WorldWideScience

Sample records for fault diagnostic systems

  1. Case-Based Fault Diagnostic System

    International Nuclear Information System (INIS)

    Mohamed, A.H.

    2014-01-01

    Nowadays, case-based fault diagnostic (CBFD) systems have become important and widely applied problem solving technologies. They are based on the assumption that “similar faults have similar diagnosis”. On the other hand, CBFD systems still suffer from some limitations. Common ones of them are: (1) failure of CBFD to have the needed diagnosis for the new faults that have no similar cases in the case library. (2) Limited memorization when increasing the number of stored cases in the library. The proposed research introduces incorporating the neural network into the case based system to enable the system to diagnose all the faults. Neural networks have proved their success in the classification and diagnosis problems. The suggested system uses the neural network to diagnose the new faults (cases) that cannot be diagnosed by the traditional CBR diagnostic system. Besides, the proposed system can use the another neural network to control adding and deleting the cases in the library to manage the size of the cases in the case library. However, the suggested system has improved the performance of the case based fault diagnostic system when applied for the motor rolling bearing as a case of study

  2. A Diagnostic System for Speed-Varying Motor Rotary Faults

    Directory of Open Access Journals (Sweden)

    Chwan-Lu Tseng

    2014-01-01

    Full Text Available This study proposed an intelligent rotary fault diagnostic system for motors. A sensorless rotational speed detection method and an improved dynamic structural neural network are used. Moreover, to increase the convergence speed of training, a terminal attractor method and a hybrid discriminant analysis are also adopted. The proposed method can be employed to detect the rotary frequencies of motors with varying speeds and can enhance the discrimination of motor faults. To conduct the experiments, this study used wireless sensor nodes to transmit vibration data and employed MATLAB to write codes for functional modules, including the signal processing, sensorless rotational speed estimation, neural network, and stochastic process control chart. Additionally, Visual Basic software was used to create an integrated human-machine interface. The experimental results regarding the test of equipment faults indicated that the proposed novel diagnostic system can effectively estimate rotational speeds and provide superior ability of motor fault discrimination with fast training convergence.

  3. Advanced monitoring, fault diagnostics, and maintenance of cryogenic systems

    CERN Document Server

    Girone, Mario; Pezzetti, Marco

    In this Thesis, advanced methods and techniques of monitoring, fault diagnostics, and predictive maintenance for cryogenic processes and systems are described. In particular, in Chapter 1, mainstreams in research on measurement systems for cryogenic processes are reviewed with the aim of dening key current trends and possible future evolutions. Then, in Chapter 2, several innovative methods are proposed. A transducer based on a virtual ow meter is presented for monitoring helium distribution and consumption in cryogenic systems for particle accelerators [1]. Furthermore, a comprehensive metrological analysis of the proposed transducer for verifying the metrological performance and pointing out most critical uncertainty sources is described [2]. A model-based method for fault detection and early-stage isolation, able to work with few records of Frequency Response Function (FRF) on an unfaulty compressor, is then proposed [3]. To enrich the proposal, a distributed diagnostic procedure, based on a micro-genetic...

  4. Vehicle fault diagnostics and management system

    Science.gov (United States)

    Gopal, Jagadeesh; Gowthamsachin

    2017-11-01

    This project is a kind of advanced automatic identification technology, and is more and more widely used in the fields of transportation and logistics. It looks over the main functions with like Vehicle management, Vehicle Speed limit and Control. This system starts with authentication process to keep itself secure. Here we connect sensors to the STM32 board which in turn is connected to the car through Ethernet cable, as Ethernet in capable of sending large amounts of data at high speeds. This technology involved clearly shows how a careful combination of software and hardware can produce an extremely cost-effective solution to a problem.

  5. ISHM-oriented adaptive fault diagnostics for avionics based on a distributed intelligent agent system

    Science.gov (United States)

    Xu, Jiuping; Zhong, Zhengqiang; Xu, Lei

    2015-10-01

    In this paper, an integrated system health management-oriented adaptive fault diagnostics and model for avionics is proposed. With avionics becoming increasingly complicated, precise and comprehensive avionics fault diagnostics has become an extremely complicated task. For the proposed fault diagnostic system, specific approaches, such as the artificial immune system, the intelligent agents system and the Dempster-Shafer evidence theory, are used to conduct deep fault avionics diagnostics. Through this proposed fault diagnostic system, efficient and accurate diagnostics can be achieved. A numerical example is conducted to apply the proposed hybrid diagnostics to a set of radar transmitters on an avionics system and to illustrate that the proposed system and model have the ability to achieve efficient and accurate fault diagnostics. By analyzing the diagnostic system's feasibility and pragmatics, the advantages of this system are demonstrated.

  6. Modeling and Measurement Constraints in Fault Diagnostics for HVAC Systems

    Energy Technology Data Exchange (ETDEWEB)

    Najafi, Massieh; Auslander, David M.; Bartlett, Peter L.; Haves, Philip; Sohn, Michael D.

    2010-05-30

    Many studies have shown that energy savings of five to fifteen percent are achievable in commercial buildings by detecting and correcting building faults, and optimizing building control systems. However, in spite of good progress in developing tools for determining HVAC diagnostics, methods to detect faults in HVAC systems are still generally undeveloped. Most approaches use numerical filtering or parameter estimation methods to compare data from energy meters and building sensors to predictions from mathematical or statistical models. They are effective when models are relatively accurate and data contain few errors. In this paper, we address the case where models are imperfect and data are variable, uncertain, and can contain error. We apply a Bayesian updating approach that is systematic in managing and accounting for most forms of model and data errors. The proposed method uses both knowledge of first principle modeling and empirical results to analyze the system performance within the boundaries defined by practical constraints. We demonstrate the approach by detecting faults in commercial building air handling units. We find that the limitations that exist in air handling unit diagnostics due to practical constraints can generally be effectively addressed through the proposed approach.

  7. A flexible simulator for training an early fault diagnostic system

    International Nuclear Information System (INIS)

    Marsiletti, M.; Santinelli, A.; Zuenkov, M.; Poletykin, A.

    1997-01-01

    An early fault diagnostic system has been developed addressed to timely trouble shooting in process plants during any operational modes. The theory of this diagnostic system is related with the usage of learning methods for automatic generation of knowledge bases. This approach enables the conversion of ''cause→effect'' relations into ''effect→possible-causes'' ones. The diagnostic rules are derived from the operation of a plant simulator according to a specific procedure. Flexibility, accuracy and high speed are the major characteristics of the training simulator, used to generate the diagnostic knowledge base. The simulator structure is very flexible, being based on LEGO code but allowing the use of practically any kind of FORTRAN routines (recently also ACSL macros has been introduced) as plant modules: this permits, when needed, a very accurate description of the malfunctions the diagnostic system should ''known''. The high speed is useful to shorten the ''learning'' phase of the diagnostic system. The feasibility of the overall system has been assessed, using as reference plant the conventional Sampierdarena (Italy) power station, that is a combined cycle plant dedicated to produce both electrical and heat power. The hardware configuration of this prototype system was made up of a network of a Hewlett-Packard workstation and a Digital VAX-Station. The paper illustrates the basic structure of the simulator used for this diagnostic system training purpose, as well as the theoretical background on which the diagnostic system is based. Some evidence of the effectiveness of the concept through the application to Sampierdarena 40 MW cogeneration plant is reported. Finally an outline of an ongoing application to a WWER-1000 plant is given; the operating system is, in this case, UNIX. (author)

  8. Integrated system fault diagnostics utilising digraph and fault tree-based approaches

    International Nuclear Information System (INIS)

    Bartlett, L.M.; Hurdle, E.E.; Kelly, E.M.

    2009-01-01

    With the growing intolerance to failures within systems, the issue of fault diagnosis has become ever prevalent. Information concerning these possible failures can help to minimise the disruption to the functionality of the system by allowing quick rectification. Traditional approaches to fault diagnosis within engineering systems have focused on sequential testing procedures and real-time mechanisms. Both methods have been predominantly limited to single fault causes. Latest approaches also consider the issue of multiple faults in reflection to the characteristics of modern day systems designed for high reliability. In addition, a diagnostic capability is required in real time and for changeable system functionality. This paper focuses on two approaches which have been developed to cater for the demands of diagnosis within current engineering systems, namely application of the fault tree analysis technique and the method of digraphs. Both use a comparative approach to consider differences between actual system behaviour and that expected. The procedural guidelines are discussed for each method, with an experimental aircraft fuel system used to test and demonstrate the features of the techniques. The effectiveness of the approaches is compared and their future potential highlighted

  9. Simultaneous Sensor and Process Fault Diagnostics for Propellant Feed System

    Science.gov (United States)

    Cao, J.; Kwan, C.; Figueroa, F.; Xu, R.

    2006-01-01

    The main objective of this research is to extract fault features from sensor faults and process faults by using advanced fault detection and isolation (FDI) algorithms. A tank system that has some common characteristics to a NASA testbed at Stennis Space Center was used to verify our proposed algorithms. First, a generic tank system was modeled. Second, a mathematical model suitable for FDI has been derived for the tank system. Third, a new and general FDI procedure has been designed to distinguish process faults and sensor faults. Extensive simulations clearly demonstrated the advantages of the new design.

  10. Non deterministic finite automata for power systems fault diagnostics

    Directory of Open Access Journals (Sweden)

    LINDEN, R.

    2009-06-01

    Full Text Available This paper introduces an application based on finite non-deterministic automata for power systems diagnosis. Automata for the simpler faults are presented and the proposed system is compared with an established expert system.

  11. Study on fault diagnostic system using modularized knowledge; Mojuru gata chishiki wo mochiita ijo shindan system ni kansuru kenkyu

    Energy Technology Data Exchange (ETDEWEB)

    Shimada, Y.; Sayama, H.; Suzuki, K. [Okayama Univ. (Japan). Dept. of Industrial and Mechanical Engineering

    1997-08-15

    Recently, a fault diagnostic expert system was prosperously developed as an objective of chemical plants and nuclear power plants. In this paper, a fault diagnostic method using modularized knowledge was proposed, a fault diagnostic system was constructed for an experimental plant, and the effectiveness of this method was clarified by carrying out a fault diagnostic experiment. The characteristics of the proposed fault diagnostic system were as follows: The necessary knowledge for diagnosing faults was made into each process element. Based on this method, the revision and addition of a knowledge base could be carried out in each element, and the design change of a plant could be flexibly corresponded by only changing the related part of the process flow graph. The estimated results were stored into the working memory, not only faults of an element in which faults resulted could be estimated, but also the fault propagating path could be clarified. 8 refs., 6 figs., 3 tabs.

  12. Sequential fault diagnosis for mechatronics system using diagnostic hybrid bond graph and composite harmony search

    Directory of Open Access Journals (Sweden)

    Ming Yu

    2015-12-01

    Full Text Available This article proposes a sequential fault diagnosis method to handle asynchronous distinct faults using diagnostic hybrid bond graph and composite harmony search. The faults under consideration include fault mode, abrupt fault, and intermittent fault. The faults can occur in different time instances, which add to the difficulty of decision making for fault diagnosis. This is because the earlier occurred fault can exhibit fault symptom which masks the fault symptom of latter occurred fault. In order to solve this problem, a sequential identification algorithm is developed in which the identification task is reactivated based on two conditions. The first condition is that the latter occurred fault has at least one inconsistent coherence vector element which is consistent in coherence vector of the earlier occurred fault, and the second condition is that the existing fault coherence vector has the ability to hide other faults and the second-level residual exceeds the threshold. A new composite harmony search which is capable of handling continuous variables and binary variables simultaneously is proposed for identification purpose. Experiments on a mobile robot system are conducted to assess the proposed sequential fault diagnosis algorithm.

  13. Constitution and application of reactor make-up system's fault diagnostic Bayesian networks

    International Nuclear Information System (INIS)

    Liang Jie; Cai Qi; Chu Zhuli; Wang Haiping

    2013-01-01

    A fault diagnostic Bayesian network of reactor make-up system was constituted. The system's structure characters, operation rules and experts' experience were combined and an initial net was built. As the fault date sets were learned with the particle swarm optimization based Bayesian network structure, the structure of diagnostic net was completed and used to inference case. The built net can analyze diagnostic probability of every node in the net and afford assistant decision to fault diagnosis. (authors)

  14. Integrated Fault Diagnostics of Networks and IT Systems

    Data.gov (United States)

    National Aeronautics and Space Administration — The lecture of the Stanford-IVHM lecture series will give an overview of the approaches in building diagnostic solutions for networks and complex systems. The...

  15. Fault diagnostics of dynamic system operation using a fault tree based method

    International Nuclear Information System (INIS)

    Hurdle, E.E.; Bartlett, L.M.; Andrews, J.D.

    2009-01-01

    For conventional systems, their availability can be considerably improved by reducing the time taken to restore the system to the working state when faults occur. Fault identification can be a significant proportion of the time taken in the repair process. Having diagnosed the problem the restoration of the system back to its fully functioning condition can then take place. This paper expands the capability of previous approaches to fault detection and identification using fault trees for application to dynamically changing systems. The technique has two phases. The first phase is modelling and preparation carried out offline. This gathers information on the effects that sub-system failure will have on the system performance. Causes of the sub-system failures are developed in the form of fault trees. The second phase is application. Sensors are installed on the system to provide information about current system performance from which the potential causes can be deduced. A simple system example is used to demonstrate the features of the method. To illustrate the potential for the method to deal with additional system complexity and redundancy, a section from an aircraft fuel system is used. A discussion of the results is provided.

  16. Autonomous power expert fault diagnostic system for Space Station Freedom electrical power system testbed

    Science.gov (United States)

    Truong, Long V.; Walters, Jerry L.; Roth, Mary Ellen; Quinn, Todd M.; Krawczonek, Walter M.

    1990-01-01

    The goal of the Autonomous Power System (APS) program is to develop and apply intelligent problem solving and control to the Space Station Freedom Electrical Power System (SSF/EPS) testbed being developed and demonstrated at NASA Lewis Research Center. The objectives of the program are to establish artificial intelligence technology paths, to craft knowledge-based tools with advanced human-operator interfaces for power systems, and to interface and integrate knowledge-based systems with conventional controllers. The Autonomous Power EXpert (APEX) portion of the APS program will integrate a knowledge-based fault diagnostic system and a power resource planner-scheduler. Then APEX will interface on-line with the SSF/EPS testbed and its Power Management Controller (PMC). The key tasks include establishing knowledge bases for system diagnostics, fault detection and isolation analysis, on-line information accessing through PMC, enhanced data management, and multiple-level, object-oriented operator displays. The first prototype of the diagnostic expert system for fault detection and isolation has been developed. The knowledge bases and the rule-based model that were developed for the Power Distribution Control Unit subsystem of the SSF/EPS testbed are described. A corresponding troubleshooting technique is also described.

  17. Cryogenic systems advanced monitoring, fault diagnostics, and predictive maintenance

    CERN Document Server

    Arpaia, Pasquale; Inglese, Vitaliano; Pezzetti, Marco

    2018-01-01

    Cryogenics, the study and technology of materials and systems at very low temperature, is widely used for sensors and instruments requiring very highly precise measurements with low electrical resistance, especially for measurements of materials and energies at a very small scale. Thus, the need to understand how instruments operate and perform over time at temperatures below -2920 F (-1800 C) is critical, for applications from Magnetic Resonance Imaging (MRI) to Nuclear Magnetic Resonance Spectroscopy to instrumentation for particle accelerators of all kinds. This book brings to the reader guidance learned from work at the European Laboratory for Nuclear Research (CERN), and its large scale particle accelerator in Switzerland to help engineers and technicians implement best practices in instrumentation at cryogenic temperatures, including a better understanding of fault detection and predictive maintenance. Special problems with devices like flow meters, pressure gauges, and temperature gauges when operating...

  18. An efficient diagnostic technique for distribution systems based on under fault voltages and currents

    Energy Technology Data Exchange (ETDEWEB)

    Campoccia, A.; Di Silvestre, M.L.; Incontrera, I.; Riva Sanseverino, E. [Dipartimento di Ingegneria Elettrica elettronica e delle Telecomunicazioni, Universita degli Studi di Palermo, viale delle Scienze, 90128 Palermo (Italy); Spoto, G. [Centro per la Ricerca Elettronica in Sicilia, Monreale, Via Regione Siciliana 49, 90046 Palermo (Italy)

    2010-10-15

    Service continuity is one of the major aspects in the definition of the quality of the electrical energy, for this reason the research in the field of faults diagnostic for distribution systems is spreading ever more. Moreover the increasing interest around modern distribution systems automation for management purposes gives faults diagnostics more tools to detect outages precisely and in short times. In this paper, the applicability of an efficient fault location and characterization methodology within a centralized monitoring system is discussed. The methodology, appropriate for any kind of fault, is based on the use of the analytical model of the network lines and uses the fundamental components rms values taken from the transient measures of line currents and voltages at the MV/LV substations. The fault location and identification algorithm, proposed by the authors and suitably restated, has been implemented on a microprocessor-based device that can be installed at each MV/LV substation. The speed and precision of the algorithm have been tested against the errors deriving from the fundamental extraction within the prescribed fault clearing times and against the inherent precision of the electronic device used for computation. The tests have been carried out using Matlab Simulink for simulating the faulted system. (author)

  19. Study on Unified Chaotic System-Based Wind Turbine Blade Fault Diagnostic System

    Science.gov (United States)

    Kuo, Ying-Che; Hsieh, Chin-Tsung; Yau, Her-Terng; Li, Yu-Chung

    At present, vibration signals are processed and analyzed mostly in the frequency domain. The spectrum clearly shows the signal structure and the specific characteristic frequency band is analyzed, but the number of calculations required is huge, resulting in delays. Therefore, this study uses the characteristics of a nonlinear system to load the complete vibration signal to the unified chaotic system, applying the dynamic error to analyze the wind turbine vibration signal, and adopting extenics theory for artificial intelligent fault diagnosis of the analysis signal. Hence, a fault diagnostor has been developed for wind turbine rotating blades. This study simulates three wind turbine blade states, namely stress rupture, screw loosening and blade loss, and validates the methods. The experimental results prove that the unified chaotic system used in this paper has a significant effect on vibration signal analysis. Thus, the operating conditions of wind turbines can be quickly known from this fault diagnostic system, and the maintenance schedule can be arranged before the faults worsen, making the management and implementation of wind turbines smoother, so as to reduce many unnecessary costs.

  20. evelopment of a boiling water reactor fault diagnostic system with a signed directed graph method

    International Nuclear Information System (INIS)

    Chen, M.; Yu, C.C.; Liou, C.T.; Liao, L.Y.

    1990-01-01

    The fault diagnostic system for a nuclear power reactor is expected to be a useful decision support system for the operators during transients and accident conditions. A considerable research effort has been devoted to the development of automated fault diagnostic systems. One major approach, which has been widely used in chemical engineering, is to identify the possible causes of process disturbance using a logic-oriented method called signed directed graph (SDG). A knowledge based system was developed with the rules derived from the SDG representation. The SDG for the Chinshan nuclear power plant, which is a typical boiling water reactor, is established. The personal consultant system is used as the expert system development tool in this paper

  1. Expert system for fault diagnostic in electronic devices

    Energy Technology Data Exchange (ETDEWEB)

    Benedetti, G

    1984-03-01

    Troubleshooting of electronic devices and highly complex PCBS (printed circuit boards) is an area where expert systems can be used. In addition to the difficulties intrinsic to this area it is also impossible to integrate the amount of knowledge based on experience in a traditional model. 8 references.

  2. The Diagnostic Challenge Competition: Probabilistic Techniques for Fault Diagnosis in Electrical Power Systems

    Science.gov (United States)

    Ricks, Brian W.; Mengshoel, Ole J.

    2009-01-01

    Reliable systems health management is an important research area of NASA. A health management system that can accurately and quickly diagnose faults in various on-board systems of a vehicle will play a key role in the success of current and future NASA missions. We introduce in this paper the ProDiagnose algorithm, a diagnostic algorithm that uses a probabilistic approach, accomplished with Bayesian Network models compiled to Arithmetic Circuits, to diagnose these systems. We describe the ProDiagnose algorithm, how it works, and the probabilistic models involved. We show by experimentation on two Electrical Power Systems based on the ADAPT testbed, used in the Diagnostic Challenge Competition (DX 09), that ProDiagnose can produce results with over 96% accuracy and less than 1 second mean diagnostic time.

  3. Prodiag--a hybrid artificial intelligence based reactor diagnostic system for process faults

    International Nuclear Information System (INIS)

    Reifman, J.; Wei, T.Y.C.; Vitela, J.E.; Applequist, C. A.; Chasensky, T.M.

    1996-01-01

    Commonwealth Research Corporation (CRC) and Argonne National Laboratory (ANL) are collaborating on a DOE-sponsored Cooperative Research and Development Agreement (CRADA), project to perform feasibility studies on a novel approach to Artificial Intelligence (Al) based diagnostics for component faults in nuclear power plants. Investigations are being performed in the construction of a first-principles physics-based plant level process diagnostic expert system (ES) and the identification of component-level fault patterns through operating component characteristics using artificial neural networks (ANNs). The purpose of the proof-of-concept project is to develop a computer-based system using this Al approach to assist process plant operators during off-normal plant conditions. The proposed computer-based system will use thermal hydraulic (T-H) signals complemented by other non-T-H signals available in the data stream to provide the process operator with the component which most likely caused the observed process disturbance.To demonstrate the scale-up feasibility of the proposed diagnostic system it is being developed for use with the Chemical Volume Control System (CVCS) of a nuclear power plant. A full-scope operator training simulator representing the Commonwealth Edison Braidwood nuclear power plant is being used both as the source of development data and as the means to evaluate the advantages of the proposed diagnostic system. This is an ongoing multi-year project and this paper presents the results to date of the CRADA phase

  4. A methodology for the quantitative evaluation of NPP fault diagnostic systems' dynamic aspects

    International Nuclear Information System (INIS)

    Kim, J.H.; Seong, P.H.

    2000-01-01

    A fault diagnostic system (FDS) is an operator decision support system which is implemented both to increase NPP efficiency as well as to reduce human error and cognitive workload that may cause nuclear power plant (NPP) accidents. Evaluation is an indispensable activity in constructing a reliable FDS. We first define the dynamic aspects of fault diagnostic systems (FDSs) for evaluation in this work. The dynamic aspect is concerned with the way a FDS responds to input. Next, we present a hierarchical structure in the evaluation for the dynamic aspects of FDSs. Dynamic aspects include both what a FDS provides and how a FDS operates. We define the former as content and the latter as behavior. Content and behavior contain two elements and six elements in the lower hierarchies, respectively. Content is a criterion for evaluating the integrity of a FDS, the problem types which a FDS deals with, along with the level of information. Behavior contains robustness, understandability, timeliness, transparency, effectiveness, and communicativeness of FDSs. On the other hand, the static aspects are concerned with the hardware and the software of the system. For quantitative evaluation, the method used to gain and aggregate the priorities of the criteria in this work is the analytic hierarchy process (AHP). The criteria at the lowest level are quantified through simple numerical expressions and questionnaires developed in this work. these well describe the characteristics of the criteria and appropriately use subjective, empirical, and technical methods. Finally, in order to demonstrate the feasibility of our evaluation method, we have performed one case study for the fault diagnosis module of OASYS TM (On-Line Operator Aid SYStem for Nuclear Power Plant), which is an operator support system developed at the Korea Advanced Institute of Science and Technology (KAIST)

  5. Study on Practical Application of Turboprop Engine Condition Monitoring and Fault Diagnostic System Using Fuzzy-Neuro Algorithms

    Science.gov (United States)

    Kong, Changduk; Lim, Semyeong; Kim, Keunwoo

    2013-03-01

    The Neural Networks is mostly used to engine fault diagnostic system due to its good learning performance, but it has a drawback due to low accuracy and long learning time to build learning data base. This work builds inversely a base performance model of a turboprop engine to be used for a high altitude operation UAV using measuring performance data, and proposes a fault diagnostic system using the base performance model and artificial intelligent methods such as Fuzzy and Neural Networks. Each real engine performance model, which is named as the base performance model that can simulate a new engine performance, is inversely made using its performance test data. Therefore the condition monitoring of each engine can be more precisely carried out through comparison with measuring performance data. The proposed diagnostic system identifies firstly the faulted components using Fuzzy Logic, and then quantifies faults of the identified components using Neural Networks leaned by fault learning data base obtained from the developed base performance model. In leaning the measuring performance data of the faulted components, the FFBP (Feed Forward Back Propagation) is used. In order to user's friendly purpose, the proposed diagnostic program is coded by the GUI type using MATLAB.

  6. Mechanical fault diagnostics for induction motor with variable speed drives using Adaptive Neuro-fuzzy Inference System

    Energy Technology Data Exchange (ETDEWEB)

    Ye, Z. [Department of Electrical & amp; Computer Engineering, Queen' s University, Kingston, Ont. (Canada K7L 3N6); Sadeghian, A. [Department of Computer Science, Ryerson University, Toronto, Ont. (Canada M5B 2K3); Wu, B. [Department of Electrical & amp; Computer Engineering, Ryerson University, Toronto, Ont. (Canada M5B 2K3)

    2006-06-15

    A novel online diagnostic algorithm for mechanical faults of electrical machines with variable speed drive systems is presented in this paper. Using Wavelet Packet Decomposition (WPD), a set of feature coefficients, represented with different frequency resolutions, related to the mechanical faults is extracted from the stator current of the induction motors operating over a wide range of speeds. A new integrated diagnostic system for electrical machine mechanical faults is then proposed using multiple Adaptive Neuro-fuzzy Inference Systems (ANFIS). This paper shows that using multiple ANFIS units significantly reduces the scale and complexity of the system and speeds up the training of the network. The diagnostic algorithm is validated on a three-phase induction motor drive system, and it is proven to be capable of detecting rotor bar breakage and air gap eccentricity faults with high accuracy. The algorithm is applicable to a variety of industrial applications where either continuous on-line monitoring or off-line fault diagnostics is required. (author)

  7. CRISP. Fault detection, analysis and diagnostics in high-DG distribution systems

    International Nuclear Information System (INIS)

    Fontela, M.; Bacha, S.; Hadsjaid, N.; Andrieu, C.; Raison, B.; Penkov, D.

    2004-04-01

    The fault in the electrotechnical meaning is defined in the document. The main part of faults in overhead lines are non permanent faults, what entails the network operator to maintain the existing techniques to clear as fast as possible these faults. When a permanent fault occurs the operator has to detect and to limit the risks as soon as possible. Different axes are followed: limitation of the fault current, clearing the faulted feeder, locating the fault by test and try under possible fault condition. So the fault detection, fault clearing and fault localization are important functions of an EPS (electric power systems) to allow secure and safe operation of the system. The function may be improved by means of a better use of ICT components in the future sharing conveniently the intelligence needed near the distributed devices and a defined centralized intelligence. This improvement becomes necessary in distribution EPS with a high introduction of DR (distributed resources). The transmission and sub-transmission protection systems are already installed in order to manage power flow in all directions, so the DR issue is less critical for this part of the power system in term of fault clearing and diagnosis. Nevertheless the massive introduction of RES involves another constraints to the transmission system which are the bottlenecks caused by important local and fast installed production as wind power plants. Dealing with the distribution power system, and facing a permanent fault, two main actions must be achieved: identify the faulted elementary EPS area quickly and allow the field crew to locate and to repair the fault as soon as possible. The introduction of DR in distribution EPS involves some changes in fault location methods or equipment. The different existing neutral grounding systems make it difficult the achievement of a general method relevant for any distribution EPS in Europe. Some solutions are studied in the CRISP project in order to improve the

  8. Study on a self diagnostic monitoring system for an air-operated valve: development of a fault library

    International Nuclear Information System (INIS)

    Chai, Jang Bom; Kim, Yun Chul; Kim, Woo Shik; Cho, Hang Duke

    2004-01-01

    In the interest of nuclear power plant safety, a Self-Diagnostic Monitoring System (SDMS) is needed to monitor defects in safety-related components. An Air-Operated Valve (AOV) is one of the components to be monitored since the failure of its operation could potentially have catastrophic consequences. In this paper, a model of the AOV is developed with the parameters that affect the operational characteristics. The model is useful for both understanding the operation and correlating parameters and defects. Various defects are introduced in the experiments to construct a fault library, which will be used in a pattern recognition approach. Finally, the validity of the fault library is examined

  9. Advanced diagnostic system for piston slap faults in IC engines, based on the non-stationary characteristics of the vibration signals

    Science.gov (United States)

    Chen, Jian; Randall, Robert Bond; Peeters, Bart

    2016-06-01

    Artificial Neural Networks (ANNs) have the potential to solve the problem of automated diagnostics of piston slap faults, but the critical issue for the successful application of ANN is the training of the network by a large amount of data in various engine conditions (different speed/load conditions in normal condition, and with different locations/levels of faults). On the other hand, the latest simulation technology provides a useful alternative in that the effect of clearance changes may readily be explored without recourse to cutting metal, in order to create enough training data for the ANNs. In this paper, based on some existing simplified models of piston slap, an advanced multi-body dynamic simulation software was used to simulate piston slap faults with different speeds/loads and clearance conditions. Meanwhile, the simulation models were validated and updated by a series of experiments. Three-stage network systems are proposed to diagnose piston faults: fault detection, fault localisation and fault severity identification. Multi Layer Perceptron (MLP) networks were used in the detection stage and severity/prognosis stage and a Probabilistic Neural Network (PNN) was used to identify which cylinder has faults. Finally, it was demonstrated that the networks trained purely on simulated data can efficiently detect piston slap faults in real tests and identify the location and severity of the faults as well.

  10. Common faults in turbines and applying neural networks in order to fault diagnostic by vibration analysis

    International Nuclear Information System (INIS)

    Masoudifar, M.; AghaAmini, M.

    2001-01-01

    Today the fault diagnostic of the rotating machinery based on the vibration analysis is an effective method in designing predictive maintenance programs. In this method, vibration level of the turbines is monitored and if it is higher than the allowable limit, vibrational data will be analyzed and the growing faults will be detected. But because of the high complexity of the system monitoring, the interpretation of the measured data is more difficult. Therefore, design of the fault diagnostic expert systems by using the expert's technical experiences and knowledge; seem to be the best solution. In this paper,at first several common faults in turbines are studied and the how applying the neural networks to interpret the vibrational data for fault diagnostic is explained

  11. Fault tolerant computing systems

    International Nuclear Information System (INIS)

    Randell, B.

    1981-01-01

    Fault tolerance involves the provision of strategies for error detection damage assessment, fault treatment and error recovery. A survey is given of the different sorts of strategies used in highly reliable computing systems, together with an outline of recent research on the problems of providing fault tolerance in parallel and distributed computing systems. (orig.)

  12. Fault-tolerant and Diagnostic Methods for Navigation

    DEFF Research Database (Denmark)

    Blanke, Mogens

    2003-01-01

    to diagnose faults and autonomously provide valid navigation data, disregarding any faulty sensor data and use sensor fusion to obtain a best estimate for users. This paper discusses how diagnostic and fault-tolerant methods are applicable in marine systems. An example chosen is sensor fusion for navigation......Precise and reliable navigation is crucial, and for reasons of safety, essential navigation instruments are often duplicated. Hardware redundancy is mostly used to manually switch between instruments should faults occur. In contrast, diagnostic methods are available that can use analytic redundancy...

  13. Solar system fault detection

    Science.gov (United States)

    Farrington, R.B.; Pruett, J.C. Jr.

    1984-05-14

    A fault detecting apparatus and method are provided for use with an active solar system. The apparatus provides an indication as to whether one or more predetermined faults have occurred in the solar system. The apparatus includes a plurality of sensors, each sensor being used in determining whether a predetermined condition is present. The outputs of the sensors are combined in a pre-established manner in accordance with the kind of predetermined faults to be detected. Indicators communicate with the outputs generated by combining the sensor outputs to give the user of the solar system and the apparatus an indication as to whether a predetermined fault has occurred. Upon detection and indication of any predetermined fault, the user can take appropriate corrective action so that the overall reliability and efficiency of the active solar system are increased.

  14. Using Fault Trees to Advance Understanding of Diagnostic Errors.

    Science.gov (United States)

    Rogith, Deevakar; Iyengar, M Sriram; Singh, Hardeep

    2017-11-01

    Diagnostic errors annually affect at least 5% of adults in the outpatient setting in the United States. Formal analytic techniques are only infrequently used to understand them, in part because of the complexity of diagnostic processes and clinical work flows involved. In this article, diagnostic errors were modeled using fault tree analysis (FTA), a form of root cause analysis that has been successfully used in other high-complexity, high-risk contexts. How factors contributing to diagnostic errors can be systematically modeled by FTA to inform error understanding and error prevention is demonstrated. A team of three experts reviewed 10 published cases of diagnostic error and constructed fault trees. The fault trees were modeled according to currently available conceptual frameworks characterizing diagnostic error. The 10 trees were then synthesized into a single fault tree to identify common contributing factors and pathways leading to diagnostic error. FTA is a visual, structured, deductive approach that depicts the temporal sequence of events and their interactions in a formal logical hierarchy. The visual FTA enables easier understanding of causative processes and cognitive and system factors, as well as rapid identification of common pathways and interactions in a unified fashion. In addition, it enables calculation of empirical estimates for causative pathways. Thus, fault trees might provide a useful framework for both quantitative and qualitative analysis of diagnostic errors. Future directions include establishing validity and reliability by modeling a wider range of error cases, conducting quantitative evaluations, and undertaking deeper exploration of other FTA capabilities. Copyright © 2017 The Joint Commission. Published by Elsevier Inc. All rights reserved.

  15. Fault detection and isolation in systems with parametric faults

    DEFF Research Database (Denmark)

    Stoustrup, Jakob; Niemann, Hans Henrik

    1999-01-01

    The problem of fault detection and isolation of parametric faults is considered in this paper. A fault detection problem based on parametric faults are associated with internal parameter variations in the dynamical system. A fault detection and isolation method for parametric faults is formulated...

  16. Fault Tolerant Control Systems

    DEFF Research Database (Denmark)

    Bøgh, S. A.

    This thesis considered the development of fault tolerant control systems. The focus was on the category of automated processes that do not necessarily comprise a high number of identical sensors and actuators to maintain safe operation, but still have a potential for improving immunity to component...

  17. Relating faults in diagnostic reasoning with diagnostic errors and patient harm.

    NARCIS (Netherlands)

    Zwaan, L.; Thijs, A.; Wagner, C.; Wal, G. van der; Timmermans, D.R.M.

    2012-01-01

    Purpose: The relationship between faults in diagnostic reasoning, diagnostic errors, and patient harm has hardly been studied. This study examined suboptimal cognitive acts (SCAs; i.e., faults in diagnostic reasoning), related them to the occurrence of diagnostic errors and patient harm, and studied

  18. Fault tolerant control for uncertain systems with parametric faults

    DEFF Research Database (Denmark)

    Niemann, Hans Henrik; Poulsen, Niels Kjølstad

    2006-01-01

    A fault tolerant control (FTC) architecture based on active fault diagnosis (AFD) and the YJBK (Youla, Jarb, Bongiorno and Kucera)parameterization is applied in this paper. Based on the FTC architecture, fault tolerant control of uncertain systems with slowly varying parametric faults...... is investigated. Conditions are given for closed-loop stability in case of false alarms or missing fault detection/isolation....

  19. Fault management and systems knowledge

    Science.gov (United States)

    2016-12-01

    Pilots are asked to manage faults during flight operations. This leads to the training question of the type and depth of system knowledge required to respond to these faults. Based on discussions with multiple airline operators, there is agreement th...

  20. Fault-tolerant computing systems

    International Nuclear Information System (INIS)

    Dal Cin, M.; Hohl, W.

    1991-01-01

    Tests, Diagnosis and Fault Treatment were chosen as the guiding themes of the conference. However, the scope of the conference included reliability, availability, safety and security issues in software and hardware systems as well. The sessions were organized for the conference which was completed by an industrial presentation: Keynote Address, Reconfiguration and Recover, System Level Diagnosis, Voting and Agreement, Testing, Fault-Tolerant Circuits, Array Testing, Modelling, Applied Fault Tolerance, Fault-Tolerant Arrays and Systems, Interconnection Networks, Fault-Tolerant Software. One paper has been indexed separately in the database. (orig./HP)

  1. Active Fault Isolation in MIMO Systems

    DEFF Research Database (Denmark)

    Niemann, Hans Henrik; Poulsen, Niels Kjølstad

    2014-01-01

    isolation is based directly on the input/output s ignals applied for the fault detection. It is guaranteed that the fault group includes the fault that had occurred in the system. The second step is individual fault isolation in the fault group . Both types of isolation are obtained by applying dedicated......Active fault isolation of parametric faults in closed-loop MIMO system s are considered in this paper. The fault isolation consists of two steps. T he first step is group- wise fault isolation. Here, a group of faults is isolated from other pos sible faults in the system. The group-wise fault...

  2. Arc fault detection system

    Science.gov (United States)

    Jha, K.N.

    1999-05-18

    An arc fault detection system for use on ungrounded or high-resistance-grounded power distribution systems is provided which can be retrofitted outside electrical switchboard circuits having limited space constraints. The system includes a differential current relay that senses a current differential between current flowing from secondary windings located in a current transformer coupled to a power supply side of a switchboard, and a total current induced in secondary windings coupled to a load side of the switchboard. When such a current differential is experienced, a current travels through a operating coil of the differential current relay, which in turn opens an upstream circuit breaker located between the switchboard and a power supply to remove the supply of power to the switchboard. 1 fig.

  3. Arc fault detection system

    Science.gov (United States)

    Jha, Kamal N.

    1999-01-01

    An arc fault detection system for use on ungrounded or high-resistance-grounded power distribution systems is provided which can be retrofitted outside electrical switchboard circuits having limited space constraints. The system includes a differential current relay that senses a current differential between current flowing from secondary windings located in a current transformer coupled to a power supply side of a switchboard, and a total current induced in secondary windings coupled to a load side of the switchboard. When such a current differential is experienced, a current travels through a operating coil of the differential current relay, which in turn opens an upstream circuit breaker located between the switchboard and a power supply to remove the supply of power to the switchboard.

  4. Fault diagnostics for turbo-shaft engine sensors based on a simplified on-board model.

    Science.gov (United States)

    Lu, Feng; Huang, Jinquan; Xing, Yaodong

    2012-01-01

    Combining a simplified on-board turbo-shaft model with sensor fault diagnostic logic, a model-based sensor fault diagnosis method is proposed. The existing fault diagnosis method for turbo-shaft engine key sensors is mainly based on a double redundancies technique, and this can't be satisfied in some occasions as lack of judgment. The simplified on-board model provides the analytical third channel against which the dual channel measurements are compared, while the hardware redundancy will increase the structure complexity and weight. The simplified turbo-shaft model contains the gas generator model and the power turbine model with loads, this is built up via dynamic parameters method. Sensor fault detection, diagnosis (FDD) logic is designed, and two types of sensor failures, such as the step faults and the drift faults, are simulated. When the discrepancy among the triplex channels exceeds a tolerance level, the fault diagnosis logic determines the cause of the difference. Through this approach, the sensor fault diagnosis system achieves the objectives of anomaly detection, sensor fault diagnosis and redundancy recovery. Finally, experiments on this method are carried out on a turbo-shaft engine, and two types of faults under different channel combinations are presented. The experimental results show that the proposed method for sensor fault diagnostics is efficient.

  5. Fault Diagnostics for Turbo-Shaft Engine Sensors Based on a Simplified On-Board Model

    Directory of Open Access Journals (Sweden)

    Yaodong Xing

    2012-08-01

    Full Text Available Combining a simplified on-board turbo-shaft model with sensor fault diagnostic logic, a model-based sensor fault diagnosis method is proposed. The existing fault diagnosis method for turbo-shaft engine key sensors is mainly based on a double redundancies technique, and this can’t be satisfied in some occasions as lack of judgment. The simplified on-board model provides the analytical third channel against which the dual channel measurements are compared, while the hardware redundancy will increase the structure complexity and weight. The simplified turbo-shaft model contains the gas generator model and the power turbine model with loads, this is built up via dynamic parameters method. Sensor fault detection, diagnosis (FDD logic is designed, and two types of sensor failures, such as the step faults and the drift faults, are simulated. When the discrepancy among the triplex channels exceeds a tolerance level, the fault diagnosis logic determines the cause of the difference. Through this approach, the sensor fault diagnosis system achieves the objectives of anomaly detection, sensor fault diagnosis and redundancy recovery. Finally, experiments on this method are carried out on a turbo-shaft engine, and two types of faults under different channel combinations are presented. The experimental results show that the proposed method for sensor fault diagnostics is efficient.

  6. Study on Fault Diagnostics of a Turboprop Engine Using Inverse Performance Model and Artificial Intelligent Methods

    Science.gov (United States)

    Kong, Changduk; Lim, Semyeong

    2011-12-01

    Recently, the health monitoring system of major gas path components of gas turbine uses mostly the model based method like the Gas Path Analysis (GPA). This method is to find quantity changes of component performance characteristic parameters such as isentropic efficiency and mass flow parameter by comparing between measured engine performance parameters such as temperatures, pressures, rotational speeds, fuel consumption, etc. and clean engine performance parameters without any engine faults which are calculated by the base engine performance model. Currently, the expert engine diagnostic systems using the artificial intelligent methods such as Neural Networks (NNs), Fuzzy Logic and Genetic Algorithms (GAs) have been studied to improve the model based method. Among them the NNs are mostly used to the engine fault diagnostic system due to its good learning performance, but it has a drawback due to low accuracy and long learning time to build learning data base if there are large amount of learning data. In addition, it has a very complex structure for finding effectively single type faults or multiple type faults of gas path components. This work builds inversely a base performance model of a turboprop engine to be used for a high altitude operation UAV using measured performance data, and proposes a fault diagnostic system using the base engine performance model and the artificial intelligent methods such as Fuzzy logic and Neural Network. The proposed diagnostic system isolates firstly the faulted components using Fuzzy Logic, then quantifies faults of the identified components using the NN leaned by fault learning data base, which are obtained from the developed base performance model. In leaning the NN, the Feed Forward Back Propagation (FFBP) method is used. Finally, it is verified through several test examples that the component faults implanted arbitrarily in the engine are well isolated and quantified by the proposed diagnostic system.

  7. A phase angle based diagnostic scheme to planetary gear faults diagnostics under non-stationary operational conditions

    Science.gov (United States)

    Feng, Ke; Wang, Kesheng; Ni, Qing; Zuo, Ming J.; Wei, Dongdong

    2017-11-01

    Planetary gearbox is a critical component for rotating machinery. It is widely used in wind turbines, aerospace and transmission systems in heavy industry. Thus, it is important to monitor planetary gearboxes, especially for fault diagnostics, during its operational conditions. However, in practice, operational conditions of planetary gearbox are often characterized by variations of rotational speeds and loads, which may bring difficulties for fault diagnosis through the measured vibrations. In this paper, phase angle data extracted from measured planetary gearbox vibrations is used for fault detection under non-stationary operational conditions. Together with sample entropy, fault diagnosis on planetary gearbox is implemented. The proposed scheme is explained and demonstrated in both simulation and experimental studies. The scheme proves to be effective and features advantages on fault diagnosis of planetary gearboxes under non-stationary operational conditions.

  8. Subaru FATS (fault tracking system)

    Science.gov (United States)

    Winegar, Tom W.; Noumaru, Junichi

    2000-07-01

    The Subaru Telescope requires a fault tracking system to record the problems and questions that staff experience during their work, and the solutions provided by technical experts to these problems and questions. The system records each fault and routes it to a pre-selected 'solution-provider' for each type of fault. The solution provider analyzes the fault and writes a solution that is routed back to the fault reporter and recorded in a 'knowledge-base' for future reference. The specifications of our fault tracking system were unique. (1) Dual language capacity -- Our staff speak both English and Japanese. Our contractors speak Japanese. (2) Heterogeneous computers -- Our computer workstations are a mixture of SPARCstations, Macintosh and Windows computers. (3) Integration with prime contractors -- Mitsubishi and Fujitsu are primary contractors in the construction of the telescope. In many cases, our 'experts' are our contractors. (4) Operator scheduling -- Our operators spend 50% of their work-month operating the telescope, the other 50% is spent working day shift at the base facility in Hilo, or day shift at the summit. We plan for 8 operators, with a frequent rotation. We need to keep all operators informed on the current status of all faults, no matter the operator's location.

  9. Row fault detection system

    Science.gov (United States)

    Archer, Charles Jens [Rochester, MN; Pinnow, Kurt Walter [Rochester, MN; Ratterman, Joseph D [Rochester, MN; Smith, Brian Edward [Rochester, MN

    2008-10-14

    An apparatus, program product and method checks for nodal faults in a row of nodes by causing each node in the row to concurrently communicate with its adjacent neighbor nodes in the row. The communications are analyzed to determine a presence of a faulty node or connection.

  10. Sensor Selection for Aircraft Engine Performance Estimation and Gas Path Fault Diagnostics

    Science.gov (United States)

    Simon, Donald L.; Rinehart, Aidan W.

    2016-01-01

    This paper presents analytical techniques for aiding system designers in making aircraft engine health management sensor selection decisions. The presented techniques, which are based on linear estimation and probability theory, are tailored for gas turbine engine performance estimation and gas path fault diagnostics applications. They enable quantification of the performance estimation and diagnostic accuracy offered by different candidate sensor suites. For performance estimation, sensor selection metrics are presented for two types of estimators including a Kalman filter and a maximum a posteriori estimator. For each type of performance estimator, sensor selection is based on minimizing the theoretical sum of squared estimation errors in health parameters representing performance deterioration in the major rotating modules of the engine. For gas path fault diagnostics, the sensor selection metric is set up to maximize correct classification rate for a diagnostic strategy that performs fault classification by identifying the fault type that most closely matches the observed measurement signature in a weighted least squares sense. Results from the application of the sensor selection metrics to a linear engine model are presented and discussed. Given a baseline sensor suite and a candidate list of optional sensors, an exhaustive search is performed to determine the optimal sensor suites for performance estimation and fault diagnostics. For any given sensor suite, Monte Carlo simulation results are found to exhibit good agreement with theoretical predictions of estimation and diagnostic accuracies.

  11. Vibration monitoring and fault diagnostics of a thermal power plant

    International Nuclear Information System (INIS)

    Hafeez, T.; Ghani, R.; Chohan, G.Y.; Amir, M.

    2003-01-01

    A thermal power plant was monitored from HP-turbine to the generator end. The vibration data at different plant locations was obtained with the help of a data collector/analyzer. The spectra of-all locations generate the symptoms for different problems of moderate and high vibration levels like bent shaft, misalignment in the exciter rotor and three couplings, mechanical looseness on generator and exciter sides. The possible causes of these faults are discussed on the basis of presented vibration spectra in this paper. The faults were later on rectified on the basis of this diagnostics. (author)

  12. Development of Fault Models for Hybrid Fault Detection and Diagnostics Algorithm: October 1, 2014 -- May 5, 2015

    Energy Technology Data Exchange (ETDEWEB)

    Cheung, Howard [Purdue Univ., West Lafayette, IN (United States); Braun, James E. [Purdue Univ., West Lafayette, IN (United States)

    2015-12-31

    This report describes models of building faults created for OpenStudio to support the ongoing development of fault detection and diagnostic (FDD) algorithms at the National Renewable Energy Laboratory. Building faults are operating abnormalities that degrade building performance, such as using more energy than normal operation, failing to maintain building temperatures according to the thermostat set points, etc. Models of building faults in OpenStudio can be used to estimate fault impacts on building performance and to develop and evaluate FDD algorithms. The aim of the project is to develop fault models of typical heating, ventilating and air conditioning (HVAC) equipment in the United States, and the fault models in this report are grouped as control faults, sensor faults, packaged and split air conditioner faults, water-cooled chiller faults, and other uncategorized faults. The control fault models simulate impacts of inappropriate thermostat control schemes such as an incorrect thermostat set point in unoccupied hours and manual changes of thermostat set point due to extreme outside temperature. Sensor fault models focus on the modeling of sensor biases including economizer relative humidity sensor bias, supply air temperature sensor bias, and water circuit temperature sensor bias. Packaged and split air conditioner fault models simulate refrigerant undercharging, condenser fouling, condenser fan motor efficiency degradation, non-condensable entrainment in refrigerant, and liquid line restriction. Other fault models that are uncategorized include duct fouling, excessive infiltration into the building, and blower and pump motor degradation.

  13. The Absolute Deviation Rank Diagnostic Approach to Gear Tooth Composite Fault

    Directory of Open Access Journals (Sweden)

    Guangbin Wang

    2017-01-01

    Full Text Available Aiming at nonlinear and nonstationary characteristics of the different degree with single fault gear tooth broken, pitting, and composite fault gear tooth broken-pitting, a method for the diagnosis of absolute deviation of gear faults is presented. The method uses ADAMS, respectively, set-up dynamics model of single fault gear tooth broken, pitting, and composite fault gear tooth broken-pitting, to obtain the result of different degree of broken teeth, pitting the single fault and compound faults in the meshing frequency, and the amplitude frequency doubling through simulating analysis. Through the comparison with the normal state to obtain the sensitive characteristic of the fault, the absolute value deviation diagnostic approach is used to identify the fault and validate it through experiments. The results show that absolute deviation rank diagnostic approach can realize the recognition of gear single faults and compound faults with different degrees and provide quick reference to determine the degree of gear fault.

  14. Fault Diagnosis of Power Systems Using Intelligent Systems

    Science.gov (United States)

    Momoh, James A.; Oliver, Walter E. , Jr.

    1996-01-01

    The power system operator's need for a reliable power delivery system calls for a real-time or near-real-time Al-based fault diagnosis tool. Such a tool will allow NASA ground controllers to re-establish a normal or near-normal degraded operating state of the EPS (a DC power system) for Space Station Alpha by isolating the faulted branches and loads of the system. And after isolation, re-energizing those branches and loads that have been found not to have any faults in them. A proposed solution involves using the Fault Diagnosis Intelligent System (FDIS) to perform near-real time fault diagnosis of Alpha's EPS by downloading power transient telemetry at fault-time from onboard data loggers. The FDIS uses an ANN clustering algorithm augmented with a wavelet transform feature extractor. This combination enables this system to perform pattern recognition of the power transient signatures to diagnose the fault type and its location down to the orbital replaceable unit. FDIS has been tested using a simulation of the LeRC Testbed Space Station Freedom configuration including the topology from the DDCU's to the electrical loads attached to the TPDU's. FDIS will work in conjunction with the Power Management Load Scheduler to determine what the state of the system was at the time of the fault condition. This information is used to activate the appropriate diagnostic section, and to refine if necessary the solution obtained. In the latter case, if the FDIS reports back that it is equally likely that the faulty device as 'start tracker #1' and 'time generation unit,' then based on a priori knowledge of the system's state, the refined solution would be 'star tracker #1' located in cabinet ITAS2. It is concluded from the present studies that artificial intelligence diagnostic abilities are improved with the addition of the wavelet transform, and that when such a system such as FDIS is coupled to the Power Management Load Scheduler, a faulty device can be located and isolated

  15. Architecting Fault-Tolerant Software Systems

    NARCIS (Netherlands)

    Sözer, Hasan

    2009-01-01

    The increasing size and complexity of software systems makes it hard to prevent or remove all possible faults. Faults that remain in the system can eventually lead to a system failure. Fault tolerance techniques are introduced for enabling systems to recover and continue operation when they are

  16. Rule - based Fault Diagnosis Expert System for Wind Turbine

    Directory of Open Access Journals (Sweden)

    Deng Xiao-Wen

    2017-01-01

    Full Text Available Under the trend of increasing installed capacity of wind power, the intelligent fault diagnosis of wind turbine is of great significance to the safe and efficient operation of wind farms. Based on the knowledge of fault diagnosis of wind turbines, this paper builds expert system diagnostic knowledge base by using confidence production rules and expert system self-learning method. In Visual Studio 2013 platform, C # language is selected and ADO.NET technology is used to access the database. Development of Fault Diagnosis Expert System for Wind Turbine. The purpose of this paper is to realize on-line diagnosis of wind turbine fault through human-computer interaction, and to improve the diagnostic capability of the system through the continuous improvement of the knowledge base.

  17. Fault Diagnosis of Nonlinear Systems Using Structured Augmented State Models

    Institute of Scientific and Technical Information of China (English)

    Jochen Aβfalg; Frank Allg(o)wer

    2007-01-01

    This paper presents an internal model approach for modeling and diagnostic functionality design for nonlinear systems operating subject to single- and multiple-faults. We therefore provide the framework of structured augmented state models. Fault characteristics are considered to be generated by dynamical exosystems that are switched via equality constraints to overcome the augmented state observability limiting the number of diagnosable faults. Based on the proposed model, the fault diagnosis problem is specified as an optimal hybrid augmented state estimation problem. Sub-optimal solutions are motivated and exemplified for the fault diagnosis of the well-known three-tank benchmark. As the considered class of fault diagnosis problems is large, the suggested approach is not only of theoretical interest but also of high practical relevance.

  18. Estimation of Faults in DC Electrical Power System

    Science.gov (United States)

    Gorinevsky, Dimitry; Boyd, Stephen; Poll, Scott

    2009-01-01

    This paper demonstrates a novel optimization-based approach to estimating fault states in a DC power system. Potential faults changing the circuit topology are included along with faulty measurements. Our approach can be considered as a relaxation of the mixed estimation problem. We develop a linear model of the circuit and pose a convex problem for estimating the faults and other hidden states. A sparse fault vector solution is computed by using 11 regularization. The solution is computed reliably and efficiently, and gives accurate diagnostics on the faults. We demonstrate a real-time implementation of the approach for an instrumented electrical power system testbed, the ADAPT testbed at NASA ARC. The estimates are computed in milliseconds on a PC. The approach performs well despite unmodeled transients and other modeling uncertainties present in the system.

  19. Expert system for fast reactor diagnostic

    International Nuclear Information System (INIS)

    Parcy, J.P.

    1982-09-01

    A general description of expert systems is given. The operation of a fast reactor is reviewed. The expert system to the diagnosis of breakdowns limited to the reactor core. The structure of the system is described: specification of the diagnostics; structure of the data bank and evaluation of the rules; specification of the prediagnostics and evaluation; explanation of the diagnostics; time evolution of the system; comparison with other expert systems. Applications to some cases of faults are finally presented [fr

  20. Knowledge acquisition for nuclear power plant unit diagnostic system

    International Nuclear Information System (INIS)

    Li Xiaodong; Xi Shuren

    2003-01-01

    The process of acquiring knowledge and building a knowledge base is critical to realize fault diagnostic system at unit level in a nuclear power plant. It directly determines whether the diagnostic system can be applied eventually in a commercial plant. A means to acquire knowledge and its procedures was presented in this paper for fault diagnostic system in a nuclear power plant. The work can be carried out step by step and it is feasible in a commercial nuclear power plant. The knowledge base of the fault diagnostic system for a nuclear power plant can be built after the staff finish the tasks according to the framework presented in this paper

  1. An innovative modular device and wireless control system enabling thermal and pressure sensors using FPGA on real-time fault diagnostics of steam turbine functional deterioration

    Science.gov (United States)

    Devi, S.; Saravanan, M.

    2018-03-01

    It is necessary that the condition of the steam turbines is continuously monitored on a scheduled basis for the safe operation of the steam turbines. The review showed that steam turbine fault detection and operation maintenance system (STFDOMS) is gaining importance recently. In this paper, novel hardware architecture is proposed for STFDOMS that can be communicated through the GSM network. Arduino is interfaced with the FPGA so as to transfer the message. The design has been simulated using the Verilog programming language and implemented in hardware using FPGA. The proposed system is shown to be a simple, cost effective and flexible and thereby making it suitable for the maintenance of steam turbines. This system forewarns the experts to access to data messages and take necessary action in a short period with great accuracy. The hardware developed is promised as a real-time test bench, specifically for investigations of long haul effects with different parameter settings.

  2. Upgrade of the automatic analysis system in the TJ-II Thomson Scattering diagnostic: New image recognition classifier and fault condition detection

    NARCIS (Netherlands)

    Makili, L.; Vega, J.; Dormido-Canto, S.; Pastor, I.; Pereira, A.; Farias, G.; Portas, A.; Perez-Risco, D.; Rodriguez-Fernandez, M. C.; Busch, P.

    2010-01-01

    An automatic image classification system based on support vector machines (SVM) has been in operation for years in the TJ-II Thomson Scattering diagnostic. It recognizes five different types of images: CCD camera background, measurement of stray light without plasma or in a collapsed discharge,

  3. Managing Space System Faults: Coalescing NASA's Views

    Science.gov (United States)

    Muirhead, Brian; Fesq, Lorraine

    2012-01-01

    Managing faults and their resultant failures is a fundamental and critical part of developing and operating aerospace systems. Yet, recent studies have shown that the engineering "discipline" required to manage faults is not widely recognized nor evenly practiced within the NASA community. Attempts to simply name this discipline in recent years has been fraught with controversy among members of the Integrated Systems Health Management (ISHM), Fault Management (FM), Fault Protection (FP), Hazard Analysis (HA), and Aborts communities. Approaches to managing space system faults typically are unique to each organization, with little commonality in the architectures, processes and practices across the industry.

  4. Fault trees for diagnosis of system fault conditions

    International Nuclear Information System (INIS)

    Lambert, H.E.; Yadigaroglu, G.

    1977-01-01

    Methods for generating repair checklists on the basis of fault tree logic and probabilistic importance are presented. A one-step-ahead optimization procedure, based on the concept of component criticality, minimizing the expected time to diagnose system failure is outlined. Options available to the operator of a nuclear power plant when system fault conditions occur are addressed. A low-pressure emergency core cooling injection system, a standby safeguard system of a pressurized water reactor power plant, is chosen as an example illustrating the methods presented

  5. Confirmation of Thermal Images and Vibration Signals for Intelligent Machine Fault Diagnostics

    Directory of Open Access Journals (Sweden)

    Achmad Widodo

    2012-01-01

    Full Text Available This paper deals with the maintenance technique for industrial machinery using the artificial neural network so-called self-organizing map (SOM. The aim of this work is to develop intelligent maintenance system for machinery based on an alternative way, namely, thermal images instead of vibration signals. SOM is selected due to its simplicity and is categorized as an unsupervised algorithm. Following the SOM training, machine fault diagnostics is performed by using the pattern recognition technique of machine conditions. The data used in this work are thermal images and vibration signals, which were acquired from machine fault simulator (MFS. It is a reliable tool and is able to simulate several conditions of faulty machine such as unbalance, misalignment, looseness, and rolling element bearing faults (outer race, inner race, ball, and cage defects. Data acquisition were conducted simultaneously by infrared thermography camera and vibration sensors installed in the MFS. The experimental data are presented as thermal image and vibration signal in the time domain. Feature extraction was carried out to obtain salient features sensitive to machine conditions from thermal images and vibration signals. These features are then used to train the SOM for intelligent machine diagnostics process. The results show that SOM can perform intelligent fault diagnostics with plausible accuracies.

