. The task is to compare the various calculations with measured data, using specified boundary conditions and core power distributions. The experiments, which are provided for CFD validation, include single loop cooling down or heating-up by disturbing the heat transfer in the steam generator through the steam valves at low reactor power and with all main coolant pumps in operation. CFD calculations have been performed using a numerical grid model of 4.7 million tetrahedral elements. The Best Practice Guidelines in using CFD in nuclear reactor safety applications has been used. Different advanced turbulence models were utilized in the numerical simulation. The results show a clear sector formation of the affected loop at the downcomer, lower plenum and core inlet, which corresponds to the measured values. The maximum local values of the relative temperature rise in the calculation are in the same range of the experiment. Due to this result, it is now possible to improve the mixing models which are usually used in system codes.
CFD Simulation of Polydispersed Bubbly Two-Phase Flow around an Obstacle
Directory of Open Access Journals (Sweden)
E. Krepper
2009-01-01
Full Text Available This paper concerns the model of a polydispersed bubble population in the frame of an ensemble averaged two-phase flow formulation. The ability of the moment density approach to represent bubble population size distribution within a multi-dimensional CFD code based on the two-fluid model is studied. Two different methods describing the polydispersion are presented: (i a moment density method, developed at IRSN, to model the bubble size distribution function and (ii a population balance method considering several different velocity fields of the gaseous phase. The first method is implemented in the Neptune_CFD code, whereas the second method is implemented in the CFD code ANSYS/CFX. Both methods consider coalescence and breakup phenomena and momentum interphase transfers related to drag and lift forces. Air-water bubbly flows in a vertical pipe with obstacle of the TOPFLOW experiments series performed at FZD are then used as simulations test cases. The numerical results, obtained with Neptune_CFD and with ANSYS/CFX, allow attesting the validity of the approaches. Perspectives concerning the improvement of the models, their validation, as well as the extension of their applicability range are discussed.
Multi-physics CFD simulations in engineering
Yamamoto, Makoto
2013-08-01
Nowadays Computational Fluid Dynamics (CFD) software is adopted as a design and analysis tool in a great number of engineering fields. We can say that single-physics CFD has been sufficiently matured in the practical point of view. The main target of existing CFD software is single-phase flows such as water and air. However, many multi-physics problems exist in engineering. Most of them consist of flow and other physics, and the interactions between different physics are very important. Obviously, multi-physics phenomena are critical in developing machines and processes. A multi-physics phenomenon seems to be very complex, and it is so difficult to be predicted by adding other physics to flow phenomenon. Therefore, multi-physics CFD techniques are still under research and development. This would be caused from the facts that processing speed of current computers is not fast enough for conducting a multi-physics simulation, and furthermore physical models except for flow physics have not been suitably established. Therefore, in near future, we have to develop various physical models and efficient CFD techniques, in order to success multi-physics simulations in engineering. In the present paper, I will describe the present states of multi-physics CFD simulations, and then show some numerical results such as ice accretion and electro-chemical machining process of a three-dimensional compressor blade which were obtained in my laboratory. Multi-physics CFD simulations would be a key technology in near future.
Institute of Scientific and Technical Information of China (English)
Jing YANG; Li WANG; Huazhi LI
2001-01-01
CFD has penetrated into the field of electronic cooling for some time. Both parallel and staggered plate fin heatsinks are widely used in modern computers. This paper presents the ways to make most use of CFD in optimization design of those heatsinks: the flow and heat transfer of staggered and parallel plate fm heatsinks of various geometry were simulated by using Fluent 5.0 commercial CFD code. Based on 60 different simulation solutions, two correlations, concerning Nusselt number and friction factor as the functions of geometrical and operational parameters of the heatsinks were developed. The presentation parameter examination was also performed by comparing the numerical solutions with the analytical solutions of parallel plate arrays, showing that the correct parameters are used in the correlations.
CFD for wind and tidal offshore turbines
Montlaur, Adeline
2015-01-01
The book encompasses novel CFD techniques to compute offshore wind and tidal applications. Computational fluid dynamics (CFD) techniques are regarded as the main design tool to explore the new engineering challenges presented by offshore wind and tidal turbines for energy generation. The difficulty and costs of undertaking experimental tests in offshore environments have increased the interest in the field of CFD which is used to design appropriate turbines and blades, understand fluid flow physical phenomena associated with offshore environments, predict power production or characterise offshore environments, amongst other topics.
Progress in application of CFD techniques
Institute of Scientific and Technical Information of China (English)
CHEN ZuoBin; JIANG Xiong; ZHOU Zhu; XIAO HanShan; HUANG Yong; MOU Bin; XIAO ZhongYun; LIU Gang; WANG YunTao
2008-01-01
Computational Fluid Dynamics (CFD) is an important branch of fluid mechanics,and will continue to play great roles on the design of aerospace vehicles,exploration of new concept vehicles and new aerodynamic technology.This paper will present the progress of CFD from point of view of engineering application in recent years at CARDC,including the software integration,grid technique,speeding up of convergence,unsteady fluid computation,etc.,and also give some engineering application examples of CFD at CARDC.
CFD simulation and experimental validation of a GM type double inlet pulse tube refrigerator
Banjare, Y. P.; Sahoo, R. K.; Sarangi, S. K.
2010-04-01
Pulse tube refrigerator has the advantages of long life and low vibration over the conventional cryocoolers, such as GM and stirling coolers because of the absence of moving parts in low temperature. This paper performs a three-dimensional computational fluid dynamic (CFD) simulation of a GM type double inlet pulse tube refrigerator (DIPTR) vertically aligned, operating under a variety of thermal boundary conditions. A commercial computational fluid dynamics (CFD) software package, Fluent 6.1 is used to model the oscillating flow inside a pulse tube refrigerator. The simulation represents fully coupled systems operating in steady-periodic mode. The externally imposed boundary conditions are sinusoidal pressure inlet by user defined function at one end of the tube and constant temperature or heat flux boundaries at the external walls of the cold-end heat exchangers. The experimental method to evaluate the optimum parameters of DIPTR is difficult. On the other hand, developing a computer code for CFD analysis is equally complex. The objectives of the present investigations are to ascertain the suitability of CFD based commercial package, Fluent for study of energy and fluid flow in DIPTR and to validate the CFD simulation results with available experimental data. The general results, such as the cool down behaviours of the system, phase relation between mass flow rate and pressure at cold end, the temperature profile along the wall of the cooler and refrigeration load are presented for different boundary conditions of the system. The results confirm that CFD based Fluent simulations are capable of elucidating complex periodic processes in DIPTR. The results also show that there is an excellent agreement between CFD simulation results and experimental results.
Lifescience Database Archive (English)
Full Text Available CF (Link to library) CFD603 (Link to dictyBase) - - - Contig-U16255-1 CFD603P (Link... to Original site) CFD603F 520 CFD603Z 188 CFD603P 708 - - Show CFD603 Library CF (Link to library) Clone ID CFD603 (Link to dict...yBase) Atlas ID - NBRP ID - dictyBase ID - Link to Contig Contig-U16255-1 Original site URL http://dict...AAAAAAATAATAATAATAATTTAATAACTAATCATTAT sequence update 2001. 6. 1 Translated Amino Acid sequence QGTSGGTPGSCDKVNCPNGYICT...n*sl Frame C: QGTSGGTPGSCDKVNCPNGYICTIVNQLAVCVSPSSSSSSSSSTTGSHTTTGGSTTGSHT TTGGSTTGSHTTTGGSTTGSHTTTGGSTTGSHT
Methodology for computational fluid dynamics code verification/validation
Energy Technology Data Exchange (ETDEWEB)
Oberkampf, W.L.; Blottner, F.G.; Aeschliman, D.P.
1995-07-01
The issues of verification, calibration, and validation of computational fluid dynamics (CFD) codes has been receiving increasing levels of attention in the research literature and in engineering technology. Both CFD researchers and users of CFD codes are asking more critical and detailed questions concerning the accuracy, range of applicability, reliability and robustness of CFD codes and their predictions. This is a welcomed trend because it demonstrates that CFD is maturing from a research tool to the world of impacting engineering hardware and system design. In this environment, the broad issue of code quality assurance becomes paramount. However, the philosophy and methodology of building confidence in CFD code predictions has proven to be more difficult than many expected. A wide variety of physical modeling errors and discretization errors are discussed. Here, discretization errors refer to all errors caused by conversion of the original partial differential equations to algebraic equations, and their solution. Boundary conditions for both the partial differential equations and the discretized equations will be discussed. Contrasts are drawn between the assumptions and actual use of numerical method consistency and stability. Comments are also made concerning the existence and uniqueness of solutions for both the partial differential equations and the discrete equations. Various techniques are suggested for the detection and estimation of errors caused by physical modeling and discretization of the partial differential equations.
CFD study of isothermal water flow in rod bundle with split-type spacer grid
Batta, A.; Class, A. G.
2014-06-01
The design of rod bundles in nuclear application nowadays is assessed by CFD (computational fluid dynamics). The accuracy of CFD models need validation. Within the OECD/NEA benchmark MATiS-H (Measurement and Analysis of Turbulent Mixing in Sub-channels - Horizontal) a single-phase water flow in a 5x5 rod bundle is studied. In the benchmark, two types of spacer grids are tested, the swirl type and the split type, where the current study focuses on the split type spacer grid. Comparison of CFD results obtained at Karlsruhe Institut of Technology (KIT) with experimental results of KAERI (Korea Atomic Energy Research Institute) are presented. In the benchmark velocities components along selected lines downstream of the spacer grid are measured and compared to CFD results. The CFD code STAR CCM+ with the Realized k-ɛ model is used. Comparisons with experimental results show quantitative and qualitative agreement for the averaged values of velocity components. Comparisons of results to other benchmark partners using different modeling show that the selected mesh size and models for the analysis of the current case gives relatively accurate results. However, the used turbulent model (Realized k-ɛ does not capture the turbulent intensity correctly. Computation shows that the flow has very high mixing due to the spacer grid, which does not decay within the measurements domain (z/ DH =0-10 downstream of spacer grid). The same conclusion can be drawn from experimental data.
CFD study on inlet flow blockage accidents in rectangular fuel assembly
Energy Technology Data Exchange (ETDEWEB)
Fan, Wenyuan, E-mail: fanwy@mail.ustc.edu.cn; Peng, Changhong, E-mail: pengch@ustc.edu.cn; Guo, Yun, E-mail: guoyun79@ustc.edu.cn
2015-10-15
Highlights: • 3D CFD and Relap5 simulations on inlet flow blockage are performed. • Transient effects are investigated by dynamic mesh technique. • Similar flow and power redistributions are predicted in both methods. • Local effects of the blockage are captured by CFD method and analyzed. - Abstract: Three-dimensional transient CFD simulation of 90% inlet flow blockage accidents in rectangular fuel assembly is performed, using the dynamic mesh technique. One-dimensional steady calculation is done for comparison, using Relap5 code. Similar mass flow rate redistributions and asymmetric power redistributions of the plate in the blocked scenario are obtained. No boiling is predicted in both simulations, however, CFD approach provides more in-depth investigations of flow transients and the thermal-hydraulic interaction. The development of flow blockage transients is so fast that the rapid redistribution of mass flow rates occurs in only 0.015 s after the formation of the blockage. As a sequence of the inlet flow blockage, jet-flows and reversed flows occur in the blocked channel. This leads to complex temperature distributions of coolants and fuel plates, in which, the highest coolant temperature no longer occurs around the channel outlet. The present study shows the advantage and significance of the application of three-dimensional transient CFD technique in investigating flow blockage accidents.
RANS based CFD methodology for a real scale 217-pin wire-wrapped fuel assembly of KAERI PGSFR
Energy Technology Data Exchange (ETDEWEB)
Jeong, Jae-Ho, E-mail: jhjeong@kaeri.re.kr [Korea Atomic Energy Research Institute, 989-111 Daedeok-daero, Yuseoung-gu, Daejeon (Korea, Republic of); Song, Min-Seop [Department of Nuclear Engineering, Seoul National University, 559 Gwanak-ro, Gwanak-gu, Seoul (Korea, Republic of); Lee, Kwi-Lim [Korea Atomic Energy Research Institute, 989-111 Daedeok-daero, Yuseoung-gu, Daejeon (Korea, Republic of)
2017-03-15
Highlights: • This paper presents a suitable way for a practical RANS based CFD methodology which is applicable to real scale 217-pin wire-wrapped fuel assembly of KAERI PGSFR. • A key point of differentiation of the RANS based CFD methodology in this study is adapting an innovative grid generation method using a fortran based in-house code with a GGI function in a general-purpose commercial CFD code, CFX. • The RANS based CFD methodology is implemented with high resolution scheme and SST turbulence model in the 7-pin 37-pin, and 127-pin wire-wrapped fuel assembly of PNC and JNC. Furthermore, the RANS based CFD methodology can be successfully extended to the real scale 217-pin wire-wrapped fuel bundles of KAERI PGSFR. • Three-dimensional thermal-hydraulic characteristics have been also investigated briefly. - Abstract: This paper presents a suitable way for a practical RANS (Reynolds Averaged Navier-Stokes simulation) based CFD (Computational Fluid Dynamics) methodology which is applicable to real scale 217-pin wire-wrapped fuel assembly of KAERI (Korea Atomic Energy Research Institute) PGSFR (Prototype Gen-IV Sodium-cooled Fast Reactor). The main purpose of the current study is to support license issue for the KAERI PGSFR core safety and to elucidate thermal-hydraulic characteristics in a 217-pin wire-wrapped fuel assembly of KAERI PGSFR. A key point of differentiation of the RANS based CFD methodology in this study is adapting an innovative grid generation method using a fortran based in-house code with a GGI (General Grid Interface) function in a general-purpose commercial CFD code, CFX. The innovative grid generation method with GGI function can achieve to simulate a real wire shape with minimizing cell skewness. The RANS based CFD methodology is implemented with high resolution scheme in convection term and SST (Shear Stress Transport) turbulence model in the 7-pin 37-pin, and 127-pin wire-wrapped fuel assembly of PNC (Power reactor and Nuclear fuel
The Analysis and Design of Low Boom Configurations Using CFD and Numerical Optimization Techniques
Siclari, Michael J.
1999-01-01
computation requires an hour of computational time on a Cray computer, one can see that the use of constrained numerical optimization quickly becomes impractical.Hence, in order to practically couple a numerical design optimization technique with a CFD method, the CFD method must be extremely efficient with running times on the order of only minutes. The CFD Euler code developed under NASA sponsorship and referred to as MIM3D-SB for the most part fulfills these efficiency requirements. Analysis of wing- body configurations can be computed in a matter of a few minutes. The present study will concentrate on the feasibility of the use of this CFD code in conjunction with a numerical design optimization technique for the sonic boom reduction of candidate HSCT configurations. A preliminary supersonic aircraft design system has been established that utilizes the numerical design optimization code NPSOL developed at Stanford University coupled with the supersonic NUM3D-SB CFD code. Many questions still need to be answered in regard to using CFD and numerical optimizers as design tools. There are difficulties related to both the CFD codes and the numerical optimizers. Numerical optimizers can converge to a local minima rather than a global minima. This behavior is largely a function of the initial guess in the design space. The optimizer also is searching for a minimum of the function in terms of its derivative without any regard to the actual function value. Numerically (i.e. CFD) determined gradients can also generate spurious numerical local minima. In addition, for the sonic boom problem, grid fineness will also determine the accuracy of the final design solution. Design optimization methods work well on problems defined by continuous objective functions. The sonic boom signature design problem is not necessarily defined by a continuous objective function. The signature can have a variety of shapes; i.e. from N-wave to multiple shocks. The far-field or ground signature may not
CFD Studies on Biomass Thermochemical Conversion
Directory of Open Access Journals (Sweden)
Lifeng Yan
2008-06-01
Full Text Available Thermochemical conversion of biomass offers an efficient and economically process to provide gaseous, liquid and solid fuels and prepare chemicals derived from biomass. Computational fluid dynamic (CFD modeling applications on biomass thermochemical processes help to optimize the design and operation of thermochemical reactors. Recent progression in numerical techniques and computing efficacy has advanced CFD as a widely used approach to provide efficient design solutions in industry. This paper introduces the fundamentals involved in developing a CFD solution. Mathematical equations governing the fluid flow, heat and mass transfer and chemical reactions in thermochemical systems are described and sub-models for individual processes are presented. It provides a review of various applications of CFD in the biomass thermochemical process field.
Scaling studies and conceptual experiment designs for NGNP CFD assessment
Energy Technology Data Exchange (ETDEWEB)
D. M. McEligot; G. E. McCreery
2004-11-01
The objective of this report is to document scaling studies and conceptual designs for flow and heat transfer experiments intended to assess CFD codes and their turbulence models proposed for application to prismatic NGNP concepts. The general approach of the project is to develop new benchmark experiments for assessment in parallel with CFD and coupled CFD/systems code calculations for the same geometry. Two aspects of the complex flow in an NGNP are being addressed: (1) flow and thermal mixing in the lower plenum ("hot streaking" issue) and (2) turbulence and resulting temperature distributions in reactor cooling channels ("hot channel" issue). Current prismatic NGNP concepts are being examined to identify their proposed flow conditions and geometries over the range from normal operation to decay heat removal in a pressurized cooldown. Approximate analyses have been applied to determine key non-dimensional parameters and their magnitudes over this operating range. For normal operation, the flow in the coolant channels can be considered to be dominant turbulent forced convection with slight transverse property variation. In a pressurized cooldown (LOFA) simulation, the flow quickly becomes laminar with some possible buoyancy influences. The flow in the lower plenum can locally be considered to be a situation of multiple hot jets into a confined crossflow -- with obstructions. Flow is expected to be turbulent with momentumdominated turbulent jets entering; buoyancy influences are estimated to be negligible in normal full power operation. Experiments are needed for the combined features of the lower plenum flows. Missing from the typical jet experiments available are interactions with nearby circular posts and with vertical posts in the vicinity of vertical walls - with near stagnant surroundings at one extreme and significant crossflow at the other. Two types of heat transfer experiments are being considered. One addresses the "hot channel" problem, if necessary
Energy Technology Data Exchange (ETDEWEB)
Buchholz, Sebastian; Palazzo, Simone; Papukchiev, Angel; Scheurer Martina
2016-12-15
The overall goal of the project RS 1506 ''Development and Validation of Three Dimensional CFD Methods for Reactor Safety Applications'' is the validation of Computational Fluid Dynamics (CFD) software for the simulation of three -dimensional thermo-hydraulic heat and fluid flow phenomena in nuclear reactors. For this purpose a wide spectrum of validation and test cases was selected covering fluid flow and heat transfer phenomena in the downcomer and in the core of pressurized water reactors. In addition, the coupling of the system code ATHLET with the CFD code ANSYS CFX was further developed and validated. The first choice were UPTF experiments where turbulent single- and two-phase flows were investigated in a 1:1 scaled model of a German KONVOI reactor. The scope of the CFD calculations covers thermal mixing and stratification including condensation in single- and two-phase flows. In the complex core region, the flow in a fuel assembly with spacer grid was simulated as defined in the OECD/NEA Benchmark MATIS-H. Good agreement are achieved when the geometrical and physical boundary conditions were reproduced as realistic as possible. This includes, in particular, the consideration of heat transfer to walls. The influence of wall modelling on CFD results was investigated on the TALL-3D T01 experiment. In this case, the dynamic three dimensional fluid flow and heat transfer phenomena were simulated in a Generation IV liquid metal cooled reactor. Concurrently to the validation work, the coupling of the system code ATHLET with the ANSYS CFX software was optimized and expanded for two-phase flows. Different coupling approaches were investigated, in order to overcome the large difference between CPU-time requirements of system and CFD codes. Finally, the coupled simulation system was validated by applying it to the simulation of the PSI double T-junction experiment, the LBE-flow in the MYRRA Spallation experiment and a demonstration test case
Improving broiler lifestyle: a CFD approach
CSIR Research Space (South Africa)
Humbert, U
2014-01-01
Full Text Available on Computational and Applied Mechanics Somerset West 14 – 16 January 2014 1 Improving broiler lifestyle: a CFD approach U Humbert 1, 2 , GJC Wessels 2 , JE Smit 2* , O Ubbink 2 1 Institut Polytechnique de Bordeaux for ENSEIRB-MATMECA, France; uhumbert... this is a complex model to replicate and solve, computational fluid dynamics can assist in broiler house design. Keywords: CFD modelling, broiler houses, environmental control, ventilation, food security INTRODUCTION In South Africa agriculture...
CFD model of an aerating hydrofoil
Scott, D.; Sabourin, M.; Beaulieu, S.; Papillon, B.; Ellis, C.
2014-03-01
Improving water quality in the tailrace below hydroelectric dams has become a priority in many river systems. In warm climates, water drawn by the turbine from deep in a reservoir can be deficient in dissolved oxygen (DO), a critical element in maintaining a healthy aquatic ecosystem. Many different solutions have been proposed in order to increase the DO levels in turbine discharge, including: turbine aeration systems (adding air to the water through either the turbine hub, the periphery or through distributed aeration in the runner blades); bubble diffusers in the reservoir or in the tailrace; aerating weirs downstream of the dams; and surface water pumps in the reservoir near the dam. There is a significant potential to increase the effectiveness of these solutions by improving the way that oxygen is introduced into the water; better distributions of bubbles will result in better oxygen transfer. In the present study, a two-phase Computational Fluid Dynamics model has been formulated using a commercial code to study the distribution of air downstream of a simple aerating hydrofoil. The two-phase model uses the Eulerian-Eulerian approach. Appropriate relations are used to model the interphase forces, including the Grace drag force model, the Favre averaged drag force and the Sato enhanced eddy viscosity. The model is validated using experimental results obtained in the water tunnel at the University of Minnesota's Saint Anthony Falls Laboratory. Results are obtained for water velocities between 5 and 10 m/s, air flow rates between 0.5 and 1.5 sL/min and for angles of attack between 0° and -8°. The results of this study show that the CFD model provides a good qualitative comparison to the experimental results by well predicting the wake location at the different flow rates and angles of attack used.
Directory of Open Access Journals (Sweden)
Vincent Casseau
2016-10-01
Full Text Available A two-temperature CFD (computational fluid dynamics solver is a prerequisite to any spacecraft re-entry numerical study that aims at producing results with a satisfactory level of accuracy within realistic timescales. In this respect, a new two-temperature CFD solver, hy2Foam, has been developed within the framework of the open-source CFD platform OpenFOAM for the prediction of hypersonic reacting flows. This solver makes the distinct juncture between the trans-rotational and multiple vibrational-electronic temperatures. hy2Foam has the capability to model vibrational-translational and vibrational-vibrational energy exchanges in an eleven-species air mixture. It makes use of either the Park TTv model or the coupled vibration-dissociation-vibration (CVDV model to handle chemistry-vibration coupling and it can simulate flows with or without electronic energy. Verification of the code for various zero-dimensional adiabatic heat baths of progressive complexity has been carried out. hy2Foam has been shown to produce results in good agreement with those given by the CFD code LeMANS (The Michigan Aerothermodynamic Navier-Stokes solver and previously published data. A comparison is also performed with the open-source DSMC (direct simulation Monte Carlo code dsmcFoam. It has been demonstrated that the use of the CVDV model and rates derived from Quantum-Kinetic theory promote a satisfactory consistency between the CFD and DSMC chemistry modules.
Flutter and dynamic analysis based on CFD/CSD coupling method%基于CFD/CSD耦合的颤振与动载荷分析方法
Institute of Scientific and Technical Information of China (English)
谢亮; 徐敏; 李杰; 蔡天星
2012-01-01
采用CFD/CSD耦合方法,建立了气动弹性仿真系统.基于系统辨识的方法,使用Volterra级数建立了降阶模型(ROM),实现了颤振边界的快速求解,分别使用CFD/CSD全耦合方法与ROM完成了AGARD 445.6标模的颤振分析,计算结果与实验相符较好.使用ROM完成了带边条平直翼的颤振分析.使用CFD/CSD耦合方法计算了此机翼在飞行动压下的气弹响应,结果表明即使在颤振边界内,仍然有可能出现极限环振荡(LCO).对此,分析了其气弹响应中的动载情况.结果表明基于CFD/CSD耦合的方法可以真实地仿真气弹响应过程,准确地分析气弹响应中的动态载荷情况.%CFD/CSD ( computational fluid dynamics/computational solid dynamics) coupling algorithm was concerned, and CFD based nonlinear aeroelastic simulation code was developed for complex aeroelastic system analysis. In order to meet the demand of rapid analysis, a reduced-order model based on Volterra series for nonlinear unsteady aerodynamics analysis was developed. The model was validated on AGARD 445. 6 wing, which is a standard aeroelastic configuration, and used in the flutter analysis of a plate wing with regula. CFD/CSD coupling method was employed to calculate the aeroelastic response under flight dynamic pressure. The result shows that even when the flight dynamic pressure is below the flutter boundary, the aeroelastic response also has the possibility to go into limit cycle oscillation ( LCO). Then the dynamic load was analyzed in this case. The result shows that CFD/CSD coupling method can credibly simulate the aeroelastic response, and give accurate information about dynamic load correspomding to such response.
Validation of CFD-models for non-stoichiometric oxycoal combustion
Energy Technology Data Exchange (ETDEWEB)
Bohn, Jan-Peter; Goanta, Adrian; Baumgartner, Andreas; Blume, Maximilian; Spliethoff, Hartmut [Technische Univ. Muenchen, Garching (Germany). Inst. of Energy Systems
2013-07-01
To compensate the drawback of high flue gas recirculation rates specific for oxyfuel processes, a new concept based on staged combustion, called controlled staging with non-stoichiometric burners (CSNB) was investigated. A combination of over- and sub-stoichiometric burners avoids inadmissible high flame temperatures even with oxygen concentrations up to 40 vol.-% in the oxidant. The non-stoichiometric burners are arranged in such a way that the overall stoichiometry at the combustion chamber outlet is slightly over-stoichiometric similar to conventional combustion processes, so that full burn out is secured. This concept aims at a more efficient oxyfuel process due to the decreasing effort in the recirculation loop and a new designed, more cost effective, steam generator. For further process optimization of the CSNB concept and the adjacent steam generator layout are validated CFD simulations urgently required. This paper shows first steps in validation of the CSNB combustion concept against state of the art CFD codes. The CFD code was optimized for oxyfuel combustion including a new char combustion and gas radiation model. Experimental investigations and CFD modelling are showing good agreement in concerns of temperature, CO and CO{sub 2} profiles. However the prediction of the oxygen concentration differs significantly between experiment and simulation.
Understanding the Flow Physics of Shock Boundary-Layer Interactions Using CFD and Numerical Analyses
Friedlander, David J.
2013-01-01
Computational fluid dynamic (CFD) analyses of the University of Michigan (UM) Shock/Boundary-Layer Interaction (SBLI) experiments were performed as an extension of the CFD SBLI Workshop held at the 48th AIAA Aerospace Sciences Meeting in 2010. In particular, the UM Mach 2.75 Glass Tunnel with a semi-spanning 7.75deg wedge was analyzed in attempts to explore key physics pertinent to SBLI's, including thermodynamic and viscous boundary conditions as well as turbulence modeling. Most of the analyses were 3D CFD simulations using the OVERFLOW flow solver, with additional quasi-1D simulations performed with an in house MATLAB code interfacing with the NIST REFPROP code to explore perfect verses non-ideal air. A fundamental exploration pertaining to the effects of particle image velocimetry (PIV) on post-processing data is also shown. Results from the CFD simulations showed an improvement in agreement with experimental data with key contributions including adding a laminar zone upstream of the wedge and the necessity of mimicking PIV particle lag for comparisons. Results from the quasi-1D simulation showed that there was little difference between perfect and non-ideal air for the configuration presented.
Application of CFD (Fluent) to LNG spills into geometrically complex environments.
Gavelli, Filippo; Bullister, Edward; Kytomaa, Harri
2008-11-15
Recent discussions on the fate of LNG spills into impoundments have suggested that the commonly used combination of SOURCE5 and DEGADIS to predict the flammable vapor dispersion distances is not accurate, as it does not account for vapor entrainment by wind. SOURCE5 assumes the vapor layer to grow upward uniformly in the form of a quiescent saturated gas cloud that ultimately spills over impoundment walls. The rate of spillage is then used as the source term for DEGADIS. A more rigorous approach to predict the flammable vapor dispersion distance is to use a computational fluid dynamics (CFD) model. CFD codes can take into account the physical phenomena that govern the fate of LNG spills into impoundments, such as the mixing between air and the evaporated gas. Before a CFD code can be proposed as an alternate method for the prediction of flammable vapor cloud distances, it has to be validated with proper experimental data. This paper describes the use of Fluent, a widely-used commercial CFD code, to simulate one of the tests in the "Falcon" series of LNG spill tests. The "Falcon" test series was the only series that specifically addressed the effects of impoundment walls and construction obstructions on the behavior and dispersion of the vapor cloud. Most other tests, such as the Coyote and the Burro series, involved spills onto water and relatively flat ground. The paper discusses the critical parameters necessary for a CFD model to accurately predict the behavior of a cryogenic spill in a geometrically complex domain, and presents comparisons between the gas concentrations measured during the Falcon-1 test and those predicted using Fluent. Finally, the paper discusses the effect vapor barriers have in containing part of the spill thereby shortening the ignitable vapor cloud and therefore the required hazard area. This issue was addressed by comparing the Falcon-1 simulation (spill into the impoundment) with the simulation of an identical spill without any
Simulation of fuel dispersion in the MYRRHA-FASTEF primary coolant with CFD and SIMMER-IV
Energy Technology Data Exchange (ETDEWEB)
Buckingham, Sophia, E-mail: sophia.buckingham@vki.ac.be [von Karman Institute, Chaussée de Waterloo 72, B-1640 Rhode-St-Genèse (Belgium); Planquart, Philippe [von Karman Institute, Chaussée de Waterloo 72, B-1640 Rhode-St-Genèse (Belgium); Eboli, Marica [University of Pisa, Largo Lucio Lazzarino 2, 56122 Pisa (Italy); Moreau, Vincent [CRS4, Science and Technology Park Polaris – Piscina Manna, 09010 Pula (Italy); Van Tichelen, Katrien [SCK-CEN, Boeretang 200, 2400 Mol (Belgium)
2015-12-15
Highlights: • A comparison between CFD and system codes applied to long-term dispersion of fuel particles inside the MYRRHA reactor is proposed. • Important accumulations at the free-surface level are to be expected. • The risk of core blockage should not be neglected. • Numerical approach and modeling assumptions have a strong influence on the simulation results and accuracy. - Abstract: The objective of this work is to assess the behavior of fuel redistribution in heavy liquid metal nuclear systems under fuel pin failure conditions. Two different modeling approaches are considered using Computational Fluid Dynamics (CFD) codes and a system code, applied to the MYRRHA facility primary coolant loop version 1.4. Two different CFD models are constructed: the first is a single-phase steady model prepared in ANSYS Fluent, while the second is a two-phase model based on the volume of fluid (VOF) method in STARCCM+ to capture the upper free-surface dynamics. Both use a Lagrangian tracking approach with oneway coupling to follow the particles throughout the reactor. The system code SIMMER-IV is used for the third model, without neutronic coupling. Although limited regarding the fluid dynamic aspects compared to the CFD codes, comparisons of particle distributions highlight strong similarities despite quantitative discrepancies in the size of fuel accumulations. These disparities should be taken into account while performing the safety analysis of nuclear systems and developing strategies for accident mitigation.
ON NUMERICAL TECHNIQUES IN CFD
Institute of Scientific and Technical Information of China (English)
Zhuang Fenggan
2000-01-01
Numerical techniques play an important role in CFD. Some of them are reviewed in this paper. The necessity of using high order difference scheme is demonstrated for the study of high Reynolds number viscous flow. Physical guide lines are provided for the construction of these high order schemes. To avoid unduly ad hoc treatment in the boundary region the use of compact scheme is recommended because it has a small stencil size compared with the traditional finite difference scheme. Besides preliminary Fourier analysis shows the compact scheme can also yield better space resolution which makes it more suitable to study flow with multiscales e.g. turbulence. Other approaches such as perturbation method and finite spectral method are also emphasized. Typical numerical simulations were carried out. The first deals with Euler equations to show its capabilities to capture flow discontinuity.The second deals with Navier-Stokes equations studying the evolution of a mixing layer, the pertinent structures at different times are shown. Asymmetric break down occurs and also the appearance of small vortices.
Directory of Open Access Journals (Sweden)
Amol S. Kinkar
2015-02-01
Full Text Available Abstract Heavy industrialization amp modernization of society demands in increasing of power cause to research amp develop new technology amp efficient utilization of existing power units. Variety of sources are available for power generation such as conventional sources like thermal hydro nuclear and renewable sources like wind tidal biomass geothermal amp solar. Out of these most common amp economical way for producing the power is by thermal power stations. Various industrial boilers plays an important role to complete the power generation cycle such as CFBC Circulating Fluidized Bed Combustion FBC Fluidized Bed Combustion AFBC Atmospheric Fluidized Bed Combustion Boiler CO Boiler RG amp WHR Boiler Waster heat recovery Boiler. This paper is intended to comprehensively give an account of knowledge related to refractory amp its failure in CFBC boiler with due effect of flue gas flow during operation on refractory by using latest technology of CAD Computer aided Design amp CAE Computer aided Engineering. By conceptual application of these technology the full scale model is able to analyze in regards the flow of flue gas amp bed material flow inside the CFBC loop via CFD Computational Fluid Dynamics software. The results obtained are helpful to understand the impact of gas amp particles on refractory in different areas amp also helped to choose suitable refractory material in different regions.
CFD simulation of air discharge tests in the PPOOLEX facility
Energy Technology Data Exchange (ETDEWEB)
Tanskanen, V.; Puustinen, M. (Lappeenranta Univ. of Technology, Nuclear Safety Research Unit (Finland))
2008-07-15
This report summarizes the CFD simulation results of two air discharge tests of the characterizing test program in 2007 with the scaled down PPOOLEX facility. Air was blown to the dry well compartment and from there through a DN200 blowdown pipe into the condensation pool (wet well). The selected tests were modeled with Fluent CFD code. Test CHAR-09-1 was simulated to 28.92 seconds of real time and test CHAR-09-3 to 17.01 seconds. The VOF model was used as a multiphase model and the standard k epsilon-model as a turbulence model. Occasional convergence problems, usually at the beginning of bubble formation, required the use of relatively short time stepping. The simulation time costs threatened to become unbearable since weeks or months of wall-clock time with 1-2 processors were needed. Therefore, the simulated time periods were limited from the real duration of the experiments. The results obtained from the CFD simulations are in a relatively good agreement with the experimental results. Simulated pressures correspond well to the measured ones and, in addition, fluctuations due to bubble formations and breakups are also captured. Most of the differences in temperature values and in their behavior seem to depend on the locations of the measurements. In the vicinity of regions occupied by water in the experiments, thermocouples getting wet and drying slowly may have had an effect on the measured temperature values. Generally speaking, most temperatures were simulated satisfyingly and the largest discrepancies could be explained by wetted thermocouples. However, differences in the dry well and blowdown pipe top measurements could not be explained by thermocouples getting wet. Heat losses and dry well / wet well heat transfer due to conduction have neither been estimated in the experiments nor modeled in the simulations. Estimation of heat conduction and heat losses should be carried out in future experiments and they should be modeled in future simulations, too. (au)
CFD analysis of a hydraulic valve for cavitating flow
Energy Technology Data Exchange (ETDEWEB)
Dutta, A.; Goyal, P.; Singh, R.K.; Gosh, A.K. [Bhabha Atomic Research Centre (BARC), Trombay, Mumbai (India). Reactor Safety Div.
2012-03-15
A successful design of high pressure hydraulic valves requires a thorough analysis of both velocity and pressure fields, with the aim of improving the geometry to avoid cavitation. Cavitation behavior prediction of hydraulic valves and its associated performance drop is of high interest for the manufacturers and for the users. The paper presents a CFD analysis of the flow inside a high pressure hydraulic valve. First, the analysis was carried out without using cavitation model (single phase). It was observed that absolute pressure was going below the vapor pressure. Hence, it was required to turn on the cavitation model. This model enables formation of vapor from liquid when the pressure drops below the vaporization pressure. Since the cavitation bubble grows in a liquid at low temperature, the latent heat of evaporation can be neglected and the system can be considered isothermal. Under these conditions the pressure inside the bubble remains practically constant and the growth of the bubble radius can be approximated by the simplified Rayleigh equation. For typical poppet valve geometry, of computational domain is assumed, with pressure inlet and outlet boundary conditions, and a steady flow solution is computed. Because of the highly complex geometry of the hydraulic valve, the computational domain was meshed using unstructured grids using tetrahedral cells only. The paper presents a numerical investigation of the flow inside a hydraulic valve using commercial CFD code CFD-ACE. The aim of the study is to provide a good basis for future designing of the hydraulic valve. The result indicated the cavitation zones which in turn suggest needs of modification of present geometry. (orig.)
Processes and Procedures for Application of CFD to Nuclear Reactor Safety Analysis
Energy Technology Data Exchange (ETDEWEB)
Richard W. Johnson; Richard R. Schultz; Patrick J. Roache; Ismail B. Celik; William D. Pointer; Yassin A. Hassan
2006-09-01
Traditionally, nuclear reactor safety analysis has been performed using systems analysis codes such as RELAP5, which was developed at the INL. However, goals established by the Generation IV program, especially the desire to increase efficiency, has lead to an increase in operating temperatures for the reactors. This increase pushes reactor materials to operate towards their upper temperature limits relative to structural integrity. Because there will be some finite variation of the power density in the reactor core, there will be a potential for local hot spots to occur in the reactor vessel. Hence, it has become apparent that detailed analysis will be required to ensure that local ‘hot spots’ do not exceed safety limits. It is generally accepted that computational fluid dynamics (CFD) codes are intrinsically capable of simulating fluid dynamics and heat transport locally because they are based on ‘first principles.’ Indeed, CFD analysis has reached a fairly mature level of development, including the commercial level. However, CFD experts are aware that even though commercial codes are capable of simulating local fluid and thermal physics, great care must be taken in their application to avoid errors caused by such things as inappropriate grid meshing, low-order discretization schemes, lack of iterative convergence and inaccurate time-stepping. Just as important is the choice of a turbulence model for turbulent flow simulation. Turbulence models model the effects of turbulent transport of mass, momentum and energy, but are not necessarily applicable for wide ranges of flow types. Therefore, there is a well-recognized need to establish practices and procedures for the proper application of CFD to simulate flow physics accurately and establish the level of uncertainty of such computations. The present document represents contributions of CFD experts on what the basic practices, procedures and guidelines should be to aid CFD analysts to obtain accurate
CFD simulation on critical heat flux of flow boiling in IVR-ERVC of a nuclear reactor
Energy Technology Data Exchange (ETDEWEB)
Zhang, Xiang, E-mail: zhangxiang3@snptc.com.cn [State Nuclear Power Technology Research & Development Center, South Area, Future Science and Technology Park, Chang Ping District, Beijing 102209 (China); Hu, Teng [State Nuclear Power Technology Research & Development Center, South Area, Future Science and Technology Park, Chang Ping District, Beijing 102209 (China); Chen, Deqi, E-mail: chendeqi@cqu.edu.cn [Key Laboratory of Low-grade Energy Utilization Technologies and Systems, Chongqing University, 400044 (China); Zhong, Yunke; Gao, Hong [Key Laboratory of Low-grade Energy Utilization Technologies and Systems, Chongqing University, 400044 (China)
2016-08-01
Highlights: • CFD simulation on CHF of boiling two-phase flow in ERVC is proposed. • CFD simulation result of CHF agrees well with that of experimental result. • The characteristics of boiling two-phase flow and boiling crisis are analyzed. - Abstract: The effectiveness of in-vessel retention (IVR) by external reactor vessel cooling (ERVC) strongly depends on the critical heat flux (CHF). As long as the local CHF does not exceed the local heat flux, the lower head of the pressure vessel can be cooled sufficiently to prevent from failure. In this paper, a CFD simulation is carried out to investigate the CHF of ERVC. This simulation is performed by a CFD code fluent couple with a boiling model by UDF (User-Defined Function). The experimental CHF of ERVC obtained by State Nuclear Power Technology Research and Development Center (SNPTRD) is used to validate this CFD simulation, and it is found that the simulation result agrees well with the experimental result. Based on the CFD simulation, detailed analysis focusing on the pressure distribution, velocity distribution, void fraction distribution, heating wall temperature distribution are proposed in this paper.
Smith, Marilyn J.; Lim, Joon W.; vanderWall, Berend G.; Baeder, James D.; Biedron, Robert T.; Boyd, D. Douglas, Jr.; Jayaraman, Buvana; Jung, Sung N.; Min, Byung-Young
2012-01-01
Over the past decade, there have been significant advancements in the accuracy of rotor aeroelastic simulations with the application of computational fluid dynamics methods coupled with computational structural dynamics codes (CFD/CSD). The HART II International Workshop database, which includes descent operating conditions with strong blade-vortex interactions (BVI), provides a unique opportunity to assess the ability of CFD/CSD to capture these physics. In addition to a baseline case with BVI, two additional cases with 3/rev higher harmonic blade root pitch control (HHC) are available for comparison. The collaboration during the workshop permits assessment of structured, unstructured, and hybrid overset CFD/CSD methods from across the globe on the dynamics, aerodynamics, and wake structure. Evaluation of the plethora of CFD/CSD methods indicate that the most important numerical variables associated with most accurately capturing BVI are a two-equation or detached eddy simulation (DES)-based turbulence model and a sufficiently small time step. An appropriate trade-off between grid fidelity and spatial accuracy schemes also appears to be pertinent for capturing BVI on the advancing rotor disk. Overall, the CFD/CSD methods generally fall within the same accuracy; cost-effective hybrid Navier-Stokes/Lagrangian wake methods provide accuracies within 50% the full CFD/CSD methods for most parameters of interest, except for those highly influenced by torsion. The importance of modeling the fuselage is observed, and other computational requirements are discussed.
Analysis of a waste-heat boiler by CFD simulation
Energy Technology Data Exchange (ETDEWEB)
Yang, Yongziang; Jokilaakso, A. [Helsinki Univ. of Technology, Otaniemi (Finland)
1996-12-31
Waste-heat boilers play important roles in the continuous operation of a smelter and in the conservation of energy. However, the fluid flow and heat transfer behaviour has not been well studied, concerning the boiler performance and design. This presentation describes simulated gas flow and heat transfer of a waste-heat boiler in the Outokumpu copper flash smelting process. The governing transport equations for the conservation of mass, momentum and enthalpy were solved with a commercial CFD-code PHOENICS. The standard k-{epsilon} turbulence model and a composite-flux radiation model were used in the computations. The computational results show that the flow is strongly recirculating and distinctly three-dimensional in most part of the boiler, particularly in the radiation section. The predicted flow pattern and temperature distribution were in a good agreement with laboratory models and industrial measurements. The results provide detailed information of flow pattern, the temperature distribution and gas cooling efficiency. The CFD proved to be a useful tool in analysing the boiler operation. (author)
Qualitative CFD for Rapid Learning in Industrial and Academic Applications
Variano, Evan
2010-11-01
We present a set of tools that allow CFD to be used at an early stage in the design process. Users can rapidly explore the qualitative aspects of fluid flow using real-time simulations that react immediately to design changes. This can guide the design process by fostering an intuitive understanding of fluid dynamics at the prototyping stage. We use an extremely stable Navier-Stokes solver that is available commercially (and free to academic users) plus a custom user interface. The code is designed for the animation and gaming industry, and we exploit the powerful graphical display capabilities to develop a unique human-machine interface. This interface allows the user to efficiently explore the flow in 3D + real time, fostering an intuitive understanding of steady and unsteady flow patterns. There are obvious extensions to use in an academic setting. The trade-offs between accuracy and speed will be discussed in the context of CFD's role in design and education.
Pressure pulsation in Kaplan turbines: Prototype-CFD comparison
Rivetti, A.; Lucino1, C.; Liscia, S.; Muguerza, D.; Avellan, F.
2012-11-01
Pressure pulsation phenomena in a large Kaplan turbine are investigated by means of numerical simulations (CFD) and prototype measurements in order to study the dynamic behavior of flow due to the blade passage and its interaction with other components of the turbine. Numerical simulations are performed with the commercial software Ansys CFX code, solving the incompressible Unsteady Reynolds-Averaged-Navier Stokes equations under a finite volume scheme. The computational domain involves the entire machine at prototype scale. Special care is taken in the discretization of the wicket gate overhang and runner blade gap. Prototype measurements are performed using pressure transducers at different locations among the wicket gate outlet and the draft tube inlet. Then, CFD results are compared with temporary signals of prototype measurements at identical locations to validate the numerical model. A detailed analysis was focused on the tip gap flow and the pressure field at the discharge ring. From a rotating reference frame perspective, it is found that the mean pressure fluctuates accordingly the wicket gate passage. Moreover, in prototype measurements the pressure frequency that reveals the presence of modulated cavitation at the discharge ring is distinguished, as also verified from the shape of erosion patches in concordance with the number of wicket gates.
AirShow 1.0 CFD Software Users' Guide
Mohler, Stanley R., Jr.
2005-01-01
AirShow is visualization post-processing software for Computational Fluid Dynamics (CFD). Upon reading binary PLOT3D grid and solution files into AirShow, the engineer can quickly see how hundreds of complex 3-D structured blocks are arranged and numbered. Additionally, chosen grid planes can be displayed and colored according to various aerodynamic flow quantities such as Mach number and pressure. The user may interactively rotate and translate the graphical objects using the mouse. The software source code was written in cross-platform Java, C++, and OpenGL, and runs on Unix, Linux, and Windows. The graphical user interface (GUI) was written using Java Swing. Java also provides multiple synchronized threads. The Java Native Interface (JNI) provides a bridge between the Java code and the C++ code where the PLOT3D files are read, the OpenGL graphics are rendered, and numerical calculations are performed. AirShow is easy to learn and simple to use. The source code is available for free from the NASA Technology Transfer and Partnership Office.
