WorldWideScience

Sample records for fatigue test results

  1. Structural fatigue test results for large wind turbine blade sections

    Science.gov (United States)

    Faddoul, J. R.; Sullivan, T. L.

    1982-01-01

    In order to provide quantitative information on the operating life capabilities of wind turbine rotor blade concepts for root-end load transfer, a series of cantilever beam fatigue tests was conducted. Fatigue tests were conducted on a laminated wood blade with bonded steel studs, a low cost steel spar (utility pole) with a welded flange, a utility pole with additional root-end thickness provided by a swaged collar, fiberglass spars with both bonded and nonbonded fittings, and, finally, an aluminum blade with a bolted steel fitting (Lockheed Mod-0 blade). Photographs, data, and conclusions for each of these tests are presented. In addition, the aluminum blade test results are compared to field failure information; these results provide evidence that the cantilever beam type of fatigue test is a satisfactory method for obtaining qualitative data on blade life expectancy and for identifying structurally underdesigned areas (hot spots).

  2. Fatigue test results of straight pipe with flaws in inner surface

    International Nuclear Information System (INIS)

    Shibata, Katsuyuki; Oba, Toshihiro; Kawamura, Takaichi; Yokoyama, Norio; Miyazono, Shohachiro

    1981-01-01

    Fatigue and fracture tests of piping models with flaws in the inner surface were carried out to investigate the fatigue crack growth, coalescence of multiple cracks and fracture behavior. Two straight test pipes with and without weldment in the test section of SUS304L stainless steel were tested under almost the same test conditions. Three artificial defects were machined in the inner surface of the test section of the test pipes. The fatigue test were performed untill the cracks coalesced and grew through the thickness. Subsequently, a static load was imposed on test pipe which contained a large crack in the test section. The test results show that the fatigue crack growth is slower than that predicted by the method specified in the Section XI of ASME Boiler and Pressure Vessel Code, and that the test pipes can endure more than the static load of 3Sm without an unstable fracture. (author)

  3. Random non-proportional fatigue tests with planar tri-axial fatigue testing machine

    Directory of Open Access Journals (Sweden)

    T. Inoue

    2016-10-01

    Full Text Available Complex stresses, which occur on the mechanical surfaces of transport machinery in service, bring a drastic degradation in fatigue life. However, it is hard to reproduce such complex stress states for evaluating the fatigue life with conventional multiaxial fatigue machines. We have developed a fatigue testing machine that enables reproduction of such complex stresses. The testing machine can reproduce arbitrary in-plane stress states by applying three independent loads to the test specimen using actuators which apply loads in the 0, 45, and 90 degree directions. The reproduction was tested with complex stress data obtained from the actual operation of transport machinery. As a result, it was found that the reproduced stress corresponded to the measured stress with an error range of less than 10 %. Then, we made a comparison between measured fatigue lives under random non-proportional loading conditions and predicted fatigue lives. It was found that predicted fatigue lives with cr, stress on critical plane, were over a factor of 10 against measured fatigue lives. On the other hand, predicted fatigue lives with ma, stress in consideration of a non-proportional level evaluated by using amplitude and direction of principal stress, were within a factor of 3 against measured fatigue lives

  4. Report on FY15 Alloy 617 SMT Creep-Fatigue Test Results

    Energy Technology Data Exchange (ETDEWEB)

    Wang, Yanli [Oak Ridge National Lab. (ORNL), Oak Ridge, TN (United States); Jetter, Robert I. [Oak Ridge National Lab. (ORNL), Oak Ridge, TN (United States); Baird, Seth T. [Oak Ridge National Lab. (ORNL), Oak Ridge, TN (United States); Pu, Chao [Univ. of Tennessee, Knoxville, TN (United States); Sham, Sam [Oak Ridge National Lab. (ORNL), Oak Ridge, TN (United States)

    2015-06-22

    For the temperature range of 990-950C, Alloy 617 is a candidate IHX structural material for high temperature gas reactors (HTGRs) because of its high temperature creep properties. Also, its superior strength over a broad temperature range also offers advantages for certain component applications. In order for the designers to be able to use Alloy 617 for these high temperature components, Alloy 617 has to be approved for use in Section III (the nuclear section) of the ASME (American Society of Mechanical Engineers) Boiler and Pressure Vessel Code. A plan has been developed to propose a Code Case for use of Alloy 617 at elevated temperature in Section III of the ASME Code by September 2015. There has not been a new high temperature material approved for use in Section III for almost 20 years. The Alloy 617 Code Case effort would lead the way to establish a path for Code qualification of new high temperature materials of interest to other advanced SMRs. Creep-fatigue at elevated temperatures is the most damaging structural failure mode. In the past 40 years significant efforts have been devoted to the elevated temperature Code rule development in Section III, Subsection NH* of the ASME Boiler and Pressure Vessel Code, to ascertain conservative structural designs to prevent creep-fatigue failure. The current Subsection NH creep-fatigue procedure was established by the steps of (1) analytically obtaining a detailed stress-strain history, (2) comparing the stress and strain components to cyclic test results deconstructed into stress and strain quantities, and (3) recombining the results to obtain a damage function in the form of the so-called creep-fatigue damage-diagram. The deconstruction and recombination present difficulties in evaluation of test data and determination of cyclic damage in design. The uncertainties in these steps lead to the use of overly conservative design factors in the current creep-fatigue procedure. In addition, and of major significance to the

  5. Synthesis of low cycle fatigue test results

    International Nuclear Information System (INIS)

    Andrews, R.M.

    1990-01-01

    Axial strain controlled cycle fatigue tests were carried out on type 316 stainless steel parent metal, vacuum and non-vacuum electron beams welds, submerged arc welds and gas shielded metal arc welds. Testing covered total strains in the range 0.6% to 2%, and was at room temperature and 550 0 C. Parent metal and the electron beam welds showed rapid cyclic hardening, while arc welds showed little hardening. The weld metal cyclic stress-strain response was above that obtained for the parent metal, although below data obtained by other workers for similar parent materials. Weld metal endurances were above the ASME N47 continuous cycling design line at both temperatures, and comparable with parent metal data. However, the weld metal data approached the design line at low strain ranges (around 0.5%). Endurances were predicted from crack growth rates estimated from striation spacings, giving acceptable results except for the gas shielded metal arc weldments. (author)

  6. Standard guide for fretting fatigue testing

    CERN Document Server

    American Society for Testing and Materials. Philadelphia

    2010-01-01

    1.1 This guide defines terminology and covers general requirements for conducting fretting fatigue tests and reporting the results. It describes the general types of fretting fatigue tests and provides some suggestions on developing and conducting fretting fatigue test programs. 1.2 Fretting fatigue tests are designed to determine the effects of mechanical and environmental parameters on the fretting fatigue behavior of metallic materials. This guide is not intended to establish preference of one apparatus or specimen design over others, but will establish guidelines for adherence in the design, calibration, and use of fretting fatigue apparatus and recommend the means to collect, record, and reporting of the data. 1.3 The number of cycles to form a fretting fatigue crack is dependent on both the material of the fatigue specimen and fretting pad, the geometry of contact between the two, and the method by which the loading and displacement are imposed. Similar to wear behavior of materials, it is important t...

  7. Random non-proportional fatigue tests with planar tri-axial fatigue testing machine

    OpenAIRE

    Inoue, T.; Nagao, R.; Takeda, N.

    2016-01-01

    Complex stresses, which occur on the mechanical surfaces of transport machinery in service, bring a drastic degradation in fatigue life. However, it is hard to reproduce such complex stress states for evaluating the fatigue life with conventional multiaxial fatigue machines. We have developed a fatigue testing machine that enables reproduction of such complex stresses. The testing machine can reproduce arbitrary in-plane stress states by applying three independent loads to the test specimen u...

  8. Variable amplitude fatigue, modelling and testing

    International Nuclear Information System (INIS)

    Svensson, Thomas.

    1993-01-01

    Problems related to metal fatigue modelling and testing are here treated in four different papers. In the first paper different views of the subject are summarised in a literature survey. In the second paper a new model for fatigue life is investigated. Experimental results are established which are promising for further development of the mode. In the third paper a method is presented that generates a stochastic process, suitable to fatigue testing. The process is designed in order to resemble certain fatigue related features in service life processes. In the fourth paper fatigue problems in transport vibrations are treated

  9. Long-life fatigue test results for two nickel-base structural alloys

    International Nuclear Information System (INIS)

    Mowbray, D.F.; Giaquinto, E.V.; Mehringer, F.J.

    1978-11-01

    The results are reported of fatigue tests on two nickel--base alloys, hot-cold-worked and stress-relieved nickel--chrome--iron Alloy 600 and mill-annealed nickel--chrome--moly--iron Alloy 625 in which S-N data were obtained in the life range of 10 6 to 10 10 cycles. The tests were conducted in air at 600 0 F, in the reversed membrane loading mode, at a frequency of approx. 1850 Hz. An electromagnetic, closed loop servo-controlled machine was built to perform the tests. A description of the machine is given

  10. The reliability of test results from simple test samples in predicting the fatigue performance of automotive components

    International Nuclear Information System (INIS)

    Fourlaris, G.; Ellwood, R.; Jones, T.B.

    2007-01-01

    The use of high strength steels (HSS) in automotive components is steadily increasing as automotive designers use modern steel grades to improve structural performance, reduce vehicle weight and enhance crash performance. Weight reduction can be achieved by substituting mild steel with a thinner gauge HSS, however, it must be ensured that no deterioration in performance including fatigue capability occurs. In this study, tests have been carried out to determine the effects that gauge and material strength have on the fatigue performance of a fusion welded automotive suspension arm. Current finite element (FE) modelling and fatigue prediction techniques have been evaluated to determine their reliability when used for thin strip steels. Results have shown the fatigue performance of welded components to be independent of the strength of the parent material for the steel grades studied, with material thickness and joining process the key features determining the fatigue performance. The correlation between the fatigue performance of simple welded samples under uniaxial, constant amplitude loading and complex components under biaxial in service road load data, has been shown to be unreliable. This study also indicates that with the application of modern technologies, such as tailor-welded blanks (TWB), significant weight savings can be achieved. This is demonstrated by a 19% weight reduction with no detrimental effect on the fatigue performance

  11. Results from low cycle fatigue testing of 316L plate and weld material

    International Nuclear Information System (INIS)

    Kaellstroem, R.; Josefsson, B.; Haag, Y.

    1993-01-01

    Specimens for low cycle fatigue testing from the second heat of the CEC reference 316L plate and from Tungsten Inert Gas (TIG) weld material have been neutron irradiated near room temperature to a displacement dose of approximately 0.3 dpa. The low cycle fatigue testing of both irradiated and unirradiated specimens was performed at 75, 250 and 450 degrees C, and with strain ranges of 0.75, 1.0 and 1.5%. There is no clear effect of the irradiation on low cycle fatigue properties. For the weld material the endurance is shorter than for plate, and the dependences on temperature and strain range are not clear

  12. Multispecimen fatigue crack propagation testing

    International Nuclear Information System (INIS)

    Ermi, A.M.; Bauer, R.E.; Chin, B.A.; Straalsund, J.L.

    1981-01-01

    Chains of miniature center-cracked-tension specimens were tested on a conventional testing machine and on a prototypic in-reactor fatigue machine as part of the fusion reactor materials alloy development program. Annealed and 20 percent cold-worked 316 stainless steel specimens were cycled under various conditions of temperature, frequency, stress ratio and chain length. Crack growth rates determined from multispecimen visual measurements and from an electrical potential technique were consistent with those obtained by conventional test methods. Results demonstrate that multispecimen chain testing is a valid method of obtaining fatigue crack propagation information for alloy development. 8 refs

  13. Standard test method for creep-fatigue testing

    CERN Document Server

    American Society for Testing and Materials. Philadelphia

    2009-01-01

    1.1 This test method covers the determination of mechanical properties pertaining to creep-fatigue deformation or crack formation in nominally homogeneous materials, or both by the use of test specimens subjected to uniaxial forces under isothermal conditions. It concerns fatigue testing at strain rates or with cycles involving sufficiently long hold times to be responsible for the cyclic deformation response and cycles to crack formation to be affected by creep (and oxidation). It is intended as a test method for fatigue testing performed in support of such activities as materials research and development, mechanical design, process and quality control, product performance, and failure analysis. The cyclic conditions responsible for creep-fatigue deformation and cracking vary with material and with temperature for a given material. 1.2 The use of this test method is limited to specimens and does not cover testing of full-scale components, structures, or consumer products. 1.3 This test method is primarily ...

  14. Accelerated fatigue testing of LM 19.1 blades

    DEFF Research Database (Denmark)

    Kristensen, Ole Jesper Dahl; Jørgensen, E.

    2003-01-01

    A series of 19.1 metre wind turbine blades manufactured by LM Glasfiber A/S of Lunderskov, Denmark were subjected to a series of flapwise fatigue tests. The object of these fatigue tests is to evaluate the impact of an increased load on the blade in afatigue test and to give information...... if it is possible to increase the load in fatigue test to shorten test time. The tests were carried out as a part of a project financed by the Danish Energy Agency. During the fatigue tests the blades have beensurveyed with thermal imaging equipment to determine how an increase in fatigue load affects the blade...... material. In addition to the thermal imaging surveillance the blades were instrumented with strain gauges. This report presents the temperature duringtest, calibration test results, moment range measurements, strain statistics, thermal imaging registrations and a determination of the size and cause...

  15. Results of fatigue tests and prediction of fatigue life under superposed stress wave and combined superposed stress wave

    International Nuclear Information System (INIS)

    Takasugi, Shunji; Horikawa, Takeshi; Tsunenari, Toshiyasu; Nakamura, Hiroshi

    1983-01-01

    In order to examine fatigue life prediction methods at high temperatures where creep damage need not be taken into account, fatigue tests were carried out on plane bending specimens of alloy steels (SCM 435, 2 1/4Cr-1Mo) under superposed and combined superposed stress waves at room temperature and 500 0 C. The experimental data were compared with the fatigue lives predicted by using the cycle counting methods (range pair, range pair mean and zero-cross range pair mean methods), the modified Goodman's equation and the modified Miner's rule. The main results were as follows. (1) The fatigue life prediction method which is being used for the data at room temperature is also applicable to predict the life at high temperatures. The range pair mean method is especially better than other cycle counting methods. The zero-cross range pair mean method gives the estimated lives on the safe side of the experimental lives. (2) The scatter bands of N-bar/N-barsub(es) (experimental life/estimated life) becomes narrower when the following equation is used instead of the modified Goodman's equation for predicting the effect of mean stress on fatigue life. σ sub(t) = σ sub(a) / (1 - Sigma-s sub(m) / kσ sub(B)) σ sub(t); stress amplitude at zero mean stress (kg/mm 2 ) σ sub(B); tensile strength (kg/mm 2 ) σ sub(m); mean stress (kg/mm 2 ) σ sub(a); stress amplitude (kg/mm 2 ) k; modified coefficient of σ sub(B) (author)

  16. Finite element simulation of asphalt fatigue testing

    DEFF Research Database (Denmark)

    Ullidtz, Per; Kieler, Thomas Lau; Kargo, Anders

    1997-01-01

    The traditional interpretation of fatigue tests on asphalt mixes has been in terms of a logarithmic linear relationship between the constant stress or strain amplitude and the number of load repetitions to cause failure, often defined as a decrease in modulus to half the initial value...... damage mechanics.The paper describes how continuum damage mechanics may be used with a finite element program to explain the progressive deterioration of asphalt mixes under laboratory fatigue testing. Both constant stress and constant strain testing are simulated, and compared to the actual results from...... three point and four point fatigue test on different mixes. It is shown that the same damage law, based on energy density, may be used to explain the gradual deterioration under constant stress as well as under constant strain testing.Some of the advantages of using this method for interpreting fatigue...

  17. Fatigue Test Design: Scenarios for Biaxial Fatigue Testing of a 60-Meter Wind Turbine Blade

    Energy Technology Data Exchange (ETDEWEB)

    Post, Nathan [National Renewable Energy Lab. (NREL), Golden, CO (United States)

    2016-07-01

    Current practice in commercial certification of wind turbine blades is to perform separate flap and lead-lag fatigue tests. The National Renewable Energy Laboratory has been researching and evaluating biaxial fatigue testing techniques and demonstrating various options, typically on smaller-scale test articles at the National Wind Technology Center. This report evaluates some of these biaxial fatigue options in the context of application to a multimegawatt blade certification test program at the Wind Technology Testing Center in Charlestown, Massachusetts.

  18. Inspection Program Development for an Aircraft Fleet and an Airline on the Basis of the Acceptance Fatigue Test Result

    Directory of Open Access Journals (Sweden)

    Paramonov Yuri

    2015-02-01

    Full Text Available An inspection interval planning is considered in order to limit the probability of any fatigue failure (FFP in a fleet of N aircraft (AC and to provide an economical effectiveness of airline (AL under the limitation of fatigue failure rate (FFR. A solution of these two problems is based on the processing of the result of acceptance fatigue test of a new type of aircraft. During this test an estimate of the parameter ϴ, of a fatigue crack growth trajectory has been obtained. If the result of this acceptance test is too bad then this new type of aircraft will not be used in service. A redesign of this project should be done. If the result the acceptance test is pretty good then the reliability of the aircraft fleet and the airline will be provided without inspections. For this strategy there is a maximum of FFP (a maximum of FFR as a function of an unknown parameter ᶿ. This maximum can be limited by the use of the offered here procedure of the choice of the inspection number. The economic effectiveness of the AL operation is considered using the theory of Markov process with rewords.

  19. Probabilistic fatigue life prediction methodology for notched components based on simple smooth fatigue tests

    Energy Technology Data Exchange (ETDEWEB)

    Wu, Z. R.; Li, Z. X. [Dept.of Engineering Mechanics, Jiangsu Key Laboratory of Engineering Mechanics, Southeast University, Nanjing (China); Hu, X. T.; Xin, P. P.; Song, Y. D. [State Key Laboratory of Mechanics and Control of Mechanical Structures, Nanjing University of Aeronautics and Astronautics, Nanjing (China)

    2017-01-15

    The methodology of probabilistic fatigue life prediction for notched components based on smooth specimens is presented. Weakestlink theory incorporating Walker strain model has been utilized in this approach. The effects of stress ratio and stress gradient have been considered. Weibull distribution and median rank estimator are used to describe fatigue statistics. Fatigue tests under different stress ratios were conducted on smooth and notched specimens of titanium alloy TC-1-1. The proposed procedures were checked against the test data of TC-1-1 notched specimens. Prediction results of 50 % survival rate are all within a factor of two scatter band of the test results.

  20. Fatigue tests and life estimation of Incoloy alloy 908

    International Nuclear Information System (INIS)

    Feng, J.; Toma, L.S.; Jang, C.H.; Steeves, M.M.

    1997-01-01

    Incoloy reg-sign alloy 908* is a candidate conduit material for Nb 3 Sn cable-in-conduit superconductors. The conduit is expected to experience cyclic loads at 4 K. Fatigue fracture of the conduit is one possible failure mode. So far, fatigue life has been estimated from fatigue crack growth data, which provide conservative results. The more traditional practice of life estimation using S-N curves has not been done for alloy 908 due to a lack of data at room and cryogenic temperatures. This paper presents a series of fatigue test results in response to this need. Tests were performed in reversed bending, rotating bending, and uniaxial fatigue machines. The test matrix included different heat treatments, two load ratios (R=-1 and 0.1), two temperatures (298 and 77 K), and two orientations (longitudinal and transverse). As expected, there is a semi-log linear relation between the applied stress and fatigue life above an applied stress (e.g., 310 MPa for tests at 298 K and R=-1). Below this stress the curves show an endurance limit. The aged and cold-worked materials have longer fatigue lives and higher endurance limits than the others. Different orientations have no apparent effect on life. Cryogenic temperature results in a much high fatigue life than room temperature. A higher tensile mean stress gives shorter fatigue life. It was also found that the fatigue lives of the reversed bending specimens were of the same order as those of the uniaxial test specimens, but were only half the lives of the rotating bending specimens for given stresses. A sample application of the S-N data is discussed

  1. Evaluation of micro fatigue crack growth under equi-biaxial stress by membranous pressure fatigue test

    International Nuclear Information System (INIS)

    Iida, Satoshi; Abe, Shigeki; Nakamura, Takao; Kamaya, Masayuki

    2014-01-01

    For preventing nuclear power plant (NPP) accidents, NPPs are required to ensure system safety in long term safe operation under aging degradation. Now, fatigue accumulation is one of major ageing phenomena and are evaluated to ensure safety by design fatigue curve that are based on the results of uniaxial fatigue tests. On the other hand, thermal stress that occurs in piping of actual components is not uniaxial but equi-biaxial. For accurate evaluation, it is required to conform real circumstance. In this study, membranous pressure fatigue test was conducted to simulated equi-biaxial stress. Crack initiation and crack growth were examined by replica investigation. Calculation result of equivalent stress intensity factor shows crack growth under equi-biaxial stress is faster than under uniaxial stress. It is concluded that equi-biaxial fatigue behavior should be considered in the evaluation of fatigue crack initiation and crack growth. (author)

  2. Devices for fatigue testing of electroplated nickel (MEMS)

    DEFF Research Database (Denmark)

    Larsen, Kristian Pontoppidan; Ravnkilde, J. T.; Ginnerup, Morten

    2002-01-01

    μm and an effective length from 4μm to 27μm. Maximum stresses of the test beam were calculated to be 500MPa to 2100MPa by use of FEM tools. The test results indicate very promising fatigue properties of nano-nickel, as none of the test devices have shown fatigue failure or even initiation of cracks......In-situ fatigue test devices with integrated electrostatic actuator were fabricated in electroplated nanocrystalline nickel (nano-nickel). The devices feature in-plane approximately pure bending with fixed displacement of the test specimen of the dimensions: widths from 2μm to 3.7μm, a height of 7...... after 108 cycles. The combination of high strength and toughness, which is known for nanocrystalline materials, together with very small test specimens and low surface roughness could be the explanation for the good fatigue properties....

  3. Asphalt Mixture Fatigue Testing : Influence of Test Type and Specimen Size

    NARCIS (Netherlands)

    Li, N.

    2013-01-01

    Fatigue characterization of an asphalt mixture is commonly estimated by laboratory fatigue tests. Based on the classical fatigue analysis, fatigue lives obtained from different test devices are not comparable even when they are performed at the same test conditions. It is believed that there are two

  4. High Frequency Vibration Based Fatigue Testing of Developmental Alloys

    Science.gov (United States)

    Holycross, Casey M.; Srinivasan, Raghavan; George, Tommy J.; Tamirisakandala, Seshacharyulu; Russ, Stephan M.

    Many fatigue test methods have been previously developed to rapidly evaluate fatigue behavior. This increased test speed can come at some expense, since these methods may require non-standard specimen geometry or increased facility and equipment capability. One such method, developed by George et al, involves a base-excited plate specimen driven into a high frequency bending resonant mode. This resonant mode is of sufficient frequency (typically 1200 to 1700 Hertz) to accumulate 107 cycles in a few hours. One of the main limitations of this test method is that fatigue cracking is almost certainly guaranteed to be surface initiated at regions of high stress. This brings into question the validity of the fatigue test results, as compared to more traditional uniaxial, smooth-bar testing, since high stresses are subjecting only a small volume to fatigue damage. This limitation also brings into question the suitability of this method to screen developmental alloys, should their initiation life be governed by subsurface flaws. However, if applicable, the rapid generation of fatigue data using this method would facilitate faster design iterations, identifying more quickly, material and manufacturing process deficiencies. The developmental alloy used in this study was a powder metallurgy boron-modified Ti-6Al-4V, a new alloy currently being considered for gas turbine engine fan blades. Plate specimens were subjected to fully reversed bending fatigue. Results are compared with existing data from commercially available Ti-6Al-4V using both vibration based and more traditional fatigue test methods.

  5. Method and data analysis example of fatigue tests

    International Nuclear Information System (INIS)

    Nogami, Shuhei

    2015-01-01

    In the design and operation of a nuclear fusion reactor, it is important to accurately assess the fatigue life. Fatigue life is evaluated by preparing a database on the relationship between the added stress / strain amplitude and the number of cycles to failure based on the fatigue tests on standard specimens, and by comparing this relationship with the generated stress / strain of the actual constructions. This paper mainly chooses low-cycle fatigue as an object, and explains standard test methods, fatigue limit, life prediction formula and the like. Using reduced-activation ferrite steel F82H as a material, strain controlled low-cycle fatigue test was performed under room temperature atmosphere. From these results, the relationship between strain and the number of cycles to failure was analyzed. It was found that the relationship is asymptotic to the formula of Coffin-Manson Law under high-strain (low-cycle condition), and asymptotic to the formula of Basquin Law under low-strain (high-cycle condition). For F82H to be used for the blanket of a nuclear fusion prototype reactor, the arrangement of fatigue life data up to about 700°C and the establishment of optimal fatigue design curves are urgent tasks. As for fusion reactor structural materials, the evaluation of neutron irradiation effect on fatigue damage behavior and life is indispensable. For this purpose, it is necessary to establish standardized testing techniques when applied to small specimens. (A.O.)

  6. Near threshold fatigue testing

    Science.gov (United States)

    Freeman, D. C.; Strum, M. J.

    1993-01-01

    Measurement of the near-threshold fatigue crack growth rate (FCGR) behavior provides a basis for the design and evaluation of components subjected to high cycle fatigue. Typically, the near-threshold fatigue regime describes crack growth rates below approximately 10(exp -5) mm/cycle (4 x 10(exp -7) inch/cycle). One such evaluation was recently performed for the binary alloy U-6Nb. The procedures developed for this evaluation are described in detail to provide a general test method for near-threshold FCGR testing. In particular, techniques for high-resolution measurements of crack length performed in-situ through a direct current, potential drop (DCPD) apparatus, and a method which eliminates crack closure effects through the use of loading cycles with constant maximum stress intensity are described.

  7. Fatigue testing of wood composites for aerogenerator blades. Pt. 11: Assessment of fatigue damage accumulation using a fatigue modulus approach

    Energy Technology Data Exchange (ETDEWEB)

    Hacker, C L; Ansell, M P [Bath Univ. (United Kingdom)

    1996-12-31

    Stress-strain hysteresis loops have been captured during fatigue tests performed at R=10 (compression-compression) and R=0.1 (tension-tension) on Khaya epoxy wood composites. A fatigue modulus approach, proposed by Hwang and Han in 1989, has been applied to the data and a relationship established between the initial change in fatigue modulus and fatigue life. By following changes in fatigue modulus during the first 100 test cycles it is possible to predict the life of the sample allowing rapid evaluation of the fatigue performance of wood composites. Fatigue modulus values have also been calculated for hysteresis loops captured during complex load - time history tests. Similar trends in change in fatigue modulus suggest that this approach could be used in complex loading conditions to evaluate fatigue damage accumulation and predict fatigue life. (Author)

  8. High-speed Stochastic Fatigue Testing

    DEFF Research Database (Denmark)

    Brincker, Rune; Sørensen, John Dalsgaard

    1990-01-01

    Good stochastic fatigue tests are difficult to perform. One of the major reasons is that ordinary servohydraulic loading systems realize the prescribed load history accurately at very low testing speeds only. If the speeds used for constant amplitude testing are applied to stochastic fatigue...

  9. Fatigue tests of dowel-socket systems

    International Nuclear Information System (INIS)

    Chiang, D.D.

    1976-01-01

    A test program was conducted to determine the fatigue behavior of LHTGR fuel element dowel/socket systems. Two dowel/socket systems, namely, a four-dowel system and a five-dowel system, were tested to failure under shear loads applied through a fatigue test apparatus to simulate repetitive loading during a seismic event

  10. Simulation and analysis of data for enhancing low cycle fatigue test procedures

    Energy Technology Data Exchange (ETDEWEB)

    Sarajaervi, U.; Cronvall, O. [VTT Technical Research Centre of Finland (Finland)

    2006-04-15

    The simulation and analysis of data for enhancing low cycle fatigue test procedures is discussed in this report. The analysed materials are an austenitic stainless piping steel and an austenitic weld material. This project continues the work performed in 2003 and 2004. The fatigue test data treatment application developed within the project in 2004 for the preparation of the fatigue data has been developed further. Also, more fatigue test data has been analysed with the application than in 2004. In addition to this numerical fatigue simulations were performed with FEM code ABAQUS. With the fatigue test data treatment application one can e.g. both calculate cyclically certain relevant characteristic values, e.g. elastic range, and form a set of certain cyclical parameter values needed as a part of ABAQUS analysis input files. The hardening properties of metals were modelled with both isotropic and kinematic hardening models. The further development of the application included trimming of the analysed data, and consequently trimming of resulting hardening parameters. The need for the trimming arose from the fact that the analysed fatigue test data presents some scatter caused by the limited accuracy of the test equipment and the sampling rate. The hardening parameters obtained from the application analysis results were used in the subsequent ABAQUS analyses, and then the fatigue test data were compared with the ABAQUS simulation results. After finding a procedure to trim result data to get smooth curves for cyclic hardening, hardening and softening could be reproduced in ABAQUS analysis with a reasonable accuracy. The modelling of the fatigue induced initiation and growth of cracks was not considered in this study. On the other hand, a considerable part of the fatigue life of nuclear power plant (NPP) piping components is spent in the phase preceding the initiation and growth of cracks. (au)

  11. Simulation and analysis of data for enhancing low cycle fatigue test procedures

    International Nuclear Information System (INIS)

    Sarajaervi, U.; Cronvall, O.

    2006-04-01

    The simulation and analysis of data for enhancing low cycle fatigue test procedures is discussed in this report. The analysed materials are an austenitic stainless piping steel and an austenitic weld material. This project continues the work performed in 2003 and 2004. The fatigue test data treatment application developed within the project in 2004 for the preparation of the fatigue data has been developed further. Also, more fatigue test data has been analysed with the application than in 2004. In addition to this numerical fatigue simulations were performed with FEM code ABAQUS. With the fatigue test data treatment application one can e.g. both calculate cyclically certain relevant characteristic values, e.g. elastic range, and form a set of certain cyclical parameter values needed as a part of ABAQUS analysis input files. The hardening properties of metals were modelled with both isotropic and kinematic hardening models. The further development of the application included trimming of the analysed data, and consequently trimming of resulting hardening parameters. The need for the trimming arose from the fact that the analysed fatigue test data presents some scatter caused by the limited accuracy of the test equipment and the sampling rate. The hardening parameters obtained from the application analysis results were used in the subsequent ABAQUS analyses, and then the fatigue test data were compared with the ABAQUS simulation results. After finding a procedure to trim result data to get smooth curves for cyclic hardening, hardening and softening could be reproduced in ABAQUS analysis with a reasonable accuracy. The modelling of the fatigue induced initiation and growth of cracks was not considered in this study. On the other hand, a considerable part of the fatigue life of nuclear power plant (NPP) piping components is spent in the phase preceding the initiation and growth of cracks. (au)

  12. Standard test method for creep-fatigue crack growth testing

    CERN Document Server

    American Society for Testing and Materials. Philadelphia

    2010-01-01

    1.1 This test method covers the determination of creep-fatigue crack growth properties of nominally homogeneous materials by use of pre-cracked compact type, C(T), test specimens subjected to uniaxial cyclic forces. It concerns fatigue cycling with sufficiently long loading/unloading rates or hold-times, or both, to cause creep deformation at the crack tip and the creep deformation be responsible for enhanced crack growth per loading cycle. It is intended as a guide for creep-fatigue testing performed in support of such activities as materials research and development, mechanical design, process and quality control, product performance, and failure analysis. Therefore, this method requires testing of at least two specimens that yield overlapping crack growth rate data. The cyclic conditions responsible for creep-fatigue deformation and enhanced crack growth vary with material and with temperature for a given material. The effects of environment such as time-dependent oxidation in enhancing the crack growth ra...

  13. Fatigue Tests on Welded Joints Improved by Grinding

    DEFF Research Database (Denmark)

    Agerskov, Henning; Bjørnbak-Hansen, Jørgen; Olesen, John Forbes

    The present project is a part of an investigation on the fatigue life of the welded structure of large two-stroke diesel engines. Of special interest has been a study of the improvement in fatigue life, due to grinding of the weld toes. The test series carried through showed a significant increase...... without grinding to approx. 6.4 for the test series with grinding. In one of the test series (No. 7), the crack initiation in most tests moved from the weld toe to the non-ground surface between the ground areas at the weld toes, due to the grinding....... in fatigue life due to the grinding, ranging from a factor of approx. 2.8 to infinity, depending on the load level. With the limited number of tests carried out, S-N lines have not been determined. However, the results obtained indicate a change in slope of the S-N line from approx. 3.0 for the test series...

  14. Constructing kinetics fatigue diagrams using testing results obtained on a machine with rigid loading for specimens of various thickness

    International Nuclear Information System (INIS)

    Simin'kovich, V.N.; Gladkij, Ya.N.; Deev, N.A.

    1981-01-01

    Bending tests of 40KhS steel specimens, tempered at 200 and 500 deg C, are conducted to investigate the possible effects of specimen thickness on fatigue crack growth. Kinetic fatigue diagrams are constructed using the investigation results. An increase in crack growth with thickness is observed only in high-tempered specimens. Changes in specimen thickness do not affect crack growth in 40KhS low-tempered steel [ru

  15. Test Population Selection from Weibull-Based, Monte Carlo Simulations of Fatigue Life

    Science.gov (United States)

    Vlcek, Brian L.; Zaretsky, Erwin V.; Hendricks, Robert C.

    2012-01-01

    Fatigue life is probabilistic and not deterministic. Experimentally establishing the fatigue life of materials, components, and systems is both time consuming and costly. As a result, conclusions regarding fatigue life are often inferred from a statistically insufficient number of physical tests. A proposed methodology for comparing life results as a function of variability due to Weibull parameters, variability between successive trials, and variability due to size of the experimental population is presented. Using Monte Carlo simulation of randomly selected lives from a large Weibull distribution, the variation in the L10 fatigue life of aluminum alloy AL6061 rotating rod fatigue tests was determined as a function of population size. These results were compared to the L10 fatigue lives of small (10 each) populations from AL2024, AL7075 and AL6061. For aluminum alloy AL6061, a simple algebraic relationship was established for the upper and lower L10 fatigue life limits as a function of the number of specimens failed. For most engineering applications where less than 30 percent variability can be tolerated in the maximum and minimum values, at least 30 to 35 test samples are necessary. The variability of test results based on small sample sizes can be greater than actual differences, if any, that exists between materials and can result in erroneous conclusions. The fatigue life of AL2024 is statistically longer than AL6061 and AL7075. However, there is no statistical difference between the fatigue lives of AL6061 and AL7075 even though AL7075 had a fatigue life 30 percent greater than AL6061.

  16. Influence of grain orientation on evolution of surface features in fatigued polycrystalline copper: A comparison of thermal and uniaxial mechanical fatigue results

    International Nuclear Information System (INIS)

    Aicheler, Markus

    2010-01-01

    Surface state plays a major role in the crack nucleation process of pure metals in the High-Cycle-Fatigue (HCF) as well as in the Ultra-High-Cycle-Fatigue (UHCF) regime. Therefore, in studies dealing with HCF or UHCF, special attention is paid to the evolution of surface degradation during fatigue life. The accelerating structures of the future Compact Linear Collider (CLIC) under study at CERN will be submitted to a high number of thermal-mechanical fatigue cycles, arising from Radio Frequency (RF) induced eddy currents, causing local superficial cyclic heating. The number of cycles during the foreseen lifetime of CLIC reaches 2x10 11 . Fatigue may limit the lifetime of CLIC structures. In order to assess the effects of superficial fatigue, specific tests are defined and performed on polycrystalline Oxygen Free Electronic (OFE) grade Copper, a candidate material for the structures. Surface degradation depends on the orientation of near-surface grains. Copper samples thermally fatigued in two different fatigue experiments, pulsed laser and pulsed RF-heating, underwent postmortem Electron Backscattered Diffraction measurements. Samples fatigued by pulsed laser show the same trend in the orientation-fatigue damage behavior as samples fatigued by pulsed RF-heating. It is clearly observed that surface grains, oriented [1 1 1] with respect to the surface, show significantly more damage than surface grains oriented [1 0 0]. Results arising from a third fatigue experiment, the ultrasound (US) swinger, are compared to the results of the mentioned experiments. The US swinger is an uniaxial mechanical fatigue test enabling to apply within several days a total number of cycles representative of the life of the CLIC structures, thanks to a high repetition rate of 24 kHz. For comparison, laser fatigue experiments have much lower repetition rates. The dependence of surface degradation on grain orientation of samples tested by the US swinger was monitored during the fatigue life

  17. Two micro fatigue test methods for irradiated materials

    International Nuclear Information System (INIS)

    Nunomura, Shigetomo; Noguchi, Shinji; Okamura, Yuichi; Kumai, Shinji

    1993-01-01

    This paper demonstrates two miniature fatigue test methods in response to the requirements of the fusion reactor wall materials development program. It is known that the fatigue strength evaluated by the axial loading test is independent of the specimen size, while that evaluated by the bend test or torsion test is dependent upon the size of specimen. The new type of gripping system for the axial, tension-tension, fatigue testing of TEM disk-size specimens that has been developed is described in this paper. An alignment tool assists in gripping the miniature specimen. The miniature tension-tension fatigue test method seems to provide reliable S-N curves for SUS304 and SUS316L stainless steels. An indentation method has also been developed to determine fatigue properties. A hard steel ball or ceramic ball was used for cyclically loading the specimen, and an S-N curve was subsequently obtained. The merit of this method is primarily simple handling. S-N curves obtained from four materials by this indentation method compared well with those obtained from the rotary bend fatigue test employing a standard-size specimen

  18. Acoustic events during fatigue test of structural steels

    Energy Technology Data Exchange (ETDEWEB)

    Por, Gabor; Fekete, Balazs; Csicso, Gabor; Trampus, Peter [College of Dunaujvaros (Hungary)

    2014-11-01

    Acoustic emission sensors were applied recording noises during low cycle fatigue tests in steel materials. The test specimens were machined from the base metal (15H2MFA) and the anticorrosive cladding metal (08H18N10T) of the VVER-440/V-213 (Russian designed PWR) reactor pressure vessel. During the first period, the measurements were carried out with isothermal condition at 260 C on GLEEBLE 3800 servo-hydraulic thermal-mechanical simulator. The tests were run under uniaxial tension-compression loading with total strain control. The programmed waveform was triangular for all the fatigue tests with the frequency of 0.08 Hz. The cyclic loading was started from the compressed side. It was observed that besides rare acoustic emission events regular 10 msec Acoustic Barkhausen Noise (ABN) burst were recorded due to 50Hz AC current drive for heating and maintaining the constant temperature. The amplitude of MABN was higher under pressure than during relaxing and drawing-out by a factor of 2-5. We have carried out also thermo-mechanical fatigue experiment with the same strain-controlled mechanical cycle and simultaneous thermal cycle between 150 C and 270 C. The total number of cycles was terminated, when the force level necessary for the original elongation had been reduced to 75% of its original value. Visual examination showed always some at least surface cracks after stopping the fatigue test. ABN events registered during the beginning cycle exhibited different spectra from the middle and especially from the last cycles before the end of the test, where also double ABN bursts could be recorded. At the end of the test explicit AE events could be found by a new technique. The most interesting result is the possibility to use ABN for testing reactor materials, which could have practical application for fatigue testing.

  19. Accelerated ultrasonic fatigue testing applications and research trends

    Energy Technology Data Exchange (ETDEWEB)

    Cho, In Sik; Shin, Choongshig; Kim, Jong Yup; Jeon, Yongho [Ajou Univ., Gyeonggi (Somalia)

    2012-06-15

    Very high cycle fatigue (VHCF) behavior of aerospace components has emerged much attention due to their long service life. In this study, a piezoelectric ultrasonic fatigue testing (UFT) system has been developed by Mbrosiatec Co., Ltd. to study the high cycle fatigue (HCF) strength of Ti 6Al 4V alloy. Hourglass shaped specimens have been investigated in the range from 10'6' to 10'9' cycles at room temperature under completely reversed R=-1 loading conditions, Scanning electron microscopy (SEM) analysis revealed that failures occurred in the entire range up to the gigacycle regime, and the fractures have been found to be initiated from the surface, unlike in steels. However, it was found from the SEM microgprahs that microcracks transformed into intergranular fractures. Thus, it can be concluded from according to the results that this test method can be applicable to commercialized automotive and railroad parts that require high cycle fatigue strength.

  20. Accelerated ultrasonic fatigue testing applications and research trends

    International Nuclear Information System (INIS)

    Cho, In Sik; Shin, Choongshig; Kim, Jong Yup; Jeon, Yongho

    2012-01-01

    Very high cycle fatigue (VHCF) behavior of aerospace components has emerged much attention due to their long service life. In this study, a piezoelectric ultrasonic fatigue testing (UFT) system has been developed by Mbrosiatec Co., Ltd. to study the high cycle fatigue (HCF) strength of Ti 6Al 4V alloy. Hourglass shaped specimens have been investigated in the range from 10'6' to 10'9' cycles at room temperature under completely reversed R=-1 loading conditions, Scanning electron microscopy (SEM) analysis revealed that failures occurred in the entire range up to the gigacycle regime, and the fractures have been found to be initiated from the surface, unlike in steels. However, it was found from the SEM microgprahs that microcracks transformed into intergranular fractures. Thus, it can be concluded from according to the results that this test method can be applicable to commercialized automotive and railroad parts that require high cycle fatigue strength

  1. Miniature specimen technology for postirradiation fatigue crack growth testing

    International Nuclear Information System (INIS)

    Mervyn, D.A.; Ermi, A.M.

    1979-01-01

    Current magnetic fusion reactor design concepts require that the fatigue behavior of candidate first wall materials be characterized. Fatigue crack growth may, in fact, be the design limiting factor in these cyclic reactor concepts given the inevitable presence of crack-like flaws in fabricated sheet structures. Miniature specimen technology has been developed to provide the large data base necessary to characterize irradiation effects on the fatigue crack growth behavior. An electrical potential method of measuring crack growth rates is employed on miniature center-cracked-tension specimens (1.27 cm x 2.54 cm x 0.061 cm). Results of a baseline study on 20% cold-worked 316 stainless steel, which was tested in an in-cell prototypic fatigue machine, are presented. The miniature fatigue machine is designed for low cost, on-line, real time testing of irradiated fusion candidate alloys. It will enable large scale characterization and development of candidate first wall alloys

  2. Uncertainty analysis of constant amplitude fatigue test data employing the six parameters random fatigue limit model

    Directory of Open Access Journals (Sweden)

    Leonetti Davide

    2018-01-01

    Full Text Available Estimating and reducing uncertainty in fatigue test data analysis is a relevant task in order to assess the reliability of a structural connection with respect to fatigue. Several statistical models have been proposed in the literature with the aim of representing the stress range vs. endurance trend of fatigue test data under constant amplitude loading and the scatter in the finite and infinite life regions. In order to estimate the safety level of the connection also the uncertainty related to the amount of information available need to be estimated using the methods provided by the theory of statistic. The Bayesian analysis is employed to reduce the uncertainty due to the often small amount of test data by introducing prior information related to the parameters of the statistical model. In this work, the inference of fatigue test data belonging to cover plated steel beams is presented. The uncertainty is estimated by making use of Bayesian and frequentist methods. The 5% quantile of the fatigue life is estimated by taking into account the uncertainty related to the sample size for both a dataset containing few samples and one containing more data. The S-N curves resulting from the application of the employed methods are compared and the effect of the reduction of uncertainty in the infinite life region is quantified.

  3. Fatigue tests and characterization of resulting microstructure by transmission electron microscope on zircaloy 4

    International Nuclear Information System (INIS)

    Di Toma, S.; Bertolino, G.; Tolley, A.

    2012-01-01

    This work reports the results of load controlled tension-tension fatigue tests on Zircaloy 4 (Zy-4). The resulting microstructure, particularly the kind and density of dislocations was characterized using a Transmission Electron Microscope (TEM). Specimens were cut from a rolled plate, with tensile axis parallel and perpendicular to the rolling direction. The results show a significant anisotropy of the mechanical properties due to the strong texture developed during rolling. Mainly type dislocations were observed, only in a longitudinal tensile axis specimen, dislocations were observed with a much lower density. The Schmid factors corresponding to the different glide systems were determined for specific grains in both tensile directions (author)

  4. Ultrasonic testing results of fatigue cracks in PWR mock-up

    International Nuclear Information System (INIS)

    Gondard, C.

    1990-01-01

    The Ispra Joint Research Center has entered, since many years a study on fatigue crack propagation in PWR reactor vessels. The objective of this study is to establish a relation between the size and the location of defects and the lifetime of the vessel. For verifying the theoretical models validity a mockup has been built. This document gives the results of CEA for 6 in service inspection during 5 years [fr

  5. Experimental and modeling results of creep fatigue life of Inconel 617 and Haynes 230 at 850 C

    International Nuclear Information System (INIS)

    Chen, Xiang; Sokolov, Mikhail A.; Sham, Sam; Erdman, Donald L. III; Busby, Jeremy T.; Mo, Kun; Stubbins, James

    2013-01-01

    Creep fatigue testing of Ni-based superalloy Inconel 617 and Haynes 230 were conducted in the air at 850 C. Tests were performed with fully reversed axial strain control at a total strain range of 0.5%, 1.0% or 1.5% and hold time at maximum tensile strain for 3, 10 or 30 min. In addition, two creep fatigue life prediction methods, i.e. linear damage summation and frequency-modified tensile hysteresis energy modeling, were evaluated and compared with experimental results. Under all creep fatigue tests, Haynes 230 performed better than Inconel 617. Compared to the low cycle fatigue life, the cycles to failure for both materials decreased under creep fatigue test conditions. Longer hold time at maximum tensile strain would cause a further reduction in both material creep fatigue life. The linear damage summation could predict the creep fatigue life of Inconel 617 for limited test conditions, but considerably underestimated the creep fatigue life of Haynes 230. In contrast, frequency-modified tensile hysteresis energy modeling showed promising creep fatigue life prediction results for both materials.

  6. Fatigue Life Assessment of Selected Engineering Materials Based on Modified Low-Cycle Fatigue Test

    Directory of Open Access Journals (Sweden)

    Maj M.

    2013-03-01

    Full Text Available In this study, the mechanical tests were carried out on ductile iron of EN-GJS-600-3 grade and on grey cast iron of EN-GJL-250 grade. The fatigue life was evaluated in a modified low-cycle fatigue test (MLCF, which enables the determination of parameters resulting from the Manson-Coffin-Morrow relationship. The qualitative and quantitative metallographic studies conducted by light microscopy on selected samples of ductile iron with spheroidal graphite and grey cast iron with lamellar graphite (showing only small variations in mechanical properties, confirmed also small variations in the geometrical parameters of graphite related with its content and morphological features.

  7. Fatigue Life Assessment of Selected Engineering Materials Based on Modified Low-Cycle Fatigue Test

    Directory of Open Access Journals (Sweden)

    M. Maj

    2013-01-01

    Full Text Available In this study, the mechanical tests were carried out on ductile iron of EN-GJS-600-3 grade and on grey cast iron of EN-GJL-250 grade.The fatigue life was evaluated in a modified low-cycle fatigue test (MLCF, which enables the determination of parameters resulting fromthe Manson-Coffin-Morrow relationship.The qualitative and quantitative metallographic studies conducted by light microscopy on selected samples of ductile iron with spheroidalgraphite and grey cast iron with lamellar graphite (showing only small variations in mechanical properties, confirmed also smallvariations in the geometrical parameters of graphite related with its content and morphological features.

  8. Very high cycle fatigue testing of concrete using ultrasonic cycling

    Energy Technology Data Exchange (ETDEWEB)

    Karr, Ulrike; Schuller, Reinhard; Fitzka, Michael; Mayer, Herwig [Univ. of Natural Resources and Life Sciences, Vienna (Austria). Inst. of Physics and Materials Science; Denk, Andreas; Strauss, Alfred [Univ. of Natural Resources and Life Sciences, Vienna (Austria)

    2017-06-01

    The ultrasonic fatigue testing method has been further developed to perform cyclic compression tests with concrete. Cylindrical specimens vibrate in resonance at a frequency of approximately 20 kHz with superimposed compressive static loads. The high testing frequency allows time-saving investigations in the very high cycle fatigue regime. Fatigue tests were carried out on ''Concrete 1'' (compressive strength f{sub c} = 80 MPa) and ''Concrete 2'' (f{sub c} = 107 MPa) under purely compressive loading conditions. Experiments at maximum compressive stresses of 0.44 f{sub c} (Concrete 1) and 0.38 f{sub c} (Concrete 2) delivered specimen failures above 109 cycles, indicating that no fatigue limit exists for concrete below one billion load cycles. Resonance frequency, power required to resonate the specimen and second order harmonics of the vibration are used to monitor fatigue damage in situ. Specimens were scanned by X-ray computed tomography prior to and after testing. Fatigue cracks were produced by ultrasonic cycling in the very high cycle fatigue regime at interfaces of grains as well as in cement. The possibilities as well as limitations of ultrasonic fatigue testing of concrete are discussed.

  9. Comparison between FEM and high heat flux thermal fatigue testing results of ITER divertor plasma facing mock-ups

    Energy Technology Data Exchange (ETDEWEB)

    Crescenzi, F., E-mail: fabio.crescenzi@enea.it; Roccella, S.; Visca, E.; Moriani, A.

    2014-10-15

    Highlights: • Divertor is an important part of the ITER machine. • Finite element analysis allows designers to explore multiple design options, reducing physical prototypes and optimizing design performance. • The hydraulic thermal-mechanical analysis performed by ANSYS and the test results on small-scale mock-ups manufactured by HRP were compared. • FEA results confirmed many experimental data, then it could be very useful for next design optimization. - Abstract: The divertor is one of the most challenging components of “DEMO” the next step ITER machine, so many tasks regarding modeling and experiments have been made in the past years to assess manufacturing processes, materials and thus the life-time of the components. In this context the finite element analysis (FEA) allows designers to explore multiple design options, to reduce physical prototypes and to optimize design performance. The comparison between the hydraulic thermal-mechanical analysis performed by ANSYS WORKBENCH 14.5 and the test results [1] on small-scale mock-ups manufactured with the Hot Radial Pressing (HRP) [2] technology is presented in this paper. During the thermal fatigue testing in the Efremov TSEFEY facility to assess the heat flux load-carrying capability of the mock-ups, only the surface temperature was measured, so the FEA was important because it allowed to know any other information (temperature inside the materials, local water temperature, local stress, etc.). FEA was performed coupling the thermal-hydraulic analysis, that calculated the temperature distributions on the components and the heat transfer coefficient (HTC) between water and heat sink tube, with the mechanical analysis. The comparison between analysis and testing results was based on the temperature maps of the loaded surface and on number of the cycles supported during the testing and those predicted by the mechanical analysis using the experimental fatigue curves for CuCrZr-IG, that is the structural

  10. Multiaxial fatigue of aluminium friction stir welded joints: preliminary results

    Directory of Open Access Journals (Sweden)

    D. G. Hattingh

    2015-07-01

    Full Text Available The aim of the present research is to check the accuracy of the Modified Wöhler Curve Method (MWCM in estimating the fatigue strength of friction stir (FS welded tubular joints of Al 6082-T6 subjected to in-phase and out-of-phase multiaxial fatigue loading. The welded samples being investigated were manufactured by equipping an MTS I-STIR process development system with a retracting tool that was specifically designed and optimised for this purpose. These specimens were tested under proportional and non-proportional tension and torsion, the effect of non-zero mean stresses being also investigated. The validation exercise carried out by using the generated experimental results allowed us to prove that the MWCM (applied in terms of nominal stresses is highly accurate in predicting the fatigue strength of the tested FS welded joints, its usage resulting in estimates falling with the uniaxial and torsional calibration scatter bands.

  11. Effect of test temperature on tensile and fatigue properties of nickel-base heat-resistant alloys

    International Nuclear Information System (INIS)

    Tsuji, Hirokazu; Nakajima, Hajime

    1987-01-01

    A series of tensile and strain controlled low-cycle fatigue tests were conducted at temperatures ranging from RT to 900 0 C on a nickel-base heat-resistant alloy, Hastelloy XR-II, which is one of the candidate alloys for applications in the process heating high-temperature gas-cooled reactor (HTGR). Fatigue tests at room temperature and all tensile tests were conducted in air, while fatigue tests at and above 400 0 C were conducted in the simulated HTGR helium environment. In those tests the effect of test temperature on tensile and fatigue properties was investigated. The ductility minimum point was observed near 600 0 C, while tensile and fatigue strengths decreased with increasing test temperature. The fatigue lives estimated with the method proposed by Manson were compatible with the experimental results under the given conditions. For the specimens fatigued at and above 700 0 C, the percentage of the intergranular fracture mode gradually increased with increasing test temperature. (orig.)

  12. Cyclic fatigue resistance tests of Nickel-Titanium rotary files using simulated canal and weight loading conditions

    Directory of Open Access Journals (Sweden)

    Ok-In Cho

    2013-02-01

    Full Text Available Objectives This study compared the cyclic fatigue resistance of nickel-titanium (NiTi files obtained in a conventional test using a simulated canal with a newly developed method that allows the application of constant fatigue load conditions. Materials and Methods ProFile and K3 files of #25/.06, #30/.06, and #40/.04 were selected. Two types of testing devices were built to test their fatigue performance. The first (conventional device prescribed curvature inside a simulated canal (C-test, the second new device exerted a constant load (L-test whilst allowing any resulting curvature. Ten new instruments of each size and brand were tested with each device. The files were rotated until fracture and the number of cycles to failure (NCF was determined. The NCF were subjected to one-way ANOVA and Duncan's post-hoc test for each method. Spearman's rank correlation coefficient was computed to examine any association between methods. Results Spearman's rank correlation coefficient (ρ = -0.905 showed a significant negative correlation between methods. Groups with significant difference after the L-test divided into 4 clusters, whilst the C-test gave just 2 clusters. From the L-test, considering the negative correlation of NCF, K3 gave a significantly lower fatigue resistance than ProFile as in the C-test. K3 #30/.06 showed a lower fatigue resistance than K3 #25/.06, which was not found by the C-test. Variation in fatigue test methodology resulted in different cyclic fatigue resistance rankings for various NiTi files. Conclusions The new methodology standardized the load during fatigue testing, allowing determination fatigue behavior under constant load conditions.

  13. Attentional and visual demands for sprint performance in non-fatigued and fatigued conditions: reliability of a repeated sprint test

    Directory of Open Access Journals (Sweden)

    Diercks Ron L

    2010-05-01

    Full Text Available Abstract Background Physical performance measures are widely used to assess physical function, providing information about physiological and biomechanical aspects of motor performance. However they do not provide insight into the attentional and visual demands for motor performance. A figure-of-eight sprint test was therefore developed to measure the attentional and visual demands for repeated-sprint performance. The aims of the study were: 1 to assess test-retest reliability of the figure-of-eight sprint test, and 2 to study the attentional and visual demands for sprint performance in a non-fatigued and fatigued condition. Methods Twenty-seven healthy athletes were included in the study. To determine test-retest reliability, a subgroup of 19 athletes performed the figure-of-eight sprint test twice. The figure-of-eight sprint test consisted of nine 30-second sprints. The sprint test consisted of three test parts: sprinting without any restriction, with an attention-demanding task, and with restricted vision. Increases in sprint times with the attention-demanding task or restricted vision are reflective of the attentional and visual demands for sprinting. Intraclass correlation coefficients (ICCs and mean difference between test and retest with 95% confidence limits (CL were used to assess test-retest reliability. Repeated-measures ANOVA were used for comparisons between the sprint times and fatigue measurements of the test parts in both a non-fatigued and fatigued condition. Results The figure-of-eight sprint test showed good test-retest reliability, with ICCs ranging from 0.75 to 0.94 (95% CL: 0.40-0.98. Zero lay within the 95% CL of the mean differences, indicating that no bias existed between sprint performance at test and retest. Sprint times during the test parts with attention-demanding task (P = 0.01 and restricted vision (P Conclusions High ICCs and the absence of systematic variation indicate good test-retest reliability of the figure

  14. 1000–ton testing machine for cyclic fatigue tests of materials at liquid nitrogen temperatures

    Energy Technology Data Exchange (ETDEWEB)

    Khitruk, A. A.; Klimchenko, Yu. A.; Kovalchuk, O. A.; Marushin, E. L.; Mednikov, A. A.; Nasluzov, S. N.; Privalova, E. K.; Rodin, I. Yu.; Stepanov, D. B.; Sukhanova, M. V. [The D.V. Efremov Scientific Research Institute of Electrophysical Apparatus (NIIEFA), 3 Doroga na Metallostroy, Metallostroy, Saint Petersburg 196641 (Russian Federation)

    2014-01-29

    One of the main tasks of superconductive magnets R and D is to determine the mechanical and fatigue properties of structural materials and the critical design elements in the cryogenic temperature range. This paper describes a new facility built based on the industrial 1000-ton (10 MN) testing machine Schenk PC10.0S. Special equipment was developed to provide the mechanical and cyclic tensile fatigue tests of large-scale samples at the liquid nitrogen temperature and in a given load range. The main feature of the developed testing machine is the cryostat, in which the device converting a standard compression force of the testing machine to the tensile force affected at the test object is placed. The control system provides the remote control of the test and obtaining, processing and presentation of test data. As an example of the testing machine operation the test program and test results of the cyclic tensile fatigue tests of fullscale helium inlet sample of the PF1 coil ITER are presented.

  15. 1000–ton testing machine for cyclic fatigue tests of materials at liquid nitrogen temperatures

    International Nuclear Information System (INIS)

    Khitruk, A. A.; Klimchenko, Yu. A.; Kovalchuk, O. A.; Marushin, E. L.; Mednikov, A. A.; Nasluzov, S. N.; Privalova, E. K.; Rodin, I. Yu.; Stepanov, D. B.; Sukhanova, M. V.

    2014-01-01

    One of the main tasks of superconductive magnets R and D is to determine the mechanical and fatigue properties of structural materials and the critical design elements in the cryogenic temperature range. This paper describes a new facility built based on the industrial 1000-ton (10 MN) testing machine Schenk PC10.0S. Special equipment was developed to provide the mechanical and cyclic tensile fatigue tests of large-scale samples at the liquid nitrogen temperature and in a given load range. The main feature of the developed testing machine is the cryostat, in which the device converting a standard compression force of the testing machine to the tensile force affected at the test object is placed. The control system provides the remote control of the test and obtaining, processing and presentation of test data. As an example of the testing machine operation the test program and test results of the cyclic tensile fatigue tests of fullscale helium inlet sample of the PF1 coil ITER are presented

  16. Are fatigue-related EMG-parameters correlated to trunk extensor muscles fatigue induced by the Sörensen test?

    OpenAIRE

    Demoulin Christophe; George, Florian; Matheve, Thomas; Jidovtseff, Boris; Vanderthommen, Marc

    2016-01-01

    The Sorensen test has been extensively studied and is a rapid, simple, and reproducible evaluation of the trunk extensor muscles [1]. It is often considered as a fatigue test because fatigue-related electromyographic (EMG) parameters change throughout the test [2]; however, only recently it has been confirmed that this test induces a decrease of trunk extensor force during a maximal voluntary contraction (MVC) [3], which best characterises muscle fatigue. The main aim of this stud...

  17. Statistical treatment of fatigue test data

    International Nuclear Information System (INIS)

    Raske, D.T.

    1980-01-01

    This report discussed several aspects of fatigue data analysis in order to provide a basis for the development of statistically sound design curves. Included is a discussion on the choice of the dependent variable, the assumptions associated with least squares regression models, the variability of fatigue data, the treatment of data from suspended tests and outlying observations, and various strain-life relations

  18. Ordering blood tests for patients with unexplained fatigue in general practice: what does it yield? Results of the VAMPIRE trial.

    NARCIS (Netherlands)

    Koch, H.; Bokhoven, M.A. van; Riet, G. ter; Alphen-Jager, J.T. van; Weijden, T.T. van der; Dinant, G.J.; Bindels, P.J.

    2009-01-01

    BACKGROUND: Unexplained fatigue is frequently encountered in general practice. Because of the low prior probability of underlying somatic pathology, the positive predictive value of abnormal (blood) test results is limited in such patients. AIM: The study objectives were to investigate the

  19. Ordering blood tests for patients with unexplained fatigue in general practice: what does it yield? Results of the VAMPIRE trial

    NARCIS (Netherlands)

    Koch, Hèlen; van Bokhoven, Marloes A.; ter Riet, Gerben; van Alphen-Jager, Jm Tineke; van der Weijden, Trudy; Dinant, Geert-Jan; Bindels, Patrick Je

    2009-01-01

    Background Unexplained fatigue is frequently encountered in general practice. Because of the low prior probability of underlying somatic pathology, the positive predictive value of abnormal (blood) test results is limited in such patients. Aim The study objectives were to investigate the

  20. High cycle fatigue test and regression methods of S-N curve

    International Nuclear Information System (INIS)

    Kim, D. W.; Park, J. Y.; Kim, W. G.; Yoon, J. H.

    2011-11-01

    The fatigue design curve in the ASME Boiler and Pressure Vessel Code Section III are based on the assumption that fatigue life is infinite after 106 cycles. This is because standard fatigue testing equipment prior to the past decades was limited in speed to less than 200 cycles per second. Traditional servo-hydraulic machines work at frequency of 50 Hz. Servo-hydraulic machines working at 1000 Hz have been developed after 1997. This machines allow high frequency and displacement of up to ±0.1 mm and dynamic load of ±20 kN are guaranteed. The frequency of resonant fatigue test machine is 50-250 Hz. Various forced vibration-based system works at 500 Hz or 1.8 kHz. Rotating bending machines allow testing frequency at 0.1-200 Hz. The main advantage of ultrasonic fatigue testing at 20 kHz is performing Although S-N curve is determined by experiment, the fatigue strength corresponding to a given fatigue life should be determined by statistical method considering the scatter of fatigue properties. In this report, the statistical methods for evaluation of fatigue test data is investigated

  1. Evaluating cyclic fatigue of sealants during outdoor testing

    Science.gov (United States)

    R. Sam Williams; Steven Lacher; Corey Halpin; Christopher White

    2009-01-01

    A computer-controlled test apparatus (CCTA) and other instrumentation for subjecting sealant specimens to cyclic fatigue during outdoor exposure was developed. The CCTA enables us to use weather-induced conditions to cyclic fatigue specimens and to conduct controlled tests in-situ during the outdoor exposure. Thermally induced dimensional changes of an aluminum bar...

  2. Some new fatigue tests in high temperature water and liquid sodium environment

    International Nuclear Information System (INIS)

    Hattori, Takahiro; Yamauchi, Takayoshi; Kanasaki, Hiroshi; Kondo, Yoshiyuki; Endo, Tadayoshi.

    1987-01-01

    To evaluate the fatigue strength of structural materials for PWR or FBR plants, fatigue test data must be obtained in an environment of simulated primary and secondary water for PWR or of high temperature liquid sodium for FBR. Generally, such tests make it necessary to prepare expensive facilities, so when large amount of fatigue data are required, it is necessary to rationalize and simplify the fatigue tests while maintaining high accuracy. At the Takasago Research Development Center, efforts to rationalize facilities and maintain accuracy in fatigue tests have been made by developing new test methods and improving conventional techniques. This paper introduces a new method of low cycle fatigue test in high temperature water, techniques for automatic measurement of crack initiation and propagation in high temperature water environment and a multiple type fatigue testing machine for high temperature liquid sodium. (author)

  3. Development of a Very High Cycle Fatigue (VHCF multiaxial testing device

    Directory of Open Access Journals (Sweden)

    M. Vieira

    2016-07-01

    Full Text Available The very high cycle region of the S-N fatigue curve has been the subject of intensive research on the last years, with special focus on axial, bending, torsional and fretting fatigue tests. Very high cycle fatigue can be achieved using ultrasonic exciters which allow for frequency testing of up to 30 kHz. Still, the multiaxial fatigue analysis is not yet developed for this type of fatigue analyses, mainly due to conceptual limitations of these testing devices. In this paper, a device designed to produce biaxial fatigue testing using a single piezoelectric axial exciter is presented, as well as the preliminary testing of this device. The device is comprised of a horn and a specimen, which are both attached to the piezoelectric exciter. The steps taken towards the final geometry of the device are presented. Preliminary experimental testing of the developed device is made using thermographic imaging, strain measurements and vibration speeds and indicates good behaviour of the tested specimen.

  4. Device Design and Test of Fatigue Behaviour of Expansion Anchor Subjected to Tensile Loads

    Directory of Open Access Journals (Sweden)

    Zhang Jinfeng

    2016-01-01

    Full Text Available In order to study on the fatigue behaviour of expansion anchor (M16, grade 8.8 for overhead contact system in electrification railways, a set of safe, practical loading device is designed and a fatigue test campaign was carried out at structural laboratory of China Academy of Building Research on expansion anchor embedded in concrete block. The mobile frame of the loading device was designed well by finite-element simulation. According to some fatigue performance test of expansion anchor with different size and form, the device have been assessed experimentally its dependability. The results were found that no fatigue damage phenomenon occurred in all specimens after 2×106 cycles tensile fatigue test in this specific series. It shows that in the condition of medium level or slightly lower maximum stress limit and nominal stress range, expansion bolt has good fatigue resistance. The biggest relative displacement and the residual relative displacement after test (Δδ = δ2-δ1 was also strongly lower than the symbol of the fatigue test failure index of this specific series (0.5mm in the high cycle fatigue regime. The ultimate tension failures mode after fatigue tests in all tested samples take place in the concrete anchorage zone. The reduction range of the ultimate tensile strength properties of the anchorage system was not obvious, and the concrete was seen to be the weakest link of the system.

  5. Optimal Fatigue Testing

    DEFF Research Database (Denmark)

    Faber, Michael Havbro; Sørensen, John Dalsgaard; Kroon, I. B.

    1993-01-01

    life experiments for the same purpose. The methodology is basedon modern probabilistic concepts amd classical decision theory. The special case where the fatigue life experiments are given in terms of SN curves is considered in Particular. The proposed techniques are illustrated by an example.......This paper considers the reassessment of the reliability of tubular joints subjected to fatigue load. The reassessment is considered in two parts namely the task of utilizing new experimental data on fatigue life to update the reliability of the tubular joint ant the task of planning new fatigue...

  6. Developing of impact and fatigue property test database system

    International Nuclear Information System (INIS)

    Park, S. J.; Jun, I.; Kim, D. H.; Ryu, W. S.

    2003-01-01

    The impact and fatigue characteristics database systems were constructed using the data produced from impact and fatigue test and designed to hold in common the data and programs of tensile characteristics database that was constructed on 2001 and others characteristics databases that will be constructed in future. We can easily get the basic data from the impact and fatigue characteristics database systems when we prepare the new experiment and can produce high quality result by compare the previous data. The development part must be analysis and design more specific to construct the database and after that, we can offer the best quality to customers various requirements. In this thesis, we describe the procedure about analysis, design and development of the impact and fatigue characteristics database systems developed by internet method using jsp(Java Server pages) tool

  7. Fatigue Testing of Maglev-Hybrid Box Beam

    Science.gov (United States)

    2009-03-02

    04142009 3. DATES COVERED: (From - To) 23052006-14092008 4. TITLE AND SUBTITLE Fatigue Testing of Maglev -Hybrid Box Beam 5a. CONTRACT NUMBER NA...was previously built under collaboration between Maglev Inc. and Lehigh University. The girder was instrumented with strain gages and LVDT’s to monitor...report March 2,2009 Contract N00014-06-1-0872 Project: Fatigue Testing of Maglev -Hybrid Box Beam Prepared by Dr. J.L. Grenestedt and Dr. R. Sause

  8. Numerical modeling of thermal fatigue cracks from the viewpoint of eddy current testing

    International Nuclear Information System (INIS)

    Yusa, Noritaka; Hashizume, Hidetoshi; Virkkunen, Iikka; Kemppainen, Mika

    2012-01-01

    This study discusses a suitable numerical modeling of a thermal fatigue crack from the viewpoint of eddy current testing. Five artificial thermal fatigue cracks, introduced into type 304L austenitic stainless steel plates with a thickness of 25 mm, are prepared; and eddy current inspections are carried out to gather signals using an absolute type pancake probe and a differential type plus point probe. Finite element simulations are then carried out to evaluate a proper numerical model of the thermal fatigue cracks. In the finite element simulations, the thermal fatigue cracks are modeled as a semi-elliptic planar region on the basis of the results of the destructive tests. The width and internal conductivity are evaluated by the simulations. The results of the simulations reveal that the thermal fatigue cracks are regarded as almost nonconductive when the internal conductivity is assumed to be uniform inside. (author)

  9. Challenges in experimental fatigue testing of glassfibre reinforced polymer matrix composites for wind turbine industry

    DEFF Research Database (Denmark)

    Sjøgreen, Freja Naima; Goutianos, Stergios

    to introduce the load through shear stresses without getting high shear stress concentrations causing shear failure in the gripping region. In compression-compression testing, the load introduction also has to be considered to avoid failure in the gripping region e.g. by transferring part of the load through...... the specimen’s ends and partly through shear stresses. The gauge length of the specimen is limited by the Euler buckling limit. Work on optimizing the specimen geometry and the experimental setup has been done on tension-tension fatigue by Korkiakosky et al. (2016) and on compressioncompression fatigue...... on the variance of the fatigue test results on composite materials specimens. Options to improve the design limits of the composite materials are either to improve the material quality, or to decrease the variance of the fatigue test results by improving the fatigue test methods. In recent years, extensive work...