  6. Synthesis of Fault-Tolerant Embedded Systems

    DEFF Research Database (Denmark)

    Eles, Petru; Izosimov, Viacheslav; Pop, Paul

    2008-01-01

    This work addresses the issue of design optimization for fault- tolerant hard real-time systems. In particular, our focus is on the handling of transient faults using both checkpointing with rollback recovery and active replication. Fault tolerant schedules are generated based on a conditional...... process graph representation. The formulated system synthesis approaches decide the assignment of fault-tolerance policies to processes, the optimal placement of checkpoints and the mapping of processes to processors, such that multiple transient faults are tolerated, transparency requirements...

  7. Active fault detection in MIMO systems

    DEFF Research Database (Denmark)

    Niemann, Hans Henrik; Poulsen, Niels Kjølstad

    2014-01-01

    The focus in this paper is on active fault detection (AFD) for MIMO systems with parametric faults. The problem of design of auxiliary inputs with respect to detection of parametric faults is investigated. An analysis of the design of auxiliary inputs is given based on analytic transfer functions...... from auxiliary input to residual outputs. The analysis is based on a singular value decomposition of these transfer functions Based on this analysis, it is possible to design auxiliary input as well as design of the associated residual vector with respect to every single parametric fault in the system...... such that it is possible to detect these faults....

  8. Upgrade of the automatic analysis system in the TJ-II Thomson Scattering diagnostic: New image recognition classifier and fault condition detection

    International Nuclear Information System (INIS)

    Makili, L.; Vega, J.; Dormido-Canto, S.; Pastor, I.; Pereira, A.; Farias, G.; Portas, A.; Perez-Risco, D.; Rodriguez-Fernandez, M.C.; Busch, P.

    2010-01-01

    An automatic image classification system based on support vector machines (SVM) has been in operation for years in the TJ-II Thomson Scattering diagnostic. It recognizes five different types of images: CCD camera background, measurement of stray light without plasma or in a collapsed discharge, image during ECH phase, image during NBI phase and image after reaching the cut off density during ECH heating. Each kind of image implies the execution of different application software. Due to the fact that the recognition system is based on a learning system and major modifications have been carried out in both the diagnostic (optics) and TJ-II plasmas (injected power), the classifier model is no longer valid. A new SVM model has been developed with the current conditions. Also, specific error conditions in the data acquisition process can automatically be detected and managed now. The recovering process has been automated, thereby avoiding the loss of data in ensuing discharges.

  9. Upgrade of the automatic analysis system in the TJ-II Thomson Scattering diagnostic: New image recognition classifier and fault condition detection

    Energy Technology Data Exchange (ETDEWEB)

    Makili, L. [Dpto. Informatica y Automatica - UNED, Madrid (Spain); Vega, J. [Asociacion EURATOM/CIEMAT para Fusion, Madrid (Spain); Dormido-Canto, S., E-mail: sebas@dia.uned.e [Dpto. Informatica y Automatica - UNED, Madrid (Spain); Pastor, I.; Pereira, A. [Asociacion EURATOM/CIEMAT para Fusion, Madrid (Spain); Farias, G. [Dpto. Informatica y Automatica - UNED, Madrid (Spain); Portas, A.; Perez-Risco, D.; Rodriguez-Fernandez, M.C. [Asociacion EURATOM/CIEMAT para Fusion, Madrid (Spain); Busch, P. [FOM Institut voor PlasmaFysica Rijnhuizen, Nieuwegein (Netherlands)

    2010-07-15

    An automatic image classification system based on support vector machines (SVM) has been in operation for years in the TJ-II Thomson Scattering diagnostic. It recognizes five different types of images: CCD camera background, measurement of stray light without plasma or in a collapsed discharge, image during ECH phase, image during NBI phase and image after reaching the cut off density during ECH heating. Each kind of image implies the execution of different application software. Due to the fact that the recognition system is based on a learning system and major modifications have been carried out in both the diagnostic (optics) and TJ-II plasmas (injected power), the classifier model is no longer valid. A new SVM model has been developed with the current conditions. Also, specific error conditions in the data acquisition process can automatically be detected and managed now. The recovering process has been automated, thereby avoiding the loss of data in ensuing discharges.

  10. Reconfigurable fault tolerant avionics system

    Science.gov (United States)

    Ibrahim, M. M.; Asami, K.; Cho, Mengu

    This paper presents the design of a reconfigurable avionics system based on modern Static Random Access Memory (SRAM)-based Field Programmable Gate Array (FPGA) to be used in future generations of nano satellites. A major concern in satellite systems and especially nano satellites is to build robust systems with low-power consumption profiles. The system is designed to be flexible by providing the capability of reconfiguring itself based on its orbital position. As Single Event Upsets (SEU) do not have the same severity and intensity in all orbital locations, having the maximum at the South Atlantic Anomaly (SAA) and the polar cusps, the system does not have to be fully protected all the time in its orbit. An acceptable level of protection against high-energy cosmic rays and charged particles roaming in space is provided within the majority of the orbit through software fault tolerance. Check pointing and roll back, besides control flow assertions, is used for that level of protection. In the minority part of the orbit where severe SEUs are expected to exist, a reconfiguration for the system FPGA is initiated where the processor systems are triplicated and protection through Triple Modular Redundancy (TMR) with feedback is provided. This technique of reconfiguring the system as per the level of the threat expected from SEU-induced faults helps in reducing the average dynamic power consumption of the system to one-third of its maximum. This technique can be viewed as a smart protection through system reconfiguration. The system is built on the commercial version of the (XC5VLX50) Xilinx Virtex5 FPGA on bulk silicon with 324 IO. Simulations of orbit SEU rates were carried out using the SPENVIS web-based software package.

  11. Use of Fuzzy Logic Systems for Assessment of Primary Faults

    Science.gov (United States)

    Petrović, Ivica; Jozsa, Lajos; Baus, Zoran

    2015-09-01

    In electric power systems, grid elements are often subjected to very complex and demanding disturbances or dangerous operating conditions. Determining initial fault or cause of those states is a difficult task. When fault occurs, often it is an imperative to disconnect affected grid element from the grid. This paper contains an overview of possibilities for using fuzzy logic in an assessment of primary faults in the transmission grid. The tool for this task is SCADA system, which is based on information of currents, voltages, events of protection devices and status of circuit breakers in the grid. The function model described with the membership function and fuzzy logic systems will be presented in the paper. For input data, diagnostics system uses information of protection devices tripping, states of circuit breakers and measurements of currents and voltages before and after faults.

  12. Fault tolerant control design for hybrid systems

    Energy Technology Data Exchange (ETDEWEB)

    Yang, Hao; Jiang, Bin [Nanjing University of Aeronautics and Astronautics, Nanjing (China); Cocquempot, Vincent [Universite des Sciences et Technologies de Lille, Villeneuve d' Ascq (France)

    2010-07-01

    This book intends to provide the readers a good understanding on how to achieve Fault Tolerant Control goal of Hybrid Systems. The book can be used as a reference for the academic research on Fault Tolerant Control and Hybrid Systems or used in Ph.D. study of control theory and engineering. The knowledge background for this monograph would be some undergraduate and graduate courses on Fault Diagnosis and Fault Tolerant Control theory, linear system theory, nonlinear system theory, Hybrid Systems theory and Discrete Event System theory. (orig.)

  13. From fault classification to fault tolerance for multi-agent systems

    CERN Document Server

    Potiron, Katia; Taillibert, Patrick

    2013-01-01

    Faults are a concern for Multi-Agent Systems (MAS) designers, especially if the MAS are built for industrial or military use because there must be some guarantee of dependability. Some fault classification exists for classical systems, and is used to define faults. When dependability is at stake, such fault classification may be used from the beginning of the system's conception to define fault classes and specify which types of faults are expected. Thus, one may want to use fault classification for MAS; however, From Fault Classification to Fault Tolerance for Multi-Agent Systems argues that

  14. A study on the fault diagnostic techniques for reactor internal structures using neutron noise analysis

    International Nuclear Information System (INIS)

    Kim, Tae Ryong; Jeong, Seong Ho; Park, Jin Ho; Park, Jin Suk

    1994-08-01

    The unfavorable phenomena, such as flow induced vibration and aging process in reactor internals, cause degradation of structural integrity and may result in loosing some mechanical binding components which might impact other equipments and components or cause flow blockage. Since these malfunctions and potential failures change reactor noise signal, it is necessary to analyze reactor noise signal for early fault diagnosis in the point of few of safety and plant economics. The objectives of this study are to establish fault diagnostic and TS(thermal shield), and to develop a data acquisition and signal processing software system. In the first year of this study, an analysis technique for the reactor internal vibration using the reactor noise was proposed. With the technique proposed and the reactor noise signals (ex-core neutron and acceleration), the dynamic characteristics of Ulchin-1 reactor internals were obtained, and compared with those of Tricastin-1 which is the prototype of Ulchin-1. In the second year, a PC-based expert system for reactor internals fault diagnosis is developed, which included data acquisition, signal processing, feature extraction function, and represented diagnostic knowledge by the IF-THEN rule. To know the effect of the faults, the reactor internals of Ulchin-1 is modeled using FEM and simulated with an artificial defect given in the hold-down spring. Trend in the dynamic characteristics of reactor internals is also observed during one fuel cycle to know the effect of boron concentration. 100 figs, 7 tabs, 18 refs. (Author)

  15. A Fault Diagnostic Method for Position Sensor of Switched Reluctance Wind Generator

    DEFF Research Database (Denmark)

    Wang, Chao; Liu, Xiao; Liu, Hui

    2016-01-01

    Fast and accurate fault diagnosis of the position sensor is of great significance to ensure the reliability as well as sensor fault tolerant operation of the Switched Reluctance Wind Generator (SRWG). This paper presents a fault diagnostic scheme for a SRWG based on the residual between the estim...

  16. Upgrade of the Automatic Analysis System in the TJ-II Thomson Scattering Diagnostic: New Image Recognition Classifier and Fault Condition Detection

    Energy Technology Data Exchange (ETDEWEB)

    Makili, L.; Dormido-Canto, S. [UNED, Madrid (Spain); Vega, J.; Pastor, I.; Pereira, A.; Portas, A.; Perez-Risco, D.; Rodriguez-Fernandez, M. [Association EuratomCIEMAT para Fusion, Madrid (Spain); Busch, P. [FOM Instituut voor PlasmaFysica Rijnhuizen, Nieuwegein (Netherlands)

    2009-07-01

    Full text of publication follows: An automatic image classification system has been in operation for years in the TJ-II Thomson diagnostic. It recognizes five different types of images: CCD camera background, measurement of stray light without plasma or in a collapsed discharge, image during ECH phase, image during NBI phase and image after reaching the cut o density during ECH heating. Each kind of image implies the execution of different application software. Therefore, the classification system was developed to launch the corresponding software in an automatic way. The method to recognize the several classes was based on a learning system, in particular Support Vector Machines (SVM). Since the first implementation of the classifier, a relevant improvement has been accomplished in the diagnostic: a new notch filter is in operation, having a larger stray-light rejection at the ruby wavelength than the previous filter. On the other hand, its location in the optical system has been modified. As a consequence, the stray light pattern in the CCD image is located in a different position. In addition to these transformations, the power of neutral beams injected in the TJ-II plasma has been increased about a factor of 2. Due to the fact that the recognition system is based on a learning system and major modifications have been carried out in both the diagnostic (optics) and TJ-II plasmas (injected power), the classifier model is no longer valid. The creation of a new model (also based on SVM) under the present conditions has been necessary. Finally, specific error conditions in the data acquisition process can automatically be detected now. The recovering process can be automated, thereby avoiding the loss of data in ensuing discharges. (authors)

  17. Fuzzy fault diagnosis system of MCFC

    Institute of Scientific and Technical Information of China (English)

    Wang Zhenlei; Qian Feng; Cao Guangyi

    2005-01-01

    A kind of fault diagnosis system of molten carbonate fuel cell (MCFC) stack is proposed in this paper. It is composed of a fuzzy neural network (FNN) and a fault diagnosis element. FNN is able to deal with the information of the expert knowledge and the experiment data efficiently. It also has the ability to approximate any smooth system. FNN is used to identify the fault diagnosis model of MCFC stack. The fuzzy fault decision element can diagnose the state of the MCFC generating system, normal or fault, and can decide the type of the fault based on the outputs of FNN model and the MCFC system. Some simulation experiment results are demonstrated in this paper.

  18. Advanced cloud fault tolerance system

    Science.gov (United States)

    Sumangali, K.; Benny, Niketa

    2017-11-01

    Cloud computing has become a prevalent on-demand service on the internet to store, manage and process data. A pitfall that accompanies cloud computing is the failures that can be encountered in the cloud. To overcome these failures, we require a fault tolerance mechanism to abstract faults from users. We have proposed a fault tolerant architecture, which is a combination of proactive and reactive fault tolerance. This architecture essentially increases the reliability and the availability of the cloud. In the future, we would like to compare evaluations of our proposed architecture with existing architectures and further improve it.

  19. Identifying Conventionally Sub-Seismic Faults in Polygonal Fault Systems

    Science.gov (United States)

    Fry, C.; Dix, J.

    2017-12-01

    Polygonal Fault Systems (PFS) are prevalent in hydrocarbon basins globally and represent potential fluid pathways. However the characterization of these pathways is subject to the limitations of conventional 3D seismic imaging; only capable of resolving features on a decametre scale horizontally and metres scale vertically. While outcrop and core examples can identify smaller features, they are limited by the extent of the exposures. The disparity between these scales can allow for smaller faults to be lost in a resolution gap which could mean potential pathways are left unseen. Here the focus is upon PFS from within the London Clay, a common bedrock that is tunnelled into and bears construction foundations for much of London. It is a continuation of the Ieper Clay where PFS were first identified and is found to approach the seafloor within the Outer Thames Estuary. This allows for the direct analysis of PFS surface expressions, via the use of high resolution 1m bathymetric imaging in combination with high resolution seismic imaging. Through use of these datasets surface expressions of over 1500 faults within the London Clay have been identified, with the smallest fault measuring 12m and the largest at 612m in length. The displacements over these faults established from both bathymetric and seismic imaging ranges from 30cm to a couple of metres, scales that would typically be sub-seismic for conventional basin seismic imaging. The orientations and dimensions of the faults within this network have been directly compared to 3D seismic data of the Ieper Clay from the offshore Dutch sector where it exists approximately 1km below the seafloor. These have typical PFS attributes with lengths of hundreds of metres to kilometres and throws of tens of metres, a magnitude larger than those identified in the Outer Thames Estuary. The similar orientations and polygonal patterns within both locations indicates that the smaller faults exist within typical PFS structure but are

  20. Development of fault diagnostic technique using reactor noise analysis

    International Nuclear Information System (INIS)

    Park, Jin Ho; Kim, J. S.; Oh, I. S.; Ryu, J. S.; Joo, Y. S.; Choi, S.; Yoon, D. B.

    1999-04-01

    The ultimate goal of this project is to establish the analysis technique to diagnose the integrity of reactor internals using reactor noise. The reactor noise analyses techniques for the PWR and CANDU NPP(Nuclear Power Plants) were established by which the dynamic characteristics of reactor internals and SPND instrumentations could be identified, and the noise database corresponding to each plant(both Korean and foreign one) was constructed and compared. Also the change of dynamic characteristics of the Ulchin 1 and 2 reactor internals were simulated under presumed fault conditions. Additionally portable reactor noise analysis system was developed so that real time noise analysis could directly be able to be performed at plant site. The reactor noise analyses techniques developed and the database obtained from the fault simulation, can be used to establish a knowledge based expert system to diagnose the NPP's abnormal conditions. And the portable reactor noise analysis system may be utilized as a substitute for plant IVMS(Internal Vibration Monitoring System). (author)

  1. Development of fault diagnostic technique using reactor noise analysis

    Energy Technology Data Exchange (ETDEWEB)

    Park, Jin Ho; Kim, J. S.; Oh, I. S.; Ryu, J. S.; Joo, Y. S.; Choi, S.; Yoon, D. B

    1999-04-01

    The ultimate goal of this project is to establish the analysis technique to diagnose the integrity of reactor internals using reactor noise. The reactor noise analyses techniques for the PWR and CANDU NPP(Nuclear Power Plants) were established by which the dynamic characteristics of reactor internals and SPND instrumentations could be identified, and the noise database corresponding to each plant(both Korean and foreign one) was constructed and compared. Also the change of dynamic characteristics of the Ulchin 1 and 2 reactor internals were simulated under presumed fault conditions. Additionally portable reactor noise analysis system was developed so that real time noise analysis could directly be able to be performed at plant site. The reactor noise analyses techniques developed and the database obtained from the fault simulation, can be used to establish a knowledge based expert system to diagnose the NPP's abnormal conditions. And the portable reactor noise analysis system may be utilized as a substitute for plant IVMS(Internal Vibration Monitoring System). (author)

  2. PC based diagnostic system for nitrogen production unit of HWP

    International Nuclear Information System (INIS)

    Lamba, D.S.; Rao, V.C.; Krishnan, S.; Kamaraj, T.; Krishnaswamy, C.

    1992-01-01

    The plant diagnostic system monitors the input data from local processing unit and tries to diagnose the cause of the failure. The system is a rule based application program that can perform tasks itself using fault tree model which displays the logical relationships between critical events and their possible ways occurrence, i.e. hardware failure, process faults and human error etc. Unit 37 Nitrogen Plant is taken as a prototype model for trying the plant diagnostics system. (author). 3 refs., 2 figs

  3. Scaling-Up the Functional Diagnostic Systems

    International Nuclear Information System (INIS)

    Mohamed, A.H.

    2008-01-01

    Functional diagnostic systems received a lot of attention in the last decade. They have proven their powerful for diagnosis the new faults of some complex systems. But, they still have some complexity in both the representation and reasoning about the large-scale systems. This paper introduces a new functional diagnostic system that can divide its small functions into main and auxiliary ones. This process enables the diagnostic system to scale -up the representation of the tested system and simplify the diagnostic mechanism tasks. Thus, it can improve both the representation and reasoning complexity. Also,it can decrease the required analysis, cost, and time. Proposed system can be applied for a wide area of the large-scale systems. It has been proven its acceptance to be applied practically for the Complex real-time systems

  4. Statistical fault detection in photovoltaic systems

    KAUST Repository

    Garoudja, Elyes; Harrou, Fouzi; Sun, Ying; Kara, Kamel; Chouder, Aissa; Silvestre, Santiago

    2017-01-01

    and efficiency. Here, an innovative model-based fault-detection approach for early detection of shading of PV modules and faults on the direct current (DC) side of PV systems is proposed. This approach combines the flexibility, and simplicity of a one-diode model

  5. The Impact of Gas Turbine Component Leakage Fault on GPA Performance Diagnostics

    Directory of Open Access Journals (Sweden)

    E. L. Ntantis

    2016-01-01

    Full Text Available The leakage analysis is a key factor in determining energy loss from a gas turbine. Once the components assembly fails, air leakage through the opening increases resulting in a performance loss. Therefore, the performance efficiency of the engine cannot be reliably determined, without good estimates and analysis of leakage faults. Consequently, the implementation of a leakage fault within a gas turbine engine model is necessary for any performance diagnostic technique that can expand its diagnostics capabilities for more accurate predictions. This paper explores the impact of gas turbine component leakage fault on GPA (Gas Path Analysis Performance Diagnostics. The analysis is demonstrated with a test case where gas turbine performance simulation and diagnostics code TURBOMATCH is used to build a performance model of a model engine similar to Rolls-Royce Trent 500 turbofan engine, and carry out the diagnostic analysis with the presence of different component fault cases. Conclusively, to improve the reliability of the diagnostic results, a leakage fault analysis of the implemented faults is made. The diagnostic tool used to deal with the analysis of the gas turbine component implemented faults is a model-based method utilizing a non-linear GPA.

  6. Cell boundary fault detection system

    Science.gov (United States)

    Archer, Charles Jens [Rochester, MN; Pinnow, Kurt Walter [Rochester, MN; Ratterman, Joseph D [Rochester, MN; Smith, Brian Edward [Rochester, MN

    2009-05-05

    A method determines a nodal fault along the boundary, or face, of a computing cell. Nodes on adjacent cell boundaries communicate with each other, and the communications are analyzed to determine if a node or connection is faulty.

  7. DIAGNOSTICS OF META-INSTABLE STATE OF SEISMICALLY ACTIVE FAULT

    Directory of Open Access Journals (Sweden)

    S. A. Bornyakov

    2017-01-01

    Full Text Available Based on the results of a laboratory simulation of the seismic fault reactivation by “stick-slip” process, it was shown that the system of two blocks just before an impulse offset goes through the meta-instable dynamic state, with early and late stages of meta-instability [Ma et al., 2012]. In the first stage the offset begins in slow stationary mode with slow stresses relaxation on contact between blocks. In the second stage of the “accelerated synergies” strain rate increases and, subsequently, the deformation process through a process of self-organization came to dynamic impulse offset. The experimental results were used for interpretation of the results of spectral analysis of the deformation monitoring data. The data were held within the southern part ofLakeBaikal, where Kultuk earthquake (27.08.2008, Ms=6.1. took place. Its epicenter was located in the South end zone of the main Sayan fault. Monitoring of deformations of rocks was carried out from April to November2008 in tunnel, located at30 km from the epicenter of the earthquake. The time series data was divided into month periods and then the periods were processed by the method of spectral analysis. The results showed that before the earthquake has ordered view spectrogram, whereas in other time intervals, both before and after the earthquake such orderliness in spectrograms is missing. An ordered view spectrograms for deformation monitoring data can be interpreted as a consequence of the self-organiza­tion of deformation process in the transition of seismically active fault into meta-unstable before the Kultuk earthquake.

  8. Software fault tolerance in computer operating systems

    Science.gov (United States)

    Iyer, Ravishankar K.; Lee, Inhwan

    1994-01-01

    This chapter provides data and analysis of the dependability and fault tolerance for three operating systems: the Tandem/GUARDIAN fault-tolerant system, the VAX/VMS distributed system, and the IBM/MVS system. Based on measurements from these systems, basic software error characteristics are investigated. Fault tolerance in operating systems resulting from the use of process pairs and recovery routines is evaluated. Two levels of models are developed to analyze error and recovery processes inside an operating system and interactions among multiple instances of an operating system running in a distributed environment. The measurements show that the use of process pairs in Tandem systems, which was originally intended for tolerating hardware faults, allows the system to tolerate about 70% of defects in system software that result in processor failures. The loose coupling between processors which results in the backup execution (the processor state and the sequence of events occurring) being different from the original execution is a major reason for the measured software fault tolerance. The IBM/MVS system fault tolerance almost doubles when recovery routines are provided, in comparison to the case in which no recovery routines are available. However, even when recovery routines are provided, there is almost a 50% chance of system failure when critical system jobs are involved.

  9. Fault isolability conditions for linear systems with additive faults

    DEFF Research Database (Denmark)

    Niemann, Hans Henrik; Stoustrup, Jakob

    2006-01-01

    In this paper, we shall show that an unlimited number of additive single faults can be isolated under mild conditions if a general isolation scheme is applied. Multiple faults are also covered. The approach is algebraic and is based on a set representation of faults, where all faults within a set...

  10. Fault detection and fault-tolerant control for nonlinear systems

    CERN Document Server

    Li, Linlin

    2016-01-01

    Linlin Li addresses the analysis and design issues of observer-based FD and FTC for nonlinear systems. The author analyses the existence conditions for the nonlinear observer-based FD systems to gain a deeper insight into the construction of FD systems. Aided by the T-S fuzzy technique, she recommends different design schemes, among them the L_inf/L_2 type of FD systems. The derived FD and FTC approaches are verified by two benchmark processes. Contents Overview of FD and FTC Technology Configuration of Nonlinear Observer-Based FD Systems Design of L2 nonlinear Observer-Based FD Systems Design of Weighted Fuzzy Observer-Based FD Systems FTC Configurations for Nonlinear Systems< Application to Benchmark Processes Target Groups Researchers and students in the field of engineering with a focus on fault diagnosis and fault-tolerant control fields The Author Dr. Linlin Li completed her dissertation under the supervision of Prof. Steven X. Ding at the Faculty of Engineering, University of Duisburg-Essen, Germany...

  11. Posbist fault tree analysis of coherent systems

    International Nuclear Information System (INIS)

    Huang, H.-Z.; Tong Xin; Zuo, Ming J.

    2004-01-01

    When the failure probability of a system is extremely small or necessary statistical data from the system is scarce, it is very difficult or impossible to evaluate its reliability and safety with conventional fault tree analysis (FTA) techniques. New techniques are needed to predict and diagnose such a system's failures and evaluate its reliability and safety. In this paper, we first provide a concise overview of FTA. Then, based on the posbist reliability theory, event failure behavior is characterized in the context of possibility measures and the structure function of the posbist fault tree of a coherent system is defined. In addition, we define the AND operator and the OR operator based on the minimal cut of a posbist fault tree. Finally, a model of posbist fault tree analysis (posbist FTA) of coherent systems is presented. The use of the model for quantitative analysis is demonstrated with a real-life safety system

  12. Energy-efficient fault-tolerant systems

    CERN Document Server

    Mathew, Jimson; Pradhan, Dhiraj K

    2013-01-01

    This book describes the state-of-the-art in energy efficient, fault-tolerant embedded systems. It covers the entire product lifecycle of electronic systems design, analysis and testing and includes discussion of both circuit and system-level approaches. Readers will be enabled to meet the conflicting design objectives of energy efficiency and fault-tolerance for reliability, given the up-to-date techniques presented.

  13. Simultaneous-Fault Diagnosis of Gas Turbine Generator Systems Using a Pairwise-Coupled Probabilistic Classifier

    Directory of Open Access Journals (Sweden)

    Zhixin Yang

    2013-01-01

    Full Text Available A reliable fault diagnostic system for gas turbine generator system (GTGS, which is complicated and inherent with many types of component faults, is essential to avoid the interruption of electricity supply. However, the GTGS diagnosis faces challenges in terms of the existence of simultaneous-fault diagnosis and high cost in acquiring the exponentially increased simultaneous-fault vibration signals for constructing the diagnostic system. This research proposes a new diagnostic framework combining feature extraction, pairwise-coupled probabilistic classifier, and decision threshold optimization. The feature extraction module adopts wavelet packet transform and time-domain statistical features to extract vibration signal features. Kernel principal component analysis is then applied to further reduce the redundant features. The features of single faults in a simultaneous-fault pattern are extracted and then detected using a probabilistic classifier, namely, pairwise-coupled relevance vector machine, which is trained with single-fault patterns only. Therefore, the training dataset of simultaneous-fault patterns is unnecessary. To optimize the decision threshold, this research proposes to use grid search method which can ensure a global solution as compared with traditional computational intelligence techniques. Experimental results show that the proposed framework performs well for both single-fault and simultaneous-fault diagnosis and is superior to the frameworks without feature extraction and pairwise coupling.

  14. FADES: A tool for automated fault analysis of complex systems

    International Nuclear Information System (INIS)

    Wood, C.

    1990-01-01

    FADES is an Expert System for performing fault analyses on complex connected systems. By using a graphical editor to draw components and link them together the FADES system allows the analyst to describe a given system. The knowledge base created is used to qualitatively simulate the system behaviour. By inducing all possible component failures in the system and determining their effects, a set of facts is built up. These facts are then used to create Fault Trees, or FMEA tables. The facts may also be used for explanation effects and to generate diagnostic rules allowing system instrumentation to be optimised. The prototype system has been built and tested and is preently undergoing testing by users. All comments from these trials will be used to tailor the system to the requirements of the user so that the end product performs the exact task required

  15. Faults and Diagnosis Systems in Power Converters

    DEFF Research Database (Denmark)

    Lee, Kyo-Beum; Choi, Uimin

    2014-01-01

    A power converter is needed in almost all kinds of renewable energy systems and drive systems. It is used both for controlling the renewable source and for interfacing with the load, which can be grid-connected or working in standalone mode. Further, it drives the motors efficiently. Increasing...... efforts have been put into making these systems better in terms of reliability in order to achieve high power source availability, reduce the cost of energy and also increase the reliability of overall systems. Among the components used in power converters, a power device and a capacitor fault occurs most...... frequently. Therefore, it is important to monitor the power device and capacitor fault to increase the reliability of power electronics. In this chapter, the diagnosis methods for power device fault will be discussed by dividing into open- and short-circuit faults. Then, the condition monitoring methods...

  16. Robust Fault Diagnosis Design for Linear Multiagent Systems with Incipient Faults

    Directory of Open Access Journals (Sweden)

    Jingping Xia

    2015-01-01

    Full Text Available The design of a robust fault estimation observer is studied for linear multiagent systems subject to incipient faults. By considering the fact that incipient faults are in low-frequency domain, the fault estimation of such faults is proposed for discrete-time multiagent systems based on finite-frequency technique. Moreover, using the decomposition design, an equivalent conclusion is given. Simulation results of a numerical example are presented to demonstrate the effectiveness of the proposed techniques.

  17. H infinity Integrated Fault Estimation and Fault Tolerant Control of Discrete-time Piecewise Linear Systems

    DEFF Research Database (Denmark)

    Tabatabaeipour, Seyed Mojtaba; Bak, Thomas

    2012-01-01

    In this paper we consider the problem of fault estimation and accommodation for discrete time piecewise linear systems. A robust fault estimator is designed to estimate the fault such that the estimation error converges to zero and H∞ performance of the fault estimation is minimized. Then, the es...

  18. Statistical fault detection in photovoltaic systems

    KAUST Repository

    Garoudja, Elyes

    2017-05-08

    Faults in photovoltaic (PV) systems, which can result in energy loss, system shutdown or even serious safety breaches, are often difficult to avoid. Fault detection in such systems is imperative to improve their reliability, productivity, safety and efficiency. Here, an innovative model-based fault-detection approach for early detection of shading of PV modules and faults on the direct current (DC) side of PV systems is proposed. This approach combines the flexibility, and simplicity of a one-diode model with the extended capacity of an exponentially weighted moving average (EWMA) control chart to detect incipient changes in a PV system. The one-diode model, which is easily calibrated due to its limited calibration parameters, is used to predict the healthy PV array\\'s maximum power coordinates of current, voltage and power using measured temperatures and irradiances. Residuals, which capture the difference between the measurements and the predictions of the one-diode model, are generated and used as fault indicators. Then, the EWMA monitoring chart is applied on the uncorrelated residuals obtained from the one-diode model to detect and identify the type of fault. Actual data from the grid-connected PV system installed at the Renewable Energy Development Center, Algeria, are used to assess the performance of the proposed approach. Results show that the proposed approach successfully monitors the DC side of PV systems and detects temporary shading.

  19. Cell boundary fault detection system

    Science.gov (United States)

    Archer, Charles Jens [Rochester, MN; Pinnow, Kurt Walter [Rochester, MN; Ratterman, Joseph D [Rochester, MN; Smith, Brian Edward [Rochester, MN

    2011-04-19

    An apparatus and program product determine a nodal fault along the boundary, or face, of a computing cell. Nodes on adjacent cell boundaries communicate with each other, and the communications are analyzed to determine if a node or connection is faulty.

  20. Fault Diagnosis for Actuators in a Class of Nonlinear Systems Based on an Adaptive Fault Detection Observer

    Directory of Open Access Journals (Sweden)

    Runxia Guo

    2016-01-01

    Full Text Available The problem of actuators’ fault diagnosis is pursued for a class of nonlinear control systems that are affected by bounded measurement noise and external disturbances. A novel fault diagnosis algorithm has been proposed by combining the idea of adaptive control theory and the approach of fault detection observer. The asymptotical stability of the fault detection observer is guaranteed by setting the adaptive adjusting law of the unknown fault vector. A theoretically rigorous proof of asymptotical stability has been given. Under the condition that random measurement noise generated by the sensors of control systems and external disturbances exist simultaneously, the designed fault diagnosis algorithm is able to successfully give specific estimated values of state variables and failures rather than just giving a simple fault warning. Moreover, the proposed algorithm is very simple and concise and is easy to be applied to practical engineering. Numerical experiments are carried out to evaluate the performance of the fault diagnosis algorithm. Experimental results show that the proposed diagnostic strategy has a satisfactory estimation effect.

  1. Active fault diagnosis in closed-loop uncertain systems

    DEFF Research Database (Denmark)

    Niemann, Hans Henrik

    2006-01-01

    Fault diagnosis of parametric faults in closed-loop uncertain systems by using an auxiliary input vector is considered in this paper, i.e. active fault diagnosis (AFD). The active fault diagnosis is based directly on the socalled fault signature matrix, related to the YJBK (Youla, Jabr, Bongiorno...... and Kucera) parameterization. Conditions are given for exact detection and isolation of parametric faults in closed-loop uncertain systems....

  2. Fault tolerant control of systems with saturations

    DEFF Research Database (Denmark)

    Niemann, Hans Henrik

    2013-01-01

    This paper presents framework for fault tolerant controllers (FTC) that includes input saturation. The controller architecture known from FTC is based on the Youla-Jabr-Bongiorno-Kucera (YJBK) parameterization is extended to handle input saturation. Applying this controller architecture in connec......This paper presents framework for fault tolerant controllers (FTC) that includes input saturation. The controller architecture known from FTC is based on the Youla-Jabr-Bongiorno-Kucera (YJBK) parameterization is extended to handle input saturation. Applying this controller architecture...... in connection with faulty systems including input saturation gives an additional YJBK transfer function related to the input saturation. In the fault free case, this additional YJBK transfer function can be applied directly for optimizing the feedback loop around the input saturation. In the faulty case......, the design problem is a mixed design problem involved both parametric faults and input saturation....

  3. Fault diagnosis for dynamic power system

    International Nuclear Information System (INIS)

    Thabet, A.; Abdelkrim, M.N.; Boutayeb, M.; Didier, G.; Chniba, S.

    2011-01-01

    The fault diagnosis problem for dynamic power systems is treated, the nonlinear dynamic model based on a differential algebraic equations is transformed with reduced index to a simple dynamic model. Two nonlinear observers are used for generating the fault signals for comparison purposes, one of them being an extended Kalman estimator and the other a new extended kalman filter with moving horizon with a study of convergence based on the choice of matrix of covariance of the noises of system and measurements. The paper illustrates a simulation study applied on IEEE 3 buses test system.

  4. Active fault diagnosis in closed-loop systems

    DEFF Research Database (Denmark)

    Niemann, Hans Henrik; Poulsen, Niels Kjølstad

    2005-01-01

    Active fault diagnosis (AFD) of parametric faults is considered in connection with closed loop feedback systems. AFD involves auxiliary signals applied on the closed loop system. A fault signature matrix is introduced in connection with AFD and it is shown that if a limited number of faults can...

  5. Mesoscopic Structural Observations of Cores from the Chelungpu Fault System, Taiwan Chelungpu-Fault Drilling Project Hole-A, Taiwan

    Directory of Open Access Journals (Sweden)

    Hiroki Sone

    2007-01-01

    Full Text Available Structural characteristics of fault rocks distributed within major fault zones provide basic information in understanding the physical aspects of faulting. Mesoscopic structural observations of the drilledcores from Taiwan Chelungpu-fault Drilling Project Hole-A are reported in this article to describe and reveal the distribution of fault rocks within the Chelungpu Fault System.

  6. Fault Detection for Shipboard Monitoring and Decision Support Systems

    DEFF Research Database (Denmark)

    Lajic, Zoran; Nielsen, Ulrik Dam

    2009-01-01

    In this paper a basic idea of a fault-tolerant monitoring and decision support system will be explained. Fault detection is an important part of the fault-tolerant design for in-service monitoring and decision support systems for ships. In the paper, a virtual example of fault detection...... will be presented for a containership with a real decision support system onboard. All possible faults can be simulated and detected using residuals and the generalized likelihood ratio (GLR) algorithm....

  7. Study of fault diagnosis software design for complex system based on fault tree

    International Nuclear Information System (INIS)

    Yuan Run; Li Yazhou; Wang Jianye; Hu Liqin; Wang Jiaqun; Wu Yican

    2012-01-01

    Complex systems always have high-level reliability and safety requirements, and same does their diagnosis work. As a great deal of fault tree models have been acquired during the design and operation phases, a fault diagnosis method which combines fault tree analysis with knowledge-based technology has been proposed. The prototype of fault diagnosis software has been realized and applied to mobile LIDAR system. (authors)

  8. Fault prediction for nonlinear stochastic system with incipient faults based on particle filter and nonlinear regression.

    Science.gov (United States)

    Ding, Bo; Fang, Huajing

    2017-05-01

    This paper is concerned with the fault prediction for the nonlinear stochastic system with incipient faults. Based on the particle filter and the reasonable assumption about the incipient faults, the modified fault estimation algorithm is proposed, and the system state is estimated simultaneously. According to the modified fault estimation, an intuitive fault detection strategy is introduced. Once each of the incipient fault is detected, the parameters of which are identified by a nonlinear regression method. Then, based on the estimated parameters, the future fault signal can be predicted. Finally, the effectiveness of the proposed method is verified by the simulations of the Three-tank system. Copyright © 2017 ISA. Published by Elsevier Ltd. All rights reserved.

  9. In-flight Fault Detection and Isolation in Aircraft Flight Control Systems

    Science.gov (United States)

    Azam, Mohammad; Pattipati, Krishna; Allanach, Jeffrey; Poll, Scott; Patterson-Hine, Ann

    2005-01-01

    In this paper we consider the problem of test design for real-time fault detection and isolation (FDI) in the flight control system of fixed-wing aircraft. We focus on the faults that are manifested in the control surface elements (e.g., aileron, elevator, rudder and stabilizer) of an aircraft. For demonstration purposes, we restrict our focus on the faults belonging to nine basic fault classes. The diagnostic tests are performed on the features extracted from fifty monitored system parameters. The proposed tests are able to uniquely isolate each of the faults at almost all severity levels. A neural network-based flight control simulator, FLTZ(Registered TradeMark), is used for the simulation of various faults in fixed-wing aircraft flight control systems for the purpose of FDI.

  10. The Morelia-Acambay Fault System

    Science.gov (United States)

    Velázquez Bucio, M.; Soria-Caballero, D.; Garduño-Monroy, V.; Mennella, L.

    2013-05-01

    The Trans-Mexican Volcanic Belt (TMVB) is one of the most actives and representative zones of Mexico geologically speaking. Research carried out in this area gives stratigraphic, seismologic and historical evidence of its recent activity during the quaternary (Martinez and Nieto, 1990). Specifically the Morelia-Acambay faults system (MAFS) consist in a series of normal faults of dominant direction E - W, ENE - WSW y NE - SW which is cut in center west of the Trans-Mexican Volcanic Belt. This fault system appeared during the early Miocene although the north-south oriented structures are older and have been related to the activity of the tectonism inherited from the "Basin and Range" system, but that were reactivated by the east- west faults. It is believed that the activity of these faults has contributed to the creation and evolution of the longed lacustrine depressions such as: Chapala, Zacapu, Cuitzeo, Maravatio y Acambay also the location of monogenetic volcanoes that conformed the Michoacan-Guanajuato volcanic field (MGVF) and tend to align in the direction of the SFMA dominant effort. In a historical time different segments of the MAFS have been the epicenter of earthquakes from moderated to strong magnitude like the events of 1858 in Patzcuaro, Acambay in 1912, 1979 in Maravatio and 2007 in Morelia, among others. Several detailed analysis and semi-detailed analysis through a GIS platform based in the vectorial archives and thematic charts 1:50 000 scaled from the data base of the INEGI which has allowed to remark the influence of the MAFS segments about the morphology of the landscape and the identification of other structures related to the movement of the existent faults like fractures, alignments, collapses and others from the zone comprehended by the northwest of Morelia in Michoacán to the East of Acambay, Estado de México. Such analysis suggests that the fault segments possess a normal displacement plus a left component. In addition it can be

  11. Guideliness for system modeling: fault tree [analysis

    Energy Technology Data Exchange (ETDEWEB)

    Lee, Yoon Hwan; Yang, Joon Eon; Kang, Dae Il; Hwang, Mee Jeong

    2004-07-01

    This document, the guidelines for system modeling related to Fault Tree Analysis(FTA), is intended to provide the guidelines with the analyzer to construct the fault trees in the level of the capability category II of ASME PRA standard. Especially, they are to provide the essential and basic guidelines and the related contents to be used in support of revising the Ulchin 3 and 4 PSA model for risk monitor within the capability category II of ASME PRA standard. Normally the main objective of system analysis is to assess the reliability of system modeled by Event Tree Analysis (ETA). A variety of analytical techniques can be used for the system analysis, however, FTA method is used in this procedures guide. FTA is the method used for representing the failure logic of plant systems deductively using AND, OR or NOT gates. The fault tree should reflect all possible failure modes that may contribute to the system unavailability. This should include contributions due to the mechanical failures of the components, Common Cause Failures (CCFs), human errors and outages for testing and maintenance. This document identifies and describes the definitions and the general procedures of FTA and the essential and basic guidelines for reving the fault trees. Accordingly, the guidelines for FTA will be capable to guide the FTA to the level of the capability category II of ASME PRA standard.

  12. Guideliness for system modeling: fault tree [analysis

    International Nuclear Information System (INIS)

    Lee, Yoon Hwan; Yang, Joon Eon; Kang, Dae Il; Hwang, Mee Jeong

    2004-07-01

    This document, the guidelines for system modeling related to Fault Tree Analysis(FTA), is intended to provide the guidelines with the analyzer to construct the fault trees in the level of the capability category II of ASME PRA standard. Especially, they are to provide the essential and basic guidelines and the related contents to be used in support of revising the Ulchin 3 and 4 PSA model for risk monitor within the capability category II of ASME PRA standard. Normally the main objective of system analysis is to assess the reliability of system modeled by Event Tree Analysis (ETA). A variety of analytical techniques can be used for the system analysis, however, FTA method is used in this procedures guide. FTA is the method used for representing the failure logic of plant systems deductively using AND, OR or NOT gates. The fault tree should reflect all possible failure modes that may contribute to the system unavailability. This should include contributions due to the mechanical failures of the components, Common Cause Failures (CCFs), human errors and outages for testing and maintenance. This document identifies and describes the definitions and the general procedures of FTA and the essential and basic guidelines for reving the fault trees. Accordingly, the guidelines for FTA will be capable to guide the FTA to the level of the capability category II of ASME PRA standard

  13. A master system for power system fault phenomena

    Energy Technology Data Exchange (ETDEWEB)

    Yoo, Myung Ho; Jang, Sang Ho; Hong, Joon Hee; Min, Wan Ki; Yoo, Chang Hwan [Korea Electric Power Corp. (KEPCO), Taejon (Korea, Republic of). Research Center

    1995-12-31

    This report includes as follows - Real time digital simulator - Remote measuring, analyzing and reproducing system of power system fault data -Power system reduction method program using EMTP -Test system for protection device. (author). 22 refs., 38 figs.

  14. Fault morphology of the lyo Fault, the Median Tectonic Line Active Fault System

    OpenAIRE

    後藤, 秀昭

    1996-01-01

    In this paper, we investigated the various fault features of the lyo fault and depicted fault lines or detailed topographic map. The results of this paper are summarized as follows; 1) Distinct evidence of the right-lateral movement is continuously discernible along the lyo fault. 2) Active fault traces are remarkably linear suggesting that the angle of fault plane is high. 3) The lyo fault can be divided into four segments by jogs between left-stepping traces. 4) The mean slip rate is 1.3 ~ ...

  15. Passive Fault-tolerant Control of Discrete-time Piecewise Affine Systems against Actuator Faults

    DEFF Research Database (Denmark)

    Tabatabaeipour, Seyed Mojtaba; Izadi-Zamanabadi, Roozbeh; Bak, Thomas

    2012-01-01

    In this paper, we propose a new method for passive fault-tolerant control of discrete time piecewise affine systems. Actuator faults are considered. A reliable piecewise linear quadratic regulator (LQR) state feedback is designed such that it can tolerate actuator faults. A sufficient condition f...... is illustrated on a numerical example and a two degree of freedom helicopter....

  16. Dead sea transform fault system reviews

    CERN Document Server

    Garfunkel, Zvi; Kagan, Elisa

    2014-01-01

    The Dead Sea transform is an active plate boundary connecting the Red Sea seafloor spreading system to the Arabian-Eurasian continental collision zone. Its geology and geophysics provide a natural laboratory for investigation of the surficial, crustal and mantle processes occurring along transtensional and transpressional transform fault domains on a lithospheric scale and related to continental breakup. There have been many detailed and disciplinary studies of the Dead Sea transform fault zone during the last?20 years and this book brings them together.This book is an updated comprehensive coverage of the knowledge, based on recent studies of the tectonics, structure, geophysics, volcanism, active tectonics, sedimentology and paleo and modern climate of the Dead Sea transform fault zone. It puts together all this new information and knowledge in a coherent fashion.

  17. A Research on the Electrical Test Fault Diagnostic and Data Mining of a Manned Spacecraft

    Directory of Open Access Journals (Sweden)

    Yang Feng

    2017-01-01

    Full Text Available The paper introduces the modeling method and modeling tool for the fault diagnosis of manned spacecraft, the multi-signal flow graph model of a manned space equipment was established using this method; the framework of the fault detection and diagnosis system of manned spacecraft is proposed, the function of ground system and function of the spacecraft are clearly defined. The structure of the functional module is given separately; finally, the tool builds the fault detection and diagnosis system, the application of fault diagnosis method for manned spacecraft is used for reference.

  18. A System for Fault Management and Fault Consequences Analysis for NASA's Deep Space Habitat

    Science.gov (United States)

    Colombano, Silvano; Spirkovska, Liljana; Baskaran, Vijaykumar; Aaseng, Gordon; McCann, Robert S.; Ossenfort, John; Smith, Irene; Iverson, David L.; Schwabacher, Mark

    2013-01-01

    NASA's exploration program envisions the utilization of a Deep Space Habitat (DSH) for human exploration of the space environment in the vicinity of Mars and/or asteroids. Communication latencies with ground control of as long as 20+ minutes make it imperative that DSH operations be highly autonomous, as any telemetry-based detection of a systems problem on Earth could well occur too late to assist the crew with the problem. A DSH-based development program has been initiated to develop and test the automation technologies necessary to support highly autonomous DSH operations. One such technology is a fault management tool to support performance monitoring of vehicle systems operations and to assist with real-time decision making in connection with operational anomalies and failures. Toward that end, we are developing Advanced Caution and Warning System (ACAWS), a tool that combines dynamic and interactive graphical representations of spacecraft systems, systems modeling, automated diagnostic analysis and root cause identification, system and mission impact assessment, and mitigation procedure identification to help spacecraft operators (both flight controllers and crew) understand and respond to anomalies more effectively. In this paper, we describe four major architecture elements of ACAWS: Anomaly Detection, Fault Isolation, System Effects Analysis, and Graphic User Interface (GUI), and how these elements work in concert with each other and with other tools to provide fault management support to both the controllers and crew. We then describe recent evaluations and tests of ACAWS on the DSH testbed. The results of these tests support the feasibility and strength of our approach to failure management automation and enhanced operational autonomy

  19. Fault-tolerant cooperative output regulation for multi-vehicle systems with sensor faults

    Science.gov (United States)

    Qin, Liguo; He, Xiao; Zhou, D. H.

    2017-10-01

    This paper presents a unified framework of fault diagnosis and fault-tolerant cooperative output regulation (FTCOR) for a linear discrete-time multi-vehicle system with sensor faults. The FTCOR control law is designed through three steps. A cooperative output regulation (COR) controller is designed based on the internal mode principle when there are no sensor faults. A sufficient condition on the existence of the COR controller is given based on the discrete-time algebraic Riccati equation (DARE). Then, a decentralised fault diagnosis scheme is designed to cope with sensor faults occurring in followers. A residual generator is developed to detect sensor faults of each follower, and a bank of fault-matching estimators are proposed to isolate and estimate sensor faults of each follower. Unlike the current distributed fault diagnosis for multi-vehicle systems, the presented decentralised fault diagnosis scheme in each vehicle reduces the communication and computation load by only using the information of the vehicle. By combing the sensor fault estimation and the COR control law, an FTCOR controller is proposed. Finally, the simulation results demonstrate the effectiveness of the FTCOR controller.

  20. Stafford fault system: 120 million year fault movement history of northern Virginia

    Science.gov (United States)

    Powars, David S.; Catchings, Rufus D.; Horton, J. Wright; Schindler, J. Stephen; Pavich, Milan J.

    2015-01-01

    The Stafford fault system, located in the mid-Atlantic coastal plain of the eastern United States, provides the most complete record of fault movement during the past ~120 m.y. across the Virginia, Washington, District of Columbia (D.C.), and Maryland region, including displacement of Pleistocene terrace gravels. The Stafford fault system is close to and aligned with the Piedmont Spotsylvania and Long Branch fault zones. The dominant southwest-northeast trend of strong shaking from the 23 August 2011, moment magnitude Mw 5.8 Mineral, Virginia, earthquake is consistent with the connectivity of these faults, as seismic energy appears to have traveled along the documented and proposed extensions of the Stafford fault system into the Washington, D.C., area. Some other faults documented in the nearby coastal plain are clearly rooted in crystalline basement faults, especially along terrane boundaries. These coastal plain faults are commonly assumed to have undergone relatively uniform movement through time, with average slip rates from 0.3 to 1.5 m/m.y. However, there were higher rates during the Paleocene–early Eocene and the Pliocene (4.4–27.4 m/m.y), suggesting that slip occurred primarily during large earthquakes. Further investigation of the Stafford fault system is needed to understand potential earthquake hazards for the Virginia, Maryland, and Washington, D.C., area. The combined Stafford fault system and aligned Piedmont faults are ~180 km long, so if the combined fault system ruptured in a single event, it would result in a significantly larger magnitude earthquake than the Mineral earthquake. Many structures most strongly affected during the Mineral earthquake are along or near the Stafford fault system and its proposed northeastward extension.

  1. Torsional vibration signal analysis as a diagnostic tool for planetary gear fault detection

    Science.gov (United States)

    Xue, Song; Howard, Ian

    2018-02-01

    This paper aims to investigate the effectiveness of using the torsional vibration signal as a diagnostic tool for planetary gearbox faults detection. The traditional approach for condition monitoring of the planetary gear uses a stationary transducer mounted on the ring gear casing to measure all the vibration data when the planet gears pass by with the rotation of the carrier arm. However, the time variant vibration transfer paths between the stationary transducer and the rotating planet gear modulate the resultant vibration spectra and make it complex. Torsional vibration signals are theoretically free from this modulation effect and therefore, it is expected to be much easier and more effective to diagnose planetary gear faults using the fault diagnostic information extracted from the torsional vibration. In this paper, a 20 degree of freedom planetary gear lumped-parameter model was developed to obtain the gear dynamic response. In the model, the gear mesh stiffness variations are the main internal vibration generation mechanism and the finite element models were developed for calculation of the sun-planet and ring-planet gear mesh stiffnesses. Gear faults on different components were created in the finite element models to calculate the resultant gear mesh stiffnesses, which were incorporated into the planetary gear model later on to obtain the faulted vibration signal. Some advanced signal processing techniques were utilized to analyses the fault diagnostic results from the torsional vibration. It was found that the planetary gear torsional vibration not only successfully detected the gear fault, but also had the potential to indicate the location of the gear fault. As a result, the planetary gear torsional vibration can be considered an effective alternative approach for planetary gear condition monitoring.

  2. Guaranteed Cost Fault-Tolerant Control for Networked Control Systems with Sensor Faults

    Directory of Open Access Journals (Sweden)

    Qixin Zhu

    2015-01-01

    Full Text Available For the large scale and complicated structure of networked control systems, time-varying sensor faults could inevitably occur when the system works in a poor environment. Guaranteed cost fault-tolerant controller for the new networked control systems with time-varying sensor faults is designed in this paper. Based on time delay of the network transmission environment, the networked control systems with sensor faults are modeled as a discrete-time system with uncertain parameters. And the model of networked control systems is related to the boundary values of the sensor faults. Moreover, using Lyapunov stability theory and linear matrix inequalities (LMI approach, the guaranteed cost fault-tolerant controller is verified to render such networked control systems asymptotically stable. Finally, simulations are included to demonstrate the theoretical results.

  3. Model-based fault detection algorithm for photovoltaic system monitoring

    KAUST Repository

    Harrou, Fouzi; Sun, Ying; Saidi, Ahmed

    2018-01-01

    Reliable detection of faults in PV systems plays an important role in improving their reliability, productivity, and safety. This paper addresses the detection of faults in the direct current (DC) side of photovoltaic (PV) systems using a

  4. Thioaptamer Diagnostic System, Phase I

    Data.gov (United States)

    National Aeronautics and Space Administration — AM Biotechnologies (AM) will develop a diagnostic system in response to SBIR Topic X10.01 Reusable Diagnostic Lab Technology that will simultaneously detect and...

  5. Fault detection for piecewise affine systems with application to ship propulsion systems.

    Science.gov (United States)

    Yang, Ying; Linlin, Li; Ding, Steven X; Qiu, Jianbin; Peng, Kaixiang

    2017-09-09

    In this paper, the design approach of non-synchronized diagnostic observer-based fault detection (FD) systems is investigated for piecewise affine processes via continuous piecewise Lyapunov functions. Considering that the dynamics of piecewise affine systems in different regions can be considerably different, the weighting matrices are used to weight the residual of each region, so as to optimize the fault detectability. A numerical example and a case study on a ship propulsion system are presented in the end to demonstrate the effectiveness of the proposed results. Copyright © 2017 ISA. Published by Elsevier Ltd. All rights reserved.

  6. Research and design of distributed intelligence fault diagnosis system in nuclear power plant

    International Nuclear Information System (INIS)

    Liu Yongkuo; Xie Chunli; Cheng Shouyu; Xia Hong

    2011-01-01

    In order to further reduce the misoperation after the faults occurring of nuclear power plant, according to the function distribution of nuclear power equipment and the distributed control features of digital instrument control system, a nuclear power plant distributed condition monitoring and fault diagnosis system was researched and designed. Based on decomposition-integrated diagnostic thinking, a fuzzy neural network and RBF neural network was presented to do the distributed local diagnosis and multi-source information fusion technology for the global integrated diagnosis. Simulation results show that the developed distributed status monitoring and fault diagnosis system can diagnose more typical accidents of PWR to provide effective diagnosis and operation information. (authors)

  7. Thioaptamer Diagnostic System (TDS)

    Science.gov (United States)

    Yang, Xianbin

    2015-01-01

    AM Biotechnologies, LLC, in partnership with Sandia National Laboratories, has developed a diagnostic device that quickly detects sampled biomarkers. The TDS quickly quantifies clinically relevant biomarkers using only microliters of a single sample. The system combines ambient-stable, long shelf-life affinity assays with handheld, microfluidic gel electrophoresis affinity assay quantification technology. The TDS is easy to use, operates in microgravity, and permits simultaneous quantification of 32 biomarkers. In Phase I of the project, the partners demonstrated that a thioaptamer assay used in the microfluidic instrument could quantify a specific biomarker in serum in the low nanomolar range. The team also identified novel affinity agents to bone-specific alkaline phosphatase (BAP) and demonstrated their ability to detect BAP with the microfluidic instrument. In Phase II, AM Biotech expanded the number of ambient affinity agents and demonstrated a TDS prototype. In the long term, the clinical version of the TDS will provide a robust, flight-tested diagnostic capability for space exploration missions.

  8. Abstractions for Fault-Tolerant Distributed System Verification

    Science.gov (United States)

    Pike, Lee S.; Maddalon, Jeffrey M.; Miner, Paul S.; Geser, Alfons

    2004-01-01

    Four kinds of abstraction for the design and analysis of fault tolerant distributed systems are discussed. These abstractions concern system messages, faults, fault masking voting, and communication. The abstractions are formalized in higher order logic, and are intended to facilitate specifying and verifying such systems in higher order theorem provers.

  9. Vibration-based Fault Diagnostic of a Spur Gearbox

    Directory of Open Access Journals (Sweden)

    Hartono Dennis

    2016-01-01

    Full Text Available This paper presents comparative studies of Fast Fourier Transform (FFT, Short Time Fourier Transform (STFT and Continuous Wavelet Transform (CWT as several advanced time-frequency analysis methods for diagnosing an early stage of spur gear tooth failure. An incipient fault of a chipped tooth was investigated in this work using vibration measurements from a spur gearbox test rig. Time Synchronous Averaging was implemented for the analysis to enhance the clarity of fault feature from the gear of interest. Based on the experimental results and analysis, it was shown that FFT method could identify the location of the faulty gear with sufficient accuracy. On the other hand, Short Time Fourier Transform method could not provide the angular location information of the faulty gear. It was found that the Continuous Wavelet Transform method offered the best representation of angle-frequency representation. It was not only able to distinguish the difference between the normal and faulty gearboxes from the joint angle-frequency results but could also provide an accurate angular location of the faulty gear tooth in the gearbox.

  10. FAULT-TOLERANT DESIGN FOR ADVANCED DIVERSE PROTECTION SYSTEM

    Directory of Open Access Journals (Sweden)

    YANG GYUN OH

    2013-11-01

    Full Text Available For the improvement of APR1400 Diverse Protection System (DPS design, the Advanced DPS (ADPS has recently been developed to enhance the fault tolerance capability of the system. Major fault masking features of the ADPS compared with the APR1400 DPS are the changes to the channel configuration and reactor trip actuation equipment. To minimize the fault occurrences within the ADPS, and to mitigate the consequences of common-cause failures (CCF within the safety I&C systems, several fault avoidance design features have been applied in the ADPS. The fault avoidance design features include the changes to the system software classification, communication methods, equipment platform, MMI equipment, etc. In addition, the fault detection, location, containment, and recovery processes have been incorporated in the ADPS design. Therefore, it is expected that the ADPS can provide an enhanced fault tolerance capability against the possible faults within the system and its input/output equipment, and the CCF of safety systems.