Energy Technology Data Exchange (ETDEWEB)
Lee, S.
2011-05-17
The process of recovering the waste in storage tanks at the Savannah River Site (SRS) typically requires mixing the contents of the tank to ensure uniformity of the discharge stream. Mixing is accomplished with one to four dual-nozzle slurry pumps located within the tank liquid. For the work, a Tank 48 simulation model with a maximum of four slurry pumps in operation has been developed to estimate flow patterns for efficient solid mixing. The modeling calculations were performed by using two modeling approaches. One approach is a single-phase Computational Fluid Dynamics (CFD) model to evaluate the flow patterns and qualitative mixing behaviors for a range of different modeling conditions since the model was previously benchmarked against the test results. The other is a two-phase CFD model to estimate solid concentrations in a quantitative way by solving the Eulerian governing equations for the continuous fluid and discrete solid phases over the entire fluid domain of Tank 48. The two-phase results should be considered as the preliminary scoping calculations since the model was not validated against the test results yet. A series of sensitivity calculations for different numbers of pumps and operating conditions has been performed to provide operational guidance for solids suspension and mixing in the tank. In the analysis, the pump was assumed to be stationary. Major solid obstructions including the pump housing, the pump columns, and the 82 inch central support column were included. The steady state and three-dimensional analyses with a two-equation turbulence model were performed with FLUENT{trademark} for the single-phase approach and CFX for the two-phase approach. Recommended operational guidance was developed assuming that local fluid velocity can be used as a measure of sludge suspension and spatial mixing under single-phase tank model. For quantitative analysis, a two-phase fluid-solid model was developed for the same modeling conditions as the single
CFD Modeling of Particle Resuspension
Degraw, Jason; Cimbala, John; Freihaut, James
2006-11-01
The phenomenon of resuspension plays a role in everyday life and is an important factor in indoor air quality. There are several models available for particle detachment, but the mechanisms by which particles are induced to lift off of a surface are not well explained in the literature. The lifting forces on a particle are generally too small to resuspend it, especially in the air flows generated by human activity (e.g., walking). We model the interaction of the aerodynamic disturbances and a thin layer of particles deposited on the surface. A standard CFD solver is used to compute the flow, and the particle transport model is one-way-coupled with the flow solution. Several time-dependent flows are considered, including an idealized footstep. The foot is represented using an immersed boundary technique, and is modeled as a disk that moves up and down with a trajectory patterned after experimental gait data. A jet and a radially moving vortex are generated as the foot approaches the floor. The strength of the jet is determined by the details of the foot movement near the surface. If the foot is slowed as it nears the floor, we find maximum velocities around 3 m/s, while the maximum velocity is more than doubled by a sudden stop. We have also computed a ``vacuum cleaner'' case to model the airflow generated by cleaning activities. In either case, the wall shear along the floor and the near-wall flow structure are used to examine the resuspension of particles.
Automation of the CFD Process on Distributed Computing Systems
Tejnil, Ed; Gee, Ken; Rizk, Yehia M.
2000-01-01
A script system was developed to automate and streamline portions of the CFD process. The system was designed to facilitate the use of CFD flow solvers on supercomputer and workstation platforms within a parametric design event. Integrating solver pre- and postprocessing phases, the fully automated ADTT script system marshalled the required input data, submitted the jobs to available computational resources, and processed the resulting output data. A number of codes were incorporated into the script system, which itself was part of a larger integrated design environment software package. The IDE and scripts were used in a design event involving a wind tunnel test. This experience highlighted the need for efficient data and resource management in all parts of the CFD process. To facilitate the use of CFD methods to perform parametric design studies, the script system was developed using UNIX shell and Perl languages. The goal of the work was to minimize the user interaction required to generate the data necessary to fill a parametric design space. The scripts wrote out the required input files for the user-specified flow solver, transferred all necessary input files to the computational resource, submitted and tracked the jobs using the resource queuing structure, and retrieved and post-processed the resulting dataset. For computational resources that did not run queueing software, the script system established its own simple first-in-first-out queueing structure to manage the workload. A variety of flow solvers were incorporated in the script system, including INS2D, PMARC, TIGER and GASP. Adapting the script system to a new flow solver was made easier through the use of object-oriented programming methods. The script system was incorporated into an ADTT integrated design environment and evaluated as part of a wind tunnel experiment. The system successfully generated the data required to fill the desired parametric design space. This stressed the computational
CFD prediction of the reacting flow field inside a subscale scramjet combustor
Chitsomboon, T.; Northam, G. B.; Rogers, R. C.; Diskin, G. S.
1988-01-01
A three-dimensional, Reynolds-averaged Navier-Stokes CFD code has been used to calculate the reacting flowfield inside a hydrogen-fueled, subscale scramjet combustor. Pilot fuel was injected transversely upstream of the combustor and the primary fuel was injected transversely downstream of a backward facing step. A finite rate combustion model with two-step kinetics was used. The CFD code used the explicit MacCormack algorithm with point-implicit treatment of the chemistry source terms. Turbulent mixing of the jets with the airstream was simulated by a simple mixing length scheme, whereas near wall turbulence was accounted for by the Baldwin-Lomax model. Computed results were compared with experimental wall pressure measurements.
Directory of Open Access Journals (Sweden)
Vincent Casseau
2016-12-01
Full Text Available hy2Foam is a newly-coded open-source two-temperature computational fluid dynamics (CFD solver that has previously been validated for zero-dimensional test cases. It aims at (1 giving open-source access to a state-of-the-art hypersonic CFD solver to students and researchers; and (2 providing a foundation for a future hybrid CFD-DSMC (direct simulation Monte Carlo code within the OpenFOAM framework. This paper focuses on the multi-dimensional verification of hy2Foam and firstly describes the different models implemented. In conjunction with employing the coupled vibration-dissociation-vibration (CVDV chemistry–vibration model, novel use is made of the quantum-kinetic (QK rates in a CFD solver. hy2Foam has been shown to produce results in good agreement with previously published data for a Mach 11 nitrogen flow over a blunted cone and with the dsmcFoam code for a Mach 20 cylinder flow for a binary reacting mixture. This latter case scenario provides a useful basis for other codes to compare against.
Aero-elastic stability of airfoil flow using 2-D CFD
Energy Technology Data Exchange (ETDEWEB)
Johansen, J. [Risoe National Lab., Roskilde (Denmark)
1999-03-01
A three degrees-of-freedom structural dynamics model has been coupled to a two-dimensional incompressible CFD code. The numerical investigation considers aero-elastic stability for two different airfoils; the NACA0012 and the LM 2 18 % airfoils. Stable and unstable configurations and limit cycle oscillations are predicted in accordance with literature for the first airfoil. An attempt to predict stall induced edge-wise vibrations on a wind turbine airfoil fails using this two-dimensional approach. (au)
CFD Analysis of Migration Mechanism of Source Term Under Severe Accident
Institute of Scientific and Technical Information of China (English)
CHEN; Lin-lin; SUN; Xue-ting; JI; Song-tao
2013-01-01
The analysis of the migration of source term under severe accident is one of the important aspects of‘Studies on Migration Mechanism of the Source Term under Severe Accident’,which is a significant task of the National Large Advanced PWR Research Program.This research aims at building up a method for analyzing fission product behavior in the containment with CFD code.The effect of PCCS(Passive
CFD simulation of neutral ABL flows
DEFF Research Database (Denmark)
Zhang, Xiaodong
This work is to evaluate the CFD prediction of Atmospheric Boundary Layer flow field over different terrains employing Fluent 6.3 software. How accurate the simulation could achieve depend on following aspects: viscous model, wall functions, agreement of CFD model with inlet wind velocity profile...... and top boundary condition. Fluent employ wall function roughness modifications based on data from experiments with sand grain roughened pipes and channels, describe wall adjacent zone with Roughness Height (Ks) instead of Roughness Length (z0). In a CFD simulation of ABL flow, the mean wind velocity...... will result in some undesirable gradient along flow direction. There are some methods to improve the simulation model in literatures, some of them are discussed in this report, but none of those remedial methods are perfect to eliminate the streamwise gradients in mean wind speed and turbulence, as EllipSys3D...
Coarse Grid CFD for underresolved simulation
Class, Andreas G.; Viellieber, Mathias O.; Himmel, Steffen R.
2010-11-01
CFD simulation of the complete reactor core of a nuclear power plant requires exceedingly huge computational resources so that this crude power approach has not been pursued yet. The traditional approach is 1D subchannel analysis employing calibrated transport models. Coarse grid CFD is an attractive alternative technique based on strongly under-resolved CFD and the inviscid Euler equations. Obviously, using inviscid equations and coarse grids does not resolve all the physics requiring additional volumetric source terms modelling viscosity and other sub-grid effects. The source terms are implemented via correlations derived from fully resolved representative simulations which can be tabulated or computed on the fly. The technique is demonstrated for a Carnot diffusor and a wire-wrap fuel assembly [1]. [4pt] [1] Himmel, S.R. phd thesis, Stuttgart University, Germany 2009, http://bibliothek.fzk.de/zb/berichte/FZKA7468.pdf
Real gas CFD simulations of hydrogen/oxygen supercritical combustion
Pohl, S.; Jarczyk, M.; Pfitzner, M.; Rogg, B.
2013-03-01
A comprehensive numerical framework has been established to simulate reacting flows under conditions typically encountered in rocket combustion chambers. The model implemented into the commercial CFD Code ANSYS CFX includes appropriate real gas relations based on the volume-corrected Peng-Robinson (PR) equation of state (EOS) for the flow field and a real gas extension of the laminar flamelet combustion model. The results indicate that the real gas relations have a considerably larger impact on the flow field than on the detailed flame structure. Generally, a realistic flame shape could be achieved for the real gas approach compared to experimental data from the Mascotte test rig V03 operated at ONERA when the differential diffusion processes were only considered within the flame zone.
Modal Decomposition of Synthetic Jet Flow Based on CFD Computation
Directory of Open Access Journals (Sweden)
Hyhlík Tomáš
2015-01-01
Full Text Available The article analyzes results of numerical simulation of synthetic jet flow using modal decomposition. The analyzes are based on the numerical simulation of axisymmetric unsteady laminar flow obtained using ANSYS Fluent CFD code. Three typical laminar regimes are compared from the point of view of modal decomposition. The first regime is without synthetic jet creation with Reynolds number Re = 76 and Stokes number S = 19.7. The second studied regime is defined by Re = 145 and S = 19.7. The third regime of synthetic jet work is regime with Re = 329 and S = 19.7. Modal decomposition of obtained flow fields is done using proper orthogonal decomposition (POD where energetically most important modes are identified. The structure of POD modes is discussed together with classical approach based on phase averaged velocities.
CFD Calculations of the Flow Around a Wind Turbine Nacelle
Energy Technology Data Exchange (ETDEWEB)
Varela, J.; Bercebal, D. [Ciemat, Madrid (Spain)
2000-07-01
The purpose of this work is to identify the influence of a MADE AE30 wind turbine nacelle on the site calibration anemometer placed on the upper back of the nacelle by means of flow simulations around the nacelle using FLUENT, a Commercial Computational Fluid Dynamics code (CFD), which provides modeling capabilities for the simulation of wide range laminar and turbulent fluid flow problems. Different 2D and 3D simulations were accomplished in order to estimate the effects of the complex geometry on the flow behavior. The speed up and braking values of the air flow at the anemometer position are presented for different flow conditions. Finally some conclusions about the accuracy of results are mentioned. (Author) 5 refs.
CFD Evaluation of a 3rd Generation LDI Combustor
Ajmani, Kumud; Mongia, Hukam; Lee, Phil
2017-01-01
An effort was undertaken to perform CFD analysis of fluid flow in Lean-Direct Injection (LDI) combustors with axial swirl-venturi elements for next-generation LDI-3 combustor design. The National Combustion Code (NCC) was used to perform non-reacting and two-phase reacting flow computations for a nineteen-element injector array arranged in a three-module, 7-5-7 element configuration. All computations were performed with a consistent approach of mesh-optimization, spray-modeling, ignition and kinetics-modeling with the NCC. Computational predictions of the aerodynamics of the injector were used to arrive at an optimal injector design that meets effective area and fuel-air mixing criteria. LDI-3 emissions (EINOx, EICO and UHC) were compared with the previous generation LDI-2 combustor experimental data at representative engine cycle conditions.
CFD Investigation into Diesel PCCI Combustion with Optimized Fuel Injection
Directory of Open Access Journals (Sweden)
Lipeng Lu
2011-03-01
Full Text Available A multi-pulse injection strategy for premixed charge compression ignition (PCCI combustion was investigated in a four-valve, direct-injection diesel engine by a computational fluid dynamics (CFD simulation using KIVA-3V code coupled with detailed chemistry. The effects of fuel splitting proportion, injection timing, spray angles, and injection velocity were examined. The mixing process and formation of soot and nitrogen oxide (NOx emissions were investigated as the focus of the research. The results show that the fuel splitting proportion and the injection timing impacted the combustion and emissions significantly due to the considerable changes of the mixing process and fuel distribution in the cylinder. While the spray, inclusion angle and injection velocity at the injector exit, can be adjusted to improve mixing, combustion and emissions, appropriate injection timing and fuel splitting proportion must be jointly considered for optimum combustion performance.
Aerodynamics of ski jumping: experiments and CFD simulations
Energy Technology Data Exchange (ETDEWEB)
Meile, W.; Reisenberger, E.; Brenn, G. [Graz University of Technology, Institute of Fluid Mechanics and Heat Transfer, Graz (Austria); Mayer, M. [VRVis GmbH, Vienna (Austria); Schmoelzer, B.; Mueller, W. [Medical University of Graz, Department for Biophysics, Graz (Austria)
2006-12-15
The aerodynamic behaviour of a model ski jumper is investigated experimentally at full-scale Reynolds numbers and computationally applying a standard RANS code. In particular we focus on the influence of different postures on aerodynamic forces in a wide range of angles of attack. The experimental results proved to be in good agreement with full-scale measurements with athletes in much larger wind tunnels, and form a reliable basis for further predictions of the effects of position changes on the performance. The comparison of CFD results with the experiments shows poor agreement, but enables a clear outline of simulation potentials and limits when accurate predictions of effects from small variations are required. (orig.)
Arbitrary Shape Deformation in CFD Design
Landon, Mark; Perry, Ernest
2014-01-01
Sculptor(R) is a commercially available software tool, based on an Arbitrary Shape Design (ASD), which allows the user to perform shape optimization for computational fluid dynamics (CFD) design. The developed software tool provides important advances in the state-of-the-art of automatic CFD shape deformations and optimization software. CFD is an analysis tool that is used by engineering designers to help gain a greater understanding of the fluid flow phenomena involved in the components being designed. The next step in the engineering design process is to then modify, the design to improve the components' performance. This step has traditionally been performed manually via trial and error. Two major problems that have, in the past, hindered the development of an automated CFD shape optimization are (1) inadequate shape parameterization algorithms, and (2) inadequate algorithms for CFD grid modification. The ASD that has been developed as part of the Sculptor(R) software tool is a major advancement in solving these two issues. First, the ASD allows the CFD designer to freely create his own shape parameters, thereby eliminating the restriction of only being able to use the CAD model parameters. Then, the software performs a smooth volumetric deformation, which eliminates the extremely costly process of having to remesh the grid for every shape change (which is how this process had previously been achieved). Sculptor(R) can be used to optimize shapes for aerodynamic and structural design of spacecraft, aircraft, watercraft, ducts, and other objects that affect and are affected by flows of fluids and heat. Sculptor(R) makes it possible to perform, in real time, a design change that would manually take hours or days if remeshing were needed.
Experimental methodology for computational fluid dynamics code validation
Energy Technology Data Exchange (ETDEWEB)
Aeschliman, D.P.; Oberkampf, W.L.
1997-09-01
Validation of Computational Fluid Dynamics (CFD) codes is an essential element of the code development process. Typically, CFD code validation is accomplished through comparison of computed results to previously published experimental data that were obtained for some other purpose, unrelated to code validation. As a result, it is a near certainty that not all of the information required by the code, particularly the boundary conditions, will be available. The common approach is therefore unsatisfactory, and a different method is required. This paper describes a methodology developed specifically for experimental validation of CFD codes. The methodology requires teamwork and cooperation between code developers and experimentalists throughout the validation process, and takes advantage of certain synergisms between CFD and experiment. The methodology employs a novel uncertainty analysis technique which helps to define the experimental plan for code validation wind tunnel experiments, and to distinguish between and quantify various types of experimental error. The methodology is demonstrated with an example of surface pressure measurements over a model of varying geometrical complexity in laminar, hypersonic, near perfect gas, 3-dimensional flow.
An Initial Non-Equilibrium Porous-Media Model for CFD Simulation of Stirling Regenerators
Tew, Roy C.; Simon, Terry; Gedeon, David; Ibrahim, Mounir; Rong, Wei
2006-01-01
The objective of this paper is to define empirical parameters for an initial thermal non-equilibrium porous-media model for use in Computational Fluid Dynamics (CFD) codes for simulation of Stirling regenerators. The two codes currently used at Glenn Research Center for Stirling modeling are Fluent and CFD-ACE. The codes porous-media models are equilibrium models, which assume solid matrix and fluid are in thermal equilibrium. This is believed to be a poor assumption for Stirling regenerators; Stirling 1-D regenerator models, used in Stirling design, use non-equilibrium regenerator models and suggest regenerator matrix and gas average temperatures can differ by several degrees at a given axial location and time during the cycle. Experimentally based information was used to define: hydrodynamic dispersion, permeability, inertial coefficient, fluid effective thermal conductivity, and fluid-solid heat transfer coefficient. Solid effective thermal conductivity was also estimated. Determination of model parameters was based on planned use in a CFD model of Infinia's Stirling Technology Demonstration Converter (TDC), which uses a random-fiber regenerator matrix. Emphasis is on use of available data to define empirical parameters needed in a thermal non-equilibrium porous media model for Stirling regenerator simulation. Such a model has not yet been implemented by the authors or their associates.
Energy Technology Data Exchange (ETDEWEB)
Barrera, J.; Corpa, R.
2013-07-01
The scope of this work consists in the study of different pairs of lower headers with a dynamical code detail like the STAR-CCM + v8, to identify and study the consequences of changes in the distribution of flow and variation in the pressure drop of fluid passing through them, as well as check the absence of impact from the point of view of safety.
CFD Computations on Multi-GPU Configurations.
Menon, Sandeep; Perot, Blair
2007-11-01
Programmable graphics processors have shown favorable potential for use in practical CFD simulations -- often delivering a speed-up factor between 3 to 5 times over conventional CPUs. In recent times, most PCs are supplied with the option of installing multiple GPUs on a single motherboard, thereby providing the option of a parallel GPU configuration in a shared-memory paradigm. We demonstrate our implementation of an unstructured CFD solver using a set up which is configured to run two GPUs in parallel, and discuss its performance details.
Tip studies using CFD and comparison with tip loss models
DEFF Research Database (Denmark)
Hansen, Martin Otto Laver; Johansen, J.
2004-01-01
The flow past a rotating LM8.2 blade equipped with two different tips are computed using CFD. The different tip flows are analysed and a comparison with two different tip loss models is made. Keywords: tip flow, aerodynamics, CFD......The flow past a rotating LM8.2 blade equipped with two different tips are computed using CFD. The different tip flows are analysed and a comparison with two different tip loss models is made. Keywords: tip flow, aerodynamics, CFD...
Multi-Phase CFD Modeling of Solid Sorbent Carbon Capture System
Energy Technology Data Exchange (ETDEWEB)
Ryan, Emily M.; DeCroix, David; Breault, Ronald W.; Xu, Wei; Huckaby, E. D.; Saha, Kringan; Darteville, Sebastien; Sun, Xin
2013-07-30
Computational fluid dynamics (CFD) simulations are used to investigate a low temperature post-combustion carbon capture reactor. The CFD models are based on a small scale solid sorbent carbon capture reactor design from ADA-ES and Southern Company. The reactor is a fluidized bed design based on a silica-supported amine sorbent. CFD models using both Eulerian-Eulerian and Eulerian-Lagrangian multi-phase modeling methods are developed to investigate the hydrodynamics and adsorption of carbon dioxide in the reactor. Models developed in both FLUENT® and BARRACUDA are presented to explore the strengths and weaknesses of state of the art CFD codes for modeling multi-phase carbon capture reactors. The results of the simulations show that the FLUENT® Eulerian-Lagrangian simulations (DDPM) are unstable for the given reactor design; while the BARRACUDA Eulerian-Lagrangian model is able to simulate the system given appropriate simplifying assumptions. FLUENT® Eulerian-Eulerian simulations also provide a stable solution for the carbon capture reactor given the appropriate simplifying assumptions.
Multi-phase CFD modeling of solid sorbent carbon capture system
Energy Technology Data Exchange (ETDEWEB)
Ryan, E. M.; DeCroix, D.; Breault, Ronald W. [U.S. DOE; Xu, W.; Huckaby, E. David [U.S. DOE
2013-01-01
Computational fluid dynamics (CFD) simulations are used to investigate a low temperature post-combustion carbon capture reactor. The CFD models are based on a small scale solid sorbent carbon capture reactor design from ADA-ES and Southern Company. The reactor is a fluidized bed design based on a silica-supported amine sorbent. CFD models using both Eulerian–Eulerian and Eulerian–Lagrangian multi-phase modeling methods are developed to investigate the hydrodynamics and adsorption of carbon dioxide in the reactor. Models developed in both FLUENT® and BARRACUDA are presented to explore the strengths and weaknesses of state of the art CFD codes for modeling multi-phase carbon capture reactors. The results of the simulations show that the FLUENT® Eulerian–Lagrangian simulations (DDPM) are unstable for the given reactor design; while the BARRACUDA Eulerian–Lagrangian model is able to simulate the system given appropriate simplifying assumptions. FLUENT® Eulerian–Eulerian simulations also provide a stable solution for the carbon capture reactor given the appropriate simplifying assumptions.
Directory of Open Access Journals (Sweden)
Jorge Pérez Mañes
2014-01-01
Full Text Available The Institute for Neutron Physics and Reactor Technology (INR at the Karlsruhe Institute of Technology (KIT is investigating the application of the meso- and microscale analysis for the prediction of local safety parameters for light water reactors (LWR. By applying codes like CFD (computational fluid dynamics and SP3 (simplified transport reactor dynamics it is possible to describe the underlying phenomena in a more accurate manner than by the nodal/coarse 1D thermal hydraulic coupled codes. By coupling the transport (SP3 based neutron kinetics (NK code DYN3D with NEPTUNE-CFD, within a parallel MPI-environment, the NHESDYN platform is created. The newly developed system will allow high fidelity simulations of LWR fuel assemblies and cores. In NHESDYN, a heat conduction solver, SYRTHES, is coupled to NEPTUNE-CFD. The driver module of NHESDYN controls the sequence of execution of the solvers as well as the communication between the solvers based on MPI. In this paper, the main features of NHESDYN are discussed and the proof of the concept is done by solving a single pin problem. The prediction capability of NHESDYN is demonstrated by a code-to-code comparison with the DYNSUB code. Finally, the future developments and validation efforts are highlighted.
Improved interpretation and validation of CFD predictions
DEFF Research Database (Denmark)
Popiolek, Z.; Melikov, Arsen Krikor
2004-01-01
The mean velocity in rooms predicted by CFD simulations based on RANS equations differs from the mean (in time) magnitude of the velocity, i.e. the mean speed, in rooms measured by low velocity thermal anemometers with omnidirectional sensor. This discrepancy results in incorrect thermal comfort ...
Numerical CFD Comparison of Lillgrund Employing RANS
DEFF Research Database (Denmark)
Simisiroglou, N.; Breton, S.-P.; Crasto, G.
2014-01-01
The following article will validate the results obtained using the actuator disc method in the state of the art numerical Computational Fluid Dynamic (CFD) tool WindSim using on-site measurements from the offshore wind farm Lillgrund. WindSim solves the mass, momentum and energy conservation...
CFD Simulation of Annular Centrifugal Extractors
Directory of Open Access Journals (Sweden)
S. Vedantam
2012-01-01
Full Text Available Annular centrifugal extractors (ACE, also called annular centrifugal contactors offer several advantages over the other conventional process equipment such as low hold-up, high process throughput, low residence time, low solvent inventory and high turn down ratio. The equipment provides a very high value of mass transfer coefficient and interfacial area in the annular zone because of the high level of power consumption per unit volume and separation inside the rotor due to the high g of centrifugal field. For the development of rational and reliable design procedures, it is important to understand the flow patterns in the mixer and settler zones. Computational Fluid Dynamics (CFD has played a major role in the constant evolution and improvements of this device. During the past thirty years, a large number of investigators have undertaken CFD simulations. All these publications have been carefully and critically analyzed and a coherent picture of the present status has been presented in this review paper. Initially, review of the single phase studies in the annular region has been presented, followed by the separator region. In continuation, the two-phase CFD simulations involving liquid-liquid and gas-liquid flow in the annular as well as separator regions have been reviewed. Suggestions have been made for the future work for bridging the existing knowledge gaps. In particular, emphasis has been given to the application of CFD simulations for the design of this equipment.
Institute of Scientific and Technical Information of China (English)
无
2000-01-01
An optimization method to design turbine airfoils using a Genetic Algorithm (GA) design shell coupled directly with a viscous CFD (Computational Fluid Dynamics) analysis code is proposed in this paper. The blade geometry is parameterized and the optimization method is used to search for a blade geometry that will minimize the loss in the turbine cascade passage. The viscous flow prediction code is verified by the experimental data of cascade, which is typical for a gas turbine rotor blade section. A comparative study of the blades designed by the optimization technique and the original one is presented
Recent Efforts for Credible CFD Simulations in China
Directory of Open Access Journals (Sweden)
Li Li
2011-01-01
Full Text Available In this paper some recent efforts for credible computational fluid dynamics (CFD simulations in China are reviewed. The most important effort is that, following similar activities in the West such as ECARP and AIAA Drag Prediction Workshops, a series of workshops on credible CFD simulations had been initiated. These workshops were with ambitions to assess the status of CFD in China. Another major effort is an ongoing project to establish a software platform for studying the credibility of CFD solvers and performing credible CFD simulations. The platform, named WiseCFD, was designed to implement a seamless CFD process and to circumvent tedious repeating manual operations. It had also been a powerful job manager for CFD with capabilities to support plug and play (PnP solver integration as well as distributed or parallel computations. Some future work on WiseCFD was proposed, and also envisioned was how WiseCFD and the European QNET-CFD Knowledge Base can benefit mutually.
CFD study on the effects of viscous shear in a hot cascade Ranque-Hilsch vortex tube
Bej, Nilotpala; Sinhamahapatra, K. P.
2015-12-01
The objective of this paper is to carry out an extensive Computational Fluid Dynamics (CFD) study on work transfer due to viscous shear in a hot cascade Ranque-Hilsch vortex tube. The commercial CFD code ANSYS FLUENT 14.0 has been employed to carry out the numerical analysis using RANS standard k-epsilon turbulence model. A two-dimensional axisymmetric geometrical domain has been generated with structured mesh and air has been taken as the working fluid. The CFD results reveal that work transfer due to the action of viscous shear along the tangential direction increases considerably with hot cascading. However, the work transfer due to viscous shear along the axial direction degrades the performance of the device as the heat transfer takes place from cold zone to the hot zone. The effect of radial shear stress is negligible due to low value of radial velocity gradient.
Energy Technology Data Exchange (ETDEWEB)
Bellivier, A.
2004-05-15
For 3D modelling of thermo-aeraulics in building using field codes, it is necessary to reduce the computing time in order to model increasingly larger volumes. The solution suggested in this study is to couple two modelling: a zonal approach and a CFD approach. The first part of the work that was carried out is the setting of a simplified CFD modelling. We propose rules for use of coarse grids, a constant effective viscosity law and adapted coefficients for heat exchange in the framework of building thermo-aeraulics. The second part of this work concerns the creation of fluid Macro-Elements and their coupling with a calculation of CFD finite volume type. Depending on the boundary conditions of the problem, a local description of the driving flow is proposed via the installation and use of semi-empirical evolution laws. The Macro-Elements is then inserted in CFD computation: the values of velocity calculated by the evolution laws are imposed on the CFD cells corresponding to the Macro-Element. We use these two approaches on five cases representative of thermo-aeraulics in buildings. The results are compared with experimental data and with traditional RANS simulations. We highlight the significant gain of time that our approach allows while preserving a good quality of numerical results. (author)
Standard Problems for CFD Validation for NGNP - Status Report
Energy Technology Data Exchange (ETDEWEB)
Richard W. Johnson; Richard R. Schultz
2010-08-01
The U.S. Department of Energy (DOE) is conducting research and development to support the resurgence of nuclear power in the United States for both electrical power generation and production of process heat required for industrial processes such as the manufacture of hydrogen for use as a fuel in automobiles. The project is called the Next Generation Nuclear Plant (NGNP) Project, which is based on a Generation IV reactor concept called the very high temperature reactor (VHTR). The VHTR will be of the prismatic or pebble bed type; the former is considered herein. The VHTR will use helium as the coolant at temperatures ranging from 250°C to perhaps 1000°C. While computational fluid dynamics (CFD) has not previously been used for the safety analysis of nuclear reactors in the United States, it is being considered for existing and future reactors. It is fully recognized that CFD simulation codes will have to be validated for flow physics reasonably close to actual fluid dynamic conditions expected in normal operational and accident situations. The “Standard Problem” is an experimental data set that represents an important physical phenomenon or phenomena, whose selection is based on a phenomena identification and ranking table (PIRT) for the reactor in question. It will be necessary to build a database that contains a number of standard problems for use to validate CFD and systems analysis codes for the many physical problems that will need to be analyzed. The first two standard problems that have been developed for CFD validation consider flow in the lower plenum of the VHTR and bypass flow in the prismatic core. Both involve scaled models built from quartz and designed to be installed in the INL’s matched index of refraction (MIR) test facility. The MIR facility employs mineral oil as the working fluid at a constant temperature. At this temperature, the index of refraction of the mineral oil is the same as that of the quartz. This provides an advantage to the
Model test and CFD calculation of a cavitating bulb turbine
Energy Technology Data Exchange (ETDEWEB)
Necker, J; Aschenbrenner, T, E-mail: joerg.necker@voith.co [Voith Hydro Holding GmbH and Co. KG Alexanderstrasse 11, 89522 Heidenheim (Germany)
2010-08-15
The flow in a horizontal shaft bulb turbine is calculated as a two-phase flow with a commercial Computational Fluid Dynamics (CFD-)-code including cavitation model. The results are compared with experimental results achieved at a closed loop test rig for model turbines. On the model test rig, for a certain operating point (i.e. volume flow, net head, blade angle, guide vane opening) the pressure behind the turbine is lowered (i.e. the Thoma-coefficient {sigma} is lowered) and the efficiency of the turbine is recorded. The measured values can be depicted in a so-called {sigma}-break curve or {eta}- {sigma}-diagram. Usually, the efficiency is independent of the Thoma-coefficient up to a certain value. When lowering the Thoma-coefficient below this value the efficiency will drop rapidly. Visual observations of the different cavitation conditions complete the experiment. In analogy, several calculations are done for different Thoma-coefficients {sigma}and the corresponding hydraulic losses of the runner are evaluated quantitatively. For a low {sigma}-value showing in the experiment significant efficiency loss, the the change of volume flow in the experiment was simulated. Besides, the fraction of water vapour as an indication of the size of the cavitation cavity is analyzed qualitatively. The experimentally and the numerically obtained results are compared and show a good agreement. Especially the drop in efficiency can be calculated with satisfying accuracy. This drop in efficiency is of high practical importance since it is one criterion to determine the admissible cavitation in a bulb-turbine. The visual impression of the cavitation in the CFD-analysis is well in accordance with the observed cavitation bubbles recorded on sketches and/or photographs.
Possible User-Dependent CFD Predictions of Transitional Flow in Building Ventilation
DEFF Research Database (Denmark)
Peng, Lei; Nielsen, Peter Vilhelm; Wang, Xiaoxue;
2016-01-01
among different teams. It indicates that the combined effects of a lack of general turbulence model, and possible errors in multiple decisions based on users’ experience may have caused the observed significant difference. Prediction of transitional flows, as often observed in building ventilation......A modified backward-facing step flow with a large expansion ratio of five (5) was modelled by 19 teams without benchmark solutions or experimental data for validation in an ISHVAC-COBEE July 2015 Tianjin Workshop, entitled as “to predict low turbulent flow”. Different computational fluid dynamics...... (CFD) codes/software, turbulence models, boundary conditions, numerical schemes and convergent criteria were adopted based on the own CFD experience of each participating team. The largest coefficient of variation is larger than 50% and the largest relative maximum difference of penetration length...
CFD Simulations of Selected Steady-State and Transient Experiments in the PLANDTL Test Facility
Gurgacz, S.; Bieder, U.; Gorsse, Y.; Swirski, K.
2016-09-01
In Sodium Cooled Fast Neutron Reactors natural convection flow and thermal stratification in the upper plenum may occur under emergency shutdown conditions. Thermal stratification phenomena have been examined experimentally in the PLANDTL facility of the Japan Atomic Energy Agency. This paper presents the results of numerical simulations of selected steady-state and transient experiments in the PLANDTL facility, using TrioCFD/MC2 code developed at CEA. CFD approach for the flow in large volumes and a sub-channel approach for the flow in the core region are used. Calculated results have been validated against experimental values. Validation of the upper plenum modelling has been also made based on CEA Sodium mixed convection experiments.
Development of Unsteady Aerodynamic State-Space Models from CFD-Based Pulse Responses
Silva, Walter A.; Raveh, Daniella E.
2001-01-01
A method for computing discrete-time state-space models of linearized unsteady aerodynamic behavior directly from aeroelastic CFD codes is presented. The method involves the treatment of CFD-based pulse responses as Markov parameters for use in a system identification /realization algorithm. Results are presented for the AGARD 445.6 Aeroelastic Wing with four aeroelastic modes at a Mach number of 0.96 using the EZNSS Euler/Navier-Stokes flow solver with aeroelastic capability. The System/Observer/Controller Identification Toolbox (SOCIT) algorithm, based on the Ho-Kalman realization algorithm, is used to generate 15th- and 32nd-order discrete-time state-space models of the unsteady aerodynamic response of the wing over the entire frequency range of interest.
CFD simulation of a 2 bladed multi megawatt wind turbine with flexible rotor connection
Klein, L.; Luhmann, B.; Rösch, K.-N.; Lutz, T.; Cheng, P.-W.; Krämer, E.
2016-09-01
An innovative passive load reduction concept for a two bladed 3.4 MW wind turbine is investigated by a conjoint CFD and MBS - BEM methodology. The concept consists of a flexible hub mount which allows a tumbling motion of the rotor. First, the system is simulated with a MBS tool coupled to a BEM code. Then, the resulting motion of the rotor is extracted from the simulation and applied on the CFD simulation as prescribed motion. The aerodynamic results show a significant load reduction on the support structure. Hub pitching and yawing moment amplitudes are reduced by more than 50% in a vertically sheared inflow. Furthermore, the suitability of the MBS - BEM approach for the simulation of the load reduction system is shown.
An Application of Overset Grids to Payload/Fairing Three-Dimensional Internal Flow CFD Analysis
Kandula, Max; Nallasamy, R.; Schallhorn, P.; Duncil, L.
2007-01-01
The application of overset grids to the computational fluid dynamics analysis of three-dimensional internal flow in the payload/fairing of an expendable launch vehicle is described. In conjunction with the overset grid system, the flowfield in the payload/fairing configuration is obtained with the aid of OVERFLOW Navier-Stokes code. The solution exhibits a highly three dimensional complex flowfield with swirl, separation, and vortices. Some of the computed flow features are compared with the measured Laser-Doppler Velocimetry (LDV) data on a 1/5th scale model of the payload/fairing configuration. The counter-rotating vortex structures and the location of the saddle point predicted by the CFD analysis are in general agreement with the LDV data. Comparisons of the computed (CFD) velocity profiles on horizontal and vertical lines in the LDV measurement plane in the faring nose region show reasonable agreement with the LDV data.
A parametric design of compact exhaust manifold junction in heavy duty diesel engine using CFD
Directory of Open Access Journals (Sweden)
Naeimi Hessamedin
2011-01-01
Full Text Available Nowadays, computational fluid dynamics codes (CFD are prevalently used to simulate the gas dynamics in many fluid piping systems such as steam and gas turbines, inlet and exhaust in internal combustion engines. In this paper, a CFD software is used to obtain the total energy losses in adiabatic compressible flow at compact exhaust manifold junction. A steady state onedimensional adiabatic compressible flow with friction model has been applied to subtract the straight pipe friction losses from the total energy losses. The total pressure loss coefficient has been related to the extrapolated Mach number in the common branch and to the mass flow rate ratio between branches at different flow configurations, in both combining and dividing flows. The study indicate that the numerical results were generally in good agreement with those of experimental data from the literature and will be applied as a boundary condition in one-dimensional global simulation models of fluid systems in which these components are present.
A CFD benchmarking exercise based on flow mixing in a T-junction
Energy Technology Data Exchange (ETDEWEB)
Smith, B.L., E-mail: brian.smith@psi.ch [Thermal Hydraulics Laboratory, Nuclear Energy and Safety Department, Paul Scherrer Institut, CH-5232 Villigen PSI (Switzerland); Mahaffy, J.H. [Wheelsmith Farm, Spring Mill, PA (United States); Angele, K. [Vattenfall R and D, Älvkarleby (Sweden)
2013-11-15
The paper describes an international benchmarking exercise, sponsored by the OECD Nuclear Energy Agency (NEA), aimed at testing the ability of state-of-the-art computational fluid dynamics (CFD) codes to predict the important fluid flow parameters affecting high-cycle thermal fatigue induced by turbulent mixing in T-junctions. The results from numerical simulations are compared to measured data from an experiment performed at 1:2 scale by Vattenfall Research and Development, Älvkarleby, Sweden. The test data were released only at the end of the exercise making this a truly blind CFD-validation benchmark. Details of the organizational procedures, the experimental set-up and instrumentation, the different modeling approaches adopted, synthesis of results, and overall conclusions and perspectives are presented.
Luckring, James M.; Rizzi, Arthur; Davis, M. Bruce
2014-01-01
A coordinated project has been underway to improve CFD predictions of slender airframe aerodynamics. The work is focused on two flow conditions and leverages a unique flight data set obtained with an F-16XL aircraft. These conditions, a low-speed high angleof- attack case and a transonic low angle-of-attack case, were selected from a prior prediction campaign wherein the CFD failed to provide acceptable results. In this paper the background, objectives and approach to the current project are presented. The work embodies predictions from multiple numerical formulations that are contributed from multiple organizations, and the context of this campaign to other multi-code, multiorganizational efforts is included. The relevance of this body of work toward future supersonic commercial transport concepts is also briefly addressed.
Marsell, Brandon; Griffin, David; Schallhorn, Dr. Paul; Roth, Jacob
2012-01-01
Coupling computational fluid dynamics (CFD) with a controls analysis tool elegantly allows for high accuracy predictions of the interaction between sloshing liquid propellants and th e control system of a launch vehicle. Instead of relying on mechanical analogs which are not valid during aU stages of flight, this method allows for a direct link between the vehicle dynamic environments calculated by the solver in the controls analysis tool to the fluid flow equations solved by the CFD code. This paper describes such a coupling methodology, presents the results of a series of test cases, and compares said results against equivalent results from extensively validated tools. The coupling methodology, described herein, has proven to be highly accurate in a variety of different cases.
Integrated CFD and Controls Analysis Interface for High Accuracy Liquid Propellant Slosh Predictions
Marsell, Brandon; Griffin, David; Schallhorn, Paul; Roth, Jacob
2012-01-01
Coupling computational fluid dynamics (CFD) with a controls analysis tool elegantly allows for high accuracy predictions of the interaction between sloshing liquid propellants and the control system of a launch vehicle. Instead of relying on mechanical analogs which are n0t va lid during all stages of flight, this method allows for a direct link between the vehicle dynamic environments calculated by the solver in the controls analysis tool to the fluid now equations solved by the CFD code. This paper describes such a coupling methodology, presents the results of a series of test cases, and compares said results against equivalent results from extensively validated tools. The coupling methodology, described herein, has proven to be highly accurate in a variety of different cases.
CFD Analysis of a Dry Storage System for MACSTOR/KN-400
Energy Technology Data Exchange (ETDEWEB)
Park, Yu sun; Shin, Byung soo; Chang, Soon heung [Korea Advanced Institute of Science and Technology, Daejeon (Korea, Republic of)
2007-10-15
There are four nuclear power plants in operation at Wolsong and, annually, more than 5,000 assemblies of spent nuclear fuels are released from each plant. Thus the concrete silo type dry storage system was constructed from '90. However, after 2006, another dry storage facility is required to accept the all amount of spent nuclear fuels from the plants. Instead of the concrete silo type, MACSTOR/KN-400 was developed to store the CANDU spent nuclear fuel more densely. In this study, computational fluid dynamics (CFD) analysis of the MACSTOR/KN-400 model was performed to confirm the thermal integrity of the facility, especially for the concrete structure, using the commercial CFD code, FLUENT. The MACSTOR/KN-400 which has Thermal Insulation Panel (TIP) and IAEA Re-verification Pipe (RVP) was modeled and analyzed in the view point of the thermal integrity of the concrete structure.
Using CFD as a Rocket Injector Design Tool: Recent Progress at Marshall Space Flight Center
Tucker, Kevin; West, Jeff; Williams, Robert; Lin, Jeff; Canabal, Francisco; Rocker, marvin; Robles, Bryan; Garcia, Robert; Chenoweth, James
2005-01-01
New programs are forcing American propulsion system designers into unfamiliar territory. For instance, industry s answer to the cost and reliability goals set out by the Next Generation Launch Technology Program are engine concepts based on the Oxygen- Rich Staged Combustion Cycle. Historical injector design tools are not well suited for this new task. The empirical correlations do not apply directly to the injector concepts associated with the ORSC cycle. These legacy tools focus primarily on performance with environment evaluation a secondary objective. Additionally, the environmental capability of these tools is usually one-dimensional while the actual environments are at least two- and often three-dimensional. CFD has the potential to calculate performance and multi-dimensional environments but its use in the injector design process has been retarded by long solution turnaround times and insufficient demonstrated accuracy. This paper has documented the parallel paths of program support and technology development currently employed at Marshall Space Flight Center in an effort to move CFD to the forefront of injector design. MSFC has established a long-term goal for use of CFD for combustion devices design. The work on injector design is the heart of that vision and the Combustion Devices CFD Simulation Capability Roadmap that focuses the vision. The SRL concept, combining solution fidelity, robustness and accuracy, has been established as a quantitative gauge of current and desired capability. Three examples of current injector analysis for program support have been presented and discussed. These examples are used to establish the current capability at MSFC for these problems. Shortcomings identified from this experience are being used as inputs to the Roadmap process. The SRL evaluation identified lack of demonstrated solution accuracy as a major issue. Accordingly, the MSFC view of code validation and current MSFC-funded validation efforts were discussed in
Comparative CFD simulations of a hydrogen fire scenario
Nobili, M.; Caruso, G.
2017-01-01
Hydrogen leakage and fire ignition and propagation are safety concerns in several industrial plants. In a nuclear fusion power plants the separation of hydrogen and tritium takes place in different steps, among which one or more electrolyzers are foreseen. A fire scenario could take place in case of leakage of hydrogen. In such cases, it is important to prevent the spreading of the fire to adjacent rooms and, at the same time, to withstand the pressure load on walls, to avoid radioactivity release in the surrounding environment. A preliminary study has been carried out with the aim of comparing CFD tools for fire scenario simulations involving hydrogen release. Results have been obtained comparing two codes: ANSYS Fluent© and FDS. The two codes have been compared both for hydrogen dispersion and hydrogen fire in a confined environment. The first scenario is aimed to obtaining of volume fraction 3D maps for the evaluation of the different diffusion/transport models. In the second scenario, characterized by a double-ended guillotine break, the fire is supposed to be ignited at the same time of the impact. Simulations have been carried out for the first 60 seconds. Hydrogen concentration, temperature and pressure fields are compared and discussed.
Application of computational fluid dynamics (CFD) to nuclear applications.
Energy Technology Data Exchange (ETDEWEB)
Brewster, R. A.; Jonnavithula, S.; Rizwan-Uddin; Rock, D. T.; Weber, D. P.; Wei, T. Y. C.
1999-02-08
Detailed analysis of a quarter channel was performed using VIPRE and CFX. Results show that VIPRE and CFX agree closely in both cross-sectionally averaged axial temperature and cross-sectionally averaged axial velocity profiles. Detailed temperature distributions in the radial direction over 1mm from the clad surface towards the center of the channel were calculated using CFX, showing significant local variation. This information can be used for example, to determine if this temperature will lead to bubble nucleation. Quarter subassembly calculations were made with both VIPRE and STAR-CD. Comparison between the solutions show that the two codes yield very similar solutions under comparable conditions. However, the STAR-CD CFD calculation provides the analyst with much more detailed flow and temperature distributions than can be predicted by a one-dimensional code such as VIPRE. In addition, a 60 million cell one-eighth reactor core calculation was made using STAR-CD. This analysis showed the importance of accurately predicting the flow and temperature fields in all assemblies simultaneously with modern parallel processing technology, practical turnaround for these types of calculation can be obtained.