  10. Development of the ultrasonic fatigue testing machine due to study on giga-cycle fatigue at elevated temperature. 2001 annual report. Document on collaborative study

    International Nuclear Information System (INIS)

    Hattori, Shuji; Itoh, Takamoto

    2002-03-01

    An ultrasonic fatigue testing machine was developed to obtain the giga-cycle fatigue life at elevated temperature for safety and reliability of structural components in the faster breeder reactor (FBR). This testing machine consists of an amplifier, booster, horn and the equipments such as a system controller and data acquisition. The test specimen is attached at the end of the horn. The electric power generated in the amplifier is transformed into the mechanical vibration in the converter and is magnified in the booster and horn. The vibration was enough to fatigue the specimen. Since the test frequency is set at a resonant frequency, the shape and dimensions of specimen were designed so as to vibrate itself resonantly. However, the maximum amplitudes of stress and strain in the specimen can be calculated easily by measuring the amplitude of displacement at the end of the specimen. The developed ultrasonic fatigue testing machine enables to carry out the fatigue tests at 20 kHz so that it can perform the giga-cycle fatigue test within a very short time as compared with the regular fatigue testing machines such as a hydraulic fatigue testing machine. By clarifying the material strength characteristics in giga-cycle region, the life evaluation, design and examination of components will be more suitable than ever. This study will contribute to improve the safety and reliability of components in FBR. In this technical report, the specification and characteristics of the testing machine were described along with the several experimental results. (author)

  11. Fracture resistance of Zr–Nb alloys under low-cycle fatigue tests

    Energy Technology Data Exchange (ETDEWEB)

    Nikulin, S.A.; Rozhnov, A.B. [The National University of Science and Technology ‘‘MISIS’’, Leninsky pr. 4, 119049 Moscow (Russian Federation); Gusev, A.Yu. [A.A. Bochvar All-Russia Research Institute of Inorganic Materials (VNIINM), Rogova St. 5a, 123060 Moscow (Russian Federation); Nechaykina, T.A. [The National University of Science and Technology ‘‘MISIS’’, Leninsky pr. 4, 119049 Moscow (Russian Federation); Rogachev, S.O., E-mail: csaap@mail.ru [The National University of Science and Technology ‘‘MISIS’’, Leninsky pr. 4, 119049 Moscow (Russian Federation); Zadorozhnyy, M.Yu. [The National University of Science and Technology ‘‘MISIS’’, Leninsky pr. 4, 119049 Moscow (Russian Federation)

    2014-03-15

    Highlights: •Low-cycle fatigue tests of Zr–Nb alloys using DMA have been carried out. •The characteristics of low-cycle fatigue of the Zr–Nb alloy at 25/350 °C were determined. •Increasing test temperature up to 350 °C leads to a decrease of fatigue life. •The test temperature doesn’t have an effect on the character of fatigue curves. -- Abstract: Comparative low-cycle fatigue tests of small-scale specimens cut from the cladding tubes of E110, E125, E110opt zirconium alloys at temperatures of 25 and 350 °C using a dynamic mechanical analyzer have been carried out. It is shown that the limited cycles fatigue stress for all alloys is 50% less at temperature of 350 °C comparing to 25 °C. Besides it has been revealed that the limited cycles fatigue stress increases with increasing the strength of zirconium alloy.

  12. Predicting fatigue and psychophysiological test performance from speech for safety critical environments

    Directory of Open Access Journals (Sweden)

    Khan Richard Baykaner

    2015-08-01

    Full Text Available Automatic systems for estimating operator fatigue have application in safety-critical environments. A system which could estimate level of fatigue from speech would have application in domains where operators engage in regular verbal communication as part of their duties. Previous studies on the prediction of fatigue from speech have been limited because of their reliance on subjective ratings and because they lack comparison to other methods for assessing fatigue. In this paper we present an analysis of voice recordings and psychophysiological test scores collected from seven aerospace personnel during a training task in which they remained awake for 60 hours. We show that voice features and test scores are affected by both the total time spent awake and the time position within each subject’s circadian cycle. However, we show that time spent awake and time of day information are poor predictors of the test results; while voice features can give good predictions of the psychophysiological test scores and sleep latency. Mean absolute errors of prediction are possible within about 17.5% for sleep latency and 5-12% for test scores. We discuss the implications for the use of voice as a means to monitor the effects of fatigue on cognitive performance in practical applications.

  13. Study on Mechanical Features of Brazilian Splitting Fatigue Tests of Salt Rock

    Directory of Open Access Journals (Sweden)

    Weichao Wang

    2016-01-01

    Full Text Available The microtest, SEM, was carried out to study the fracture surface of salt rock after the Brazilian splitting test and splitting fatigue test were carried out with a servo-controlled test machine RMT-150B. The results indicate that the deviation of using the tablet splitting method is larger than that of using steel wire splitting method, in Brazilian splitting test of salt rock, when the conventional data processing method is adopted. There are similar deformation features in both the conventional splitting tests and uniaxial compression tests. The stress-strain curves include compaction, elasticity, yielding, and failure stage. Both the vertical deformation and horizontal deformation of splitting fatigue tests under constant average loading can be divided into three stages of “loosening-tightness-loosening.” The failure modes of splitting fatigue tests under the variational average loading are not controlled by the fracturing process curve of the conventional splitting tests. The deformation extent of fatigue tests under variational average loading is even greater than that of conventional splitting test. The tensile strength of salt rock has a relationship with crystallization conditions. Tensile strength of thick crystal salt rock is lower than the bonded strength of fine-grain crystals.

  14. Out-of-pile fatigue tests on Zircaloy CANDU sheaths

    International Nuclear Information System (INIS)

    Roth, Maria; Ciocanescu, Marin; Gheorghiu, Constantin; Pitigoi, Vasile; Ducu, Catalin; Malinovschi, Viorel

    2005-01-01

    The paper outlines the achievements in the nuclear research field of cooperation on Nuclear Fuel performed as part of the collaboration under the Memorandum of Understanding, settled between Atomic Energy of Canada Limited (AECL) and Institute for Nuclear Research (ICN), The sheath behavior was simulated using out-of-pile fatigue tests, in conditions identical with those met during the operation in power cycling of CANDU reactor, except for irradiation. A special test rig, designed and carried-out at ICN ensured the experimental requirements according to the Canadian testing procedure. The description of the experimental setup and monitoring of testing parameters were also done. The fatigue life time, expressed as number of cycles to rupture (N), was measured as a function of the total strain amplitude (e) induced in the Zircaloy-4 sheath samples. Strain-Life time fatigue dependence (e-N) under low cycle fatigue conditions was also verified using the Coffin-Manson correlation. (authors)

  15. An approach for the fatigue estimation of porous cast iron based on non-destructive testing results

    Directory of Open Access Journals (Sweden)

    Heinrietz André

    2014-06-01

    Full Text Available Big cast iron components made of spheroidal cast iron allow constructing big structures such as stone mills, engine blocks or wind mills with acceptable expenses. Thus, in economically optimized cast processes pores cannot be always prevented in thick walled cast iron components and these components are often rejected because of safety reasons. On the one hand the fatigue performance of high loadable spheroidal cast iron components is reduced significantly by the presence of local porosities which has been pointed out in the past. On the other hand concepts for the fatigue estimation based on fracture mechanics which take the size and localization of the defect into account can lead to erroneous estimations because the defect is modelled as a crack. The challenge of an estimation method is to derive a fatigue life without the necessity to perform component tests. In the contribution an estimation method is presented which is able to determine the fatigue strength of a material volume taking the pores into account. The method can be applied based on data from computer tomographic X-ray (CT or Sampling Phased Array (SPA ultrasonic analyses. The method is presented for three spheroidal cast iron types: ferritic GJS-400-18, ferritic GJS-450-15 with high silicon content and perlitic GJS-700-3.

  16. Fatigue approach for addressing environmental effects in fatigue usage calculation

    Energy Technology Data Exchange (ETDEWEB)

    Wilhelm, Paul; Rudolph, Juergen [AREVA GmbH, Erlangen (Germany); Steinmann, Paul [Erlangen-Nuremberg Univ., erlangen (Germany). Chair of Applied Mechanics

    2015-04-15

    Laboratory tests consider simple trapezoidal, triangle, and sinusoidal signals. However, actual plant components are characterized by complex loading patterns and periods of holds. Fatigue tests in water environment show, that the damage from a realistic strain variation or the presence of hold-times within cyclic loading results in an environmental reduction factor (Fen) only half that of a simple waveform. This study proposes a new fatigue approach for addressing environmental effects in fatigue usage calculation for class 1 boiler and pressure vessel reactor components. The currently accepted method of fatigue assessment has been used as a base model and all cycles, which have been comparable with realistic fatigue tests, have been excluded from the code-based fatigue calculation and evaluated directly with the test data. The results presented show that the engineering approach can successfully be integrated in the code-based fatigue assessment. The cumulative usage factor can be reduced considerably.

  17. Fatigue approach for addressing environmental effects in fatigue usage calculation

    International Nuclear Information System (INIS)

    Wilhelm, Paul; Rudolph, Juergen; Steinmann, Paul

    2015-01-01

    Laboratory tests consider simple trapezoidal, triangle, and sinusoidal signals. However, actual plant components are characterized by complex loading patterns and periods of holds. Fatigue tests in water environment show, that the damage from a realistic strain variation or the presence of hold-times within cyclic loading results in an environmental reduction factor (Fen) only half that of a simple waveform. This study proposes a new fatigue approach for addressing environmental effects in fatigue usage calculation for class 1 boiler and pressure vessel reactor components. The currently accepted method of fatigue assessment has been used as a base model and all cycles, which have been comparable with realistic fatigue tests, have been excluded from the code-based fatigue calculation and evaluated directly with the test data. The results presented show that the engineering approach can successfully be integrated in the code-based fatigue assessment. The cumulative usage factor can be reduced considerably.

  18. Rotating Beam Fatigue Testing and Hybrid Ceramic Bearings.

    Science.gov (United States)

    1994-07-01

    Runout and Fast Fracture ......... 20 FIG.7 Stress-life Plots of Rotating Beam Fatigue Testing ............. 23 FIG.8 Fractograph of Rotating Beam...Chand-Kare Engineering Ceramics, Worcester, MA. Diamond wheels of 600 grits were used with longitudinal grinding applied for the final finishing of...stress in the range of 600-850 MPa. Three test completion modes were encountered, i.e. fast fracture at setup, fatigue fracture and runout (no failure

  19. Fatigue testing on samples from Zircaloy-4 tubes type SEU-43

    International Nuclear Information System (INIS)

    Olaru, V.; Ionescu, V.; Nitu, A.; Ionescu, D.; Voicu, F.

    2016-01-01

    The paper presents the testing of samples worked from Zicaloy-4 tubes (as-received.. metallurgical state), utilized in the composition of the CANDU SEU-43 fuel bundle. These tests are intended to simulate their behaviour in a power cycling process inside the reactor. The testing process is of low cycle fatigue type, done outside of the reactor, on ''C-ring'' samples, cut along the transversal direction. These samples are tested at 1%, 2% and 3% amplitude deformation, at room temperature. The calibration curves for both types of tube (small and big diameter) are determined by using the finite element analyses with the ANSYS computer code. The cycling test results are in the form of a fatigue life curve (N-e) for zircaloy-4 used in the SEU-43 fuel bundle. The curve is determined by the experimental dependency between the number of cycles to fracture and the deformation amplitude. The low cycle fatigue mechanical tests done at room temperature together with electronic microscopy analyses have reflected the characteristic behaviour of the zircaloy-4 metal in the given environment conditions. (authors)

  20. Development of piezoelectric ceramics driven fatigue testing machine for small specimens

    International Nuclear Information System (INIS)

    Saito, S.; Kikuchi, K.; Onishi, Y.; Nishino, T.

    2002-01-01

    A new fatigue testing machine with piezoelectric ceramics actuators was developed and a prototype was manufactured for high-cycle fatigue tests with small specimens. The machine has a simple mechanism and is compact. These features make it easy to set up and to maintain the machine in a hot cell. The excitation of the actuator can be transmitted to the specimen using a lever-type testing jig. More than 100 μm of displacement could be prescribed precisely to the specimen at a frequency of 50 Hz. This was sufficient performance for high-cycle bend fatigue tests on specimens irradiated at the SINQ target in Paul Scherrer Institute. The relationship of a displacement applied to the specimen and the strain of the necking part were obtained by experimental methods and by finite element method (FEM) calculations. Both results showed good agreement. This fact makes it possible to evaluate the strain of irradiated specimens by FEM simulations

  1. Obtaining and analysis of results of fatigue and corrosion-fatigue in steel API 5L X60; Obtencao e analise de resultados de fadiga e corrosao-fadiga em aco API 5L X60

    Energy Technology Data Exchange (ETDEWEB)

    Araujo, Bruno Allison [Universidade Federal de Campina Grande (UFCG), PB (Brazil). Programa de Pos-Graduacao em Ciencia e Engenharia de Materiais; Silva, Antonio Almeida; Santos, Fabio Gualberto Chagas [Universidade Federal de Campina Grande (UFCG), PB (Brazil)

    2008-07-01

    The corrosion process allied to the fatigue, due to repetitive efforts of several natures, is the main responsible for the damages in pipeline and offshore structures that results in the appears of located faults, and by the way can results in leaks and financial and environmental loss. This phenomenon calls corrosion-fatigue, however, it is very complex, and mainly, in what it concerns the form as this it develops in the structure. The objective of this work is to present some results of experimental fatigue tests and corrosion-fatigue accomplished with specimen that the material originated a pipeline steel API 5L X60. The tests developed in a machine which could test until 12 specimens per time. For test of corrosion-fatigue was used a cell-of-corrosion especially projected, in this way simulated an aggressive environmental condition in a corrosion conditions. With the results of tests, was possible estimate the fatigue limits of the specimen when submitted to the repeated flexing, and compare it with evaluate corrosion-fatigue graphs, that as the literature comes moved down of the curve, in relation to the fatigue curve. (author)

  2. The Statistic Test on Influence of Surface Treatment to Fatigue Lifetime with Limited Data

    OpenAIRE

    Suhartono, Agus

    2009-01-01

    Justifications on the influences of two or more parameters on fatigue strength are some times problematic due to the scatter nature of the fatigue data. Statistic test can facilitate the evaluation, whether the changes in material characteristics as a result of specific parameters of interest is significant. The statistic tests were applied to fatigue data of AISI 1045 steel specimens. The specimens are consisted of as received specimen, shot peened specimen with 15 and 16 Almen intensity as ...

  3. The Installation for Fatigue and Destruction Tests of Thin Wires

    Directory of Open Access Journals (Sweden)

    D. V. Prosvirin

    2015-01-01

    cycles to failure significantly improves the repeatability of results in fatigue tests.The paper estimates the efficiency of developed new technology as follows: analysis of quality measures allows to state the that the technical level of the new design becomes, on average, by 45% higher as compared to the base case.The paper presents research results of the cyclic strength of a brass-plated wire from steel 80. Comparison of fatigue curves shows that the new installation provides better repeatability of results and 1.5 - 1.6 times reduction of the performance variation.

  4. Fatigue assessment by energy approach during tensile tests on AISI 304 steel

    Directory of Open Access Journals (Sweden)

    A. Risitano

    2017-01-01

    Full Text Available Estimation of the fatigue limit for steel ductile materials using non-destructive methods is a topic of great interest to researchers today. In recent years, the method adopted has implemented infrared sensors to detect the surface temperature and correlate it with the fatigue limit. In previous paper, a new energy approach was proposed to investigate the fatigue limit during tensile test. The numerical procedure proposed by Chrysochoos is adopted to clean infrared images and applied to analyse the surface heat sources during tensile test. AISI 304 specimens with rectangular cross-sections are tested. Moreover fatigue tests at increasing loads were carried out on steel by a stepwise succession, applied to the same specimen, for applying the thermographic method. The predictions of the fatigue limit, obtained by the analysis of the energy evolution during the static tests, were compared with the predictions obtained applying the thermographic method during fatigue tests.

  5. IFMIF - Design Study for in Situ Creep Fatigue Tests

    International Nuclear Information System (INIS)

    Gordeev, S.; Heinzel, V.; Simakov, St.; Stratmanns, E.; Vladimirov, P.; Moeslang, A.

    2006-01-01

    While the high flux volume (20-50 dpa/fpy) of the International Fusion Materials Irradiation Facility (IFMIF) is dedicated to the irradiation of ∼ 1100 qualified specimens that will be post irradiation examined after disassembling in dedicated Hot Cells, various in situ experiments are foreseen in the medium flux volume (1-20 dpa/fpy). Of specific importance for structural lifetime assessments of fusion power reactors are instrumented in situ creep-fatigue experiments, as they can simulate realistically a superposition of thermal fatigue or creep fatigue and irradiation with fusion relevant neutrons. Based on former experience with in situ fatigue tests under high energy light ion irradiation, a design study has been performed to evaluate the feasibility of in situ creep fatigue tests in the IFMIF medium flux position. The vertically arranged test module for such experiments consists basically of a frame similar to a universal testing machine, but equipped with three pulling rods, driven by independent step motors, instrumentation systems and specimen cooling systems. Therefore, three creep fatigue specimens may be tested at one time in this apparatus. Each specimen is a hollow tube with coolant flow in the specimen interior to maintain individual specimen temperatures. The recently established IFMIF global 3D geometry model was used together the latest McDeLicious code for the neutral and charged particle transport calculations. These comprehensive neutronics calculations have been performed with a fine special resolution of 0.25 cm 3 , showing among others that the specimens will be irradiated with a homogeneous damage rate of up to 13(∼ 9%) dpa/fpy and a fusion relevant damage to helium ratio of 10-12 appm He/dpa. In addition, damage and gas production rates as well as the heat deposition in structural parts of the test module have been calculated. Despite of the vertical gradients in the nuclear heating, CFD code calculations with STAR-CD revealed very

  6. Risk Based Optimal Fatigue Testing

    DEFF Research Database (Denmark)

    Sørensen, John Dalsgaard; Faber, M.H.; Kroon, I.B.

    1992-01-01

    Optimal fatigue life testing of materials is considered. Based on minimization of the total expected costs of a mechanical component a strategy is suggested to determine the optimal stress range levels for which additional experiments are to be performed together with an optimal value...

  7. Environmental Fatigue of Metallic Materials in Nuclear Power Plants - A Review of Korean Test Programs

    Energy Technology Data Exchange (ETDEWEB)

    Jang, Changheul; Jang, Hun; Hong, Jongdae [KAIST, Daejeon (Korea, Republic of); Cho, Hyunchul [Doosan Heavy Industry and Construction, Changwon (Korea, Republic of); Kim, Tae Soon; Lee, Jaegon [KHNP, Daejeon (Korea, Republic of)

    2013-12-15

    Environmental fatigue of the metallic components in light water reactors has been the subject of extensive research and regulatory interest in Korea and abroad. Especially, it was one of the key domestic issues for the license renewal of operating reactors and licensing of advanced reactors during the early 2000s. To deal with the environmental fatigue issue domestically, a systematic test program has been initiated and is still underway. The materials tested were SA508 Gr.1a low alloy steels, 316LN stainless steels, cast stainless steels, and an Alloy 690 and 52M weld. Through tests and subsequent analysis, the mechanisms of reduced low cycle fatigue life have been investigated for those alloys. In addition, the effects of temperature, dissolved oxygen level, and dissolved hydrogen level on low cycle fatigue behaviors have been investigated. In this paper, the test results and key analysis results are briefly summarized. Finally, an on-going test program for hot-bending of 347 stainless steel is introduced.

  8. Low cycle fatigue testing in flowing sodium at elevated temperatures

    International Nuclear Information System (INIS)

    Flagella, P.N.; Kahrs, J.R.

    1976-01-01

    The paper describes equipment developed to obtain low cycle strain-controlled fatigue data in flowing sodium at elevated temperatures. Operation and interaction of the major components of the system are discussed, including the calibration technique using remote strain measurement and control. Confirmation of in-air results using the special technique is demonstrated, with data presented for Type 316 stainless steel tested in high purity flowing sodium at 593 0 C. The fatigue life of the material in sodium is essentially the same as that obtained in air for delta epsilon/sub t/= 1 percent. On the other hand, sodium pre-exposure at 650 0 C for 5000 hours increased the fatigue life in-sodium by a factor of two, and sodium pre-exposure at 718 0 C for 5000 hours increased the fatigue life in-sodium by a factor of three

  9. High frequency fatigue test of IN 718 alloy – microstructure and fractography evaluation

    Directory of Open Access Journals (Sweden)

    J. Belan

    2015-01-01

    Full Text Available INCONEL alloy 718 is a high-strength, corrosion-resistant nickel chromium material used at -253 °C to 705 °C for production of heat resistant parts of aero jet engine mostly. The fatigue test provided on this kind materials were done via low frequency loading up to this time. Nowadays, needs of results at higher volume of loading cycles leads to high frequency loading with aim to shorten testing time. Fatigue test of experimental material was carried out at frequency 20 kHz with stress ration R = - 1 (push – pull at room temperature. It was found that this superalloy can still fracture after exceeding 108 cycles. Besides fatigue test were microstructural characterisation and scanning electron microscopy (SEM fractography evaluation done.

  10. Fatigue test results of flat plate specimens with surface cracks and evaluation of crack growth in structural components

    International Nuclear Information System (INIS)

    Shibata, Katsuyuki; Yokoyama, Norio; Ohba, Toshihiro; Kawamura, Takaichi; Miyazono, Shohachiro

    1982-12-01

    Part-through surface cracks are most frequently observed in the inspection of structural components, and it is one of the important subjects in the assessment of safety to evaluate appropriately the growth of such cracks during the service life of structural components. Due to the complexity of the stress at the front free surface, the crack growth at the surface shows a different behavior from the other part. Besides, an effect of interaction is caused in the growth of multiple surface cracks. These effects should be included in the growth analysis of surface part-through cracks. Authors have carried out a series of fatigue tests on some kinds of pipes with multiple cracks in the inner surface, and subsequently the fatigue test of flat plate specimens, made of Type 304L stainless steel, with a single or double surface cracks was carried out to study the basic characteristics in the growth of multiple surface cracks. Based on the results of the flat plate test. the correction factors for the front free surface (Cs) and interaction (Ci) of surface cracks were derived quantitatively by the following empirical expressions; Cs = 0.824. Ci = (0.227(a/b) 2 (sec(PI X/2) - 1) + 1)sup(1/m). Using these two correction factors, a procedure to predict the growth of surface cracks was developed by applying the crack growth formula to both the thickness and surface directions. Besides, the crack growth predictions based on the procedure of ASME Code Sex. XI, and the above procedure without the correction of the free surface and interactions on the crack growth behaviors were compared with the test results of flat plate specimens. The crack growth behavior predicted by the procedure described in this report showed the best agreement with the test results in respects of the crack growth life and the change in the crack shape. The criteria of the ASME Code did not agree with the test results. (author)

  11. High-Frequency Axial Fatigue Test Procedures for Spectrum Loading

    Science.gov (United States)

    2016-07-20

    cycle runout limit. PURPOSE 2. To develop the capability to perform High-Frequency (H-F) Spectrum Fatigue tests, an in- house Basic and...response of the test specimen to the command input signal for load cycling . These cycle -by- cycle errors accumulate over the life of the test specimen...fatigue life model. It is expected that the cycle -by- cycle P-V error may vary substantially depending on the load spectrum content, the compensation

  12. Focussed probes ultrasonic follow-up of actual flaw growth during fatigue testing

    International Nuclear Information System (INIS)

    Cinotti, C.; Dufresne, J.; Prot, A.C.; Touffait, A.M.; Saglio, R.

    1979-01-01

    A programme was undertaken to follow-up the growth of actual flaws purposely introduced during the welding process of five test specimens. The aim of this programme is to measure the actual size of the cracks which develop from the known defects during the fatigue testing. The sizing method is based on the use of focussed probes, which allow good accuracy and repeatability, as well as good sensitivity. Examples are given of the first results: sizing before testing, then step by step during the fatigue testing and also under compression. This last point is very important in view of the ultrasonic testing during periodic in-service inspection

  13. Bending fatigue tests on SiC-Al tapes under alternating stress at room temperature

    Science.gov (United States)

    Herzog, J. A.

    1981-01-01

    The development of a testing method for fatigue tests on SiC-Al tapes containing a small amount of SiC filaments under alternating stress is reported. The fatigue strength curves resulting for this composite are discussed. They permit an estimate of its behavior under continuous stress and in combination with various other matrices, especially metal matrices.

  14. Research on Fatigue Damage of Compressor Blade Steel KMN-I Using Nonlinear Ultrasonic Testing

    Directory of Open Access Journals (Sweden)

    Pengfei Wang

    2017-01-01

    Full Text Available The fatigue damage of compressor blade steel KMN-I was investigated using nonlinear ultrasonic testing and the relation curve between the material nonlinearity parameter β and the fatigue life was obtained. The results showed that the nonlinearity parameter increased first and then decreased with the increase of the fatigue cycles. The microstructures were observed by scanning electron microscopy (SEM. It was found that some small defects like holes and pits appeared in the material matrix with the increase of the fatigue cycles, and the nonlinearity parameter increased correspondingly. The nonlinearity parameter reached the peak value when the microcracks initiated, and the nonlinearity parameter began to decrease when the microcracks further propagated to macrocracks. Therefore, it is proved that the nonlinearity parameter can be used to characterize the initiation of microcracks at the early stage of fatigue, and a method of evaluating the fatigue life of materials by nonlinear ultrasonic testing is proposed.

  15. Data processing codes for fatigue and tensile tests

    International Nuclear Information System (INIS)

    Sanchez Sarmiento, Gustavo; Iorio, A.F.; Crespi, J.C.

    1981-01-01

    The processing of fatigue and tensile tests data in order to obtain several parameters of engineering interest requires a considerable effort of numerical calculus. In order to reduce the time spent in this work and to establish standard data processing from a set of similar type tests, it is very advantageous to have a calculation code for running in a computer. Two codes have been developed in FORTRAN language; one of them predicts cyclic properties of materials from the monotonic and incremental or multiple cyclic step tests (ENSPRED CODE), and the other one reduces data coming from strain controlled low cycle fatigue tests (ENSDET CODE). Two examples are included using Zircaloy-4 material from different manufacturers. (author) [es

  16. Fatigue evaluation of piping systems with limited vibration test data

    International Nuclear Information System (INIS)

    Huang, S.N.

    1990-11-01

    The safety-related piping in a nuclear power plant may be subjected to pump- or fluid-induced vibrations that, in general, affect only local areas of the piping systems. Pump- or fluid-induced vibrations typically are characterized by low levels of amplitudes and a high number of cycles over the lifetime of plant operation. Thus, the resulting fatigue damage to the piping systems could be an important safety concern. In general, tests and/or analyses are used to evaluate and qualify the piping systems. Test data, however, may be limited because of lack of instrumentation in critical piping locations and/or because of difficulty in obtaining data in inaccessible areas. This paper describes and summarizes a method to use limited pipe vibration test data, along with analytical harmonic response results from finite-element analyses, to assess the fatigue damage of nuclear power plant safety-related piping systems. 5 refs., 2 figs., 11 tabs

  17. A comparison of two reciprocating instruments using bending stress and cyclic fatigue tests.

    Science.gov (United States)

    Scelza, Pantaleo; Harry, Davidowicz; Silva, Licinio Esmeraldo da; Barbosa, Igor Bastos; Scelza, Miriam Zaccaro

    2015-01-01

    The aim of this study was to comparatively evaluate the bending resistance at 45º, the static and dynamic cyclic fatigue life, and the fracture type of the WaveOne (Dentsply Maillefer, Ballaigues, Switzerland) 25-08 and Reciproc (VDW, Munich, Germany) 25-08 instruments. A total of 60 nickel-titanium (NiTi) instruments (30 Reciproc and 30 WaveOne) from three different lots, each of which was 25 mm in length, were tested. The bending resistance was evaluated through the results of a cantilever-bending test conducted using a universal testing machine. Static and dynamic cyclic fatigue testing was conducted using a custom-made device. For the static and dynamic tests, a cast Ni-Cr-Mo-Ti alloy metal block with an artificial canal measuring 1.77 mm in diameter and 20.00 mm in total length was used. A scanning electron microscope was used to determine the type of fracture. Statistical analyses were performed on the results. The WaveOne instrument was less flexible than the Reciproc (p fatigue tests (p ductile-type fracture characteristics. It can be concluded that the Reciproc 25-08 instrument was more resistant to static and dynamic cyclic fatigue than the WaveOne 25-08 instrument, while the WaveOne 25-08 instrument was less flexible. Bending and resistance to cyclic fracture were influenced by the instruments' geometries and transverse cross-sections. Both of the instruments showed ductile-type fracture characteristics.

  18. Cognitive and Physical Fatigue Tasks Enhance Pain, Cognitive Fatigue and Physical Fatigue in People with Fibromyalgia

    Science.gov (United States)

    Dailey, Dana L; Keffala, Valerie J; Sluka, Kathleen A

    2014-01-01

    Objective Fibromyalgia is a condition characterized by chronic widespread muscle pain and fatigue. The primary objective of this study was to determine if pain, perceived cognitive fatigue, and perceived physical fatigue were enhanced in participants with fibromyalgia compared to healthy controls during a cognitive fatigue task, a physical fatigue task and a dual fatigue task. Methods Twenty four people with fibromyalgia and 33 healthy controls completed pain, fatigue and function measures. A cognitive fatigue task (Controlled Oral Word Association Test) and physical fatigue task (Valpar peg test) were done individually and combined for a dual fatigue task. Resting pain, perceived cognitive fatigue and perceived physical fatigue were assessed during each task using visual analogue scales. Function was assessed with shoulder range of motion and grip. Results People with fibromyalgia had significantly higher increases in pain, cognitive fatigue and physical fatigue when compared to healthy controls after completion of a cognitive fatigue task, a physical fatigue task, or a dual fatigue task (pfatigue tasks, respectively. Conclusions These data show that people with fibromyalgia show larger increases in pain, perceived cognitive fatigue and perceived physical fatigue to both cognitive and physical fatigue tasks compared to healthy controls. The increases in pain and fatigue during cognitive and physical fatigue tasks could influence subject participation in daily activities and rehabilitation. PMID:25074583

  19. Standard test method for measurement of fatigue crack growth rates

    CERN Document Server

    American Society for Testing and Materials. Philadelphia

    2015-01-01

    1.1 This test method covers the determination of fatigue crack growth rates from near-threshold to Kmax controlled instability. Results are expressed in terms of the crack-tip stress-intensity factor range (ΔK), defined by the theory of linear elasticity. 1.2 Several different test procedures are provided, the optimum test procedure being primarily dependent on the magnitude of the fatigue crack growth rate to be measured. 1.3 Materials that can be tested by this test method are not limited by thickness or by strength so long as specimens are of sufficient thickness to preclude buckling and of sufficient planar size to remain predominantly elastic during testing. 1.4 A range of specimen sizes with proportional planar dimensions is provided, but size is variable to be adjusted for yield strength and applied force. Specimen thickness may be varied independent of planar size. 1.5 The details of the various specimens and test configurations are shown in Annex A1-Annex A3. Specimen configurations other than t...

  20. Cumulative damage fatigue tests on nuclear reactor Zircaloy-2 fuel tubes at room temperature and 3000C

    International Nuclear Information System (INIS)

    Pandarinathan, P.R.; Vasudevan, P.

    1980-01-01

    Cumulative damage fatigue tests were conducted on the Zircaloy-2 fuel tubes at room temperature and 300 0 C on the modified Moore type, four-point-loaded, deflection-controlled, rotating bending fatigue testing machine. The cumulative cycle ratio at fracture for the Zircaloy-2 fuel tubes was found to depend on the sequence of loading, stress history, number of cycles of application of the pre-stress and the test temperature. A Hi-Lo type fatigue loading was found to be very much damaging at room temperature and this feature was not observed in the tests at 300 0 C. Results indicate significant differences in damage interaction and damage propagation under cumulative damage tests at room temperature and at 300 0 C. Block-loading fatigue tests are suggested as the best method to determine the life-time of Zircaloy-2 fuel tubes under random fatigue loading during their service in the reactor. (orig.)

  1. Literature review : an analysis of laboratory fatigue tests.

    Science.gov (United States)

    1975-01-01

    This report discusses the various types of fatigue tests, grouped by the type of specimen (beam, plate, Marshall, etc.) used. The discussion under each type of specimen covers the test, and the analytical methods used in evaluating the data. The test...

  2. The effect of creep cavitation on the fatigue life under creep-fatigue interaction

    International Nuclear Information System (INIS)

    Nam, S.W.

    1995-01-01

    Low cycle fatigue tests have been carried out with three different materials (1Cr-Mo-V steel, 12Cr-Mo-V steel and 304 stainless steel) for the investigation of the effect of surface roughness on the fatigue life. To see the effect systematically, we have chosen those materials which may or may not form grain boundary cavities.Test results show that the continuous fatigue life of 1Cr-Mo-V steel and aged 304 stainless steel with a rough surface is decreased compared with that of the specimens with a smooth surface. These two alloys are found to have no grain boundary cavities formed under creep-fatigue test conditions. On the contrary, the fatigue life of 12Cr-Mo-V steel and solutionized 304 stainless steel in which grain boundary cavities are formed under creep-fatigue test conditions is not influenced by the states of surface roughness.The characteristic test results strongly confirm that the fatigue life of the specimen under creep-fatigue interaction, during which creep cavities are forming, may be controlled by the cavity nucleation and growth processes rather than the process of surface crack initiation. ((orig.))

  3. The detection of tightly closed flaws by nondestructive testing (NDT) methods. [fatigue crack formation in aluminum alloy test specimens

    Science.gov (United States)

    Rummel, W. D.; Rathke, R. A.; Todd, P. H., Jr.; Mullen, S. J.

    1975-01-01

    Liquid penetrant, ultrasonic, eddy current and X-radiographic techniques were optimized and applied to the evaluation of 2219-T87 aluminum alloy test specimens in integrally stiffened panel, and weld panel configurations. Fatigue cracks in integrally stiffened panels, lack-of-fusion in weld panels, and fatigue cracks in weld panels were the flaw types used for evaluation. A 2319 aluminum alloy weld filler rod was used for all welding to produce the test specimens. Forty seven integrally stiffened panels containing a total of 146 fatigue cracks, ninety three lack-of-penetration (LOP) specimens containing a total of 239 LOP flaws, and one-hundred seventeen welded specimens containing a total of 293 fatigue cracks were evaluated. Nondestructive test detection reliability enhancement was evaluated during separate inspection sequences in the specimens in the 'as-machined or as-welded', post etched and post proof loaded conditions. Results of the nondestructive test evaluations were compared to the actual flaw size obtained by measurement of the fracture specimens after completing all inspection sequences. Inspection data were then analyzed to provide a statistical basis for determining the flaw detection reliability.

  4. Automated corrosion fatigue crack growth testing in pressurized water environments

    International Nuclear Information System (INIS)

    Ceschini, L.J.; Liaw, P.K.; Rudd, G.E.; Logsdon, W.A.

    1984-01-01

    This paper describes in detail a novel approach to construct a test facility for developing corrosion fatigue crack growth rate (FCGR) properties in aggressive environments. The environment studied is that of a pressurized water reactor (PWR) at 288 0 C (550 0 F) and 13.8 MPa (200 psig). To expedite data generation, each chamber was designed to accommodate two test specimens. A common water recirculation and pressurization system was employed to service two test chambers. Thus, four fatigue crack propagation rate tests could be conducted simultaneously in the pressurized water environment. The data analysis was automated to minimize the typically high labor costs associated with corrosion fatigue crack propagation testing. Verification FCGR tests conducted on an ASTM A469 rotor steel in a room temperature air environment as well as actual PWR environment FCGR tests performed on an ASTM A533 Grade B Class 2 pressure vessel steel demonstrated that the dual specimen test facility is an excellent system for developing the FCGR properties of materials in adverse environments

  5. Installation for fatigue testing of materials at cryogenic temperatures

    International Nuclear Information System (INIS)

    Abushenkov, I.D.; Chernetskij, V.K.; Il'ichev, V.Ya.

    1986-01-01

    A new installation for mechanical fatigue tests of structural material samples is described, in which the possibility to conduct tests in the range of lower temperatures (4.2-300 K) is ensured. The installation permits to carry out fatigue tests using the method of axial loading of annular (up to 6 mm in diameter) and plane (up to 12 mm wide) samples during symmetric, asymmetric and pulsing loading cycles. It is shown that the installation suggested has quite extended operation possibilities and, coincidentally, it is characterized by design simplicity, compactness, comparatively low metal consumption and maintenance convenience

  6. Development of a remote controlled fatigue testing apparatus at elevated temperature in controlled environment

    International Nuclear Information System (INIS)

    Ohmi, Masao; Mimura, Hideaki; Ishii, Toshimitsu

    1996-02-01

    The fatigue characteristics of reactor structural materials at high temperature are necessary to be evaluated for ensuring the safety of the High Temperature engineering Test Reactor (HTTR). Especially, the high temperature test data on safety research such as low cycle fatigue property and crack propagation property for reactor pressure vessel material are important for the development of the HTTR. Responding to these needs, a remote controlled type fatigue testing machine has been developed and installed in a hot cell of JMTR Hot Laboratory to get the fatigue data of irradiated materials. The machine was developed modifying a commercially available electro-hydraulic servo type fatigue testing machine to withstand radiation and be remotely operated, and mainly consists of a testing machine frame, environment chamber, extensometer, actuator and vacuum exhaust system. It has been confirmed that the machine has good performance to obtain low cycle fatigue data through many demonstration tests on unirradiated and irradiated specimens. (author)

  7. G-control fatigue testing for cyclic crack propagation in composite structures

    DEFF Research Database (Denmark)

    Manca, Marcello; Berggreen, Christian; Carlsson, Leif A.

    2015-01-01

    This paper presents a computer controlled testing methodology called “The G-control Method” which allows cyclic crack growth testing using real-time control of the cyclic energy release rate. The advantages of using this approach are described and compared with traditional fatigue testing methods...... that the G-control method allows fatigue testing at a constant range of energy release rates leading to a constant crack propagation rate....

  8. Testing machine for fatigue crack kinetic investigation in specimens under bending

    International Nuclear Information System (INIS)

    Panasyuk, V.V.; Ratych, L.V.; Dmytrakh, I.N.

    1978-01-01

    A kinematic diagram of testing mashine for the investigation of fatigue crack kinetics in prismatic specimens, subjected to pure bending is described. Suggested is a technique of choosing an optimum ratio of the parameters of ''the testing machine-specimen'' system, which provide the stabilization of the stress intensity coefficient for a certain region of crack development under hard loading. On the example of the 40KhS and 15Kh2MFA steel specimens the pliability of the machine constructed according to the described diagram and designed for the 30ONxm maximum bending moment. The results obtained can be used in designing of the testing machines for studying pure bending under hard loading and in choosing the sizes of specimens with rectangular cross sections for investigations into the kinetics of the fatigue crack

  9. Fatigue and thermal fatigue of Pb-Sn solder joints

    International Nuclear Information System (INIS)

    Frear, D.; Grivas, D.; McCormack, M.; Tribula, D.; Morris, J.W. Jr.

    1987-01-01

    This paper presents a fundamental investigation of the fatigue and thermal fatigue characteristics, with an emphasis on the microstructural development during fatigue, of Sn-Pb solder joints. Fatigue tests were performed in simple shear on both 60Sn-40Pb and 5Sn-95Pb solder joints. Isothermal fatigue tests show increasing fatigue life of 60Sn-40Pb solder joints with decreasing strain and temperature. In contrast, such behavior was not observed in the isothermal fatigue of 5Sn-95Pb solder joints. Thermal fatigue results on 60Sn-40Pb solder cycled between -55 0 C and 125 0 C show that a coarsened region develops in the center of the joint. Both Pb-rich and Sn-rich phases coarsen, and cracks form within these coarsened regions. The failure mode 60Sn-40Pb solder joints in thermal and isothermal fatigue is similar: cracks form intergranularly through the Sn-rich phase or along Sn/Pb interphase boundaries. Extensive cracking is found throughout the 5Sn-95Pb joint for both thermal and isothermal fatigue. In thermal fatigue the 5Sn-95Pb solder joints failed after fewer cycles than 60Sn-40Pb

  10. Development of testing system for the thermo-mechanical fatigue crack analysis of nuclear power plant pipes

    International Nuclear Information System (INIS)

    Lee, Ho Jin; Kim, Maan Won; Lee, Bong Sang

    2003-12-01

    Fatigue crack growth analysis plays an important role in the structural integrity assessment or the service life calculation of the nuclear power plant pipes. To obtain the material properties as a basic data to achieve an accurate crack growth analysis, a lot of tests and numerical crack growth simulations have been done for decades. The BS 7910 or the ASME Boiler and Pressure Vessel Code Section XI, generally used to evaluate crack growth behavior, were made under the based on simple stress states or at the evaluated isothermal temperature. It is well known that the ASME code could sometimes give so conservative results in some cases of which the cracked components are experiencing with cyclic thermal shock. In this report, we suggested a method for the life assessment of a crack embedded in nuclear power plant pipes under the thermal-mechanical fatigue loads. We here use the numerical method to get the temperature history for thermal- mechanical fatigue crack growth test. And then we can calculate the remaining life time of the pipe by using the fracture mechanics and the test results together. For this purpose, we constructed a thermal-mechanical fatigue crack growth testing system. We also gave a lot of review about recent researches in the experimental field of thermal-mechanical fatigue analysis

  11. Behaviour of Ti-doped CFCs under thermal fatigue tests

    Energy Technology Data Exchange (ETDEWEB)

    Centeno, A. [Instituto Nacional del Carbon (CSIC), Apdo. 73, 33080 Oviedo (Spain); Pintsuk, G.; Linke, J. [Forschungszentrum Juelich GmbH, EURATOM Association, 52425 Juelich (Germany); Gualco, C. [Ansaldo Energia, I-16152 Genoa (Italy); Blanco, C., E-mail: clara@incar.csic.es [Instituto Nacional del Carbon (CSIC), Apdo. 73, 33080 Oviedo (Spain); Santamaria, R.; Granda, M.; Menendez, R. [Instituto Nacional del Carbon (CSIC), Apdo. 73, 33080 Oviedo (Spain)

    2011-01-15

    In spite of the remarkable progress in the design of in-vessel components for the divertor of the first International Thermonuclear Experimental Reactor (ITER), a great effort is still put into the development of manufacturing technologies for carbon armour with improved properties. Newly developed 3D titanium-doped carbon fibre reinforced composites and their corresponding undoped counterparts were brazed to a CuCrZr heat sink to produce actively cooled flat tile mock-ups. By exposing the mock-ups to thermal fatigue tests in an electron beam test facility, the material behaviour and the brazing between the individual constituents in the mock-up was qualified. The mock-ups with titanium-doped CFCs exhibited a significantly improved thermal fatigue resistance compared with those undoped materials. The comparison of these mock-ups with those produced using pristine NB31, one of the reference materials as plasma facing material for ITER, showed almost identical results, indicating the high potential of Ti-doped CFCs due to their improved thermal shock resistance.

  12. On the estimation of durability during thermal fatigue tests

    International Nuclear Information System (INIS)

    Vashunin, A.I.; Kotov, P.I.

    1981-01-01

    It is shown that during thermal fatigue tests under conditions of varying loading rigidity the value of stored one-sided deformation in a fracture zone tends to the limit value of material ductility. Holding at Tsub(max) is semicycle of compression increases irreversible deformation on value of Atausub(confer)sup(a), which does not depend on loading rigidity. It is established that the Use of curves of thermal fatigue as basic ones for determination of resistance of non-isothermal low-cycle fatigue is possible only at values of stored quasistatical damage, constituting less than 5% from available ductility [ru

  13. High temperature creep-fatigue design

    International Nuclear Information System (INIS)

    Tavassoli, A. A. F.; Fournier, B.; Sauzay, M.

    2010-01-01

    Generation IV fission and future fusion reactors envisage development of more efficient high temperature concepts where materials performances are key to their success. This paper examines different types of high temperature creep-fatigue interactions and their implications on design rules for the structural materials retained in both programmes. More precisely, the paper examines current status of design rules for the stainless steel type 316L(N), the conventional Modified 9Cr-1Mo martensitic steel and the low activation Eurofer steel. Results obtained from extensive high temperature creep, fatigue and creep-fatigue tests performed on these materials and their welded joints are presented. These include sequential creep-fatigue and relaxation creep-fatigue tests with hold times in tension, in compression or in both. Effects of larger plastic deformations on fatigue properties are studied through cyclic creep tests or fatigue tests with extended hold time in creep. In most cases, mechanical test results are accompanied with microstructural and fractographic observations. In the case of martensitic steels, the effect of oxidation is examined by performing creep-fatigue tests on identical specimens in vacuum. Results obtained are analyzed and their implications on design allowable and creep-fatigue interaction diagrams are presented. While reasonable confidence is found in predicting creep-fatigue damage through existing code procedures for austenitic stainless steels, effects of cyclic softening and coarsening of microstructure of martensitic steels throughout the fatigue life on materials properties need to be taken into account for more precise damage calculations. In the long-term, development of ferritic/martensitic steels with stable microstructure, such as ODS steels, is proposed. (authors)

  14. High temperature creep-fatigue design

    Energy Technology Data Exchange (ETDEWEB)

    Tavassoli, A. A. F.; Fournier, B.; Sauzay, M. [CEA Saclay, DEN DMN, F-91191 Gif Sur Yvette (France)

    2010-07-01

    Generation IV fission and future fusion reactors envisage development of more efficient high temperature concepts where materials performances are key to their success. This paper examines different types of high temperature creep-fatigue interactions and their implications on design rules for the structural materials retained in both programmes. More precisely, the paper examines current status of design rules for the stainless steel type 316L(N), the conventional Modified 9Cr-1Mo martensitic steel and the low activation Eurofer steel. Results obtained from extensive high temperature creep, fatigue and creep-fatigue tests performed on these materials and their welded joints are presented. These include sequential creep-fatigue and relaxation creep-fatigue tests with hold times in tension, in compression or in both. Effects of larger plastic deformations on fatigue properties are studied through cyclic creep tests or fatigue tests with extended hold time in creep. In most cases, mechanical test results are accompanied with microstructural and fractographic observations. In the case of martensitic steels, the effect of oxidation is examined by performing creep-fatigue tests on identical specimens in vacuum. Results obtained are analyzed and their implications on design allowable and creep-fatigue interaction diagrams are presented. While reasonable confidence is found in predicting creep-fatigue damage through existing code procedures for austenitic stainless steels, effects of cyclic softening and coarsening of microstructure of martensitic steels throughout the fatigue life on materials properties need to be taken into account for more precise damage calculations. In the long-term, development of ferritic/martensitic steels with stable microstructure, such as ODS steels, is proposed. (authors)

  15. Rolling contact fatigue in a vacuum test equipment and coating analysis

    CERN Document Server

    Danyluk, Michael

    2014-01-01

    This book deals with wear and performance testing of thin solid film lubrication and hard coatings in an ultra-high vacuum (UHV), a process which enables rapid accumulation of stress cycles compared with testing in oil at atmospheric pressure. The authors' lucid and authoritative narrative broadens readers' understanding of the benefits of UHV testing: a cleaner, shorter test is achieved in high vacuum, disturbance rejection by the deposition controller may be optimized for maximum fatigue life of the coating using rolling contact fatigue testing (RCF) in a high vacuum, and RCF testing in UHV

  16. Challenges in high temperature low cycle fatigue testing of metallic materials

    International Nuclear Information System (INIS)

    Sandhya, R.; Valsan, M.; Bhanu Sankara Rao, K.

    2007-01-01

    The evaluation of the high strain Low Cycle Fatigue properties of structural materials is an involved and complicated procedure requiring skill and diligence from the experimentalist. This presentation describes the various testing methods to evaluate the LCF properties of structural materials, the complexities involved and some solutions to exacting requirements, not covered by the testing procedure standards. The basic components of servo-hydraulic fatigue testing machines is described, as are the calibration and maintenance procedures. Results of LCF tests conducted at the authors' laboratory on AISI 316L(N) stainless steel and Mod.9Cr-1Mo ferritic steel are described. The complications in total strain controlled testing of weld joints is brought out and soft zone development in Mod. 9Cr-1Mo ferritic steel is described. The special requirements for testing in environmental chambers is a challenging task. In-house chambers, designed to carry out testing in dynamic sodium environment is highlighted. These chambers have provision to accommodate extensometers for strain measurements, and also house all the safety instrumentation needed to carry out to mechanical testing in dynamic sodium environment. The variation of LCF results as a function of specimen geometry is examined. The various failure criteria adopted by laboratories in different countries are also touched upon. (author)

  17. Standard practice for strain controlled thermomechanical fatigue testing

    CERN Document Server

    American Society for Testing and Materials. Philadelphia

    2010-01-01

    1.1 This practice covers the determination of thermomechanical fatigue (TMF) properties of materials under uniaxially loaded strain-controlled conditions. A “thermomechanical” fatigue cycle is here defined as a condition where uniform temperature and strain fields over the specimen gage section are simultaneously varied and independently controlled. This practice is intended to address TMF testing performed in support of such activities as materials research and development, mechanical design, process and quality control, product performance, and failure analysis. While this practice is specific to strain-controlled testing, many sections will provide useful information for force-controlled or stress-controlled TMF testing. 1.2 This practice allows for any maximum and minimum values of temperature and mechanical strain, and temperature-mechanical strain phasing, with the restriction being that such parameters remain cyclically constant throughout the duration of the test. No restrictions are placed on en...

  18. Continuous observation of cavity growth and coalescence by creep-fatigue tests in SEM

    International Nuclear Information System (INIS)

    Arai, Masayuki; Ogata, Takashi; Nitta, Akito

    1995-01-01

    Structural components operating at high temperatures in power plants are subjected to interaction of thermal fatigue and creep which results in creep-fatigue damage. In evaluating the life of those components, it is important to understand microscopic damage evolution under creep-fatigue conditions. In this study, static creep and creep-fatigue tests with tensile holdtime were conducted on SUS304 stainless steel by using a high-temperature fatigue machine combined with a scanning electron microscope (SEM), and cavity growth and coalescence behaviors on surface grain boundaries were observed continuously by the SEM. Quantitative analysis of creep cavity growth based on the observation was made for comparison with theoretical growth models. As a result, it was found that grain boundary cavities nucleate at random and grow preferentially on grain boundaries in a direction almost normal to the stress axis. Under the creep condition, the cavities grow monotonously on grain boundaries while they remain the elliptical shape. On the other hand, under the creep-fatigue condition the cavities grow with an effect of local strain distribution around the grain boundary due to cyclic loading and the micro cracks of one grain-boundary length were formed by coalescence of the cavities. Also, cavity nucleation and growth rates for creep-fatigue were more rapid than those for static creep and the constrained cavity growth model coincided well with the experimental data for creep. (author)

  19. The effect of lubricating oils on bearing fatigue-life using the Evonik RohMax pitting test procedure

    Energy Technology Data Exchange (ETDEWEB)

    Bartels, Thorsten [Evonik RohMax Additives GmbH, Darmstadt (Germany)

    2009-07-01

    A major requirement for modern driveline lubricants is the need to reduce churning losses and friction in order to deliver continual improvements in fuel efficiency. In trying to achieve this oil formulators target lower and lower viscosities, testing the limits of what is acceptable Churning loss reductions are being made by reducing the viscosity of the lubricating oil. Reduced oil viscosities can lead to reduced oil film thicknesses, especially at high operating temperatures. Thinner oil films can lead to an increase in friction, and a decrease in the fatigue-life capacity in lubricated contacts of bearings and gears in several driveline applications. Extensive fluid testing is required. Current test procedures are subject to extremely high variability, and large numbers of experiments are required to develop high confidence in the test conclusions. This publication introduces a new fatigue-life test method, which in our hands provides a clear improvement in test time, cost, and reproducibility. The test's results enable an estimation of the effect of lubricating oils on bearing fatigue-life. This is done by comparing the results to those obtained with reference oils which have also been tested in the standardized bearing tests for lubricating oils. The effects of operating parameters on test accuracy and repeatability have been studied. The parameters studied are oil temperature, contact pressure, speed and the test specimen batch. In addition to the measurement of bearing fatigue-life, the new test may also be used to study gear fatigue-life. We have used this test to investigate the lubrication oils' influence on fatigue-life in bearings and in gears. In order to extend the comparisons to gear performance the reference fluids were evaluated in standard industry test procedures used for determining gear performance, in particular the FZG test rig, thus establishing an extra insight in the fluids' performance by comparing gear test performance

  20. Effect of fatigue testing on the properties of Glass-Epoxy composites using the acoustic tool

    Directory of Open Access Journals (Sweden)

    Menail Younès

    2017-01-01

    Full Text Available This study presents the experimental results of the influence of mechanical fatigue on composite material. The plates of Glass fiber with SR 1500 epoxy resin with SD 2505 composite were realized by vacuum molding. Experimental tests were carried out on a standard hydraulic machine INSTRON 8516. The machine is interfaced with a dedicated computer for controlling and data acquisition. The fatigue tests were performed using sinusoidal type of waveform at a displacement control with frequency of 10 Hz. The evolution of Young’s modulus and strain based on fatigue gives us an idea about the resistance of the material. Degradation of mechanical properties was observed, and the results have showed that the Young’s modulus of plates undergo only minor changes. In fact, the residual stiffness and residual strength decrease when the cycle number of fatigue increase (100 to 50000 cycles, indicating that the studied composites have experienced some forms of mechanical damage.The mechanical tests were backed by Acoustic Emission Monitoring (AEM during the load cycle, in order to understand the nature of the failure process in the composites such as fiber breakage, matrix crazing, matrix debonding and delamination etc.

  1. Psychometric evaluation of the EORTC computerized adaptive test (CAT) fatigue item pool

    DEFF Research Database (Denmark)

    Petersen, Morten Aa; Giesinger, Johannes M; Holzner, Bernhard

    2013-01-01

    Fatigue is one of the most common symptoms associated with cancer and its treatment. To obtain a more precise and flexible measure of fatigue, the EORTC Quality of Life Group has developed a computerized adaptive test (CAT) measure of fatigue. This is part of an ongoing project developing a CAT...

  2. A comparison of two reciprocating instruments using bending stress and cyclic fatigue tests

    Directory of Open Access Journals (Sweden)

    Pantaleo SCELZA

    2015-01-01

    Full Text Available The aim of this study was to comparatively evaluate the bending resistance at 45º, the static and dynamic cyclic fatigue life, and the fracture type of the WaveOne (Dentsply Maillefer, Ballaigues, Switzerland 25-08 and Reciproc (VDW, Munich, Germany 25-08 instruments. A total of 60 nickel-titanium (NiTi instruments (30 Reciproc and 30 WaveOne from three different lots, each of which was 25 mm in length, were tested. The bending resistance was evaluated through the results of a cantilever-bending test conducted using a universal testing machine. Static and dynamic cyclic fatigue testing was conducted using a custom-made device. For the static and dynamic tests, a cast Ni-Cr-Mo-Ti alloy metal block with an artificial canal measuring 1.77 mm in diameter and 20.00 mm in total length was used. A scanning electron microscope was used to determine the type of fracture. Statistical analyses were performed on the results. The WaveOne instrument was less flexible than the Reciproc (p < 0.05. The Reciproc instrument showed better resistance in the static and dynamic cyclic fatigue tests (p < 0.05. The transverse cross-section and geometry of the instruments were important factors in their resistance to bending and cyclic fracture. Both of the instruments showed ductile-type fracture characteristics. It can be concluded that the Reciproc 25-08 instrument was more resistant to static and dynamic cyclic fatigue than the WaveOne 25-08 instrument, while the WaveOne 25-08 instrument was less flexible. Bending and resistance to cyclic fracture were influenced by the instruments’ geometries and transverse cross-sections. Both of the instruments showed ductile-type fracture characteristics.

  3. Compressive fatigue tests on a unidirectional glass/polyester composite at cryogenic temperatures

    International Nuclear Information System (INIS)

    Stone, E.L.; El-Marazki, L.O.; Young, W.C.

    1979-01-01

    The fatigue testing of a unidirectional glass-reinforced polyester composite at cryogenic temperatures to simulate the cyclic compressive loads of the magnet support struts in a superconductive magnetic energy storage unit is reported. Right circular cylindrical specimens were tested at 77, 4.2 K and room temperature at different stress levels using a 1-Hz haversine waveform imposed upon a constant baseload in a load-controlled closed-loop electrohydraulic test machine. Two failure modes, uniform mushrooming near one end and a 45 deg fracture line through the middle of the specimen, are observed, with no systematic difference in fatigue life between the modes. Fatigue lives obtained at 77 and 4.2 K are found to be similar, with fatigue failure at 100,000 cycles occurring at stress levels of 70 and 75% of the ultimate compressive strengths of specimens at room temperature and 77 K, respectively. The room temperature fatigue lives of the glass/polyester specimens are found to be intermediate between those reported for glass/epoxy composites with different glass contents costing over twice as much

  4. Substantial Fatigue Similarity of a New Small-Scale Test Rig to Actual Wheel-Rail System

    NARCIS (Netherlands)

    Naeimi, M.; Li, Z.; Petrov, R.H.; Dollevoet, R.P.B.J.; Sietsma, J.; Wu, J.

    2014-01-01

    The substantial similarity of fatigue mechanism in a new test rig for rolling contact fatigue (RCF) has been investigated. A new reduced-scale test rig is designed to perform controlled RCF tests in wheel-rail materials. The fatigue mechanism of the rig is evaluated in this study using a combined

  5. Fatigue Tests – Important Part of Development of New Vehicles

    Directory of Open Access Journals (Sweden)

    Kepka Miloslav

    2018-01-01

    Full Text Available In city of Pilsen (Czech Republic modern transport engineering is developed. The Skoda Transportation (production company has successfully been producing rail and road vehicles for many years (electric locomotives, trams, metro cars, trolleybuses, battery buses. This producer cooperates in developing these vehicles with the Research and Testing Institute (commercial research institute and with the University of West Bohemia (public university. Fatigue tests are carried out by the Dynamic Testing Laboratory at the Research and Testing Institute and by the Regional Technological Institute, the research center of the Faculty of Mechanical Engineering at the university. The paper describes various fatigue tests and presents their practical realization in the mentioned laboratories.

  6. Fatigue testing of weldable high strength steels under simulated service conditions

    Science.gov (United States)

    Tantbirojn, Natee

    There have been concerns over the effect of Cathodic Protection (CP) on weldable high strength steels employed in Jack-up production platform. The guidance provided by the Department of Energy HSE on higher strength steels, based on previous work, was to avoid overprotection as this could cause hydrogen embrittlement. However, the tests conducted so far at UCL for the SE702 type high strength steels (yields strength around 690 MPa) have shown that the effect of over protection on high strength steels may not be as severe as previously thought. For this thesis, SE702 high strength steels have been investigated in more detail. Thick (85mm) parent and ground welded plates were tested under constant amplitude in air and seawater with CP. Tests were also conducted on Thick (40mm) T-butt welded plates under variable amplitude loading in air and seawater with two CP levels (-800mV and -1050mV). Different backing materials (ceramic and metallic) for the welding process of the T-butt plates were also investigated. The variable amplitude sequences employed were generated using the Jack-up Offshore Standard load History (JOSH). The fatigue results are presented as crack growth and S/N curves. They were compared to the conventional offshore steel (BS 4360 50D). The results suggested that the fatigue life of the high strength steels was comparable to the BS 4360 50D steels. The effect of increasing the CP was found to be detrimental to the fatigue life but the effect was not large. The effect of CP was less noticeable in T-butt welded plates. However, in general, the effect of overprotection is not as detrimental to the Jack-up steels as previously thought. The load histories generated by JOSH were found to have some unfavourable characteristics. The framework is based on Markov Chain method and pseudo-random number generator for selecting sea-states. A study was carried out on the sequence generated by JOSH. The generated sequences were analysed for their validity for fatigue

  7. Effects of polymerization degree on recovery behavior of PVA/PVP hydrogels as potential articular cartilage prosthesis after fatigue test

    Directory of Open Access Journals (Sweden)

    Y. Shi

    2016-02-01

    Full Text Available Poly (vinyl alcohol/poly (vinyl pyrrolidone (PVA/PVP hydrogels with various polymerization degrees of PVA were synthesized by a repeated freezing-thawing method. The influence of polymerization degree on microstructure, water content, friction coefficient, compressive fatigue and recovery properties of PVA/PVP hydrogels were investigated. The results showed that higher polymerization degree resulted in larger compressive modulus and lower friction coefficient. The fatigue behaviors of PVA/PVP hydrogels were evaluated under sinusoidal compressive loading from 200 to 800 N at 5 Hz for up to 50 000 cycles. The unconfined uniaxial compressive tests of PVA/PVP hydrogels were performed before and after fatigue test. During the fatigue test, the height of the hydrogel rapidly decreased at first and gradually became stable with loading cycles. The compressive tangent modulus measured 0 h after fatigue was significantly larger than the values obtained before test, and then the modulus recovered to its original level for 48 h after test. However, the geometry of hydrogels could not return to the original level due to the creep effects. PVA/PVP hydrogels prepared with lower polymerization degree showed better recovery capability than that prepared with high polymerization degree.

  8. Study on Determination Method of Fatigue Testing Load for Wind Turbine Blade

    Science.gov (United States)

    Liao, Gaohua; Wu, Jianzhong

    2017-07-01

    In this paper, the load calculation method of the fatigue test was studied for the wind turbine blade under uniaxial loading. The characteristics of wind load and blade equivalent load were analyzed. The fatigue property and damage theory of blade material were studied. The fatigue load for 2MW blade was calculated by Bladed, and the stress calculated by ANSYS. Goodman modified exponential function S-N curve and linear cumulative damage rule were used to calculate the fatigue load of wind turbine blades. It lays the foundation for the design and experiment of wind turbine blade fatigue loading system.

  9. Crack initiation and propagation on the polymeric material ABS (Acrylonitrile Butadiene Styrene, under ultrasonic fatigue testing

    Directory of Open Access Journals (Sweden)

    G. M. Domínguez Almaraz

    2015-10-01

    Full Text Available Crack initiation and propagation have been investigated on the polymeric material ABS (Acrylonitrile Butadiene Styrene, under ultrasonic fatigue testing. Three controlled actions were implemented in order to carry out fatigue tests at very high frequency on this material of low thermal conductivity, they are: a The applying load was low to limit heat dissipation at the specimen neck section, b The dimensions of testing specimen were small (but fitting the resonance condition, in order to restraint the temperature gradient at the specimen narrow section, c Temperature at the specimen neck section was restrained by immersion in water or oil during ultrasonic fatigue testing. Experimental results are discussed on the basis of thermo-mechanical behaviour: the tail phenomenon at the initial stage of fatigue, initial shear yielding deformation, crazed development on the later stage, plastic strain on the fracture surface and the transition from low to high crack growth rate. In addition, a numerical analysis is developed to evaluate the J integral of energy dissipation and the stress intensity factor K, with the crack length

  10. Multi-purpose fatigue sensor. Part 1. Uniaxial and multiaxial fatigue

    Directory of Open Access Journals (Sweden)

    M.V. Karuskevich

    2016-10-01

    Full Text Available The paper describes the key principles and results of preliminary experiments aimed at the development of new technique for the fatigue life prediction under conditions of biaxial cyclic tension. The foundations of the method were developed early by the numerous tests with monitoring the process of surface deformation relief formation, which is proved to be an indicator of accumulated fatigue damage under uniaxial fatigue. The employed phenomenon was early applied for the development of a family of uniaxial loading fatigue sensors. The formation of strain induced relief has been recently taken into consideration as a part of damage accumulation criteria under biaxial fatigue as well. The home-made testing machine has been designed to implement combined bending and torsion loading that simulates loads experienced by an aircraft wing skin. The experimental evidences on formation and evolution of the deformation relief revealed under conditions of combined loading, supports the proposed concept of biaxial fatigue sensor

  11. Irradiation Test Plan and Safety Analysis of the Fatigue Capsule(05S-05K)

    Energy Technology Data Exchange (ETDEWEB)

    Cho, Man Soon; Kim, B. G.; Kang, Y. H.; Choo, K. N.; Sohn, J. M.; Park, S. J.; Shin, Y. T.; Seo, C. K

    2007-01-15

    In this report, the design, fabrication, the out-pile test and the irradiation test plan of the fatigue capsule 05S-05K were described and the safety aspect during the design, fabrication and irradiation test was reviewed. A cyclic load device necessary for the fatigue test was newly designed and manufactured. By using the cyclic load device the performance test and the preliminary fatigue test were performed with STS316L specimen of {phi}1.8 mm x 12.5 mm gage length under the same condition(550 .deg. C) as the temperature of the specimen during the irradiation test. As a result of the test, the fracture of the specimen occurs at a total of 70,120 cycles, at which the displacement was 2.02 mm. The reactivity effect was reviewed and an analysis for the structural and thermal integrity was performed to review the safety of the capsule, which will be irradiated at a temperature higher than 550 .deg. C And the thermal analysis shows that the temperatures of the parts are less than the melting temperatures of the corresponding materials. The structural analysis considering this temperature shows that the combined stress on the outer tube is less than the allowable stress limits and so the structural integrity is maintained.

  12. A ductility exhaustion evaluation of some long term creep/fatigue tests on austenitic steel

    International Nuclear Information System (INIS)

    Wood, D.S.; Wynn, J.; Austin, C.; Green, J.G.

    1988-01-01

    A limited number of long term creep/fatigue tests performed on two batches of Type 316 steel and one batch of associated 17Cr8Ni2Mo weld metal are reported. Test durations range from 5000 to 32,000 h and temperatures from 550 to 625 0 C. Subsequent metallographic examination shows the failures to be wholly or predominantly intergranular. The results are analysed using a ductility exhaustion approach and it is shown that the endurances obtained are within a factor of two of predicted values. The results confirm that the design approach to creep/fatigue currently being developed in the U.K. and based on ductility exhaustion is likely to be satisfactory. (author)

  13. Static and fatigue experimental tests on a full scale fuselage panel and FEM analyses

    Directory of Open Access Journals (Sweden)

    Raffaele Sepe

    2016-02-01

    Full Text Available A fatigue test on a full scale panel with complex loading condition and geometry configuration has been carried out using a triaxial test machine. The demonstrator is made up of two skins which are linked by a transversal butt-joint, parallel to the stringer direction. A fatigue load was applied in the direction normal to the longitudinal joint, while a constant load was applied in the longitudinal joint direction. The test panel was instrumented with strain gages and previously quasi-static tests were conducted to ensure a proper load transferring to the panel. In order to support the tests, geometric nonlinear shell finite element analyses were conducted to predict strain and stress distributions. The demonstrator broke up after about 177000 cycles. Subsequently, a finite element analysis (FEA was carried out in order to correlate failure events; due to the biaxial nature of the fatigue loads, Sines criterion was used. The analysis was performed taking into account the different materials by which the panel is composed. The numerical results show a good correlation with experimental data, successfully predicting failure locations on the panel.

  14. The use of fatigue tests in the manufacture of automotive steel wheels.

    Science.gov (United States)

    Drozyner, P.; Rychlik, A.

    2016-08-01

    Production for the automotive industry must be particularly sensitive to the aspect of safety and reliability of manufactured components. One of such element is the rim, where durability is a feature which significantly affects the safety of transport. Customer complaints regarding this element are particularly painful for the manufacturer because it is almost always associated with the event of accident or near-accident. Authors propose original comprehensive method of quality control at selected stages of rims production: supply of materials, production and pre-shipment inspections. Tests by the proposed method are carried out on the originally designed inertial fatigue machine The machine allows bending fatigue tests in the frequency range of 0 to 50 Hz at controlled increments of vibration amplitude. The method has been positively verified in one of rims factory in Poland. Implementation resulted in an almost complete elimination of complaints resulting from manufacturing and material errors.

  15. Common Mathematical Model of Fatigue Characteristics

    Directory of Open Access Journals (Sweden)

    Z. Maléř

    2004-01-01

    Full Text Available This paper presents a new common mathematical model which is able to describe fatigue characteristics in the whole necessary range by one equation only:log N = A(R + B(R ∙ log Sawhere A(R = AR2 + BR + C and B(R = DR2 + AR + F.This model was verified by five sets of fatigue data taken from the literature and by our own three additional original fatigue sets. The fatigue data usually described the region of N 104 to 3 x 106 and stress ratio of R = -2 to 0.5. In all these cases the proposed model described fatigue results with small scatter. Studying this model, following knowledge was obtained:– the parameter ”stress ratio R” was a good physical characteristic– the proposed model provided a good description of the eight collections of fatigue test results by one equation only– the scatter of the results through the whole scope is only a little greater than that round the individual S/N curve– using this model while testing may reduce the number of test samples and shorten the test time– as the proposed model represents a common form of the S/N curve, it may be used for processing uniform objective fatigue life results, which may enable mutual comparison of fatigue characteristics.

  16. Residual strength and crack propagation tests on C-130 airplane center wings with service-imposed fatigue damage

    Science.gov (United States)

    Snider, H. L.; Reeder, F. L.; Dirkin, W. J.

    1972-01-01

    Fourteen C-130 airplane center wings, each containing service-imposed fatigue damage resulting from 4000 to 13,000 accumulated flight hours, were tested to determine their fatigue crack propagation and static residual strength characteristics. Eight wings were subjected to a two-step constant amplitude fatigue test prior to static testing. Cracks up to 30 inches long were generated in these tests. Residual static strengths of these wings ranged from 56 to 87 percent of limit load. The remaining six wings containing cracks up to 4 inches long were statically tested as received from field service. Residual static strengths of these wings ranged from 98 to 117 percent of limit load. Damage-tolerant structural design features such as fastener holes, stringers, doublers around door cutouts, and spanwise panel splices proved to be effective in retarding crack propagation.

  17. Fatigue Testing of Dental Bridges on Selected Examples

    Directory of Open Access Journals (Sweden)

    Urban Dariusz

    2017-03-01

    Full Text Available The paper presents example tests of the functional quality of selected designs of dental bridges. These were: porcelain bridges on a metal base (cobalt based alloy, porcelain bridges on a zirconia base (zirconia ceramic – Zirkon Zahn, and full zirconia bridges (Zirkon Zahn. For the purpose of the study, durability of bridges in cyclic fatigue testing was adopted as a measure of their quality. The tests were carried out on a Zwick Roell Z010 universal testing machine. They consisted in cyclic loading and unloading of dental bridges mounted on gypsum models at a loading force of F= 400 [N] and a frequency of load of f= 1 [Hz]. Each bridge was subjected to a cycle of 7200 loads. The results show that there are no significant differences in the functional quality of the bridges.