  11. Fault tolerant system based on IDDQ testing

    Science.gov (United States)

    Guibane, Badi; Hamdi, Belgacem; Mtibaa, Abdellatif; Bensalem, Brahim

    2018-06-01

    Offline test is essential to ensure good manufacturing quality. However, for permanent or transient faults that occur during the use of the integrated circuit in an application, an online integrated test is needed as well. This procedure should ensure the detection and possibly the correction or the masking of these faults. This requirement of self-correction is sometimes necessary, especially in critical applications that require high security such as automotive, space or biomedical applications. We propose a fault-tolerant design for analogue and mixed-signal design complementary metal oxide (CMOS) circuits based on the quiescent current supply (IDDQ) testing. A defect can cause an increase in current consumption. IDDQ testing technique is based on the measurement of power supply current to distinguish between functional and failed circuits. The technique has been an effective testing method for detecting physical defects such as gate-oxide shorts, floating gates (open) and bridging defects in CMOS integrated circuits. An architecture called BICS (Built In Current Sensor) is used for monitoring the supply current (IDDQ) of the connected integrated circuit. If the measured current is not within the normal range, a defect is signalled and the system switches connection from the defective to a functional integrated circuit. The fault-tolerant technique is composed essentially by a double mirror built-in current sensor, allowing the detection of abnormal current consumption and blocks allowing the connection to redundant circuits, if a defect occurs. Spices simulations are performed to valid the proposed design.

  12. Distributed Fault Detection for a Class of Nonlinear Stochastic Systems

    Directory of Open Access Journals (Sweden)

    Bingyong Yan

    2014-01-01

    Full Text Available A novel distributed fault detection strategy for a class of nonlinear stochastic systems is presented. Different from the existing design procedures for fault detection, a novel fault detection observer, which consists of a nonlinear fault detection filter and a consensus filter, is proposed to detect the nonlinear stochastic systems faults. Firstly, the outputs of the nonlinear stochastic systems act as inputs of a consensus filter. Secondly, a nonlinear fault detection filter is constructed to provide estimation of unmeasurable system states and residual signals using outputs of the consensus filter. Stability analysis of the consensus filter is rigorously investigated. Meanwhile, the design procedures of the nonlinear fault detection filter are given in terms of linear matrix inequalities (LMIs. Taking the influence of the system stochastic noises into consideration, an outstanding feature of the proposed scheme is that false alarms can be reduced dramatically. Finally, simulation results are provided to show the feasibility and effectiveness of the proposed fault detection approach.

  13. Subassembly faults diagnostic of an LMFBR type reactor by the measurement of temperature noise

    International Nuclear Information System (INIS)

    Kokorev, B.V.; Palkin, I.I.; Turchin, N.M.; Pallagi, D.; Horanyi, S.

    1979-09-01

    The subassembly faults detection possibility by temperature noise analysis of an LMFBR is described. The paper contains the results of diagnostical examinations obtained on electrically heated NaK test rigs. On the basis of these results the measurement of temperature noise RMS value seems to be a practicable method to detect local blockages in an early phase. (author)

  14. Fault-tolerant system for catastrophic faults in AMR sensors

    NARCIS (Netherlands)

    Zambrano Constantini, A.C.; Kerkhoff, Hans G.

    Anisotropic Magnetoresistance angle sensors are widely used in automotive applications considered to be safety-critical applications. Therefore dependability is an important requirement and fault-tolerant strategies must be used to guarantee the correct operation of the sensors even in case of

  15. Data-based fault-tolerant control for affine nonlinear systems with actuator faults.

    Science.gov (United States)

    Xie, Chun-Hua; Yang, Guang-Hong

    2016-09-01

    This paper investigates the fault-tolerant control (FTC) problem for unknown nonlinear systems with actuator faults including stuck, outage, bias and loss of effectiveness. The upper bounds of stuck faults, bias faults and loss of effectiveness faults are unknown. A new data-based FTC scheme is proposed. It consists of the online estimations of the bounds and a state-dependent function. The estimations are adjusted online to compensate automatically the actuator faults. The state-dependent function solved by using real system data helps to stabilize the system. Furthermore, all signals in the resulting closed-loop system are uniformly bounded and the states converge asymptotically to zero. Compared with the existing results, the proposed approach is data-based. Finally, two simulation examples are provided to show the effectiveness of the proposed approach. Copyright © 2016 ISA. Published by Elsevier Ltd. All rights reserved.

  16. Fault isolatability conditions for linear systems

    DEFF Research Database (Denmark)

    Stoustrup, Jakob; Niemann, Henrik

    2006-01-01

    In this paper, we shall show that an unlimited number of additive single faults can be isolated under mild conditions if a general isolation scheme is applied. Multiple faults are also covered. The approach is algebraic and is based on a set representation of faults, where all faults within a set...... the faults have occurred. The last step is a fault isolation (FI) of the faults occurring in a specific fault set, i.e. equivalent with the standard FI step. A simple example demonstrates how to turn the algebraic necessary and sufficient conditions into explicit algorithms for designing filter banks, which...

  17. Automated fault tree analysis: the GRAFTER system

    International Nuclear Information System (INIS)

    Sancaktar, S.; Sharp, D.R.

    1985-01-01

    An inherent part of probabilistic risk assessment (PRA) is the construction and analysis of detailed fault trees. For this purpose, a fault tree computer graphics code named GRAFTER has been developed. The code system centers around the GRAFTER code. This code is used interactively to construct, store, update and print fault trees of small or large sizes. The SIMON code is used to provide data for the basic event probabilities. ENCODE is used to process the GRAFTER files to prepare input for the WAMCUT code. WAMCUT is used to quantify the top event probability and to identify the cutsets. This code system has been extensively used in various PRA projects. It has resulted in reduced manpower costs, increased QA capability, ease of documentation and it has simplified sensitivity analyses. Because of its automated nature, it is also suitable for LIVING PRA Studies which require updating and modifications during the lifetime of the plant. Brief descriptions and capabilities of the GRAFTER, SIMON and ENCODE codes are provided; an application of the GRAFTER system is outlined; and conclusions and comments on the code system are given

  18. IMPLEMENTATION OF TURNOUTS TECHNICAL DIAGNOSTICS SYSTEMS

    Directory of Open Access Journals (Sweden)

    S. YU. Buryak

    2015-06-01

    Full Text Available Purpose. In the paper it is necessary to: 1 find out the causes of turnouts faults to determine diagnostic features failures; 2 consider the requirements structure, purpose components of turnouts, work and technology of their maintenance to determine the construction of the economic activities related to system to the turnout’s maintenance; 3 substantiate the possibility, necessity and prospects of automated diagnostics turnout’s implementation; 4 elaborate a prototype of an automated hardware and software system for the turnouts control parameters and perform diagnostics on them. Methodology. In the paper possible turnouts faults were presented and manifestations and influence on its work were shown. According to the current technology works the process analyze of turnouts’ maintenance was conducted, were defined the basic performed operations during the examination of appearance, parameters and check the repair or replacement of parts and assemblies. Based on the analysis of reasons of turnouts malfunctioning and their fixes were systematized types of damages and ways to deal with them, an information scheme of troubleshooting were created, opportunities and limits of automating the process of diagnostics were identified and compared with the existing method of turnouts maintenance. A diagnostics system block diagram was created, an algorithm of its work was developed and established main basic principles of operation. Software and hardware to determine the turnout’s state considering diagnostic performance of points in use were applied. Findings. During the experiment was created a method of automated turnout’s diagnostics with AC electric drives, managed centrally. The results of automated hardware and software system make it possible to control turnout’s parameters and perform diagnostics on them. Originality. Authors created the method of turnout’s state determination by current curve and its spectral composition in the

  19. Fault Adaptive Control of Overactuated Systems Using Prognostic Estimation

    Data.gov (United States)

    National Aeronautics and Space Administration — Most fault adaptive control research addresses the preservation of system stability or functionality in the presence of a specific failure (fault). This paper...

  20. On the description of fault-tolerant systems

    International Nuclear Information System (INIS)

    Syrbe, M.

    1980-01-01

    Various demands by increasing complexity and the disposability of new technologies, like the One-chip-microcomputer and fiber optics, lead to control systems, which are built as decentralized distributed multi-microcomputersystems. They realize not only new control functions but they also open possibilities to increase availability by fault-tolerance. The design or the selection and lay-out of such systems require a quantitative description of these systems. This is possible on the bases of the set of hardware and software moduls of the system by the use of queuing models, reliability nets and diagnostic graphs. This is shown by an example of a practically applied Really Distributed Computer Control System (RDC-System). Computer aided methods for these system descriptions are emphasized. (orig.) [de

  1. Results of an electrical power system fault study (CDDF)

    Science.gov (United States)

    Dugal-Whitehead, N. R.; Johnson, Y. B.

    1993-01-01

    This report gives the results of an electrical power system fault study which has been conducted over the last 2 and one-half years. First, the results of the literature search into electrical power system faults in space and terrestrial power system applications are reported. A description of the intended implementations of the power system faults into the Large Autonomous Spacecraft Electrical Power System (LASEPS) breadboard is then presented. Then, the actual implementation of the faults into the breadboard is discussed along with a discussion describing the LASEPS breadboard. Finally, the results of the injected faults and breadboard failures are discussed.

  2. Data-driven design of fault diagnosis and fault-tolerant control systems

    CERN Document Server

    Ding, Steven X

    2014-01-01

    Data-driven Design of Fault Diagnosis and Fault-tolerant Control Systems presents basic statistical process monitoring, fault diagnosis, and control methods, and introduces advanced data-driven schemes for the design of fault diagnosis and fault-tolerant control systems catering to the needs of dynamic industrial processes. With ever increasing demands for reliability, availability and safety in technical processes and assets, process monitoring and fault-tolerance have become important issues surrounding the design of automatic control systems. This text shows the reader how, thanks to the rapid development of information technology, key techniques of data-driven and statistical process monitoring and control can now become widely used in industrial practice to address these issues. To allow for self-contained study and facilitate implementation in real applications, important mathematical and control theoretical knowledge and tools are included in this book. Major schemes are presented in algorithm form and...

  3. Probabilistic Fault Diagnosis in Electrical Power Systems

    Data.gov (United States)

    National Aeronautics and Space Administration — Electrical power systems play a critical role in spacecraft and aircraft. This paper discusses our development of a diagnostic capability for an electrical power...

  4. SENSORS FAULT DIAGNOSIS ALGORITHM DESIGN OF A HYDRAULIC SYSTEM

    Directory of Open Access Journals (Sweden)

    Matej ORAVEC

    2017-06-01

    Full Text Available This article presents the sensors fault diagnosis system design for the hydraulic system, which is based on the group of the three fault estimation filters. These filters are used for estimation of the system states and sensors fault magnitude. Also, this article briefly stated the hydraulic system state control design with integrator, which is important assumption for the fault diagnosis system design. The sensors fault diagnosis system is implemented into the Matlab/Simulink environment and it is verified using the controlled hydraulic system simulation model. Verification of the designed fault diagnosis system is realized by series of experiments, which simulates sensors faults. The results of the experiments are briefly presented in the last part of this article.

  5. An Effective Fault Feature Extraction Method for Gas Turbine Generator System Diagnosis

    Directory of Open Access Journals (Sweden)

    Jian-Hua Zhong

    2016-01-01

    Full Text Available Fault diagnosis is very important to maintain the operation of a gas turbine generator system (GTGS in power plants, where any abnormal situations will interrupt the electricity supply. The fault diagnosis of the GTGS faces the main challenge that the acquired data, vibration or sound signals, contain a great deal of redundant information which extends the fault identification time and degrades the diagnostic accuracy. To improve the diagnostic performance in the GTGS, an effective fault feature extraction framework is proposed to solve the problem of the signal disorder and redundant information in the acquired signal. The proposed framework combines feature extraction with a general machine learning method, support vector machine (SVM, to implement an intelligent fault diagnosis. The feature extraction method adopts wavelet packet transform and time-domain statistical features to extract the features of faults from the vibration signal. To further reduce the redundant information in extracted features, kernel principal component analysis is applied in this study. Experimental results indicate that the proposed feature extracted technique is an effective method to extract the useful features of faults, resulting in improvement of the performance of fault diagnosis for the GTGS.

  6. Fault tolerant architecture for artificial olfactory system

    International Nuclear Information System (INIS)

    Lotfivand, Nasser; Hamidon, Mohd Nizar; Abdolzadeh, Vida

    2015-01-01

    In this paper, to cover and mask the faults that occur in the sensing unit of an artificial olfactory system, a novel architecture is offered. The proposed architecture is able to tolerate failures in the sensors of the array and the faults that occur are masked. The proposed architecture for extracting the correct results from the output of the sensors can provide the quality of service for generated data from the sensor array. The results of various evaluations and analysis proved that the proposed architecture has acceptable performance in comparison with the classic form of the sensor array in gas identification. According to the results, achieving a high odor discrimination based on the suggested architecture is possible. (paper)

  7. CRISP. Simulation tool for fault detection and diagnostics in high-DG power networks

    International Nuclear Information System (INIS)

    Fontela, M.; Andrieu, C.; Raison, B.

    2004-08-01

    This document gives a description of a tool proposed for fault detection and diagnostics. The main principles of the functions of fault localization are described and detailed for a given MV network that will be used for the ICT experiment in Grenoble (experiment 3B). The aim of the tool is to create a technical, simple and realistic context for testing ICT dedicated to an electrical application. The tool gives the expected inputs and outputs contents of the various distributed ICT components when a fault occurs in a given MV network. So the requirements for the ICT components are given in term of expected data collected, analysed and transmitted. Several examples are given in order to illustrate the inputs/outputs in case of different faults. The tool includes a topology description which is a main aspect to develop in the future for managing the distribution network. Updating topology in real time will become necessary for fault diagnostic and protection, but also necessary for the various possible added applications (local market balance and local electrical power quality for instance). The tool gives a context and a simple view for the ICT components behaviours assuming an ideal response and transmission from them. The real characteristics and possible limitations for the ICT (information latency, congestion, security) will be established during the experiments from the same context described in the HTFD tool

  8. Late quaternary faulting along the Death Valley-Furnace Creek fault system, California and Nevada

    International Nuclear Information System (INIS)

    Brogan, G.E.; Kellogg, K.S.; Terhune, C.L.; Slemmons, D.B.

    1991-01-01

    The Death Valley-Furnace Creek fault system, in California and Nevada, has a variety of impressive late Quaternary neotectonic features that record a long history of recurrent earthquake-induced faulting. Although no neotectonic features of unequivocal historical age are known, paleoseismic features from multiple late Quaternary events of surface faulting are well developed throughout the length of the system. Comparison of scarp heights to amount of horizontal offset of stream channels and the relationships of both scarps and channels to the ages of different geomorphic surfaces demonstrate that Quaternary faulting along the northwest-trending Furnace Creek fault zone is predominantly right lateral, whereas that along the north-trending Death Valley fault zone is predominantly normal. These observations are compatible with tectonic models of Death Valley as a northwest- trending pull-apart basin

  9. Fault displacement along the Naruto-South fault, the Median Tectonic Line active fault system in the eastern part of Shikoku, southwestern Japan

    OpenAIRE

    高田, 圭太; 中田, 高; 後藤, 秀昭; 岡田, 篤正; 原口, 強; 松木, 宏彰

    1998-01-01

    The Naruto-South fault is situated of about 1000m south of the Naruto fault, the Median Tectonic Line active fault system in the eastern part of Shikoku. We investigated fault topography and subsurface geology of this fault by interpretation of large scale aerial photographs, collecting borehole data and Geo-Slicer survey. The results obtained are as follows; 1) The Naruto-South fault runs on the Yoshino River deltaic plain at least 2.5 km long with fault scarplet. the Naruto-South fault is o...

  10. Fault Diagnosis and Fault-tolerant Control of Modular Multi-level Converter High-voltage DC System

    DEFF Research Database (Denmark)

    Liu, Hui; Ma, Ke; Wang, Chao

    2016-01-01

    of failures and lower the reliability of the MMC-HVDC system. Therefore, research on the fault diagnosis and fault-tolerant control of MMC-HVDC system is of great significance in order to enhance the reliability of the system. This paper provides a comprehensive review of fault diagnosis and fault handling...

  11. Distributed Fault-Tolerant Control of Networked Uncertain Euler-Lagrange Systems Under Actuator Faults.

    Science.gov (United States)

    Chen, Gang; Song, Yongduan; Lewis, Frank L

    2016-05-03

    This paper investigates the distributed fault-tolerant control problem of networked Euler-Lagrange systems with actuator and communication link faults. An adaptive fault-tolerant cooperative control scheme is proposed to achieve the coordinated tracking control of networked uncertain Lagrange systems on a general directed communication topology, which contains a spanning tree with the root node being the active target system. The proposed algorithm is capable of compensating for the actuator bias fault, the partial loss of effectiveness actuation fault, the communication link fault, the model uncertainty, and the external disturbance simultaneously. The control scheme does not use any fault detection and isolation mechanism to detect, separate, and identify the actuator faults online, which largely reduces the online computation and expedites the responsiveness of the controller. To validate the effectiveness of the proposed method, a test-bed of multiple robot-arm cooperative control system is developed for real-time verification. Experiments on the networked robot-arms are conduced and the results confirm the benefits and the effectiveness of the proposed distributed fault-tolerant control algorithms.

  12. Observer-based Fault Detection and Isolation for Nonlinear Systems

    DEFF Research Database (Denmark)

    Lootsma, T.F.

    With the rise in automation the increase in fault detectionand isolation & reconfiguration is inevitable. Interest in fault detection and isolation (FDI) for nonlinear systems has grown significantly in recent years. The design of FDI is motivated by the need for knowledge about occurring faults...... in fault-tolerant control systems (FTC systems). The idea of FTC systems is to detect, isolate, and handle faults in such a way that the systems can still perform in a required manner. One prefers reduced performance after occurrence of a fault to the shut down of (sub-) systems. Hence, the idea of fault......-output decoupling is described. It is a new idea based on the solution of the input-output decoupling problem. The idea is to include FDI considerations already during the control design....

  13. Determining on-fault magnitude distributions for a connected, multi-fault system

    Science.gov (United States)

    Geist, E. L.; Parsons, T.

    2017-12-01

    A new method is developed to determine on-fault magnitude distributions within a complex and connected multi-fault system. A binary integer programming (BIP) method is used to distribute earthquakes from a 10 kyr synthetic regional catalog, with a minimum magnitude threshold of 6.0 and Gutenberg-Richter (G-R) parameters (a- and b-values) estimated from historical data. Each earthquake in the synthetic catalog can occur on any fault and at any location. In the multi-fault system, earthquake ruptures are allowed to branch or jump from one fault to another. The objective is to minimize the slip-rate misfit relative to target slip rates for each of the faults in the system. Maximum and minimum slip-rate estimates around the target slip rate are used as explicit constraints. An implicit constraint is that an earthquake can only be located on a fault (or series of connected faults) if it is long enough to contain that earthquake. The method is demonstrated in the San Francisco Bay area, using UCERF3 faults and slip-rates. We also invoke the same assumptions regarding background seismicity, coupling, and fault connectivity as in UCERF3. Using the preferred regional G-R a-value, which may be suppressed by the 1906 earthquake, the BIP problem is deemed infeasible when faults are not connected. Using connected faults, however, a solution is found in which there is a surprising diversity of magnitude distributions among faults. In particular, the optimal magnitude distribution for earthquakes that participate along the Peninsula section of the San Andreas fault indicates a deficit of magnitudes in the M6.0- 7.0 range. For the Rodgers Creek-Hayward fault combination, there is a deficit in the M6.0- 6.6 range. Rather than solving this as an optimization problem, we can set the objective function to zero and solve this as a constraint problem. Among the solutions to the constraint problem is one that admits many more earthquakes in the deficit magnitude ranges for both faults

  14. Fault-tolerant distributed measurement systems

    Energy Technology Data Exchange (ETDEWEB)

    Gater, C.

    1987-01-01

    A 100 kbit/s battery-powered fault-tolerant communications network was developed for use in industrial distributed measurement systems, where a loop controller supervises up to 64 addressable field devices with a network polling period of 250ms. Safety and reliability were optimized using fibre-optic data links and low-power circuitry throughout. Based on a highly redundant loop topology of two receiver/two transmitter communications nodes, the network can tolerate any double node or any quadruple linked failure. Each node circuit is designed to operate continuously for five years using a standard D-type lithium cell, and consists essentially of a CMOS single-chip microcomputer, a specially designed CMOS communications interface chip, some analogue circuity for the optical receivers and transmitters, and interfaces for a sensor/actuator and roving hand-held terminal. The communications interface was implement on a 2436-cell CMOS gate array and feature a self-test facility which provides over 86% fault coverage using only three test vectors. The chip can also be used in the loop controller. Control procedures developed to detect, locate, and reconfigure around faults that occur in the communications network.

  15. Discrete Wavelet Transform for Fault Locations in Underground Distribution System

    Science.gov (United States)

    Apisit, C.; Ngaopitakkul, A.

    2010-10-01

    In this paper, a technique for detecting faults in underground distribution system is presented. Discrete Wavelet Transform (DWT) based on traveling wave is employed in order to detect the high frequency components and to identify fault locations in the underground distribution system. The first peak time obtained from the faulty bus is employed for calculating the distance of fault from sending end. The validity of the proposed technique is tested with various fault inception angles, fault locations and faulty phases. The result is found that the proposed technique provides satisfactory result and will be very useful in the development of power systems protection scheme.

  16. Robust Parametric Fault Estimation in a Hopper System

    DEFF Research Database (Denmark)

    Soltani, Mohsen; Izadi-Zamanabadi, Roozbeh; Wisniewski, Rafal

    2012-01-01

    The ability of diagnosis of the possible faults is a necessity for satellite launch vehicles during their mission. In this paper, a structural analysis method is employed to divide the complex propulsion system into simpler subsystems for fault diagnosis filter design. A robust fault diagnosis me...

  17. Nova target diagnostics control system

    International Nuclear Information System (INIS)

    Severyn, J.R.

    1985-01-01

    During the past year the Nova target diagnostics control system was finished and put in service. The diagnostics loft constructed to the north of the target room provides the environmental conditions required to collect reliable target diagnostic data. These improvements include equipment cooling and isolation of the power source with strict control of instrumentation grounds to eliminate data corruption due to electromagnetic pulses from the laser power-conditioning system or from target implosion effects

  18. Dependability evaluation of computing systems - physical faults, design faults, malicious faults

    International Nuclear Information System (INIS)

    Kaaniche, Mohamed

    1999-01-01

    The research summarized in this report focuses on the dependability of computer systems. It addresses several complementary, theoretical as well as experimental, issues that are grouped into four topics. The first topic concerns the definition of efficient methods that aim to assist the users in the construction and validation of complex dependability analysis and evaluation models. The second topic deals with the modeling of reliability and availability growth that mainly result from the progressive removal of design faults. A method is also defined to support the application of software reliability evaluation studies in an industrial context. The third topic deals with the development and experimentation of a new approach for the quantitative evaluation of operational security. This approach aims to assist the system administrators in the monitoring of operational security, when modifications, that are likely to introduce new vulnerabilities, occur in the system configuration, the applications, the user behavior, etc. Finally, the fourth topic addresses: a) the definition of a development model focused at the production of dependable systems, and b) the development of assessment criteria to obtain justified confidence that a system will achieve, during its operation and up to its decommissioning, its dependability objectives. (author) [fr

  19. Study on seismic hazard assessment of large active fault systems. Evolution of fault systems and associated geomorphic structures: fault model test and field survey

    International Nuclear Information System (INIS)

    Ueta, Keichi; Inoue, Daiei; Miyakoshi, Katsuyoshi; Miyagawa, Kimio; Miura, Daisuke

    2003-01-01

    Sandbox experiments and field surveys were performed to investigate fault system evolution and fault-related deformation of ground surface, the Quaternary deposits and rocks. The summary of the results is shown below. 1) In the case of strike-slip faulting, the basic fault sequence runs from early en echelon faults and pressure ridges through linear trough. The fault systems associated with the 2000 western Tottori earthquake are shown as en echelon pattern that characterize the early stage of wrench tectonics, therefore no thoroughgoing surface faulting was found above the rupture as defined by the main shock and aftershocks. 2) Low-angle and high-angle reverse faults commonly migrate basinward with time, respectively. With increasing normal fault displacement in bedrock, normal fault develops within range after reverse fault has formed along range front. 3) Horizontal distance of surface rupture from the bedrock fault normalized by the height of the Quaternary deposits agrees well with those of model tests. 4) Upward-widening damage zone, where secondary fractures develop, forms in the handing wall side of high-angle reverse fault at the Kamioka mine. (author)

  20. The Najd Fault System of Saudi Arabia

    Science.gov (United States)

    Stüwe, Kurt; Kadi, Khalid; Abu-Alam, Tamer; Hassan, Mahmoud

    2014-05-01

    The Najd Fault System of the Arabian-Nubian Shield is considered to be the largest Proterozoic Shear zone system on Earth. The shear zone was active during the late stages of the Pan African evolution and is known to be responsible for the exhumation of fragments of juvenile Proterozoic continental crust that form a series of basement domes across the shield areas of Egypt and Saudi Arabia. A three year research project funded by the Austrian Science Fund (FWF) and supported by the Saudi Geological Survey (SGS) has focused on structural mapping, petrology and geochronology of the shear zone system in order to constrain age and mechanisms of exhumation of the domes - with focus on the Saudi Arabian side of the Red Sea. We recognise important differences in comparison with the basement domes in the Eastern desert of Egypt. In particular, high grade metamorphic rocks are not exclusively confined to basement domes surrounded by shear zones, but also occur within shear zones themselves. Moreover, we recognise both exhumation in extensional and in transpressive regimes to be responsible for exhumation of high grade metamorphic rocks in different parts of the shield. We suggest that these apparent structural differences between different sub-regions of the shield largely reflect different timing of activity of various branches of the Najd Fault System. In order to tackle the ill-resolved timing of the Najd Fault System, zircon geochronology is performed on intrusive rocks with different cross cutting relationships to the shear zone. We are able to constrain an age between 580 Ma and 605 Ma for one of the major branches of the shear zone, namely the Ajjaj shear zone. In our contribution we present a strain map for the shield as well as early geochronological data for selected shear zone branches.

  1. Fault detection in finite frequency domain for Takagi-Sugeno fuzzy systems with sensor faults.

    Science.gov (United States)

    Li, Xiao-Jian; Yang, Guang-Hong

    2014-08-01

    This paper is concerned with the fault detection (FD) problem in finite frequency domain for continuous-time Takagi-Sugeno fuzzy systems with sensor faults. Some finite-frequency performance indices are initially introduced to measure the fault/reference input sensitivity and disturbance robustness. Based on these performance indices, an effective FD scheme is then presented such that the generated residual is designed to be sensitive to both fault and reference input for faulty cases, while robust against the reference input for fault-free case. As the additional reference input sensitivity for faulty cases is considered, it is shown that the proposed method improves the existing FD techniques and achieves a better FD performance. The theory is supported by simulation results related to the detection of sensor faults in a tunnel-diode circuit.

  2. Fault detection for discrete-time switched systems with sensor stuck faults and servo inputs.

    Science.gov (United States)

    Zhong, Guang-Xin; Yang, Guang-Hong

    2015-09-01

    This paper addresses the fault detection problem of switched systems with servo inputs and sensor stuck faults. The attention is focused on designing a switching law and its associated fault detection filters (FDFs). The proposed switching law uses only the current states of FDFs, which guarantees the residuals are sensitive to the servo inputs with known frequency ranges in faulty cases and robust against them in fault-free case. Thus, the arbitrarily small sensor stuck faults, including outage faults can be detected in finite-frequency domain. The levels of sensitivity and robustness are measured in terms of the finite-frequency H- index and l2-gain. Finally, the switching law and FDFs are obtained by the solution of a convex optimization problem. Copyright © 2015 ISA. Published by Elsevier Ltd. All rights reserved.

  3. Fault tree analysis for reactor systems

    International Nuclear Information System (INIS)

    Crosetti, P.A.

    1971-01-01

    Reliability analysis is playing an increasingly important role in quantitative assessment of system performance for assuring nuclear safety, improving plant performance and plant life, and reducing plant operating costs. The complexity of today's nuclear plants warrant the use of techniques which will provide a comprehensive evaluation of systems in their total context. In particular, fault tree analysis with probability evaluation can play a key role in assuring nuclear safety, in improving plant performance and plant life, and in reducing plant operating costs. The technique provides an all inclusive, versatile mathematical tool for analyzing complex systems. Its application can include a complete plant as well as any of the systems and subsystems. Fault tree analysis provides an objective basis for analyzing system design, performing trade-off studies, analyzing common mode failures, demonstrating compliance with AEC requirements, and justifying system changes or additions. The logic of the approach makes it readily understandable and, therefore, it serves as an effective visibility tool for both engineering and management. (U.S.)

  4. Diagnostic, reliablility and control systems

    CERN Document Server

    Leondes

    2014-01-01

    1. Explicit-Model-Based Fault Detection Method in Industrial Plants 2. Soft Sensor: An Effective Approach to Improve Control 3. Techniques in Soft Computing and Their Utilization in Mechatronic Products 4. Techniques in the Control of Interconnected Plants 5. A Mechatronic Systems Approach to Controlling Robotic Systems with Actuator Dynamics 6. Process and Control Design for Fast Coordinate Measuring Machines 7. Techniques in the Stability of Mechatronic Systems with Sensor or Actuator Failure.

  5. FaultBuster: data driven fault detection and diagnosis for industrial systems

    DEFF Research Database (Denmark)

    Bergantino, Nicola; Caponetti, Fabio; Longhi, Sauro

    2009-01-01

    . Multivariate statistical models based on principal components are used to detect abnormal situations. Tailored to alarms, a probabilistic inference engine process the fault evidences to output the most probable diagnosis. Results from the DX 09 Diagnostic Challenge shown strong detection properties, while...

  6. Mine-hoist active fault tolerant control system and strategy

    Energy Technology Data Exchange (ETDEWEB)

    Wang, Z.; Wang, Y.; Meng, J.; Zhao, P.; Chang, Y. [China University of Mining and Technology, Xuzhou (China)] wzjsdstu@163.com

    2005-06-01

    Based on fault diagnosis and fault tolerant technologies, the mine-hoist active fault-tolerant control system (MAFCS) is presented with corresponding strategies, which includes the fault diagnosis module (FDM), the dynamic library (DL) and the fault-tolerant control model (FCM). When a fault is judged from some sensor by the FDM, FCM reconfigures the state of the MAFCS by calling the parameters from all sub libraries in DL, in order to ensure the reliability and safety of the mine hoist. The simulating result shows that MAFCS is of certain intelligence, which can adopt the corresponding control strategies according to different fault modes, even when there is quite a difference between the real data and the prior fault modes. 7 refs., 5 figs., 1 tab.

  7. Power system reliability analysis using fault trees

    International Nuclear Information System (INIS)

    Volkanovski, A.; Cepin, M.; Mavko, B.

    2006-01-01

    The power system reliability analysis method is developed from the aspect of reliable delivery of electrical energy to customers. The method is developed based on the fault tree analysis, which is widely applied in the Probabilistic Safety Assessment (PSA). The method is adapted for the power system reliability analysis. The method is developed in a way that only the basic reliability parameters of the analysed power system are necessary as an input for the calculation of reliability indices of the system. The modeling and analysis was performed on an example power system consisting of eight substations. The results include the level of reliability of current power system configuration, the combinations of component failures resulting in a failed power delivery to loads, and the importance factors for components and subsystems. (author)

  8. Fault-tolerant Actuator System for Electrical Steering of Vehicles

    DEFF Research Database (Denmark)

    Sørensen, Jesper Sandberg; Blanke, Mogens

    2006-01-01

    is needed that meets this requirement. This paper studies the fault-tolerance properties of an electrical steering system. It presents a fault-tolerant architecture where a dedicated AC motor design used in conjunction with cheap voltage measurements can ensure detection of all relevant faults......Being critical to the safety of vehicles, the steering system is required to maintain the vehicles ability to steer until it is brought to halt, should a fault occur. With electrical steering becoming a cost-effective candidate for electrical powered vehicles, a fault-tolerant architecture...

  9. Method and system for environmentally adaptive fault tolerant computing

    Science.gov (United States)

    Copenhaver, Jason L. (Inventor); Jeremy, Ramos (Inventor); Wolfe, Jeffrey M. (Inventor); Brenner, Dean (Inventor)

    2010-01-01

    A method and system for adapting fault tolerant computing. The method includes the steps of measuring an environmental condition representative of an environment. An on-board processing system's sensitivity to the measured environmental condition is measured. It is determined whether to reconfigure a fault tolerance of the on-board processing system based in part on the measured environmental condition. The fault tolerance of the on-board processing system may be reconfigured based in part on the measured environmental condition.

  10. Gearbox Tooth Cut Fault Diagnostics Using Acoustic Emission and Vibration Sensors — A Comparative Study

    Directory of Open Access Journals (Sweden)

    Yongzhi Qu

    2014-01-01

    Full Text Available In recent years, acoustic emission (AE sensors and AE-based techniques have been developed and tested for gearbox fault diagnosis. In general, AE-based techniques require much higher sampling rates than vibration analysis-based techniques for gearbox fault diagnosis. Therefore, it is questionable whether an AE-based technique would give a better or at least the same performance as the vibration analysis-based techniques using the same sampling rate. To answer the question, this paper presents a comparative study for gearbox tooth damage level diagnostics using AE and vibration measurements, the first known attempt to compare the gearbox fault diagnostic performance of AE- and vibration analysis-based approaches using the same sampling rate. Partial tooth cut faults are seeded in a gearbox test rig and experimentally tested in a laboratory. Results have shown that the AE-based approach has the potential to differentiate gear tooth damage levels in comparison with the vibration-based approach. While vibration signals are easily affected by mechanical resonance, the AE signals show more stable performance.

  11. Gearbox tooth cut fault diagnostics using acoustic emission and vibration sensors--a comparative study.

    Science.gov (United States)

    Qu, Yongzhi; He, David; Yoon, Jae; Van Hecke, Brandon; Bechhoefer, Eric; Zhu, Junda

    2014-01-14

    In recent years, acoustic emission (AE) sensors and AE-based techniques have been developed and tested for gearbox fault diagnosis. In general, AE-based techniques require much higher sampling rates than vibration analysis-based techniques for gearbox fault diagnosis. Therefore, it is questionable whether an AE-based technique would give a better or at least the same performance as the vibration analysis-based techniques using the same sampling rate. To answer the question, this paper presents a comparative study for gearbox tooth damage level diagnostics using AE and vibration measurements, the first known attempt to compare the gearbox fault diagnostic performance of AE- and vibration analysis-based approaches using the same sampling rate. Partial tooth cut faults are seeded in a gearbox test rig and experimentally tested in a laboratory. Results have shown that the AE-based approach has the potential to differentiate gear tooth damage levels in comparison with the vibration-based approach. While vibration signals are easily affected by mechanical resonance, the AE signals show more stable performance.

  12. Gearbox Tooth Cut Fault Diagnostics Using Acoustic Emission and Vibration Sensors — A Comparative Study

    Science.gov (United States)

    Qu, Yongzhi; He, David; Yoon, Jae; Van Hecke, Brandon; Bechhoefer, Eric; Zhu, Junda

    2014-01-01

    In recent years, acoustic emission (AE) sensors and AE-based techniques have been developed and tested for gearbox fault diagnosis. In general, AE-based techniques require much higher sampling rates than vibration analysis-based techniques for gearbox fault diagnosis. Therefore, it is questionable whether an AE-based technique would give a better or at least the same performance as the vibration analysis-based techniques using the same sampling rate. To answer the question, this paper presents a comparative study for gearbox tooth damage level diagnostics using AE and vibration measurements, the first known attempt to compare the gearbox fault diagnostic performance of AE- and vibration analysis-based approaches using the same sampling rate. Partial tooth cut faults are seeded in a gearbox test rig and experimentally tested in a laboratory. Results have shown that the AE-based approach has the potential to differentiate gear tooth damage levels in comparison with the vibration-based approach. While vibration signals are easily affected by mechanical resonance, the AE signals show more stable performance. PMID:24424467

  13. Bond graph model-based fault diagnosis of hybrid systems

    CERN Document Server

    Borutzky, Wolfgang

    2015-01-01

    This book presents a bond graph model-based approach to fault diagnosis in mechatronic systems appropriately represented by a hybrid model. The book begins by giving a survey of the fundamentals of fault diagnosis and failure prognosis, then recalls state-of-art developments referring to latest publications, and goes on to discuss various bond graph representations of hybrid system models, equations formulation for switched systems, and simulation of their dynamic behavior. The structured text: • focuses on bond graph model-based fault detection and isolation in hybrid systems; • addresses isolation of multiple parametric faults in hybrid systems; • considers system mode identification; • provides a number of elaborated case studies that consider fault scenarios for switched power electronic systems commonly used in a variety of applications; and • indicates that bond graph modelling can also be used for failure prognosis. In order to facilitate the understanding of fault diagnosis and the presented...

  14. Long term fault system reorganization of convergent and strike-slip systems

    Science.gov (United States)

    Cooke, M. L.; McBeck, J.; Hatem, A. E.; Toeneboehn, K.; Beyer, J. L.

    2017-12-01

    Laboratory and numerical experiments representing deformation over many earthquake cycles demonstrate that fault evolution includes episodes of fault reorganization that optimize work on the fault system. Consequently, the mechanical and kinematic efficiencies of fault systems do not increase monotonically through their evolution. New fault configurations can optimize the external work required to accommodate deformation, suggesting that changes in system efficiency can drive fault reorganization. Laboratory evidence and numerical results show that fault reorganization within accretion, strike-slip and oblique convergent systems is associated with increasing efficiency due to increased fault slip (frictional work and seismic energy) and commensurate decreased off-fault deformation (internal work and work against gravity). Between episodes of fault reorganization, fault systems may become less efficient as they produce increasing off fault deformation. For example, laboratory and numerical experiments show that the interference and interaction between different fault segments may increase local internal work or that increasing convergence can increase work against gravity produced by a fault system. This accumulation of work triggers fault reorganization as stored work provides the energy required to grow new faults that reorganize the system to a more efficient configuration. The results of laboratory and numerical experiments reveal that we should expect crustal fault systems to reorganize following periods of increasing inefficiency, even in the absence of changes to the tectonic regime. In other words, fault reorganization doesn't require a change in tectonic loading. The time frame of fault reorganization depends on fault system configuration, strain rate and processes that relax stresses within the crust. For example, stress relaxation may keep pace with stress accumulation, which would limit the increase in the internal work and gravitational work so that

  15. Turbine engine rotor blade fault diagnostics through casing pressure and vibration sensors

    International Nuclear Information System (INIS)

    Cox, J; Anusonti-Inthra, P

    2014-01-01

    In this study, an exact solution is provided for a previously indeterminate equation used for rotor blade fault diagnostics. The method estimates rotor blade natural frequency through turbine engine casing pressure and vibration sensors. The equation requires accurate measurements of low-amplitude sideband signals in the frequency domain. With this in mind, statistical evaluation was also completed with the goal of determining the effect of sampling time and frequency on sideband resolution in the frequency domain

  16. Fault Tolerance, Diagnostics, and Prognostics in Aircraft Flight

    Data.gov (United States)

    National Aeronautics and Space Administration — Abstract In modern fighter aircraft with statically unstable airframe designs, the flight control system is considered flight critical, i.e. the aircraft will...

  17. In-operation diagnostic system for reactor coolant pump

    International Nuclear Information System (INIS)

    Sugiyama, Mitsunobu; Hasegawa, Ichiro; Kitahara, Hiromichi; Shimamura, Kazuo; Yasuda, Chiaki; Ikeda, Yasuhiro; Kida, Yasuo.

    1996-01-01

    A reactor coolant pump (RCP) is one of the most important rotating machines in the primary loop nuclear power plants. To improve the reliability and of nuclear power plants, a new diagnostic system that enables early detection of RCP faults has been developed. This system is based on continuous monitoring of vibration and other process data. Vibration is an important indicator of mechanical faults providing information on physical phenomena such as changes in dynamic characteristics and excitation forces changes that signal failure or incipient failure. This new system features comparative vibration analysis and simulation to anticipate equipment failure. (author)

  18. Designing Fault-Injection Experiments for the Reliability of Embedded Systems

    Science.gov (United States)

    White, Allan L.

    2012-01-01

    This paper considers the long-standing problem of conducting fault-injections experiments to establish the ultra-reliability of embedded systems. There have been extensive efforts in fault injection, and this paper offers a partial summary of the efforts, but these previous efforts have focused on realism and efficiency. Fault injections have been used to examine diagnostics and to test algorithms, but the literature does not contain any framework that says how to conduct fault-injection experiments to establish ultra-reliability. A solution to this problem integrates field-data, arguments-from-design, and fault-injection into a seamless whole. The solution in this paper is to derive a model reduction theorem for a class of semi-Markov models suitable for describing ultra-reliable embedded systems. The derivation shows that a tight upper bound on the probability of system failure can be obtained using only the means of system-recovery times, thus reducing the experimental effort to estimating a reasonable number of easily-observed parameters. The paper includes an example of a system subject to both permanent and transient faults. There is a discussion of integrating fault-injection with field-data and arguments-from-design.

  19. Psychometric perspectives on diagnostic systems

    NARCIS (Netherlands)

    Borsboom, D.

    2008-01-01

    The author identifies four conceptualizations of the relation between symptoms and disorders as utilized in diagnostic systems such as the Diagnostic and Statistical Manual of Mental Disorders, Fourth Edition (DSM-IV; American Psychiatric Association, 1994): A constructivist perspective, which holds

  20. Pilot study of dynamic Bayesian networks approach for fault diagnostics and accident progression prediction in HTR-PM

    Energy Technology Data Exchange (ETDEWEB)

    Zhao, Yunfei; Tong, Jiejuan; Zhang, Liguo, E-mail: lgzhang@tsinghua.edu.cn; Zhang, Qin

    2015-09-15

    Highlights: • Dynamic Bayesian network is used to diagnose and predict accident progress in HTR-PM. • Dynamic Bayesian network model of HTR-PM is built based on detailed system analysis. • LOCA Simulations validate the above model even if part monitors are lost or false. - Abstract: The first high-temperature-reactor pebble-bed demonstration module (HTR-PM) is under construction currently in China. At the same time, development of a system that is used to support nuclear emergency response is in progress. The supporting system is expected to complete two tasks. The first one is diagnostics of the fault in the reactor based on abnormal sensor measurements obtained. The second one is prognostic of the accident progression based on sensor measurements obtained and operator actions. Both tasks will provide valuable guidance for emergency staff to take appropriate protective actions. Traditional method for the two tasks relies heavily on expert judgment, and has been proven to be inappropriate in some cases, such as Three Mile Island accident. To better perform the two tasks, dynamic Bayesian networks (DBN) is introduced in this paper and a pilot study based on the approach is carried out. DBN is advantageous in representing complex dynamic systems and taking full consideration of evidences obtained to perform diagnostics and prognostics. Pearl's loopy belief propagation (LBP) algorithm is recommended for diagnostics and prognostics in DBN. The DBN model of HTR-PM is created based on detailed system analysis and accident progression analysis. A small break loss of coolant accident (SBLOCA) is selected to illustrate the application of the DBN model of HTR-PM in fault diagnostics (FD) and accident progression prognostics (APP). Several advantages of DBN approach compared with other techniques are discussed. The pilot study lays the foundation for developing the nuclear emergency response supporting system (NERSS) for HTR-PM.

  1. ITER diagnostic system: Vacuum interface

    International Nuclear Information System (INIS)

    Patel, K.M.; Udintsev, V.S.; Hughes, S.; Walker, C.I.; Andrew, P.; Barnsley, R.; Bertalot, L.; Drevon, J.M.; Encheva, A.; Kashchuk, Y.; Maquet, Ph.; Pearce, R.; Taylor, N.; Vayakis, G.; Walsh, M.J.

    2013-01-01

    Diagnostics play an essential role for the successful operation of the ITER tokamak. They provide the means to observe control and to measure plasma during the operation of ITER tokamak. The components of the diagnostic system in the ITER tokamak will be installed in the vacuum vessel, in the cryostat, in the upper, equatorial and divertor ports, in the divertor cassettes and racks, as well as in various buildings. Diagnostic components that are placed in a high radiation environment are expected to operate for the life of ITER. There are approx. 45 diagnostic systems located on ITER. Some diagnostics incorporate direct or independently pumped extensions to maintain their necessary vacuum conditions. They require a base pressure less than 10 −7 Pa, irrespective of plasma operation, and a leak rate of less than 10 −10 Pa m 3 s −1 . In all the cases it is essential to maintain the ITER closed fuel cycle. These directly coupled diagnostic systems are an integral part of the ITER vacuum containment and are therefore subject to the same design requirements for tritium and active gas confinement, for all normal and accidental conditions. All the diagnostics, whether or not pumped, incorporate penetration of the vacuum boundary (i.e. window assembly, vacuum feedthrough etc.) and demountable joints. Monitored guard volumes are provided for all elements of the vacuum boundary that are judged to be vulnerable by virtue of their construction, material, load specification etc. Standard arrangements are made for their construction and for the monitoring, evacuating and leak testing of these volumes. Diagnostic systems are incorporated at more than 20 ports on ITER. This paper will describe typical and particular arrangements of pumped diagnostic and monitored guard volume. The status of the diagnostic vacuum systems, which are at the start of their detailed design, will be outlined and the specific features of the vacuum systems in ports and extensions will be described

  2. ITER diagnostic system: Vacuum interface

    Energy Technology Data Exchange (ETDEWEB)

    Patel, K.M., E-mail: Kaushal.Patel@iter.org [ITER Organization, Route de Vinon sur Verdon, 13115 St Paul-Lez-Durance (France); Udintsev, V.S.; Hughes, S.; Walker, C.I.; Andrew, P.; Barnsley, R.; Bertalot, L. [ITER Organization, Route de Vinon sur Verdon, 13115 St Paul-Lez-Durance (France); Drevon, J.M. [Bertin Technologies, BP 22, 13762 Aix-en Provence cedex 3 (France); Encheva, A. [ITER Organization, Route de Vinon sur Verdon, 13115 St Paul-Lez-Durance (France); Kashchuk, Y. [Institution “PROJECT CENTER ITER”, 1, Akademika Kurchatova pl., Moscow (Russian Federation); Maquet, Ph. [Bertin Technologies, BP 22, 13762 Aix-en Provence cedex 3 (France); Pearce, R.; Taylor, N.; Vayakis, G.; Walsh, M.J. [ITER Organization, Route de Vinon sur Verdon, 13115 St Paul-Lez-Durance (France)

    2013-10-15

    Diagnostics play an essential role for the successful operation of the ITER tokamak. They provide the means to observe control and to measure plasma during the operation of ITER tokamak. The components of the diagnostic system in the ITER tokamak will be installed in the vacuum vessel, in the cryostat, in the upper, equatorial and divertor ports, in the divertor cassettes and racks, as well as in various buildings. Diagnostic components that are placed in a high radiation environment are expected to operate for the life of ITER. There are approx. 45 diagnostic systems located on ITER. Some diagnostics incorporate direct or independently pumped extensions to maintain their necessary vacuum conditions. They require a base pressure less than 10{sup −7} Pa, irrespective of plasma operation, and a leak rate of less than 10{sup −10} Pa m{sup 3} s{sup −1}. In all the cases it is essential to maintain the ITER closed fuel cycle. These directly coupled diagnostic systems are an integral part of the ITER vacuum containment and are therefore subject to the same design requirements for tritium and active gas confinement, for all normal and accidental conditions. All the diagnostics, whether or not pumped, incorporate penetration of the vacuum boundary (i.e. window assembly, vacuum feedthrough etc.) and demountable joints. Monitored guard volumes are provided for all elements of the vacuum boundary that are judged to be vulnerable by virtue of their construction, material, load specification etc. Standard arrangements are made for their construction and for the monitoring, evacuating and leak testing of these volumes. Diagnostic systems are incorporated at more than 20 ports on ITER. This paper will describe typical and particular arrangements of pumped diagnostic and monitored guard volume. The status of the diagnostic vacuum systems, which are at the start of their detailed design, will be outlined and the specific features of the vacuum systems in ports and extensions

  3. Efficient Probabilistic Diagnostics for Electrical Power Systems

    Science.gov (United States)

    Mengshoel, Ole J.; Chavira, Mark; Cascio, Keith; Poll, Scott; Darwiche, Adnan; Uckun, Serdar

    2008-01-01

    We consider in this work the probabilistic approach to model-based diagnosis when applied to electrical power systems (EPSs). Our probabilistic approach is formally well-founded, as it based on Bayesian networks and arithmetic circuits. We investigate the diagnostic task known as fault isolation, and pay special attention to meeting two of the main challenges . model development and real-time reasoning . often associated with real-world application of model-based diagnosis technologies. To address the challenge of model development, we develop a systematic approach to representing electrical power systems as Bayesian networks, supported by an easy-to-use speci.cation language. To address the real-time reasoning challenge, we compile Bayesian networks into arithmetic circuits. Arithmetic circuit evaluation supports real-time diagnosis by being predictable and fast. In essence, we introduce a high-level EPS speci.cation language from which Bayesian networks that can diagnose multiple simultaneous failures are auto-generated, and we illustrate the feasibility of using arithmetic circuits, compiled from Bayesian networks, for real-time diagnosis on real-world EPSs of interest to NASA. The experimental system is a real-world EPS, namely the Advanced Diagnostic and Prognostic Testbed (ADAPT) located at the NASA Ames Research Center. In experiments with the ADAPT Bayesian network, which currently contains 503 discrete nodes and 579 edges, we .nd high diagnostic accuracy in scenarios where one to three faults, both in components and sensors, were inserted. The time taken to compute the most probable explanation using arithmetic circuits has a small mean of 0.2625 milliseconds and standard deviation of 0.2028 milliseconds. In experiments with data from ADAPT we also show that arithmetic circuit evaluation substantially outperforms joint tree propagation and variable elimination, two alternative algorithms for diagnosis using Bayesian network inference.

  4. Quantitative evaluation of fault coverage for digitalized systems in NPPs using simulated fault injection method

    International Nuclear Information System (INIS)

    Kim, Suk Joon

    2004-02-01

    Even though digital systems have numerous advantages such as precise processing of data, enhanced calculation capability over the conventional analog systems, there is a strong restriction on the application of digital systems to the safety systems in nuclear power plants (NPPs). This is because we do not fully understand the reliability of digital systems, and therefore we cannot guarantee the safety of digital systems. But, as the need for introduction of digital systems to safety systems in NPPs increasing, the need for the quantitative analysis on the safety of digital systems is also increasing. NPPs, which are quite conservative in terms of safety, require proving the reliability of digital systems when applied them to the NPPs. Moreover, digital systems which are applied to the NPPs are required to increase the overall safety of NPPs. however, it is very difficult to evaluate the reliability of digital systems because they include the complex fault processing mechanisms at various levels of the systems. Software is another obstacle in reliability assessment of the systems that requires ultra-high reliability. In this work, the fault detection coverage for the digital system is evaluated using simulated fault injection method. The target system is the Local Coincidence Logic (LCL) processor in Digital Plant Protection System (DPPS). However, as the LCL processor is difficult to design equally for evaluating the fault detection coverage, the LCL system has to be simplified. The simulations for evaluating the fault detection coverage of components are performed by dividing into two cases and the failure rates of components are evaluated using MIL-HDBK-217F. Using these results, the fault detection coverage of simplified LCL system is evaluated. In the experiments, heartbeat signals were just emitted at regular interval after executing logic without self-checking algorithm. When faults are injected into the simplified system, fault occurrence can be detected by

  5. An artificial neural network ensemble method for fault diagnosis of proton exchange membrane fuel cell system

    International Nuclear Information System (INIS)

    Shao, Meng; Zhu, Xin-Jian; Cao, Hong-Fei; Shen, Hai-Feng

    2014-01-01

    The commercial viability of PEMFC (proton exchange membrane fuel cell) systems depends on using effective fault diagnosis technologies in PEMFC systems. However, many researchers have experimentally studied PEMFC (proton exchange membrane fuel cell) systems without considering certain fault conditions. In this paper, an ANN (artificial neural network) ensemble method is presented that improves the stability and reliability of the PEMFC systems. In the first part, a transient model giving it flexibility in application to some exceptional conditions is built. The PEMFC dynamic model is built and simulated using MATLAB. In the second, using this model and experiments, the mechanisms of four different faults in PEMFC systems are analyzed in detail. Third, the ANN ensemble for the fault diagnosis is built and modeled. This model is trained and tested by the data. The test result shows that, compared with the previous method for fault diagnosis of PEMFC systems, the proposed fault diagnosis method has higher diagnostic rate and generalization ability. Moreover, the partial structure of this method can be altered easily, along with the change of the PEMFC systems. In general, this method for diagnosis of PEMFC has value for certain applications. - Highlights: • We analyze the principles and mechanisms of the four faults in PEMFC (proton exchange membrane fuel cell) system. • We design and model an ANN (artificial neural network) ensemble method for the fault diagnosis of PEMFC system. • This method has high diagnostic rate and strong generalization ability

  6. Observer-Based Fault Estimation and Accomodation for Dynamic Systems

    CERN Document Server

    Zhang, Ke; Shi, Peng

    2013-01-01

    Due to the increasing security and reliability demand of actual industrial process control systems, the study on fault diagnosis and fault tolerant control of dynamic systems has received considerable attention. Fault accommodation (FA) is one of effective methods that can be used to enhance system stability and reliability, so it has been widely and in-depth investigated and become a hot topic in recent years. Fault detection is used to monitor whether a fault occurs, which is the first step in FA. On the basis of fault detection, fault estimation (FE) is utilized to determine online the magnitude of the fault, which is a very important step because the additional controller is designed using the fault estimate. Compared with fault detection, the design difficulties of FE would increase a lot, so research on FE and accommodation is very challenging. Although there have been advancements reported on FE and accommodation for dynamic systems, the common methods at the present stage have design difficulties, whi...

  7. The mechanics of fault-bend folding and tear-fault systems in the Niger Delta

    Science.gov (United States)

    Benesh, Nathan Philip

    This dissertation investigates the mechanics of fault-bend folding using the discrete element method (DEM) and explores the nature of tear-fault systems in the deep-water Niger Delta fold-and-thrust belt. In Chapter 1, we employ the DEM to investigate the development of growth structures in anticlinal fault-bend folds. This work was inspired by observations that growth strata in active folds show a pronounced upward decrease in bed dip, in contrast to traditional kinematic fault-bend fold models. Our analysis shows that the modeled folds grow largely by parallel folding as specified by the kinematic theory; however, the process of folding over a broad axial surface zone yields a component of fold growth by limb rotation that is consistent with the patterns observed in natural folds. This result has important implications for how growth structures can he used to constrain slip and paleo-earthquake ages on active blind-thrust faults. In Chapter 2, we expand our DEM study to investigate the development of a wider range of fault-bend folds. We examine the influence of mechanical stratigraphy and quantitatively compare our models with the relationships between fold and fault shape prescribed by the kinematic theory. While the synclinal fault-bend models closely match the kinematic theory, the modeled anticlinal fault-bend folds show robust behavior that is distinct from the kinematic theory. Specifically, we observe that modeled structures maintain a linear relationship between fold shape (gamma) and fault-horizon cutoff angle (theta), rather than expressing the non-linear relationship with two distinct modes of anticlinal folding that is prescribed by the kinematic theory. These observations lead to a revised quantitative relationship for fault-bend folds that can serve as a useful interpretation tool. Finally, in Chapter 3, we examine the 3D relationships of tear- and thrust-fault systems in the western, deep-water Niger Delta. Using 3D seismic reflection data and new

  8. Hybrid Model-Based and Data-Driven Fault Detection and Diagnostics for Commercial Buildings: Preprint

    Energy Technology Data Exchange (ETDEWEB)

    Frank, Stephen; Heaney, Michael; Jin, Xin; Robertson, Joseph; Cheung, Howard; Elmore, Ryan; Henze, Gregor

    2016-08-01

    Commercial buildings often experience faults that produce undesirable behavior in building systems. Building faults waste energy, decrease occupants' comfort, and increase operating costs. Automated fault detection and diagnosis (FDD) tools for buildings help building owners discover and identify the root causes of faults in building systems, equipment, and controls. Proper implementation of FDD has the potential to simultaneously improve comfort, reduce energy use, and narrow the gap between actual and optimal building performance. However, conventional rule-based FDD requires expensive instrumentation and valuable engineering labor, which limit deployment opportunities. This paper presents a hybrid, automated FDD approach that combines building energy models and statistical learning tools to detect and diagnose faults noninvasively, using minimal sensors, with little customization. We compare and contrast the performance of several hybrid FDD algorithms for a small security building. Our results indicate that the algorithms can detect and diagnose several common faults, but more work is required to reduce false positive rates and improve diagnosis accuracy.

  9. Thioaptamer Diagnostic System, Phase II

    Data.gov (United States)

    National Aeronautics and Space Administration — AM Biotechnologies (AM) in partnership with Sandia National Laboratories will develop a Thioaptamer Diagnostic System (TDS) in response to Topic X10.01 Reusable...

  10. Development of a rule-based diagnostic platform on an object-oriented expert system shell

    International Nuclear Information System (INIS)

    Wang, Wenlin; Yang, Ming; Seong, Poong Hyun

    2016-01-01

    Highlights: • Multilevel Flow Model represents system knowledge as a domain map in expert system. • Rule-based fault diagnostic expert system can identify root cause via a causal chain. • Rule-based fault diagnostic expert system can be used for fault simulation training. - Abstract: This paper presents the development and implementation of a real-time rule-based diagnostic platform. The knowledge is acquired from domain experts and textbooks and the design of the fault diagnosis expert system was performed in the following ways: (i) establishing of corresponding classes and instances to build the domain map, (ii) creating of generic fault models based on events, and (iii) building of diagnostic reasoning based on rules. Knowledge representation is a complicated issue of expert systems. One highlight of this paper is that the Multilevel Flow Model has been used to represent the knowledge, which composes the domain map within the expert system as well as providing a concise description of the system. The developed platform is illustrated using the pressure safety system of a pressurized water reactor as an example of the simulation test bed; the platform is developed using the commercial and industrially validated software G2. The emulation test was conducted and it has been proven that the fault diagnosis expert system can identify the faults correctly and in a timely way; this system can be used as a simulation-based training tool to assist operators to make better decisions.

  11. Computer aided fault tree construction for electrical systems

    International Nuclear Information System (INIS)

    Fussell, J.B.