CFD Simulation on Ethylene Furnace Reactor Tubes
Institute of Scientific and Technical Information of China (English)
无
2006-01-01
Different mathematical models for ethylene furnace reactor tubes were reviewed. On the basis of these models a new mathematical simulation approach for reactor tubes based on computational fluid dynamics (CFD) technique was presented. This approach took the flow, heat transfer, mass transfer and thermal cracking reactions in the reactor tubes into consideration. The coupled reactor model was solved with the SIMPLE algorithm. Some detailed information about the flow field, temperature field and concentration distribution in the reactor tubes was obtained, revealing the basic characteristics of the hydrodynamic phenomena and reaction behavior in the reactor tubes. The CFD approach provides the necessary information for conclusive decisions regarding the production optimization, the design and improvement of reactor tubes, and the new techniques implementation.
CFD simulations of the MEXICO rotor
DEFF Research Database (Denmark)
Bechmann, Andreas; Sørensen, Niels N.; Zahle, Frederik
2011-01-01
The wake behind a wind turbine model is investigated using Computational Fluid Dynamics (CFD), and results are compared with measurements. The turbine investigated is the three‐bladed test rotor (D = 4.5 m) used in the Model Experiments in Controlled Conditions (MEXICO) wind tunnel experiment....... During the MEXICO experiment, particle image velocimetry measurements of the induction upstream and downstream of the rotor were performed for different operating conditions, giving a unique dataset to verify theoretical models and CFD models. The present paper first describes the efforts in reproducing...... the experimental results using the Reynold‐Averaged Navier‐Stokes method. Second, three‐dimensional airfoil characteristics are extracted that allow simulations with simpler wake models. Copyright © 2011 John Wiley & Sons, Ltd....
Prediction of Wing Downwash Using CFD
Directory of Open Access Journals (Sweden)
Mohammed MAHDI
2015-06-01
Full Text Available Wing downwash study and estimation of downwash effect on the tail plane is an important task during the aircraft design process, although a lot of papers and works has been done, but the experimental work is the most important, the progress in CFD simulation has reached to the point it is able to reduce the number of runs in the wind tunnel. In this work CFD has been utilized to calculate the downwash angle and downwash gradient with respect to the angle of attack over a high aspect ratio of a typical UAV. The results of the simulation shall be used in the estimation and calculation of the longitudinal static stability analysis of the UAV.
Verification, validation and application of NEPTUNE-CFD to two-phase Pressurized Thermal Shocks
Energy Technology Data Exchange (ETDEWEB)
Mérigoux, N., E-mail: nicolas.merigoux@edf.fr [Electricité de France, R& D Division, 6 Quai Watier, 78401 Chatou (France); Laviéville, J.; Mimouni, S.; Guingo, M.; Baudry, C. [Electricité de France, R& D Division, 6 Quai Watier, 78401 Chatou (France); Bellet, S., E-mail: serge.bellet@edf.fr [Electricité de France, Thermal & Nuclear Studies and Projects Division, 12-14 Avenue Dutriévoz, 69628 Villeurbanne (France)
2017-02-15
Nuclear Power Plants are subjected to a variety of ageing mechanisms and, at the same time, exposed to potential Pressurized Thermal Shock (PTS) – characterized by a rapid cooling of the Reactor Pressure Vessel (RPV) wall. In this context, NEPTUNE-CFD is developed and used to model two-phase PTS in an industrial configuration, providing temperature and pressure fields required to assess the integrity of the RPV. Furthermore, when using CFD for nuclear safety demonstration purposes, EDF applies a methodology based on physical analysis, verification, validation and application to industrial scale (V&V), to demonstrate the quality of, and the confidence in results obtained. By following this methodology, each step must be proved to be consistent with the others, and with the final goal of the calculations. To this effect, a chart demonstrating how far the validation step of NEPTUNE-CFD is covering the PTS application will be drawn. A selection of the code verification and validation cases against different experiments will be described. For results consistency, a single and mature set of models – resulting from the knowledge acquired during the code development over the last decade – has been used. From these development and validation feedbacks, a methodology has been set up to perform industrial computations. Finally, the guidelines of this methodology based on NEPTUNE-CFD and SYRTHES coupling – to take into account the conjugate heat transfer between liquid and solid – will be presented. A short overview of the engineering approach will be given – starting from the meshing process, up to the results post-treatment and analysis.
Aircraft Design Analysis, CFD And Manufacturing
Directory of Open Access Journals (Sweden)
Haifa El-Sadi
2016-09-01
Full Text Available Aircraft design, manufacturing and CFD analysis as part of aerodynamic course, the students achieve sizing from a conceptual sketch, select the airfoil geometry and the tail geometry, calculate thrust to weight ratio and wing loading, use initial sizing and calculate the aerodynamic forces. The students design their aircraft based on the geometrical dimensions resulted from the calculations and use the model to build a prototype, test it in wind tunnel and achieve CFD analysis to be compared with the experimental results. The theory of aerodynamic is taught and applied as a project based. In this paper, the design process, aircraft manufacturing and CFD analysis are presented to show the effect of project based on student’s learning of aerodynamic course. This project based learning has improved and accelerated students understanding of aerodynamic concepts and involved students in a constructive exploration. The analysis of the aircraft resulted in a study that revolved around the lift and drag generation of this particular aircraft. As to determine the lift and drag forces generated by this plane, a model was created in Solidworks a 3-D model-rendering program. After this model was created it was 3-D printed in a reduced scale, and subjected to wind tunnel testing. The results from the wind tunnel lab experiment were recorded. For accuracy, the same 3-D model was then simulated using CFD simulation software within Solidworks and compared with the results from the wind tunnel test. The values derived from both the simulation and the wind tunnel tests were then compared with the theoretical calculations for further proof of accuracy.
CFD for wastewater treatment: an overview.
Samstag, R W; Ducoste, J J; Griborio, A; Nopens, I; Batstone, D J; Wicks, J D; Saunders, S; Wicklein, E A; Kenny, G; Laurent, J
Computational fluid dynamics (CFD) is a rapidly emerging field in wastewater treatment (WWT), with application to almost all unit processes. This paper provides an overview of CFD applied to a wide range of unit processes in water and WWT from hydraulic elements like flow splitting to physical, chemical and biological processes like suspended growth nutrient removal and anaerobic digestion. The paper's focus is on articulating the state of practice and research and development needs. The level of CFD's capability varies between different process units, with a high frequency of application in the areas of final sedimentation, activated sludge basin modelling and disinfection, and greater needs in primary sedimentation and anaerobic digestion. While approaches are comprehensive, generally capable of incorporating non-Newtonian fluids, multiphase systems and biokinetics, they are not broad, and further work should be done to address the diversity of process designs. Many units have not been addressed to date. Further needs are identified throughout, but common requirements include improved particle aggregation and breakup (flocculation), and improved coupling of biology and hydraulics.
Energy Technology Data Exchange (ETDEWEB)
Kim, In Hun [Department of Nuclear and Quantum Engineering, Korea Advanced Institute of Science and Technology, 373-1, Guseong-dong, Yuseong-gu, Daejeon 305-701 (Korea, Republic of); No, Hee Cheon [Department of Nuclear and Quantum Engineering, Korea Advanced Institute of Science and Technology, 373-1, Guseong-dong, Yuseong-gu, Daejeon 305-701 (Korea, Republic of)], E-mail: hcno@kaist.ac.kr; Lee, Jeong Ik; Jeon, Byong Guk [Department of Nuclear and Quantum Engineering, Korea Advanced Institute of Science and Technology, 373-1, Guseong-dong, Yuseong-gu, Daejeon 305-701 (Korea, Republic of)
2009-11-15
The thermal-hydraulic performance of the PCHE was investigated using the KAIST helium test loop. Experiments were performed in the helium laminar region with 350 < Re < 1200. The hot/cold side inlet conditions were 25-550 {sup o}C/25-100 {sup o}C over the operating pressure of 1.5-1.9 MPa, respectively. Mass flow rates were controlled in the range of 40-100 kg/h. Pressure drop and temperature difference were measured at the inlet and outlet of the hot and cold sides. A global Fanning factor correlation and a global Nusselt number correlation were proposed using information only at the inlet and outlet of the hot and cold sides. A three-dimensional (3-D) numerical simulation was performed using FLUENT, a commercial computational fluid dynamics (CFD) code, to compare simulation results to the KAIST helium test data and to obtain the local Nusselt number in the PCHE. CFD predictions showed good agreement with experimental data. A local pitch-averaged Nusselt number correlation was proposed using local temperature, pressure, surface heat fluxes, and properties provided by CFD simulations. The system analysis code, GAMMA, was also utilized to identify which correlation was more applicable for system analysis. It turns out that the proposed local pitch-averaged Nusselt number correlation from CFD simulations is more appropriate than the global Nusselt number correlation developed from experimental data.
Energy Technology Data Exchange (ETDEWEB)
Qiu, Yuefeng, E-mail: yuefeng.qiu@kit.edu [Association KIT-Euratom, Karlsruhe Institute of Technology (KIT), Hermann-von-Helmholtz-Platz 1, 76344 Eggenstein-Leopoldshafen, Karlsruhe (Germany); Lu, Peng [Association KIT-Euratom, Karlsruhe Institute of Technology (KIT), Hermann-von-Helmholtz-Platz 1, 76344 Eggenstein-Leopoldshafen, Karlsruhe (Germany); School of Nuclear Science and Technology, University of Science and Technology of China, Hefei, Anhui 230026 (China); Fischer, Ulrich; Pereslavtsev, Pavel; Kecskes, Szabolcs [Association KIT-Euratom, Karlsruhe Institute of Technology (KIT), Hermann-von-Helmholtz-Platz 1, 76344 Eggenstein-Leopoldshafen, Karlsruhe (Germany)
2014-10-15
Highlights: • A data translation scheme has been developed for coupling Monte Carlo neutronics and CFD simulations. • It contains a generic data translation kernel, and interfaces for the MCNP, CFX and Fluent code. • A blanket test case model was investigated for validation and verification purposes. • Results of the so-called Inversion Check are very close to MCNP calculated results. - Abstract: The design of fusion device components is achieved through iterative coupled neutronics and thermal hydraulics analyses. A translation scheme has been developed for transferring the nuclear heating data from Monte Carlo (MC) neutronic calculations to CFD simulations. It contains a generic data translation kernel which supports the high-fidelity data mapping of MC meshes on CFD meshes, and provides interfaces for processing the nuclear response data on the meshes for CFD codes. This translation scheme has been implemented in the open-source pre- and post-processing platform SALOME to extend its capabilities on data manipulations and visualizations. For verification purposes, a blanket test case based on the Helium Cooled Pebble Bed Test Blanket Module was investigated. The processing of the heating distribution data was validated through a so-called Inversion Check comparing the inverted heating field with the original MC tally distribution. The results of the verification have been discussed in detail, and the reliability of the data translation scheme is concluded.
Energy Technology Data Exchange (ETDEWEB)
Na, Hanbee; Park, Sukyung; Kim, Kyuntae [Korea Institute of Nuclear Safety, Daejeon (Korea, Republic of); Lee, Jongkwang [Hanbat National University, Daejeon (Korea, Republic of); Kwon, Sejin [Korea Advanced Institute of Science and Technology, Daejeon (Korea, Republic of)
2015-10-15
The regulatory requirements for combustible gas control systems in Korea is that mean hydrogen mole fraction shall be lower than 10 %, containment integrity shall be kept from combustion of hydrogen, and detonation and global fast turbulent combustion shall be avoided. KHNP provided some analysis which show hydrogen mole fraction is less than 10 % and detonation and global fast turbulence combustion are avoided for postulated severe accident events which covered over 90 % of CDF (core damage frequency) for each NPP. The results were from MAAP code that can simulate from the initiation of the accidents to hydrogen distribution inside containments. It is a Lumped-Parameter codes in which the transport of energy and mass is possible in only predetermined one direction. Therefore, there has been a long-history dispute whether one-dimensional LP codes could simulate the transportation of hydrogen accurately. For example, KHNP made a MAAP model to simulate hydrogen distribution in KSNP (Korean Standard Nuclear Plants), and the containment free volume is divided into 27 nodes in which it is assumed all the properties like each molecule mole fraction and temperate are uniform in each node. In addition, the maximum volume size of them is over 22,000 m{sup 3}, and it is not quite confident that the mole fraction of each molecules and temperature are uniform in the big size space. As for the stress test results of the Wolsong 1, civil experts asked KHNP to conduct hydrogen distribution analysis using Computational Fluid Dynamics (CFD) methodology, and if needed to install hydrogen ignitors in Wolsong 1 NPP. As a reviewer for KHNP's post actions to the Stress Test, the author also asked KHNP to do CFD analysis of hydrogen distribution, and KHNP finally agreed to analyze it using CFD by 2017. KHNP submitted a Shin-hanul 1 and 2 Operation License application in 2015, and the author also asked it to do CFD analysis to simulate hydrogen distribution for Shin-hanul 1 and 2
Computational System For Rapid CFD Analysis In Engineering
Barson, Steven L.; Ascoli, Edward P.; Decroix, Michelle E.; Sindir, Munir M.
1995-01-01
Computational system comprising modular hardware and software sub-systems developed to accelerate and facilitate use of techniques of computational fluid dynamics (CFD) in engineering environment. Addresses integration of all aspects of CFD analysis process, including definition of hardware surfaces, generation of computational grids, CFD flow solution, and postprocessing. Incorporates interfaces for integration of all hardware and software tools needed to perform complete CFD analysis. Includes tools for efficient definition of flow geometry, generation of computational grids, computation of flows on grids, and postprocessing of flow data. System accepts geometric input from any of three basic sources: computer-aided design (CAD), computer-aided engineering (CAE), or definition by user.
CFD-Based Design Optimization Tool Developed for Subsonic Inlet
1995-01-01
The traditional approach to the design of engine inlets for commercial transport aircraft is a tedious process that ends with a less-than-optimum design. With the advent of high-speed computers and the availability of more accurate and reliable computational fluid dynamics (CFD) solvers, numerical optimization processes can effectively be used to design an aerodynamic inlet lip that enhances engine performance. The designers' experience at Boeing Corporation showed that for a peak Mach number on the inlet surface beyond some upper limit, the performance of the engine degrades excessively. Thus, our objective was to optimize efficiency (minimize the peak Mach number) at maximum cruise without compromising performance at other operating conditions. Using a CFD code NPARC, the NASA Lewis Research Center, in collaboration with Boeing, developed an integrated procedure at Lewis to find the optimum shape of a subsonic inlet lip and a numerical optimization code, ADS. We used a GRAPE-based three-dimensional grid generator to help automate the optimization procedure. The inlet lip shape at the crown and the keel was described as a superellipse, and the superellipse exponents and radii ratios were considered as design variables. Three operating conditions: cruise, takeoff, and rolling takeoff, were considered in this study. Three-dimensional Euler computations were carried out to obtain the flow field. At the initial design, the peak Mach numbers for maximum cruise, takeoff, and rolling takeoff conditions were 0.88, 1.772, and 1.61, respectively. The acceptable upper limits on the takeoff and rolling takeoff Mach numbers were 1.55 and 1.45. Since the initial design provided by Boeing was found to be optimum with respect to the maximum cruise condition, the sum of the peak Mach numbers at takeoff and rolling takeoff were minimized in the current study while the maximum cruise Mach number was constrained to be close to that at the existing design. With this objective, the
Siclari, M. J.; Darden, C. M.
1991-01-01
Current efforts to reduce the sonic boom of a future High Speed Civil Transport (HSCT) by careful shaping have led to the need for more accurate predictions of the near-field flow conditions of the configuration. A fully three-dimensional Euler finite volume code is used to predict sonic boom pressure signatures for two low boom concepts - one designed to cruise at Mach 2 and the other at Mach 3. Calculations were carried out using a grid topology that has been modified to reduce the inaccuracies caused by grid spreading often suffered with CFD methods when calculations several body lengths downstream become necessary. Comparisons of CFD results and experimental wind tunnel signatures are shown. Ground signatures are predicted by extrapolating the pressures predicted by the Euler code with an extrapolation method based on the Whitham theory.
Thermal hydraulic investigations and optimization on the EVC system of a PWR by CFD simulation
Energy Technology Data Exchange (ETDEWEB)
Xi, Mengmeng [Department of Nuclear Science and Technology, State Key Laboratory of Multiphase Flow in Power Engineering, Xi’an Jiaotong University, 710049 Xi’an (China); Zhang, Dalin, E-mail: dlzhang@mail.xjtu.edu.cn [Department of Nuclear Science and Technology, State Key Laboratory of Multiphase Flow in Power Engineering, Xi’an Jiaotong University, 710049 Xi’an (China); Tang, Mao [China Nuclear Power Design Engineering Co., Ltd., 518124 Shenzhen (China); Wang, Chenglong; Zheng, Meiyin; Qiu, Suizheng [Department of Nuclear Science and Technology, State Key Laboratory of Multiphase Flow in Power Engineering, Xi’an Jiaotong University, 710049 Xi’an (China)
2015-08-15
Highlights: • This study constructs a full CFD model for the EVC system of a PWR. • The complex fluid and solid coupling is treated in the computation. • Primary characteristics of the velocity, pressure and temperature distributions in the EVC system are investigated. • The optimization of the EVC system with different inlet boundaries are performed. - Abstract: In order to optimize the design of Reactor Pit Ventilation (EVC) system in a Pressurized Water Reactor (PWR), it is necessary to study the characteristics of the velocity, pressure and temperature fields in the EVC system. A full computational fluid dynamics (CFD) model for the EVC system is constructed by a commercial CFD code, where the complex fluid and solid coupling is treated. The Shear Stress Transport (SST) model is adopted to perform the turbulence calculation. This paper numerically investigates the characteristics of the velocity, pressure and temperature distributions in the EVC system. In particular, the effects of inlet air parameters on the thermal hydraulic characteristics and the reactor pit structure are also discussed for the EVC system optimization. Simulations are carried out with different mesh sizes and boundary conditions for sensitivity analysis. The computational results are important references to optimize the design and verify the rationality of the EVC system.
Application of Exactly Linearized Error Transport Equations to AIAA CFD Prediction Workshops
Derlaga, Joseph M.; Park, Michael A.; Rallabhandi, Sriram
2017-01-01
The computational fluid dynamics (CFD) prediction workshops sponsored by the AIAA have created invaluable opportunities in which to discuss the predictive capabilities of CFD in areas in which it has struggled, e.g., cruise drag, high-lift, and sonic boom pre diction. While there are many factors that contribute to disagreement between simulated and experimental results, such as modeling or discretization error, quantifying the errors contained in a simulation is important for those who make decisions based on the computational results. The linearized error transport equations (ETE) combined with a truncation error estimate is a method to quantify one source of errors. The ETE are implemented with a complex-step method to provide an exact linearization with minimal source code modifications to CFD and multidisciplinary analysis methods. The equivalency of adjoint and linearized ETE functional error correction is demonstrated. Uniformly refined grids from a series of AIAA prediction workshops demonstrate the utility of ETE for multidisciplinary analysis with a connection between estimated discretization error and (resolved or under-resolved) flow features.
CFD Simulation and Optimisation of a Low Energy Ventilation and Cooling System
Directory of Open Access Journals (Sweden)
John Kaiser Calautit
2015-04-01
Full Text Available Mechanical Heating Ventilation and Air-Conditioning (HVAC systems account for 60% of the total energy consumption of buildings. As a sector, buildings contributes about 40% of the total global energy demand. By using passive technology coupled with natural ventilation from wind towers, significant amounts of energy can be saved, reducing the emissions of greenhouse gases. In this study, the development of Computational Fluid Dynamics (CFD analysis in aiding the development of wind towers was explored. Initial concepts of simple wind tower mechanics to detailed design of wind towers which integrate modifications specifically to improve the efficiency of wind towers were detailed. From this, using CFD analysis, heat transfer devices were integrated into a wind tower to provide cooling for incoming air, thus negating the reliance on mechanical HVAC systems. A commercial CFD code Fluent was used in this study to simulate the airflow inside the wind tower model with the heat transfer devices. Scaled wind tunnel testing was used to validate the computational model. The airflow supply velocity was measured and compared with the numerical results and good correlation was observed. Additionally, the spacing between the heat transfer devices was varied to optimise the performance. The technology presented here is subject to a patent application (PCT/GB2014/052263.
Rockslide and Impulse Wave Modelling in the Vajont Reservoir by DEM-CFD Analyses
Zhao, T.; Utili, S.; Crosta, G. B.
2016-06-01
This paper investigates the generation of hydrodynamic water waves due to rockslides plunging into a water reservoir. Quasi-3D DEM analyses in plane strain by a coupled DEM-CFD code are adopted to simulate the rockslide from its onset to the impact with the still water and the subsequent generation of the wave. The employed numerical tools and upscaling of hydraulic properties allow predicting a physical response in broad agreement with the observations notwithstanding the assumptions and characteristics of the adopted methods. The results obtained by the DEM-CFD coupled approach are compared to those published in the literature and those presented by Crosta et al. (Landslide spreading, impulse waves and modelling of the Vajont rockslide. Rock mechanics, 2014) in a companion paper obtained through an ALE-FEM method. Analyses performed along two cross sections are representative of the limit conditions of the eastern and western slope sectors. The max rockslide average velocity and the water wave velocity reach ca. 22 and 20 m/s, respectively. The maximum computed run up amounts to ca. 120 and 170 m for the eastern and western lobe cross sections, respectively. These values are reasonably similar to those recorded during the event (i.e. ca. 130 and 190 m, respectively). Therefore, the overall study lays out a possible DEM-CFD framework for the modelling of the generation of the hydrodynamic wave due to the impact of a rapid moving rockslide or rock-debris avalanche.
Computational Fluid Dynamics (CFD-Based Droplet Size Estimates in Emulsification Equipment
Directory of Open Access Journals (Sweden)
Jo Janssen
2016-12-01
Full Text Available While academic literature shows steady progress in combining multi-phase computational fluid dynamics (CFD and population balance modelling (PBM of emulsification processes, the computational burden of this approach is still too large for routine use in industry. The challenge, thus, is to link a sufficiently detailed flow analysis to the droplet behavior in a way that is both physically relevant and computationally manageable. In this research article we propose the use of single-phase CFD to map out the local maximum stable droplet diameter within a given device, based on well-known academic droplet break-up studies in quasi-steady 2D linear flows. The results of the latter are represented by analytical correlations for the critical capillary number, which are valid across a wide viscosity ratio range. Additionally, we suggest a parameter to assess how good the assumption of quasi-steady 2D flow is locally. The approach is demonstrated for a common lab-scale rotor-stator device (Ultra-Turrax, IKA-Werke GmbH, Staufen, Germany. It is found to provide useful insights with minimal additional user coding and little increase in computational effort compared to the single-phase CFD simulations of the flow field, as such. Some suggestions for further development are briefly discussed.
CFD investigation of flow and heat transfer of nanofluids in isoflux spirally fluted tubes
Salama, Amgad
2012-01-01
In this work, the problem of flow and heat transfer of nanofluids in spirally fluted tubes is investigated numerically using the CFD code Fluent. The tube investigated in this work is characterized by the existence of helical ridging which is usually obtained by embossing a smooth tube. A tube of diameter of 15 mm, 1.5 mm groove depth and a single helix with pitch of 64 mm is chosen for simulation. This geometry has been chosen for simulation because it has been investigated experimentally for pure fluids and would, therefore, provide a verification framework with our CFD model. The result of our CFD investigation compares very well with the experimental work conducted on this tube geometry. Interesting patterns are highlighted and investigated including the existence of flow swirl as a result of the existence of the spirally enhanced ridges. This swirl flow enhances heat transfer characteristics of this system as reported in the literatures. This study also shows that further enhancement is achieved if small amount of nanoparticles are introduced to the fluid. These nanoparticles (metallic-based nanoparticles) when introduced to the fluid enhances its heat transfer characteristics.
CFD simulation of a gas-solid fluidized bed with two vertical jets
Institute of Scientific and Technical Information of China (English)
Pei Pei; Kai Zhang; Jintian Ren; Dongsheng Wen; Guiying Wu
2010-01-01
A computational fluid dynamics(CFD)model is used to investigate the hydrodynamics of a gas-solid fluidized bed with two vertical jets.Sand particles with a density of 2660 kg/m3 and a diameter of5.0 × 10-4 m are employed as the solid phase.Numerical computation is carried out in a 0.57 m × 1.00 m two-dimensional bed using a commercial CFD code.CFX 4.4,together with user-defined Fortran subrou-tines.The applicability of the CFD model is validated by predicting the bed pressure drop in a bubbling fluidized bed,and the jet detachment time and equivalent bubble diameter in a fluidized bed with a single jet.Subsequently,the model is used to explore the hydrodynamics of two vertical jets in a fluidized bed.The computational results reveal three flow patterns,isolated,merged and transitional jets,depending on the nozzle separation distance and jet gas velocity and influencing significantly the solid circulation pattern.The jet penetration depth is found to increase with increasing jet gas velocity,and can be predicted reasonably well by the correlations of Hang et al.(2003)for isolated jets and of Yang and Keairns(1979)for interacting jets.
Prediction of steam condensation in the presence of noncondensable gases using a CFD-based approach
Energy Technology Data Exchange (ETDEWEB)
Dehbi, A., E-mail: abdel.dehbi@psi.ch [Laboratory for Thermal-Hydraulics, Paul Scherrer Institut, Villigen 5232 (Switzerland); Janasz, F., E-mail: filip.janasz@psi.ch [Laboratory for Thermal-Hydraulics, Paul Scherrer Institut, Villigen 5232 (Switzerland); Bell, B., E-mail: brian.bell@ansys.com [ANSYS Inc., Lebanon, NH 03766 (United States)
2013-05-15
Highlights: ► A model of condensation with noncondensable gases is integrated in the Fluent code. ► Condensation is modeled as sink terms in the conservation equations. ► A best-estimate parameter is proposed for heat transfer enhancement due to suction. ► Validation is conducted for a wide range of flow conditions and geometries. ► Predictions are in good agreement with experimental correlations. -- Abstract: We integrate in the ANSYS CFD code Fluent a model for wall condensation from a vapor–noncondensable gas mixture. The condensation phenomenon is modeled from first principles as sink terms for the mass, momentum, species and energy conservation equations. The condensation rate is obtained by requiring the condensate–gas interface to be impermeable to the noncondensable gas. The model assumes in addition that the thermal resistance of the liquid film is negligible, and hence the predictions are only valid for relatively large mass fractions of the noncondensable gas (above 0.1). When the condensation rates are high, a best-estimate suction correction factor is proposed for CFD codes that impose the no-slip boundary conditions at the wall surfaces. In such a way, the enhancement in the heat transfer due to suction is accounted for. We first simulate condensation in laminar and turbulent forced flows along a cold flat plate. More challenging simulations are subsequently conducted for the case where vapor is introduced into closed vessels containing a noncondensable gas and in which stand condensing surfaces held at constant cold temperature. The flow transient is computed until steady conditions are reached, at which point the condensation flow rate equals the injected steam flow rate. Overall, the predicted heat transfer rates are in good agreement with available analytical solutions as well as experimental correlations. CFD Best Practice Guidelines are followed to a large extent. In particular, a hierarchy of grids is used to ensure mesh
Energy Technology Data Exchange (ETDEWEB)
Grahn, Alexander; Gommlich, Andre; Kliem, Soeren [Helmholtz-Zentrum Dresden-Rossendorf e.V., Dresden (Germany). Reactor Safety
2017-06-01
In the framework of the European project NURESAFE, the reactor dynamics code DYN3D developed at HZDR was coupled with the CFD solver TrioU from CEA France. This coupling was used to simulate the coolant mixing in the reactor pressure vessel and in the core during a Main Steamline Break (MSLB) accident and to study its effect on the reactor power.
Energy Technology Data Exchange (ETDEWEB)
Pena, C.; Pellacani, F.; Macian Juan, R., E-mail: carlos.pena@ntech.mw.tum.de, E-mail: pellacani@ntech.mw.tum.de, E-mail: macian@ntech.mw.tum.de [Technische Universitaet Muenchen, Garching (Germany). Ntech Lehrstuhl fuer Nukleartechnik; Chiva, S., E-mail: schiva@emc.uji.es [Universitat Jaume I, Castellon de la Plana (Spain). Dept. de Ingenieria Mecanica y Construccion; Barrachina, T.; Miro, R., E-mail: rmiro@iqn.upv.es, E-mail: tbarrachina@iqn.upv.es [Universitat Politecnica de Valencia (ISIRYM/UPV) (Spain). Institute for Industrial, Radiophysical and Environmental Safety
2011-07-01
A computational code system based on coupling the 3D neutron diffusion code PARCS v2.7 and the Ansys CFX 13.0 Computational Fluid Dynamics (CFD) code has been developed as a tool for nuclear reactor systems simulations. This paper presents the coupling methodology between the CFD and the neutronic code. The methodology to simulate a 3D-neutronic problem coupled with 1D thermal hydraulics is already a mature technology, being part of the regular calculations performed to analyze different kinds of Reactivity Insertion Accidents (RIA) and asymmetric transients in Nuclear Power Plants, with state-of-the-art coupled codes like TRAC-B/NEM, RELAP5/PARCS, TRACE/PARCS, RELAP3D, RETRAN3D, etc. This work represents one of the first attempts to couple the multiphysics of a nuclear reactor core with a 3D spatial resolution in a computer code. This will open new possibilities regarding the analysis of fuel elements, contributing to a better understanding and design of the heat transfer process and specific fluid dynamics phenomena such as cross flow among fuel elements. The transient simulation of control rod insertion, boron dilution and cold water injection will be made possible with a degree of accuracy not achievable with current methodologies based on the use of system and/or subchannel codes. The transport of neutrons depends on several parameters, like fuel temperature, moderator temperature and density, boron concentration and fuel rod insertion. These data are calculated by the CFD code with high local resolution and used as input to the neutronic code to calculate a 3D nodal power distribution that will be returned and remapped to the CFD code control volumes (cells). Since two different nodalizations are used to discretized the same system, an averaging and interpolating procedure is needed to realize an effective data exchange. These procedures have been developed by means of the Ansys CFX 'User Fortran' interface; a library with several subroutines has
Nuclear Energy CFD Application Management System
Energy Technology Data Exchange (ETDEWEB)
Hyung Lee; Kimberlyn C. Mousseau
2001-09-01
In modeling and simulation (M&S), it is virtually impossible to separately evaluate the effectiveness of the model from the data used because the results produced rely heavily on the interaction between the two. Both the data and the simulation are responsible for achieving the ultimate goal of providing defensible research and development (R&D) products and decisions. It is therefore vital that data verification and validation (V&V) activities, along with stringent configuration management, be considered part of the overall M&S accreditation process. In support of these goals is the Nuclear Energy CFD Application Management System (NE-CAMS) for nuclear system design and safety analysis. Working with Bettis Laboratory and Utah State University, a plan of action is being developed by the Idaho National Laboratory (INL) that will address the highest and most immediate needs to track and manage computational fluid dynamics (CFD) models and experimental data in an electronic database. The database will intrinsically incorporate the Nuclear Regulatory Commission (NRC) approved policies and procedures for quality. The quality requirements will be such that the model and data must conform to the quality specifications outlined by the NRC before they can be entered into the database. The primary focus of this database is CFD V&V for nuclear industry needs and will, in practice, serve as the best practice guideline that will accommodate NRC regulations. Such a database, along with a prescriptive methodology for how to utilize it, will provide the NRC with accepted CFD results that could potentially be used for licensing. NE-CAMS will incorporate data V&V as key precursors to the distribution of nuclear systems design and safety data, ensuring that these data are appropriate for use in a particular M&S application. Verification will be conducted to provide a level of confidence that the data selected are the most appropriate for the simulation and are properly prepared, i
CFD analysis of a rocket exhaust diffuser
Bose, Tarit K.; Thanawala, R. H.; Annamalai, K.
1992-11-01
The nature of the complex shock structure responsible for the pressure recovery phenomenon in supersonic diffusers is investigated by means of a theoretical CFD analysis using a newly developed computer program for Navier-Stokes solution of an ejector system, and the Prandtl mixing length to model the turbulent boundary layer. The pressure recovery characteristics of an ejector diffuser system was studied for various geometric and flow conditions. A comparison of the results with those of pressure measurements along the diffuser length in an experimental facility showed discrepancies, which are attributed to the boundary conditions imposed.
Energy Technology Data Exchange (ETDEWEB)
Pointer, William David [Oak Ridge National Lab. (ORNL), Oak Ridge, TN (United States); Shaver, Dillon [Argonne National Lab. (ANL), Argonne, IL (United States); Liu, Yang [Oak Ridge National Lab. (ORNL), Oak Ridge, TN (United States); Vegendla, Prasad [Argonne National Lab. (ANL), Argonne, IL (United States); Tentner, Adrian [Argonne National Lab. (ANL), Argonne, IL (United States)
2016-09-30
The U.S. Department of Energy, Office of Nuclear Energy charges participants in the Nuclear Energy Advanced Modeling and Simulation (NEAMS) program with the development of advanced modeling and simulation capabilities that can be used to address design, performance and safety challenges in the development and deployment of advanced reactor technology. The NEAMS has established a high impact problem (HIP) team to demonstrate the applicability of these tools to identification and mitigation of sources of steam generator flow induced vibration (SGFIV). The SGFIV HIP team is working to evaluate vibration sources in an advanced helical coil steam generator using computational fluid dynamics (CFD) simulations of the turbulent primary coolant flow over the outside of the tubes and CFD simulations of the turbulent multiphase boiling secondary coolant flow inside the tubes integrated with high resolution finite element method assessments of the tubes and their associated structural supports. This report summarizes the demonstration of a methodology for the multiphase boiling flow analysis inside the helical coil steam generator tube. A helical coil steam generator configuration has been defined based on the experiments completed by Polytecnico di Milano in the SIET helical coil steam generator tube facility. Simulations of the defined problem have been completed using the Eulerian-Eulerian multi-fluid modeling capabilities of the commercial CFD code STAR-CCM+. Simulations suggest that the two phases will quickly stratify in the slightly inclined pipe of the helical coil steam generator. These results have been successfully benchmarked against both empirical correlations for pressure drop and simulations using an alternate CFD methodology, the dispersed phase mixture modeling capabilities of the open source CFD code Nek5000.
CFD Analyses of Air-Ingress Accident for VHTRs
Ham, Tae Kyu
-ingress mechanism and to utilize the CFD simulation in the analysis of the phenomenon. Previous air-ingress studies simulated the depressurization process using simple assumptions or 1-D system code results. However, recent studies found flow oscillations near the end of the depressurization which could influence the next stage of the air-ingress accident. Therefore, CFD simulations were performed to examine the air-ingress mechanisms from the depressurization through the establishment of local natural circulation initiate. In addition to the double-guillotine break scenario, there are other scenarios that can lead to an air-ingress event such as a partial break were in the cross vessel with various break locations, orientations, and shapes. These additional situations were also investigated. The simulation results for the OSU test facility showed that the discharged helium coolant from a reactor vessel during the depressurization process will be mixed with the air in the containment. This process makes the density of the gas mixture in the containment lower and the density-driven air-ingress flow slower because the density-driven flow is established by the density difference of the gas species between the reactor vessel and the containment. In addition, for the simulations with various initial and boundary conditions, the simulation results showed that the total accumulated air in the containment collapsed within 10% standard deviation by: 1. multiplying the density ratio and viscosity ratio of the gas species between the containment and the reactor vessel and 2. multiplying the ratio of the air mole fraction and gas temperature to the reference value. By replacing the gas mixture in the reactor cavity with a gas heavier than the air, the air-ingress speed slowed down. Based on the understanding of the air-ingress phenomena for the GT-MHR air-ingress scenario, several mitigation measures of air-ingress accident are proposed. The CFD results are utilized to plan experimental
A CFD benchmarking exercise based on flow mixing in a T-junction
Energy Technology Data Exchange (ETDEWEB)
Smith, B.L. [Paul Scherrer Inst., Villigen PSI (Switzerland); Mahaffy, J.H. [Wheelsmith Farm, Spring Mill, Pennsylvania (United States); Angele, K. [Vattenfall R& D, Alvkarleby (Sweden)
2011-07-01
The paper describes an international benchmarking exercise, sponsored by the OECD Nuclear Energy Agency, aimed at testing the ability of state-of-the-art Computational Fluid Dynamics (CFD) codes to predict the important flow parameters affecting high-cycle thermal fatigue induced by turbulent mixing in T-junctions. Numerical simulations were compared against measured data from an experiment performed at 1:2 scale by Vattenfall Research and Development, Alvkarleby, Sweden. The test data were released only at the end of the exercise. Details of the organizational procedures, the experimental set-up and instrumentation, the different modeling approaches adopted, synthesis of results and overall conclusions and perspectives are presented. (author)
Management of a CFD organization in support of space hardware development
Schutzenhofer, L. A.; Mcconnaughey, P. K.; Mcconnaughey, H. V.; Wang, T. S.
1991-01-01
The management strategy of NASA-Marshall's CFD branch in support of space hardware development and code validation implements various elements of total quality management. The strategy encompasses (1) a teaming strategy which focuses on the most pertinent problem, (2) quick-turnaround analysis, (3) the evaluation of retrofittable design options through sensitivity analysis, and (4) coordination between the chief engineer and the hardware contractors. Advanced-technology concepts are being addressed via the definition of technology-development projects whose products are transferable to hardware programs and the integration of research activities with industry, government agencies, and universities, on the basis of the 'consortium' concept.
A CFD model for biomass combustion in a packed bed furnace
Energy Technology Data Exchange (ETDEWEB)
Karim, Md. Rezwanul [Faculty of Science, Engineering and Technology, Swinburne University of Technology, VIC 3122 (Australia); Department of Mechanical & Chemical Engineering, Islamic University of Technology, Gazipur 1704 (Bangladesh); Ovi, Ifat Rabbil Qudrat [Department of Mechanical & Chemical Engineering, Islamic University of Technology, Gazipur 1704 (Bangladesh); Naser, Jamal, E-mail: jnaser@swin.edu.au [Faculty of Science, Engineering and Technology, Swinburne University of Technology, VIC 3122 (Australia)
2016-07-12
Climate change has now become an important issue which is affecting environment and people around the world. Global warming is the main reason of climate change which is increasing day by day due to the growing demand of energy in developed countries. Use of renewable energy is now an established technique to decrease the adverse effect of global warming. Biomass is a widely accessible renewable energy source which reduces CO{sub 2} emissions for producing thermal energy or electricity. But the combustion of biomass is complex due its large variations and physical structures. Packed bed or fixed bed combustion is the most common method for the energy conversion of biomass. Experimental investigation of packed bed biomass combustion is difficult as the data collection inside the bed is challenging. CFD simulation of these combustion systems can be helpful to investigate different operational conditions and to evaluate the local values inside the investigation area. Available CFD codes can model the gas phase combustion but it can’t model the solid phase of biomass conversion. In this work, a complete three-dimensional CFD model is presented for numerical investigation of packed bed biomass combustion. The model describes the solid phase along with the interface between solid and gas phase. It also includes the bed shrinkage due to the continuous movement of the bed during solid fuel combustion. Several variables are employed to represent different parameters of solid mass. Packed bed is considered as a porous bed and User Defined Functions (UDFs) platform is used to introduce solid phase user defined variables in the CFD. Modified standard discrete transfer radiation method (DTRM) is applied to model the radiation heat transfer. Preliminary results of gas phase velocity and pressure drop over packed bed have been shown. The model can be useful for investigation of movement of the packed bed during solid fuel combustion.
A CFD model for biomass combustion in a packed bed furnace
Karim, Md. Rezwanul; Ovi, Ifat Rabbil Qudrat; Naser, Jamal
2016-07-01
Climate change has now become an important issue which is affecting environment and people around the world. Global warming is the main reason of climate change which is increasing day by day due to the growing demand of energy in developed countries. Use of renewable energy is now an established technique to decrease the adverse effect of global warming. Biomass is a widely accessible renewable energy source which reduces CO2 emissions for producing thermal energy or electricity. But the combustion of biomass is complex due its large variations and physical structures. Packed bed or fixed bed combustion is the most common method for the energy conversion of biomass. Experimental investigation of packed bed biomass combustion is difficult as the data collection inside the bed is challenging. CFD simulation of these combustion systems can be helpful to investigate different operational conditions and to evaluate the local values inside the investigation area. Available CFD codes can model the gas phase combustion but it can't model the solid phase of biomass conversion. In this work, a complete three-dimensional CFD model is presented for numerical investigation of packed bed biomass combustion. The model describes the solid phase along with the interface between solid and gas phase. It also includes the bed shrinkage due to the continuous movement of the bed during solid fuel combustion. Several variables are employed to represent different parameters of solid mass. Packed bed is considered as a porous bed and User Defined Functions (UDFs) platform is used to introduce solid phase user defined variables in the CFD. Modified standard discrete transfer radiation method (DTRM) is applied to model the radiation heat transfer. Preliminary results of gas phase velocity and pressure drop over packed bed have been shown. The model can be useful for investigation of movement of the packed bed during solid fuel combustion.
CFD study of a twisted blade H-Darrieus wind turbine
Directory of Open Access Journals (Sweden)
Rajat Gupta, Rituraj Gautam, Siddhartha Sankar Deka
2014-01-01
Full Text Available In this paper, a two-dimensional Computational Fluid Dynamics (CFD study of the performance of a H-Darrieus turbine with three twisted blade had been carried out. The chord length of each blade is 5cm and the blade height is considered to be same for all the rotors. A two dimensional (2D model of the turbine was designed in CATIA V5R19 software and a k-epsilon turbulence closure was adopted with the unstructured mesh generated around the rotor modeled in GAMBIT 2.3.16. The inlet velocities and the rotational speeds are taken from the experimental results and the CFD analysis was carried out in CFD Code-FLUENT 6.3.26. From the CFD analysis, power coefficient (Cp and torque coefficient (Ct at three different H/D ratios of 1.13, 1.31 and 1.55 respectively were calculated and compared with available experimental results. The computational analysis showed that the highest values of Cp (0.525 and Ct (0.95 were obtained at H/D ratios of 1.31 and 1.13 respectively. The deviation of computational Cp from experimental Cp was within ±3.08 % and that of computational Ct from experimental Ct was within ±1.106 %. A study of the flow behaviour around the rotor was also carried out using the pressure contours and velocity vectors plots. A maximum pressure drop is obtained for H/D ratio of 1.31 and a vortex reattachment near rear blade of rotor with H/D ratio of 1.31 was observed from the pressure contours and velocity vectors plots. The vortex attachment to the blade of the rotor enhances the lift coefficient of the rotor which helps in improving the power coefficient of the rotor. The comparison between the computational results and previous experimental work is pretty encouraging.
CFD simulations of separate effects in an HTGR lower plenum under air ingress condition
Energy Technology Data Exchange (ETDEWEB)
Gregor, Karel, E-mail: karel.gregor@fs.cvut.cz [Czech Technical University in Prague, Technicka 4, 160 00, Praha 6 (Czech Republic); Dostal, Vaclav [Czech Technical University in Prague, Technicka 4, 160 00, Praha 6 (Czech Republic)
2012-10-15
The local heat transfer in an HTGR lower plenum is investigated at the Czech Technical University (CTU) in Prague with collaboration with the U.S. Nuclear Regulatory Commission (NRC). NRC has initiated efforts to build a technical infrastructure necessary to support licensing activities for HTGR's. These efforts include the development and evaluation of computational fluid dynamics (CFD) tools to analyze the system during various conditions. In this case air ingress condition is investigated. The local heat transfer under air ingress condition is strongly affected by the physical phenomena such as molecular diffusion and natural circulation. These separate effects are not yet well understood. Therefore, in the first phase of research it is necessary to perform separate-effects simulations. The CFD solver is exercised and the results are compared with experimental data. The separate-effect benchmarking of the CFD code includes simulations of two separate phases of the JAERI experiments: isothermal molecular diffusion of a binary gas mixture and non-isothermal diffusion and natural circulation of a binary gas mixture. Computational model of experimental apparatus consists of a vertical inverted U-tube connected at the bottom to a cylindrical tank. Commercial CFD solver Fluent 6.3 was used for the simulations. The influence of the size of computational mesh and length of time step of unsteady solver was studied. For the simulation of isothermal molecular diffusion the coarser mesh with about 9000 hexahedral cells was suitable. The length of time step about 0.05 s seems to be optimal. The non-isothermal diffusion and natural circulation simulations were made and compared with experimental data. The onset time of the natural circulation was simulated in good agreement with experiment with small deviation of 2.3%.
RotCFD Software Validation - Computational and Experimental Data Comparison
Fernandez, Ovidio Montalvo
2014-01-01
RotCFD is a software intended to ease the design of NextGen rotorcraft. Since RotCFD is a new software still in the development process, the results need to be validated to determine the software's accuracy. The purpose of the present document is to explain one of the approaches to accomplish that goal.
Analysis of horizontal axis wind turbine blade using CFD
African Journals Online (AJOL)
The main purpose of this work is to perform CFD analysis of a blade and airfoil of wind .... (2014) performed CFD analysis for design modification and optimization of .... airfoil for incoming flow is more than upper surface so the incoming air can ...