  18. Effect of ratchet strain on fatigue and creep–fatigue strength of Mod.9Cr–1Mo steel

    International Nuclear Information System (INIS)

    Ando, Masanori; Isobe, Nobuhiro; Kikuchi, Koichi; Enuma, Yasuhiro

    2012-01-01

    Highlights: ► Uniaxial fatigue and creep–fatigue tests with superimposed strain were performed. ► Variety of superimposed strain were applied as ratchet strain in the tests. ► Effect of superimposed strain on fatigue and creep–fatigue life is negligible. ► A cyclic softening character reducing the effect of superimposed strain. - Abstract: The effect of ratcheting deformation on fatigue and creep–fatigue life in Mod.9Cr–1Mo steel was investigated. Uniaxial fatigue and creep–fatigue testing with superimposed strain were performed to evaluate the effect of ratcheting deformation on the failure cycle. In a series of tests, a specific amount of superimposed strain was accumulated in each cycle. The accumulated strain as ratcheting deformation, cycles to reach the accumulated strain, and test temperatures were varied in the tests. In the fatigue tests with superimposed strain at 550 °C, slight reductions of failure lives were observed. All of the numbers of cycles to failure in the fatigue tests with superimposed strain were within a factor of 1.5 of that of the fatigue test without superimposed strain at 550 °C. The apparent relationship between failure cycles and testing parameters was not observed. In fatigue tests with superimposed strain at 550 °C, maximum mean stress was insignificant and generated in early cycles because Mod.9Cr–1Mo steel exhibits cyclic softening characteristics. It was assumed that suppression of mean stress generation by cyclic softening reduces the effect of ratcheting strain. Conversely, failure lives were increased by accumulated strain in the test conducted at 450 °C because of stress–strain hysteresis loop shrinkage caused by cyclic softening induced by the accumulated strain. In the creep–fatigue tests with superimposed strain, test results indicated that the accumulated stain was negligible. It was concluded that the effect of ratcheting deformation on fatigue and creep–fatigue life is negligible as long

  19. Study on the effect of prior fatigue and creep-fatigue damage on the fatigue and creep characteristics of 316 FR stainless steel. 2nd report. The effect of prior creep-fatigue damage on the creep and fatigue characteristics

    International Nuclear Information System (INIS)

    Yamauchi, Masafumi; Chuman, Yasuharu; Otani, Tomomi; Takahashi, Yukio

    2001-01-01

    The effect of prior creep-fatigue damage on the creep and the fatigue characteristics was studied to investigate the creep-fatigue life evaluation procedure of 316FR stainless steel. Creep and fatigue tests were conducted at 550degC by using the specimen exposed to prior creep-fatigue cycles at the same temperature and interrupted at 1/4 Nf, 1/2 Nf and 3/4 Nf cycle. The creep and fatigue strength of the pre-damaged material showed monotonic reduction with the prior creep-fatigue damage compared with the virgin material. The creep ductility also showed monotonic reduction with the prior creep-fatigue damage. These results were evaluated by the stress-based Time Fraction Rule and the strain-based Ductility Exhaustion Method. The result showed that the application of the Ductility Exhaustion Method to the creep-fatigue damage evaluation is more promising than the Time Fraction Rule. (author)

  20. Investigating the effects of maximal anaerobic fatigue on dynamic postural control using the Y-Balance Test.

    Science.gov (United States)

    Johnston, William; Dolan, Kara; Reid, Niamh; Coughlan, Garrett F; Caulfield, Brian

    2018-01-01

    The Y Balance Test is one of the most commonly used dynamic balance assessments, providing an insight into the integration of the sensorimotor subsystems. In recent times, there has been an increase in interest surrounding it's use in various clinical populations demonstrating alterations in motor function. Therefore, it is important to examine the effect physiological influences such as fatigue play in dynamic postural control, and establish a timeframe for its recovery. Descriptive laboratory study. Twenty male and female (age 23.75±4.79years, height 174.12±8.45cm, mass 69.32±8.76kg) partaking in competitive sport, completed the Y Balance Test protocol at 0, 10 and 20min, prior to a modified 60s Wingate fatiguing protocol. Post-fatigue assessments were then completed at 0, 10 and 20 min post-fatiguing intervention. Intraclass correlation coefficients demonstrated excellent intra-session reliability (0.976-0.982) across the three pre-fatigue YBT tests. Post-hoc paired sample t-tests demonstrated that all three reach directions demonstrated statistically significant differences between pre-fatigue and the first post-fatigue measurement (anterior; p=0.019, posteromedial; p=0.019 & posterolateral; p=0.003). The anterior reach direction returned to pre-fatigue levels within 10min (p=0.632). The posteromedial reach direction returned to pre-fatigue levels within 20min (p=0.236), while the posterolateral direction maintained a statistically significant difference at 20min (p=0.023). Maximal anaerobic fatigue has a negative effect on normalised Y balance test scores in all three directions. Following the fatiguing protocol, dynamic postural control returns to pre-fatigue levels for the anterior (20min). Copyright © 2017 Sports Medicine Australia. Published by Elsevier Ltd. All rights reserved.

  1. Rotor blade full-scale fatigue testing technology and research

    DEFF Research Database (Denmark)

    Nielsen, Per Hørlyk; Berring, Peter; Pavese, Christian

    was started in the beginning of the 1980´s and has been further developed since then. Structures in composite materials are generally difficult and time consuming to test for fatigue resistance. Therefore, several methods for testing of blades have been developed and exist today. These methods...

  2. The fractography analysis of IN718 alloy after three-point flexure fatigue test

    Directory of Open Access Journals (Sweden)

    Belan Juraj

    2018-01-01

    Full Text Available In this study, the high cycle fatigue (HCF properties of IN718 superalloy with given chemical composition were investigated at three-point flexure fatigue test at room temperature. INCONEL alloy 718 is nickel-chromium-iron hardenable alloy and due to its unique combination of mechanical properties (high-strength; corrosion-resistant and so on used for production of heat resistant parts of aero jet engine mostly. Mechanical properties of this alloy are strongly dependent on microstructure and on presence of structural features such are principal strengthening phase gamma double prime, gamma prime and due to its morphology less desired delta phases. The mentioned phases precipitate at various temperature ranges and Nb content as well. The three-point flexure fatigue test was performed on ZWICK/ROELL Amsler 150 HFP 5100 test equipment with approximate loading frequency f=150 Hz. The S – N (Stress – Number of cycles curve was obtained after testing. With the help of scanning electron microscope (SEM, fractography analyses were performed to disclose the fracture features of specimens in different life ranges. The brief comparison of three-point flexure and push-pull fatigue loading modes and its influence on fatigue life is discussed as well.

  3. Fatigue test on aluminium bridges

    NARCIS (Netherlands)

    Maljaars, J.; Soetens, F.; Straalen, van IJ.J.

    2005-01-01

    Traffic bridges are subjected to variable loads and should therefore be checked on fatigue. Especially low weight materials, like aluminium, are sensitive to fatigue, because the variable load is a substantial part of the total load. This paper shows the structural design of an aluminium bridge

  4. A method for predicting the fatigue life of pre-corroded 2024-T3 aluminum from breaking load tests

    Science.gov (United States)

    Gruenberg, Karl Martin

    Characterization of material properties is necessary for design purposes and has been a topic of research for many years. Over the last several decades, much progress has been made in identifying metrics to describe fracture mechanics properties and developing procedures to measure the appropriate values. However, in the context of design, there has not been as much success in quantifying the susceptibility of a material to corrosion damage and its subsequent impact on material behavior in the framework of fracture mechanics. A natural next step in understanding the effects of corrosion damage was to develop a link between standard material test procedures and fatigue life in the presence of corrosion. Simply stated, the goal of this investigation was to formulate a cheaper and quicker method for assessing the consequences of corrosion on remaining fatigue life. For this study, breaking load specimens and fatigue specimens of a single nominal gage (0.063″) of aluminum alloy 2024-T3 were exposed to three levels of corrosion. The breaking load specimens were taken from three different material lots, and the fatigue tests were carried out at three stress levels. All failed specimens, both breaking load and fatigue specimens, were examined to characterize the damage state(s) and failure mechanism(s). Correlations between breaking load results and fatigue life results in the presence of corrosion damage were developed using a fracture mechanics foundation and the observed mechanisms of failure. Where breaking load tests showed a decrease in strength due to increased corrosion exposure, the corresponding set of fatigue tests showed a decrease in life. And where breaking load tests from different specimen orientations exhibited similar levels of strength, the corresponding set of fatigue specimens showed similar lives. The spread from shortest to longest fatigue lives among the different corrosion conditions decreased at the higher stress levels. Life predictions based

  5. Trunk muscle fatigue during a lateral isometric hold test: what are we evaluating?

    Directory of Open Access Journals (Sweden)

    Pagé Isabelle

    2012-04-01

    Full Text Available Abstract Background Side bridge endurance protocols have been suggested to evaluate lateral trunk flexor and/or spine stabilizer muscles. To date, no study has investigated muscle recruitment and fatigability during these protocols. Therefore the purpose of our study was to quantify fatigue parameters in various trunk muscles during a modified side bridge endurance task (i.e. a lateral isometric hold test on a 45° roman chair apparatus and determine which primary trunk muscles get fatigued during this task. It was hypothesized that the ipsilateral external oblique and lumbar erector spinae muscles will exhibit the highest fatigue indices. Methods Twenty-two healthy subjects participated in this study. The experimental session included left and right lateral isometric hold tasks preceded and followed by 3 maximal voluntary contractions in the same position. Surface electromyography (EMG recordings were obtained bilaterally from the external oblique, rectus abdominis, and L2 and L5 erector spinae. Statistical analysis were conducted to compare the right and left maximal voluntary contractions (MVC, surface EMG activities, right vs. left holding times and decay rate of the median frequency as the percent change from the initial value (NMFslope. Results No significant left and right lateral isometric hold tests differences were observed neither for holding times (97.2 ± 21.5 sec and 96.7 ± 24.9 sec respectively nor for pre and post fatigue root mean square during MVCs. However, participants showed significant decreases of MVCs between pre and post fatigue measurements for both the left and right lateral isometric hold tests. Statistical analysis showed that a significantly NMFslope of the ipsilateral external oblique during both conditions, and a NMFslope of the contralateral L5 erector spinae during the left lateral isometric hold test were steeper than those of the other side’s respective muscles. Although some participants

  6. Early detection of fatigue cracks by means of nondestructive testing, NDT; Tidig detektering av utmattningssprickor genom ofoerstoerande provning, OFP

    Energy Technology Data Exchange (ETDEWEB)

    Broddegaard, Mattias [Siemens Industrial Turbines, Finspaang (Sweden)

    2004-12-01

    Components in gas turbines, steam turbines and boilers are subjected to both high and low cycle fatigue. The lifetime of components is established by calculations based on conservative assumptions and safety factors, which means that most components will have a real life far exceeding the calculated. Conventional nondestructive testing is aimed at detecting macroscopic defects, such as cracks, inclusions and other discontinuities in the material. By having the possibility of detecting damage at a microscopic level, the risk of fractures in components subjected to fatigue can be reduced and the interval between testing occasions can be extended. The project goal has been to establish knowledge about possibilities and limitations for early detection of low and high cycle fatigue damage, by a literature survey and by practical experiments on low cycle fatigue specimens in 12% Cr-steel, for the following nondestructive testing methods: MWM (Meandering Winding Magnetometer) eddy current testing; and Nonlinear ultrasonics, both classical (second harmonic) and non-classical (crack closure). The project started with a literature survey. This resulted in a proposal for specimen design and selection of testing techniques and project partners. Manufacturing of specimens in 12% Cr-steel, designation X22CrMoV12-1, and low cycle fatigue testing at 300 deg C testing temperature was carried out at Siemens Industrial Turbines in Finspaang. Specimens with 0, 25, 50, 75 and 100% consumed life, based on the number of cycles to presence of macroscopic cracks, were produced. MWM eddy current testing was carried out by Jentek Sensors Inc. in the USA. Measurements with nonlinear ultrasonics were carried out by Siemens Corporate Technology in Munich and at Blekinge Univ. The specimens were finally examined in SEM and light optical microscope in Finspaang. In the literature, results showing that early detection of fatigue damage by nondestructive testing is possible, can be found. By

  7. Fatigue crack behaviour: comparing three-point bend test and wedge splitting test data on vibrated concrete using Paris' law

    Czech Academy of Sciences Publication Activity Database

    Seitl, Stanislav; Thienpont, T.; De Corte, W.

    2017-01-01

    Roč. 11, č. 39 (2017), s. 110-117 ISSN 1971-8993 R&D Projects: GA MŠk LM2015069 Institutional support: RVO:68081723 Keywords : Fatigue crack behaviour * Tree-point bending test * Wedge splitting test * Self-compacting concrete Subject RIV: JL - Materials Fatigue, Friction Mechanics OBOR OECD: Audio engineering, reliability analysis

  8. Reduced Electromyographic Fatigue Threshold after Performing a Cognitive Fatiguing Task.

    Science.gov (United States)

    Ferris, Justine R; Tomlinson, Mary A; Ward, Tayler N; Pepin, Marie E; Malek, Moh H

    2018-02-22

    Cognitive fatigue tasks performed prior to exercise may reduce exercise capacity. The electromyographic fatigue threshold (EMGFT) is the highest exercise intensity that can be maintained without significant increase in the EMG amplitude versus time relationship. To date, no studies have examined the effect of cognitive fatigue on the estimation of the EMGFT. The purpose of this study, therefore, was to determine whether or not cognitive fatigue prior to performing exercise reduces the estimated EMGFT. Eight healthy college-aged men were recruited from a university student population and visited the laboratory on multiple occasions. In a randomized order, subjects performed either the cognitive fatigue task (AX Continuous Performance Test; AX-CPT) for 60 min on one visit (experimental condition) or watched a video on trains for 60 min on the other visit (control condition). After each condition, subjects performed the incremental single-leg knee-extensor ergometry test while the EMG amplitude was recorded from the rectus femoris muscle and heart rate was monitored throughout. Thereafter, the EMGFT was calculated for each participant for each visit and compared using paired samples t-test. For exercise outcomes, there were no significant mean differences for maximal power output between the two conditions (control: 51 ± 5 vs. fatigue: 50 ± 3 W), but a significant decrease in EMGFT between the two conditions (control: 31 ± 3 vs. fatigue: 24 ± 2 W; p = 0.013). Moreover, maximal heart rate was significantly different between the two conditions (control: 151 ± 5 vs. fatigue: 132 ± 6; p = 0.027). These results suggest that performing the cognitive fatiguing task reduces the EMGFT with a corresponding reduction in maximal heart rate response.

  9. Linking asphalt binder fatigue to asphalt mixture fatigue performance using viscoelastic continuum damage modeling

    Science.gov (United States)

    Safaei, Farinaz; Castorena, Cassie; Kim, Y. Richard

    2016-08-01

    Fatigue cracking is a major form of distress in asphalt pavements. Asphalt binder is the weakest asphalt concrete constituent and, thus, plays a critical role in determining the fatigue resistance of pavements. Therefore, the ability to characterize and model the inherent fatigue performance of an asphalt binder is a necessary first step to design mixtures and pavements that are not susceptible to premature fatigue failure. The simplified viscoelastic continuum damage (S-VECD) model has been used successfully by researchers to predict the damage evolution in asphalt mixtures for various traffic and climatic conditions using limited uniaxial test data. In this study, the S-VECD model, developed for asphalt mixtures, is adapted for asphalt binders tested under cyclic torsion in a dynamic shear rheometer. Derivation of the model framework is presented. The model is verified by producing damage characteristic curves that are both temperature- and loading history-independent based on time sweep tests, given that the effects of plasticity and adhesion loss on the material behavior are minimal. The applicability of the S-VECD model to the accelerated loading that is inherent of the linear amplitude sweep test is demonstrated, which reveals reasonable performance predictions, but with some loss in accuracy compared to time sweep tests due to the confounding effects of nonlinearity imposed by the high strain amplitudes included in the test. The asphalt binder S-VECD model is validated through comparisons to asphalt mixture S-VECD model results derived from cyclic direct tension tests and Accelerated Loading Facility performance tests. The results demonstrate good agreement between the asphalt binder and mixture test results and pavement performance, indicating that the developed model framework is able to capture the asphalt binder's contribution to mixture fatigue and pavement fatigue cracking performance.

  10. Fatigue Characteristics of Selected Light Metal Alloys

    Directory of Open Access Journals (Sweden)

    Cieśla M.

    2016-03-01

    Full Text Available The paper addresses results of fatigue testing of light metal alloys used in the automotive as well as aerospace and aviation industries, among others. The material subject to testing comprised hot-worked rods made of the AZ31 alloy, the Ti-6Al-4V two-phase titanium alloy and the 2017A (T451 aluminium alloy. Both low- and high-cycle fatigue tests were conducted at room temperature on the cycle asymmetry ratio of R=-1. The low-cycle fatigue tests were performed using the MTS-810 machine on two levels of total strain, i.e.Δεc= 1.0% and 1.2%. The high-cycle fatigue tests, on the other hand, were performed using a machine from VEB Werkstoffprufmaschinen-Leipzig under conditions of rotary bending. Based on the results thus obtained, one could develop fatigue life characteristics of the materials examined (expressed as the number of cycles until failure of sample Nf as well as characteristics of cyclic material strain σa=f(N under the conditions of low-cycle fatigue testing. The Ti-6Al-4V titanium alloy was found to be characterised by the highest value of fatigue life Nf, both in lowand high-cycle tests. The lowest fatigue life, on the other hand, was established for the aluminium alloys examined. Under the high-cycle fatigue tests, the life of the 2017A aluminium and the AZ31 magnesium alloy studied was determined by the value of stress amplitude σa. With the stress exceeding 150 MPa, it was the aluminium alloy which displayed higher fatigue life, whereas the magnesium alloy proved better on lower stress.

  11. Fatigue Assessment of High Strength Steel Welded Joints Under Bending Loading

    International Nuclear Information System (INIS)

    Lee, Myeong-Woo; Kim, Yun-Jae; Park, Jun-Hyub

    2014-01-01

    In this study, a fatigue assessment method for vehicle suspension systems having welded geometries was established under a bending loading condition. For the fatigue life estimation of the actual product s welded joints made of different steels, bending fatigue tests were performed on welded specimens with a simplified shape for obtaining the moment-fatigue-life plot. Further, geometry modeling of the simplified welded specimens was conducted. Results of finite element analysis were used to obtain the stress-fatigue-life plot. The analysis results were also used to calculate the stress concentration factors for notch-factor-based fatigue life estimation. The test results were compared with results of the general notch-factor-based fatigue life estimation for improving fatigue assessment. As a result, it was concluded that both the welded fatigue tests and the notch-factor-based fatigue life estimation are necessary for accurate fatigue assessment

  12. MODELS OF FATIGUE LIFE CURVES IN FATIGUE LIFE CALCULATIONS OF MACHINE ELEMENTS – EXAMPLES OF RESEARCH

    Directory of Open Access Journals (Sweden)

    Grzegorz SZALA

    2014-03-01

    Full Text Available In the paper there was attempted to analyse models of fatigue life curves possible to apply in calculations of fatigue life of machine elements. The analysis was limited to fatigue life curves in stress approach enabling cyclic stresses from the range of low cycle fatigue (LCF, high cycle fatigue (HCF, fatigue limit (FL and giga cycle fatigue (GCF appearing in the loading spectrum at the same time. Chosen models of the analysed fatigue live curves will be illustrated with test results of steel and aluminium alloys.

  13. Oxygen uptake during peak graded exercise and single-stage fatigue tests of wheelchair propulsion in manual wheelchair users and the able-bodied.

    Science.gov (United States)

    Keyser, R E; Rodgers, M M; Gardner, E R; Russell, P J

    1999-10-01

    To determine if a single-stage, submaximal fatigue test on a wheelchair ergometer would result in higher than expected energy expenditure. An experimental survey design contrasting physiologic responses during peak graded exercise tests and fatigue tests. A rehabilitation science laboratory that included a prototypical wheelchair ergometer, open-circuit spirometry system, and heart rate monitor. Nine able-bodied non-wheelchair users (the NWC group: 6 men and 3 women, mean +/- SD age 30 +/- 7yrs) and 15 manual wheelchair users (the WC group: 12 men and 3 women, age 40 +/- 9yrs, time in wheelchair 16 +/- 9yrs). No subject had any disease, medication regimen, or upper body neurologic, orthopedic, or other condition that would limit wheelchair exercise. Peak oxygen uptake (VO2) for graded exercise testing and during fatigue testing, using a power output corresponding to 75% peak aerobic capacity on graded exercise test. In the WC group, VO2 at 6 minutes of fatigue testing was not significantly different from peak VO2. In the NWC group, VO2 was similar to the expected level throughout fatigue testing. Energy expenditure was higher than expected in the WC group but not in the NWC group. Fatigue testing may provide a useful evaluation of cardiorespiratory status in manual wheelchair users.

  14. The Fatigue Behavior of Steel Structures under Random Loading

    DEFF Research Database (Denmark)

    Agerskov, Henning

    2008-01-01

    Fatigue damage accumulation in steel structures under random loading has been studied in a number of investigations at the Technical University of Denmark. The fatigue life of welded joints has been determined both experimentally and from a fracture mechanics analysis. In the experimental part...... and variable amplitude fatigue test results. Both the fracture mechanics analysis and the fatigue test results indicate that Miner’s rule, which is normally used in the design against fatigue in steel structures, may give results, which are unconservative, and that the validity of the results obtained from...

  15. Biaxial fatigue tests and crack paths for AISI 304L stainless steel

    Directory of Open Access Journals (Sweden)

    V. Chaves

    2014-10-01

    Full Text Available AISI 304L stainless steel specimens have been tested in fatigue. The tests were axial, torsional and in-phase biaxial, all of them under load control and R=-1. The S-N curves were built following the ASTM E739 standard and the method of maximum likelihood proposed by Bettinelli. The fatigue limits of the biaxial tests were represented in axes σ-τ. The elliptical quadrant, appropriate for ductile materials, and the elliptical arc, appropriate for fragile materials, were included in the graph. The experimental values were better fitted with an elliptical quadrant, despite the ratio between the pure torsion and tension fatigue limits, τFL/σFL, is 0.91, close to 1, which is a typical value for fragile materials. The crack direction along the surface has been analyzed by using a microscope, with especial attention to the crack initiation zones. The crack direction during the Stage I has been compared with theoretical models.

  16. Low cycle fatigue: high cycle fatigue damage accumulation in a 304L austenitic stainless steel

    International Nuclear Information System (INIS)

    Lehericy, Y.

    2007-05-01

    The aim of this study was to evaluate the consequences of a Low Cycle Fatigue pre-damage on the subsequent fatigue limit of a 304L stainless steel. The effects of hardening and severe roughness (grinding) have also been investigated. In a first set of tests, the evolution of the surface damage induced by the different LCF pre-cycling was characterized. This has permitted to identify mechanisms and kinetics of damage in the plastic domain for different surface conditions. Then, pre-damaged samples were tested in the High Cycle Fatigue domain in order to establish the fatigue limits associated with each level of pre-damage. Results evidence that, in the case of polished samples, an important number of cycles is required to initiate surface cracks ant then to affect the fatigue limit of the material but, in the case of ground samples, a few number of cycles is sufficient to initiate cracks and to critically decrease the fatigue limit. The fatigue limit of pre-damaged samples can be estimated using the stress intensity factor threshold. Moreover, this detrimental effect of severe surface conditions is enhanced when fatigue tests are performed under a positive mean stress (author)

  17. Estimating the Contact Endurance of the AISI 321 Stainless Steel Under Contact Gigacycle Fatigue Tests

    Science.gov (United States)

    Savrai, R. A.; Makarov, A. V.; Osintseva, A. L.; Malygina, I. Yu.

    2018-02-01

    Mechanical testing of the AISI 321 corrosion resistant austenitic steel for contact gigacycle fatigue has been conducted with the application of a new method of contact fatigue testing with ultrasonic frequency of loading according to a pulsing impact "plane-to-plane" contact scheme. It has been found that the contact endurance (the ability to resist the fatigue spalling) of the AISI 321 steel under contact gigacycle fatigue loading is determined by its plasticity margin and the possibility of additional hardening under contact loading. It is demonstrated that the appearance of localized deep and long areas of spalling on a material surface can serve as a qualitative characteristic for the loss of the fatigue strength of the AISI 321 steel under impact contact fatigue loading. The value of surface microhardness measured within contact spots and the maximum depth of contact damages in the peripheral zone of contact spots can serve as quantitative criteria for that purpose.

  18. Fatigue behaviour of bituminous materials : from binders to mixes

    OpenAIRE

    SOENEN, H; DE LA ROCHE, C; REDELIUS, P

    2003-01-01

    Test procedures, aiming at measuring fatigue directly on bituminous binders, are increasingly used. The purpose of this paper is to investigate the relevance of this type of binder fatigue tests and to compare the results with laboratory fatigue properties of the corresponding mixes, using one mix composition for all binders, and similar fatigue tests conditions. Eight binders were selected, derived from two crude sources, including an oxidised and two polymer modified samples. All fatigue te...

  19. Muscular Activity and Fatigue in Lower-Limb and Trunk Muscles during Different Sit-To-Stand Tests.

    Directory of Open Access Journals (Sweden)

    Cristina Roldán-Jiménez

    Full Text Available Sit-to-stand (STS tests measure the ability to get up from a chair, reproducing an important component of daily living activity. As this functional task is essential for human independence, STS performance has been studied in the past decades using several methods, including electromyography. The aim of this study was to measure muscular activity and fatigue during different repetitions and speeds of STS tasks using surface electromyography in lower-limb and trunk muscles. This cross-sectional study recruited 30 healthy young adults. Average muscle activation, percentage of maximum voluntary contraction, muscle involvement in motion and fatigue were measured using surface electrodes placed on the medial gastrocnemius (MG, biceps femoris (BF, vastus medialis of the quadriceps (QM, the abdominal rectus (AR, erector spinae (ES, rectus femoris (RF, soleus (SO and the tibialis anterior (TA. Five-repetition STS, 10-repetition STS and 30-second STS variants were performed. MG, BF, QM, ES and RF muscles showed differences in muscle activation, while QM, AR and ES muscles showed significant differences in MVC percentage. Also, significant differences in fatigue were found in QM muscle between different STS tests. There was no statistically significant fatigue in the BF, MG and SO muscles of the leg although there appeared to be a trend of increasing fatigue. These results could be useful in describing the functional movements of the STS test used in rehabilitation programs, notwithstanding that they were measured in healthy young subjects.

  20. Muscular Activity and Fatigue in Lower-Limb and Trunk Muscles during Different Sit-To-Stand Tests.

    Science.gov (United States)

    Roldán-Jiménez, Cristina; Bennett, Paul; Cuesta-Vargas, Antonio I

    2015-01-01

    Sit-to-stand (STS) tests measure the ability to get up from a chair, reproducing an important component of daily living activity. As this functional task is essential for human independence, STS performance has been studied in the past decades using several methods, including electromyography. The aim of this study was to measure muscular activity and fatigue during different repetitions and speeds of STS tasks using surface electromyography in lower-limb and trunk muscles. This cross-sectional study recruited 30 healthy young adults. Average muscle activation, percentage of maximum voluntary contraction, muscle involvement in motion and fatigue were measured using surface electrodes placed on the medial gastrocnemius (MG), biceps femoris (BF), vastus medialis of the quadriceps (QM), the abdominal rectus (AR), erector spinae (ES), rectus femoris (RF), soleus (SO) and the tibialis anterior (TA). Five-repetition STS, 10-repetition STS and 30-second STS variants were performed. MG, BF, QM, ES and RF muscles showed differences in muscle activation, while QM, AR and ES muscles showed significant differences in MVC percentage. Also, significant differences in fatigue were found in QM muscle between different STS tests. There was no statistically significant fatigue in the BF, MG and SO muscles of the leg although there appeared to be a trend of increasing fatigue. These results could be useful in describing the functional movements of the STS test used in rehabilitation programs, notwithstanding that they were measured in healthy young subjects.

  1. Equivalence Testing as a Tool for Fatigue Risk Management in Aviation.

    Science.gov (United States)

    Wu, Lora J; Gander, Philippa H; van den Berg, Margo; Signal, T Leigh

    2018-04-01

    Many civilian aviation regulators favor evidence-based strategies that go beyond hours-of-service approaches for managing fatigue risk. Several countries now allow operations to be flown outside of flight and duty hour limitations, provided airlines demonstrate an alternative method of compliance that yields safety levels "at least equivalent to" the prescriptive regulations. Here we discuss equivalence testing in occupational fatigue risk management. We present suggested ratios/margins of practical equivalence when comparing operations inside and outside of prescriptive regulations for two common aviation safety performance indicators: total in-flight sleep duration and psychomotor vigilance task reaction speed. Suggested levels of practical equivalence, based on expertise coupled with evidence from field and laboratory studies, are ≤ 30 min in-flight sleep and ± 15% of reference response speed. Equivalence testing is illustrated in analyses of a within-subjects field study during an out-and-back long-range trip. During both sectors of their trip, 41 pilots were monitored via actigraphy, sleep diary, and top of descent psychomotor vigilance task. Pilots were assigned to take rest breaks in a standard lie-flat bunk on one sector and in a bunk tapered 9 from hip to foot on the other sector. Total in-flight sleep duration (134 ± 53 vs. 135 ± 55 min) and mean reaction speed at top of descent (3.94 ± 0.58 vs. 3.77 ± 0.58) were equivalent after rest in the full vs. tapered bunk. Equivalence testing is a complimentary statistical approach to difference testing when comparing levels of fatigue and performance in occupational settings and can be applied in transportation policy decision making.Wu LJ, Gander PH, van den Berg M, Signal TL. Equivalence testing as a tool for fatigue risk management in aviation. Aerosp Med Hum Perform. 2018; 89(4):383-388.

  2. Perceived Fatigue Interference and Depressed Mood: Comparison of Chronic Fatigue Syndrome/Myalgic Encephalomyelitis Patients with Fatigued Breast Cancer Survivors

    Science.gov (United States)

    Hall, Daniel L.; Antoni, Michael H.; Lattie, Emily G.; Jutagir, Devika R.; Czaja, Sara J.; Perdomo, Dolores; Lechner, Suzanne C.; Stagl, Jamie M.; Bouchard, Laura C.; Gudenkauf, Lisa M.; Traeger, Lara; Fletcher, MaryAnn; Klimas, Nancy G.

    2015-01-01

    Objective Persistent fatigue and depressive symptoms are both highly prevalent among patients with Chronic Fatigue Syndrome/Myalgic Encephalomyelitis (CFS/ME) as well as breast cancer survivors. This study aimed to assess and directly compare perceptions of fatigue as highly interfering in one’s daily functioning in both patient populations to better understand their relationships with depressed mood. Methods Participants were 95 female CFS/ME patients and 67 females who were approximately 5 years post-treatment for stage 0-III breast cancer presenting with clinically elevated fatigue severity. Self-report measures were obtained on participants’ fatigue-related interference in daily functioning and fatigue severity as well as depressed mood. Hierarchical regression was used to test effects controlling for relevant demographic, psychosocial, and medical covariates. Results CFS/ME patients endorsed greater depressed mood and fatigue interference than did fatigued breast cancer survivors, p’sfatigued breast cancer survivors (β=.18, p=.19). Conclusions CFS/ME patients reported elevated fatigue symptoms and depression relative to fatigued breast cancer survivors. In the former group, greater depressed mood was highly and significantly associated with greater fatigue-related inference in daily activities. Potential targets for cognitive behavioral interventions are discussed. PMID:26180660

  3. Rolling contact fatigue testing of peek based composites

    Directory of Open Access Journals (Sweden)

    Petrogalli C.

    2010-06-01

    Full Text Available Rolling contact fatigue phenomenon was investigated on unfilled PEEK and on three different PEEK composites: 10% carbon micro-fiber, graphite and PTFE filled matrix, 30% carbon micro-fiber filled matrix, 30% glass micro-fiber filled matrix. For this aim, roller-shaped specimens were machined from extruded bars of these materials and subjected to rolling contact tests at different contact pressure levels by means of a four roller machine. Contact pressure-life diagrams and wear rates were so obtained and compared, highlighting a relationship with monotonic and hardness materials properties. Microscopic observations of contact surfaces and transversal section of the specimens also allowed observing the damage mechanisms occurred in the materials tested and the effects of the filler. In particular way, deep radial cracks appeared on unfilled PEEK, while spalling and delamination phenomena where found on composites. Diffuse microcracks were found at the filler-matrix interface of the composites specimens, confirming that the fatigue life of these materials is essentially determined by the crack propagation phase, also under rolling contact loading.

  4. Testing of motor unit synchronization model for localized muscle fatigue.

    Science.gov (United States)

    Naik, Ganesh R; Kumar, Dinesh K; Yadav, Vivek; Wheeler, Katherine; Arjunan, Sridhar

    2009-01-01

    Spectral compression of surface electromyogram (sEMG) is associated with onset of localized muscle fatigue. The spectral compression has been explained based on motor unit synchronization theory. According to this theory, motor units are pseudo randomly excited during muscle contraction, and with the onset of muscle fatigue the recruitment pattern changes such that motor unit firings become more synchronized. While this is widely accepted, there is little experimental proof of this phenomenon. This paper has used source dependence measures developed in research related to independent component analysis (ICA) to test this theory.

  5. An engineering method for estimating notch-size effect in fatigue tests on steel

    Science.gov (United States)

    Kuhn, Paul; Hardrath, Herbert F

    1952-01-01

    Neuber's proposed method of calculating a practical factor of stress concentration for parts containing notches of arbitrary size depends on the knowledge of a "new material constant" which can be established only indirectly. In this paper, the new constant has been evaluated for a large variety of steels from fatigue tests reported in the literature, attention being confined to stresses near the endurance limit. Reasonably satisfactory results were obtained with the assumption that the constant depends only on the tensile strength of the steel. Even in cases where the notches were cracks of which only the depth was known, reasonably satisfactory agreement was found between calculated and experimental factors. It is also shown that the material constant can be used in an empirical formula to estimate the size effect on unnotched specimens tested in bending fatigue.

  6. Noncontact fatigue crack evaluation using thermoelastic

    Energy Technology Data Exchange (ETDEWEB)

    Kim, Ji Min; An, Yun Kyu; Sohn, Hoon [KAIST, Daejeon (Korea, Republic of)

    2012-12-15

    This paper proposes a noncontact thermography technique for fatigue crack evaluation under a cyclic tensile loading. The proposed technique identifies and localizes an invisible fatigue crack without scanning, thus making it possible to instantaneously evaluate an incipient fatigue crack. Based on a thermoelastic theory, a new fatigue crack evaluation algorithm is proposed for the fatigue crack tip localization. The performance of the proposed algorithm is experimentally validated. To achieve this, the cyclic tensile loading is applied to a dog bone shape aluminum specimen using a universal testing machine, and the corresponding thermal responses induced by thermoelastic effects are captured by an infrared camera. The test results confirm that the fatigue crack is well identified and localized by comparing with its microscopic images.

  7. Fatigue in Aluminum Highway Bridges under Random Loading

    DEFF Research Database (Denmark)

    Rom, Søren; Agerskov, Henning

    2014-01-01

    Fatigue damage accumulation in aluminum highway bridges under random loading is studied. The fatigue life of welded joints has been determined both experimentally and from a fracture mechanics analysis. In the experimental part of the investigation, fatigue test series on welded plate test...... is normally used in the design against fatigue in aluminum bridges, may give results which are unconservative. The validity of the results obtained from Miner’s rule will depend on the distribution of the load history in tension and compression....

  8. Modelling of pavement materials on steel decks using the five-point bending test: Thermo mechanical evolution and fatigue damage

    International Nuclear Information System (INIS)

    Arnaud, L; Houel, A

    2010-01-01

    This paper deals with the modelling of wearing courses on steel orthotropic decks such as the Millau viaduct in France. This is of great importance when dealing with durability: due to the softness of such a support, the pavement is subjected to considerable strains that may generate top-down cracks in the layer at right angles of the orthotropic plate stiffeners and shear cracks at the interface between pavement and steel. Therefore, a five-point bending fatigue test was developed and improved since 2003 at the ENTPE laboratory, to test different asphalt concrete mixes. This study aims at modelling the mechanical behavior of the wearing course throughout the fatigue test by a finite element method (Comsol Multiphysics software). Each material - steel, sealing sheet, asphalt concrete layer - is considered and modelled. The modelling of asphalt concrete is complex since it is a heterogeneous material, a viscoelastic medium and it thermosensitive. The actual characteristics of the asphalt concrete (thermo physical parameter and viscoelastic complex modulus) are determined experimentally on cylindrical cores. Moreover, a damage law based on Miner's damage is included in the model. The modelling of the fatigue test leads to encouraging results. Finally, results from the model are compared to the experimental data obtained from the five-point bending fatigue test device. The experimental data are very consistent with the numerical simulation.

  9. An investigation on fatigue in high-strength steel offshore structures

    DEFF Research Database (Denmark)

    Agerskov, Henning; Petersen, R.I.; Martinez, L. Lopez

    1998-01-01

    of the investigation, fatigue test series were carried out on both full scale tubular joints and smaller welded plate test specimens in high-strength steel as well as in conventional offshore structural steel. This paper gives a summary of the main results presented in two recent research reports [15, 16], from...... these investigations. A comparison between constant amplitude and variable amplitude fatigue test results shows shorter fatigue lives in variable amplitude loading than should be expected from the linear fatigue damage accumulation formula.Furthermore, in general longer fatigue lives were obtained for the test...... specimens in high-strength steel than those obtained in corresponding tests on joints in conventional offshore structural steel....

  10. Fatigue Reliability Analysis of Wind Turbine Cast Components

    DEFF Research Database (Denmark)

    Rafsanjani, Hesam Mirzaei; Sørensen, John Dalsgaard; Fæster, Søren

    2017-01-01

    .) and to quantify the relevant uncertainties using available fatigue tests. Illustrative results are presented as obtained by statistical analysis of a large set of fatigue data for casted test components typically used for wind turbines. Furthermore, the SN curves (fatigue life curves based on applied stress......The fatigue life of wind turbine cast components, such as the main shaft in a drivetrain, is generally determined by defects from the casting process. These defects may reduce the fatigue life and they are generally distributed randomly in components. The foundries, cutting facilities and test...... facilities can affect the verification of properties by testing. Hence, it is important to have a tool to identify which foundry, cutting and/or test facility produces components which, based on the relevant uncertainties, have the largest expected fatigue life or, alternatively, have the largest reliability...

  11. Thermal fatigue tests with actively cooled divertor mock-ups for ITER

    International Nuclear Information System (INIS)

    Roedig, M.; Duwe, R.; Linke, J.; Schuster, A.; Wiechers, B.; Ibbott, C.; Jacobson, D.; Le Marois, G.; Lind, A.; Lorenzetto, P.; Vieider, G.; Peacock, A.; Ploechl, L.; Severi, Y.; Visca, E.

    1998-01-01

    Mock-ups for high heat flux components with beryllium and CFC armour materials have been tested by means of the electron beam facility JUDITH. The experiments concerned screening tests to evaluate heat removal efficiency and thermal fatigue tests. CFC monoblocks attached to DS-Cu (Glidcop Al25) and CuCrZr tubes by active metal casting and Ti brazing showed the best thermal fatigue behaviour. They survived more than 1000 cycles at heat loads up to 25 MW m -2 without any indication of failure. Operational limits are given only by the surface temperature on the CFC tiles. Most of the beryllium mock-ups were of the flat tile type. Joining techniques were brazing, hot isostatic pressing (HIP) and diffusion bonding. HIPed and diffusion bonded Be/Cu modules have not yet reached the standards for application in high heat flux components. The limit of this production method is reached for heat loads of approximately 5 MW m -2 . Brazing with and without silver seems to be a more robust solution. A flat tile mock-up with CuMnSnCe braze was loaded at 5.4 MW m -2 for 1000 cycles without damage The first test with a beryllium monoblock joined to a CuCrZr tube by means of Incusil brazing shows promising results; it survived 1000 cycles at 4.5 MW m -2 without failure. (orig.)

  12. Cognitive Fatigue Influences Students’ Performance on Standardized Tests

    DEFF Research Database (Denmark)

    Sievertsen, Hans Henrik; Gino, Francesca; Piovesan, Marco

    2016-01-01

    We identify one potential source of bias that influences children’s performance on standardized tests and that is predictable based on psychological theory: the time at which students take the test. Using test data for all children attending Danish public schools between school years 2009....../10 and 2012/13, we find that, for every hour later in the day, test scores decrease by 0.9% of an SD. In addition, a 20- to 30-minute break improves average test scores. Time of day affects students’ test performance because, over the course of a regular day, students’ mental resources get taxed. Thus......, as the day wears on, students become increasingly fatigued and consequently more likely to underperform on a standardized test....

  13. PROJECT, MANUFACTURING AND QUALIFICATION OF MACHINE TO ROTARY BENDING OF NITI SUPERELASTIC WIRES IN FATIGUE TESTS

    Directory of Open Access Journals (Sweden)

    William Marcos Muniz Menezes

    2014-03-01

    Full Text Available In this work it was developed a rotating bending apparatus for fatigue tests of superelastic NiTi wires, and other materials with high elasticity. It was evaluated the performance, robustness, operability, and reliability through testing of 1 mm thick stainless steel wires. This device is mounted on a steel frame and features semiautomatic rotation speed control, time and testing bath temperature for sample immersion. The equipment qualification tests were performed controlling the following parameters: deformation of the wire, power level and ambient temperature. The results indicated lower discrepancies for the following parameters evaluated: number of cycles in fatigue life, rotation speed, the bath temperature and arc angle of rupture. Besides the reliability, the robustness and operability of the equipment also meet the purpose of the research as evidenced by the small number of failures in the qualification tests and calibration.

  14. Redesigning axial-axial (biaxial) cruciform specimens for very high cycle fatigue ultrasonic testing machines.

    Science.gov (United States)

    Montalvão, Diogo; Wren, Andrew

    2017-11-01

    The necessity to increase performances in terms of lifetime and security in mechanical components or structures is the motivation for intense research in fatigue. Applications range from aeronautics to medical devices. With the development of new materials, there is no longer a fatigue limit in the classical sense, where it was accepted that the fatigue limit is the stress level such that there is no fracture up to 1E7 cycles. The recent development of ultrasonic testing machines where frequencies can go as high as 20 kHz or over enabled tests to be extended to ranges larger than 1E9 in just a few days. This area of studies is now known as Very High Cycle Fatigue (VHCF). On the other hand, most of the existing test equipment in the market for both classical and VHCF are uniaxial test machines. However, critical components used in Engineering applications are usually subjected to complex multi-axial loading conditions. In this paper, it is presented the methodology to redesigning existing cruciform test specimens that can be used to create an in-plane biaxial state of stress when used in 'uniaxial' VHCF ultrasonic testing machines (in this case, the term 'uniaxial' is used not because of the state of stress created at the centre of the specimen, but because of the direction at which the load is applied). The methodology is explained in such a way that it can be expanded to other existing designs, namely cruciform designs, that are not yet used in VHCF. Also, although the approach is presented in simple and logical terms, it may not be that obvious for those who have a more focused approach on fatigue rather than on modal analysis. It is expected that by contributing to bridging the gap between the sciences of modal analysis and fatigue, this research will help and encourage others exploiting new capabilities in VHCF.

  15. Thermal fatigue appears to be more damaging than uniaxial isothermal fatigue for the austentic stainless steels, and application of multiaxial fatigue criteria

    Energy Technology Data Exchange (ETDEWEB)

    Fissolo, Antoine; Gourdin, Cedric [DM2S/SEMT/LISN, Gif sur Yvette (France); Vincent, Ludovic [DMN/SRMA/LCD, Gif sur Yvette (France)

    2009-07-01

    For nuclear reactor components, uniaxial isothermal fatigue curves are used to estimate the crack initiation under thermal fatigue. However, such approach would be not sufficient in some cases where cracking was observed. To investigate differences between uniaxial and thermal fatigue damage, tests have been carried out at CEA using the thermal fatigue devices SPLASH and FAT3D: a bi-dimensional (2-D) loading status is obtained in SPLASH, whereas a tri-dimensional (3-D) loading status is obtained in FAT3D. All the analysed tests clearly show that crack initiation in thermal fatigue is faster than in uniaxial isothermal fatigue conditions: for identical levels of strain, the number of cycles required to achieve crack initiation is significantly lower. The enhanced damaging effect probably results from a pure mechanical origin: a nearly perfect biaxial state corresponds to an increased hydrostatic stress. Consequently, multiaxial fatigue criteria must be applied. The Zamrik's strain criterion and the energy criterion proposed by Ecole Polytechnique provide the best estimations. In that framework, the proposed new method coupling both RCC-MR strain estimations and Zamrik's criterion appears to be more promising for the designer. (orig.)

  16. Thermal fatigue appears to be more damaging than uniaxial isothermal fatigue for the austentic stainless steels, and application of multiaxial fatigue criteria

    International Nuclear Information System (INIS)

    Fissolo, Antoine; Gourdin, Cedric; Vincent, Ludovic

    2009-01-01

    For nuclear reactor components, uniaxial isothermal fatigue curves are used to estimate the crack initiation under thermal fatigue. However, such approach would be not sufficient in some cases where cracking was observed. To investigate differences between uniaxial and thermal fatigue damage, tests have been carried out at CEA using the thermal fatigue devices SPLASH and FAT3D: a bi-dimensional (2-D) loading status is obtained in SPLASH, whereas a tri-dimensional (3-D) loading status is obtained in FAT3D. All the analysed tests clearly show that crack initiation in thermal fatigue is faster than in uniaxial isothermal fatigue conditions: for identical levels of strain, the number of cycles required to achieve crack initiation is significantly lower. The enhanced damaging effect probably results from a pure mechanical origin: a nearly perfect biaxial state corresponds to an increased hydrostatic stress. Consequently, multiaxial fatigue criteria must be applied. The Zamrik's strain criterion and the energy criterion proposed by Ecole Polytechnique provide the best estimations. In that framework, the proposed new method coupling both RCC-MR strain estimations and Zamrik's criterion appears to be more promising for the designer. (orig.)

  17. Effect of test temperature on the fatigue strength of the 12GN2MFAYu tempered steel

    International Nuclear Information System (INIS)

    Goritskij, V.M.; Terent'ev, V.F.; Bobyleva, L.A.

    1979-01-01

    The cyclic strength, variation of dislocation structure and fractography of specimen fractures were investigated depending on testing temperature. The specimens were tested at temperatures of 20, 350, 450, 550 deg C. The increase of testing temperature, according to the experimental data obtained, is accompanied by an insignificant reduction of fatigue strength. The testing temperature in the range from 350 to 550 deg C has a weak effect on the fatigue strength of the quenched and tempered steel. A change in the dislocation structure occurs under all tested temperatures in the 12 GN2MFAYu steel during fatigue. The intensity of the rearrangement of dislocation structure increases as the testing temperature increases to 550 deg C causing a decrease of the limited life-time at increased stress amplitudes

  18. Prediction of residual life of low-cycle fatigue in austenitic stainless steel based on indentation test

    International Nuclear Information System (INIS)

    Yonezu, Akio; Touda, Yuya; Kim, HakGui; Yoneda, Keishi; Sakihara, Masayuki; Minoshima; Kohji

    2011-01-01

    In this study, a method to predict residual life of low-cycle fatigue in austenitic stainless steel (SUS316NG) was proposed based on indentation test. Low-cycle fatigue tests for SUS316NG were first conducted based on uniaxial tensile-compressive loading under the control of true strain range. Applied strain ranges were varied from about 3 to 12%. Their hysteresis loops of stress and strain were monitored during the fatigue tests. Plastic deformation range in hysteresis loop at each cycle could be roughly expressed by bi-linear hardening rule, whose plastic properties involve yield stress and work-hardening coefficient. The cyclic plastic properties were found to be dependent on the number of cycles and applied strain range, due to work-hardening. We experimentally investigated the empirical relationship between the plastic properties and number of cycles for each applied strain range. It is found that the relationship quantitatively predicts the applied strain range and number of cycles, when the plastic properties, or yield stress and work-hardening coefficient were known. Indentation tests were applied to the samples subjected to low cycle fatigue test, in order to quantitatively determine the plastic properties. The estimated properties were assigned to the proposed relationship, yielding the applied strain range and the cycle numbers. The proposed method was applied to the several stainless steel samples subjected to low cycle fatigue tests, suggesting that their residual lives could be reasonably predicted. Our method is thus useful for predicting the residual life of low-cycle fatigue in austenitic stainless steel. (author)

  19. Deformation mechanisms induced under high cycle fatigue tests in a metastable austenitic stainless steel

    Energy Technology Data Exchange (ETDEWEB)

    Roa, J.J., E-mail: joan.josep.roa@upc.edu [CIEFMA-Departament de Ciència dels Materials i Enginyeria Metallúrgica, ETSEIB, Universitat Politècnica de Catalunya, Avda. Diagonal 647, 08028 Barcelona (Spain); CRnE, Campus Diagonal Sud, Edificio C’, Universitat Politècnica de Catalunya, C/ Pascual i Vila 15, 08028 Barcelona (Spain); Fargas, G. [CIEFMA-Departament de Ciència dels Materials i Enginyeria Metallúrgica, ETSEIB, Universitat Politècnica de Catalunya, Avda. Diagonal 647, 08028 Barcelona (Spain); Jiménez-Piqué, E. [CIEFMA-Departament de Ciència dels Materials i Enginyeria Metallúrgica, ETSEIB, Universitat Politècnica de Catalunya, Avda. Diagonal 647, 08028 Barcelona (Spain); CRnE, Campus Diagonal Sud, Edificio C’, Universitat Politècnica de Catalunya, C/ Pascual i Vila 15, 08028 Barcelona (Spain); Mateo, A. [CIEFMA-Departament de Ciència dels Materials i Enginyeria Metallúrgica, ETSEIB, Universitat Politècnica de Catalunya, Avda. Diagonal 647, 08028 Barcelona (Spain)

    2014-03-01

    Advanced techniques were used to study the deformation mechanisms induced by fatigue tests in a metastable austenitic stainless steel AISI 301LN. Observations by Atomic Force Microscopy were carried out to study the evolution of a pre-existing martensite platelet at increasing number of cycles. The sub-superficial deformation mechanisms of the austenitic grains were studied considering the cross-section microstructure obtained by Focused Ion Beam and analysed by Scanning Electron Microscopy and Transmission Electron Microscopy. The results revealed no deformation surrounding the pre-existing martensitic platelet during fatigue tests, only the growth on height was observed. Martensite formation was associated with shear bands on austenite, mainly in the {111} plane, and with the activation of the other intersecting austenite {111}〈110〉 slip system. Furthermore, transmission electron microscopy results showed that the nucleation of ε-martensite follows a two stages phase transformation (γ{sub fcc}→ε{sub hcp}→α'{sub bcc})

  20. Creep-fatigue of low cobalt superalloys

    Science.gov (United States)

    Halford, G. R.

    1982-01-01

    Testing for the low cycle fatigue and creep fatigue resistance of superalloys containing reduced amounts of cobalt is described. The test matrix employed involves a single high temperature appropriate for each alloy. A single total strain range, again appropriate to each alloy, is used in conducting strain controlled, low cycle, creep fatigue tests. The total strain range is based upon the level of straining that results in about 10,000 cycles to failure in a high frequency (0.5 Hz) continuous strain-cycling fatigue test. No creep is expected to occur in such a test. To bracket the influence of creep on the cyclic strain resistance, strain hold time tests with ore minute hold periods are introduced. One test per composition is conducted with the hold period in tension only, one in compression only, and one in both tension and compression. The test temperatures, alloys, and their cobalt compositions that are under study are given.

  1. Experimental Study on Fatigue Performance of Foamed Lightweight Soil

    Science.gov (United States)

    Qiu, Youqiang; Yang, Ping; Li, Yongliang; Zhang, Liujun

    2017-12-01

    In order to study fatigue performance of foamed lightweight soil and forecast its fatigue life in the supporting project, on the base of preliminary tests, beam fatigue tests on foamed lightweight soil is conducted by using UTM-100 test system. Based on Weibull distribution and lognormal distribution, using the mathematical statistics method, fatigue equations of foamed lightweight soil are obtained. At the same time, according to the traffic load on real road surface of the supporting project, fatigue life of formed lightweight soil is analyzed and compared with the cumulative equivalent axle loads during the design period of the pavement. The results show that even the fatigue life of foamed lightweight soil has discrete property, the linear relationship between logarithmic fatigue life and stress ratio still performs well. Especially, the fatigue life of Weibull distribution is more close to that derived from the lognormal distribution, in the instance of 50% guarantee ratio. In addition, the results demonstrated that foamed lightweight soil as subgrade filler has good anti-fatigue performance, which can be further adopted by other projects in the similar research domain.

  2. An Investigation on Fatigue in High-Strength Steel Offshore Structures

    DEFF Research Database (Denmark)

    Agerskov, Henning; Petersen, R.I.; Lopez Martinez, L.

    1997-01-01

    . In the experimental part of the investigation, fatigue test series have been carried through on both full-scale tubular joints and smaller welded plate test specimens, in high-strength steel as well as in conventional offshore structural steel. The present document gives a summary of the main results presented in two...... recent research reports, Refs. 15 and 16, from these investigations.A comparison between constant amplitude and variable amplitude fatigue test results shows shorter fatigue lives in variable amplitude loading than should be expected from the linear fatigue damage accumulation formula. Furthermore......, in general longer fatigue lives were obtained for the test specimens in high-strength steel than those obtained in corresponding tests on joints in conventional offshore structural steel....

  3. Fatigue behavior of niobium--hydrogen alloys

    International Nuclear Information System (INIS)

    Chung, D.W.; Stoloff, N.S.

    1978-01-01

    The effects of hydrogen on room temperature fatigue behavior of niobium were investigated under both high frequency stress control and low frequency strain control conditions, in air. Hydrogen markedly improved the fatigue life in high frequency tests, while low frequency tests resulted in decreased fatigue life with increasing hydrogen content. Notches in hydrogen-charged alloys reduced high cycle life significantly but had little effect on low cycle tests. Fracture surfaces of annealed niobium mainly exhibited striations, with numerous cracks originating at troughs of striated bands in both stress and strain control tests. The fracture mode for alloys with hydrogen in solution was mixed, with striations interspersed with cleavage facets at high frequencies but generally cleavage steps at low frequencies. For the hydrided alloys, distinctive steps of mixed ductile-brittle appearance were revealed under high frequency conditions, but large cleavage facets only were observed for low frequency tests. The results are discussed in terms of the effects of hydrogen on the cyclic strain hardening rate, as well as on fatigue strength and ductility of niobium

  4. Measurement of fatigue in industries.

    Science.gov (United States)

    Saito, K

    1999-04-01

    Fatigue of workers is a complex phenomenon resulting from various factors in technically innovated modern industries, and it appears as a feeling of exhaustion, lowering of physiological functions, breakdown of autonomic nervous balance, and decrease in work efficiency. On the other hand industrial fatigue is caused by excessive workload, remarkable alteration in working posture and diurnal and nocturnal rhythms in daily life. Working modes in modern industries have changed from work with the whole body into that with the hands, arms, legs and/or eyes which are parts of the body, and from physical work to mental work. Visual display terminal (VDT) work is one of the most characteristic jobs in the various kinds of workplaces. A large number of fatigue tests have already been adopted, but it is still hard to draw a generalized conclusion as to the method of selecting the most appropriate test battery for a given work load. As apparatus for fatigue measurement of VDT work we have developed VRT (Visual Reaction Test) and the Portable Fatigue Meter. Furthermore, we have presented immune parameters of peripheral blood and splenic T cells for physical fatigue.

  5. Graphite nodules in fatigue-tested cast iron characterized in 2D and 3D

    DEFF Research Database (Denmark)

    Mukherjee, Krishnendu; Fæster, Søren; Hansen, Niels

    2017-01-01

    Thick-walled ductile iron casts have been studied by applying (i) cooling rate calculations by FVM, (ii) microstructural characterization by 2D SEM and 3D X-ray tomography techniques and (iii) fatigue testing of samples drawn from components cast in sand molds and metal molds. An analysis has shown...... correlations between cooling rate, structure and fatigue strengths demonstrating the benefit of 3D structural characterization to identify possible causes of premature fatigue failure of ductile cast iron....

  6. IEA Joint Action. Wind turbine fatigue

    Energy Technology Data Exchange (ETDEWEB)

    Maribo Pedersen, B [ed.

    1996-09-01

    Fatigue research on wind turbine blade material has been an important issue over the years in many countries and in the E.U. As a result of the effort the knowledge on fatigue properties of fibre reinforced materials has been expanded enormously. Practical fatigue design properties are available for constant amplitude tests at ambient temperatures. A lack of knowledge can be shown in several other fields, such as variable amplitude and multi-axial testing and the influence of the environment and carbon fibres. Fatigue is seen as dominant for the blade design, improvements in both the load prediction and material fatigue properties should be strove for. In discussions with blade manufacturers and subsidy agencies (E.U. DGXII, NOVEM, ETSU, etc.) on the importance of continuous materials fatigue research the improvement in reliability should be stressed. (au)

  7. Fatigue life of high strength steel for cold forming

    Directory of Open Access Journals (Sweden)

    R. Ulewicz

    2017-01-01

    Full Text Available The article presents the results of fatigue tests carried out on STRENX-type high-strength cold forming steel. For high-cycle fatigue tests carried out using low cycle loading frequencies of around 30 Hz, a ROTOFLEX machine was used. For ultra high-cycle tests, a KAUP-ZU testing machine was employed, which enables fatigue tests to be performed with symetric specimen loading (R = -1 and at a frequency of f ≈ 20 kHz. The relationships σa = f(N were determined experimentally in the high and ultra high-cycle region for STRENX high-strength steel. To determine the fatigue crack initiation mechanism, the fractographic analysis of fatigue fractures was made.

  8. Prediction of Frequency for Simulation of Asphalt Mix Fatigue Tests Using MARS and ANN

    Directory of Open Access Journals (Sweden)

    Ali Reza Ghanizadeh

    2014-01-01

    Full Text Available Fatigue life of asphalt mixes in laboratory tests is commonly determined by applying a sinusoidal or haversine waveform with specific frequency. The pavement structure and loading conditions affect the shape and the frequency of tensile response pulses at the bottom of asphalt layer. This paper introduces two methods for predicting the loading frequency in laboratory asphalt fatigue tests for better simulation of field conditions. Five thousand (5000 four-layered pavement sections were analyzed and stress and strain response pulses in both longitudinal and transverse directions was determined. After fitting the haversine function to the response pulses by the concept of equal-energy pulse, the effective length of the response pulses were determined. Two methods including Multivariate Adaptive Regression Splines (MARS and Artificial Neural Network (ANN methods were then employed to predict the effective length (i.e., frequency of tensile stress and strain pulses in longitudinal and transverse directions based on haversine waveform. It is indicated that, under controlled stress and strain modes, both methods (MARS and ANN are capable of predicting the frequency of loading in HMA fatigue tests with very good accuracy. The accuracy of ANN method is, however, more than MARS method. It is furthermore shown that the results of the present study can be generalized to sinusoidal waveform by a simple equation.

  9. A New High-Speed, High-Cycle, Gear-Tooth Bending Fatigue Test Capability

    Science.gov (United States)

    Stringer, David B.; Dykas, Brian D.; LaBerge, Kelsen E.; Zakrajsek, Andrew J.; Handschuh, Robert F.

    2011-01-01

    A new high-speed test capability for determining the high cycle bending-fatigue characteristics of gear teeth has been developed. Experiments were performed in the test facility using a standard spur gear test specimens designed for use in NASA Glenn s drive system test facilities. These tests varied in load condition and cycle-rate. The cycle-rate varied from 50 to 1000 Hz. The loads varied from high-stress, low-cycle loads to near infinite life conditions. Over 100 tests were conducted using AISI 9310 steel spur gear specimen. These results were then compared to previous data in the literature for correlation. Additionally, a cycle-rate sensitivity analysis was conducted by grouping the results according to cycle-rate and comparing the data sets. Methods used to study and verify load-path and facility dynamics are also discussed.

  10. High speed rails. Fatigue behaviour

    International Nuclear Information System (INIS)

    Duart, J. M.; Pero-Sanz, J. A.; Verdeja, J. I.

    2005-01-01

    In recent years, passenger train speed and freight train load have increased to enhance efficiency of rail road transportation. These trends have increased the severity of rail service conditions, calling for rails with greater wear resistance, strength and fatigue behaviour. In the United Stated and Europe, track site weld rails are made entirely by aluminothermic process. This work describes the results of experimental study conducted on bending fatigue strength of plain rails and aluminothermic welded rails with preheating procedures (oxipropane and air-induced propane) approved by railways authorities. Compliance with the required fatigue strength shall be ascertained by 4 point pulsating bending test in accordance with European standards by aluminothermic welding in rails. The locati method, based in the empirical Miner's law about the cumulative damage on a fatigue tested material, allows, once known the Wohler curve of the welding process in use to settle the fatigue tensile limit at 50% with only one test. The values obtained at 2.10''6 cycles for plain rails (S f =353 MPa), oxipropane preheated aluminothermic weld rails (S f =225 MPa), and propane-air induced aluminothermic weld rails (S f =210 MPa) are very similar to those resulting from test method stated in the European Standard. From our point of view and due to its ease, speediness and savings, this is the most suitable test to check the quality and compare the aluminothermic processes in use. (Author) 15 refs

  11. Potential drop crack growth monitoring in high temperature biaxial fatigue tests

    International Nuclear Information System (INIS)

    Fitzgerald, B.P.; Krempl, E.

    1993-01-01

    The present work describes a procedure for monitoring crack growth in high temperature, biaxial, low cycle fatigue tests. The reversing DC potential drop equipment monitors smooth, tubular type 304 stainless steel specimens during fatigue testing. Electrical interference from an induction heater is filtered out by an analog filter and by using a long integration time. A Fourier smoothing algorithm and two spline interpolations process the large data set. The experimentally determined electrical potential drop is compared with the theoretical electrostatic potential that is found by solving Laplace's equation for an elliptical crack in a semi-infinite conducting medium. Since agreement between theory and experiment is good, the method can be used to measure crack growth to failure from the threshold of detectability

  12. Fatigue and creep-fatigue in sodium of 316 1 stainless steel

    International Nuclear Information System (INIS)

    Ardellier, A.

    1982-01-01

    Equipment and results obtained on type 316 L stainless stee1 at 450 0 C and 600 0 C with low-cycle fatique and creep fatigue tests are described. Comparison with runs in air on type 316 L stainless steel shows a better low-cycle fatigue behavior in a sodium environment. This beneficial effect can be attributed to the low oxygen content which limits the surface oxidazation

  13. Neuropsychological Training of Attention Improves MS-Related Fatigue: Results of a Randomized, Placebo-Controlled, Double-Blind Pilot Study.

    Science.gov (United States)

    Flachenecker, Peter; Meissner, Heike; Frey, Rebecca; Guldin, Wolfgang

    2017-01-01

    Attentional deficits may be pathophysiologically relevant in MS-associated fatigue. Thirty MS patients with fatigue and attentional deficits in neuropsychological testing participated in this randomized, placebo-controlled, double-blind trial. The intervention group (IG; n = 14) was treated with 10 h of computerized, specific neuropsychological training performing simple reaction time tasks, whereas the control group (CG; n = 16) also runs through computerized, but unspecific neuropsychological training using tasks without time components. The subjective feeling of fatigue was assessed with the Würzburg Fatigue Inventory for Multiple Sclerosis (WEIMuS) questionnaire, and testing of alertness was used as an objective measure at baseline and after the 2-week study period. Reaction times of alertness were significantly decreased in IG but not CG after 2 weeks. The subjective feeling of fatigue was ameliorated in both groups but more pronounced in IG. Effect sizes were below 0.7 for alertness and WEIMuS scores in CG but large and clinically meaningful in IG for both measures. Our pilot study suggests that neuropsychological training of attention may improve both measures of fatigue. The parallel improvement of attentional deficits and subjective fatigue after specific neuropsychological training support previous findings that fatigue may be at least partially caused by impaired intensity of attention. © 2017 S. Karger AG, Basel.

  14. High-Temperature Creep-Fatigue Behavior of Alloy 617

    Directory of Open Access Journals (Sweden)

    Rando Tungga Dewa

    2018-02-01

    Full Text Available This paper presents the high-temperature creep-fatigue testing of a Ni-based superalloy of Alloy 617 base metal and weldments at 900 °C. Creep-fatigue tests were conducted with fully reversed axial strain control at a total strain range of 0.6%, 1.2%, and 1.5%, and peak tensile hold time of 60, 180, and 300 s. The effects of different constituents on the combined creep-fatigue endurance such as hold time, strain range, and stress relaxation behavior are discussed. Under all creep-fatigue tests, weldments’ creep-fatigue life was less than base metal. In comparison with the low-cycle fatigue condition, the introduction of hold time decreased the cycle number of both base metal and weldments. Creep-fatigue lifetime in the base metal was continually decreased by increasing the tension hold time, except for weldments under longer hold time (>180 s. In all creep-fatigue tests, intergranular brittle cracks near the crack tip and thick oxide scales at the surface were formed, which were linked to the mixed-mode creep and fatigue cracks. Creep-fatigue interaction in the damage-diagram (D-Diagram (i.e., linear damage summation was evaluated from the experimental results. The linear damage summation was found to be suitable for the current limited test conditions, and one can enclose all the data points within the proposed scatter band.

  15. Fatigue in Steel Highway Bridges under Random Loading

    DEFF Research Database (Denmark)

    Agerskov, Henning; Nielsen, J.A.; Vejrum, Tina

    1997-01-01

    on welded plate test specimens have been carried through. The materials that have been used are either conventional structural steel with a yield stress of ~ 400-410 MPa or high-strength steel with a yield stress of ~ 810-840 MPa.The fatigue tests have been carried out using load histories, which correspond......In the present investigation, fatigue damage accumulation in steel highway bridges under random loading is studied. The fatigue life of welded joints has been determined both experimentally and from a fracture mechanics analysis.In the experimental part of the investigation, fatigue test series...... to one week's traffic loading, determined by means of strain gage measurements on the orthotropic steel deck structure of the Farø Bridges in Denmark.The test series which have been carried through show a significant difference between constant amplitude and variable amplitude fatigue test results. Both...

  16. Fatigue in Steel Highway Bridges under Random Loading

    DEFF Research Database (Denmark)

    Agerskov, Henning; Nielsen, Jette Andkjær

    1999-01-01

    have been carried through. The materials that have been used are either conventional structural steel with a yield stress of f(y) similar to 400-410 MPa or high-strength steel with a yield stress of f(y) similar to 810-840 MPa. The fatigue tests have been carried out using load histories, which......Fatigue damage accumulation in steel highway bridges under random loading is studied. The fatigue life of welded joints has been determined both experimentally and from a fracture mechanics analysis. In the experimental part of the investigation, fatigue test series on welded plate test specimens...... correspond to one week's traffic loading, determined by means of strain gauge measurements on the orthotropic steel deck structure of the Faro Bridges in Denmark. The test series carried through show a significant difference between constant amplitude and variable amplitude fatigue test results. Both...

  17. Behavior of X 6 CrNi 18 11 under sequential testing of creep and fatigue

    Energy Technology Data Exchange (ETDEWEB)

    Husslage, W [TNO, Apeldoorn (Netherlands); Breitling, H [INTERATOM, Bergisch Gladbach (Germany)

    1977-07-01

    The behaviour of the austenitic stainless steel X 6 CrNi 18 11 with about 0.05% C, 18% Cr and 11% Ni was investigated under combined creep and cyclic loading at 550 degrees C. Base metal specimens and specimens containing a weld were tested by: prior cyclic loading followed by creep loading to rupture; prior creep loading followed by cyclic loading to rupture; alternating periods of creep and cyclic loading to rupture. The results were evaluated using the linear cumulative fatigue and creep damage rule. The damage factor D determined on basis of the respective behaviour of base material and welds varied between 0.5 and 1.6 if specimens containing a weld defect were not taken into consideration. Weld defects, which had predominantly an influence on fatigue, lowered the damage factor D up to 0.2. Evaluation of the results on welds with the pure creep and fatigue behaviour of base material shows damage factors between 0.4 and 0.9. By the high margins between allowable creep and fatigue life and life measured with specimens, the cumulative damages of base material and welded joints are much better than the allowable values according to CCI 1592 of the ASME Boiler and Pressure Vessel Code. (author)

  18. Cumulative fatigue and creep-fatigue damage at 3500C on recrystallized zircaloy 4

    International Nuclear Information System (INIS)

    Brun, G.; Pelchat, J.; Floze, J.C.; Galimberti, M.

    1985-06-01

    An experimental programme undertaken by C.E.A., E.D.F. and FRAGEMA with the aim of characterizing the fatigue and creep fatigue behaviour of zircaloy-4 following annealing treatments (recrystallized, stress-delived) is in progress. The results given below concern only recrystallized material. Cyclic properties, low-cycle fatigue curves and creep behaviour laws under stresses have been established. Sequential tests of pure fatigue and creep-fatigue were performed. The cumulative life fractions at fracture depend on the sequence of leading, stress history and number of cycles of prestressing. The MINER's rule appears to be conservative with regard to a low-high loading sequence whereas it is not for the reverse high-low loading sequences. Fatigue and creep damage are not interchangeable. Pre-creep improves the fatigue resistance. Pre-fatigue improves the creep strength as long as the beneficial effect of cyclic hardening overcomes the damaging effect of surface cracking. The introduction of a tension hold time into the fatigue cycle slightly increases cyclic hardening and reduces the number of cycles to failure. For hold times of less than one hour, the sum of fatigue and creep life fractions is closed to one

  19. Fatigue Analysis of Load-Carrying Fillet Welds

    DEFF Research Database (Denmark)

    Sørensen, John Dalsgaard; Tychsen, Jesper; Andersen, Jens Ulfkjær

    2006-01-01

    that the degree of bending (DOB) has an influence on the fatigue lifetime. The fatigue lifetime decreases significantly when increasing the bending stress. In order to take into account the effect of the bending, a new fatigue stress definition applicable for fillet welds failing through the weld is presented....... Using the test results, it is shown that the new definition of fatigue stress can be used for a wide range of DOB with a low standard deviation of the resulting SN curve....