    1975-01-01

    A technique is presented for automated construction of the Boolean failure logic diagram, called the fault tree, for electrical systems. The method is a technique for synthesizing a fault tree from system-independent component characteristics. Terminology is defined and heuristic examples are given for all phases of the model. The computer constructed fault trees are in conventional format, use conventional symbols, and are deductively constructed from the main failure of interest to the individual component failures. The synthesis technique is generally applicable to automated fault tree construction for other types of systems

  12. Algorithmic fault tree construction by component-based system modeling

    International Nuclear Information System (INIS)

    Majdara, Aref; Wakabayashi, Toshio

    2008-01-01

    Computer-aided fault tree generation can be easier, faster and less vulnerable to errors than the conventional manual fault tree construction. In this paper, a new approach for algorithmic fault tree generation is presented. The method mainly consists of a component-based system modeling procedure an a trace-back algorithm for fault tree synthesis. Components, as the building blocks of systems, are modeled using function tables and state transition tables. The proposed method can be used for a wide range of systems with various kinds of components, if an inclusive component database is developed. (author)

  13. Reconfigurability of Piecewise Affine Systems Against Actuator Faults

    DEFF Research Database (Denmark)

    Tabatabaeipour, Seyed Mojtaba; Gholami, Mehdi; Bak, Thomas

    2011-01-01

    In this paper, we consider the problem of recongurability of peicewise ane (PWA) systems. Actuator faults are considered. A system subject to a fault is considered as recongurable if it can be stabilized by a state feedback controller and the optimal cost of the performance of the systems...

  14. Smart intimation and location of faults in distribution system

    Science.gov (United States)

    Hari Krishna, K.; Srinivasa Rao, B.

    2018-04-01

    Location of faults in the distribution system is one of the most complicated problems that we are facing today. Identification of fault location and severity of fault within a short time is required to provide continuous power supply but fault identification and information transfer to the operator is the biggest challenge in the distribution network. This paper proposes a fault location method in the distribution system based on Arduino nano and GSM module with flame sensor. The main idea is to locate the fault in the distribution transformer by sensing the arc coming out from the fuse element. The biggest challenge in the distribution network is to identify the location and the severity of faults under different conditions. Well operated transmission and distribution systems will play a key role for uninterrupted power supply. Whenever fault occurs in the distribution system the time taken to locate and eliminate the fault has to be reduced. The proposed design was achieved with flame sensor and GSM module. Under faulty condition, the system will automatically send an alert message to the operator in the distribution system, about the abnormal conditions near the transformer, site code and its exact location for possible power restoration.

  15. An expert system for turbogenerator diagnostics

    International Nuclear Information System (INIS)

    Bessenyei, Z.; Tomcsanyi, T.; Toth, Z.; Laczay, I.

    1992-01-01

    In 1990, an expert system for turbo-generator diagnostics (EST-D) was installed at the 3rd and 4th units of the Paks NPP (Hungary). The expert system is strongly integrated to the ARGUS II vibration monitoring and diagnostics system. The system works on IBM PC AT. The VEIKI's and the NPP's human experts were interviewed to fill up the knowledgebase. The system is able to identify 13 different faults of the parts of a turbogenerator. The knowledgebase consists of ca 200 rules. The rules were built in and the system was verified and validated using a model of the turbines and using the experiences gathered with ARGUS II during the last 3 years. The maintenance personnel is authorized to modify and/or extend the knowledgebase. The input data for evaluation come from measured vibration patterns produced by the ARGUS II system, database of events, and maintenance data input by the maintenance personnel. The expert system is based on the modified GENESYS 2.1 shell (developed by SZAMALK, Hungary). Some limitations from PC application were eliminated, and a new, independent explanation module and man-machine interface were developed. Using this man-machine interface, one of the basic goals of the expert system developments was achieved: the human experts contribution is not necessary for diagnoses. The operator of the diagnostics system is able to produce the reports of diagnoses. Of course the interface allows the human experts to see the diagnoses through. It should be mentioned, at the beginning of 1991, we installed a similar expert system at the 1st 1000 MW WWER type unit of the Kalinin NPP (Soviet Union). In this paper, the operation of the EST-D, the man-machine interface and the operational experiences of the first 4 months work are explained. 2 refs., 14 figs

  16. Simultaneous-Fault Diagnosis of Automotive Engine Ignition Systems Using Prior Domain Knowledge and Relevance Vector Machine

    Directory of Open Access Journals (Sweden)

    Chi-Man Vong

    2013-01-01

    Full Text Available Engine ignition patterns can be analyzed to identify the engine fault according to both the specific prior domain knowledge and the shape features of the patterns. One of the challenges in ignition system diagnosis is that more than one fault may appear at a time. This kind of problem refers to simultaneous-fault diagnosis. Another challenge is the acquisition of a large amount of costly simultaneous-fault ignition patterns for constructing the diagnostic system because the number of the training patterns depends on the combination of different single faults. The above problems could be resolved by the proposed framework combining feature extraction, probabilistic classification, and decision threshold optimization. With the proposed framework, the features of the single faults in a simultaneous-fault pattern are extracted and then detected using a new probabilistic classifier, namely, pairwise coupling relevance vector machine, which is trained with single-fault patterns only. Therefore, the training dataset of simultaneous-fault patterns is not necessary. Experimental results show that the proposed framework performs well for both single-fault and simultaneous-fault diagnoses and is superior to the existing approach.

  17. Active Fault Diagnosis in Sampled-data Systems

    DEFF Research Database (Denmark)

    Niemann, Hans Henrik; Poulsen, Niels Kjølstad

    2015-01-01

    The focus in this paper is on active fault diagnosis (AFD) in closed-loop sampleddata systems. Applying the same AFD architecture as for continuous-time systems does not directly result in the same set of closed-loop matrix transfer functions. For continuous-time systems, the LFT (linear fractional...... transformation) structure in the connection between the parametric faults and the matrix transfer function (also known as the fault signature matrix) applied for AFD is not directly preserved for sampled-data system. As a consequence of this, the AFD methods cannot directly be applied for sampled-data systems....... Two methods are considered in this paper to handle the fault signature matrix for sampled-data systems such that standard AFD methods can be applied. The first method is based on a discretization of the system such that the LFT structure is preserved resulting in the same LFT structure in the fault...

  18. Model-based fault diagnosis in PEM fuel cell systems

    Energy Technology Data Exchange (ETDEWEB)

    Escobet, T; de Lira, S; Puig, V; Quevedo, J [Automatic Control Department (ESAII), Universitat Politecnica de Catalunya (UPC), Rambla Sant Nebridi 10, 08222 Terrassa (Spain); Feroldi, D; Riera, J; Serra, M [Institut de Robotica i Informatica Industrial (IRI), Consejo Superior de Investigaciones Cientificas (CSIC), Universitat Politecnica de Catalunya (UPC) Parc Tecnologic de Barcelona, Edifici U, Carrer Llorens i Artigas, 4-6, Planta 2, 08028 Barcelona (Spain)

    2009-07-01

    In this work, a model-based fault diagnosis methodology for PEM fuel cell systems is presented. The methodology is based on computing residuals, indicators that are obtained comparing measured inputs and outputs with analytical relationships, which are obtained by system modelling. The innovation of this methodology is based on the characterization of the relative residual fault sensitivity. To illustrate the results, a non-linear fuel cell simulator proposed in the literature is used, with modifications, to include a set of fault scenarios proposed in this work. Finally, it is presented the diagnosis results corresponding to these fault scenarios. It is remarkable that with this methodology it is possible to diagnose and isolate all the faults in the proposed set in contrast with other well known methodologies which use the binary signature matrix of analytical residuals and faults. (author)

  19. Imaging systems for medical diagnostics

    International Nuclear Information System (INIS)

    Krestel, E.

    1990-01-01

    This book provides physicians and clinical physicists with detailed information on today's imaging modalities and assists them in selecting the optimal system for each clinical application. Physicists, engineers and computer specialists engaged in research and development and sales departments will also find this book to be of considerable use. It may also be employed at universities, training centers and in technical seminars. The physiological and physical fundamentals are explained in part 1. The technical solutions contained in part 2 illustrate the numerous possibilities available in X-ray diagnostics, computed tomography, nuclear medical diagnostics, magnetic resonance imaging, sonography and biomagnetic diagnostics. (orig.)

  20. A fault tolerant system by using distributed RTOS

    International Nuclear Information System (INIS)

    Ge Yingan; Liu Songqiang; Wang Yanfang

    1999-01-01

    The author describes the design and implementation of a prototypal distributed fault tolerant system, which is developed under QNX RTOS by networking two standard PCs. By using a watchdog timer for error detection, the system can be tolerant for fail silent and transient fault of a single node

  1. Fault Tolerant Emergency Control to Preserve Power System Stability

    DEFF Research Database (Denmark)

    Pedersen, Andreas Søndergaard; Richter, Jan H.; Tabatabaeipour, Mojtaba

    2016-01-01

    This paper introduces a method for fault-masking and system reconfiguration in power transmission systems. The paper demonstrates how faults are handled by reconfiguring remaining controls through utilisation of wide-area measurement in real time. It is shown how reconfiguration can be obtained u...

  2. Fault tolerant controllers for sampled-data systems

    DEFF Research Database (Denmark)

    Niemann, Hans Henrik; Stoustrup, Jakob

    2004-01-01

    A general compensator architecture for fault tolerant control (FTC) for sampled-data systems is proposed. The architecture is based on the YJBK parameterization of all stabilizing controllers, and uses the dual YJBK parameterization to quantify the performance of the fault tolerant system. The FTC...

  3. Neuroadaptive Fault-Tolerant Control of Nonlinear Systems Under Output Constraints and Actuation Faults.

    Science.gov (United States)

    Zhao, Kai; Song, Yongduan; Shen, Zhixi

    2018-02-01

    In this paper, a neuroadaptive fault-tolerant tracking control method is proposed for a class of time-delay pure-feedback systems in the presence of external disturbances and actuation faults. The proposed controller can achieve prescribed transient and steady-state performance, despite uncertain time delays and output constraints as well as actuation faults. By combining a tangent barrier Lyapunov-Krasovskii function with the dynamic surface control technique, the neural network unit in the developed control scheme is able to take its action from the very beginning and play its learning/approximating role safely during the entire system operational envelope, leading to enhanced control performance without the danger of violating compact set precondition. Furthermore, prescribed transient performance and output constraints are strictly ensured in the presence of nonaffine uncertainties, external disturbances, and undetectable actuation faults. The control strategy is also validated by numerical simulation.

  4. Fault Severity Evaluation and Improvement Design for Mechanical Systems Using the Fault Injection Technique and Gini Concordance Measure

    Directory of Open Access Journals (Sweden)

    Jianing Wu

    2014-01-01

    Full Text Available A new fault injection and Gini concordance based method has been developed for fault severity analysis for multibody mechanical systems concerning their dynamic properties. The fault tree analysis (FTA is employed to roughly identify the faults needed to be considered. According to constitution of the mechanical system, the dynamic properties can be achieved by solving the equations that include many types of faults which are injected by using the fault injection technique. Then, the Gini concordance is used to measure the correspondence between the performance with faults and under normal operation thereby providing useful hints of severity ranking in subsystems for reliability design. One numerical example and a series of experiments are provided to illustrate the application of the new method. The results indicate that the proposed method can accurately model the faults and receive the correct information of fault severity. Some strategies are also proposed for reliability improvement of the spacecraft solar array.

  5. Modeling and Fault Simulation of Propellant Filling System

    International Nuclear Information System (INIS)

    Jiang Yunchun; Liu Weidong; Hou Xiaobo

    2012-01-01

    Propellant filling system is one of the key ground plants in launching site of rocket that use liquid propellant. There is an urgent demand for ensuring and improving its reliability and safety, and there is no doubt that Failure Mode Effect Analysis (FMEA) is a good approach to meet it. Driven by the request to get more fault information for FMEA, and because of the high expense of propellant filling, in this paper, the working process of the propellant filling system in fault condition was studied by simulating based on AMESim. Firstly, based on analyzing its structure and function, the filling system was modular decomposed, and the mathematic models of every module were given, based on which the whole filling system was modeled in AMESim. Secondly, a general method of fault injecting into dynamic system was proposed, and as an example, two typical faults - leakage and blockage - were injected into the model of filling system, based on which one can get two fault models in AMESim. After that, fault simulation was processed and the dynamic characteristics of several key parameters were analyzed under fault conditions. The results show that the model can simulate effectively the two faults, and can be used to provide guidance for the filling system maintain and amelioration.

  6. Fault-weighted quantification method of fault detection coverage through fault mode and effect analysis in digital I&C systems

    Energy Technology Data Exchange (ETDEWEB)

    Cho, Jaehyun; Lee, Seung Jun, E-mail: sjlee420@unist.ac.kr; Jung, Wondea

    2017-05-15

    Highlights: • We developed the fault-weighted quantification method of fault detection coverage. • The method has been applied to specific digital reactor protection system. • The unavailability of the module had 20-times difference with the traditional method. • Several experimental tests will be effectively prioritized using this method. - Abstract: The one of the most outstanding features of a digital I&C system is the use of a fault-tolerant technique. With an awareness regarding the importance of thequantification of fault detection coverage of fault-tolerant techniques, several researches related to the fault injection method were developed and employed to quantify a fault detection coverage. In the fault injection method, each injected fault has a different importance because the frequency of realization of every injected fault is different. However, there have been no previous studies addressing the importance and weighting factor of each injected fault. In this work, a new method for allocating the weighting to each injected fault using the failure mode and effect analysis data was proposed. For application, the fault-weighted quantification method has also been applied to specific digital reactor protection system to quantify the fault detection coverage. One of the major findings in an application was that we may estimate the unavailability of the specific module in digital I&C systems about 20-times smaller than real value when we use a traditional method. The other finding was that we can also classify the importance of the experimental case. Therefore, this method is expected to not only suggest an accurate quantification procedure of fault-detection coverage by weighting the injected faults, but to also contribute to an effective fault injection experiment by sorting the importance of the failure categories.

  7. Expert systems for real-time monitoring and fault diagnosis

    Science.gov (United States)

    Edwards, S. J.; Caglayan, A. K.

    1989-01-01

    Methods for building real-time onboard expert systems were investigated, and the use of expert systems technology was demonstrated in improving the performance of current real-time onboard monitoring and fault diagnosis applications. The potential applications of the proposed research include an expert system environment allowing the integration of expert systems into conventional time-critical application solutions, a grammar for describing the discrete event behavior of monitoring and fault diagnosis systems, and their applications to new real-time hardware fault diagnosis and monitoring systems for aircraft.

  8. Diagnostic Neural Network Systems for the Electronic Circuits

    International Nuclear Information System (INIS)

    Mohamed, A.H.

    2014-01-01

    Neural Networks is one of the most important artificial intelligent approaches for solving the diagnostic processes. This research concerns with uses the neural networks for diagnosis of the electronic circuits. Modern electronic systems contain both the analog and digital circuits. But, diagnosis of the analog circuits suffers from great complexity due to their nonlinearity. To overcome this problem, the proposed system introduces a diagnostic system that uses the neural network to diagnose both the digital and analog circuits. So, it can face the new requirements for the modern electronic systems. A fault dictionary method was implemented in the system. Experimental results are presented on three electronic systems. They are: artificial kidney, wireless network and personal computer systems. The proposed system has improved the performance of the diagnostic systems when applied for these practical cases

  9. Optimal Robust Fault Detection for Linear Discrete Time Systems

    Directory of Open Access Journals (Sweden)

    Nike Liu

    2008-01-01

    Full Text Available This paper considers robust fault-detection problems for linear discrete time systems. It is shown that the optimal robust detection filters for several well-recognized robust fault-detection problems, such as ℋ−/ℋ∞, ℋ2/ℋ∞, and ℋ∞/ℋ∞ problems, are the same and can be obtained by solving a standard algebraic Riccati equation. Optimal filters are also derived for many other optimization criteria and it is shown that some well-studied and seeming-sensible optimization criteria for fault-detection filter design could lead to (optimal but useless fault-detection filters.

  10. Fault-tolerant Control of a Cyber-physical System

    Science.gov (United States)

    Roxana, Rusu-Both; Eva-Henrietta, Dulf

    2017-10-01

    Cyber-physical systems represent a new emerging field in automatic control. The fault system is a key component, because modern, large scale processes must meet high standards of performance, reliability and safety. Fault propagation in large scale chemical processes can lead to loss of production, energy, raw materials and even environmental hazard. The present paper develops a multi-agent fault-tolerant control architecture using robust fractional order controllers for a (13C) cryogenic separation column cascade. The JADE (Java Agent DEvelopment Framework) platform was used to implement the multi-agent fault tolerant control system while the operational model of the process was implemented in Matlab/SIMULINK environment. MACSimJX (Multiagent Control Using Simulink with Jade Extension) toolbox was used to link the control system and the process model. In order to verify the performance and to prove the feasibility of the proposed control architecture several fault simulation scenarios were performed.

  11. A fault-tolerant software strategy for digital systems

    Science.gov (United States)

    Hitt, E. F.; Webb, J. J.

    1984-01-01

    Techniques developed for producing fault-tolerant software are described. Tolerance is required because of the impossibility of defining fault-free software. Faults are caused by humans and can appear anywhere in the software life cycle. Tolerance is effected through error detection, damage assessment, recovery, and fault treatment, followed by return of the system to service. Multiversion software comprises two or more versions of the software yielding solutions which are examined by a decision algorithm. Errors can also be detected by extrapolation from previous results or by the acceptability of results. Violations of timing specifications can reveal errors, or the system can roll back to an error-free state when a defect is detected. The software, when used in flight control systems, must not impinge on time-critical responses. Efforts are still needed to reduce the costs of developing the fault-tolerant systems.

  12. Nuclear power plant diagnostic system

    International Nuclear Information System (INIS)

    Prokop, K.; Volavy, J.

    1982-01-01

    Basic information is presented on diagnostic systems used at nuclear power plants with PWR reactors. They include systems used at the Novovoronezh nuclear power plant in the USSR, at the Nord power plant in the GDR, the system developed at the Hungarian VEIKI institute, the system used at the V-1 nuclear power plant at Jaslovske Bohunice in Czechoslovakia and systems of the Rockwell International company used in US nuclear power plants. These diagnostic systems are basically founded on monitoring vibrations and noise, loose parts, pressure pulsations, neutron noise, coolant leaks and acoustic emissions. The Rockwell International system represents a complex unit whose advantage is the on-line evaluation of signals which gives certain instructions for the given situation directly to the operator. The other described systems process signals using similar methods. Digitized signals only serve off-line computer analyses. (Z.M.)

  13. Geophysical Characterization of the Hilton Creek Fault System

    Science.gov (United States)

    Lacy, A. K.; Macy, K. P.; De Cristofaro, J. L.; Polet, J.

    2016-12-01

    The Long Valley Caldera straddles the eastern edge of the Sierra Nevada Batholith and the western edge of the Basin and Range Province, and represents one of the largest caldera complexes on Earth. The caldera is intersected by numerous fault systems, including the Hartley Springs Fault System, the Round Valley Fault System, the Long Valley Ring Fault System, and the Hilton Creek Fault System, which is our main region of interest. The Hilton Creek Fault System appears as a single NW-striking fault, dipping to the NE, from Davis Lake in the south to the southern rim of the Long Valley Caldera. Inside the caldera, it splays into numerous parallel faults that extend toward the resurgent dome. Seismicity in the area increased significantly in May 1980, following a series of large earthquakes in the vicinity of the caldera and a subsequent large earthquake swarm which has been suggested to be the result of magma migration. A large portion of the earthquake swarms in the Long Valley Caldera occurs on or around the Hilton Creek Fault splays. We are conducting an interdisciplinary geophysical study of the Hilton Creek Fault System from just south of the onset of splay faulting, to its extension into the dome of the caldera. Our investigation includes ground-based magnetic field measurements, high-resolution total station elevation profiles, Structure-From-Motion derived topography and an analysis of earthquake focal mechanisms and statistics. Preliminary analysis of topographic profiles, of approximately 1 km in length, reveals the presence of at least three distinct fault splays within the caldera with vertical offsets of 0.5 to 1.0 meters. More detailed topographic mapping is expected to highlight smaller structures. We are also generating maps of the variation in b-value along different portions of the Hilton Creek system to determine whether we can detect any transition to more swarm-like behavior towards the North. We will show maps of magnetic anomalies, topography

  14. Navigation System Fault Diagnosis for Underwater Vehicle

    DEFF Research Database (Denmark)

    Falkenberg, Thomas; Gregersen, Rene Tavs; Blanke, Mogens

    2014-01-01

    This paper demonstrates fault diagnosis on unmanned underwater vehicles (UUV) based on analysis of structure of the nonlinear dynamics. Residuals are generated using dierent approaches in structural analysis followed by statistical change detection. Hypothesis testing thresholds are made signal...... based to cope with non-ideal properties seen in real data. Detection of both sensor and thruster failures are demonstrated. Isolation is performed using the residual signature of detected faults and the change detection algorithm is used to assess severity of faults by estimating their magnitude...

  15. Integrated control and diagnostic system architectures for future installations

    International Nuclear Information System (INIS)

    Wood, R.; March-Leuba, J.

    2000-01-01

    Nuclear reactors of the 21st century will employ increasing levels of automation and fault tolerance to increase availability, reduce accident risk, and lower operating costs. Key developments in control algorithms, fault diagnostics, fault tolerance, and distributed communications are needed to implement the fully automated plant. It will be equally challenging to integrate developments in separate information and control fields into a cohesive system, which collectively achieves the overall goals of improved safety, reliability, maintainability, and cost-effectiveness. Under the Nuclear Energy Research Initiative (NERI), the US Department of Energy is sponsoring a project to address some of the technical issues involved in meeting the long-range goal of 21st century reactor control systems. This project involves researchers from Oak Ridge National Laboratory, the University of Tennessee, and North Carolina State University. The research tasks under this project focus on some of the first-level breakthroughs in control design, diagnostic techniques, and information system design that will provide a path to enable the design process to be automated in the future. This paper describes the conceptual development of an integrated nuclear plant control and information system architecture, which incorporates automated control system development that can be traced to a set of technical requirements. The expectation is that an integrated plant architecture with optimal control and efficient use of diagnostic information can reduce the potential for operational errors and minimize challenges to the plant safety systems

  16. Results of an electrical power system fault study

    Science.gov (United States)

    Dugal-Whitehead, Norma R.; Johnson, Yvette B.

    1992-01-01

    NASA-Marshall conducted a study of electrical power system faults with a view to the development of AI control systems for a spacecraft power system breadboard. The results of this study have been applied to a multichannel high voltage dc spacecraft power system, the Large Autonomous Spacecraft Electrical Power System (LASEPS) breadboard. Some of the faults encountered in testing LASEPS included the shorting of a bus an a falloff in battery cell capacity.

  17. The ground fault detection system for the Tore Supra toroidal pump limiter

    International Nuclear Information System (INIS)

    Zunino, K.; Cara, P.; Fejoz, P.; Hourtoule, J.; Loarer, T.; Pomaro, N.; Santagiustina, A.; Spuig, P.; Villecroze, F.

    2003-01-01

    The toroidal pump limiter (TPL) of Tore Supra is electrically insulated from the vacuum-vessel, to allow its polarization at a voltage of up to 1 kV. In order to monitor continuously the integrity of the TPL electrical insulation, an electronic diagnostic system called TPL ground fault detection system (GFDS) has been developed. The paper will report on the design and the operation experience of the GFD system and on the evolution of the TPL grounding

  18. Fault diagnosis

    Science.gov (United States)

    Abbott, Kathy

    1990-01-01

    The objective of the research in this area of fault management is to develop and implement a decision aiding concept for diagnosing faults, especially faults which are difficult for pilots to identify, and to develop methods for presenting the diagnosis information to the flight crew in a timely and comprehensible manner. The requirements for the diagnosis concept were identified by interviewing pilots, analyzing actual incident and accident cases, and examining psychology literature on how humans perform diagnosis. The diagnosis decision aiding concept developed based on those requirements takes abnormal sensor readings as input, as identified by a fault monitor. Based on these abnormal sensor readings, the diagnosis concept identifies the cause or source of the fault and all components affected by the fault. This concept was implemented for diagnosis of aircraft propulsion and hydraulic subsystems in a computer program called Draphys (Diagnostic Reasoning About Physical Systems). Draphys is unique in two important ways. First, it uses models of both functional and physical relationships in the subsystems. Using both models enables the diagnostic reasoning to identify the fault propagation as the faulted system continues to operate, and to diagnose physical damage. Draphys also reasons about behavior of the faulted system over time, to eliminate possibilities as more information becomes available, and to update the system status as more components are affected by the fault. The crew interface research is examining display issues associated with presenting diagnosis information to the flight crew. One study examined issues for presenting system status information. One lesson learned from that study was that pilots found fault situations to be more complex if they involved multiple subsystems. Another was pilots could identify the faulted systems more quickly if the system status was presented in pictorial or text format. Another study is currently under way to

  19. All-to-all sequenced fault detection system

    Science.gov (United States)

    Archer, Charles Jens; Pinnow, Kurt Walter; Ratterman, Joseph D.; Smith, Brian Edward

    2010-11-02

    An apparatus, program product and method enable nodal fault detection by sequencing communications between all system nodes. A master node may coordinate communications between two slave nodes before sequencing to and initiating communications between a new pair of slave nodes. The communications may be analyzed to determine the nodal fault.

  20. System assessment using modular logic fault tree methodology

    International Nuclear Information System (INIS)

    Troncoso Fleitas, M.

    1996-01-01

    In the process of a Probabilistic Safety analysis (PSA) study a large number of fault trees are generated by different specialist. Modular Logic Fault Tree Methodology pave the way the way to systematize the procedures and to unify the criteria in the process of systems modulation. An example of of the application of this methodology is shown

  1. Clustering of the Self-Organizing Map based Approach in Induction Machine Rotor Faults Diagnostics

    Directory of Open Access Journals (Sweden)

    Ahmed TOUMI

    2009-12-01

    Full Text Available Self-Organizing Maps (SOM is an excellent method of analyzingmultidimensional data. The SOM based classification is attractive, due to itsunsupervised learning and topology preserving properties. In this paper, theperformance of the self-organizing methods is investigated in induction motorrotor fault detection and severity evaluation. The SOM is based on motor currentsignature analysis (MCSA. The agglomerative hierarchical algorithms using theWard’s method is applied to automatically dividing the map into interestinginterpretable groups of map units that correspond to clusters in the input data. Theresults obtained with this approach make it possible to detect a rotor bar fault justdirectly from the visualization results. The system is also able to estimate theextent of rotor faults.

  2. High-Intensity Radiated Field Fault-Injection Experiment for a Fault-Tolerant Distributed Communication System

    Science.gov (United States)

    Yates, Amy M.; Torres-Pomales, Wilfredo; Malekpour, Mahyar R.; Gonzalez, Oscar R.; Gray, W. Steven

    2010-01-01

    Safety-critical distributed flight control systems require robustness in the presence of faults. In general, these systems consist of a number of input/output (I/O) and computation nodes interacting through a fault-tolerant data communication system. The communication system transfers sensor data and control commands and can handle most faults under typical operating conditions. However, the performance of the closed-loop system can be adversely affected as a result of operating in harsh environments. In particular, High-Intensity Radiated Field (HIRF) environments have the potential to cause random fault manifestations in individual avionic components and to generate simultaneous system-wide communication faults that overwhelm existing fault management mechanisms. This paper presents the design of an experiment conducted at the NASA Langley Research Center's HIRF Laboratory to statistically characterize the faults that a HIRF environment can trigger on a single node of a distributed flight control system.

  3. Intelligent systems in technical and medical diagnostics

    CERN Document Server

    Korbicz, Jozef

    2013-01-01

    For many years technical and medical diagnostics has been the area of intensive scientific research. It covers well-established topics as well as emerging developments in control engineering, artificial intelligence, applied mathematics, pattern recognition and statistics. At the same time, a growing number of applications of different fault diagnosis methods, especially in electrical, mechanical, chemical and medical engineering, is being observed. This monograph contains a collection of 44 carefully selected papers contributed by experts in technical and medical diagnostics, and constitutes

  4. Interactive Data Fault Localization System an Method

    National Research Council Canada - National Science Library

    Bianco, Richard A

    2006-01-01

    .... A graphical user interface (GUI) coupled to the processor displays each query in accordance with the hierarchal order thereof. The GUT simultaneously displays identification of the various subsystems having a relationship with the data type experiencing the data fault.

  5. Fault Detection and Isolation for Wind Turbine Electric Pitch System

    DEFF Research Database (Denmark)

    Zhu, Jiangsheng; Ma, Kuichao; Hajizadeh, Amin

    2017-01-01

    This paper presents a model-based fault detection and isolation scheme applied on electric pitch system of wind turbines. Pitch system is one of the most critical components due to its effect on the operational safety and the dynamics of wind turbines. Faults in this system should be precisely...... detected to prevent failures and decrease downtime. To detect faults of electric pitch actuators and sensors, an extended kalman filter (EKF) based multiple model adaptive estimation (MMAE) designed to estimate the states of the system. The proposed method is demonstrated in case studies. The simulation...

  6. Fault-tolerant quantum computing in the Pauli or Clifford frame with slow error diagnostics

    Directory of Open Access Journals (Sweden)

    Christopher Chamberland

    2018-01-01

    Full Text Available We consider the problem of fault-tolerant quantum computation in the presence of slow error diagnostics, either caused by measurement latencies or slow decoding algorithms. Our scheme offers a few improvements over previously existing solutions, for instance it does not require active error correction and results in a reduced error-correction overhead when error diagnostics is much slower than the gate time. In addition, we adapt our protocol to cases where the underlying error correction strategy chooses the optimal correction amongst all Clifford gates instead of the usual Pauli gates. The resulting Clifford frame protocol is of independent interest as it can increase error thresholds and could find applications in other areas of quantum computation.

  7. Coulomb Stress Accumulation along the San Andreas Fault System

    Science.gov (United States)

    Smith, Bridget; Sandwell, David

    2003-01-01

    Stress accumulation rates along the primary segments of the San Andreas Fault system are computed using a three-dimensional (3-D) elastic half-space model with realistic fault geometry. The model is developed in the Fourier domain by solving for the response of an elastic half-space due to a point vector body force and analytically integrating the force from a locking depth to infinite depth. This approach is then applied to the San Andreas Fault system using published slip rates along 18 major fault strands of the fault zone. GPS-derived horizontal velocity measurements spanning the entire 1700 x 200 km region are then used to solve for apparent locking depth along each primary fault segment. This simple model fits remarkably well (2.43 mm/yr RMS misfit), although some discrepancies occur in the Eastern California Shear Zone. The model also predicts vertical uplift and subsidence rates that are in agreement with independent geologic and geodetic estimates. In addition, shear and normal stresses along the major fault strands are used to compute Coulomb stress accumulation rate. As a result, we find earthquake recurrence intervals along the San Andreas Fault system to be inversely proportional to Coulomb stress accumulation rate, in agreement with typical coseismic stress drops of 1 - 10 MPa. This 3-D deformation model can ultimately be extended to include both time-dependent forcing and viscoelastic response.

  8. Communication-based fault handling scheme for ungrounded distribution systems

    International Nuclear Information System (INIS)

    Yang, X.; Lim, S.I.; Lee, S.J.; Choi, M.S.

    2006-01-01

    The requirement for high quality and highly reliable power supplies has been increasing as a result of increasing demand for power. At the time of a fault occurrence in a distribution system, some protection method would be dedicated to fault section isolation and service restoration. However, if there are many outage areas when the protection method is performed, it is an inconvenience to the customer. A conventional method to determine a fault section in ungrounded systems requires many successive outage invocations. This paper proposed an efficient fault section isolation method and service restoration method for single line-to-ground fault in an ungrounded distribution system that was faster than the conventional one using the information exchange between connected feeders. The proposed algorithm could be performed without any power supply interruption and could decrease the number of switching operations, so that customers would not experience outages very frequently. The method involved the use of an intelligent communication method and a sequential switching control scheme. The proposed algorithm was also applied in both a single-tie and multi-tie distribution system. This proposed algorithm has been verified through fault simulations in a simple model of ungrounded multi-tie distribution system. The method proposed in this paper was proven to offer more efficient fault identification and much less outage time than the conventional method. The proposed method could contribute to a system design since it is valid in multi-tie systems. 5 refs., 2 tabs., 8 figs

  9. Artificial neural network application for space station power system fault diagnosis

    Science.gov (United States)

    Momoh, James A.; Oliver, Walter E.; Dias, Lakshman G.

    1995-01-01

    This study presents a methodology for fault diagnosis using a Two-Stage Artificial Neural Network Clustering Algorithm. Previously, SPICE models of a 5-bus DC power distribution system with assumed constant output power during contingencies from the DDCU were used to evaluate the ANN's fault diagnosis capabilities. This on-going study uses EMTP models of the components (distribution lines, SPDU, TPDU, loads) and power sources (DDCU) of Space Station Alpha's electrical Power Distribution System as a basis for the ANN fault diagnostic tool. The results from the two studies are contrasted. In the event of a major fault, ground controllers need the ability to identify the type of fault, isolate the fault to the orbital replaceable unit level and provide the necessary information for the power management expert system to optimally determine a degraded-mode load schedule. To accomplish these goals, the electrical power distribution system's architecture can be subdivided into three major classes: DC-DC converter to loads, DC Switching Unit (DCSU) to Main bus Switching Unit (MBSU), and Power Sources to DCSU. Each class which has its own electrical characteristics and operations, requires a unique fault analysis philosophy. This study identifies these philosophies as Riddles 1, 2 and 3 respectively. The results of the on-going study addresses Riddle-1. It is concluded in this study that the combination of the EMTP models of the DDCU, distribution cables and electrical loads yields a more accurate model of the behavior and in addition yielded more accurate fault diagnosis using ANN versus the results obtained with the SPICE models.

  10. Faulting and hydration of the Juan de Fuca plate system

    Science.gov (United States)

    Nedimović, Mladen R.; Bohnenstiehl, DelWayne R.; Carbotte, Suzanne M.; Pablo Canales, J.; Dziak, Robert P.

    2009-06-01

    Multichannel seismic observations provide the first direct images of crustal scale normal faults within the Juan de Fuca plate system and indicate that brittle deformation extends up to ~ 200 km seaward of the Cascadia trench. Within the sedimentary layering steeply dipping faults are identified by stratigraphic offsets, with maximum throws of 110 ± 10 m found near the trench. Fault throws diminish both upsection and seaward from the trench. Long-term throw rates are estimated to be 13 ± 2 mm/kyr. Faulted offsets within the sedimentary layering are typically linked to larger offset scarps in the basement topography, suggesting reactivation of the normal fault systems formed at the spreading center. Imaged reflections within the gabbroic igneous crust indicate swallowing fault dips at depth. These reflections require local alteration to produce an impedance contrast, indicating that the imaged fault structures provide pathways for fluid transport and hydration. As the depth extent of imaged faulting within this young and sediment insulated oceanic plate is primarily limited to approximately Moho depths, fault-controlled hydration appears to be largely restricted to crustal levels. If dehydration embrittlement is an important mechanism for triggering intermediate-depth earthquakes within the subducting slab, then the limited occurrence rate and magnitude of intraslab seismicity at the Cascadia margin may in part be explained by the limited amount of water imbedded into the uppermost oceanic mantle prior to subduction. The distribution of submarine earthquakes within the Juan de Fuca plate system indicates that propagator wake areas are likely to be more faulted and therefore more hydrated than other parts of this plate system. However, being largely restricted to crustal levels, this localized increase in hydration generally does not appear to have a measurable effect on the intraslab seismicity along most of the subducted propagator wakes at the Cascadia margin.

  11. Robust Fault Detection for Switched Fuzzy Systems With Unknown Input.

    Science.gov (United States)

    Han, Jian; Zhang, Huaguang; Wang, Yingchun; Sun, Xun

    2017-10-03

    This paper investigates the fault detection problem for a class of switched nonlinear systems in the T-S fuzzy framework. The unknown input is considered in the systems. A novel fault detection unknown input observer design method is proposed. Based on the proposed observer, the unknown input can be removed from the fault detection residual. The weighted H∞ performance level is considered to ensure the robustness. In addition, the weighted H₋ performance level is introduced, which can increase the sensibility of the proposed detection method. To verify the proposed scheme, a numerical simulation example and an electromechanical system simulation example are provided at the end of this paper.

  12. Incipient fault detection and power system protection for spaceborne systems

    Science.gov (United States)

    Russell, B. Don; Hackler, Irene M.

    1987-01-01

    A program was initiated to study the feasibility of using advanced terrestrial power system protection techniques for spacecraft power systems. It was designed to enhance and automate spacecraft power distribution systems in the areas of safety, reliability and maintenance. The proposed power management/distribution system is described as well as security assessment and control, incipient and low current fault detection, and the proposed spaceborne protection system. It is noted that the intelligent remote power controller permits the implementation of digital relaying algorithms with both adaptive and programmable characteristics.

  13. Modeling, control and fault diagnosis of an isolated wind energy conversion system with a self-excited induction generator subject to electrical faults

    International Nuclear Information System (INIS)

    Attoui, Issam; Omeiri, Amar

    2014-01-01

    Highlights: • A new model of the SEIG is developed to simulate both the rotor and stator faults. • This model takes iron loss, main flux and cross flux saturation into account. • A new control strategy based on Fractional-Order Controller (FOC) is proposed. • The control strategy is developed for the control of the wind turbine speed. • An on-line diagnostic procedure based on the stator currents analysis is presented. - Abstract: In this paper, a contribution to modeling and fault diagnosis of rotor and stator faults of a Self-Excited Induction Generator (SEIG) in an Isolated Wind Energy Conversion System (IWECS) is proposed. In order to control the speed of the wind turbine, while basing on the linear model of wind turbine system about a specified operating point, a new Fractional-Order Controller (FOC) with a simple and practical design method is proposed. The FOC ensures the stability of the nonlinear system in both healthy and faulty conditions. Furthermore, in order to detect the stator and rotor faults in the squirrel-cage self-excited induction generator, an on-line fault diagnostic technique based on the spectral analysis of stator currents of the squirrel-cage SEIG by a Fast Fourier Transform (FFT) algorithm is used. Additionally, a generalized model of the squirrel-cage SEIG is developed to simulate both the rotor and stator faults taking iron loss, main flux and cross flux saturation into account. The efficiencies of generalized model, control strategy and diagnostic procedure are illustrated with simulation results

  14. Comparing Different Fault Identification Algorithms in Distributed Power System

    Science.gov (United States)

    Alkaabi, Salim

    A power system is a huge complex system that delivers the electrical power from the generation units to the consumers. As the demand for electrical power increases, distributed power generation was introduced to the power system. Faults may occur in the power system at any time in different locations. These faults cause a huge damage to the system as they might lead to full failure of the power system. Using distributed generation in the power system made it even harder to identify the location of the faults in the system. The main objective of this work is to test the different fault location identification algorithms while tested on a power system with the different amount of power injected using distributed generators. As faults may lead the system to full failure, this is an important area for research. In this thesis different fault location identification algorithms have been tested and compared while the different amount of power is injected from distributed generators. The algorithms were tested on IEEE 34 node test feeder using MATLAB and the results were compared to find when these algorithms might fail and the reliability of these methods.

  15. PCA Fault Feature Extraction in Complex Electric Power Systems

    Directory of Open Access Journals (Sweden)

    ZHANG, J.

    2010-08-01

    Full Text Available Electric power system is one of the most complex artificial systems in the world. The complexity is determined by its characteristics about constitution, configuration, operation, organization, etc. The fault in electric power system cannot be completely avoided. When electric power system operates from normal state to failure or abnormal, its electric quantities (current, voltage and angles, etc. may change significantly. Our researches indicate that the variable with the biggest coefficient in principal component usually corresponds to the fault. Therefore, utilizing real-time measurements of phasor measurement unit, based on principal components analysis technology, we have extracted successfully the distinct features of fault component. Of course, because of the complexity of different types of faults in electric power system, there still exists enormous problems need a close and intensive study.

  16. Faults Diagnostics of Railway Axle Bearings Based on IMF’s Confidence Index Algorithm for Ensemble EMD

    Science.gov (United States)

    Yi, Cai; Lin, Jianhui; Zhang, Weihua; Ding, Jianming

    2015-01-01

    As train loads and travel speeds have increased over time, railway axle bearings have become critical elements which require more efficient non-destructive inspection and fault diagnostics methods. This paper presents a novel and adaptive procedure based on ensemble empirical mode decomposition (EEMD) and Hilbert marginal spectrum for multi-fault diagnostics of axle bearings. EEMD overcomes the limitations that often hypothesize about data and computational efforts that restrict the application of signal processing techniques. The outputs of this adaptive approach are the intrinsic mode functions that are treated with the Hilbert transform in order to obtain the Hilbert instantaneous frequency spectrum and marginal spectrum. Anyhow, not all the IMFs obtained by the decomposition should be considered into Hilbert marginal spectrum. The IMFs’ confidence index arithmetic proposed in this paper is fully autonomous, overcoming the major limit of selection by user with experience, and allows the development of on-line tools. The effectiveness of the improvement is proven by the successful diagnosis of an axle bearing with a single fault or multiple composite faults, e.g., outer ring fault, cage fault and pin roller fault. PMID:25970256

  17. A Diagnostic Ultrasound Imaging System

    International Nuclear Information System (INIS)

    Lee, Seong Woo

    1999-01-01

    The ability to see the internal organs of the human body in a noninvasive way is a powerful diagnostic tool of modern medicine. Among these imaging modalities such as X-ray, MRI, and ultrasound. MRI and ultrasound are presenting much less risk of undesirable damage of both patient and examiner. In fact, no deleterious effects have been reported as a result of clinical examination by using MRI and ultrasound diagnostic equipment. As a result, their market volume has been rapidly increased. MRI has a good resolution. but there are a few disadvantages such as high price. non-real-time imaging capability. and expensive diagnostic cost. On the other hand, the ultrasound imaging system has inherently poor resolution as compared with X-ray and MRI. In spite of its poor resolution, the ultrasound diagnostic equipment is lower in price and has an ability of real-time imaging as compared with the others. As a result, the ultrasound imaging system has become general and essential modality for imaging the internal organs of human body. In this review various researches and developments to enhance the resolution of the ultrasound images are explained and future trends of the ultrasound imaging technology are described

  18. Fault Injection and Monitoring Capability for a Fault-Tolerant Distributed Computation System

    Science.gov (United States)

    Torres-Pomales, Wilfredo; Yates, Amy M.; Malekpour, Mahyar R.

    2010-01-01

    The Configurable Fault-Injection and Monitoring System (CFIMS) is intended for the experimental characterization of effects caused by a variety of adverse conditions on a distributed computation system running flight control applications. A product of research collaboration between NASA Langley Research Center and Old Dominion University, the CFIMS is the main research tool for generating actual fault response data with which to develop and validate analytical performance models and design methodologies for the mitigation of fault effects in distributed flight control systems. Rather than a fixed design solution, the CFIMS is a flexible system that enables the systematic exploration of the problem space and can be adapted to meet the evolving needs of the research. The CFIMS has the capabilities of system-under-test (SUT) functional stimulus generation, fault injection and state monitoring, all of which are supported by a configuration capability for setting up the system as desired for a particular experiment. This report summarizes the work accomplished so far in the development of the CFIMS concept and documents the first design realization.

  19. Model-based fault detection algorithm for photovoltaic system monitoring

    KAUST Repository

    Harrou, Fouzi

    2018-02-12

    Reliable detection of faults in PV systems plays an important role in improving their reliability, productivity, and safety. This paper addresses the detection of faults in the direct current (DC) side of photovoltaic (PV) systems using a statistical approach. Specifically, a simulation model that mimics the theoretical performances of the inspected PV system is designed. Residuals, which are the difference between the measured and estimated output data, are used as a fault indicator. Indeed, residuals are used as the input for the Multivariate CUmulative SUM (MCUSUM) algorithm to detect potential faults. We evaluated the proposed method by using data from an actual 20 MWp grid-connected PV system located in the province of Adrar, Algeria.

  20. Fault Correspondence Analysis in Complex Electric Power Systems

    Directory of Open Access Journals (Sweden)

    WANG, C.

    2015-02-01

    Full Text Available Wide area measurement system (WAMS mainly serves for the requirement of time synchronization in complex electric power systems. The analysis and control of power system mostly depends on the measurement of state variables, and WAMS provides the basis for dynamic monitoring of power system by these measurements, which can also satisfy the demands of observable, controllable, real-time analysis and decision, self-adaptive etc. requested by smart grid. In this paper, based on the principles of fault correspondence analysis, by calculating row characteristic which represents nodal electrical information and column characteristic which represents acquisition time information, we will conduct intensive research on fault detection. The research results indicate that the fault location is determined by the first dimensional variable, and the occurrence time of fault is determined by the second dimensional variable. The research in this paper will contribute to the development of future smart grid.

  1. System control module diagnostic Expert Assistant

    Science.gov (United States)

    Flores, Luis M.; Hansen, Roger F.

    1990-01-01

    The Orbiter EXperiments (OEX) Program was established by NASA's Office of Aeronautics and Space Technology (OAST) to accomplish the precise data collection necessary to support a complete and accurate assessment of Space Transportation System (STS) Orbiter performance during all phases of a mission. During a mission, data generated by the various experiments are conveyed to the OEX System Control Module (SCM) which arranges for and monitors storage of the data on the OEX tape recorder. The SCM Diagnostic Expert Assistant (DEA) is an expert system which provides on demand advice to technicians performing repairs of a malfunctioning SCM. The DEA is a self-contained, data-driven knowledge-based system written in the 'C' Language Production System (CLIPS) for a portable micro-computer of the IBM PC/XT class. The DEA reasons about SCM hardware faults at multiple levels; the most detailed layer of encoded knowledge of the SCM is a representation of individual components and layouts of the custom-designed component boards.

  2. A modular neural network scheme applied to fault diagnosis in electric power systems.

    Science.gov (United States)

    Flores, Agustín; Quiles, Eduardo; García, Emilio; Morant, Francisco; Correcher, Antonio

    2014-01-01

    This work proposes a new method for fault diagnosis in electric power systems based on neural modules. With this method the diagnosis is performed by assigning a neural module for each type of component comprising the electric power system, whether it is a transmission line, bus or transformer. The neural modules for buses and transformers comprise two diagnostic levels which take into consideration the logic states of switches and relays, both internal and back-up, with the exception of the neural module for transmission lines which also has a third diagnostic level which takes into account the oscillograms of fault voltages and currents as well as the frequency spectrums of these oscillograms, in order to verify if the transmission line had in fact been subjected to a fault. One important advantage of the diagnostic system proposed is that its implementation does not require the use of a network configurator for the system; it does not depend on the size of the power network nor does it require retraining of the neural modules if the power network increases in size, making its application possible to only one component, a specific area, or the whole context of the power system.

  3. A Modular Neural Network Scheme Applied to Fault Diagnosis in Electric Power Systems

    Directory of Open Access Journals (Sweden)

    Agustín Flores

    2014-01-01

    Full Text Available This work proposes a new method for fault diagnosis in electric power systems based on neural modules. With this method the diagnosis is performed by assigning a neural module for each type of component comprising the electric power system, whether it is a transmission line, bus or transformer. The neural modules for buses and transformers comprise two diagnostic levels which take into consideration the logic states of switches and relays, both internal and back-up, with the exception of the neural module for transmission lines which also has a third diagnostic level which takes into account the oscillograms of fault voltages and currents as well as the frequency spectrums of these oscillograms, in order to verify if the transmission line had in fact been subjected to a fault. One important advantage of the diagnostic system proposed is that its implementation does not require the use of a network configurator for the system; it does not depend on the size of the power network nor does it require retraining of the neural modules if the power network increases in size, making its application possible to only one component, a specific area, or the whole context of the power system.

  4. Intelligent neural network diagnostic system

    International Nuclear Information System (INIS)

    Mohamed, A.H.

    2010-01-01

    Recently, artificial neural network (ANN) has made a significant mark in the domain of diagnostic applications. Neural networks are used to implement complex non-linear mappings (functions) using simple elementary units interrelated through connections with adaptive weights. The performance of the ANN is mainly depending on their topology structure and weights. Some systems have been developed using genetic algorithm (GA) to optimize the topology of the ANN. But, they suffer from some limitations. They are : (1) The computation time requires for training the ANN several time reaching for the average weight required, (2) Slowness of GA for optimization process and (3) Fitness noise appeared in the optimization of ANN. This research suggests new issues to overcome these limitations for finding optimal neural network architectures to learn particular problems. This proposed methodology is used to develop a diagnostic neural network system. It has been applied for a 600 MW turbo-generator as a case of real complex systems. The proposed system has proved its significant performance compared to two common methods used in the diagnostic applications.

  5. Multi-directional fault detection system

    Science.gov (United States)

    Archer, Charles Jens; Pinnow, Kurt Walter; Ratterman, Joseph D.; Smith, Brian Edward

    2010-06-29

    An apparatus, program product and method checks for nodal faults in a group of nodes comprising a center node and all adjacent nodes. The center node concurrently communicates with the immediately adjacent nodes in three dimensions. The communications are analyzed to determine a presence of a faulty node or connection.

  6. All row, planar fault detection system

    Science.gov (United States)

    Archer, Charles Jens; Pinnow, Kurt Walter; Ratterman, Joseph D; Smith, Brian Edward

    2013-07-23

    An apparatus, program product and method for detecting nodal faults may simultaneously cause designated nodes of a cell to communicate with all nodes adjacent to each of the designated nodes. Furthermore, all nodes along the axes of the designated nodes are made to communicate with their adjacent nodes, and the communications are analyzed to determine if a node or connection is faulty.

  7. Multi-directional fault detection system

    Science.gov (United States)

    Archer, Charles Jens [Rochester, MN; Pinnow, Kurt Walter [Rochester, MN; Ratterman, Joseph D [Rochester, MN; Smith, Brian Edward [Rochester, MN

    2009-03-17

    An apparatus, program product and method checks for nodal faults in a group of nodes comprising a center node and all adjacent nodes. The center node concurrently communicates with the immediately adjacent nodes in three dimensions. The communications are analyzed to determine a presence of a faulty node or connection.

  8. Event-Triggered Fault Detection of Nonlinear Networked Systems.

    Science.gov (United States)

    Li, Hongyi; Chen, Ziran; Wu, Ligang; Lam, Hak-Keung; Du, Haiping

    2017-04-01

    This paper investigates the problem of fault detection for nonlinear discrete-time networked systems under an event-triggered scheme. A polynomial fuzzy fault detection filter is designed to generate a residual signal and detect faults in the system. A novel polynomial event-triggered scheme is proposed to determine the transmission of the signal. A fault detection filter is designed to guarantee that the residual system is asymptotically stable and satisfies the desired performance. Polynomial approximated membership functions obtained by Taylor series are employed for filtering analysis. Furthermore, sufficient conditions are represented in terms of sum of squares (SOSs) and can be solved by SOS tools in MATLAB environment. A numerical example is provided to demonstrate the effectiveness of the proposed results.

  9. Power System Transient Diagnostics Based on Novel Traveling Wave Detection

    Science.gov (United States)

    Hamidi, Reza Jalilzadeh

    Modern electrical power systems demand novel diagnostic approaches to enhancing the system resiliency by improving the state-of-the-art algorithms. The proliferation of high-voltage optical transducers and high time-resolution measurements provide opportunities to develop novel diagnostic methods of very fast transients in power systems. At the same time, emerging complex configuration, such as multi-terminal hybrid transmission systems, limits the applications of the traditional diagnostic methods, especially in fault location and health monitoring. The impedance-based fault-location methods are inefficient for cross-bounded cables, which are widely used for connection of offshore wind farms to the main grid. Thus, this dissertation first presents a novel traveling wave-based fault-location method for hybrid multi-terminal transmission systems. The proposed method utilizes time-synchronized high-sampling voltage measurements. The traveling wave arrival times (ATs) are detected by observation of the squares of wavelet transformation coefficients. Using the ATs, an over-determined set of linear equations are developed for noise reduction, and consequently, the faulty segment is determined based on the characteristics of the provided equation set. Then, the fault location is estimated. The accuracy and capabilities of the proposed fault location method are evaluated and also compared to the existing traveling-wave-based method for a wide range of fault parameters. In order to improve power systems stability, auto-reclosing (AR), single-phase auto-reclosing (SPAR), and adaptive single-phase auto-reclosing (ASPAR) methods have been developed with the final objectives of distinguishing between the transient and permanent faults to clear the transient faults without de-energization of the solid phases. However, the features of the electrical arcs (transient faults) are severely influenced by a number of random parameters, including the convection of the air and plasma

  10. Statistical Feature Extraction for Fault Locations in Nonintrusive Fault Detection of Low Voltage Distribution Systems

    Directory of Open Access Journals (Sweden)

    Hsueh-Hsien Chang

    2017-04-01

    Full Text Available This paper proposes statistical feature extraction methods combined with artificial intelligence (AI approaches for fault locations in non-intrusive single-line-to-ground fault (SLGF detection of low voltage distribution systems. The input features of the AI algorithms are extracted using statistical moment transformation for reducing the dimensions of the power signature inputs measured by using non-intrusive fault monitoring (NIFM techniques. The data required to develop the network are generated by simulating SLGF using the Electromagnetic Transient Program (EMTP in a test system. To enhance the identification accuracy, these features after normalization are given to AI algorithms for presenting and evaluating in this paper. Different AI techniques are then utilized to compare which identification algorithms are suitable to diagnose the SLGF for various power signatures in a NIFM system. The simulation results show that the proposed method is effective and can identify the fault locations by using non-intrusive monitoring techniques for low voltage distribution systems.

  11. Development of JT-60 diagnostics system

    International Nuclear Information System (INIS)

    Suzuki, Yasuo

    1988-01-01

    The various kinds of plasma diagnostics have been developed and utilized in the JT-60 experiments. The features of JT-60 diagnostics system and the historical proceeding of the development are described in this paper. Taking account of the design consideration, JT-60 diagnostics system is sorted out into eight groups, which include six diagnostics systems, the data processing system and diagnostics supporting system. The all devices in the JT-60 diagnostics system were instrumented on schedule in the end of the fiscal year of 1985 and have contributed to JT-60 experiments. (author)

  12. Soft-Fault Detection Technologies Developed for Electrical Power Systems

    Science.gov (United States)

    Button, Robert M.

    2004-01-01

    The NASA Glenn Research Center, partner universities, and defense contractors are working to develop intelligent power management and distribution (PMAD) technologies for future spacecraft and launch vehicles. The goals are to provide higher performance (efficiency, transient response, and stability), higher fault tolerance, and higher reliability through the application of digital control and communication technologies. It is also expected that these technologies will eventually reduce the design, development, manufacturing, and integration costs for large, electrical power systems for space vehicles. The main focus of this research has been to incorporate digital control, communications, and intelligent algorithms into power electronic devices such as direct-current to direct-current (dc-dc) converters and protective switchgear. These technologies, in turn, will enable revolutionary changes in the way electrical power systems are designed, developed, configured, and integrated in aerospace vehicles and satellites. Initial successes in integrating modern, digital controllers have proven that transient response performance can be improved using advanced nonlinear control algorithms. One technology being developed includes the detection of "soft faults," those not typically covered by current systems in use today. Soft faults include arcing faults, corona discharge faults, and undetected leakage currents. Using digital control and advanced signal analysis algorithms, we have shown that it is possible to reliably detect arcing faults in high-voltage dc power distribution systems (see the preceding photograph). Another research effort has shown that low-level leakage faults and cable degradation can be detected by analyzing power system parameters over time. This additional fault detection capability will result in higher reliability for long-lived power systems such as reusable launch vehicles and space exploration missions.

  13. Active Fault Detection and Isolation for Hybrid Systems

    DEFF Research Database (Denmark)

    Gholami, Mehdi; Schiøler, Henrik; Bak, Thomas

    2009-01-01

    An algorithm for active fault detection and isolation is proposed. In order to observe the failure hidden due to the normal operation of the controllers or the systems, an optimization problem based on minimization of test signal is used. The optimization based method imposes the normal and faulty...... models predicted outputs such that their discrepancies are observable by passive fault diagnosis technique. Isolation of different faults is done by implementation a bank of Extended Kalman Filter (EKF) where the convergence criterion for EKF is confirmed by Genetic Algorithm (GA). The method is applied...

  14. Measurement and analysis of operating system fault tolerance

    Science.gov (United States)

    Lee, I.; Tang, D.; Iyer, R. K.

    1992-01-01

    This paper demonstrates a methodology to model and evaluate the fault tolerance characteristics of operational software. The methodology is illustrated through case studies on three different operating systems: the Tandem GUARDIAN fault-tolerant system, the VAX/VMS distributed system, and the IBM/MVS system. Measurements are made on these systems for substantial periods to collect software error and recovery data. In addition to investigating basic dependability characteristics such as major software problems and error distributions, we develop two levels of models to describe error and recovery processes inside an operating system and on multiple instances of an operating system running in a distributed environment. Based on the models, reward analysis is conducted to evaluate the loss of service due to software errors and the effect of the fault-tolerance techniques implemented in the systems. Software error correlation in multicomputer systems is also investigated.

  15. An Integrated Architecture for On-Board Aircraft Engine Performance Trend Monitoring and Gas Path Fault Diagnostics

    Science.gov (United States)

    Simon, Donald L.

    2010-01-01

    Aircraft engine performance trend monitoring and gas path fault diagnostics are closely related technologies that assist operators in managing the health of their gas turbine engine assets. Trend monitoring is the process of monitoring the gradual performance change that an aircraft engine will naturally incur over time due to turbomachinery deterioration, while gas path diagnostics is the process of detecting and isolating the occurrence of any faults impacting engine flow-path performance. Today, performance trend monitoring and gas path fault diagnostic functions are performed by a combination of on-board and off-board strategies. On-board engine control computers contain logic that monitors for anomalous engine operation in real-time. Off-board ground stations are used to conduct fleet-wide engine trend monitoring and fault diagnostics based on data collected from each engine each flight. Continuing advances in avionics are enabling the migration of portions of the ground-based functionality on-board, giving rise to more sophisticated on-board engine health management capabilities. This paper reviews the conventional engine performance trend monitoring and gas path fault diagnostic architecture commonly applied today, and presents a proposed enhanced on-board architecture for future applications. The enhanced architecture gains real-time access to an expanded quantity of engine parameters, and provides advanced on-board model-based estimation capabilities. The benefits of the enhanced architecture include the real-time continuous monitoring of engine health, the early diagnosis of fault conditions, and the estimation of unmeasured engine performance parameters. A future vision to advance the enhanced architecture is also presented and discussed

  16. PV System Component Fault and Failure Compilation and Analysis.

    Energy Technology Data Exchange (ETDEWEB)

    Klise, Geoffrey Taylor; Lavrova, Olga; Gooding, Renee Lynne

    2018-02-01

    This report describes data collection and analysis of solar photovoltaic (PV) equipment events, which consist of faults and fa ilures that occur during the normal operation of a distributed PV system or PV power plant. We present summary statistics from locations w here maintenance data is being collected at various intervals, as well as reliability statistics gathered from that da ta, consisting of fault/failure distributions and repair distributions for a wide range of PV equipment types.