Modelling die filling with charged particles using DEM/CFD
Institute of Scientific and Technical Information of China (English)
Emmanuel Nkem Nwose; Chunlei Pei; Chuan-Yu Wu
2012-01-01
The effects of electrostatic charge on powder flow behaviour during die filling in a vacuum and in air were analysed using a coupled discrete element method and computational fluid dynamics (DEM/CFD) code,in which long range electrostatic interactions were implemented.The present 2D simulations revealed that both electrostatic charge and the presence of air can affect the powder flow behaviour during die filling.It was found that the electrostatic charge inhibited the flow of powders into the die and induced a loose packing structure.At the same filling speed,increasing the electrostatic charge led to a decrease in the fill ratio which quantifies the volumetric occupancy of powder in the die.In addition,increasing the shoe speed caused a further decrease in the fill ratio,which was characterised using the concept of critical filling speed.When the electrostatic charge was low,the air/particle interaction was strong so that a lower critical filling speed was obtained for die filling in air than in a vacuum.With high electrostatic charge,the electrostatic interactions became dominant.Consequently,similar fill ratio and critical filling speed were obtained for die filling in air and in a vacuum.
A comparative study of MATRA-LMR/FB with CFD on a fuel assembly in PGSFR
Energy Technology Data Exchange (ETDEWEB)
Yoo, Jin; Chang, Won-Pyo; Jeong, Jae-Ho; Ha, Kwi-Seok; Lee, Kwi-Lim; Lee, Seung Won; Choi, Chiwoong; Ahn, Sang-Jun [KAERI, Daejeon (Korea, Republic of)
2015-05-15
Some of its models were modified to be eligible for the analysis of the SFR sub-channel blockage with the wire-wrapped pins. The wire-forcing-function used in the MATRA-LMR, which allocates a forced flow with an empirical correlation for the flow effect of the wire-wrap, was replaced with the Distributed Resistance Model. The Distributed Resistance Model has generally been believed to represent the effect more realistically than the wire-forcing-function. A semi-implicit numerical method was applied to resolve a flow reversal problem, which could not be handled by the former fully implicit method. A code-to-code comparison study was also performed as part of an effort to supplement the qualification. Although MATRA-LMR-FB was qualified based on available experimental data including a code-to-code comparative analysis, it was still hard to say that the level of confidence was enough to apply it to the SFR design with full satisfaction. Additional studies are therefore needed to supplement the qualification of MATRA-LMR-FB. In this study, a code-to-code comparative study was conducted as part of an effort to supplement the qualification of MATRA-LMR-FB. The comparison between MATRA-LMR-FB and the CFD code, CFX, was carried out on a 91-pin fuel assembly based on a 217 pin fuel assembly in a PGSFR to assess the MATRA-LMR-FB prediction capability.
Energy Technology Data Exchange (ETDEWEB)
Jimenez P, D. A.; Del Valle G, E. [IPN, Escuela Superior de Fisica y Matematicas, Av. IPN s/n, Edificio 9, Col. San Pedro Zacatenco, 07738 Mexico D. F. (Mexico); Gomez T, A. M., E-mail: guerreroazteca_69@hotmail.com [ININ, Departamento de Sistemas Nucleares, Carretera Mexico-Toluca s/n, 52750 Ocoyoacac, Estado de Mexico (Mexico)
2014-10-15
This study presents a qualitative and quantitative comparison among the CFD GASFLOW and OpenFOAM codes which are related with the phenomenon of hydrogen transport and other gases in the primary containment of a Boiling Water Reactor (BWR). GASFLOW is a commercial license code that is well validated and that was developed in Germany for the analysis of the gases transport in containments of nuclear reactors. On the other hand, OpenFOAM is an open source code that offers several evaluation solvers for different types of phenomena; in this case, the solver reacting-Foam is used to analyze the hydrogen transport inside the primary containment of the BWR. The results that offer the solver reacting-Foam of OpenFOAM are evaluated in the hydrogen transport calculation and the results are compared with those of the program of commercial license GASFLOW to see if is viable the use of the open source code in the case of the hydrogen transport in the primary containment of a BWR. Of the obtained results so much quantitative as qualitative some differences were identified between both codes, the differences (with a percentage of maximum error of 4%) in the quantitative results are small and they are considered acceptable for this analysis type, also, these differences are attributed mainly to the used transport models, considering that OpenFOAM uses a homogeneous model and GASFLOW uses a heterogeneous model. (Author)
Qualification of CFD-models for multiphase flows
Energy Technology Data Exchange (ETDEWEB)
Lucas, Dirk [Helmholtz-Zentrum Dresden-Rossendorf e.V., Dresden (Germany)
2016-05-15
While Computational Fluid Dynamics (CFD) is already an accepted industrial tool for single phase flows it is not yet mature for two-phase flows. For this reason the qualification of CFD for reactor safety relevant applications which involve multiphase flows is a present topic of research. At the CFD division of Helmholtz-Zentrum Dresden-Rossendorf (HZDR) hereby beside an application-oriented model development and validation also more generic investigations are done. Thus, the baseline model strategy aims on the consolidation of the CFD-modelling for multiphase to enable reliable predictions for well-defined flow pattern in future. In addition the recently developed GENTOP-concept broadens the range of applicability of CFD. Different flow morphologies including transitions between them can be considered in frame of this concept.
On spurious behavior of CFD simulations
Energy Technology Data Exchange (ETDEWEB)
Yee, H.C. [National Aeronautics and Space Administration, Moffett Field, CA (United States). Ames Research Center; Torczynski, J.R. [Sandia National Labs., Albuquerque, NM (United States); Morton, S.A.; Visbal, M.R. [Wright Lab., Wright-Patterson AFB, OH (United States); Sweby, P.K. [Univ. of Reading (United Kingdom)
1997-05-01
Spurious behavior in underresolved grids and/or semi-implicit temporal discretizations for four computational fluid dynamics (CFD) simulations are studied. The numerical simulations consist of (a) a 1-D chemically relaxed nonequilibrium model, (b) the direct numerical simulation (DNS) of 2-D incompressible flow over a backward facing step, (c) a loosely-coupled approach for a 2-D fluid-structure interaction, and (d) a 3-D compressible unsteady flow simulation of vortex breakdown in delta wings. Using knowledge from dynamical systems theory, various types of spurious behaviors that are numerical artifacts were systematically identified. These studies revealed the various possible dangers of misinterpreting numerical simulation of realistic complex flows that are constrained by the available computing power. In large scale computations underresolved grids, semi-implicit procedures, loosely-coupled implicit procedures, and insufficiently long time integration in DNS are most often unavoidable. Consequently, care must be taken in both computation and in interpretation of the numerical data. The results presented confirm the important role that dynamical systems theory can play in the understanding of the nonlinear behavior of numerical algorithms and in aiding the identification of the sources of numerical uncertainties in CFD.
QM-400 CFD 自然对流模型研究及验证%Research and Validation on CFD Natural Convection Model of QM-400
Institute of Scientific and Technical Information of China (English)
左巧林; 干富军; 朱丽兵
2016-01-01
The spent fuel dry storage facility named QM-400 module for Third Qinshan Nuclear Power Co.Ltd.(TQNPC)is the first commercial dry storage facility in opera-tion in China.The heat transfer in QM-400 mainly consists of natural convention,con-duction,conjugate heat transfer and radiation,etc.The decay heat of each fuel basket was calculated accurately at typical surrounding temperature.Mesh sensitivity analysis was performed using commercial computational fluid dynamics (CFD)code FLUENT 14.0. A set of CFD simulation models on natural convection of QM-400 were developed.The results show that the distributions of the pressure and temperature on the cylinder sur-face meet the rules of natural convection.Good agreements are achieved between the simulated temperature and the measured temperature at the measured points and the simulated temperature trend varying with surrounding temperature agree well with the measured trend,which demonstrates the correctness of the calculation method of natural convection in this paper.This work can be the reference of the further CFD simulation on temperature distributions of dry storage facility without thermal insulation panels.%秦山第三核电厂乏燃料干式贮存模块 QM-400是我国第一座投入商业运行的干式贮存设施，模块内的热量交换主要包括自然对流、热传导、耦合传热和辐射换热等。本文精确计算了典型环境温度下每个燃料篮的衰变热，运用商用计算流体动力学(CFD)软件 FLUENT 14.0开展了网格敏感性分析，并建立了 QM-400存储模块的自然对流 CFD 分析模型。结果表明，模块顶面、侧面以及贮存筒表面压力和温度分布符合自然对流规律，计算的测点温度与现场的实测温度符合良好，测点温度随环境温度的变化趋势也与实测趋势符合良好，证明了建立的 CFD 自然对流计算方法的正确性。本文结果为后续采用CFD 方法进行取消绝热板后的温度场计算奠定了基础。
Directory of Open Access Journals (Sweden)
Mimoun Maurice
2011-03-01
Full Text Available Abstract Background Controlling airborne contamination is of major importance in burn units because of the high susceptibility of burned patients to infections and the unique environmental conditions that can accentuate the infection risk. In particular the required elevated temperatures in the patient room can create thermal convection flows which can transport airborne contaminates throughout the unit. In order to estimate this risk and optimize the design of an intensive care room intended to host severely burned patients, we have relied on a computational fluid dynamic methodology (CFD. Methods The study was carried out in 4 steps: i patient room design, ii CFD simulations of patient room design to model air flows throughout the patient room, adjacent anterooms and the corridor, iii construction of a prototype room and subsequent experimental studies to characterize its performance iv qualitative comparison of the tendencies between CFD prediction and experimental results. The Electricité De France (EDF open-source software Code_Saturne® (http://www.code-saturne.org was used and CFD simulations were conducted with an hexahedral mesh containing about 300 000 computational cells. The computational domain included the treatment room and two anterooms including equipment, staff and patient. Experiments with inert aerosol particles followed by time-resolved particle counting were conducted in the prototype room for comparison with the CFD observations. Results We found that thermal convection can create contaminated zones near the ceiling of the room, which can subsequently lead to contaminate transfer in adjacent rooms. Experimental confirmation of these phenomena agreed well with CFD predictions and showed that particles greater than one micron (i.e. bacterial or fungal spore sizes can be influenced by these thermally induced flows. When the temperature difference between rooms was 7°C, a significant contamination transfer was observed to
Cho, Y. J.; Zullah, M. A.; Faizal, M.; Choi, Y. D.; Lee, Y. H.
2012-11-01
A variety of technologies has been proposed to capture the energy from waves. Some of the more promising designs are undergoing demonstration testing at commercial scales. Due to the complexity of most offshore wave energy devices and their motion response in different sea states, physical tank tests are common practice for WEC design. Full scale tests are also necessary, but are expensive and only considered once the design has been optimized. Computational Fluid Dynamics (CFD) is now recognized as an important complement to traditional physical testing techniques in offshore engineering. Once properly calibrated and validated to the problem, CFD offers a high density of test data and results in a reasonable timescale to assist with design changes and improvements to the device. The purpose of this study is to investigate the performance of a newly developed direct drive hydro turbine (DDT), which will be built in a caisson for extraction of wave energy. Experiments and CFD analysis are conducted to clarify the turbine performance and internal flow characteristics. The results show that commercial CFD code can be applied successfully to the simulation of the wave motion in the water tank. The performance of the turbine for wave energy converter is studied continuously for a ongoing project.
Directory of Open Access Journals (Sweden)
Fabio Burderi
2007-05-01
Full Text Available Motivated by the study of decipherability conditions for codes weaker than Unique Decipherability (UD, we introduce the notion of coding partition. Such a notion generalizes that of UD code and, for codes that are not UD, allows to recover the ``unique decipherability" at the level of the classes of the partition. By tacking into account the natural order between the partitions, we define the characteristic partition of a code X as the finest coding partition of X. This leads to introduce the canonical decomposition of a code in at most one unambiguouscomponent and other (if any totally ambiguouscomponents. In the case the code is finite, we give an algorithm for computing its canonical partition. This, in particular, allows to decide whether a given partition of a finite code X is a coding partition. This last problem is then approached in the case the code is a rational set. We prove its decidability under the hypothesis that the partition contains a finite number of classes and each class is a rational set. Moreover we conjecture that the canonical partition satisfies such a hypothesis. Finally we consider also some relationships between coding partitions and varieties of codes.
CFD validation in OECD/NEA t-junction benchmark.
Energy Technology Data Exchange (ETDEWEB)
Obabko, A. V.; Fischer, P. F.; Tautges, T. J.; Karabasov, S.; Goloviznin, V. M.; Zaytsev, M. A.; Chudanov, V. V.; Pervichko, V. A.; Aksenova, A. E. (Mathematics and Computer Science); (Cambridge Univ.); (Moscow Institute of Nuclar Energy Safety)
2011-08-23
When streams of rapidly moving flow merge in a T-junction, the potential arises for large oscillations at the scale of the diameter, D, with a period scaling as O(D/U), where U is the characteristic flow velocity. If the streams are of different temperatures, the oscillations result in experimental fluctuations (thermal striping) at the pipe wall in the outlet branch that can accelerate thermal-mechanical fatigue and ultimately cause pipe failure. The importance of this phenomenon has prompted the nuclear energy modeling and simulation community to establish a benchmark to test the ability of computational fluid dynamics (CFD) codes to predict thermal striping. The benchmark is based on thermal and velocity data measured in an experiment designed specifically for this purpose. Thermal striping is intrinsically unsteady and hence not accessible to steady state simulation approaches such as steady state Reynolds-averaged Navier-Stokes (RANS) models.1 Consequently, one must consider either unsteady RANS or large eddy simulation (LES). This report compares the results for three LES codes: Nek5000, developed at Argonne National Laboratory (USA), and Cabaret and Conv3D, developed at the Moscow Institute of Nuclear Energy Safety at (IBRAE) in Russia. Nek5000 is based on the spectral element method (SEM), which is a high-order weighted residual technique that combines the geometric flexibility of the finite element method (FEM) with the tensor-product efficiencies of spectral methods. Cabaret is a 'compact accurately boundary-adjusting high-resolution technique' for fluid dynamics simulation. The method is second-order accurate on nonuniform grids in space and time, and has a small dispersion error and computational stencil defined within one space-time cell. The scheme is equipped with a conservative nonlinear correction procedure based on the maximum principle. CONV3D is based on the immersed boundary method and is validated on a wide set of the experimental
Development of 3-D Flow Analysis Code for Fuel Assembly using Unstructured Grid System
Energy Technology Data Exchange (ETDEWEB)
Myong, Hyon Kook; Kim, Jong Eun; Ahn, Jong Ki; Yang, Seung Yong [Kookmin Univ., Seoul (Korea, Republic of)
2007-03-15
The flow through a nuclear rod bundle with mixing vanes are very complex and required a suitable turbulence model to be predicted accurately. Final objective of this study is to develop a CFD code for fluid flow and heat transfer analysis in a nuclear fuel assembly using unstructured grid system. In order to develop a CFD code for fluid flow and heat transfer analysis in a nuclear fuel assembly using unstructured grid system, the following researches are made: - Development of numerical algorithm for CFD code's solver - Grid and geometric connectivity data - Development of software(PowerCFD code) for fluid flow and heat transfer analysis in a nuclear fuel assembly using unstructured grid system - Modulation of software(PowerCFD code) - Development of turbulence model - Development of analysis module of RANS/LES hybrid models - Analysis of turbulent flow and heat transfer - Basic study on LES analysis - Development of main frame on pre/post processors based on GUI - Algorithm for fully-developed flow.
A coupled DEM-CFD method for impulse wave modelling
Zhao, Tao; Utili, Stefano; Crosta, GiovanBattista
2015-04-01
Rockslides can be characterized by a rapid evolution, up to a possible transition into a rock avalanche, which can be associated with an almost instantaneous collapse and spreading. Different examples are available in the literature, but the Vajont rockslide is quite unique for its morphological and geological characteristics, as well as for the type of evolution and the availability of long term monitoring data. This study advocates the use of a DEM-CFD framework for the modelling of the generation of hydrodynamic waves due to the impact of a rapid moving rockslide or rock-debris avalanche. 3D DEM analyses in plane strain by a coupled DEM-CFD code were performed to simulate the rockslide from its onset to the impact with still water and the subsequent wave generation (Zhao et al., 2014). The physical response predicted is in broad agreement with the available observations. The numerical results are compared to those published in the literature and especially to Crosta et al. (2014). According to our results, the maximum computed run up amounts to ca. 120 m and 170 m for the eastern and western lobe cross sections, respectively. These values are reasonably similar to those recorded during the event (i.e. ca. 130 m and 190 m respectively). In these simulations, the slope mass is considered permeable, such that the toe region of the slope can move submerged in the reservoir and the impulse water wave can also flow back into the slope mass. However, the upscaling of the grains size in the DEM model leads to an unrealistically high hydraulic conductivity of the model, such that only a small amount of water is splashed onto the northern bank of the Vajont valley. The use of high fluid viscosity and coarse grain model has shown the possibility to model more realistically both the slope and wave motions. However, more detailed slope and fluid properties, and the need for computational efficiency should be considered in future research work. This aspect has also been
Validation of a loss of vacuum accident (LOVA) Computational Fluid Dynamics (CFD) model
Energy Technology Data Exchange (ETDEWEB)
Bellecci, C.; Gaudio, P. [EURATOM-Faculty of Engineering, University of Rome ' Tor Vergata' Via del Politecnico 1, 00133 Rome (Italy); Lupelli, I., E-mail: ivan.lupelli@uniroma2.it [EURATOM-Faculty of Engineering, University of Rome ' Tor Vergata' Via del Politecnico 1, 00133 Rome (Italy); Malizia, A. [EURATOM-Faculty of Engineering, University of Rome ' Tor Vergata' Via del Politecnico 1, 00133 Rome (Italy); Porfiri, M.T. [ENEA Nuclear Fusion Tecnologies, Via Enrico Fermi, 45 I-00044 Frascati (Italy); Quaranta, R.; Richetta, M. [EURATOM-Faculty of Engineering, University of Rome ' Tor Vergata' Via del Politecnico 1, 00133 Rome (Italy)
2011-10-15
Intense thermal loads in fusion devices occur during plasma disruptions, Edge Localized Modes (ELM) and Vertical Displacement Events (VDE). They will result in macroscopic erosion of the plasma facing materials and consequent accumulation of activated dust into the ITER Vacuum Vessel (VV). A recognized safety issue for future fusion reactors fueled with deuterium and tritium is the generation of sizeable quantities of dust. In case of LOVA, air inlet occurs due to the pressure difference between the atmospheric condition and the internal condition. It causes mobilization of the dust that can exit the VV threatening public safety because it may contain tritium, may be radioactive from activation products, and may be chemically reactive and/or toxic (Sharpe et al.; Sharpe and Humrickhouse). Several experiments have been conducted with STARDUST facility in order to reproduce a low pressurization rate (300 Pa/s) LOVA event in ITER due to a small air leakage for two different positions of the leak, at the equatorial port level and at the divertor port level, in order to evaluate the velocity magnitude in case of a LOVA that is strictly connected with dust mobilization phenomena. A two-dimensional (2D) modelling of STARDUST, made with the CFD commercial code FLUENT, has been carried out. The results of these simulations were compared against the experimental data for CFD code validation. For validation purposes, the CFD simulation data were extracted at the same locations as the experimental data were collected. In this paper, the authors present and discuss the computer-simulation data and compare them with data collected during the laboratory studies at the University of Rome 'Tor Vergata' Quantum Electronics and Plasmas lab.
CFD Validation for Propulsion System Components (la Validation CFD des organes des propulseurs)
1998-05-01
et al (1995), Suder and Celestina (1996) and Hatliaway et al (1993). Laser data were acquired only at flow rates of m I mchokt = 0.98 and 0.925...Denton (1996) has given a good global analysis of the flow in this compressor. Chima (1996b) and Suder and Celestina (1996) analysed the tip...and Suder and Celestina (1996) have presented some detailed CFD results for the flow in this region. Detailed experimental results and analysis have
The Role of CFD in Undergraduate Fluid Mechanics Education
Cimbala, John
2006-11-01
Instruction of undergraduate fluid mechanics is greatly enhanced through integration of computational fluid dynamics (CFD) into fluid mechanics courses and labs. Specifically, students are able to visualize fluid flows with CFD and are better able to understand those flows by performing parametric studies. At Penn State, CFD has been carefully integrated into our introductory junior-level fluid mechanics course, yet displaces only about one class period. The key is to show demonstrations and assign homework that use CFD as a tool that helps students learn the basic concepts of fluid mechanics. The application of CFD (grid generation, boundary conditions, etc.), rather than numerical algorithms, is stressed. This is done through use of short, pre-defined templates for FlowLab, a student-friendly analysis and visualization package created by Fluent, Inc. The textbook by Cengel and Cimbala (McGraw-Hill 2006) contains 46 end-of-chapter homework problems that are used in conjunction with 42 FlowLab templates. Each exercise has been designed with two major learning objectives in mind: (1) enhance student understanding of a specific fluid mechanics concept, and (2) introduce the student to a specific capability and/or limitation of CFD through hands-on practice. More templates are being developed that emphasize the first objective. The flow of fluid between two concentric rotating cylinders is a good example of a problem that is solved approximately, analytically, and with CFD, and the results are compared to enhance learning.
Hybrid CFD/CAA Modeling for Liftoff Acoustic Predictions
Strutzenberg, Louise L.; Liever, Peter A.
2011-01-01
This paper presents development efforts at the NASA Marshall Space flight Center to establish a hybrid Computational Fluid Dynamics and Computational Aero-Acoustics (CFD/CAA) simulation system for launch vehicle liftoff acoustics environment analysis. Acoustic prediction engineering tools based on empirical jet acoustic strength and directivity models or scaled historical measurements are of limited value in efforts to proactively design and optimize launch vehicles and launch facility configurations for liftoff acoustics. CFD based modeling approaches are now able to capture the important details of vehicle specific plume flow environment, identifY the noise generation sources, and allow assessment of the influence of launch pad geometric details and sound mitigation measures such as water injection. However, CFD methodologies are numerically too dissipative to accurately capture the propagation of the acoustic waves in the large CFD models. The hybrid CFD/CAA approach combines the high-fidelity CFD analysis capable of identifYing the acoustic sources with a fast and efficient Boundary Element Method (BEM) that accurately propagates the acoustic field from the source locations. The BEM approach was chosen for its ability to properly account for reflections and scattering of acoustic waves from launch pad structures. The paper will present an overview of the technology components of the CFD/CAA framework and discuss plans for demonstration and validation against test data.
The role of computational fluid dynamics (CFD) in hair science.
Spicka, Peter; Grald, Eric
2004-01-01
The use of computational fluid dynamics (CFD) as a virtual prototyping tool is widespread in the consumer packaged goods industry. CFD refers to the calculation on a computer of the velocity, pressure, and temperature and chemical species concentrations within a flowing liquid or gas. Because the performance of manufacturing equipment and product designs can be simulated on the computer, the benefit of using CFD is significant time and cost savings when compared to traditional physical testing methods. CFD has been used to design, scale-up and troubleshoot mixing tanks, spray dryers, heat exchangers and other process equipment. Recently, computer models of the capillary wicking process inside fibrous structures have been added to CFD software. These models have been used to gain a better understanding of the absorbent performance of diapers and feminine protection products. The same models can also be used to represent the movement of shampoo, conditioner, colorants and other products through the hair and scalp. In this paper, we provide an introduction to CFD and show some examples of its application to the manufacture of consumer products. We also provide sonic examples to show the potential of CFD for understanding the performance of products applied to the hair and scalp.
CFD Applications in Energy and Environment Sectors: Volume 1
Directory of Open Access Journals (Sweden)
Maher A.R. Sadiq Al-Baghdadi and Hashim R. Abdol Hamid
2012-01-01
Full Text Available Chapter 1: Simulation and Modelling of Oxygen Coal Combustion with Flue Gas Recirculation. Chaouki Ghenai Chapter 2: The Choice of the Best Air Distribution Concept in Air-Conditioned Auditorium by Means of CFD Numerical Prediction. Barbara Lipska, Piotr Koper Chapter 3: CFD Applications in Natural Ventilation of Buildings and Air Quality Dispersion. N. Nikolopoulos, A. Nikolopoulos, I. Papadakis, K.-S. P. Nikas Chapter 4: CFD Modeling of Air Pollutant Transport and Dispersion. Labovský Juraj, Jelemenský Ľudovít Chapter 5: CFD Modeling of Multiphase Flow in Environmental Engineering. Masroor Mohajerani, Mehrab Mehrvar, Farhad Ein-Mozaffari Chapter 6: CFD Study on the Roles of Trees on Airflow and Pollutant Dispersion within Urban Street Canyons. Salim Mohamed Salim, Andrew Chan, Riccardo Buccolieri, Silvana Di Sabatino Chapter 7: Energy Efficiency and Air Quality in Hospitals Design. Essam E. Khalil Chapter 8: Application of CFD in Pulverized Fuel Combustion. M. Tayyeb Javed, Tahira Sultana Chapter 9: A Heat Transfer Model For Fluids Based on Cellular Automaton Application to an Air Conditioning of A Building. Andrés Saiz Martínez Chapter 10: CFD Application in Power Plants. Essam E. Khalil Chapter 11: Analysis and Computation of the Heat Charge/Discharge Behavior in Packed Bed Thermal Storage Systems. Pei-Wen Li, Jon Van Lew, Wafaa Karaki, Cho Lik Chan, Jake Stephens
Vassberg, John C.; Tinoco, Edward N.; Mani, Mori; Levy, David; Zickuhr, Tom; Mavriplis, Dimitri J.; Wahls, Richard A.; Morrison, Joseph H.; Brodersen, Olaf P.; Eisfeld, Bernhard; Murayama, Mitsuhiro
2008-01-01
Recently acquired experimental data for the DLR-F6 wing-body transonic transport con figuration from the National Transonic Facility (NTF) are compared with the database of computational fluid dynamics (CFD) predictions generated for the Third AIAA CFD Drag Prediction Workshop (DPW-III). The NTF data were collected after the DPW-III, which was conducted with blind test cases. These data include both absolute drag levels and increments associated with this wing-body geometry. The baseline DLR-F6 wing-body geometry is also augmented with a side-of-body fairing which eliminates the flow separation in this juncture region. A comparison between computed and experimentally observed sizes of the side-of-body flow-separation bubble is included. The CFD results for the drag polars and separation bubble sizes are computed on grids which represent current engineering best practices for drag predictions. In addition to these data, a more rigorous attempt to predict absolute drag at the design point is provided. Here, a series of three grid densities are utilized to establish an asymptotic trend of computed drag with respect to grid convergence. This trend is then extrapolated to estimate a grid-converged absolute drag level.
CFD research, parallel computation and aerodynamic optimization
Ryan, James S.
1995-01-01
Over five years of research in Computational Fluid Dynamics and its applications are covered in this report. Using CFD as an established tool, aerodynamic optimization on parallel architectures is explored. The objective of this work is to provide better tools to vehicle designers. Submarine design requires accurate force and moment calculations in flow with thick boundary layers and large separated vortices. Low noise production is critical, so flow into the propulsor region must be predicted accurately. The High Speed Civil Transport (HSCT) has been the subject of recent work. This vehicle is to be a passenger vehicle with the capability of cutting overseas flight times by more than half. A successful design must surpass the performance of comparable planes. Fuel economy, other operational costs, environmental impact, and range must all be improved substantially. For all these reasons, improved design tools are required, and these tools must eventually integrate optimization, external aerodynamics, propulsion, structures, heat transfer and other disciplines.
CFD analysis of a Darrieus wind turbine
Niculescu, M. L.; Cojocaru, M. G.; Pricop, M. V.; Pepelea, D.; Dumitrache, A.; Crunteanu, D. E.
2017-07-01
The Darrieus wind turbine has some advantages over the horizontal-axis wind turbine. Firstly, its tip speed ratio is lower than that of the horizontal-axis wind turbine and, therefore, its noise is smaller, privileging their placement near populated areas. Secondly, the Darrieus wind turbine does needs no orientation mechanism with respect to wind direction in contrast to the horizontal-axis wind turbine. However, the efficiency of the Darrieus wind turbine is lower than that of the horizontal-axis wind turbine since its aerodynamics is much more complex. With the advances in computational fluids and computers, it is possible to simulate the Darrieus wind turbine more accurately to understand better its aerodynamics. For these reasons, the present papers deals with the computational aerodynamics of a Darrieus wind turbine applying the state of the art of CFD methods (anisotropic turbulence models, transition from laminar to turbulent, scale adaptive simulation) to better understand its unsteady behavior.
CFD Modeling of Water Flow through Sudden Contraction and Expansion in a Horizontal Pipe
Kaushik, V. V. R.; Ghosh, S.; Das, G.; Das, P. K.
2011-01-01
This paper deals with the use of commercial CFD software in teaching graduate level computational fluid dynamics. FLUENT 6.3.26 was chosen as the CFD software to teach students the entire CFD process in a single course. The course objective is to help students to learn CFD, use it in some practical problems and analyze as well as validate the…
A CFD analysis of blade row interactions within a high-speed axial compressor
Richman, Michael Scott
Aircraft engine design provides many technical and financial hurdles. In an effort to streamline the design process, save money, and improve reliability and performance, many manufacturers are relying on computational fluid dynamic simulations. An overarching goal of the design process for military aircraft engines is to reduce size and weight while maintaining (or improving) reliability. Designers often turn to the compression system to accomplish this goal. As pressure ratios increase and the number of compression stages decrease, many problems arise, for example stability and high cycle fatigue (HCF) become significant as individual stage loading is increased. CFD simulations have recently been employed to assist in the understanding of the aeroelastic problems. For accurate multistage blade row HCF prediction, it is imperative that advanced three-dimensional blade row unsteady aerodynamic interaction codes be validated with appropriate benchmark data. This research addresses this required validation process for TURBO, an advanced three-dimensional multi-blade row turbomachinery CFD code. The solution/prediction accuracy is characterized, identifying key flow field parameters driving the inlet guide vane (IGV) and stator response to the rotor generated forcing functions. The result is a quantified evaluation of the ability of TURBO to predict not only the fundamental flow field characteristics but the three dimensional blade loading.
Simulation of Rotary-Wing Near-Wake Vortex Structures Using Navier-Stokes CFD Methods
Kenwright, David; Strawn, Roger; Ahmad, Jasim; Duque, Earl; Warmbrodt, William (Technical Monitor)
1997-01-01
This paper will use high-resolution Navier-Stokes computational fluid dynamics (CFD) simulations to model the near-wake vortex roll-up behind rotor blades. The locations and strengths of the trailing vortices will be determined from newly-developed visualization and analysis software tools applied to the CFD solutions. Computational results for rotor nearwake vortices will be used to study the near-wake vortex roll up for highly-twisted tiltrotor blades. These rotor blades typically have combinations of positive and negative spanwise loading and complex vortex wake interactions. Results of the computational studies will be compared to vortex-lattice wake models that are frequently used in rotorcraft comprehensive codes. Information from these comparisons will be used to improve the rotor wake models in the Tilt-Rotor Acoustic Code (TRAC) portion of NASA's Short Haul Civil Transport program (SHCT). Accurate modeling of the rotor wake is an important part of this program and crucial to the successful design of future civil tiltrotor aircraft. The rotor wake system plays an important role in blade-vortex interaction noise, a major problem for all rotorcraft including tiltrotors.
Summary of Data from the First AIAA CFD Drag Prediction Workshop
Levy, David W.; Zickuhr, Tom; Vassberg, John; Agrawal, Shreekant; Wahls, Richard A.; Pirzadeh, Shahyar; Hemsch, Michael J.
2002-01-01
The results from the first AIAA CFD Drag Prediction Workshop are summarized. The workshop was designed specifically to assess the state-of-the-art of computational fluid dynamics methods for force and moment prediction. An impartial forum was provided to evaluate the effectiveness of existing computer codes and modeling techniques, and to identify areas needing additional research and development. The subject of the study was the DLR-F4 wing-body configuration, which is representative of transport aircraft designed for transonic flight. Specific test cases were required so that valid comparisons could be made. Optional test cases included constant-C(sub L) drag-rise predictions typically used in airplane design by industry. Results are compared to experimental data from three wind tunnel tests. A total of 18 international participants using 14 different codes submitted data to the workshop. No particular grid type or turbulence model was more accurate, when compared to each other, or to wind tunnel data. Most of the results overpredicted C(sub Lo) and C(sub Do), but induced drag (dC(sub D)/dC(sub L)(exp 2)) agreed fairly well. Drag rise at high Mach number was underpredicted, however, especially at high C(sub L). On average, the drag data were fairly accurate, but the scatter was greater than desired. The results show that well-validated Reynolds-Averaged Navier-Stokes CFD methods are sufficiently accurate to make design decisions based on predicted drag.
Directory of Open Access Journals (Sweden)
J. Govardhan, G.V.S. Rao, J. Narasaiah
2011-09-01
Full Text Available As part of an investigation few experiments were conducted to study the enhanced heat transfer rate and increased furnace efficiency in a diesel fired crucible furnace with oscillating combustion. The results of experimental investigations of temperature distribution inside the crucible furnace during oscillating combustion are validated with the numerical simulation CFD code. At first pragmatic study of temperature distribution inside a furnace was carried out with conventional mode of combustion at certain conditions and later transient behavior similar to that is conducted with oscillating combustion mode with the same conditions. There found to be enhanced heat transfer rate, reduced processing time and increased furnace efficiency with visibly clean emissions during the oscillating combustion mode than the conventional combustion mode. In the present paper the temperatures inside the furnace at few designated points measured by suitable K type thermo-couples are compared with the CFD code. The geometric models were created in ANSYS and the configuration was an asymmetric one for computational reason. The experimental and numerical investigations produce similar acceptable results. The presented results show that the 3D transient model appeared to be an effective numerical tool for the simulation of the crucible furnace for melting processes.
Bonneville Project: CFD of the Spillway Tailrace
Energy Technology Data Exchange (ETDEWEB)
Rakowski, Cynthia L.; Serkowski, John A.; Richmond, Marshall C.; Romero Gomez, Pedro DJ
2012-11-19
US Army Corps of Engineers, Portland District (CENWP) operates the Bonneville Lock and Dam Project on the Columbia River. High spill flows that occurred during 2011 moved a large volume of rock from downstream of the spillway apron to the stilling basin and apron. Although 400 cubic yards of rocks were removed from the stilling basin, there are still large volumes of rock downstream of the apron that could, under certain flow conditions, move upstream into the stilling basin. CENWP is investigating operational changes that could be implemented to minimize future movement of rock into the stilling basin. A key analysis tool to develop these operational changes is a computational fluid dynamics (CFD) model of the spillway. A free-surface CFD model of the Bonneville spillway tailrace was developed and applied for four flow scenarios. These scenarios looked at the impact of flow volume and flow distribution on tailrace hydraulics. The simulation results showed that areas of upstream flow existed near the river bed downstream of the apron, on the apron, and within the stilling basin for all flows. For spill flows of 300 kcfs, the cross-stream and downstream extent of the recirculation zones along Cascade and Bradford Island was very dependent on the spill pattern. The center-loaded pattern had much larger recirculation zones than the flat or bi-modal pattern. The lower flow (200 kcfs) with a flat pattern had a very large recirculation zone that extended half way across the channel near the river bed. A single flow scenario (300 kcfs of flow in a relatively flat spill pattern) was further interrogated using Lagrangian particle tracking. The tracked particles (with size and mass) showed the upstream movement of sediments onto the concrete apron and against the vertical wall between the apron and the stilling basin from seed locations downstream of the apron and on the apron.
MODELLING MANTLE TANKS FOR SDHW SYSTEMS USING PIV AND CFD
DEFF Research Database (Denmark)
Shah, Louise Jivan; Morrison, G.L.; Behnia, Masud
1999-01-01
Characteristics of vertical mantle heat exchanger tanks for SDHW systems have been investigated experimentally and theoretically using particle image velocimetry (PIV) and CFD modelling. A glass model of a mantle heat exchanger tank was constructed so that the flow distribution in the mantle could...... be studied using the PIV test facility. Two transient three-dimensional CFD-models of the glass model mantle tank were developed using the CFD-programmes CFX and FLUENT.The experimental results illustrate that the mantle flow structure in the mantle is complicated and the distribution of flow in the mantle...
Wind Loads on Ships and Offshore Structures Estimated by CFD
DEFF Research Database (Denmark)
Aage, Christian; Hvid, S.L.; Hughes, P.H.;
1997-01-01
on a seagoing ferry and on a semisubmersible offshore platform have been estimated by CFD. The results have been compared with wind tunnel model tests and, for the ferry, a few full-scale measurements, and good agreement is obtained. The CFD method offers the possibility of a computational estimate of scale...... effects related to wind tunnel model testing. An example of such an estimate on the ferry is discussed. Due to the time involved in generating the computational mesh and in computing the solution, the CFD method is not at the moment economically competitive to routine wind tunnel model testing....
Applications of CFD in hydraulics and river engineering
Energy Technology Data Exchange (ETDEWEB)
Nguyen, V.T.; Nestmann, F. [Univ. of Karlsruhe, Civil Engineering, Karlsruhe (Germany)]. E-mail: ge27@rz.uni-karlsruhe.de; Franz.Nestmann@iwk.uni-karlsruhe.de
2002-07-01
In this paper various applications and developments of CFD technology in hydraulics and river engineering are presented. Numerical studies of three dimensional turbulent flow fields in open channels and rivers are carried out by CFD packages such as finite element FIDAP of Fluent and finite volume COMET of ICCM (Institute of Computational Continuum Mechanics GmbH). Meshing procedures are implemented by GAMBIT (Fluent) or CFD-GEOM (CFDRC). Especially, to calculate the position of the free surface both methods, free surface tracking and Volume-Of-Fluid (VOF), are applied. (author)
Wind Turbine Rotor Simulation via CFD Based Actuator Disc Technique Compared to Detailed Measurement
Directory of Open Access Journals (Sweden)
Esmail Mahmoodi
2015-10-01
Full Text Available In this paper, a generalized Actuator Disc (AD is used to model the wind turbine rotor of the MEXICO experiment, a collaborative European wind turbine project. The AD model as a combination of CFD technique and User Defined Functions codes (UDF, so-called UDF/AD model is used to simulate loads and performance of the rotor in three different wind speed tests. Distributed force on the blade, thrust and power production of the rotor as important designing parameters of wind turbine rotors are focused to model. A developed Blade Element Momentum (BEM theory as a code based numerical technique as well as a full rotor simulation both from the literature are included into the results to compare and discuss. The output of all techniques is compared to detailed measurements for validation, which led us to final conclusions.
CFD Study of Gas Dispersion and Jet Fires in Complex Geometries
DEFF Research Database (Denmark)
Osenbroch, Jørgen
been performed. The results have been compared to large scale experimental findings (Savvides et al. 1999, BG Technology & Shell Global Solutions April 1999). The pre-release ventilation rates are in good quantitative agreement with experiments and well within the criteria for acceptable performance......An implementation and validation of a gas dispersion model and a radiation model in the Computational Fluid Dynamics (CFD) code EXSIM (Sæter 1998, Hjertager et al. 1992) have been performed. The extended code is named FLEXSIM (Fire Leak Explosion Simulator). The computational simulations have been....... The predicted flammable gas volumes show an acceptable quantitative agreement with the majority of the measurements within a factor of two. The flammable gas volumes inside the module are in general over predicted but show an acceptable overall quantitative statistical performance. Two simulations with decaying...
Validation and evaluation of the advanced aeronautical CFD system SAUNA: A method developer's view
Shaw, J. A.; Peace, A. J.; Georgala, J. M.; Childs, P. N.
1993-09-01
This paper is concerned with a detailed validation and evaluation of the SAUNA CFD system for complex aircraft configurations. The methodology of the complete system is described in brief, including its unique use of differing grid generation strategies (structured, unstructured or both) depending on the geometric complexity of the configuration. A wide range of configurations and flow conditions are chosen in the validation and evaluation exercise to demonstrate the scope of SAUNA. A detailed description of the results from the method is preceded by a discussion on the philosophy behind the strategy followed in the exercise, in terms of equality assessment and the differing roles of the code developer and the code user. It is considered that SAUNA has grown into a highly usable tool for the aircraft designer, in combining flexibility and accuracy in an efficient manner.
CFD Predictions for Transonic Performance of the ERA Hybrid Wing-Body Configuration
Deere, Karen A.; Luckring, James M.; McMillin, S. Naomi; Flamm, Jeffrey D.; Roman, Dino
2016-01-01
A computational study was performed for a Hybrid Wing Body configuration that was focused at transonic cruise performance conditions. In the absence of experimental data, two fully independent computational fluid dynamics analyses were conducted to add confidence to the estimated transonic performance predictions. The primary analysis was performed by Boeing with the structured overset-mesh code OVERFLOW. The secondary analysis was performed by NASA Langley Research Center with the unstructured-mesh code USM3D. Both analyses were performed at full-scale flight conditions and included three configurations customary to drag buildup and interference analysis: a powered complete configuration, the configuration with the nacelle/pylon removed, and the powered nacelle in isolation. The results in this paper are focused primarily on transonic performance up to cruise and through drag rise. Comparisons between the CFD results were very good despite some minor geometric differences in the two analyses.
A proposed framework for computational fluid dynamics code calibration/validation
Energy Technology Data Exchange (ETDEWEB)
Oberkampf, W.L.
1993-12-31
The paper reviews the terminology and methodology that have been introduced during the last several years for building confidence n the predictions from Computational Fluid Dynamics (CID) codes. Code validation terminology developed for nuclear reactor analyses and aerospace applications is reviewed and evaluated. Currently used terminology such as ``calibrated code,`` ``validated code,`` and a ``validation experiment`` is discussed along with the shortcomings and criticisms of these terms. A new framework is proposed for building confidence in CFD code predictions that overcomes some of the difficulties of past procedures and delineates the causes of uncertainty in CFD predictions. Building on previous work, new definitions of code verification and calibration are proposed. These definitions provide more specific requirements for the knowledge level of the flow physics involved and the solution accuracy of the given partial differential equations. As part of the proposed framework, categories are also proposed for flow physics research, flow modeling research, and the application of numerical predictions. The contributions of physical experiments, analytical solutions, and other numerical solutions are discussed, showing that each should be designed to achieve a distinctively separate purpose in building confidence in accuracy of CFD predictions. A number of examples are given for each approach to suggest methods for obtaining the highest value for CFD code quality assurance.
Benitez Molina, Adolfo; de La Garza de Leon, Oscar Alejandro; Martinez Martinez, Simon; Sanchez Cruz, Fausto Alejandro
2015-03-01
In this work has been studied the effects of the transport properties of biodiesel derived from soybean on the mixing process, using a CFD code OpenFOAM. For this the most relevant properties in this mixing process have been determined: density, viscosity, surface tension and vapor pressure. These fuel properties govern the spray formation however, there are only very limited studies that determined for its subsequent implementation in a CFD code, such as the OpenFOAM code. Such properties were obtained using empirical correlations based on the molecular structure of the fatty acids that compose the biodiesel and applying nonlinear regression are implemented in the programed models used in the OpenFOAM code for a diesel spray simulation. The results achieved in the present study on the one side, have been confirmed how the biodiesel properties affect the mixture process, and on the other side, the obtained coefficients which can be used in the proposed models by the CFD code OpenFOAM for the implementation of this properties as a temperature function without the correlations based on the molecular structure of the fatty acid. Also they thank the CONACYT from Mexican Government for granting the Master degree of Adolfo Benitez.
Sun, Rui; Xiao, Heng
2016-04-01
With the growth of available computational resource, CFD-DEM (computational fluid dynamics-discrete element method) becomes an increasingly promising and feasible approach for the study of sediment transport. Several existing CFD-DEM solvers are applied in chemical engineering and mining industry. However, a robust CFD-DEM solver for the simulation of sediment transport is still desirable. In this work, the development of a three-dimensional, massively parallel, and open-source CFD-DEM solver SediFoam is detailed. This solver is built based on open-source solvers OpenFOAM and LAMMPS. OpenFOAM is a CFD toolbox that can perform three-dimensional fluid flow simulations on unstructured meshes; LAMMPS is a massively parallel DEM solver for molecular dynamics. Several validation tests of SediFoam are performed using cases of a wide range of complexities. The results obtained in the present simulations are consistent with those in the literature, which demonstrates the capability of SediFoam for sediment transport applications. In addition to the validation test, the parallel efficiency of SediFoam is studied to test the performance of the code for large-scale and complex simulations. The parallel efficiency tests show that the scalability of SediFoam is satisfactory in the simulations using up to O(107) particles.
Lopes, Leonard; Redonnet, Stephane; Imamura, Taro; Ikeda, Tomoaki; Zawodny, Nikolas; Cunha, Guilherme
2015-01-01
The usage of Computational Fluid Dynamics (CFD) in noise prediction typically has been a two part process: accurately predicting the flow conditions in the near-field and then propagating the noise from the near-field to the observer. Due to the increase in computing power and the cost benefit when weighed against wind tunnel testing, the usage of CFD to estimate the local flow field of complex geometrical structures has become more routine. Recently, the Benchmark problems in Airframe Noise Computation (BANC) workshops have provided a community focus on accurately simulating the local flow field near the body with various CFD approaches. However, to date, little effort has been given into assessing the impact of the propagation phase of noise prediction. This paper includes results from the BANC-III workshop which explores variability in the propagation phase of CFD-based noise prediction. This includes two test cases: an analytical solution of a quadrupole source near a sphere and a computational solution around a nose landing gear. Agreement between three codes was very good for the analytic test case, but CFD-based noise predictions indicate that the propagation phase can introduce 3dB or more of variability in noise predictions.
Latorre, Jose I
2015-01-01
There exists a remarkable four-qutrit state that carries absolute maximal entanglement in all its partitions. Employing this state, we construct a tensor network that delivers a holographic many body state, the H-code, where the physical properties of the boundary determine those of the bulk. This H-code is made of an even superposition of states whose relative Hamming distances are exponentially large with the size of the boundary. This property makes H-codes natural states for a quantum memory. H-codes exist on tori of definite sizes and get classified in three different sectors characterized by the sum of their qutrits on cycles wrapped through the boundaries of the system. We construct a parent Hamiltonian for the H-code which is highly non local and finally we compute the topological entanglement entropy of the H-code.