  20. Microstructural heterogeneities and fatigue anisotropy of forged steels

    International Nuclear Information System (INIS)

    Pessard, Etienne; Morel, Franck; Verdu, Catherine; Flaceliere, Laurent; Baudry, Gilles

    2011-01-01

    Highlights: → Tomography result: fibering is composed of non-metallic inclusions bands. → Elongated inclusions decreases the: ductility, fracture toughness and fatigue limit. → Cracks initiate from both inclusion clusters and from the bainitic matrix. → The classical self-heating method does not predict the effect of the inclusions. - Abstract: In this study, various experimental methods are employed to determine the anisotropic fatigue behavior of a 25MnCrSiVB6 forged steel (Metasco MC). This material has a bainitic microstructure and contains many elongated non-metallic inclusions in the rolled direction, which are grouped into clusters. Specimens with different orientations relative to the rolling direction have been extracted from a hot rolled bar and the ability of certain experimental techniques to capture the fatigue anisotropy has been tested. Results obtained from monotonic tensile tests and Charpy impact tests show that the material has isotropic fracture strength and anisotropic ductility. The influence of the 'inclusion clusters' is clearly demonstrated via observation of the fracture surfaces. Concerning the fatigue behavior, results from a classical staircase experimental procedure are compared to results from self-heating fatigue tests. For specimens orientated at 0 o relative to the rolled direction, microcrack initiation is controlled by the material matrix and the prediction of the fatigue strength with the self-heating method has been observed to be correct. For specimens orientated at 45 o and 90 o , the elongated manganese sulfide inclusion clusters are the origin of crack initiation and the fatigue strength drops significantly. For this case, it appears that the self-heating method has difficulty predicting the fatigue behavior.

  1. Microstructural heterogeneities and fatigue anisotropy of forged steels

    Energy Technology Data Exchange (ETDEWEB)

    Pessard, Etienne, E-mail: etienne.pessard@angers.ensam.fr [LAMPA, Arts et Metiers ParisTech Angers, 2 Bd du Ronceray, 49035 Angers Cedex 01 (France); Morel, Franck [LAMPA, Arts et Metiers ParisTech Angers, 2 Bd du Ronceray, 49035 Angers Cedex 01 (France); Verdu, Catherine [MATEIS, INSA-Lyon, Universite de Lyon, 25 Av Jean Capelle, 69621 Villeurbanne Cedex (France); Flaceliere, Laurent; Baudry, Gilles [CREAS - ASCOMETAL, BP 70045, 57301 Hagondange (France)

    2011-11-25

    Highlights: {yields} Tomography result: fibering is composed of non-metallic inclusions bands. {yields} Elongated inclusions decreases the: ductility, fracture toughness and fatigue limit. {yields} Cracks initiate from both inclusion clusters and from the bainitic matrix. {yields} The classical self-heating method does not predict the effect of the inclusions. - Abstract: In this study, various experimental methods are employed to determine the anisotropic fatigue behavior of a 25MnCrSiVB6 forged steel (Metasco MC). This material has a bainitic microstructure and contains many elongated non-metallic inclusions in the rolled direction, which are grouped into clusters. Specimens with different orientations relative to the rolling direction have been extracted from a hot rolled bar and the ability of certain experimental techniques to capture the fatigue anisotropy has been tested. Results obtained from monotonic tensile tests and Charpy impact tests show that the material has isotropic fracture strength and anisotropic ductility. The influence of the 'inclusion clusters' is clearly demonstrated via observation of the fracture surfaces. Concerning the fatigue behavior, results from a classical staircase experimental procedure are compared to results from self-heating fatigue tests. For specimens orientated at 0{sup o} relative to the rolled direction, microcrack initiation is controlled by the material matrix and the prediction of the fatigue strength with the self-heating method has been observed to be correct. For specimens orientated at 45{sup o} and 90{sup o}, the elongated manganese sulfide inclusion clusters are the origin of crack initiation and the fatigue strength drops significantly. For this case, it appears that the self-heating method has difficulty predicting the fatigue behavior.

  2. Taltirelin alleviates fatigue-like behavior in mouse models of cancer-related fatigue.

    Science.gov (United States)

    Dougherty, John P; Wolff, Brian S; Cullen, Mary J; Saligan, Leorey N; Gershengorn, Marvin C

    2017-10-01

    Fatigue affects most cancer patients and has numerous potential causes, including cancer itself and cancer treatment. Cancer-related fatigue (CRF) is not relieved by rest, can decrease quality of life, and has no FDA-approved therapy. Thyrotropin-releasing hormone (TRH) has been proposed as a potential novel treatment for CRF, but its efficacy against CRF remains largely untested. Thus, we tested the TRH analog, taltirelin (TAL), in mouse models of CRF. To model fatigue, we used a mouse model of chemotherapy, a mouse model of radiation therapy, and mice bearing colon 26 carcinoma tumors. We used the treadmill fatigue test to assess fatigue-like behavior after treatment with TAL. Additionally, we used wild-type and TRH receptor knockout mice to determine which TRH receptor was necessary for the actions of TAL. Tumor-bearing mice displayed muscle wasting and all models caused fatigue-like behavior, with mice running a shorter distance in the treadmill fatigue test than controls. TAL reversed fatigue-like behavior in all three models and the mouse TRH 1 receptor was necessary for the effects of TAL. These data suggest that TAL may be useful in alleviating fatigue in all cancer patients and provide further support for evaluating TAL as a potential therapy for CRF in humans. Published by Elsevier Ltd.

  3. Corrosion fatigue in nitrocarburized quenched and tempered steels

    Science.gov (United States)

    Khani, M. Karim; Dengel, D.

    1996-05-01

    In order to investigate the fatigue strength and fracture mechanism of salt bath nitrocarburized steels, specimens of the steels SAE 4135 and SAE 4140, in a quenched and tempered state, and additionally in a salt bath nitrocarburized and oxidizing cooled state as well as in a polished (after the oxidizing cooling) and renewed oxidized state, were subjected to comparative rotating bending fatigue tests in inert oil and 5 pct NaCl solution. In addition, some of the quenched and tempered specimens of SAE 4135 material were provided with an approximately 50-μm-thick electroless Ni-P layer, in order to compare corrosion fatigue behavior between the Ni-P layer and the nitride layers. Long-life corrosion fatigue tests of SAE 4135 material were carried out under small stresses in the long-life range up to 108 cycles with a test frequency of 100 Hz. Fatigue tests of SAE 4140 material were carried out in the range of finite life (low-cycle range) with a test frequency of 13 Hz. The results show that the 5 pct NaCl environment drastically reduced fatigue life, but nitrocarburizing plus oxidation treatment was found to improve the corrosion fatigue life over that of untreated and Ni-P coated specimens. The beneficial effect of nitrocarburizing followed by oxidation treatment on cor-rosion fatigue life results from the protection rendered by the compound layer by means of a well-sealed oxide layer, whereby the pores present in the compound layer fill up with oxides. The role of inclusions in initiating fatigue cracks was investigated. It was found that under corrosion fatigue conditions, the fatigue cracks started at cavities along the interfaces of MnS inclusions and matrix in the case of quenched and tempered specimens. The nitrocarburized specimens, however, showed a superposition of pitting corrosion and corrosion fatigue in which pores and nonmetallic inclusions in the compound layer play a predominant role concerning the formation of pits in the substrate.

  4. Results from ultrasonic wave inspections for the detection and dimensioning of fatigue crack propagation

    International Nuclear Information System (INIS)

    Gondard, C.

    1989-01-01

    The results from a study performed on the fatigue crack propagation in PWR vessels are discussed. The purpose of the investigation is to establish a relationship between the length, the place of a defect and the structure's residual life. The tests and the 6 inspections carried out during 5 years are reported. The results show that a defect traversing the structure is expected at the end 1989. The large amount of data allowed a statistical analysis showing the reproductibility of the method [fr

  5. Energy-based fatigue model for shape memory alloys including thermomechanical coupling

    Science.gov (United States)

    Zhang, Yahui; Zhu, Jihong; Moumni, Ziad; Van Herpen, Alain; Zhang, Weihong

    2016-03-01

    This paper is aimed at developing a low cycle fatigue criterion for pseudoelastic shape memory alloys to take into account thermomechanical coupling. To this end, fatigue tests are carried out at different loading rates under strain control at room temperature using NiTi wires. Temperature distribution on the specimen is measured using a high speed thermal camera. Specimens are tested to failure and fatigue lifetimes of specimens are measured. Test results show that the fatigue lifetime is greatly influenced by the loading rate: as the strain rate increases, the fatigue lifetime decreases. Furthermore, it is shown that the fatigue cracks initiate when the stored energy inside the material reaches a critical value. An energy-based fatigue criterion is thus proposed as a function of the irreversible hysteresis energy of the stabilized cycle and the loading rate. Fatigue life is calculated using the proposed model. The experimental and computational results compare well.

  6. Advanced topics on rotor blade full-scale structural fatigue testing and requirements

    DEFF Research Database (Denmark)

    Berring, Peter; Fedorov, Vladimir; Belloni, Federico

    further developed since then. Structures in composite materials are generally difficult and time consuming to test for fatigue resistance. Therefore, several methods for testing of blades have been developed and exist today. Those methods are presented in [1]. This report deals with more advanced topics...

  7. Blood-Borne Markers of Fatigue in Competitive Athletes - Results from Simulated Training Camps.

    Directory of Open Access Journals (Sweden)

    Anne Hecksteden

    Full Text Available Assessing current fatigue of athletes to fine-tune training prescriptions is a critical task in competitive sports. Blood-borne surrogate markers are widely used despite the scarcity of validation trials with representative subjects and interventions. Moreover, differences between training modes and disciplines (e.g. due to differences in eccentric force production or calorie turnover have rarely been studied within a consistent design. Therefore, we investigated blood-borne fatigue markers during and after discipline-specific simulated training camps. A comprehensive panel of blood-born indicators was measured in 73 competitive athletes (28 cyclists, 22 team sports, 23 strength at 3 time-points: after a run-in resting phase (d 1, after a 6-day induction of fatigue (d 8 and following a subsequent 2-day recovery period (d 11. Venous blood samples were collected between 8 and 10 a.m. Courses of blood-borne indicators are considered as fatigue dependent if a significant deviation from baseline is present at day 8 (Δfatigue which significantly regresses towards baseline until day 11 (Δrecovery. With cycling, a fatigue dependent course was observed for creatine kinase (CK; Δfatigue 54±84 U/l; Δrecovery -60±83 U/l, urea (Δfatigue 11±9 mg/dl; Δrecovery -10±10 mg/dl, free testosterone (Δfatigue -1.3±2.1 pg/ml; Δrecovery 0.8±1.5 pg/ml and insulin linke growth factor 1 (IGF-1; Δfatigue -56±28 ng/ml; Δrecovery 53±29 ng/ml. For urea and IGF-1 95% confidence intervals for days 1 and 11 did not overlap with day 8. With strength and high-intensity interval training, respectively, fatigue-dependent courses and separated 95% confidence intervals were present for CK (strength: Δfatigue 582±649 U/l; Δrecovery -618±419 U/l; HIIT: Δfatigue 863±952 U/l; Δrecovery -741±842 U/l only. These results indicate that, within a comprehensive panel of blood-borne markers, changes in fatigue are most accurately reflected by urea and IGF-1 for cycling

  8. A test procedure for determining the influence of stress ratio on fatigue crack growth

    Science.gov (United States)

    Fitzgerald, J. H.; Wei, R. P.

    1974-01-01

    A test procedure is outlined by which the rate of fatigue crack growth over a range of stress ratios and stress intensities can be determined expeditiously using a small number of specimens. This procedure was developed to avoid or circumvent the effects of load interactions on fatigue crack growth, and was used to develop data on a mill annealed Ti-6Al-4V alloy plate. Experimental data suggest that the rates of fatigue crack growth among the various stress ratios may be correlated in terms of an effective stress intensity range at given values of K max. This procedure is not to be used, however, for determining the corrosion fatigue crack growth characteristics of alloys when nonsteady-state effects are significant.

  9. Rotating bending fatigue strength evaluation of ceramic materials

    International Nuclear Information System (INIS)

    Govila, R.K.; Swank, L.R.

    1995-01-01

    Cyclic fatigue under rotary bending tests were conducted on partially stabilized zirconia (PSZ) from NGK and Nilsen, and silicon nitride from NGK and Norton. Fractography was performed on the failed specimens to determine the fracture structure and morphology. The results showed that the cyclic fatigue fracture was the same as the fracture structure previously observed in bending tests. The cyclic fatigue data indicated that structural ceramic could function in fatigue stress levels at a higher percentage of their average fast fracture strength than the fifty percent of ultimate strength used for wrought steels

  10. Fatigue and creep-fatigue in sodium of 316 L stainless-steel

    International Nuclear Information System (INIS)

    Ardellier, A.

    1981-03-01

    The present paper describes test-facility developed to perform low-cycle fatigue and creep-fatigue interaction in sodium on stainless steel - 316 L . Fatigue life in sodium and in air are compared. A beneficial effect in sodium is noted

  11. Experiences of Fatigue at Sea

    DEFF Research Database (Denmark)

    Zhao, Zhiwei; Jepsen, Jørgen Riis; Chen, Zhonglong

    2016-01-01

    Fatigue has negative impacts on the general working population as well as on seafarers. In order to study seafarers’ fatigue, a questionnaire-base survey was conducted to gain information about potential risk factors for fatigue and construct indexes indicating fatigue. The study applies T-test t......-test to compare strata of seafarers to analyse work and sleep patterns in global seafaring. Qualitative analysis are also employed to explore the impacts of fatigue on seafarer’s occupational health and safety.......Fatigue has negative impacts on the general working population as well as on seafarers. In order to study seafarers’ fatigue, a questionnaire-base survey was conducted to gain information about potential risk factors for fatigue and construct indexes indicating fatigue. The study applies T...

  12. Energy-based fatigue model for shape memory alloys including thermomechanical coupling

    International Nuclear Information System (INIS)

    Zhang, Yahui; Zhu, Jihong; Moumni, Ziad; Zhang, Weihong; Van Herpen, Alain

    2016-01-01

    This paper is aimed at developing a low cycle fatigue criterion for pseudoelastic shape memory alloys to take into account thermomechanical coupling. To this end, fatigue tests are carried out at different loading rates under strain control at room temperature using NiTi wires. Temperature distribution on the specimen is measured using a high speed thermal camera. Specimens are tested to failure and fatigue lifetimes of specimens are measured. Test results show that the fatigue lifetime is greatly influenced by the loading rate: as the strain rate increases, the fatigue lifetime decreases. Furthermore, it is shown that the fatigue cracks initiate when the stored energy inside the material reaches a critical value. An energy-based fatigue criterion is thus proposed as a function of the irreversible hysteresis energy of the stabilized cycle and the loading rate. Fatigue life is calculated using the proposed model. The experimental and computational results compare well. (paper)

  13. Individual aircraft life monitoring: An engineering approach for fatigue damage evaluation

    Directory of Open Access Journals (Sweden)

    Rui JIAO

    2018-04-01

    Full Text Available Individual aircraft life monitoring is required to ensure safety and economy of aircraft structure, and fatigue damage evaluation based on collected operational data of aircraft is an integral part of it. To improve the accuracy and facilitate the application, this paper proposes an engineering approach to evaluate fatigue damage and predict fatigue life for critical structures in fatigue monitoring. In this approach, traditional nominal stress method is applied to back calculate the S-N curve parameters of the realistic structure details based on full-scale fatigue test data. Then the S-N curve and Miner’s rule are adopted in damage estimation and fatigue life analysis for critical locations under individual load spectra. The relationship between relative small crack length and fatigue life can also be predicted with this approach. Specimens of 7B04-T74 aluminum alloy and TA15M titanium alloy are fatigue tested under two types of load spectra, and there is a good agreement between the experimental results and analysis results. Furthermore, the issue concerning scatter factor in individual aircraft damage estimation is also discussed. Keywords: Fatigue damage, Fatigue monitoring, Fatigue test, Scatter factor, S-N curve

  14. Determination of the fatigue properties of multilayer PVD coatings on various substrates, based on the impact test and its FEM simulation

    Energy Technology Data Exchange (ETDEWEB)

    Bouzakis, K.D.; Vidakis, N. [Aristotle Univ., Thessaloniki (Greece). Dept. of Mech. Eng.; Leyendecker, T.; Erkens, G.; Wenke, R.

    1997-10-31

    The coating impact test, in combination with its finite elements method (FEM) simulation, is used to quantitatively characterize the fatigue behaviour of thin hard physical vapour deposited (PVD) coatings as well as of multilayer ones. Successive impacts of a cemented carbide ball onto a plane coated specimen induce severe contact loads and strain superficially the layered compound. The fatigue failure mode of each specimen is classified by means of scanning electron microscope (SEM) observations, microspectral analyses and profilometry. FEM simulating models of the impact test are used to determine the critical stress components, which introduce coating fatigue failure. The FEM computational results are correlated to the experimental ones and used to interpret them quantitatively. Herewith, critical values for stress components, responsible for distinctive fatigue failure modes of the coating substrate compounds are obtained and the fatigue limits of the examined multilayer coatings are inserted in general applicable Smith diagrams. Furthermore, the derived critical stresses are verified by investigating the same multilayer coatings on different substrates. (orig.) 14 refs.

  15. Fatigue analysis of aluminum drill pipes

    Directory of Open Access Journals (Sweden)

    João Carlos Ribeiro Plácido

    2005-12-01

    Full Text Available An experimental program was performed to investigate the fundamental fatigue mechanisms of aluminum drill pipes. Initially, the fatigue properties were determined through small-scale tests performed in an optic-mechanical fatigue apparatus. Additionally, full-scale fatigue tests were carried out with three aluminum drill pipe specimens under combined loading of cyclic bending and constant axial tension. Finally, a finite element model was developed to simulate the stress field along the aluminum drill pipe during the fatigue tests and to estimate the stress concentration factors inside the tool joints. By this way, it was possible to estimate the stress values in regions not monitored during the fatigue tests.

  16. Fatigue in Welded High-Strength Steel Plate Elements under Stochastic Loading

    DEFF Research Database (Denmark)

    Agerskov, Henning; Petersen, R.I.; Martinez, L. Lopez

    1999-01-01

    The present project is a part of an investigation on fatigue in offshore structures in high-strength steel. The fatigue life of plate elements with welded attachments is studied. The material used has a yield stress of ~ 810-840 MPa, and high weldability and toughness properties. Fatigue test...... series with constant amplitude loading and with various types of stochastic loading have been carried through on test specimens in high-strength steel, and - for a comparison - on test specimens in conventional offshore structural steel with a yield stress of ~ 400-410 MPa.A comparison between constant...... amplitude and variable amplitude fatigue test results shows shorter fatigue lives in variable amplitude loading than should be expected from the linear fatigue damage accumulation formula. Furthermore, in general longer fatigue lives were obtained for the test specimens in high-strength steel than those...

  17. Development of device for grid spring fatigue and a cell-based fuel rod fretting wear tests

    International Nuclear Information System (INIS)

    Kim, Hyung Kyu; Yoon, Kyung Ho; Kang, Heung Seok; Song, Kee Nam

    2001-05-01

    As an activity of experimental research on the cause and the remedy of LWR fuel fretting failure, developed is test equipment for fatigue of grid spring and cell-based fuel rod fretting wear test. The equipment enables to perform the fretting wear test in the case of gap existence between spring and cladding, which has not been possible by the previously developed one (KAERI/TR-1570/2000). It can also provide fatigue test capability with the frequency of more than 10 Hz. Used are a servo-motor, an eccentric cylinder and lever mechanism for driving system as was similarly used for the previous equipment. In fretting wear test, up to 2 span-length of a fuel cladding tube can be accommodated. For fatigue test, on the other hand, a device for clamping the spring fixture is installed additionally. As a feature of the present equipment, the gap or the contacting force between a spring and a tube can be adjusted during the fretting wear test, while an initial spring force can be simulated for the fatigue test. Tests will be conducted in air at room temperature. In this report, every part of the equipment is explained with photographs, which will provide an easy understanding. Test procedure such as specimen installation, sequence of operation and program handling is also given. As a performance test of the present equipment, displacement range is measured when the hinge of the lever locates at its maximum and minimum positions. This will be used as basic information when additional eccentric cylinder is necessary for different displacement ranges

  18. Myoelectrical manifestation of fatigue less prominent in patients with cancer related fatigue.

    Directory of Open Access Journals (Sweden)

    Katarzyna Kisiel-Sajewicz

    Full Text Available PURPOSE: A lack of fatigue-related muscle contractile property changes at time of perceived physical exhaustion and greater central than peripheral fatigue detected by twitch interpolation technique have recently been reported in cancer survivors with fatigue symptoms. Based on these observations, it was hypothesized that compared to healthy people, myoelectrical manifestation of fatigue in the performing muscles would be less significant in these individuals while sustaining a prolonged motor task to self-perceived exhaustion (SPE since their central fatigue was more prominent. The purpose of this study was to test this hypothesis by examining electromyographic (EMG signal changes during fatiguing muscle performance. METHODS: Twelve individuals who had advanced solid cancer and cancer-related fatigue (CRF, and 12 age- and gender-matched healthy controls performed a sustained elbow flexion at 30% maximal voluntary contraction till SPE. Amplitude and mean power frequency (MPF of EMG signals of the biceps brachii, brachioradialis, and triceps brachii muscles were evaluated when the individuals experienced minimal, moderate, and severe fatigue. RESULTS: CRF patients perceived physical "exhaustion" significantly sooner than the controls. The myoelectrical manifestation of muscular fatigue assessed by EMG amplitude and MPF was less significant in CRF than controls. The lower MPF even at minimal fatigue stage in CRF may indicate pathophysiologic condition of the muscle. CONCLUSIONS: CRF patients experience less myoelectrical manifestation of muscle fatigue than healthy individuals near the time of SPE. The data suggest that central nervous system fatigue plays a more important role in limiting endurance-type of motor performance in patients with CRF.

  19. A computer-controlled automated test system for fatigue and fracture testing

    International Nuclear Information System (INIS)

    Nanstad, R.K.; Alexander, D.J.; Swain, R.L.; Hutton, J.T.; Thomas, D.L.

    1989-01-01

    A computer-controlled system consisting of a servohydraulic test machine, an in-house designed test controller, and a desktop computer has been developed for performing automated fracture toughness and fatigue crack growth testing both in the laboratory and in hot cells for remote testing of irradiated specimens. Both unloading compliance and dc-potential drop can be used to monitor crack growth. The test controller includes a dc-current supply programmer, a function generator for driving the servohydraulic test machine to required test outputs, five measurement channels (each consisting of low-pass filter, track/hold amplifier, and 16-bit analog-to-digital converter), and digital logic for various control and data multiplexing functions. The test controller connects to the computer via a 16-bit wide photo-isolated bidirectional bus. The computer, a Hewlett-Packard series 200/300, inputs specimen and test parameters from the operator, configures the test controller, stores test data from the test controller in memory, does preliminary analysis during the test, and records sensor calibrations, specimen and test parameters, and test data on flexible diskette for later recall and analysis with measured initial and final crack length information. During the test, the operator can change test parameters as necessary. 24 refs., 6 figs

  20. Fatigue in Breakwater Concrete Armour Units

    DEFF Research Database (Denmark)

    Burcharth, Hans F.

    1985-01-01

    The reliability of rubble mound breakwaters depends on the hydraulic stability and the mechanical strength of the armour units. The paper deals with the important aspect of fatigue related to the strength of concrete armour units. Results showing significant fatigue from impact tests with Dolosse...... made of unreinforced and steel fibre reinforced flyash concrete are presented. Moreover universal graphs for fatigue in armour units made of conventional unreinforced concrete exposed to impact load and pulsating load are presented. The effect of fibre reinforcement and the implementation of fatigue...

  1. A two-parameter model to predict fatigue life of high-strength steels in a very high cycle fatigue regime

    Science.gov (United States)

    Sun, Chengqi; Liu, Xiaolong; Hong, Youshi

    2015-06-01

    In this paper, ultrasonic (20 kHz) fatigue tests were performed on specimens of a high-strength steel in very high cycle fatigue (VHCF) regime. Experimental results showed that for most tested specimens failed in a VHCF regime, a fatigue crack originated from the interior of specimen with a fish-eye pattern, which contained a fine granular area (FGA) centered by an inclusion as the crack origin. Then, a two-parameter model is proposed to predict the fatigue life of high-strength steels with fish-eye mode failure in a VHCF regime, which takes into account the inclusion size and the FGA size. The model was verified by the data of present experiments and those in the literature. Furthermore, an analytic formula was obtained for estimating the equivalent crack growth rate within the FGA. The results also indicated that the stress intensity factor range at the front of the FGA varies within a small range, which is irrespective of stress amplitude and fatigue life.

  2. The concept of fatigue fracture toughness in fatigue delamination growth behavior

    NARCIS (Netherlands)

    Yao, L.; Alderliesten, R.C.; Benedictus, R.

    2015-01-01

    This paper provides a study on mode I fatigue delamination growth in composite laminates using energy principles. Experimental data has been obtained from fatigue tests conducted on Double Cantilever Beam (DCB) specimens at various stress ratios. A concept of fatigue fracture toughness is proposed

  3. Experimentally Validated Combustion and Piston Fatigue Life Evaluation Procedures for the Bi-Fuel Engines, Using an Integral-Type Fatigue Criterion

    Directory of Open Access Journals (Sweden)

    M. Shariyat

    Full Text Available Abstract A relatively complete procedure for high cycle fatigue life assessment of the engine components is outlined in the present paper. The piston is examined as a typical component of the engine. In this regard, combustion process and transient heat transfer simulations, determination of the instantaneous variations of the pressure and temperature in the combustion chamber, kinematic and dynamic analyses of the moving parts of the engine, thermoelastic stress analyses, and fatigue life analyses are accomplished. Results of the simulation are compared with the test data to verify the results. The heat transfer results are validated by the experimental results measured by the Templugs. The nonlinear multipoint contact constraints are modeled accurately. Results of the more accurate available fatigue criteria are compared with those of a fatigue criterion recently proposed by the first author. These results are also evaluated by comparing them with the experimental durability tests. The presented procedure may be used, e.g., to decide whether it is suitable to convert a gasoline-based engine to a bi-fuel one. Results of the various thermomechanical fatigue analyses performed reveal that the piston life decreases considerably when natural gas is used instead of gasoline.

  4. Procedure and layout for the development of a fatigue test on an agricultural implement by a four poster test bench

    Directory of Open Access Journals (Sweden)

    M. Cutini

    2013-09-01

    Full Text Available The increasing demand in agricultural vehicles’ power requirements, payloads and driving speeds increases issues related to tractors and farm implements exposure to solicitations. One of the main factors to be taken into account for fatigue test developing on agricultural machines is the heterogeneity of the environment and activity in which the tractor operates. In particular, for contractors the use in transport conditions both on terrain and road becomes important. As far as transport is concerned. factors mainly affecting solicitations on carried implement are soil profile roughness, tractor settings and forward speed. In this paper, CRA-ING laboratory of Treviglio, Italy, together with Frandent Group s.r.l. (Osasco, Italy, analyse the possibility of creating a solicitation profile by means of one four poster test bench for fatigue test on a carried implement simulating transport conditions. Accelerations at the hubs of the tractor were acquired during transport on terrain and reproduced with one electro-hydraulic four posters test bench on one dummy of a tractor developed for carrying the implement. Artificial bumps were mathematically created and introduced in the time history to simulate squares solicitations. Twelve hours of test were carried out. This experience confirmed the possibility of carrying out laboratory fatigue test on agricultural implements by reproducing specific field conditions solicitations with four poster test bench.

  5. Flexural fracture and fatigue behavior of steel-fiber-reinforced concrete structures

    International Nuclear Information System (INIS)

    Chang, D.I.

    1995-01-01

    Fracture and fatigue tests were performed in order to investigate the fracture and fatigue behavior of steel-fibre-reinforced concrete (SFRC) structures. 33 SFRC beams were used in the fracture and fatigue tests. The relationship between loading, strain and midspan deflection of the beams was observed under the three-point loading system.From the test results, the effects of the fiber content, fiber aspect ratio and notch-to-depth ratio on the concrete fracture and fatigue behavior were studied, and the fatigue strengths of SFRC beams were calculated. According to the regression technique, some empirical formulae for predicting the fatigue strength of SFRC beams were also suggested. (orig.)

  6. Characterization of a 14Cr ODS steel by means of small punch and uniaxial testing with regard to creep and fatigue at elevated temperatures

    Energy Technology Data Exchange (ETDEWEB)

    Bruchhausen, M., E-mail: matthias.bruchhausen@ec.europa.eu [European Commission, Joint Research Centre, Institute for Energy and Transport, P.O. Box 2, 1755 ZG Petten (Netherlands); Turba, K. [European Commission, Joint Research Centre, Institute for Energy and Transport, P.O. Box 2, 1755 ZG Petten (Netherlands); Lund University, Division of Materials Engineering, P.O. Box 118, SE-221 00 Lund (Sweden); Haan, F. de; Hähner, P.; Austin, T. [European Commission, Joint Research Centre, Institute for Energy and Transport, P.O. Box 2, 1755 ZG Petten (Netherlands); Carlan, Y. de [CEA, DEN, Service de Recherches Métallurgiques Appliquées, 91191 Gif-sur-Yvette (France)

    2014-01-15

    A 14Cr ODS steel was characterized at elevated temperatures with regard to its behavior in small punch and uniaxial creep tests and in low cycle fatigue tests. A comparison of small punch and uniaxial creep tests at 650 °C revealed a strong anisotropy of the material when strained parallel and perpendicular to the extrusion direction with rupture times being several orders of magnitude lower for the perpendicular direction. The stress-rupture and Larson–Miller plots show a very large scatter of the creep data. This scatter is strongly reduced when rupture time is plotted against minimum deflection rate or minimum creep rate (Monkman–Grant plot). Fatigue tests have been carried out at 650 °C and 750 °C. The alloy is cyclically very stable with practically no hardening/softening. Results from the tests at both temperatures can be described by a common power law. An increase in the test temperature has little influence on the fatigue ductility exponent. For a given total strain level, the fatigue life of the alloy is reduced with increasing temperature.

  7. Fatigue testing of galvanized and ungalvanized socket connections.

    Science.gov (United States)

    2014-09-01

    The fatigue resistance of welded traffic signal support structure details is an ongoing research topic being : addressed at multiple universities primarily through state funding mechanisms. Fatigue problems with these : structures have plagued multip...

  8. A multi-frequency fatigue testing method for wind turbine rotor blades

    Science.gov (United States)

    Eder, M. A.; Belloni, F.; Tesauro, A.; Hanis, T.

    2017-02-01

    Rotor blades are among the most delicate components of modern wind turbines. Reliability is a crucial aspect, since blades shall ideally remain free of failure under ultra-high cycle loading conditions throughout their designated lifetime of 20-25 years. Full-scale blade tests are the most accurate means to experimentally simulate damage evolution under operating conditions, and are therefore used to demonstrate that a blade type fulfils the reliability requirements to an acceptable degree of confidence. The state-of-the-art testing method for rotor blades in industry is based on resonance excitation where typically a rotating mass excites the blade close to its first natural frequency. During operation the blade response due to external forcing is governed by a weighted combination of its eigenmodes. Current test methodologies which only utilise the lowest eigenfrequency induce a fictitious damage where additional tuning masses are required to recover the desired damage distribution. Even with the commonly adopted amplitude upscaling technique fatigue tests remain a time-consuming and costly endeavour. The application of tuning masses increases the complexity of the problem by lowering the natural frequency of the blade and therefore increasing the testing time. The novel method presented in this paper aims at shortening the duration of the state-of-the-art fatigue testing method by simultaneously exciting the blade with a combination of two or more eigenfrequencies. Taking advantage of the different shapes of the excited eigenmodes, the actual spatial damage distribution can be more realistically simulated in the tests by tuning the excitation force amplitudes rather than adding tuning masses. This implies that in portions of the blade the lowest mode is governing the damage whereas in others higher modes contribute more significantly due to their higher cycle count. A numerical feasibility study based on a publicly available large utility rotor blade is used to

  9. Fatigue Reliability under Multiple-Amplitude Loads

    DEFF Research Database (Denmark)

    Talreja, R.

    1979-01-01

    for the initial tensile strength and the fatigue life, the probability distributions for the residual tensile strength in both the crack initiation and the crack propagation stages of fatigue are determined. The method is illustrated for two-amplitude loads by means of experimental results obtained by testing...

  10. Miniaturized fatigue crack growth specimen technology and results

    International Nuclear Information System (INIS)

    Puigh, R.J.; Bauer, R.E.; Ermi, A.M.; Chin, B.A.

    1981-01-01

    The miniature fatigue crack propagation technology has been extended to in-cell fabrication of irradiated specimens. Baseline testing of selected titanium alloys has been performed at 25 0 C in air. At relatively small values for the stress intensity factor, ΔK, the crack growth rates for all titanium alloys investigated are within a factor of three. The crack growth rates for these titanium alloys are a factor of three greater than the crack growth rates of either 316SS (20% CW) or HT-9. Each of the titanium alloys has observable crack propagation for stress intensity factors as small as 4.2 MPa√m

  11. Analysis of bearing steel exposed to rolling contact fatigue

    DEFF Research Database (Denmark)

    Hansen, K. T.; Fæster, Søren; Natarajan, Anand

    2017-01-01

    The objective of this work is to characterize fatigue damage in roller bearings under conditions of high load and slippage. A test rig constructed for rolling contact fatigue tests of rings is described, and test results are presented for rings taken from two spherical roller bearings. The prepar...

  12. Fatigue damage observed non-destructively in fibre composite coupon test specimens by X-ray CT

    DEFF Research Database (Denmark)

    Jespersen, Kristine Munk; Mikkelsen, Lars Pilgaard

    2016-01-01

    This study presents a method for monitoring the 3D fatigue damage progression on a micro-structural level in a glass fibre/polymer coupon test specimen by means of laboratory X-ray Computed Tomography (CT). A modified mount and holder made for the standard test samples to fit into the X-ray CT...... scanner along with a tension clamp solution is presented. Initially, the same location of the test specimen is inspected by ex-situ X-ray CT during the fatigue loading history, which shows the damage progression on a micro-structural level. The openings of individual uni-directional (UD) fibre fractures...

  13. Thermal Acoustic Fatigue Apparatus

    Data.gov (United States)

    Federal Laboratory Consortium — The Thermal Acoustic Fatigue Apparatus (TAFA) is a progressive wave tube test facility that is used to test structures for dynamic response and sonic fatigue due to...

  14. Fatigue in Breakwater Concrete Armour Units

    OpenAIRE

    Burcharth, Hans F.

    1984-01-01

    The reliability of rubble mound breakwaters depends on the hydraulic stability and the mechanical strength of the armour units. The paper deals with the important aspect of fatigue related to the strength of concrete armour units. Results showing significant fatigue from impact tests with Dolosse made of unreinforced and steel fibre reinforced flyash concrete are presented. Moreover universal graphs for fatigue in armour units made of conventional unreinforced concrete exposed to impact load ...

  15. Fatigue Strength of Titanium Risers - Defect Sensitivity

    Energy Technology Data Exchange (ETDEWEB)

    Babalola, Olusegun Tunde

    2001-07-01

    This study is centred on assessment of the fatigue strength of titanium fusion welds for deep-water riser's applications. Deep-water risers are subjected to significant fatigue loading. Relevant fatigue data for titanium fusion welds are very scarce. Hence there is a need for fatigue data and life prediction models for such weldments. The study has covered three topics: Fatigue testing, Fractography and defect assessment, and Fracture Mechanics modelling of fatigue crack growth. Two series of welded grade of titanium consisting of 14 specimens in each series were fatigue tested under constant amplitude loading. Prior to fatigue testing, strain gauge measurements of some specimens was conducted to enable the definition of stress range in the fatigue assessment procedure. The results were compared with finite solid element analysis and related to fatigue stresses in a riser pipe wall. Distribution and geometry of internal and surface defects both in the as-welded and in the post-weld machined conditions were assessed using fractography. This served as a tool to determine the fatigue initiation point in the welds. Fracture mechanics was applied to model fatigue strength of titanium welds with initiation from weld defects. Two different stress intensity factor formulations for embedded eccentrically placed cracks were used for analysis of elliptical cracks with the major axis parallel and close to one of the free surfaces. The methods were combined to give a satisfactory model for crack growth analysis. The model analyses crack growth of elliptical and semi-elliptical cracks in two directions, with updating of the crack geometry. Fatigue strength assessment was conducted using two crack growth models, the Paris-Erdogan relation with no threshold and the Donahue et al. relation with an implied threshold. The model was validated against experimental data, with a discussion on the choice of crack growth model. (author)

  16. Fatigue Performance of Composite Laminates After Low-velocity Impact

    Directory of Open Access Journals (Sweden)

    LIANG Xiao-lin

    2016-12-01

    Full Text Available Compression-compression fatigue tests were carried out on T300/5405 composite laminates after low-velocity impact, compression performance of the laminates with different impact damages was studied together with its fatigue life and damage propagation under different stress levels, then the effects of impact energy, stress level and damage propagation on fatigue life of laminates were discussed. The results indicate that impact damage can greatly reduce the residual strength of laminates; under low fatigue load levels, the higher impact energy is, the shorter the fatigue life of laminates with impact damage will be; damage propagation undergoes two stages during the fatigue test, namely the steady propagation and the rapid propagation, accounting for 80% and 20% of the overall fatigue life, respectively; damage propagation rate decreases with the reduction of stress level.

  17. Influence of sustained submaximal clenching fatigue test on electromyographic activity and maximum voluntary bite forces in healthy subjects and patients with temporomandibular disorders.

    Science.gov (United States)

    Xu, L; Fan, S; Cai, B; Fang, Z; Jiang, X

    2017-05-01

    This study aimed to investigate whether the fatigue induced by sustained motor task in the jaw elevator muscles differed between healthy subjects and patients with temporomandibular disorder (TMD). Fifteen patients with TMD and thirteen age- and sex-matched healthy controls performed a fatigue test consisting of sustained clenching contractions at 30% maximal voluntary clenching intensity until test failure (the criterion for terminating the fatigue test was when the biting force decreased by 10% or more from the target force consecutively for >3 s). The pre- and post-maximal bite forces (MBFs) were measured. Surface electromyographic signals were recorded from the superficial masseter muscles and anterior temporal muscles bilaterally, and the median frequency at the beginning, middle and end of the fatigue test was calculated. The duration of the fatigue test was also quantified. Both pre- and post-MBFs were lower in patients with TMD than in controls (P fatigue test in TMD patients was significantly shorter than that of the controls (P fatigued, but the electromyographic activation process during the fatigue test is similar between healthy subjects and patients with TMD. However, the mechanisms involved in this process remain unclear, and further research is warranted. © 2017 John Wiley & Sons Ltd.

  18. Fatigue failure of sandwich beams with face sheet wrinkle defects

    DEFF Research Database (Denmark)

    Leong, Martin Klitgaard; Hvejsel, C.F.; Thomsen, Ole Thybo

    2012-01-01

    This paper presents experimental fatigue results for GFRP face sheet/balsa core sandwich beams with face sheet wrinkle defects, subjected to fully reversed in-plane fatigue loading. An estimate of the fatigue design limit is presented, based on static test results, finite element analyses and app...

  19. Thermal fatigue of beryllium

    International Nuclear Information System (INIS)

    Deksnis, E.; Ciric, D.; Falter, H.

    1995-01-01

    Thermal fatigue life of S65c beryllium castellated to a geometry 6 x 6 x (8-10)mm deep has been tested for steady heat fluxes of 3 MW/m 2 to 5 MW/m 2 and under pulsed heat fluxes (10-20 MW/m 2 ) for which the time averaged heat flux is 5 MW/m 2 . These tests were carried out in the JET neutral beam test facility A test sequence with peak surface temperatures ≤ 600 degrees C produced no visible fatigue cracks. In the second series of tests, with T max ≤ 750 degrees C evidence for fatigue appeared after a minimum of 1350 stress cycles. These fatigue data are discussed in view of the observed lack of thermal fatigue in JET plasma operations with beryllium PFC. JET experience with S65b and S65c is reviewed; recent operations with Φ = 25 MW/m 2 and sustained melting/resolidification are also presented. The need for a failure criterion for finite element analyses of Be PFC lifetimes is discussed

  20. Effects on fatigue life of gate valves due to higher torque switch settings during operability testing

    International Nuclear Information System (INIS)

    Richins, W.D.; Snow, S.D.; Miller, G.K.; Russell, M.J.; Ware, A.G.

    1995-12-01

    Some motor operated valves now have higher torque switch settings due to regulatory requirements to ensure valve operability with appropriate margins at design basis conditions. Verifying operability with these settings imposes higher stem loads during periodic inservice testing. These higher test loads increase stresses in the various valve internal parts which may in turn increase the fatigue usage factors. This increased fatigue is judged to be a concern primarily in the valve disks, seats, yokes, stems, and stem nuts. Although the motor operators may also have significantly increased loading, they are being evaluated by the manufacturers and are beyond the scope of this study. Two gate valves representative of both relatively weak and strong valves commonly used in commercial nuclear applications were selected for fatigue analyses. Detailed dimensional and test data were available for both valves from previous studies at the Idaho National Engineering Laboratory. Finite element models were developed to estimate maximum stresses in the internal parts of the valves and to identity the critical areas within the valves where fatigue may be a concern. Loads were estimated using industry standard equations for calculating torque switch settings prior and subsequent to the testing requirements of USNRC Generic Letter 89--10. Test data were used to determine both; (1) the overshoot load between torque switch trip and final seating of the disk during valve closing and (2) the stem thrust required to open the valves. The ranges of peak stresses thus determined were then used to estimate the increase in the fatigue usage factors due to the higher stem thrust loads. The usages that would be accumulated by 100 base cycles plus one or eight test cycles per year over 40 and 60 years of operation were calculated

  1. Experimental investigation on low cycle fatigue and creep-fatigue interaction of DZ125 in different dwell time at elevated temperatures

    International Nuclear Information System (INIS)

    Shi Duoqi; Liu Jinlong; Yang Xiaoguang; Qi Hongyu; Wang Jingke

    2010-01-01

    Research highlights: → This paper has researched creep-fatigue interaction of directionally solidified superalloy DZ125 with different dwell time at high temperature combined with micro-mechanism by experiment. → The results indicated that the life of creep-fatigue decreases as dwell time increases, but the life of this alloy was almost unchanged when dwell time exceeds a critical value at 850 deg. C. - Abstract: The low cycle fatigue (LCF) and creep-fatigue tests have been conducted with directionally solidified nickel-based superalloy DZ125 at 850 and 980 deg. C to study the creep-fatigue interaction behavior of alloy with different dwell time. On the average, the life of creep-fatigue tests are about 70% less than the life of LCF tests under the same strain range at 850 deg. C. The life of creep-fatigue decreases as dwell time increases, but the life of this alloy was almost unchanged when dwell time exceeds a critical value at 850 deg. C. Scanning electron microscope (SEM) analyses of the fracture revealed that the fracture modes were influenced by different way of loading. In case of LCF, the primary fracture mode was transgranular, while in case of creep-fatigue, the primary fracture mode was mixed with transgranular and intergranular. There were also obvious different morphologies of surface crack between LCF and creep-fatigue.

  2. Probabilistic Flexural Fatigue in Plain and Fiber-Reinforced Concrete.

    Science.gov (United States)

    Ríos, José D; Cifuentes, Héctor; Yu, Rena C; Ruiz, Gonzalo

    2017-07-07

    The objective of this work is two-fold. First, we attempt to fit the experimental data on the flexural fatigue of plain and fiber-reinforced concrete with a probabilistic model (Saucedo, Yu, Medeiros, Zhang and Ruiz, Int. J. Fatigue, 2013, 48, 308-318). This model was validated for compressive fatigue at various loading frequencies, but not for flexural fatigue. Since the model is probabilistic, it is not necessarily related to the specific mechanism of fatigue damage, but rather generically explains the fatigue distribution in concrete (plain or reinforced with fibers) for damage under compression, tension or flexion. In this work, more than 100 series of flexural fatigue tests in the literature are fit with excellent results. Since the distribution of monotonic tests was not available in the majority of cases, a two-step procedure is established to estimate the model parameters based solely on fatigue tests. The coefficient of regression was more than 0.90 except for particular cases where not all tests were strictly performed under the same loading conditions, which confirms the applicability of the model to flexural fatigue data analysis. Moreover, the model parameters are closely related to fatigue performance, which demonstrates the predictive capacity of the model. For instance, the scale parameter is related to flexural strength, which improves with the addition of fibers. Similarly, fiber increases the scattering of fatigue life, which is reflected by the decreasing shape parameter.

  3. Flexural fatigue behavior of steel fiber reinforced concrete structures

    International Nuclear Information System (INIS)

    Chang, G.I.; Chai, W.K.; Park, C.W.; Min, I.K.

    1993-01-01

    In this thesis, the fatigue tests are performed on a series of SFRC (steel fiber reinforced concrete) to investigate the fatigue behavior of SFRC varing with the steel fiber contents and the steel fiber aspect ratios. Thirty SFRC beams are used in this test. The relationships between repeated loading cycle and mid-span deflection of the beams are observed under the three-point loading system. From the test results, the effects of the fiber content and the fiber aspect ratio on the concrete fatigue behavior were studied. According to the regression technique, some empirical formulae for predicting the fatigue strength of SFRC beams are also suggested. (author)

  4. Self-reported post-exertional fatigue in Gulf War veterans: roles of autonomic testing

    Science.gov (United States)

    Li, Mian; Xu, Changqing; Yao, Wenguo; Mahan, Clare M.; Kang, Han K.; Sandbrink, Friedhelm; Zhai, Ping; Karasik, Pamela A.

    2014-01-01

    To determine if objective evidence of autonomic dysfunction exists from a group of Gulf War veterans with self-reported post-exertional fatigue, we evaluated 16 Gulf War ill veterans and 12 Gulf War controls. Participants of the ill group had self- reported, unexplained chronic post-exertional fatigue and the illness symptoms had persisted for years until the current clinical study. The controls had no self-reported post-exertional fatigue either at the time of initial survey nor at the time of the current study. We intended to identify clinical autonomic disorders using autonomic and neurophysiologic testing in the clinical context. We compared the autonomic measures between the 2 groups on cardiovascular function at both baseline and head-up tilt, and sudomotor function. We identified 1 participant with orthostatic hypotension, 1 posture orthostatic tachycardia syndrome, 2 distal small fiber neuropathy, and 1 length dependent distal neuropathy affecting both large and small fiber in the ill group; whereas none of above definable diagnoses was noted in the controls. The ill group had a significantly higher baseline heart rate compared to controls. Compound autonomic scoring scale showed a significant higher score (95% CI of mean: 1.72–2.67) among ill group compared to controls (0.58–1.59). We conclude that objective autonomic testing is necessary for the evaluation of self-reported, unexplained post-exertional fatigue among some Gulf War veterans with multi-symptom illnesses. Our observation that ill veterans with self-reported post-exertional fatigue had objective autonomic measures that were worse than controls warrants validation in a larger clinical series. PMID:24431987

  5. Fatigue Life Analysis and Prediction of 316L Stainless Steel Under Low Cycle Fatigue Loading

    Energy Technology Data Exchange (ETDEWEB)

    Oh, Hyeong; Myung, NohJun; Choi, Nak-Sam [Hanyang Univ., Seoul (Korea, Republic of)

    2016-12-15

    In this study, a strain-controlled fatigue test of widely-used 316L stainless steel with excellent corrosion resistance and mechanical properties was conducted, in order to assess its fatigue life. Low cycle fatigue behaviors were analyzed at room temperature, as a function of the strain amplitude and strain ratio. The material was hardened during the initial few cycles, and then was softened during the long post period, until failure occurred. The fatigue life decreased with increasing strain amplitude. Masing behavior in the hysteresis loop was shown under the low strain amplitude, whereas the high strain amplitude caused non-Masing behavior and reduced the mean stress. Low cycle fatigue life prediction based on the cyclic plastic energy dissipation theory, considering Masing and non-Masing effects, showed a good correlation with the experimental results.

  6. Blood-Borne Markers of Fatigue in Competitive Athletes – Results from Simulated Training Camps

    Science.gov (United States)

    Hecksteden, Anne; Skorski, Sabrina; Schwindling, Sascha; Hammes, Daniel; Pfeiffer, Mark; Kellmann, Michael; Ferrauti, Alexander; Meyer, Tim

    2016-01-01

    Assessing current fatigue of athletes to fine-tune training prescriptions is a critical task in competitive sports. Blood-borne surrogate markers are widely used despite the scarcity of validation trials with representative subjects and interventions. Moreover, differences between training modes and disciplines (e.g. due to differences in eccentric force production or calorie turnover) have rarely been studied within a consistent design. Therefore, we investigated blood-borne fatigue markers during and after discipline-specific simulated training camps. A comprehensive panel of blood-born indicators was measured in 73 competitive athletes (28 cyclists, 22 team sports, 23 strength) at 3 time-points: after a run-in resting phase (d 1), after a 6-day induction of fatigue (d 8) and following a subsequent 2-day recovery period (d 11). Venous blood samples were collected between 8 and 10 a.m. Courses of blood-borne indicators are considered as fatigue dependent if a significant deviation from baseline is present at day 8 (Δfatigue) which significantly regresses towards baseline until day 11 (Δrecovery). With cycling, a fatigue dependent course was observed for creatine kinase (CK; Δfatigue 54±84 U/l; Δrecovery -60±83 U/l), urea (Δfatigue 11±9 mg/dl; Δrecovery -10±10 mg/dl), free testosterone (Δfatigue -1.3±2.1 pg/ml; Δrecovery 0.8±1.5 pg/ml) and insulin linke growth factor 1 (IGF-1; Δfatigue -56±28 ng/ml; Δrecovery 53±29 ng/ml). For urea and IGF-1 95% confidence intervals for days 1 and 11 did not overlap with day 8. With strength and high-intensity interval training, respectively, fatigue-dependent courses and separated 95% confidence intervals were present for CK (strength: Δfatigue 582±649 U/l; Δrecovery -618±419 U/l; HIIT: Δfatigue 863±952 U/l; Δrecovery -741±842 U/l) only. These results indicate that, within a comprehensive panel of blood-borne markers, changes in fatigue are most accurately reflected by urea and IGF-1 for cycling and by CK

  7. Sensitivity, reliability and the effects of diurnal variation on a test battery of field usable upper limb fatigue measures.

    Science.gov (United States)

    Yung, Marcus; Wells, Richard P

    2017-07-01

    Fatigue has been linked to deficits in production quality and productivity and, if of long duration, work-related musculoskeletal disorders. It may thus be a useful risk indicator and design and evaluation tool. However, there is limited information on the test-retest reliability, the sensitivity and the effects of diurnal fluctuation on field usable fatigue measures. This study reports on an evaluation of 11 measurement tools and their 14 parameters. Eight measures were found to have test-retest ICC values greater than 0.8. Four measures were particularly responsive during an intermittent fatiguing condition. However, two responsive measures demonstrated rhythmic behaviour, with significant time effects from 08:00 to mid-afternoon and early evening. Action tremor, muscle mechanomyography and perceived fatigue were found to be most reliable and most responsive; but additional analytical considerations might be required when interpreting daylong responses of MMG and action tremor. Practitioner Summary: This paper presents findings from test-retest and daylong reliability and responsiveness evaluations of 11 fatigue measures. This paper suggests that action tremor, muscle mechanomyography and perceived fatigue were most reliable and most responsive. However, mechanomyography and action tremor may be susceptible to diurnal changes.

  8. A preliminary bending fatigue spectrum for steel monostrand cables

    DEFF Research Database (Denmark)

    Winkler, Jan; Fischer, Gregor; Georgakis, Christos T.

    2011-01-01

    This paper presents the results of the experimental study on the bending fatigue resistance of high-strength steel monostrand cables. From the conducted fatigue tests in the high-stress, low-cycle region, a preliminary bending fatigue spectrum is derived for the estimation of monostrand cable...... service life expectancy. The presented preliminary bending fatigue spectrum of high-strength monostrands is currently unavailable in the published literature. The presented results provide relevant information on the bending mechanism and fatigue characteristics of monostrand steel cables in tension...... and flexure and show that localized cable bending has a pronounced influence on the fatigue resistance of cables under dynamic excitations....

  9. Several submaximal exercise tests are reliable, valid and acceptable in people with chronic pain, fibromyalgia or chronic fatigue: a systematic review

    OpenAIRE

    Julia Ratter; Lorenz Radlinger; Cees Lucas

    2014-01-01

    Question: Are submaximal and maximal exercise tests reliable, valid and acceptable in people with chronic pain, fibromyalgia and fatigue disorders? Design: Systematic review of studies of the psychometric properties of exercise tests. Participants: People older than 18 years with chronic pain, fibromyalgia and chronic fatigue disorders. Intervention: Studies of the measurement properties of tests of physical capacity in people with chronic pain, fibromyalgia or chronic fatigue disorders were ...

  10. Simulation of Fatigue Crack Initiation at Corrosion Pits With EDM Notches

    Science.gov (United States)

    Smith, Stephen W.; Newman, John A.; Piascik, Robert S.

    2003-01-01

    Uniaxial fatigue tests were conducted to compare the fatigue life of laboratory produced corrosion pits, similar to those observed in the shuttle main landing gear wheel bolt-hole, and an electro-discharged-machined (EDM) flaw. EDM Jaws are used to simulate corrosion pits during shuttle wheel (dynamometer) testing. The aluminum alloy, (AA 7050) laboratory fatigue tests were conducted to simulate the local stress level contained in the wheel bolt-hole. Under this high local stress condition, the EDM notch produced a fatigue life similar to test specimens containing corrosion pits of similar size. Based on the laboratory fatigue test results, the EDM Jaw (semi-circular disc shaped) produces a local stress state similar to corrosion pits and can be used to simulate a corrosion pit during the shuttle wheel dynamometer tests.

  11. Areva fatigue concept. Fast fatigue evaluation, a new method for fatigue analysis

    International Nuclear Information System (INIS)

    Heinz, Benedikt; Bergholz, Steffen; Rudolph, Juergen

    2011-01-01

    Within the discussions on the long term operation (LTO) of nuclear power plants the ageing management is on the focus of that analysis. The knowledge of the operational thermal cyclic load data on components of the power plants and their evaluation in the fatigue analysis is a central concern. The changes in fatigue requirements (e.g. the consideration of environmentally assisted fatigue - EAF) recently discussed and LTO efforts are a strong motivation for the identification of margins in the existing fatigue analysis approaches. These margins should be considered within new approaches in order to obtain realistic (or more accurate) analysis results. Of course, these new analysis approaches have to be manageable and efficient. The Areva Fatigue Concept (AFC) offers the comprehensive conceptual basis for the consideration of fatigue on different levels and depths. The combination of data logging and automated fatigue evaluation are important modules of the AFC. Besides the established simplified stress based fatigue estimation Areva develops a further automated fatigue analysis method called Fast Fatigue Evaluation (FFE). This method comprises highly automated stress analyses at the fatigue relevant locations of the component. Hence, a component specific course of stress as a function of time is determined based on FAMOS or similar temperature measurement systems. The subsequent application of the rain flow cycle counting algorithm allows for the determination of the usage factor following the rules of the design code requirements. The new FFE approach constitutes a cycle counting method based on the real stresses in the component, and determined as result a rule-conformity cumulative usage factor. (orig.)

  12. Evaluation of Mechanical Properties and Fatigue Behavior of STS 304L due to Plastic Working

    Energy Technology Data Exchange (ETDEWEB)

    Shim, Hyun-Bo [Yeungnam Univ., Daegu (Korea, Republic of); Kim, Young-Kyun [KOGAS Research Institute, Seoul (Korea, Republic of); Suh, Chang-Min [Kyungpook Nat’l Univ., Daegu (Korea, Republic of)

    2017-07-15

    The purpose of this study is to investigate the influence of the cold reduction rate and an ultrasonic fatigue test (UFT) on the fatigue behaviors of STS 304L. The tensile strength, yield strength, hardness value and fatigue limit in the UFT fatigue test linearly increased as thickness decreased from 1.5 mm to 1.1 mm, as the cold reduction rate of STS 304L increased. As a result of the UFT fatigue test (R = -1) of four specimens, the fatigue limit of the S-N curve formed a knee point in the region of 10{sup 6}, and the 2nd fatigue limit caused by giga cycle fatigue did not appeared. In the case of t = 1.1 mm, the highest fatigue limit was 345 MPa, which was 64.3% higher than the original material (t = 1.5 mm). As a result of the UFT fatigue test of STS 304L, many small surface cracks occurred, grown, coalesced while tearing.

  13. Static, Fire and Fatigue Tests of Ultra High-Strength Fibre Reinforced Concrete and Ribbed Bars

    DEFF Research Database (Denmark)

    Hansen, Lars Pilegaard; Heshe, Gert

    2001-01-01

    A new building system has been developed during the last 10 years. This new system consists of a column / slab system with 6 x 6 m distance between the columns. The slabs are precast concrete elements of size 2.9 x 5.9 m connected through joints of ultra high strength fibre reinforced concrete...... - Densit Joint Cast ®. Also the connections between the columns and the slabs are made of this very strong concrete material. The paper describes some of the static tests carried out as well as some fire tests. Further, 2 chapters deal with some fatigue tests of the reinforcing bars as well as some fatigue...

  14. Fatigue crack growth in an aluminum alloy-fractographic study

    Science.gov (United States)

    Salam, I.; Muhammad, W.; Ejaz, N.

    2016-08-01

    A two-fold approach was adopted to understand the fatigue crack growth process in an Aluminum alloy; fatigue crack growth test of samples and analysis of fractured surfaces. Fatigue crack growth tests were conducted on middle tension M(T) samples prepared from an Aluminum alloy cylinder. The tests were conducted under constant amplitude loading at R ratio 0.1. The stress applied was from 20,30 and 40 per cent of the yield stress of the material. The fatigue crack growth data was recorded. After fatigue testing, the samples were subjected to detailed scanning electron microscopic (SEM) analysis. The resulting fracture surfaces were subjected to qualitative and quantitative fractographic examinations. Quantitative fracture analysis included an estimation of crack growth rate (CGR) in different regions. The effect of the microstructural features on fatigue crack growth was examined. It was observed that in stage II (crack growth region), the failure mode changes from intergranular to transgranular as the stress level increases. In the region of intergranular failure the localized brittle failure was observed and fatigue striations are difficult to reveal. However, in the region of transgranular failure the crack path is independent of the microstructural features. In this region, localized ductile failure mode was observed and well defined fatigue striations were present in the wake of fatigue crack. The effect of interaction of growing fatigue crack with microstructural features was not substantial. The final fracture (stage III) was ductile in all the cases.

  15. Cyclic mechanical fatigue in ceramic-ceramic composites: an update

    International Nuclear Information System (INIS)

    Lewis, D. III

    1983-01-01

    Attention is given to cyclic mechanical fatigue effects in a number of ceramics and ceramic composites, including several monolithic ceramics in which significant residual stresses should be present as a result of thermal expansion mismatches and anisotropy. Fatigue is also noted in several BN-containing ceramic matrix-particulate composites and in SiC fiber-ceramic matrix composites. These results suggest that fatigue testing is imperative for ceramics and ceramic composites that are to be used in applications subject to cyclic loading. Fatigue process models are proposed which provide a rationale for fatigue effect observations, but do not as yet provide quantitative results. Fiber composite fatigue damage models indicate that design stresses in these materials may have to be maintained below the level at which fiber pullout occurs

  16. Resonance bending fatigue testing with simultaneous damping measurement and its application on layered coatings

    Czech Academy of Sciences Publication Activity Database

    Kovářík, O.; Haušild, P.; Čapek, J.; Medřický, Jan; Siegl, J.; Mušálek, Radek; Pala, Zdeněk; Curry, N.; Bjorklund, S.

    2016-01-01

    Roč. 82, January (2016), s. 300-309 ISSN 0142-1123. [International Conference on Fatigue Damage of Structural Materials Conference/10./. Massachusetts, 21.09.2014-26.09.2014] R&D Projects: GA ČR GB14-36566G Institutional support: RVO:61389021 Keywords : Crack detection * Damping * Fatigue * Hastelloy-X * Nondestructive test ing Subject RIV: JK - Corrosion ; Surface Treatment of Materials Impact factor: 2.899, year: 2016 http://www.sciencedirect.com/science/article/pii/S0142112315002443

  17. Resonance bending fatigue testing with simultaneous damping measurement and its application on layered coatings

    Czech Academy of Sciences Publication Activity Database

    Kovářík, O.; Haušild, P.; Čapek, J.; Medřický, Jan; Siegl, J.; Mušálek, Radek; Pala, Zdeněk; Curry, N.; Bjorklund, S.

    2016-01-01

    Roč. 82, January (2016), s. 300-309 ISSN 0142-1123. [International Conference on Fatigue Damage of Structural Materials Conference/10./. Massachusetts, 21.09.2014-26.09.2014] R&D Projects: GA ČR GB14-36566G Institutional support: RVO:61389021 Keywords : Crack detection * Damping * Fatigue * Hastelloy-X * Nondestructive testing Subject RIV: JK - Corrosion ; Surface Treatment of Materials Impact factor: 2.899, year: 2016 http://www.sciencedirect.com/science/article/pii/S0142112315002443

  18. Seismic ratchet-fatigue failure of piping systems

    International Nuclear Information System (INIS)

    Severud, L.K.; Anderson, M.J.; Lindquist, M.R.; Weiner, E.O.

    1986-01-01

    Failures of piping systems during earthquakes have been rare. Those that have failed were either made of brittle material such as cast iron, were rigid systems between major components where component relative seismic motions tore the pipe out of the component, or were high pressure systems where a ratchet-fatigue fracture followed a local bulging of the pipe diameter. Tests to failure of an unpressurized 3-in. and a pressurized 6-in. diameter carbon steel nuclear pipe systems subjected to high level shaking have been accomplished. Failure analyses of these tests are presented and correlated to the test results. It was found that failure of the unpressurized system could be correlated well with standard ASME type fatigue analysis predictions. Moreover, the pressurized system failure occurred in significantly less load cycles than predicted by standard fatigue analysis. However, a ratchet-fatigue and ductility exhaustion analysis of the pressurized system did correlate very well. These findings indicate modifications to design analysis methods and the present ASME Code piping design rules may be appropriate to cover the ratchet-fatigue failure mode

  19. Accelerated Comparative Fatigue Strength Testing of Belt Adhesive Joints

    Science.gov (United States)

    Bajda, Miroslaw; Blazej, Ryszard; Jurdziak, Leszek

    2017-12-01

    Belt joints are the weakest link in the serial structure that creates an endless loop of spliced belt segments. This affects not only the lower strength of adhesive joints of textile belts in comparison to vulcanized splices, but also the replacement of traditional glues to more ecological but with other strength parameters. This is reflected in the lowered durability of adhesive joints, which in underground coal mines is nearly twice shorter than the operating time of belts. Vulcanized splices require high precision in performance, they need long time to achieve cross-linking of the friction mixture and, above all, they require specialized equipment (vulcanization press) which is not readily available and often takes much time to be delivered down, which means reduced mining output or even downtime. All this reduces the reliability and durability of adhesive joints. In addition, due to the consolidation on the Polish coal market, mines are joined into large economic units serviced by a smaller number of processing plants. The consequence is to extend the transport routes downstream and increase reliability requirements. The greater number of conveyors in the chain reduces reliability of supply and increases production losses. With high fixed costs of underground mines, the reduction in mining output is reflected in the increase in unit costs, and this at low coal prices on the market can mean substantial losses for mines. The paper describes the comparative study of fatigue strength of shortened samples of adhesive joints conducted to compare many different variants of joints (various adhesives and materials). Shortened samples were exposed to accelerated fatigue in the usually long-lasting dynamic studies, allowing more variants to be tested at the same time. High correlation between the results obtained for shortened (100 mm) and traditional full-length (3×250 mm) samples renders accelerated tests possible.

  20. Corrosion fatigue of 2219-T87 aluminum alloy

    Science.gov (United States)

    Mcmillan, V. C.

    1986-01-01

    Corrosion fatigue studies were conducted on bare, chemical conversion coated, and anodized 2219-T87 aluminum alloy. These tests were performed using a rotating beam machine running at a velocity of 2500 rpm. The corrosive environments tested were distilled water, 100 ppm NaCl, and 3.5 percent NaCl. Results were compared to the endurance limit in air. An evaluation of the effect of protective coatings on corrosion fatigue was made by comparing the fatigue properties of specimens with coatings to those without.

  1. Fatigue behaviour of uni-directional flax fibre/epoxy composites

    DEFF Research Database (Denmark)

    Ueki, Yosuke; Lilholt, Hans; Madsen, Bo

    2015-01-01

    A study related to the fatigue behaviour of natural fibre-reinforced composites was conducted to expand their range of product applications. A uni-directional flax-epoxy composite was fabricated and several conditions of tension-tension fatigue tests were performed. During fatigue testing......, the composite showed an increase of stiffness, a typical observation for natural fibre-reinforced composites, and this was found to be accompanied by accumulation of residual strain. A clear linear relationship was found between the stiffening effect and the residual strain. In addition, it was revealed...... that the fatigue behaviour was clearly influenced by the frequency of cyclic loading. Lower frequencies induced more significant stiffening and shorter fatigue life. These results suggest that fatigue damaging is progressing simultaneously with the stiffening effect in natural fibre-reinforced composites...

  2. Thermal fatigue behavior of valves

    International Nuclear Information System (INIS)

    Moinereau, D.; Scliffet, L.; Capion, J.C.; Genette, P.

    1991-01-01

    This paper reports that valves of pressurized water reactors are exposed to thermal shocks during transient operations. The numerous thermal shock tests performed on valves on the EDF test facilities have shown the sensibility of fillets and geometrical discontinuities to thermal fatigue: cracks can appear in those areas and grow through the valve body. Valves systems designated as level 1 must be designed to withstand fatigue up to the second isolation valve: the relevant rule is specified in the paragraph B 3500 of the French RCCM code. It is a simplified method which doesn't require finite element calculations. Many valve systems have been designed according to this rule and have been operated without accident. However, in one case, important cracks were found in the fillet of a check-valve after numerous thermal shocks. Calculation of the valve's behavior according to the RCCM code to estimate the fatigue damage resulting from thermal shocks led to a low damage factor, which doesn't agree with the experimental results. This was confirmed by new testings and showed the inadequacy of B 3500 rule for thermal transients. On this base a new rule is proposed to estimate fatigue damage resulting from thermal shocks. An experimental program has been realized to validate this rule. Axisymetrical analytical mock-ups with different geometries and one check-valve in austenitic stainless steel 316 L have been submitted to hot thermal shocks of 210 degrees C magnitude

  3. Thermal fatigue testing of a diffusion-bonded beryllium divertor mock-up under ITER relevant conditions

    International Nuclear Information System (INIS)

    Youchison, D.L.; Guiniiatouline, R.; Watson, R.D.

    1994-01-01

    Thermal response and thermal fatigue tests of four 5 mm thick beryllium tiles on a Russian divertor mock-up were completed on the Electron Beam Test System at Sandia National Laboratories. The beryllium tiles were diffusion bonded onto an OFHC copper saddleblock and a DSCu (MAGT) tube containing a porous coating. Thermal response tests were performed on the tiles to an absorbed heat flux of 5 MW/m 2 and surface temperatures near 300 degrees C using 1.4 MPa water at 5.0 m/s flow velocity and an inlet temperature of 8-15 degrees C. One tile was exposed to incrementally increasing heat fluxes up to 9.5 MW/m 2 and surface temperatures up to 690 degrees C before debonding at 10 MW/m 2 . A third tile debonded after 9200 thermal fatigue cycles at 5 MW/m 2 , while another debonded after 6800 cycles. In all cases, fatigue failure occurred in the intermetallic layers between the beryllium and copper. No fatigue cracking of the bulk beryllium was observed. During thermal cycling, a gradual loss of porous coating produced increasing sample temperatures. These experiments indicate that diffusion-bonded beryllium tiles can survive several thousand thermal cycles under ITER relevant conditions without failure. However, the reliability of the diffusion bonded Joint remains a serious issue

  4. Comparison of Crack Growth Test Results at Elevated Temperature and Design Code Material Properties for Grade 91 Steel

    Energy Technology Data Exchange (ETDEWEB)

    Lee, Hyeong-Yeon; Kim, Woo-Gon; Kim, Nak-Hyun [Korea Atomic Energy Reserach Institute, Daejeon (Korea, Republic of)

    2015-01-15

    The material properties of crack growth models at an elevated temperature were derived from the results of numerous crack growth tests for Mod.9Cr-1Mo (ASME Grade 91) steel specimens under fatigue loading and creep loading at an elevated temperature. These crack growth models were needed for defect assessment under creep-fatigue loading. The mathematical crack growth rate models for fatigue crack growth (FCG) and creep crack growth (CCG) were determined based on the test results, and the models were compared with those of the French design code RCCMRx to investigate the conservatism of the code. The French design code RCC-MRx provides an FCG model and a CCG model for Grade 91 steel in Section III Tome 6. It was shown that the FCG model of RCC-MRx is conservative, while the CCG model is non-conservative compared with the present test data. Thus, it was shown that further validation of the property was required. Mechanical strength tests and creep tests were also conducted, and the test results were compared with those of RCC-MRx.

  5. Reliability improvement of wire bonds subjected to fatigue stresses.

    Science.gov (United States)

    Ravi, K. V.; Philofsky, E. M.