  17. Robust filtering and fault detection of switched delay systems

    CERN Document Server

    Wang, Dong; Wang, Wei

    2013-01-01

    Switched delay systems appear in a wide field of applications including networked control systems, power systems, memristive systems. Though the large amount of ideas with respect to such systems have generated, until now, it still lacks a framework to focus on filter design and fault detection issues which are relevant to life safety and property loss. Beginning with the comprehensive coverage of the new developments in the analysis and control synthesis for switched delay systems, the monograph not only provides a systematic approach to designing the filter and detecting the fault of switched delay systems, but it also covers the model reduction issues. Specific topics covered include: (1) Arbitrary switching signal where delay-independent and delay-dependent conditions are presented by proposing a linearization technique. (2) Average dwell time where a weighted Lyapunov function is come up with dealing with filter design and fault detection issues beside taking model reduction problems. The monograph is in...

  18. Fault tolerance of the NIF power conditioning system

    International Nuclear Information System (INIS)

    Larson, D.W.; Anderson, R.; Boyes, J.

    1995-01-01

    The tolerance of the circuit topology proposed for the National Ignition Facility (NIF) power conditioning system to specific fault conditions is investigated. A new pulsed power circuit is proposed for the NIF which is simpler and less expensive than previous ICF systems. The inherent fault modes of the new circuit are different from the conventional approach, and must be understood to ensure adequate NIF system reliability. A test-bed which simulates the NIF capacitor module design was constructed to study the circuit design. Measurements from test-bed experiments with induced faults are compared with results from a detailed circuit model. The model is validated by the measurements and used to predict the behavior of the actual NIF module during faults. The model can be used to optimize fault tolerance of the NIF module through an appropriate distribution of circuit inductance and resistance. The experimental and modeling results are presented, and fault performance is compared with the ratings of pulsed power components. Areas are identified which require additional investigation

  19. On fault propagation in deterioration of multi-component systems

    International Nuclear Information System (INIS)

    Liang, Zhenglin; Parlikad, Ajith Kumar; Srinivasan, Rengarajan; Rasmekomen, Nipat

    2017-01-01

    In extant literature, deterioration dependence among components can be modelled as inherent dependence and induced dependence. We find that the two types of dependence may co-exist and interact with each other in one multi-component system. We refer to this phenomenon as fault propagation. In practice, a fault induced by the malfunction of a non-critical component may further propagate through the dependence amongst critical components. Such fault propagation scenario happens in industrial assets or systems (bridge deck, and heat exchanging system). In this paper, a multi-layered vector-valued continuous-time Markov chain is developed to capture the characteristics of fault propagation. To obtain the mathematical tractability, we derive a partitioning rule to aggregate states with the same characteristics while keeping the overall aging behaviour of the multi-component system. Although the detailed information of components is masked by aggregated states, lumpability is attainable with the partitioning rule. It means that the aggregated process is stochastically equivalent to the original one and retains the Markov property. We apply this model on a heat exchanging system in oil refinery company. The results show that fault propagation has a more significant impact on the system's lifetime comparing with inherent dependence and induced dependence. - Highlights: • We develop a vector value continuous-time Markov chain to model the meta-dependent characteristic of fault propagation. • A partitioning rule is derived to reduce the state space and attain lumpability. • The model is applied on analysing the impact of fault propagation in a heat exchanging system.

  20. MFTF-B plasma-diagnostic system

    International Nuclear Information System (INIS)

    Throop, A.L.; Goerz, D.A.; Thomas, S.R.

    1981-01-01

    This paper describes the current design status of the plasma diagnostic system for MFTF-B. In this paper we describe the system requirement changes which have occurred as a result of the funded rescoping of the original MFTF facility into MFTF-B. We outline the diagnostic instruments which are currently planned, and present an overview of the diagnostic system

  1. Methods for Probabilistic Fault Diagnosis: An Electrical Power System Case Study

    Science.gov (United States)

    Ricks, Brian W.; Mengshoel, Ole J.

    2009-01-01

    Health management systems that more accurately and quickly diagnose faults that may occur in different technical systems on-board a vehicle will play a key role in the success of future NASA missions. We discuss in this paper the diagnosis of abrupt continuous (or parametric) faults within the context of probabilistic graphical models, more specifically Bayesian networks that are compiled to arithmetic circuits. This paper extends our previous research, within the same probabilistic setting, on diagnosis of abrupt discrete faults. Our approach and diagnostic algorithm ProDiagnose are domain-independent; however we use an electrical power system testbed called ADAPT as a case study. In one set of ADAPT experiments, performed as part of the 2009 Diagnostic Challenge, our system turned out to have the best performance among all competitors. In a second set of experiments, we show how we have recently further significantly improved the performance of the probabilistic model of ADAPT. While these experiments are obtained for an electrical power system testbed, we believe they can easily be transitioned to real-world systems, thus promising to increase the success of future NASA missions.

  2. A study of diagnostics expert system for accelerator applications

    International Nuclear Information System (INIS)

    Tyagi, Y.; Banerji, Anil; Kotaiah, S.

    2003-01-01

    Knowledge based techniques are proving to be useful in a number of problem domains which typically requires human expertise. Expert systems employing knowledge based techniques are a recent product of artificial intelligence. Methods developed in the artificial intelligence area can be applied with success for certain classes of problems in accelerator. Accelerators are complex devices with thousands of components. The number of possible faults or problems that can appear is enormous. A diagnostics expert system can provide great help in finding and diagnosing problems in Indus-II accelerator sub-systems. (author)

  3. GOTRES: an expert system for fault detection and analysis

    International Nuclear Information System (INIS)

    Chung, D.T.; Modarres, M.

    1989-01-01

    This paper describes a deep-knowledge expert system shell for diagnosing faults in process operations. The expert program shell is called GOTRES (GOal TRee Expert System) and uses a goal tree-success tree deep-knowledge structure to model its knowledge-base. To demonstrate GOTRES, we have built an on-line fault diagnosis expert system for an experimental nuclear reactor facility using this shell. The expert system is capable of diagnosing fault conditions using system goal tree as well as utilizing accumulated operating knowledge to predict plant causal and temporal behaviours. The GOTRES shell has also been used for root-cause detection and analysis in a nuclear plant. (author)

  4. Fault tolerant digital control systems for boiling water reactors

    International Nuclear Information System (INIS)

    Chakraborty, S.; Cash, N.R.

    1986-01-01

    In a Boiling Water Reactor nuclear power plant, the power generation control function is divided into several systems, each system controlling only a part of the total plant. Presently, each system is controlled by conventional analog or digital logic circuits with little interaction for coordinated control. The advent of microprocessors has allowed the development of distributed fault-tolerant digital controls. The objective is to replace these conventional controls with fault-tolerant digital controls connected together with digital communication links to form a fully integrated nuclear power plant control system

  5. Influences of braking system faults on the vehicle dynamics

    Energy Technology Data Exchange (ETDEWEB)

    Straky, H.; Kochem, M.; Schmitt, J.; Hild, R.; Isermann, R. [Technische Univ., Darmstadt (Germany). Inst. of Automatic Control

    2001-07-01

    From a safety point of view the braking system is, besides the driver, one of the key subsystems in a car. The driver, as an adaptive control system, might not notice small faults in the hydraulic part of the braking system and sooner or later critical braking situations, e.g. due to a brake-circuit failure, may occur. Most of the drivers are not capable to deal with such critical situations. Therefore this paper investigates the influence of faults in the braking system on the dynamic vehicle behavior and the steering inputs of the driver to keep the vehicle on the desired course. (orig.)

  6. Systems and Methods for Determining Inertial Navigation System Faults

    Science.gov (United States)

    Bharadwaj, Raj Mohan (Inventor); Bageshwar, Vibhor L. (Inventor); Kim, Kyusung (Inventor)

    2017-01-01

    An inertial navigation system (INS) includes a primary inertial navigation system (INS) unit configured to receive accelerometer measurements from an accelerometer and angular velocity measurements from a gyroscope. The primary INS unit is further configured to receive global navigation satellite system (GNSS) signals from a GNSS sensor and to determine a first set of kinematic state vectors based on the accelerometer measurements, the angular velocity measurements, and the GNSS signals. The INS further includes a secondary INS unit configured to receive the accelerometer measurements and the angular velocity measurements and to determine a second set of kinematic state vectors of the vehicle based on the accelerometer measurements and the angular velocity measurements. A health management system is configured to compare the first set of kinematic state vectors and the second set of kinematic state vectors to determine faults associated with the accelerometer or the gyroscope based on the comparison.

  7. Fault detection for nonlinear systems - A standard problem approach

    DEFF Research Database (Denmark)

    Stoustrup, Jakob; Niemann, Hans Henrik

    1998-01-01

    The paper describes a general method for designing (nonlinear) fault detection and isolation (FDI) systems for nonlinear processes. For a rich class of nonlinear systems, a nonlinear FDI system can be designed using convex optimization procedures. The proposed method is a natural extension...

  8. Entropy-Based Voltage Fault Diagnosis of Battery Systems for Electric Vehicles

    Directory of Open Access Journals (Sweden)

    Peng Liu

    2018-01-01

    Full Text Available The battery is a key component and the major fault source in electric vehicles (EVs. Ensuring power battery safety is of great significance to make the diagnosis more effective and predict the occurrence of faults, for the power battery is one of the core technologies of EVs. This paper proposes a voltage fault diagnosis detection mechanism using entropy theory which is demonstrated in an EV with a multiple-cell battery system during an actual operation situation. The preliminary analysis, after collecting and preprocessing the typical data periods from Operation Service and Management Center for Electric Vehicle (OSMC-EV in Beijing, shows that overvoltage fault for Li-ion batteries cell can be observed from the voltage curves. To further locate abnormal cells and predict faults, an entropy weight method is established to calculate the objective weight, which reduces the subjectivity and improves the reliability. The result clearly identifies the abnormity of cell voltage. The proposed diagnostic model can be used for EV real-time diagnosis without laboratory testing methods. It is more effective than traditional methods based on contrastive analysis.

  9. Fault Analysis of ITER Coil Power Supply System

    International Nuclear Information System (INIS)

    Song, In Ho; Jun, Tao; Benfatto, Ivone

    2009-01-01

    The ITER magnet coils are all designed using superconductors with high current carrying capability. The Toroidal Field (TF) coils operate in a steadystate mode with a current of 68 kA and discharge the stored energy in case of quench with using 9 interleaved Fast Discharge Units (FDUs). The Central Solenoid (CS) coils and Poloidal Field (PF) coils operate in a pulse mode with currents of up to 45 kA and require fast variation of currents inducing more than 10 kV during normal operation on the coil terminals using Switching Network (SN) systems (CSs, PF1 and 6) and Booster and VS converters (PF2 to 5), which are series connected to Main converters. SN and FDU systems comprise high current DC circuit breakers and resistors for generating high voltage (SN) and to dissipate magnetic energy (FDUs). High transient voltages can arise due to the switching operation of SN and FD and the characteristics of resistors and stray components of DC distribution systems. Also, faults in power supply control such as shorts or grounding faults can produce higher voltages between terminals and between terminal and ground. Therefore, the design of the coil insulation, coil terminal regions, feeders, feed throughs, pipe breaks and instrumentation must take account of these high voltages during normal and abnormal conditions. Voltage insulation level can be defined and it is necessary to test the coils at higher voltages, to be sure of reliable performance during the lifetime of operation. This paper describes the fault analysis of the TF, CS and PF coil power supply systems, taking account of the stray parameter of the power supply and switching systems and inductively coupled superconducting coil models. Resistor grounding systems are included in the simulation model and all fault conditions such as converter hardware and software faults, switching system hardware and software faults, DC short circuits and single grounding faults are simulated. The occurrence of two successive faults

  10. General review of diagnostic systems in EDF PWR units

    International Nuclear Information System (INIS)

    Chevalier, R.; Brasseur, S.; Ricard, B.

    1998-01-01

    Since the beginning of the French nuclear program, Electricite de France (EDF) has looked for ways to improve the availability and safety of its nuclear units. Therefore, monitoring systems on turbogenerators, reactor coolant pumps, primary circuits and core internal structures were designed by the Research and Development Division and implemented with technologies available during the 1970's. However, mainly because of difficulties for data interpretation by plant personnel, EDF subsequently decided to design and develop different tools to help plant operators to process a diagnosis: - a new generation of the Monitoring and Diagnostic System called PSAD, - expert systems for diagnosis on reactor coolant pumps (RCP) 'DIAPO' and turbogenerator units (TG) 'DIVA', - diagnostic guides written for most equipment pending the installation of new monitoring and diagnosis systems. The first version of PSAD, installed in five units, performs on-line monitoring of the turbogenerator shaft line, steam inlet valves, the reactor coolant pumps and the generator stator. The second version not yet implemented, will include Loose Part Detection (LPD) and Core Internal Structure Monitoring (CISM). The level of diagnosis achieved by PSAD depends on the component monitored. The TG and RCP monitoring functions of PSAD compute high level diagnosis descriptors such as natural frequencies and long term trends but do not elaborate a diagnosis automatically. However, a diagnostic assistance window is available on-line, whenever a warning message is displayed, whether for immediate or later action. The window presents a diagnostic approach whose purpose is to find the causes of the symptoms observed. This diagnosis approach is automated in the DIVA and DIAPO expert systems. Numerous potential faults can be identified for both systems thanks to a hierarchy of abnormal situations. The user interactively answers questions when information is needed to progress in the diagnosis. The resulting

  11. Active fault tolerance control of a wind turbine system using an unknown input observer with an actuator fault

    Directory of Open Access Journals (Sweden)

    Li Shanzhi

    2018-03-01

    Full Text Available This paper proposes a fault tolerant control scheme based on an unknown input observer for a wind turbine system subject to an actuator fault and disturbance. Firstly, an unknown input observer for state estimation and fault detection using a linear parameter varying model is developed. By solving linear matrix inequalities (LMIs and linear matrix equalities (LMEs, the gains of the unknown input observer are obtained. The convergence of the unknown input observer is also analysed with Lyapunov theory. Secondly, using fault estimation, an active fault tolerant controller is applied to a wind turbine system. Finally, a simulation of a wind turbine benchmark with an actuator fault is tested for the proposed method. The simulation results indicate that the proposed FTC scheme is efficient.

  12. A system view of the No Fault Found (NFF) phenomenon

    International Nuclear Information System (INIS)

    Soederholm, Peter

    2007-01-01

    When a unit is tested outside a technical system, it has normally been removed due to a fault. However, in some cases the external test may not discover any fault and a No Fault Found (NFF) event may occur. The NFF phenomenon is a major problem when dealing with complex technical systems, and its consequences may be manifested in decreased safety and dependability and increased life cycle costs. There are multiple interacting causes of NFF, demanding tough requirements for successful solutions. The purpose of this paper is to describe the phenomenon of NFF and to highlight possible improvements for the prevention of causes of NFF and the reduction of its consequences. The study was performed as an explorative literature study, and the analysis was based on a holistic system view. The identified causes and solutions are related to life cycle stages, availability performance factors, and system stakeholders

  13. Active Fault Tolerant Control of Livestock Stable Ventilation System

    DEFF Research Database (Denmark)

    Gholami, Mehdi

    2011-01-01

    Modern stables and greenhouses are equipped with different components for providing a comfortable climate for animals and plant. A component malfunction may result in loss of production. Therefore, it is desirable to design a control system, which is stable, and is able to provide an acceptable d...... are not included, while due to the physical limitation, the input signal can not have any value. In continuing, a passive fault tolerant controller (PFTC) based on state feedback is proposed to track a reference signal while the control inputs are bounded....... of fault. Designing a fault tolerant control scheme for the climate control system. In the first step, a conceptual multi-zone model for climate control of a live-stock building is derived. The model is a nonlinear hybrid model. Hybrid systems contain both discrete and continuous components. The parameters...... affine (PWA) components such as dead-zones, saturation, etc or contain piecewise nonlinear models which is the case for the climate control systems of the stables. Fault tolerant controller (FTC) is based on a switching scheme between a set of predefined passive fault tolerant controller (PFTC...

  14. Design of fault tolerant control system for steam generator using

    Energy Technology Data Exchange (ETDEWEB)

    Kim, Myung Ki; Seo, Mi Ro [Korea Electric Power Research Institute, Taejon (Korea, Republic of)

    1998-12-31

    A controller and sensor fault tolerant system for a steam generator is designed with fuzzy logic. A structure of the proposed fault tolerant redundant system is composed of a supervisor and two fuzzy weighting modulators. A supervisor alternatively checks a controller and a sensor induced performances to identify which part, a controller or a sensor, is faulty. In order to analyze controller induced performance both an error and a change in error of the system output are chosen as fuzzy variables. The fuzzy logic for a sensor induced performance uses two variables : a deviation between two sensor outputs and its frequency. Fuzzy weighting modulator generates an output signal compensated for faulty input signal. Simulations show that the proposed fault tolerant control scheme for a steam generator regulates well water level by suppressing fault effect of either controllers or sensors. Therefore through duplicating sensors and controllers with the proposed fault tolerant scheme, both a reliability of a steam generator control and sensor system and that of a power plant increase even more. 2 refs., 9 figs., 1 tab. (Author)

  15. Paleoseismology of Sinistral-Slip Fault System, Focusing on the Mae Chan Fault, on the Shan Plateau, SE Asia.

    Science.gov (United States)

    Curtiss, E. R.; Weldon, R. J.; Wiwegwin, W.; Weldon, E. M.

    2017-12-01

    The Shan Plateau, which includes portions of Myanmar, China, Thailand, Laos, and Vietnam lies between the dextral NS-trending Sagaing and SE-trending Red River faults and contains 14 active E-W sinistral-slip faults, including the Mae Chan Fault (MCF) in northern Thailand. The last ground-rupturing earthquake to occur on the broader sinistral fault system was the M6.8 Tarlay earthquake in Myanmar in March 2011 on the Nam Ma fault immediately north of the MCF the last earthquake to occur on the MCF was a M4.0 in the 5th century that destroyed the entire city of Wiang Yonok (Morley et al., 2011). We report on a trenching study of the MCF, which is part of a broader study to create a regional seismic hazard map of the entire Shan Plateau. By studying the MCF, which appears to be representative of the sinistral faults, and easy to work on, we hope to characterize both it and the other unstudied faults in the system. As part of a paleoseismology training course we dug two trenches at the Pa Tueng site on the MCF, within an offset river channel and the trenches exposed young sediment with abundant charcoal (in process of dating), cultural artifacts, and evidence for the last two (or three) ground-rupturing earthquakes on the fault. We hope to use the data from this site to narrow the recurrence interval, which is currently to be 2,000-4,000 years and the slip rate of 1-2 mm/year, being developed at other sites on the fault. By extrapolating the data of the MCF to the other faults we will have a better understanding of the whole fault system. Once we have characterized the MCF, we plan to use geomorphic offsets and strain rates from regional GPS to relatively estimate the activity of the other faults in this sinistral system.

  16. Industrial Cost-Benefit Assessment for Fault-tolerant Control Systems

    DEFF Research Database (Denmark)

    Thybo, Claus; Blanke, Mogens

    1998-01-01

    Economic aspects are decisive for industrial acceptance of research concepts including the promising ideas in fault tolerant control. Fault tolerance is the ability of a system to detect, isolate and accommodate a fault, such that simple faults in a sub-system do not develop into failures...... at a system level. In a design phase for an industrial system, possibilities span from fail safe design where any single point failure is accommodated by hardware, over fault-tolerant design where selected faults are handled without extra hardware, to fault-ignorant design where no extra precaution is taken...

  17. Benchmarking Diagnostic Algorithms on an Electrical Power System Testbed

    Science.gov (United States)

    Kurtoglu, Tolga; Narasimhan, Sriram; Poll, Scott; Garcia, David; Wright, Stephanie

    2009-01-01

    Diagnostic algorithms (DAs) are key to enabling automated health management. These algorithms are designed to detect and isolate anomalies of either a component or the whole system based on observations received from sensors. In recent years a wide range of algorithms, both model-based and data-driven, have been developed to increase autonomy and improve system reliability and affordability. However, the lack of support to perform systematic benchmarking of these algorithms continues to create barriers for effective development and deployment of diagnostic technologies. In this paper, we present our efforts to benchmark a set of DAs on a common platform using a framework that was developed to evaluate and compare various performance metrics for diagnostic technologies. The diagnosed system is an electrical power system, namely the Advanced Diagnostics and Prognostics Testbed (ADAPT) developed and located at the NASA Ames Research Center. The paper presents the fundamentals of the benchmarking framework, the ADAPT system, description of faults and data sets, the metrics used for evaluation, and an in-depth analysis of benchmarking results obtained from testing ten diagnostic algorithms on the ADAPT electrical power system testbed.

  18. Combined expert system/neural networks method for process fault diagnosis

    Science.gov (United States)

    Reifman, Jaques; Wei, Thomas Y. C.

    1995-01-01

    A two-level hierarchical approach for process fault diagnosis is an operating system employs a function-oriented approach at a first level and a component characteristic-oriented approach at a second level, where the decision-making procedure is structured in order of decreasing intelligence with increasing precision. At the first level, the diagnostic method is general and has knowledge of the overall process including a wide variety of plant transients and the functional behavior of the process components. An expert system classifies malfunctions by function to narrow the diagnostic focus to a particular set of possible faulty components that could be responsible for the detected functional misbehavior of the operating system. At the second level, the diagnostic method limits its scope to component malfunctions, using more detailed knowledge of component characteristics. Trained artificial neural networks are used to further narrow the diagnosis and to uniquely identify the faulty component by classifying the abnormal condition data as a failure of one of the hypothesized components through component characteristics. Once an anomaly is detected, the hierarchical structure is used to successively narrow the diagnostic focus from a function misbehavior, i.e., a function oriented approach, until the fault can be determined, i.e., a component characteristic-oriented approach.

  19. Combined expert system/neural networks method for process fault diagnosis

    Science.gov (United States)

    Reifman, J.; Wei, T.Y.C.

    1995-08-15

    A two-level hierarchical approach for process fault diagnosis of an operating system employs a function-oriented approach at a first level and a component characteristic-oriented approach at a second level, where the decision-making procedure is structured in order of decreasing intelligence with increasing precision. At the first level, the diagnostic method is general and has knowledge of the overall process including a wide variety of plant transients and the functional behavior of the process components. An expert system classifies malfunctions by function to narrow the diagnostic focus to a particular set of possible faulty components that could be responsible for the detected functional misbehavior of the operating system. At the second level, the diagnostic method limits its scope to component malfunctions, using more detailed knowledge of component characteristics. Trained artificial neural networks are used to further narrow the diagnosis and to uniquely identify the faulty component by classifying the abnormal condition data as a failure of one of the hypothesized components through component characteristics. Once an anomaly is detected, the hierarchical structure is used to successively narrow the diagnostic focus from a function misbehavior, i.e., a function oriented approach, until the fault can be determined, i.e., a component characteristic-oriented approach. 9 figs.

  20. Fault-tolerant architecture: Evaluation methodology

    International Nuclear Information System (INIS)

    Battle, R.E.; Kisner, R.A.

    1992-08-01

    The design and reliability of four fault-tolerant architectures that may be used in nuclear power plant control systems were evaluated. Two architectures are variations of triple-modular-redundant (TMR) systems, and two are variations of dual redundant systems. The evaluation includes a review of methods of implementing fault-tolerant control, the importance of automatic recovery from failures, methods of self-testing diagnostics, block diagrams of typical fault-tolerant controllers, review of fault-tolerant controllers operating in nuclear power plants, and fault tree reliability analyses of fault-tolerant systems

  1. Reactor coolant pump monitoring and diagnostic system

    International Nuclear Information System (INIS)

    Singer, R.M.; Gross, K.C.; Walsh, M.; Humenik, K.E.

    1990-01-01

    In order to reliably and safely operate a nuclear power plant, it is necessary to continuously monitor the performance of numerous subsystems to confirm that the plant state is within its prescribed limits. An important function of a properly designed monitoring system is the detection of incipient faults in all subsystems (with the avoidance of false alarms) coupled with an information system that provides the operators with fault diagnosis, prognosis of fault progression and recommended (either automatic or prescriptive) corrective action. In this paper, such a system is described that has been applied to reactor coolant pumps. This system includes a sensitive pattern-recognition technique based upon the sequential probability ratio test (SPRT) that detects incipient faults from validated signals, an expert system embodying knowledge bases on pump and sensor performance, extensive hypertext files containing operating and emergency procedures as well as pump and sensor information and a graphical interface providing the operator with easily perceived information on the location and character of the fault as well as recommended corrective action. This system is in the prototype stage and is currently being validated utilizing data from a liquid-metal cooled fast reactor (EBR-II). 3 refs., 4 figs

  2. Comparative Study of Fault Diagnostic Methods in Voltage Source Inverter Fed Three Phase Induction Motor Drive

    Science.gov (United States)

    Dhumale, R. B.; Lokhande, S. D.

    2017-05-01

    Three phase Pulse Width Modulation inverter plays vital role in industrial applications. The performance of inverter demeans as several types of faults take place in it. The widely used switching devices in power electronics are Insulated Gate Bipolar Transistors (IGBTs) and Metal Oxide Field Effect Transistors (MOSFET). The IGBTs faults are broadly classified as base or collector open circuit fault, misfiring fault and short circuit fault. To develop consistency and performance of inverter, knowledge of fault mode is extremely important. This paper presents the comparative study of IGBTs fault diagnosis. Experimental set up is implemented for data acquisition under various faulty and healthy conditions. Recent methods are executed using MATLAB-Simulink and compared using key parameters like average accuracy, fault detection time, implementation efforts, threshold dependency, and detection parameter, resistivity against noise and load dependency.

  3. A Review Of Fault Tolerant Scheduling In Multicore Systems

    Directory of Open Access Journals (Sweden)

    Shefali Malhotra

    2015-05-01

    Full Text Available Abstract In this paper we have discussed about various fault tolerant task scheduling algorithm for multi core system based on hardware and software. Hardware based algorithm which is blend of Triple Modulo Redundancy and Double Modulo Redundancy in which Agricultural Vulnerability Factor is considered while deciding the scheduling other than EDF and LLF scheduling algorithms. In most of the real time system the dominant part is shared memory.Low overhead software based fault tolerance approach can be implemented at user-space level so that it does not require any changes at application level. Here redundant multi-threaded processes are used. Using those processes we can detect soft errors and recover from them. This method gives low overhead fast error detection and recovery mechanism. The overhead incurred by this method ranges from 0 to 18 for selected benchmarks. Hybrid Scheduling Method is another scheduling approach for real time systems. Dynamic fault tolerant scheduling gives high feasibility rate whereas task criticality is used to select the type of fault recovery method in order to tolerate the maximum number of faults.

  4. A Fault Diagnosis Approach for the Hydraulic System by Artificial Neural Networks

    OpenAIRE

    Xiangyu He; Shanghong He

    2014-01-01

    Based on artificial neural networks, a fault diagnosis approach for the hydraulic system was proposed in this paper. Normal state samples were used as the training data to develop a dynamic general regression neural network (DGRNN) model. The trained DGRNN model then served as the fault determinant to diagnose test faults and the work condition of the hydraulic system was identified. Several typical faults of the hydraulic system were used to verify the fault diagnosis approach. Experiment re...

  5. Aircraft engine sensor fault diagnostics using an on-line OBEM update method.

    Directory of Open Access Journals (Sweden)

    Xiaofeng Liu

    Full Text Available This paper proposed a method to update the on-line health reference baseline of the On-Board Engine Model (OBEM to maintain the effectiveness of an in-flight aircraft sensor Fault Detection and Isolation (FDI system, in which a Hybrid Kalman Filter (HKF was incorporated. Generated from a rapid in-flight engine degradation, a large health condition mismatch between the engine and the OBEM can corrupt the performance of the FDI. Therefore, it is necessary to update the OBEM online when a rapid degradation occurs, but the FDI system will lose estimation accuracy if the estimation and update are running simultaneously. To solve this problem, the health reference baseline for a nonlinear OBEM was updated using the proposed channel controller method. Simulations based on the turbojet engine Linear-Parameter Varying (LPV model demonstrated the effectiveness of the proposed FDI system in the presence of substantial degradation, and the channel controller can ensure that the update process finishes without interference from a single sensor fault.

  6. Estimation of Parametric Fault in Closed-loop Systems

    DEFF Research Database (Denmark)

    Niemann, Hans Henrik; Poulsen, Niels Kjølstad

    2015-01-01

    The aim of this paper is to present a method for estimation of parametric faults in closed-loop systems. The key technology applied in this paper is coprime factorization of both the dynamic system as well as the feedback controller. Using the Youla-Jabr-Bongiorno-Kucera (YJBK) parameterization...

  7. Rapid Transient Fault Insertion in Large Digital Systems

    NARCIS (Netherlands)

    Rohani, A.; Kerkhoff, Hans G.

    This paper presents a technique for rapidtransientfault injection, regarding the CPU time, to perform simulation-based fault-injection in complex System-on-Chip Systems (SoCs). The proposed approach can be applied to complex circuits, as it is not required to modify the top-level modules of a

  8. Effect Analysis of Faults in Digital I and C Systems of Nuclear Power Plants

    Energy Technology Data Exchange (ETDEWEB)

    Lee, Seung Jun; Jung, Won Dea [KAERI, Dajeon (Korea, Republic of); Kim, Man Cheol [Chung-Ang University, Seoul (Korea, Republic of)

    2014-08-15

    A reliability analysis of digital instrumentation and control (I and C) systems in nuclear power plants has been introduced as one of the important elements of a probabilistic safety assessment because of the unique characteristics of digital I and C systems. Digital I and C systems have various features distinguishable from those of analog I and C systems such as software and fault-tolerant techniques. In this work, the faults in a digital I and C system were analyzed and a model for representing the effects of the faults was developed. First, the effects of the faults in a system were analyzed using fault injection experiments. A software-implemented fault injection technique in which faults can be injected into the memory was used based on the assumption that all faults in a system are reflected in the faults in the memory. In the experiments, the effect of a fault on the system output was observed. In addition, the success or failure in detecting the fault by fault-tolerant functions included in the system was identified. Second, a fault tree model for representing that a fault is propagated to the system output was developed. With the model, it can be identified how a fault is propagated to the output or why a fault is not detected by fault-tolerant techniques. Based on the analysis results of the proposed method, it is possible to not only evaluate the system reliability but also identify weak points of fault-tolerant techniques by identifying undetected faults. The results can be reflected in the designs to improve the capability of fault-tolerant techniques.

  9. Effect analysis of faults in digital I and C systems of nuclear power plants

    International Nuclear Information System (INIS)

    Lee, Seung Jun

    2014-01-01

    A reliability analysis of digital instrumentation and control (I and C) systems in nuclear power plants has been introduced as one of the important elements of a probabilistic safety assessment because of the unique characteristics of digital I and C systems. Digital I and C systems have various features distinguishable from those of analog I and C systems such as software and fault-tolerant techniques. In this work, the faults in a digital I and C system were analyzed and a model for representing the effects of the faults was developed. First, the effects of the faults in a system were analyzed using fault injection experiments. A software-implemented fault injection technique in which faults can be injected into the memory was used based on the assumption that all faults in a system are reflected in the faults in the memory. In the experiments, the effect of a fault on the system output was observed. In addition, the success or failure in detecting the fault by fault-tolerant functions included in the system was identified. Second, a fault tree model for representing that a fault is propagated to the system output was developed. With the model, it can be identified how a fault is propagated to the output or why a fault is not detected by fault-tolerant techniques. Based on the analysis results of the proposed method, it is possible to not only evaluate the system reliability but also identify weak points of fault-tolerant techniques by identifying undetected faults. The results can be reflected in the designs to improve the capability of fault-tolerant techniques. (author)

  10. Managing systems faults on the commercial flight deck: Analysis of pilots' organization and prioritization of fault management information

    Science.gov (United States)

    Rogers, William H.

    1993-01-01

    In rare instances, flight crews of commercial aircraft must manage complex systems faults in addition to all their normal flight tasks. Pilot errors in fault management have been attributed, at least in part, to an incomplete or inaccurate awareness of the fault situation. The current study is part of a program aimed at assuring that the types of information potentially available from an intelligent fault management aiding concept developed at NASA Langley called 'Faultfinde' (see Abbott, Schutte, Palmer, and Ricks, 1987) are an asset rather than a liability: additional information should improve pilot performance and aircraft safety, but it should not confuse, distract, overload, mislead, or generally exacerbate already difficult circumstances.

  11. Fault Diagnosis in Dynamic Systems Using Fuzzy Interacting Observers

    Directory of Open Access Journals (Sweden)

    N. V. Kolesov

    2013-01-01

    Full Text Available A method of fault diagnosis in dynamic systems based on a fuzzy approach is proposed. The new method possesses two basic specific features which distinguish it from the other known fuzzy methods based on the application of fuzzy logic and a bank of state observers. First, this method uses a bank of interacting observers instead of traditional independent observers. The second specific feature of the proposed method is the assumption that there is no strict boundary between the serviceable and disabled technical states of the system, which makes it possible to specify a decision making rule for fault diagnosis.

  12. Diagnosis and fault-tolerant control

    CERN Document Server

    Blanke, Mogens; Lunze, Jan; Staroswiecki, Marcel

    2016-01-01

    Fault-tolerant control aims at a gradual shutdown response in automated systems when faults occur. It satisfies the industrial demand for enhanced availability and safety, in contrast to traditional reactions to faults, which bring about sudden shutdowns and loss of availability. The book presents effective model-based analysis and design methods for fault diagnosis and fault-tolerant control. Architectural and structural models are used to analyse the propagation of the fault through the process, to test the fault detectability and to find the redundancies in the process that can be used to ensure fault tolerance. It also introduces design methods suitable for diagnostic systems and fault-tolerant controllers for continuous processes that are described by analytical models of discrete-event systems represented by automata. The book is suitable for engineering students, engineers in industry and researchers who wish to get an overview of the variety of approaches to process diagnosis and fault-tolerant contro...

  13. Design a Fault Tolerance for Real Time Distributed System

    OpenAIRE

    Ban M. Khammas

    2012-01-01

    This paper designed a fault tolerance for soft real time distributed system (FTRTDS). This system is designed to be independently on specific mechanisms and facilities of the underlying real time distributed system. It is designed to be distributed on all the computers in the distributed system and controlled by a central unit.Besides gathering information about a target program spontaneously, it provides information about the target operating system and the target hardware in order to diagno...

  14. Fault trees for decision making in systems analysis

    International Nuclear Information System (INIS)

    Lambert, H.E.

    1975-01-01

    The application of fault tree analysis (FTA) to system safety and reliability is presented within the framework of system safety analysis. The concepts and techniques involved in manual and automated fault tree construction are described and their differences noted. The theory of mathematical reliability pertinent to FTA is presented with emphasis on engineering applications. An outline of the quantitative reliability techniques of the Reactor Safety Study is given. Concepts of probabilistic importance are presented within the fault tree framework and applied to the areas of system design, diagnosis and simulation. The computer code IMPORTANCE ranks basic events and cut sets according to a sensitivity analysis. A useful feature of the IMPORTANCE code is that it can accept relative failure data as input. The output of the IMPORTANCE code can assist an analyst in finding weaknesses in system design and operation, suggest the most optimal course of system upgrade, and determine the optimal location of sensors within a system. A general simulation model of system failure in terms of fault tree logic is described. The model is intended for efficient diagnosis of the causes of system failure in the event of a system breakdown. It can also be used to assist an operator in making decisions under a time constraint regarding the future course of operations. The model is well suited for computer implementation. New results incorporated in the simulation model include an algorithm to generate repair checklists on the basis of fault tree logic and a one-step-ahead optimization procedure that minimizes the expected time to diagnose system failure. (80 figures, 20 tables)

  15. Identification of active fault using analysis of derivatives with vertical second based on gravity anomaly data (Case study: Seulimeum fault in Sumatera fault system)

    Science.gov (United States)

    Hududillah, Teuku Hafid; Simanjuntak, Andrean V. H.; Husni, Muhammad

    2017-07-01

    Gravity is a non-destructive geophysical technique that has numerous application in engineering and environmental field like locating a fault zone. The purpose of this study is to spot the Seulimeum fault system in Iejue, Aceh Besar (Indonesia) by using a gravity technique and correlate the result with geologic map and conjointly to grasp a trend pattern of fault system. An estimation of subsurface geological structure of Seulimeum fault has been done by using gravity field anomaly data. Gravity anomaly data which used in this study is from Topex that is processed up to Free Air Correction. The step in the Next data processing is applying Bouger correction and Terrin Correction to obtain complete Bouger anomaly that is topographically dependent. Subsurface modeling is done using the Gav2DC for windows software. The result showed a low residual gravity value at a north half compared to south a part of study space that indicated a pattern of fault zone. Gravity residual was successfully correlate with the geologic map that show the existence of the Seulimeum fault in this study space. The study of earthquake records can be used for differentiating the active and non active fault elements, this gives an indication that the delineated fault elements are active.

  16. Chaos Synchronization Based Novel Real-Time Intelligent Fault Diagnosis for Photovoltaic Systems

    Directory of Open Access Journals (Sweden)

    Chin-Tsung Hsieh

    2014-01-01

    Full Text Available The traditional solar photovoltaic fault diagnosis system needs two to three sets of sensing elements to capture fault signals as fault features and many fault diagnosis methods cannot be applied with real time. The fault diagnosis method proposed in this study needs only one set of sensing elements to intercept the fault features of the system, which can be real-time-diagnosed by creating the fault data of only one set of sensors. The aforesaid two points reduce the cost and fault diagnosis time. It can improve the construction of the huge database. This study used Matlab to simulate the faults in the solar photovoltaic system. The maximum power point tracker (MPPT is used to keep a stable power supply to the system when the system has faults. The characteristic signal of system fault voltage is captured and recorded, and the dynamic error of the fault voltage signal is extracted by chaos synchronization. Then, the extension engineering is used to implement the fault diagnosis. Finally, the overall fault diagnosis system only needs to capture the voltage signal of the solar photovoltaic system, and the fault type can be diagnosed instantly.

  17. Magnetometric and gravimetric surveys in fault detection over Acambay System

    Science.gov (United States)

    García-Serrano, A.; Sanchez-Gonzalez, J.; Cifuentes-Nava, G.

    2013-05-01

    In commemoration of the centennial of the Acambay intraplate earthquake of November 19th 1912, we carry out gravimetric and magnetometric surveys to define the structure of faults caused by this event. The study area is located approximately 11 km south of Acambay, in the Acambay-Tixmadeje fault system, where we performed two magnetometric surveys, the first consisting of 17 lines with a spacing of 35m between lines and 5m between stations, and the second with a total of 12 lines with the same spacing, both NW. In addition to these two lines we performed gravimetric profiles located in the central part of each magnetometric survey, with a spacing of 25m between stations, in order to correlate the results of both techniques, the lengths of such profiles were of 600m and 550m respectively. This work describes the data processing including directional derivatives, analytical signal and inversion, by means of which we obtain results of magnetic variations and anomaly traits highly correlated with those faults. It is of great importance to characterize these faults given the large population growth in the area and settlement houses on them, which involves a high risk in the security of the population, considering that these are active faults and cannot be discard earthquakes associated with them, so it is necessary for the authorities and people have relevant information to these problem.

  18. Fracture surface energy of the Punchbowl fault, San Andreas system.

    Science.gov (United States)

    Chester, Judith S; Chester, Frederick M; Kronenberg, Andreas K

    2005-09-01

    Fracture energy is a form of latent heat required to create an earthquake rupture surface and is related to parameters governing rupture propagation and processes of slip weakening. Fracture energy has been estimated from seismological and experimental rock deformation data, yet its magnitude, mechanisms of rupture surface formation and processes leading to slip weakening are not well defined. Here we quantify structural observations of the Punchbowl fault, a large-displacement exhumed fault in the San Andreas fault system, and show that the energy required to create the fracture surface area in the fault is about 300 times greater than seismological estimates would predict for a single large earthquake. If fracture energy is attributed entirely to the production of fracture surfaces, then all of the fracture surface area in the Punchbowl fault could have been produced by earthquake displacements totalling <1 km. But this would only account for a small fraction of the total energy budget, and therefore additional processes probably contributed to slip weakening during earthquake rupture.

  19. Enhanced Bank of Kalman Filters Developed and Demonstrated for In-Flight Aircraft Engine Sensor Fault Diagnostics

    Science.gov (United States)

    Kobayashi, Takahisa; Simon, Donald L.

    2005-01-01

    In-flight sensor fault detection and isolation (FDI) is critical to maintaining reliable engine operation during flight. The aircraft engine control system, which computes control commands on the basis of sensor measurements, operates the propulsion systems at the demanded conditions. Any undetected sensor faults, therefore, may cause the control system to drive the engine into an undesirable operating condition. It is critical to detect and isolate failed sensors as soon as possible so that such scenarios can be avoided. A challenging issue in developing reliable sensor FDI systems is to make them robust to changes in engine operating characteristics due to degradation with usage and other faults that can occur during flight. A sensor FDI system that cannot appropriately account for such scenarios may result in false alarms, missed detections, or misclassifications when such faults do occur. To address this issue, an enhanced bank of Kalman filters was developed, and its performance and robustness were demonstrated in a simulation environment. The bank of filters is composed of m + 1 Kalman filters, where m is the number of sensors being used by the control system and, thus, in need of monitoring. Each Kalman filter is designed on the basis of a unique fault hypothesis so that it will be able to maintain its performance if a particular fault scenario, hypothesized by that particular filter, takes place.

  20. Nondestructive detection system of faults in fuses using radioisotope

    International Nuclear Information System (INIS)

    Goncalves, D.

    1973-01-01

    A system is developed to show the viability of non-destructive detection of the faults of explosive safety fuses which are manufactured by Fabrica da Estrela do Ministerio do Exercito. The faults are detected by an ion-chamber based on the variation of the intensity of the beta particles that penetrate the fuse which passes through a collimator. The beta particles are emitted by Strontium-90 + Yttrium-90 encapsulated in either stainless steel or aluminum. The concept of 'bucking Voltage' is applied to differentiate electronically the signal generated by the ion-chamber. (author)

  1. Fault-tolerant clock synchronization validation methodology. [in computer systems

    Science.gov (United States)

    Butler, Ricky W.; Palumbo, Daniel L.; Johnson, Sally C.

    1987-01-01

    A validation method for the synchronization subsystem of a fault-tolerant computer system is presented. The high reliability requirement of flight-crucial systems precludes the use of most traditional validation methods. The method presented utilizes formal design proof to uncover design and coding errors and experimentation to validate the assumptions of the design proof. The experimental method is described and illustrated by validating the clock synchronization system of the Software Implemented Fault Tolerance computer. The design proof of the algorithm includes a theorem that defines the maximum skew between any two nonfaulty clocks in the system in terms of specific system parameters. Most of these parameters are deterministic. One crucial parameter is the upper bound on the clock read error, which is stochastic. The probability that this upper bound is exceeded is calculated from data obtained by the measurement of system parameters. This probability is then included in a detailed reliability analysis of the system.

  2. A Ship Propulsion System Model for Fault-tolerant Control

    DEFF Research Database (Denmark)

    Izadi-Zamanabadi, Roozbeh; Blanke, M.

    This report presents a propulsion system model for a low speed marine vehicle, which can be used as a test benchmark for Fault-Tolerant Control purposes. The benchmark serves the purpose of offering realistic and challenging problems relevant in both FDI and (autonomous) supervisory control area...

  3. Dynamics model for real time diagnostics of Triga RC-1 system

    International Nuclear Information System (INIS)

    Gadomski, A.M.; Nanni, V.; Meo, G.

    1988-01-01

    This paper presents dynamics model of TRIGA RC-1 reactor system. The model is dedicated to the real-time early fault detection during a reactor operation in one week exploitation cycle. The algorithms are specially suited for real-time, long time and also accelerated simulations with assumed diagnostic oriented accuracy. The approximations, modular structure, numerical methods and validation are discussed. The elaborated model will be build in the TRIGA Supervisor System and TRIGA Diagnostic Simulator

  4. Dynamics model for real time diagnostics of TRIGA RC-1 system

    International Nuclear Information System (INIS)

    Gadomski, A.M.; Nanni, V.; Meo, G.B.

    1986-01-01

    This paper presents dynamics model of TRIGA RC-1 reactor system. The model is dedicated to the real-time early fault detection during a reactor operation in one week exploitation cycle. The algorithms are specially suited for real-time, long time and also accelerated simulations with assumed diagnostic oriented accuracy. The approximations, modular structure, numerical methods and validation are discussed. The elaborated model will be build in the TRIGA Supervisory System and TRIGA Diagnostic Simulator. (author)

  5. Model-based Diagnostics for Propellant Loading Systems

    Data.gov (United States)

    National Aeronautics and Space Administration — The loading of spacecraft propellants is a complex, risky operation. Therefore, diagnostic solutions are neces- sary to quickly identify when a fault occurs, so that...

  6. Fault Ride Through Capability Enhancement of a Large-Scale PMSG Wind System with Bridge Type Fault Current Limiters

    Directory of Open Access Journals (Sweden)

    ALAM, M. S.

    2018-02-01

    Full Text Available In this paper, bridge type fault current limiter (BFCL is proposed as a potential solution to the fault problems of permanent magnet synchronous generator (PMSG based large-scale wind energy system. As PMSG wind system is more vulnerable to disturbances, it is essential to guarantee the stability during severe disturbances by enhancing the fault ride through capability. BFCL controller has been designed to insert resistance and inductance during the inception of system disturbances in order to limit fault current. Constant capacitor voltage has been maintained by the grid voltage source converter (GVSC controller while current extraction or injection has been achieved by machine VSC (MVSC controller. Symmetrical and unsymmetrical faults have been applied in the system to show the effectiveness of the proposed BFCL solution. PMSG wind system, BFCL and their controllers have been implemented by real time hardware in loop (RTHIL setup with real time digital simulator (RTDS and dSPACE. Another significant feature of this work is that the performance of the proposed BFCL is compared with that of series dynamic braking resistor (SDBR. Comparative RTHIL implementation results show that the proposed BFCL is very efficient in improving system fault ride through capability by limiting the fault current and outperforms SDBR.

  7. Probabilistic techniques using Monte Carlo sampling for multi- component system diagnostics

    International Nuclear Information System (INIS)

    Aumeier, S.E.; Lee, J.C.; Akcasu, A.Z.

    1995-01-01

    We outline the structure of a new approach at multi-component system fault diagnostics which utilizes detailed system simulation models, uncertain system observation data, statistical knowledge of system parameters, expert opinion, and component reliability data in an effort to identify incipient component performance degradations of arbitrary number and magnitude. The technique involves the use of multiple adaptive Kalman filters for fault estimation, the results of which are screened using standard hypothesis testing procedures to define a set of component events that could have transpired. Latin Hypercube sample each of these feasible component events in terms of uncertain component reliability data and filter estimates. The capabilities of the procedure are demonstrated through the analysis of a simulated small magnitude binary component fault in a boiling water reactor balance of plant. The results show that the procedure has the potential to be a very effective tool for incipient component fault diagnosis

  8. Tools for functional analysis of faults and methods of fault-stable motion control

    International Nuclear Information System (INIS)

    Timofeev, A.V.

    2003-01-01

    In this article a big attention is given to the problems of functional diagnostics, when control and faults diagnostics are made in real time simultaneously in the process of functioning of controlled dynamical systems

  9. Algorithmic acquisition of diagnostic patterns in district heating billing system

    International Nuclear Information System (INIS)

    Kiluk, Sebastian

    2012-01-01

    An application of algorithmic exploration of billing data is examined for fault detection, diagnosis (FDD) based on evaluation of present state and detection of unexpected changes in energy efficiency of buildings. Large data sets from district heating (DH) billing systems are used for construction of feature space, diagnostic rules and classification of the buildings according to their energy efficiency properties. The algorithmic approach automates discovering knowledge about common, thus accepted changes in buildings’ properties, in equipment and in habitants’ behavior reflecting progress in technology and life style. In this article implementation of Data Mining and Knowledge Discovery (DMKD) method in supervision system with exemplary results based on real data is presented. Crucial steps of data processing influencing diagnostic results are described in details.

  10. Development and Evaluation of Fault-Tolerant Flight Control Systems

    Science.gov (United States)

    Song, Yong D.; Gupta, Kajal (Technical Monitor)

    2004-01-01

    The research is concerned with developing a new approach to enhancing fault tolerance of flight control systems. The original motivation for fault-tolerant control comes from the need for safe operation of control elements (e.g. actuators) in the event of hardware failures in high reliability systems. One such example is modem space vehicle subjected to actuator/sensor impairments. A major task in flight control is to revise the control policy to balance impairment detectability and to achieve sufficient robustness. This involves careful selection of types and parameters of the controllers and the impairment detecting filters used. It also involves a decision, upon the identification of some failures, on whether and how a control reconfiguration should take place in order to maintain a certain system performance level. In this project new flight dynamic model under uncertain flight conditions is considered, in which the effects of both ramp and jump faults are reflected. Stabilization algorithms based on neural network and adaptive method are derived. The control algorithms are shown to be effective in dealing with uncertain dynamics due to external disturbances and unpredictable faults. The overall strategy is easy to set up and the computation involved is much less as compared with other strategies. Computer simulation software is developed. A serious of simulation studies have been conducted with varying flight conditions.

  11. Fault diagnosis system of electromagnetic valve using neural network filter

    International Nuclear Information System (INIS)

    Hayashi, Shoji; Odaka, Tomohiro; Kuroiwa, Jousuke; Ogura, Hisakazu

    2008-01-01

    This paper is concerned with the gas leakage fault detection of electromagnetic valve using a neural network filter. In modern plants, the ability to detect and identify gas leakage faults is becoming increasingly important. The main difficulty in detecting gas leakage faults by sound signals lies in the fact that the practical plants are usually very noisy. To solve this difficulty, a neural network filter is used to eliminate background noise and raise the signal noise ratio of the sound signal. The background noise is assumed as a dynamic system, and an accurate mathematical model of the dynamic system can be established using a neural network filter. The predicted error between predicted values and practical ones constitutes the output of the filter. If the predicted error is zero, then there is no leakage. If the predicted error is greater than a certain value, then there is a leakage fault. Through application to practical pneumatic systems, it is verified that the neural network filter was effective in gas leakage detection. (author)

  12. Fuzzy Concurrent Object Oriented Expert System for Fault Diagnosis in 8085 Microprocessor Based System Board

    OpenAIRE

    Mr.D. V. Kodavade; Dr. Mrs.S.D.Apte

    2014-01-01

    With the acceptance of artificial intelligence paradigm, a number of successful artificial intelligence systems were created. Fault diagnosis in microprocessor based boards needs lot of empirical knowledge and expertise and is a true artificial intelligence problem. Research on fault diagnosis in microprocessor based system boards using new fuzzy-object oriented approach is presented in this paper. There are many uncertain situations observed during fault diagnosis. These uncertain situations...

  13. Application Research of Fault Tree Analysis in Grid Communication System Corrective Maintenance

    Science.gov (United States)

    Wang, Jian; Yang, Zhenwei; Kang, Mei

    2018-01-01

    This paper attempts to apply the fault tree analysis method to the corrective maintenance field of grid communication system. Through the establishment of the fault tree model of typical system and the engineering experience, the fault tree analysis theory is used to analyze the fault tree model, which contains the field of structural function, probability importance and so on. The results show that the fault tree analysis can realize fast positioning and well repairing of the system. Meanwhile, it finds that the analysis method of fault tree has some guiding significance to the reliability researching and upgrading f the system.

  14. Machinery Fault Diagnosis Using Two-Channel Analysis Method Based on Fictitious System Frequency Response Function

    Directory of Open Access Journals (Sweden)

    Kihong Shin

    2015-01-01

    Full Text Available Most existing techniques for machinery health monitoring that utilize measured vibration signals usually require measurement points to be as close as possible to the expected fault components of interest. This is particularly important for implementing condition-based maintenance since the incipient fault signal power may be too small to be detected if a sensor is located further away from the fault source. However, a measurement sensor is often not attached to the ideal point due to geometric or environmental restrictions. In such a case, many of the conventional diagnostic techniques may not be successfully applicable. In this paper, a two-channel analysis method is proposed to overcome such difficulty. It uses two vibration signals simultaneously measured at arbitrary points in a machine. The proposed method is described theoretically by introducing a fictitious system frequency response function. It is then verified experimentally for bearing fault detection. The results show that the suggested method may be a good alternative when ideal points for measurement sensors are not readily available.

  15. Reliable, fault tolerant control systems for nuclear generating stations

    International Nuclear Information System (INIS)

    McNeil, T.O.; Olmstead, R.A.; Schafer, S.

    1990-01-01

    Two operational features of CANDU Nuclear Power Stations provide for high plant availability. First, the plant re-fuels on-line, thereby eliminating the need for periodic and lengthy refuelling 'outages'. Second, the all plants are controlled by real-time computer systems. Later plants are also protected using real-time computer systems. In the past twenty years, the control systems now operating in 21 plants have achieved an availability of 99.8%, making significant contributions to high CANDU plant capacity factors. This paper describes some of the features that ensure the high degree of system fault tolerance and hence high plant availability. The emphasis will be placed on the fault tolerant features of the computer systems included in the latest reactor design - the CANDU 3 (450MWe). (author)

  16. Calculation of critical fault recovery time for nonlinear systems based on region of attraction analysis

    DEFF Research Database (Denmark)

    Tabatabaeipour, Mojtaba; Blanke, Mogens

    2014-01-01

    of a system. It must be guaranteed that the trajectory of a system subject to fault remains in the region of attraction (ROA) of the post-fault system during this time. This paper proposes a new algorithm to compute the critical fault recovery time for nonlinear systems with polynomial vector elds using sum...

  17. Methods for Fault Diagnosability Analysis of a Class of Affine Nonlinear Systems

    Directory of Open Access Journals (Sweden)

    Xiafu Peng

    2015-01-01

    Full Text Available The fault diagnosability analysis for a given model, before developing a diagnosis algorithm, can be used to answer questions like “can the fault fi be detected by observed states?” and “can it separate fault fi from fault fj by observed states?” If not, we should redesign the sensor placement. This paper deals with the problem of the evaluation of detectability and separability for the diagnosability analysis of affine nonlinear system. First, we used differential geometry theory to analyze the nonlinear system and proposed new detectability criterion and separability criterion. Second, the related matrix between the faults and outputs of the system and the fault separable matrix are designed for quantitative fault diagnosability calculation and fault separability calculation, respectively. Finally, we illustrate our approach to exemplify how to analyze diagnosability by a certain nonlinear system example, and the experiment results indicate the effectiveness of the fault evaluation methods.

  18. Analytical Redundancy Design for Aeroengine Sensor Fault Diagnostics Based on SROS-ELM

    Directory of Open Access Journals (Sweden)

    Jun Zhou

    2016-01-01

    Full Text Available Analytical redundancy technique is of great importance to guarantee the reliability and safety of aircraft engine system. In this paper, a machine learning based aeroengine sensor analytical redundancy technique is developed and verified through hardware-in-the-loop (HIL simulation. The modified online sequential extreme learning machine, selective updating regularized online sequential extreme learning machine (SROS-ELM, is employed to train the model online and estimate sensor measurements. It selectively updates the output weights of neural networks according to the prediction accuracy and the norm of output weight vector, tackles the problems of singularity and ill-posedness by regularization, and adopts a dual activation function in the hidden nodes combing neural and wavelet theory to enhance prediction capability. The experimental results verify the good generalization performance of SROS-ELM and show that the developed analytical redundancy technique for aeroengine sensor fault diagnosis based on SROS-ELM is effective and feasible.

  19. Reliability modeling of digital component in plant protection system with various fault-tolerant techniques

    International Nuclear Information System (INIS)

    Kim, Bo Gyung; Kang, Hyun Gook; Kim, Hee Eun; Lee, Seung Jun; Seong, Poong Hyun

    2013-01-01

    Highlights: • Integrated fault coverage is introduced for reflecting characteristics of fault-tolerant techniques in the reliability model of digital protection system in NPPs. • The integrated fault coverage considers the process of fault-tolerant techniques from detection to fail-safe generation process. • With integrated fault coverage, the unavailability of repairable component of DPS can be estimated. • The new developed reliability model can reveal the effects of fault-tolerant techniques explicitly for risk analysis. • The reliability model makes it possible to confirm changes of unavailability according to variation of diverse factors. - Abstract: With the improvement of digital technologies, digital protection system (DPS) has more multiple sophisticated fault-tolerant techniques (FTTs), in order to increase fault detection and to help the system safely perform the required functions in spite of the possible presence of faults. Fault detection coverage is vital factor of FTT in reliability. However, the fault detection coverage is insufficient to reflect the effects of various FTTs in reliability model. To reflect characteristics of FTTs in the reliability model, integrated fault coverage is introduced. The integrated fault coverage considers the process of FTT from detection to fail-safe generation process. A model has been developed to estimate the unavailability of repairable component of DPS using the integrated fault coverage. The new developed model can quantify unavailability according to a diversity of conditions. Sensitivity studies are performed to ascertain important variables which affect the integrated fault coverage and unavailability

  20. MTX [Microwave Tokamak Experiment] plasma diagnostic system

    International Nuclear Information System (INIS)

    Rice, B.W.; Hooper, E.B.; Brooksby, C.A.

    1987-01-01

    In this paper, a general overview of the MTX plasma diagnostics system is given. This includes a description of the MTX machine configuration and the overall facility layout. The data acquisition system and techniques for diagnostic signal transmission are also discussed. In addition, the diagnostic instruments planned for both an initial ohmic-heating set and a second FEL-heating set are described. The expected range of plasma parameters along with the planned plasma measurements will be reviewed. 7 refs., 5 figs

  1. ATA diagnostic data handling system: an overview

    International Nuclear Information System (INIS)

    Chambers, F.W.; Kallman, J.; McDonald, J.; Slominski, M.

    1984-01-01

    The functions to be performed by the ATA diagnostic data handling system are discussed. The capabilities of the present data acquisition system (System 0) are presented. The goals for the next generation acquisition system (System 1), currently under design, are discussed. Facilities on the Octopus system for data handling are reviewed. Finally, we discuss what has been learned about diagnostics and computer based data handling during the past year

  2. Systems analysis approach to probabilistic modeling of fault trees

    International Nuclear Information System (INIS)

    Bartholomew, R.J.; Qualls, C.R.