CFD modelling of supercritical water flow and heat transfer in a 2 × 2 fuel rod bundle
Energy Technology Data Exchange (ETDEWEB)
Podila, Krishna, E-mail: krishna.podila@cnl.ca; Rao, Yanfei, E-mail: yanfei.rao@cnl.ca
2016-05-15
Highlights: • Bare and wire wrapped 2 × 2 fuel rod bundles were modelled with CFD. • Sensitivity of predictions to SST k–ω, v{sup 2}–f and turbulent Prandtl number was tested. • CFD predictions were assessed with experimentally reported fuel wall temperatures. - Abstract: In the present assessment of the CFD code, two heat transfer experiments using water at supercritical pressures were selected: a 2 × 2 rod bare bundle; and a 2 × 2 rod wire-wrapped bundle. A systematic 3D CFD study of the fluid flow and heat transfer at supercritical pressures for the rod bundle geometries was performed with the key parameter being the fuel rod wall temperature. The sensitivity of the prediction to the steady RANS turbulence models of SST k–ω, v{sup 2}–f and turbulent Prandtl number (Pr{sub t}) was tested to ensure the reliability of the predicted wall temperature obtained for the current analysis. Using the appropriate turbulence model based on the sensitivity analysis, the mesh refinement, or the grid convergence, was performed for the two geometries. Following the above sensitivity analyses and mesh refinements, the recommended CFD model was then assessed against the measurements from the two experiments. It was found that the CFD model adopted in the current work was able to qualitatively capture the trends reported by the experiments but the degree of temperature rise along the heated length was underpredicted. Moreover, the applicability of turbulence models varied case-by-case and the performance evaluation of the turbulence models was primarily based on its ability to predict the experimentally reported fuel wall temperatures. Of the two turbulence models tested, the SST k–ω was found to be better at capturing the measurements at pseudo-critical and supercritical test conditions, whereas the v{sup 2}–f performed better at sub-critical test conditions. Along with the appropriate turbulence model, CFD results were found to be particularly sensitive to
Kubilius, Jonas
2014-01-01
Sharing code is becoming increasingly important in the wake of Open Science. In this review I describe and compare two popular code-sharing utilities, GitHub and Open Science Framework (OSF). GitHub is a mature, industry-standard tool but lacks focus towards researchers. In comparison, OSF offers a one-stop solution for researchers but a lot of functionality is still under development. I conclude by listing alternative lesser-known tools for code and materials sharing.
Recent Updates to the CFD General Notation System (CGNS)
Rumsey, Christopher L.; Wedan, Bruce; Hauser, Thomas; Poinot, Marc
2012-01-01
The CFD General Notation System (CGNS) - a general, portable, and extensible standard for the storage and retrieval of computational fluid dynamics (CFD) analysis data has been in existence for more than a decade (Version 1.0 was released in May 1998). Both structured and unstructured CFD data are covered by the standard, and CGNS can be easily extended to cover any sort of data imaginable, while retaining backward compatibility with existing CGNS data files and software. Although originally designed for CFD, it is readily extendable to any field of computational analysis. In early 2011, CGNS Version 3.1 was released, which added significant capabilities. This paper describes these recent enhancements and highlights the continued usefulness of the CGNS methodology.
A Multi-Physics CFD Toolkit for Reentry Flows Project
National Aeronautics and Space Administration — AeroSoft proposes to develop a full featured CFD toolkit for analysis of the aerothermal environment and its effect on space vehicles. In Phase I, AeroSoft proposes...
CFD as a seakeeping tool for ship design
Directory of Open Access Journals (Sweden)
Sungeun Peter Kim
2011-03-01
Full Text Available Seakeeping analysis has progressed from the linear frequency-domain 2D strip method to the nonlinear time-domain 3D panel method. Nevertheless, the violent free surface flows such as slamming and green water on deck are beyond the scope of traditional panel methods based on potential theory. Recently, Computational Fluid Dynamics (CFD has become an attractive numerical tool that can effectively deal with the violent free surface flows. ABS, as a classification society, is putting forth a significant amount of effort to implement the CFD technology to the advanced strength assessment of modern commercial ships and high-speed naval craft. The main objective of this study is to validate the CFD technology as a seakeeping tool for ship design considering fully nonlinear three-dimensional slamming and green water on deck. The structural loads on a large container carrier were successfully calculated from the CFD analysis and validated with segmented model test measurements.
CFD Simulation of the NREL Phase VI Rotor
Song, Yang
2014-01-01
The simulation of the turbulent and potentially separating flow around a rotating, twisted, and tapered airfoil is a challenging task for CFD simulations. This paper describes CFD simulations of the NREL Phase VI turbine that was experimentally characterized in the 24.4m x 36.6m NREL/NASA Ames wind tunnel (Hand et al., 2001). All computations in this article are performed on the experimental base configuration of 0o yaw angle, 3o tip pitch angle, and a rotation rate of 72 rpm. The significance of specific mesh resolution regions to the accuracy of the CFD prediction is discussed. The ability of CFD to capture bulk quantities, such as the shaft torque, and the detailed flow characteristics, such as the surface pressure distributions, are explored for different inlet wind speeds. Finally, the significant three-dimensionality of the boundary layer flow is demonstrated.
Rotor Airloads Prediction Using Unstructured Meshes and Loose CFD/CSD Coupling
Biedron, Robert T.; Lee-Rausch, Elizabeth M.
2008-01-01
The FUN3D unsteady Reynolds-averaged Navier-Stokes solver for unstructured grids has been modified to allow prediction of trimmed rotorcraft airloads. The trim of the rotorcraft and the aeroelastic deformation of the rotor blades are accounted for via loose coupling with the CAMRAD II rotorcraft computational structural dynamics code. The set of codes is used to analyze the HART-II Baseline, Minimum Noise and Minimum Vibration test conditions. The loose coupling approach is found to be stable and convergent for the cases considered. Comparison of the resulting airloads and structural deformations with experimentally measured data is presented. The effect of grid resolution and temporal accuracy is examined. Rotorcraft airloads prediction presents a very substantial challenge for Computational Fluid Dynamics (CFD). Not only must the unsteady nature of the flow be accurately modeled, but since most rotorcraft blades are not structurally stiff, an accurate simulation must account for the blade structural dynamics. In addition, trim of the rotorcraft to desired thrust and moment targets depends on both aerodynamic loads and structural deformation, and vice versa. Further, interaction of the fuselage with the rotor flow field can be important, so that relative motion between the blades and the fuselage must be accommodated. Thus a complete simulation requires coupled aerodynamics, structures and trim, with the ability to model geometrically complex configurations. NASA has recently initiated a Subsonic Rotary Wing (SRW) Project under the overall Fundamental Aeronautics Program. Within the context of SRW are efforts aimed at furthering the state of the art of high-fidelity rotorcraft flow simulations, using both structured and unstructured meshes. Structured-mesh solvers have an advantage in computation speed, but even though remarkably complex configurations may be accommodated using the overset grid approach, generation of complex structured-mesh systems can require
Case studies from the REHVA CFD guide book
DEFF Research Database (Denmark)
Nielsen, Peter V.
2008-01-01
This paper presents CFD predictions which are used at different levels, from the evaluation of an idea to the design of a system, or for the analysing work on an existing building.......This paper presents CFD predictions which are used at different levels, from the evaluation of an idea to the design of a system, or for the analysing work on an existing building....
On development of CFD platform for blade rows
Nishizawa, Toshio; Nozaki, Osamu; Nakamura, Takashi; Fukuda, Masahiro; Kato, Akifumi; Sukemura, Shuniti; Kawasaki, Takuji; 西澤 敏雄; 野崎 理; 中村 孝; 福田 正大; 加藤 昭史; 助村 俊一; 川崎 琢治
2000-01-01
The present paper shows a CFD (Computational Fluid Dynamics) platform for blade rows, which realize efficient engineering environment for aerodynamic designers of turbomachine for aircraft engines, ships and electric power plants. The platform consists of PCs, WSs (Workstations) and supercomputers on network. It provides graphic user interfaces on these computers to control the CFD programs, so that the designers can operate very easily their tasks such as generating the computational grids, ...
CFD simulations of filling and emptying of hydrogen tanks
MELIDEO DANIELE; BARALDI DANIELE; ACOSTA IBORRA BEATRIZ; ORTIZ CEBOLLA RAFAEL; MORETTO PIETRO
2016-01-01
During the filling of hydrogen tanks high temperatures can be generated inside the vessel because of the gas compression while during the emptying low temperatures can be reached because of the gas expansion. The design temperature range goes from 40 C to 85 C. Temperatures outside that range could affect the mechanical properties of the tank materials. CFD analyses of the filling and emptying processes have been performed in the HyTransfer project. To assess the accuracy of the CFD model the...
CFD Modeling of LNG Spill: Humidity Effect on Vapor Dispersion
Giannissi, S. G.; Venetsanos, A. G.; Markatos, N.
2015-09-01
The risks entailed by an accidental spill of Liquefied Natural Gas (LNG) should be indentified and evaluated, in order to design measures for prevention and mitigation in LNG terminals. For this purpose, simulations are considered a useful tool to study LNG spills and to understand the mechanisms that influence the vapor dispersion. In the present study, the ADREA-HF CFD code is employed to simulate the TEEX1 experiment. The experiment was carried out at the Brayton Fire Training Field, which is affiliated with the Texas A&M University system and involves LNG release and dispersion over water surface in open- obstructed environment. In the simulation the source was modeled as a two-phase jet enabling the prediction of both the vapor dispersion and the liquid pool spreading. The conservation equations for the mixture are solved along with the mass fraction for natural gas. Due to the low prevailing temperatures during the spill ambient humidity condenses and this might affect the vapor dispersion. This effect was examined in this work by solving an additional conservation equation for the water mass fraction. Two different models were tested: the hydrodynamic equilibrium model which assumes kinetic equilibrium between the phases and the non hydrodynamic equilibrium model, in order to assess the effect of slip velocity on the prediction. The slip velocity is defined as the difference between the liquid phase and the vapor phase and is calculated using the algebraic slip model. Constant droplet diameter of three different sizes and a lognormal distribution of the droplet diameter were applied and the results are discussed and compared with the measurements.
Energy Technology Data Exchange (ETDEWEB)
Martinez, M.; Miro, R.; Barrachina, T.; Verdu, G.
2011-07-01
This paper presents the results from the calculation of the steady state simulation with model of CFD (computational fluid dynamic) operating under conditions of operation at full power (Hot Full Power). Development and the CFD model results show the usefulness of these codes for calculating 3D of the variable thermohydraulics of these reactors.
CFD Simulation of Gasoline Compression Ignition
Energy Technology Data Exchange (ETDEWEB)
Kodavasal, Janardhan; Kolodziej, Christopher P.; Ciatti, Stephen A.; Som, Sibendu
2015-05-01
Gasoline compression ignition (GCI) is a low temperature combustion (LTC) concept that has been gaining increasing interest over the recent years owing to its potential to achieve diesel-like thermal efficiencies with significantly reduced engine-out nitrogen oxides (NOx) and soot emissions compared to diesel engines. In this work, closed-cycle computational fluid dynamics (CFD) simulations are performed of this combustion mode using a sector mesh in an effort to understand effects of model settings on simulation results. One goal of this work is to provide recommendations for grid resolution, combustion model, chemical kinetic mechanism, and turbulence model to accurately capture experimental combustion characteristics. Grid resolutions ranging from 0.7 mm to 0.1 mm minimum cell sizes were evaluated in conjunction with both Reynolds averaged Navier-Stokes (RANS) and Large Eddy Simulation (LES) based turbulence models. Solution of chemical kinetics using the multi-zone approach is evaluated against the detailed approach of solving chemistry in every cell. The relatively small primary reference fuel (PRF) mechanism (48 species) used in this study is also evaluated against a larger 312-species gasoline mechanism. Based on these studies the following model settings are chosen keeping in mind both accuracy and computation costs – 0.175 mm minimum cell size grid, RANS turbulence model, 48-species PRF mechanism, and multi-zone chemistry solution with bin limits of 5 K in temperature and 0.05 in equivalence ratio. With these settings, the performance of the CFD model is evaluated against experimental results corresponding to a low load start of injection (SOI) timing sweep. The model is then exercised to investigate the effect of SOI on combustion phasing with constant intake valve closing (IVC) conditions and fueling over a range of SOI timings to isolate the impact of SOI on charge preparation and ignition. Simulation results indicate that there is an optimum SOI
CFD Modeling for Mercury Control Technology
Energy Technology Data Exchange (ETDEWEB)
Madsen, J.I.
2006-12-01
Compliance with the Clean Air Mercury Rule will require implementation of dedicated mercury control solutions at a significant portion of the U.S. coal-fired utility fleet. Activated Carbon Injection (ACI) upstream of a particulate control device (ESP or baghouse) remains one of the most promising near-term mercury control technologies. The DOE/NETL field testing program has advanced the understanding of mercury control by ACI, but a persistent need remains to develop predictive models that may improve the understanding and practical implementation of this technology. This presentation describes the development of an advanced model of in-flight mercury capture based on Computational Fluid Dynamics (CFD). The model makes detailed predictions of the induct spatial distribution and residence time of sorbent, as well as predictions of mercury capture efficiency for particular sorbent flow rates and injection grid configurations. Hence, CFD enables cost efficient optimization of sorbent injection systems for mercury control to a degree that would otherwise be impractical both for new and existing plants. In this way, modeling tools may directly address the main cost component of operating an ACI system – the sorbent expense. A typical 300 MW system is expected to require between $1 and $2 million of sorbent per year, and so even modest reductions (say 10-20%) in necessary sorbent feed injection rates will quickly make any optimization effort very worthwhile. There are few existing models of mercury capture, and these typically make gross assumptions of plug gas flow, zero velocity slip between particle and gas phase, and uniform sorbent dispersion. All of these assumptions are overcome with the current model, which is based on first principles and includes mass transfer processes occurring at multiple scales, ranging from the large-scale transport in the duct to transport within the porous structure of a sorbent particle. In principle any single one of these processes
DEFF Research Database (Denmark)
Cox, Geoff
Speaking Code begins by invoking the “Hello World” convention used by programmers when learning a new language, helping to establish the interplay of text and code that runs through the book. Interweaving the voice of critical writing from the humanities with the tradition of computing and software...
2014-12-01
QPSK Gaussian channels . .......................................................................... 39 vi 1. INTRODUCTION Forward error correction (FEC...Capacity of BSC. 7 Figure 5. Capacity of AWGN channel . 8 4. INTRODUCTION TO POLAR CODES Polar codes were introduced by E. Arikan in [1]. This paper...Under authority of C. A. Wilgenbusch, Head ISR Division EXECUTIVE SUMMARY This report describes the results of the project “More reliable wireless
Directory of Open Access Journals (Sweden)
Christian F. Janßen
2015-07-01
Full Text Available This contribution is dedicated to demonstrating the high potential and manifold applications of state-of-the-art computational fluid dynamics (CFD tools for free-surface flows in civil and environmental engineering. All simulations were performed with the academic research code ELBE (efficient lattice boltzmann environment, http://www.tuhh.de/elbe. The ELBE code follows the supercomputing-on-the-desktop paradigm and is especially designed for local supercomputing, without tedious accesses to supercomputers. ELBE uses graphics processing units (GPU to accelerate the computations and can be used in a single GPU-equipped workstation of, e.g., a design engineer. The code has been successfully validated in very different fields, mostly related to naval architecture and mechanical engineering. In this contribution, we give an overview of past and present applications with practical relevance for civil engineers. The presented applications are grouped into three major categories: (i tsunami simulations, considering wave propagation, wave runup, inundation and debris flows; (ii dam break simulations; and (iii numerical wave tanks for the calculation of hydrodynamic loads on fixed and moving bodies. This broad range of applications in combination with accurate numerical results and very competitive times to solution demonstrates that modern CFD tools in general, and the ELBE code in particular, can be a helpful design tool for civil and environmental engineers.
A CFD analysis of controlled flutter phenomenon
Directory of Open Access Journals (Sweden)
Thirusangu Velmurugan
2016-01-01
Full Text Available In the present study, the concept of aero elastic wind energy generator is utilized wind turbines and it applied to produce electricity at low wind speeds. Flutter is the mechanism of dynamic instability in which the energy can be extracted from the wind. This energy might possibly transform into electric power. A straight rectangular wing with single degree of freedom at stalling angle is employed to do suitable work for producing power. A computational model of aero elastic wind energy generator is developed by using ICEM CFD and the flow analysis is carried out at different speeds for the prediction of co-efficient of power for the proposed device. Further a small model is experimentally fabricated and tested in a wind tunnel with different velocities using non-linear theory to predict the power co-efficient of a model. The test results from experiment are compared with the computational results. Thus it is evident that the correlated results are accurate within the acceptable range. The input from the flow analysis is used for structural analysis in ANSYS. The frequency, amplitude of oscillation and phase response of the proposed system can be obtained and it compared with the numerical values from MATLAB simulation of the same system to ensure for obtaining sustained oscillation which is capable of producing power. The flutter mechanism is having the advantage of producing power at very low velocity, eventhough low efficiency.
CFD analysis of a ball check microvalve
Cǎlimǎnescu, Ioan; Dumitrache, Constantin L.; Grigorescu, Lucian
2015-02-01
The microvalves with balls as seen before are used in many applications and their behaviour in terms of fluid dynamics mainly at their opening time (when as demonstrated the ball is bouncing up and down altering the flow parameters) is of a paramount importance. The present study is focused on a micro check ball valve circulating a fluid air-like (with the same constant proprieties). The CFD model is taking into account a transitory zone of functioning from zero time when the pressure inside a "tank" is reaching the opening pressure of the valve, to the final step 0.05 seconds when the ball is stabilizing after bouncing up and down. The geometry of the valve with dimensions in μm is given below (the model is comprising a "slice" of 5 μm thickness extracted from the entire valve. In this paper by using advanced numeric techniques, the behavior of the valve in its transitory opening stage was studied with credible and useful results for further optimisation studies.
CFD for Subcooled Flow Boiling: Parametric Variations
Directory of Open Access Journals (Sweden)
Roland Rzehak
2013-01-01
Full Text Available We investigate the present capabilities of CFD for wall boiling. The computational model used combines the Euler/Euler two-phase flow description with heat flux partitioning. Very similar modeling was previously applied to boiling water under high pressure conditions relevant to nuclear power systems. Similar conditions in terms of the relevant nondimensional numbers have been realized in the DEBORA tests using dichlorodifluoromethane (R12 as the working fluid. This facilitated measurements of radial profiles for gas volume fraction, gas velocity, liquid temperature, and bubble size. Robust predictive capabilities of the modeling require that it is validated for a wide range of parameters. It is known that a careful calibration of correlations used in the wall boiling model is necessary to obtain agreement with the measured data. We here consider tests under a variety of conditions concerning liquid subcooling, flow rate, and heat flux. It is investigated to which extent a set of calibrated model parameters suffices to cover at least a certain parameter range.
Axisymmetric Afterbody Test Case for CFD Validation
Disotell, Kevin; Rumsey, Christopher
2016-11-01
As simulation complexity increases, the corresponding need for systematic, high-fidelity validation data sets continues to be important to advance physics-based CFD models. To this end, a parametric body of revolution is proposed as an experimental platform to support a wide validation domain for turbulent boundary layers outside the current bounds of DNS. Recognizing the challenges of detailed flow exploration on complex 3-D geometries, an analytically-defined body of revolution is pursued as a tractable, state-of-the-art measurement case for complex turbulent flows having extra rates of strain. The central feature of the concept based upon work by Presz Jr. & Pitkin is an interchangeable afterbody which can be tailored to distort a turbulent boundary layer in various ways, with incoming properties controlled by the forebody. An introduction to the test case design and overview of recent progress focused on smooth-body, turbulent separation physics are presented. Supported by appointment to NASA Postdoctoral Program, administered by Universities Space Research Association.
CFD and FEM modeling of PPOOLEX experiments
Energy Technology Data Exchange (ETDEWEB)
Paettikangas, T.; Niemi, J.; Timperi, A. (VTT Technical Research Centre of Finland (Finland))
2011-01-15
Large-break LOCA experiment performed with the PPOOLEX experimental facility is analysed with CFD calculations. Simulation of the first 100 seconds of the experiment is performed by using the Euler-Euler two-phase model of FLUENT 6.3. In wall condensation, the condensing water forms a film layer on the wall surface, which is modelled by mass transfer from the gas phase to the liquid water phase in the near-wall grid cell. The direct-contact condensation in the wetwell is modelled with simple correlations. The wall condensation and direct-contact condensation models are implemented with user-defined functions in FLUENT. Fluid-Structure Interaction (FSI) calculations of the PPOOLEX experiments and of a realistic BWR containment are also presented. Two-way coupled FSI calculations of the experiments have been numerically unstable with explicit coupling. A linear perturbation method is therefore used for preventing the numerical instability. The method is first validated against numerical data and against the PPOOLEX experiments. Preliminary FSI calculations are then performed for a realistic BWR containment by modeling a sector of the containment and one blowdown pipe. For the BWR containment, one- and two-way coupled calculations as well as calculations with LPM are carried out. (Author)
CFD simulation of gas and particles combustion in biomass furnaces
Energy Technology Data Exchange (ETDEWEB)
Griselin, Nicolas
2000-11-01
In this thesis, gas and particle combustion in biomass furnaces is investigated numerically. The aim of this thesis is to use Computational Fluid Dynamics (CFD) technology as an effective computer based simulation tool to study and develop the combustion processes in biomass furnaces. A detailed model for the numerical simulation of biomass combustion in a furnace, including fixed-bed modeling, gas-phase calculation (species distribution, temperature field, flow field) and gas-solid two-phase interaction for flying burning particles is presented. This model is used to understand the mechanisms of combustion and pollutant emissions under different conditions in small scale and large scale furnaces. The code used in the computations was developed at the Division of Fluid Mechanics, LTH. The flow field in the combustion enclosure is calculated by solving the Favre-averaged Navier-Stokes equations, with standard {kappa} - {epsilon} turbulence closure, together with the energy conservation equation and species transport equations. Discrete transfer method is used for calculating the radiation source term in the energy conservation equation. Finite difference is used to solve the general form of the equation yielding solutions for gas-phase temperatures, velocities, turbulence intensities and species concentrations. The code has been extended through this work in order to include two-phase flow simulation of particles and gas combustion. The Favre-averaged gas equations are solved in a Eulerian framework while the submodels for particle motion and combustion are used in the framework of a Lagrangian approach. Numerical simulations and measurement data of unburned hydrocarbons (UHC), CO, H{sub 2}, O{sub 2} and temperature on the top of the fixed bed are used to model the amount of tar and char formed during pyrolysis and combustion of biomass fuel in the bed. Different operating conditions are examined. Numerical calculations are compared with the measured data. It is
CFD Wake Modelling with a BEM Wind Turbine Sub-Model
Directory of Open Access Journals (Sweden)
Anders Hallanger
2013-01-01
Full Text Available Modelling of wind farms using computational fluid dynamics (CFD resolving the flow field around each wind turbine's blades on a moving computational grid is still too costly and time consuming in terms of computational capacity and effort. One strategy is to use sub-models for the wind turbines, and sub-grid models for turbulence production and dissipation to model the turbulent viscosity accurately enough to handle interaction of wakes in wind farms. A wind turbine sub-model, based on the Blade Momentum Theory, see Hansen (2008, has been implemented in an in-house CFD code, see Hallanger et al. (2002. The tangential and normal reaction forces from the wind turbine blades are distributed on the control volumes (CVs at the wind turbine rotor location as sources in the conservation equations of momentum. The classical k-epsilon turbulence model of Launder and Spalding (1972 is implemented with sub-grid turbulence (SGT model, see Sha and Launder (1979 and Sand and Salvesen (1994. Steady state CFD simulations were compared with flow and turbulence measurements in the wake of a model scale wind turbine, see Krogstad and Eriksen (2011. The simulated results compared best with experiments when stalling (boundary layer separation on the wind turbine blades did not occur. The SGT model did improve turbulence level in the wake but seems to smear the wake flow structure. It should be noted that the simulations are carried out steady state not including flow oscillations caused by vortex shedding from tower and blades as they were in the experiments. Further improvement of the simulated velocity defect and turbulence level seems to rely on better parameter estimation to the SGT model, improvements to the SGT model, and possibly transient- instead of steady state simulations.
Energy Technology Data Exchange (ETDEWEB)
Kang, Shin K., E-mail: paengki1@tamu.edu; Hassan, Yassin A.
2016-05-15
Highlights: • The capabilities of steady RANS models were directly assessed for full axial scale experiment. • The importance of mesh and conjugate heat transfer was reaffirmed. • The rod inner-surface temperature was directly compared. • The steady RANS calculations showed a limitation in the prediction of circumferential distribution of the rod surface temperature. - Abstract: This study examined the capabilities and limitations of steady Reynolds-Averaged Navier–Stokes (RANS) approach for pressurized water reactor (PWR) rod bundle problems, based on the round robin benchmark of computational fluid dynamics (CFD) codes against the NESTOR experiment for a 5 × 5 rod bundle with typical split-type mixing vane grids (MVGs). The round robin exercise against the high-fidelity, broad-range (covering multi-spans and entire lateral domain) NESTOR experimental data for both the flow field and the rod temperatures enabled us to obtain important insights into CFD prediction and validation for the split-type MVG PWR rod bundle problem. It was found that the steady RANS turbulence models with wall function could reasonably predict two key variables for a rod bundle problem – grid span pressure loss and the rod surface temperature – once mesh (type, resolution, and configuration) was suitable and conjugate heat transfer was properly considered. However, they over-predicted the magnitude of the circumferential variation of the rod surface temperature and could not capture its peak azimuthal locations for a central rod in the wake of the MVG. These discrepancies in the rod surface temperature were probably because the steady RANS approach could not capture unsteady, large-scale cross-flow fluctuations and qualitative cross-flow pattern change due to the laterally confined test section. Based on this benchmarking study, lessons and recommendations about experimental methods as well as CFD methods were also provided for the future research.
The Dalles Dam, Columbia River: Spillway Improvement CFD Study
Energy Technology Data Exchange (ETDEWEB)
Cook, Chris B.; Richmond, Marshall C.; Serkowski, John A.
2006-06-01
This report documents development of computational fluid dynamics (CFD) models that were applied to The Dalles spillway for the US Army Corps of Engineers, Portland District. The models have been successfully validated against physical models and prototype data, and are suitable to support biological research and operations management. The CFD models have been proven to provide reliable information in the turbulent high-velocity flow field downstream of the spillway face that is typically difficult to monitor in the prototype. In addition, CFD data provides hydraulic information throughout the solution domain that can be easily extracted from archived simulations for later use if necessary. This project is part of an ongoing program at the Portland District to improve spillway survival conditions for juvenile salmon at The Dalles. Biological data collected at The Dalles spillway have shown that for the original spillway configuration juvenile salmon passage survival is lower than desired. Therefore, the Portland District is seeking to identify operational and/or structural changes that might be implemented to improve fish passage survival. Pacific Northwest National Laboratory (PNNL) went through a sequence of steps to develop a CFD model of The Dalles spillway and tailrace. The first step was to identify a preferred CFD modeling package. In the case of The Dalles spillway, Flow-3D was as selected because of its ability to simulate the turbulent free-surface flows that occur downstream of each spilling bay. The second step in development of The Dalles CFD model was to assemble bathymetric datasets and structural drawings sufficient to describe the dam (powerhouse, non-overflow dam, spillway, fish ladder entrances, etc.) and tailrace. These datasets are documented in this report as are various 3-D graphical representations of The Dalles spillway and tailrace. The performance of the CFD model was then validated for several cases as the third step. The validated model
Energy Technology Data Exchange (ETDEWEB)
Pialla, David, E-mail: david.pialla@cea.fr [Commissariat à l’Energie Atomique et aux Energies Alternatives (CEA), DEN/DM2S/STMF, 17 rue des martyrs, 38054 Grenoble Cedex 9 (France); Tenchine, Denis [Commissariat à l’Energie Atomique et aux Energies Alternatives (CEA), DEN/DM2S/STMF, 17 rue des martyrs, 38054 Grenoble Cedex 9 (France); Li, Simon [Commissariat à l’Energie Atomique et aux Energies Alternatives (CEA), DEN/DM2S/STMF, 91191 Gif-sur-Yvette Cedex (France); Gauthe, Paul; Vasile, Alfredo [Commissariat à l’Energie Atomique et aux Energies Alternatives (CEA), DEN/DER/SESI, 13108 Saint Paul Lez Durance Cedex (France); Baviere, Roland; Tauveron, Nicolas; Perdu, Fabien [Commissariat à l’Energie Atomique et aux Energies Alternatives (CEA), DEN/DM2S/STMF, 17 rue des martyrs, 38054 Grenoble Cedex 9 (France); Maas, Ludovic; Cocheme, François [Institut de Radioprotection et de Sûreté Nucléaire (IRSN), PSN/SEMIA/BAST, B.P. 17, 92262 Fontenay-aux-Roses Cedex (France); Huber, Klaus; Cheng, Xu [Karlsruhe Institute of Technology (KIT), Institute of Fusion and Reactor Technology (IFRT), Kaiserstraße 12, Building 07.08, 76131 Karlsruhe (Germany)
2015-08-15
Highlights: • The PHENIX natural convection test performed during the end of life tests program. • The calculation with system codes and theirs limits. • The calculation with coupling CFD and system code, which allows better prediction. • The tasks of code validation have been done in the frame of the THINS project. - Abstract: The PHENIX sodium cooled fast reactor started operation in 1973 and was shut down in 2009. Before decommissioning, an ultimate test program was designed and performed to provide valuable data for the development of future sodium cooled fast reactors, as the so-called Astrid prototype in France. Among these ultimate tests, a thermal-hydraulic Natural Convection Test (NCT) was set-up in June 2009. Starting from a reduced power state of 120 MWt, the NCT consists of a loss of the heat sink combined with a reactor scram and a primary pumps trip leading to stabilized natural circulation in the primary sodium system. The thermal-hydraulics innovative system project (THINS project), sponsored by the European Community in the frame of the 7th FP has selected this transient for validation of both stand-alone system code simulations and coupled simulations using system and CFD codes. Participants from three organizations (CEA, IRSN and KIT) have addressed this transient using different system codes (CATHARE, DYN2B and ATHLET) and CFD codes (TRIO-U and OPEN FOAM). The present paper depicts the different modeling approaches, methodologies and compares the numerical results with the available experimental data. Finally, the main lessons learned from the work performed within the THINS project on the PHENIX NCT with respect to code development and validation are summarized.
CFD investigations of the aerodynamics of vehicle overtaking maneuvers
Uddin, Mesbah; Chellaram, Arune Dhiren; Robinson, Austin Clay
2017-06-01
When two vehicle bodies are involved in a passing maneuver, interesting and intricate aerodynamic interactions occur between them. Such passing maneuvers are very important in racing and have been an area of active interest in motorsports for quite some time. The existing literature shows only a few studies in this area, and, as such, very little is known about the complex aerodynamics of racing in proximity. This paper presents a Computational Fluid Dynamics (CFD) methodology capable of describing the transient effects that occur in this scenario. This is achieved by simulating two tandem simplified vehicle bodies, the Ahmed body, which were placed in a virtual wind tunnel. One Ahmed body was kept stationary, while the other was allowed to move in the longitudinal direction with a relatively low velocity. In order to achieve reliable CFD results when one of the solid objects is moving, a new meshing methodology, called the overset mesh model, was implemented in the CFD process. The simulations were run using Star CCM+, a commercial finite-volume CFD program, in which the unsteady Reynolds Averaged Navier-Stokes (URANS) solver was applied. The CFD results are compared against fully transient and quasi-steady-state experimental results where encouraging correlations between the CFD and experiments are observed. The veracity of the CFD work presented in this paper provides significant insight into the complex aerodynamics of a passing maneuver, and lays the foundation for further analysis in this area using more complex vehicle shapes and more complex tandem racing or passing maneuvers at a yaw angle.
Energy Technology Data Exchange (ETDEWEB)
N.D. Francis, Jr; M.T. Itamura; S.W. Webb; D.L. James
2002-10-01
The objective of this heat transfer and fluid flow study is to assess the ability of a computational fluid dynamics (CFD) code to reproduce the experimental results, numerical simulation results, and heat transfer correlation equations developed in the literature for natural convection heat transfer within the annulus of horizontal concentric cylinders. In the literature, a variety of heat transfer expressions have been developed to compute average equivalent thermal conductivities. However, the expressions have been primarily developed for very small inner and outer cylinder radii and gap-widths. In this comparative study, interest is primarily focused on large gap widths (on the order of half meter or greater) and large radius ratios. From the steady-state CFD analysis it is found that the concentric cylinder models for the larger geometries compare favorably to the results of the Kuehn and Goldstein correlations in the Rayleigh number range of about 10{sup 5} to 10{sup 8} (a range that encompasses the laminar to turbulent transition). For Rayleigh numbers greater than 10{sup 8}, both numerical simulations and experimental data (from the literature) are consistent and result in slightly lower equivalent thermal conductivities than those obtained from the Kuehn and Goldstein correlations.
CFD Analysis of a Slug Mixing Experiment Conducted on a VVER-1000 Model
Directory of Open Access Journals (Sweden)
F. Moretti
2009-01-01
Full Text Available A commercial CFD code was applied, for validation purposes, to the simulation of a slug mixing experiment carried out at OKB “Gidropress” scaled facility in the framework of EC TACIS project R2.02/02: “Development of safety analysis capabilities for VVER-1000 transients involving spatial variations of coolant properties (temperature or boron concentration at core inlet.” Such experimental model reproduces a VVER-1000 nuclear reactor and is aimed at investigating the in-vessel mixing phenomena. The addressed experiment involves the start-up of one of the four reactor coolant pumps (the other three remaining idle, and the presence of a tracer slug on the starting loop, which is thus transported to the reactor pressure vessel where it mixes with the clear water. Such conditions may occur in a boron dilution scenario, hence the relevance of the addressed phenomena for nuclear reactor safety. Both a pretest and a posttest CFD simulations of the mentioned experiment were performed, which differ in the definition of the boundary conditions (based either on nominal quantities or on measured quantities, resp.. The numerical results are qualitatively and quantitatively analyzed and compared against the measured data in terms of space and time tracer distribution at the core inlet. The improvement of the results due to the optimization of the boundary conditions is evidenced, and a quantification of the simulation accuracy is proposed.
A CFD-based analysis of the 14-Bis aircraft aerodynamics and stability
Directory of Open Access Journals (Sweden)
Leonardo Ostan Bitencourt
2011-05-01
Full Text Available The work reported in the present paper was performed to honor the centennial of the flight by Alberto Santos Dumont with his 14-Bis aircraft. The paper describes results for a computational fluid dynamics (CFD analysis of the 14-Bis aircraft aerodynamics and flight stability. The 14-Bis aircraft geometry was generated from historical sources and observations. CFD computations were performed using well-established commercial codes for calculation of the historical flight conditions. Simulations considered a Reynolds-averaged Navier-Stokes formulation, in which turbulence closure was achieved by using Menter's model. The flight conditions investigated were primarily concerned with historical observations regarding flight speeds and the need for a more powerful engine, as well as flight stability characteristics of the 14-Bis airplane, which are unknown up to the present day. The results led to qualitative agreement with historical reports, although quite interesting conclusions could be drawn with regard to the actual aerodynamic flight speeds and the aircraft stability parameters.
2D CFD Analysis of an Airfoil with Active Continuous Trailing Edge Flap
Jaksich, Dylan; Shen, Jinwei
2014-11-01
Efficient and quieter helicopter rotors can be achieved through on-blade control devices, such as active Continuous Trailing-Edge Flaps driven by embedded piezoelectric material. This project aims to develop a CFD simulation tool to predict the aerodynamic characteristics of an airfoil with CTEF using open source code: OpenFOAM. Airfoil meshes used by OpenFOAM are obtained with MATLAB scripts. Once created it is possible to rotate the airfoil to various angles of attack. When the airfoil is properly set up various OpenFOAM properties, such as kinematic viscosity and flow velocity, are altered to achieve the desired testing conditions. Upon completion of a simulation, the program gives the lift, drag, and moment coefficients as well as the pressure and velocity around the airfoil. The simulation is then repeated across multiple angles of attack to give full lift and drag curves. The results are then compared to previous test data and other CFD predictions. This research will lead to further work involving quasi-steady 2D simulations incorporating NASTRAN to model aeroelastic deformation and eventually to 3D aeroelastic simulations. NSF ECE Grant #1358991 supported the first author as an REU student.
CFD simulation of wood chip combustion on a grate using an Euler-Euler approach
Kurz, D.; Schnell, U.; Scheffknecht, G.
2012-04-01
Due to the increase of computational power, it is nowadays common practice to use CFD calculations for various kinds of firing systems in order to understand the internal physical phenomena and to optimise the overall process. Within the last years, biomass combustion for energy purposes has gained rising popularity. On an industrial scale, mainly grate firing systems are used for this purpose. Generally, such systems consist of a dense-packed fuel bed on the grate and the freeboard region above, where in the field of numerical modelling, it is common practice to use different sub-models for both zones. To avoid this, the objective of this paper is the presentation of a numerical model including a detailed three-dimensional description of the fuel bed and the freeboard region within the same CFD code. Because of the implementation as an Eulerian multiphase model, both zones are fully coupled in terms of flow and heat transfer, and appropriate models for the treatment of turbulence, radiation, and global reactions are presented. The model results are validated against detailed measurements of temperature and gaseous species close to the bed surface and within the radiative section of a 240 kW grate firing test facility.
CFD Modeling of Wall Steam Condensation: Two-Phase Flow Approach versus Homogeneous Flow Approach
Directory of Open Access Journals (Sweden)
S. Mimouni
2011-01-01
Full Text Available The present work is focused on the condensation heat transfer that plays a dominant role in many accident scenarios postulated to occur in the containment of nuclear reactors. The study compares a general multiphase approach implemented in NEPTUNE_CFD with a homogeneous model, of widespread use for engineering studies, implemented in Code_Saturne. The model implemented in NEPTUNE_CFD assumes that liquid droplets form along the wall within nucleation sites. Vapor condensation on droplets makes them grow. Once the droplet diameter reaches a critical value, gravitational forces compensate surface tension force and then droplets slide over the wall and form a liquid film. This approach allows taking into account simultaneously the mechanical drift between the droplet and the gas, the heat and mass transfer on droplets in the core of the flow and the condensation/evaporation phenomena on the walls. As concern the homogeneous approach, the motion of the liquid film due to the gravitational forces is neglected, as well as the volume occupied by the liquid. Both condensation models and compressible procedures are validated and compared to experimental data provided by the TOSQAN ISP47 experiment (IRSN Saclay. Computational results compare favorably with experimental data, particularly for the Helium and steam volume fractions.
High fidelity CFD-CSD aeroelastic analysis of slender bladed horizontal-axis wind turbine
Sayed, M.; Lutz, Th.; Krämer, E.; Shayegan, Sh.; Ghantasala, A.; Wüchner, R.; Bletzinger, K.-U.
2016-09-01
The aeroelastic response of large multi-megawatt slender horizontal-axis wind turbine blades is investigated by means of a time-accurate CFD-CSD coupling approach. A loose coupling approach is implemented and used to perform the simulations. The block- structured CFD solver FLOWer is utilized to obtain the aerodynamic blade loads based on the time-accurate solution of the unsteady Reynolds-averaged Navier-Stokes equations. The CSD solver Carat++ is applied to acquire the blade elastic deformations based on non-linear beam elements. In this contribution, the presented coupling approach is utilized to study the aeroelastic response of the generic DTU 10MW wind turbine. Moreover, the effect of the coupled results on the wind turbine performance is discussed. The results are compared to the aeroelastic response predicted by FLOWer coupled to the MBS tool SIMPACK as well as the response predicted by SIMPACK coupled to a Blade Element Momentum code for aerodynamic predictions. A comparative study among the different modelling approaches for this coupled problem is discussed to quantify the coupling effects of the structural models on the aeroelastic response.
A comparison of measurements and CFD model predictions for pollutant dispersion in cities.
Pospisil, J; Katolicky, J; Jicha, M
2004-12-01
An accurate description of car movements in an urban area is required for accurate prediction of the air pollution concentration field. A 3-D Eulerian-Lagrangian approach to moving vehicles that takes into account the traffic-induced flow field and turbulence is presented. The approach is based on Computational Fluid Dynamics (CFD) calculations using Eulerian approach to the continuous phase and Lagrangian approach to the discrete phase of moving objects-vehicles. In the first part of the present contribution, the method is applied to pollutants dispersion in a city tunnel outlet in Brno and to a street structure in Hannover, Germany. In the second part, a model of traffic dynamics inside a street intersection in the centre of Brno is presented. This model accounts for the dynamics of traffic lights and a corresponding traffic-generated flow field and emissions in different time intervals during the traffic light sequence. All results of numerical modelling are compared with field measurements with very good agreement. A commercial CFD code StarCD was used into which the Lagrangian model and traffic dynamics model were integrated.
CFD Recombiner Modelling and Validation on the H2-Par and Kali-H2 Experiments
Directory of Open Access Journals (Sweden)
Stéphane Mimouni
2011-01-01
Full Text Available A large amount of Hydrogen gas is expected to be released within the dry containment of a pressurized water reactor (PWR, shortly after the hypothetical beginning of a severe accident leading to the melting of the core. According to local gas concentrations, the gaseous mixture of hydrogen, air and steam can reach the flammability limit, threatening the containment integrity. In order to prevent mechanical loads resulting from a possible conflagration of the gas mixture, French and German reactor containments are equipped with passive autocatalytic recombiners (PARs which preventively oxidize hydrogen for concentrations lower than that of the flammability limit. The objective of the paper is to present numerical assessments of the recombiner models implemented in CFD solvers NEPTUNE_CFD and Code_Saturne. Under the EDF/EPRI agreement, CEA has been committed to perform 42 tests of PARs. The experimental program named KALI-H2, consists checking the performance and behaviour of PAR. Unrealistic values for the gas temperature are calculated if the conjugate heat transfer and the wall steam condensation are not taken into account. The combined effects of these models give a good agreement between computational results and experimental data.
Development of a GUI Based Front End for Open Source CFD Program, OpenFOAM
Energy Technology Data Exchange (ETDEWEB)
Han, Samhee; Lee, Youngjin; Kim, Hyongchol; Park, Sunbyung; Kim, Hyunjik [Nuclear Safety Evaluation, Daejeon (Korea, Republic of)
2013-05-15
OpenFOAM is sorely lacking in user friendliness as it runs in console mode under Li nux. Run{sub F}OAM was developed to greatly simplify the task of running an OpenFOAM calculation under Windows OS. Run{sub F}OAM was written using Delphi object pascal language, and GLScene package was used for the 3D graphics. Verification of Run{sub F}OAM was carried out by performing some OpenFOAM CFD calculations provided in OpenFOAM package, and these showed that the use of Run{sub F}OAM is simple whilst providing sufficient allowances in user modifications. Run{sub F}oam, a GUI based front end program to simplify running Open Foam CFD cases, has been developed. By incorporating numerous GUI in the program, Run{sub F}oam has demonstrated that running an Open Foam case can be easily accomplished. There is a potential for further development as the Open Foam has the great advantage of being free to develop and to use. There is also a potential to couple or interface the Open Foam with the systems analysis code such as Relap5.