    1972-01-01

    The failure of wire bonds due to repeated flexure when semiconductor devices are operated in an on-off mode has been investigated. An accelerated fatigue testing apparatus was constructed and the major fatigue variables, aluminum alloy composition, and bonding mechanism, were tested. The data showed Al-1% Mg wires to exhibit superior fatigue characteristics compared to Al-1% Cu or Al-1% Si and ultrasonic bonding to be better than thermocompression bonding for fatigue resistance. Based on these results highly reliable devices were fabricated using Al-1% Mg wire with ultrasonic bonding which withstood 120,000 power cycles with no failures.

  6. Results of UT training for defect detection and sizing technique using specimens with fatigue crack and SCC

    International Nuclear Information System (INIS)

    Yoneyama, H.; Yamaguchi, A.; Sugibayashi, T.

    2005-01-01

    At the importance increase of UT (ultrasonic testing) with the application of rules on fitness-for-service for nuclear power plants, JAPEIC (Japan power engineering and inspection corporation) started education training for defect detection and sizing technique. Weld joints specimen with EDM (Electro-Discharged Machining) notches, fatigue cracks and intergranular stress corrosion cracks were tested and practiced repeatedly based on a modified ultrasonic method and the defect size measuring accuracy of the trainees was surely improved. Results of the blind test confirmed effectiveness of education training. (T. Tanaka)

  7. Verification of anti-fatigue effect of anserine by angle fatigue indicator based on median frequency changes of electromyograms

    Directory of Open Access Journals (Sweden)

    Hirohisa Kishi

    2013-10-01

    Full Text Available ABSTRACT: Objective: Anserine, which is abundant in avian species and in a wide range of fish such as bonito and tuna, is reported to have anti-fatigue effect. Although chicken soup and bonito soup is traditionally used to recover from physical fatigue, it is generally difficult to verify the effect in humans. This study was to directly demonstrate the anti-fatigue effect of oceanic anserine in humans. Methods: Edible-grade anserine was purified from fish extract with food-grade reagents. Subjects were 17 healthy male volunteers (35.5 ± 5 yr., 75.5 ± 5.0 kg. Each subject performed the isometric exercise tolerance test (ETT on the rectus femoris muscle twice (Ex_1, Ex_2 both for anserine and water conditions on a different day. Median frequency changes (MDF during Functional Foods in Health and Disease 2013; 3(10 389-399 ETTs were calculated and regression curves were calculated over a frequency range of 21-214 Hz. The difference, or angle, between the slopes of Ex_1 and Ex_2 MDF regression curves, which corresponds to the degree of fatigue, was defined as an angle fatigue index and compared between anserine and water intake conditions. Results: MDF decreased during ETTs in most patients and the slopes of regression curves were larger in Ex_2 than in Ex_1. Angle fatigue index for water (control was significantly larger than that for anserine (p<0.01, paired t-test, n=17. The result indicates that anserine have an anti-fatigue effect on skeletal muscle in humans. Conclusions: We proposed the angle fatigue index as a touchstone of the muscle fatigue. The index indicates that anserine is effective to reduce the muscle fatigue in humans.

  8. Perceived Fatigue Interference and Depressed Mood: Comparison of Chronic Fatigue Syndrome/Myalgic Encephalomyelitis Patients with Fatigued Breast Cancer Survivors.

    Science.gov (United States)

    Hall, Daniel L; Antoni, Michael H; Lattie, Emily G; Jutagir, Devika R; Czaja, Sara J; Perdomo, Dolores; Lechner, Suzanne C; Stagl, Jamie M; Bouchard, Laura C; Gudenkauf, Lisa M; Traeger, Lara; Fletcher, MaryAnn; Klimas, Nancy G

    Persistent fatigue and depressive symptoms are both highly prevalent among patients with Chronic Fatigue Syndrome/Myalgic Encephalomyelitis (CFS/ME) as well as breast cancer survivors. This study aimed to assess and directly compare perceptions of fatigue as highly interfering in one's daily functioning in both patient populations to better understand their relationships with depressed mood. Participants were 95 female CFS/ME patients and 67 females who were approximately 5 years post-treatment for stage 0-III breast cancer presenting with clinically elevated fatigue severity. Self-report measures were obtained on participants' fatigue-related interference in daily functioning and fatigue severity as well as depressed mood. Hierarchical regression was used to test effects controlling for relevant demographic, psychosocial, and medical covariates. CFS/ME patients endorsed greater depressed mood and fatigue interference than did fatigued breast cancer survivors, p's fatigued breast cancer survivors (β=.18, p =.19). CFS/ME patients reported elevated fatigue symptoms and depression relative to fatigued breast cancer survivors. In the former group, greater depressed mood was highly and significantly associated with greater fatigue-related inference in daily activities. Potential targets for cognitive behavioral interventions are discussed.

  9. Fatigue evaluation algorithms: Review

    Energy Technology Data Exchange (ETDEWEB)

    Passipoularidis, V.A.; Broendsted, P.

    2009-11-15

    A progressive damage fatigue simulator for variable amplitude loads named FADAS is discussed in this work. FADAS (Fatigue Damage Simulator) performs ply by ply stress analysis using classical lamination theory and implements adequate stiffness discount tactics based on the failure criterion of Puck, to model the degradation caused by failure events in ply level. Residual strength is incorporated as fatigue damage accumulation metric. Once the typical fatigue and static properties of the constitutive ply are determined,the performance of an arbitrary lay-up under uniaxial and/or multiaxial load time series can be simulated. The predictions are validated against fatigue life data both from repeated block tests at a single stress ratio as well as against spectral fatigue using the WISPER, WISPERX and NEW WISPER load sequences on a Glass/Epoxy multidirectional laminate typical of a wind turbine rotor blade construction. Two versions of the algorithm, the one using single-step and the other using incremental application of each load cycle (in case of ply failure) are implemented and compared. Simulation results confirm the ability of the algorithm to take into account load sequence effects. In general, FADAS performs well in predicting life under both spectral and block loading fatigue. (author)

  10. The effect of notches and pits on corrosion fatigue strength

    Science.gov (United States)

    Tatner, Ian

    An investigation has been undertaken to examine the fatigue behaviour of two martensitic steels in air and aggressive environments. The steels studied are, 18% Ni marageing steel and FV520B, the later being a stainless steel turbine blade material and the former being a marageing steel that suffers general corrosion in mild environments. Both steels were heat treated to give similar tensile strength.The design and manufacture of an autoclave allowed push-pull fatigue tests to be conducted in aggressive environments at elevated temperatures.Corrosion potential was monitored using a three electrode cell and was controlled during testing. Base-line fatigue tests were conducted with a range of constant corrosion potentials, using both notched and plain FV520B specimens. In addition fatigue tests with pulsed corrosion potential were performed to asses the effect of transient corrosion conditions on the corrosion fatigue strength. The pulsed tests were designed to simulate service transients in the oxygen content and general chemical hostility in the condensing steam environment during start-up and shut down of the steam turbine.Post test examination of fractured samples was performed using Scanning Electron Microscopy (SEM) and optical microscope techniques. The fractography results were used to quantify microstructural and fracture features of the steels.A model based on the size and geometry of the initial corrosion pitting has been proposed to asses the fatigue life of FV520B in an aggressive environment.The effect of pitting on the corrosion fatigue strength of FV520B has been modelled using linear elastic fracture mechanics (LEFM) type approach. The model has shown a good correlation between predicted fatigue lives with experimental results.The results suggest that the fatigue life is governed by the mechanical stress concentrating effect of the pits rather than the electrochemical damage caused by the environment.Finite Element Analysis (FEA) of the notch allowed

  11. Laboratory Study on the Fatigue Resistance of Asphaltic Concrete Containing Titanium Dioxide

    Directory of Open Access Journals (Sweden)

    Buhari Rosnawati

    2018-01-01

    Full Text Available This study aims to evaluate the fatigue performance of modified asphalt mixture using Indirect Tensile Fatigue Test. Titanium Dioxide (TiO2 powder in a form of rutile was used for producing asphalt concrete with lower mixing and compaction temperature compared to conventional hot mix asphalt without reducing its physical and mechanical also resistance to fatigue. The characteristic of the asphalt and modified asphalt was evaluated using penetration test, softening test and rotational viscosity test. Titanium dioxide of 2%, 4%, 6%, 8% and 10% by weight of asphalt has been incorporated into unaged 80/100 asphalt mix in order to improvise its performance and to fulfill the objectives of this experimental study. As a result, TiO2 as an additive is potential to decrease the penetration and increasing the softening point of the asphalt. In terms of fatigue performance testing, addition TiO2 additive does help in improving the fatigue properties as it shows greater result than the control asphalt. In conclusion, TiO2 is great in improving fatigue properties.

  12. Laboratory Study on the Fatigue Resistance of Asphaltic Concrete Containing Titanium Dioxide

    Science.gov (United States)

    Buhari, Rosnawati; Ezree Abdullah, Mohd; Khairul Ahmad, Mohd; Azhar Tajudin, Saiful; Khatijah Abu Bakar, Siti

    2018-03-01

    This study aims to evaluate the fatigue performance of modified asphalt mixture using Indirect Tensile Fatigue Test. Titanium Dioxide (TiO2) powder in a form of rutile was used for producing asphalt concrete with lower mixing and compaction temperature compared to conventional hot mix asphalt without reducing its physical and mechanical also resistance to fatigue. The characteristic of the asphalt and modified asphalt was evaluated using penetration test, softening test and rotational viscosity test. Titanium dioxide of 2%, 4%, 6%, 8% and 10% by weight of asphalt has been incorporated into unaged 80/100 asphalt mix in order to improvise its performance and to fulfill the objectives of this experimental study. As a result, TiO2 as an additive is potential to decrease the penetration and increasing the softening point of the asphalt. In terms of fatigue performance testing, addition TiO2 additive does help in improving the fatigue properties as it shows greater result than the control asphalt. In conclusion, TiO2 is great in improving fatigue properties.

  13. Structural degradation of a large composite wind turbine blade in a full-scale fatigue test

    DEFF Research Database (Denmark)

    Chen, Xiao

    carried out at a coupon level to characterize fatigue degradation of composite materials, there is no much study focusing on fatigue degradation of rotor blades at a fullscale structural level. Do structural properties of composite blades degrade in a similar manner to what has been observed in material...... tests at a coupon level? What might be the concerns one should take into account when predicting residual structural properties of rotor blades? To answer, at least to a partial extent, these questions, this study conducts a full-scale fatigue test on a 47m composite rotor blade according to IEC 61400......Wind turbine blades are expected to sustain a high number of loading cycles typically up to a magnitude of 1,000 million during their targeted service lifetime of 20-25 years. Structural properties of composite blades degrade with the time. Although substantial studies, such as [1,2], have been...

  14. Fatigue Evaluation of Recycled Asphalt Mixture Based on Energy-Controlled Mode

    Directory of Open Access Journals (Sweden)

    Tao Ma

    2017-01-01

    Full Text Available The fatigue properties of asphalt mixtures are important inputs for mechanistic-empirical pavement design. To understand the fatigue properties of asphalt mixtures better and to predict the fatigue life of asphalt mixtures more precisely, the energy-controlled test mode was introduced. Based on the implementation theory, the laboratory practice for the energy-controlled mode was realized using a four-point-bending fatigue test with multiple-step loading. In this mode, the fatigue performance of typical AC-20 asphalt specimens with various reclaimed asphalt pavement (RAP contents was tested and evaluated. Results show that the variation regulation of the dissipated energy and accumulative energy is compatible with the loading control principle, which proves the feasibility of the method. In addition, the fatigue life of the asphalt mixture in the energy-controlled mode was between that for the stress-controlled and strain-controlled modes. The specimen with a higher RAP content has a longer fatigue life and better fatigue performance.

  15. Cross-cultural development of an item list for computer-adaptive testing of fatigue in oncological patients

    DEFF Research Database (Denmark)

    Giesinger, Johannes M.; Petersen, Morten Aa.; Grønvold, Mogens

    2011-01-01

    Within an ongoing project of the EORTC Quality of Life Group, we are developing computerized adaptive test (CAT) measures for the QLQ-C30 scales. These new CAT measures are conceptualised to reflect the same constructs as the QLQ-C30 scales. Accordingly, the Fatigue-CAT is intended to capture phy...... physical and general fatigue....

  16. The Nottingham Fatigue After Stroke (NotFAST) study: results from follow-up six months after stroke.

    Science.gov (United States)

    Hawkins, Louise; Lincoln, Nadina B; Sprigg, Nikola; Ward, Nick S; Mistri, Amit; Tyrrell, Pippa; Worthington, Esme; Drummond, Avril

    2017-12-01

    Background Post-stroke fatigue is common and disabling. Objectives The aim of NotFAST was to examine factors associated with fatigue in stroke survivors without depression, six months after stroke. Methods Participants were recruited from four UK stroke units. Those with high levels of depressive symptoms (score ≥7 on Brief Assessment Schedule Depression Cards) or aphasia were excluded. Follow-up assessment was conducted at six months after stroke. They were assessed on the Fatigue Severity Scale, Rivermead Mobility Index, Nottingham Extended Activities of Daily Living scale, Barthel Index, Beck Anxiety Index, Brief Assessment Schedule Depression Cards, Impact of Event Scale-Revised, and Sleep Hygiene Index. Results Of the 371 participants recruited, 263 (71%) were contacted at six months after stroke and 213 (57%) returned questionnaires. Approximately half (n = 109, 51%) reported fatigue at six months. Of those reporting fatigue initially (n = 88), 61 (69%) continued to report fatigue. 'De novo' (new) fatigue was reported by 48 (38%) of those not fatigued initially. Lower Nottingham Extended Activities of Daily Living scores and higher Beck Anxiety Index scores were independently associated with fatigue at six months. Conclusions Half the stroke survivors reported fatigue at six months post-stroke. Reduced independence in activities of daily living and higher anxiety levels were associated with the level of fatigue. Persistent and delayed onset fatigue may affect independence and participation in rehabilitation, and these findings should be used to inform the development of appropriate interventions.

  17. You make me tired: An experimental test of the role of interpersonal operant conditioning in fatigue.

    Science.gov (United States)

    Lenaert, Bert; Jansen, Rebecca; van Heugten, Caroline M

    2018-04-01

    Chronic fatigue is highly prevalent in the general population as well as in multiple chronic diseases and psychiatric disorders. Its etiology however remains poorly understood and cannot be explained by biological factors alone. Occurring in a psychosocial context, the experience and communication of fatigue may be shaped by social interactions. In particular, interpersonal operant conditioning may strengthen and perpetuate fatigue complaints. In this experiment, individuals (N = 44) repeatedly rated their currently experienced fatigue while engaging in cognitive effort (working memory task). Subtle social reward was given when fatigue increased relative to the previous rating; or disapproval when fatigue decreased. In the control condition, only neutral feedback was given. Although all participants became more fatigued during cognitive effort, interpersonal operant conditioning led to increased fatigue reporting relative to neutral feedback. This effect occurred independently of conscious awareness. Interestingly, the experimental condition also performed worse on the working memory task. Results suggest that fatigue complaints (and cognitive performance) may become controlled by their consequences such as social reward, and not exclusively by their antecedents such as effort. Results have implications for treatment development and suggest that interpersonal operant conditioning may contribute to fatigue becoming a chronic symptom. Copyright © 2018 Elsevier Ltd. All rights reserved.

  18. Damage development in woven fabric composites during tension-tension fatigue

    DEFF Research Database (Denmark)

    Hansen, U.

    1999-01-01

    of the operating fatigue damage mechanism(s). Fatigue leads to a degradation of material properties. Consequently, in connection with impact induced local stress raisers, fatigue produces continuously changing non-uniform stress fields because of stress redistribution effects. Other models addressing evolution...... of fatigue damage in composite materials have not been able to simulate evolving nonuniform stress fields. Therefore. in the second part of this paper, an analytical/numerical approach capable of addressing these issues is also proposed.......Impacted woven fabric composites were tested in tension-tension fatigue. In contrast to results from static testing, the effects of low energy impact damage in a fatigue environment were found to be the critical element leading to failure of the specimen. This difference emphasizes the need...

  19. Possible use of repeated cold stress for reducing fatigue in Chronic Fatigue Syndrome: a hypothesis

    Directory of Open Access Journals (Sweden)

    Shevchuk Nikolai A

    2007-10-01

    Full Text Available Abstract Background Physiological fatigue can be defined as a reduction in the force output and/or energy-generating capacity of skeletal muscle after exertion, which may manifest itself as an inability to continue exercise or usual activities at the same intensity. A typical example of a fatigue-related disorder is chronic fatigue syndrome (CFS, a disabling condition of unknown etiology and with uncertain therapeutic options. Recent advances in elucidating pathophysiology of this disorder revealed hypofunction of the hypothalamic-pituitary-adrenal axis and that fatigue in CFS patients appears to be associated with reduced motor neurotransmission in the central nervous system (CNS and to a smaller extent with increased fatigability of skeletal muscle. There is also some limited evidence that CFS patients may have excessive serotonergic activity in the brain and low opioid tone. Presentation of the hypothesis This work hypothesizes that repeated cold stress may reduce fatigue in CFS because brief exposure to cold may transiently reverse some physiological changes associated with this illness. For example, exposure to cold can activate components of the reticular activating system such as raphe nuclei and locus ceruleus, which can result in activation of behavior and increased capacity of the CNS to recruit motoneurons. Cold stress has also been shown to reduce the level of serotonin in most regions of the brain (except brainstem, which would be consistent with reduced fatigue according to animal models of exercise-related fatigue. Finally, exposure to cold increases metabolic rate and transiently activates the hypothalamic-pituitary-adrenal axis as evidenced by a temporary increase in the plasma levels of adrenocorticotropic hormone, beta-endorphin and a modest increase in cortisol. The increased opioid tone and high metabolic rate could diminish fatigue by reducing muscle pain and accelerating recovery of fatigued muscle, respectively. Testing

  20. Fatigue assessment of the ITER TF coil case based on JJ1 fatigue tests

    International Nuclear Information System (INIS)

    Hamada, K.; Nakajima, H.; Takano, K.; Kudo, Y.; Tsutsumi, F.; Okuno, K.; Jong, C.

    2005-01-01

    The material of the TF coil case in the ITER requires to withstand cyclic electromagnetic forces applied up to 3 x 10 4 cycles at 4.2 K. A cryogenic stainless steel, JJ1, is used in high stress region of TF coil case. The fatigue characteristics (S-N curve) of JJ1 base metal and welded joint at 4.2 K has been measured. The fatigue strength of base metal and welded joint at 3 x 10 4 cycles are measured as 1032 and 848 MPa, respectively. The design S-N curve is derived from the measured data taking account of the safety factor of 20 for cycle-to-failure and 2 for fatigue strength, and it indicates that an equivalent alternating stress of the case should be kept less than 516 MPa for the base metal and 424 MPa for the welded joint at 3 x 10 4 cycles. It is demonstrated that the TF coil case has enough margins for the cyclic operation. It is also shown the welded joint should be located in low cyclic stress region because a residual stress affects the fatigue life

  1. Low cycle fatigue: high cycle fatigue damage accumulation in a 304L austenitic stainless steel; Endommagement et cumul de dommage en fatigue dans le domaine de l'endurance limitee d'un acier inoxydable austenitique 304L

    Energy Technology Data Exchange (ETDEWEB)

    Lehericy, Y

    2007-05-15

    The aim of this study was to evaluate the consequences of a Low Cycle Fatigue pre-damage on the subsequent fatigue limit of a 304L stainless steel. The effects of hardening and severe roughness (grinding) have also been investigated. In a first set of tests, the evolution of the surface damage induced by the different LCF pre-cycling was characterized. This has permitted to identify mechanisms and kinetics of damage in the plastic domain for different surface conditions. Then, pre-damaged samples were tested in the High Cycle Fatigue domain in order to establish the fatigue limits associated with each level of pre-damage. Results evidence that, in the case of polished samples, an important number of cycles is required to initiate surface cracks ant then to affect the fatigue limit of the material but, in the case of ground samples, a few number of cycles is sufficient to initiate cracks and to critically decrease the fatigue limit. The fatigue limit of pre-damaged samples can be estimated using the stress intensity factor threshold. Moreover, this detrimental effect of severe surface conditions is enhanced when fatigue tests are performed under a positive mean stress (author)

  2. Fatigue crack growth in welded joints in seawater

    Energy Technology Data Exchange (ETDEWEB)

    Lambert, S.B.

    1988-01-01

    A pipe-to-plate specimen has been developed to study the influence of seawater on the fatigue behaviour of welded tubular joints. DC potential drop techniques have been used to detect fatigue crack initiation, and to monitor the subsequent growth of fatigue cracks. Results for three specimens, tested in air are compared with similar data for tubular and T-plate joints. These comparisons indicate that the pipe/plate is a reasonable model of a tubular joint. Testing was performed on a further six specimens in artificial seawater; two each with free corrosion, optimum cathodic protection, and cathodic overprotection. Fatigue life reduction factors compared with corresponding tests in air were 1.8 and 2.8 for free corrosion, 1.7 and 1.1 with cathodic protection, and 4.2 and 3.3 with cathodic over-protection. These fatigue life reduction factors were comparable to results on T-plate specimens, and were strongly dependent on crack shape development. Linear elastic fracture mechanics techniques appear suitable for the calculation of fatigue crack propagation life. Three approximate solution techniques for crack tip stress intensity factors show reasonable agreement with experimentally derived values. It is recommended that forcing functions be used to model crack aspect ratio development in welded joints. Such forcing functions are influenced by the initial stress distribution and the environment. 207 refs., 192 figs., 22 tabs.

  3. Evaluation of taper joints with combined fatigue and crevice corrosion testing: Comparison to human explanted modular prostheses

    Energy Technology Data Exchange (ETDEWEB)

    Reclaru, L., E-mail: lucien.reclaru@pxgroup.com [PX Group S.A., Dep R and D Corrosion and Biocompatibility Group, Bd. des Eplatures 42, CH-2304 La Chaux-de-Fonds (Switzerland); Brooks, R.A. [Orthopaedic Research, Addenbrooke' s Hospital, University of Cambridge, Box 180 Hills Road, CB2 0QQ Cambridge (United Kingdom); Zuberbühler, M. [Smith and Nephew Orthopaedics AG, Schachenalle 29, 5001 Aarau (Switzerland); Eschler, P.-Y.; Constantin, F. [PX Group S.A., Dep R and D Corrosion and Biocompatibility Group, Bd. des Eplatures 42, CH-2304 La Chaux-de-Fonds (Switzerland); Tomoaia, G. [University of Medicine and Pharmacy Iuliu Hateganu of Cluj-Napoca, Dept. of Orthopaedics and Traumatology, Cluj-Napoca (Romania)

    2014-01-01

    The requirement for revision surgery of total joint replacements is increasing and modular joint replacement implants have been developed to provide adjustable prosthetic revision systems with improved intra-operative flexibility. An electrochemical study of the corrosion resistance of the interface between the distal and proximal modules of a modular prosthesis was performed in combination with a cyclic fatigue test. The complexity resides in the existence of interfaces between the distal part, the proximal part, and the dynamometric screw. A new technique for evaluating the resistance to cyclic dynamic corrosion with crevice stimulation was used and the method is presented. In addition, two components of the proximal module of explanted Ti6Al4V and Ti6Al7Nb prostheses were investigated by optical and electron microscopy. Our results reveal that: The electrolyte penetrates into the interface between the distal and proximal modules during cyclic dynamic fatigue tests, the distal module undergoes cracking and corrosion was generated at the interface between the two models; The comparison of the explanted proximal parts with the similar prostheses evaluated following cyclic dynamic crevice corrosion testing showed that there were significant similarities indicating that this method is suitable for evaluating materials used in the fabrication of modular prostheses. - Highlights: • Electrochemical crevice corrosion testing combined with fatigue test conducted on Ti6Al7Nb and Ti6Al4V modular prostheses • Cations released from integral prostheses • Comparison of human explanted modular prostheses with the similar prostheses evaluated in cyclic dynamic crevice corrosion.

  4. Fatigue-Arrestor Bolts

    Science.gov (United States)

    Onstott, Joseph W.; Gilster, Mark; Rodriguez, Sergio; Larson, John E.; Wickham, Mark D.; Schoonover, Kevin E.

    1995-01-01

    Bolts that arrest (or, more precisely, retard) onset of fatigue cracking caused by inelastic strains developed. Specifically developed to be installed in flange holes of unrestrained rocket engine nozzle. Fanges sometimes used to bolt nozzle to test stand; however, when rocket engine operated without this restraint, region around bolt holes experience severe inelastic strains causing fatigue cracking. Interference fits introduce compressive preloads that retard fatigue by reducing ranges of strains. Principle of these fatigue-arrestor bolts also applicable to holes in plates made of other materials and/or used for different purposes.

  5. Modal characteristics and fatigue strength of compressor blades

    International Nuclear Information System (INIS)

    Kim, Kyung Kook; Lee, Young Shin

    2014-01-01

    High-cycle fatigue (HCF) has been identified as one of the primary causes of gas turbine engine failure. The modal characteristics and endurance strength of a 5 MW gas turbine engine blade developed by Doosan Heavy Industries and Construction Co., Ltd. in HCF fracture were verified through analysis and tests to determine the reliability of the compressor blade. A compressor blade design procedure that considers HCF life was performed in the following order: airfoil and blade profile design, modal analysis, stress distribution test, stress endurance limit test, and fatigue life verification. This study analyzed the Campbell diagram and estimated resonance risk on the basis of the natural frequency analysis and modal test of the compressor blade to guarantee safe and operational reliability. In addition, the maximum stress point of the compressor blade was determined through stress distribution analysis and test. The bonding point of the strain gage was determined by using fatigue test. Stress endurance limit test was performed based on the results of these tests. This research compared and verified the modal characteristics and endurance strengths of the compressor blades to prevent HCF fracture, which is among the major causes of gas turbine engine damage. A fatigue life design procedure of compressor blades was established. The 5 MW class gas turbine compressor blade is well designed in terms of resonance stability and fatigue endurance limit.

  6. Modal characteristics and fatigue strength of compressor blades

    Energy Technology Data Exchange (ETDEWEB)

    Kim, Kyung Kook [Doosan Heavy Industries and Construction, Changwon (Korea, Republic of); Lee, Young Shin [Chungnam National University, Daejeon (Korea, Republic of)

    2014-04-15

    High-cycle fatigue (HCF) has been identified as one of the primary causes of gas turbine engine failure. The modal characteristics and endurance strength of a 5 MW gas turbine engine blade developed by Doosan Heavy Industries and Construction Co., Ltd. in HCF fracture were verified through analysis and tests to determine the reliability of the compressor blade. A compressor blade design procedure that considers HCF life was performed in the following order: airfoil and blade profile design, modal analysis, stress distribution test, stress endurance limit test, and fatigue life verification. This study analyzed the Campbell diagram and estimated resonance risk on the basis of the natural frequency analysis and modal test of the compressor blade to guarantee safe and operational reliability. In addition, the maximum stress point of the compressor blade was determined through stress distribution analysis and test. The bonding point of the strain gage was determined by using fatigue test. Stress endurance limit test was performed based on the results of these tests. This research compared and verified the modal characteristics and endurance strengths of the compressor blades to prevent HCF fracture, which is among the major causes of gas turbine engine damage. A fatigue life design procedure of compressor blades was established. The 5 MW class gas turbine compressor blade is well designed in terms of resonance stability and fatigue endurance limit.

  7. Prediction of multiaxial fatigue life for notched specimens of titanium alloy TC4

    Energy Technology Data Exchange (ETDEWEB)

    Wu, Z. R.; Li, Z. X. [Southeast University, Nanjing (China); Hu, X. T.; Song, Y. D. [Nanjing University, Nanjing (China)

    2016-05-15

    Both the proportional and nonproportional multiaxial fatigue tests were conducted on two kinds of notched specimens of titanium alloy TC4. The multiaxial fatigue critical area of notched specimen is considered as the location experiencing the maximum damage. It is unsatisfactory to predict the multiaxial fatigue life with the local stress and strain in the fatigue critical area. The critical distance concepts are employed in the multiaxial life prediction method for notched specimens. The proposed method was checked by the test data of TC4 notched specimens. The prediction results are almost within a factor of three scatter band of the test results.

  8. Shock Transmission and Fatigue in Human Running.

    Science.gov (United States)

    Verbitsky, Oleg; Mizrahi, Joseph; Voloshin, Arkady; Treiger, July; Isakov, Eli

    1998-08-01

    The goal of this research was to analyze the effects of fatigue on the shock waves generated by foot strike. Twenty-two subjects were instrumented with an externally attached, lightweight accelerometer placed over the tibial tuberosity. The subjects ran on a treadmill for 30 min at a speed near their anaerobic threshold. Fatigue was established when the end-tidal CO 2 pressure decreased. The results indicated that approximately half of the subjects reached the fatigue state toward the end of the test. Whenever fatigue occurred, the peak acceleration was found to increase. It was thus concluded that there is a clear association between fatigue and increased heel strike-induced shock waves. These results have a significant implication for the etiology of running injuries, since shock wave attenuation has been previously reported to play an important role in preventing such injuries.

  9. Low cycle fatigue behavior of titanium carbide coated molybdenum

    International Nuclear Information System (INIS)

    Nishi, Hiroshi; Oku, Tatsuo; Kodaira, Tsuneo; Kikuyama, Toshihiko

    1985-09-01

    Sintered molybdenum coated by TiC is used for the first wall such as a troidal fixed limiter and a magnetic limiter plate in JT-60, that is being operated at JAERI presently. This report describes the low cycle fatigue behavior of sintered molybdenum and the influence of TiC coating on fatigue strength. The low cycle fatigue test was conducted at room temperature and 500 0 C. The test results was also analyzed by fractographic observation, metallography and element analysis using EPMA. The low cycle fatigue strength of the molybdenum coated by TiC at 500 0 C is decreased compared with the one at room temperature. (author)

  10. Corrosion fatigue behaviour of ion nitrided AISI 4140 steel

    Energy Technology Data Exchange (ETDEWEB)

    Genel, K. [Sakarya Univ., Adapazari (Turkey). Mech. Eng. Dept.; Demirkol, M.; Guelmez, T. [Faculty of Mechanical Engineering, Istanbul Technical University, Guemuessuyu, 80191, Istanbul (Turkey)

    2000-08-31

    Machine components suffer from corrosion degradation of fatigue characteristics and improvement can be attained by the application of a nitriding treatment, particularly to low alloy steels. In the present study, the effect of ion nitriding on corrosion fatigue performance of AISI 4140 steel has been investigated by conducting a series of rotary bending corrosion fatigue tests at 95 Hz, in 3% NaCl aqueous solution. Hourglass shaped, 4 mm diameter fatigue specimens were ion nitrided at 748 K for 1, 3, 8 and 16 h prior to the tests. It was observed that distinct fatigue limit behaviour of ion nitrided steel in air completely disappeared in corrosive environment besides severe degradation in fatigue characteristics. An improvement reaching to 60% in corrosion fatigue strength can be attained by successive ion nitriding practice based on a fatigue life of 10{sup 7} cycles. An attempt was made to establish an empirical relationship between corrosion fatigue strength and relative case depth, which considers the size of the ion nitrided specimen. It was also determined that a power relationship holds between corrosion fatigue strength and fatigue life of ion nitrided steel. The presence of white layer has resulted in additional improvement in corrosion fatigue resistance, and it was observed that corrosion fatigue cracks were initiated dominantly under the white layer by pit formation mechanism. (orig.)

  11. Corrosion fatigue behaviour of ion nitrided AISI 4140 steel

    International Nuclear Information System (INIS)

    Genel, K.

    2000-01-01

    Machine components suffer from corrosion degradation of fatigue characteristics and improvement can be attained by the application of a nitriding treatment, particularly to low alloy steels. In the present study, the effect of ion nitriding on corrosion fatigue performance of AISI 4140 steel has been investigated by conducting a series of rotary bending corrosion fatigue tests at 95 Hz, in 3% NaCl aqueous solution. Hourglass shaped, 4 mm diameter fatigue specimens were ion nitrided at 748 K for 1, 3, 8 and 16 h prior to the tests. It was observed that distinct fatigue limit behaviour of ion nitrided steel in air completely disappeared in corrosive environment besides severe degradation in fatigue characteristics. An improvement reaching to 60% in corrosion fatigue strength can be attained by successive ion nitriding practice based on a fatigue life of 10 7 cycles. An attempt was made to establish an empirical relationship between corrosion fatigue strength and relative case depth, which considers the size of the ion nitrided specimen. It was also determined that a power relationship holds between corrosion fatigue strength and fatigue life of ion nitrided steel. The presence of white layer has resulted in additional improvement in corrosion fatigue resistance, and it was observed that corrosion fatigue cracks were initiated dominantly under the white layer by pit formation mechanism. (orig.)

  12. Several submaximal exercise tests are reliable, valid and acceptable in people with chronic pain, fibromyalgia or chronic fatigue: a systematic review.

    Science.gov (United States)

    Ratter, Julia; Radlinger, Lorenz; Lucas, Cees

    2014-09-01

    Are submaximal and maximal exercise tests reliable, valid and acceptable in people with chronic pain, fibromyalgia and fatigue disorders? Systematic review of studies of the psychometric properties of exercise tests. People older than 18 years with chronic pain, fibromyalgia and chronic fatigue disorders. Studies of the measurement properties of tests of physical capacity in people with chronic pain, fibromyalgia or chronic fatigue disorders were included. Studies were required to report: reliability coefficients (intraclass correlation coefficient, alpha reliability coefficient, limits of agreements and Bland-Altman plots); validity coefficients (intraclass correlation coefficient, Spearman's correlation, Kendal T coefficient, Pearson's correlation); or dropout rates. Fourteen studies were eligible: none had low risk of bias, 10 had unclear risk of bias and four had high risk of bias. The included studies evaluated: Åstrand test; modified Åstrand test; Lean body mass-based Åstrand test; submaximal bicycle ergometer test following another protocol other than Åstrand test; 2-km walk test; 5-minute, 6-minute and 10-minute walk tests; shuttle walk test; and modified symptom-limited Bruce treadmill test. None of the studies assessed maximal exercise tests. Where they had been tested, reliability and validity were generally high. Dropout rates were generally acceptable. The 2-km walk test was not recommended in fibromyalgia. Moderate evidence was found for reliability, validity and acceptability of submaximal exercise tests in patients with chronic pain, fibromyalgia or chronic fatigue. There is no evidence about maximal exercise tests in patients with chronic pain, fibromyalgia and chronic fatigue. Copyright © 2014. Published by Elsevier B.V.

  13. Thermal fatigue loading for a type 304-L stainless steel used for pressure water reactor: investigations on the effect of a nearly perfect biaxial loading, and on the cumulative fatigue life

    International Nuclear Information System (INIS)

    Fissolo, A.; Gourdin, C.; Bouin, P.; Perez, G.

    2010-01-01

    Fatigue-life curves are used in order to estimate crack-initiation, and also to prevent water leakage on Pressure Water Reactor pipes. Such curves are built exclusively from push-pull tests performed under constant and uniaxial strain or stress-amplitude. However, thermal fatigue corresponds to a nearly perfect biaxial stress state and severe loading fluctuations are observed in operating conditions. In this frame, these two aspects have been successively investigated in this paper: In order to investigate on potential difference between thermal fatigue and mechanical fatigue, tests have been carried out at CEA using thermal fatigue devices. They show that for an identical level of strain-amplitude, the number of cycles required to achieve crack-initiation is significantly lower under thermal fatigue. This enhanced damage results probably from a perfect biaxial state under thermal fatigue. In this frame, application of the multiaxial Zamrik's criterion seems to be very promising. In order to investigate on cumulative damage effect in fatigue, multi-level strain controlled fatigue tests have been performed. Experimental results show that linear Miner's rule is not verified. A loading sequence effect is clearly evidenced. The double linear damage rule ('DLDR') improves significantly predictions of fatigue-life. (authors)

  14. Material fatigue in high pressure piping

    Energy Technology Data Exchange (ETDEWEB)

    Brunne, W.C. [Pro Novum, Research and Technological Services, Ltd, Katowice, (Poland)

    1998-12-31

    The present paper describes a type of damage to four-way cross pieces on live steam and reheated steam pipelines. The results of metallographic examination and strength tests are presented. The occurring mechanisms of material degradation, i.e. low-cycle fatigue and hydrogen corrosion are discussed. The both mechanisms result in the corrosion fatigue of the material causing the failure of cross pieces. A new design of cross piece was proposed. (orig.) 5 refs.

  15. Statistical investigation of the crack initiation lives of piping structural welded joint in low cycle fatigue test of 240 degree C

    International Nuclear Information System (INIS)

    Zhao Yongxiang; Gao Qing; Cai Lixun

    1999-01-01

    A statistical investigation into the fitting of four possible fatigue assumed distributions (three parameter Weibull, two parameter Weibull, lognormal and extreme maximum value distributions) for the crack initiation lives of piping structural welded joint in low cycle fatigue test of 240 degree C is performed by linear regression and least squares methods. The results reveal that the three parameters Weibull distribution may give misleading results in fatigue reliability analysis because the shape parameter is often less than 1. This means that the failure rate decreases with fatigue cycling which is contrary to the general understanding of the behaviour of welded joint. Reliability analyses may also affected by the slightly nonconservative evaluations in tail regions of this distribution. The other three distributions are slightly poor in the total fit effects, but they can be safety assumed in reliability analyses due to the non-conservative evaluations in tail regions mostly and the consistency with the fatigue physics of the structural behaviour of welded joint in the range of engineering practice. In addition, the extreme maximum value distribution is in good consists with the general physical understanding of the structural behaviour of welded joint

  16. High-temperature reverse-bend fatigue strength of Inconel Alloy 625

    International Nuclear Information System (INIS)

    Purohit, A.; Greenfield, I.G.; Park, K.B.

    1983-06-01

    Inconel 625 has been selected as the clad material for Upgraded Transient Reactor Test Facility (TREAT Upgrade or TU) fuel assemblies. The range of temperatures investigated is 900 to 1100 0 C. A reverse-bend fatigue test program was selected as the most-effective method of determining the fatigue characteristics of Inconel alloy 625 sheet metal. The paper describes the reverse bend fatigue experiments, the results obtained, and the analysis of data

  17. Study on Blade Fatigue Life of Rotating Power Machinery

    Directory of Open Access Journals (Sweden)

    Fu Xi

    2016-01-01

    Full Text Available The linear damage model (LDM is widely applied in engineering calculation, but it does not consider the relationship between damage variable and load parameters. Therefore, the life prediction based on LDM is not satisfied for the aero-engine blades. Besides, it easily brings about error in predicting fatigue life by common nonlinear damage model which neglect the influence of torsional stress. Hence, a modified nonlinear continuum damage model (CDM is put forward based on Chaboche nonlinear damage model in this research. And to determine the damage and fatigue life of TC4 material used in aero-engine blades, axial tension and compression fatigue test is conducted. Compared with LDM results, the fatigue life prediction results of the modified CDM in this work show a good agreement with the tests data. So the correctness of the modified model is verified. Finally, the fatigue life of a certain aero-engine high pressure compressor blade is predicted by the modified nonlinear continuum damage model.

  18. Determination of the fatigue behaviour of thin hard coatings using the impact test and a FEM simulation

    Energy Technology Data Exchange (ETDEWEB)

    Bouzakis, K.D. [Aristoteles Univ., Thessaloniki (Greece). Dept. of Mech. Eng.; Vidakis, N. [Aristoteles Univ., Thessaloniki (Greece). Dept. of Mech. Eng.; Leyendecker, T. [CemeCon, 52068 Aachen (Germany); Lemmer, O. [CemeCon, 52068 Aachen (Germany); Fuss, H.G. [CemeCon, 52068 Aachen (Germany); Erkens, G. [CemeCon, 52068 Aachen (Germany)

    1996-12-15

    The impact test, in combination with a finite element method (FEM) simulation, is used to determine stress values that characterise the fatigue behaviour of thin hard coatings, such as TiAlN, TiAlCN, CrN, MoN, etc. The successive impacts of a cemented carbide ball onto a coated probe induce high contact loads, which can vary in amplitude and cause plastic deformation in the substrate. In the present paper FEM calculations are used in order to determine the critical stress values, which lead to coating fatigue failure. The parametric FEM simulation developed considers elastic behaviour for the coating and elastic plastic behaviour for the substrate. The results of the FEM calculations are correlated to experimental data, as well as to SEM observations of the imprints and to microspectrum analyses within the contact region. Herewith, critical values for various stress components, which are responsible for distinctive fatigue failure modes of the coating-substrate compounds can be obtained. (orig.)

  19. Statistical Distribution of Fatigue Life for Cast TiAl Alloy

    Directory of Open Access Journals (Sweden)

    WAN Wenjuan

    2016-08-01

    Full Text Available Statistic distribution of fatigue life data and its controls of cast Ti-47.5Al-2.5V-1.0Cr-0.2Zr (atom fraction/% alloy were investigated. Fatigue tests were operated by means of load-controlled rotating bending fatigue tests (R=-1 performed at a frequency of 100 Hz at 750 ℃ in air. The fracture mechanism was analyzed by observing the fracture surface morphologies through scanning electron microscope,and the achieved fatigue life data were analyzed by Weibull statistics. The results show that the fatigue life data present a remarkable scatter ranging from 103 to 106 cycles, and distribute mainly in short and long life regime. The reason for this phenomenon is that the fatigue crack initiators are different with different specimens. The crack initiators for short-life specimens are caused by shrinkage porosity, and for long-life ones are caused by bridged porosity interface and soft-oriented lamellar interface. Based on the observation results of fracture surface, two-parameter Weibull distribution model for fatigue life data can be used for the prediction of fatigue life at a certain failure probability. It has also shown that the shrinkage porosity causes the most detrimental effect to fatigue life.

  20. a Study on the Fretting Fatigue Life of Zircaloy Alloys

    Science.gov (United States)

    Kwon, Jae-Do; Park, Dae-Kyu; Woo, Seung-Wan; Chai, Young-Suck

    Studies on the strength and fatigue life of machines and structures have been conducted in accordance with the development of modern industries. In particular, fine and repetitive cyclic damage occurring in contact regions has been known to have an impact on fretting fatigue fractures. The main component of zircaloy alloy is Zr, and it possesses good mechanical characteristics at high temperatures. This alloy is used in the fuel rod material of nuclear power plants because of its excellent resistance. In this paper, the effect of the fretting damage on the fatigue behavior of the zircaloy alloy is studied. Further, various types of mechanical tests such as tension and plain fatigue tests are performed. Fretting fatigue tests are performed with a flat-flat contact configuration using a bridge-type contact pad and plate-type specimen. Through these experiments, it is found that the fretting fatigue strength decreases by about 80% as compared to the plain fatigue strength. Oblique cracks are observed in the initial stage of the fretting fatigue, in which damaged areas are found. These results can be used as the basic data for the structural integrity evaluation of corrosion-resisting alloys considering the fretting damages.

  1. Self-reported fatigue and physical function in late mid-life

    DEFF Research Database (Denmark)

    Boter, Han; Mänty, Minna; Hansen, Åse Marie

    2014-01-01

    Objective: To determine the association between the 5 subscales of the Multidimensional Fatigue Inventory (MFI-20) and physical function in late mid-life. Design: Cross-sectional study. Subjects: A population-based sample of adults who participated in the Copenhagen Aging and Midlife Biobank...... population cohort (n = 4,964; age 49-63 years). Methods: Self-reported fatigue was measured using the MFI-20 comprising: general fatigue, physical fatigue, reduced activity, reduced motivation, and mental fatigue. Handgrip strength and chair rise tests were used as measures of physical function. Multiple...... logistic regression analyses were used to determine the associations between handgrip strength and the chair rise test with the MFI-20 subscales, adjusted for potential confounders. Results: After adjustments for potential confounders, handgrip strength was associated with physical fatigue (adjusted odds...

  2. Fatigue crack growth thresholds measurements in structural materials

    International Nuclear Information System (INIS)

    Lindstroem, R.; Lidar, P.; Rosborg, B.

    1999-05-01

    Fatigue crack growth thresholds and da/dN-data at low Δk I -values ( 1/2 ) have been determined for type 304 stainless steel, nickel-base weld metal Alloy 182, nickel-base metal Alloy 600, and low-alloy steel in air at ambient temperature and in high-temperature water and steam. The stainless alloys have been tested in water with 0.2 ppm O 2 at 288 deg C and the low-alloy steel in steam at 286 deg C. The fatigue crack growth threshold was defined as the ΔK I -value resulting in a crack growth rate of 10 -7 mm per cycle. The measured fatigue crack growth thresholds (at frequencies from 0.5 to 20 Hz) are quite similar independent of the material and the environment. A relatively inexpensive and time-saving method for measuring fatigue crack growth thresholds, and fatigue crack growth rates at low ΔK I -values, has been used in the tests. The method is a ΔK I -decreasing test with constant K I Max

  3. Fatigue behaviour of fiberglass wind turbine blade material under variable amplitude loading

    Energy Technology Data Exchange (ETDEWEB)

    Delft, D R.V. Van; Winkel, G.D. de [Delft Univ. of Technology, STEVIN Lab., Delft (Netherlands); Joosse, P A [Stork Product Engineering b.v., Amsterdam (Netherlands)

    1996-09-01

    In the work presented here fatigue tests with the WISPER and WISPERX load sequence have been carried out and analysed. The test programme includes tests at low stress levels which results in fatigue lives of 50 millions of cycles. The results are compared with constant amplitude tests in the very high cycle range, carried out in a previous programme. The results are also compared with ECN results in the lower cycle range (on identical specimens). It appeared, that the difference between the fatigue life of the specimens tested with the WISPER and the WISPERX load sequence is larger than can be expected from the theoretical damage rates. Moreover, the slope of the S-N data differs from theoretical values obtained by using commonly applied design rules. (au)

  4. Fatigue Life Estimation of Medium-Carbon Steel with Different Surface Roughness

    Directory of Open Access Journals (Sweden)

    Changyou Li

    2017-03-01

    Full Text Available Medium-carbon steel is commonly used for the rail, wire ropes, tire cord, cold heading, forging steels, cold finished steel bars, machinable steel and so on. Its fatigue behavior analysis and fatigue life estimation play an important role in the machinery industry. In this paper, the estimation of fatigue life of medium-carbon steel with different surface roughness using established S-N and P-S-N curves is presented. To estimate the fatigue life, the effect of the average surface roughness on the fatigue life of medium-carbon steel has been investigated using 75 fatigue tests in three groups with average surface roughness (Ra: 0.4 μm, 0.8 μm, and 1.6 μm, respectively. S-N curves and P-S-N curves have been established based on the fatigue tests. The fatigue life of medium-carbon steel is then estimated based on Tanaka-Mura crack initiation life model, the crack propagation life model using Paris law, and material constants of the S-N curves. Six more fatigue tests have been conducted to validate the presented fatigue life estimation formulation. The experimental results have shown that the presented model could estimate well the mean fatigue life of medium-carbon steel with different surface roughness.

  5. Factors Influencing Dwell Fatigue Cracking in Notches of Powder Metallurgy Superalloys

    Science.gov (United States)

    Gabb, T. P.; Telesman, J.; Ghosn, L.; Garg, A.; Gayda, J.

    2011-01-01

    The influences of heat treatment and cyclic dwells on the notch fatigue resistance of powder metallurgy disk superalloys were investigated for low solvus high refractory (LSHR) and ME3 disk alloys. Disks were processed to produce material conditions with varied microstructures and associated mechanical properties. Notched specimens were first subjected to baseline dwell fatigue cycles having a dwell at maximum load, as well as tensile, stress relaxation, creep rupture, and dwell fatigue crack growth tests at 704 C. Several material heat treatments displayed a bimodal distribution of fatigue life with the lives varying by two orders-of-magnitude, while others had more consistent fatigue lives. This response was compared to other mechanical properties, in search of correlations. The wide scatter in baseline dwell fatigue life was observed only for material conditions resistant to stress relaxation. For selected materials and conditions, additional tests were then performed with the dwells shifted in part or in total to minimum tensile load. The tests performed with dwells at minimum load exhibited lower fatigue lives than max dwell tests, and also exhibited early crack initiation and a substantial increase in the number of initiation sites. These results could be explained in part by modeling evolution of peak stresses in the notch with continued dwell fatigue cycling. Fatigue-environment interactions were determined to limit life for the fatigue cycles with dwells.

  6. Fatigue management considering LWR coolant environments

    International Nuclear Information System (INIS)

    Park, Heung Bae; Jin, Tae eun

    2000-01-01

    Design fatigue curve for structural material in the ASME Boiler and Pressure Vessel Code do not explicitly address the effects of reactor coolant environments on fatigue life. Environmentally assisted cracking (EAC) of low-alloy steels in light water reactor (LWR) coolant environments has been a concern ever since the early 1970's. And, recent fatigue test data indicate a significant decrease in fatigue lives of carbon steels, low-alloy steels and austenitic stainless steels in LWR coolant environments. For these reasons, fatigue of major components has been identified as a technical issue remaining to be resolved for life management and license renewal of nuclear power plants. In the present paper, results of recent investigations by many organizations are reviewed to provide technical justification to support the development of utility approach regarding the management of fatigue considering LWR coolant environments for the purpose of life management and license renewal of nuclear power plants. (author)

  7. Ti–6Al–4V welded joints via electron beam welding: Microstructure, fatigue properties, and fracture behavior

    Energy Technology Data Exchange (ETDEWEB)

    Yang, Xiaoguang [School of Energy and Power Engineering, Beihang University, Beijing 100191 (China); Co-Innovation Center for Advanced Aero-Engine, Beijing 100191 (China); Li, Shaolin [School of Energy and Power Engineering, Beihang University, Beijing 100191 (China); Qi, Hongyu, E-mail: qhy@buaa.edu.cn [School of Energy and Power Engineering, Beihang University, Beijing 100191 (China); Co-Innovation Center for Advanced Aero-Engine, Beijing 100191 (China)

    2014-03-01

    The effect of microstructural characteristics on the fatigue properties of electron beam-welded joints of forged Ti–6Al–4V and its fracture behavior were investigated. Tensile tests and fatigue tests were conducted at room temperature in air atmosphere. The test data were analyzed in relation to microstructure, high-cycle fatigue properties, low-cycle fatigue properties, and fatigue crack propagation properties. The high-cycle fatigue test results indicated that the fatigue strength of the joint welded via electron beam welding was higher than that of the base metal because the former had a high yield strength and all high-cycle fatigue specimens were fractured in the base metal. Although the joint specimens had a lower low-cycle fatigue life than the base metal, they mainly ruptured at the fusion zone of the joint specimen and their crack initiation mechanism is load-dependent. The fatigue crack propagation test results show that the joint had a slower crack propagation rate than the base metal, which can be attributed to the larger grain in the fusion zone.

  8. C-130: Results of center wing residual strength and crack propagation test program

    Science.gov (United States)

    Reeder, F. L.; Dirkin, W. J.; Snider, H. L.

    1971-01-01

    Fourteen C-130 airplane center wings which had experienced from approximately 4,000 to 13,000 hours of flight service and its associated fatigue damage were tested to destruction, seven in upbending and seven in downbending. Six wings were tested directly for static residual strength in the fatigue-damaged condition as received from field service. The other eight wings were tested in crack propagation cyclic testing at a prescribed stress level for a maximum of 10,000 cycles. Then the stress level was reduced and testing was continued up to a maximum of 20,000 total cycles. Cyclic testing was performed with constant-amplitude stresses at a stress ratio of +0.1. Maximum cyclic skin stresses were approximately 18,000 psi. At the conclusion of cyclic testing, a static test to destruction was conducted to determine the residual strength of each fatigue-damaged specimen.

  9. Isothermal and thermal-mechanical fatigue of VVER-440 reactor pressure vessel steels

    Science.gov (United States)

    Fekete, Balazs; Trampus, Peter

    2015-09-01

    The fatigue life of the structural materials 15Ch2MFA (CrMoV-alloyed ferritic steel) and 08Ch18N10T (CrNi-alloyed austenitic steel) of VVER-440 reactor pressure vessel under completely reserved total strain controlled low cycle fatigue tests were investigated. An advanced test facility was developed for GLEEBLE-3800 physical simulator which was able to perform thermomechanical fatigue experiments under in-service conditions of VVER nuclear reactors. The low cycle fatigue results were evaluated with the plastic strain based Coffin-Manson law, and plastic strain energy based model as well. It was shown that both methods are able to predict the fatigue life of reactor pressure vessel steels accurately. Interrupted fatigue tests were also carried out to investigate the kinetic of the fatigue evolution of the materials. On these samples microstructural evaluation by TEM was performed. The investigated low cycle fatigue behavior can provide reference for remaining life assessment and lifetime extension analysis.

  10. Experimental Investigation and Finite Element Analysis on Fatigue Behavior of Aluminum Alloy 7050 Single-Lap Joints

    Science.gov (United States)

    Zhou, Bing; Cui, Hao; Liu, Haibo; Li, Yang; Liu, Gaofeng; Li, Shujun; Zhang, Shangzhou

    2018-03-01

    The fatigue behavior of single-lap four-riveted aluminum alloy 7050 joints was investigated by using high-frequency fatigue test and scanning electron microscope (SEM). Stress distributions obtained by finite element (FE) analysis help explain the fatigue performance. The fatigue test results showed that the fatigue lives of the joints depend on cold expansion and applied cyclic loads. FE analysis and fractography indicated that the improved fatigue lives can be attributed to the reduction in maximum stress and evolution of fatigue damage at the critical location. The beneficial effects of strengthening techniques result in tearing ridges or lamellar structure on fracture surface, decrease in fatigue striations spacing, delay of fatigue crack initiation, crack deflection in fatigue crack propagation and plasticity-induced crack closure.

  11. Mechanical Fatigue Testing of High Burnup Fuel for Transportation Applications

    Energy Technology Data Exchange (ETDEWEB)

    Wang, Jy-An John [Oak Ridge National Lab. (ORNL), Oak Ridge, TN (United States); Wang, Hong [Oak Ridge National Lab. (ORNL), Oak Ridge, TN (United States)

    2015-05-01

    This report describes testing designed to determine the ability of high burnup (HBU) (>45 GWd/MTU) spent fuel to maintain its integrity under normal conditions of transportation. An innovative system, Cyclic Integrated Reversible-bending Fatigue Tester (CIRFT), has been developed at Oak Ridge National Laboratory (ORNL) to test and evaluate the mechanical behavior of spent nuclear fuel (SNF) under conditions relevant to storage and transportation. The CIRFT system is composed of a U-frame equipped with load cells for imposing the pure bending loads on the SNF rod test specimen and measuring the in-situ curvature of the fuel rod during bending using a set up with three linear variable differential transformers (LVDTs).

  12. Mechanical Fatigue Testing of High-Burnup Fuel for Transportation Applications

    Energy Technology Data Exchange (ETDEWEB)

    Wang, Jy-An John [ORNL; Wang, Hong [ORNL

    2015-05-01

    This report describes testing designed to determine the ability of high burnup (HBU) (>45 GWd/MTU) spent fuel to maintain its integrity under normal conditions of transportation. An innovative system, Cyclic Integrated Reversible-bending Fatigue Tester (CIRFT), has been developed at Oak Ridge National Laboratory (ORNL) to test and evaluate the mechanical behavior of spent nuclear fuel (SNF) under conditions relevant to storage and transportation. The CIRFT system is composed of a U-frame equipped with load cells for imposing the pure bending loads on the SNF rod test specimen and measuring the in-situ curvature of the fuel rod during bending using a set up with three linear variable differential transformers (LVDTs).

  13. Fatigue life assessment for pipeline welds by x-ray diffraction technique

    International Nuclear Information System (INIS)

    Lee, Sang Guk; Yoo, Keun Bong

    2006-01-01

    The objective of this study is to estimate the feasibility of X-ray diffraction method application for fatigue life assessment of the high-temperature pipeline steel such as main steam pipe, re-heater pipe and header etc. in power plant. In this study, X-ray diffraction tests using various types of specimen simulated low cycle fatigue damage were performed in order to analyze fatigue properties when fatigue damage conditions become various stages such as 1/4, l/2 and 3/4 of fatigue life, respectively. As a result off-ray diffraction tests for specimens simulated fatigue damages, we conformed that the variation of the full width at half maximum intensity decreased in proportion to the increase of fatigue life ratio. And also, He ratio of the full width at half maximum intensity due to fatigue damage has linear relationship with fatigue life ratio algebraically. From this relationship, it was suggested that direct expectation of the life consumption rate was feasible.

  14. Thermal fatigue crack growth tests and analyses of thick wall cylinder made of Mod.9Cr–1Mo steel

    Energy Technology Data Exchange (ETDEWEB)

    Wakai, Takashi, E-mail: wakai.takashi@jaea.go.jp [Japan Atomic Energy Agency, 4002 Narita-cho Oarai, Ibaraki 3111393 (Japan); Inoue, Osamu [IX Knowledge Inc., 3-22-23 MSC Center Bldg, Kaigan Minato-ku, Tokyo 1080022 Japan (Japan); Ando, Masanori; Kobayashi, Sumio [Japan Atomic Energy Agency, 4002 Narita-cho Oarai, Ibaraki 3111393 (Japan)

    2015-12-15

    Highlights: • A thermal fatigue crack growth test was performed using Mod.9Cr–1Mo steel cylinder. • Axial/circumferential notches were machined on the inner surface of the cylinder. • Simplified analytical results were compared to the test data. • Crack length could not be predicted by the analyses because of crack conjunctions. • If there are no surface cracks, the calculations might agree with the observations. - Abstract: In Japan, the basic designing works for a demonstration plant of Japan Sodium cooled Fast Reactor (JSFR) are now conducted. JSFR is an advanced loop type reactor concept. To enhance the safety and the economic competitiveness, JSFR employs modified 9% chromium–1% molybdenum (Mod.9Cr–1Mo) steel as a material for coolant pipes and components, because the steel has both excellent high temperature strength and thermal properties. The steel has been standardized as a nuclear material in Japan Society of Mechanical Engineers (JSME) code in 2012. In JSFR pipes, demonstration of Leak Before Break (LBB) aspect is strongly expected because the safety assessment may be performed on the premise of leak rate where the LBB aspect is assured. Although the authors have already performed a series of thermal fatigue crack growth tests of austenitic stainless steel cylinders (Wakai et al., 2005), crack growth behavior in the structures made of Mod.9Cr–1Mo steel has not been investigated yet. Especially for the welded joints of Mod.9Cr–1Mo steel, “Type-IV” cracking may occur at heat affected zone (HAZ). Therefore, this study performed a series of thermal fatigue crack growth tests of thick wall cylinders made of Mod.9Cr–1Mo steel including welds, to obtain the crack growth data under cyclic thermal transients. The test results were compared to the analytical results obtained from JAEA's simplified methods (Wakai et al., 2005).

  15. Crack growth prediction for low-cycle fatigue regime

    International Nuclear Information System (INIS)

    Kamaya, Masayuki

    2017-01-01

    The objective of this study is to show a crack growth prediction procedure for the low-cycle fatigue regime. First, fatigue crack growth tests using Type 316 stainless steel specimens at room temperature were reviewed. It was seen that the crack growth rates correlated well with the equivalent stress intensify factor, which was derived using strain range instead of stress range. Furthermore, the effective equivalent stress intensify factor derived using the effective strain range exhibited excellent correlation with the crack growth rates obtained under various specimen geometries and loading conditions including high and low-cycle regimens. The obtained crack growth rates were also compared with the growth rate prescribed in the fitness-for-service code of the Japan Society of Mechanical Engineers (JSME). The test results agreed with the growth rate of JSME code. Finally, the procedure for predicting the low-cycle fatigue crack growth was shown. Although the JSME code is aimed at predicting fatigue crack growth for the so-called small scale yielding condition (high-cycle fatigue regime), the material constants determined for the high-cycle fatigue regime can be used even for the low-cycle fatigue regime. (author)

  16. Equi-biaxial loading effect on austenitic stainless steel fatigue life

    Directory of Open Access Journals (Sweden)

    C. Gourdin

    2016-10-01

    Full Text Available Fatigue lifetime assessment is essential in the design of structures. Under-estimated predictions may result in unnecessary in service inspections. Conversely, over-estimated predictions may have serious consequences on the integrity of structures. In some nuclear power plant components, the fatigue loading may be equibiaxial because of thermal fatigue. So the potential impact of multiaxial loading on the fatigue life of components is a major concern. Meanwhile, few experimental data are available on austenitic stainless steels. It is essential to improve the fatigue assessment methodologies to take into account the potential equi-biaxial fatigue damage. Hence this requires obtaining experimental data on the considered material with a strain tensor in equibiaxial tension. Two calibration tests (with strain gauges and image correlation were used to obtain the relationship between the imposed deflection and the radial strain on the FABIME2 specimen. A numerical study has confirmed this relationship. Biaxial fatigue tests are carried out on two austenitic stainless steels for different values of the maximum deflection, and with a load ratio equal to -1. The interpretation of the experimental results requires the use of an appropriate definition of strain equivalent. In nuclear industry, two kinds of definition are used: von Mises and TRESCA strain equivalent. These results have permitted to estimate the impact of the equibiaxiality on the fatigue life of components

  17. Several submaximal exercise tests are reliable, valid and acceptable in people with chronic pain, fibromyalgia or chronic fatigue: a systematic review

    NARCIS (Netherlands)

    Ratter, Julia; Radlinger, Lorenz; Lucas, Cees

    2014-01-01

    Are submaximal and maximal exercise tests reliable, valid and acceptable in people with chronic pain, fibromyalgia and fatigue disorders? Systematic review of studies of the psychometric properties of exercise tests. People older than 18 years with chronic pain, fibromyalgia and chronic fatigue

  18. Modification and upgradation of corrosion fatigue testing system

    International Nuclear Information System (INIS)

    Farooq, A.; Qamar, R.

    2006-08-01

    Stress Corrosion Cracking (SCC) and Corrosion Fatigue (CF) are important tests which are performed to check the integrity of structural materials operating in different environments, such as nuclear power system, steam and gas turbines, aircraft marine structure, pipelines and bridges. To establish the environmental testing facility on laboratory scale, NMD acquired a computerized (286 Based PC) electromechanical testing machine from M/S CorTest, USA. This machine was commissioned at NMD in 1989. Since then it has been utilized to test and qualify the materials provided by different establishments of PAEC for SCC and CF behavior. However, in October 2004, computer attached to the machine was corrupted and became out of order. Users were handicapped because there was no any alternate system i.e. Manual control tower to operate the machine. Then users approached to Computer Division to investigate the malfunctioning at the computer. Therefore, upon complete checkup of system, it was diagnosed that there was a serious problem in the hard disk and mother board of the computer. Much difficulty was faced in retrieving the application software from the obsolete 286 computer system. Then the basic aim was to replace the old computer with Pentium System. But with Pentium system application software was not working. Since we have already recovered full application software package including source programs, so all the seventeen programs has been thoroughly studied. Four programs had to be modified according to the new hardware. Now the new Pentium system with modified software has been interfaced with the machine. Machine was tested for the both types of above mentioned tests and compared with previous results. The performance of machine was confirmed satisfactory on the new setup. (author)

  19. Fatigue Damage in Wood

    DEFF Research Database (Denmark)

    Clorius, Christian Odin; Pedersen, Martin Bo Uhre; Hoffmeyer, Preben

    1996-01-01

    An investigation of fatigue failure in wood subjected to load cycles in compression parallel to grain is presented. Fatigue failure is found to depend both on the total time under load and on the number of cycles.Recent accelerated fatigue research on wood is reviewed, and a discrepancy between...... to 10 Hz are used. The number of cycles to failure is found to be a poor measure of the fatigue performance of wood. Creep, maximum strain, stiffness and work are monitored throughout the fatigue tests. Accumulated creep is suggested identified with damage and a correlation between stiffness reduction...

  20. Design optimization and fatigue testing of an electronically-driven mechanically-resonant cantilever spring mechanism

    International Nuclear Information System (INIS)

    Kheng, Lim Boon; Kean, Koay Loke; Gitano-Briggs, Horizon

    2010-01-01

    A light scanning device consisting of an electronically-driven mechanically-resonant cantilever spring-mirror system has been developed for innovative lighting applications. The repeated flexing of the cantilever spring during operation can lead to premature fatigue failure. A model was created to optimize the spring design. The optimized spring design can reduce stress by approximately one-third from the initial design. Fatigue testing showed that the optimized spring design can operate continuously for over 1 month without failure. Analysis of failures indicates surface cracks near the root of the spring are responsible for the failures.

  1. Fatigue life of the casting-magnesium alloy AZ91

    International Nuclear Information System (INIS)

    Eisenmeier, G.; Mughrabi, H.; Holzwarth, B.; Hoeppel, H.W.; Ding, H.Z.

    2000-01-01

    The cyclic deformation behaviour of the die-casting magnesium alloy AZ91 was investigated at constant total strain amplitudes between 1.4 x 10 -3 and 2 x 10 -2 at room temperature (20 C) and at 130 C. At low total strain amplitudes, a weak cyclic softening at the beginning of the fatigue tests is followed by cyclic hardening, whereas at high total strain amplitudes a strong cyclic hardening occurs throughout. The fatigue lives at 130 C are slightly longer at high strain amplitudes but shorter at low strain amplitudes than at room temperature. The fatigue life data for both temperatures can be described well by the laws of Manson-Coffin and Basquin. The microstructural investigations performed show the strong influence of several microstructural features on the initiation and propagation of fatigue cracks. In order to understand the fatigue crack propagation behaviour, fatigue tests were interrupted at certain numbers of cycles in order to make replicas of the surface of the samples. It could be verified that crack propagation occurs mainly by the coalescence of smaller cracks. Furthermore, unloading tests, performed within a closed cycle, were carried out in order to capture the changes of stiffness (compliance) during a closed cycle with the aim to ascertain the damage evolution occurring during the fatigue tests and to determine the stresses at which the cracks open and close. Finally, two-step fatigue tests were carried out with the objective to quantify deviations from the linear damage rule (LDR) of Palmgren and Miner. The results obtained in this study will be used to formulate a microstructurally based life-prediction concept for single-step as well as for two-step fatigue loading. (orig.)

  2. Assessing Fatigue in Late-Midlife

    DEFF Research Database (Denmark)

    Fieo, Robert A; Mortensen, Erik Lykke; Lund, Rikke

    2014-01-01

    Previous methods examining the Multiple Fatigue Inventory-20 (MFI-20) fatigue questionnaire have been limited to classical test theory, for example, factor analytic approaches. We employed modern test theory to further strengthen the construct validity of the MFI-20 fatigue in a sample of healthy...... the interpretive power of the MFI-20, allowing for the identification of the most optimal scales. Poorly performing items were more easily identified, and person ability was assessed more accurately....

  3. Investigation into fatigue crack growth and kinetic diagrams of fatigue failure

    International Nuclear Information System (INIS)

    Yarema, S.Ya.

    1977-01-01

    Studies on fatigue failure are discussed in terms of fatigue failure kinetic diagrams (FFKD), in which the fatigue crack growth rate is plotted against the stress intensity coefficient (SIC). The physical sense of the crack growth rate and SIC is discussed and their applicability for description of the material in the destruction zone, particularly in presence of various media. Variation of experimental parameters (loading and environment) is followed by a transition period during which the results of the experiment may depend on its history, so that FFKD would remain invariant. Advantages of tests under constant experimental conditions are shown. The ways to stabilize SIC are indicated and requirements to the samples are given. As an example, the tests of disc samples made of plate materials are given, where SIC does not depend on the crack length. The question of controlling the experimental conditions such as asymmetry and shape of the loading cycle, loading frequency, fluctuations of temperature and air composition is considered. The analytical functions describing FFKD are discussed. It is shown, that in appropriate dimensionless coordinates the FFKD of different materials merge into one curve

  4. Corrosion-fatigue studies of the Zr-based Vitreloy 105 bulk metallic glass

    International Nuclear Information System (INIS)

    Horton Jr, Joe A.; Morrison, M.L.; Buchanan, R.A.; Liaw, Peter K.; Green, B.A.; Wang, G.Y.

    2007-01-01

    The purpose of this study was to characterize the stress-life behavior of the Vitreloy 105 BMG alloy in the four-point bending configuration in a 0.6 M. NaCl electrolyte. At high stress amplitudes, the corrosion-fatigue life was similar to the fatigue lives observed in air. The environment became increasingly detrimental with decreases in stress, and the corrosion-fatigue endurance limit decreased to about 50 MPa, an 88% decrease relative to testing in air. Similar to the tests conducted in air, oxide particles were found on the fracture surfaces but did not appear to significantly affect the corrosion-fatigue lives. However, wear and the resultant corrosion at the outer loading pins resulted in crack initiation in most of the samples. Thus, these results are considered conservative estimates of the corrosion-fatigue behavior of this BMG alloy. Monitoring of the samples and the open-circuit potentials revealed that the onset of significant crack growth occurred at an average of 92% of the total fatigue life. The mechanism of corrosion-fatigue degradation was found to be anodic dissolution

  5. Uncertainty on Fatigue Damage Accumulation for Composite Materials

    DEFF Research Database (Denmark)

    Toft, Henrik Stensgaard; Sørensen, John Dalsgaard

    2009-01-01

    In the present paper stochastic models for fatigue damage accumulation for composite materials are presented based on public available constant and variable amplitude fatigue tests. The methods used for estimating the SN-curve and accumulated fatigue damage are presented.......In the present paper stochastic models for fatigue damage accumulation for composite materials are presented based on public available constant and variable amplitude fatigue tests. The methods used for estimating the SN-curve and accumulated fatigue damage are presented....

  6. Multi-Scale Modelling of Fatigue of Wind Turbine Rotor Blade Composites

    NARCIS (Netherlands)

    Qian, C.

    2013-01-01

    In this research, extensive fatigue tests were performed on single glass fibres and composite coupons. Comparison of the test results shows that there is a significant difference between the fibre and composite fatigue behaviour. In order to clarify this difference, a multi-scale micro-mechanical

  7. A procedure to generate input data of cyclic softening and hardening for FEM analysis from constant strain amplitude fatigue tests in LCF regime

    International Nuclear Information System (INIS)

    Sarajaervi, U.; Cronvall, O.