    1985-01-01

    A method of probabilistic modeling of fault tree logic combined with stochastic process theory (Markov modeling) has been developed. Systems are then quantitatively analyzed probabilistically in terms of their failure mechanisms including common cause/common mode effects and time dependent failure and/or repair rate effects that include synergistic and propagational mechanisms. The modeling procedure results in a state vector set of first order, linear, inhomogeneous, differential equations describing the time dependent probabilities of failure described by the fault tree. The solutions of this Failure Mode State Variable (FMSV) model are cumulative probability distribution functions of the system. A method of appropriate synthesis of subsystems to form larger systems is developed and applied to practical nuclear power safety systems

  3. Architecture and Fault Identification of Wide-area Protection System

    Directory of Open Access Journals (Sweden)

    Yuxue Wang

    2012-09-01

    Full Text Available Wide-area protection system (WAPS is widely studied for the purpose of improvng the performance of conventional backup protection. In this paper, the system architecture of WAPS is proposed and its key technologies are discussed in view of engineering projects. So a mixed structurecentralized-distributed structure which is more suitable for WAPS in limited power grid region, is obtained based on the advantages of the centralized structure and distributed structure. Furthermore, regional distance protection algorithm was taken as an example to illustrate the functions of the constituent units. Faulted components can be detected based on multi-source imformation fuse in the algorithm. And the algorithm cannot only improve the selectivity, the rapidity, and the reliability of relaying protection but also has high fault tolerant capability. A simulation of 220 kV grid systems in Easter Hubei province shows the effectiveness of the wide-area protection system presented by this paper.

  4. A new digital ground-fault protection system for generator-transformer unit

    Energy Technology Data Exchange (ETDEWEB)

    Zielichowski, Mieczyslaw; Szlezak, Tomasz [Institute of Electrical Power Engineering, Wroclaw University of Technology, Wybrzeze Wyspianskiego 27, 50370 Wroclaw (Poland)

    2007-08-15

    Ground faults are one of most often reasons of damages in stator windings of large generators. Under certain conditions, as a result of ground-fault protection systems maloperation, ground faults convert into high-current faults, causing severe failures in power system. Numerous publications in renowned journals and magazines testify about ground-fault matter importance and problems reported by exploitators confirm opinions, that some issues concerning ground-fault protection of large generators have not been solved yet or have been solved insufficiently. In this paper a new conception of a digital ground-fault protection system for stator winding of large generator was proposed. The process of intermittent arc ground fault in stator winding has been briefly discussed and actual ground-fault voltage waveforms were presented. A new relaying algorithm, based on third harmonic voltage measurement was also drawn and the methods of its implementation and testing were described. (author)

  5. Doubly Fed Induction Generator Wind Turbine Systems Subject to Recurring Symmetrical Grid Faults

    DEFF Research Database (Denmark)

    Chen, Wenjie; Blaabjerg, Frede; Zhu, Nan

    2016-01-01

    New grid codes demand the wind turbine systems to ride through recurring grid faults. In this paper, the performance of the doubly Ffed induction generator (DFIG) wind turbine system under recurring symmetrical grid faults is analyzed. The mathematical model of the DFIG under recurring symmetrical...... grid faults is established. The analysis is based on the DFIG wind turbine system with the typical low-voltage ride-through strategy-with rotor-side crowbar. The stator natural flux produced by the voltage recovery after the first grid fault may be superposed on the stator natural flux produced...... by the second grid fault, so that the transient rotor and stator current and torque fluctuations under the second grid fault may be influenced by the characteristic of the first grid fault, including the voltage dips level and the grid fault angle, as well as the duration between two faults. The mathematical...

  6. Application of Joint Parameter Identification and State Estimation to a Fault-Tolerant Robot System

    DEFF Research Database (Denmark)

    Sun, Zhen; Yang, Zhenyu

    2011-01-01

    The joint parameter identification and state estimation technique is applied to develop a fault-tolerant space robot system. The potential faults in the considered system are abrupt parametric faults, which indicate that some system parameters will immediately deviate from their nominal values...

  7. Estimating Rates of Fault Insertion and Test Effectiveness in Software Systems

    Science.gov (United States)

    Nikora, A.; Munson, J.

    1998-01-01

    In developing a software system, we would like to estimate the total number of faults inserted into a software system, the residual fault content of that system at any given time, and the efficacy of the testing activity in executing the code containing the newly inserted faults.

  8. EKF-based fault detection for guided missiles flight control system

    Science.gov (United States)

    Feng, Gang; Yang, Zhiyong; Liu, Yongjin

    2017-03-01

    The guided missiles flight control system is essential for guidance accuracy and kill probability. It is complicated and fragile. Since actuator faults and sensor faults could seriously affect the security and reliability of the system, fault detection for missiles flight control system is of great significance. This paper deals with the problem of fault detection for the closed-loop nonlinear model of the guided missiles flight control system in the presence of disturbance. First, set up the fault model of flight control system, and then design the residual generation based on the extended Kalman filter (EKF) for the Eulerian-discrete fault model. After that, the Chi-square test was selected for the residual evaluation and the fault detention task for guided missiles closed-loop system was accomplished. Finally, simulation results are provided to illustrate the effectiveness of the approach proposed in the case of elevator fault separately.

  9. Fault tolerant aggregation for power system services

    DEFF Research Database (Denmark)

    Kosek, Anna Magdalena; Gehrke, Oliver; Kullmann, Daniel

    2013-01-01

    number of small units. A common approach is to aggregate a portfolio of such units together and expose them to the power system as a single large virtual unit. In order to realize the vision of a Smart Grid, concepts for flexible, resilient and reliable aggregation infrastructures are required......Exploiting the flexibility in distributed energy resources (DER) is seen as an important contribution to allow high penetrations of renewable generation in electrical power systems. However, the present control infrastructure in power systems is not well suited for the integration of a very large...

  10. SIFT - Design and analysis of a fault-tolerant computer for aircraft control. [Software Implemented Fault Tolerant systems

    Science.gov (United States)

    Wensley, J. H.; Lamport, L.; Goldberg, J.; Green, M. W.; Levitt, K. N.; Melliar-Smith, P. M.; Shostak, R. E.; Weinstock, C. B.

    1978-01-01

    SIFT (Software Implemented Fault Tolerance) is an ultrareliable computer for critical aircraft control applications that achieves fault tolerance by the replication of tasks among processing units. The main processing units are off-the-shelf minicomputers, with standard microcomputers serving as the interface to the I/O system. Fault isolation is achieved by using a specially designed redundant bus system to interconnect the processing units. Error detection and analysis and system reconfiguration are performed by software. Iterative tasks are redundantly executed, and the results of each iteration are voted upon before being used. Thus, any single failure in a processing unit or bus can be tolerated with triplication of tasks, and subsequent failures can be tolerated after reconfiguration. Independent execution by separate processors means that the processors need only be loosely synchronized, and a novel fault-tolerant synchronization method is described.

  11. Structural Design of Systems with Safe Behavior under Single and Multiple Faults

    DEFF Research Database (Denmark)

    Blanke, Mogens; Staroswiecki, Marcel

    2006-01-01

    Handling of multiple simultaneous faults is a complex issue in fault-tolerant control. The design task is particularly made difficult by to the numerous different cases that need be analyzed. Aiming at safe fault-handling, this paper shows how structural analysis can be applied to find...... to structural analysis to disclose which faults could be isolated from a structural point of view using active fault isolation. Results from application on a marine control system illustrate the concepts....... the analytical redundancy relations for all relevant combinations of faults, and can cope with the complexity and size of a real system. Being essential for fault-tolerant control schemes that shall handle particular cases of faults/failures, fault isolation is addressed. The paper introduces an extension...

  12. The Trans-Rocky Mountain Fault System - A Fundamental Precambrian Strike-Slip System

    Science.gov (United States)

    Sims, P.K.

    2009-01-01

    Recognition of a major Precambrian continental-scale, two-stage conjugate strike-slip fault system - here designated as the Trans-Rocky Mountain fault system - provides new insights into the architecture of the North American continent. The fault system consists chiefly of steep linear to curvilinear, en echelon, braided and branching ductile-brittle shears and faults, and local coeval en echelon folds of northwest strike, that cut indiscriminately across both Proterozoic and Archean cratonic elements. The fault system formed during late stages of two distinct tectonic episodes: Neoarchean and Paleoproterozoic orogenies at about 2.70 and 1.70 billion years (Ga). In the Archean Superior province, the fault system formed (about 2.70-2.65 Ga) during a late stage of the main deformation that involved oblique shortening (dextral transpression) across the region and progressed from crystal-plastic to ductile-brittle deformation. In Paleoproterozoic terranes, the fault system formed about 1.70 Ga, shortly following amalgamation of Paleoproterozoic and Archean terranes and the main Paleoproterozoic plastic-fabric-producing events in the protocontinent, chiefly during sinistral transpression. The postulated driving force for the fault system is subcontinental mantle deformation, the bottom-driven deformation of previous investigators. This model, based on seismic anisotropy, invokes mechanical coupling and subsequent shear between the lithosphere and the asthenosphere such that a major driving force for plate motion is deep-mantle flow.

  13. Fault Detection Coverage Quantification of Automatic Test Functions of Digital I and C System in NPPs

    International Nuclear Information System (INIS)

    Choi, Jong Gyun; Lee, Seung Jun; Hur, Seop; Lee, Young Jun; Jang, Seung Cheol

    2011-01-01

    Recently, analog instrument and control (I and C) systems in nuclear power plants (NPPs) have been replaced with digital systems for safer and more efficient operations. Digital I and C systems have adopted various fault-tolerant techniques that help the system correctly and safely perform the specific required functions in spite of the presence of faults. Each fault-tolerant technique has a different inspection period from real-time monitoring to monthly testing. The range covered by each fault-tolerant technique is also different. The digital I and C system, therefore, adopts multiple barriers consisting of various fault-tolerant techniques to increase total fault detection coverage. Even though these fault-tolerant techniques are adopted to ensure and improve the safety of a system, their effects have not been properly considered yet in most PSA models. Therefore, it is necessary to develop an evaluation method that can describe these features of a digital I and C system. Several issues must be considered in the fault coverage estimation of a digital I and C system, and two of them were handled in this work. The first is to quantify the fault coverage of each fault-tolerant technique implemented in the system, and the second is to exclude the duplicated effect of fault-tolerant techniques implemented simultaneously at each level of the system's hierarchy, as a fault occurring in a system might be detected by one or more fault-tolerant techniques. For this work, fault injection experiment was used to obtain the exact relations between faults and multiple barriers of fault-tolerant techniques. This experiment was applied to a bistable processor (BP) of a reactor protection system

  14. Meteoric water in normal fault systems: Oxygen and hydrogen isotopic measurements on authigenic phases in brittle fault rocks

    Science.gov (United States)

    Haines, S. H.; Anderson, R.; Mulch, A.; Solum, J. G.; Valley, J. W.; van der Pluijm, B. A.

    2009-12-01

    The nature of fluid circulation systems in normal fault systems is fundamental to understanding the nature of fluid movement within the upper crust, and has important implications for the on-going controversy about the strength of faults. Authigenic phases in clay gouges and fault breccias record the isotopic signature of the fluids they formed in equilibrium with, and can be used to understand the ‘plumbing system’ of brittle fault environments. We obtained paired oxygen and hydrogen isotopic measurements on authigenic illite and/or smectite in clay gouge from normal faults in two geologic environments, 1.) low-angle normal faults (Ruby Mountains detachment, NV; Badwater Turtleback, CA; Panamint range-front detachment; CA; Amargosa detachment; CA; Waterman Hills detachment, CA), and 2.) An intracratonic high-angle normal fault (Moab Fault, UT). All authigenic phases in these clay gouges are moderately light isotopically with respect to oxygen (illite δ18O -2.0 - + 11.5 ‰ SMOW, smectite δ18O +3.6 and 17.9 ‰) and very light isotopically with respect to hydrogen (illite δD -148 to -98 ‰ SMOW, smectite δD -147 to -92 ‰). Fluid compositions calculated from the authigenic clays at temperatures of 50 - 130 ○C (as indicated by clay mineralogy) indicate that both illite and smectite in normal fault clay gouge formed in the presence of near-pristine to moderately-evolved meteoric fluids and that igneous or metamorphic fluids are not involved in clay gouge formation in these normal fault settings. We also obtained paired oxygen and hydrogen isotopic measurements on chlorites derived from footwall chlorite breccias in 4 low-angle normal fault detachment systems (Badwater and Mormon Point Turtlebacks, CA, the Chemehuevi detachment, CA, and the Buckskin-Rawhide detachment, AZ). All chlorites are isotopically light to moderately light with respect to oxygen (δ18O +0.29 to +8.1 ‰ SMOW) and very light with respect to hydrogen (δD -97 to -113 ‰) and indicate

  15. Development of an accurate transmission line fault locator using the global positioning system satellites

    Science.gov (United States)

    Lee, Harry

    1994-01-01

    A highly accurate transmission line fault locator based on the traveling-wave principle was developed and successfully operated within B.C. Hydro. A transmission line fault produces a fast-risetime traveling wave at the fault point which propagates along the transmission line. This fault locator system consists of traveling wave detectors located at key substations which detect and time tag the leading edge of the fault-generated traveling wave as if passes through. A master station gathers the time-tagged information from the remote detectors and determines the location of the fault. Precise time is a key element to the success of this system. This fault locator system derives its timing from the Global Positioning System (GPS) satellites. System tests confirmed the accuracy of locating faults to within the design objective of +/-300 meters.

  16. Transient pattern analysis for fault detection and diagnosis of HVAC systems

    International Nuclear Information System (INIS)

    Cho, Sung-Hwan; Yang, Hoon-Cheol; Zaheer-uddin, M.; Ahn, Byung-Cheon

    2005-01-01

    Modern building HVAC systems are complex and consist of a large number of interconnected sub-systems and components. In the event of a fault, it becomes very difficult for the operator to locate and isolate the faulty component in such large systems using conventional fault detection methods. In this study, transient pattern analysis is explored as a tool for fault detection and diagnosis of an HVAC system. Several tests involving different fault replications were conducted in an environmental chamber test facility. The results show that the evolution of fault residuals forms clear and distinct patterns that can be used to isolate faults. It was found that the time needed to reach steady state for a typical building HVAC system is at least 50-60 min. This means incorrect diagnosis of faults can happen during online monitoring if the transient pattern responses are not considered in the fault detection and diagnosis analysis

  17. Fault Risk Assessment of Underwater Vehicle Steering System Based on Virtual Prototyping and Monte Carlo Simulation

    Directory of Open Access Journals (Sweden)

    He Deyu

    2016-09-01

    Full Text Available Assessing the risks of steering system faults in underwater vehicles is a human-machine-environment (HME systematic safety field that studies faults in the steering system itself, the driver’s human reliability (HR and various environmental conditions. This paper proposed a fault risk assessment method for an underwater vehicle steering system based on virtual prototyping and Monte Carlo simulation. A virtual steering system prototype was established and validated to rectify a lack of historic fault data. Fault injection and simulation were conducted to acquire fault simulation data. A Monte Carlo simulation was adopted that integrated randomness due to the human operator and environment. Randomness and uncertainty of the human, machine and environment were integrated in the method to obtain a probabilistic risk indicator. To verify the proposed method, a case of stuck rudder fault (SRF risk assessment was studied. This method may provide a novel solution for fault risk assessment of a vehicle or other general HME system.

  18. Application of support vector machine based on pattern spectrum entropy in fault diagnostics of rolling element bearings

    International Nuclear Information System (INIS)

    Hao, Rujiang; Chu, Fulei; Peng, Zhike; Feng, Zhipeng

    2011-01-01

    This paper presents a novel pattern classification approach for the fault diagnostics of rolling element bearings, which combines the morphological multi-scale analysis and the 'one to others' support vector machine (SVM) classifiers. The morphological pattern spectrum describes the shape characteristics of the inspected signal based on the morphological opening operation with multi-scale structuring elements. The pattern spectrum entropy and the barycenter scale location of the spectrum curve are extracted as the feature vectors presenting different faults of the bearing, which are more effective and representative than the kurtosis and the enveloping demodulation spectrum. The 'one to others' SVM algorithm is adopted to distinguish six kinds of fault signals which were measured in the experimental test rig under eight different working conditions. The recognition results of the SVM are ideal and more precise than those of the artificial neural network even though the training samples are few. The combination of the morphological pattern spectrum parameters and the 'one to others' multi-class SVM algorithm is suitable for the on-line automated fault diagnosis of the rolling element bearings. This application is promising and worth well exploiting

  19. System optimization by fault tree analysis

    International Nuclear Information System (INIS)

    Krieger, G.

    1985-01-01

    Reliability evaluation are performed during design phasis as well as during erection phasis. Sensitivity analysis are performed to evaluate the balance of system. A suitable representation allows cost and related effect to be directly determined. Thus there is an advantage for decision making where as qualitative evaluations do not give so much insight. (orig.) [de

  20. Experimental Approach of Fault Movement on an Engineered Barrier System

    International Nuclear Information System (INIS)

    Lee, Minsoo; Choi, Heuijoo; Kim, Heuna

    2012-01-01

    Safety evaluation of an engineered barrier system against fault movement at underground disposal region for high level waste (HLW) is tried using a miniature bore-shear apparatus. For the purpose, a miniature bore-shear apparatus simulating an EBS (engineered barrier system) was manufactured in 1/30 scale. And using the developed apparatus, bore-shear tests were performed twice. During the tests, pressure variations were checked at 6 points around buffer zone, and then a rotational angle of the test vessel was checked. The achieved pressure data were compared with those from analytical modeling, which is based on Drucker-Prager model. At initial shearing step, high pressure was recorded at some point but it decreased rapidly. For the better understanding of fault movement, the modification of an analytical model and the accumulation of experimental experience were required

  1. Experimental Approach of Fault Movement on an Engineered Barrier System

    Energy Technology Data Exchange (ETDEWEB)

    Lee, Minsoo; Choi, Heuijoo; Kim, Heuna [Korea Atomic Energy Research Institute, Daejeon (Korea, Republic of)

    2012-03-15

    Safety evaluation of an engineered barrier system against fault movement at underground disposal region for high level waste (HLW) is tried using a miniature bore-shear apparatus. For the purpose, a miniature bore-shear apparatus simulating an EBS (engineered barrier system) was manufactured in 1/30 scale. And using the developed apparatus, bore-shear tests were performed twice. During the tests, pressure variations were checked at 6 points around buffer zone, and then a rotational angle of the test vessel was checked. The achieved pressure data were compared with those from analytical modeling, which is based on Drucker-Prager model. At initial shearing step, high pressure was recorded at some point but it decreased rapidly. For the better understanding of fault movement, the modification of an analytical model and the accumulation of experimental experience were required.

  2. Fault-tolerant reactor protection system

    International Nuclear Information System (INIS)

    Gaubatz, D.C.

    1997-01-01

    A reactor protection system is disclosed having four divisions, with quad redundant sensors for each scram parameter providing input to four independent microprocessor-based electronic chassis. Each electronic chassis acquires the scram parameter data from its own sensor, digitizes the information, and then transmits the sensor reading to the other three electronic chassis via optical fibers. To increase system availability and reduce false scrams, the reactor protection system employs two levels of voting on a need for reactor scram. The electronic chassis perform software divisional data processing, vote 2/3 with spare based upon information from all four sensors, and send the divisional scram signals to the hardware logic panel, which performs a 2/4 division vote on whether or not to initiate a reactor scram. Each chassis makes a divisional scram decision based on data from all sensors. Each division performs independently of the others (asynchronous operation). All communications between the divisions are asynchronous. Each chassis substitutes its own spare sensor reading in the 2/3 vote if a sensor reading from one of the other chassis is faulty or missing. Therefore the presence of at least two valid sensor readings in excess of a set point is required before terminating the output to the hardware logic of a scram inhibition signal even when one of the four sensors is faulty or when one of the divisions is out of service. 16 figs

  3. How is tectonic slip partitioned from the Alpine Fault to the Marlborough Fault System? : results from the Hope Fault

    International Nuclear Information System (INIS)

    Langridge, R.M.

    2004-01-01

    This report contains data from research undertaken by the author on the Hope Fault from 2000-2004. This report provides an opportunity to include data that was additional to or newer than work that was published in other places. New results from studies along the Hurunui section of the Hope Fault, additional to that published in Langridge and Berryman (2005) are presented here. This data includes tabulated data of fault location and description measurements, a graphical representation of this data in diagrammatic form along the length of the fault and new radiocarbon dates from the current EQC funded project. The new data show that the Hurunui section of the Hope Fault has the capability to yield further data on fault slip rate, earthquake displacements, and paleoseismicity. New results from studies at the Greenburn Stream paleoseismic site additional to that published in Langridge et al. (2003) are presented here. This includes a new log of the deepened west wall of Trench 2, a log of the west wall of Trench 1, and new radiocarbon dates from the second phase of dating undertaken at the Greenburn Stream site. The new data show that this site has the capability to yield further data on the paleoseismicity of the Conway segment of the Hope Fault. Through a detailed analysis of all three logged walls at the site and the new radiocarbon dates, it may, in combination with data from the nearby Clarence Reserve site of Pope (1994), be possible to develop a good record of the last 5 events on the Conway segment. (author). 12 refs., 12 figs

  4. Development of a component centered fault monitoring and diagnosis knowledge based system for space power system

    Science.gov (United States)

    Lee, S. C.; Lollar, Louis F.

    1988-01-01

    The overall approach currently being taken in the development of AMPERES (Autonomously Managed Power System Extendable Real-time Expert System), a knowledge-based expert system for fault monitoring and diagnosis of space power systems, is discussed. The system architecture, knowledge representation, and fault monitoring and diagnosis strategy are examined. A 'component-centered' approach developed in this project is described. Critical issues requiring further study are identified.

  5. The continuation of the Kazerun fault system across the Sanandaj-Sirjan zone (Iran)

    Science.gov (United States)

    Safaei, Homayon

    2009-08-01

    The Kazerun (or Kazerun-Qatar) fault system is a north-trending dextral strike-slip fault zone in the Zagros mountain belt of Iran. It probably originated as a structure in the Panafrican basement. This fault system played an important role in the sedimentation and deformation of the Phanerozoic cover sequence and is still seismically active. No previous studies have reported the continuation of this important and ancient fault system northward across the Sanandaj-Sirjan zone. The Isfahan fault system is a north-trending dextral strike-slip fault across the Sanandaj-Sirjan zone that passes west of Isfahan city and is here recognized for the first time. This important fault system is about 220 km long and is seismically active in the basement as well as the sedimentary cover sequence. This fault system terminates to the south near the Main Zagros Thrust and to the north at the southern boundary of the Urumieh-Dokhtar zone. The Isfahan fault system is the boundary between the northern and southern parts of Sanandaj-Sirjan zone, which have fundamentally different stratigraphy, petrology, geomorphology, and geodynamic histories. Similarities in the orientations, kinematics, and geologic histories of the Isfahan and Kazerun faults and the way they affect the magnetic basement suggest that they are related. In fact, the Isfahan fault is a continuation of the Kazerun fault across the Sanandaj-Sirjan zone that has been offset by about 50 km of dextral strike-slip displacement along the Main Zagros Thrust.

  6. Fault Estimation for Fuzzy Delay Systems: A Minimum Norm Least Squares Solution Approach.

    Science.gov (United States)

    Huang, Sheng-Juan; Yang, Guang-Hong

    2017-09-01

    This paper mainly focuses on the problem of fault estimation for a class of Takagi-Sugeno fuzzy systems with state delays. A minimum norm least squares solution (MNLSS) approach is first introduced to establish a fault estimation compensator, which is able to optimize the fault estimator. Compared with most of the existing fault estimation methods, the MNLSS-based fault estimation method can effectively decrease the effect of state errors on the accuracy of fault estimation. Finally, three examples are given to illustrate the effectiveness and merits of the proposed method.

  7. Fault detection and fault tolerant control of a smart base isolation system with magneto-rheological damper

    International Nuclear Information System (INIS)

    Wang, Han; Song, Gangbing

    2011-01-01

    Fault detection and isolation (FDI) in real-time systems can provide early warnings for faulty sensors and actuator signals to prevent events that lead to catastrophic failures. The main objective of this paper is to develop FDI and fault tolerant control techniques for base isolation systems with magneto-rheological (MR) dampers. Thus, this paper presents a fixed-order FDI filter design procedure based on linear matrix inequalities (LMI). The necessary and sufficient conditions for the existence of a solution for detecting and isolating faults using the H ∞ formulation is provided in the proposed filter design. Furthermore, an FDI-filter-based fuzzy fault tolerant controller (FFTC) for a base isolation structure model was designed to preserve the pre-specified performance of the system in the presence of various unknown faults. Simulation and experimental results demonstrated that the designed filter can successfully detect and isolate faults from displacement sensors and accelerometers while maintaining excellent performance of the base isolation technology under faulty conditions

  8. A fuzzy logic intelligent diagnostic system for spacecraft integrated vehicle health management

    Science.gov (United States)

    Wu, G. Gordon

    1995-01-01

    Due to the complexity of future space missions and the large amount of data involved, greater autonomy in data processing is demanded for mission operations, training, and vehicle health management. In this paper, we develop a fuzzy logic intelligent diagnostic system to perform data reduction, data analysis, and fault diagnosis for spacecraft vehicle health management applications. The diagnostic system contains a data filter and an inference engine. The data filter is designed to intelligently select only the necessary data for analysis, while the inference engine is designed for failure detection, warning, and decision on corrective actions using fuzzy logic synthesis. Due to its adaptive nature and on-line learning ability, the diagnostic system is capable of dealing with environmental noise, uncertainties, conflict information, and sensor faults.

  9. Active fault tolerant control of piecewise affine systems with reference tracking and input constraints

    DEFF Research Database (Denmark)

    Gholami, M.; Cocquempot, V.; Schiøler, H.

    2014-01-01

    An active fault tolerant control (AFTC) method is proposed for discrete-time piecewise affine (PWA) systems. Only actuator faults are considered. The AFTC framework contains a supervisory scheme, which selects a suitable controller in a set of controllers such that the stability and an acceptable...... performance of the faulty system are held. The design of the supervisory scheme is not considered here. The set of controllers is composed of a normal controller for the fault-free case, an active fault detection and isolation controller for isolation and identification of the faults, and a set of passive...... fault tolerant controllers (PFTCs) modules designed to be robust against a set of actuator faults. In this research, the piecewise nonlinear model is approximated by a PWA system. The PFTCs are state feedback laws. Each one is robust against a fixed set of actuator faults and is able to track...

  10. Diagnosis and Fault-Tolerant Control for Thruster-Assisted Position Mooring System

    DEFF Research Database (Denmark)

    Nguyen, Trong Dong; Blanke, Mogens; Sørensen, Asgeir

    2007-01-01

    Development of fault-tolerant control systems is crucial to maintain safe operation of o®shore installations. The objective of this paper is to develop a fault- tolerant control for thruster-assisted position mooring (PM) system with faults occurring in the mooring lines. Faults in line......'s pretension or line breaks will degrade the performance of the positioning of the vessel. Faults will be detected and isolated through a fault diagnosis procedure. When faults are detected, they can be accommodated through the control action in which only parameter of the controlled plant has to be updated...... to cope with the faulty condition. Simulations will be carried out to verify the advantages of the fault-tolerant control strategy for the PM system....

  11. Expert system application to fault diagnosis and procedure synthesis

    International Nuclear Information System (INIS)

    Hajek, B.K.; Hashemi, S.; Bhatnagar, R.; Miller, D.W.; Stasenko, J.

    1987-01-01

    Two knowledge based systems have been developed to detect plant faults, to validate sensor data in a nuclear power plant, and to synthesize procedures to assure safety goals are met when a transient occurs. These two systems are being combined into a single system through a Plant Status Monitoring System (PSMS) and a common data base accessed by all the components of the integrated system. The system is designed to sit on top of an existing Safety Parameter Display System (SPDS), and to use the existing data acquisition and data control software of the SPDS. The integrated system will communicate with the SPDS software through a single database. This database will receive sensor values and equipment status indications in a form acceptable to the knowledge based system and according to an update plan designed specifically for the system

  12. PV Systems Reliability Final Technical Report: Ground Fault Detection

    Energy Technology Data Exchange (ETDEWEB)

    Lavrova, Olga [Sandia National Lab. (SNL-NM), Albuquerque, NM (United States); Flicker, Jack David [Sandia National Lab. (SNL-NM), Albuquerque, NM (United States); Johnson, Jay [Sandia National Lab. (SNL-NM), Albuquerque, NM (United States)

    2016-01-01

    We have examined ground faults in PhotoVoltaic (PV) arrays and the efficacy of fuse, current detection (RCD), current sense monitoring/relays (CSM), isolation/insulation (Riso) monitoring, and Ground Fault Detection and Isolation (GFID) using simulations based on a Simulation Program with Integrated Circuit Emphasis SPICE ground fault circuit model, experimental ground faults installed on real arrays, and theoretical equations.

  13. Delineation of fault systems on Langeland, Denmark based on AEM data and boreholes

    DEFF Research Database (Denmark)

    Andersen, Theis Raaschou; Westergaard, Joakim Hollenbo; Pytlich, Anders

    in the fault systems can be observed in the AEM data as a low resistivity layer that clearly distinguish from the underlying and surrounding high resistivity fresh water saturated limestone (footwall block) and the overlying glacial clay till. Soil descriptions from a borehole confirm that the low resistivity...... with boreholes, three fault systems in the northern part of the island of Langeland, Denmark are mapped. Two of the fault systems were unknown prior to the mapping campaign. The two unknown fault systems are interpreted as a normal fault and graben structures, respectively. The presence of the hanging-wall block...

  14. Sensor and Actuator Fault-Hiding Reconfigurable Control Design for a Four-Tank System Benchmark

    DEFF Research Database (Denmark)

    Hameed, Ibrahim; El-Madbouly, Esam I; Abdo, Mohamed I

    2015-01-01

    Invariant (LTI) system where virtual sensors and virtual actuators are used to correct faulty performance through the use of a pre-fault performance. Simulation results showed that the developed approach can handle different types of faults and able to completely and instantly recover the original system......Fault detection and compensation plays a key role to fulfill high demands for performance and security in today's technological systems. In this paper, a fault-hiding (i.e., tolerant) control scheme that detects and compensates for actuator and sensor faults in a four-tank system benchmark...

  15. On-Line Fault Detection in Wind Turbine Transmission System using Adaptive Filter and Robust Statistical Features

    Directory of Open Access Journals (Sweden)

    Mark Frogley

    2013-01-01

    Full Text Available To reduce the maintenance cost, avoid catastrophic failure, and improve the wind transmission system reliability, online condition monitoring system is critical important. In the real applications, many rotating mechanical faults, such as bearing surface defect, gear tooth crack, chipped gear tooth and so on generate impulsive signals. When there are these types of faults developing inside rotating machinery, each time the rotating components pass over the damage point, an impact force could be generated. The impact force will cause a ringing of the support structure at the structural natural frequency. By effectively detecting those periodic impulse signals, one group of rotating machine faults could be detected and diagnosed. However, in real wind turbine operations, impulsive fault signals are usually relatively weak to the background noise and vibration signals generated from other healthy components, such as shaft, blades, gears and so on. Moreover, wind turbine transmission systems work under dynamic operating conditions. This will further increase the difficulties in fault detection and diagnostics. Therefore, developing advanced signal processing methods to enhance the impulsive signals is in great needs.In this paper, an adaptive filtering technique will be applied for enhancing the fault impulse signals-to-noise ratio in wind turbine gear transmission systems. Multiple statistical features designed to quantify the impulsive signals of the processed signal are extracted for bearing fault detection. The multiple dimensional features are then transformed into one dimensional feature. A minimum error rate classifier will be designed based on the compressed feature to identify the gear transmission system with defect. Real wind turbine vibration signals will be used to demonstrate the effectiveness of the presented methodology.

  16. Field Guide for Testing Existing Photovoltaic Systems for Ground Faults and Installing Equipment to Mitigate Fire Hazards

    Energy Technology Data Exchange (ETDEWEB)

    Brooks, William [Brooks Engineering, Vacaville, CA (United States); Basso, Thomas [National Renewable Energy Lab. (NREL), Golden, CO (United States); Coddington, Michael [National Renewable Energy Lab. (NREL), Golden, CO (United States)

    2015-10-01

    Ground faults and arc faults are the two most common reasons for fires in photovoltaic (PV) arrays and methods exist that can mitigate the hazards. This report provides field procedures for testing PV arrays for ground faults, and for implementing high resolution ground fault and arc fault detectors in existing and new PV system designs.

  17. Fault diagnosis for agitator driving system in a high temperature reduction reactor

    Energy Technology Data Exchange (ETDEWEB)

    Park, Gee Young; Hong, Dong Hee; Jung, Jae Hoo; Kim, Young Hwan; Jin, Jae Hyun; Yoon, Ji Sup [KAERI, Taejon (Korea, Republic of)

    2003-10-01

    In this paper, a preliminary study for development of a fault diagnosis is presented for monitoring and diagnosing faults in the agitator driving system of a high temperature reduction reactor. In order to identify a fault occurrence and classify the fault cause, vibration signals measured by accelerometers on the outer shroud of the agitator driving system are firstly decomposed by Wavelet Transform (WT) and the features corresponding to each fault type are extracted. For the diagnosis, the fuzzy ARTMAP is employed and thereby, based on the features extracted from the WT, the robust fault classifier can be implemented with a very short training time - a single training epoch and a single learning iteration is sufficient for training the fault classifier. The test results demonstrate satisfactory classification for the faults pre-categorized from considerations of possible occurrence during experiments on a small-scale reduction reactor.

  18. CONFIG - Adapting qualitative modeling and discrete event simulation for design of fault management systems

    Science.gov (United States)

    Malin, Jane T.; Basham, Bryan D.

    1989-01-01

    CONFIG is a modeling and simulation tool prototype for analyzing the normal and faulty qualitative behaviors of engineered systems. Qualitative modeling and discrete-event simulation have been adapted and integrated, to support early development, during system design, of software and procedures for management of failures, especially in diagnostic expert systems. Qualitative component models are defined in terms of normal and faulty modes and processes, which are defined by invocation statements and effect statements with time delays. System models are constructed graphically by using instances of components and relations from object-oriented hierarchical model libraries. Extension and reuse of CONFIG models and analysis capabilities in hybrid rule- and model-based expert fault-management support systems are discussed.

  19. A fault diagnosis system for nuclear power plant operation

    International Nuclear Information System (INIS)

    Ohga, Yukiharu; Hayashi, Yoshiharu; Yuchi, Hiroyuki; Utena, Shunsuke; Maeda, Akihiko

    2002-01-01

    A fault diagnosis system has been developed to support operators in nuclear power plants. In the system various methods are combined to get a diagnosis result which provides better detection sensitivity and result reliability. The system is composed of an anomaly detection part with diagnosis modules, an integration part which obtains the diagnosis result by combining results from each diagnosis module, and a prediction part with state prediction and estimation modules. For the anomaly detection part, three kinds of modules are prepared: plant signal processing, early fault detection and event identification modules. The plant signal processing module uses wavelet transform and chaos technologies as well as fast Fourier transform (FFT) to analyze vibration sensor signals and to detect signal anomaly. The early fault detection module uses the neural network model of a plant subprocess to estimate the process variable values assuming normal conditions, and to detect an anomaly by comparing the measured and estimated values. The event identification module identifies the kind of occurring event by using the neural network and knowledge processing. In the integration part the diagnosis is performed by using knowledge processing. The knowledge for diagnosis is structured based on the means-ends abstraction hierarchy to simplify knowledge input and maintenance. In the prediction part, the prediction module predicts the future changes of process variables and plant interlock statuses and the estimation module estimates the values of unmeasurable variables. A prototype system has been developed and the system performance was evaluated. The evaluation results show that the developed technologies are effective to improve the human-machine system for plant operation. (author)

  20. Passive Fault Tolerant Control of Piecewise Affine Systems Based on H Infinity Synthesis

    DEFF Research Database (Denmark)

    Gholami, Mehdi; Cocquempot, vincent; Schiøler, Henrik

    2011-01-01

    In this paper we design a passive fault tolerant controller against actuator faults for discretetime piecewise affine (PWA) systems. By using dissipativity theory and H analysis, fault tolerant state feedback controller design is expressed as a set of Linear Matrix Inequalities (LMIs). In the cur...

  1. Analytical Model-based Fault Detection and Isolation in Control Systems

    DEFF Research Database (Denmark)

    Vukic, Z.; Ozbolt, H.; Blanke, M.

    1998-01-01

    The paper gives an introduction and an overview of the field of fault detection and isolation for control systems. The summary of analytical (quantitative model-based) methodds and their implementation are presented. The focus is given to mthe analytical model-based fault-detection and fault...

  2. Towards fault-tolerant decision support systems for ship operator guidance

    DEFF Research Database (Denmark)

    Nielsen, Ulrik Dam; Lajic, Zoran; Jensen, Jørgen Juncher

    2012-01-01

    Fault detection and isolation are very important elements in the design of fault-tolerant decision support systems for ship operator guidance. This study outlines remedies that can be applied for fault diagnosis, when the ship responses are assumed to be linear in the wave excitation. A novel num...

  3. Mantle strength of the San Andreas fault system and the role of mantle-crust feedbacks

    NARCIS (Netherlands)

    Chatzaras, V.; Tikoff, B.; Newman, J.; Withers, A.C.; Drury, M.R.

    2015-01-01

    In lithospheric-scale strike-slip fault zones, upper crustal strength is well constrained from borehole observations and fault rock deformation experiments, but mantle strength is less well known. Using peridotite xenoliths, we show that the upper mantle below the San Andreas fault system

  4. A recommender system for medical imaging diagnostic.

    Science.gov (United States)

    Monteiro, Eriksson; Valente, Frederico; Costa, Carlos; Oliveira, José Luís

    2015-01-01

    The large volume of data captured daily in healthcare institutions is opening new and great perspectives about the best ways to use it towards improving clinical practice. In this paper we present a context-based recommender system to support medical imaging diagnostic. The system relies on data mining and context-based retrieval techniques to automatically lookup for relevant information that may help physicians in the diagnostic decision.

  5. Reliability and diagnostic of modular systems

    Directory of Open Access Journals (Sweden)

    J. Kohlas

    2014-01-01

    Full Text Available Reliability and diagnostic are in general two problems discussed separately. Yet the two problems are in fact closely related to each other. Here, this relation is considered in the simple case of modular systems. We show, how the computation of reliability and diagnostic can efficiently be done within the same Bayesian network induced by the modularity of the structure function of the system.

  6. Overview of condition monitoring and operation control of electric power conversion systems in direct-drive wind turbines under faults

    Science.gov (United States)

    Huang, Shoudao; Wu, Xuan; Liu, Xiao; Gao, Jian; He, Yunze

    2017-09-01

    Electric power conversion system (EPCS), which consists of a generator and power converter, is one of the most important subsystems in a direct-drive wind turbine (DD-WT). However, this component accounts for the most failures (approximately 60% of the total number) in the entire DD-WT system according to statistical data. To improve the reliability of EPCSs and reduce the operation and maintenance cost of DD-WTs, numerous researchers have studied condition monitoring (CM) and fault diagnostics (FD). Numerous CM and FD techniques, which have respective advantages and disadvantages, have emerged. This paper provides an overview of the CM, FD, and operation control of EPCSs in DD-WTs under faults. After introducing the functional principle and structure of EPCS, this survey discusses the common failures in wind generators and power converters; briefly reviewed CM and FD methods and operation control of these generators and power converters under faults; and discussed the grid voltage faults related to EPCSs in DD-WTs. These theories and their related technical concepts are systematically discussed. Finally, predicted development trends are presented. The paper provides a valuable reference for developing service quality evaluation methods and fault operation control systems to achieve high-performance and high-intelligence DD-WTs.

  7. Development and testing of a diagnostic system for intelligen distributed control at EBR-2

    International Nuclear Information System (INIS)

    Edwards, R.M.; Ruhl, D.W.; Klevans, E.H.; Robinson, G.E.

    1990-01-01

    A diagnostic system is under development for demonstration of Intelligent Distributed Control at the Experimental Breeder Reactor (EBR--II). In the first phase of the project a diagnostic system is being developed for the EBR-II steam plant based on the DISYS expert systems approach. Current testing uses recorded plant data and data from simulated plant faults. The dynamical simulation of the EBR-II steam plant uses the Babcock and Wilcox (B ampersand W) Modular Modeling System (MMS). At EBR-II the diagnostic system operates in the UNIX workstation and receives live plant data from the plant Data Acquisition System (DAS). Future work will seek implementation of the steam plant diagnostic in a distributed manner using UNIX based computers and Bailey microprocessor-based control system. 10 refs., 6 figs

  8. A comparative study of sensor fault diagnosis methods based on observer for ECAS system

    Science.gov (United States)

    Xu, Xing; Wang, Wei; Zou, Nannan; Chen, Long; Cui, Xiaoli

    2017-03-01

    The performance and practicality of electronically controlled air suspension (ECAS) system are highly dependent on the state information supplied by kinds of sensors, but faults of sensors occur frequently. Based on a non-linearized 3-DOF 1/4 vehicle model, different methods of fault detection and isolation (FDI) are used to diagnose the sensor faults for ECAS system. The considered approaches include an extended Kalman filter (EKF) with concise algorithm, a strong tracking filter (STF) with robust tracking ability, and the cubature Kalman filter (CKF) with numerical precision. We propose three filters of EKF, STF, and CKF to design a state observer of ECAS system under typical sensor faults and noise. Results show that three approaches can successfully detect and isolate faults respectively despite of the existence of environmental noise, FDI time delay and fault sensitivity of different algorithms are different, meanwhile, compared with EKF and STF, CKF method has best performing FDI of sensor faults for ECAS system.

  9. TFTR diagnostic control and data acquisition system

    International Nuclear Information System (INIS)

    Sauthoff, N.R.; Daniels, R.E.; PPL Computer Division

    1985-01-01

    General computerized control and data-handling support for TFTR diagnostics is presented within the context of the Central Instrumentation, Control and Data Acquisition (CICADA) System. Procedures, hardware, the interactive man--machine interface, event-driven task scheduling, system-wide arming and data acquisition, and a hierarchical data base of raw data and results are described. Similarities in data structures involved in control, monitoring, and data acquisition afford a simplification of the system functions, based on ''groups'' of devices. Emphases and optimizations appropriate for fusion diagnostic system designs are provided. An off-line data reduction computer system is under development

  10. Final results from the development of the diagnostic expert system DESYRE

    International Nuclear Information System (INIS)

    Scherer, K.P.; Eggert, H.; Sheleisiek, K.; Stille, P.; Schoeller, H.

    1997-01-01

    In the Kernforschungszentrum Karlsruhe (KfK), a distributed knowledge based diagnostic system is developed to supervise the primary system including the core of the Kompakte Natriumgekuehlte Kernreaktoranlage (KNK II), a 20 MWe experimental fast reactor. The problem is to detect anomalies and disturbances in the beginning state before fault propagation - early diagnosis - and provide the scram analysis to detect the causality when a system shutdwon occurs. (author). 9 refs, 15 figs

  11. Measurement and analysis of workload effects on fault latency in real-time systems

    Science.gov (United States)

    Woodbury, Michael H.; Shin, Kang G.

    1990-01-01

    The authors demonstrate the need to address fault latency in highly reliable real-time control computer systems. It is noted that the effectiveness of all known recovery mechanisms is greatly reduced in the presence of multiple latent faults. The presence of multiple latent faults increases the possibility of multiple errors, which could result in coverage failure. The authors present experimental evidence indicating that the duration of fault latency is dependent on workload. A synthetic workload generator is used to vary the workload, and a hardware fault injector is applied to inject transient faults of varying durations. This method makes it possible to derive the distribution of fault latency duration. Experimental results obtained from the fault-tolerant multiprocessor at the NASA Airlab are presented and discussed.

  12. Characteristics of earth faults in power systems with a compensated or an unearthed neutral

    Energy Technology Data Exchange (ETDEWEB)

    Haenninen, S; Lehtonen, M [VTT Energy, Espoo (Finland); Antila, E [ABB Transmit Oy (Finland); Stroem, J [Espoo Electricity Co (Finland); Ingman, S [Vaasa Electricity Co (Finland)

    1998-08-01

    The most common fault type in the electrical distribution networks is the single phase to earth fault. For instance in the Nordic countries, about 80 % of all faults are of this type. To develop the protection and fault location systems, it is important to obtain real case data of disturbances and faults which occurred in the networks. Therefore, data of fault occurrences have been recorded and analyzed in the medium voltage distribution networks (20 kV) at two substations, of which one has an isolated and the other a compensated neutral. In the occurring disturbances, the traces of phase currents and neutral currents in the beginning of two feeder and the traces of phase voltages and neutral voltage from the voltage measuring bay were recorded. In addition to the measured data, other information of the fault occurrences was also collected (data of the line, cause and location of permanent faults and so on)

  13. Diagnostics

    DEFF Research Database (Denmark)

    Donné, A.J.H.; Costley, A.E.; Barnsley, R.

    2007-01-01

    of the measurements—time and spatial resolutions, etc—will in some cases be more stringent. Many of the measurements will be used in the real time control of the plasma driving a requirement for very high reliability in the systems (diagnostics) that provide the measurements. The implementation of diagnostic systems...... on ITER is a substantial challenge. Because of the harsh environment (high levels of neutron and gamma fluxes, neutron heating, particle bombardment) diagnostic system selection and design has to cope with a range of phenomena not previously encountered in diagnostic design. Extensive design and R......&D is needed to prepare the systems. In some cases the environmental difficulties are so severe that new diagnostic techniques are required. The starting point in the development of diagnostics for ITER is to define the measurement requirements and develop their justification. It is necessary to include all...

  14. An Autonomous Distributed Fault-Tolerant Local Positioning System

    Science.gov (United States)

    Malekpour, Mahyar R.

    2017-01-01

    We describe a fault-tolerant, GPS-independent (Global Positioning System) distributed autonomous positioning system for static/mobile objects and present solutions for providing highly-accurate geo-location data for the static/mobile objects in dynamic environments. The reliability and accuracy of a positioning system fundamentally depends on two factors; its timeliness in broadcasting signals and the knowledge of its geometry, i.e., locations and distances of the beacons. Existing distributed positioning systems either synchronize to a common external source like GPS or establish their own time synchrony using a scheme similar to a master-slave by designating a particular beacon as the master and other beacons synchronize to it, resulting in a single point of failure. Another drawback of existing positioning systems is their lack of addressing various fault manifestations, in particular, communication link failures, which, as in wireless networks, are increasingly dominating the process failures and are typically transient and mobile, in the sense that they typically affect different messages to/from different processes over time.

  15. Developing a PC-based expert system for fault analysis of reactor instruments

    International Nuclear Information System (INIS)

    Diwakar, M.P.; Rathod, N.C.; Bairi, B.R.; Darbhe, M.D.; Joglekar, S.S.

    1989-01-01

    This paper describes the development of an expert system for fault analysis of electronic instruments in the CIRUS nuclear reactor. The system was developed in Prolog on an IBM PC-XT compatible computer. A 'model-based' approach (Button et al, 1986) was adopted combining 'frames' and 'rules' to provide flexible control over the inferencing mechanisms. Frames represent the domain-objects as well as the inter-object relationships. They include 'demons' or 'active values' for triggering actions. Rules, along with frames, are used for fault analysis. The rules can be activated either in a data-driven or a goal-driven manner. The use of frames makes rule management easier. It is felt that developing in-house shell proved advantageous, compared to using commercially available shells. Choosing the model-based approach was efficient compared to a production system architecture. Therefore, the use of hybrid representations for diagnostic applications is advocated. Based on the experience, some general recommendations for developing such systems are presented. The expert system helps novice operators to understand the process of diagnosis and achieve a significant required level of competence. The system may not achieve the required level of proficiency by itself, but it can be used to train operators to become experts. (author). 12 refs

  16. Reliability analysis of the reactor protection system with fault diagnosis

    International Nuclear Information System (INIS)

    Lee, D.Y.; Han, J.B.; Lyou, J.

    2004-01-01

    The main function of a reactor protection system (RPS) is to maintain the reactor core integrity and reactor coolant system pressure boundary. The RPS consists of the 2-out-of-m redundant architecture to assure a reliable operation. The system reliability of the RPS is a very important factor for the probability safety assessment (PSA) evaluation in the nuclear field. To evaluate the system failure rate of the k-out-of-m redundant system is not so easy with the deterministic method. In this paper, the reliability analysis method using the binomial process is suggested to calculate the failure rate of the RPS system with a fault diagnosis function. The suggested method is compared with the result of the Markov process to verify the validation of the suggested method, and applied to the several kinds of RPS architectures for a comparative evaluation of the reliability. (orig.)

  17. Industrial Cost-Benefit Assessment for Fault-tolerant Control Systems

    DEFF Research Database (Denmark)

    Thybo, C.; Blanke, M.

    1998-01-01

    Economic aspects are decisive for industrial acceptance of research concepts including the promising ideas in fault tolerant control. Fault tolerance is the ability of a system to detect, isolate and accommodate a fault, such that simple faults in a sub-system do not develop into failures....... The objective of this paper is to help, in the early product development state, to find the economical most suitable scheme. A salient result is that with increased customer awareness of total cost of ownership, new products can benefit significantly from applying fault tolerant control principles....

  18. Detector design for active fault diagnosis in closed-loop systems

    DEFF Research Database (Denmark)

    Sekunda, André Krabdrup; Niemann, Hans Henrik; Poulsen, Niels Kjølstad

    2018-01-01

    Fault diagnosis of closed-loop systems is extremely relevant for high-precision equipment and safety critical systems. Fault diagnosis is usually divided into 2 schemes: active and passive fault diagnosis. Recent studies have highlighted some advantages of active fault diagnosis based on dual Youla......-Jabr-Bongiorno-Kucera parameters. In this paper, a method for closed-loop active fault diagnosis based on statistical detectors is given using dual Youla-Jabr-Bongiorno-Kucera parameters. The goal of this paper is 2-fold. First, the authors introduce a method for measuring a residual signal subject to white noise. Second...

  19. Doubly fed induction generator based wind turbine systems subject to recurring grid faults

    DEFF Research Database (Denmark)

    Chen, Wenjie; Blaabjerg, Frede; Zhu, Nan

    2014-01-01

    New grid codes demand the wind turbine systems to ride through recurring grid faults. In this paper, the performance of the Doubly Fed Induction Generator wind turbine system under recurring grid faults is analyzed. The stator natural flux produced by the voltage recovery after the first grid fault...... may be superposed on the stator natural flux produced by the second grid fault, and it may result in large current and voltage transient. The damping of the stator natural flux can be accelerated with a rotor natural current in its opposite direction after voltage recovery, but larger torque....... The performance of DFIG under recurring grid faults is verified by the simulation and experiments....

  20. Shiva and Argus target diagnostics vacuum systems

    International Nuclear Information System (INIS)

    Glaros, S.S.; Mayo, S.E.; Campbell, D.; Holeman, D.

    1978-09-01

    The normal operation of LLL's Argus and Shiva laser irradiation facilities demand a main vacuum system for the target chamber and a separate local vacuum system for each of the larger appendage dianostics. This paper will describe the Argus and Shiva main vacuum systems, their respective auxiliary vacuum systems and the individual diagnostics with their respective special vacuum requirements and subsequent vacuum systems. Our latest approach to automatic computer-controlled vacuum systems will be presented

  1. Approximate estimation of system reliability via fault trees

    International Nuclear Information System (INIS)

    Dutuit, Y.; Rauzy, A.

    2005-01-01

    In this article, we show how fault tree analysis, carried out by means of binary decision diagrams (BDD), is able to approximate reliability of systems made of independent repairable components with a good accuracy and a good efficiency. We consider four algorithms: the Murchland lower bound, the Barlow-Proschan lower bound, the Vesely full approximation and the Vesely asymptotic approximation. For each of these algorithms, we consider an implementation based on the classical minimal cut sets/rare events approach and another one relying on the BDD technology. We present numerical results obtained with both approaches on various examples

  2. Fault-tolerant clock synchronization in distributed systems

    Science.gov (United States)

    Ramanathan, Parameswaran; Shin, Kang G.; Butler, Ricky W.

    1990-01-01

    Existing fault-tolerant clock synchronization algorithms are compared and contrasted. These include the following: software synchronization algorithms, such as convergence-averaging, convergence-nonaveraging, and consistency algorithms, as well as probabilistic synchronization; hardware synchronization algorithms; and hybrid synchronization. The worst-case clock skews guaranteed by representative algorithms are compared, along with other important aspects such as time, message, and cost overhead imposed by the algorithms. More recent developments such as hardware-assisted software synchronization and algorithms for synchronizing large, partially connected distributed systems are especially emphasized.

  3. Knowledge-based fault diagnosis system for refuse collection vehicle

    International Nuclear Information System (INIS)

    Tan, CheeFai; Juffrizal, K.; Khalil, S. N.; Nidzamuddin, M. Y.

    2015-01-01

    The refuse collection vehicle is manufactured by local vehicle body manufacturer. Currently; the company supplied six model of the waste compactor truck to the local authority as well as waste management company. The company is facing difficulty to acquire the knowledge from the expert when the expert is absence. To solve the problem, the knowledge from the expert can be stored in the expert system. The expert system is able to provide necessary support to the company when the expert is not available. The implementation of the process and tool is able to be standardize and more accurate. The knowledge that input to the expert system is based on design guidelines and experience from the expert. This project highlighted another application on knowledge-based system (KBS) approached in trouble shooting of the refuse collection vehicle production process. The main aim of the research is to develop a novel expert fault diagnosis system framework for the refuse collection vehicle

  4. Knowledge-based fault diagnosis system for refuse collection vehicle

    Energy Technology Data Exchange (ETDEWEB)

    Tan, CheeFai; Juffrizal, K.; Khalil, S. N.; Nidzamuddin, M. Y. [Centre of Advanced Research on Energy, Universiti Teknikal Malaysia Melaka, Hang Tuah Jaya, Durian Tunggal, Melaka (Malaysia)

    2015-05-15

    The refuse collection vehicle is manufactured by local vehicle body manufacturer. Currently; the company supplied six model of the waste compactor truck to the local authority as well as waste management company. The company is facing difficulty to acquire the knowledge from the expert when the expert is absence. To solve the problem, the knowledge from the expert can be stored in the expert system. The expert system is able to provide necessary support to the company when the expert is not available. The implementation of the process and tool is able to be standardize and more accurate. The knowledge that input to the expert system is based on design guidelines and experience from the expert. This project highlighted another application on knowledge-based system (KBS) approached in trouble shooting of the refuse collection vehicle production process. The main aim of the research is to develop a novel expert fault diagnosis system framework for the refuse collection vehicle.

  5. Fault tree analysis on BWR core spray system

    International Nuclear Information System (INIS)

    Watanabe, Norio

    1982-06-01

    Fault Trees which describe the failure modes for the Core Spray System function in the Browns Ferry Nuclear Plant (BWR 1065MWe) were developed qualitatively and quantitatively. The unavailability for the Core Spray System was estimated to be 1.2 x 10 - 3 /demand. It was found that the miscalibration of four reactor pressure sensors or the failure to open of the two inboard valves (FCV 75-25 and 75-53) could reduce system reliability significantly. It was recommended that the pressure sensors would be calibrated independently. The introduction of the redundant inboard valves could improve the system reliability. Thus this analysis method was verified useful for system analysis. The detailed test and maintenance manual and the informations on the control logic circuits of each active component are necessary for further analysis. (author)

  6. Incipient fault detection and identification in process systems using accelerating neural network learning

    International Nuclear Information System (INIS)

    Parlos, A.G.; Muthusami, J.; Atiya, A.F.

    1994-01-01

    The objective of this paper is to present the development and numerical testing of a robust fault detection and identification (FDI) system using artificial neural networks (ANNs), for incipient (slowly developing) faults occurring in process systems. The challenge in using ANNs in FDI systems arises because of one's desire to detect faults of varying severity, faults from noisy sensors, and multiple simultaneous faults. To address these issues, it becomes essential to have a learning algorithm that ensures quick convergence to a high level of accuracy. A recently developed accelerated learning algorithm, namely a form of an adaptive back propagation (ABP) algorithm, is used for this purpose. The ABP algorithm is used for the development of an FDI system for a process composed of a direct current motor, a centrifugal pump, and the associated piping system. Simulation studies indicate that the FDI system has significantly high sensitivity to incipient fault severity, while exhibiting insensitivity to sensor noise. For multiple simultaneous faults, the FDI system detects the fault with the predominant signature. The major limitation of the developed FDI system is encountered when it is subjected to simultaneous faults with similar signatures. During such faults, the inherent limitation of pattern-recognition-based FDI methods becomes apparent. Thus, alternate, more sophisticated FDI methods become necessary to address such problems. Even though the effectiveness of pattern-recognition-based FDI methods using ANNs has been demonstrated, further testing using real-world data is necessary

  7. Simultaneous Event-Triggered Fault Detection and Estimation for Stochastic Systems Subject to Deception Attacks.

    Science.gov (United States)

    Li, Yunji; Wu, QingE; Peng, Li

    2018-01-23

    In this paper, a synthesized design of fault-detection filter and fault estimator is considered for a class of discrete-time stochastic systems in the framework of event-triggered transmission scheme subject to unknown disturbances and deception attacks. A random variable obeying the Bernoulli distribution is employed to characterize the phenomena of the randomly occurring deception attacks. To achieve a fault-detection residual is only sensitive to faults while robust to disturbances, a coordinate transformation approach is exploited. This approach can transform the considered system into two subsystems and the unknown disturbances are removed from one of the subsystems. The gain of fault-detection filter is derived by minimizing an upper bound of filter error covariance. Meanwhile, system faults can be reconstructed by the remote fault estimator. An recursive approach is developed to obtain fault estimator gains as well as guarantee the fault estimator performance. Furthermore, the corresponding event-triggered sensor data transmission scheme is also presented for improving working-life of the wireless sensor node when measurement information are aperiodically transmitted. Finally, a scaled version of an industrial system consisting of local PC, remote estimator and wireless sensor node is used to experimentally evaluate the proposed theoretical results. In particular, a novel fault-alarming strategy is proposed so that the real-time capacity of fault-detection is guaranteed when the event condition is triggered.

  8. Some aspects of diagnostic systems perspective

    International Nuclear Information System (INIS)

    Korosec, D.