The Ranque-Hilsch effect: CFD modeling
Energy Technology Data Exchange (ETDEWEB)
Bezprozvannykh, V.; Mottl, H. [DYCOR Technologies, Edmonton, Alberta (Canada)]. E-mail: vlad.bez@dycor.com; hank.mottl@dycor.com
2003-07-01
The phenomenon of noticeable temperature distribution in confined steady rotating gas flows is referred as Ranque-Hilsch effect. The simple counter-flow Ranque-Hilsch tube consists of a long hollow cylinder with tangential nozzles at one end for injecting compressed gas. Rotating gas escapes the tube through two outlets - a central orifice diaphragm placed near the injection nozzle plane (cold stream) and a ring-shaped peripheral outlet placed at the opposite end of the tube (hot stream). The flow is essentially three-dimensional, turbulent, compressible, and spinning such that any theoretical simplifications are questionable, if at all possible. Fluent suite of software was applied at Dycor Technologies, Canada to the task of numerical simulation of the Ranque-Hilsch effect that is part of Dycor's program of fundamental and applied research. The behavior of two types of fluids in the Ranque-Hilsch tube was investigated - air and water. Three-dimensional continuity, momentum, and energy equations were solved for incompressible and compressible flows for water and air cases correspondingly. The Reynolds stress turbulence model was originally applied to close the Reynolds-averaged Navier-Stokes equations. The visualization of the velocity and temperature fields inside the vortex tube helped to understand the details of fluid flow. It was shown that CFD approach is applicable for simulating Ranque-Hilsch effect. It was found that various levels of complexity in turbulence modeling are suitable for vortex tube analysis. No vortex effect was observed for incompressible flow. The dependence of vortex tube cooling ability on initial gas pressure was investigated. Numerical simulation data are consistent with available experimental results. (author)
Hardware-specific image compression techniques for the animation of CFD data
Jones, Stephen C.; Moorhead, Robert J., II
1992-06-01
The visualization and animation of computational fluid dynamics (CFD) data is vital in understanding the varied parameters that exist in the solution field. Scientists need accurate and efficient visualization techniques. The animation of CFD data is not only computationally expensive but also expensive in the allocation of memory, both RAM and disk. Preserving animations of the CFD data visualizations is useful, since recreation of the animation is expensive when dealing with extremely large data structures. Researchers of CFD data may wish to follow a particle trace over an experimental fuselage design, but are unable to retain the animation for efficient retrieval without rendering or consuming a considerable amount of disk space. The spatial image resolution is reduced from 1280 X 1024 to 512 X 480 in going from the workstation format to a video format, therefore, a desire to save these animations on disk results. Saving on disk allows the animation to maintain the spatial and intensity quality of the rendered image and allows the display of the animation at approximately 30 frames/sec, the standard video rate. The goal is to develop optimal image compression algorithms that allow visualization animations, captures as independent RGB images, to be recorded to tape or disk. If recorded to disk, the image sequence is compressed in non-realtime with a technique which allows subsequent decompression at approximately 30 frames/sec to simulate the temporal resolution of video. Initial compression is obtained through mapping RGB colors in each frame to a 12-bit colormap image. The colormap is animation sequence dependent and is created by histogramming the colors in the animation sequence and mapping those colors with relation to specific regions of the L*a*b* color coordinate system to take advantage of the uniform nature of the L*a*b* color system. Further compression is obtained by taking interframe differences, specifically comparing respective blocks between
The difficult challenge of a two-phase CFD modelling for all flow regimes
Energy Technology Data Exchange (ETDEWEB)
Bestion, D., E-mail: dominique.bestion@cea.fr
2014-11-15
Highlights: • The theoretical difficulties for modelling all flow regimes at CFD scale are identified. • The choice of the number of fields and of the time and space averaging or filtering are discussed and clarified. • Closure issues related to an all flow regime CFD model are listed and the main difficulties are identified. - Abstract: System thermalhydraulic codes model all two-phase flow regimes but they are limited to a macroscopic description. Two-phase CFD tools predict two-phase flow with a much finer space resolution but the current modelling capabilities are limited to dispersed bubbly or droplet flow and separate-phase flow. Much less experience exists on more complex flow regimes which combine the existence of dispersed fields with the presence of large interfaces such as a free surface or a film surface. A list of possible reactor issues which might benefit from an “all flow regime CFD model” is given. The first difficulty is to identify the various types of local flow configuration. It is shown that a 4-field model has much better capabilities than a two-fluid approach to identify most complex regimes. Then the choice between time averaging, space averaging, or even ensemble averaging is discussed. It is shown that only the RANS-2-fluid and a space-filtered 4-field model may be reasonably envisaged. The latter has the capabilities to identify all types of interfaces and should be privileged if a good accuracy is expected or if time fluctuations in intermittent flow have to be predicted while the former may be used when a high accuracy is not necessary and if time fluctuations in intermittent flow are not of interest. Finally the closure issue is presented including wall transfers, interfacial transfers, mass transfers between dispersed and continuous fields, and turbulent transfers. An important effort is required to model all interactions between sub-filter phenomena and the transfers from the sub-filter domain to the simulated domain. The
A new methodology for the CFD uncertainty analysis
Institute of Scientific and Technical Information of China (English)
YAO Zhen-qiu; SHEN Hong-cui; GAO Hui
2013-01-01
With respect to the measurement uncertainty,this paper discusses the definition,the sources,the classification and the expressions of the CFD uncertainty.Based on the orthogonal design and the statistics inference theory,a new verification and validation method and the related procedures in the CFD simulation are developed.With the method,two examples of the CFD verification and validation are studied for the drag coefficient and the nominal wake fraction,and the calculation factors and their interactions which would significantly affect the simulation results are obtained.Moreover,the sizes of all uncertainty components resulting from the controlled and un-controlled calculation factors are determined,and the optimal combination of the calculation factors is obtained by an effect estimation in the orthogonal experiment design.It is shown that the new method can be used for the verification in the CFD uncertainty analysis,and can reasonably and definitely judge the credibility of the simulative result.As for CFD simulation of the drag coefficient and the nominal wake fraction,the results predicted can be validated.Although there is still some difference between the simulation results and the experiment results,its approximate level and credibility can be accepted.
Schwartz, Richard J.; Fleming, Gary A.
2007-01-01
Virtual Diagnostics Interface technology, or ViDI, is a suite of techniques utilizing image processing, data handling and three-dimensional computer graphics. These techniques aid in the design, implementation, and analysis of complex aerospace experiments. LiveView3D is a software application component of ViDI used to display experimental wind tunnel data in real-time within an interactive, three-dimensional virtual environment. The LiveView3D software application was under development at NASA Langley Research Center (LaRC) for nearly three years. LiveView3D recently was upgraded to perform real-time (as well as post-test) comparisons of experimental data with pre-computed Computational Fluid Dynamics (CFD) predictions. This capability was utilized to compare experimental measurements with CFD predictions of the surface pressure distribution of the NASA Ares I Crew Launch Vehicle (CLV) - like vehicle when tested in the NASA LaRC Unitary Plan Wind Tunnel (UPWT) in December 2006 - January 2007 timeframe. The wind tunnel tests were conducted to develop a database of experimentally-measured aerodynamic performance of the CLV-like configuration for validation of CFD predictive codes.
Coupled RELAP5, 3D CFD and FEM analysis of postulated cracks in RPVs subjected to PTS loading
Energy Technology Data Exchange (ETDEWEB)
González-Albuixech, V.F., E-mail: vicente.gonzalez@psi.ch [Paul Scherrer Institut (PSI), Nuclear Energy and Safety Department, Structural Integrity Group, Villigen CH-5232 (Switzerland); Qian, G., E-mail: guian.qian@psi.ch [Paul Scherrer Institut (PSI), Nuclear Energy and Safety Department, Structural Integrity Group, Villigen CH-5232 (Switzerland); Sharabi, M. [Paul Scherrer Institut (PSI), Nuclear Energy and Safety Department, Structural Integrity Group, Villigen CH-5232 (Switzerland); Mechanical Power Engineering Department, Faculty of Engineering, Mansoura University, 35516 Mansoura (Egypt); Niffenegger, M.; Niceno, B.; Lafferty, N. [Paul Scherrer Institut (PSI), Nuclear Energy and Safety Department, Structural Integrity Group, Villigen CH-5232 (Switzerland)
2016-02-15
Highlights: • RPV fracture mechanics model based on RELAP5. • RPV fracture mechanics model based on CFD. • RPV fracture mechanics analysis. - Abstract: The fracture mechanic analysis of a reactor pressure vessel subjected to pressurized thermal shock loading is one of the most important issues for the assessment of life time extension of a nuclear power plant. The most severe scenario occurs during cold water injection in the cold leg due to a Loss-Of-Coolant Accident (LOCA). In the present study a comprehensive fracture mechanics analysis is performed. Two hypothetical LOCAs are assumed for an adopted reference design of a two-loop Pressurized Water Reactor. Boundary conditions obtained from the RELAP5 code are used as input for Computational Fluid Dynamics (CFD) simulations. For the structural integrity analysis, submodeling technique and the eXtended Finite Element Method (XFEM) based on temperatures calculated by CFD are applied. The results from the 3D FEM calculations are compared to those from a simplified axisymmetric model based on axisymmetric thermal hydraulic model results. The analysis identifies the worst crack orientation and location. It also proves that a complete model is needed for a correct analysis as the simplified model is not conservative and fails to describe accurately the local plume effect.
Energy Technology Data Exchange (ETDEWEB)
Shin, Dongho; Yoon, Sujong; Park, Gooncherl; Cho, Hyoungkyu [Seoul National Univ., Seoul (Korea, Republic of)
2013-05-15
KAERI has established a plan to demonstrate massive production of hydrogen using a VHTR by the early 2020s. In addition the GAMMA+ code is developed to analyze VHTR thermo-fluid transients at KAERI. One of the candidate reactor designs for VHTR is prismatic modular reactor (PMR), of which reference reactor is the 600MWth GT-MHR. This type of reactor has a passive safety system. During the High Pressure Conduction Cooling (HPCC) or Low Pressure Conduction Cooling (LPCC) accident, the core heats up by decay heat and then starts to cool down by conduction and radiation cooling to the Reactor Cavity Cooling System (RCCS) through the prismatic core. In this mechanism, the solid conduction occurs in graphite and fuel blocks, and the gas conduction and radiation occurs in coolant holes and bypass gaps. It is important to predict conduction and radiation heat transfer in the core for safety analysis. Effective thermal conductivity is derived by Maxwell's far-field methodology Radiation effect is expressed as corresponding conductivity and added to gas conductivity. In this study, ETC model used in GAMMA+ code is validated with the commercial CFD code, CFX-13. In this study, the effective thermal conductivity model of the GAMMA+ was evaluated by comparison of CFD analysis. The CFD analysis was conducted for various numbers and volume fractions of coolant holes and temperatures. Although slight disagreement was shown for the cases run with small number of holes, the result of GAMMA+ model is accurate for the large numbers of holes sufficiently. Since there are 102 coolant holes and 210 fuel holes in a fuel block, it is concluded that GAMMA+ model is proper formula for predicting effective thermal conductivity of the VHTR fuel block. However, in high temperature region above 500 .deg. C, the GAMMA+ model underestimates the effective thermal conductivity since radiation heat transfer is not reflected precisely. Further researches on it seem to be necessary.
CFD analysis of PWR core top and reactor vessel upper plenum internal subdomain models
Energy Technology Data Exchange (ETDEWEB)
Kao, Min-Tsung; Wu, Chung-Yun [National Tsing Hua University, Hsinchu 30043, Taiwan (China); Chieng, Ching-Chang, E-mail: cchieng@ess.nthu.edu.tw [National Tsing Hua University, Hsinchu 30043, Taiwan (China); Xu Yiban; Yuan Kun; Dzodzo, Milorad; Conner, Michael; Beltz, Steven; Ray, Sumit; Bissett, Teresa [Westinghouse Electric Company, Cranberry Township, PA 16066 (United States)
2011-10-15
, CFD analysis is presented for two subdomain models: the top core region and control rod guide tube region. These models are chosen for simulation because guide tube and top core region (including top grid, top nozzle, and hold-down device) are the major components of upper plenum effecting the flow patterns and pressure distribution. The top core region, corresponding to 1/4 of fuel assembly, includes components as upper part of the fuel assemblies (top grid, fuel rods, top nozzle), core component hold-down devices, and upper core plates. These components distribute the core flow to different sections of guidetube regions. Mesh sensitivity studies have been conducted for each individual part in order to determine the proper geometrical simplifications. Pressure drop measurement data are compared with the predicted CFD results and act as a guideline for the mesh selection. The guidetube region includes control rod guidetubes themselves, adjacent support columns and open regions. In this study, two models of subdomains are analyzed: (1) a 1/4 section of one control rod guide tube by itself and (2) a representative unit cell containing two 1/4 sections of adjacent control rod guide tubes and one 1/4 section of a neighboring support column. Predicted flow rates at each of the outflow locations in conjunction with results from the mesh sensitivity studies provide guidance on (1) what geometry to preserve or remove, (2) what geometry can be simplified to reduce the required mesh, and (3) an estimate of the total mesh required to model the entire upper plenum and top fuel domain. The commercial CFD code STAR-CCM+ is employed to generate the computational mesh, to solve the Reynolds-averaged Navier-Stokes equations for incompressible flow with a Realizable k-{epsilon} turbulence model, and to post-process the results.
Energy Technology Data Exchange (ETDEWEB)
Ravishankar, C., Hughes Network Systems, Germantown, MD
1998-05-08
Speech is the predominant means of communication between human beings and since the invention of the telephone by Alexander Graham Bell in 1876, speech services have remained to be the core service in almost all telecommunication systems. Original analog methods of telephony had the disadvantage of speech signal getting corrupted by noise, cross-talk and distortion Long haul transmissions which use repeaters to compensate for the loss in signal strength on transmission links also increase the associated noise and distortion. On the other hand digital transmission is relatively immune to noise, cross-talk and distortion primarily because of the capability to faithfully regenerate digital signal at each repeater purely based on a binary decision. Hence end-to-end performance of the digital link essentially becomes independent of the length and operating frequency bands of the link Hence from a transmission point of view digital transmission has been the preferred approach due to its higher immunity to noise. The need to carry digital speech became extremely important from a service provision point of view as well. Modem requirements have introduced the need for robust, flexible and secure services that can carry a multitude of signal types (such as voice, data and video) without a fundamental change in infrastructure. Such a requirement could not have been easily met without the advent of digital transmission systems, thereby requiring speech to be coded digitally. The term Speech Coding is often referred to techniques that represent or code speech signals either directly as a waveform or as a set of parameters by analyzing the speech signal. In either case, the codes are transmitted to the distant end where speech is reconstructed or synthesized using the received set of codes. A more generic term that is applicable to these techniques that is often interchangeably used with speech coding is the term voice coding. This term is more generic in the sense that the
Aeschliman, D. P.; Oberkampf, W. L.; Blottner, F. G.
Verification, calibration, and validation (VCV) of Computational Fluid Dynamics (CFD) codes is an essential element of the code development process. The exact manner in which code VCV activities are planned and conducted, however, is critically important. It is suggested that the way in which code validation, in particular, is often conducted--by comparison to published experimental data obtained for other purposes--is in general difficult and unsatisfactory, and that a different approach is required. This paper describes a proposed methodology for CFD code VCV that meets the technical requirements and is philosophically consistent with code development needs. The proposed methodology stresses teamwork and cooperation between code developers and experimentalists throughout the VCV process, and takes advantage of certain synergisms between CFD and experiment. A novel approach to uncertainty analysis is described which can both distinguish between and quantify various types of experimental error, and whose attributes are used to help define an appropriate experimental design for code VCV experiments. The methodology is demonstrated with an example of laminar, hypersonic, near perfect gas, 3-dimensional flow over a sliced sphere/cone of varying geometrical complexity.
CFD and thermal analysis applications at General Motors
Energy Technology Data Exchange (ETDEWEB)
Johnson, J.P. [General Motors Corp., Warren, Michigan (United States)
2002-07-01
The presentation will include a brief history of the growth of CFD and thermal analysis in GM's vehicle program divisions. Its relationship to the underlying computer infrastructure will be sketched. Application results will be presented for calculations in aerodynamics, flow through heat exchangers, engine compartment thermal studies, HVAC systems and others. Current technical challenges will be outlined including grid generation, turbulence modeling, heat transfer, and solution algorithms. The introduction of CFD and heat transfer results into Virtual Vehicle Reviews, and its potential impact on a company's CAE infrastructure will be noted. Finally, some broad comments will be made on the management of CFD and heat transfer technology across a global corporate enterprise. (author)
Validation of CFD simulation for flat plate solar energy collector
Energy Technology Data Exchange (ETDEWEB)
Selmi, Mohamed; Al-Khawaja, Mohammed J.; Marafia, Abdulhamid [Department of Mechanical Engineering, University of Qatar, P.O. Box 2713, Doha, State of Qatar (Qatar)
2008-03-15
The problem of flat plate solar energy collector with water flow is simulated and analyzed using computational fluid dynamics (CFD) software. The considered case includes the CFD modeling of solar irradiation and the modes of mixed convection and radiation heat transfer between tube surface, glass cover, side walls, and insulating base of the collector as well as the mixed convective heat transfer in the circulating water inside the tube and conduction between the base and tube material. The collector performance, after obtaining 3-D temperature distribution over the volume of the body of the collector, was studied with and without circulating water flow. An experimental model was built and experiments were performed to validate the CFD model. The outlet temperature of water is compared with experimental results and there is a good agreement. (author)
Adaptive Distributed Data Structure Management for Parallel CFD Applications
Frisch, Jerome
2013-09-01
Computational fluid dynamics (CFD) simulations require a lot of computing resources in terms of CPU time and memory in order to compute with a reasonable physical accuracy. If only uniformly refined domains are applied, the amount of computing cells is growing rather fast if a certain small resolution is physically required. This can be remedied by applying adaptively refined grids. Unfortunately, due to the adaptive refinement procedures, errors are introduced which have to be taken into account. This paper is focussing on implementation details of the applied adaptive data structure management and a qualitative analysis of the introduced errors by analysing a Poisson problem on the given data structure, which has to be solved in every time step of a CFD analysis. Furthermore an adaptive CFD benchmark example is computed, showing the benefits of an adaptive refinement as well as measurements of parallel data distribution and performance. © 2013 IEEE.
CFD Analysis in Advance of the NASA Juncture Flow Experiment
Lee, H. C.; Pulliam, T. H.; Neuhart, D. H.; Kegerise, M. A.
2017-01-01
NASA through its Transformational Tools and Technologies Project (TTT) under the Advanced Air Vehicle Program, is supporting a substantial effort to investigate the formation and origin of separation bubbles found on wing-body juncture zones. The flow behavior in these regions is highly complex, difficult to measure experimentally, and challenging to model numerically. Multiple wing configurations were designed and evaluated using Computational Fluid Dynamics (CFD), and a series of wind tunnel risk reduction tests were performed to further down-select the candidates for the final experiment. This paper documents the CFD analysis done in conjunction with the 6 percent scale risk reduction experiment performed in NASA Langley's 14- by 22-Foot Subsonic Tunnel. The combined CFD and wind tunnel results ultimately helped the Juncture Flow committee select the wing configurations for the final experiment.
Study of tip loss corrections using CFD rotor computations
DEFF Research Database (Denmark)
Shen, Wen Zhong; Zhu, Wei Jun; Sørensen, Jens Nørkær
2014-01-01
Tip loss correction is known to play an important role for engineering prediction of wind turbine performance. There are two different types of tip loss corrections: tip corrections on momentum theory and tip corrections on airfoil data. In this paper, we study the latter using detailed CFD...... computations for wind turbines with sharp tip. Using the technique of determination of angle of attack and the CFD results for a NordTank 500 kW rotor, airfoil data are extracted and a new tip loss function on airfoil data is derived. To validate, BEM computations with the new tip loss function are carried out...... and compared with CFD results for the NordTank 500 kW turbine and the NREL 5 MW turbine. Comparisons show that BEM with the new tip loss function can predict correctly the loading near the blade tip....
CFD analysis of ejector in a combined ejector cooling system
Energy Technology Data Exchange (ETDEWEB)
Rusly, E.; Aye, Lu [International Technologies Centre (IDTC), Department of Civil and Environmental Engineering, The University of Melbourne, Melbourne, Vic. 3010 (Australia); Charters, W.W.S.; Ooi, A. [Department of Mechanical and Manufacturing Engineering, The University of Melbourne, Melbourne, Vic. 3010 (Australia)
2005-11-01
One-dimensional ejector analyses often use coefficients derived from experimental data for a set of operating conditions with limited functionality. In this study, several ejector designs were modelled using finite volume CFD techniques to resolve the flow dynamics in the ejectors. The CFD results were validated with available experimental data. Flow field analyses and predictions of ejector performance outside the experimental range were also carried out. During validation, data from CFD predicted the entrainment ratios with greater accuracy on definite area ratios, although no shock was recorded in the ejector. Predictions outside the experimental range-at operating conditions in a combined ejector-vapour compression system-and flow conditions resulting from ejector geometry variations are discussed. It is found that the maximum entrainment ratio happens in the ejector just before a shock occurs and that the position of the nozzle is an important ejector design parameter. (author)
Introducing CFD in the optical simulation of linear Fresnel collectors
Moghimi, M. A.; Rungasamy, A.; Craig, K. J.; Meyer, J. P.
2016-05-01
This paper seeks to determine whether the Finite Volume method within a commercially available Computational Fluid Dynamics (CFD) solver (ANSYS Fluent) can model radiation with comparable accuracy to a Monte Carlo ray-tracing software package (SolTrace). A detailed investigation was performed into modeling techniques that can be used to significantly reduce the optical errors traditionally associated with CFD modeling of radiation false scattering and ray effect using a simple optical test case. The strategies formulated in the first part of this paper were used to model a variety of Linear Fresnel Collector Concentrating Solar Power Plants. This paper shows that commercial CFD packages yield accurate results for line focusing concentrating solar applications and simple geometries, validating its use in an integrated environment where both optical and thermal performance of these plants can be simulated and optimized.
DEFF Research Database (Denmark)
Cox, Geoff
; alternatives to mainstream development, from performances of the live-coding scene to the organizational forms of commons-based peer production; the democratic promise of social media and their paradoxical role in suppressing political expression; and the market’s emptying out of possibilities for free...... development, Speaking Code unfolds an argument to undermine the distinctions between criticism and practice, and to emphasize the aesthetic and political aspects of software studies. Not reducible to its functional aspects, program code mirrors the instability inherent in the relationship of speech...... expression in the public realm. The book’s line of argument defends language against its invasion by economics, arguing that speech continues to underscore the human condition, however paradoxical this may seem in an era of pervasive computing....
CFD Simulation of Pipeline Transport Properties of Mine Tailings Three-Phase Foam Slurry Backfill
National Research Council Canada - National Science Library
Xin Chen; Jian Zhou; Qiusong Chen; Xiuzhi Shi; Yonggang Gou
2017-01-01
...). Based on rheological property tests and CFD simulations, the foam phase, pressure, and velocity in the pipeline system are investigated using the CFD mixture method for different bubble volume...
Tubular-Type Hydroturbine Performance for Variable Guide Vane Opening by CFD
Kim, Y. T.; Nam, S. H.; Cho, Y. J.; Hwang, Y. C.; Choi, Y. D.; Nam, C. D.; Lee, Y. H.
Micro hydraulic power generation which has output of less or equal to 100kW is attracting considerable attention. This is because of its small, simple, renewable, and large amount of energy resources. By using a small hydro power generator of which main concept is based on using differential water pressures in pipe lines, energy which was initially wasted by use of a reducing valve at an end of the pipeline, is collected by a turbine in the hydro power generator. A propeller shaped hydroturbine has been used in order to make use of this renewable pressure energy. In this study, in order to acquire basic design data of tubular type hydroturbine, output power, head, and efficiency characteristics due to the guide vane opening angle are examined in detail. Moreover, influences of pressure, tangential and axial velocity distributions on turbine performance are investigated by using a commercial CFD code.
CFD prediction of flow and phase distribution in fuel assemblies with spacers
Energy Technology Data Exchange (ETDEWEB)
Anglart, H.; Nylund, O. [ABB Atom AB, Vasteras (Switzerland); Kurul, N. [Rensselaer Polytechnic Institute, Troy, NY (United States)] [and others
1995-09-01
This paper is concerned with the modeling and computation of multi-dimensional two-phase flows in BWR fuel assemblies. The modeling principles are presented based on using a two-fluid model in which lateral interfacial effects are accounted for. This model has been used to evaluate the velocity fields of both vapor and liquid phases, as well as phase distribution, between fuel elements in geometries similar to BWR fuel bundles. Furthermore, this model has been used to predict, in a detailed mechanistic manner, the effects of spacers on flow and phase distribution between, and pressure drop along, fuel elements. The related numerical simulations have been performed using a CFD computer code, CFDS-FLOW3D.
Modelling and analysis of sputter deposited ZrN coating by CFD
Kapopara, Jaydeep M.; Mengar, Akshaykumar R.; Chauhan, Kamlesh V.; Patel, Nicky P.; Rawal, Sushant K.
2016-09-01
The objective of the present work is to investigate the effect of various sputtering parameters such as velocity, mass flow rate on velocity profiles, pressure profiles, density profiles and concentration distribution of the process gases (argon and nitrogen) of zirconium nitride films deposited on glass and silica substrate by RF magnetron sputtering. A three dimensional Computational Fluid Dynamics (CFD) study has been carried out using Fluent-ANSYS commercial code to visualize the mixing behavior of process gases inside the deposition chamber. The results show that the location of gas inlet port has a greater influence on gas distribution inside the chamber where reactive gas will form coating. By having this information, one can able to modify the reactor geometry and gas flow openings along with its positions for better gas flow over the substrate which in turns gives an indirect indication of coating from the composition point of view.
Wang, Xu; Ding, Jie; Guo, Wan-Qian; Ren, Nan-Qi
2010-12-01
Investigating how a bioreactor functions is a necessary precursor for successful reactor design and operation. Traditional methods used to investigate flow-field cannot meet this challenge accurately and economically. Hydrodynamics model can solve this problem, but to understand a bioreactor in sufficient depth, it is often insufficient. In this paper, a coupled hydrodynamics-reaction kinetics model was formulated from computational fluid dynamics (CFD) code to simulate a gas-liquid-solid three-phase biotreatment system for the first time. The hydrodynamics model is used to formulate prediction of the flow field and the reaction kinetics model then portrays the reaction conversion process. The coupled model is verified and used to simulate the behavior of an expanded granular sludge bed (EGSB) reactor for biohydrogen production. The flow patterns were visualized and analyzed. The coupled model also demonstrates a qualitative relationship between hydrodynamics and biohydrogen production. The advantages and limitations of applying this coupled model are discussed.
Institute of Scientific and Technical Information of China (English)
无
2002-01-01
Both parallel and staggered plate fin arrays have shown promise for use in high performance heatsinks regard of its individual manufacturing costs. The geometrical and operational parameters are very important to their cooling performance as heatsinks in practical applications. Fluent 5.0 commercial CFD (computational fluid dynamic) code is used to simulate the flow and heat transfer of those heatsinks of different realistic parameters. Based on those simulations, two correlations, concerning Nusselt number and friction factor as the functions of geometrical and operational parameters, FB (fin-base area ratio), PR (ratio of spanwise pitch to lengthwise pitch) and Re, were developed. From the both, the performance comparisons for optimizing geometrical and operational parameters of a fixed dimension heatsink are shown at constant pumping power and constant thermal resistance. Several optimized parameters were obtained with the discussion to various goals in real application. It demonstrates that in some particular situations, the parallel plate fin heatsinks can out perform the staggered ones.
CFD Study of Turbo-Ramjet Interactions in Hypersonic Airbreathing Propulsion System
Chang, Ing; Hunter, Louis G.
1996-01-01
Advanced airbreathing propulsion systems used in Mach 4-6 mission scenarios, usually involve turbo-ramjet configurations. As the engines transition from turbojet to ramjet, there is an operational envelope where both engines operate simultaneously. In the first phase of our study, an over/under nozzle configuration was analyzed. The two plumes from the turbojet and ramjet interact at the end of a common 2-D cowl, where they both reach an approximate Mach 3.0 condition and then jointly expand to Mach 3.6 at the common nozzle exit plane. For the problem analyzed, the turbojet engine operates at a higher nozzle pressure ratio than the ramjet, causes the turbojet plume overpowers the ramjet plume, deflecting it approximately 12 degrees downward and in turn the turbojet plume is deflected 6 degrees upward. In the process, shocks were formed at the deflections and a shear layer formed at the confluence of the two jets. This particular case was experimentally tested and the data were used to compare with a computational fluid dynamics (CFD) study using the PARC2D code. The CFD results were in good agreement with both static pressure distributions on the cowl separator and on nozzle walls. The thrust coefficients were also in reasonable agreement. In addition, inviscid relationships were developed around the confluence point, where the two exhaust jets meet, and these results compared favorably with the CFD results. In the second phase of our study, a 3-D CFD solution was generated to compare with the 2-D solution. The major difference between the 2-D and 3-D solutions was the interaction of the shock waves, generated by the plume interactions, on the sidewall. When a shock wave interacts with a sidewall and sidewall boundary layer, it is called a glancing shock sidewall interaction. These interactions entrain boundary layer flow down the shockline into a vortical flow pattern. The 3-D plots show the streamlines being entrained down the shockline. The pressure of the flow
Lime Kiln Modeling. CFD and One-dimensional simulations
Energy Technology Data Exchange (ETDEWEB)
Svedin, Kristoffer; Ivarsson, Christofer; Lundborg, Rickard
2009-03-15
The incentives for burning alternative fuels in lime kilns are growing. An increasing demand on thorough investigations of alternative fuel impact on lime kiln performance have been recognized, and the purpose of this project has been to develop a lime kiln CFD model with the possibility to fire fuel oil and lignin. The second part of the project consists of three technical studies. Simulated data from a one-dimensional steady state program has been used to support theories on the impact of biofuels and lime mud dryness. The CFD simulations was carried out in the commercial code FLUENT. Due to difficulties with the convergence of the model the calcination reaction is not included. The model shows essential differences between the two fuels. Lignin gives a different flame shape and a longer flame length compared to fuel oil. Mainly this depends on how the fuel is fed into the combustion chamber and how much combustion air that is added as primary and secondary air. In the case of lignin combustion the required amount of air is more than in the fuel oil case. This generates more combustion gas and a different flow pattern is created. Based on the values from turbulent reaction rate for the different fuels an estimated flame length can be obtained. For fuel oil the combustion is very intense with a sharp peak in the beginning and a rapid decrease. For lignin the combustion starts not as intense as for the fuel oil case and has a smoother shape. The flame length appears to be approximately 2-3 meter longer for lignin than for fuel oil based on turbulent reaction rate in the computational simulations. The first technical study showed that there are many benefits of increasing dry solids content in the lime mud going into a kiln such as increased energy efficiency, reduced TRS, and reduced sodium in the kiln. However, data from operating kilns indicates that these benefits can be offset by increasing exit gas temperature that can limit kiln production capacity. Simulated
Lime Kiln Modeling. CFD and One-dimensional simulations
Energy Technology Data Exchange (ETDEWEB)
Svedin, Kristoffer; Ivarsson, Christofer; Lundborg, Rickard
2009-03-15
The incentives for burning alternative fuels in lime kilns are growing. An increasing demand on thorough investigations of alternative fuel impact on lime kiln performance have been recognized, and the purpose of this project has been to develop a lime kiln CFD model with the possibility to fire fuel oil and lignin. The second part of the project consists of three technical studies. Simulated data from a one-dimensional steady state program has been used to support theories on the impact of biofuels and lime mud dryness. The CFD simulations was carried out in the commercial code FLUENT. Due to difficulties with the convergence of the model the calcination reaction is not included. The model shows essential differences between the two fuels. Lignin gives a different flame shape and a longer flame length compared to fuel oil. Mainly this depends on how the fuel is fed into the combustion chamber and how much combustion air that is added as primary and secondary air. In the case of lignin combustion the required amount of air is more than in the fuel oil case. This generates more combustion gas and a different flow pattern is created. Based on the values from turbulent reaction rate for the different fuels an estimated flame length can be obtained. For fuel oil the combustion is very intense with a sharp peak in the beginning and a rapid decrease. For lignin the combustion starts not as intense as for the fuel oil case and has a smoother shape. The flame length appears to be approximately 2-3 meter longer for lignin than for fuel oil based on turbulent reaction rate in the computational simulations. The first technical study showed that there are many benefits of increasing dry solids content in the lime mud going into a kiln such as increased energy efficiency, reduced TRS, and reduced sodium in the kiln. However, data from operating kilns indicates that these benefits can be offset by increasing exit gas temperature that can limit kiln production capacity. Simulated
Development of CFD-based icing model for wind turbines
DEFF Research Database (Denmark)
Pedersen, Marie Cecilie; Martinez, Benjamin; Yin, Chungen
2015-01-01
Operation of wind turbines in cold climate areas is challenged by icing-induced problems, such as loss of production, safety issues and blade fatique. Production losses are especially a big issue in Sweden, and due to difficulties with on-site measurements, simulations are often used to get...... an understanding and to predict icing events. In this paper a case study of modeling icing using Computational Fluid Dynamics (CFD) is proposed. The case study aims to form the basic of a general CFD model for icing on wind turbine blade sections....
Rapid Euler CFD for High-Performance Aircraft Design
Charlton, Eric F.
2004-01-01
The goal here was to present one approach to rapid CFD for S&C using an unstructured inviscid method, in order to eventually assess S&C properties as early in the design process as possible. Specific results are presented regarding time, accuracy (as compared to a baseline wind tunnel database) and simplicity for the user. For COMSAC, it s more important to talk about the "specifications" required by Advanced Design and S&C, as well as how the CFD results can be combined for envelope evaluation.
NASA and CFD - Making investments for the future
Hessenius, Kristin A.; Richardson, P. F.
1992-01-01
From a NASA perspective, CFD is a new tool for fluid flow simulation and prediction with virtually none of the inherent limitations of other ground-based simulation techniques. A primary goal of NASA's CFD research program is to develop efficient and accurate computational techniques for utilization in the design and analysis of aerospace vehicles. The program in algorithm development has systematically progressed through the hierarchy of engineering simplifications of the Navier-Stokes equations, starting with the inviscid formulations such as transonic small disturbance, full potential, and Euler.
CFD Modeling of a Multiphase Gravity Separator Vessel
Narayan, Gautham
2017-05-23
The poster highlights a CFD study that incorporates a combined Eulerian multi-fluid multiphase and a Population Balance Model (PBM) to study the flow inside a typical multiphase gravity separator vessel (GSV) found in oil and gas industry. The simulations were performed using Ansys Fluent CFD package running on KAUST supercomputer, Shaheen. Also, a highlight of a scalability study is presented. The effect of I/O bottlenecks and using Hierarchical Data Format (HDF5) for collective and independent parallel reading of case file is presented. This work is an outcome of a research collaboration on an Aramco project on Shaheen.
Performance Study and CFD Predictions of a Ducted Fan System
Abrego, Anita I.; Chang, I-Chung; Bulaga, Robert W.; Rutkowski, Michael (Technical Monitor)
2002-01-01
An experimental investigation was completed in the NASA Ames 7 by 10-Foot Wind Tunnel to study the performance characteristics of a ducted fan. The goal of this effort is to study the effect of ducted fan geometry and utilize Computational Fluid Dynamics (CFD) analysis to provide a baseline for correlation. A 38-inch diameter, 10-inch chord duct with a five-bladed fixed-pitch fan was tested. Duct performance data were obtained in hover, vertical climb, and forward flight test conditions. This paper will present a description of the test, duct performance results and correlation with CFD predictions.
Experimental and CFD analysis of nozzle position of subsonic ejector
Institute of Scientific and Technical Information of China (English)
Xilai ZHANG; Shiping JIN; Suyi HUANG; Guoqing TIAN
2009-01-01
The influence of nozzle position on the performance of an ejector was analyzed qualitatively with free jet flow model. Experimental investigations and computational fluid dynamics (CFD) analysis of the nozzle position of the subsonic ejector were also conducted. The results show that there is an optimum nozzle position for the ejector. The ejecting coefficient reaches its maximum when the nozzle is positioned at the optimum and decreases when deviating. Moreover, the nozzle position of an ejector is not a fixed value, but is influenced greatly by the flow parameters. Considering the complexity of the ejector, CFD is reckoned as a useful tool in the design of ejectors.
Three-dimensional flow calculations of axial compressors and turbines using CFD techniques.
Jesuino Takachi Tomita
2009-01-01
With the advent of powerful computer hardware, Computational Fluid Dynamics (CFD) has been vastly used by researches and scientists to investigate flow behavior and its properties. The cost of CFD simulation is very small compared to the experimental arsenal as test facilities and wind-tunnels. In the last years many CFD commercial packages were developed and some of them possess prominence in industry and academia. However, some specific CFD calculations are particular cases and sometimes ne...
Modelling of massive particulates for breakwater engineering using coupled FEMDEM and CFD
Institute of Scientific and Technical Information of China (English)
无
2008-01-01
The seaward slope of many breakwaters consists of thousands of interlocking units of rock or concrete comprising a massive granular system of large elements each weighing tens of tonnes.The dumped quarry materials in the core are protected by progressively coarser particulates.The outer armour layer of freely placed units is intended to both dissipate wave energy and remain structurally stable as strong flows are drawn in and out of the particulate core.Design guidance on the mass and shape of these units is based on empirical equations derived from sealed physical model tests.The main failure mode for armour layers exposed to severe storms is hydraulic instability where the armour units of concrete or rock are subjected to uplift and drag forces which can in turn lead to rocking,displacement and collisions sufficient to cause breakage of units.Recently invented armour unit designs making up such granular layered system owe much of their success to the desirable emergent properties of interlock and porosity and how these combine with individual unit structural strength and inertial mass. Fundamental understanding of the forces governing such wave-structure interaction remains poor.We use discrete element and combined finite-discrete element methods to model the granular solid skeleton of randomly packed units coupled to a CFD code which resolves the wave dynamics through an interface tracking technique.The CFD code exploits several methods including a compressive advection scheme, node movement, and general mesh optimization.We provide the engineering context and report progress towards the numerical modelling of instability in these massive granular systems.
CFD Modelling of Bore Erosion in Two-Stage Light Gas Guns
Bogdanoff, D. W.
1998-01-01
A well-validated quasi-one-dimensional computational fluid dynamics (CFD) code for the analysis of the internal ballistics of two-stage light gas guns is modified to explicitly calculate the ablation of steel from the gun bore and the incorporation of the ablated wall material into the hydrogen working cas. The modified code is used to model 45 shots made with the NASA Ames 0.5 inch light gas gun over an extremely wide variety of gun operating conditions. Good agreement is found between the experimental and theoretical piston velocities (maximum errors of +/-2% to +/-6%) and maximum powder pressures (maximum errors of +/-10% with good igniters). Overall, the agreement between the experimental and numerically calculated gun erosion values (within a factor of 2) was judged to be reasonably good, considering the complexity of the processes modelled. Experimental muzzle velocities agree very well (maximum errors of 0.5-0.7 km/sec) with theoretical muzzle velocities calculated with loading of the hydrogen gas with the ablated barrel wall material. Comparison of results for pump tube volumes of 100%, 60% and 40% of an initial benchmark value show that, at the higher muzzle velocities, operation at 40% pump tube volume produces much lower hydrogen loading and gun erosion and substantially lower maximum pressures in the gun. Large muzzle velocity gains (2.4-5.4 km/sec) are predicted upon driving the gun harder (that is, upon using, higher powder loads and/or lower hydrogen fill pressures) when hydrogen loading is neglected; much smaller muzzle velocity gains (1.1-2.2 km/sec) are predicted when hydrogen loading is taken into account. These smaller predicted velocity gains agree well with those achieved in practice. CFD snapshots of the hydrogen mass fraction, density and pressure of the in-bore medium are presented for a very erosive shot.
A CFD Validation of Fire Dynamics Simulator for Corner Fire
Directory of Open Access Journals (Sweden)
Pavan K. Sharma
2010-12-01
Full Text Available A computational study has been carried out for predicting the behaviour of a corner fire source for a reported experiment using a field model based code Fire Dynamics Simulator (FDS. Time dependent temperature is predicted along with the resulting changes in the plume structure. The flux falling on the wall was also observed. The analysis has been carried out with the correct value of the grid size based on earlier experiences and also by performing a grid sensitivity study. The predicted temperatures of the two scenarios at two points by the current analysis are in very good agreement with the earlier reported experimental data and numerical prediction. The studies have extended the utility of field model based tools to model the particular separate effect phenomenon like corner for one such situation and validate against experimental data. The present study have several applications in such as room fires, hydrogen transport in nuclear reactor containment, natural convection in building flows etc. The present approach uses the advanced Large Eddy Simulation (LES based CFD turbulence model. The paper presents brief description of the code FDS, details of the computational model along with the discussions on the results obtained under these studies. The validated CFD based procedure has been used for solving various problems enclosure fire, ventilated fire and open fire from nuclear industry which are however not included in the present paper.
Energy Technology Data Exchange (ETDEWEB)
Delbecq, J.M
1999-07-01
The Aster code is a 2D or 3D finite-element calculation code for structures developed by the R and D direction of Electricite de France (EdF). This dossier presents a complete overview of the characteristics and uses of the Aster code: introduction of version 4; the context of Aster (organisation of the code development, versions, systems and interfaces, development tools, quality assurance, independent validation); static mechanics (linear thermo-elasticity, Euler buckling, cables, Zarka-Casier method); non-linear mechanics (materials behaviour, big deformations, specific loads, unloading and loss of load proportionality indicators, global algorithm, contact and friction); rupture mechanics (G energy restitution level, restitution level in thermo-elasto-plasticity, 3D local energy restitution level, KI and KII stress intensity factors, calculation of limit loads for structures), specific treatments (fatigue, rupture, wear, error estimation); meshes and models (mesh generation, modeling, loads and boundary conditions, links between different modeling processes, resolution of linear systems, display of results etc..); vibration mechanics (modal and harmonic analysis, dynamics with shocks, direct transient dynamics, seismic analysis and aleatory dynamics, non-linear dynamics, dynamical sub-structuring); fluid-structure interactions (internal acoustics, mass, rigidity and damping); linear and non-linear thermal analysis; steels and metal industry (structure transformations); coupled problems (internal chaining, internal thermo-hydro-mechanical coupling, chaining with other codes); products and services. (J.S.)
CFD Analysis of the SBXC Glider Airframe
2016-06-01
greater than 15 m/s. 14. SUBJECT TERMS finite element method, computational fluid dynamics, Y Plus , mesh element quality, aerodynamic data, fluid...domain, Solidworks/ANSYS, 3D modeling and simulation 15. NUMBER OF PAGES 103 16. PRICE CODE 17. SECURITY CLASSIFICATION OF REPORT Unclassified...reduce manufacturing costs and expedite airframe development. The SBXC airplane is currently utilized as the flight platform in the Naval Postgraduate
Optimal codes as Tanner codes with cyclic component codes
DEFF Research Database (Denmark)
Høholdt, Tom; Pinero, Fernando; Zeng, Peng
2014-01-01
In this article we study a class of graph codes with cyclic code component codes as affine variety codes. Within this class of Tanner codes we find some optimal binary codes. We use a particular subgraph of the point-line incidence plane of A(2,q) as the Tanner graph, and we are able to describe...... the codes succinctly using Gröbner bases....
Directory of Open Access Journals (Sweden)
Sang Shin Park
2015-05-01
Full Text Available Three-dimensional computational fluid dynamics (CFD modeling of the gasification performance in a one-stage, entrained-bed coal gasifier (Shell Coal Gasification Process (SCGP gasifier was performed, for the first time. The parametric study used various O2/coal and steam/coal ratios, and the modeling used a commercial code, ANSYS FLUENT. CFD modeling was conducted by solving the steady-state Navier–Stokes and energy equations using the Eulerian–Lagrangian method. Gas-phase chemical reactions were solved with the Finite–Rate/Eddy–Dissipation Model. The CFD model was verified with actual operating data of Demkolec demo Integrated Gasification Combined Cycle (IGCC facility in Netherlands that used Drayton coal. For Illinois #6 coal, the CFD model was compared with ASPEN Plus results reported in National Energy Technology Laboratory (NETL. For design coal used in the SCGP gasifier in Korea, carbon conversion efficiency, cold gas efficiency, temperature, and species mole fractions at the gasifier exit were calculated and the results were compared with those obtained by using ASPEN Plus-Kinetic. The optimal O2/coal and steam/coal ratios were 0.7 and 0.05, respectively, for the selected operating conditions.
Energy Technology Data Exchange (ETDEWEB)
Seo, Joseph; Lee, Jae Young [Handong Global University, Pohang (Korea, Republic of)
2016-05-15
A thermosyphon, wickless heat pipe, is a heat transfer device of high thermal conductance that functions passively on the principle of evaporation and condensation of a working fluid. The heat-pipe concept was first proposed by Gaugler in 1942. After its independent invention by Grover in the early 1960s, serious development progress was made, and the heat pipe concept was studied intensively for both space and terrestrial applications, because of its beneficial characteristics. Annamalai and Ramalingam developed a CFD modeling for wick part of heat pipe using commercial code, ANSYS CFX. Khurram Kafeel numerically studied thermal hydraulic characteristics of thermosyphon in both transient and steady state. Bandar Fadhl et al. built a CFD modeling for boiling and condensing of thermosyphon using VOF method of ANSYS Fluent. They made user defined function (UDF) to define source term based on Lee model. In this study, CFD model of 1m-thermosyphon has been studied using VOF model. Unlike formal studies, vacuum pressure condition was applied because thermosyphon with vacuum inner pressure is much generally used. Furthermore, to check out hydraulic characteristics of the model, transparent thermosyphon experiment also has been conducted. The main purpose of this research is the investigation of CFD model of thermosyphon. Simulations using VOF method were performed to analyze evaporating, condensing and two phase flow of a thermosyphon. The simulation results show that complex phenomena inside of thermosyphon can be modeled using VOF method. Flow visualizations of working fluid matched well with transparent heat pipe experiment.
Crespo, Alejandro C; Dominguez, Jose M; Barreiro, Anxo; Gómez-Gesteira, Moncho; Rogers, Benedict D
2011-01-01
Smoothed Particle Hydrodynamics (SPH) is a numerical method commonly used in Computational Fluid Dynamics (CFD) to simulate complex free-surface flows. Simulations with this mesh-free particle method far exceed the capacity of a single processor. In this paper, as part of a dual-functioning code for either central processing units (CPUs) or Graphics Processor Units (GPUs), a parallelisation using GPUs is presented. The GPU parallelisation technique uses the Compute Unified Device Architecture (CUDA) of nVidia devices. Simulations with more than one million particles on a single GPU card exhibit speedups of up to two orders of magnitude over using a single-core CPU. It is demonstrated that the code achieves different speedups with different CUDA-enabled GPUs. The numerical behaviour of the SPH code is validated with a standard benchmark test case of dam break flow impacting on an obstacle where good agreement with the experimental results is observed. Both the achieved speed-ups and the quantitative agreement with experiments suggest that CUDA-based GPU programming can be used in SPH methods with efficiency and reliability.
Directory of Open Access Journals (Sweden)
Alejandro C Crespo
Full Text Available Smoothed Particle Hydrodynamics (SPH is a numerical method commonly used in Computational Fluid Dynamics (CFD to simulate complex free-surface flows. Simulations with this mesh-free particle method far exceed the capacity of a single processor. In this paper, as part of a dual-functioning code for either central processing units (CPUs or Graphics Processor Units (GPUs, a parallelisation using GPUs is presented. The GPU parallelisation technique uses the Compute Unified Device Architecture (CUDA of nVidia devices. Simulations with more than one million particles on a single GPU card exhibit speedups of up to two orders of magnitude over using a single-core CPU. It is demonstrated that the code achieves different speedups with different CUDA-enabled GPUs. The numerical behaviour of the SPH code is validated with a standard benchmark test case of dam break flow impacting on an obstacle where good agreement with the experimental results is observed. Both the achieved speed-ups and the quantitative agreement with experiments suggest that CUDA-based GPU programming can be used in SPH methods with efficiency and reliability.