    2007-03-01

    Fatigue is produced by cyclic application of stresses by mechanical or thermal loading. The metal subjected to fluctuating stress will fail at stresses much lower than those required to cause fracture in a single application of load. The key parameters are the range of stress variation and the number of its occurrences. Low-cycle fatigue, usually induced by mechanical and thermal loads, is distinguished from high-cycle fatigue, mainly associated with vibration or high number of small thermal fluctuations. Numerical models describing fatigue behaviour of austenitic stainless piping steels under cyclic loading and their applicability for modelling of low-cycle-fatigue are discussed in this report. In order to describe the cyclic behaviour of the material for analysis with finite element method (FEM) based analysis code ABAQUS, the test data, i.e. stress-strain curves, have to be processed. A code to process the data all through the test duration was developed within this study. A description of this code is given also in this report. Input data for ABAQUS was obtained to describe both kinematic and isotropic hardening properties. Further, by combining the result data for various strain amplitudes a mathematic expression was be created which allows defining a parameter surface for cyclic (i.e. isotropic) hardening. Input data for any strain amplitude within the range of minimum and maximum strain amplitudes of the test data can be assessed with the help of the developed 3D stress-strain surface presentation. The modelling of the fatigue induced initiation and growth of cracks was not considered in this study. On the other hand, a considerable part of the fatigue life of nuclear power plant (NPP) piping components is spent in the phase preceding the initiation and growth of cracks. (au)

  8. A procedure to generate input data of cyclic softening and hardening for FEM analysis from constant strain amplitude fatigue tests in LCF regime

    Energy Technology Data Exchange (ETDEWEB)

    Sarajaervi, U.; Cronvall, O. [VTT (Finland)

    2007-03-15

    Fatigue is produced by cyclic application of stresses by mechanical or thermal loading. The metal subjected to fluctuating stress will fail at stresses much lower than those required to cause fracture in a single application of load. The key parameters are the range of stress variation and the number of its occurrences. Low-cycle fatigue, usually induced by mechanical and thermal loads, is distinguished from high-cycle fatigue, mainly associated with vibration or high number of small thermal fluctuations. Numerical models describing fatigue behaviour of austenitic stainless piping steels under cyclic loading and their applicability for modelling of low-cycle-fatigue are discussed in this report. In order to describe the cyclic behaviour of the material for analysis with finite element method (FEM) based analysis code ABAQUS, the test data, i.e. stress-strain curves, have to be processed. A code to process the data all through the test duration was developed within this study. A description of this code is given also in this report. Input data for ABAQUS was obtained to describe both kinematic and isotropic hardening properties. Further, by combining the result data for various strain amplitudes a mathematic expression was be created which allows defining a parameter surface for cyclic (i.e. isotropic) hardening. Input data for any strain amplitude within the range of minimum and maximum strain amplitudes of the test data can be assessed with the help of the developed 3D stress-strain surface presentation. The modelling of the fatigue induced initiation and growth of cracks was not considered in this study. On the other hand, a considerable part of the fatigue life of nuclear power plant (NPP) piping components is spent in the phase preceding the initiation and growth of cracks. (au)

  9. Fatigue characteristics of dual-phase steel sheets

    Energy Technology Data Exchange (ETDEWEB)

    Onn, Irwan Herman; Ahmad, Norhayati; Tamin, Mohd Nasir [Universiti Teknologi Malaysia, Skudai (Malaysia)

    2015-01-15

    Fatigue characteristics of dual-phase steel sheets, commonly used in automobile body construction were established. For this purpose, a series of fatigue tests, each at constant stress amplitude were conducted on 1.2 mm-thick, dual-phase DP600 steel sheet specimens with two different load ratios of minimum-to-maximum stress, R = 0.1 and -1. The resulting fatigue behavior is expressed in terms of fatigue strength-life (S-N) curves. Fatigue behavior of the steel sheets in the high-cycle fatigue region can be represented by Basquin's equation with coefficient and exponent value of 921.2 and 0.093, respectively. An endurance limit of 255 MPa is observed. In addition, fatigue strengths of the dual-phase steel sheets display lower magnitude than their bulk counterparts. Effect of mean stress on fatigue behavior of the steel sheets is well predicted by Walker's model. Exponential calibration factor is introduced to the models by SWT, Goodman and Morrow with comparable prediction to the Walker's model.

  10. A Modified Fatigue Damage Model for High-Cycle Fatigue Life Prediction

    Directory of Open Access Journals (Sweden)

    Meng Wang

    2016-01-01

    Full Text Available Based on the assumption of quasibrittle failure under high-cycle fatigue for the metal material, the damage constitutive equation and the modified damage evolution equation are obtained with continuum damage mechanics. Then, finite element method (FEM is used to describe the failure process of metal material. The increment of specimen’s life and damage state can be researched using damage mechanics-FEM. Finally, the lifetime of the specimen is got at the given stress level. The damage mechanics-FEM is inserted into ABAQUS with subroutine USDFLD and the Python language is used to simulate the fatigue process of titanium alloy specimens. The simulation results have a good agreement with the testing results under constant amplitude loading, which proves the accuracy of the method.

  11. Effects of exercise-induced fatigue on postural balance: a comparison of treadmill versus cycle fatiguing protocols.

    Science.gov (United States)

    Wright, Katherine E; Lyons, Thomas S; Navalta, James W

    2013-05-01

    The authors of this study examined the effects of muscle fatigue on balance indices and recovery time in recreationally trained individuals after incremental tests on a treadmill and a cycle ergometer. Sixteen participants (male N = 11, female N = 5) (mean age = 21.2 ± 2 years) completed this study. Balance measures were performed on a Biodex Balance System via the Dynamic Balance Test. Balance was measured pre-exercise, immediately post-exercise, and at 3-, 6-, 9-, 12-, 15-, 18-, and 21-min post-exercise. Immediately following the fatiguing treadmill test, balance increased significantly in the overall stability index (SI) (from 4.38 ± 2.48 to 6.09 ± 1.80) and the anterior/posterior index (API) (from 3.49 ± 2.18 to 5.28 ± 1.81) (p balance was not altered significantly in SI or API. Balance was not altered significantly for the medial/lateral index for either exercise test at any time point. Additionally, there were no significant differences in time to recovery. At 12-min post-exercise, all indices were below pre-exercise values, indicating that fatiguing exercise has a positive effect on balance over time. These results are consistent with previous research, suggesting that any effects of fatigue on balance are seen immediately and are diminished as time after exercise increases.

  12. Seismic ratchet-fatigue failure of piping systems

    International Nuclear Information System (INIS)

    Severud, L.K.; Anderson, M.J.; Lindquist, M.R.; Weiner, E.O.

    1987-01-01

    Failures of piping systems during earthquakes have been rare. Those that have failed were either made of brittle material such as cast iron, were rigid systems between major components where component relative seismic motions tore the pipe out of the component, or were high pressure systems where a ratchet-fatigue fracture followed a local bulging of the pipe diameter. Tests to failure of an unpressurized 3-inch and a pressurized 6-inch diameter carbon steel nuclear pipe systems subjected to high-level shaking have been accomplished. The high-level shaking loads needed to cause failure were much higher than ASME Code rules would permit with present design limits. Failure analyses of these tests are presented and correlated to the test results. It was found that failure of the unpressurized system could be correlated well with standard ASME type fatigue analysis predictions. Moreover, the pressurized system failure occured in significantly less load cycles than predicted by standard fatigue analysis. However, a ratchet-fatigue and ductility exhaustion analysis of the pressurized system did correlate reasonably well. These findings indicate modifications to design analysis methods and the present ASME Code piping design rules to reduce unneeded conservatisms and to cover the ratchet-fatigue failure mode may be appropriate

  13. Investigations into the fatigue behaviour of nuclear grades of austenitic stainless steel

    International Nuclear Information System (INIS)

    Mann, J.

    2015-01-01

    Full text of publication follows. Fatigue is an important problem within the nuclear industry due to the complex combination of thermal and mechanical loading that components experience during the operation of a nuclear reactor. Austenitic stainless steels are widely used within nuclear reactors for a number of applications including piping systems and pressure vessels. A number of studies have shown that austenitic stainless steel components operating within a light water reactor (LWR) environment may experience a significant reduction in fatigue life under certain circumstances, however the precise mechanisms responsible for the reduction are still not fully understood. The effects of environment are included in some fatigue assessment methods, however these are generally considered to be over-conservative and predicted fatigue lifetimes are not reflected well by service experience. This project aims to enhance the understanding of fatigue in both air and LWR environments through the synergistic use of a wide range of different microscopy techniques. It is expected that a better understanding of each of the different stages of fatigue will lead to more accurate fatigue predictions that ultimately result in better and safer lifetime predictions. This paper focuses on introducing the background behind the project, highlighting the current methods for assessing fatigue lifetimes and the motivations for the current research. The results of various initial microscopic investigations are presented, with a focus on a number of novel applications using laser scanning confocal microscopy to perform large scale analyses of fatigue fracture surfaces and test specimen gauge length surfaces. The use of surface replicas in conjunction with laser scanning confocal microscopy is discussed along with its potential applications for the assessment of fatigue damage in in-service components. Initial finite element modelling of crack growth within fatigue test specimens is discussed

  14. Monitoring Low-Cycle Fatigue Material-Degradation by Ultrasonic Methods

    Directory of Open Access Journals (Sweden)

    R. Himawan

    2010-08-01

    Full Text Available Any system consisting of structural material often undergoes fatigue, which is caused by dynamic load cycle. As a structural system, nuclear power plant is very likely to have low-cycle fatigue at many of its components. Taking into account the importance of monitoring low-cycle fatigue on structural components to prevent them from getting failure, the authors have conducted a work to monitor material degradation caused by low-cycle fatigue by using ultrasonic method. An alloy of Cu-40Zn was used as a test specimen. Ultrasonic water immersion procedure was employed in this ultrasonic test. The probe used is a focusing type and has frequency as high as 15 MHz. The specimen area tested is in the middle part divided into 14 points × 23 points. The results, which were frequency spectrums, were analyzed using two parameters: frequency spectrum peak intensity and attenuation function gradient. The analysis indicates that peak intensity increases at the beginning of load cycle and then decreases. Meanwhile, gradient of attenuation function is lower at the beginning of fatigue process, and then consistently gets higher. It concludes that low-fatigue material degradation can be monitored by using ultrasonic method.

  15. Metallographic approach to the damage of austenitic stainless steels under plastic fatigue or under creep: description and physical interpretation of fatigue-creep-oxidation interactions

    International Nuclear Information System (INIS)

    Levaillant, Christophe

    1984-01-01

    This research thesis reports the study of interactions between fatigue, creep and oxidation in austenitic stainless steels which are to be used in the construction of fast breeder reactors. This study is addressed by means of low cycle plastic fatigue test with imposed strain, performed at 600 C with tensile relaxation hold times which may reach 24 hours. Continuous fatigue tests (without hold time) and pure creep tests have also been performed to define 'pure' fatigue damages and 'pure' creep damages. Two grades of Z3 CND 17-13 steel have been studied. Thus fracture mechanisms, crack initiation and propagation, and crack kinetic propagation have been studied. Metallographic measurements of damage have been performed. Damage types have been identified: propagation of cracks initiated at the surface, and intergranular de-cohesion within the material. An approximate modelling is proposed, as well as a critical comparison of various published models of fatigue-creep interaction. In order to predict structure lifetime, a new test methodology is proposed, based on experimental results

  16. Fatigue Life of Stainless Steel in PWR Environments with Strain Holding

    Energy Technology Data Exchange (ETDEWEB)

    Kim, Taesoon; Kim, Kyuhyung [KHNP CRI, Daejeon (Korea, Republic of); Seo, Myeonggyu; Jang, Changheui [KAIST, Daejeon (Korea, Republic of)

    2016-10-15

    Many components and structures of nuclear power plants are exposed to the water chemistry conditions during the operation. Recently, as design life of nuclear power plant is expanded over 60 years, the environmentally assisted fatigue (EAF) due to these water chemistry conditions has been considered as one of the important damage mechanisms of the safety class 1 components. Therefore, many studies to evaluate the effect of light water reactor (LWR) coolant environments on fatigue life of materials have been conducted. Many EAF test results including Argonne National Laboratory’s consistently indicated the substantial reduction of fatigue life in the light water reactor environments. However, there is a discrepancy between laboratory test data and plant operating experience regarding the effects of environment on fatigue: while laboratory test data suggest huge accumulation of fatigue damage, very limited experience of cracking caused by the low cycle fatigue in light water reactor. These hold-time effect tests are preformed to characterize the effects of strain holding on the fatigue life of austenitic stainless steels in PWR environments in comparison with the existing fixed strain rate results. Low cycle fatigue life tests were conducted for the type 316 stainless steel in 310℃ air and PWR environments with triangular strain. In agreement with the previous reports, the LCF life was reduced in PWR environments. Also for the slower strain rate, the reduction of LCF life was greater than the faster strain rate. The LCF test conditions for the hold-time effects were determined by the references and consideration of actual plant transient. To simulate the heat-up and cooldown transient, sub-peak strain holding during the down-hill of strain amplitude was chosen instead of peak strain holding which used in the previous researches.

  17. Influence of mechanical stress level in preliminary stress-corrosion testing on fatigue strength of a low-carbon steel

    International Nuclear Information System (INIS)

    Aleskerova, S.A.; Pakharyan, V.A.

    1978-01-01

    Effect of corrosion and mechanical factors of preliminary stress corrosion of a metal in its fatigue strength, has been investigated. Smooth cylindrical samples of 20 steel have been tested. Preliminary corrosion under stress has been carried out under natural sea conditions. It is shown that mechanical stresses in the case of preliminary corrosion affect fatigue strength of low-carbon steels, decreasing the range of limited durability and fatigue limit. This effect increases with the increase of stress level and agressivity of corrosive medium

  18. Research on the Fatigue Flexural Performance of RC Beams Attacked by Salt Spray

    Science.gov (United States)

    Mao, Jiang-hong; Xu, Fang-yuan; Jin, Wei-liang; Zhang, Jun; Wu, Xi-xi; Chen, Cai-sheng

    2018-04-01

    The fatigue flexural performance of RC beams attacked by salt spray was studied. A testing method involving electro osmosis, electrical accelerated corrosion and salt spray was proposed. This corrosion process method effectively simulates real-world salt spray and fatigue loading exerted by RC components on sea bridges. Four RC beams that have different stress amplitudes were tested. It is found that deterioration by corrosion and fatigue loading reduces the fatigue life of the RC and decreases the ability of deformation. The fatigue life and deflection ability could be reduced by increasing the stress amplitude and the corrosion duration time. The test result demonstrates that this experimental method can couple corrosion deterioration and fatigue loading reasonably. This procedure may be applied to evaluate the fatigue life and concrete durability of RC components located in a natural salt spray environment.

  19. Multi Resolution In-Situ Testing and Multiscale Simulation for Creep Fatigue Damage Analysis of Alloy 617

    Energy Technology Data Exchange (ETDEWEB)

    Liu, Yongming [Arizona State Univ., Tempe, AZ (United States). School for Engineering of Matter, Transport and Energy; Oskay, Caglar [Vanderbilt Univ., Nashville, TN (United States). Dept. of Civil and Environmental Engineering

    2017-04-30

    the grain boundaries. The glide model incorporates a slip resistance evolution model that characterizes the solute-drag creep effects and can capture well the stress-strain and stress time response of fatigue and creep-fatigue tests at various strain ranges and hold times. In order to accurately capture the creep strains that accumulate particularly at relatively low stress levels, a dislocation climb model has been incorporated into the crystal plasticity modeling framework. The dislocation climb model parameters are calibrated and verified through experimental creep tests performed at 950°. In addition, a cohesive zone model has been fully implemented in the context of the crystal plasticity finite element model to capture the intergranular creep damage. The parameters of the cohesive zone model have been calibrated using available experimental data. The numerical simulations illustrate the capability of the proposed model in capturing damage initiation and growth under creep loads as compared to the experimental observations. The microscale analysis sheds light on the crack initiation sites and propagation patterns within the microstructure. The model is also utilized to investigate the hybrid-controlled creep-fatigue tests and has been found to capture reasonably well the stress-strain response with different hold times and hold stress magnitudes.

  20. Joint excitation synchronization characteristics of fatigue test for offshore wind turbine blade

    Science.gov (United States)

    Zhang, Lei-an; Yu, Xiang-yong; Wei, Xiu-ting; Liu, Wei-sheng

    2018-02-01

    In the case of the stiffness of offshore wind turbine blade is relatively large, the joint excitation device solves the problem of low accuracy of bending moment distribution, insufficient driving ability and long fatigue test period in single-point loading. In order to study the synchronous characteristics of joint excitation system, avoid blade vibration disturbance. First, on the base of a Lagrange equation, a mathematical model of combined excitation is formulated, and a numerical analysis of vibration synchronization is performed. Then, the model is constructed via MATLAB/Simulink, and the effect of the phase difference on the vibration synchronization characteristics is obtained visually. Finally, a set of joint excitation platform for the fatigue test of offshore wind turbine blades are built. The parameter measurement scheme is given and the correctness of the joint excitation synchronization in the simulation model is verified. The results show that when the rotational speed difference is 2 r/min, 30 r/min, the phase difference is 0, π/20, π/8 and π/4, as the rotational speed difference and the phase difference increase, the time required for the blade to reach a steady state is longer. When the phase difference is too large, the electromechanical coupling can no longer make the joint excitation device appear self-synchronizing phenomenon, so that the value of the phase difference develops toward a fixed value (not equal to 0), and the blade vibration disorder is serious, at this time, the effect of electromechanical coupling must be eliminated. The research results provide theoretical basis for the subsequent decoupling control algorithm and synchronization control strategy, and have good application value.

  1. Joint excitation synchronization characteristics of fatigue test for offshore wind turbine blade

    Directory of Open Access Journals (Sweden)

    Lei-an Zhang

    2018-02-01

    Full Text Available In the case of the stiffness of offshore wind turbine blade is relatively large, the joint excitation device solves the problem of low accuracy of bending moment distribution, insufficient driving ability and long fatigue test period in single-point loading. In order to study the synchronous characteristics of joint excitation system, avoid blade vibration disturbance. First, on the base of a Lagrange equation, a mathematical model of combined excitation is formulated, and a numerical analysis of vibration synchronization is performed. Then, the model is constructed via MATLAB/Simulink, and the effect of the phase difference on the vibration synchronization characteristics is obtained visually. Finally, a set of joint excitation platform for the fatigue test of offshore wind turbine blades are built. The parameter measurement scheme is given and the correctness of the joint excitation synchronization in the simulation model is verified. The results show that when the rotational speed difference is 2 r/min, 30 r/min, the phase difference is 0, π/20, π/8 and π/4, as the rotational speed difference and the phase difference increase, the time required for the blade to reach a steady state is longer. When the phase difference is too large, the electromechanical coupling can no longer make the joint excitation device appear self-synchronizing phenomenon, so that the value of the phase difference develops toward a fixed value (not equal to 0, and the blade vibration disorder is serious, at this time, the effect of electromechanical coupling must be eliminated. The research results provide theoretical basis for the subsequent decoupling control algorithm and synchronization control strategy, and have good application value.

  2. Dynamic Characteristics of a New Machine for Fatigue Testing of Railway Axles – Part 2

    Directory of Open Access Journals (Sweden)

    Karel FRYDRÝŠEK

    2012-06-01

    Full Text Available There were done some proposal calculations for a new testing machine. This new testing machine is determined for a dynamic fatigue testing of railway axles. The railway axles are subjected to bending and rotation (centrifugal effects. For the right proposition of a new machine is very important to know the basic dynamic characteristics of whole system. These dynamic characteristics are solved via FEM (MSC.Marc/Mentat software in combination with SBRA (Simulation-Based Reliability Assessment Method (probabilistic Monte Carlo approach, Anthill and Python software. The proposed dimensions and springs of a new machine for fatigue testing of railway axles were used for manufacturing. Application of the SBRA method connected with FEM in these areas is a new and innovative trend in mechanics. This paper is continuation of former work (i.e. easier deterministic approach already presented in this journal in 2007.

  3. A fatigue test method for Pb(Zr,Ti)O3 thin films by using MEMS-based self-sensitive piezoelectric microcantilevers

    Science.gov (United States)

    Kobayashi, T.; Maeda, R.; Itoh, T.

    2008-11-01

    In the present study, we propose a new method for the fatigue test of lead zirconate titanate (PZT) thin films for MEMS devices by using self-sensitive piezoelectric microcantilevers developed in our previous study. We have deposited PZT thin films on SOI wafers and fabricated the microcantilevers through the MEMS microfabrication process. In the self-sensitive piezoelectric microcantilevers, the PZT thin films are separated in order to act as an actuator and a sensor. The fatigue characteristic of the PZT thin films can be evaluated by measuring the output voltage of the sensor as a function of time. When a sine wave of 20 Vpp and a dc bias of 10 V were applied to the PZT thin films for an actuator, the output voltage of the sensor fell down after 107 fatigue cycles. We have also investigated the influence of amplitude of the actuation sine wave and dc bias on the fatigue of the PZT thin films by using the proposed fatigue test method.

  4. A fatigue test method for Pb(Zr,Ti)O3 thin films by using MEMS-based self-sensitive piezoelectric microcantilevers

    International Nuclear Information System (INIS)

    Kobayashi, T; Maeda, R; Itoh, T

    2008-01-01

    In the present study, we propose a new method for the fatigue test of lead zirconate titanate (PZT) thin films for MEMS devices by using self-sensitive piezoelectric microcantilevers developed in our previous study. We have deposited PZT thin films on SOI wafers and fabricated the microcantilevers through the MEMS microfabrication process. In the self-sensitive piezoelectric microcantilevers, the PZT thin films are separated in order to act as an actuator and a sensor. The fatigue characteristic of the PZT thin films can be evaluated by measuring the output voltage of the sensor as a function of time. When a sine wave of 20 V pp and a dc bias of 10 V were applied to the PZT thin films for an actuator, the output voltage of the sensor fell down after 10 7 fatigue cycles. We have also investigated the influence of amplitude of the actuation sine wave and dc bias on the fatigue of the PZT thin films by using the proposed fatigue test method

  5. Prediction of Mean and Design Fatigue Lives of Self Compacting Concrete Beams in Flexure

    Science.gov (United States)

    Goel, S.; Singh, S. P.; Singh, P.; Kaushik, S. K.

    2012-02-01

    In this paper, result of an investigation conducted to study the flexural fatigue characteristics of self compacting concrete (SCC) beams in flexure are presented. An experimental programme was planned in which approximately 60 SCC beam specimens of size 100 × 100 × 500 mm were tested under flexural fatigue loading. Approximately 45 static flexural tests were also conducted to facilitate fatigue testing. The flexural fatigue and static flexural strength tests were conducted on a 100 kN servo-controlled actuator. The fatigue life data thus obtained have been used to establish the probability distributions of fatigue life of SCC using two-parameter Weibull distribution. The parameters of the Weibull distribution have been obtained by different methods of analysis. Using the distribution parameters, the mean and design fatigue lives of SCC have been estimated and compared with Normally vibrated concrete (NVC), the data for which have been taken from literature. It has been observed that SCC exhibits higher mean and design fatigue lives compared to NVC.

  6. Tensile and superelastic fatigue characterization of NiTi shape memory cables

    Science.gov (United States)

    Sherif, Muhammad M.; Ozbulut, Osman E.

    2018-01-01

    This paper discusses the tensile response and functional fatigue characteristics of a NiTi shape memory alloy (SMA) cable with an outer diameter of 5.5 mm. The cable composed of multiple strands arranged as one inner core and two outer layers. The results of the tensile tests revealed that the SMA cable exhibits good superelastic behavior up to 10% strain. Fatigue characteristics were investigated under strain amplitudes ranging from 3% to 7% and a minimum of 2500 loading cycles. The evolutions of maximum tensile stress, residual strains, energy dissipation, and equivalent viscous damping under a number of loading cycles were analyzed. The fracture surface of a specimen subjected to 5000 loading cycles and 7% strain was discussed. Functional fatigue test results indicated a very high superelastic fatigue life cycle for the tested NiTi SMA cable.

  7. Effect of low fatigue on the ductile-brittle transition of molybdenum

    International Nuclear Information System (INIS)

    Furuya, K.; Nagata, N.; Watanabe, R.; Yoshida, H.

    1982-01-01

    An explicit ductile-brittle transition of molybdenum occurring in both tensile and low cycle fatigue tests was investigated. Tests were performed on several sorts of molybdenum and its alloy TZM, and effects of heat treatment, fabrication method and alloying on the transition behavior and fracture mode are described in detail. All the materials exhibited a brittle failure with degraded fatigue behavior at room temperature, while they became ductile as temperature increased up to 573 K. The tendency of fatigue results was qualitatively in accordance with that of reduction of area in tensile tests. Differences among the materials were minor on the ductile-brittle transition temperature (DBTT), but major on the fatigue life for the embrittled materials. (orig.)

  8. Nonlinear Fatigue Damage Model Based on the Residual Strength Degradation Law

    Science.gov (United States)

    Yongyi, Gao; Zhixiao, Su

    In this paper, a logarithmic expression to describe the residual strength degradation process is developed in order to fatigue test results for normalized carbon steel. The definition and expression of fatigue damage due to symmetrical stress with a constant amplitude are also given. The expression of fatigue damage can also explain the nonlinear properties of fatigue damage. Furthermore, the fatigue damage of structures under random stress is analyzed, and an iterative formula to describe the fatigue damage process is deduced. Finally, an approximate method for evaluating the fatigue life of structures under repeated random stress blocking is presented through various calculation examples.

  9. Damage assessment of low-cycle fatigue by crack growth prediction. Fatigue life under cyclic thermal stress

    International Nuclear Information System (INIS)

    Kamaya, Masayuki

    2013-01-01

    The number of cycles to failure of specimens in fatigue tests can be estimated by predicting crack growth. Under a cyclic thermal stress caused by fluctuation of fluid temperature, due to the stress gradient in the thickness direction, the estimated fatigue life differs from that estimated for mechanical fatigue tests. In this paper, the influence of crack growth under cyclic thermal loading on the fatigue life was investigated. First, the thermal stress was derived by superposing analytical solutions, and then, the stress intensity factor was obtained by the weight function method. It was shown that the thermal stress depended not on the rate of the fluid temperature change but on the rise time, and the magnitude of the stress was increased as the rise time was decreased. The stress intensity factor under the cyclic thermal stress was smaller than that under the uniform stress distribution. The change in the stress intensity factor with the crack depth was almost the same regardless of the rise time. The estimated fatigue life under the cyclic thermal loading could be 1.6 times longer than that under the uniform stress distribution. The critical size for the fatigue life determination was assumed to be 3 mm for fatigue test specimens of 10 mm diameter. By evaluating the critical size by structural integrity analyses, the fatigue life was increased and the effect of the critical size on the fatigue life was more pronounced for the cyclic thermal stress. (author)

  10. Evaluating fatigue in lupus-prone mice: preliminary assessments.

    Science.gov (United States)

    Meeks, Allison; Larson, Susan J

    2012-01-01

    Fatigue is a debilitating condition suffered by many as the result of chronic disease, yet relatively little is known about its biological basis or how to effectively manage its effects. This study sought to evaluate chronic fatigue by using lupus-prone mice and testing them at three different time periods. Lupus-prone mice were chosen because fatigue affects over half of patients with Systemic Lupus Erythematosus. Eleven MLR⁺/(+) (genetic controls) and twelve MLR/MpJ-Fas/J (MRL/lpr; lupus-prone) mice were tested three times: once at 12, 16 and 20 weeks of age. All mice were subjected to a variety of behavioral tests including: forced swim, post-swim grooming, running wheel, and sucrose consumption; five of the MLR⁺/(+) and five of the MLR/lpr mice were also tested on a fixed ratio-25 operant conditioning task. MRL/lpr mice showed more peripheral symptoms of lupus than controls, particularly lymphadenopathy and proteinuria. Lupus mice spent more time floating during the forced swim test and traveled less distance in the running wheel at each testing period. There were no differences between groups in post-swim grooming or in number of reinforcers earned in the operant conditioning task indicating the behavioral changes were not likely due simply to muscle weakness or motivation. Correlations between performance in the running wheel, forced swim test and sucrose consumption were conducted and distance traveled in the running wheel was consistently negatively correlated with time spent floating. Based on these data, we conclude that the lupus-prone mice were experiencing chronic fatigue and that running wheel activity and floating during a forced swim test can be used to evaluate fatigue, although these data cannot rule out the possibility that both fatigue and a depressive-like state were mediating these effects. Copyright © 2011 Elsevier Inc. All rights reserved.

  11. New Method for Dual-Axis Fatigue Testing of Large Wind Turbine Blades Using Resonance Excitation and Spectral Loading

    Energy Technology Data Exchange (ETDEWEB)

    White, D.

    2004-04-01

    The blades of a wind turbine are generally considered to be the most critical component of the wind turbine system. The fundamental purpose of performing fatigue tests on wind turbine blades is to demonstrate that a blade, when manufactured to a certain set of specifications, has the prescribed reliability and service life. The purpose of the research conducted for this project is the advancement of knowledge and capabilities in the area of wind turbine blade fatigue testing.

  12. Thermo-mechanical response and fatigue behavior of shape memory alloy

    Energy Technology Data Exchange (ETDEWEB)

    Kusagawa, Masaki; Asada, Yasuhide; Nakamura, Toshiya [Tokyo Univ. (Japan). Dept. of Mechanical Engineering

    1998-11-01

    Mechanical, thermo-mechanical and fatigue behaviors of Ni-Ti-Nb shape memory alloy (SMA) have been studied to prepare material data for a design purpose. Presented are testing devices, testing procedure and test results of monotonic tensile, recovery of inelastic deformation due to post heating (thermo-mechanical recovery) and fatigue for future use of the SMA as a structural material of nuclear incore structures. (orig.)

  13. Thermo-mechanical response and fatigue behavior of shape memory alloy

    International Nuclear Information System (INIS)

    Kusagawa, Masaki; Asada, Yasuhide; Nakamura, Toshiya

    1998-01-01

    Mechanical, thermo-mechanical and fatigue behaviors of Ni-Ti-Nb shape memory alloy (SMA) have been studied to prepare material data for a design purpose. Presented are testing devices, testing procedure and test results of monotonic tensile, recovery of inelastic deformation due to post heating (thermo-mechanical recovery) and fatigue for future use of the SMA as a structural material of nuclear incore structures. (orig.)

  14. Sequential creep-fatigue interaction in austenitic stainless steel type 316L-SPH

    International Nuclear Information System (INIS)

    Tavassoli, A.A.; Mottot, M.; Petrequin, P.

    1986-01-01

    Influence of a prior creep or fatigue exposure on subsequent fatigue or creep properties of stainless steel type 316 L SPH has been investigated. The results obtained are used to verify the validity of time and cycle fraction rule and to obtain information on the effect of very long intermittent hold times on low cycle fatigue properties, as well as on transitory loads occurring during normal service of some structural components of LMFBR reactors. Creep and fatigue tests have been carried out at 600 0 C and under conditions yielding equal or different fatigue saturation and creep stresses. Prior creep damage levels introduced range from primary to tertiary creep, whilst those of fatigue span from 20 to 70 percent of fatigue life. In both creep-fatigue and fatigue-creep sequences in the absence of a permanent prior damage (cavitation or cracking) the subsequent resistance of 316 L-SPH to fatigue or creep is unchanged, if not improved. Thin foils prepared from the specimens confirmed these observations and showed that the dislocation substructure developed during the first mode of testing is quickly replaced by that of the second mode. Grain boundary cavitation does not occur in 316 L-SPH during creep exposures to well beyond the apparent end of secondary stage and as a result prior creep exposures up to approximately 80% of rupture life do not affect fatigue properties. Conversely, significant surface cracks were found in the prior fatigue tested specimens after above about 50% life. In the presence of such cracks the subsequent creep damage was localized at the tip of the main crack and the remaining creep life was found to be usually proportional to the effective specimen cross section. Creep and fatigue sequential damage are not necessarily additive and this type of loadings are in general less severe than the repeated creep-fatigue cycling. 17 refs.

  15. A thermodynamic approach to fatigue damage accumulation under variable loading

    International Nuclear Information System (INIS)

    Naderi, M.; Khonsari, M.M.

    2010-01-01

    We put forward a general procedure for assessment of damage evolution based on the concept of entropy production. The procedure is applicable to both constant- and variable amplitude loading. The results of a series of bending fatigue tests under both two-stage and three-stage loadings are reported to investigate the validity of the proposed methodology. Also presented are the results of experiments involving bending, torsion, and tension-compression fatigue tests with Al 6061-T6 and SS 304 specimens. It is shown that, within the range of parameters tested, the evolution of fatigue damage for these materials in terms of entropy production is independent of load, frequency, size, loading sequence and loading history. Furthermore, entropy production fractions of individual amplitudes sums to unity.

  16. Some aspects of thermal fatigue in stainless steel

    International Nuclear Information System (INIS)

    Iorio, A.F.; Crespi, J.C.

    1987-01-01

    This paper is concerned with the analysis of failures in a moderator circuit branch piping of the ATUCHA-I pressurized heavy water reactor (PHWR), made of austenitic steel to DIN 1.4550 specification (similar to AISI 347). These failures are considered to result from a thermal fatigue processes induced by fluctuations in a zone where stratified temperature layers occurred -the fluctuations being associated with variations in the heavy water flow. The first section evaluates the possibility of cracking due to thermal fatigue phenomena and concludes that under service conditions a crack may be initiated and growth through 7 mm of the wall thickness of the pipe. Laboratory thermal fatigue tests that simulated the thermomechanical conditions for such a component, showed that the number of cycles required to initiate a thermal fatigue crack in a notched modified standard fatigue specimen was about 10 3 . This value may be used to give a conservative prediction of the number of thermal cycles for crack initiation in actual station piping, including those who suffered a cold plug condition which is produced in some emergency shut-down and valve testing situations. It was also demonstrated that beyond a crack depth of 7 mm stress corrosion cracking has the main process in further crack propagation. The relevance of this prediction has been confirmed by microfractographic observations, since the brittle nature of the fracture surfaces under service conditions appears very different from the transgranular ductile striations found in both thermal and mechanical fatigue test specimens as a result of environmental effects. (Author)

  17. Evaluation of Fatigue Life of CRM-Reinforced SMA and Its Relationship to Dynamic Stiffness

    Directory of Open Access Journals (Sweden)

    Nuha Salim Mashaan

    2014-01-01

    Full Text Available Fatigue cracking is an essential problem of asphalt concrete that contributes to pavement damage. Although stone matrix asphalt (SMA has significantly provided resistance to rutting failure, its resistance to fatigue failure is yet to be fully addressed. The aim of this study is to evaluate the effect of crumb rubber modifier (CRM on stiffness and fatigue properties of SMA mixtures at optimum binder content, using four different modification levels, namely, 6%, 8%, 10%, and 12% CRM by weight of the bitumen. The testing undertaken on the asphalt mix comprises the dynamic stiffness (indirect tensile test, dynamic creep (repeated load creep, and fatigue test (indirect tensile fatigue test at temperature of 25°C. The indirect tensile fatigue test was conducted at three different stress levels (200, 300, and 400 kPa. Experimental results indicate that CRM-reinforced SMA mixtures exhibit significantly higher fatigue life compared to the mixtures without CRM. Further, higher correlation coefficient was obtained between the fatigue life and resilient modulus as compared to permanent strain; thus resilient modulus might be a more reliable indicator in evaluating the fatigue life of asphalt mixture.

  18. Evaluation of fatigue life of CRM-reinforced SMA and its relationship to dynamic stiffness.

    Science.gov (United States)

    Mashaan, Nuha Salim; Karim, Mohamed Rehan; Abdel Aziz, Mahrez; Ibrahim, Mohd Rasdan; Katman, Herda Yati; Koting, Suhana

    2014-01-01

    Fatigue cracking is an essential problem of asphalt concrete that contributes to pavement damage. Although stone matrix asphalt (SMA) has significantly provided resistance to rutting failure, its resistance to fatigue failure is yet to be fully addressed. The aim of this study is to evaluate the effect of crumb rubber modifier (CRM) on stiffness and fatigue properties of SMA mixtures at optimum binder content, using four different modification levels, namely, 6%, 8%, 10%, and 12% CRM by weight of the bitumen. The testing undertaken on the asphalt mix comprises the dynamic stiffness (indirect tensile test), dynamic creep (repeated load creep), and fatigue test (indirect tensile fatigue test) at temperature of 25°C. The indirect tensile fatigue test was conducted at three different stress levels (200, 300, and 400 kPa). Experimental results indicate that CRM-reinforced SMA mixtures exhibit significantly higher fatigue life compared to the mixtures without CRM. Further, higher correlation coefficient was obtained between the fatigue life and resilient modulus as compared to permanent strain; thus resilient modulus might be a more reliable indicator in evaluating the fatigue life of asphalt mixture.

  19. Experimental Study on Variable-Amplitude Fatigue of Welded Cross Plate-Hollow Sphere Joints in Grid Structures

    Directory of Open Access Journals (Sweden)

    Jin-Feng Jiao

    2018-01-01

    Full Text Available The fatigue stress amplitude of the welded cross plate-hollow sphere joint (WCPHSJ in a grid structure varies due to the random loading produced by suspending cranes. A total of 14 specimens considering three different types of WCPHSJs were prepared and tested using a specially designed test rig. Four typical loading conditions, “low-high,” “high-low,” “low-high-low,” and “high-low-high,” were first considered in the tests to investigate the fatigue behavior under variable load amplitudes, followed by metallographic analyses. The experimental and metallographic analysis results provide a fundamental understanding on the fatigue fracture form and fatigue mechanism of WCPHSJs. Based on the available data from constant-amplitude fatigue tests, the variable-amplitude fatigue life of the three types of WCPHSJs was estimated using the Miner rule and Corten-Dolan theory. Since both accumulative damage theories yield virtually same damaging results, the Miner rule is hence suggested to estimate the fatigue life of WCPHSJs.

  20. Three-point bending fatigue behavior of WC–Co cemented carbides

    International Nuclear Information System (INIS)

    Li, Anhai; Zhao, Jun; Wang, Dong; Gao, Xinliang; Tang, Hongwei

    2013-01-01

    Highlights: ► Mechanical fatigue tests were conducted on a specific designed jig. ► Three-point bending fatigue behavior of WC–Co cemented carbides was studied. ► Fatigue mechanisms of WC–Co cemented carbides with different WC grain sizes and Co binder contents were revealed. -- Abstract: WC–Co cemented carbides with different WC grain sizes and Co binder contents were sintered and fabricated. The three-point bending specimens with a single edge notch were prepared for tests. In the experiments, the mechanical properties of materials were investigated under static and cyclic loads (20 Hz) in air at room temperature. The fatigue behaviors of the materials under the same applied loading conditions are presented and discussed. Optical microscope and scanning electron microscopy were used to investigate the micro-mechanisms of damage during fatigue, and the results were used to correlate with the mechanical fatigue behavior of WC–Co cemented carbides. Experimental results indicated that the fatigue fracture surfaces exhibited more fracture origins and diversification of crack propagation paths than the static strength fracture surfaces. The fatigue fracture typically originates from inhomogeneities or defects such as micropores or aggregates of WC grains near the notch tip. Moreover, due to the diversity and complexity of the fatigue mechanisms, together with the evolution of the crack tip and the ductile deformation zone, the fatigue properties of WC–Co cemented carbides were largely relevant with the combination of transverse rupture strength and fracture toughness, rather than only one of them. Transverse rupture strength dominated the fatigue behavior of carbides with low Co content, whilst the fatigue behavior of carbides with high Co content was determined by fracture toughness.

  1. The fatigue-crack propagation behavior of ASTM A533-B steel tested in vacuo at LWR operating temperatures

    International Nuclear Information System (INIS)

    James, L.A.

    1987-01-01

    The fatigue-crack propagation (FCP) behavior of ASTM A533-B-1 steel was characterized in vacuo at 288 0 C. Tests were conducted at two stress ratios: R = 0.05 and R = 0.7. Results of these tests were compared with results from previous studies for the same type of steel tested in an air environment, and FCP rates in vacuo were generally lower than those in air. Stress ratio effects in vacuo were not as great as those in air, and both stress ratio effects and environmental effects are discussed from the standpoint of crack closure concepts

  2. Determination and demarcation of fatigue crack initiation phase in rotating bending condition

    International Nuclear Information System (INIS)

    Pasha, R.A.; Rehman, K.; Shah, M.

    2012-01-01

    In engineering applications, components often experience cyclic loading and therefore, have crack initiation propagation phase. In this research work experimental demarcation of fatigue crack initiation has been investigated. Initiation phase of fatigue life of Aluminium was determined by using single and two step fatigue loading test on four point rotating bending fatigue testing machine. Experimental data is used to determine the distinction between the initiation and propagation phase. Initiation phase is determined at different stress levels. The obtained results demonstrate the effect of stress level on initiation phase and propagation phase. (author)

  3. Finite element fatigue analysis of rectangular clutch spring of automatic slack adjuster

    Science.gov (United States)

    Xu, Chen-jie; Luo, Zai; Hu, Xiao-feng; Jiang, Wen-song

    2015-02-01

    The failure of rectangular clutch spring of automatic slack adjuster directly affects the work of automatic slack adjuster. We establish the structural mechanics model of automatic slack adjuster rectangular clutch spring based on its working principle and mechanical structure. In addition, we upload such structural mechanics model to ANSYS Workbench FEA system to predict the fatigue life of rectangular clutch spring. FEA results show that the fatigue life of rectangular clutch spring is 2.0403×105 cycle under the effect of braking loads. In the meantime, fatigue tests of 20 automatic slack adjusters are carried out on the fatigue test bench to verify the conclusion of the structural mechanics model. The experimental results show that the mean fatigue life of rectangular clutch spring is 1.9101×105, which meets the results based on the finite element analysis using ANSYS Workbench FEA system.

  4. Low Cycle Fatigue of Steel in Strain Controled Cyclic Bending

    Directory of Open Access Journals (Sweden)

    Kulesa Anna

    2016-03-01

    Full Text Available The paper presents a comparison of the fatigue life curves based on test of 15Mo3 steel under cyclic, pendulum bending and tension-compression. These studies were analyzed in terms of a large and small number of cycles where strain amplitude is dependent on the fatigue life. It has been shown that commonly used Manson-Coffin-Basquin model cannot be used for tests under cyclic bending due to the impossibility of separating elastic and plastic strains. For this purpose, some well-known models of Langer and Kandil and one new model of authors, where strain amplitude is dependent on the number of cycles, were proposed. Comparing the results of bending with tension-compression it was shown that for smaller strain amplitudes the fatigue life for both test methods were similar, for higher strain amplitudes fatigue life for bending tests was greater than for tension-compression.

  5. Microstructural characterisation and constitutive behaviour of alloy RR1000 under fatigue and creep-fatigue loading conditions

    International Nuclear Information System (INIS)

    Stoecker, C.; Zimmermann, M.; Christ, H.-J.; Zhan, Z.-L.; Cornet, C.; Zhao, L.G.; Hardy, M.C.; Tong, J.

    2009-01-01

    Mechanical behaviour of a nickel-based superalloy, RR1000, has been investigated at 650 deg. C under cyclic and dwell loading conditions. The microstructural characteristics of the alloy have been studied using scanning electron microscopy (SEM) and transmission electron microscopy (TEM), and the distribution patterns of the dislocations and slip planes have been compared between samples tested under fatigue and creep-fatigue loading conditions. Constitutive behaviour of the alloy was described by a unified constitutive model, where both cyclic plastic and viscoplastic strains were represented by one inelastic strain. The results show that the precipitation state is very stable at 650 deg. C and only minor differences exist in the dislocation arrangements formed under pure fatigue and combined creep and fatigue conditions. Hence, a unified constitutive model seems to be justified in describing and predicting the constitutive behaviour in both cases.

  6. An electromyographic-based test for estimating neuromuscular fatigue during incremental treadmill running

    International Nuclear Information System (INIS)

    Camic, Clayton L; Kovacs, Attila J; Hill, Ethan C; Calantoni, Austin M; Yemm, Allison J; Enquist, Evan A; VanDusseldorp, Trisha A

    2014-01-01

    The purposes of the present study were two fold: (1) to determine if the model used for estimating the physical working capacity at the fatigue threshold (PWC FT ) from electromyographic (EMG) amplitude data during incremental cycle ergometry could be applied to treadmill running to derive a new neuromuscular fatigue threshold for running, and (2) to compare the running velocities associated with the PWC FT , ventilatory threshold (VT), and respiratory compensation point (RCP). Fifteen college-aged subjects (21.5  ±  1.3 y, 68.7  ±  10.5 kg, 175.9  ±  6.7 cm) performed an incremental treadmill test to exhaustion with bipolar surface EMG signals recorded from the vastus lateralis. There were significant (p < 0.05) mean differences in running velocities between the VT (11.3  ±  1.3 km h −1 ) and PWC FT (14.0  ±  2.3 km h −1 ), VT and RCP (14.0  ±  1.8 km h −1 ), but not the PWC FT and RCP. The findings of the present study indicated that the PWC FT model could be applied to a single continuous, incremental treadmill test to estimate the maximal running velocity that can be maintained prior to the onset of neuromuscular fatigue. In addition, these findings suggested that the PWC FT , like the RCP, may be used to differentiate the heavy from severe domains of exercise intensity. (paper)

  7. Fatigue life evaluation method of austenitic stainless steel in PWR water

    International Nuclear Information System (INIS)

    Sakaguchi, Katsumi; Nomura, Yuichiro; Suzuki, Shigeki; Kanasaki, Hiroshi; Higuchi, Makoto

    2006-09-01

    It is known that the fatigue life in elevated temperature water is substantially reduced compared with that in the air. The fatigue life reduction has been investigated experimentally in EFT project of Japan Nuclear Energy Safety Organization (JNES) to evaluate the environmental effect on fatigue life. Many tests have been done for carbon, low alloy, stainless steels and nickel-based alloy under the various conditions. In this paper, the results of the stainless steel in simulated PWR water environments were reported. Fatigue life tests in simulated PWR environments were carried out and the effect of key parameters on fatigue life reduction was examined. The materials used in this study were base and weld metal of austenitic stainless steel SS316, weld metal of SS304 and the base and aged metal of the duplex stainless steel SCS14A. In order to evaluate the effects of stain amplitude, strain rate, strain ratio, temperature, aging, water flow rate and strain holding time, many fatigue tests were examined. In transient condition in an actual plant, however, such parameters as temperature and strain rate are not constant. In order to evaluate fatigue damage in actual plant on the basis of experimental results under constant temperature and strain rate condition, the modified rate approach method was developed. Various kinds of transient have to be taken into account of in actual plant fatigue evaluation, and stress cycle of several ranges of amplitude has to be considered in assessing damage from fatigue. Generally, cumulative usage factor is applied in this type of evaluation. In this study, in order to confirm the applicability of modified rate approach method together with cumulative usage factor, fatigue tests were carried out by combining stress cycle blocks of different strain amplitude levels, in which strain rate changes in response to temperature in a simulated PWR water environment. Consequently, fatigue life could be evaluated with an accuracy of factor of 3

  8. Thermal fatigue. Materials modelling

    International Nuclear Information System (INIS)

    Siegele, D.; Fingerhuth, J.; Mrovec, M.

    2012-01-01

    In the framework of the ongoing joint research project 'Thermal Fatigue - Basics of the system-, outflow- and material-characteristics of piping under thermal fatigue' funded by the German Federal Ministry of Education and Research (BMBF) fundamental numerical and experimental investigations on the material behavior under transient thermal-mechanical stress conditions (high cycle fatigue V HCF and low cycle fatigue - LCF) are carried out. The primary objective of the research is the further development of simulation methods applied in safety evaluations of nuclear power plant components. In this context the modeling of crack initiation and growth inside the material structure induced by varying thermal loads are of particular interest. Therefore, three scientific working groups organized in three sub-projects of the joint research project are dealing with numerical modeling and simulation at different levels ranging from atomistic to micromechanics and continuum mechanics, and in addition corresponding experimental data for the validation of the numerical results and identification of the parameters of the associated material models are provided. The present contribution is focused on the development and experimental validation of material models and methods to characterize the damage evolution and the life cycle assessment as a result of thermal cyclic loading. The individual purposes of the subprojects are as following: - Material characterization, Influence of temperature and surface roughness on fatigue endurances, biaxial thermo-mechanical behavior, experiments on structural behavior of cruciform specimens and scatter band analysis (IfW Darmstadt) - Life cycle assessment with micromechanical material models (MPA Stuttgart) - Life cycle assessment with atomistic and damage-mechanical material models associated with material tests under thermal fatigue (Fraunhofer IWM, Freiburg) - Simulation of fatigue crack growth, opening and closure of a short crack under

  9. Cyclic fatigue resistance of ProTaper Universal instruments when subjected to static and dynamic tests.

    Science.gov (United States)

    Lopes, Hélio P; Britto, Izabelle M O; Elias, Carlos N; Machado de Oliveira, Julio C; Neves, Mônica A S; Moreira, Edson J L; Siqueira, José F

    2010-09-01

    This study evaluated the number of cycles to fracture of ProTaper Universal S2 instruments when subjected to static and dynamic cyclic fatigue tests. ProTaper Universal S2 instruments were used until fracture in an artificial curved canal under rotational speed of 300 rpm in either a static or a dynamic test model. Afterward, the length of the fractured segments was measured and fractured surfaces and helical shafts analyzed by scanning electron microscopy (SEM). The number of cycles to fracture was significantly increased when instruments were tested in the dynamic model (Pductile mode. Plastic deformation was not observed in the helical shaft of fractured instruments. The number of cycles to fracture ProTaper Universal S2 instruments significantly increased with the use of instruments in a dynamic cyclic fatigue test compared with a static model. These findings reinforce the need for performing continuous pecking motions during rotary instrumentation of curved root canals. Copyright (c) 2010 Mosby, Inc. All rights reserved.

  10. Relationship between microhardness and fatigue strength after glass micro-bead peening and ion implantation

    International Nuclear Information System (INIS)

    Lunarski, J.; Zielecki, M.

    1989-01-01

    Results of tests on fatigue strength and condition of the surface layer, produced by ion implantation or/and glass micro-bead peening for E1961Sz and 12H2N4MAZ steels and WT3-1 titanium alloy are reported. In the tests the following characteristics are measured: Knoop hardness, residual stresses (by etching method), surface roughness, and oscillatory bending fatigue limit at the resonance frequency of the specimen. The test results indicate that for the examined steels there is a strong correlation between surface microhardness and fatigue limit, in spite of various surface treatments. This fact enables to predict changes in the fatigue limit, basing on the results of surface microhardness measurements, which are inexpensive and easy to perform. (author)

  11. Effect of grain size on high temperature low-cycle fatigue properties of inconel 617

    International Nuclear Information System (INIS)

    Hattori, Hiroshi; Kitagawa, Masaki; Ohtomo, Akira

    1982-01-01

    The effect of grain size on the high temperature low-cycle fatigue behavior and other material strength properties of Inconel 617 was studied at 1 273 K in air. The strain controlled low-cycle fatigue tests were conducted with a symmetrical (FF type) and an asymmetrical (SF type) strain wave forms. The latter wave form was used for the evaluation of creep-fatigue interaction. The main results obtained in this study are as follows: 1) The tensile strength slightly increased with the increase of the grain diameter. On the other hand, the tensile ductility remarkabley decreased with the increase of the grain diameter. 2) The creep rupture life remarkabley increased with the increase of the grain diameter, especially at the lower stress levels. The effect of grain size on creep ductility has not detailed. 3) The low-cycle fatigue life remarkably decreased with the increase of the grain diameter, especially at the lower strain ranges. 4) The creep-fatigue life was less sensitive to the grain diameter than the fatigue life, because the grain size effects on creep and on fatigue were contrary. It is seemed that the creep-fatigue life is determined by the proportion of the creep and fatigue contribution. 5) The fatigue and creep-fatigue test results have good relations with the tensile and creep ductilities at the test temperature. (author)

  12. Fatigue in tension perpendicular to the grain

    DEFF Research Database (Denmark)

    Clorius, Christian Odin; Pedersen, Martin Bo Uhre; Hoffmeyer, Preben

    1999-01-01

    Traditinally fatigue resistance is quantified as number of cycles to failure at a given stress level. A previous study by the authors showed that fatigue in compression parallel to the grain is governed partly by duration of load and partly by an effect of loading, i.e. a combination of a creep...... mechanism and a mechanism connected to damage introduce in the loading sequences. The purpose of the present study is to disentangle the effect of duration of load from the effect of load oscillation in fatigue in tension perpendicular to the grain. Fatigue experiments are made on small specimens...... and on dowel type joints with slotted in steel plates. In series of ten, the small specimens are taken to fatigue failure in uniform tension at square wave shaped load cycles at 0.01 Hz and 0.1 Hz. In order to test the predictive validity of the result from the small tension specimens, fatigue experiments...

  13. Fatigue In Tension Perpendicular to the Grain

    DEFF Research Database (Denmark)

    Clorius, Christian Odin; Pedersen, Martin Uhre; Hoffmeyer, Preben

    2004-01-01

    Traditionally fatigue resistance is quantified as number of cycles to failure at a given stress level. A previous study by the authors showed that fatigue in compression parallel to the grain is governed partly by duration of load and partly by an effect of loading, i.e. a combination of a creep...... mechanism and a mechanism connected to damage introduced in the loading sequences. The purpose of the present study is to disentangle the effect of duration of load from the effect of load oscillation in fatigue in tension perpendicular to the grain. Fatigue experiments are made on small specimens...... and on dowel type joints with slotted in steel plates. In series of ten, the small specimens are taken to fatigue failure in uniform tension at square wave shaped load cycles at 0.01 Hz and 0.1 Hz. In arder to test the predictive validity of the result from the small tension specimens, fatigue experiments...

  14. Flat-Cladding Fiber Bragg Grating Sensors for Large Strain Amplitude Fatigue Tests

    Directory of Open Access Journals (Sweden)

    Xijia Gu

    2010-08-01

    Full Text Available We have successfully developed a flat-cladding fiber Bragg grating sensor for large cyclic strain amplitude tests of up to ±8,000 με. The increased contact area between the flat-cladding fiber and substrate, together with the application of a new bonding process, has significantly increased the bonding strength. In the push-pull fatigue tests of an aluminum alloy, the plastic strain amplitudes measured by three optical fiber sensors differ only by 0.43% at a cyclic strain amplitude of ±7,000 με and 1.9% at a cyclic strain amplitude of ±8,000 με. We also applied the sensor on an extruded magnesium alloy for evaluating the peculiar asymmetric hysteresis loops. The results obtained were in good agreement with those measured from the extensometer, a further validation of the sensor.

  15. Fatigue in Steel Structures under Random Loading

    DEFF Research Database (Denmark)

    Agerskov, Henning

    1999-01-01

    types of welded plate test specimens and full-scale offshore tubular joints. The materials that have been used are either conventional structural steel with a yield stress of ~ 360-410 MPa or high-strength steel with a yield stress of ~ 810-1010 MPa. The fatigue tests and the fracture mechanics analyses......Fatigue damage accumulation in steel structures under random loading is studied. The fatigue life of welded joints has been determined both experimentally and from a fracture mechanics analysis. In the experimental part of the investigation, fatigue test series have been carried through on various...... have been carried out using load histories, which are realistic in relation to the types of structures studied, i.e. primarily bridges, offshore structures and chimneys. In general, the test series carried through show a significant difference between constant amplitude and variable amplitude fatigue...

  16. All Fatigue is Not Created Equal: The Association of Fatigue and Its Subtypes on Pain Interference in Orofacial Pain.

    Science.gov (United States)

    Boggero, Ian A; Rojas-Ramirez, Marcia V; Carlson, Charles R

    2017-03-01

    Fatigue is known to be a pathway through which depression, psychological distress, pain intensity, and sleep disturbance influence pain interference, but the independent effects of fatigue on pain interference after controlling for these variables remains unknown. In addition, no study to date has tested whether fatigue subtypes of general fatigue, mental fatigue, emotional fatigue, physical fatigue, or vigor differentially predict pain interference. The current study tested these associations using archival medical data of 2133 chronic orofacial pain patients, who completed a battery of psychological questionnaires at the time of their first appointment at an orofacial pain clinic. Hierarchical linear regression analysis revealed that after controlling for depression, psychological distress, sleep disturbance, pain intensity, and demographic variables, fatigue predicted higher pain interference (B=0.70, SE=0.17, Ppain interference after controlling for the aforementioned variables. The findings suggest that fatigue is an important independent predictor of pain interference and not merely a mediator. These findings also suggest that not all fatigue is created equal. Interventions aimed at reducing pain interference should target specific fatigue symptoms of physical fatigue and vigor. Future research investigating the independent associations of fatigue subtypes on pain outcomes may help clarify the nature of the interrelationships between pain and fatigue.

  17. Crack growth under combined creep and fatigue conditions in alloy 800

    International Nuclear Information System (INIS)

    Pfaffelhuber, M.; Roedig, M.; Schubert, F.; Nickel, H.

    1989-08-01

    To investigate the crack growth behaviour under combined creep-fatigue loading, CT 25 mm-specimens of X10NiCrAlTi 32 20 (Alloy 800) have been tested in experiments with cyclic loadings and hold times, with static loadings and short stress rekief interrupts, with ramp type loadings and with sequences of separate fatigue and creep crack growth periods. The test temperature of 700deg C was selected because only in this temperature range this alloy provides similar amounts of crack growth under creep and fatigue conditions due to equivalent stress levels. For the estimation of crack growth under combined loading conditions a linear accumulation of increase in crack length was proved using the crack growth laws of pure creep and fatigue crack growth. Hold time and ramp loadings lead to a higher crack growth rate compared with pure creep or pure fatigue crack growth tests. In hold time experiments the crack growth rate is higher than ramp tests of the same period time. The results of hold time tests can be fairly enough predicted by linear damage accumulation rules. (orig.) [de

  18. Damage assessment of low-cycle fatigue by crack growth prediction. Fatigue life under cyclic thermal stress

    International Nuclear Information System (INIS)

    Kamaya, Masayuki

    2013-01-01

    The number of cycles to failure of specimens in fatigue tests can be estimated by predicting crack growth. Under a cyclic thermal stress caused by fluctuation of fluid temperature, due to the stress gradient in the thickness direction, the estimated fatigue life differs from that estimated for mechanical fatigue tests. In this paper, the influence of crack growth under cyclic thermal loading on the fatigue life was investigated. First, the thermal stress was derived by superposing analytical solutions, and then, the stress intensity factor was obtained by the weight function method. It was shown that the thermal stress depended not on the rate of the fluid temperature change but on the rise time, and the magnitude of the stress was increased as the rise time was decreased. The stress intensity factor under the cyclic thermal stress was smaller than that under the uniform stress distribution. The change in the stress intensity factor with the crack depth did not depend on the heat transfer coefficient and only slightly depended on the rise time. The estimated fatigue life under the cyclic thermal loading could be 1.6 times longer than that under the uniform stress distribution. The critical size for the fatigue life determination was assumed to be 3 mm for fatigue test specimens of 10 mm diameter. By evaluating the critical size by structural integrity analyses, the fatigue life was increased and the effect of the critical size on the fatigue life was more pronounced for the cyclic thermal stress. (author)

  19. Improvement of high temperature fatigue lifetime in AZ91 magnesium alloy by heat treatment

    International Nuclear Information System (INIS)

    Mokhtarishirazabad, Mehdi; Azadi, Mohammad; Hossein Farrahi, Gholam; Winter, Gerhard; Eichlseder, Wilfred

    2013-01-01

    In the present paper, an improvement in high temperature fatigue properties of the AZ91 magnesium alloy with rare earth elements has been obtained by a typical heat treatment, denoted by T6. For this objective, out-of-phase thermo-mechanical fatigue, room temperature and high temperature low cycle fatigue tests are performed to compare lifetimes. Several rare earth elements are initially added to the AZ91 alloy during a gravity casting process in permanent molds. Also, the type of the heat treatment is examined. Results of specimens with only the solution (the T4 heat treatment) and the solution with the ageing process (the T6 heat treatment) are compared under isothermal fatigue loadings. Microstructural investigations are carried out, before and after fatigue experiments to demonstrate the heat treatment effect. Results showed that both low cycle fatigue and thermo-mechanical fatigue of the alloy at high temperatures increases tremendously after the T6 heat treatment. This behavior attributes to the variation of the ductility, which was a result of microstructural changes during the heat treatment and the varying temperature in fatigue tests

  20. Improvement of high temperature fatigue lifetime in AZ91 magnesium alloy by heat treatment

    Energy Technology Data Exchange (ETDEWEB)

    Mokhtarishirazabad, Mehdi [School of Metallurgy and Materials Engineering, Iran University of Science and Technology, Tehran (Iran, Islamic Republic of); Azadi, Mohammad, E-mail: m_azadi@ip-co.com [Fatigue and Wear Workgroup, Irankhodro Powertrain Company (IPCO), Tehran (Iran, Islamic Republic of); Hossein Farrahi, Gholam [School of Mechanical Engineering, Sharif University of Technology, Tehran (Iran, Islamic Republic of); Winter, Gerhard; Eichlseder, Wilfred [Chair of Mechanical Engineering, University of Leoben, Leoben (Austria)

    2013-12-20

    In the present paper, an improvement in high temperature fatigue properties of the AZ91 magnesium alloy with rare earth elements has been obtained by a typical heat treatment, denoted by T6. For this objective, out-of-phase thermo-mechanical fatigue, room temperature and high temperature low cycle fatigue tests are performed to compare lifetimes. Several rare earth elements are initially added to the AZ91 alloy during a gravity casting process in permanent molds. Also, the type of the heat treatment is examined. Results of specimens with only the solution (the T4 heat treatment) and the solution with the ageing process (the T6 heat treatment) are compared under isothermal fatigue loadings. Microstructural investigations are carried out, before and after fatigue experiments to demonstrate the heat treatment effect. Results showed that both low cycle fatigue and thermo-mechanical fatigue of the alloy at high temperatures increases tremendously after the T6 heat treatment. This behavior attributes to the variation of the ductility, which was a result of microstructural changes during the heat treatment and the varying temperature in fatigue tests.

  1. Effects of LWR coolant environments on fatigue lives of austenitic stainless steels

    International Nuclear Information System (INIS)

    Chopra, O.K.; Gavenda, D.J.

    1997-01-01

    The ASME Boiler and Pressure Vessel Code fatigue design curves for structural materials do not explicitly address the effects of reactor coolant environments on fatigue life. Recent test data indicate a significant decrease in fatigue life of pressure vessel and piping materials in light water reactor (LWR) environments. Fatigue tests have been conducted on Types 304 and 316NG stainless steel in air and LWR environments to evaluate the effects of various material and loading variables, e.g., steel type, strain rate, dissolved oxygen (DO) in water, and strain range, on fatigue lives of these steels. The results confirm the significant decrease in fatigue life in water. The environmentally assisted decrease in fatigue life depends both on strain rate and DO content in water. A decrease in strain rate from 0.4 to 0.004%/s decreases fatigue life by a factor of ∼ 8. However, unlike carbon and low-alloy steels, environmental effects are more pronounced in low-DO than in high-DO water. At ∼ 0.004%/s strain rate, reduction in fatigue life in water containing <10 ppb D is greater by a factor of ∼ 2 than in water containing ≥ 200 ppb DO. Experimental results have been compared with estimates of fatigue life based on the statistical model. The formation and growth of fatigue cracks in austenitic stainless steels in air and LWR environments are discussed

  2. Aging Influence on Fatigue Characteristics of RAC Mixtures Containing Warm Asphalt Additives

    Directory of Open Access Journals (Sweden)

    Feipeng Xiao

    2010-01-01

    Full Text Available Aging is an important factor to affect the long-term performance of asphalt pavement. The fatigue life of a typical warm mix asphalt (WMA is generally related to various factors of rheological and mechanical properties of the mixture. The study of the fatigue behavior of the specific rubberized WMA is helpful in recycling the scrap tires and saving energy in terms of the conventional laboratory aging process. This study explores the utilization of the conventional fatigue analysis approach in investigating the cumulative dissipated, stiffness, and fatigue life of rubberized asphalt concrete mixtures containing the WMA additive after a long-term aging process. The aged beams were made with one rubber type (−40 mesh ambient crumb rubber, two aggregate sources, two WMA additives (Asphamin and Sasobit, and tested at 5 and 20ºC. A total of 55 aged fatigue beams were tested in this study. The test results indicated that the addition of crumb rubber extends the fatigue resistance of asphalt binder while WMA additive exhibits a negative effect. The study indicated that the WMA additive generally has an important influence on fatigue life. In addition, test temperature and aggregate source play an important role in determining the cumulative dissipated energy, stiffness, and fatigue life of an aged mixture.

  3. Isothermal and thermal–mechanical fatigue of VVER-440 reactor pressure vessel steels

    Energy Technology Data Exchange (ETDEWEB)

    Fekete, Balazs, E-mail: fekete.mm.bme@gmail.com [College of Dunaujvaros, Tancsics 1A, Dunaujvaros H-2400 (Hungary); Department of Applied Mechanics, Budapest University of Technology and Economics, Muegyetem 5, Budapest H-1111 (Hungary); Trampus, Peter [College of Dunaujvaros, Tancsics 1A, Dunaujvaros H-2400 (Hungary)

    2015-09-15

    Highlights: • We aimed to determine the thermomechanical behaviour of VVER reactor steels. • Material tests were developed and performed on GLEEBLE 3800 physical simulator. • Coffin–Manson curves and parameters were derived. • High accuracy of the strain energy based evaluation was found. • The observed dislocation evolution correlates with the mechanical behaviour. - Abstract: The fatigue life of the structural materials 15Ch2MFA (CrMoV-alloyed ferritic steel) and 08Ch18N10T (CrNi-alloyed austenitic steel) of VVER-440 reactor pressure vessel under completely reserved total strain controlled low cycle fatigue tests were investigated. An advanced test facility was developed for GLEEBLE-3800 physical simulator which was able to perform thermomechanical fatigue experiments under in-service conditions of VVER nuclear reactors. The low cycle fatigue results were evaluated with the plastic strain based Coffin–Manson law, and plastic strain energy based model as well. It was shown that both methods are able to predict the fatigue life of reactor pressure vessel steels accurately. Interrupted fatigue tests were also carried out to investigate the kinetic of the fatigue evolution of the materials. On these samples microstructural evaluation by TEM was performed. The investigated low cycle fatigue behavior can provide reference for remaining life assessment and lifetime extension analysis.

  4. Low-cycle fatigue behavior of HT-9 alloy in a flowing-lithium environment

    International Nuclear Information System (INIS)

    Chopra, O.K.; Smith, D.L.

    1983-06-01

    Low-cycle fatigue data have been obtained on normalized/tempered or lithium-preexposed HT-9 alloy at 755 K in flowing lithium of controlled purity. The results show that the fatigue life of this material decreases with an increase in nitrogen content in lithium. A reduction in strain rate also decreases the fatigue life in high-nitrogen lithium. However, in the range from approx. 4 x 10 - 4 to 4 x 10 - 2 s - 1 , the strain rate has no effect on fatigue life in lithium containing <200 wppM nitrogen. The fatigue life of the HT-9 alloy in low-nitrogen lithium is significantly greater than the fatigue life of Fe-9Cr-1Mo steel or Type 403 martensitic steel in air. Furthermore, a 4.0-Ms preexposure to low-nitrogen lithium has no influence on fatigue life. The reduction in fatigue life in high-nitrogen lithium is attributed to internal corrosive attack of the material. The specimens tested in high-nitrogen lithium show internal corrosion along grain and martensitic lathe boundaries and intergranular fracture. This behavior is not observed in specimens tested in low-nitrogen lithium. Results for a constant-load corrosion test in flowing lithium are also presented

  5. Thermomechanical fatigue life prediction for several solders

    Science.gov (United States)

    Wen, Shengmin

    Since solder connections operate at high homologous temperature, solders are high temperature materials. This feature makes their mechanical behavior and fatigue phenomena unique. Based on experimental findings, a physical damage mechanism is introduced for solders. The mechanism views the damage process as a series of independent local damage events characterized by the failure of individual grains, while the structural damage is the eventual percolation result of such local events. Fine's dislocation energy density concept and Mura's microcrack initiation theory are adopted to derive the fatigue formula for an individual grain. A physical damage metric is introduced to describe the material with damage. A unified creep and plasticity constitutive model is adopted to simulate the mechanical behavior of solders. The model is cast into a continuum damage mechanics framework to simulate material with damage. The model gives good agreement with the experimental results of 96.5Pb-3.5Sn and 96.5Sn-3.5Ag solders under uniaxial strain-controlled cyclic loading. The model is convenient for implementation into commercial computational packages. Also presented is a fatigue theory with its failure criterion for solders based on physical damage mechanism. By introducing grain orientation into the fatigue formula, an m-N curve (m is Schmid factor) at constant loading condition is suggested for fatigue of grains with different orientations. A solder structure is defined as fatigued when the damage metric reaches a critical threshold, since at this threshold the failed grains may form a cluster and percolate through the structure according to percolation theory. Fatigue data of 96.5Pb-3.5Sn solder bulk specimens under various uniaxial tension tests were analyzed. Results show that the theory gives consistent predictions under broad conditions, while inelastic strain theory does not. The theory is anisotropic with no size limitation to its application, which could be suitable for

  6. Low cycle fatigue strength of some austenitic stainless steels at room temperature and elevated temperatures

    International Nuclear Information System (INIS)

    Type 304, 316, and 316L stainless steels were tested from room temperature to 650 0 C using two kinds of bending test specimens. Particularly, Type 304 was tested at several cyclic rates and 550 0 and 650 0 C, and the effect of cyclic rate on its fatigue strength was investigated. Test results are summarized as follows: (1) The bending fatigue strength at room temperature test shows good agreement with the axial fatigue one, (2) Manson--Coffin's fatigue equation can be applied to the results, (3) the ratio of crack initiation to failure life becomes larger at higher stress level, and (4) the relation between crack propagation life and total strain range or elastic strain range are linear in log-log scale. This relation also agrees with the equations which were derived from some crack propagation laws. It was also observed at the elevated temperature test: (1) The reduction of fatigue strength is not noticeable below 500 0 C, but it is noted at higher temperature. (2) The cycle rate does not affect on fatigue strength in faster cyclic rate than 20 cpm and below 100,000 cycles life range. (3) Type 316 stainless steel shows better fatigue property than type 304 and 316L stainless steels. 30 figures

  7. The effect of microstructure and geometry on the fatigue behaviour of bundle assembly welds

    International Nuclear Information System (INIS)

    Surette, B.A.; Gabbani, M.