    1998-01-01

    The integrity and safety of all nuclear power plant systems and components is guaranteed by the high requirements to quality assurance during all phases of design, fabrication, construction and operation. Many of the countries operating nuclear facilities, introduced advanced, sophisticated diagnostic systems for continuous monitoring safety important process parameters. The licensee should perform an assessment of the existing diagnostic systems, often supplied by the original design, their reliability and the need for the introduction of the additional monitoring/diagnostic systems. The operating experience should be taken into account and the assessment of the further needs. On this field has to be made on the results of PSA studies. In addition to the cost benefit analysis the evaluation of the new diagnostic systems in the light of nuclear safety should be also made. Experience, gained from the utilities, which have already installed this kind of the equipment should be very useful. Introducing new diagnostic systems will require often a safety assessment of the necessary modifications. Licensing process should be based on the existing nuclear legislation with certain additional requirements. (author)

  9. Fault Management Metrics

    Science.gov (United States)

    Johnson, Stephen B.; Ghoshal, Sudipto; Haste, Deepak; Moore, Craig

    2017-01-01

    This paper describes the theory and considerations in the application of metrics to measure the effectiveness of fault management. Fault management refers here to the operational aspect of system health management, and as such is considered as a meta-control loop that operates to preserve or maximize the system's ability to achieve its goals in the face of current or prospective failure. As a suite of control loops, the metrics to estimate and measure the effectiveness of fault management are similar to those of classical control loops in being divided into two major classes: state estimation, and state control. State estimation metrics can be classified into lower-level subdivisions for detection coverage, detection effectiveness, fault isolation and fault identification (diagnostics), and failure prognosis. State control metrics can be classified into response determination effectiveness and response effectiveness. These metrics are applied to each and every fault management control loop in the system, for each failure to which they apply, and probabilistically summed to determine the effectiveness of these fault management control loops to preserve the relevant system goals that they are intended to protect.

  10. Process fault diagnosis using knowledge-based systems

    International Nuclear Information System (INIS)

    Sudduth, A.L.

    1991-01-01

    Advancing technology in process plants has led to increased need for computer based process diagnostic systems to assist the operator. One approach to this problem is to use an embedded knowledge based system to interpret measurement signals. Knowledge based systems using only symptom based rules are inadequate for real time diagnosis of dynamic systems; therefore a model based approach is necessary. Though several forms of model based reasoning have been proposed, the use of qualitative causal models incorporating first principles knowledge of process behavior structure, and function appear to have the most promise as a robust modeling methodology. In this paper the structure of a diagnostic system is described which uses model based reasoning and conventional numerical methods to perform process diagnosis. This system is being applied to emergency diesel generator system in nuclear stations

  11. Physical Modeling for Anomaly Diagnostics and Prognostics, Phase II

    Data.gov (United States)

    National Aeronautics and Space Administration — Ridgetop developed an innovative, model-driven anomaly diagnostic and fault characterization system for electromechanical actuator (EMA) systems to mitigate...

  12. The ground-fault detection system for DIII-D

    International Nuclear Information System (INIS)

    Scoville, J.T.; Petersen, P.I.

    1987-10-01

    This paper presents a discussion of the ground-fault detection systems on the DIII-D tokamak. The subsystems that must be monitored for an inadvertent ground include the toroidal and poloidal coil systems, the vacuum vessel, and the coil support structures. In general, one point of each coil is tied to coil/power supply ground through a current limiting resistor. For ground protection the current through this resistor is monitored using a dynamically feedback balanced Hall probe transducer from LEM Industries. When large inductive currents flow in closed loops near the tokamak, the result is undesirable magnetic error fields in the plasma region and noise generation on signal cables. Therefore, attention must be paid to avoid closed loops in the design of the coil and vessel support structure. For DIII-D a concept of dual insulating breaks and a single-point ground for all structure elements was used to satisfy this requirement. The integrity of the support structure is monitored by a system which continuously attempts to couple a variable frequency waveform onto these single-point grounds. The presence of an additional ground completes the circuit resulting in current flow. A Rogowski coil is then used to track the unwanted ground path in order to eliminate it. Details of the ground fault detection circuitry, and a description of its operation will be presented. 2 refs., 7 figs

  13. DIVA and DIAPO: two diagnostic knowledge based systems used for French nuclear power plants

    International Nuclear Information System (INIS)

    Porcheron, M.; Ricard, B.; Joussellin, A.

    1997-01-01

    In order to improve monitoring and diagnosis capabilities in nuclear power plants, Electricite de France (EDF) has designed an integrated monitoring and diagnosis assistance system: PSAD-Poste de Surveillance et d'Aide au Diagnostic. The development of such a sophisticated monitoring and data processing systems has emphasized the need for the addition of analysis and diagnosis assistance capabilities. Therefore, diagnostic knowledge based systems have been added to the functions monitored in PSAD: DIVA for turbine generators, and DIAPO for reactor coolant pumps. These systems were designed from a representation of the diagnostic reasoning process of experts and of the supporting knowledge. Diagnosis in both systems relies on an abduction reasoning process applied to component fault models and observations derived from their actual behavior, as provided by the monitoring functions. The basic theoretical elements of this diagnostic model are summarized in a first part. In a second part, DIVA and DIAPO specific elements are described

  14. Quantitative evaluation of the fault tolerance of systems important to the safety of atomic power plants

    International Nuclear Information System (INIS)

    Malkin, S.D.; Sivokon, V.P.; Shmatkova, L.V.

    1989-01-01

    Fault tolerance is the property of a system to preserve its performance upon failures of its components. Thus, in nuclear-reactor technology one has only a qualitative evaluation of fault tolerance - the single-failure criterion, which does not enable one to compare and perform goal-directed design of fault-tolerant systems, and in the field of computer technology there are no generally accepted evaluations of fault tolerance that could be applied effectively to reactor systems. This paper considers alternative evaluations of fault tolerance and a method of comprehensive automated calculation of the reliability and fault tolerance of complex systems. The authors presented quantitative estimates of fault tolerance that develop the single-failure criterion. They have limiting processes that allow simple and graphical standardization. They worked out a method and a program for comprehensive calculation of the reliability and fault tolerance of systems of complex structure that are important to the safety of atomic power plants. The quantitative evaluation of the fault tolerance of these systems exhibits a degree of insensitivity to failures and shows to what extent their reliability is determined by a rigorously defined structure, and to what extent by the probabilistic reliability characteristics of the components. To increase safety, one must increase the fault tolerance of the most important systems of atomic power plants

  15. Investigation of an advanced fault tolerant integrated avionics system

    Science.gov (United States)

    Dunn, W. R.; Cottrell, D.; Flanders, J.; Javornik, A.; Rusovick, M.

    1986-01-01

    Presented is an advanced, fault-tolerant multiprocessor avionics architecture as could be employed in an advanced rotorcraft such as LHX. The processor structure is designed to interface with existing digital avionics systems and concepts including the Army Digital Avionics System (ADAS) cockpit/display system, navaid and communications suites, integrated sensing suite, and the Advanced Digital Optical Control System (ADOCS). The report defines mission, maintenance and safety-of-flight reliability goals as might be expected for an operational LHX aircraft. Based on use of a modular, compact (16-bit) microprocessor card family, results of a preliminary study examining simplex, dual and standby-sparing architectures is presented. Given the stated constraints, it is shown that the dual architecture is best suited to meet reliability goals with minimum hardware and software overhead. The report presents hardware and software design considerations for realizing the architecture including redundancy management requirements and techniques as well as verification and validation needs and methods.

  16. Evaluation of influence of splay fault growth on groundwater flow around geological disposal system

    International Nuclear Information System (INIS)

    Takai, Shizuka; Takeda, Seiji; Sakai, Ryutaro; Shimada, Taro; Munakata, Masahiro; Tanaka, Tadao

    2017-01-01

    In geological disposal, the direct effect of active faults on geological repositories is avoided at the stage of site characterization, however, uncertainty remains for the avoidance of faults derived from active faults, which are concealed deep under the ground and are difficult to detect by site investigation. In this research, the influence of the growth of undetected splay faults on a natural barrier in a geological disposal system due to the future action of faults was evaluated. We investigated examples of splay faults in Japan and set conditions for the growth of splay faults. Furthermore, we assumed a disposal site composed of sedimentary rock and made a hydrogeological model of the growth of splay faults. We carried out groundwater flow analyses, changing parameters such as the location and depth of the repository and the growth velocity of splay faults. We carried out groundwater flow analyses, changing parameters such as the location and depth of the repository and the growth velocity of splay faults. The results indicate that the main flow path from the repository is changed into an upward flow along the splay fault due to its growth and that the average velocity to the ground surface becomes one or two orders of magnitude higher than that before its growth. The results also suggest that splay fault growth leads to the possibility of the downward flow of oxidizing groundwater from the ground surface area. (author)

  17. Robust Fault Detection for a Class of Uncertain Nonlinear Systems Based on Multiobjective Optimization

    Directory of Open Access Journals (Sweden)

    Bingyong Yan

    2015-01-01

    Full Text Available A robust fault detection scheme for a class of nonlinear systems with uncertainty is proposed. The proposed approach utilizes robust control theory and parameter optimization algorithm to design the gain matrix of fault tracking approximator (FTA for fault detection. The gain matrix of FTA is designed to minimize the effects of system uncertainty on residual signals while maximizing the effects of system faults on residual signals. The design of the gain matrix of FTA takes into account the robustness of residual signals to system uncertainty and sensitivity of residual signals to system faults simultaneously, which leads to a multiobjective optimization problem. Then, the detectability of system faults is rigorously analyzed by investigating the threshold of residual signals. Finally, simulation results are provided to show the validity and applicability of the proposed approach.

  18. Design of a fault diagnosis system for next generation nuclear power plants

    International Nuclear Information System (INIS)

    Zhao, K.; Upadhyaya, B.R.; Wood, R.T.

    2004-01-01

    A new design approach for fault diagnosis is developed for next generation nuclear power plants. In the nuclear reactor design phase, data reconciliation is used as an efficient tool to determine the measurement requirements to achieve the specified goal of fault diagnosis. In the reactor operation phase, the plant measurements are collected to estimate uncertain model parameters so that a high fidelity model can be obtained for fault diagnosis. The proposed algorithm of fault detection and isolation is able to combine the strength of first principle model based fault diagnosis and the historical data based fault diagnosis. Principal component analysis on the reconciled data is used to develop a statistical model for fault detection. The updating of the principal component model based on the most recent reconciled data is a locally linearized model around the current plant measurements, so that it is applicable to any generic nonlinear systems. The sensor fault diagnosis and process fault diagnosis are decoupled through considering the process fault diagnosis as a parameter estimation problem. The developed approach has been applied to the IRIS helical coil steam generator system to monitor the operational performance of individual steam generators. This approach is general enough to design fault diagnosis systems for the next generation nuclear power plants. (authors)

  19. MFTF plasma diagnostics data acquisition system

    International Nuclear Information System (INIS)

    Davis, G.E.; Coffield, F.E.

    1979-01-01

    The initial goal of the Data Acquisition System (DAS) is to control 11 instruments chosen as the startup diagnostic set and to collect, process, and display the data that these instruments produce. These instruments are described in a paper by Stan Thomas, et. al. entitled ''MFTF Plasma Diagnostics System.'' The DAS must be modular and flexible enough to allow upgrades in the quantity of data taken by an instrument, and also to allow new instruments to be added to the system. This is particularly necessary to support a research project where needs and requirements may change rapidly as a result of experimental findings. Typically, the startup configuration of the diagnostic instruments will contain only a fraction of the planned detectors, and produce approximately one half the data that the expanded version is designed to generate. Expansion of the system will occur in fiscal year 1982

  20. Data-driven design of fault diagnosis systems nonlinear multimode processes

    CERN Document Server

    Haghani Abandan Sari, Adel

    2014-01-01

    In many industrial applications early detection and diagnosis of abnormal behavior of the plant is of great importance. During the last decades, the complexity of process plants has been drastically increased, which imposes great challenges in development of model-based monitoring approaches and it sometimes becomes unrealistic for modern large-scale processes. The main objective of Adel Haghani Abandan Sari is to study efficient fault diagnosis techniques for complex industrial systems using process historical data and considering the nonlinear behavior of the process. To this end, different methods are presented to solve the fault diagnosis problem based on the overall behavior of the process and its dynamics. Moreover, a novel technique is proposed for fault isolation and determination of the root-cause of the faults in the system, based on the fault impacts on the process measurements. Contents Process monitoring Fault diagnosis and fault-tolerant control Data-driven approaches and decision making Target...

  1. UIO-based Fault Diagnosis for Hydraulic Automatic Gauge Control System of Magnesium Sheet Mill

    Directory of Open Access Journals (Sweden)

    Li-Ping FAN

    2014-02-01

    Full Text Available Hydraulic automatic gauge control system of magnesium sheet mill is a complex integrated control system, which including mechanical, hydraulic and electrical comprehensive information. The failure rate of AGC system always is high, and its fault reasons are always complex. Based on analyzing the fault of main components of the automatic gauge control system, unknown input observer is used to realize fault diagnosis and isolation. Simulation results show that the fault diagnosis method based on the unknown input observer for the hydraulic automatic gauge control system of magnesium sheet mill is effective.

  2. Energy-Aware Synthesis of Fault-Tolerant Schedules for Real-Time Distributed Embedded Systems

    DEFF Research Database (Denmark)

    Poulsen, Kåre Harbo; Pop, Paul; Izosimov, Viacheslav

    2007-01-01

    This paper presents a design optimisation tool for distributed embedded real-time systems that 1) decides mapping, fault-tolerance policy and generates a fault-tolerant schedule, 2) is targeted for hard real-time, 3) has hard reliability goal, 4) generates static schedule for processes and messages......, 5) provides fault-tolerance for k transient/soft faults, 6) optimises for minimal energy consumption, while considering impact of lowering voltages on the probability of faults, 7) uses constraint logic programming (CLP) based implementation....

  3. An Online Fault Pre-warning System of the Rolling Mill Screw-down Device Based on Virtual Instrument

    Directory of Open Access Journals (Sweden)

    Qing Bai

    2014-04-01

    Full Text Available A traditional off-line screw-down monitoring system performs not well on real-time signal analysis or process, which cannot provide simultaneous fault pre-warning either. A diagnostic monitoring system as well as a remotely accessible graphic user interface is presented in this paper. The main objective of this work is to develop an online and available technique for monitoring the kinetic, hydrodynamic and electrical parameters of the rolling mill screw-down device, and analyze these figures to support online fault pre-warning. A series of transducers are installed in suitable locations to measure parameters decried above including the vibration acceleration of a rolling mill stand, the rolling force of a screw-down device, the stroke of a hydraulic cylinder, the system source pressure, the in-cylinder stress and the output value of an electro-hydraulic servo valve. An industrial personal computer picks up the information transformed by an extra high-speed data acquisition board embedded inside, processes the signals via a software designed by means of Laborary Virtual Instrument Engineering Workbench (LabVIEW and indicates fault conditions through the graphic user interface. Besides, the data of the overall system can be published over the Internet using LabVIEW Web Server capabilities. The results of experiments suggest that the system works well on real-time data acquisition and online fault pre- warning. The statistics saved contributes to the research of vibration performance and malfunction analysis of a rolling mill.

  4. Automatic vibration monitoring system for the diagnostic inspection of the WWER-440 type nuclear power plants

    International Nuclear Information System (INIS)

    Hollo, E.; Siklossy, P.; Toth, Zs.

    1982-01-01

    In the Hungarian Research Institute for Electric Power Industry (VEIKI) an automatic vibration monitoring system for diagnostics and inspection of nuclear power plants of type WWER-440 was developed. The paper summarizes the results of this work and investigates the use of mechanical vibrations and oscillations induced by flow for fault diagnosis. The design of the hardware system, the present software possibilities, the laboratory experiments and the guidelines for future software developments are also described in detail. (A.L.)

  5. Faults detection approach using PCA and SOM algorithm in PMSG-WT system

    Directory of Open Access Journals (Sweden)

    Mohamed Lamine FADDA

    2016-07-01

    Full Text Available In this paper, a new approach for faults detection in observable data system wind turbine - permanent magnet synchronous generator (WT-PMSG, the studying objective, illustrate the combination (SOM-PCA to build Multi-local-PCA models faults detection in system (WT-PMSG, the performance of the method suggested to faults detection in system data, finding good results in simulation experiment.

  6. Modification of Duval Triangle for Diagnostic Transformer Fault through a Procedure of Dissolved Gases Analysis

    Directory of Open Access Journals (Sweden)

    Sobhy Serry Dessouky

    2016-08-01

        The evaluation is carried out on DGA data obtained from three different groups of transformers. A Matlab program was developed to automate the evaluation of  Duval Triangle graph to numerical modification, Also the fault gases can be generated due to oil decomposing effected by transformer over excitation which increasing thetransformer exciting current lead to rising the temperature inside transformer core beside the other causes.

  7. Fault diagnostics in power transformer model winding for different alpha values

    Directory of Open Access Journals (Sweden)

    G.H. Kusumadevi

    2015-09-01

    Full Text Available Transient overvoltages appearing at line terminal of power transformer HV windings can cause failure of winding insulation. The failure can be from winding to ground or between turns or sections of winding. In most of the cases, failure from winding to ground can be detected by changes in the wave shape of surge voltage appearing at line terminal. However, detection of insulation failure between turns may be difficult due to intricacies involved in identifications of faults. In this paper, simulation investigations carried out on a power transformer model winding for identifying faults between turns of winding has been reported. The power transformer HV winding has been represented by 8 sections, 16 sections and 24 sections. Neutral current waveform has been analyzed for same model winding represented by different number of sections. The values of α (‘α’ value is the square root of total ground capacitance to total series capacitance of winding considered for windings are 5, 10 and 20. Standard lightning impulse voltage (1.2/50 μs wave shape have been considered for analysis. Computer simulations have been carried out using software PSPICE version 10.0. Neutral current and frequency response analysis methods have been used for identification of faults within sections of transformer model winding.

  8. Application of ENN-1 for Fault Diagnosis of Wind Power Systems

    Directory of Open Access Journals (Sweden)

    Meng-Hui Wang

    2012-01-01

    Full Text Available Maintaining a wind turbine and ensuring secure is not easy because of long-term exposure to the environment and high installation locations. Wind turbines need fully functional condition-monitoring and fault diagnosis systems that prevent accidents and reduce maintenance costs. This paper presents a simulator design for fault diagnosis of wind power systems and further proposes some fault diagnosis technologies such as signal analysis, feature selecting, and diagnosis methods. First, this paper uses a wind power simulator to produce fault conditions and features from the monitoring sensors. Then an extension neural network type-1- (ENN-1- based method is proposed to develop the core of the fault diagnosis system. The proposed system will benefit the development of real fault diagnosis systems with testing models that demonstrate satisfactory results.

  9. Residual heat removal system diagnostic advisor

    International Nuclear Information System (INIS)

    Tripp, L.

    1991-01-01

    This paper reports on the Residual Heat Removal System (RHRS) Diagnostic Advisor which is an expert system designed to alert the operators to abnormal conditions that exits in the RHRS and offer advice about the cause of the abnormal conditions. The Advisor uses a combination of rule-based and model-based diagnostic techniques to perform its functions. This diagnostic approach leads to a deeper understanding of the RHRS by the Advisor and consequently makes it more robust to unexpected conditions. The main window of the interactive graphic display is a schematic diagram of the RHRS piping system. When a conclusion about a failed component can be reached, the operator can bring up windows that describe the failure mode of the component and a brief explanation about how the Advisor arrived at its conclusion

  10. Advanced information processing system: The Army fault tolerant architecture conceptual study. Volume 2: Army fault tolerant architecture design and analysis

    Science.gov (United States)

    Harper, R. E.; Alger, L. S.; Babikyan, C. A.; Butler, B. P.; Friend, S. A.; Ganska, R. J.; Lala, J. H.; Masotto, T. K.; Meyer, A. J.; Morton, D. P.

    1992-01-01

    Described here is the Army Fault Tolerant Architecture (AFTA) hardware architecture and components and the operating system. The architectural and operational theory of the AFTA Fault Tolerant Data Bus is discussed. The test and maintenance strategy developed for use in fielded AFTA installations is presented. An approach to be used in reducing the probability of AFTA failure due to common mode faults is described. Analytical models for AFTA performance, reliability, availability, life cycle cost, weight, power, and volume are developed. An approach is presented for using VHSIC Hardware Description Language (VHDL) to describe and design AFTA's developmental hardware. A plan is described for verifying and validating key AFTA concepts during the Dem/Val phase. Analytical models and partial mission requirements are used to generate AFTA configurations for the TF/TA/NOE and Ground Vehicle missions.

  11. Structural setting and kinematics of Nubian fault system, SE Western Desert, Egypt: An example of multi-reactivated intraplate strike-slip faults

    Science.gov (United States)

    Sakran, Shawky; Said, Said Mohamed

    2018-02-01

    Detailed surface geological mapping and subsurface seismic interpretation have been integrated to unravel the structural style and kinematic history of the Nubian Fault System (NFS). The NFS consists of several E-W Principal Deformation Zones (PDZs) (e.g. Kalabsha fault). Each PDZ is defined by spectacular E-W, WNW and ENE dextral strike-slip faults, NNE sinistral strike-slip faults, NE to ENE folds, and NNW normal faults. Each fault zone has typical self-similar strike-slip architecture comprising multi-scale fault segments. Several multi-scale uplifts and basins were developed at the step-over zones between parallel strike-slip fault segments as a result of local extension or contraction. The NNE faults consist of right-stepping sinistral strike-slip fault segments (e.g. Sin El Kiddab fault). The NNE sinistral faults extend for long distances ranging from 30 to 100 kms and cut one or two E-W PDZs. Two nearly perpendicular strike-slip tectonic regimes are recognized in the NFS; an inactive E-W Late Cretaceous - Early Cenozoic dextral transpression and an active NNE sinistral shear.

  12. Fault Diagnosis Scheme for Nonlinear Stochastic Systems with Time-Varying Fault: Application to the Rigid Spacecraft Control

    Czech Academy of Sciences Publication Activity Database

    Nguyen, H.Q.; Čelikovský, Sergej

    2012-01-01

    Roč. 1, č. 3 (2012), s. 179-187 ISSN 2223-7038 R&D Projects: GA ČR(CZ) GAP103/12/1794 Institutional support: RVO:67985556 Keywords : Attitude control * adaptive fault estimation * LMI * PDF Subject RIV: BC - Control Systems Theory http://lib.physcon.ru/doc?id=02c925f7e4ab

  13. Supervisory Control and Diagnostics System Distributed Operating System

    International Nuclear Information System (INIS)

    McGoldrick, P.R.

    1979-01-01

    This paper contains a description of the Supervisory Control and Diagnostics System (SCDS) Distributed Operating System. The SCDS consists of nine 32-bit minicomputers with shared memory. The system's main purpose is to control a large Mirror Fusion Test Facility

  14. Geology and structure of the North Boqueron Bay-Punta Montalva Fault System

    Science.gov (United States)

    Roig Silva, Coral Marie

    The North Boqueron Bay-Punta Montalva Fault Zone is an active fault system that cuts across the Lajas Valley in southwestern Puerto Rico. The fault zone has been recognized and mapped based upon detailed analysis of geophysical data, satellite images and field mapping. The fault zone consists of a series of Cretaceous bedrock faults that reactivated and deformed Miocene limestone and Quaternary alluvial fan sediments. The fault zone is seismically active (ML < 5.0) with numerous locally felt earthquakes. Focal mechanism solutions and structural field data suggest strain partitioning with predominantly east-west left-lateral displacements with small normal faults oriented mostly toward the northeast. Evidence for recent displacement consists of fractures and small normal faults oriented mostly northeast found in intermittent streams that cut through the Quaternary alluvial fan deposits along the southern margin of the Lajas Valley, Areas of preferred erosion, within the alluvial fan, trend toward the west-northwest parallel to the on-land projection of the North Boqueron Bay Fault. Beyond the faulted alluvial fan and southeast of the Lajas Valley, the Northern Boqueron Bay Fault joins with the Punta Montalva Fault. The Punta Montalva Fault is defined by a strong topographic WNW lineament along which stream channels are displaced left laterally 200 meters and Miocene strata are steeply tilted to the south. Along the western end of the fault zone in northern Boqueron Bay, the older strata are only tilted 3° south and are covered by flat lying Holocene sediments. Focal mechanisms solutions along the western end suggest NW-SE shortening, which is inconsistent with left lateral strain partitioning along the fault zone. The limited deformation of older strata and inconsistent strain partitioning may be explained by a westerly propagation of the fault system from the southwest end. The limited geomorphic structural expression along the North Boqueron Bay Fault segment

  15. Performance diagnostic system for emergency diesel generators

    International Nuclear Information System (INIS)

    Logan, K.P.

    1991-01-01

    Diesel generators are commonly used for emergency backup power at nuclear stations. Emergency diesel generators (EDGs) are subject to both start-up and operating failures, due to infrequent and fast-start use. EDG reliability can be critical to plant safety, particularly when station blackout occurs. This paper describes an expert diagnostic system designed to consistently evaluate the operating performance of diesel generators. The prototype system is comprised of a suite of sensor monitoring, cylinder combustion analyzing, and diagnostic workstation computers. On-demand assessments of generator and auxiliary equipment performance are provided along with color trend displays comparing measured performance to reference-normal conditions

  16. Software System for Finding the Incipient Faults in Power Transformers

    Directory of Open Access Journals (Sweden)

    Nikolina Petkova

    2015-05-01

    Full Text Available In this paper a new software system for finding of incipient faultsis presented.An experiment is made with real measurement of partial discharge(PD that appeared in power transformer. The software system usesacquisition data to define the real state of this transformer. One of the most important criteria for the power transformer’s state is the presence of partial discharges. The wave propagation caused by partial discharge depends on scheme of the winding and construction of the power equipment. In all cases, the PD source had a specific position so the wave measured from the PD –coupling device had a specific waveform. The waveform is different when PDcoupling device is put on a specific place. The waveform and the time of propagation are criteria for the localization of the source of incipient faults in the volume of power transformer.

  17. Timing of initiation and fault rates of the Yushu-Xianshuihe-Xiaojiang fault system around the eastern Himalayan syntaxis.

    Science.gov (United States)

    Hervé Leloup, Philippe; Replumaz, Anne; Chevalier, Marie-Luce; Zhang, Yuan-Ze; Paquette, Jean-Louis; Wang, Guo-Can; Bernet, Matthias; van der Beek, Peter; Pan, Jiawei; Metois, Marianne; Li, Haibing

    2017-04-01

    In eastern Tibet, the left-lateral strike-slip Yushu-Xianshuihe-Xiaojiang fault system (YXX-FS) is 1400 km long, veering from N100° to N175° broadly following a small circle whose pole is located in the eastern Himalayan syntaxis. Several competing models are proposed to explain the geological evolution of eastern Tibet, and in particular of the YXX-FS: fault following slip-lines in a plastic media, book-shelf fault in a large right-lateral shear zone, or fault bounding a lower channel flow veering around the syntaxis. In this contribution we document the timing of onset of the YXX-FS, its propagation through time, its rate at various time-scales; and discuss how these relate to the deformation models. The YXX-FS comprises four segments from east (Tibetan Plateau) to west (Yunnan): Yushu-Ganzi, Xianshuihe, Anninghe, and Zemuhe-Xiaojiang. It is one of the most tectonically active intra-continental fault system in China along which more than 20 M>6.5 earthquakes occurred since 1700. Slip-rates of 3.5 to 30 mm/yr along the YXX-FS have been suggested by matching geological offsets of 60-100 km with initiation ages of 2 to 17 Ma. Late Quaternary rates deduced from morphological offsets, InSAR, paleoseismology and GPS also show a large range: between 3 and 20 mm/yr. The timing of initiation of the Yushu-Ganzi segment has been constrained at 12.6±1 Ma and its total offset to 76 - 90 km (Wang et al., 2009) yielding a rate of 6.6+0.8-0.7 mm/yr. By measuring the offsets of moraine crests and fan edges across the fault using LiDAR and kinematic GPS, and dating their surfaces using 10Be, we determined slip-rates of 7+1.1-1.0 mm/yr, 3 - 11.2 mm/yr and 8.5+0.8-0.7 mm/yr at three different sites. This suggests a constant rate of 6-8 mm/yr along the fault segment since 13Ma. The timing of initiation of the Xianshuihe segment was thought to be prior to 12.8±1.4 Ma (Roger et al., 1995), but new field studies and geochronological ages suggest that the fault initiated later. Using

  18. Optimal Sequential Diagnostic Strategy Generation Considering Test Placement Cost for Multimode Systems

    Directory of Open Access Journals (Sweden)

    Shigang Zhang

    2015-10-01

    Full Text Available Sequential fault diagnosis is an approach that realizes fault isolation by executing the optimal test step by step. The strategy used, i.e., the sequential diagnostic strategy, has great influence on diagnostic accuracy and cost. Optimal sequential diagnostic strategy generation is an important step in the process of diagnosis system construction, which has been studied extensively in the literature. However, previous algorithms either are designed for single mode systems or do not consider test placement cost. They are not suitable to solve the sequential diagnostic strategy generation problem considering test placement cost for multimode systems. Therefore, this problem is studied in this paper. A formulation is presented. Two algorithms are proposed, one of which is realized by system transformation and the other is newly designed. Extensive simulations are carried out to test the effectiveness of the algorithms. A real-world system is also presented. All the results show that both of them have the ability to solve the diagnostic strategy generation problem, and they have different characteristics.

  19. Optimal Sequential Diagnostic Strategy Generation Considering Test Placement Cost for Multimode Systems

    Science.gov (United States)

    Zhang, Shigang; Song, Lijun; Zhang, Wei; Hu, Zheng; Yang, Yongmin

    2015-01-01

    Sequential fault diagnosis is an approach that realizes fault isolation by executing the optimal test step by step. The strategy used, i.e., the sequential diagnostic strategy, has great influence on diagnostic accuracy and cost. Optimal sequential diagnostic strategy generation is an important step in the process of diagnosis system construction, which has been studied extensively in the literature. However, previous algorithms either are designed for single mode systems or do not consider test placement cost. They are not suitable to solve the sequential diagnostic strategy generation problem considering test placement cost for multimode systems. Therefore, this problem is studied in this paper. A formulation is presented. Two algorithms are proposed, one of which is realized by system transformation and the other is newly designed. Extensive simulations are carried out to test the effectiveness of the algorithms. A real-world system is also presented. All the results show that both of them have the ability to solve the diagnostic strategy generation problem, and they have different characteristics. PMID:26457709

  20. Fault Detection, Isolation, and Accommodation for LTI Systems Based on GIMC Structure

    Directory of Open Access Journals (Sweden)

    D. U. Campos-Delgado

    2008-01-01

    Full Text Available In this contribution, an active fault-tolerant scheme that achieves fault detection, isolation, and accommodation is developed for LTI systems. Faults and perturbations are considered as additive signals that modify the state or output equations. The accommodation scheme is based on the generalized internal model control architecture recently proposed for fault-tolerant control. In order to improve the performance after a fault, the compensation is considered in two steps according with a fault detection and isolation algorithm. After a fault scenario is detected, a general fault compensator is activated. Finally, once the fault is isolated, a specific compensator is introduced. In this setup, multiple faults could be treated simultaneously since their effect is additive. Design strategies for a nominal condition and under model uncertainty are presented in the paper. In addition, performance indices are also introduced to evaluate the resulting fault-tolerant scheme for detection, isolation, and accommodation. Hard thresholds are suggested for detection and isolation purposes, meanwhile, adaptive ones are considered under model uncertainty to reduce the conservativeness. A complete simulation evaluation is carried out for a DC motor setup.

  1. A Grid Voltage Measurement Method for Wind Power Systems during Grid Fault Conditions

    OpenAIRE

    Yoo, Cheol-Hee; Chung, Il-Yop; Yoo, Hyun-Jae; Hong, Sung-Soo

    2014-01-01

    Grid codes in many countries require low-voltage ride-through (LVRT) capability to maintain power system stability and reliability during grid fault conditions. To meet the LVRT requirement, wind power systems must stay connected to the grid and also supply reactive currents to the grid to support the recovery from fault voltages. This paper presents a new fault detection method and inverter control scheme to improve the LVRT capability for full-scale permanent magnet synchronous generator (P...

  2. BWR recirculation pump diagnostic expert system

    International Nuclear Information System (INIS)

    Chiang, S.C.; Morimoto, C.N.; Torres, M.R.

    2004-01-01

    At General Electric (GE), an on-line expert system to support maintenance decisions for BWR recirculation pumps for nuclear power plants has been developed. This diagnostic expert system is an interactive on-line system that furnishes diagnostic information concerning BWR recirculation pump operational problems. It effectively provides the recirculation pump diagnostic expertise in the plant control room continuously 24 hours a day. The expert system is interfaced to an on-line monitoring system, which uses existing plant sensors to acquire non-safety related data in real time. The expert system correlates and evaluates process data and vibration data by applying expert rules to determine the condition of a BWR recirculation pump system by applying knowledge based rules. Any diagnosis will be automatically displayed, indicating which pump may have a problem, the category of the problem, and the degree of concern expressed by the validity index and color hierarchy. The rules incorporate the expert knowledge from various technical sources such as plant experience, engineering principles, and published reports. These rules are installed in IF-THEN formats and the resulting truth values are also expressed in fuzzy terms and a certainty factor called a validity index. This GE Recirculation Pump Expert System uses industry-standard software, hardware, and network access to provide flexible interfaces with other possible data acquisition systems. Gensym G2 Real-Time Expert System is used for the expert shell and provides the graphical user interface, knowledge base, and inference engine capabilities. (author)

  3. Verification of a Novel Method of Detecting Faults in Medium-Voltage Systems with Covered Conductors

    Directory of Open Access Journals (Sweden)

    Mišák Stanislav

    2017-06-01

    Full Text Available This paper describes the use of new methods of detecting faults in medium-voltage overhead lines built of covered conductors. The methods mainly address such faults as falling of a conductor, contacting a conductor with a tree branch, or falling a tree branch across three phases of a medium-voltage conductor. These faults cannot be detected by current digital relay protection systems. Therefore, a new system that can detect the above mentioned faults was developed. After having tested its operation, the system has already been implemented to protect mediumvoltage overhead lines built of covered conductors.

  4. Stabiliser Fault Emergency Control using Reconfiguration to Preserve Power System Stability

    DEFF Research Database (Denmark)

    Pedersen, Andreas Søndergaard; Richter, Jan H.; Tabatabaeipour, Mojtaba

    2014-01-01

    Stabiliser faults in multi-machine power systems are examined in this paper where fault-masking and system reconguration of the nonlinear system is obtained using a virtual actuator approach. Phasor Measurement Units, which can be integrated in wide-area transmission grids to improve the performa...

  5. 14 CFR Special Federal Aviation... - Fuel Tank System Fault Tolerance Evaluation Requirements

    Science.gov (United States)

    2010-01-01

    ... 14 Aeronautics and Space 1 2010-01-01 2010-01-01 false Fuel Tank System Fault Tolerance Evaluation..., SFAR No. 88 Special Federal Aviation Regulation No. 88—Fuel Tank System Fault Tolerance Evaluation... certificates that may affect the airplane fuel tank system, for turbine-powered transport category airplanes...

  6. Adaptive Fuzzy Output-Constrained Fault-Tolerant Control of Nonlinear Stochastic Large-Scale Systems With Actuator Faults.

    Science.gov (United States)

    Li, Yongming; Ma, Zhiyao; Tong, Shaocheng

    2017-09-01

    The problem of adaptive fuzzy output-constrained tracking fault-tolerant control (FTC) is investigated for the large-scale stochastic nonlinear systems of pure-feedback form. The nonlinear systems considered in this paper possess the unstructured uncertainties, unknown interconnected terms and unknown nonaffine nonlinear faults. The fuzzy logic systems are employed to identify the unknown lumped nonlinear functions so that the problems of structured uncertainties can be solved. An adaptive fuzzy state observer is designed to solve the nonmeasurable state problem. By combining the barrier Lyapunov function theory, adaptive decentralized and stochastic control principles, a novel fuzzy adaptive output-constrained FTC approach is constructed. All the signals in the closed-loop system are proved to be bounded in probability and the system outputs are constrained in a given compact set. Finally, the applicability of the proposed controller is well carried out by a simulation example.

  7. Extension of the Accurate Voltage-Sag Fault Location Method in Electrical Power Distribution Systems

    Directory of Open Access Journals (Sweden)

    Youssef Menchafou

    2016-03-01

    Full Text Available Accurate Fault location in an Electric Power Distribution System (EPDS is important in maintaining system reliability. Several methods have been proposed in the past. However, the performances of these methods either show to be inefficient or are a function of the fault type (Fault Classification, because they require the use of an appropriate algorithm for each fault type. In contrast to traditional approaches, an accurate impedance-based Fault Location (FL method is presented in this paper. It is based on the voltage-sag calculation between two measurement points chosen carefully from the available strategic measurement points of the line, network topology and current measurements at substation. The effectiveness and the accuracy of the proposed technique are demonstrated for different fault types using a radial power flow system. The test results are achieved from the numerical simulation using the data of a distribution line recognized in the literature.

  8. A statistical-based approach for fault detection and diagnosis in a photovoltaic system

    KAUST Repository

    Garoudja, Elyes

    2017-07-10

    This paper reports a development of a statistical approach for fault detection and diagnosis in a PV system. Specifically, the overarching goal of this work is to early detect and identify faults on the DC side of a PV system (e.g., short-circuit faults; open-circuit faults; and partial shading faults). Towards this end, we apply exponentially-weighted moving average (EWMA) control chart on the residuals obtained from the one-diode model. Such a choice is motivated by the greater sensitivity of EWMA chart to incipient faults and its low-computational cost making it easy to implement in real time. Practical data from a 3.2 KWp photovoltaic plant located within an Algerian research center is used to validate the proposed approach. Results show clearly the efficiency of the developed method in monitoring PV system status.

  9. An Ontology for Identifying Cyber Intrusion Induced Faults in Process Control Systems

    Science.gov (United States)

    Hieb, Jeffrey; Graham, James; Guan, Jian

    This paper presents an ontological framework that permits formal representations of process control systems, including elements of the process being controlled and the control system itself. A fault diagnosis algorithm based on the ontological model is also presented. The algorithm can identify traditional process elements as well as control system elements (e.g., IP network and SCADA protocol) as fault sources. When these elements are identified as a likely fault source, the possibility exists that the process fault is induced by a cyber intrusion. A laboratory-scale distillation column is used to illustrate the model and the algorithm. Coupled with a well-defined statistical process model, this fault diagnosis approach provides cyber security enhanced fault diagnosis information to plant operators and can help identify that a cyber attack is underway before a major process failure is experienced.

  10. Adaptive Observer-Based Fault-Tolerant Control Design for Uncertain Systems

    Directory of Open Access Journals (Sweden)

    Huaming Qian

    2015-01-01

    Full Text Available This study focuses on the design of the robust fault-tolerant control (FTC system based on adaptive observer for uncertain linear time invariant (LTI systems. In order to improve robustness, rapidity, and accuracy of traditional fault estimation algorithm, an adaptive fault estimation algorithm (AFEA using an augmented observer is presented. By utilizing a new fault estimator model, an improved AFEA based on linear matrix inequality (LMI technique is proposed to increase the performance. Furthermore, an observer-based state feedback fault-tolerant control strategy is designed, which guarantees the stability and performance of the faulty system. Moreover, the adaptive observer and the fault-tolerant controller are designed separately, whose performance can be considered, respectively. Finally, simulation results of an aircraft application are presented to illustrate the effectiveness of the proposed design methods.

  11. From experiment to design -- Fault characterization and detection in parallel computer systems using computational accelerators

    Science.gov (United States)

    Yim, Keun Soo

    This dissertation summarizes experimental validation and co-design studies conducted to optimize the fault detection capabilities and overheads in hybrid computer systems (e.g., using CPUs and Graphics Processing Units, or GPUs), and consequently to improve the scalability of parallel computer systems using computational accelerators. The experimental validation studies were conducted to help us understand the failure characteristics of CPU-GPU hybrid computer systems under various types of hardware faults. The main characterization targets were faults that are difficult to detect and/or recover from, e.g., faults that cause long latency failures (Ch. 3), faults in dynamically allocated resources (Ch. 4), faults in GPUs (Ch. 5), faults in MPI programs (Ch. 6), and microarchitecture-level faults with specific timing features (Ch. 7). The co-design studies were based on the characterization results. One of the co-designed systems has a set of source-to-source translators that customize and strategically place error detectors in the source code of target GPU programs (Ch. 5). Another co-designed system uses an extension card to learn the normal behavioral and semantic execution patterns of message-passing processes executing on CPUs, and to detect abnormal behaviors of those parallel processes (Ch. 6). The third co-designed system is a co-processor that has a set of new instructions in order to support software-implemented fault detection techniques (Ch. 7). The work described in this dissertation gains more importance because heterogeneous processors have become an essential component of state-of-the-art supercomputers. GPUs were used in three of the five fastest supercomputers that were operating in 2011. Our work included comprehensive fault characterization studies in CPU-GPU hybrid computers. In CPUs, we monitored the target systems for a long period of time after injecting faults (a temporally comprehensive experiment), and injected faults into various types of

  12. Flexible fault ride through strategy for wind farm clusters in power systems with high wind power penetration

    International Nuclear Information System (INIS)

    Wang, Songyan; Chen, Ning; Yu, Daren; Foley, Aoife; Zhu, Lingzhi; Li, Kang; Yu, Jilai

    2015-01-01

    Highlights: • A flexible fault ride through strategy is proposed. • The strategy comprises of grid code requirements and power restrictions. • Slight faults and moderate faults are the main defending objectives. • Temporary overloading capability of the doubly fed induction generator is considered. - Abstract: This paper investigates a flexible fault ride through strategy for power systems in China with high wind power penetration. The strategy comprises of adaptive fault ride through requirements and maximum power restrictions of the wind farms with weak fault ride through capabilities. The slight faults and moderate faults with high probability are the main defending objective of the strategy. The adaptive fault ride through requirement in the strategy consists of two sub fault ride through requirements, a temporary slight voltage ride through requirement corresponding to a slight fault incident, with a moderate voltage ride through requirement corresponding to a moderate fault. The temporary overloading capability of the wind farm is reflected in both requirements to enhance the capability to defend slight faults and to avoid tripping when the crowbar is disconnected after moderate faults are cleared. For those wind farms that cannot meet the adaptive fault ride through requirement, restrictions are put on the maximum power output. Simulation results show that the flexible fault ride through strategy increases the fault ride through capability of the wind farm clusters and reduces the wind power curtailment during faults

  13. A fault diagnosis and operation advising cooperative expert system based on multi-agent technology

    Energy Technology Data Exchange (ETDEWEB)

    Zhao, W.; Bai, X.; Ding, J.; Fang, Z.; Li, Z. [China Electric Power Research Inst., Haidian District, Beijing (China)

    2006-07-01

    Power systems are becoming more and more complex. In addition, the amount of real-time alarm messages from the supervisory control and data acquisition, energy management systems and wide area measurement systems about switchgear and protection are also increasing to a point far beyond the operator's capacity to digest the information. Research and development of a fault diagnosis system is necessary for the timely identification of fault or malfunctioning devices and for realizing the automation functions of dynamic supervisory control system. The prevailing fault diagnosis approaches in power systems include the expert system, artificial neural network, and fault diagnosis based on optimal theory. This paper discussed the advantages and disadvantages of each of these approaches for diagnosing faults. The paper also proposed a new fault diagnosis and operational processing approach based on a cooperative expert system combined with a multi-agent architecture. For solving complex and correlative faults, the cooperative expert system can overcome the deficiency of a single expert system. It can be used not only for diagnosing complex faults in real time but also in providing timely operational advice. The proposed system has been used successfully in a district power grid in China's Shangdong province for a year. 9 refs., 4 figs.

  14. Evidence of a tectonic transient within the Idrija fault system in Western Slovenia

    Science.gov (United States)

    Vičič, Blaž; Costa, Giovanni; Aoudia, Abdelkrim

    2017-04-01

    Western Slovenia and North-eastern Italy are areas of medium rate seismicity with rare historic earthquakes of higher magnitudes. From mainly reverse component faulting in north-western part of the region where 1976 Friuli earthquakes took place, tectonic regime changes to mostly strike-slip faulting in the Dinaric region, continuing towards southeast. In the northern part of the Idrija fault system, which represent the broader Dinaric strike-slip system there were two strong earthquakes in the recent times - Mw=5.6 1998 and Mw=5.2 2004 earthquakes. Further to the south, along the Idrija fault system, Idrija fault is the causative fault of 1511 Mw=6.8 earthquake. The southeastern most part of the Idrija fault system produced a Mw=5.2 earthquake in 1926 and few historic Mw>4 earthquakes. Since 2004 Mw=5.2 earthquake, no stronger earthquakes were recorded in the region covered by dense seismic network. Seismicity is mostly concentrated in Friuli region and north-western part of Idrija fault system - mostly on the Ravne fault which is the causative fault for the 1998 and 2004 earthquakes. In the central part of the fault system no strong or moderate earthquakes were recorded, except of an earthquake along the Idrija fault in 2014 of magnitude 3.4. Low magnitude background seismicity is burst like with no apparent temporal or spatial distribution. Seismicity of the southern part of Idrija fault system is again a bit higher than in the central part of the fault system with earthquakes up to Mw=4.4 that happened in 2014. In this study, detailed analysis of the seismicity is performed with manual relocation of the seismicity in the period between 2006 and 2016. With manual inspection of the waveform data, slight temporal clustering of seismicity is observed. We use a template algorithm method to increase the detection rate of the seismicity. Templates of seismicity in the north-western and south-eastern part of Idrija fault system are created. The continuous waveform data

  15. A novel vibration-based fault diagnostic algorithm for gearboxes under speed fluctuations without rotational speed measurement

    Science.gov (United States)

    Hong, Liu; Qu, Yongzhi; Dhupia, Jaspreet Singh; Sheng, Shuangwen; Tan, Yuegang; Zhou, Zude

    2017-09-01

    The localized failures of gears introduce cyclic-transient impulses in the measured gearbox vibration signals. These impulses are usually identified from the sidebands around gear-mesh harmonics through the spectral analysis of cyclo-stationary signals. However, in practice, several high-powered applications of gearboxes like wind turbines are intrinsically characterized by nonstationary processes that blur the measured vibration spectra of a gearbox and deteriorate the efficacy of spectral diagnostic methods. Although order-tracking techniques have been proposed to improve the performance of spectral diagnosis for nonstationary signals measured in such applications, the required hardware for the measurement of rotational speed of these machines is often unavailable in industrial settings. Moreover, existing tacho-less order-tracking approaches are usually limited by the high time-frequency resolution requirement, which is a prerequisite for the precise estimation of the instantaneous frequency. To address such issues, a novel fault-signature enhancement algorithm is proposed that can alleviate the spectral smearing without the need of rotational speed measurement. This proposed tacho-less diagnostic technique resamples the measured acceleration signal of the gearbox based on the optimal warping path evaluated from the fast dynamic time-warping algorithm, which aligns a filtered shaft rotational harmonic signal with respect to a reference signal assuming a constant shaft rotational speed estimated from the approximation of operational speed. The effectiveness of this method is validated using both simulated signals from a fixed-axis gear pair under nonstationary conditions and experimental measurements from a 750-kW planetary wind turbine gearbox on a dynamometer test rig. The results demonstrate that the proposed algorithm can identify fault information from typical gearbox vibration measurements carried out in a resource-constrained industrial environment.

  16. The Evergreen basin and the role of the Silver Creek fault in the San Andreas fault system, San Francisco Bay region, California

    Science.gov (United States)

    Jachens, Robert C.; Wentworth, Carl M.; Graymer, Russell W.; Williams, Robert; Ponce, David A.; Mankinen, Edward A.; Stephenson, William J.; Langenheim, Victoria

    2017-01-01

    The Evergreen basin is a 40-km-long, 8-km-wide Cenozoic sedimentary basin that lies mostly concealed beneath the northeastern margin of the Santa Clara Valley near the south end of San Francisco Bay (California, USA). The basin is bounded on the northeast by the strike-slip Hayward fault and an approximately parallel subsurface fault that is structurally overlain by a set of west-verging reverse-oblique faults which form the present-day southeastward extension of the Hayward fault. It is bounded on the southwest by the Silver Creek fault, a largely dormant or abandoned fault that splays from the active southern Calaveras fault. We propose that the Evergreen basin formed as a strike-slip pull-apart basin in the right step from the Silver Creek fault to the Hayward fault during a time when the Silver Creek fault served as a segment of the main route by which slip was transferred from the central California San Andreas fault to the Hayward and other East Bay faults. The dimensions and shape of the Evergreen basin, together with palinspastic reconstructions of geologic and geophysical features surrounding it, suggest that during its lifetime, the Silver Creek fault transferred a significant portion of the ∼100 km of total offset accommodated by the Hayward fault, and of the 175 km of total San Andreas system offset thought to have been accommodated by the entire East Bay fault system. As shown previously, at ca. 1.5–2.5 Ma the Hayward-Calaveras connection changed from a right-step, releasing regime to a left-step, restraining regime, with the consequent effective abandonment of the Silver Creek fault. This reorganization was, perhaps, preceded by development of the previously proposed basin-bisecting Mount Misery fault, a fault that directly linked the southern end of the Hayward fault with the southern Calaveras fault during extinction of pull-apart activity. Historic seismicity indicates that slip below a depth of 5 km is mostly transferred from the Calaveras

  17. Automatic fault diagnosis in PV systems with distributed MPPT

    International Nuclear Information System (INIS)

    Solórzano, J.; Egido, M.A.

    2013-01-01

    Highlights: • An automatic failure diagnosis procedure for PV systems with DMPPT is presented. • The different failures diagnosed and their effects on the PV systems are described. • No use of irradiance and temperature sensors decreasing the cost of the system. • Voltage and current analysis to diagnose different failures. • Hot-spots, localized dirt, shading, module degradation and cable losses diagnosis. - Abstract: This work presents a novel procedure for fault diagnosis in PV systems with distributed maximum power point tracking at module level—power optimizers (DC/DC) or micro-inverters (DC/AC). Apart from the power benefits obtained when an irregular irradiance distribution is present, this type of systems permit the monitoring of the PV plant parameters at the module level: voltage and current at the working power point. With these parameters, a prototype diagnosis tool has been developed in Matlab and it has been experimentally verified in a real rooftop PV generator by applying different failures. The tool can diagnose the following failures: fixed object shading (with distance estimation), localized dirt, generalized dirt, possible hot-spots, module degradation and excessive losses in DC cables. In addition, it alerts the user of the power losses produced by each failure and classifies the failures by their severity. This system does not require the use of irradiance or temperature sensors, except for the generalized dirt failure, reducing the cost of installation, especially important in small PV systems

  18. Fault Detection and Isolation for a Supermarket Refrigeration System - Part One

    DEFF Research Database (Denmark)

    Yang, Zhenyu; Rasmussen, Karsten B.; Kieu, Anh T.

    2011-01-01

    Fault Detection and Isolation (FDI) using the Kalman Filter (KF) technique for a supermarket refrigeration system is explored. Four types of sensor fault scenarios, namely drift, offset, freeze and hard-over, are considered for two temperature sensors, and one type of parametric fault scenario, n....... The test results show that the EKF-based FDI method generally performances better and faster than the KF-based method does. However, both methods can not handle the isolation between sensor faults and parametric fault.......Fault Detection and Isolation (FDI) using the Kalman Filter (KF) technique for a supermarket refrigeration system is explored. Four types of sensor fault scenarios, namely drift, offset, freeze and hard-over, are considered for two temperature sensors, and one type of parametric fault scenario...... isolation purpose, a bank of KFs arranged by splitting measurements is constructed for sensor fault isolation, while the Multi-Model Adaptive Estimation (MMAE) method is employed to handle parametric fault isolation. All these approaches are extended and checked by using Extended KF technique afterwards...

  19. Finite element simulation of earthquake cycle dynamics for continental listric fault system

    Science.gov (United States)

    Wei, T.; Shen, Z. K.

    2017-12-01

    We simulate stress/strain evolution through earthquake cycles for a continental listric fault system using the finite element method. A 2-D lithosphere model is developed, with the upper crust composed of plasto-elastic materials and the lower crust/upper mantle composed of visco-elastic materials respectively. The media is sliced by a listric fault, which is soled into the visco-elastic lower crust at its downdip end. The system is driven laterally by constant tectonic loading. Slip on fault is controlled by rate-state friction. We start with a simple static/dynamic friction law, and drive the system through multiple earthquake cycles. Our preliminary results show that: (a) periodicity of the earthquake cycles is strongly modulated by the static/dynamic friction, with longer period correlated with higher static friction and lower dynamic friction; (b) periodicity of earthquake is a function of fault depth, with less frequent events of greater magnitudes occurring at shallower depth; and (c) rupture on fault cannot release all the tectonic stress in the system, residual stress is accumulated in the hanging wall block at shallow depth close to the fault, which has to be released either by conjugate faulting or inelastic folding. We are in a process of exploring different rheologic structure and friction laws and examining their effects on earthquake behavior and deformation pattern. The results will be applied to specific earthquakes and fault zones such as the 2008 great Wenchuan earthquake on the Longmen Shan fault system.

  20. The Cottage Grove fault system (Illinois Basin): Late Paleozoic transpression along a Precambrian crustal boundary

    Science.gov (United States)

    Duchek, A.B.; McBride, J.H.; Nelson, W.J.; Leetaru, H.E.

    2004-01-01

    The Cottage Grove fault system in southern Illinois has long been interpreted as an intracratonic dextral strike-slip fault system. We investigated its structural geometry and kinematics in detail using (1) outcrop data, (2) extensive exposures in underground coal mines, (3) abundant borehole data, and (4) a network of industry seismic reflection profiles, including data reprocessed by us. Structural contour mapping delineates distinct monoclines, broad anticlines, and synclines that express Paleozoic-age deformation associated with strike slip along the fault system. As shown on seismic reflection profiles, prominent near-vertical faults that cut the entire Paleozoic section and basement-cover contact branch upward into outward-splaying, high-angle reverse faults. The master fault, sinuous along strike, is characterized along its length by an elongate anticline, ???3 km wide, that parallels the southern side of the master fault. These features signify that the overall kinematic regime was transpressional. Due to the absence of suitable piercing points, the amount of slip cannot be measured, but is constrained at less than 300 m near the ground surface. The Cottage Grove fault system apparently follows a Precambrian terrane boundary, as suggested by magnetic intensity data, the distribution of ultramafic igneous intrusions, and patterns of earthquake activity. The fault system was primarily active during the Alleghanian orogeny of Late Pennsylvanian and Early Permian time, when ultramatic igneous magma intruded along en echelon tensional fractures. ?? 2004 Geological Society of America.

  1. Fault-Related Controls on Upward Hydrothermal Flow: An Integrated Geological Study of the Têt Fault System, Eastern Pyrénées (France

    Directory of Open Access Journals (Sweden)

    Audrey Taillefer

    2017-01-01

    Full Text Available The way faults control upward fluid flow in nonmagmatic hydrothermal systems in extensional context is still unclear. In the Eastern Pyrénées, an alignment of twenty-nine hot springs (29°C to 73°C, along the normal Têt fault, offers the opportunity to study this process. Using an integrated multiscale geological approach including mapping, remote sensing, and macro- and microscopic analyses of fault zones, we show that emergence is always located in crystalline rocks at gneiss-metasediments contacts, mostly in the Têt fault footwall. The hot springs distribution is related to high topographic reliefs, which are associated with fault throw and segmentation. In more detail, emergence localizes either (1 in brittle fault damage zones at the intersection between the Têt fault and subsidiary faults or (2 in ductile faults where dissolution cavities are observed along foliations, allowing juxtaposition of metasediments. Using these observations and 2D simple numerical simulation, we propose a hydrogeological model of upward hydrothermal flow. Meteoric fluids, infiltrated at high elevation in the fault footwall relief, get warmer at depth because of the geothermal gradient. Topography-related hydraulic gradient and buoyancy forces cause hot fluid rise along permeability anisotropies associated with lithological juxtapositions, fracture, and fault zone compositions.

  2. Miocene Tectonics at the Pannonian - Carpathian Transition: The Bogdan Voda - Dragos Voda fault system, northern Romania

    Science.gov (United States)

    Tischler, M.; Gröger, H.; Marin, M.; Schmid, S. M.; Fügenschuh, B.

    2003-04-01

    Tertiary tectonics in the Pannonian-Carpathian transition zone was dominated by opposed rotations of Alcapa and Tisza-Dacia, separated by the Mid-Hungarian lineament (MHL). While in the Pannonian basin the MHL is well known from geophysical and borehole data, its northeastern continuation remains a matter of discussion. Our field based study, located in the Maramures mountains of northern Romania, provides new kinematic data from the Bogdan Voda fault, a first order candidate for the prolongation of the MHL to the northeast. In the Burdigalian, the Pienides (unmetamorphic flysch nappes) were emplaced onto the autochthonous Paleogene flysch units. Kinematic data consistently indicate top to the SE-directed thrusting of the Pienides and selected imbrications in the autochthonous units. Between Langhian and Tortonian these thrust contacts were offset by the E-W trending Bogdan Voda fault and its eastern continuation, the Dragos-Voda fault. These two faults share a common polyphase history, at least since the Burdigalian. Kinematic data derived from mesoscale faults indicate sinistral strike-slip displacement, in good agreement with kinematics inferred from map view. The NE-SW trending Greben fault, another fault of regional importance, was coevally active as a normal fault. From stratigraphic arguments major activity of this fault system is constrained to the time interval between 16.4-10 Ma. While deformation is strongly concentrated in the sedimentary units, the easterly located basement units are affected by abundant minor faults of similar kinematics covering a wide area. These SW-NE trending strike slip faults feature a normal component and resemble an imbricate fan geometry. Since Burdigalian thrusting is consistently SE-directed on either side of the Bogdan-Dragos Voda fault, major post-Burdigalian differential rotations can be excluded for the northern and southern block respectively. Hydrothermal veins within Pannonian volcanic units are aligned along the

  3. Fault tolerance of artificial neural networks with applications in critical systems

    Science.gov (United States)

    Protzel, Peter W.; Palumbo, Daniel L.; Arras, Michael K.

    1992-01-01

    This paper investigates the fault tolerance characteristics of time continuous recurrent artificial neural networks (ANN) that can be used to solve optimization problems. The principle of operations and performance of these networks are first illustrated by using well-known model problems like the traveling salesman problem and the assignment problem. The ANNs are then subjected to 13 simultaneous 'stuck at 1' or 'stuck at 0' faults for network sizes of up to 900 'neurons'. The effects of these faults is demonstrated and the cause for the observed fault tolerance is discussed. An application is presented in which a network performs a critical task for a real-time distributed processing system by generating new task allocations during the reconfiguration of the system. The performance degradation of the ANN under the presence of faults is investigated by large-scale simulations, and the potential benefits of delegating a critical task to a fault tolerant network are discussed.