CFD Vision 2030 Study: A Path to Revolutionary Computational Aerosciences
Slotnick, Jeffrey; Khodadoust, Abdollah; Alonso, Juan; Darmofal, David; Gropp, William; Lurie, Elizabeth; Mavriplis, Dimitri
2014-01-01
This report documents the results of a study to address the long range, strategic planning required by NASA's Revolutionary Computational Aerosciences (RCA) program in the area of computational fluid dynamics (CFD), including future software and hardware requirements for High Performance Computing (HPC). Specifically, the "Vision 2030" CFD study is to provide a knowledge-based forecast of the future computational capabilities required for turbulent, transitional, and reacting flow simulations across a broad Mach number regime, and to lay the foundation for the development of a future framework and/or environment where physics-based, accurate predictions of complex turbulent flows, including flow separation, can be accomplished routinely and efficiently in cooperation with other physics-based simulations to enable multi-physics analysis and design. Specific technical requirements from the aerospace industrial and scientific communities were obtained to determine critical capability gaps, anticipated technical challenges, and impediments to achieving the target CFD capability in 2030. A preliminary development plan and roadmap were created to help focus investments in technology development to help achieve the CFD vision in 2030.
CFD modelling of moisture interactions between air and constructions
DEFF Research Database (Denmark)
Mortensen, Lone Hedegaard; Woloszyn, Monika; Hohota, Raluca;
2005-01-01
There is a strong demand for accurate moisture modelling since moisture poses a risk for both the constructions and the indoor climate. Thus, in this investigation there is special focus on moisture modelling. The paper describes a new model based on a CFD tool that is enhanced to include both de...
Multi-CFD Timing Estimators for PET Block Detectors
Energy Technology Data Exchange (ETDEWEB)
Ullisch, Marcus G.; Moses, William W.
2006-05-05
In a conventional PET system with block detectors, a timing estimator is created by generating the analog sum of the signals from the four photomultiplier tubes (PMT) in a module and discriminating the sum with a single constant fraction discriminator (CFD). The differences in the propagation time between the PMTs in the module can potentially degrade the timing resolution of the module. While this degradation is probably too small to affect performance in conventional PET imaging, it may impact the timing inaccuracy for time-of-flight PET systems (which have higher timing resolution requirements). Using a separate CFD for each PMT would allow for propagation time differences to be removed through calibration and correction in software. In this paper we investigate and quantify the timing resolution achievable when the signal from each of the 4 PMTs is digitized by a separate CFD. Several methods are explored for both obtaining values for the propagation time differences between the PMTs and combining the four arrival times to form a single timing estimator. We find that the propagation time correction factors are best derived through an exhaustive search, and that the ''weighted average'' method provides the best timing estimator. Using these methods, the timing resolution achieved with 4 CFDs (1052 {+-} 82 ps) is equivalent to the timing resolution with the conventional single CFD setup (1067 {+-} 158 ps).
Shape Optimization of Vehicle Radiator Using Computational Fluid Dynamics (cfd)
Maddipatla, Sridhar; Guessous, Laila
2002-11-01
Automotive manufacturers need to improve the efficiency and lifetime of all engine components. In the case of radiators, performance depends significantly on coolant flow homogeneity across the tubes and overall pressure drop between the inlet and outlet. Design improvements are especially needed in tube-flow uniformity to prevent premature fouling and failure of heat exchangers. Rather than relying on ad-hoc geometry changes, the current study combines Computational Fluid Dynamics with shape optimization methods to improve radiator performance. The goal is to develop an automated suite of virtual tools to assist in radiator design. Two objective functions are considered: a flow non-uniformity coefficient,Cf, and the overall pressure drop, dP*. The methodology used to automate the CFD and shape optimization procedures is discussed. In the first phase, single and multi-variable optimization methods, coupled with CFD, are applied to simplified 2-D radiator models to investigate effects of inlet and outlet positions on the above functions. The second phase concentrates on CFD simulations of a simplified 3-D radiator model. The results, which show possible improvements in both pressure and flow uniformity, validate the optimization criteria that were developed, as well as the potential of shape optimization methods with CFD to improve heat exchanger design. * Improving Radiator Design Through Shape Optimization, L. Guessous and S. Maddipatla, Paper # IMECE2002-33888, Proceedings of the 2002 ASME International Mechanical Engineering Congress and Exposition, November 2002
Introducing CFD in Introductory Undergraduate Fluid Mechanics Courses
Cimbala, John M.
2005-11-01
Many instructors want to introduce CFD into their introductory junior-level fluid mechanics course, but cannot because it requires several hours of class time at the cost of displacement of other basic material. A simple but effective method is now available that has been used successfully at Penn State since Spring 2005. It requires minimal instructor preparation time and only about one class period. Namely, immediately after solving the Navier-Stokes equation analytically for simple flows such as Couette and Poiseuille flow, CFD is introduced as a modern tool for solving the same equations numerically. The application of CFD (grid generation, boundary conditions, etc.), rather than numerical algorithms, is stressed. Homework problems are then assigned using pre-defined templates for FlowLab, a student-friendly analysis and visualization package created by Fluent, Inc. The templates and exercises are designed to support and emphasize the theory and concepts taught in class and in the textbook. For example, the new textbook by Cengel and Cimbala (McGraw-Hill 2006) contains 46 end-of-chapter homework problems that are used in conjunction with 42 FlowLab templates. Each exercise has been designed with two major learning objectives in mind: (1) enhance student understanding of a specific fluid mechanics concept, and (2) introduce the student to a specific capability and/or limitation of CFD through hands-on practice.
CFD evaluation of an advanced thrust vector control concept
Tiarn, Weihnurng; Cavalleri, Robert
1990-01-01
A potential concept that can offer an alternate method for thrust vector control of the Space Shuttle Solid Rocket Booster is the use of a cylindrical probe that is inserted (on demand) through the wall of the rocket nozzle. This Probe Thrust Vector Control (PTVC) concept is an alternate to that of a gimbaled nozzle or a Liquid Injection Thrust Vector (LITVC) system. The viability of the PTVC concept can be assessed either experimentally and/or with the use of CFD. A purely experimental assessment can be time consuming and expensive, whereas a CFD assessment can be very time- and cost-effective. Two key requirements of the proposed concept are PTVC vectoring performance and the active cooling requirements for the probe to maintain its thermal and structural integrity. An active thermal cooling method is the injection of coolant around the pheriphery of the probe. How much coolant is required and how this coolant distributes itself in the flow field is of major concern. The objective of the work reported here is the use of CFD to answer these question and in the design of test hardware to substantiate the results of the CFD predictions.
CFD simulation of coal and straw co-firing
DEFF Research Database (Denmark)
Junker, Helle; Hvid, Søren L.; Larsen, Ejvind;
This paper presents the results of a major R&D program with the objective to develop CFD based tools to assess the impact of biomass co-firing in suspension fired pulverized coal power plants. The models have been developed through a series of Danish research projects with the overall objective t...
Correlations between art and CFD through colour and shape
König, Carola S.
2011-03-01
Victorian stained glass artists were among the first to link vibrant colour with strong abstract geometry. This link was further exploited by artists of the early 20th century. Here may be mentioned the works of designers and artists like Mackintosh and of well-known Bauhaus group members like Klee and Kandinsky. Computational fluid dynamics (CFD) and art, particularly abstract art, are undoubtedly intrinsically linked not only by colour, but also by shape as often both contain regular geometries like rectangles and triangles. The use of colour has a multitude of functions in both the pre- and post-processing stages in CFD. These are discussed with an emphasis on the representation of CFD results. Moreover, modelling of fluid dynamics should be seen as but one example of numerical modelling in general. It may be that such common features between these very different metiers are the reason why the numerical modellers amongst us seem to have a natural liking for colourful abstract art. This paper investigates the correlations between art and CFD and is written from the view points of both the professional engineer and the hobby artist.
CFD Simulations of Contaminant Transport between two Breathing Persons
DEFF Research Database (Denmark)
Bjørn, Erik; Nielsen, Peter V.
Experiments have shown that exhalation from one person is able to penetrate the breathing zone of another person at a distance. Computational Fluid Dynamics (CFD) is used to investigate the dependency of the personal exposure on some physical parameters, namely: Pulmonary ventilation rate...
Efficient Cfd/csd Coupling Methods for Aeroelastic Applications
Chen, Long; Xu, Tianhao; Xie, Jing
2016-06-01
A fast aeroelastic numerical simulation method using CFD/CSD coupling are developed. Generally, aeroelastic numerical simulation costs much time and significant hardware resources with CFD/CSD coupling. In this paper, dynamic grid method, full implicit scheme, parallel technology and improved coupling method are researched for efficiency simulation. An improved Delaunay graph mapping method is proposed for efficient dynamic grid deform. Hybrid grid finite volume method is used to solve unsteady flow fields. The dual time stepping method based on parallel implicit scheme is used in temporal discretization for efficiency simulation. An approximate system of linear equations is solved by the GMRES algorithm with a LU-SGS preconditioner. This method leads to a significant increase in performance over the explicit and LU-SGS implicit methods. A modification of LU-SGS is proposed to improve the parallel performance. Parallel computing overs a very effective way to improve our productivity in doing CFD/CFD coupling analysis. Improved loose coupling method is an efficiency way over the loose coupling method and tight coupling method. 3D wing's aeroelastic phenomenon is simulated by solving Reynolds-averaged Navier-Stokes equations using improved loose coupling method. The flutter boundary is calculated and agrees well with experimental data. The transonic hole is very clear in numerical simulation results.
Validation of Boundary Conditions for CFD Simulations on Ventilated Rooms
DEFF Research Database (Denmark)
Topp, Claus; Jensen, Rasmus Lund; Pedersen, D.N.
2001-01-01
The application of Computational Fluid Dynamics (CFD) for ventilation research and design of ventilation systems has increased during the recent years. This paper provides an investigation of direct description of boundary conditions for a complex inlet diffuser and a heated surface. A series of ...
An evaluation of nozzle afterbody code - AR02P
Guyton, F. C.
1986-07-01
A project was undertaken to develop a computational fluid dynamics (CFD) code for use in nozzle afterbody analysis. Objectives were to create a three-dimensional code capable of calculating afterbody flows with accuracy quantitatively close to the Navier-Stokes solutions, but which would use significantly fewer computer resources. The resulting program coupled an inverse boundary-layer routine with an Euler code and incorporated a jet plume. Calculations were made for the axisymmetric AGARD 15-deg boattail afterbody with variations in nozzle pressure ratio for Mach numbers 0.6 and 0.9, and compared with experimental results. The code predicted drag changes with NPR which showed the proper variations, but the code did not provide the accuracy required for typical nozzle afterbody analysis. (NPR = Nozzle total pressure to free stream static pressure ratio.)
Fogarty, David E.; Wilbur, Matthew L.; Sekula, Martin K.; Boyd, David Douglas, Jr.
2012-01-01
Numerical predictions of the acoustic characteristics of an Active Twist Rotor (ATR), using two methods to compute the rotor blade aerodynamics and elastic blade motion are compared to experimental data from a wind tunnel test in the NASA Langley Transonic Dynamics Tunnel (TDT) in 2000. The first method, a loosely coupled iterative method, utilizes the Computational Fluid Dynamics (CFD) code OVERFLOW 2 and the Computational Structural Dynamics (CSD) code CAMRAD II. The second method utilizes the CAMRAD II free-wake model only. The harmonic active-twist control to the main rotor blade system is identified with three parameters - harmonic actuation frequency, actuation amplitude, and control phase angle. The resulting aerodynamics and blade motion data from the two methods are then used in the acoustics code PSU-WOPWOP to predict acoustic pressure on a spherical array of equally spaced observers surrounding the rotor. This spherical distribution of pressure is used to compute the sound power level representing baseline and actuated conditions. Sound power levels for three categories of noise are defined as - blade-vortex interaction sound power level (BVIPWL), low frequency sound power level (LFPWL), and overall sound power level, OAPWL. Comparisons with measured data indicate the CFD/CSD analysis successfully captures the trends in sound power levels and the effects of active-twist control at advance ratios of 0.14 and 0.17. The free-wake model predictions show inconsistent sound power levels relative to the trends in the experimental and CFD data. This paper presents the first ever comparison between CFD/CSD acoustic predictions for an active-twist rotor and experimental measurements.
Energy Technology Data Exchange (ETDEWEB)
D. M. McEligot; K.G. Condie; G. E. Mc Creery; H. M. Mc Ilroy
2005-09-01
The objective of the present report is to document the design of our first experiment to measure generic flow phenomena expected to occur in the lower plenum of a typical prismatic VHTR (Very High Temperature Reactor) concept. In the process, fabrication sketches are provided for the use of CFD (computational fluid dynamics) analysts wishing to employ the data for assessment of their proposed codes. The general approach of the project is to develop new benchmark experiments for assessment in parallel with CFD and coupled CFD/systems code calculations for the same geometry. One aspect of the complex flow in a prismatic VHTR is being addressed: flow and thermal mixing in the lower plenum ("hot streaking" issue). Current prismatic VHTR concepts were examined to identify their proposed flow conditions and geometries over the range from normal operation to decay heat removal in a pressurized cooldown. Approximate analyses were applied to determine key non-dimensional parameters and their magnitudes over this operating range. The flow in the lower plenum can locally be considered to be a situation of multiple jets into a confined crossflow -- with obstructions. Flow is expected to be turbulent with momentum-dominated turbulent jets entering; buoyancy influences are estimated to be negligible in normal full power operation. Experiments are needed for the combined features of the lower plenum flows. Missing from the typical jet experiments available are interactions with nearby circular posts and with vertical posts in the vicinity of vertical walls - with near stagnant surroundings at one extreme and significant crossflow at the other.
Application of CFD analysis to design support and problem resolution for ASRM and RSRM
Dill, Richard A.; Whitesides, R. Harold
1993-07-01
The use of Navier-Stokes CFD codes to predict the internal flow field environment in a solid rocket motor is a very important analysis element during the design phase of a motor development program. These computational flow field solutions uncover a variety of potential problems associated with motor performance as well as suggesting solutions to these problems. CFD codes have also proven to be of great benefit in explaining problems associated with operational motors such as in the case of the pressure spike problem with the STS-54B flight motor. This paper presents results from analyses involving both motor design support and problem resolution. The issues discussed include the fluid dynamic/mechanical stress coupling at field joints relative to significant propellant deformations, the prediction of axial and radial pressure gradients in the motor associated with motor performance and propellant mechanical loading, the prediction of transition of the internal flow in the motor associated with erosive burning, the accumulation of slag at the field joints and in the submerged nozzle region, impingement of flow on the nozzle nose, and pressure gradients in the nozzle region of the motor. The analyses presented in this paper have been performed using a two-dimensional axisymmetric model. Fluent/BFC, a three dimensional Navier-Stokes flow field code, has been used to make the numerical calculations. This code utilizes a staggered grid formulation along with the SIMPLER numerical pressure-velocity coupling algorithm. Wall functions are used to represent the character of the viscous sub-layer flow, and an adjusted k-epsilon turbulence model especially configured for mass injection internal flows, is used to model the growth of turbulence in the motor port. Conclusions discussed in this paper consider flow field effects on the forward, center, and aft propellant grains except for the head end star grain region of the forward propellant segment. The field joints and the
CFD analysis of a diaphragm free-piston Stirling cryocooler
Caughley, Alan; Sellier, Mathieu; Gschwendtner, Michael; Tucker, Alan
2016-10-01
This paper presents a Computational Fluid Dynamics (CFD) analysis of a novel free-piston Stirling cryocooler that uses a pair of metal diaphragms to seal and suspend the displacer. The diaphragms allow the displacer to move without rubbing or moving seals. When coupled to a metal diaphragm pressure wave generator, the system produces a complete Stirling cryocooler with no rubbing parts in the working gas space. Initial modelling of this concept using the Sage modelling tool indicated the potential for a useful cryocooler. A proof-of-concept prototype was constructed and achieved cryogenic temperatures. A second prototype was designed and constructed using the experience gained from the first. The prototype produced 29 W of cooling at 77 K and reached a no-load temperature of 56 K. The diaphragm's large diameter and short stroke produces a significant radial component to the oscillating flow fields inside the cryocooler which were not modelled in the one-dimensional analysis tool Sage that was used to design the prototypes. Compared with standard pistons, the diaphragm geometry increases the gas-to-wall heat transfer due to the higher velocities and smaller hydraulic diameters. A Computational Fluid Dynamics (CFD) model of the cryocooler was constructed to understand the underlying fluid-dynamics and heat transfer mechanisms with the aim of further improving performance. The CFD modelling of the heat transfer in the radial flow fields created by the diaphragms shows the possibility of utilizing the flat geometry for heat transfer, reducing the need for, and the size of, expensive heat exchangers. This paper presents details of a CFD analysis used to model the flow and gas-to-wall heat transfer inside the second prototype cryocooler, including experimental validation of the CFD to produce a robust analysis.
Energy Technology Data Exchange (ETDEWEB)
Braun, M.; Wachter, E.M. [Fluent Deutschland GmbH, Darmstadt (Germany); Boemer, A. [DEUTZ AG, Koeln (Germany); Waidmann, W. [Fachhochschule Aalen (Germany)
2007-07-01
The commercial CFD Software FLUENT offers a variety of models and sub-models to simulate and predict the spray injection usually applied in IC-Engines. The following article provides an overview of FLUENT spray and particle flow modeling, and a validation case for high-pressure diesel spray. (orig.)
Institute of Scientific and Technical Information of China (English)
Siavash Seyednej adian; Nakisa Yaghobi; Ramin Maghrebi; Leila Vafajoo
2011-01-01
In this study a mathematical model of a small scale single pellet for the oxidative coupling of methane (OCM) over titanite pervoskité isdeveloped.The method is based on a computational fluid dynamics (CFD) code which known as Fluent may be adopted to model the reactions that take place inside the porous catalyst pellet.The steady state single pellet model is coupled with a kinetic model and the intra-pellet concentration profiles of species are provided.Subsequent to achieving this goal,a nonlinear reaction network consisting of nine catalytic reactions and one gas phase reaction as an external program is successfully implemented to CFD-code as a reaction term in solving the equations.This study is based on the experimental design which is conducted in a differential reactor with a Sn/BaTiO3 catalyst (7-8 mesh) at atmospheric pressure,GHSV of 12000 h-1,ratio of methane to oxygen of 2,and three different temperatures of 1023,1048 and 1073 K.The modeling results such as selectivity and conversion at the pellet exit are in good agreement with the experimental data.Therefore,it is suggested that to achieve high yield in OCM process the modeling of the single pellet should be considered as the heart of catalytic fixed bed reactor.
NOVEL BIPHASE CODE -INTEGRATED SIDELOBE SUPPRESSION CODE
Institute of Scientific and Technical Information of China (English)
Wang Feixue; Ou Gang; Zhuang Zhaowen
2004-01-01
A kind of novel binary phase code named sidelobe suppression code is proposed in this paper. It is defined to be the code whose corresponding optimal sidelobe suppression filter outputs the minimum sidelobes. It is shown that there do exist sidelobe suppression codes better than the conventional optimal codes-Barker codes. For example, the sidelobe suppression code of length 11 with filter of length 39 has better sidelobe level up to 17dB than that of Barker code with the same code length and filter length.
Modeling Plasma Flow in Solid Propellant Charges Using the NGEN Multiphase CFD Code
2006-04-01
using these equations derived by a formal averaging technique applied to the microscopic flow. These equations require a number of constitutive laws...disk (dimensions shown are from Chang and Howard [32]). acrylic, that allows cinematography of plasma flows and ignition events along the propellant
Extending the capabilities of CFD codes to assess ash related problems
DEFF Research Database (Denmark)
Kær, Søren Knudsen; Rosendahl, Lasse Aistrup; Baxter, B. B.
2004-01-01
entirely through a graphical userinterface integrated in the standard FLUENT? interface. The modelconsiders fine and coarse mode ash deposition and stickingmechanisms for the complete deposit growth, as well as an influenceon the local boundary conditions for heat transfer due to thermalresistance changes...
From concatenated codes to graph codes
DEFF Research Database (Denmark)
Justesen, Jørn; Høholdt, Tom
2004-01-01
We consider codes based on simple bipartite expander graphs. These codes may be seen as the first step leading from product type concatenated codes to more complex graph codes. We emphasize constructions of specific codes of realistic lengths, and study the details of decoding by message passing...
Rahimi, H.; Dose, B.; Stoevesandt, B.; Peinke, J.
2016-09-01
The aim of this work is to investigate the validity of simulation codes based on the Blade Element Momentum (BEM) theory for three important design load conditions. This paper includes the cases of yawed inflow, rotor tower interaction for downwind turbines and the standstill case. Computational Fluid Dynamics (CFD) and experimental data (when available) are used for the evaluation of the obtained results. For the yawed inflow, the results indicate that significant deviations between BEM and experiments & CFD can be observed. This discrepancy is caused by unsteady phenomena such as the advancing & retreating blade effect and the skewed wake effect. In the case of the rotor and tower interaction of the downwind turbine, the results show that the BEM based code overpredicts the sectional forces in terms of the normal and tangential forces by 20%. In the case of standstill, the evaluation of the results based on tip deflections shows clear differences in the output of both numerical approaches. While the flapwise deflections show a reasonable agreement, the CFD-based coupled solver predicts much larger edgewise vibrations.
On the application of computational fluid dynamics codes for liquefied natural gas dispersion.
Luketa-Hanlin, Anay; Koopman, Ronald P; Ermak, Donald L
2007-02-20
Computational fluid dynamics (CFD) codes are increasingly being used in the liquefied natural gas (LNG) industry to predict natural gas dispersion distances. This paper addresses several issues regarding the use of CFD for LNG dispersion such as specification of the domain, grid, boundary and initial conditions. A description of the k-epsilon model is presented, along with modifications required for atmospheric flows. Validation issues pertaining to the experimental data from the Burro, Coyote, and Falcon series of LNG dispersion experiments are also discussed. A description of the atmosphere is provided as well as discussion on the inclusion of the Coriolis force to model very large LNG spills.
Large Eddy Simulation of Flow in Turbine Cascades Using LESTool and UNCLE Codes
Huang, P. G.
2004-01-01
During the period December 23,1997 and December August 31,2004, we accomplished the development of 2 CFD codes for DNS/LES/RANS simulation of turbine cascade flows, namely LESTool and UNCLE. LESTool is a structured code making use of 5th order upwind differencing scheme and UNCLE is a second-order-accuracy unstructured code. LESTool has both Dynamic SGS and Spalart's DES models and UNCLE makes use of URANS and DES models. The current report provides a description of methodologies used in the codes.
Large Eddy Simulation of Flow in Turbine Cascades Using LEST and UNCLE Codes
Ashpis, David (Technical Monitor); Huang, P. G.
2004-01-01
During the period December 23, 1997 and December August 31, 2004, we accomplished the development of 2 CFD codes for DNS/LES/RANS simulation of turbine cascade flows, namely LESTool and UNCLE. LESTool is a structured code making use of 5th order upwind differencing scheme and UNCLE is a second-order-accuracy unstructured code. LESTool has both Dynamic SGS and Sparlart's DES models and UNCLE makes use of URANS and DES models. The current report provides a description of methodologies used in the codes.
Computational Fluid Dynamics (CFD) Simulations of Jet Mixing in Tanks of Different Scales
Breisacher, Kevin; Moder, Jeffrey
2010-01-01
For long-duration in-space storage of cryogenic propellants, an axial jet mixer is one concept for controlling tank pressure and reducing thermal stratification. Extensive ground-test data from the 1960s to the present exist for tank diameters of 10 ft or less. The design of axial jet mixers for tanks on the order of 30 ft diameter, such as those planned for the Ares V Earth Departure Stage (EDS) LH2 tank, will require scaling of available experimental data from much smaller tanks, as well designing for microgravity effects. This study will assess the ability for Computational Fluid Dynamics (CFD) to handle a change of scale of this magnitude by performing simulations of existing ground-based axial jet mixing experiments at two tank sizes differing by a factor of ten. Simulations of several axial jet configurations for an Ares V scale EDS LH2 tank during low Earth orbit (LEO) coast are evaluated and selected results are also presented. Data from jet mixing experiments performed in the 1960s by General Dynamics with water at two tank sizes (1 and 10 ft diameter) are used to evaluate CFD accuracy. Jet nozzle diameters ranged from 0.032 to 0.25 in. for the 1 ft diameter tank experiments and from 0.625 to 0.875 in. for the 10 ft diameter tank experiments. Thermally stratified layers were created in both tanks prior to turning on the jet mixer. Jet mixer efficiency was determined by monitoring the temperatures on thermocouple rakes in the tanks to time when the stratified layer was mixed out. Dye was frequently injected into the stratified tank and its penetration recorded. There were no velocities or turbulence quantities available in the experimental data. A commercially available, time accurate, multi-dimensional CFD code with free surface tracking (FLOW-3D from Flow Science, Inc.) is used for the simulations presented. Comparisons are made between computed temperatures at various axial locations in the tank at different times and those observed experimentally. The
CFD-ACE+: a CAD system for simulation and modeling of MEMS
Stout, Phillip J.; Yang, H. Q.; Dionne, Paul; Leonard, Andy; Tan, Zhiqiang; Przekwas, Andrzej J.; Krishnan, Anantha
1999-03-01
Computer aided design (CAD) systems are a key to designing and manufacturing MEMS with higher performance/reliability, reduced costs, shorter prototyping cycles and improved time- to-market. One such system is CFD-ACE+MEMS, a modeling and simulation environment for MEMS which includes grid generation, data visualization, graphical problem setup, and coupled fluidic, thermal, mechanical, electrostatic, and magnetic physical models. The fluid model is a 3D multi- block, structured/unstructured/hybrid, pressure-based, implicit Navier-Stokes code with capabilities for multi- component diffusion, multi-species transport, multi-step gas phase chemical reactions, surface reactions, and multi-media conjugate heat transfer. The thermal model solves the total enthalpy from of the energy equation. The energy equation includes unsteady, convective, conductive, species energy, viscous dissipation, work, and radiation terms. The electrostatic model solves Poisson's equation. Both the finite volume method and the boundary element method (BEM) are available for solving Poisson's equation. The BEM method is useful for unbounded problems. The magnetic model solves for the vector magnetic potential from Maxwell's equations including eddy currents but neglecting displacement currents. The mechanical model is a finite element stress/deformation solver which has been coupled to the flow, heat, electrostatic, and magnetic calculations to study flow, thermal electrostatically, and magnetically included deformations of structures. The mechanical or structural model can accommodate elastic and plastic materials, can handle large non-linear displacements, and can model isotropic and anisotropic materials. The thermal- mechanical coupling involves the solution of the steady state Navier equation with thermoelastic deformation. The electrostatic-mechanical coupling is a calculation of the pressure force due to surface charge on the mechanical structure. Results of CFD-ACE+MEMS modeling of MEMS
Ferreira, E.; Alves, E.; Ferreira, R. M. L.
2012-04-01
Sediment deposition by continuous turbidity currents may affect eco-environmental river dynamics in natural reservoirs and hinder the maneuverability of bottom discharge gates in dam reservoirs. In recent years, innovative techniques have been proposed to enforce the deposition of turbidity further upstream in the reservoir (and away from the dam), namely, the use of solid and permeable obstacles such as water jet screens , geotextile screens, etc.. The main objective of this study is to validate a computational fluid dynamics (CFD) code applied to the simulation of the interaction between a turbidity current and a passive retention system, designed to induce sediment deposition. To accomplish the proposed objective, laboratory tests were conducted where a simple obstacle configuration was subjected to the passage of currents with different initial sediment concentrations. The experimental data was used to build benchmark cases to validate the 3D CFD software ANSYS-CFX. Sensitivity tests of mesh design, turbulence models and discretization requirements were performed. The validation consisted in comparing experimental and numerical results, involving instantaneous and time-averaged sediment concentrations and velocities. In general, a good agreement between the numerical and the experimental values is achieved when: i) realistic outlet conditions are specified, ii) channel roughness is properly calibrated, iii) two equation k - ɛ models are employed iv) a fine mesh is employed near the bottom boundary. Acknowledgements This study was funded by the Portuguese Foundation for Science and Technology through the project PTDC/ECM/099485/2008. The first author thanks the assistance of Professor Moitinho de Almeida from ICIST and to all members of the project and of the Fluvial Hydraulics group of CEHIDRO.
Energy Technology Data Exchange (ETDEWEB)
Salama, Amgad, E-mail: asalama75@yahoo.com [Atomic Energy Authority, Reactors Department, 13759 Cairo (Egypt)
2011-07-15
Highlights: > The 3D, CFD simulation of FLOFA accident in the generic IAEA 10 MW research reactor is carried out. > The different flow and heat transfer mechanisms involved in this process were elucidated. > The transition between these mechanisms during the course of FLOFA is discussed and investigated. > The interesting inversion process upon the transition from downward flow to upward flow is shown. > The temperature field and the friction coefficient during the whole transient process were shown. - Abstract: Three dimensional CFD full simulations of the fast loss of flow accident (FLOFA) of the IAEA 10 MW generic MTR research reactor are conducted. In this system the flow is initially downward. The transient scenario starts when the pump coasts down exponentially with a time constant of 1 s. As a result the temperatures of the heating element, the clad, and the coolant rise. When the flow reaches 85% of its nominal value the control rod system scrams and the power drops sharply resulting in the temperatures of the different components to drop. As the coolant flow continues to drop, the decay heat causes the temperatures to increase at a slower rate in the beginning. When the flow becomes laminar, the rate of temperature increase becomes larger and when the pumps completely stop a flow inversion occurs because of natural convection. The temperature will continue to rise at even higher rates until natural convection is established, that is when the temperatures settle off. The interesting 3D patterns of the flow during the inversion process are shown and investigated. The temperature history is also reported and is compared with those estimated by one-dimensional codes. Generally, very good agreement is achieved which provides confidence in the modeling approach.
Good Codes From Generalised Algebraic Geometry Codes
Jibril, Mubarak; Ahmed, Mohammed Zaki; Tjhai, Cen
2010-01-01
Algebraic geometry codes or Goppa codes are defined with places of degree one. In constructing generalised algebraic geometry codes places of higher degree are used. In this paper we present 41 new codes over GF(16) which improve on the best known codes of the same length and rate. The construction method uses places of small degree with a technique originally published over 10 years ago for the construction of generalised algebraic geometry codes.
CFD Modeling of Mixed-Phase Icing
Zhang, Lifen; Liu, Zhenxia; Zhang, Fei
2016-12-01
Ice crystal ingestion at high altitude has been reported to be a threat for safe operation of aero-engine in recently. Ice crystals do not accrete on external surface because of cold environment. But when they enter the core flow of aero-engine, ice crystals melt partially into droplets due to higher temperature. Air-droplets-ice crystal is the mixed-phase, which will give rise to ice accretion on static and rotating components in compressor. Subsequently, compressor surge and engine shutdowns may occur. To provide a numerical tool to analyze this in detail, a numerical method was developed in this study. The mixed phase flow was solved using Eulerian-Lagrangian method. The dispersed phase was represented by one-way coupling. A thermodynamic model that considers mass and energy balance with ice crystals and droplets was presented as well. The icing code was implemented by the user-defined function of Fluent. The method of ice accretion under mixed-phase conditions was validated by comparing the results simulated on a cylinder with experimental data derived from literature. The predicted ice shape and mass agree with these data, thereby confirming the validity of the numerical method developed in this research for mixed-phase conditions.
Remarks on CFD validation: A Boeing Commercial Airplane Company perspective
Rubbert, Paul E.
1987-01-01
Requirements and meaning of validation of computational fluid dynamics codes are discussed. Topics covered include: validating a code, validating a user, and calibrating a code. All results are presented in viewgraph format.
Remarks on CFD validation: A Boeing Commercial Airplane Company perspective
Rubbert, Paul E.
1987-01-01
Requirements and meaning of validation of computational fluid dynamics codes are discussed. Topics covered include: validating a code, validating a user, and calibrating a code. All results are presented in viewgraph format.
Considering value of information when using CFD in design
Energy Technology Data Exchange (ETDEWEB)
Misra, John Satprim [Iowa State Univ., Ames, IA (United States)
2009-01-01
This thesis presents an approach to find lower resolution CFD models that can accurately lead a designer to a correct decision at a lower computational cost. High-fidelity CFD models often contain too much information and come at a higher computational cost, limiting the designs a designer can test and how much optimization can be performed on the design. Lower model resolution is commonly used to reduce computational time. However there are no clear guidelines on how much model accuracy is required. Instead experience and intuition are used to select an appropriate lower resolution model. This thesis presents an alternative to this ad hoc method by considering the added value of the addition information provided by increasing accurate and more computationally expensive models.
Modeling and verification of hemispherical solar still using ANSYS CFD
Energy Technology Data Exchange (ETDEWEB)
Panchal, Hitesh N. [KSV University, Gujarat Power Engineering and Research Institute, Mehsana (India); Shah, P.K. [Silver Oak College of Engineering and Technology, Ahmedabad, Gujarat (India)
2013-07-01
In every efficient solar still design, water temperature, vapor temperature and distillate output, and difference between water temperature and inner glass cover temperatures are very important. Here, two dimensional three phase model of hemispherical solar still is made for evaporation as well as condensation process in ANSYS CFD. Simulation results like water temperature, vapor temperature, distillate output compared with actual experimental results of climate conditions of Mehsana (latitude of 23° 59’ and longitude of 72° 38) of hemispherical solar still. Water temperature and distillate output were good agreement with actual experimental results. Study shows that ANSYS-CFD is very powerful as well as efficient tool for design, comparison purpose of hemispherical solar still.
CFD Application in Implantable Rotary Blood Pump Design and Validation
Institute of Scientific and Technical Information of China (English)
YI Qian
2004-01-01
Implantable rotary blood pump (IRBP) has been promoted to the stage of clinical trial. This paper introduces a unique IRBP without a shaft. Instead of using thrombogenic pivots or power-drawing magnetic suspension, impeller is supported hydrodynamically when rotating, by lubrication flows in the thin spaces between itself and the pump body. To this end, the flow is very difficult to be measured using usual laboratory equipments. Therefore, computational fluid dynamics (CFD) has been applied as an important tool in the IRBP design and its validation procedure. Several CFD results such as pump performance improvement, unsteady hydraulic dynamic analysis, biocapability prediction, validation and verification (V&V), and flow visualization have been performed.
CFD Application in Implantable Rotary Blood Pump Design and Validation
Institute of Scientific and Technical Information of China (English)
YIQian
2004-01-01
Implantable rotary blood pump (IRBP) has been promoted to the stage of clinical trial. This paper introduces a unique IRBP without a.shaft. Instead of using thrombogenic pivots or power-drawing magnetic suspension, impeller is supported hydrodynamically when rotating, by lubrication flows in the thin spaces between itself and the pump body. To this end, the flow is very difficult to be measured using usual laboratory equipments. Therefore, computational fluid dynamics (CFD) has been applied as an important tool in the IRBP design and its validation procedure. Several CFD results such as pump performance improvement, unsteady hydraulic dynamic analysis, biocapability prediction, validation and verification (V&V), and flow visualization have been performed.
Moisture content evaluation of biomass using CFD approach
Directory of Open Access Journals (Sweden)
Thomas Bartzanas
2012-10-01
Full Text Available In grass conservation systems, drying in the field is an essential process upon which the quality and quantity of the material to be conserved is dependent on. In this study a Computational Fluid Dynamics (CFD model, previously validated, was used to assess qualitatively and quantitatively the field drying process of cut grass under different weather conditions and structural specifications of the grass. The use of the CFD model depicts the climate heterogeneity in the grass area with a special focus on moisture distribution, influence of the weather conditions, in order to create the possibility of applying the model as a decision support tool for an enhanced treatment of the grass after cutting.
CFD supported examination of buoy design for wave energy conversion
Energy Technology Data Exchange (ETDEWEB)
Yilmaz, Nadir; Trapp, Geoffrey E.; Gagan, Scott M.; Emmerich, Timothy R. [Department of Mechanical Engineering, New Mexico Institute of Mining and Technology (United States)], e-mail: nadir@nmt.edu, email: gtrapp@nmt.edu, email: sgag01@nmt.edu, email: temmeric@nmt.edu
2011-07-01
The work presented in this paper investigates an oscillating buoy power device (OD) as a potential wave energy converter. The wave interacts with the buoy, which is connected to a mechanical device which oscillates and converts spring force into mechanical power. For validation purposes, ellipsoidal buoy shapes of the five aspect ratios are used in this report as OD devices which are excited under the same wave conditions to validate the computational fluid dynamics (CFD) model against experimental data available in the literature. The analysis was performed using a Flow-3d CFD software package. Comparisons are made and results are presented based on buoy displacements which can be related to energy produced by the buoys. The aspect ratio approaching 1:1:1 (sphere) is found to produce the maximum displacement and consequently the highest possible energy conversion. The paper also discusses whether a flat circular plate shape buoy would capture 50% of the possible energy by comparison with the spherical buoy.
Estudi amb CFD d'un ventilador radial
Cusac Carreras, Aïda
2014-01-01
Diferents anàlisis amb CFD (Dinàmica de fluids computacional) s’han realitzat per tal d’estudiar la interacció entre el rotor i l’estator d’una bomba centrífuga. Les diferents simulacions numèriques s’han portat a terme amb el programa de CFD Ansys Fluent. La bomba centrífuga es basa en el cas de la bomba centrífuga que va presentar Combès en un dels seminaris de l’ERCOFTAC (European Research Community On Flow Turbulence and Combustion) l’any 1999 a Aussois [1]. Les dimensions i caracterís...
Gasification CFD Modeling for Advanced Power Plant Simulations
Energy Technology Data Exchange (ETDEWEB)
Zitney, S.E.; Guenther, C.P.
2005-09-01
In this paper we have described recent progress on developing CFD models for two commercial-scale gasifiers, including a two-stage, coal slurry-fed, oxygen-blown, pressurized, entrained-flow gasifier and a scaled-up design of the PSDF transport gasifier. Also highlighted was NETL’s Advanced Process Engineering Co-Simulator for coupling high-fidelity equipment models with process simulation for the design, analysis, and optimization of advanced power plants. Using APECS, we have coupled the entrained-flow gasifier CFD model into a coal-fired, gasification-based FutureGen power and hydrogen production plant. The results for the FutureGen co-simulation illustrate how the APECS technology can help engineers better understand and optimize gasifier fluid dynamics and related phenomena that impact overall power plant performance.
Experimental and CFD investigation of gas phase freeboard combustion
DEFF Research Database (Denmark)
Andersen, Jimmy
treatment. The aim of this project is to provide validation data for Computational Fluid Dynamic (CFD) models relevant for grate firing combustion conditions. CFD modeling is a mathematical tool capable of predicting fluid flow, mixing and chemical reaction with thermal conversion and transport. Prediction......, but under well-defined conditions. Comprehensive experimental data for velocity field, temperatures, and gas composition are obtained from a 50 kW axisymmetric non-swirling natural gas fired combustion setup under two different settings. Ammonia is added to the combustion setup in order to simulate fuel...... of pollutant formation, which occurs in small concentrations with little impact on the general combustion process is in this work predicted by a post-processing step, making it less computationally expensive. A reactor was constructed to simulate the conditions in the freeboard of a grate fired boiler...
Numerical study of the wake acceleration effect using CFD approach
Chai, Xiang
2014-01-01
A new drag force model was proposed to consider the wake acceleration effect. The proposed model is dependent on wake velocity. Based on a systematic CFD simulation, correlations were proposed to describe the velocity profile of turbulent wake. The proposed model was validated against the experimental data of bubble pairs and employed in the simulation of bubbly flow. It revealed better prediction accuracy than the existing models. It was also used to assess the bubble induced turbulence.
Computational Fluid Dynamics (CFD) Research Branch Technical Briefs
1993-06-09
models 13 Stability Analysis of a Combined Couette - Poiseuille , Two-Fluid Flow Lt John J. Nelson Interdisciplinary and Applied CFD Section Research...analysis and weakly non- tortion of the mean flow , the rise of the second ,armonic linear analysis for a combined Couette - Poiseuille , two and growth...Stability Analysis of a Combined Couette -Poiseulle, Two-Fluid Flow . . I I Computational Aerodynamic Analysis of a Decoy Configuration ....... 15 Euler
Flow simulations using particles - Bridging Computer Graphics and CFD
Koumoutsakos, Petros; Cottet, Georges-Henri; Rossinelli, Diego
2008-01-01
International audience; The simulation of fluid flows using particles is becoming increasingly popular in Computer Graphics (CG). The grid-free character of particles, the flexibility in handling complex flow configurations and the possibility to obtain visually realistic results with a small number of computational elements are some of the main reasons for the success of these methods. In the Computational Fluid Dynamics (CFD) community, the realization that by periodically regularizing the ...
CFD Modeling in Development of Renewable Energy Applications
Directory of Open Access Journals (Sweden)
Maher A.R. Sadiq Al-Baghdadi
2013-01-01
Full Text Available Chapter 1: A Multi-fluid Model to Simulate Heat and Mass Transfer in a PEM Fuel Cell. Torsten Berning, Madeleine Odgaard, Søren K. Kær Chapter 2: CFD Modeling of a Planar Solid Oxide Fuel Cell (SOFC for Clean Power Generation. Meng Ni Chapter 3: Hydrodynamics and Hydropower in the New Paradigm for a Sustainable Engineering. Helena M. Ramos, Petra A. López-Jiménez Chapter 4: Opportunities for CFD in Ejector Solar Cooling. M. Dennis Chapter 5: Three Dimensional Modelling of Flow Field Around a Horizontal Axis Wind Turbine (HAWT. Chaouki Ghenai, Armen Sargsyan, Isam Janajreh Chapter 6: Scaling Rules for Hydrodynamics and Heat Transfer in Jetting Fluidized-Bed Biomass Gasifiers. K. Zhang, J. Chang, P. Pei, H. Chen, Y. Yang Chapter 7: Investigation of Low Reynolds Number Unsteady Flow around Airfoils in Pitching, Plunging and Flapping Motions. M.R. Amiralaei, H. Alighanbari, S.M. Hashemi Chapter 8: Justification of Computational Fluid Dynamics Simulation for Flat Plate Solar Energy Collector. Mohamed Selmi, Mohammed J. Al-Khawaja, Abdulhamid Marafia Chapter 9: Comparative Performance of a 3-Bladed Airfoil Chord H-Darrieus and a 3-Bladed Straight Chord H-Darrieus Turbines using CFD. R. Gupta, Agnimitra Biswas Chapter 10: Computational Fluid Dynamics for PEM Fuel Cell Modelling. A. Iranzo, F. Rosa Chapter 11: Analysis of the Performance of PEM Fuel Cells: Tutorial of Major Functional and Constructive Characteristics using CFD Analysis. P.J. Costa Branco, J.A. Dente Chapter 12: Application of Techniques of Computational Fluid Dynamics in the Design of Bipolar Plates for PEM Fuel Cells. A.P. Manso, F.F. Marzo, J. Barranco, M. Garmendia Mujika.
Aerodynamic investigation of winglets on wind turbine blades using CFD
Johansen, Jeppe; Sørensen, Niels N.
2006-01-01
The present report describes the numerical investigation of the aerodynamics around a wind turbine blade with a winglet using Computational Fluid Dynamics, CFD. Five winglets were investigated with different twist distribution and camber. Four of themwere pointing towards the pressure side (upstream) and one was pointing towards the suction side (downstream). Additionally, a rectangular modification of the original blade tip was designed with the same planform area as the blades with winglets...
Intelligent Computational Systems. Opening Remarks: CFD Application Process Workshop
VanDalsem, William R.
1994-01-01
This discussion will include a short review of the challenges that must be overcome if computational physics technology is to have a larger impact on the design cycles of U.S. aerospace companies. Some of the potential solutions to these challenges may come from the information sciences fields. A few examples of potential computational physics/information sciences synergy will be presented, as motivation and inspiration for the Improving The CFD Applications Process Workshop.
CFD simulation of vented explosion and turbulent flame propagation
Directory of Open Access Journals (Sweden)
Tulach Aleš
2015-01-01
Full Text Available Very rapid physical and chemical processes during the explosion require both quality and quantity of detection devices. CFD numerical simulations are suitable instruments for more detailed determination of explosion parameters. The paper deals with mathematical modelling of vented explosion and turbulent flame spread with use of ANSYS Fluent software. The paper is focused on verification of preciseness of calculations comparing calculated data with the results obtained in realised experiments in the explosion chamber.
Cassiopee: a CFD pre-and post-processing tool
Benoit, C.; Péron, S.; Landier, S.
2015-01-01
This paper presents an overview of the capabilities of a new open-source pre-and post-processing tool for Computational Fluid Dynamics simulations, called Cassiopee. Its architecture, which is basically a set of Python modules, and the handled data, which is based on CGNS standard, are described. Some examples of workflows that can be built with Cassiopee functions are provided. Finally, some applications of Cassiopee functions to realistic CFD configurations are briefly presented.