    1997-01-01

    Cracking of end plates, in the Darlington NGS, was attributed to high-cycle fatigue resulting from flow-induced vibrations. Because the cracks were predominantly associated with the bundle assembly welds and with certain element positions, a program was initiated to study whether the microstructure and geometry of the weld zone affected the fatigue behaviour of the assembly welds. Assembly weld samples were subjected to different heat treatments, resulting in different microstructures of the weld zone. Results of fatigue testing suggest that heat treatment of the welds (i.e., microstructure) had little effect on the fatigue life. Assembly welds were also produced with different weld notch geometries, and compared with samples having notches produced by machining (instead of welding). The results of these tests showed that geometry of the weld had a significant effect on fatigue life. However, the geometry of the weld notch required to significantly improve fatigue life is not achievable using the current assembly welding process. A small improvement in fatigue life of welded samples appears possible by increasing the weld diameter. (author)

  8. Hand Fatigue Analysis Using Quantitative Evaluation of Variability in Drawing Patterns

    Directory of Open Access Journals (Sweden)

    mohamadali Sanjari

    2015-02-01

    Full Text Available Background & aim: Muscle fatigue is defined as the reduced power generation capacity of a muscle or muscle group after activity which can lead to a variety of lesions. The purpose of the present study was to define the fatigue analysis by quantitative analysis using drawing patterns. Methods: the present cross-sectional study was conducted on 37 healthy volunteers (6 men and 31 women aged 18-30 years. Before & immediately after a fatigue protocol, quantitative assessment of hand drawing skills was performed by drawing repeated, overlapping, and concentric circles. The test was conducted in three sessions with an interval of 48-72 hours. Drawing was recorded by a digital tablet. Data were statistically analyzed using paired t-test and repeated measure ANOVA. Result: In drawing time series data analysis, at fatigue level of 100%, the variables standard deviation along x axis (SDx, standard deviation of velocity on both x and y axis (SDVx and SDVy and resultant vector velocity standard deviation (SDVR, showed significant differences after fatigue (P<0.05. In comparison of variables after the three fatigue levels, SDx showed significant difference (P<0.05. Conclusions: structurally full fatigue showed significant differences with other levels of fatigue, so it contributed to significant variability in drawing parameters. The method used in the present study recognized the fatigue in high frequency motion as well.

  9. Study of the corrosion fatigue resistance of steel grades for automotive suspension springs

    Energy Technology Data Exchange (ETDEWEB)

    Mougin, J. [Ascometal CREAS, BP70045, F-57301 Hagondange Cedex (France); Mostacchi, A. [Ascometal Developpement, BP17, F-38570 Le Cheylas (France); Hersart, Y. [Allevard Rejna Autosuspensions CRDT, 201 Rue de Sin-le-Noble, BP629, F-59506 Douai Cedex (France)

    2004-07-01

    initiation. A correlation has been obtained between the pits total area and the life duration of the specimens. For coupled corrosion fatigue tests, the pits are less severe, but it seems that the propagation stage is important. It might be assisted by hydrogen produced by the corrosion reaction and diffusing into the steel. The results obtained show that corrosion is very damaging for the steel, whatever it is done before or during the fatigue testing. The ratio of life duration between fatigue in corrosion medium and fatigue in air allow to estimate the relative contribution of mechanics and corrosion in endurance. These ratio obtained with this methodology are of the same order of magnitude as the results obtained by spring-makers by testing the corrosion fatigue resistance of actual springs. The device set up here on specimens can represent in a satisfying manner the results obtained on springs. (authors)

  10. Behavior of Fatigue Crack Tip Opening in Air and Corrosive Atmosphere

    Science.gov (United States)

    Hayashi, Morihito; Toeda, Kazunori

    In the study, a formula for predicting fatigue crack tip opening displacement is deduced firstly. And then, due to comparing actual crack growth rate with the deduced formula, the crack tip configuration factor is defined to figure out the crack tip opening configuration that is useful to clarify the behavior of fatigue crack tip formation apparently. Applying the concept, the crack growth of 7/3 brass and 6/4 brass is predicted from the formula, by replacing material properties such as plastic flow resistance, Young modulus, the Poisson ratio, and fatigue toughness, and fatigue test conditions such as the stress intensity factor range, the load ratio, and cycle frequency. Furthermore, the theoretically expected results are verified with the fatigue tests which were carried out on CT specimens under different load conditions of load ratio, cycle frequency, and cyclic peak load, in different environments of air or corrosive ammonia atmosphere, for various brasses. And by comparing and discussing the calculated crack growth rate with attained experimental results, the apparent configuration factor at the crack tip is determined. And through the attained factor which changes along with crack growth, the behaviors of fatigue crack tip formation under different test conditions have been found out.

  11. Accelerated fatigue testing of dentin-composite bond with continuously increasing load.

    Science.gov (United States)

    Li, Kai; Guo, Jiawen; Li, Yuping; Heo, Young Cheul; Chen, Jihua; Xin, Haitao; Fok, Alex

    2017-06-01

    The aim of this study was to evaluate an accelerated fatigue test method that used a continuously increasing load for testing the dentin-composite bond strength. Dentin-composite disks (ϕ5mm×2mm) made from bovine incisor roots were subjected to cyclic diametral compression with a continuously increasingly load amplitude. Two different load profiles, linear and nonlinear with respect to the number of cycles, were considered. The data were then analyzed by using a probabilistic failure model based on the Weakest-Link Theory and the classical stress-life function, before being transformed to simulate clinical data of direct restorations. All the experimental data could be well fitted with a 2-parameter Weibull function. However, a calibration was required for the effective stress amplitude to account for the difference between static and cyclic loading. Good agreement was then obtained between theory and experiments for both load profiles. The in vitro model also successfully simulated the clinical data. The method presented will allow tooth-composite interfacial fatigue parameters to be determined more efficiently. With suitable calibration, the in vitro model can also be used to assess composite systems in a more clinically relevant manner. Copyright © 2017 The Academy of Dental Materials. Published by Elsevier Ltd. All rights reserved.

  12. Basic psychological need experiences, fatigue, and sleep in individuals with unexplained chronic fatigue.

    Science.gov (United States)

    Campbell, Rachel; Tobback, Els; Delesie, Liesbeth; Vogelaers, Dirk; Mariman, An; Vansteenkiste, Maarten

    2017-12-01

    Grounded in self-determination theory, this study tested the hypothesis that the satisfaction and frustration of the psychological needs for autonomy, competence, and relatedness would relate to fatigue and subjective and objective sleep parameters, with stress and negative sleep cognitions playing an explanatory role in these associations. During a stay at a sleep laboratory in Belgium, individuals with unexplained chronic fatigue (N = 160; 78% female) underwent polysomnography and completed a questionnaire at 3 different points in time (i.e., after arrival in the sleep lab, before bedtime, and the following morning) that assessed their need-based experiences and stress during the previous week, fatigue during the preceding day, and sleep-related cognitions and sleep during the previous night. Results indicated that need frustration related to higher stress, which in turn, related to higher evening fatigue. Need frustration also related to poorer subjective sleep quality and shorter sleep duration, as indicated by both subjective and objective shorter total sleep time and subjective (but not objective) longer sleep latency. These associations were accounted for by stress and negative sleep cognitions. These findings suggest that health care professionals working with individuals with unexplained chronic fatigue may consider focusing on basic psychological needs within their therapeutic approach. Copyright © 2017 John Wiley & Sons, Ltd.

  13. Synthesis of Sine-on-Random vibration profiles for accelerated life tests based on fatigue damage spectrum equivalence

    Science.gov (United States)

    Angeli, Andrea; Cornelis, Bram; Troncossi, Marco

    2018-03-01

    In many real life environments, mechanical and electronic systems are subjected to vibrations that may induce dynamic loads and potentially lead to an early failure due to fatigue damage. Thus, qualification tests by means of shakers are advisable for the most critical components in order to verify their durability throughout the entire life cycle. Nowadays the trend is to tailor the qualification tests according to the specific application of the tested component, considering the measured field data as reference to set up the experimental campaign, for example through the so called "Mission Synthesis" methodology. One of the main issues is to define the excitation profiles for the tests, that must have, besides the (potentially scaled) frequency content, also the same damage potential of the field data despite being applied for a limited duration. With this target, the current procedures generally provide the test profile as a stationary random vibration specified by a Power Spectral Density (PSD). In certain applications this output may prove inadequate to represent the nature of the reference signal, and the procedure could result in an unrealistic qualification test. For instance when a rotating part is present in the system the component under analysis may be subjected to Sine-on-Random (SoR) vibrations, namely excitations composed of sinusoidal contributions superimposed to random vibrations. In this case, the synthesized test profile should preserve not only the induced fatigue damage but also the deterministic components of the environmental vibration. In this work, the potential advantages of a novel procedure to synthesize SoR profiles instead of PSDs for qualification tests are presented and supported by the results of an experimental campaign.

  14. Compressive Fatigue in Wood

    DEFF Research Database (Denmark)

    Clorius, Christian Odin; Pedersen, Martin Bo Uhre; Hoffmeyer, Preben

    1999-01-01

    An investigation of fatigue failure in wood subjected to load cycles in compression parallel to grain is presented. Small clear specimens of spruce are taken to failure in square wave formed fatigue loading at a stress excitation level corresponding to 80% of the short term strength. Four...... frequencies ranging from 0.01 Hz to 10 Hz are used. The number of cycles to failure is found to be a poor measure of the fatigue performance of wood. Creep, maximum strain, stiffness and work are monitored throughout the fatigue tests. Accumulated creep is suggested identified with damage and a correlation...

  15. Full-Scale Fatigue Testing of a Wind Turbine Blade in Flapwise Direction and Examining the Effect of Crack Propagation on the Blade Performance

    Directory of Open Access Journals (Sweden)

    Othman Al-Khudairi

    2017-10-01

    Full Text Available In this paper, the sensitivity of the structural integrity of wind turbine blades to debonding of the shear web from the spar cap was investigated. In this regard, modal analysis, static and fatigue testing were performed on a 45.7 m blade for three states of the blade: (i as received blade (ii when a crack of 200 mm was introduced between the web and the spar cap and (iii when the crack was extended to 1000 mm. Calibration pull-tests for all three states of the blade were performed to obtain the strain-bending moment relationship of the blade according to the estimated target bending moment (BM which the blade is expected to experience in its service life. The resultant data was used to apply appropriate load in the fatigue tests. The blade natural frequencies in flapwise and edgewise directions over a range of frequency domain were found by modal testing for all three states of the blade. The blade first natural frequency for each state was used for the flapwise fatigue tests. These were performed in accordance with technical specification IEC TS 61400-23. The fatigue results showed that, for a 200 mm crack between the web and spar cap at 9 m from the blade root, the crack did not propagate at 50% of the target BM up to 62,110 cycles. However, when the load was increased to 70% of target BM, some damages were detected on the pressure side of the blade. When the 200 mm crack was extended to 1000 mm, the crack began to propagate when the applied load exceeded 100% of target BM and the blade experienced delaminations, adhesive joint failure, compression failure and sandwich core failure.

  16. Full-Scale Fatigue Testing of a Wind Turbine Blade in Flapwise Direction and Examining the Effect of Crack Propagation on the Blade Performance.

    Science.gov (United States)

    Al-Khudairi, Othman; Hadavinia, Homayoun; Little, Christian; Gillmore, Gavin; Greaves, Peter; Dyer, Kirsten

    2017-10-03

    In this paper, the sensitivity of the structural integrity of wind turbine blades to debonding of the shear web from the spar cap was investigated. In this regard, modal analysis, static and fatigue testing were performed on a 45.7 m blade for three states of the blade: (i) as received blade (ii) when a crack of 200 mm was introduced between the web and the spar cap and (iii) when the crack was extended to 1000 mm. Calibration pull-tests for all three states of the blade were performed to obtain the strain-bending moment relationship of the blade according to the estimated target bending moment (BM) which the blade is expected to experience in its service life. The resultant data was used to apply appropriate load in the fatigue tests. The blade natural frequencies in flapwise and edgewise directions over a range of frequency domain were found by modal testing for all three states of the blade. The blade first natural frequency for each state was used for the flapwise fatigue tests. These were performed in accordance with technical specification IEC TS 61400-23. The fatigue results showed that, for a 200 mm crack between the web and spar cap at 9 m from the blade root, the crack did not propagate at 50% of the target BM up to 62,110 cycles. However, when the load was increased to 70% of target BM, some damages were detected on the pressure side of the blade. When the 200 mm crack was extended to 1000 mm, the crack began to propagate when the applied load exceeded 100% of target BM and the blade experienced delaminations, adhesive joint failure, compression failure and sandwich core failure.

  17. The Effect of Creep Aging on the Fatigue Fracture Behavior of 2524 Aluminum Alloy

    OpenAIRE

    Wenke Li; Lihua Zhan; Lingfeng Liu; Yongqian Xu

    2016-01-01

    Normal temperature tensile and fatigue tests were adopted to test the mechanical performance and fatigue life of 2524 aluminum alloy under the three states of T3, artificial aging, and creep aging, and scanning electron microscope and transmission electron microscope were also used to observe the fatigue fracture morphology and aging precipitation features of the alloy under the above three states. Results showed that the alloy treated by creep aging can obtain higher fatigue life, but that t...

  18. Effect of aerobic exercise on cancer-related fatigue

    Directory of Open Access Journals (Sweden)

    Jaivika Govindbhai Patel

    2017-01-01

    Full Text Available Background: Fatigue is the most common side effect of cancer treatment with chemotherapy and/or radiation therapy, selected biologic response modifiers. The main purpose of this study is to evaluate the effects of aerobic exercise on cancer-related fatigue in patients of the solid tumor after chemotherapy and radiotherapy. Methods: After screening for cancer-related fatigue, 34 patients fulfilled the inclusive criteria and were assigned into two groups (n = 17 recruited in the intervention group and n = 17 in control group. The intervention group received aerobic exercise program which included treadmill walking with low to moderate intensity (50%–70% of maximum heart rate, for 20–40 min/day for 5 days/week. Control group were taught stretching exercises of hamstrings, gastrocnemius, and soleus (to be done at home and were encouraged to remain active. Outcome measures such as brief fatigue inventory (BFI, 6-min walk test, and functional assessment of cancer therapy-general (FACT-G were taken at baseline and after 6-weeks. Results: The data were analyzed using the Wilcoxon matched-pairs signed rank test for within group and Mann–Whitney U-test for between group comparisons. The results of this study showed that there was a significant reduction in cancer-related fatigue BFI score (P < 0.0001,, also there was significant improvement in the physical performance as in 6-min walk distance (P < 0.0001 and quality of life, FACT-G score (P = 0.0001. Conclusion: Aerobic exercise for 6 weeks has beneficial effects on cancer-related fatigue in patients with solid tumor after chemotherapy and/or radiotherapy.

  19. Fatigue Properties of Layered Double Hydroxides Modified Asphalt and Its Mixture

    Directory of Open Access Journals (Sweden)

    Xing Liu

    2014-01-01

    Full Text Available This study investigated the influence of layered double hydroxides (LDHs on the fatigue properties of asphalt mixture. In this paper, different aging levels (thin film oven test (TFOT and ultraviolet radiation aging (UV aging for short of bitumen modified with various mass ratios of the LDHs were investigated. The TFOT and UV aging process were used to simulate short-term field thermal-oxidative aging and long-term field light UV aging of bitumen, respectively. The influences of LDHs on the fatigue properties of LDHs were evaluated by dynamic shear rheometer (DSR and indirect tensile fatigue test. Results indicated that the introduction of LDHs could change the fatigue properties of bitumen under a stress control mode. The mixture with modified bitumen showed better fatigue resistance than the mixture with base bitumen. The results illustrated that the LDHs would be alternative modifiers used in the bitumen to improve the lifetime of asphalt pavements.

  20. Can a fatigue test of the isolated lumbar extensor muscles of untrained young men predict strength progression in a resistance exercise program?

    NARCIS (Netherlands)

    Helmhout, P.; Staal, B.; Dijk, J. van; Harts, C.; Bertina, F.; Bie, R. de

    2010-01-01

    AIM: The aim of this exploratory study was to investigate the predictive value of a fatigue test of the lumbar extensor muscles for training progression in a group of 28 healthy but predominantly sedentary male students, in an 8-week resistance exercise program. METHODS: A three-phased fatigue test

  1. Low cycle fatigue and creep fatigue behavior of alloy 617 at high temperature

    International Nuclear Information System (INIS)

    Cabet, Celine; Carroll, Laura; Wright, Richard

    2013-01-01

    Alloy 617 is the leading candidate material for an intermediate heat exchanger (IHX) application of the very high temperature nuclear reactor (VHTR), expected to have an outlet temperature as high as 950 C. Acceptance of Alloy 617 in Section III of the ASME Code for nuclear construction requires a detailed understanding of the creep-fatigue behavior. Initial creep-fatigue work on Alloy 617 suggests a more dominant role of environment with increasing temperature and/or hold times evidenced through changes in creep-fatigue crack growth mechanisms and failure life. Continuous cycle fatigue and creep-fatigue testing of Alloy 617 was conducted at 950 C and 0.3% and 0.6% total strain in air to simulate damage modes expected in a VHTR application. Continuous cycle fatigue specimens exhibited transgranular cracking. Intergranular cracking was observed in the creep-fatigue specimens and the addition of a hold time at peak tensile strain degraded the cycle life. This suggests that creep-fatigue interaction occurs and that the environment may be partially responsible for accelerating failure. (authors)

  2. COGNITIVE FATIGUE FACILITATES PROCEDURAL SEQUENCE LEARNING

    Directory of Open Access Journals (Sweden)

    Guillermo eBorragán

    2016-03-01

    Full Text Available Enhanced procedural learning has been evidenced in conditions where cognitive control is diminished, including hypnosis, disruption of prefrontal activity and non-optimal time of the day. Another condition depleting the availability of controlled resources is cognitive fatigue. We tested the hypothesis that cognitive fatigue, eventually leading to diminished cognitive control, facilitates procedural sequence learning. In a two-day experiment, twenty-three young healthy adults were administered a serial reaction time task (SRTT following the induction of high or low levels of cognitive fatigue, in a counterbalanced order. Cognitive fatigue was induced using the Time load Dual-back (TloadDback paradigm, a dual working memory task that allows tailoring cognitive load levels to the individual's optimal performance capacity. In line with our hypothesis, reaction times in the SRTT were faster in the high- than in the low-level fatigue condition, and performance improvement showed more of a benefit from the sequential components than from motor. Altogether, our results suggest a paradoxical, facilitating impact of cognitive fatigue on procedural motor sequence learning. We propose that facilitated learning in the high-level fatigue condition stems from a reduction in the cognitive resources devoted to cognitive control processes that normally oppose automatic procedural acquisition mechanisms.

  3. Fatigue Life Prediction of High Modulus Asphalt Concrete Based on the Local Stress-Strain Method

    Directory of Open Access Journals (Sweden)

    Mulian Zheng

    2017-03-01

    Full Text Available Previously published studies have proposed fatigue life prediction models for dense graded asphalt pavement based on flexural fatigue test. This study focused on the fatigue life prediction of High Modulus Asphalt Concrete (HMAC pavement using the local strain-stress method and direct tension fatigue test. First, the direct tension fatigue test at various strain levels was conducted on HMAC prism samples cut from plate specimens. Afterwards, their true stress-strain loop curves were obtained and modified to develop the strain-fatigue life equation. Then the nominal strain of HMAC course determined using finite element method was converted into local strain using the Neuber method. Finally, based on the established fatigue equation and converted local strain, a method to predict the pavement fatigue crack initiation life was proposed and the fatigue life of a typical HMAC overlay pavement which runs a risk of bottom-up cracking was predicted and validated. Results show that the proposed method was able to produce satisfactory crack initiation life.

  4. Multiaxial fatigue assessment of welded joints using the notch stress approach

    DEFF Research Database (Denmark)

    Pedersen, Mikkel Melters

    2016-01-01

    This paper presents an evaluation of the safety involved when performing fatigue assessment of multiaxially loaded welded joints. The notch stress approach according to the IIW is used together with 8 different multiaxial criteria, including equivalent stress-, interaction equation- and critical...... plane approaches. The investigation is carried out by testing the criteria on a large amount of fatigue test results collected from the literature (351 specimens total). Subsequently, the probability of achieving a non-conservative fatigue assessment is calculated in order to evaluate the different...

  5. Experimental stress analysis and fatigue tests of five 12-in. NPS ANSI Standard B16.9 tees

    International Nuclear Information System (INIS)

    Moore, S.E.; Grigory, S.C.; Weed, R.A.

    1984-04-01

    The tees, designated as ORNL tees T-4, T-6, T-7, T-8, and T-15, were tested under subcontract at Southwest Research Institute, and the data were analyzed at ORNL. Experimental stress analyses were conducted for 13 individual loadings on each tee, including internal pressure and 3 mutually perpendicular force and moment loads on the branch and on the run. Each test model was instrumented with approx. 220, 1/16-in. three-gage, 45 0 strain rosettes on the body of the tee, and approx. 10, 1/16-in. two-gage, strain rosettes on the pipe extensions. Dial indicators, mounted on a special nonflexible holding frame, were used to measure deflections and rotations of the pipe extensions. Normalized maximum stress intensities for each loading condition on each tee are summarized in the text. Complete sets of strain-gage data, normalized stresses, and displacement measurements for each tee are given on microfiche in the appendixes. Following completion of the strain-gage tests, each tee was tested to failure in a fully reversed displacement-controlled low-cycle fatigue test with an alternating transverse load applied to the branch pipe. The load was directed out of plane for T-4, T-6, T-8, and T-15; and in plane for T-7. A constant internal pressure equal to the nominal design pressure was maintained during the fatigue tests. Failure data from the fatigue tests are summarized in the text

  6. Interconnect fatigue design for terrestrial photovoltaic modules

    Science.gov (United States)

    Mon, G. R.; Moore, D. M.; Ross, R. G., Jr.

    1982-03-01

    The results of comprehensive investigation of interconnect fatigue that has led to the definition of useful reliability-design and life-prediction algorithms are presented. Experimental data indicate that the classical strain-cycle (fatigue) curve for the interconnect material is a good model of mean interconnect fatigue performance, but it fails to account for the broad statistical scatter, which is critical to reliability prediction. To fill this shortcoming the classical fatigue curve is combined with experimental cumulative interconnect failure rate data to yield statistical fatigue curves (having failure probability as a parameter) which enable (1) the prediction of cumulative interconnect failures during the design life of an array field, and (2) the unambiguous--ie., quantitative--interpretation of data from field-service qualification (accelerated thermal cycling) tests. Optimal interconnect cost-reliability design algorithms are derived based on minimizing the cost of energy over the design life of the array field.

  7. A modified PMMA cement (Sub-cement) for accelerated fatigue testing of cemented implant constructs using cadaveric bone.

    Science.gov (United States)

    Race, Amos; Miller, Mark A; Mann, Kenneth A

    2008-10-20

    Pre-clinical screening of cemented implant systems could be improved by modeling the longer-term response of the implant/cement/bone construct to cyclic loading. We formulated bone cement with degraded fatigue fracture properties (Sub-cement) such that long-term fatigue could be simulated in short-term cadaver tests. Sub-cement was made by adding a chain-transfer agent to standard polymethylmethacrylate (PMMA) cement. This reduced the molecular weight of the inter-bead matrix without changing reaction-rate or handling characteristics. Static mechanical properties were approximately equivalent to normal cement. Over a physiologically reasonable range of stress-intensity factor, fatigue crack propagation rates for Sub-cement were higher by a factor of 25+/-19. When tested in a simplified 2 1/2-D physical model of a stem-cement-bone system, crack growth from the stem was accelerated by a factor of 100. Sub-cement accelerated both crack initiation and growth rate. Sub-cement is now being evaluated in full stem/cement/femur models.

  8. Influence of surface conditions on fatigue strength through the numerical simulation of microstructure

    International Nuclear Information System (INIS)

    Le Pecheur, A.; Clavel, M.; Rey, C.; Bompard, P.; Le Pecheur, A.; Curtit, F.; Stephan, J.M.

    2010-01-01

    A thermal fatigue test (INTHERPOL) was developed by EDF in order to study the initiation of cracks. These tests are carried out on tubular specimens under various thermal loadings and surface finish qualities in order to give an account of these parameters on crack initiation. The main topic of this study is to test the sensitivity of different fatigue criteria to surface conditions using a micro/macro modelling approach. Therefore a 304L polycrystalline aggregate, used for cyclic plasticity based FE modelling, have been considered as a Representative Volume Element located at the surface and subsurface of the test tube. This aggregate has been cyclically strained according to the results issued from FE simulation of INTHERPOL thermal fatigue experiment. Different surface parameters have been numerically simulated: effects of local microstructure and of grains orientation, effects of machining: metallurgical prehardening, residual stress gradient, and surface roughness. Three different fatigue criteria (Manson Coffin, Fatemi Socie and dissipated energy types), previously fitted at a macro-scale for thermal fatigue of 304L, have been computed at a meso scale, in order to show the surface 'hot spots' features and test the sensitivity of these three criteria to different surface conditions. Results show that grain orientation and neighbouring play an important role on the location of hot spots, and also that the positive effect of pre-straining and the negative effect of roughness on fatigue life are not all similarly predicted by these different fatigue criteria. (authors)

  9. Developing measures of fatigue using an alcohol comparison to validate the effects of fatigue on performance.

    Science.gov (United States)

    Williamson, A M; Feyer, A M; Mattick, R P; Friswell, R; Finlay-Brown, S

    2001-05-01

    The effects of 28 h of sleep deprivation were compared with varying doses of alcohol up to 0.1% blood alcohol concentration (BAC) in the same subjects. The study was conducted in the laboratory. Twenty long-haul truck drivers and 19 people not employed as professional drivers acted as subjects. Tests were selected that were likely to be affected by fatigue, including simple reaction time, unstable tracking, dual task, Mackworth clock vigilance test, symbol digit coding, visual search, sequential spatial memory and logical reasoning. While performance effects were seen due to alcohol for all tests, sleep deprivation affected performance on most tests, but had no effect on performance on the visual search and logical reasoning tests. Some tests showed evidence of a circadian rhythm effect on performance, in particular, simple reaction time, dual task, Mackworth clock vigilance, and symbol digit coding, but only for response speed and not response accuracy. Drivers were slower but more accurate than controls on the symbol digit test, suggesting that they took a more conservative approach to performance of this test. This study demonstrated which tests are most sensitive to sleep deprivation and fatigue. The study therefore has established a set of tests that can be used in evaluations of fatigue and fatigue countermeasures.

  10. Creep fatigue assessment for EUROFER components

    Energy Technology Data Exchange (ETDEWEB)

    Özkan, Furkan, E-mail: oezkan.furkan@partner.kit.edu; Aktaa, Jarir

    2015-11-15

    Highlights: • Design rules for creep fatigue assessment are developed to EUROFER components. • Creep fatigue assessment tool is developed in FORTRAN code with coupling MAPDL. • Durability of the HCPB-TBM design is discussed under typical fusion reactor loads. - Abstract: Creep-fatigue of test blanket module (TBM) components built from EUROFER is evaluated based on the elastic analysis approach in ASME Boiler Pressure Vessel Code (BPVC). The required allowable number of cycles design fatigue curve and stress-to-rupture curve to estimate the creep-fatigue damage are used from the literature. Local stress, strain and temperature inputs for the analysis of creep-fatigue damage are delivered by the finite element code ANSYS utilizing the Mechanical ANSYS Parametric Design Language (MAPDL). A developed external FORTRAN code used as a post processor is coupled with MAPDL. Influences of different pulse durations (hold-times) and irradiation on creep-fatigue damage for the preliminary design of the Helium Cooled Pebble Bed Test Blanket Module (HCPB-TBM) are discussed for the First Wall component of the TBM box.

  11. Evidence for sensitized fatigue pathways in patients with chronic fatigue syndrome.

    Science.gov (United States)

    Staud, Roland; Mokthech, Meriem; Price, Donald D; Robinson, Michael E

    2015-04-01

    Patients with chronic fatigue syndrome (CFS) frequently demonstrate intolerance to physical exertion that is often reported as increased and long-lasting fatigue. Because no specific metabolic alterations have been identified in CFS patients, we hypothesized that sensitized fatigue pathways become activated during exercise corresponding with increased fatigue. After exhausting handgrip exercise, muscle metabolites were trapped in the forearm tissues of 39 CFS patients and 29 normal control (NC) by sudden occlusion for up to 5 minutes. A nonocclusive condition of similar duration was used as control. Repeated fatigue and pain ratings were obtained before and after exercise. Mechanical and heat hyperalgesia were assessed by quantitative sensory testing. All subjects fulfilled the 1994 Fukuda Criteria for CFS. Normal control and CFS subjects exercised for 6.6 (2.4) and 7.0 (2.7) minutes (P > 0.05). Forearm occlusion lasted for 4.7 (1.3) and 4.9 (1.8) minutes in NC and CFS subjects, respectively (P > 0.05). Although fatigue ratings of CFS subjects increased from 4.8 (2.0) to 5.6 (2.1) visual analogue scale (VAS) units during forearm occlusion, they decreased from 5.0 (1.8) to 4.8 (2.0) VAS units during the control condition without occlusion (P = 0.04). A similar time course of fatigue ratings was observed in NC (P > 0.05), although their ratings were significantly lower than those of CFS subjects (P fatigue in CFS patients consistent with sensitization of fatigue pathways. Future interventions that reduce sensitization of fatigue pathways in CFS patients may be of therapeutic benefit.

  12. Nonlinear ultrasonic fatigue crack detection using a single piezoelectric transducer

    Science.gov (United States)

    An, Yun-Kyu; Lee, Dong Jun

    2016-04-01

    This paper proposes a new nonlinear ultrasonic technique for fatigue crack detection using a single piezoelectric transducer (PZT). The proposed technique identifies a fatigue crack using linear (α) and nonlinear (β) parameters obtained from only a single PZT mounted on a target structure. Based on the different physical characteristics of α and β, a fatigue crack-induced feature is able to be effectively isolated from the inherent nonlinearity of a target structure and data acquisition system. The proposed technique requires much simpler test setup and less processing costs than the existing nonlinear ultrasonic techniques, but fast and powerful. To validate the proposed technique, a real fatigue crack is created in an aluminum plate, and then false positive and negative tests are carried out under varying temperature conditions. The experimental results reveal that the fatigue crack is successfully detected, and no positive false alarm is indicated.

  13. A study on the fatigue behavior of Steel Fiber Reinforced Concrete structures with initial cracks

    International Nuclear Information System (INIS)

    Chang, Dong-Il; Chai, Won-Kyu; Son, Young-Hyun; Park, Cheol-Woo

    1992-01-01

    Fatigue tests are performed in order to investigate the fatigue behavior of SFRC (Steel Fiber Reinforced Concrete) structures. Thirty SFRC beams are used in this test. The relationships between repeated loading cycle and mid-span deflection of the beams are observed under the three-point loading system. From the test results, the effects of the fiber content and the fiber aspect ratio on the concrete fatigue behavior were studied. According to the regression technique, some empirical formulae for predicting the fatigue strength of SFRC beams are also suggested. (author)

  14. The effect of fatigue on the corrosion resistance of common medical alloys.

    Science.gov (United States)

    Di Prima, Matthew; Gutierrez, Erick; Weaver, Jason D

    2017-10-01

    The effect of mechanical fatigue on the corrosion resistance of medical devices has been a concern for devices that experience significant fatigue during their lifespan and devices made from metallic alloys. The Food and Drug Administration had recommended in some instances for corrosion testing to be performed on post-fatigued devices [Non-clinical tests and recommended labeling for intravascular stents and associated delivery systems: guidance for industry and FDA staff. 2005: Food and Drug Administration, Center for Devices and Radiological Health], although the need for this has been debated [Nagaraja S, et al., J Biomed Mater Res Part B: Appl Biomater 2016, 8.] This study seeks to evaluate the effect of fatigue on the corrosion resistance of 5 different materials commonly used in medical devices: 316 LVM stainless steel, MP35N cobalt chromium, electropolished nitinol, mechanically polished nitinol, and black oxide nitinol. Prior to corrosion testing per ASTM F2129, wires of each alloy were split into subgroups and subjected to either nothing (that is, as received); high strain fatigue for less than 8 min; short-term phosphate buffered saline (PBS) soak for less than 8 min; low strain fatigue for 8 days; or long-term PBS soak for 8 days. Results from corrosion testing showed that the rest potential trended to an equilibrium potential with increasing time in PBS and that there was no statistical (p > 0.05) difference in breakdown potential between the fatigued and matching PBS soak groups for 9 out of 10 test conditions. Our results suggest that under these nonfretting conditions, corrosion susceptibility as measured by breakdown potential per ASTM F2129 was unaffected by the fatigue condition. 2016 Wiley Periodicals, Inc. J Biomed Mater Res Part B: Appl Biomater, 105B: 2019-2026, 2017. Published 2016. This article is a U.S. Government work and is in the public domain in the USA.

  15. Axial Fatigue Tests at Zero Mean Stress of 24S-T and 75S-T Aluminum-alloy Strips with a Central Circular Hole

    Science.gov (United States)

    Brueggeman, W C; Mayer, M JR

    1948-01-01

    Axial fatigue tests at zero mean stress have been made on 0.032- and 0.064-inch 24S-T and 0.032-inch 75S-T sheet-metal specimens 1/4, 1/2, 1, and 2 inches wide without a hole and with central holes giving a range of hole diameter D to specimen width W from 0.01 to 0.95. No systematic difference was noted between the results for the 0.032-inch and the 0.064-inch specimens although the latter seemed the more consistent. In general the fatigue strength based on the minimum section dropped sharply as the ration D/W was increased from zero to about 0.25. The plain specimens showed quite a pronounced decrease in fatigue strength with increasing width. The holed specimens showed only slight and rather inconclusive evidence of this size effect. The fatigue stress-concentration factor was higher for 75S-T than for 24S-T alloy. Evidence was found that a very small hole would not cause any reduction in fatigue strength.

  16. Collect Available Creep-Fatigue Data and Study Existing Creep-Fatigue Evaluation Procedures for Grade 91 and Hastelloy XR

    International Nuclear Information System (INIS)

    Asayama, Tai; Tachibana, Yukio

    2007-01-01

    This report describes the results of investigation on Task 5 of DOE/ASME Materials Project based on a contract between ASME Standards Technology, LLC (ASME ST-LLC) and Japan Atomic Energy Agency (JAEA). Task 5 is to collect available creep-fatigue data and study existing creep-fatigue evaluation procedures for Grade 91 steel and Hastelloy XR. Part I of this report is devoted to Grade 91 steel. Existing creep-fatigue data were collected (Appendix A) and analyzed from the viewpoints of establishing a creep-fatigue procedure for VHTR design. A fair amount of creep-fatigue data has been obtained and creep-fatigue phenomena have been clarified to develop design standards mainly for fast breeder reactors. Following this, existing creep-fatigue procedures were studied and it was clarified that the creep-fatigue evaluation procedure of the ASME-NH has a lot of conservatisms and they were analyzed in detail from the viewpoints of the evaluation of creep damage of material. Based on the above studies, suggestions to improve the ASME-NH procedure along with necessary research and development items were presented. Part II of this report is devoted to Hastelloy XR. Existing creep-fatigue data used for development of the high temperature structural design guideline for High Temperature Gas-cooled Reactor (HTGR) were collected. Creep-fatigue evaluation procedure in the design guideline and its application to design of the intermediate heat exchanger (IHX) for High Temperature Engineering Test Reactor (HTTR) was described. Finally, some necessary research and development items in relation to creep-fatigue evaluation for Gen IV and VHTR reactors were presented.

  17. The hold-time effects on the low cycle fatigue behaviors of 316 SS in PWR primary environment

    International Nuclear Information System (INIS)

    Lee, Junho; Hong, Jong-Dae; Seo, Myung-Gyu; Jang, Changheui

    2015-01-01

    The effects of the environments on fatigue life of the structural materials used in nuclear power plants (NPPs) were known to be significant according to the extensive test results. Accordingly, the fatigue analysis procedures and the design fatigue curves were proposed in the ASME Code. However, the implication that the existing ASME design fatigue curves did not sufficiently reflect the effect of the operation conditions of nuclear power plants emerged as an issue to be resolved. One of possible reasons to explain the discrepancy is that the laboratory test conditions do not represent the actual plant transients. Therefore, it is necessary to clarify the effects of light water environments on fatigue life while considering more plant-relevant transient conditions such as hold-time. For this reason, this study will focus on the fatigue life of type 316 stainless steel (SS) in the pressurized water reactor (PWR) environments while incorporating the hold-time during the low cycle fatigue (LCF) test in simulated PWR environments. The objective of this study is to characterize the effects of hold-time on the fatigue life of austenitic stainless steels in PWR environments in comparison with the existing fixed strain rate results. Low cycle fatigue life tests were conducted for the type 316 SS in 310 .deg. C air and simulated PWR environments. To simulate the heat-up and cool-down transient, sub-peak strain holding during the down-hill of strain amplitude was chosen. Currently, LCF tests with 60 seconds holding are in progress. The 0.4, 0.04%/s strain rate condition test results are presented in this study, which shows somewhat longer fatigue life

  18. The hold-time effects on the low cycle fatigue behaviors of 316 SS in PWR primary environment

    Energy Technology Data Exchange (ETDEWEB)

    Lee, Junho; Hong, Jong-Dae; Seo, Myung-Gyu; Jang, Changheui [KAIST, Daejeon (Korea, Republic of)

    2015-05-15

    The effects of the environments on fatigue life of the structural materials used in nuclear power plants (NPPs) were known to be significant according to the extensive test results. Accordingly, the fatigue analysis procedures and the design fatigue curves were proposed in the ASME Code. However, the implication that the existing ASME design fatigue curves did not sufficiently reflect the effect of the operation conditions of nuclear power plants emerged as an issue to be resolved. One of possible reasons to explain the discrepancy is that the laboratory test conditions do not represent the actual plant transients. Therefore, it is necessary to clarify the effects of light water environments on fatigue life while considering more plant-relevant transient conditions such as hold-time. For this reason, this study will focus on the fatigue life of type 316 stainless steel (SS) in the pressurized water reactor (PWR) environments while incorporating the hold-time during the low cycle fatigue (LCF) test in simulated PWR environments. The objective of this study is to characterize the effects of hold-time on the fatigue life of austenitic stainless steels in PWR environments in comparison with the existing fixed strain rate results. Low cycle fatigue life tests were conducted for the type 316 SS in 310 .deg. C air and simulated PWR environments. To simulate the heat-up and cool-down transient, sub-peak strain holding during the down-hill of strain amplitude was chosen. Currently, LCF tests with 60 seconds holding are in progress. The 0.4, 0.04%/s strain rate condition test results are presented in this study, which shows somewhat longer fatigue life.

  19. Optimal Elbow Angle for Extracting sEMG Signals During Fatiguing Dynamic Contraction

    Directory of Open Access Journals (Sweden)

    Mohamed R. Al-Mulla

    2015-09-01

    Full Text Available Surface electromyographic (sEMG activity of the biceps muscle was recorded from 13 subjects. Data was recorded while subjects performed dynamic contraction until fatigue and the signals were segmented into two parts (Non-Fatigue and Fatigue. An evolutionary algorithm was used to determine the elbow angles that best separate (using Davies-Bouldin Index, DBI both Non-Fatigue and Fatigue segments of the sEMG signal. Establishing the optimal elbow angle for feature extraction used in the evolutionary process was based on 70% of the conducted sEMG trials. After completing 26 independent evolution runs, the best run containing the optimal elbow angles for separation (Non-Fatigue and Fatigue was selected and then tested on the remaining 30% of the data to measure the classification performance. Testing the performance of the optimal angle was undertaken on nine features extracted from each of the two classes (Non-Fatigue and Fatigue to quantify the performance. Results showed that the optimal elbow angles can be used for fatigue classification, showing 87.90% highest correct classification for one of the features and on average of all eight features (including worst performing features giving 78.45%.

  20. Continuous fatigue crack monitoring of bridges: Long-Term Electrochemical Fatigue Sensor (LTEFS)

    Science.gov (United States)

    Moshier, Monty A.; Nelson, Levi; Brinkerhoff, Ryan; Miceli, Marybeth

    2016-04-01

    Fatigue cracks in steel bridges degrade the load-carrying capacity of these structures. Fatigue damage accumulation caused by the repetitive loading of everyday truck traffic can cause small fatigue cracks initiate. Understanding the growth of these fatigue cracks is critical to the safety and reliability of our transportation infrastructure. However, modeling fatigue in bridges is difficult due to the nature of the loading and variations in connection integrity. When fatigue cracks reach critical lengths failures occur causing partial or full closures, emergency repairs, and even full structural failure. Given the aging US highway and the trend towards asset management and life extension, the need for reliable, cost effective sensors and monitoring technologies to alert bridge owners when fatigue cracks are growing is higher than ever. In this study, an innovative Long-Term Electrochemical Fatigue Sensor (LTEFS) has been developed and introduced to meet the growing NDT marketplace demand for sensors that have the ability to continuously monitor fatigue cracks. The performance of the LTEFS has been studied in the laboratory and in the field. Data was collected using machined specimens with different lengths of naturally initiated fatigue cracks, applied stress levels, applied stress ratios, and for both sinusoidal and real-life bridge spectrum type loading. The laboratory data was evaluated and used to develop an empirically based algorithm used for crack detection. Additionally, beta-tests on a real bridge structure has been completed. These studies have conclusively demonstrated that LTEFS holds great potential for long-term monitoring of fatigue cracks in steel structures

  1. Numerical and Experimental Analysis of Aircraft Wing Subjected to Fatigue Loading

    Directory of Open Access Journals (Sweden)

    Hatem Rahim Wasmi

    2016-10-01

    Full Text Available This study deals with the aircraft wing analysis (numerical and experimental which subjected to fatigue loading in order to analyze the aircraft wing numerically by using ANSYS 15.0 software and experimentally by using loading programs which effect on fatigue test specimens at laboratory to estimate life of used metal (aluminum alloy 7075-T651 the wing metal and compare between numerical and experimental work, as well as to formulate an experimental mathematical model which may find safe estimate for metals and most common alloys that are used to build aircraft wing at certain conditions. In experimental work, a (34 specimen of (aluminum alloy 7075-T651 were tested using alternating bending fatigue machine rig. The test results are ; (18 Specimen to establish the (S-N curve and endurance limit and the other specimens used for variable amplitude tests were represented by loading programs which represents actual flight conditions. Also it has been obtained the safe fatigue curves which are described by mathematical formulas. ANSYS results show convergence with experimental results about cumulative fatigue damage (D, a mathematical model is proposed to estimate the life; this model gives good results in case of actual loading programs. Also, Miner and Marsh rules are applied to the specimens and compared with the proposal mathematical model in order to estimate the life of the wing material under actual flight loading conditions, comparing results show that it is possible to depend on present mathematical model than Miner and Marsh theories because the proposal mathematical model shows safe and good results compared with experimental work results.

  2. Relationship between fatigue life in the creep-fatigue region and stress-strain response

    Science.gov (United States)

    Berkovits, A.; Nadiv, S.

    1988-01-01

    On the basis of mechanical tests and metallographic studies, strainrange partitioned lives were predicted by introducing stress-strain materials parameters into the Universal Slopes Equation. This was the result of correlating fatigue damage mechanisms and deformation mechanisms operating at elevated temperatures on the basis of observed mechanical and microstructural behavior. Correlation between high temperature fatigue and stress strain properties for nickel base superalloys and stainless steel substantiated the method. Parameters which must be evaluated for PP- and CC- life are the maximum stress achievable under entirely plastic and creep conditions respectively and corresponding inelastic strains, and the two more pairs of stress strain parameters must be ascertained.

  3. Effects of environment on the low-cycle fatigue behavior of Type 304 stainless steel

    International Nuclear Information System (INIS)

    Maiya, P.S.; Burke, W.F.

    1979-12-01

    The low-cycle fatigue behavior of Type 304 stainless steel has been investigated at 593 0 C in a dynamic vacuum of better than 1.3 x 10 -6 Pa (10 -8 torr). The results concerning the effects of strain range, strain rate and tensile hold time on fatigue life are presented and compared with results of similar tests performed in air and sodium environments. Under continuous symmetrical cycling, fatigue life is significantly longer in vacuum than in air; in the low strain range regime, the effect of sodium on fatigue life appears to be similar to that of vacuum. Strain rate (or frequency) strongly influences fatigue life in both air and vacuum. In compressive hold-time tests, the effect of environment on life is similar to that in a continuous-cycling test. However, tensile hold times are nearly as damaging in vacuum as in air. Thus, at least for austenitic stainless steels, the influence of the environment of fatigue life appears to depend on the loading waveshape

  4. Tension and fatigue behavior of 316LVM 1x7 multi-strand cables used as implantable electrodes.

    Science.gov (United States)

    Lewandowski, John J; Varadarajan, Ravikumar; Smith, Brian; Tuma, Chris; Shazly, Mostafa; Vatamanu, Luciano O

    2008-07-15

    The mechanical behavior of 316LVM 1x7 cables were evaluated in uniaxial tension, and in cyclic strain-controlled fatigue with the use of a Flex tester operated to provide fully reversed bending fatigue. The magnitude of cyclic strains imparted to each cable tested was controlled via the use of different diameter mandrels. Smaller diameter mandrels produced higher values of cyclic strain and lower fatigue life. Multiple samples were tested and analyzed via scanning electron microscopy. The fatigue results were analyzed via a Coffin-Manson-Basquin approach and compared to fatigue data obtained from the literature where testing was conducted on similar materials, but under rotating bending fatigue conditions.

  5. An Analytical Model for Fatigue Life Prediction Based on Fracture Mechanics and Crack Closure

    DEFF Research Database (Denmark)

    Ibsø, Jan Behrend; Agerskov, Henning

    1996-01-01

    test specimens are compared with fatigue life predictions using a fracture mechanics approach. In the calculation of the fatigue life, the influence of the welding residual stresses and crack closure on the fatigue crack growth is considered. A description of the crack closure model for analytical...... of the analytical fatigue lives. Both the analytical and experimental results obtained show that the Miner rule may give quite unconservative predictions of the fatigue life for the types of stochastic loading studied....... determination of the fatigue life is included. Furthermore, the results obtained in studies of the various parameters that have an influence on the fatigue life, are given. A very good agreement between experimental and analytical results is obtained, when the crack closure model is used in determination...

  6. An Analytical Model for Fatigue Life Prediction Based on Fracture Mechanics and Crack Closure

    DEFF Research Database (Denmark)

    Ibsø, Jan Behrend; Agerskov, Henning

    1996-01-01

    test specimens are compared with fatigue life predictions using a fracture mechanics approach. In the calculation of the fatigue life, the influence of the welding residual stresses and crack closure on the fatigue crack growth is considered. A description of the crack closure model for analytical...... determination of the fatigue life is included. Furthermore, the results obtained in studies of the various parameters that have an influence on the fatigue life, are given. A very good agreement between experimental and analytical results is obtained, when the crack closure model is used in determination...... of the analytical fatigue lives. Both the analytical and experimental results obtained show that the Miner rule may give quite unconservative predictions of the fatigue life for the types of stochastic loading studied....

  7. Fatigue Evaluation Algorithms: Review

    DEFF Research Database (Denmark)

    Passipoularidis, Vaggelis; Brøndsted, Povl

    series can be simulated. The predictions are validated against fatigue life data both from repeated block tests at a single stress ratio as well as against spectral fatigue using the WISPER, WISPERX and NEW WISPER load sequences on a Glass/Epoxy multidirectional laminate typical of a wind turbine rotor...

  8. Cognitive fatigue in patients with myasthenia gravis.

    Science.gov (United States)

    Jordan, Berit; Schweden, Tabea L K; Mehl, Theresa; Menge, Uwe; Zierz, Stephan

    2017-09-01

    Cognitive fatigue has frequently been reported in myasthenia gravis (MG). However, objective assessment of cognitive fatigability has never been evaluated. Thirty-three MG patients with stable generalized disease and 17 healthy controls underwent a test battery including repeated testing of attention and concentration (d2-R) and Paced Auditory Serial Addition Test. Fatigability was based on calculation of linear trend (LT) reflecting dynamic performance within subsequent constant time intervals. Additionally, fatigue questionnaires were used. MG patients showed a negative LT in second d2-R testing, indicating cognitive fatigability. This finding significantly differed from stable cognitive performance in controls (P fatigue was significantly higher in MG patients compared with controls (P fatigue is not correlated with objective findings. Muscle Nerve 56: 449-457, 2017. © 2016 Wiley Periodicals, Inc.

  9. IMPROVEMENT OF FATIGUE STRENGTH OF TIN BABBITT BY REINFORCING WITH NANO ILMENITE

    Directory of Open Access Journals (Sweden)

    M. V. S. BABU

    2017-08-01

    Full Text Available Tin Babbitt is an idle journal bearing material, its fatigue strength limits and its usage. To enhance its fatigue strength, in this paper a Tin Babbitt metal matrix is reinforced with nano Ilmenite. The metal matrix nanocomposite was fabricated by using ultrasonic assisted stir casting technique. ASTM standards in statistical planning for fatigue testing were employed in planning the fatigue tests. Fatigue tests were conducted at three stress levels, i.e., 0.9 UTS, 0.7 UTS and 0.5 UTS. Tests were conducted on a rotating-beam type fatigue testing machine. It was observed that the nano Ilmenite reinforcement enhanced the fatigue strength of Tin Babbitt.

  10. Prediction of fretting fatigue behavior under elastic-plastic conditions

    International Nuclear Information System (INIS)

    Shin, Ki Su

    2009-01-01

    Fretting fatigue generally leads to the degradation of the fatigue strength of a material due to cyclic micro-slip between two contacting materials. Fretting fatigue is regarded as an important issue in designing aerospace structures. While many studies have evaluated fretting fatigue behavior under elastic deformation conditions, few have focused on fretting fatigue behavior under elastic-plastic deformation conditions, especially the crack orientation and fatigue life prediction for Ti-6Al-4V. The primary goal of this study was to characterize the fretting fatigue crack initiation behavior in the presence of plasticity. Experimental tests were performed using pad configurations involving elastic-plastic deformations. To calculate stress distributions under elastic-plastic fretting fatigue conditions, FEA was also performed. Several parametric approaches were used to predict fretting fatigue life along with stress distribution resulting from FEA. However, those parameters using surface stresses were unable to establish an equivalence between elastic fretting fatigue data and elastic-plastic fretting fatigue data. Based on this observation, the critical distance methods, which are commonly used in notch analysis, were applied to the fretting fatigue problem. In conclusion, the effective strain range method when used in conjunction with the SMSSR parameter showed a good correlation of data points between the pad configurations involving elastic and elastic plastic deformations

  11. Creep-Fatigue Damage Evaluation of a Model Reactor Vessel and Reactor Internals of Sodium Test Facility according to ASME-NH and RCC-MRx Codes

    International Nuclear Information System (INIS)

    Lim, Dong-Won; Lee, Hyeong-Yeon; Eoh, Jae-Hyuk; Son, Seok-Kwon; Kim, Jong-Bum; Jeong, Ji-Young

    2016-01-01

    The objective of the STELLA-2 is to support the specific design approval for PGSFR by synthetic reviews of key safety issues and code validations through the integral effect tests. Due to its high temperature operation in SFRs (and in a testing facility) up to 550 °C, thermally induced creep-fatigue damage is very likely in components including a reactor vessel, reactor internals (interior structures), heat exchangers, pipelines, etc. In this study, structural integrity of the components such as reactor vessel and internals in STELLA-2 has been evaluated against creep-fatigue failures at a concept-design step. As 2D analysis yields far conservative results, a realistic 3D simulation is performed by a commercial software. A design integrity guarding against a creep-fatigue damage failure operating at high temperature was evaluated for the reactor vessel with its internal structure of the STELLA-2. Both the high temperature design codes were used for the evaluation, and results were compared. All the results showed the vessel as a whole is safely designed at the given operating conditions, while the ASME-NH gives a conservative evaluation

  12. Creep-Fatigue Damage Evaluation of a Model Reactor Vessel and Reactor Internals of Sodium Test Facility according to ASME-NH and RCC-MRx Codes

    Energy Technology Data Exchange (ETDEWEB)

    Lim, Dong-Won; Lee, Hyeong-Yeon; Eoh, Jae-Hyuk; Son, Seok-Kwon; Kim, Jong-Bum; Jeong, Ji-Young [KAERI, Daejeon (Korea, Republic of)

    2016-05-15

    The objective of the STELLA-2 is to support the specific design approval for PGSFR by synthetic reviews of key safety issues and code validations through the integral effect tests. Due to its high temperature operation in SFRs (and in a testing facility) up to 550 °C, thermally induced creep-fatigue damage is very likely in components including a reactor vessel, reactor internals (interior structures), heat exchangers, pipelines, etc. In this study, structural integrity of the components such as reactor vessel and internals in STELLA-2 has been evaluated against creep-fatigue failures at a concept-design step. As 2D analysis yields far conservative results, a realistic 3D simulation is performed by a commercial software. A design integrity guarding against a creep-fatigue damage failure operating at high temperature was evaluated for the reactor vessel with its internal structure of the STELLA-2. Both the high temperature design codes were used for the evaluation, and results were compared. All the results showed the vessel as a whole is safely designed at the given operating conditions, while the ASME-NH gives a conservative evaluation.

  13. Fatigue crack growth in austenitic stainless steel piping

    International Nuclear Information System (INIS)

    Bethmont, M.; Cheissoux, J.L.; Lebey, J.

    1981-04-01

    The study presented in this paper is being carried out with a view to substantiating the calculations of the fatigue crack growth in pipes made of 316 L stainless steel. The results obtained may be applied to P.W.R. primary piping. It is divided into two parts. First, fatigue tests (cyclic pressure) are carried out under hot and cold conditions with straight pipes machined with notches of various dimensions. The crack propagation and the fatigue crack growth rate are measured here. Second, calculations are made in order to interpret experimental results. From elastic calculations the stress intensity factor is assessed to predict the crack growth rate. The results obtained until now and presented in this paper relate to longitudinal notches

  14. Fatigue Life Prediction of Self-Piercing Rivet Joints Between Magnesium and Aluminum Alloys

    Directory of Open Access Journals (Sweden)

    Kang Hong-Tae

    2018-01-01

    Full Text Available Various light materials including aluminum alloys and magnesium alloys are being used to reduce the weight of vehicle structures. Joining of dissimilar materials is always a challenging task to construct a solid structure. Self-piercing rivet (SPR joint is one of various joining methods for dissimilar materials. Front shock tower structures were constructed with magnesium alloy (AM60 joined to aluminum alloy (Al6082 by SPR joints. To evaluate the durability performance of the SPR joints in the structures, fatigue tests of the front shock tower structures were conducted with constant amplitude loadings. Furthermore, this study investigated fatigue life prediction method of SPR joints and compared the fatigue life prediction results with that of experimental results. For fatigue life prediction of the SPR joints in the front shock tower structures, lap-shear and cross-tension specimens of SPR joint were constructed and tested to characterize the fatigue properties of the SPR joint. Then, the SPR joint was represented with area contact method (ACM in finite element (FE models. The load-life curves of the lap-shear and cross-tension specimens were converted to a structural stress-life (S-N curve of the SPR joints. The S-N curve was used to predict fatigue life of SPR joints in the front shock tower structures. The test results and the prediction results were well correlated.

  15. Examination of high heat flux components for the ITER divertor after thermal fatigue testing

    International Nuclear Information System (INIS)

    Missirlian, M.; Escourbiac, F.; Schmidt, A.; Riccardi, B.; Bobin-Vastra, I.

    2011-01-01

    An extensive development programme has been carried out in the EU on high heat flux components within the ITER project. In this framework, a full-scale vertical target (VTFS) prototype was manufactured with all the main features of the corresponding ITER divertor design. The fatigue cycling campaign on CFC and W armoured regions, proved the capability of such a component to meet the ITER requirements in terms of heat flux performances for the vertical target. This paper discusses metallographic observations performed on both CFC and W part after this intensive thermal fatigue testing campaign for a better understanding of thermally induced mechanical stress within the component, especially close to the armour-heat sink interface.

  16. Examination of high heat flux components for the ITER divertor after thermal fatigue testing

    Energy Technology Data Exchange (ETDEWEB)

    Missirlian, M., E-mail: marc.missirlian@cea.fr [CEA, IRFM, F-13108 Saint Paul lez Durance (France); Escourbiac, F., E-mail: frederic.escourbiac@cea.fr [CEA, IRFM, F-13108 Saint Paul lez Durance (France); Schmidt, A., E-mail: a.schmidt@fz-juelich.de [Forschungszentrum Juelich, IFE-2 (Germany); Riccardi, B., E-mail: Bruno.Riccardi@f4e.europa.eu [Fusion For Energy, E-08019 Barcelona (Spain); Bobin-Vastra, I., E-mail: isabelle.bobinvastra@areva.com [AREVA-NP, 71200 Le Creusot (France)

    2011-10-01

    An extensive development programme has been carried out in the EU on high heat flux components within the ITER project. In this framework, a full-scale vertical target (VTFS) prototype was manufactured with all the main features of the corresponding ITER divertor design. The fatigue cycling campaign on CFC and W armoured regions, proved the capability of such a component to meet the ITER requirements in terms of heat flux performances for the vertical target. This paper discusses metallographic observations performed on both CFC and W part after this intensive thermal fatigue testing campaign for a better understanding of thermally induced mechanical stress within the component, especially close to the armour-heat sink interface.

  17. Analysis of Fatigue Life of PMMA at Different Frequencies Based on a New Damage Mechanics Model

    Directory of Open Access Journals (Sweden)

    Aifeng Huang

    2014-01-01

    Full Text Available Low-cycle fatigue tests at different frequencies and creep tests under different stress levels of Plexiglas Resist 45 were conducted. Correspondingly, the creep fracture time, S-N curves, cyclic creep, and hysteresis loop were obtained. These results showed that the fatigue life increases with frequency at low frequency domain. After analysis, it was found that fatigue life is dependent on the load rate and is affected by the creep damage. In addition, a new continuum damage mechanics (CDM model was established to analyze creep-fatigue life, where the damage increment nonlinear summation rule was proposed and the frequency modification was made on the fatigue damage evolution equation. Differential evolution (DE algorithm was employed to determine the parameters within the model. The proposed model described fatigue life under different frequencies, and the calculated results agreed well with the experimental results.

  18. Design rule for fatigue of welded joints in elevated-temperature nuclear components

    International Nuclear Information System (INIS)

    O'Connor, D.G.; Corum, J.M.

    1986-01-01

    Elevated-temperature weldment fatigue failures have occurred in several operating liquid-metal reactor plants. Yet, ASME Code Case N-47, which governs the design of such plants in the United States, does not currently address the Code Subgroup on Elevated Temperature Design recently proposed a fatigue strength reduction factor for austenitic and ferritic steel weldments. The factor is based on a variety of weld metal and weldment fatigue data generated in the United States, Europe, and Japan. This paper describes the factor and its bases, and it presents the results of confirmatory fatigue tests conducted at Oak Ridge National Laboratory on 316 stainless steel tubes with axial and circumferential welds of 16-8-2 filler metal. These test results confirm the suitability of the design factor, and they support the premise that the metallurgical notch effect produced by yield strength variations across a weldment is largely responsible for the observed elevated-temperature fatigue strength reduction

  19. Fatigue processes in thermoplastic fibres; Les mecanismes de fatigue dans les fibres thermoplastiques

    Energy Technology Data Exchange (ETDEWEB)

    Herrera Ramirez, J.M.

    2004-09-15

    The present study examines and compares the behaviour of the two types of PA66 fibres and two types of PET fibres under fatigue loading up to failure, and the correlation between the fibres (nano)structures and their structural heterogeneities, with fatigue lifetimes. Several techniques have been used to analyze the materials, such as scanning electron microscopy (SEM), microanalysis (EDS), differential scanning calorimetry (DSC), wide angle X-ray diffraction (WAXD) and micro-Raman spectroscopy. A meticulous analysis by scanning electron microscopy of the fracture morphology of fibres broken in tension and in fatigue, as well as a study of the fatigue life, were undertaken. The fatigue process occurs when the cyclic load amplitude is sufficiently large, however a condition for fatigue failure is that the minimum load each cycle must be lower than a threshold stress level. Failure under fatigue conditions leads to distinctive fracture morphologies which are very different from those seen after tensile or creep failure and this allows easy identification of the fatigue process. The fibres have been analyzed in the as received state and after fatigue failure in order to observe the microstructural changes resulting from the fatigue loading. The results will be compared with those obtained for fibres loaded under conditions where the fatigue process was hindered. The role of the microstructure of the fibres in determining fatigue will be discussed in this work and the possibility of improving their resistance to fatigue or eliminating the fatigue process will be discussed. (author)

  20. Effect of a new specimen size on fatigue crack growth behavior in thick-walled pressure vessels

    International Nuclear Information System (INIS)

    Shariati, Mahmoud; Mohammadi, Ehsan; Masoudi Nejad, Reza

    2017-01-01

    Fatigue crack growth in thick-walled pressure vessels is an important factor affecting their fracture. Predicting the path of fatigue crack growth in a pressure vessel is the main issue discussed in fracture mechanics. The objective of this paper is to design a new geometrical specimen in fatigue to define the behavior of semi-elliptical crack growth in thick-walled pressure vessels. In the present work, the importance of the behavior of fatigue crack in test specimen and real conditions in thick-walled pressure vessels is investigated. The results of fatigue loading on the new specimen are compared with the results of fatigue loading in a cylindrical pressure vessel and a standard specimen. Numerical and experimental methods are used to investigate the behavior of fatigue crack growth in the new specimen. For this purpose, a three-dimensional boundary element method is used for fatigue crack growth under stress field. The modified Paris model is used to estimate fatigue crack growth rates. In order to verify the numerical results, fatigue test is carried out on a couple of specimens with a new geometry made of ck45. A comparison between experimental and numerical results has shown good agreement. - Highlights: • This paper provides a new specimen to define the behavior of fatigue crack growth. • We estimate the behavior of fatigue crack growth in specimen and pressure vessel. • A 3D finite element model has been applied to estimate the fatigue life. • We compare the results of fatigue loading for cylindrical vessel and specimens. • Comparison between experimental and numerical results has shown a good agreement.

  1. Creep, fatigue and creep-fatigue damage evaluation and estimation of remaining life of SUS 304 austenitic stainless steel at high temperature

    International Nuclear Information System (INIS)

    Nishino, Seiichi; Sakane, Masao; Ohnami, Masateru

    1986-01-01

    Experimental study was made on the damage evaluation and estimation of remaining life of SUS 304 stainless steel in creep, low-cycle fatigue and creep-fatigue at 873 K in air. Creep, fatigue and creep-fatigue damage curves were drawn by the method proposed by D.A. Woodford and the relations between these damages and non-destructive parameters, i.e., microvickers hardness and quantities obtained from X-ray diffraction, were discussed. From these tests, the following conclusions were obtained. (1) Constant damage lines in the diagram of remaining lives in creep and fatigue could be drawn by changing load levels during the tests. Constant damage lines in creep-fatigue were also made by a linear damage rule using both static creep and fatigue damage curves, which agree well with the experimental data in creep-fatigue. (2) Microvickers hardness and half-value breadth in X-ray diffraction are appropriate parameters to evaluate creep damage but are not proper to evaluate fatigue damage. Particle size and microstrain obtained by X-ray profile analysis are good parameters to evaluate both creep and fatigue damages. (author)

  2. Metabolomic markers of fatigue: Association between circulating metabolome and fatigue in women with chronic widespread pain.

    Science.gov (United States)

    Freidin, Maxim B; Wells, Helena R R; Potter, Tilly; Livshits, Gregory; Menni, Cristina; Williams, Frances M K

    2018-02-01

    Fatigue is a sensation of unbearable tiredness that frequently accompanies chronic widespread musculoskeletal pain (CWP) and inflammatory joint disease. Its mechanisms are poorly understood and there is a lack of effective biomarkers for diagnosis and onset prediction. We studied the circulating metabolome in a population sample characterised for CWP to identify biomarkers showing specificity for fatigue. Untargeted metabolomic profiling was conducted on fasting plasma and serum samples of 1106 females with and without CWP from the TwinsUK cohort. Linear mixed-effects models accounting for covariates were used to determine relationships between fatigue and metabolites. Receiver operating curve (ROC)-analysis was used to determine predictive value of metabolites for fatigue. While no association between fatigue and metabolites was identified in twins without CWP (n=711), in participants with CWP (n=395), levels of eicosapentaenoate (EPA) ω-3 fatty acid were significantly reduced in those with fatigue (β=-0.452±0.116; p=1.2×10 -4 ). A significant association between fatigue and two other metabolites also emerged when BMI was excluded from the model: 3-carboxy-4-methyl-5-propyl-2-furanpropanoate (CMPF), and C-glycosyltryptophan (p=1.5×10 -4 and p=3.1×10 -4 , respectively). ROC analysis has identified a combination of 15 circulating metabolites with good predictive potential for fatigue in CWP (AUC=75%; 95% CI 69-80%). The results of this agnostic metabolomics screening show that fatigue is metabolically distinct from CWP, and is associated with a decrease in circulating levels of EPA. Our panel of circulating metabolites provides the starting point for a diagnostic test for fatigue in CWP. Copyright © 2017 The Authors. Published by Elsevier B.V. All rights reserved.

  3. Piezoelectric Bolt Breakers and Bolt Fatigue Testers

    Science.gov (United States)

    Sherrit, Stewart; Badescu, Mircea; Bar-Cohen, Yoseph; Barengoltz, Jack; Heckman, Vanessa

    2008-01-01

    A proposed family of devices for inducing fatigue in bolts in order to break the bolts would incorporate piezoelectric actuators into resonant fixtures as in ultrasonic/ sonic drills/corers and similar devices described in numerous prior NASA Tech Briefs articles. These devices were originally intended primarily for use as safer, more-reliable, more-versatile alternatives to explosive bolts heretofore used to fasten spacecraft structures that must subsequently be separated from each other quickly on command during flight. On Earth, these devices could be used for accelerated fatigue testing of bolts. Fatigue theory suggests that a bolt subjected to both a constant-amplitude dynamic (that is, oscillatory) stress and a static tensile stress below the ultimate strength of the bolt material will fail faster than will a bolt subjected to only the dynamic stress. This suggestion would be applied in a device of the proposed type. The device would be designed so that the device and the bolt to be fatigue-tested or broken would be integral parts of an assembly (see figure). The static tension in the tightened bolt would apply not only the clamping force to hold the joined structures (if any) together but also the compression necessary for proper operation of the piezoelectric actuators as parts of a resonant structural assembly. The constant-amplitude dynamic stress would be applied to the bolt by driving the piezoelectric actuators with a sinusoidal voltage at the resonance frequency of longitudinal vibration of the assembly. The amplitude of the excitation would be made large enough so that the vibration would induce fatigue in the bolt within an acceptably short time. In the spacecraft applications or in similar terrestrial structural-separation applications, devices of the proposed type would offer several advantages over explosive bolts: Unlike explosive bolts, the proposed devices would be reusable, could be tested before final use, and would not be subject to

  4. Microstructural influence on fatigue properties of a high-strength spring steel

    Energy Technology Data Exchange (ETDEWEB)

    Lee, C.S.; Lee, K.A.; Li, D.M. [Pohang Univ. of Sci. and Technol. (Korea, Republic of). Center for Adv. Aerospace Mater.; Yoo, S.J.; Nam, W.J. [Technical Research Laboratory, Pohang Iron and Steel Co. Ltd, Pohang 790-785 (Korea, Republic of)

    1998-01-30

    A study has been made to investigate the fatigue properties of a high-strength spring steel in relation to the microstructural variation via different heat treatments. Rotating-bending fatigue and fatigue crack growth (FCG) tests were conducted to evaluate the fatigue properties, and a transmission electron microscope (TEM) equipped with an energy dispersive X-ray (EDX) unit was used to characterize the tempered microstructure. The results indicate that the fatigue endurance {sigma}{sub f} increases with increasing tempering temperature, reaching a maximum at 450 C, then decreases. The increase of {sigma}{sub f} is mainly attributed to the refined distribution of precipitation, together with the structural uniformity of tempered martensite. The softening of tempered martensite due to excessive precipitation accounts for the decrease of {sigma}{sub f}. By contrast, the FCG results show an insensitivity of the stage-II growth behavior to the microstructural changes for the whole range of tempering temperature tested. The insensitivity is interpreted in terms of the counterbalancing microstructure-dependent contributions to the FCG behavior. (orig.) 30 refs.