  4. Adaptive robust fault-tolerant control for linear MIMO systems with unmatched uncertainties

    Science.gov (United States)

    Zhang, Kangkang; Jiang, Bin; Yan, Xing-Gang; Mao, Zehui

    2017-10-01

    In this paper, two novel fault-tolerant control design approaches are proposed for linear MIMO systems with actuator additive faults, multiplicative faults and unmatched uncertainties. For time-varying multiplicative and additive faults, new adaptive laws and additive compensation functions are proposed. A set of conditions is developed such that the unmatched uncertainties are compensated by actuators in control. On the other hand, for unmatched uncertainties with their projection in unmatched space being not zero, based on a (vector) relative degree condition, additive functions are designed to compensate for the uncertainties from output channels in the presence of actuator faults. The developed fault-tolerant control schemes are applied to two aircraft systems to demonstrate the efficiency of the proposed approaches.

  5. Flow meter fault isolation in building central chilling systems using wavelet analysis

    International Nuclear Information System (INIS)

    Chen Youming; Hao Xiaoli; Zhang Guoqiang; Wang Shengwei

    2006-01-01

    This paper presents an approach to isolate flow meter faults in building central chilling systems. It mathematically explains the fault collinearity among the flow meters in central chilling systems and points out that the sensor validation index (SVI) used in principal component analysis (PCA) is incapable of isolating flow meter faults due to the fault collinearity. The wavelet transform is used to isolate the flow meter faults as a substitute for the SVI of PCA. This approach can identify various variations in measuring signals, such as ramp, step, discontinuity etc., due to the good property of the wavelet in local time-frequency. Some examples are given to demonstrate its ability of fault isolation for the flow meters

  6. [Development of the lung cancer diagnostic system].

    Science.gov (United States)

    Lv, You-Jiang; Yu, Shou-Yi

    2009-07-01

    To develop a lung cancer diagnosis system. A retrospective analysis was conducted in 1883 patients with primary lung cancer or benign pulmonary diseases (pneumonia, tuberculosis, or pneumonia pseudotumor). SPSS11.5 software was used for data processing. For the relevant factors, a non-factor Logistic regression analysis was used followed by establishment of the regression model. Microsoft Visual Studio 2005 system development platform and VB.Net corresponding language were used to develop the lung cancer diagnosis system. The non-factor multi-factor regression model showed a goodness-of-fit (R2) of the model of 0.806, with a diagnostic accuracy for benign lung diseases of 92.8%, a diagnostic accuracy for lung cancer of 89.0%, and an overall accuracy of 90.8%. The model system for early clinical diagnosis of lung cancer has been established.

  7. Evolution of strike-slip fault systems and associated geomorphic structures. Model test

    International Nuclear Information System (INIS)

    Ueta, Keichi

    2003-01-01

    Sandbox experiments were performed to investigate evolution of fault systems and its associated geomorphic structures caused by strike-slip motion on basement faults. A 200 cm long, 40 cm wide, 25 cm high sandbox was used in a strike-slip fault model test. Computerized X-ray tomography applied to the sandbox experiments made it possible to analyze the kinematic evaluation, as well as the three-dimensional geometry, of the faults. The deformation of the sand pack surface was analyzed by use of a laser method 3D scanner, which is a three-dimensional noncontact surface profiling instrument. A comparison of the experimental results with natural cases of active faults reveals the following: In the left-lateral strike-slip fault experiments, the deformation of the sand pack with increasing basement displacement is observed as follows. 1) In three dimensions, the right-stepping shears that have a cirque'/'shell'/'shipbody' shape develop on both sides of the basement fault. The shears on one side of the basement fault join those on the other side, resulting in helicoidal shaped shear surfaces. Shears reach the surface of the sand near or above the basement fault and en echelon Riedel shears are observed at the surface of the sand. The region between two Riedels is always an up-squeezed block. 2) lower-angle shears generally branch off from the first Riedel shears. 3) Pressure ridges develop within the zone defined by the right-stepping helicoidal shaped lower-angle shears. 4) Grabens develop between the pressure ridges. 5) Y-shears offset the pressure ridges. 6) With displacement concentrated on the central throughgoing fault zone, a liner trough developed directly above the basement fault. R1 shear and P foliation are observed in the liner trough. Such evolution of the shears and its associated structures in the fault model tests agrees well with that of strike-slip fault systems and its associated geomorphic structures. (author)

  8. A fault diagnosis system for PV power station based on global partitioned gradually approximation method

    Science.gov (United States)

    Wang, S.; Zhang, X. N.; Gao, D. D.; Liu, H. X.; Ye, J.; Li, L. R.

    2016-08-01

    As the solar photovoltaic (PV) power is applied extensively, more attentions are paid to the maintenance and fault diagnosis of PV power plants. Based on analysis of the structure of PV power station, the global partitioned gradually approximation method is proposed as a fault diagnosis algorithm to determine and locate the fault of PV panels. The PV array is divided into 16x16 blocks and numbered. On the basis of modularly processing of the PV array, the current values of each block are analyzed. The mean current value of each block is used for calculating the fault weigh factor. The fault threshold is defined to determine the fault, and the shade is considered to reduce the probability of misjudgments. A fault diagnosis system is designed and implemented with LabVIEW. And it has some functions including the data realtime display, online check, statistics, real-time prediction and fault diagnosis. Through the data from PV plants, the algorithm is verified. The results show that the fault diagnosis results are accurate, and the system works well. The validity and the possibility of the system are verified by the results as well. The developed system will be benefit for the maintenance and management of large scale PV array.

  9. Orion GN&C Fault Management System Verification: Scope And Methodology

    Science.gov (United States)

    Brown, Denise; Weiler, David; Flanary, Ronald

    2016-01-01

    In order to ensure long-term ability to meet mission goals and to provide for the safety of the public, ground personnel, and any crew members, nearly all spacecraft include a fault management (FM) system. For a manned vehicle such as Orion, the safety of the crew is of paramount importance. The goal of the Orion Guidance, Navigation and Control (GN&C) fault management system is to detect, isolate, and respond to faults before they can result in harm to the human crew or loss of the spacecraft. Verification of fault management/fault protection capability is challenging due to the large number of possible faults in a complex spacecraft, the inherent unpredictability of faults, the complexity of interactions among the various spacecraft components, and the inability to easily quantify human reactions to failure scenarios. The Orion GN&C Fault Detection, Isolation, and Recovery (FDIR) team has developed a methodology for bounding the scope of FM system verification while ensuring sufficient coverage of the failure space and providing high confidence that the fault management system meets all safety requirements. The methodology utilizes a swarm search algorithm to identify failure cases that can result in catastrophic loss of the crew or the vehicle and rare event sequential Monte Carlo to verify safety and FDIR performance requirements.

  10. Evaluation of digital fault-tolerant architectures for nuclear power plant control systems

    International Nuclear Information System (INIS)

    Battle, R.E.

    1990-01-01

    Four fault tolerant architectures were evaluated for their potential reliability in service as control systems of nuclear power plants. The reliability analyses showed that human- and software-related common cause failures and single points of failure in the output modules are dominant contributors to system unreliability. The four architectures are triple-modular-redundant (TMR), both synchronous and asynchronous, and also dual synchronous and asynchronous. The evaluation includes a review of design features, an analysis of the importance of coverage, and reliability analyses of fault tolerant systems. An advantage of fault-tolerant controllers over those not fault tolerant, is that fault-tolerant controllers continue to function after the occurrence of most single hardware faults. However, most fault-tolerant controllers have single hardware components that will cause system failure, almost all controllers have single points of failure in software, and all are subject to common cause failures. Reliability analyses based on data from several industries that have fault-tolerant controllers were used to estimate the mean-time-between-failures of fault-tolerant controllers and to predict those failures modes that may be important in nuclear power plants. 7 refs., 4 tabs

  11. Evaluation of fault coverage for digitalized system in nuclear power plants using VHDL

    International Nuclear Information System (INIS)

    Kim, Suk Joon; Lee, Jun Suk; Seong, Poong Hyun

    2003-01-01

    Fault coverage of digital systems is found to be one of the most important factors in the safety analysis of nuclear power plants. Several axiomatic models for the estimation of fault coverage of digital systems have been proposed, but to apply those axiomatic models to real digital systems, parameters that the axiomatic models require should be approximated using analytic methods, empirical methods or expert opinions. In this paper, we apply the fault injection method to VHDL computer simulation model of a real digital system which provides the protection function to nuclear power plants, for the approximation of fault detection coverage of the digital system. As a result, the fault detection coverage of the digital system could be obtained

  12. Diagnostic expert system in the PF LINAC

    International Nuclear Information System (INIS)

    Abe, Isamu; Nakahara, Kazuo; Kitamura, Masaharu.

    1992-01-01

    A prototype diagnostic expert system (ES) was developed for the Photon Factory 2.5-GeV electron/positron LINAC injector system. The ES has been on-lined with the conventional linac computer network for receiving real data. This project was undertaken in an attempt to reduce the linac operator's mental workload, diagnosis duties, and to explore Artificial Intelligence (AI) technologies. The outlook for ES and its problems, and what has been achieved are outlined in this presentation. (author)

  13. In Depth Diagnostics for RF System Operation in the PEP-II B Factory

    International Nuclear Information System (INIS)

    Van Winkle, Daniel; Fox, John; Teytelman, Dmitry; SLAC

    2005-01-01

    The PEP-II RF systems incorporate numerous feedback loops in the low-level processing for impedance control and operating point regulation. The interaction of the multiple loops with the beam is complicated, and the systems incorporate online diagnostic tools to configure the feedback loops as well as to record fault files in the case of an RF abort. Rapid and consistent analysis of the RF-related beam aborts and other failures is critical to the reliable operation of the B-Factory, especially at the recently achieved high beam currents. Procedures and algorithms used to extract diagnostic information from time domain fault files are presented and illustrated via example interpretations of PEP-II fault file data. Example faults presented will highlight the subtle interpretation required to determine the root cause. Some such examples are: abort kicker firing asynchronously, klystron and cavity arcs, beam loss leading to longitudinal instability, tuner read back jumps and poorly configured low-level RF feedback loop

  14. A statistical-based approach for fault detection and diagnosis in a photovoltaic system

    KAUST Repository

    Garoudja, Elyes; Harrou, Fouzi; Sun, Ying; Kara, Kamel; Chouder, Aissa; Silvestre, Santiago

    2017-01-01

    This paper reports a development of a statistical approach for fault detection and diagnosis in a PV system. Specifically, the overarching goal of this work is to early detect and identify faults on the DC side of a PV system (e.g., short

  15. Cooperative Fault Tolerant Tracking Control for Multiagent Systems: An Intermediate Estimator-Based Approach.

    Science.gov (United States)

    Zhu, Jun-Wei; Yang, Guang-Hong; Zhang, Wen-An; Yu, Li

    2017-10-17

    This paper studies the observer based fault tolerant tracking control problem for linear multiagent systems with multiple faults and mismatched disturbances. A novel distributed intermediate estimator based fault tolerant tracking protocol is presented. The leader's input is nonzero and unavailable to the followers. By applying a projection technique, the mismatched disturbances are separated into matched and unmatched components. For each node, a tracking error system is established, for which an intermediate estimator driven by the relative output measurements is constructed to estimate the sensor faults and a combined signal of the leader's input, process faults, and matched disturbance component. Based on the estimation, a fault tolerant tracking protocol is designed to eliminate the effects of the combined signal. Besides, the effect of unmatched disturbance component can be attenuated by directly adjusting some specified parameters. Finally, a simulation example of aircraft demonstrates the effectiveness of the designed tracking protocol.This paper studies the observer based fault tolerant tracking control problem for linear multiagent systems with multiple faults and mismatched disturbances. A novel distributed intermediate estimator based fault tolerant tracking protocol is presented. The leader's input is nonzero and unavailable to the followers. By applying a projection technique, the mismatched disturbances are separated into matched and unmatched components. For each node, a tracking error system is established, for which an intermediate estimator driven by the relative output measurements is constructed to estimate the sensor faults and a combined signal of the leader's input, process faults, and matched disturbance component. Based on the estimation, a fault tolerant tracking protocol is designed to eliminate the effects of the combined signal. Besides, the effect of unmatched disturbance component can be attenuated by directly adjusting some

  16. Early Safety Assessment of Automotive Systems Using Sabotage Simulation-Based Fault Injection Framework

    OpenAIRE

    Juez, Garazi; Amparan, Estíbaliz; Lattarulo, Ray; Ruíz, Alejandra; Perez, Joshue; Espinoza, Huascar

    2017-01-01

    As road vehicles increase their autonomy and the driver reduces his role in the control loop, novel challenges on dependability assessment arise. Model-based design combined with a simulation-based fault injection technique and a virtual vehicle poses as a promising solution for an early safety assessment of automotive systems. To start with, the design, where no safety was considered, is stimulated with a set of fault injection simulations (fault forecasting). By doing so, safety strategies ...

  17. Optimal structure of fault-tolerant software systems

    International Nuclear Information System (INIS)

    Levitin, Gregory

    2005-01-01

    This paper considers software systems consisting of fault-tolerant components. These components are built from functionally equivalent but independently developed versions characterized by different reliability and execution time. Because of hardware resource constraints, the number of versions that can run simultaneously is limited. The expected system execution time and its reliability (defined as probability of obtaining the correct output within a specified time) strictly depend on parameters of software versions and sequence of their execution. The system structure optimization problem is formulated in which one has to choose software versions for each component and find the sequence of their execution in order to achieve the greatest system reliability subject to cost constraints. The versions are to be chosen from a list of available products. Each version is characterized by its reliability, execution time and cost. The suggested optimization procedure is based on an algorithm for determining system execution time distribution that uses the moment generating function approach and on the genetic algorithm. Both N-version programming and the recovery block scheme are considered within a universal model. Illustrated example is presented

  18. Vibration monitoring and fault diagnostics of a 45 kW motor

    International Nuclear Information System (INIS)

    Hafeez, T.; Ahmed, A.; Chohan, G.Y.

    2003-01-01

    Overheating, high noise and vibrations were observed in a 45 kW induction motor of a chilled water pump in an air conditioning plant. The vibration amplitudes along with phase angles were obtained with the help of a data collector. The vibration spectra obtained was further analyzed to diagnose the problem. The user had reported high vibrations in motor since the day of its installation. The frequency peaks and phase data has revealed the possibility of structural resonance, and misalignment in rotor bearing assembly. The problem of eccentric housing bore on non-drive end NDE that resulted in the misalignment of motor shaft in housing assembly. The spectra and phase data is presented and discussed to diagnose the motor problems. The re-monitoring of motor after rectification of manufacturing fault has confirmed the right diagnoses. (author)

  19. A Weighted Deep Representation Learning Model for Imbalanced Fault Diagnosis in Cyber-Physical Systems

    Science.gov (United States)

    Guo, Yang; Lin, Wenfang; Yu, Shuyang; Ji, Yang

    2018-01-01

    Predictive maintenance plays an important role in modern Cyber-Physical Systems (CPSs) and data-driven methods have been a worthwhile direction for Prognostics Health Management (PHM). However, two main challenges have significant influences on the traditional fault diagnostic models: one is that extracting hand-crafted features from multi-dimensional sensors with internal dependencies depends too much on expertise knowledge; the other is that imbalance pervasively exists among faulty and normal samples. As deep learning models have proved to be good methods for automatic feature extraction, the objective of this paper is to study an optimized deep learning model for imbalanced fault diagnosis for CPSs. Thus, this paper proposes a weighted Long Recurrent Convolutional LSTM model with sampling policy (wLRCL-D) to deal with these challenges. The model consists of 2-layer CNNs, 2-layer inner LSTMs and 2-Layer outer LSTMs, with under-sampling policy and weighted cost-sensitive loss function. Experiments are conducted on PHM 2015 challenge datasets, and the results show that wLRCL-D outperforms other baseline methods. PMID:29621131

  20. A Weighted Deep Representation Learning Model for Imbalanced Fault Diagnosis in Cyber-Physical Systems

    Directory of Open Access Journals (Sweden)

    Zhenyu Wu

    2018-04-01

    Full Text Available Predictive maintenance plays an important role in modern Cyber-Physical Systems (CPSs and data-driven methods have been a worthwhile direction for Prognostics Health Management (PHM. However, two main challenges have significant influences on the traditional fault diagnostic models: one is that extracting hand-crafted features from multi-dimensional sensors with internal dependencies depends too much on expertise knowledge; the other is that imbalance pervasively exists among faulty and normal samples. As deep learning models have proved to be good methods for automatic feature extraction, the objective of this paper is to study an optimized deep learning model for imbalanced fault diagnosis for CPSs. Thus, this paper proposes a weighted Long Recurrent Convolutional LSTM model with sampling policy (wLRCL-D to deal with these challenges. The model consists of 2-layer CNNs, 2-layer inner LSTMs and 2-Layer outer LSTMs, with under-sampling policy and weighted cost-sensitive loss function. Experiments are conducted on PHM 2015 challenge datasets, and the results show that wLRCL-D outperforms other baseline methods.

  1. Interseismic strain accumulation and the earthquake potential on the southern San Andreas fault system.

    Science.gov (United States)

    Fialko, Yuri

    2006-06-22

    The San Andreas fault in California is a mature continental transform fault that accommodates a significant fraction of motion between the North American and Pacific plates. The two most recent great earthquakes on this fault ruptured its northern and central sections in 1906 and 1857, respectively. The southern section of the fault, however, has not produced a great earthquake in historic times (for at least 250 years). Assuming the average slip rate of a few centimetres per year, typical of the rest of the San Andreas fault, the minimum amount of slip deficit accrued on the southern section is of the order of 7-10 metres, comparable to the maximum co-seismic offset ever documented on the fault. Here I present high-resolution measurements of interseismic deformation across the southern San Andreas fault system using a well-populated catalogue of space-borne synthetic aperture radar data. The data reveal a nearly equal partitioning of deformation between the southern San Andreas and San Jacinto faults, with a pronounced asymmetry in strain accumulation with respect to the geologically mapped fault traces. The observed strain rates confirm that the southern section of the San Andreas fault may be approaching the end of the interseismic phase of the earthquake cycle.

  2. Geometry and Kinematics of the Lopukangri Fault System: Implications for Internal Deformation of the Tibetan Plateau

    Science.gov (United States)

    Murphy, M. A.; Taylor, M. H.

    2006-12-01

    We present geologic mapping and structural data from the Lopukangri fault system in south-central Tibet that sheds light on the geometry, kinematics and spatial characteristics of deformation in western Tibet and the western Himalaya. The Lopukangri fault system strikes N09E and extends 150 km from the Lhasa terrane into the Tethyan fold-thrust belt at 84.5° N. Geologic mapping shows that the deformation is accommodated by a northwest dipping oblique fault system, which accommodates both right-lateral and normal dip-slip movement, consistent with right-lateral separations of Quaternary surficial deposits. The fault system juxtaposes amphibolite-grade rocks in its footwall against greenschist-grade rocks in its hanging wall. Deformation is distributed over a 4 km wide zone that predominately records right-lateral normal slip in ductile and brittle shear fabrics. The fault system right-laterally separates the Gangdese batholith, Kailas conglomerate, Great Counter thrust, and the Tethyan fold-thrust belt for 15 km. Age estimates of the Kailas conglomerate in the Kailas region implies that the Lopukangri fault system initiated after the Early Miocene( 23Ma). The observation that the Lopukangri fault system cuts the Indus-Yaly suture zone, rules out active strike-slip faulting along it at this locality. To assess the role of the Lopukangri fault system in accommodating strain within western Tibet, we compare our results with fault-slip data and structural geometries from the Karakoram and Dangardzong (Thakkhola graben) fault systems. The Dangardzong fault shares similar kinematics with the Lopukangri fault system, both display a significant component of right-slip. Although the two faults do not strike into one another, they may be linked via a transfer zone. The Karakoram fault accommodates right-lateral slip in which a portion of the total slip extends from the Tibetan plateau into the Himalayan thrust belt via right-stepover structures. Fault slip data from the

  3. Stochastic Fault Analysis of Balanced Systems | Ekwue | Nigerian ...

    African Journals Online (AJOL)

    A sequence coordinates approach for fault calculations is extended to take into account the uncertainty of the network input data. The probability of a fault current on a bus exceeding its short circuit current is determined. These results would be of importance in determining the protective philosophy of any network.

  4. Advanced Light Source beam diagnostics systems

    International Nuclear Information System (INIS)

    Hinkson, J.

    1993-10-01

    The Advanced Light Source (ALS), a third-generation synchrotron light source, has been recently commissioned. Beam diagnostics were very important to the success of the operation. Each diagnostic system is described in this paper along with detailed discussion of its performance. Some of the systems have been in operation for two years. Others, in the storage ring, have not yet been fully commissioned. These systems were, however, working well enough to provide the essential information needed to store beam. The devices described in this paper include wall current monitors, a beam charge monitor, a 50 ohm Faraday cup, DC current transformers, broad-hand striplines, fluorescence screens, beam collimators and scrapers, and beam position monitors. Also, the means by which waveforms are digitized and displayed in the control room is discussed

  5. Video integrated measurement system. [Diagnostic display devices

    Energy Technology Data Exchange (ETDEWEB)

    Spector, B.; Eilbert, L.; Finando, S.; Fukuda, F.

    1982-06-01

    A Video Integrated Measurement (VIM) System is described which incorporates the use of various noninvasive diagnostic procedures (moire contourography, electromyography, posturometry, infrared thermography, etc.), used individually or in combination, for the evaluation of neuromusculoskeletal and other disorders and their management with biofeedback and other therapeutic procedures. The system provides for measuring individual diagnostic and therapeutic modes, or multiple modes by split screen superimposition, of real time (actual) images of the patient and idealized (ideal-normal) models on a video monitor, along with analog and digital data, graphics, color, and other transduced symbolic information. It is concluded that this system provides an innovative and efficient method by which the therapist and patient can interact in biofeedback training/learning processes and holds considerable promise for more effective measurement and treatment of a wide variety of physical and behavioral disorders.

  6. The Design and Implementation of a Remote Fault Reasoning Diagnosis System for Meteorological Satellites Data Acquisition

    Directory of Open Access Journals (Sweden)

    Zhu Jie

    2017-01-01

    Full Text Available Under the background of the trouble shooting requirements of FENGYUN-3 (FY-3 meteorological satellites data acquisition in domestic and oversea ground stations, a remote fault reasoning diagnosis system is developed by Java 1.6 in eclipse 3.6 platform. The general framework is analyzed, the workflow is introduced. Based on the system, it can realize the remote and centralized monitoring of equipment running status in ground stations,triggering automatic fault diagnosis and rule based fault reasoning by parsing the equipment quality logs, generating trouble tickets and importing expert experience database, providing text and graphics query methods. Through the practical verification, the system can assist knowledge engineers in remote precise and rapid fault location with friendly graphical user interface, boost the fault diagnosis efficiency, enhance the remote monitoring ability of integrity operating control system. The system has a certain practical significance to improve reliability of FY-3 meteorological satellites data acquisition.

  7. Design of a real-time fault diagnosis expert system for the EAST cryoplant

    Energy Technology Data Exchange (ETDEWEB)

    Zhou Zhiwei, E-mail: zzw@ipp.ac.cn [Institute of Plasma Physics, Chinese Academy of Sciences, Hefei, Anhui (China); Zhuang Ming, E-mail: zhm@ipp.ac.cn [Institute of Plasma Physics, Chinese Academy of Sciences, Hefei, Anhui (China); Lu Xiaofei, E-mail: luxf1212@mail.ustc.edu.cn [Institute of Plasma Physics, Chinese Academy of Sciences, Hefei, Anhui (China); Hu Liangbing, E-mail: huliangbing@ipp.ac.cn [Institute of Plasma Physics, Chinese Academy of Sciences, Hefei, Anhui (China); Xia Genhai, E-mail: xgh@ipp.ac.cn [Institute of Plasma Physics, Chinese Academy of Sciences, Hefei, Anhui (China)

    2012-12-15

    Highlights: Black-Right-Pointing-Pointer An expert system of real-time fault diagnosis for EAST cryoplant is designed. Black-Right-Pointing-Pointer Knowledge base is built via fault tree analysis based on our fault experience. Black-Right-Pointing-Pointer It can make up the deficiency of safety monitoring in cryogenic DCS. Black-Right-Pointing-Pointer It can help operators to find the fault causes and give operation suggestion. Black-Right-Pointing-Pointer It plays a role of operators training in certain degree. - Abstract: The EAST cryoplant consists of a 2 kW/4 K helium refrigerator and a helium distribution system. It is a complex process system which involves many process variables and cryogenic equipments. Each potential fault or abnormal event may influence stability and safety of the cryogenic system, thereby disturbing the fusion experiment. The cryogenic control system can monitor the process data and detect process alarms, but it is difficult to effectively diagnose the fault causes and provide operation suggestions to operators when anomalies occur. Therefore, a real-time fault diagnosis expert system is essential for a safe and steady operation of EAST cryogenic system. After a brief description of the EAST cryoplant and its control system, the structure design of the cryogenic fault diagnosis expert system is proposed. Based on the empirical knowledge, the fault diagnosis model is built adopting fault tree analysis method which considers the uncertainty. The knowledge base and the inference machine are presented in detail. A cross-platform integrated development environment Qt Creator and MySQL database have been used to develop the system. The proposed expert system has a fine graphic user interface for monitoring and operation. Preliminary test was conducted and the results found to be satisfactory.

  8. Design of a real-time fault diagnosis expert system for the EAST cryoplant

    International Nuclear Information System (INIS)

    Zhou Zhiwei; Zhuang Ming; Lu Xiaofei; Hu Liangbing; Xia Genhai

    2012-01-01

    Highlights: ► An expert system of real-time fault diagnosis for EAST cryoplant is designed. ► Knowledge base is built via fault tree analysis based on our fault experience. ► It can make up the deficiency of safety monitoring in cryogenic DCS. ► It can help operators to find the fault causes and give operation suggestion. ► It plays a role of operators training in certain degree. - Abstract: The EAST cryoplant consists of a 2 kW/4 K helium refrigerator and a helium distribution system. It is a complex process system which involves many process variables and cryogenic equipments. Each potential fault or abnormal event may influence stability and safety of the cryogenic system, thereby disturbing the fusion experiment. The cryogenic control system can monitor the process data and detect process alarms, but it is difficult to effectively diagnose the fault causes and provide operation suggestions to operators when anomalies occur. Therefore, a real-time fault diagnosis expert system is essential for a safe and steady operation of EAST cryogenic system. After a brief description of the EAST cryoplant and its control system, the structure design of the cryogenic fault diagnosis expert system is proposed. Based on the empirical knowledge, the fault diagnosis model is built adopting fault tree analysis method which considers the uncertainty. The knowledge base and the inference machine are presented in detail. A cross-platform integrated development environment Qt Creator and MySQL database have been used to develop the system. The proposed expert system has a fine graphic user interface for monitoring and operation. Preliminary test was conducted and the results found to be satisfactory.

  9. New evidence on the state of stress of the san andreas fault system.

    Science.gov (United States)

    Zoback, M D; Zoback, M L; Mount, V S; Suppe, J; Eaton, J P; Healy, J H; Oppenheimer, D; Reasenberg, P; Jones, L; Raleigh, C B; Wong, I G; Scotti, O; Wentworth, C

    1987-11-20

    Contemporary in situ tectonic stress indicators along the San Andreas fault system in central California show northeast-directed horizontal compression that is nearly perpendicular to the strike of the fault. Such compression explains recent uplift of the Coast Ranges and the numerous active reverse faults and folds that trend nearly parallel to the San Andreas and that are otherwise unexplainable in terms of strike-slip deformation. Fault-normal crustal compression in central California is proposed to result from the extremely low shear strength of the San Andreas and the slightly convergent relative motion between the Pacific and North American plates. Preliminary in situ stress data from the Cajon Pass scientific drill hole (located 3.6 kilometers northeast of the San Andreas in southern California near San Bernardino, California) are also consistent with a weak fault, as they show no right-lateral shear stress at approximately 2-kilometer depth on planes parallel to the San Andreas fault.

  10. Variations in strength and slip rate along the san andreas fault system.

    Science.gov (United States)

    Jones, C H; Wesnousky, S G

    1992-04-03

    Convergence across the San Andreas fault (SAF) system is partitioned between strike-slip motion on the vertical SAF and oblique-slip motion on parallel dip-slip faults, as illustrated by the recent magnitude M(s) = 6.0 Palm Springs, M(s) = 6.7 Coalinga, and M(s) = 7.1 Loma Prieta earthquakes. If the partitioning of slip minimizes the work done against friction, the direction of slip during these recent earthquakes depends primarily on fault dip and indicates that the normal stress coefficient and frictional coefficient (micro) vary among the faults. Additionally, accounting for the active dip-slip faults reduces estimates of fault slip rates along the vertical trace of the SAF by about 50 percent in the Loma Prieta and 100 percent in the North Palm Springs segments.

  11. VEHIL: a test facility for validation of fault management systems for advanced driver assistance systems

    NARCIS (Netherlands)

    Gietelink, O.J.; Ploeg, J.; Schutter, de B.; Verhaegen, M.H.

    2004-01-01

    We present a methodological approach for the validation of fault management systems for Advanced Driver Assistance Systems (ADAS). For the validation process the unique VEHIL facility, developed by TNO Automotive and currently situated in Helmond, The Netherlands, is applied. The VEHIL facility

  12. Design Optimization of Time- and Cost-Constrained Fault-Tolerant Distributed Embedded Systems

    DEFF Research Database (Denmark)

    Izosimov, Viacheslav; Pop, Paul; Eles, Petru

    2005-01-01

    In this paper we present an approach to the design optimization of fault-tolerant embedded systems for safety-critical applications. Processes are statically scheduled and communications are performed using the time-triggered protocol. We use process re-execution and replication for tolerating...... transient faults. Our design optimization approach decides the mapping of processes to processors and the assignment of fault-tolerant policies to processes such that transient faults are tolerated and the timing constraints of the application are satisfied. We present several heuristics which are able...

  13. The accommodation of relative motion at depth on the San Andreas fault system in California

    Science.gov (United States)

    Prescott, W. H.; Nur, A.

    1981-01-01

    Plate motion below the seismogenic layer along the San Andreas fault system in California is assumed to form by aseismic slip along a deeper extension of the fault or may result from lateral distribution of deformation below the seismogenic layer. The shallow depth of California earthquakes, the depth of the coseismic slip during the 1906 San Francisco earthquake, and the presence of widely separated parallel faults indicate that relative motion is distributed below the seismogenic zone, occurring by inelastic flow rather than by aseismic slip on discrete fault planes.

  14. NPP Mochovce units 1 and 2 diagnostic systems

    International Nuclear Information System (INIS)

    Heidenreich, S.

    1997-01-01

    In this paper the diagnostic systems (leak detection monitoring, vibration monitoring, lose parts monitoring, fatigue monitoring) of NPP Mochovce units 1 and 2 are presented. All of the designed diagnostic systems are personal computer based systems

  15. Analysis and optimization of fault-tolerant embedded systems with hardened processors

    DEFF Research Database (Denmark)

    Izosimov, Viacheslav; Polian, Ilia; Pop, Paul

    2009-01-01

    In this paper we propose an approach to the design optimization of fault-tolerant hard real-time embedded systems, which combines hardware and software fault tolerance techniques. We trade-off between selective hardening in hardware and process reexecution in software to provide the required levels...... of fault tolerance against transient faults with the lowest-possible system costs. We propose a system failure probability (SFP) analysis that connects the hardening level with the maximum number of reexecutions in software. We present design optimization heuristics, to select the fault......-tolerant architecture and decide process mapping such that the system cost is minimized, deadlines are satisfied, and the reliability requirements are fulfilled....

  16. A Grid Voltage Measurement Method for Wind Power Systems during Grid Fault Conditions

    Directory of Open Access Journals (Sweden)

    Cheol-Hee Yoo

    2014-11-01

    Full Text Available Grid codes in many countries require low-voltage ride-through (LVRT capability to maintain power system stability and reliability during grid fault conditions. To meet the LVRT requirement, wind power systems must stay connected to the grid and also supply reactive currents to the grid to support the recovery from fault voltages. This paper presents a new fault detection method and inverter control scheme to improve the LVRT capability for full-scale permanent magnet synchronous generator (PMSG wind power systems. Fast fault detection can help the wind power systems maintain the DC-link voltage in a safe region. The proposed fault detection method is based on on-line adaptive parameter estimation. The performance of the proposed method is verified in comparison to the conventional voltage measurement method defined in the IEC 61400-21 standard.

  17. Incipient Fault Detection and Isolation of Field Devices in Nuclear Power Systems Using Principal Component Analysis

    International Nuclear Information System (INIS)

    Kaistha, Nitin; Upadhyaya, Belle R.

    2001-01-01

    An integrated method for the detection and isolation of incipient faults in common field devices, such as sensors and actuators, using plant operational data is presented. The approach is based on the premise that data for normal operation lie on a surface and abnormal situations lead to deviations from the surface in a particular way. Statistically significant deviations from the surface result in the detection of faults, and the characteristic directions of deviations are used for isolation of one or more faults from the set of typical faults. Principal component analysis (PCA), a multivariate data-driven technique, is used to capture the relationships in the data and fit a hyperplane to the data. The fault direction for each of the scenarios is obtained using the singular value decomposition on the state and control function prediction errors, and fault isolation is then accomplished from projections on the fault directions. This approach is demonstrated for a simulated pressurized water reactor steam generator system and for a laboratory process control system under single device fault conditions. Enhanced fault isolation capability is also illustrated by incorporating realistic nonlinear terms in the PCA data matrix

  18. Transient fault tolerant control for vehicle brake-by-wire systems

    International Nuclear Information System (INIS)

    Huang, Shuang; Zhou, Chunjie; Yang, Lili; Qin, Yuanqing; Huang, Xiongfeng; Hu, Bowen

    2016-01-01

    Brake-by-wire (BBW) systems that have no mechanical linkage between the brake pedal and the brake mechanism are expected to improve vehicle safety through better braking capability. However, transient faults in BBW systems can cause dangerous driving situations. Most existing research in this area focuses on the brake control mechanism, but very few studies try to solve the problem associated with transient fault propagation and evolution in the brake control system hierarchy. In this paper, a hierarchical transient fault tolerant scheme with embedded intelligence and resilient coordination for BBW system is proposed based on the analysis of transient fault propagation characteristics. In this scheme, most transient faults are tackled rapidly by a signature-based detection method at the node level, and the remaining transient faults, which cannot be detected directly at the node level and could degrade the system performance through fault propagation and evolution, are detected and recovered through function and structure models at the system level. To jointly accommodate these BBW transient faults at the system level, a sliding mode control algorithm and a task reallocation strategy are designed. A simulation platform based on Architecture Analysis and Design Language (AADL) is established to evaluate the task reallocation strategy, and a hardware-in-the-loop simulation is carried out to validate the proposed scheme systematically. Experimental results show the effectiveness of this new approach to BBW systems. - Highlights: • We propose a hierarchical transient fault tolerant scheme for BBW systems. • A sliding mode algorithm and a task strategy are designed to tackle transient fault. • The effectiveness of the scheme is verified in both simulation and HIL environments.

  19. Implementing artificial neural networks in nuclear power plants diagnostic systems: issues and challenges

    International Nuclear Information System (INIS)

    Boger, Z.

    1998-01-01

    A recent review of artificial intelligence applications in nuclear power plants (NPP) diagnostics and fault detection finds that mostly expert systems (ES) and artificial neural networks (ANN) techniques were researched and proposed, but the number of actual implementations in NPP diagnostics systems is very small. It lists the perceived obstacles to the ANN-based system acceptance and implementation. This paper analyses this list. Some of ANN limitations relate to 'quantitative' difficulties of designing and training large-scale ANNs. The availability of an efficient large-scale ANN training algorithm may alleviate most of these concerns. Other perceived drawbacks refer to the 'qualitative' aspects of ANN acceptance - how and when can we rely on the quality of the advice given by the ANN model. Several techniques are available that help to brighten the 'black box' image of the ANN. Analysis of the trained ANN can identify the significant inputs. Calculation of the Causal Indices may reveal the magnitude and sign of the influence of each input on each output. Both these techniques increase the confidence of the users when they conform to known knowledge, or point to plausible relationships. Analysis of the behavior of the neurons in the hidden layer can identify false ANN classification when presented with noisy or corrupt data. Auto-associative NN can identify faulty sensors or data. Two examples of the ANN capabilities as possible diagnostic tools are given, using NPP data, one classifying internal reactor disturbances by neutron noise spectra analysis, the other identifying the faults causes of several transients. To use these techniques the ANN developers need large amount of training data of as many transients as possible. Such data is routinely generated in NPP simulators during the periodic qualification of NPP operators. The IAEA can help by encouraging the saving and distributing the transient data to developers of ANN diagnostic system, to serve as

  20. Nike Facility Diagnostics and Data Acquisition System

    Science.gov (United States)

    Chan, Yung; Aglitskiy, Yefim; Karasik, Max; Kehne, David; Obenschain, Steve; Oh, Jaechul; Serlin, Victor; Weaver, Jim

    2013-10-01

    The Nike laser-target facility is a 56-beam krypton fluoride system that can deliver 2 to 3 kJ of laser energy at 248 nm onto targets inside a two meter diameter vacuum chamber. Nike is used to study physics and technology issues related to laser direct-drive ICF fusion, including hydrodynamic and laser-plasma instabilities, material behavior at extreme pressures, and optical and x-ray diagnostics for laser-heated targets. A suite of laser and target diagnostics are fielded on the Nike facility, including high-speed, high-resolution x-ray and visible imaging cameras, spectrometers and photo-detectors. A centrally-controlled, distributed computerized data acquisition system provides robust data management and near real-time analysis feedback capability during target shots. Work supported by DOE/NNSA.

  1. Optical fibres for fusion plasma diagnostics systems

    International Nuclear Information System (INIS)

    Brichard, B.

    2005-01-01

    The condition to achieve and maintain the ignition of a thermonuclear fusion plasma ignition calls for the construction of a large scale fusion reactor, namely ITER. This reactor is designed to deliver an average fusion power of 500 MW. The burning of fusion plasma at such high power level will release a tremendous amount of energy in the form of particle fluxes and ionising radiation. This energy release, primarily absorbed by the plasma facing components, can significantly degrade the performances of the plasma diagnostic equipment surrounding the machine. To ensure a correct operation of the Tokamak we need to develop highly radiation-resistance devices. In plasma diagnostic systems, optical fibre is viewed as a convenient tool to transport light from the plasma edge to the diagnostic area. Radiation affects the optical performances of the fibre mainly by the occurrence of radiation-induced absorption and luminescence. Both effects degrade the light signal used for plasma diagnostic. SCK-CEN is currently assessing radiation-resistant glasses for optical fibres and is developing the associated qualification procedure. The main objectives of this study were to increase the lifetime of optical components in high radiation background and to develop a radiation resistance optical fibre capable to operate in the radiation background of ITER

  2. Newport-Inglewood-Carlsbad-Coronado Bank Fault System Nearshore Southern California: Testing models for Quaternary deformation

    Science.gov (United States)

    Bennett, J. T.; Sorlien, C. C.; Cormier, M.; Bauer, R. L.

    2011-12-01

    The San Andreas fault system is distributed across hundreds of kilometers in southern California. This transform system includes offshore faults along the shelf, slope and basin- comprising part of the Inner California Continental Borderland. Previously, offshore faults have been interpreted as being discontinuous and striking parallel to the coast between Long Beach and San Diego. Our recent work, based on several thousand kilometers of deep-penetration industry multi-channel seismic reflection data (MCS) as well as high resolution U.S. Geological Survey MCS, indicates that many of the offshore faults are more geometrically continuous than previously reported. Stratigraphic interpretations of MCS profiles included the ca. 1.8 Ma Top Lower Pico, which was correlated from wells located offshore Long Beach (Sorlien et. al. 2010). Based on this age constraint, four younger (Late) Quaternary unconformities are interpreted through the slope and basin. The right-lateral Newport-Inglewood fault continues offshore near Newport Beach. We map a single fault for 25 kilometers that continues to the southeast along the base of the slope. There, the Newport-Inglewood fault splits into the San Mateo-Carlsbad fault, which is mapped for 55 kilometers along the base of the slope to a sharp bend. This bend is the northern end of a right step-over of 10 kilometers to the Descanso fault and about 17 km to the Coronado Bank fault. We map these faults for 50 kilometers as they continue over the Mexican border. Both the San Mateo - Carlsbad with the Newport-Inglewood fault and the Coronado Bank with the Descanso fault are paired faults that form flower structures (positive and negative, respectively) in cross section. Preliminary kinematic models indicate ~1km of right-lateral slip since ~1.8 Ma at the north end of the step-over. We are modeling the slip on the southern segment to test our hypothesis for a kinematically continuous right-lateral fault system. We are correlating four

  3. Diagnostic system for combine cycle power plant

    International Nuclear Information System (INIS)

    Shimizu, Yujiro; Nomura, Masumi; Tanaka, Satoshi; Ito, Ryoji; Kita, Yoshiyuki

    2000-01-01

    We developed the Diagnostic System for Combined Cycle Power Plant which enables inexperienced operators as well as experienced operators to cope with abnormal conditions of Combined Cycle Power Plant. The features of this system are the Estimate of Emergency Level for Operation and the Prediction of Subsequent Abnormality, adding to the Diagnosis of Cause and the Operation Guidance. Moreover in this system, Diagnosis of Cause was improved by using our original method and support screens can be displayed for educational means in normal condition as well. (Authors)

  4. Reliability Evaluation Methodologies of Fault Tolerant Techniques of Digital I and C Systems in Nuclear Power Plants

    International Nuclear Information System (INIS)

    Kim, Bo Gyung; Kang, Hyun Gook; Seong, Poong Hyun; Lee, Seung Jun

    2011-01-01

    Since the reactor protection system was replaced from analog to digital, digital reactor protection system has 4 redundant channels and each channel has several modules. It is necessary for various fault tolerant techniques to improve availability and reliability due to using complex components in DPPS. To use the digital system, it is necessary to improve the reliability and availability of a system through fault-tolerant techniques. Several researches make an effort to effects of fault tolerant techniques. However, the effects of fault tolerant techniques have not been properly considered yet in most fault tree models. Various fault-tolerant techniques, which used in digital system in NPPs, should reflect in fault tree analysis for getting lower system unavailability and more reliable PSA. When fault-tolerant techniques are modeled in fault tree, categorizing the module to detect by each fault tolerant techniques, fault coverage, detection period and the fault recovery should be considered. Further work will concentrate on various aspects for fault tree modeling. We will find other important factors, and found a new theory to construct the fault tree model

  5. Climate Model Diagnostic Analyzer Web Service System

    Science.gov (United States)

    Lee, S.; Pan, L.; Zhai, C.; Tang, B.; Kubar, T. L.; Li, J.; Zhang, J.; Wang, W.

    2015-12-01

    Both the National Research Council Decadal Survey and the latest Intergovernmental Panel on Climate Change Assessment Report stressed the need for the comprehensive and innovative evaluation of climate models with the synergistic use of global satellite observations in order to improve our weather and climate simulation and prediction capabilities. The abundance of satellite observations for fundamental climate parameters and the availability of coordinated model outputs from CMIP5 for the same parameters offer a great opportunity to understand and diagnose model biases in climate models. In addition, the Obs4MIPs efforts have created several key global observational datasets that are readily usable for model evaluations. However, a model diagnostic evaluation process requires physics-based multi-variable comparisons that typically involve large-volume and heterogeneous datasets, making them both computationally- and data-intensive. In response, we have developed a novel methodology to diagnose model biases in contemporary climate models and implementing the methodology as a web-service based, cloud-enabled, provenance-supported climate-model evaluation system. The evaluation system is named Climate Model Diagnostic Analyzer (CMDA), which is the product of the research and technology development investments of several current and past NASA ROSES programs. The current technologies and infrastructure of CMDA are designed and selected to address several technical challenges that the Earth science modeling and model analysis community faces in evaluating and diagnosing climate models. In particular, we have three key technology components: (1) diagnostic analysis methodology; (2) web-service based, cloud-enabled technology; (3) provenance-supported technology. The diagnostic analysis methodology includes random forest feature importance ranking, conditional probability distribution function, conditional sampling, and time-lagged correlation map. We have implemented the

  6. Vibration model of rolling element bearings in a rotor-bearing system for fault diagnosis

    Science.gov (United States)

    Cong, Feiyun; Chen, Jin; Dong, Guangming; Pecht, Michael

    2013-04-01

    Rolling element bearing faults are among the main causes of breakdown in rotating machines. In this paper, a rolling bearing fault model is proposed based on the dynamic load analysis of a rotor-bearing system. The rotor impact factor is taken into consideration in the rolling bearing fault signal model. The defect load on the surface of the bearing is divided into two parts, the alternate load and the determinate load. The vibration response of the proposed fault signal model is investigated and the fault signal calculating equation is derived through dynamic and kinematic analysis. Outer race and inner race fault simulations are realized in the paper. The simulation process includes consideration of several parameters, such as the gravity of the rotor-bearing system, the imbalance of the rotor, and the location of the defect on the surface. The simulation results show that different amplitude contributions of the alternate load and determinate load will cause different envelope spectrum expressions. The rotating frequency sidebands will occur in the envelope spectrum in addition to the fault characteristic frequency. This appearance of sidebands will increase the difficulty of fault recognition in intelligent fault diagnosis. The experiments given in the paper have successfully verified the proposed signal model simulation results. The test rig design of the rotor bearing system simulated several operating conditions: (1) rotor bearing only; (2) rotor bearing with loader added; (3) rotor bearing with loader and rotor disk; and (4) bearing fault simulation without rotor influence. The results of the experiments have verified that the proposed rolling bearing signal model is important to the rolling bearing fault diagnosis of rotor-bearing systems.

  7. High speed imaging system for nuclear diagnostics

    International Nuclear Information System (INIS)

    Eyer, H.H.

    1976-01-01

    A high speed imaging system based on state-of-the-art photosensor arrays has been designed for use in nuclear diagnostics. The system is comprised of a front-end rapid-scan solid-state camera, a high speed digitizer, and a PCM line driver in a downhole package and a memory buffer system in a uphole trailer. The downhole camera takes a ''snapshot'' of a nuclear device created flux stream, digitizes the image and transmits it to the uphole memory system before being destroyed. The memory system performs two functions: it retains the data for local display and processing by a microprocessor, and it buffers the data for retransmission at slower rates to the LLL computational facility (NADS). The impetus for such a system as well as its operation are discussed. Also discussed are new systems under development which incorporate higher data rates and more resolution

  8. MFTF supervisory control and diagnostics system hardware

    International Nuclear Information System (INIS)

    Butner, D.N.

    1979-01-01

    The Supervisory Control and Diagnostics System (SCDS) for the Mirror Fusion Test Facility (MFTF) is a multiprocessor minicomputer system designed so that for most single-point failures, the hardware may be quickly reconfigured to provide continued operation of the experiment. The system is made up of nine Perkin-Elmer computers - a mixture of 8/32's and 7/32's. Each computer has ports on a shared memory system consisting of two independent shared memory modules. Each processor can signal other processors through hardware external to the shared memory. The system communicates with the Local Control and Instrumentation System, which consists of approximately 65 microprocessors. Each of the six system processors has facilities for communicating with a group of microprocessors; the groups consist of from four to 24 microprocessors. There are hardware switches so that if an SCDS processor communicating with a group of microprocessors fails, another SCDS processor takes over the communication

  9. High speed imaging system for nuclear diagnostics

    International Nuclear Information System (INIS)

    Eyer, H.H.

    1976-01-01

    A high speed imaging system based on state-of-the-art photosensor arrays has been designed for use in nuclear diagnostics. The system is comprised of a front-end rapid-scan solid-state camera, a high speed digitizer, and a PCM line driver in a downhole package and a memory buffer system in an uphole trailer. The downhole camera takes a ''snapshot'' of a nuclear device created flux stream, digitizes the image and transmits it to the uphole memory system before being destroyed. The memory system performs two functions: it retains the data for local display and processing by a microprocessor, and it buffers the data for retransmission at slower rates to the LLL computational facility (NADS). The impetus for such a system as well as its operation is discussed. Also discussed are new systems under development which incorporate higher data rates and more resolution

  10. Synthesis of Fault-Tolerant Embedded Systems with Checkpointing and Replication

    DEFF Research Database (Denmark)

    Izosimov, Viacheslav; Pop, Paul; Eles, Petru

    2006-01-01

    We present an approach to the synthesis of fault-tolerant hard real-time systems for safety-critical applications. We use checkpointing with rollback recovery and active replication for tolerating transient faults. Processes are statically scheduled and communications are performed using the time...

  11. Logical Specification and Analysis of Fault Tolerant Systems through Partial Model Checking

    NARCIS (Netherlands)

    Gnesi, S.; Etalle, Sandro; Mukhopadhyay, S.; Lenzini, Gabriele; Lenzini, G.; Martinelli, F.; Roychoudhury, A.

    2003-01-01

    This paper presents a framework for a logical characterisation of fault tolerance and its formal analysis based on partial model checking techniques. The framework requires a fault tolerant system to be modelled using a formal calculus, here the CCS process algebra. To this aim we propose a uniform

  12. Faulted systems recovery experience. Final report, May 1992

    International Nuclear Information System (INIS)

    1992-05-01

    This report addresses the recovery (i.e., return to service from a faulted, or otherwise unavailable, condition) of important nuclear power plant front-line and support systems and equipment. It contains information based on operating experience relative to the times to recover from a variety of plant events. It also indicates the nature of the operator actions involved. This information is intended to provide useful insights to utilities who are undertaking Individual Plant Examinations (IPEs) per Generic Letter 88-20 of the Nuclear Regulatory Commission. The report provides a database of recovery experience primarily derived from Licensee Event Reports (LERs). The database contains recovery duration information for 205 demand events and 98 nondemand events. In particular, it contains recovery durations for 42 pump related and 143 valve related events that are representative of demand conditions. Experience shows that, overall, about one-half of all pumps and valves are recovered in 30 minutes or less. Specific recovery experience is dependent on the equipment type, the plant system involved, and the failure mode encountered. (author)

  13. Multiple-step fault estimation for interval type-II T-S fuzzy system of hypersonic vehicle with time-varying elevator faults

    Directory of Open Access Journals (Sweden)

    Jin Wang

    2017-03-01

    Full Text Available This article proposes a multiple-step fault estimation algorithm for hypersonic flight vehicles that uses an interval type-II Takagi–Sugeno fuzzy model. An interval type-II Takagi–Sugeno fuzzy model is developed to approximate the nonlinear dynamic system and handle the parameter uncertainties of hypersonic firstly. Then, a multiple-step time-varying additive fault estimation algorithm is designed to estimate time-varying additive elevator fault of hypersonic flight vehicles. Finally, the simulation is conducted in both aspects of modeling and fault estimation; the validity and availability of such method are verified by a series of the comparison of numerical simulation results.

  14. Optimal fault-tolerant control strategy of a solid oxide fuel cell system

    Science.gov (United States)

    Wu, Xiaojuan; Gao, Danhui

    2017-10-01

    For solid oxide fuel cell (SOFC) development, load tracking, heat management, air excess ratio constraint, high efficiency, low cost and fault diagnosis are six key issues. However, no literature studies the control techniques combining optimization and fault diagnosis for the SOFC system. An optimal fault-tolerant control strategy is presented in this paper, which involves four parts: a fault diagnosis module, a switching module, two backup optimizers and a controller loop. The fault diagnosis part is presented to identify the SOFC current fault type, and the switching module is used to select the appropriate backup optimizer based on the diagnosis result. NSGA-II and TOPSIS are employed to design the two backup optimizers under normal and air compressor fault states. PID algorithm is proposed to design the control loop, which includes a power tracking controller, an anode inlet temperature controller, a cathode inlet temperature controller and an air excess ratio controller. The simulation results show the proposed optimal fault-tolerant control method can track the power, temperature and air excess ratio at the desired values, simultaneously achieving the maximum efficiency and the minimum unit cost in the case of SOFC normal and even in the air compressor fault.

  15. A Self-Diagnostic System for the M6 Accelerometer

    Science.gov (United States)

    Flanagan, Patrick M.; Lekki, John

    2001-01-01

    The design of a Self-Diagnostic (SD) accelerometer system for the Space Shuttle Main Engine is presented. This retrofit system connects diagnostic electronic hardware and software to the current M6 accelerometer system. This paper discusses the general operation of the M6 accelerometer SD system and procedures for developing and evaluating the SD system. Signal processing techniques using M6 accelerometer diagnostic data are explained. Test results include diagnostic data responding to changing ambient temperature, mounting torque and base mounting impedance.

  16. Applying Parametric Fault Detection to a Mechanical System

    DEFF Research Database (Denmark)

    Felício, P.; Stoustrup, Jakob; Niemann, H.

    2002-01-01

    A way of doing parametric fault detection is described. It is based on the representation of parameter changes as linear fractional transformations (lfts). We describe a model with parametric uncertainty. Then a stabilizing controller is chosen and its robustness properties are studied via mu. Th....... The parameter changes (faults) are estimated based on estimates of the fictitious signals that enter the delta block in the lft. These signal estimators are designed by H-infinity techniques. The chosen example is an inverted pendulum....

  17. Reliable fault detection and diagnosis of photovoltaic systems based on statistical monitoring approaches

    KAUST Repository

    Harrou, Fouzi

    2017-09-18

    This study reports the development of an innovative fault detection and diagnosis scheme to monitor the direct current (DC) side of photovoltaic (PV) systems. Towards this end, we propose a statistical approach that exploits the advantages of one-diode model and those of the univariate and multivariate exponentially weighted moving average (EWMA) charts to better detect faults. Specifically, we generate array\\'s residuals of current, voltage and power using measured temperature and irradiance. These residuals capture the difference between the measurements and the predictions MPP for the current, voltage and power from the one-diode model, and use them as fault indicators. Then, we apply the multivariate EWMA (MEWMA) monitoring chart to the residuals to detect faults. However, a MEWMA scheme cannot identify the type of fault. Once a fault is detected in MEWMA chart, the univariate EWMA chart based on current and voltage indicators is used to identify the type of fault (e.g., short-circuit, open-circuit and shading faults). We applied this strategy to real data from the grid-connected PV system installed at the Renewable Energy Development Center, Algeria. Results show the capacity of the proposed strategy to monitors the DC side of PV systems and detects partial shading.

  18. Development Ground Fault Detecting System for D.C Voltage Line

    Energy Technology Data Exchange (ETDEWEB)

    Kim Taek Soo; Song Ung Il; Gwon, Young Dong; Lee Hyoung Kee [Korea Electric Power Research Institute, Taejon (Korea, Republic of)

    1996-12-31

    It is necessary to keep the security of reliability and to maximize the efficiency of maintenance by prompt detection of a D.C feeder ground fault point at the built ed or a building power plants. At present, the most of the power plants are set up the ground fault indicator lamp in the monitor room. If a ground fault occurs on DC voltage feeder, a current through the ground fault relay is adjusted and the lamps have brightened while the current flows the relay coil. In order to develop such a system, it is analyzed a D.C feeder ground circuit theoretically and studied a principles which can determine ground fault point or a polarity discrimination and a phase discrimination of the line. So, the developed system through this principles can compute a resistance ground fault current and a capacitive ground fault current. It shows that the system can defect a ground fault point or a bad insulated line by measuring a power plant D.C feeder insulation resistance at the un interruptible power status, and therefore the power plant could protect an unexpected service interruption . (author). 18 refs., figs.

  19. Earthquake geology and paleoseismology of major strands of the San Andreas fault system: Chapter 38

    Science.gov (United States)

    Rockwell, Thomas; Scharer, Katherine M.; Dawson, Timothy E.

    2016-01-01

    The San Andreas fault system in California is one of the best-studied faults in the world, both in terms of the long-term geologic history and paleoseismic study of past surface ruptures. In this paper, we focus on the Quaternary to historic data that have been collected from the major strands of the San Andreas fault system, both on the San Andreas Fault itself, and the major subparallel strands that comprise the plate boundary, including the Calaveras-Hayward- Rogers Creek-Maacama fault zone and the Concord-Green Valley-Bartlett Springs fault zone in northern California, and the San Jacinto and Elsinore faults in southern California. The majority of the relative motion between the Pacific and North American lithospheric plates is accommodated by these faults, with the San Andreas slipping at about 34 mm/yr in central California, decreasing to about 20 mm/yr in northern California north of its juncture with the Calaveras and Concord faults. The Calaveras-Hayward-Rogers Creek-Maacama fault zone exhibits a slip rate of 10-15 mm/yr, whereas the rate along the Concord-Green Valley-Bartlett Springs fault zone is lower at about 5 mm/yr. In southern California, the San Andreas exhibits a slip rate of about 35 mm/yr along the Mojave section, decreasing to as low as 10-15 mm/yr along its juncture with the San Jacinto fault, and about 20 mm/yr in the Coachella Valley. The San Jacinto and Elsinore fault zones exhibit rates of about 15 and 5 mm/yr, respectively. The average recurrence interval for surface-rupturing earthquakes along individual elements of the San Andreas fault system range from 100-500 years and is consistent with slip rate at those sites: higher slip rates produce more frequent or larger earthquakes. There is also evidence of short-term variations in strain release (slip rate) along various fault sections, as expressed as “flurries” or clusters of earthquakes as well as periods of relatively fewer surface ruptures in these relatively short records. This

  20. Fault diagnosis of air conditioning systems based on qualitative bond graph

    International Nuclear Information System (INIS)

    Ghiaus, C.

    1999-01-01

    The bond graph method represents a unified approach for modeling engineering systems. The main idea is that power transfer bonds the components of a system. The bond graph model is the same for both quantitative representation, in which parameters have numerical values, and qualitative approach, in which they are classified qualitatively. To infer the cause of faults using a qualitative method, a system of qualitative equations must be solved. However, the characteristics of qualitative operators require specific methods for solving systems of equations having qualitative variables. This paper proposes both a method for recursively solving the qualitative system of equations derived from bond graph, and a bond graph model of a direct-expansion, mechanical vapor-compression air conditioning system. Results from diagnosing two faults in a real air conditioning system are presented and discussed. Occasionally, more than one fault candidate is inferred for the same set of qualitative values derived from measurements. In these cases, additional information is required to localize the fault. Fault diagnosis is initiated by a fault detection mechanism which also classifies the quantitative measurements into qualitative values; the fault detection is not presented here. (author)