Pilot-in-the-Loop CFD Method Development
2017-04-20
1 Contract # N00014-14-C-0020 Pilot-in-the-Loop CFD Method Development Progress Report (CDRL A001) Progress Report for Period: January...21, 2017 to April 20, 2017 PI: Joseph F. Horn 814-865-6434 joehorn@psu.edu Performing Organization : The Pennsylvania State University...Penn State VLRCOE Flight Simulator. Performance Study and Grid Dependency To quantify the timing performance of the developed coupling tool on
CFD simulation of neutral ABL flows; Atmospheric Boundary Layer
Energy Technology Data Exchange (ETDEWEB)
Xiaodong Zhang
2009-04-15
This work is to evaluate the CFD prediction of Atmospheric Boundary Layer flow field over different terrains employing Fluent 6.3 software. How accurate the simulation could achieve depend on following aspects: viscous model, wall functions, agreement of CFD model with inlet wind velocity profile and top boundary condition. Fluent employ wall function roughness modifications based on data from experiments with sand grain roughened pipes and channels, describe wall adjacent zone with Roughness Height (Ks) instead of Roughness Length (z{sub 0}). In a CFD simulation of ABL flow, the mean wind velocity profile is generally described with either a logarithmic equation by the presence of aerodynamic roughness length z{sub 0} or an exponential equation by the presence of exponent. As indicated by some former researchers, the disagreement between wall function model and ABL velocity profile description will result in some undesirable gradient along flow direction. There are some methods to improve the simulation model in literatures, some of them are discussed in this report, but none of those remedial methods are perfect to eliminate the streamwise gradients in mean wind speed and turbulence, as EllipSys3D could do. In this paper, a new near wall treatment function is designed, which, in some degree, can correct the horizontal gradients problem. Based on the corrected model constants and near wall treatment function, a simulation of Askervein Hill is carried out. The wind condition is neutrally stratified ABL and the measurements are best documented until now. Comparison with measured data shows that the CFD model can well predict the velocity field and relative turbulence kinetic energy field. Furthermore, a series of artificial complex terrains are designed, and some of the main simulation results are reported. (au)
CFD modeling of an arc-heated jet
Rostand, Phillipe; Mac Cormack, Robert W.
1990-06-01
On the basis of state-of-the-art numerical techniques and physical models, a new CFD program is developed for the simulation of a high-enthalpy reacting ionized thermally relaxing nitrogen plasma in a cylindrical plenum chamber. A preliminary validation by comparison with experimental results was obtained. The algorithm is shown to be very efficient, and the empirical modeling gave results of practical use for the configuration studied.
Optimize Sedimentation Tank and Lab Flocculation Unit by CFD
Zhang, Duo
2014-01-01
This work aim at introduce basic knowledge of CFD and it’s application in optimization of sedimentation tank and lab flocculation units. A series of specialized strategies are developed for the simulation of the sedimentation tanks and lab flocculation units. Chapter 1 is general introduction of particle removal in water and wastewater treatment, includes particle separation, as well as particle removal during chemical treatment and biological treatment. In chapter 2, background and appli...
Investigation of Navier-Stokes Code Verification and Design Optimization
Vaidyanathan, Rajkumar
2004-01-01
With rapid progress made in employing computational techniques for various complex Navier-Stokes fluid flow problems, design optimization problems traditionally based on empirical formulations and experiments are now being addressed with the aid of computational fluid dynamics (CFD). To be able to carry out an effective CFD-based optimization study, it is essential that the uncertainty and appropriate confidence limits of the CFD solutions be quantified over the chosen design space. The present dissertation investigates the issues related to code verification, surrogate model-based optimization and sensitivity evaluation. For Navier-Stokes (NS) CFD code verification a least square extrapolation (LSE) method is assessed. This method projects numerically computed NS solutions from multiple, coarser base grids onto a freer grid and improves solution accuracy by minimizing the residual of the discretized NS equations over the projected grid. In this dissertation, the finite volume (FV) formulation is focused on. The interplay between the xi concepts and the outcome of LSE, and the effects of solution gradients and singularities, nonlinear physics, and coupling of flow variables on the effectiveness of LSE are investigated. A CFD-based design optimization of a single element liquid rocket injector is conducted with surrogate models developed using response surface methodology (RSM) based on CFD solutions. The computational model consists of the NS equations, finite rate chemistry, and the k-6 turbulence closure. With the aid of these surrogate models, sensitivity and trade-off analyses are carried out for the injector design whose geometry (hydrogen flow angle, hydrogen and oxygen flow areas and oxygen post tip thickness) is optimized to attain desirable goals in performance (combustion length) and life/survivability (the maximum temperatures on the oxidizer post tip and injector face and a combustion chamber wall temperature). A preliminary multi-objective optimization
CFD DPAL modeling for various schemes of flow configurations
Waichman, Karol; Barmashenko, Boris D.; Rosenwaks, Salman
2014-10-01
Comprehensive analysis of kinetic and fluid dynamic processes in flowing-gas diode pumped alkali lasers (DPALs) using two- and three-dimensional computational fluid dynamics (2D and 3D CFD) models is reported for Cs DPALs. The models take into account effects of temperature rise and losses of alkali atoms due to ionization. Various gas flow regimes and transverse and parallel flow-optics directions configurations are studied. Optimization of the Cs DPAL parameters, using 3D CFD modeling, shows that applying high flow velocity and narrowband pumping, maximum lasing power as high as 40 kW can be obtained at pump power of 80 kW for transverse flow configuration in a pumped volume of ~ 0.7 cm3. At high pump power the calculated laser power is higher for the transverse scheme than for the parallel scheme because of a more efficient heat convection from the beam volume in the transverse configuration. The CFD models are applied to experimental devices and the calculated results are in good agreement with the measurements.
CFD simulation research on residential indoor air quality.
Yang, Li; Ye, Miao; He, Bao-Jie
2014-02-15
Nowadays people are excessively depending on air conditioning to create a comfortable indoor environment, but it could cause some health problems in a long run. In this paper, wind velocity field, temperature field and air age field in a bedroom with wall-hanging air conditioning running in summer are analyzed by CFD numerical simulation technology. The results show that wall-hanging air conditioning system can undertake indoor heat load and conduct good indoor thermal comfort. In terms of wind velocity, air speed in activity area where people sit and stand is moderate, most of which cannot feel wind flow and meet the summer indoor wind comfort requirement. However, for air quality, there are local areas without ventilation and toxic gases not discharged in time. Therefore it is necessary to take effective measures to improve air quality. Compared with the traditional measurement method, CFD software has many advantages in simulating indoor environment, so it is hopeful for humans to create a more comfortable, healthy living environment by CFD in the future.
A CFD model for pollutant dispersion in rivers
Directory of Open Access Journals (Sweden)
Modenesi K.
2004-01-01
Full Text Available Studies have shown that humankind will experience a water shortage in the coming decades. It is therefore paramount to develop new techniques and models with a view to minimizing the impact of pollution. It is important to predict the environmental impact of new emissions in rivers, especially during periods of drought. Computational fluid dynamics (CFD has proved to be an invaluable tool to develop models able to analyze in detail particle dispersion in rivers. However, since these models generate grids with thousands (even millions of points to evaluate velocities and concentrations, they still require powerful machines. In this context, this work contributes by presenting a new three-dimensional model based on CFD techniques specifically developed to be fast, providing a significant improvement in performance. It is able to generate predictions in a couple of hours for a one-thousand-meter long section of river using Pentium IV computers. Commercial CFD packages would require weeks to solve the same problem. Another innovation inb this work is that a half channel with a constant elliptical cross section represents the river, so the Navier Stokes equations were derived for the elliptical system. Experimental data were obtained from REPLAN (PETROBRAS refining unit on the Atibaia River in São Paulo, Brazil. The results show good agreement with experimental data.
CFD and FEM Model of an Underwater Vehicle Propeller
Directory of Open Access Journals (Sweden)
Chruściel Tadeusz
2014-10-01
Full Text Available Within the framework of the project for design and optimization of the Remotely Operated Vehicle (ROV, research on its propulsion has been carried out. Te entire project was supported by CFD and FEM calculations taking into account the characteristics of the underwater vehicle. One of the tasks was to optimize the semi-open duct for horizontal propellers, which provided propulsion and controllability in horizontal plane. In order to create a measurable model of this task it was necessary to analyze numerical methodology of propeller design, along with the structure of a propellers with nozzles and contra-rotating propellers. It was confronted with theoretical solutions which included running of the analyzed propeller near an underwater vehicle. Also preliminary qualitative analyses of a simplified system with contra-rotating propellers and a semi-open duct were carried out. Te obtained results enabled to make a decision about the ROVs duct form. Te rapid prototyping SLS (Selective Laser Sintering method was used to fabricate a physical model of the propeller. As a consequence of this, it was necessary to verify the FEM model of the propeller, which based on the load obtained from the CFD model. Te article contains characteristics of the examined ROV, a theoretical basis of propeller design for the analyzed cases, and the results of CFD and FEM simulations.
Computer Aided Grid Interface: An Interactive CFD Pre-Processor
Soni, Bharat K.
1997-01-01
NASA maintains an applications oriented computational fluid dynamics (CFD) efforts complementary to and in support of the aerodynamic-propulsion design and test activities. This is especially true at NASA/MSFC where the goal is to advance and optimize present and future liquid-fueled rocket engines. Numerical grid generation plays a significant role in the fluid flow simulations utilizing CFD. An overall goal of the current project was to develop a geometry-grid generation tool that will help engineers, scientists and CFD practitioners to analyze design problems involving complex geometries in a timely fashion. This goal is accomplished by developing the CAGI: Computer Aided Grid Interface system. The CAGI system is developed by integrating CAD/CAM (Computer Aided Design/Computer Aided Manufacturing) geometric system output and/or Initial Graphics Exchange Specification (IGES) files (including all the NASA-IGES entities), geometry manipulations and generations associated with grid constructions, and robust grid generation methodologies. This report describes the development process of the CAGI system.
LSST camera heat requirements using CFD and thermal seeing modeling
Sebag, Jacques; Vogiatzis, Konstantinos
2010-07-01
The LSST camera is located above the LSST primary/tertiary mirror and in front of the secondary mirror in the shadow of its central obscuration. Due to this position within the optical path, heat released from the camera has a potential impact on the seeing degradation that is larger than traditionally estimated for Cassegrain or Nasmyth telescope configurations. This paper presents the results of thermal seeing modeling combined with Computational Fluid Dynamics (CFD) analyzes to define the thermal requirements on the LSST camera. Camera power output fluxes are applied to the CFD model as boundary conditions to calculate the steady-state temperature distribution on the camera and the air inside the enclosure. Using a previously presented post-processing analysis to calculate the optical seeing based on the mechanical turbulence and temperature variations along the optical path, the optical performance resulting from the seeing is determined. The CFD simulations are repeated for different wind speeds and orientations to identify the worst case scenario and generate an estimate of seeing contribution as a function of camera-air temperature difference. Finally, after comparing with the corresponding error budget term, a maximum allowable temperature for the camera is selected.
Preliminary tests of a damaged ship for CFD validation
Directory of Open Access Journals (Sweden)
Sungkyun Lee
2012-06-01
Full Text Available One of the most critical issues in naval architecture these days is the operational safety. Among many factors to be considered for higher safety level requirements, the hull stability in intact and damaged conditions is the first to ensure for both commercial and military vessels. Unlike the intact stability cases, the assessment of the damaged ship stability is very complicated physical phenomena. Therefore it is widely acknowledged that computational fluid dynamics (CFD methods are one of most feasible approaches. In order to develop better CFD methods for damaged ship stability assessment, it is essential to perform well-designed model tests and to build a database for CFD validation. In the present study, free roll decay tests in calm water with both intact and damaged ships were performed and six degree-of-freedom (6DOF motion responses of intact ship in regular waves were measured. Through the free roll decay tests, the effects of the flooding water on the roll decay motion of a ship were investigated. Through the model tests in regular waves, the database that provides 6DOF motion responses of intact ship was established.
A Scalable Infrastructure for Online Performance Analysis on CFD Application
Institute of Scientific and Technical Information of China (English)
HU Kai; DING Yi; ZHANG Xinyu; JIANG Shu
2012-01-01
The fast-growing demand of computational fluid dynamics (CFD) application for computing resources stimulates the development of high performance computing (HPC) and meanwhile raises new requirements for the technology of parallel application performance monitor and analysis.In response to large-scale and long-time running for the application of CFD,online and scalable performance analysis technology is required to optimize the parallel programs as well as to improve their operational efficiency.As a result,this research implements a scalable infrastructure for online performance analysis on CFD application with homogeneous or heterogeneous system.The infrastructure is part of the parallel application performance monitor and analysis system (PAPMAS) and is composed of two modules which are scalable data transmission module and data storage module.The paper analyzes and elaborates this infrastructure in detail with respect to its design and implementation.Furthermore,some experiments are carried out to verify the rationality and high efficiency of this infrastructure that could be adopted to meet the practical needs.
CFD simulation on performance of new type umbrella plate scrubber
Institute of Scientific and Technical Information of China (English)
LI Shan-hong; LI Cai-ting; ZENG Guang-ming; LI Si-min; WANG Fei; WANG Da-yong
2008-01-01
A new type of umbrella plate scrubber was developed to address the pollution due to the dust, dioxide sulfur and other harmful gases, which were emitted from coal-burning boilers. The performance of the new device was studied through computational fluid dynamics(CFD) simulation and experiment methods. Initial work included experimental measurement of inlet-velocity, and gas phase simulation using Reynolds stress model(RSM). After gas phase was converged, particles were injected from the inlet of the new device. Discrete phase model(DPM) was used for particle trajectories determination. The pressure drop and the collection efficiency of the new device were predicted through simulation. The simulation results show that the pressure drop of the new devices is 230-250 Pa and the efficiency is 84%-86%, with the inlet velocity equal to 10.6 m/s and the dust concentration ranging from 2 to 22 g/m3. The CFD simulation results of the new device show good agreement with experimental data. The relative error of the pressure drop and the efficiency is approximately 4% and 10% respectively. The results obtained both from the numerical simulation and from the experiment demonstrate that CFD simulation is an effective method for this type of study.
The prediction of solute transport in surcharged manholes using CFD.
Lau, S D; Stovin, V R; Guymer, I
2007-01-01
Solute transport processes occur within a wide range of water engineering structures, and urban drainage engineers increasingly rely on modelling tools to represent the transport of dissolved materials. The models take as input representative travel time and dispersion characteristics for key system components, and these generally have to be identified via field or laboratory measurements. Computational Fluid Dynamics (CFD) has the potential to reveal the underlying hydraulic processes that control solute transport, and to provide a generic means of identifying relevant parameter values. This paper reports on a study that has been undertaken to evaluate the feasibility of utilising a CFD-based approach to modelling solute transport. Discrete phase modelling has been adopted, as this is computationally efficient and robust when compared with the time-dependent solution of the advection-dispersion equation. Simulation results are compared with published laboratory data characterising the dispersion effects of surcharged manholes, focusing specifically on an 800 mm diameter laboratory manhole for a flowrate of 0.002 m(3)/s and a range of surcharge depths. Preliminary indications are that the CFD results adequately replicate the measured downstream temporal concentration profiles, and that a threshold surcharge depth, corresponding to a change in hydraulic regime within the manhole, can also be identified.
Study of indoor radon distribution using measurements and CFD modeling.
Chauhan, Neetika; Chauhan, R P; Joshi, M; Agarwal, T K; Aggarwal, Praveen; Sahoo, B K
2014-10-01
Measurement and/or prediction of indoor radon ((222)Rn) concentration are important due to the impact of radon on indoor air quality and consequent inhalation hazard. In recent times, computational fluid dynamics (CFD) based modeling has become the cost effective replacement of experimental methods for the prediction and visualization of indoor pollutant distribution. The aim of this study is to implement CFD based modeling for studying indoor radon gas distribution. This study focuses on comparison of experimentally measured and CFD modeling predicted spatial distribution of radon concentration for a model test room. The key inputs for simulation viz. radon exhalation rate and ventilation rate were measured as a part of this study. Validation experiments were performed by measuring radon concentration at different locations of test room using active (continuous radon monitor) and passive (pin-hole dosimeters) techniques. Modeling predictions have been found to be reasonably matching with the measurement results. The validated model can be used to understand and study factors affecting indoor radon distribution for more realistic indoor environment.
Measurements of a single pulse impinging jet. A CFD reference
Directory of Open Access Journals (Sweden)
Bovo Mirko
2014-03-01
Full Text Available This paper reports three sets of measurements of a single pulse impinging jet. The purpose is to serve as a reference for CFD validation. A gas injector generates a single pulse jet at Re ~90000. The jet impinges on a temperature controlled flat target at different angles (0º, 30º, 45º and 60º. The jet velocity field is measured with PIV. The evolution of the jet velocity profile in time is reported at two different locations (suitable as CFD inlet conditions. At the same locations also turbulence quantities are reported. The impingement wall temperature is measured with fast responding thermocouples and infrared camera. These give high time and space resolution respectively. Results are reported in a format suitable for comparison with CFD simulations. The results show that the heat transfer effects are highest for the jet impinging normally on the target. Target inclination has remarkable effects on the jet penetration rate and repeatability. Even small target inclinations result creates a preferential direction for the jet flow and cause a shift in the position of the stagnation region.
Implementation of discrete transfer radiation method into swift computational fluid dynamics code
Directory of Open Access Journals (Sweden)
Baburić Mario
2004-01-01
Full Text Available The Computational Fluid Dynamics (CFD has developed into a powerful tool widely used in science, technology and industrial design applications, when ever fluid flow, heat transfer, combustion, or other complicated physical processes, are involved. During decades of development of CFD codes scientists were writing their own codes, that had to include not only the model of processes that were of interest, but also a whole spectrum of necessary CFD procedures, numerical techniques, pre-processing and post-processing. That has arrested much of the scientist effort in work that has been copied many times over, and was not actually producing the added value. The arrival of commercial CFD codes brought relief to many engineers that could now use the user-function approach for mod el ling purposes, en trusting the application to do the rest of the work. This pa per shows the implementation of Discrete Transfer Radiation Method into AVL’s commercial CFD code SWIFT with the help of user defined functions. Few standard verification test cases were per formed first, and in order to check the implementation of the radiation method it self, where the comparisons with available analytic solution could be performed. After wards, the validation was done by simulating the combustion in the experimental furnace at IJmuiden (Netherlands, for which the experimental measurements were available. The importance of radiation prediction in such real-size furnaces is proved again to be substantial, where radiation itself takes the major fraction of over all heat transfer. The oil-combustion model used in simulations was the semi-empirical one that has been developed at the Power Engineering Department, and which is suit able for a wide range of typical oil flames.
Research on verification and validation strategy of detonation fluid dynamics code of LAD2D
Wang, R. L.; Liang, X.; Liu, X. Z.
2017-07-01
The verification and validation (V&V) is an important approach in the software quality assurance of code in complex engineering application. Reasonable and efficient V&V strategy can achieve twice the result with half the effort. This article introduces the software-Lagrangian adaptive hydrodynamics code in 2D space (LAD2D), which is self-developed software in detonation CFD with plastic-elastic structure. The V&V strategy of this detonation CFD code is presented based on the foundation of V&V methodology for scientific software. The basic framework of the module verification and the function validation is proposed, composing the detonation fluid dynamics model V&V strategy of LAD2D.
Energy Technology Data Exchange (ETDEWEB)
Poole, G.; Heroux, M. [Engineering Applications Group, Eagan, MN (United States)
1994-12-31
This paper will focus on recent work in two widely used industrial applications codes with iterative methods. The ANSYS program, a general purpose finite element code widely used in structural analysis applications, has now added an iterative solver option. Some results are given from real applications comparing performance with the tradition parallel/vector frontal solver used in ANSYS. Discussion of the applicability of iterative solvers as a general purpose solver will include the topics of robustness, as well as memory requirements and CPU performance. The FIDAP program is a widely used CFD code which uses iterative solvers routinely. A brief description of preconditioners used and some performance enhancements for CRAY parallel/vector systems is given. The solution of large-scale applications in structures and CFD includes examples from industry problems solved on CRAY systems.
Directory of Open Access Journals (Sweden)
Maher A.R. Sadiq Al-Baghdadi
2016-07-01
Full Text Available This paper presents a comprehensive three–dimensional, multi–phase, non-isothermal model of a Proton Exchange Membrane (PEM fuel cell that incorporates significant physical processes and key parameters affecting the fuel cell performance. The model construction involves equations derivation, boundary conditions setting, and solution algorithm flow chart. Equations in gas flow channels, gas diffusion layers (GDLs, catalyst layers (CLs, and membrane as well as equations governing cell potential and hygro-thermal stresses are described. The algorithm flow chart starts from input of the desired cell current density, initialization, iteration of the equations solution, and finalizations by calculating the cell potential. In order to analyze performance, water and thermal distribution, and mechanical related failure in the cell, the equations are solved using a computational fluid dynamic (CFD code. Performance analysis includes a performance curve which plots the cell potential (Volt against nominal current density (A/cm2 as well as losses. Velocity vectors of gas and liquid water, liquid water saturation, and water content profile are calculated. Thermal distribution is then calculated together with hygro-thermal stresses and deformation. The CFD model was executed under boundary conditions of 20°C room temperature, 35% relative humidity, and 1 MPA pressure on the lower surface. Parameters values of membrane electrode assembly (MEA and other base conditions are selected. A cell with dimension of 1 mm x 1 mm x 50 mm is used as the object of analysis. The nominal current density of 1.4 A/cm2 is given as the input of the CFD calculation. The results show that the model represents well the performance curve obtained through experiment. Moreover, it can be concluded that the model can help in understanding complex process in the cell which is hard to be studied experimentally, and also provides computer aided tool for design and optimization of PEM
Space Time Codes from Permutation Codes
Henkel, Oliver
2006-01-01
A new class of space time codes with high performance is presented. The code design utilizes tailor-made permutation codes, which are known to have large minimal distances as spherical codes. A geometric connection between spherical and space time codes has been used to translate them into the final space time codes. Simulations demonstrate that the performance increases with the block lengths, a result that has been conjectured already in previous work. Further, the connection to permutation codes allows for moderate complex en-/decoding algorithms.
CFD-aided design of blowers; CFD-Aided Design von Ventilatoren
Energy Technology Data Exchange (ETDEWEB)
Richter, R.; Schilling, R. [Technische Univ. Muenchen, Garching (Germany). Lehrstuhl fuer Hydraulische Maschinen und Anlagen
1998-12-31
Within the scope of the AiF research project 10524 N, the Chair for Hydraulic Machines and Plants (LHM) has conceived a development system for the geometric design and the aerodynamic optimisation of any ventilator blading - abbreviated VES - and implemented in industrial use. The system is designed in such a way that the user can both recalculate existing geometries to modify them and prepare a first draft of the blading. A comprehensive postprocessing enables the visualization and assessment of the calculatory results. Besides a Q3D Euler Code for stages, the VES is also equipped with a 3D Euler Code (E3D). As both Codes are hierarchically arranged on the same level in the VEW, it is up to the user to choose the suitable procedure for this problem at hand und to implement it. The modification of the blade geometry is made in case of radial impellers by modification of the blade angle path, in case of axial impellers by modification of the profile parameters. Via a B-spline approximation of the meridian contour, also the stroke or shroud geometry can be revised. (orig.) [Deutsch] Im Rahmen des AiF-Forschungsvorhabens 10524 N wurde vom Lehrstuhl fuer Hydraulische Maschinen und Anlagen (LHM) ein Entwicklungssystem fuer den geometrischen Entwurf und die aerodynamische Optimierung von beliebigen Ventilatorbeschaufelungen - abgekuerzt VES - konzipiert, erstellt und in der Industrie implementiert. Das System ist so konzipiert, dass der Anwender sowohl bestehende Geometrien nachrechnen und modifizieren als auch einen Erstentwurf von Beschaufelungen erstellen kann. Ein umfangreiches Postprocessing ermoeglicht die Visualisierung und Beureilung der Rechenergebnisse. Neben einem Q3D Euler Code fuer Stufen enthaelt das VES auch einen E3D Euler Code. Da beide Codes im VES hierarchisch auf derselben Ebene angeordnet sind, bleibt es dem Anwender ueberlassen, das fuer die vorliegende Problemstellung geeignete Verfahren auszuwaehlen und einzusetzen. Die Ermittlung der
Fundamentals of convolutional coding
Johannesson, Rolf
2015-01-01
Fundamentals of Convolutional Coding, Second Edition, regarded as a bible of convolutional coding brings you a clear and comprehensive discussion of the basic principles of this field * Two new chapters on low-density parity-check (LDPC) convolutional codes and iterative coding * Viterbi, BCJR, BEAST, list, and sequential decoding of convolutional codes * Distance properties of convolutional codes * Includes a downloadable solutions manual
NASA Multidimensional Stirling Convertor Code Developed
Tew, Roy C.; Thieme, Lanny G.
2004-01-01
A high-efficiency Stirling Radioisotope Generator (SRG) for use on potential NASA Space Science missions is being developed by the Department of Energy, Lockheed Martin, Stirling Technology Company, and the NASA Glenn Research Center. These missions may include providing spacecraft onboard electric power for deep space missions or power for unmanned Mars rovers. Glenn is also developing advanced technology for Stirling convertors, aimed at substantially improving the specific power and efficiency of the convertor and the overall power system. Performance and mass improvement goals have been established for second- and third-generation Stirling radioisotope power systems. Multiple efforts are underway to achieve these goals, both in house at Glenn and under various grants and contracts. These efforts include the development of a multidimensional Stirling computational fluid dynamics code, high-temperature materials, advanced controllers, an end-to-end system dynamics model, low-vibration techniques, advanced regenerators, and a lightweight convertor. Under a NASA grant, Cleveland State University (CSU) and its subcontractors, the University of Minnesota (UMN) and Gedeon Associates, have developed a twodimensional computer simulation of a CSUmod Stirling convertor. The CFD-ACE commercial software developed by CFD Research Corp. of Huntsville, Alabama, is being used. The CSUmod is a scaled version of the Stirling Technology Demonstrator Convertor (TDC), which was designed and fabricated by the Stirling Technology Company and is being tested by NASA. The schematic illustrates the structure of this model. Modeled are the fluid-flow and heat-transfer phenomena that occur in the expansion space, the heater, the regenerator, the cooler, the compression space, the surrounding walls, and the moving piston and displacer. In addition, the overall heat transfer, the indicated power, and the efficiency can be calculated. The CSUmod model is being converted to a two
CFD validation of the thermal comfort in a room using draft rates
2007-01-01
Air temperature and velocity are the two main factors affecting the thermal comfort indoors. These two values can be easily obtained using computational fluid dynamic (CFD) simulations together with the turbulence kinetic energy value. This paper evaluates methods of calculating thermal comfort indices using CFD. Simulated results are compared against experimental data measured in a purpose build full-scale model room. The results show that CFD data can reliably predict thermal comfort values...
Kamath, Arun
2015-01-01
The application of computational fluid dynamics (CFD) methods to various problems in the field of coastal and ocean engineering is gaining importance due to the level of detail and accuracy offered by these methods. With the advances made in the computing power over the last decade and anticipated future increase in computational power, large and complex problems can be handled using CFD modeling. The PhD study aims at the development of a CFD-based numerical wave tank, vali...
Well-posedness and convergence of cfd two-fluid model for bubbly flows
Vaidheeswaran, Avinash
The current research is focused on developing a well-posed multidimensional CFD two-fluid model (TFM) for bubbly flows. Two-phase flows exhibit a wide range of local flow instabilities such as Kelvin-Helmholtz, Rayleigh-Taylor, plume and jet instabilities. They arise due to the density difference and/or the relative velocity between the two phases. A physically correct TFM is essential to model these instabilities. However, this is not the case with the TFMs in numerical codes, which can be shown to have complex eigenvalues due to incompleteness and hence are ill-posed as initial value problems. A common approach to regularize an incomplete TFM is to add artificial physics or numerically by using a coarse grid or first order methods. However, it eliminates the local physical instabilities along with the undesired high frequency oscillations resulting from the ill-posedness. Thus, the TFM loses the capability to predict the inherent local dynamics of the two-phase flow. The alternative approach followed in the current study is to introduce appropriate physical mechanisms that make the TFM well-posed. First a well-posed 1-D TFM for vertical bubbly flows is analyzed with characteristics, and dispersion analysis. When an incomplete TFM is used, it results in high frequency oscillations in the solution. It is demonstrated through the travelling void wave problem that, by adding the missing short wavelength physics to the numerical TFM, this can be removed by making the model well-posed. To extend the limit of well-posedness beyond the well-known TFM of Pauchon and Banerjee [1], the mechanism of collision is considered, and it is shown by characteristics analysis that the TFM then becomes well-posed for all void fractions of practical interest. The aforementioned ideas are then extended to CFD TFM. The travelling void wave problem is again used to demonstrate that by adding appropriate physics, the problem of ill-posedness is resolved. Furthermore, issues pertaining to
Non-Newtonian Liquid Flow through Small Diameter Piping Components: CFD Analysis
Bandyopadhyay, Tarun Kanti; Das, Sudip Kumar
2016-10-01
Computational Fluid Dynamics (CFD) analysis have been carried out to evaluate the frictional pressure drop across the horizontal pipeline and different piping components, like elbows, orifices, gate and globe valves for non-Newtonian liquid through 0.0127 m pipe line. The mesh generation is done using GAMBIT 6.3 and FLUENT 6.3 is used for CFD analysis. The CFD results are verified with our earlier published experimental data. The CFD results show the very good agreement with the experimental values.
Strong Trinucleotide Circular Codes
Directory of Open Access Journals (Sweden)
Christian J. Michel
2011-01-01
Full Text Available Recently, we identified a hierarchy relation between trinucleotide comma-free codes and trinucleotide circular codes (see our previous works. Here, we extend our hierarchy with two new classes of codes, called DLD and LDL codes, which are stronger than the comma-free codes. We also prove that no circular code with 20 trinucleotides is a DLD code and that a circular code with 20 trinucleotides is comma-free if and only if it is a LDL code. Finally, we point out the possible role of the symmetric group ∑4 in the mathematical study of trinucleotide circular codes.
Analysis of wall shear stress around a competitive swimmer using 3D Navier-Stokes equations in CFD.
Popa, C V; Zaidi, H; Arfaoui, A; Polidori, G; Taiar, R; Fohanno, S
2011-01-01
This paper deals with the flow dynamics around a competitive swimmer during underwater glide phases occurring at the start and at every turn. The influence of the head position, namely lifted up, aligned and lowered, on the wall shear stress and the static pressure distributions is analyzed. The problem is considered as 3D and in steady hydrodynamic state. Three velocities (1.4 m/s, 2.2 m/s and 3.1 m/s) that correspond to inter-regional, national and international swimming levels are studied. The flow around the swimmer is assumed turbulent. The Reynolds-averaged Navier-Stokes (RANS) equations are solved with the standard k-ω turbulent model by using the CFD (computational fluid dynamics) numerical method based on a volume control approach. Numerical simulations are carried out with the ANSYS FLUENT® CFD code. The results show that the wall shear stress increases with the velocity and consequently the drag force opposing the movement of the swimmer increases as well. Also, high wall shear stresses are observed in the areas where the body shape, globally rigid in form, presents complex surface geometries such as the head, shoulders, buttocks, heel and chest.
Directory of Open Access Journals (Sweden)
Jean-Yves Noël
2007-12-01
Full Text Available Noise reduction is of increasing importance in the community. Consequently, the development of aero-acoustics is gaining special focus within industry. Computational Aero-Acoustics (CAA, the coupling of Computational Fluid Dynamics (CFD and Computational Acoustics (CA, is being used in the design and assessment of a range of products from HVAC ducts to domestic appliances. The process for carrying out an Aero-Acoustic simulation begins with the solution of the transient flow dynamics in order to compute accurately the pressure fluctuations at a number of points in the computational domain. These fluctuations are passed to the acoustic code to propagate the acoustic waves through the system and determine its acoustic signature. To minimize errors in the acoustic propagation analysis it is thus essential that accurate predictions of the noise sources be obtained. This paper concentrates on the CFD part of the aero-acoustic simulation. The case considered has been taken from the European project DESTINY:3 and comprises a tangential blower located inside a complex duct system. Air is drawn into the fan through two inlets and exits through a single duct. The computational methodology and flow field predictions are presented and compared to experimental PIV data. The numerical predictions were found to be in good agreement with the experimental data, reproducing the asymmetries in the flow field.
Energy Technology Data Exchange (ETDEWEB)
Baik, Seungjoon; Kim, Hyeon Tae; Kim, Seong Gu; Lee, Jekyoung; Lee, Jeong Ik [KAIST, Daejeon (Korea, Republic of)
2015-10-15
The supercritical carbon dioxide (S-CO{sub 2}) power cycle has been suggested as an alternative for the SFR power generation system. First of all, relatively mild sodium-CO{sub 2} interaction can reduce the accident probability. Also the S-CO{sub 2} power conversion cycle can achieve high efficiency with SFR core thermal condition. Moreover, the S-CO{sub 2} power cycle can reduce cycle footprint due to high density of the working fluid. Recently, various compact heat exchangers have been studied for developing an optimal heat exchanger. In this paper, the printed circuit heat exchanger was selected for S-CO{sub 2} power cycle applications and was closely investigated experimentally and analytically. Recently, design and performance prediction of PCHE received attention due to its importance in high pressure power systems such as S-CO{sub 2} cycle. To evaluate a PCHE performance with CO{sub 2} to water, KAIST research team designed and tested a lab-scale PCHE. From the experimental data and CFD analysis, pressure drop and heat transfer correlations are obtained. For the CFD analysis, Ansys-CFX commercial code was utilized with RGP table implementation. In near future, the turbulence model sensitivity study will be followed.
Energy Technology Data Exchange (ETDEWEB)
Shin, Do Young; Jeong, Ui Ju; Kim, Sung Joong [Hanyang University, Seoul (Korea, Republic of)
2016-05-15
In the current commercial design, the canister of the dry storage system is mainly backfilled with helium gas. Helium gas shows very conductive behavior due to high thermal conductivity and small density change with temperature. However, other gases such as air, argon, or nitrogen are expected to show effective convective behavior. Thus these are also considered as candidates for the backfill gas to provide effective coolability. In this study, to compare the dominant cooling mechanism and effectiveness of cooling between helium gas and air, a computational fluid dynamics (CFD) analysis for the canister of spent fuel dry storage system with backfill gas of helium and air is carried out. In this study, CFD simulations for the helium and air backfilled gas for dry storage system canister were carried out using ANSYS FLUENT code. For the comparison work, two backfilled fluids were modeled with same initial and boundary conditions. The observed major difference can be summarized as follows. - The simulation results showed the difference in dominant heat removal mechanism. Conduction for helium, and convection for air considering Reynolds number distribution. - The temperature gradient inside the fuel assembly showed that in case of air, more effective heat mixing occurred compared to helium.
Energy Technology Data Exchange (ETDEWEB)
Arastoopour, Hamid [Illinois Inst. of Technology, Chicago, IL (United States); Abbasian, Javad [Illinois Inst. of Technology, Chicago, IL (United States)
2014-07-31
the method of moments, called Finite size domain Complete set of trial functions Method Of Moments (FCMOM) was used to solve the population balance equations. The PBE model was implemented in a commercial CFD code, Ansys Fluent 13.0. The code was used to test the model in some simple cases and the results were verified against available analytical solution in the literature. Furthermore, the code was used to simulate CO2 capture in a packed-bed and the results were in excellent agreement with the experimental data obtained in the packed bed. The National Energy Laboratory (NETL) Carbon Capture Unit (C2U) design was used in simulate of the hydrodynamics of the cold flow gas/solid system (Clark et al.58). The results indicate that the pressure drop predicted by the model is in good agreement with the experimental data. Furthermore, the model was shown to be able to predict chugging behavior, which was observed during the experiment. The model was used as a base-case for simulations of reactive flow at elevated pressure and temperatures. The results indicate that by controlling the solid circulation rate, up to 70% CO2 removal can be achieved and that the solid hold up in the riser is one of the main factors controlling the extent of CO2 removal. The CFD/PBE simulation model indicates that by using a simulated syngas with a composition of 20% CO2, 20% H2O, 30% CO, and 30% H2, the composition (wet basis) in the reactor outlet corresponded to about 60% CO2 capture with and exit gas containing 65% H2. A preliminary base-case-design was developed for a regenerative MgO-based pre-combustion carbon capture process for a 500 MW IGCC power plant. To minimize the external energy requirement, an extensive heat integration network was developed in Aspen/HYSYS® to produce the steam required in the regenerator and heat integration. In this process, liquid CO2 produced at 50 atm can easily be pumped and sequestered or stored. The preliminary economic analyses indicate that the
Energy Technology Data Exchange (ETDEWEB)
Arastoopour, Hamid [Illinois Inst. of Technology, Chicago, IL (United States); Abbasian, Javad [Illinois Inst. of Technology, Chicago, IL (United States)
2014-07-31
the method of moments, called Finite size domain Complete set of trial functions Method Of Moments (FCMOM) was used to solve the population balance equations. The PBE model was implemented in a commercial CFD code, Ansys Fluent 13.0. The code was used to test the model in some simple cases and the results were verified against available analytical solution in the literature. Furthermore, the code was used to simulate CO2 capture in a packed-bed and the results were in excellent agreement with the experimental data obtained in the packed bed. The National Energy Laboratory (NETL) Carbon Capture Unit (C2U) design was used in simulate of the hydrodynamics of the cold flow gas/solid system (Clark et al.58). The results indicate that the pressure drop predicted by the model is in good agreement with the experimental data. Furthermore, the model was shown to be able to predict chugging behavior, which was observed during the experiment. The model was used as a base-case for simulations of reactive flow at elevated pressure and temperatures. The results indicate that by controlling the solid circulation rate, up to 70% CO2 removal can be achieved and that the solid hold up in the riser is one of the main factors controlling the extent of CO2 removal. The CFD/PBE simulation model indicates that by using a simulated syngas with a composition of 20% CO2, 20% H2O, 30% CO, and 30% H2, the composition (wet basis) in the reactor outlet corresponded to about 60% CO2 capture with and exit gas containing 65% H2. A preliminary base-case-design was developed for a regenerative MgO-based pre-combustion carbon capture process for a 500 MW IGCC power plant. To minimize the external energy requirement, an extensive heat integration network was developed in Aspen/HYSYS® to produce the steam required in the regenerator and heat integration. In this process, liquid CO2 produced at 50 atm can easily be pumped and sequestered or stored. The preliminary economic analyses indicate that the
Development of multi-physics code systems based on the reactor dynamics code DYN3D
Energy Technology Data Exchange (ETDEWEB)
Kliem, Soeren; Gommlich, Andre; Grahn, Alexander; Rohde, Ulrich [Helmholtz-Zentrum Dresden-Rossendorf e.V., Dresden (Germany); Schuetze, Jochen [ANSYS Germany GmbH, Darmstadt (Germany); Frank, Thomas [ANSYS Germany GmbH, Otterfing (Germany); Gomez Torres, Armando M.; Sanchez Espinoza, Victor Hugo [Karlsruher Institut fuer Technologie (KIT), Eggenstein-Leopoldshafen (Germany)
2011-07-15
The reactor dynamics code DYN3D has been coupled with the CFD code ANSYS CFX and the 3D thermal hydraulic core model FLICA4. In the coupling with ANSYS CFX, DYN3D calculates the neutron kinetics and the fuel behavior including the heat transfer to the coolant. The physical data interface between the codes is the volumetric heat release rate into the coolant. In the coupling with FLICA4 only the neutron kinetics module of DYN3D is used. Fluid dynamics and related transport phenomena in the reactor's coolant and fuel behavior is calculated by FLICA4. The correctness of the coupling of DYN3D with both thermal hydraulic codes was verified by the calculation of different test problems. These test problems were set-up in such a way that comparison with the DYN3D stand-alone code was possible. This included steady-state and transient calculations of a mini-core consisting of nine real-size PWR fuel assemblies with ANSYS CFX/DYN3D as well as mini-core and a full core steady-state calculation using FLICA4/DYN3D. (orig.)
Eklund, Dean R.; Northam, G. B.; Mcdaniel, J. C.; Smith, Cliff
1992-01-01
A CFD (Computational Fluid Dynamics) competition was held at the Third Scramjet Combustor Modeling Workshop to assess the current state-of-the-art in CFD codes for the analysis of scramjet combustors. Solutions from six three-dimensional Navier-Stokes codes were compared for the case of staged injection of air behind a step into a Mach 2 flow. This case was investigated experimentally at the University of Virginia and extensive in-stream data was obtained. Code-to-code comparisons have been made with regard to both accuracy and efficiency. The turbulence models employed in the solutions are believed to be a major source of discrepancy between the six solutions.
Joint source channel coding using arithmetic codes
Bi, Dongsheng
2009-01-01
Based on the encoding process, arithmetic codes can be viewed as tree codes and current proposals for decoding arithmetic codes with forbidden symbols belong to sequential decoding algorithms and their variants. In this monograph, we propose a new way of looking at arithmetic codes with forbidden symbols. If a limit is imposed on the maximum value of a key parameter in the encoder, this modified arithmetic encoder can also be modeled as a finite state machine and the code generated can be treated as a variable-length trellis code. The number of states used can be reduced and techniques used fo
Moradkhani, Hamed; Izadkhah, Mir-Shahabeddin; Anarjan, Navideh
2017-02-01
In this work, gas dispersion in a two-phase partitioning bioreactor is analyzed by calculating volumetric oxygen mass transfer coefficient which is modeled using a commercial computational fluid dynamics (CFD), code FLUENT 6.2. Dispersed oxygen bubbles dynamics is based on standard "k-ε" Reynolds-averaged Navier-Stokes (RANS) model. This paper describes a three-dimensional CFD model coupled with population balance equations (PBE) in order to get more confirming results of experimental measurements. Values of k L a are obtained using dynamic gassing-out method. Using the CFD simulation, the volumetric mass transfer coefficient is calculated based on Higbie's penetration theory. Characteristics of mass transfer coefficient are investigated for five configurations of impeller and three different aeration flow rates. The pitched six blade type, due to the creation of downward flow direction, leads to higher dissolved oxygen (DO) concentrations, thereby, higher values of k L a compared with other impeller compositions. The magnitude of dissolved oxygen percentage in the aqueous phase has direct correlation with impeller speed and any increase of the aeration magnitude leads to faster saturation in shorter periods of time. Agitation speeds of 300 to 800 rpm are found to be the most effective rotational speeds for the mass transfer of oxygen in two-phase partitioning bioreactors (TPPB).
Energy Technology Data Exchange (ETDEWEB)
Abbasian, F.; Hadaller, G.I.; Fortman, R.A. [Stern Laboratories, Hamilton, Ontario (Canada)
2010-07-01
Single-phase (inlet temperature of 180° C, outlet pressure of 9 MPa, total power of 2 MW and flow rate of 13.5 Kg/s), and two-phase (inlet temperature of 265° C, outlet pressure of 10 MPa, total power of 7.126 MW and flow rate of 19 Kg/s) water flows inside a CANDU thirty seven element fuel string are simulated using a Computational Fluid Dynamics (CFD) code with parallel processing and results are presented in this paper. The analyses have been performed for the original and modified (11.5 mm center element diameter) designs with skewed cosine axial heat flux distribution and 5.1% diametral creep of the pressure tube. The CFD results are in good agreement with the expected temperature and velocity cross-sectional distributions. The effect of the pressure tube creep on the flow bypass is detected, and the CHF improvement in the core region of the modified design is confirmed. The two-phase flow model reasonably predicted the void distribution and the role of interfacial drag on increasing the pressure drop. In all CFD models, the appendages were shown to enhance the production of cross flows and their corresponding flow mixing and asymmetry. (author)
Energy Technology Data Exchange (ETDEWEB)
Grahn, Alexander, E-mail: a.grahn@hzdr.de; Gommlich, André; Kliem, Sören; Bilodid, Yurii; Kozmenkov, Yaroslav
2017-04-15
Highlights: • Improved thermal-hydraulic description of nuclear reactor cores. • Providing reactor dynamics code with realistic thermal-hydraulic boundary conditions. • Possibility of three-dimensional flow phenomena in the core, such as cross flow, flow reversal. • Simulation at higher spatial resolution as compared to system codes. - Abstract: In the framework of the European project NURESAFE, the reactor dynamics code DYN3D, developed at Helmholtz-Zentrum Dresden-Rossendorf (HZDR), was coupled with the Computational Fluid Dynamics (CFD) solver Trio-U, developed at CEA France, in order to replace DYN3D’s one-dimensional hydraulic part with a full three-dimensional description of the coolant flow in the reactor core at higher spatial resolution. The present document gives an introduction into the coupling method and shows results of its application to the simulation of a Main Steamline Break (MSLB) accident of a Pressurised Water Reactor (PWR).
Investigation of microclimate between wall and furniture with CFD
DEFF Research Database (Denmark)
Mortensen, Lone Hedegaard; Woloszyn, Monika; Rode, Carsten
2005-01-01
velocities and diffusion transport in constructions is presented. It is a CFD model where the air is modelled as a mixture of dry air and water vapour and walls fluids modelled with ordinary wall characteristics as material properties. This enables easy modelling of moisture transfer within the walls....... This investigation has special focus on the coupling of the moisture transfers in the wall and the moisture content of the air. The microclimate in a room is studied for different geometrical configurations, meaning that the moisture and temperature conditions are analysed and discussed using different distances...... between wall constructions and furnishing....
Modeling chemical reactions in the indoor environment by CFD
DEFF Research Database (Denmark)
Sørensen, Dan Nørtoft; Weschler, Charles J.
2002-01-01
The concentrations of ozone and a terpene that react in the gas-phase to produce a hypothetical product were investigated by computational fluid dynamics (CFD) for two different air exchange rates. Ozone entered the room with the ventilation air. The terpenes were introduced as a localized source...... with an emission pattern similar to an air freshener; this was in contrast to an otherwise identical earlier study in which the terpene was introduced as a floor source with an emission pattern similar to a floor care product (Sørensen and Weschler, 2002). The results show that there are large concentration...