  5. The Effect of Fatigue Cracks on Fastener Flexibility, Load Distribution and Fatigue Crack Growth

    Science.gov (United States)

    2012-05-01

    Application of Damage Tolerance Concepts to Critical Engine Components”, “Damage Tolerance Concepts for Critical Engine Components, AGARD - CP 393”, NATO...railroad bridge [71]. The vast majority of fatigue tests during this period were of the rotating bending type [72, 73 ]. In these tests a specimen is...Experiment Station, University of Illinois, October 1921 73 . Mann, J. Y., Fatigue of Materials; An Introductory Text, Melbourne University Press, 1967

  6. Fatigue life prediction method for contact wire using maximum local stress

    Energy Technology Data Exchange (ETDEWEB)

    Kim, Yong Seok; Haochuang, Li; Seok, Chang Sung; Koo, Jae Mean [Sungkyunkwan University, Suwon (Korea, Republic of); Lee, Ki Won; Kwon, Sam Young; Cho, Yong Hyeon [Korea Railroad Research Institute, Uiwang (Korea, Republic of)

    2015-01-15

    Railway contact wires supplying electricity to trains are exposed to repeated mechanical strain and stress caused by their own weight and discontinuous contact with a pantograph during train operation. Since the speed of railway transportation has increased continuously, railway industries have recently reported a number of contact wire failures caused by mechanical fatigue fractures instead of normal wear, which has been a more common failure mechanism. To secure the safety and durability of contact wires in environments with increased train speeds, a bending fatigue test on contact wire has been performed. The test equipment is too complicated to evaluate the fatigue characteristics of contact wire. Thus, the axial tension fatigue test was performed for a standard specimen, and the bending fatigue life for the contact wire structure was then predicted using the maximum local stress occurring at the top of the contact wire. Lastly, the tested bending fatigue life of the structure was compared with the fatigue life predicted by the axial tension fatigue test for verification.

  7. Fatigue life prediction method for contact wire using maximum local stress

    International Nuclear Information System (INIS)

    Kim, Yong Seok; Haochuang, Li; Seok, Chang Sung; Koo, Jae Mean; Lee, Ki Won; Kwon, Sam Young; Cho, Yong Hyeon

    2015-01-01

    Railway contact wires supplying electricity to trains are exposed to repeated mechanical strain and stress caused by their own weight and discontinuous contact with a pantograph during train operation. Since the speed of railway transportation has increased continuously, railway industries have recently reported a number of contact wire failures caused by mechanical fatigue fractures instead of normal wear, which has been a more common failure mechanism. To secure the safety and durability of contact wires in environments with increased train speeds, a bending fatigue test on contact wire has been performed. The test equipment is too complicated to evaluate the fatigue characteristics of contact wire. Thus, the axial tension fatigue test was performed for a standard specimen, and the bending fatigue life for the contact wire structure was then predicted using the maximum local stress occurring at the top of the contact wire. Lastly, the tested bending fatigue life of the structure was compared with the fatigue life predicted by the axial tension fatigue test for verification.

  8. Prolonged unexplained fatigue in paediatrics

    NARCIS (Netherlands)

    Bakker, R.J.

    2010-01-01

    Prolonged Unexplained Fatigue in Paediatrics. Fatigue, as the result of mental or physical exertion, will disappear after rest, drinks and food. Fatigue as a symptom of illness will recover with the recovering of the illness. But when fatigue is ongoing for a long time, and not the result of

  9. A multi-frequency fatigue testing method for wind turbine rotor blades

    DEFF Research Database (Denmark)

    Eder, Martin Alexander; Belloni, Federico; Tesauro, Angelo

    2017-01-01

    Rotor blades are among the most delicate components of modern wind turbines. Reliability is a crucial aspect, since blades shall ideally remain free of failure under ultra-high cycle loading conditions throughout their designated lifetime of 20–25 years. Full-scale blade tests are the most accurate...... means to experimentally simulate damage evolution under operating conditions, and are therefore used to demonstrate that a blade type fulfils the reliability requirements to an acceptable degree of confidence. The state-of-the-art testing method for rotor blades in industry is based on resonance...... higher modes contribute more significantly due to their higher cycle count. A numerical feasibility study based on a publicly available large utility rotor blade is used to demonstrate the ability of the proposed approach to outperform the state-of-the-art testing method without compromising fatigue test...

  10. In pile AISI 316L. Low cycle fatigue. Final report

    International Nuclear Information System (INIS)

    Van Nieuwenhove, R.; Moons, F.

    1994-12-01

    In pile testing of the effect of neutron irradiation on the fatigue life of the reference material AISI 316L was performed in the framework of the European fusion technology program. The overall programme, carried out at SCK CEN (Mol,Belgium), exists of two instrumented rigs for low cycle fatigue testing, which were consecutively loaded in the BR-2 reactor during periods Jan (94) June (94) and Aug (94)-Dec(94). In each experiment, two identical samples were loaded by means of a pneumatically driven system. The samples were instrumented with thermocouples, strain gages, linear variable displacement transducers, and activation monitors. The experimental conditions are given. Type of fatigue test: load controlled, symmetric, uniaxial, triangular wave shape; stress range: about 580 MPa; sample shape: hourglass, diameter 3.2 mm, radius 12.5 mm; environment: NaK (peritectic); temperature: 250 C; maximum dpa value up to fracture: 1.7. Two of four samples were broken (one in each experiment) after having experienced 17 419 respectively 11 870 stress cycles. These new data points confirm earlier results from pile fatigue tests: irradiation causes no degradation of fatigue life of AISI 316L steel, at least for the parameters corresponding to these experiments

  11. Development, dimensions, reliability and validity of the novel Manchester COPD fatigue scale

    DEFF Research Database (Denmark)

    Al-shair, K; Kolsum, U; Berry, P

    2009-01-01

    as well as depressed patients (>or=16 scores in the Center for Epidemiologic Study on Depression (CES-D) scale) had nearly twice as high fatigue scores as those who walked >or=350 m or were not depressed (preliable and valid measurement of total...... was first subjected to constructive validated shortening steps and then to a principal components analysis. RESULTS: The Manchester COPD fatigue scale (MCFS) consists of 27 items, loading into three dimensions: physical, cognitive and psychosocial fatigue. Internal consistency (Cronbach's alpha = 0.......97) and test-retest repeatability (r = 0.97, pvalidity, correlating with the FACIT (Functional Assessment of Chronic Illness Therapy) fatigue scale and the fatigue in Borg scale at baseline and after a 6 minute walk distance (6MWD) test (r = -0.81, 0.53 and 0...

  12. Developing a fatigue questionnaire for Chinese civil aviation pilots.

    Science.gov (United States)

    Dai, Jing; Luo, Min; Hu, Wendong; Ma, Jin; Wen, Zhihong

    2018-03-23

    To assess the fatigue risk is an important challenge in improving flight safety in aviation industry. The aim of this study was to develop a comprehensive fatigue risk management indicators system and a fatigue questionnaire for Chinese civil aviation pilots. Participants included 74 (all males) civil aviation pilots. They finished the questionnaire in 20 minutes before a flight mission. The estimation of internal consistency with Cronbach's α and Student's t test as well as Pearson's correlation analysis were the main statistical methods. The results revealed that the fatigue questionnaire had acceptable internal consistency reliability and construct validity; there were significant differences on fatigue scores between international and domestic flight pilots. And some international flight pilots, who had taken medications as a sleep aid, had worse sleep quality than those had not. The long-endurance flight across time zones caused significant differences in circadian rhythm. The fatigue questionnaire can be used to measure Chinese civil aviation pilots' fatigue, which provided a reference for fatigue risk management system to civil aviation pilots.

  13. The Longitudinal Course of Fatigue in Rheumatoid Arthritis: Results from the Norfolk Arthritis Register.

    Science.gov (United States)

    Druce, Katie L; Jones, Gareth T; Macfarlane, Gary J; Verstappen, Suzanne M M; Basu, Neil

    2015-11-01

    Fatigue is common and burdensome in rheumatoid arthritis (RA). Despite RA fatigue progression varying significantly between individuals in practice, existing longitudinal analyses only examine symptom advancement on a population level. This study aimed to determine fatigue trajectories at an individual level and to characterize those patients with the poorest prognosis, with a view to enabling earlier interventions. Patients with RA reporting clinically relevant baseline fatigue (≥ 20 mm on a 0-100 mm visual analog scale) were identified from a longterm inflammatory polyarthritis cohort (the Norfolk Arthritis Register). Fatigue changes from baseline to 1- and 4-year followups were calculated, and sex-stratified group-based trajectory modeling (GBTM) determined trajectories of the symptom between which baseline characteristics were compared. Among 338 patients, only minimal average changes were observed between recruitment to 1 year (6.0 mm, SD 26.9) and 4 years (5.5 mm, SD 29.3). This was despite 45.6% and 40.7% of participants reporting clinically significant improvements (≥ 10 mm) at these respective followups. GBTM revealed varied trajectories of fatigue, which for both sexes consisted of Improved (men, n = 48 and women, n = 81) or persistent Moderate-high paths (n = 54, n = 105), and further included a persistent High trajectory in women (n = 50). Participants who followed persistent trajectories were best distinguished from improvers by patient-reported rather than demographic or clinical variables. Among patients with RA presenting with clinically relevant fatigue, distinct longitudinal symptom trajectories were identified on an individual level despite nominal average changes in fatigue on a group level. It is possible to identify and characterize subgroups of participants who report persistent fatigue and should therefore be targeted to receive future fatigue-alleviating interventions.

  14. The Fatigue Behavior of Steel Structures under Random Loading

    DEFF Research Database (Denmark)

    Agerskov, Henning

    2009-01-01

    of the investigation, fatigue test series with a total of 540 fatigue tests have been carried through on various types of welded plate test specimens and full-scale offshore tubular joints. The materials that have been used are either conventional structural steel or high-strength steel. The fatigue tests......Fatigue damage accumulation in steel structures under random loading has been studied in a number of investigations at the Technical University of Denmark. The fatigue life of welded joints has been determined both experimentally and from a fracture mechanics analysis. In the experimental part...... and the fracture mechanics analyses have been carried out using load histories, which are realistic in relation to the types of structures studied, i.e. primarily bridges, offshore structures and chimneys. In general, the test series carried through show a significant difference between constant amplitude...

  15. Corrosion Fatigue in District Heating Water Tanks

    DEFF Research Database (Denmark)

    Maahn, Ernst Emanuel

    1996-01-01

    Three candidate materials for construction of buffer tanks for district heating water have been tested for corrosion fatigue properties in a district heating water environment. The investigation included Slow Strain Rate Testing of plain tensile specimens, crack initiation testing by corrosion...... fatigue of plain tensile specimens and crack growth rate determination for Compact Tensile Specimens under corrosion fatigue conditions. The three materials are equal with respect to stress corrosion sensibility and crack initiation. Crack growth rate is increased with a factor of 4-6 relative to an inert...

  16. Study on durability of welded bellows. Fatigue life of bellows with crack in welded bead

    International Nuclear Information System (INIS)

    Hirata, Osamu; Okada, Ken; Yanagisawa, Takasi; Nakajima, Akira.

    1994-01-01

    Reports of study for welded bellows with cracks have apparently not been published to date. The purpose of this investigation is to understand the relationship between the state of stress of welded bellows with micro cracks and the fatigue life. Stresses of welded bellows with cracks were calculated for several different crack lengths by finite element method (FEM), and lives of bellows with cracks were examined by fatigue test. The fatigue life, i.e. the number of cycles to failure was arranged against the remaining wall thickness measured after test instead of the crack length. As a result, it was found that there is a regular relationship between the stress amplitude of peak stress calculated by FEM and the fatigue life of bellows. And then, it was shown that the life of bellows becomes longer than the life estimated using a theoretical S-N curve calculated by Manson's method. Stress intensity factor range (ΔK) and crack propagation rate (da/dN) were also calculated using the results of stress analysis by FEM and fatigue test. The relationship between ΔK and da/dN obtained was almost coincident with the earlier result of fatigue crack growth test of Inconel 718 in the region of da/dN > 1.5x10 -6 mm/cycle, and the propriety of the present results was confirmed. (author)

  17. Effect of creep and oxidation on reduced fatigue life of Ni-based alloy 617 at 850 °C

    Energy Technology Data Exchange (ETDEWEB)

    Chen, Xiang, E-mail: chenx@ornl.gov [Department of Nuclear, Plasma, and Radiological Engineering, University of Illinois at Urbana-Champaign, 104 South Wright Street, Urbana, IL 61801 (United States); Oak Ridge National Laboratory, 1 Bethel Valley Road, Oak Ridge, TN 37831 (United States); Yang, Zhiqing [Oak Ridge National Laboratory, 1 Bethel Valley Road, Oak Ridge, TN 37831 (United States); Shenyang National Laboratory for Materials Science, Institute of Metal Research, Chinese Academy of Sciences, Shenyang 110016 (China); Sokolov, Mikhail A.; Erdman, Donald L. [Oak Ridge National Laboratory, 1 Bethel Valley Road, Oak Ridge, TN 37831 (United States); Mo, Kun; Stubbins, James F. [Department of Nuclear, Plasma, and Radiological Engineering, University of Illinois at Urbana-Champaign, 104 South Wright Street, Urbana, IL 61801 (United States)

    2014-01-15

    Low cycle fatigue (LCF) and creep–fatigue testing of Ni-based alloy 617 was carried out at 850 °C. Compared with its LCF life, the material’s creep–fatigue life decreases to different extents depending on test conditions. To elucidate the microstructure-fatigue property relationship for alloy 617 and the effect of creep and oxidation on its fatigue life, systematic microstructural investigations were carried out using scanning electron microscopy, energy-dispersive X-ray spectroscopy, and electron backscatter diffraction (EBSD). In LCF tests, as the total strain range increased, deformations concentrated near high angle grain boundaries (HAGBs). The strain hold period in the creep–fatigue tests introduced additional creep damage to the material, which revealed the detrimental effect of the strain hold time on the material fatigue life in two ways. First, the strain hold time enhanced the localized deformation near HAGBs, resulting in the promotion of intergranular cracking of alloy 617. Second, the strain hold time encouraged grain boundary sliding, which resulted in interior intergranular cracking of the material. Oxidation accelerated the initiation of intergranular cracking in alloy 617. In the crack propagation stage, if oxidation was promoted and the cyclic oxidation damage was greater than the fatigue damage, oxidation-assisted intergranular crack growth resulted in a significant reduction in the material’s fatigue life.

  18. Irradiation effect on fatigue behaviour of zircaloy-4 cladding tubes

    International Nuclear Information System (INIS)

    Soniak, A.; Lansiart, S.; Royer, J.; Waeckel, N.

    1993-01-01

    Since nuclear electricity has a predominant share in French generating capacity, PWR's are required to fit grid load following and frequency control operating conditions. Consequently cyclic stresses appear in the fuel element cladding. In order to characterize the possible resulting clad damage, fatigue tests were performed at 350 deg C on unirradiated material or irradiated stress relieved Zircaloy-4 tube portions, using a special device for tube fatigue by repeated pressurization. It appears that, for high stress levels, the material fatigue life is not affected by irradiation. But the endurance fatigue limit undergoes a decrease from the 350 MPa value for unirradiated material to the 210 MPa value for the material irradiated for four cycles in a PWR. However, this effect seems to saturate with irradiation dose: no difference could be detected between the two cycles results and the corresponding four cycles results. The corrosion effect and the load following influence were also investigated: they do not appear to modify the fatigue behaviour in our experimental conditions

  19. Nondestructive evaluation of creep-fatigue damage: an interim report

    International Nuclear Information System (INIS)

    Nickell, R.E.

    1977-02-01

    In view of the uncertainties involved in designing against creep-fatigue failure and the consequences of such failures in Class 1 nuclear components that operate at elevated temperature, the possibility of intermittent or even continuous non-destructive examination of these components has been considered. In this interim report some preliminary results on magnetic force and ultrasonic evaluation of creep-fatigue damage in an LMFBR steam generator material are presented. These results indicate that the non-destructive evaluation of pure creep damage will be extremely difficult. A set of biaxial creep-fatigue tests that are designed to discriminate between various failure theories is also described

  20. Mediators of the effects on fatigue of pragmatic rehabilitation for chronic fatigue syndrome.

    Science.gov (United States)

    Wearden, Alison J; Emsley, Richard

    2013-10-01

    To examine potential mediators of the effect of pragmatic rehabilitation on improvements in fatigue following a randomized controlled trial for patients with chronic fatigue syndrome (CFS/ME) in primary care (IRCTN 74156610). Patients fulfilled the Oxford criteria for CFS. Ninety-five patients were randomized to pragmatic rehabilitation and 100 to general practitioner (GP) treatment as usual. The outcome was the Chalder fatigue scale score (0123 scoring) at end of treatment (20 weeks) and 1-year follow up (70 weeks). First, the effect of treatment on potential mediators was assessed. Then fatigue was regressed on significant mediators, treatment allocation, and baseline measures of fatigue and significant mediators. Reduction in limiting activities at 20 weeks mediated the positive effect of pragmatic rehabilitation on fatigue at 70 weeks (mediated effect size = -2.64, SE = 0.81, p = .001, proportion of effect mediated = 82.0%). Reduction in catastrophizing at 20 weeks mediated the positive effect of pragmatic rehabilitation on fatigue at 70 weeks (mediated effect size = -1.39, SE = 0.61, p = .023, proportion of effect mediated = 43.2%). Reductions in 70-week measures of fear avoidance, embarrassment avoidance, limiting activities, and all-or-nothing behavior all mediated improvement in fatigue at 70 weeks, although the causal direction of these cross-sectional effects cannot be determined. There were no between-group differences on measures of exercise capacity (a timed step test). Improvements in fatigue following pragmatic rehabilitation are related to changes in behavioral responses to and beliefs about fatigue.

  1. Environmental effects of high temperature sodium of fatigue crack characteristics

    International Nuclear Information System (INIS)

    Abe, Hideaki; Takahashi, Kazuo; Ozawa, Kazumasa; Takahashi, Yukio

    2004-01-01

    In order to study fatigue crack growth characteristics in the components used in liquid sodium, fatigue tests were carried out at 550degC. This is near the system temperature used for sodium coolant in fast breeder reactors (FBRs). The factors influencing fatigue lifetime in sodium compared with that in air were investigated by observation of surface cracks in 316FR steel. Furthermore, the effects of sodium environment on fatigue were investigated based on examining the results of thermal striping tests, etc., obtained up to now. The results of the fatigue tests show that many micro cracks in the shearing direction were produced by the mid-lifetime, and micro cracks connected quickly after that. This is because an oxidation film was not formed, since sodium is of a reductive nature, and strain of the material surface tends to distribute equally. During crack progression there is no oxide formed on broken surfaces. Therefore re-combination between broken surfaces takes place, and crack progression rate falls. Furthermore, in non-propagating crack, the wedge effect by oxide between broken surfaces at the time of compression is small. Therefore, the crack closure angle is small, compression strain generated in the crack tip becomes large, and the crack cannot stop easily. As mentioned above, the main sodium influence on the fatigue characteristics are because of its reductive nature. In summary, in sodium environment, it is hard to form a crack and to get it to grow. Once started, however, it is hard to stop the crack in sodium compared with in the case of the air. (author)

  2. Muscle-Cooling Intervention to Reduce Fatigue and Fatigue-Induced Tremor in Novice and Experienced Surgeons: A Preliminary Investigation.

    Science.gov (United States)

    Jensen, Lauren; Dancisak, Michael; Korndorffer, James

    2016-10-01

    A localized, intermittent muscle-cooling protocol was implemented to determine cooling garment efficacy in reducing upper extremity muscular fatigue and tremor in novice ( n  = 10) and experienced surgeons ( n  = 9). Subjects wore a muscle-cooling garment while performing multiple trials of a forearm exercise and paired suturing task to induce muscular fatigue and exercise-induced tremor. A reduction in tremor amplitude and an extension in time to fatigue were expected with muscle cooling as compared with control trials. Each subject completed an intervention session (5°C cooling condition) and a control session (32°C or thermal neutral condition). A paired samples t test indicated that tremor amplitude was significantly reduced ( t [8] = 1.89458; p  effect was not significant. Time to fatigue and suture time improved in both cohorts with muscle cooling, but the effect did not reach significance. Results from the pilot work suggest muscle cooling as an intervention for reduction of fatigue and tremor is very promising, warranting further investigation. Surgical specialties that require prolonged procedures might benefit more from this intervention.

  3. Fatigue Life of Titanium Alloys Fabricated by Additive Layer Manufacturing Techniques for Dental Implants

    Science.gov (United States)

    Chan, Kwai S.; Koike, Marie; Mason, Robert L.; Okabe, Toru

    2013-02-01

    Additive layer deposition techniques such as electron beam melting (EBM) and laser beam melting (LBM) have been utilized to fabricate rectangular plates of Ti-6Al-4V with extra low interstitial (ELI) contents. The layer-by-layer deposition techniques resulted in plates that have different surface finishes which can impact significantly on the fatigue life by providing potential sites for fatigue cracks to initiate. The fatigue life of Ti-6Al-4V ELI alloys fabricated by EBM and LBM deposition techniques was investigated by three-point testing of rectangular beams of as-fabricated and electro-discharge machined surfaces under stress-controlled conditions at 10 Hz until complete fracture. Fatigue life tests were also performed on rolled plates of Ti-6Al-4V ELI, regular Ti-6Al-4V, and CP Ti as controls. Fatigue surfaces were characterized by scanning electron microscopy to identify the crack initiation site in the various types of specimen surfaces. The fatigue life data were analyzed statistically using both analysis of variance techniques and the Kaplan-Meier survival analysis method with the Gehan-Breslow test. The results indicate that the LBM Ti-6Al-4V ELI material exhibits a longer fatigue life than the EBM counterpart and CP Ti, but a shorter fatigue life compared to rolled Ti-6Al-4V ELI. The difference in the fatigue life behavior may be largely attributed to the presence of rough surface features that act as fatigue crack initiation sites in the EBM material.

  4. SI:FatiguePro 4 Advanced Approach for Fatigue Monitoring

    International Nuclear Information System (INIS)

    Evon, Keith; Gilman, Tim; Carney, Curt

    2012-01-01

    Many nuclear plants are making commitments to implement fatigue monitoring systems in support of license renewal. Current fatigue monitoring systems use the methodology of ASME Code Subarticle NB-3200, which is a design code intended to compute a bounding cumulative usage factor (CUF). The first generation of fatigue monitoring software utilized a simplified, single stress term assumption and classical stress cycle-counting methods that take order into account such as Rainflow or Ordered Overall Range counting. Recently, the NRC has indicated in Regulatory Issue Summary 2008-30 that any fatigue analyses in support of License Renewal should use ASME Code Section III methodologies considering all six stress components. In addition, fatigue calculations for the license renewal term are required to consider the effects of environment. The implementation of a six stress term NB-3200 fatigue calculation to a Boiling Water Reactor (BWR) feedwater nozzle, including environmental effects, is the topic of this paper. Differences in results between the advanced methodology and the simplified methodology are discussed. (author)

  5. Creep-fatigue evaluation method for weld joint of Mod.9Cr-1Mo steel Part II: Plate bending test and proposal of a simplified evaluation method

    Energy Technology Data Exchange (ETDEWEB)

    Ando, Masanori, E-mail: ando.masanori@jaea.go.jp; Takaya, Shigeru, E-mail: takaya.shigeru@jaea.go.jp

    2016-12-15

    Highlights: • Creep-fatigue evaluation method for weld joint of Mod.9Cr-1Mo steel is proposed. • A simplified evaluation method is also proposed for the codification. • Both proposed evaluation method was validated by the plate bending test. • For codification, the local stress and strain behavior was analyzed. - Abstract: In the present study, to develop an evaluation procedure and design rules for Mod.9Cr-1Mo steel weld joints, a method for evaluating the creep-fatigue life of Mod.9Cr-1Mo steel weld joints was proposed based on finite element analysis (FEA) and a series of cyclic plate bending tests of longitudinal and horizontal seamed plates. The strain concentration and redistribution behaviors were evaluated and the failure cycles were estimated using FEA by considering the test conditions and metallurgical discontinuities in the weld joints. Inelastic FEA models consisting of the base metal, heat-affected zone and weld metal were employed to estimate the elastic follow-up behavior caused by the metallurgical discontinuities. The elastic follow-up factors determined by comparing the elastic and inelastic FEA results were determined to be less than 1.5. Based on the estimated elastic follow-up factors obtained via inelastic FEA, a simplified technique using elastic FEA was proposed for evaluating the creep-fatigue life in Mod.9Cr-1Mo steel weld joints. The creep-fatigue life obtained using the plate bending test was compared to those estimated from the results of inelastic FEA and by a simplified evaluation method.

  6. Creep-fatigue evaluation method for weld joint of Mod.9Cr-1Mo steel Part II: Plate bending test and proposal of a simplified evaluation method

    International Nuclear Information System (INIS)

    Ando, Masanori; Takaya, Shigeru

    2016-01-01

    Highlights: • Creep-fatigue evaluation method for weld joint of Mod.9Cr-1Mo steel is proposed. • A simplified evaluation method is also proposed for the codification. • Both proposed evaluation method was validated by the plate bending test. • For codification, the local stress and strain behavior was analyzed. - Abstract: In the present study, to develop an evaluation procedure and design rules for Mod.9Cr-1Mo steel weld joints, a method for evaluating the creep-fatigue life of Mod.9Cr-1Mo steel weld joints was proposed based on finite element analysis (FEA) and a series of cyclic plate bending tests of longitudinal and horizontal seamed plates. The strain concentration and redistribution behaviors were evaluated and the failure cycles were estimated using FEA by considering the test conditions and metallurgical discontinuities in the weld joints. Inelastic FEA models consisting of the base metal, heat-affected zone and weld metal were employed to estimate the elastic follow-up behavior caused by the metallurgical discontinuities. The elastic follow-up factors determined by comparing the elastic and inelastic FEA results were determined to be less than 1.5. Based on the estimated elastic follow-up factors obtained via inelastic FEA, a simplified technique using elastic FEA was proposed for evaluating the creep-fatigue life in Mod.9Cr-1Mo steel weld joints. The creep-fatigue life obtained using the plate bending test was compared to those estimated from the results of inelastic FEA and by a simplified evaluation method.

  7. Low cycle fatigue lifetime of HIP bonded Bi-metallic first wall structures of fusion reactors

    Energy Technology Data Exchange (ETDEWEB)

    Hatano, Toshihisa; Sato, Satoshi; Furuya, Kazuyuki; Kuroda, Toshimasa; Enoeda, Mikio; Takatsu, Hideyuki [Japan Atomic Energy Research Inst., Naka, Ibaraki (Japan). Naka Fusion Research Establishment; Hashimoto, Toshiyuki; Kitamura, Kazunori

    1998-10-01

    A HIP bonded bi-metallic panel composed of a dispersion strengthened copper (DSCu) layer and type 316L stainless steel (SS316L) cooling pipes is the reference design of the ITER first wall. To examine the fatigue lifetime of the first wall panel under cyclic mechanical loads, low cycle fatigue tests of HIP bonded bi-metallic specimens made of SS316L and DSCu were conducted with the stress ratio of -1.0 and five nominal strain range conditions ranging from 0.2 to 1.0%. Elasto-plastic analysis has also been conducted to evaluate local strain ranges under the nominal strains applied. Initial cracks were observed at the inner surface of the SS316L cooling pipes for all of the specimens tested, which was confirmed by the elasto-plastic analysis that the maximum strains of the test specimens were developed at the same locations. It was found that the HIP bonded bi-metallic test specimens had a fatigue lifetime longer than that of the SS316L raw material obtained by round bar specimens. Similarly, the fatigue lifetime of the DSCu/SS316L HIP interface was also longer than the round bar test results for the HIP joints. From these results, it has been confirmed that the bi-metallic first wall panel with built-in cooling pipes made by HIP bonding has a sufficient fatigue lifetime in comparison with the raw fatigue data of the materials, which also suggests that the fatigue lifetime evaluation has an adequate margin against fracture if it follows the design fatigue curve based on the material fatigue data. (author)

  8. Behavior of Steel Branch Connections during Fatigue Loading

    Directory of Open Access Journals (Sweden)

    Sládek A.

    2017-09-01

    Full Text Available Fatigue behavior of the branch connection made of low-alloyed steel with yield stress of 355 MPa during low-cycle bending test is investigated in the article. Numerical prediction of the stress and strain distribution are described and experimentally verified by fatigue test of the branch connection sample. Experimental verification is based on low-cycle bending testing of the steel pipes welded by manual metal arc process and loaded by external force in the appropriate distance. Stresses and displacement of the samples induced by bending moment were measured by unidirectional strain gauges and displacement transducers. Samples were loaded in different testing levels according to required stress for 2.106 cycles. Increase of the stress value was applied until the crack formation and growth was observed. Results showed a high agreement of numerical and experimental results of stress and displacement.

  9. Static and Fatigue Behavior Investigation of Artificial Notched Steel Reinforcement

    Directory of Open Access Journals (Sweden)

    Yafei Ma

    2017-05-01

    Full Text Available Pitting corrosion is one of the most common forms of localized corrosion. Corrosion pit results in a stress concentration and fatigue cracks usually initiate and propagate from these corrosion pits. Aging structures may fracture when the fatigue crack reaches a critical size. This paper experimentally simulates the effects of pitting morphologies on the static and fatigue behavior of steel bars. Four artificial notch shapes are considered: radial ellipse, axial ellipse, triangle and length-variable triangle. Each shape notch includes six sizes to simulate a variety of pitting corrosion morphologies. The stress-strain curves of steel bars with different notch shape and depth are obtained based on static tensile testing, and the stress concentration coefficients for various conditions are determined. It was determined that the triangular notch has the highest stress concentration coefficient, followed by length-variable triangle, radial ellipse and axial ellipse shaped notches. Subsequently, the effects of notch depth and notch aspect ratios on the fatigue life under three stress levels are investigated by fatigue testing, and the equations for stress range-fatigue life-notch depth are obtained. Several conclusions are drawn based on the proposed study. The established relationships provide an experimental reference for evaluating the fatigue life of concrete bridges.

  10. Fatigue testing of a carbon fibre composite wind turbine blade with associated material characterisation

    Energy Technology Data Exchange (ETDEWEB)

    Lowe, G A; Richardson, D J [Univ. of the West of England, Faculty of Engineering, Bristol (United Kingdom)

    1996-09-01

    Within the EC project JOULE 2, the University of the West of England (UWE) tested a carbon fibre reinforced epoxy (CFRE) full scale wind turbine blade together with an associated material test coupon programme. All the work was closely linked with the manufacturer Polymarine BV of the Netherlands, who designed and manufactured the blade and provided test specimens, the UWE carried out the research into the validation of the design calculations together with a check of the strength and fatigue life of the blade. (au)

  11. Fatigue properties of ductile cast iron containing chunky graphite

    Energy Technology Data Exchange (ETDEWEB)

    Ferro, P., E-mail: ferro@gest.unipd.it [Department of Management and Engineering, University of Padova, Stradella S. Nicola 3, I-36100 Vicenza (Italy); Lazzarin, P.; Berto, F. [Department of Management and Engineering, University of Padova, Stradella S. Nicola 3, I-36100 Vicenza (Italy)

    2012-09-30

    Highlights: Black-Right-Pointing-Pointer Experimental determination of high cycle fatigue properties of EN-GJS-400. Black-Right-Pointing-Pointer Evaluation of the influence of chunky graphite morphology on fatigue life. Black-Right-Pointing-Pointer Metallurgical analysis and microstructural parameters determination. Black-Right-Pointing-Pointer Nodule counting and nodularity rating. - Abstract: This work deals with experimental determination of high cycle fatigue properties of EN-GJS-400 ductile cast iron containing chunky graphite. Constant amplitude axial tests were performed at room temperature under a nominal load ratio R = 0. In order to evaluate the influence of chunky graphite morphology on fatigue life, fatigue tests were carried out also on a second set of specimens without this microstructural defect. All samples were taken from the core of a large casting component. Metallurgical analyses were performed on all the samples and some important microstructural parameters (nodule count and nodularity rating, among others) were measured and compared. It was found that a mean content of 40% of chunky graphite in the microstructure (with respect to total graphite content) does not influence significantly the fatigue strength properties of the analysed cast iron. Such result was attributed to the presence of microporosity detected on the surface fracture of the specimens by means of electron scanning microscope.

  12. Fatigue properties of ductile cast iron containing chunky graphite

    International Nuclear Information System (INIS)

    Ferro, P.; Lazzarin, P.; Berto, F.

    2012-01-01

    Highlights: ► Experimental determination of high cycle fatigue properties of EN-GJS-400. ► Evaluation of the influence of chunky graphite morphology on fatigue life. ► Metallurgical analysis and microstructural parameters determination. ► Nodule counting and nodularity rating. - Abstract: This work deals with experimental determination of high cycle fatigue properties of EN-GJS-400 ductile cast iron containing chunky graphite. Constant amplitude axial tests were performed at room temperature under a nominal load ratio R = 0. In order to evaluate the influence of chunky graphite morphology on fatigue life, fatigue tests were carried out also on a second set of specimens without this microstructural defect. All samples were taken from the core of a large casting component. Metallurgical analyses were performed on all the samples and some important microstructural parameters (nodule count and nodularity rating, among others) were measured and compared. It was found that a mean content of 40% of chunky graphite in the microstructure (with respect to total graphite content) does not influence significantly the fatigue strength properties of the analysed cast iron. Such result was attributed to the presence of microporosity detected on the surface fracture of the specimens by means of electron scanning microscope.

  13. Performance Demands in Softball Pitching: A Comprehensive Muscle Fatigue Study.

    Science.gov (United States)

    Corben, Jeffrey S; Cerrone, Sara A; Soviero, Julie E; Kwiecien, Susan Y; Nicholas, Stephen J; McHugh, Malachy P

    2015-08-01

    Monitoring pitch count is standard practice in minor league baseball but not in softball because of the perception that fast-pitch softball pitching is a less stressful motion. To examine muscle fatigue after fast-pitch softball performances to provide an assessment of performance demand. Descriptive laboratory study. Bilateral strength measurements (handheld dynamometer) were made on 19 female softball pitchers (mean age [±SD], 15.2 ± 1.2 years) before and after pitching a game (mean number of pitches, 99 ± 21; mean innings pitched, 5 ± 1). A total of 20 tests were performed on the dominant and nondominant sides: forearm (grip, wrist flexion/extension, pronation/supination, elbow flexion/extension), shoulder (flexion, abduction/adduction, external/internal rotation, empty can test), scapula (middle/lower trapezius, rhomboid), and hip (hip flexion/extension, abduction/adduction). Fatigue (percentage strength loss) was categorized based on bilateral versus unilateral presentation using paired t tests: bilateral symmetric (significant on dominant and nondominant and not different between sides), bilateral asymmetric (significant on dominant and nondominant but significantly greater on dominant), unilateral asymmetric (significant on dominant only and significantly greater than nondominant), or unilateral equivocal (significant on dominant only but not different from nondominant). Bilateral symmetric fatigue was evident for all hip (dominant, 19.3%; nondominant, 15.2%) and scapular tests (dominant, 19.2%; nondominant, 19.3%). In general, shoulder tests exhibited bilateral asymmetric fatigue (dominant, 16.9%; nondominant, 11.6%). Forearm tests were more variable, with bilateral symmetric fatigue in the elbow flexors (dominant, 22.5%; nondominant, 19.2%), and wrist flexors (dominant, 21.6%; nondominant, 19.0%), bilateral asymmetric fatigue in the supinators (dominant, 21.8%; nondominant, 15.5%), unilateral asymmetric fatigue in the elbow extensors (dominant, 22

  14. Association to dopamine receptor D2 (DRD2 with developing fatigue as a result of long-term cognitive load

    Directory of Open Access Journals (Sweden)

    Irina S. Polikanova

    2016-09-01

    Full Text Available This research studies the effect of long-term cognitive load on developimg fatigue on a range of subjective, behavioural (reaction time and electrophysiological (individual alpha rhythm, fatigue index parameters in carriers of various polymorphisms of DRD2 genes. Mental fatigue was modeled as a result of continuous cognitive tasks aimed at using attention and working memory for 2.5 hours. The sample included 51 subjects (male right-handers, the average age - 20 ± 4 years whose genetic analysis was conducted and polymorphism options of DRD2 gene Taq1A (A1A1, A1A2 and A2A2 were identified. The research results show that such load significantly affects almost the entire complex of indicators. Significant differences were found between the polymorphisms carriers A1A1 and A1A2 and A2A2 of DRD2 gene polymorphism in the reaction of choice, and also in fatigue index, which reflects the ratio of slow brain rhythms to fast. The results show the positive role of dopamine in developing fatigue. Group of A2A2 («A1» polymorphism carriers was assumed to show lower fatigue, characterized in SVMR and PB significantly slower reaction time, and before and after long-term cognitive load, compared with carriers of polymorphisms A1A1 and A1A2 (« A1 + «. Notably, the dynamics of error increase within all polymorphisms is the same, and genotype number of errors does not vary before or after fatigue. The dynamics of reaction time after the exhaustion of all SNPs is approximately the same. This means that polymorphisms are different not only in dynamics of fatigue but physical predisposition to sensory information processing.

  15. Some questions regarding the interaction of creep and fatigue

    International Nuclear Information System (INIS)

    James, L.A.

    1975-04-01

    Data are presented from fatigue-crack growth tests conducted on Type 304 S.S. in inert environments at elevated temperatures which show that the thermal-activation noted in similar tests run in air environments is not present in the inert environment. Similar observations from the literature are reviewed, including the observation that the time-dependency noted in tests conducted in elevated temperature air environments is also greatly suppressed in inert environments. These findings suggest that an interaction between the fatigue process and the corrosive air environments is responsible for the thermally activated time-dependent behavior often attributed to creep-fatigue interaction. Data are also presented which show that the fatigue-crack growth behavior of Type 304 S.S. subjected to significant creep damage prior to fatigue testing does not differ appreciably from the behavior of material not subjected to prior creep damage, again indicating minimal interaction between creep and fatigue. It is suggested that in the temperature range where pressure vessels and piping are generally designed to operate (i.e. below about one-half the absolute melting temperature of the alloy), the interaction between creep and fatigue is far less significant than once supposed, and that the major parameter interacting with the fatigue process is that of high-temperature corrosion. (39 references, 12 fig) (auth)

  16. Effects of LWR environments on fatigue life of carbon and low-alloy steels

    International Nuclear Information System (INIS)

    Chopra, O.K.; Shack, W.J.

    1995-03-01

    SME Boiler and Pressure Vessel Code provides construction of nuclear power plant components. Figure I-90 Appendix I to Section III of the Code specifies fatigue design curves for structural materials. While effects of environments are not explicitly addressed by the design curves, test data suggest that the Code fatigue curves may not always be adequate in coolant environments. This paper reports the results of recent fatigue tests that examine the effects of steel type, strain rate, dissolved oxygen level, strain range, loading waveform, and surface morphology on the fatigue life of A 106-Gr B carbon steel and A533-Gr B low-alloy steel in water

  17. Seafarer fatigue

    DEFF Research Database (Denmark)

    Jepsen, Jørgen Riis; Zhao, Zhiwei; van Leeuwen, Wessel M. A.

    2015-01-01

    Background: The consequences of fatigue for the health and safety of seafarers has caused concern in the industry and among academics, and indicates the importance of further research into risk factors and preventive interventions at sea. This review gives an overview of the key issues relating...... to seafarer fatigue. Materials and methods: A literature study was conducted aiming to collect publications that address risk factors for fatigue, short-term and long-term consequences for health and safety, and options for fatigue mitigation at sea. Due to the limited number of publications that deals...... with seafarers, experiences from other populations sharing the same exposures (e.g. shift work) were also included when appropriate. Results: Work at sea involves multiple risk factors for fatigue, which in addition to acute effects (e.g., impaired cognition, accidents) contributes through autonomic, immunologic...

  18. Reduction factors for creep strength and fatigue life of modified 9 Cr-1 Mo steel weldments

    International Nuclear Information System (INIS)

    Blass, J.J.; Battiste, R.L.; O'Connor, D.G.

    1991-01-01

    The provisions of ASME B ampersand PV Code Case N-47 currently include reduction factors for creep strength and fatigue life of weldments. To provide experimental confirmation of such factors for modified 9 Cr-1 Mo steel, tests of tubular specimens were conducted at 538 degree C (1000 degree F). Three creep-rupture specimens with longitudinal welds were tested in tension; and, of three with circumferential welds, two were tested in tension and one in torsion. In each specimen with a circumferential weld, a nonuniform axial distribution of strain was easily visible. The test results were compared to an existing empirical model of creep-rupture life. For the torsion test, the comparison was based on a definition of equivalent normal stress recently adopted in Code Case N-47. Some 27 fatigue specimens, with longitudinal, circumferential, or no welds, were tested under axial or torsional strain control. In specimens with welds, fatigue cracking initiated at fusion lines. In axial tests cracks grew in the circumferential direction, and in torsional tests cracks grew along fusion lines. The test results were compared to empirical models of fatigue life based on two definition of equivalent normal strain range. The results have provided some needed confirmation of the reduction factors for creep strength and fatigue life of modified 9 Cr-1 Mo steel weldments currently under consideration by ASME Code committees. 8 refs., 5 figs

  19. Damage and fatigue crack growth of Eurofer steel first wall mock-up under cyclic heat flux loads. Part 1: Electron beam irradiation tests

    Energy Technology Data Exchange (ETDEWEB)

    You, J.H., E-mail: you@ipp.mpg.de [Max-Planck-Institut für Plasmaphysik, Euratom Association, Boltzmannstr. 2, 85748 Garching (Germany); Höschen, T. [Max-Planck-Institut für Plasmaphysik, Euratom Association, Boltzmannstr. 2, 85748 Garching (Germany); Pintsuk, G. [Forschungszentrum Jülich GmbH, IEK2, Euratom Association, 52425 Jülich (Germany)

    2014-04-15

    Highlights: • Clear evidence of microscopic damage and crack formation at the notch root in the early stage of the fatigue loading (50–100 load cycles). • Propagation of fatigue crack at the notch root in the course of subsequent cyclic heat-flux loading followed by saturation after roughly 600 load cycles. • No sign of damage on the notch-free surface up to 800 load cycles. • No obvious effect of the pulse time duration on the crack extension. • Slight change in the grain microstructure due to the formation of sub-grain boundaries by plastic deformation. - Abstract: Recently, the idea of bare steel first wall (FW) is drawing attention, where the surface of the steel is to be directly exposed to high heat flux loads. Hence, the thermo-mechanical impacts on the bare steel FW will be different from those of the tungsten-coated one. There are several previous works on the thermal fatigue tests of bare steel FW made of austenitic steel with regard to the ITER application. In the case of reduced-activation steel Eurofer97, a candidate structural material for the DEMO FW, there is no report on high heat flux tests yet. The aim of the present study is to investigate the thermal fatigue behavior of the Eurofer-based bare steel FW under cyclic heat flux loads relevant to DEMO operation. To this end, we conducted a series of electron beam irradiation tests with heat flux load of 3.5 MW/m{sup 2} on water-cooled mock-ups with an engraved thin notch on the surface. It was found that the notch root region exhibited a marked development of damage and fatigue cracks whereas the notch-free surface manifested no sign of crack formation up to 800 load cycles. Results of extensive microscopic investigation are reported.

  20. Energy Dissipation-Based Method for Fatigue Life Prediction of Rock Salt

    Science.gov (United States)

    He, Mingming; Huang, Bingqian; Zhu, Caihui; Chen, Yunsheng; Li, Ning

    2018-05-01

    The fatigue test for rock salt is conducted under different stress amplitudes, loading frequencies, confining pressures and loading rates, from which the evaluation rule of the dissipated energy is revealed and analysed. The evolution of energy dissipation under fatigue loading is divided into three stages: the initial stage, the second stage and the acceleration stage. In the second stage, the energy dissipation per cycle remains stable and shows an exponential relation with the stress amplitude; the failure dissipated energy only depends on the mechanical behaviour of the rock salt and confining pressure, but it is immune to the loading conditions. The energy dissipation of fatigued rock salt is discussed, and a novel model for fatigue life prediction is proposed on the basis of energy dissipation. A simple model for evolution of the accumulative dissipated energy is established. Its prediction results are compared with the test results, and the proposed model is validated.

  1. Work fatigue in urban bus drivers

    Directory of Open Access Journals (Sweden)

    Teresa Makowiec-Dąbrowska

    2015-10-01

    Full Text Available Background: Bus drivers are a special group of professional drivers who are at a very high risk of fatigue. The aim of the study was to examine whether the driver’s subjective assessment of fatigue allows for the determination of its level and identification of its causes. Material and Methods: The study group comprised 45 randomly selected bus drivers (mean age – 43.7±7.9 years, period of employment as drivers – 14.7±8.6 years. Examinations were performed in all subjects four times – before and after work on the “easy” route (outside the city center, small traffic intensity and before and after work on the “difficult” route (city center, heavy traffic. The fatigue test questionnaire, based on the list of symptoms of fatigue prepared by the Japan Research Committee of Fatigue, was used in the study. Results: The rating of fatigue after the work was significantly higher than that before the work. The profile of fatigue after work was not influenced by the type of route, but the assessment of most symptoms of fatigue reached a higher level after the “difficult” routes and the differences were statistically significant for 7 symptoms. Only the ratings of leg fatigue, feeling of heaviness, and the necessity to squint eyes and gaze with effort reached the higher levels after driving the “easy” routes. It has been found that the level of fatigue was significantly correlated with the job characteristics (driving time, the length of the route, number of stops, etc. and with the abundance of food ingested and type of beverage (coffee vs. others drunk prior to driving. Conclusions: The questionnaire used in our study to assess the subjective feeling of fatigue has proved to be a sensitive and useful tool for indicating the level and causes of fatigue. The relationship between the symptoms of fatigue and the characteristics of job and lifestyle shows that actions must be taken by both the employers and employees to prevent fatigue

  2. Fatigue Life Prediction of the Keel Structure of a Tsunami Buoy Using Spectral Fatigue Analysis Method

    Directory of Open Access Journals (Sweden)

    Angga Yustiawan

    2013-09-01

    Full Text Available One  of  the  components  of  the  Indonesia  Tsunami  Early  Warning  System  (InaTEWS  is  a  surface  buoy.  The  surface buoy  is  exposed  to  dynamic  and  random  loadings  while  operating  at  sea,  particularly  due  to  waves.  Because  of  the cyclic  nature  of  the  wave  load,  this  may  result  in  a fatigue  damage  of  the  keel  structure,  which  connects  the  mooring line  with  the  buoy  hull.  The  operating  location  of  the buoy  is  off  the  Java  South  Coast  at  the  coordinate (10.3998  S, 108.3417  E. To  determine  the  stress  transfer  function, model  tests  were  performed,  measuring  the  buoy  motions  and the stress at the mooring line. A spectral fatigue analysis method is applied for the purpose of estimating the fatigue life of the keel structure. Utilizing the  model-test results, the S-N curve obtained in a previous study and the  wave data at the buoy location, it is found that the fatigue life of the keel structure is approximately 11 years.

  3. In situ fatigue-crack-propagation experiment

    International Nuclear Information System (INIS)

    Ermi, A.M.; Chin, B.A.

    1981-01-01

    An in-reactor fatigue experiment was conducted in the Oak Ridge Research Reactor to determine the effects of dynamic irradiation on fatigue crack propagation. Eight 20% cold-worked 316 stainless steel specimens were precracked to various initial crack lengths, linked together to form a chain, and inserted into a specially designed in-reactor fatigue machine. Test conditions included a maximum temperature of 460 0 C, an environment of sodium, a frequency of 1 cycle/min, and a stress ratio of 0.10. Results indicated that (1) no effects of dynamic irradiation were observed for a fluence of 1.5 x 10 21 n/cm 2 (E > 0.1 MeV); and (2) crack growth rates in elevated temperature sodium were a factor of 3 to 4 lower than in room temperature air

  4. Microstructure evolution during high cycle fatigue in Mg–6Zn–1Mn alloy

    Energy Technology Data Exchange (ETDEWEB)

    Yu, Daliang [College of Materials Science and Engineering, Chongqing University, Chongqing 400045 (China); National Engineering Research Center for Magnesium Alloys, Chongqing University, Chongqing 400044 (China); Zhang, Dingfei, E-mail: zhangdingfei@cqu.edu.cn [College of Materials Science and Engineering, Chongqing University, Chongqing 400045 (China); National Engineering Research Center for Magnesium Alloys, Chongqing University, Chongqing 400044 (China); Luo, Yuanxin [College of Mechanical Engineering, Chongqing University, Chongqing 400030 (China); Sun, Jing; Xu, Junyao [College of Materials Science and Engineering, Chongqing University, Chongqing 400045 (China); National Engineering Research Center for Magnesium Alloys, Chongqing University, Chongqing 400044 (China); Pan, Fusheng [National Engineering Research Center for Magnesium Alloys, Chongqing University, Chongqing 400044 (China); Chongqing Academy of Science and Technology, Chongqing 401123 (China)

    2016-03-21

    Microstructure evolution during high cycle fatigue in extruded Mg–6Zn–1Mn alloy was investigated by servo-hydraulic fatigue testing machine with pull–push sinusoidal loading. The results show that in high stress cycles (cyclic stress≥129 MPa) high cycle fatigue tests promote deformation; however, in low stress cycles (cyclic stress≤125 MPa) high cycle fatigue tests make a contribution to room temperature recrystallization in Mg–6Zn–1Mn alloy. The grain refinement increased with increasing cycles. Electron Back-Scattered Diffraction (EBSD) analyses showed that dynamic recrystallization (DRX) has occurred in post-fatigued alloys, accompanied by the presence of a high number density of low-angle grain boundaries (LAGBs). LAGBs generated in the vicinity of initiation grain boundaries and subdivided coarse grains. In the specimens that subjected to higher cycles, the fraction of LAGBs decreased and high-angle grain boundaries (HAGBs) gradually increased. With the cyclic number increasing the texture intensity was significantly weakened. The DRX in post-fatigued specimens was related to Continuous DRX (CDRX) mechanism.

  5. Fatigue strength evaluation of friction stir welded aluminium joints using the nominal and notch stress concepts

    International Nuclear Information System (INIS)

    Barsoum, Z.; Khurshid, M.; Barsoum, I.

    2012-01-01

    Highlights: ► Fatigue testing and evaluation of friction stir welded butt and overlap joints. ► Evaluation based on nominal and effective notch stress concept. ► Comparison with different design recommendations and codes. ► Higher fatigue strength and SN-slopes is observed. ► New fatigue design recommendations proposed for FSW joints. -- Abstract: In this study the fatigue strength is investigated for Friction Stir Welded (FSW) overlap and butt welded joints in different thicknesses based on nominal and effective notch stress concepts. The fatigue test results are compared with fatigue strength recommendations according to EN 1999-1-3 and International Institute of Welding (IIW). The results are also compared with available published data and Finite Element Analysis (FEA) is carried out to investigate the effect of plate thickness and nugget size on the fatigue strength of overlap joints. 3–3 mm butt welded joints shows the highest fatigue strength in comparison with 3–5 mm butt welded and overlap joints. Slopes of the SN-curves for two different joint types differ from the slope recommended by IIW. A specific failure trend is observed in overlap FSW joints. However, the slopes of the SN-curves are in close agreement with slopes found in EN 1999-1-3. The slopes of various published results and test results presented in this study are in good agreement with each other. The suggested fatigue design curves for the nominal and effective notch stress concept have a higher slope than given for fusion welds by IIW.

  6. Effect of specimen geometry on the variability in fatigue crack growth rate

    International Nuclear Information System (INIS)

    Tsuji, Hirokazu; Nakajima, Hajime; Kondo, Tatsuo

    1982-02-01

    Fatigue crack growth tests on SA 533 grade B class 1 steel were conducted in air with both contoured double cantilever beam (CDCB) specimens and compact-tension (CT) specimens for comparison, which corresponded to the ΔK constant and ΔK increasing fatigue tests respectively. The variability of the measured values was examined statistically, and possible sources of the determined variability were discussed. The variability in the ΔK increasing fatigue tests with the CT specimens was found to be substantially greater than that in the ΔK constant fatigue tests with the CDCB specimens employed in the present study. In addition, the width of the scatter as well as in the degree of deviation from the expected linearity in da/dN versus ΔK plots were found to be varied depending on the level of ΔK in the CT specimen. Based on the results, a conclusion was drawn that constant ΔK type tests should be preferred in the tests where accuracy and reproducibility of crack growth rate measurement was of particular importance. (author)

  7. In-reactor fatigue crack propagation

    International Nuclear Information System (INIS)

    Ermi, A.M.; Mervyn, D.A.; Straalsund, J.L.

    1979-08-01

    An in-reactor fatigue experiment is being designed to determine the effect of dynamic irradiation on the fatigue crack propagation (FCP) behavior of candidate fusion first wall materials. This investigation has been prompted by studies which show gross differences in crack growth characteristics of creep rupture specimens testing by postirradiation versus dynamic in-reactor methods. The experiment utilizes miniature center-cracked-tension specimens developed specifically for in-reactor studies. In the test, a chain of eight specimens, precracked to various initial crack lengths, is stressed during irradiation to determine crack growth rate as a function of stress intensity. Load levels were chosen which result in small crack growth rates encompassing a regime of the crack growth curve not previously investigated during irradiation studies of FCP. The test will be conducted on 20% cold worked 316 stainless steel at a temperature of 425 0 C, in a sodium environment, and at a frequency of 1 cycle/min. Irradiation will occur in the Oak Ridge Research Reactor, resulting in a He/dpa ratio similar to that expected at the first wall in a fusion reactor. Detailed design of the experiment is presented, along with crack growth data obtained from prototypic testing of the experimental apparatus. These results are compared to data obtained under similar conditions generated by conventional test methods

  8. Creep-fatigue assessment of a thermina test specimen using the R5 procedure

    International Nuclear Information System (INIS)

    Booth, P.; Budden, P.J.; Bate, S.K.

    1997-01-01

    A creep-fatigue life assessment of an axisymmetric 316 stainless steel test specimen under constant mechanical and cyclic thermal shock loading using the R5 Procedure is described in this paper. This test was carried out at CEA, France, and formed part of the 'Thermina' series. Stress analysis has been carried out using both full inelastic finite element analysis and also the simplified shakedown methods, based on elastic calculation, within R5. The estimates of strain range and the stress at the start of the creep dwell have then been used with R5 to estimate creep and fatigue damage per cycle and hence to make predictions of component life. The predicted lives are compared with the lives observed in the tests. The simplified R5 estimate of life, based on development of a crack of depth 200 microns, is 260 cycles using best-estimate material properties. Experimentally, cracks of depth at least 150 microns were observed in between 526 and 650 cycles, for two similar tests. The simplified R5 route therefore leads to an estimate of life which is conservative but not unduly so on this component. Detailed cyclic inelastic analysis using the ORNL constitutive model and the ABAQUS finite element code to estimate the strain range and dwell stress led to a best estimate of 618 cycles to crack initiation using R5. (author). 16 refs, 11 figs, 4 tabs

  9. Functional assessment of chronic illness therapy—the fatigue scale exhibits stronger associations with clinical parameters in chronic dialysis patients compared to other fatigue-assessing instruments

    Directory of Open Access Journals (Sweden)

    Chia-Ter Chao

    2016-03-01

    Full Text Available Background. Patients with end-stage renal disease (ESRD have a high symptom burden, among which fatigue is highly prevalent. Many fatigue-assessing instruments exist, but comparisons among instruments in this patient population have yet to be investigated. Methods. ESRD patients under chronic hemodialysis were prospectively enrolled and seven types of fatigue instruments were administered: Brief Fatigue Inventory (BFI, Functional Assessment of Chronic Illness Therapy–Fatigue (FACIT-F, Fatigue Severity Scale (FSS, Lee Fatigue Scale (LFS, Fatigue Questionnaire (FQ, Fatigue Symptom Inventory (FSI, and Short-Form 36-Vitality (SF36-V. Using these instruments, we investigated the correlation between fatigue severity and clinical/biochemical parameters, including demographic/comorbidity profile, dialysis-related complications, and frailty severity. We used regression analysis with serum albumin and frailty severity as the dependent variables to investigate the independent correlations. Results. A total of 46 ESRD patients were enrolled (average age of 67 ± 11.6 years, and 50% of them had type 2 diabetes mellitus. Results from the seven tested instruments showed high correlation with each other. We found that the fatigue severity by FACIT-F was significantly associated with age (p = 0.03, serum albumin (p = 0.003 and creatinine (p = 0.02 levels, while SF36-V scores were also significantly associated with age (p = 0.02 and serum creatinine levels (p = 0.04. However, the fatigue severity measured by the FSS, FSI, FQ, BFI, and LFS did not exhibit these associations. Moreover, regression analysis showed that only FACIT-F scores were independently associated with serum albumin levels and frailty severity in ESRD patients. Conclusion. Among the seven fatigue-assessing instruments, only the FACIT-F yielded results that demonstrated significant and independent associations with important outcome-related features in ESRD patients.

  10. Thermal Fatigue of Die-Casting Dies: An Overview

    Directory of Open Access Journals (Sweden)

    Abdulhadi Hassan A.

    2016-01-01

    Full Text Available Coupled studies by experimental and numerical simulations are necessary for an increased understanding of the material behaviour as related to the interaction between the thermal and mechanical conditions. This paper focus on the mechanisms of thermal fatigue in the failure of dies and cores used in the die casting of aluminum alloys. The thermal fatigue resistance is expressed by two crack parameters which are the average maximum crack and the average cracked area. Samples of various types of H13 steel were compared with a standard H13 steel by testing under identical thermal fatigue cycles. To determine the thermal constraint developed in the sample during the test, a finite difference technique was used to obtain the temperature distribution, based on temperature measurements at the boundaries. The resulting stresses and strains were computed, and the strain calculated at the edge or weakest point of the sample was used to correlate the number of cycles to crack initiation. As the strain at the edge increased, the number of cycles to failure decreased. The influence of various factors on thermal fatigue behavior was studied including austenitizing temperature, surface condition, stress relieving, casting, vacuum melting, and resulfurization. The thermal fatigue resistance improved as the austenitizing temperature increased from 1750 to 2050ºF.

  11. Study on effect of mean stress on fatigue life prediction of thin film structure

    Energy Technology Data Exchange (ETDEWEB)

    Shin, Myung Soo [Ahtti Co., Seongnam (Korea, Republic of); Park, Jun Hyu [Tongmyong University, Busan (Korea, Republic of); Kim, Jung Yup [Korea Institute of Machinery and Materials, Daejeon (Korea, Republic of)

    2016-04-15

    This paper describes the effect of mean stress on fatigue life prediction of structure made with thin film. It is well known that the mean stress influences fatigue life prediction of mechanical structure. We investigated a reasonable method for considering mean stress when fatigue strength assessment of micro structure of thin film should be performed. Fatigue tests of smooth specimen of beryllium-copper (BeCu) thin film were performed in ambient air at R = 0.1 with 5 Hz. A micro probe was designed and made with BeCu thin film by the precision press process. Fatigue tests of micro structure were performed with 5 Hz frequency, in ambient air to verify the fatigue life predicted by computer simulation through FE analysis. The fatigue life predicted by the Sa -N curve modified by Goodman method with principal stress through FE analysis shows a more reasonable result than other methods.

  12. Study on effect of mean stress on fatigue life prediction of thin film structure

    International Nuclear Information System (INIS)

    Shin, Myung Soo; Park, Jun Hyu; Kim, Jung Yup

    2016-01-01

    This paper describes the effect of mean stress on fatigue life prediction of structure made with thin film. It is well known that the mean stress influences fatigue life prediction of mechanical structure. We investigated a reasonable method for considering mean stress when fatigue strength assessment of micro structure of thin film should be performed. Fatigue tests of smooth specimen of beryllium-copper (BeCu) thin film were performed in ambient air at R = 0.1 with 5 Hz. A micro probe was designed and made with BeCu thin film by the precision press process. Fatigue tests of micro structure were performed with 5 Hz frequency, in ambient air to verify the fatigue life predicted by computer simulation through FE analysis. The fatigue life predicted by the Sa -N curve modified by Goodman method with principal stress through FE analysis shows a more reasonable result than other methods

  13. Fatigue performance of laser additive manufactured Ti-6Al-4V in very high cycle fatigue (VHCF regime up to 109 cycles

    Directory of Open Access Journals (Sweden)

    Eric eWycisk

    2015-12-01

    Full Text Available Additive manufacturing technologies are in the process of establishing themselves as an alternative production technology to conventional manufacturing such as casting or milling. Especially laser additive manufacturing (LAM enables the production of metallic parts with mechanical properties comparable to conventionally manufactured components. Due to the high geometrical freedom in LAM the technology enables the production of ultra-light weight designs and therefore gains increasing importance in aircraft and space industry. The high quality standards of these industries demand predictability of material properties for static and dynamic load cases. However, fatigue properties especially in the very high cycle fatigue regime until 109 cycles have not been sufficiently determined yet. Therefore this paper presents an analysis of fatigue properties of laser additive manufactured Ti-6Al-4V under cyclic tension-tension until 107 cycles and tension-compression load until 109 cycles.For the analysis of laser additive manufactured titanium alloy Ti-6Al-4V Woehler fatigue tests under tension-tension and tension-compression were carried out in the high cycle and very high cycle fatigue regime. Specimens in stress-relieved as well as hot-isostatic-pressed conditions were analyzed regarding crack initiation site, mean stress sensitivity and overall fatigue performance. The determined fatigue properties show values in the range of conventionally manufactured Ti-6Al-4V with particularly good performance for hot-isostatic-pressed additive-manufactured material. For all conditions the results show no conventional fatigue limit but a constant increase in fatigue life with decreasing loads. No effects of test frequency on life span could be determined. However, independently of testing principle, a shift of crack initiation from surface to internal initiation could be observed with increasing cycles to failure.

  14. Creep and creep fatigue crack behavior of 1Cr- and 9Cr-steels

    International Nuclear Information System (INIS)

    Maile, K.; Klenk, A.; Schellenberg, G.; Granacher, J.; Tramer, M.

    2000-01-01

    A large database for creep crack initiation and propagation under constant load conditions is available on conventional power plant steels of types 1%Cr and 12%Cr. Modern plants are often used in the medium and peak load regime, thus the dominant loading situation in high temperature components is creep fatigue. For life assessment data about crack initiation and growth under creep fatigue loading are required. These characteristics can not be substituted by pure fatigue or creep crack data. Therefore, a comprehensive test programme was started to investigate the creep fatigue crack behaviour of a 1%CrMoNiV turbine rotor steel (30CrMoNiV 4 11) at 550 C and a new 9%CrMoVNb pipe steel (type P 9 1) at 600 C. DENT-specimen with 15 and 60 mm thickness as well as side grooved CT-specimen with 25 and 50 mm thickness have been tested to determine possible influences of geometry and thus to check the transferability of the data to components. The creep fatigue crack growth results of tests with dwell times between t H = 0,32h and 10 h lie in the scatterbands given by creep crack growth results. Nevertheless a higher crack growth rate under creep fatigue conditions can be stated. An increase in crack growth rate due to creep fatigue is clearly visible. Loading situations with frequencies higher than 1.10 -4 Hz should be not assessed with pure creep crack results or sufficient safety margins have to be applied. (orig.)

  15. Chronic fatigue in Ehlers-Danlos syndrome-Hypermobile type.

    Science.gov (United States)

    Hakim, Alan; De Wandele, Inge; O'Callaghan, Chris; Pocinki, Alan; Rowe, Peter

    2017-03-01

    Chronic fatigue is an important contributor to impaired health-related quality of life in Ehlers-Danlos syndrome. There is overlap in the symptoms and findings of EDS and chronic fatigue syndrome. A proportion of those with CFS likely have EDS that has not been identified. The evaluation of chronic fatigue in EDS needs to include a careful clinical examination and laboratory testing to exclude common causes of fatigue including anemia, hypothyroidisim, and chronic infection, as well as dysfunction of major physiological or organ systems. Other problems that commonly contribute to fatigue in EDS include sleep disorders, chronic pain, deconditioning, cardiovascular autonomic dysfunction, bowel and bladder dysfunction, psychological issues, and nutritional deficiencies. While there is no specific pharmacological treatment for fatigue, many medications are effective for specific symptoms (such as headache, menstrual dysfunction, or myalgia) and for co-morbid conditions that result in fatigue, including orthostatic intolerance and insomnia. Comprehensive treatment of fatigue needs to also evaluate for biomechanical problems that are common in EDS, and usually involves skilled physical therapy and attention to methods to prevent deconditioning. In addition to managing specific symptoms, treatment of fatigue in EDS also needs to focus on maintaining function and providing social, physical, and nutritional support, as well as providing on-going medical evaluation of new problems and review of new evidence about proposed treatments. © 2017 Wiley Periodicals, Inc. © 2017 Wiley Periodicals, Inc.

  16. Fatigue Behavior of Modified Asphalt Concrete Pavement

    Directory of Open Access Journals (Sweden)

    saad I. Sarsam

    2016-02-01

    Full Text Available Fatigue cracking is the most common distress in road pavement. It is mainly due to the increase in the number of load repetition of vehicles, particularly those with high axle loads, and to the environmental conditions. In this study, four-point bending beam fatigue testing has been used for control and modified mixture under various micro strain levels of (250 μƐ, 400 μƐ, and 750 μƐ and 5HZ. The main objective of the study is to provide a comparative evaluation of pavement resistance to the phenomenon of fatigue cracking between modified asphalt concrete and conventional asphalt concrete mixes (under the influence of three percentage of Silica fumes 1%, 2%, 3% by the weight of asphalt content, and (changing in the percentage of asphalt content by (0.5% ± from the optimum. The results show that when Silica fumes content was 1%, the fatigue life increases by 17%, and it increases by 46% when Silica fumes content increases to 2%, and that fatigue life increases to 34 % when Silica fumes content increases to 3% as compared with control mixture at (250 μƐ, 20°C and optimum asphalt content. From the results above, we can conclude the optimum Silica fumes content was 2%. When the asphalt content was 4.4%, the fatigue life has increased with the use of silica fumes by (50%, when asphalt content was 5.4%, the additives had led to increasing the fatigue life by (69%, as compared with the conventional asphalt concrete pavement.

  17. Microstructural and Material Quality Effects on Rolling Contact Fatigue of Highly Elastic Intermetallic Ball Bearings

    Science.gov (United States)

    DellaCorte, Christopher; Howard, S. Adam; Thomas, Fransua; Stanford, Malcolm K.

    2016-01-01

    Rolling element bearings made from highly-elastic intermetallic materials (HIM)s, such as 60NiTi, are under development for applications that require superior corrosion and shock resistance. Compared to steel, intermetallics have been shown to have much lower rolling contact fatigue (RCF) stress capability in simplified 3-ball on rod (ASTM STP 771) fatigue tests. In the 3-ball tests, poor material quality and microstructural flaws negatively affect fatigue life but such relationships have not been established for full-scale 60NiTi bearings. In this paper, 3-ball-on-rod fatigue behavior of two quality grades of 60NiTi are compared to the fatigue life of full-scale 50mm bore ball bearings made from the same materials. 60NiTi RCF rods with material or microstructural flaws suffered from infant mortality failures at all tested stress levels while high quality 60NiTi rods exhibited no failures at lower stress levels. Similarly, tests of full-scale bearings made from flawed materials exhibited early surface fatigue and through crack type failures while bearings made from high quality material did not fail even in long-term tests. Though the full-scale bearing test data is yet preliminary, the results suggest that the simplified RCF test is a good qualitative predictor of bearing performance. These results provide guidance for materials development and to establish minimum quality levels required for successful bearing operation and life.

  18. Development of fatigue life evaluation technique using miniature specimen

    International Nuclear Information System (INIS)

    Nogami, Shuhei; Nishimura, Arata; Fujiwara, Masaharu; Hisaka, Tomoaki

    2012-01-01

    To develop the fatigue life evaluation technique using miniature specimen, the investigation of the effect of specimen size and specimen shape on the fatigue life and the development of the fatigue testing machine, especially the extensometer, were carried out. The effect of specimen size on the fatigue life was almost negligible for the round-bar specimens. The shorter fatigue life at relatively low strain range conditions for the hourglass specimen that the standard specimen were observed. Therefore the miniature round-bar specimen was considered to be adequate for the fatigue life evaluation using small specimen. Several types of the extensometer system using a strain gauge and a laser has been developed for realizing the fatigue test of the miniature round-bar specimen at high temperature in vacuum. (author)

  19. Rapid estimation of fatigue entropy and toughness in metals

    Energy Technology Data Exchange (ETDEWEB)

    Liakat, M.; Khonsari, M.M., E-mail: khonsari@me.lsu.edu

    2014-10-15

    Highlights: • A correlation is developed to predict fatigue entropy and toughness of metals. • Predictions are made based on the thermal response of the materials. • The trend of hysteresis energy and temperature evolutions is discussed. • Predicted results are found to be in good agreement to those measured. - Abstract: An analytical model and an experimental procedure are presented for estimating the rate and accumulation of thermodynamic entropy and fatigue toughness in metals subjected to cyclic uniaxial tension–compression tests. Entropy and plastic strain energy generations are predicted based on the thermal response of a specimen at different levels of material damage. Fatigue tests are performed with cylindrical dogbone specimens made of tubular low-carbon steel 1018 and solid medium-carbon steel 1045, API 5L X52, and Al 6061. The evolution of the plastic strain energy generation, temperature, and thermal response throughout a fatigue process are presented and discussed. Predicted entropy accumulation and fatigue toughness obtained from the proposed method are found to be in good agreement to those obtained using a load cell and an extensometer over the range of experimental and environmental conditions considered.

  20. Rapid estimation of fatigue entropy and toughness in metals

    International Nuclear Information System (INIS)

    Liakat, M.; Khonsari, M.M.

    2014-01-01

    Highlights: • A correlation is developed to predict fatigue entropy and toughness of metals. • Predictions are made based on the thermal response of the materials. • The trend of hysteresis energy and temperature evolutions is discussed. • Predicted results are found to be in good agreement to those measured. - Abstract: An analytical model and an experimental procedure are presented for estimating the rate and accumulation of thermodynamic entropy and fatigue toughness in metals subjected to cyclic uniaxial tension–compression tests. Entropy and plastic strain energy generations are predicted based on the thermal response of a specimen at different levels of material damage. Fatigue tests are performed with cylindrical dogbone specimens made of tubular low-carbon steel 1018 and solid medium-carbon steel 1045, API 5L X52, and Al 6061. The evolution of the plastic strain energy generation, temperature, and thermal response throughout a fatigue process are presented and discussed. Predicted entropy accumulation and fatigue toughness obtained from the proposed method are found to be in good agreement to those obtained using a load cell and an extensometer over the range of experimental and environmental conditions considered